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Problem Description
In the coming years, cloud computing is slated to become even more wide-spread as more and
more companies have shown interest in outsourcing the maintenance of the hardware of their
computing systems. The ability to scale up and down the amount of available computing power by
requesting and terminating instances on-demand is a powerful tool.

Computing in the cloud is usually associated with running costs where the customers pay by the
hour. Being able to scale down to the fewest possible number of servers make economical sense.
In order to handle periods of higher load, scaling up to use more servers is also important.

The service infrastructure has to be able to scale both up and down to benefit from these features.
In a search system, this calls for the ability to support different partitioning schemes and being
able to seamlessly migrate from one scheme to another.

This master thesis will address managing repartitioning, rebalancing, adding and removing index
nodes in a search system without disrupting running services.
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Abstract

Careful architectural decisions are required in order to create a highly avail-
able and scalable search system. This requires an in-depth analysis and
understanding of the architecture and context of each deployment. Differ-
ent requirements placed upon the system by different deployments mean
different solutions provide the best case by case result, thus benchmarks
provide an invaluable source of information.

Deploying in the cloud creates a lot of opportunities that have not pre-
viously been available for smaller companies and organizations, such as
requisitioning additional servers to handle periods of high load. Cloud com-
puting is usually charged by the hour, and being able to scale down to the
fewest possible number of servers over time makes economical sense. In
order to handle periods of higher load, scaling up to use more servers is
also important.

This thesis provides an overview of common components and important
aspects of a distributed search system. It then gives an overview of different
partitioning techniques before going into the details of repartitioning and
rebalancing in a document-partitioned full-text search system.

The thesis introduces a processing framework that draws inspiration
from flow-based programming, which is shown a valuable tool in creating
custom tailored search solutions. The implementation is used to bench-
mark different repartitioning and rebalancing strategies that are important
to support in order to scale both in and out.

In conclusion, the techniques mentioned in the thesis show great promise
in creating custom, maintainable and flexible partitions. The processing
framework enables each specific deployment to easily compare different
partitioning schemes and associated manageability and maintenance costs
to determine the best fit for any given situation.
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Chapter 1

Introduction

The focus of this thesis is on distributed search systems where the index is
partitioned across one or more servers.

Economic motives may call for repartitioning since running the system
on the fewest number of servers possible is cost-saving. In most a cloud
environments [1] computing power is paid for by the hour, thus being able to
scale down is an important property in order to keep the fewest number of
nodes running over time. However, handling peaks in the load is important,
which can be solved by starting one or more temporary servers.

Partitioning, splitting a large set of data into multiple smaller sets, is
often used to increase performance with operations that can be performed
concurrently on multiple partitions.

Repartitioning means adjusting the number of partitions and is required
in order to support scaling up and scaling down. Rebalancing is ensuring
the documents are distributed evenly between the nodes in a system, and
that every document is in the correct partition.

Administrating fewer servers is intrinsically easier, but a distributed sys-
tem can provide higher availability, better resilience to failures and in some
cases better performance. This is a tradeoff between manageability, per-
formance and availability.

Changes in usage patterns, both from moving from a testing environ-
ment to a real-world deployment and from changes in user behavior may
significantly change the requirements of the partitioning. User behavior is
closely related to, but not limited to, the query response time, recall and
precision [2]. As these properties improves, users will use the search more
and the load on the search system increases.

This master thesis presents a distributed search system implemented by
solving the distribution as a data flow problem. By combining a processing
framework based on well-known flow-based programming principles and
existing full-text index servers as storage backends [3][4], the result is a
distributed and scalable search system.
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This master thesis is organized as follows. Chapter 2 gives an overview
of existing systems. Chapter 3 introduces concepts and the components
used in distributed search systems. Chapter 4 defines the scope of the
thesis. Chapter 5 describes motivation for partitioning and introduces dif-
ferent partitioning strategies. Chapter 6 explains the distinction between
repartitioning and rebalancing and discusses online and offline changes to
partitioning schemes. Chapter 7 presents a flexible framework that assists
developers and search implementers in quickly adapting to the changing
requirements and varying load of real-world search systems. The imple-
mentation is used to benchmark the strategies introduced in this thesis in
Chapter 8. Finally, conclusions and ideas for future work are given in Chap-
ter 9.
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Chapter 2

Prior work

This chapter gives an overview over the existing partitioning and repartition-
ing support in currently available search-related software.

2.1 Partitioning in full-text indexes

The two largest and most well-known open source full-text indexes, Solr
[4] and Xapian [3] include support for distributed querying, but the index
partition construction and maintenance is left for the users of these systems
to implement. This has opened up the market for third parties to provide
components to support distributed indexing, some of which are mentioned
in Section 2.3.

2.2 Partitioning in distributed databases

In recent years, many distributed database systems have been created.
These are often built with distribution in mind and many of them include
support for adding and removing partitions.

MongoDB [5] is a document-oriented database that supports automatic
partitioning by applying a dynamic range-partitioner to partition the input
data into chunks. Rebalancing (called balancing by the MongoDB docu-
mentation) is done by using a two-phase commit protocol [6] to exchange
ownership of the data chunks between the partitions.

Redis [7] is a key-value store that divides the keyspace into a set num-
ber of hash slots, which can be assigned to nodes. Data can be migrated
between the nodes at any time.

Many similar solutions exist, such as CouchDB [8], Amazon Dynamo
[9], Cassandra [10], Voldemort [11] and Memcached [12].

None of the currently available distributed databases include viable sup-
port for full-text indexing and querying. This means that developers have
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to choose between having the features of a full-text index or the ease of
distribution, partitioning, repartitioning and rebalancing provided by the dis-
tributed databases.

2.3 Distributing full-text indexes
Adapting existing full-text indexes to use distributed databases and file sys-
tems as the backend store has been done by several software projects.

Katta [13] is a data storage layer that provides distributed storage for
Lucene by splitting the data into shards that are assigned to server nodes.
Katta uses Hadoop [14] to create the indexes and store them in a shared
filesystem, either locally or remotely. This system is geared towards batch
indexing, and continuous or real-time updates are not directly supported
and has to be manually implemented.

Solrandra [15] uses Cassandra as a peer-to-peer database to store the
inverted index. In this distributed system the entire index is available in any
participating node in the database ring [16]. The backend indexes can grow
quite large, giving diminished returns of the query node caches because the
caches become less likely to contain the required data.

2.4 Comparison
The available solutions presented in the previous section are generally tightly
integrated with their respective full-text index servers and data access li-
braries, which may be undesirable from a support standpoint.

In contrast to the implementations described in the previous sections,
which are implemented by integrating into existing full-text indexes, the dis-
tributed search system described in the following chapters operate on as
a layer on top of the existing full-text indexes. In this system, updating to
the partitioning functions (see Chapter 6) to accommodate changes in the
partitions becomes trivial operations that only involves updating a single
processor or pipeline (Chapter 7) in a data flow graph (Section 3.3).

As shown in Figure 2.1, this data flow processing framework can be used
to provide additional features on top of existing full-text indexes, custom
index adaptations or even full-stack frameworks that uses partitioning or
distribution internally.

In this thesis, this method are shown to be flexible, scalable and easily
maintainable.
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Figure 2.1: Overview and comparison of some existing systems.

13



14



Chapter 3

Components

This section describes some common components and important aspects
of a distributed search system.

3.1 B+trees
The B-tree is a sorted tree data structure [17] that is similar to the binary
tree [18] except it allows more than two paths out from a node which is es-
sential to the implementation of dynamic databases [19]. The tree is always
balanced in the sense that all the leaf nodes are at the same distance from
the root node.

B-trees are used in full-text indexes because it is a data structure that
scales well and provide fast lookups and updates, with only some overhead
when nodes have to be split.

A B+tree is a variation of a B-tree that stores the data only at the leaf
nodes. Additionally, each data block has a pointer to the next data block in
order to perform sequential scans.

3.1.1 Operational complexities
Lookup requires one operation for each node for a total of m = logn+1 N+1

where n+1 is the order of the tree and N is the total number of nodes,
which gives O (log n).

Inserting requires lookup up the correct node, writing the data block and
rebalancing the tree, which gives O (log n).

Deleting requires looking up the node, performing the deletion and rebal-
ancing the tree, which gives O (log n).

More detailed analysis of the amortized running times can be found in
[20].
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Figure 3.1: Adding the letters “f” and “g” to a 2 B-tree

3.2 Full-text index

The system described in this paper assumes that a full-text index is used.
We use Xapian [3] by default, but its usage is loosely coupled and can easily
be replaced with other full-text indexes providing the same or similar ser-
vices, for example Lucene [21], Solr [4] or Terrier [22].

Operating on documents on this level isolates the indexing processes
from the details of the full text indexing service used which helps ensure the
versatility and pluggability of the system. It also means that new full text in-
dex implementations can quickly be tested in order to perform benchmarks,
analyze performance or comply with special deployment-specific require-
ments.

A full-text index is usually stored in multiple tables, implemented as B-
trees. To better understand how production quality full text indexes work
and to be able to reason about operation costs, we look at the tables [23]
used in Xapian:

Position - contains the positional information for terms which is used for phrase
searches.

Termlist - stores the list of terms for each document.

Postlist - contains summary statistics for the index, metadata, document lengths,
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document values and the posting list.

Record - contains the document data, as set by document.set_data().

Spelling - contains data used for suggesting spelling corrections.

Not all deployments will use all of the tables. For example, the posi-
tion table may be empty in indexes where query features such as phrase
searching or nearness will not be used, in order to save space. The posi-
tion table is often the largest table by quite a large margin due to its need to
store multiple locations for each term.

The record table may be empty if the document data is not required or is
stored in another database, the latter requiring a mapping to exist between
the xapian document ids and the database that contains the database data.

3.3 Flow-based programming

Flow-based programming [24] is an application development methodology
that uses a network of usually asynchronous, reusable components that
operate on and transforms streams of data. Many of the concepts are found
in older computer science literature from [25] and have recently gained in
popularity as multiprocessing on multi-core systems has become even more
common.

Receive 
request

Process 
request

Process 
response

Router

Backend 3

Handle 
backend 

data

Return 
response

Backend 2

Backend 1

Figure 3.2: Flow based programming.

The data flows are usually processed asynchronously, which means it
is not possible to accurately predict the time it will take to process any single
packet. However, it is possible to configure a mode of operation by config-
uring the local execution models, the network and communication protocols
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that ensures timeouts or guaranteed packet acknowledgements can be re-
lied on in most use cases. This is a flexibility that allows any component to
reuse other components or even networks.

This methodology has seen much use in application domains such as
banking, sales and scientific applications dealing with continuous streams
of data, which makes it a very interesting base to build upon. Recent com-
mercial activity around this methodology from larger vendors are Yahoos
pipes [26], IBMs Damia [27], MuleSoft [28] and Apache Camel [29].

3.4 Nodes

A node is a single process that has contains one or more pipelines and
communicates with other nodes via the network.

3.5 Message queues

A Message Queue is a component that is used for communication to decou-
ple the sender and the receiver of messages. It provides an asynchronous
communication channel between one and more senders and zero or more
recipients.

One of the most widely known protocols used by messaging systems
is called AMPQ (Advanced Message Queuing Protocol) [30], which is a
vendor-neutral protocol for communication between a messaging provider
and a client. The client in this sense is any sender or any receiver. Mes-
saging then acts as a piece of middleware that enables each service that
communicates with it to be unaware of the other services since they only
need to know the network address of the middleware. The middleware takes
care of routing messages to the correct recipients based either on the queue
used or any routing data associated with the message. If the message is
undeliverable, the middleware may store the message for delivery at a later
time when the appropriate client connects.

Different messaging systems support different policies which includes,
but are not limited to the following:

Reliability - what delivery guarantee exists on queued messages, and whether
the sender is notified of dropped messages.

Order of message delivery - are the messages delivered in the same order
they are sent?

Durability - how the provider handles situations where the intended re-
cipient is temporarily available and what happens when the broker is
restarted.
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Notifications - whether the system allows for notification of message de-
livery and other clients sending/receiving messages.

There are many message queue systems, some of the most well-known
being RabbitMQ [31], ActiveMQ [32], ZeroMQ [33], Amazon SQS [34].

Out of the aforementioned message queue systems, only ZeroMQ sup-
ports broker-less [35] operation, which eliminates the broker as a central
bottleneck in a messaging network (see Figure 3.3), giving lower latency
and higher throughput at the cost of reduced manageability. The manage-
ability may be regained by using distributed brokers and directory services.

Broker

A

B

C

D

input:1

output:8
2

3

4

56

7

The same system, but without the broker uses significantly less queues,
which translates to fewer messages being sent.

A

B

C

D

input:1

output:5
2

3
4

Figure 3.3: Broker versus broker-less message queue systems.
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3.5.1 Messaging patterns

Message queue services enable system architects to use different message
patterns. The most common messaging patterns are request-reply, publish-
subscribe and push-pull.

Request-reply messaging

Request-reply messaging is similar to the traditional client-server model
where a client sends a request and a server responds with a reply.

Client Server
REQ

REP

Figure 3.4: The request-reply messaging pattern.

The request-reply pairs may be lockstep or not. Being lockstep means
that a client cannot have more than one outstanding unanswered request
at any time. The requests are usually load-balanced between available
servers and servers usually use fair-queuing to make sure that no single
client starves the other clients.

Publish-subscribe messaging

In publish-subscribe messaging, messages from publishers are delivered
to subscribers according to the message contents, often a prefix. Multiple
subscribers may receive the same message if they are subscribing to the
same type of messages, and publish-subscribe messaging can be said to
be a broadcasting messaging system.

Publisher SubscriberPUB

SUB

Subscriber

Subscriber

SUB

SUB

Figure 3.5: The publish-subscribe messaging pattern.
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Push-pull messaging

In push-pull messaging, messages are load-balanced between available
clients. The sender is called a pusher because it actively sends the data
to clients and the clients are called pullers because they have to actively
register with a server in order to be eligible for receiving data.

Upstream DownstreamPUSH
PULL

Downstream

Downstream

Downstream

Figure 3.6: The push-pull messaging pattern. The nodes are labeled up-
stream/downstream as seen from the leftmost connection.

Push-pull messaging is also referred to as pipeline messaging because
multiple push-pull patterns may be used serially to arrange a set of nodes
in a pipeline. Data always flows in the same direction.

3.5.2 Message serialization

Messaging layers usually only support sending bytes, and nodes operate
on structured data. In order to send structured data between nodes, the
data needs to be serialized before sending.

JSON [36] is an excellent candidate for this serialization requirement
due to its low overhead and ease of use. Bindings for JSON exist in most
programming languages which makes it easier to integrate services written
in different programming languages.

Other significant candidates are Protocol Buffers [37], MessagePack
[38] and BSON [39]. Each candidate has its strength and weaknesses with
certain types of data, and it is up to the implementors to decide on a stan-
dard for each deployment.

A low overhead measured in message sizes is important in a distributed
network as the bandwidth may be limited. For some of the messages may
be possible to save some bandwidth by compressing the objects after seri-
alizing it, trading CPU cycles for network bandwidth [40]. In some cases, it
may be reasonable to batch multiple documents together before compress-
ing them to share the compression overhead. This technique becomes
better if the messages that are batched together and compressed share
characteristics that enable effective compression [41].
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An important thing to note with compression is that depending on the
message size, it may consume a significant amount of memory on either
side of the message transmission as the compression and decompression
uses memory to store parts of both the uncompressed and the compressed
messages at the same time. It is possible to peek at the compression statis-
tics to determine the exact sizes of the uncompressed messages and at-
tempt to make sure that enough memory for the operation is available in
addition to using stream-based compression.

A small-scale comparison is shown in Figure 3.7. 10000 documents were
randomly selected from Wikipedia. Their average size were measured be-
fore they were run through a text-processing pipeline (see Section 7.3) that
performed some basic textual analysis and created a document ready for
insertion into a full text index. The document were serialized with each of
the serializers and their new average message sizes were measured.

Format Before text processing After text processing
bson 1249.61 3238.26

json 1264.50 4404.47

msgpack 1232.60 3226.97

pickle 1305.95 5827.16

Figure 3.7: Serialized document sizes, before and after text processing.

JSONs poor performance in this test can be slightly attributed to the fact
that it was unable to encode the binary data that was the serialized full-text
index document, which had to be base64-encoded in order to get encapsu-
late the conflicting bytes from conflicting with the JSON serialization.

3.6 Networks
A network is any number of interconnected nodes that work together in order
to provide a service.

Nodes may be connected to each other with different kinds of connec-
tions, and everything from direct connections using raw sockets to high level
messaging using perspective broker [42] or a messaging queue system is
possible.

A simple network, shown in Figure 3.8 may contain several nodes, mes-
sage queues and support different protocols:

Sources pushes data to any available text processors and subscribes to
messages from the index in order to know when queued documents
have been indexed.

Text processors pulls data from a source, processes the data and pushes
the data to an index.
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Figure 3.8: A simple network of nodes that are connected using message
queues.

Indexes pulls processed document and writes them to an index.

Clients sends requests to query nodes using different protocols.

Query nodes responds to requests from clients.

Logging and statistics can be gathered by subscribing to updates from
different services in a network.

More durable and complicated networks would usually include directory
services that acts as a lookup service in order to determine message des-
tinations, and distributable message brokers using load balancing.
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Chapter 4

Limitations

This chapter describes the limitations of this paper.
The processes and operations defined in this paper operate on docu-

ments and does not perform optimizations that might have been possible
if it was implemented at a lower granularity level such as term-partitioning.
This is due to term partitioning requiring a global lexicon, which does not
scale well [43], and even though it has lower utilization of resources like disk
accesses and transfers a smaller amount of data volume per query docu-
ment partitioning is the scheme usually chosen by web search engines [44],
and will be examined in more detail in Section 5 and 6.

4.1 Single writer and multiple readers

This is the way both Xapian and Solr/Lucene work and sets the limitation
that only one thread may modify the database at any time. Multiple threads
and processes are allowed to read the database at any time, however.

Because of this, scaling up indexing in a search system practically re-
quires partitioning to be implemented.

Since we are building on top of these full-text indexing systems, these
limitations are imposed on the indexing nodes.

4.2 Fault-tolerance and error recovery

The design and architecture of a fault-tolerant system is out of the scope
for this paper, but due to the important of fault-tolerance for applications like
search systems that operate on arbitrary data, we will have a short look at
what it means.

A key concept in software fault‐tolerance is to hierarchically decompose
large systems into modules, each module being a unit of service and a
unit of failure. Module failures should not propagate beyond the module
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[45]. Processes may achieve fault containment by sharing no state with
other processes; making its only contact with other processes via messages
carried by a messaging system.

Non-transient errors such as bad sectors on hard drives, memory cor-
ruption and the like are also not considered in this paper.

4.3 Byzantine nodes
Byzantine [46] or other purposefully dysfunctional nodes are not considered
and are beyond the scope of this paper as they are unlikely in a controlled
environment.

4.4 Replication
This paper assumes replication as a layer between the indexes and the
query nodes and we will not deal with the details of how this replication is
done, but we will deal with the configuration and updates to the replication
layer as a part of repartitioning. As such, it is important to know a couple of
properties we assume holds for the replication.

In practice, xapian-replicate-{client,server} can be used to repli-
cate databases from a master database which modifications are made on,
and a set of secondary read-only slave databases to which these modifi-
cations are propagated [47], shown in Figure 4.1. Similar services exist for
other full-text indexes such as Solr [48].

For example, to support a high query load there may be many query
nodes, each with a local copy of the database, and a single indexing node.
In order to allow scaling to a large number of query nodes with large databases
and frequent updates, we need an database replication implementation to
have the following characteristics:

The replication protocols such as the one in Xapian [49] supports ef-
ficient replication frequent small updates to large databases without inter-
rupting searching on slave databases and indexing on the master database
during synchronization. It does not invalidate up-to-date data cached in-
memory on the slaves.

It worth noting that this replication in Xapian does not support replication
and aggregation of multiple writable databases to a single database.

4.5 Resource bounds
No checks are performed on the resource usages, such as checking that
there is enough free disk space available to repartition and rebalance.
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Figure 4.1: Example replication of a full-text index.
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Chapter 5

Partitioning

The focus of this paper will be on partitioning in an environment as defined
in chapter 3.

Partitioning means dividing the data up in n number of independent sub-
sets and is a tool that is central to scaling systems horizontally, and is usually
employed to achieve the following properties:

Manageability – managing smaller amounts of data is intrinsically easier
even though the partitioning introduces some complexity itself

Performance – running an algorithm on a data set size n is the size of the
data, can be sped up linearly by partitioning the data into m partitions
and running the algorithm in parallel. This also opens up the possibility
for keeping the dataset in memory in each partition and allows for
better use of multi-core and multi-node systems.

Availability – a single point of failure is undesirable for systems that favor
high availability. With multiple servers providing the same service, the
system can still attempt to provide the same functionality even though
one or more of the partitions are unavailable. This results in a lower
mean time between failures in the system, since the chance of any of
the nodes having an issue that stop from performing properly is higher
than it would be if there only was a single node. This is due to the fact
that given an individual failure chance of pe in a single server situation,
the chance of being in a degraded state is pn

e in a multi-server solution
assuming serial failures. The remedy for this is replicating the nodes.

Document partitioned systems (Figure 5.1) have n self-sufficient indexes,
each containing a partition of the document collection. The total size of the
partitions are slightly larger than the non-partitioned case, as some of the
data occurs in multiple partitions. For further discussion about this over-
head, see Section 5.7.
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Figure 5.1: An unpartitioned index and a document partitioned index.

Each partition maintains its own inverted file for the documents it con-
tains. In order to rank queries, this requires each node to be synchronized
with the rest of the nodes with respect to the dictionary statistics, unless the
partitions are of such size and composition that they can be assumed to
encompass the necessary properties of the collection as a whole.

5.1 Improving query throughput

From the perspective of a read-only query-service, the use of partitioning is
usually either to load-balance or load-divide. Load-dividing between parti-
tions aims at making the fewest amount of partitions required perform the
necessary work to answer a request. Load-balancing by partitioning tries
to achieve an equal average load between the partitions and usually re-
quires an additional merge-step, as the results from each partition has to
be merged to form the complete result.

Partitioning can also be used to allow queries to be performed on only
specific subsets of the complete data set, which may dramatically reduce
the required computation time. The prerequisite is being able to perform
some kind of collection selection, which puts some limitations on the parti-
tioning method used, which we discuss further in Section 5.4.
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If every or even just the most heavily-used parts of the index can fit in
memory on a node, it will be able to handle the requests much quicker than
a larger node that has to use (more) disk accesses to do the same.

Some partitioning strategies (discussed in more detail in Section 5.4)
enable the use of collection selection [50] at query-time to select one or
more candidate partitions that may contain relevant results.

5.2 Improving index throughput

Partitioning enables us to scale up the write-performance of a system by
parallelizing the write operations.

A server in the cloud can use partitioning locally to improve the index-
ing throughput by attaching multiple volumes and partition between them
instead of only using a single large volume. Doing this increases the write-
bandwidth of the server and requires a system that natively supports this
kind of partitioning. This partitioning can be hidden from the rest of the
system by providing a query service that merges the results from querying
these partitions.

Indexing nodes are under the limitations of only allowing a single thread
to write (see Section 4.1) to a database at a time. Most modern computers
have a CPU with multiple cores. In these systems, partitioning may also be-
come important if the indexing process is CPU-bound instead of only being
relevant if the indexing is I/O-bound.

5.3 Avoiding partitioning

Partitioning are seen by some [51] as often being a sign of premature op-
timization, that it is relatively hard and complicates deployments. In many
cases this may be correct and is supported by Moore’s law [52]. Many ca-
pacity problems that have been predicted for the future has not come to
pass due to this effect.

But Moore’s law may not hold forever: even though it fits the trend of
the past 50 years, it does not necessarily mean it will continue to hold for
all eternity. It also does not cover I/O latency and bandwidth, even though
SSD disks have significantly improved random reads and writes [53], which
are frequent in search systems.

Depending on future improvements and reduced costs of hardware to
address scaling may be risky. Especially if customer growth is taken into
account, which is multiplicative to the regular growth of just the existing
customers.

If the initial scale of the system is too large for a single machine to handle,
then partitioning is a hard requirement.
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Additionally, in the cloud [1] it is easier to handle variable load and scal-
ing by using several smaller, more transient nodes in order to scale than
relying on the latest and greatest hardware to provide the necessary com-
puting resources. In fact, most cloud service providers do not expose any
hardware to the users, which means that the size and computing power of
most of the virtual servers are significantly lower than what is commercially
available for managed hosting providers.

Attempting to prepare for deploying on multiple servers by partitioning
on a single physical disk drive is an example of premature optimization that
actually prevents a system from achieving optimal performance. If two par-
titions are configured on the same physical disk drive, heavy indexing or
querying can cause the processes to interrupt each other, which is easiest
to see in disk usage (Figure 5.2).

Full-text indexes such as Xapian write out parts of the document data to
disk during indexing, even when not committing, which results in the physi-
cal disk having to seek. This is generally a good idea, as it saves a lot of time
writing the documents to disk when committing. This improves the global
system resource usage by spreading the I/O operations required to commit
the documents over time, improving the total service throughput [40].

However, if two processes both experience the same high indexing load,
disk thrashing could occur.

This disk thrashing does not occur with small databases, but as the
databases grows, the document data being written to disk require more and
more disk seeks due to the growing B-tree tables.

5.4 Strategies

In this section we will discuss some different partitioning strategies, parti-
tioning functions and their attributes. The difference in these attributes and
the domain we are indexing determines which strategy is the best fit for
each specific deployment.

A partitioning function is a function used by a partitioner to select an
output partition (Figure 5.3) for a given partitioning key (see Section 5.4.1)

5.4.1 Partitioning key

A partitioning key is the value the partitioning functions operate on in order
to determine an output partition. This key is arbitrarily defined by the system
configuration and can either be a static or computed.

Static keys are keys that occur directly in document fields. Examples of
these are titles, tags, modification timestamps or other content.

Computed keys are keys that may be computed by taking the document
fields as input. Examples of these are content hashes, combinations of
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Figure 5.2: An example that shows disk thrashing that severely limits the
throughput of an indexing service. After the second commit, the through-
put (light blue) is less than half of what it originally was, due to disk seeks
occurring during indexing.

modification timestamps and titles and so on.
Both static and computed keys rely on operating on fields that are present

in all the documents.
We define a repeatable partitioning function as a function that always

yields the same partition for repeated calls with the same arguments. This
allows for in-place updates and deletes.

In-place updates and deletes refer to being able to send updates and
deletes to the same node that currently has the indexed document, and
assists in lowering the amount of consistency anomalies which is discussed
in further detail in Section 6.4.

5.4.2 Hash partitioning

A hash function is a function that transforms it input into a shorter represen-
tation that serves as a signature for the original input [54].

Hash partitioning is done by using a hash function on the partitioning
key in order to select a partition for input documents. The output from the
hash function is passed through an additional modulo operation where the
modulus is the number of partitions.
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Figure 5.3: Partitioning function used by a partitioner

This partitioning function gives different partitioning attributes depending
on the value being hashed. If a unique identifier (see Section 5.6.1) is used
as the partitioning key, all partitions must be queried in order to answer a
query, but each partition are likely to have fewer disk reads in order to re-
spond to the query. If some sort of category attribute or tags are hashed, it is
possible to use the contents of the query in order to select a minimum num-
ber of partitions that are guaranteed to contain the only relevant categories
or tags.

In either case, hash partitioning is a repeatable partitioning strategy.

5.4.3 Round-robin partitioning

A round robin partitioning ensures that each partition receives document its
document n before any partition receives its document n + 1 in a circular
order.

Round-robin partitioning can be accomplished by using fair-queuing [55],
a feature provided by most messaging systems. This provides a uniform
distribution of documents over the partitions, but is not repeatable.

A great advantage with partitioning strategy is that it does not necessar-
ily require a separate partitioning service.

5.4.4 Random partitioning

A random partitioning ensures that there is no correlation between the doc-
ument and the selected partition.

This type of partitioning does not guarantee a uniform distribution, and
is not repeatable.

Random partitioning can be accomplished in a number of ways. Pseudo-
random partitioning using load balancing is the fastest, but does not guar-
antee a uniform distribution. This type of partitioning is not repeatable.
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5.4.5 Load balanced partitioning

In load-balanced partitioning, each incoming document is sent to the parti-
tion that has the lowest load at the time (see Figure 5.4). This results in the
highest partitioning and indexing throughput, as each partition is allowed to
operate at its maximum capacity.

load=0.7load=0.9 load=0.3 load=0.5

Partition 1 Partition 2 Partition n•••

Load balancing

Partitioner

Partition 3

Figure 5.4: A load balancing partitioner always selects the partition that is
currently experiencing the least amount of load.

A uniform distribution when using load balancing will only be achieved if
each of the partitions has the same capacity and the documents are of the
approximate same sizes.

This partitioning strategy is not repeatable.

5.4.6 Range partitioning

In range partitioning, a set of input ranges are either configured or com-
puted. During partitioning, the partitioning key is matched against these
ranges, and the range that contains the key determines which partition the
document should be sent to.

Using this technique, the partitioner needs to know the value range of
the partitioning key.

This strategy may be uniform if the ranges are selected carefully, and is
repeatable.
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5.4.7 Spatial partitioning
Spatial (or geo-) partitioning [56] means partitioning a document into a par-
tition depending on its location in a document-space (see Figure 5.5). The
uniformness of a spatial partitioning function depends on its exact definition,
but is repeatable as long as it isn’t adaptive.

Adaptive spatial partitioning uses already seen documents in order to
adjust the borders in the document-space to create a more uniform docu-
ment distribution.

Figure 5.5: A spatial partitioning of some European countries.

5.4.8 Clustering-based partitioning
In general terms, a cluster is a set of entities that are alike [57], and entities
from different clusters are not alike (see Figure 5.6). This is a natural fit
when it comes to partitioning document collections since it implies that if
one document from a collection is relevant to the query, the rest which is
topically alike will have a higher degree of relevancy. Whether it is plausible
to get enough information to direct a given query to a partition based on
only the query string or if additional information is required (for example a
user-specified cluster) remains to be seen in practice.

Clustering as a document partitioning strategy requires a good set of
training documents that is used to generate the initial clusters. After the re-
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quired clusters have been created, the documents can be put into an cluster
by finding which of the existing clusters it is most similar to. Using clustering
does not require any assumptions about the data that is common to most
of the statistical methods for partitioning the data [58].

Figure 5.6: A set of documents partitioned into three clusters based on
similarity in two dimensions.

Some popular methods of clustering includes the following:

Hierarchical clustering [59] is done by recursively merging clusters, start-
ing with a cluster size of one (agglomerative clustering), or by recur-
sively splitting up a cluster into smaller clusters, starting with a single
cluster containing all the data points (divisive clustering).

k-means clustering [60] is done by deciding the number of clusters k, seed-
ing them somewhere in the data space and evolving them by contin-
uously adding the data point closest to the center each of the clusters
and recomputing the resulting new centers.

Both clustering and categorization are attempts to partition the dataset
based on topics. Many other techniques have been presented and dis-
cussed [50], but it is still uncertain which partitioning scheme is suitable
under which circumstances [43].

Partitioning based on clustering is repeatable as long as no re-training
is performed.
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5.4.9 Combinational partitioning

Combinations of different partitioning functions is possible by either using
multiple partitioning functions in a single partitioning service (Figure 5.7),
or combining multiple partitioning services (Figure 5.8). Using multiple par-
titioning functions in one service results the lowest amount of nodes and
messages being sent, but using multiple services allows for more granular
updates of the partitioning network without affecting services upstream in
the network.
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Figure 5.7: Combinatorial partitioning with multiple partitioning functions
within a single service.
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Figure 5.8: Combinatorial partitioning with multiple services each using a
single partitioning function.

For example, if we were indexing companies and locations the data
could first be partitioned by continent (and optionally country), and finally
by some sort of hash-partitioning.

38



5.5 Collection selection

In order to query multiple index partitions for relevant documents, it is pos-
sible to simply broadcast the queries to all the partitions and merge the
results. However, this could in some cases be costly, impractical or even
unnecessary.

Collection selection can be considered the reciprocal of index partition-
ing during query-time (see Figure 5.9). The main point of collection selection
is avoiding querying indexes that are unlikely to hold documents of interest
to the user, and there are several possible methodologies that can be used.

D’Souza, Thom and Zobel [61] concludes that managed collections are
likely to be used in distributed retrieval, and allows for more effective selec-
tion.

Partition 1 Partition 2 Partition n

Partitioner

Collection 
selection

•••

Figure 5.9: Using collection selection to limit the query to only use indexes
that contain relevant documents.

5.6 Practical considerations

A partitioning on the document source or type can be used to create a fa-
cade interface to a search engine that manages multiple collections that
share some common processing steps.
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Figure 5.10: A partitioning service used to create a facade interface for
multiple collections.

In Figure 5.10, documents from three sources (A, B and C) share some
common processing steps. The nodes that perform the common process-
ing sends all the documents to the same partitioning service, which splits
the documents into three partitions, based on their source or intended desti-
nation index. A is then indexed directly, B has some extra processing done
before being indexed, and C has both some more processing and an addi-
tional partitioning done before being indexed.

Neither partitioning service in the example needs to know anything about
the processing that is done in its input or output networks.

5.6.1 Unique identifiers

Each document is assumed to have a unique identifier, which is an arbitrary
term [62][63]. This can be anything from the url for web documents to SHA-
1 hashes for git commits. Numerical identifiers or hashes should generally
be avoided since multiple sources may index documents to the same index,
and collisions, which are much more likely with such identifiers, would re-
sult in documents being overwritten. A solution to the problem is to prefix
the numerical identifiers with a string that identifies the source. Due to the
maximum term length requirements, short prefixes are generally better.
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Figure 5.11: Prefixing IDs

The unique term must never occur in any of the other documents in the
index, because if collisions occurs, there is no way to tell the documents
apart, and the new documents would delete and replace the previously in-
dexed documents.

A simple way ensure that a unique key does not naturally occur in any
other documents is to keep all document terms in lowercase and using an
uppercase prefix when constructing the unique term. A unique-identifier
for a document with the numeric identifier id from a source S could then
become “SIDid” (see Figure 5.11).

5.7 Size increase

Multiple smaller partitions takes up more hard drive space than a single
large partition because two factors: the structural overhead posed by having
more B-trees and the duplication of terms.

The latter factor overshadows the first, as parts of both the spelling and
the postlist will be duplicated between the partitions. For partitioning strate-
gies that does not consider the vocabulary used in the documents, this can
become a significant overhead when compared to a lesser partitioned so-
lution.

The following listing gives an idea of the size differences:

$ xapian-compact wex{1,2,3,4,5,6,7,8}.xapian wex_all.xapian
postlist: Reduced by 50% 106216K (210856K -> 104640K)
record: Reduced by 4% 3968K (84112K -> 80144K)
termlist: Reduced by 27% 36704K (133104K -> 96400K)
position: INCREASED by 3% 19272K (511872K -> 531144K)
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spelling: doesnt exist
synonym: doesnt exist

5.8 Querying in a partitioned system

There are three architecturally different ways of querying in a distributed
search system: direct, using an implicit broker or using an explicit broker.
The following sections discusses these in further detail.

5.8.1 Direct access

The query node may access the index partitions directly, either via backend
support, a networked filesystem (NFS [64]) or using a distributed filesystem
such GlusterFS [65] or Hadoop DFS [66].

Full-text 
index

Full-text 
index

Query nodeQuery node

Figure 5.12: Querying without the use of a broker by accessing multiple
indexes directly.

For example, the remote database feature in Xapian [67] enables query-
ing multiple indexes, both local and remote, as if they were just a single
database (see Figure 5.12). This requires an xapian-tcpsrv or xapian-progsrv
instance running for each of the remote databases, and neither the proto-
col nor the sockets used between the client and the servers have any fault
tolerance support. The remote databases does not have full support for
spellings and metadata, which potentially could be used to implement core
features such as spelling correction.
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5.8.2 Implicit broker

In this approach, users send their queries to any of the query nodes, which
will broadcast the query to the other query nodes before it starts perform
the query on its own index. When all the results are available, the node
responsible for performing the query on behalf of the user merges the them
into a single response and sends it to the client.

Each query node has its own index and establishes connections with
the other query nodes as required (see Figure 5.13).

Full-text 
index

Full-text 
index

Query nodeQuery node Query node

Full-text 
index

Figure 5.13: Querying by sending the request to any of the query nodes,
which will then act as a implicit broker and query its siblings as part of its
query processing pipeline.

If the query nodes have limitations on the amount of incoming connec-
tions or uses threads to perform the queries, this method is prone to dis-
tributed deadlocks. A distributed deadlock in the simplest case is when two
nodes are waiting for a resource owned by the other node, such as a two-
node system that only accepts a single incoming connection simultaneously
gets a request that requires them to fetch results from the other node.

This is how distributed querying is done in Solr [68].

5.8.3 Explicit broker

This approach uses a separate query broker that manages multiple query
nodes that perform the queries separately. The results from the query nodes
are then merged as a separate step in the processing pipeline of the query
broker (shown in Figure 5.14). This is a trade-off between the easy setup
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of the remote database feature and the control, customization and features
offered by the explicit merging.
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Figure 5.14: Querying with the use of a broker that merges the results from
multiple query nodes.
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Chapter 6

Repartitioning and
rebalancing

Search systems are often used to index steadily growing amounts of data,
and sudden, large and unforeseen changes to the data volume indexed by
a system is not a very likely scenario. To accommodate the growing data
volume we may choose to increase the number of partitions, and to save
costs we may decrease the number of partitions, both of which is a process
called “repartitioning”.

Administrators may want to reduce the number of partitions or servers
used due to financial concerns or simply that the available computing power,
memory et cetera have been outpacing the data growth. Cloud computing
providers typically charge by the hour based on predefined server sizes, and
being able to scale down an instance size or reduce the number of servers
may be desirable from both an economical and maintenance perspective.

The number of clients in a search system may fluctuate considerably
over time. If clients are only consumers, it is most likely enough to just
add more query replications. However, if clients also produce data that are
indexed either temporarily or permanently, it may be useful to be able to
vary the number of partitions over time.

During early stages of deployment or testing, it may be desirable to test
different partitioning schemes to find the one with the most desirable prop-
erties. Later in the system lifecycle, the administrator may find out that the
original partitioning scheme has some undesirable properties and has to
be replaced. For example, a system may have been implemented by par-
titioning by the zip-codes of the documents, but during the lifecycle, more
accurate GPS tags have become available and we wish to partition on these
instead. Being able to support changing the partitioning function completely
without having to fall back to refetching the documents from the source can
be very valuable, as refetching may be an expensive and time consuming
operation. The data origin may also be a system that is under heavy load
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to begin with, and avoiding any further load may be crucial. Additionally, it
is faster than a reindex because it does not have to go through any filtering
or text-processing between the indexes.

A different argument for having to repartition is having several spikes on
one partition while one or more other partitions has low load. If the spikes
are consistent over time, it is a sign that the partitioning function used is
suboptimal and should be updated. This may not be obvious before the
service has been deployed and is getting real usage patterns that may not
have been available in the testing stages.

Repartitioning is the act of changing the number of active partitions. Re-
balancing is an optional step that is used to balance the amount of data
between the active partitions, shown in Figure 6.1.
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Figure 6.1: Repartitioning and rebalancing
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6.1 Moving documents

Moving a document from one partition to another requires looking up the
document parts in the full-text index tables, constructing a serialized docu-
ment object from this data and eventually remove the entries from the tables
(see Section 6.4 for more discussion on this topic).

The termlist and record tables are trivial to update, as they are keyed on
the document identifier, while the position and postlist tables require multiple
lookups in order to delete. Metadata associated with a document is, when
stored keyed on the unique term, a single B-tree lookup and update to edit.

If a large amount of documents are moved to or from an index, compact-
ing may be considered. Compacting is the process of reading a database
and writing it out to disk without leaving much room for future modifications.
The reason this helps is that the tables are implemented using B+trees,
which may gradually increase in size, leaving spare space on each of the
levels. This compacting process can result in large space savings, enabling
more of the database to fit in main memory and available caches.

6.2 Repartitioning strategies

We distinguish between offline and online repartitioning. In offline reparti-
tioning the index is unavailable and any index or delete operations has to
wait until the repartitioning process is completed. In online repartitioning the
index stays available and documents may continue be indexed or deleted
during the operation, albeit at a potentially slower rate than during normal
operation.

If the query service uses replicas of the original full-text indexes instead
of relying on direct connections to the original full-text indexes it can be
kept running during the repartitioning completely independent of whether
the repartitioning is performed offline or online. However, the query nodes
are still subject to the issues discussed in Section 6.4.

6.2.1 Offline repartitioning

The main focus of this paper will be on online repartitioning, but in the inter-
est of completeness we will mention a mildly intrusive offline strategy that
works well in cloud computing.

Offline repartitioning strategies is the most intrusive class of repartition-
ing strategies, but it is also the fastest as it does not handle the regular
indexing load in addition to the load generated by the repartitioning. For
medium-scale deployments in the cloud, a good approach to offline reparti-
tioning is to use one or more high-memory nodes to perform the necessary
merges and splits. High memory nodes are used because they enable the
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Figure 6.2: Offline vs online repartitioning

services to commit fewer times during the repartitioning, which saves a lot
of time when working with large databases.

1. Bring down the indexing nodes and detach their volumes.

2. Attach a set of volumes to a high-memory node.

3. Perform the merges or splits and write the results on new volumes.

4. Create index nodes for any added partitions, if any.

5. Attach the new volumes to the indexing nodes.

This strategy uses two central attributes of cloud computing: temporarily
using a high-performance server to speed up an operation and allocating or
discarding volumes quickly to meet a variable storage demand.

The original volumes can be reused if the merger node only needs to do
small-scale rebalancing, such as moving a few documents from one parti-
tion to another, or simply discarded if a larger operation, such as changing
the partitioning key or changing the volume size is performed. As the total
size of the documents affected by the repartitioning grows, reading from the
original and writing to fresh volumes becomes faster as the reads and writes
can be done in parallel.
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Figure 6.3: Offline repartitioning

Since cloud storage usage usually is charged by GB/month, allocating
double the required data volume for a small period of time in order to save
considerable time in repartition is a viable solution.

Optimization

The index nodes can be paused, flushed and have their full-text indexes
detached in order to avoid having to shut them down completely. An index
writer may be in the paused state indefinitely while the repartitioning is being
performed. When the repartitioning is completed, the full-text indexes can
be reattached to the index node and processing may resume. Changes in
the number of index nodes however, still require changes to the networking
graph, but not necessarily to any of the existing index nodes.

6.2.2 Online repartitioning

Using online repartitioning, the repartitioning of the full-text indexes is per-
formed in a non-intrusive manner in order so other components in the search
system can continue operating without noticing that any repartitioning is tak-
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ing place. This class of strategies is still subject to the consistency issues
discussed in Section 6.4.

Adding partitions

When increasing the number of partitions, the only changes required to the
original network is the updating of the partitioner to include the added par-
titions. Some partitioning functions such as the spatial and clustering parti-
tioning will require retraining while other partitioning functions such as load-
balanced partitioning does not require any reconfiguring at all.

Rebalancing is optional depending on the consistency requirements (see
Section 6.4) and the importance of quick offloading of the load on the origi-
nal partitions.

Partitioner

Node 1 Node 2 Node 3
Added partition

Optional rebalancing

Figure 6.4: Online adding of a partition

Adding partitions in an online system will thus use the following steps:

1. Create the additional index nodes.

2. Set up replication between the new index nodes and query nodes if
required.

3. Configure any query brokers to include the new partitions when exe-
cuting queries.

4. Configure the partitioners to use the new partitions.

5. Deal with consistency requirements and rebalance if required.

Removing partitions

The changes required to the partitioner function is the same as in the pre-
vious section (6.2.2).
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When reducing the number of partitions, rebalancing is not optional, as
the removed partitions contains documents that would otherwise be unavail-
able.

Partitioner

Node 1 Node 2 Node 3
Removed partition

Required rebalancing

Figure 6.5: Online removing of a partition

Removing partitions in an online system is a two-step process:

1. Configure the partitioners to only use the remaining partitions.

2. Rebalance.

Handling frequent node changes

Whether the number of partitions are likely to increase again at a later time
should be taken into account, as it might be feasible to just move partitions
to the remaining nodes without performing any merging. This only requires
configuring partitioners and replicas to reflect the new socket specification
of the moved partitions.

This makes rebalancing the partitions trivial when increasing the number
of nodes at a later time, as it will only require moving the partitions:

1. Move the partitions to the new index nodes.

2. Configure the partitioners to use the new nodes.

3. Configure the replicas.

The partitioner may be updated before the move is performed in order
to ensure that new documents to the partition is sent its new location after
the move. This utilizes the built-in queuing features of the message queuing
service in order to queue the messages and deliver them to the correct node
when it becomes available.
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By doing this, no synchronization between a source and destination par-
tition is required, but the moved partitions of the index will be unavailable
during the move. However, the messages to the partitions will be queued,
and will be sent when the partitions becomes available again. If spending
memory on temporarily storing these messages is undesirable, swapping
them to disk either by using the disk swapping features of the messaging
system or using replaying (see Section 6.2.2) should be considered.

Moving a partition is a quick operation if it is performed by unmounting
and mounting a SAN device [69] or using most networked file systems. If
such services are not available, the partitions will have to be copied to the
new node over the network. Transferring a complete full-text index over
a network interface may take a considerable amount of time and in these
situations freezing (see Section 6.2.2) may be used to keep the indexing
process responsive and avoid excessive memory usage by messages piling
up on the outbound queue of the partitioner.

Freezing

A different non-intrusive repartitioning strategy involved using a auxiliary
“incoming”-index that incoming documents gets indexed to when the other
indexes are down, as shown in Figure 6.6.

1. Route all incoming documents to a temporary “incoming” index which
the query nodes replicate and use.

2. Freeze all the index writers, disconnecting the replicas.

3. Merge/split the required index writers.

4. Restart the replication process to the new index writers.

5. Route the incoming documents to the new writers.

6. Merge the incoming index to the new writers.

Freezing may be done either to a single auxiliary node or to many.
A single node may be able to handle the average indexing load of several

original partitions as it starts with an empty database which eliminates much
of the indexing overhead with regard to I/O from disk-seeks resulting from
having to update large B-trees on physical hard drives.

If a single node is unable to handle the indexing load for the duration, or
if using multiple nodes are preferred due to structural preferences, multiple
auxiliary indexes may be used. Instead of routing all the incoming doc-
uments to a single index, they may use any partitioning function to route
incoming documents to the auxiliary indexes.
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Figure 6.6: Freezing during repartitioning

An additional step that partitions the documents that have been put in
the auxiliary index into their correct partition needs to be taken if there is no
one-to-one mapping between the auxiliary indexes and the new partitions.

Replay-based repartitioning

Messages may be queued to disk and replayed at a later time if the indexing
services are unavailable due to repartitioning (see Figure 6.7).

1. Route incoming messages to a serializer. The serializer may for ex-
ample compress the messages an store them in a flat file.

2. When the indexing service is ready to accept messages again, the
serialization can be reversed and the messages can be sent pushed
to their intended destination.

Replaying should be performed by a layer in front of the partitioners to
make sure the replayed messages use the updated partitioning services.

Replaying significantly increases the time between when a document
is sent to the first processing node and the index queue and flush confir-
mation messages are published by the index writers. If the processes that
feeds the system with documents rely on timeouts, it should to be informed
that repartitioning is being performed and the timeout adjusted in order to
avoid creating duplicate work, which would only create further contention
and unnecessary processing of these duplicates.

6.3 Rebalancing

We define rebalancing as the act of moving documents to the correct parti-
tion as defined one or more the active partitioning functions.
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Figure 6.7: Replay-based repartitioning

Some partitioning functions are less suited for rebalancing. Hash-partitioning
functions are not well suited for rebalancing, since increasing the modulus
from n to n + 1 results in each of the n previous partitions only containing
1

n+1 correctly partitioned documents (see Figure 6.8).
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Figure 6.8: Rebalancing with a hash-partitioned function.

Depending on why we are repartitioning and what kind of partitioning
functions are used, rebalancing can be either completely irrelevant or very
important.

If the partitioning function used is non-repeatable, it is impossible to re-
strict queries to specific partitions. Thus, rebalancing will only be important
if we wish to normalize the load between all the partitions. Dividing the load
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exactly equal between the partitions requires either a-priori knowledge of the
query load or the partitions need to be rebalanced according to query anal-
ysis [50]. An approximation is to assume that every document is equally rel-
evant to the query load as a whole and move an equal fraction of randomly
selected documents from each existing partition to the new partitions.

Even if the partitioning function is repeatable, rebalancing does not nec-
essarily have to be performed immediately after the partitioning function
has been changed, or at all. In this scenario a strategy for handling consis-
tency (see Section 6.4) should be implemented. Even though the system
was repartitioned to increase the available write capacity or throughput, the
read throughput may be fine and performing the rebalancing could poten-
tially slow the system down. In these cases, the rebalancing may be de-
ferred to a time where the system is under lower load and the rebalancing
is unlikely to affect the users of the system

6.3.1 Prerequisites

In order to be able to effectively perform rebalancing between different par-
titions, each partition needs to know the previous operation it performed on
a document, and when that operation was performed.

During indexing, each document is assumed to have a timestamp. This
may either be set to the last-modified time by the source or it may be com-
puted by one of the nodes in the network.

Having it set by the source is preferable as it is authoritative, but often a
good enough approximation can be found by using the local clock of one of
the nodes. If the timestamp is set by a singleton facade module, we can skip
synchronization, but in a more fault-tolerant system there will be multiple fa-
cades and entry points, and the clocks would have to be kept in sync with
each other by for example NTP [70], which can usually maintain a synchro-
nized time within 10 ms over the Internet, and as low as 200 microseconds
on a LAN. We store a mapping from the unique document identifier to some
information that includes the latest operation performed and its timestamp
to a b-tree of metadata in the full-text index.

Another solution is to use vector-clocks [71] or Lamport timestamps [72]
as a way of preserving the order of updates and deletes.

This information may be stored as metadata in the postlist table using
the unique term (see Section 5.6.1) as the key in order to be able to look up
in the metadata for any given unique term in O (log n) time.

6.4 Consistency

We start by defining a set of consistency anomalies that needs to be ad-
dressed.
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Temporary loss means that a document has disappeared from any visible
query results for an unspecified amount of time, but the document will
reappear again at a later time without intervention.

Permanent loss means that a document that was acknowledged as in-
dexed no longer exists in an index and will not reappear without man-
ual re-indexing.

Temporary duplication means that a document exists in two or more in-
dexes at the same time, and it could appear multiple times in the
search results, depending on the degree of duplication, but the du-
plicates can be identified and removed the containing indexes.

Permanent duplication is the same as a temporary duplication, but there
is no way of identifying which of the indexes has the duplicates.

The only way to recover from a permanent document loss is to re-index
the document from the source.

It is possible to recover from permanent duplication by running a de-
duplication process, either as a standalone process or as part of a rebal-
ancing process (see Section 6.4.1).

A central decision regarding consistency is deciding when a document
gets removed from the source index. This decision, as we will see in the
following sections, determines which of the above anomalies we may expe-
rience.

In the following section, the following shorthand notation is used:

i_commit - The index operation is committed.

d_commit - The delete operation is committed.

<A, B> denotes the time between the event A occurs until event B occurs.

6.4.1 Removing as part of the rebalancing
Documents may be removed from their source partitions as a part of the
rebalancing process. We define the following deletion strategies:

Delete-early - deleting the document from the source index when the doc-
ument is queued to either the partitioner or the destination index.

Delete-when-queued - deleting the document from the source index when
the destination index has added the document.

Delete-after-flush - deleting the document from the source index when the
destination index has flushed the document to the disk-based index.

The following three sections discuss these strategies in further detail.
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Delete-early

In delete-early (Figure 6.9), document are temporarily lost from the they are
sent from source index until the destination index commits the document. If
the document is lost in-transit, the document may be permanently lost.

Loss Duplication
Temporary <d_commit, i_commit> <i_commit, d_commit>
Permanent On index failure –

Figure 6.9: Delete-early

Document duplication is possible using this technique, but duplicates
will only exist until the source index commits.

Delete-when-queued

In delete-when-queued, documents are temporarily lost from they are queued
by the destination index until the destination index commits the document.

Permanent document loss is possible if the destination index crashes
after the document has been queued, but before it commits. Permanent
document duplication is possible if the source never receives the queued-
message from the destination.

Loss Duplication
Temporary <d_commit, i_commit> <i_commit, d_commit>
Permanent On index failure On queued-message loss

Figure 6.10: Delete-when-queued

Documents may be duplicated temporarily if the destination flushes the
indexing operation before the source flushes the delete operation.

Temporary document losses may occur if the source flushes the delete
operation before the destination flushes the indexing operation.

These two consistency anomalies are avoidable if both the source and
the destination indexes commit in synchronization. Using a two-phase com-
mit [6] it is possible avoid these, but this requires support in the underlying
full-text index services which is non-existing at the time of this writing.

Delete-after-flush

In delete-after-flush (Figure 6.11), documents are duplicated from the des-
tination commits the indexing operation until the source commits the delete
operation. Permanent duplication is possible if the source crashes or roll-
backs.
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Loss Duplication
Temporary – <i_commit, d_commit>
Permanent – On deletion failure

Figure 6.11: Delete-after-flush

Handling replicas

Due to the asynchronous nature of the replication between the full-text in-
dexes and the full-text replicas, it is possible that two full-text indexes that
were flushed synchronously will be replicated in at an arbitrary time. This
negates any effect gotten from using any kind of commit synchronization
between the index nodes.

A solution to this issue is to either use some kind of two-phase commit
in the index replication, or take use a delete-after-sync strategy that only
deletes after all the required replicas have completed one round of syn-
chronization after the previous flush.

6.4.2 Removing as an integral part of indexing

The deletion-handling can be addressed by the standard indexing process if
the same nodes and pipelines are used by the rebalancing process in order
to move the documents.

A potential issue with these technique is that if a partition is offline when
messages informs the other partitions about performed operations are pub-
lished, it will not know that another partition has indexed one of its docu-
ments and will not delete it. It is possible to minimize the chance of this
happening by configuring the high water mark and considering swapping
to disk in the publishing queue so that the partitions will receive messages
that has been queued when it was offline. However, due to the nature of
the problem, there is no guarantee when the partition will come online again
and no guarantee that no messages have been lost just as the disconnect
happened. Thus, regular maintenance should be performed (see Section
6.4.4).

If this technique is used together with a rebalancing process that relays
rebalanced documents to the partitioner it may suffer from temporary doc-
ument disappearance if the delete operations are processed quicker than
the indexing operations. Additionally, if indexing fails on the document for
some reason, it is permanently lost and will have to be reindexed.

The delete operation can be generated by either the partitioner or the
indexes as described in the next two sections.
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Loss Duplication
Temporary <d_commit, i_commit> <i_commit, d_commit>
Permanent On index failure. On deletion failure

Figure 6.12: Removing as part of the indexing by broadcasting.

Partitioner broadcasting

When a partition is chosen for a document, the partitioner can send a delete
message to all the other partitions attempting to ensure that the document
will only exist in at most one index at a time.

Documents are temporarily lost if the delete operation is flushed before
the index operation is flushed and permanently lost if the index operation
fails.

Node broadcasting

When a partition flushes a document, it can publish message containing
information about the operation performed, the unique identifier of the doc-
ument and the timestamp of the document. All partitions can subscribe to
these messages and act accordingly: if another partition reports flushing the
indexing of a document, we can delete that document from our partition.

In order to subscribe on these messages, the partitions must then either
have knowledge of each other or a forwarder may be used.

6.4.3 Removing post-rebalancing

Documents may be removed after all the rebalancing has taken place. This
causes a temporary spike in hard disk space usage as both the old docu-
ments and the new documents are stored in the indexes at the same time
and slightly longer rebalancing time as the B-trees gets bigger than in the
previous techniques.

A benefit of only removing documents after the rebalancing is completed
is higher throughput during the rebalancing. This is because fewer opera-
tions are performed and no synchronization or communication between the
indexing nodes are required. If the rebalancing fails or stops for whatever
reason, it may be restarted from the beginning or cancelled without any
documents being in any danger of getting lost.

Massive document duplication is to be expected this way, as every doc-
ument that gets rebalanced will yield one duplicate during the rebalancing
process as a result of the source index sending a copy to the destination
index.. These duplicates will be safely removed as the post-rebalancing
removal process completes.
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6.4.4 Partition maintenance

Partition maintenance is about making sure the partitions are healthy and
only include the documents it is supposed to contain. The partition main-
tenance process can be made sure to only run when all the partitions are
available by invoking it manually when the partitions are known to be up,
and this section assumes that this is the case.

Depending on the consistency requirements and the methodologies used
from Section 6.4, documents that are discovered to be in the wrong partition
can either be the result of an indexing request that have not been success-
fully been committed a lost queued or flushed document message. By look-
ing at the metadata from the source and destination partitions it is possible
to determine whether the situation was a result of a failed reindex or simply
the loss of a queued or flushed document message.

If the correct partition contains the document or deletion metadata that
is the same or fresher than the source partition, it may safely be deleted.
Otherwise, it should be classified according to the consistency methodology
and handled accordingly. For example, it may be classified as a lost docu-
ment indexing message and either attempted repartitioned immediately or
marked for repartitioning at a later time.

6.4.5 Query-time de-duplication

Some of the techniques outlined in the previous sections results in a doc-
ument being indexed in two partitions at the same time, which results in
duplicates being returned by queries. In order to compensate for this when
using xapian remote databases, we may store the unique term in a value
field in order to be able to be able to filter out duplicates.

Each of the partitions may be queried separately and manually merge
the results from each of them as an extra step in the query processing
pipeline. This is the only way to remove duplicates when using broker-
based querying (see Sections 5.8.2 and 5.8.3) and is possible to use inde-
pendently of the type of full-text index used.

If querying uses direct-access (defined in Section 5.8.1), we can col-
lapse over the unique term in order to filter the duplicates.. Collapsing is a
feature in Xapian that enable us to limit the number of documents returned
with each particular value of the field that is collapsed on. Collapsing over
the unique term field with a max limit of 1 per unique value will effectively
remove any duplicates from the matching sets returned from Xapian. How-
ever, it is not currently possible to collapse over multiple fields in Xapian and
if collapsing is used to implement other features such as category searches,
manually merging is mandated.
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6.4.6 Important deletes

During online rebalancing, a delete operation may be sent to the new index
writer before the previous index writer has deleted its document. In many
cases this may be written off as a temporary side effect of the rebalancing,
but if it is important that the delete is handled quickly, extra care has to be
taken.

A solution to this is to let the partitioner always broadcast delete mes-
sages. Delete messages are small and only includes the verb and a unique
identifier, which does not add much to the network traffic. For the delete
to trickle down to the replicas, the index writer has to commit and flush.
This technique is not usable with pseudo-random partitioning using load
balancing without adding additional queues as there is no way to perform a
load-balanced broadcast.

Another solution that may be used in conjunction to the former is to let
query nodes subscribe to delete messages and filter out deleted documents
before returning them (see Figure 6.13). This complicates the query nodes
slightly however, and adds some overhead on the most performance-critical
part of most search system and should be implemented with due consider-
ation for execution time.

Filters results

Partition 1 Partition 2

Partitioner

Partition 3

Deletion 
lists

Replicas Replicas Replicas

Query node

Figure 6.13: Using delete lists to filter query results.

An artifact of implementing this is that the exact page count and result
count may be unknown to the query nodes until they have been counted and
filtered. Since the full results are never returned and processed by the query
nodes, this adds an additional error-source when estimating the number of
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hits for any given query. However, it does provide explicit control over how
the merge is performed and which result object is returned
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Chapter 7

Implementation

In this chapter, we will define the components of a node. An overview of the
implementation is shown in Figure 7.1.

A node is a collection of pipelines that uses processors to process input.
Resource providers provide both processors with the resources they require
to operate and the pipelines with data to be processed.

The implementation is heavily inspired by flow based programming (see
Section 3.3).

Full source code for this implementation is available from the author
upon request, and a public developer preview is expected during Q2 2011.

7.1 Processors

A processor is a configurable component that operates on a baton (de-
scribed in detail in Section 7.2). It takes some initial parameters and is
later configured with a runtime environment (see Section 7.5) before it is
used to process batons.

class IPipelineProcessor(interface.Interface):
name = interface.Attribute('Short name, used in configuration files.')

def configure(self, runtime_environment):
""" Configures the processor with the runtime environment.

This is where the processors usually will request dependencies and prepare
itself for processing batons.
"""

def process(self, baton):
""" Processes a baton.

This function is called by the evaluator when it is time for a processor to
process a baton. The return value of this function is used as the input baton
of consumers of this processor.
"""
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Figure 7.1: Implementation overview.
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7.2 Batons
A baton is a unit that is passed through the processing graph to the pro-
cessors, and is the equivalent of an Information Packet in flow-based pro-
gramming. The type and content of a baton is entirely defined by its source
and the pipeline it passes through, as each processor may perform arbitrary
operations on it, or even return a completely new baton that replaces the
baton for any downstream processors in the processing graph.

The baton is most commonly a python dictionary instance.

{
'id': 1234567890,
'updated': datetime.datetime(2011, 3, 13, 15, 18, 15, 923888),
'title': 'Example title',
'text': 'This is the contents of this document.'

# the following keys are examples that may be computed by processors
# in the pipeline based on the above keys:
'unique_term': 'ID1234567890',
'terms': {

'title': [IndexTerm(...), IndexTerm(...)],
'text': [IndexTerm(...), ...]

},
'document': xapian.Document(...),

}

After a text-processing node has processed a document, extraneous
keys are removed and the baton is prepared for serialization (see Section
3.5.2). Since most serialization libraries do not support serializing arbitrary
objects, Xapian documents must be serialized by using

xapian.Document.serialise()

before the baton itself is serialized.
Below is an example baton after the serialization, using JSON:

{
"document": "\\u0000\\u0002\\u0007example\\u0001\\u0000\\u0005title\\u0001...",
"unique_term": "foo"

}

The serialized baton is then ready to be sent to an indexing node, which
will unserialize the baton and the Xapian document as the first processing
steps.

7.3 Processing graph
A processing graph is a graph of connected processors, each of which may
have consumers and error-consumers (see Figure 7.2 and 7.3). Consumers
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are other processors that will receive and process returned data and error-
consumers are consumers that are used if the processor raises an excep-
tion. This loosely resembles the well-known “Deferred” pattern [73] used in
Twisted and many frameworks, both commercial [74] and open source [75].

A B

C

E

D

F

Figure 7.2: A pipeline. Some processors have error consumers, marked
with red edges.

A()
try:

B()
except:

try:
C()

except:
D()

E()
F()

Figure 7.3: Pseudo-code equivalent of the processing graph shown in Fig-
ure 7.2

7.4 Processing graph evaluator

An evaluator is used to move the baton through the processing graph. A
processing graph essentially declares what the processing does while the
evaluator defines how the processing is done.

Using different evaluators makes it possible to only store debugging or
profiling information when required, thus reducing execution time for the
common case.

An evaluator that operates on a processing graph is called a pipeline.
Different evaluators makes it possible to define different kinds of pipelines,

for example asynchronous, coroutine-based [76] and/or stateful pipelines. It
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is important to note that even while the pipeline evaluator does not carry any
state by itself, it is possible to write stateful processors by wrapping corou-
tines or using variables that persist between invocations of process(baton).

7.5 Runtime environment

The runtime environment is used by processors to access some central
components of a running system, such as the configuration manager, the
dependency manager and the resource manager.

7.5.1 Configuration manager

The configuration manager is responsible for loading and providing access
to the configuration. The configuration files are written in YAML [77] that
contains mappings that translates into python dict objects. The configura-
tion dictionary is used to configure resource providers, pipelines and pro-
cessors.

7.5.2 Resource manager

A resource manager is used to load resource providers as plugins. Re-
source providers register the resources they can provide with the resource
manager, which is later used by other resource providers or processors.

Resources may be live objects such as database connections, objects
providing functionality such as decompounders [78], or static resources
such as dictionaries.

4: add_consumer

3: lookup(provider_string)

Resource 
Manager

Resource 
Provider

Resource 
Dependency

1: configure

2: register(provider_string)

5: provide_resource

Figure 7.4: The resource manager configures resource providers which pro-
vide the resource dependencies with resources.
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The most important resources used by the indexing nodes in the bench-
marking (Chapter 8) are:

Message queues (see Section 3.5) which are used to publish information
about indexed and deleted documents.

Xapian indexes that are used to index and store the documents.

Shared contexts which are in-memory dictionaries that are used to store
the unique terms of documents that have been added to the index,
but not yet been committed. This is essential in order to be able to in-
form other indexing nodes that documents have been flushed to disk,
which is used by many of the techniques described in Section 6.4.
The shared contexts are also used to store statistics which are used
to generate performance graphs.

7.5.3 Dependency manager

Dependencies are registered with a dependency manager. A dependency
may be an instance dependency (depending on a concrete python object
instance), or a resource dependency.

Instance dependencies are immediately available as soon as all their
dependencies are available. One example of this is that a pipeline is ready
as soon as all its processors are.

Resource dependencies are dependencies that are identified by a provider
string that is registered in the resource manager. The dependency manager
uses the resource manager to resolve these dependencies. In contrast to
the instance dependency, the resource encapsulated by a resource depen-
dency may change without the dependency itself changing.

The dependency manager is responsible for maintaining a directed, acyclic
graph of dependencies. If a dependency becomes unavailable, the event
is cascaded up the dependency graph, giving its dependents a chance to
decide if they can continue operating or not.

For example, if a database server goes down, all processors that de-
pend on having a connection to that database becomes unavailable and
the pipelines that use these processors becomes unavailable. The users of
these pipelines, such as resource providers that provide batons from exter-
nal sources can stop producing batons and wait for the resource to become
available again.

This cascading property is central to use the flow control (see Section
7.7.4) available in ZeroMQ: a socket that is not being read from will even-
tually reach its configured high water mark that enables upstream nodes to
either stop sending or redirect messages to other downstream nodes with
available capacity.
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Figure 7.5: An example dependency graph. On the right side, the database
connection has been temporarily lost, which cascades up to the message
queues that use an affected pipeline.

7.6 Network of nodes
If all the state required to process a baton is stored in the baton itself,
pipelines may be distributed by splitting the configuration at any processor.

The following is an example of distributing a single factorizer. In the
single-node example, the factorizing is performed by the server and in the
distributed example the factorizing is performed by a pool of transient worker
nodes.

A simple factorizer can be configured like this:

# filename: simple-factorizer.yaml

pipelines:
factorize: # the input baton is an integer

- find-factors # returns a list of factors
- print-result

A distributed version of the above is in two parts. The first is the server
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configuration:

# filename: factorizer-server.yaml

zmq:
queues:

to_worker: # used to push data to the workers
type: PUSH
binds: ['tcp://0.0.0.0:5000']

from_worker: # used to pull data from the workers
type: PULL
binds: ['tcp://0.0.0.0:5001']
pipeline: from_worker

pipelines:
factorize:

- encode-json # the message must to be a string, so we encode it with json
- send-message: # sends the integer to a worker

queue: to_worker
from_worker: # prints the result gotten from the worker

- decode-json # the worker return json-encoded results
- print-result

The worker configuration:

# filename: factorizer-worker.yaml
zmq:

queues:
from_server: # used to pull data from the server

type: PULL
connects: ['tcp://0.0.0.0:5000']
pipeline: from_server

to_server: # used to push data to the server
type: PUSH
connects: ['tcp://0.0.0.0:5001']

pipelines:
from_server:

- decode-json # the message is in json
- find-factors
- encode-json # the message must be a string, so we encode it with json
- send-message:

queue: to_server

To run both these configurations in a single process, both configurations
can be included in the same file:
# filename: factorizer-both.yaml

includes:
- factorizer-server.yaml
- factorizer-worker.yaml

This allows for running a distributed system in a single process, which
greatly simplifies testing and debugging. One caveat is that it still is run-
ning as a single process, and if blocking operations in one pipeline may
significantly affect the performance of the other pipelines.

70



7.7 Restructuring networks

Changes in the data volume or the way we want it indexed reveals the need
to restructure networks (as defined in Section 3.6). This needs to be sup-
ported by building blocks, and is part of the reason why the processing graph
is a good idea, as it makes for easy changes.

As seen in Chapter 3, the pipelines in a node and how the nodes are
connected in a network determines how documents are indexed. To change
the pipelines in a node or a set of nodes, we update its configuration file(s)
and restart it. The affected node is unavailable during this process. The
following sections discuss ways of gracefully performing these changes.

ZeroMQ does not as of this writing support graceful disconnects, which
means some extra care has to be taken when the network has to be up-
dated. A queue that gets closed cannot be read from further, which means
messages that were in-transit when the close occurred are potentially lost.
A sender can be shut down pseudo-gracefully by setting a high water mark
to 1 and perform a blocking send. At that point, there is only one message
that has not been sent. That message can then be tracked using the Mes-
sageTracker support in ZeroMQ, which presents an interface to receive no-
tifications when a message has been successfully sent. When there are no
unsent messages for a queue, it can be closed safely. New output queues
can be configured and started simultaneously in order to avoid downtime in
the node.

7.7.1 Queue swapping

It is possible to atomically update the configuration of multiple nodes by
constructing a new network of nodes with the new configuration, and then
change the output queues of the parent nodes in the network when the
newly constructed network is ready. The new network may be configured to
run on the same physical nodes as the previous network without interfering.

Parts of the previous network may also be reused when constructing
the new network. Index writers are of particular interest to reuse since they
require an exclusive write-lock on the indexes they operate on. Note that
if nodes are reused, they will continue to use their old output queues, and
thus may reduce the new networks applicability to testing.

Not all network changes are considered restructuring. For example,
adding transient nodes such as filter and text processing nodes require
nothing more than starting a process and connecting to the correct mes-
sage queues.
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7.7.2 Explicit pulling

ZeroMQ pull sockets are used as the receiving end of the pipeline process-
ing pattern that provide automatic load balancing of messages when mul-
tiple downstream nodes are connected. Shutting down a pull socket is a
two part problem. The first problem is that there is no easy way of telling
whether there are more messages underway without hitting the high water
mark, and even then there may be more messages in-transit due to latency.

The second problem is that even if it was possible to tell that there were
no messages mid-transit, the lowest high water mark that is possible to set
in ZeroMQ is 1. This means that there might be one message left in the
PUSH sockets local output queue for the receiving PULL socket.

Instead of relying on the push socket to send messages downstream, it
is possible to use an XREQ in the downstream node to explicitly pull mes-
sages from an upstream XREP socket. In order to be more effective, a
small protocol for this to allow for multiple messages to be pulled at the
same time could be defined. Furthermore, this could be built on top of a
heartbeat service that could provide administrators with a better overview
over the network as a whole.

7.7.3 Resending

A different approach is to publish messages at some or even all the nodes
that contain information about the data it processes. For example, an index-
ing node can publish one message per document it adds to its index, and
one message per document it has flushed to its index. A client feeds the
system with data can subscribe to these messages and use the received
messages to detect lost messages.

Depending on which nodes the client is subscribing on messages from
it is possible to detect slow nodes because messages from the node are
published at a significantly lower rate than its sibling nodes, crashed, hung
or restarting nodes, which will not publish any messages at all. If one of the
latter are detected and documents from the client are not seeing progress
in the network, the client may assume the messages have been lost, either
due to a crash, an unclean disconnect or due to a hung node. In either
case, it is safe for the client to assume the worst and resend the affected
documents.

This technique relies on the client having knowledge of how the network
is configured, which may not be desirable. It is easy to avoid this by using
client brokers, which can be used as facades to the system. The client bro-
kers can be configured with a list of stages the documents can go through,
where each stage represents a set of nodes in the network the document
may be in.

When the client broker receives a document that should be indexed, it
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adds the document and the current time to the initial stage and sends it
to the first node in the network. Processing messages that are published
by the nodes in the network are used to update the document state. If a
document is stuck in a single stage for an unproportionally long time, the
document may be either automatically resent if the client broker still has a
copy of the document, or the client may be informed.

It is important to always look at the current average processing times
on a node, as we do not want long processing times on several processors
due to high load to trigger resending.

In order to tell the difference between a failed node and a node that is
waiting for available capacity in downstream nodes, the nodes must period-
ically publish “pending” messages when documents are busy waiting for an
available downstream node which the client broker can use to update the
timestamp of the document in its current stage. Otherwise, if all the nodes in
the following stage were busy or stopped, all documents would be marked
as failed and possibly resent, which would only add duplicates to the backlog
of documents, as these pending documents would automatically continue
their processing once the downstream nodes has some available capacity.

7.7.4 Flow control
In Section 3.6 we defined networks of nodes connected by some kind of
messaging layer. Even though the messaging layer could be asynchronous,
the requirements for flow control should be carefully considered. If the up-
stream nodes are allowed to process data as quickly as they can without
regard to the throughput of downstream nodes, memory usage and per-
formance of the downstream nodes may be difficult or even impossible to
control.

Even when using the high water mark support in ZeroMQ, care must be
taken to only read messages from the sockets when sufficient memory and
other resources are available to perform the operations the relevant pipeline
defines.
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Chapter 8

Benchmarks

This chapter provides benchmarks of the implementation described in Chap-
ter 7 using the different strategies suggested in Chapter 6. All the bench-
marks were performed using Amazon EC2. The instance type used is de-
scribed in each section and an overview of the instance type specs are
found in Figure 8.1.

Name API name Memory Cores ECUs/core
Extra Large Instance m1.xlarge 15 GB 4 2
High-Memory Extra Large Instance m2.xlarge 17.1 GB 2 3.25
High-Memory Quadruple XL Instance m2.4xlarge 68.4 GB 8 3.25

Figure 8.1: EC2 instance types used during benchmarking.

The dataset is described in Section 8.1 and the initial indexing is de-
scribed in Section 8.2.

8.1 Dataset description

The dataset used for benchmarking comes from the Freebase Wikipedia
Extraction (WEX [79]), which is a processed dump of the English language
Wikipedia. The WEX dataset contains the markup for each article, trans-
formed into machine-readable XML. Some elements, such as templates,
infoboxes, categories, article sections, and redirects are extracted in tabu-
lar form.

The XML, even though it is machine-readable, does not follow an exact
schema because there is no standardization on Wikipedia itself on how the
mediawiki markup should be used to format for example dates, monetary
units and so on. Because of this, only the title, text and updated timestamp
were used, as these were the only attributes found to exist in all of the
articles.
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The message transport was benchmarked by using to small instances
within the same availability zone. A small document collection of 73227 doc-
uments were transported in 41 seconds, resulting in an average of 73227/41 =
1786 documents per second. Experimenting with the high water mark showed
no significant difference between test runs with a high water mark of 10, 100
or 1000, as each run were within 2 seconds of each other. With a collec-
tion size of 855MB, this gives a throughput of just above 20MB/s between
the nodes. Any indexing throughput higher than this are thus unlikely to
be achievable with only one data source. Using the internal or external IP
addresses of the nodes made no difference. The remaining benchmarks
were run with a high water mark of 100.

8.2 Indexing

An initial index was built using a single EC2 Extra Large instance (m1.xlarge).
Load-balanced partitioning 5.4.5 were used to create 8 partitions of approx-
imately equal size (see Appendix A for the configurations used during in-
dexing).

Figure 8.2 shows the throughput and uncommitted document count of
a single partition and the combined I/O throughput of the indexing system.
The CPU usage (not shown) were 100% during the whole indexing process.

8.3 Offline repartitioning

Using an Amazon EC2 High Memory Quadruple Extra Large instance (m2.4xlarge),
the 8 indexed partitions were mounted and split in half by 8 parallel pro-
cesses executing the following code:

for i, unique_term in enumerate(from_index.metadata_keys()):
# construct the document
document = document_from_unique_term(unique_term)

# add it to the destination and remove it from the source
to_index.add_document(document)
from_index.delete_document(unique_term)

# only process half the documents:
if (total_docs/2) <= i:

break

# commit when halfway done ..
if i == total_docs/4:

yield commit_databases_in_parallel(from_index, to_index)

# .. and commit when done, resulting in a total of two commits.
yield commit_databases_in_parallel(from_index, to_index)
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Figure 8.2: Indexing performance on m1.xlarge instance. The throughput
and uncommitted document counts are per node. A total of 8 nodes were
used on a single machine.

Figure 8.3 shows the time taken to perform the offline repartitioning. The
formatting and mounting time of the added partitions is omitted as this may
be done before the existing partitions are taken offline.

Action Time
Attaching the required EBS volumes 2m7.29s
Splitting 8 partitions into 16 26m34.18s
Unmounting the volumes 18.08s
Detaching the volumes 3m38.11s
Total 32m37.66s

Figure 8.3: Time taken to rebalance 8 partitions into 16 partitions using
offline repartitioning.
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8.3.1 Merging
The 16 partitions created in the previous section was merged with 8 con-
current processes using “xapian-compact”, a tool provided by Xapian that
compacts or merges one or more databases.

Below is the output from one of these partitions:

$ xapian-compact wex01.xapian wex09.xapian wex_compacted.xapian
postlist: Reduced by 31% 232600K (742336K -> 509736K)
record: Reduced by 1% 5816K (395728K -> 389912K)
termlist: Reduced by 14% 83896K (560720K -> 476824K)
position: INCREASED by 0% 1576K (2503544K -> 2505120K)
spelling: doesnt exist
synonym: doesnt exist

The total time taken by xapian-compact to merge the databases were
8m22.48s. Assuming the same overhead on the attaching, detaching and
unmounting as in Figure 8.4, merging 16 partitions into 8 partition gives:

Action Time
Attaching the required EBS volumes 2m7.29s
Merging 16 partitions into 8 8m22.48s
Unmounting the volumes 18.08s
Detaching the volumes 3m38.11s
Total 14m15.96s

Figure 8.4: Time taken to merge 16 partitions into 8 partitions using offline
repartitioning with xapian-compact.

The big difference in the time taken to split and merge these partitions
can be attributed to the fact that xapian-compact operates on the internal
Xapian database structure and can perform optimizations that are not oth-
erwise available to users of the standard Xapian API.

8.4 Online repartitioning
The following sections benchmarks the online strategies proposed in Chap-
ter 6. The basis for these operations is an indexed version of the WEX
document collection. One partition, approximately 1

8 of the WEX document
collection, which is equal to 600k documents were split in half in order to
simulate going from 8 to 16 partitions. In a real-world system, the eight par-
titions would be rebalanced in parallel, independent of each-other, resulting
in a total rebalancing time approximately equal to the rebalancing time of a
single partition.
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The source and destination nodes were EC2 High-Memory Extra Large
Instances (m2.xlarge). Each processing node had 3.25 ECUs available,
which is higher than what was used in the offline repartitioning benchmark
that used a total of 8 virtual cores with 3.25 ECUs each. This reflects the
fact that a distributed system has more processing power available as dis-
tributed resources, and should be taken into consideration when comparing
the results from the offline and online benchmarks.

During benchmarking, no messages were lost and no node failures were
experienced.

The overhead it takes to create the required new instances and volumes
is not considered, as it may be performed before the online repartitioning
and rebalancing process is started.

All the rebalancing operations were performed without the need of in-
termediary commits and the commit was performed after all the required
operations were performed on the current index.

The throughput in most of the figures found in this section has a camel-
hump shape that is the result of two batches of documents of shorter size,
such as category pages and short description pages which are naturally
occurring in the document collection.

When the benchmark required a publish-subscribe message queue (see
Section 3.5.1), no high water mark were used as we do not want to block
the rest of the processing waiting for these messages to transfer. In a large
real world system, these are likely to be offloaded to a dedicated forwarding
node that swaps messages to disk after reaching an internal high water
mark for each subscriber.

The complete index configurations and rebalancing process can be found
in Appendix B.

8.4.1 Delete early

Using delete-early, the documents were deleted from the source index im-
mediately after being sent to the destination node. No further communica-
tion were required between the nodes. The source was flushed immediately
sending the last rebalanced document to the destination node. The total re-
balancing time using this strategy was 23m25.53s (see Figure 8.5).

Action Time
Splitting the source index 21m46.97s
Committing the indexes 1m38.56s
Total 23m25.53s

Figure 8.5: Time taken to split 8 partitions into 16 using delete-early.
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Figure 8.6: Delete early: source.

Figure 8.7: Delete early: destination.
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This is faster than the offline partitioning was able to complete the task,
and the result of having more processing power available in a distributed
system than on a single server. Figure 8.6 and 8.7 shows the performance
of the source and destination nodes respectively.

8.4.2 Delete when queued

Using delete-when-queued, the destination node was configured to publish
a message containing the unique term for every document it queued to its
index. These messages were subscribed on by the source, and the relevant
document were queued for removal as the published messages arrived.
The total rebalancing time using this strategy was 23m17.98s (see Figure
8.8).

Action Time
Splitting the source index 18m56.56s
Waiting for “queued” messages 2m35.16s
Committing the indexes 1m46.26s
Total 23m17.98s

Figure 8.8: Time taken to split 8 partitions into 16 using delete-when-
queued.

Figure 8.9 and 8.10 shows the performance of the source and destina-
tion nodes respectively using this strategy.

8.4.3 Delete after flush

Using delete-after-flush, the destination node published a message after
every flush containing the unique term for every document that was flushed.
As in the previous section, these messages resulted in the source queueing
the removal of the documents as they arrived. The total rebalancing time
using this strategy was 23m17.98s (see Figure 8.11).

Action Time
Splitting the source index 18m56.56s
Committing the destination index 1m21.00s
Waiting for “commit” messages 10m10.92s
Committing the destination index 1m5.25s
Total 31m36.11s

Figure 8.11: Time taken to split 8 partitions into 16 using delete-after-flush.
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Figure 8.9: Delete when queued: source.

Figure 8.10: Delete when queued: destination.
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Figure 8.12: Delete after flushing: source.

Figure 8.13: Delete after flushing: destination.
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Using this strategy, the source partition had to defer any processing
of document deletions until the destination had committed. This removed
the possibility that the delete operation and sending of documents could be
done in parallel, resulting in a higher total rebalancing time than the pre-
vious two strategies. Figure 8.12 and 8.13 shows the performance of the
source and destination nodes respectively.

8.4.4 Merging

Merging two indexes into one was performed by telling one of the nodes to
send all its documents to the other node. In contrast to the splitting that was
performed in the previous sections, merging does not require any deletes.
When the merging process is complete, the source volume is simply dis-
carded.

Action Time
Merging the indexes 26m34.82s
Committing the destination index 1m53.32s
Total 28m28.14s

Figure 8.14: Time taken to merge 16 partition into 8 using online repartition-
ing.

As seen in Figure 8.14, the time used by the merging and committing is
slightly higher than the splitting time in the previous sections. This is a result
of a non-uniform collection, as short documents were not as frequent in the
remaining half of the first partition. The commit-time is also a little larger as
a result of committing in a larger document collection, which requires more
disk-seeks to complete.

8.5 Comparison

Figure 8.16 shows the total processing time of the benchmarks in the pre-
vious sections. Online repartitioning using delete-when-queued was the
quickest, closely followed by delete-early. Offline and delete-after-flush
used approximately the same amount of time.

A real deployment would have to carefully consider the consistency de-
mands outlined in Section 6.4 before selecting a strategy.

An argument for using offline repartitioning is that it requires no changes
to the indexing nodes and has no overhead during indexing.

Delete-when-queued and delete-after-flush can both handle removal as
an integral part of indexing, described in detail in Section 6.4.2, enabling the
use of non-repeatable partitioning functions without resulting in permanent
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Figure 8.15: Online merging of two partitions with 300k documents each.
The spike in throughput is the result of a series of short documents that
occurs naturally in the WEX document collection.
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document duplication by publishing and listening for the required messages
all the time, not only during rebalancing.

Method Time
Offline 32m37.66s
Online delete-early 23m25.53s
Online delete-when-queued 23m17.98s
Online delete-after-flush 31m36.11s

Figure 8.16: Comparison of different rebalancing strategies by total time
taken.

Method Time
Offline 14m15.96s
Online 28m28.14s

Figure 8.17: Comparison of offline and online merging by time taken.

The time taken by the offline and online merging of databases is shown
in Figure 8.17, and shows that offline merging is significantly faster, almost
twice as fast, than online merging. This is the result of the online reparti-
tioning incurring an overhead cost by having to serialize, send, receive and
unserialize all the documents that are rebalanced, in addition to not being
able to perform the database-specific operations the offline repartitioning
does.
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Chapter 9

Conclusion

The benchmarks in Chapter 8 show that online repartitioning is competi-
tive to other repartitioning strategies. They also show that tool that perform
database-specific optimizations will continue to have a significant edge over
the general high-level API when it comes to rebalancing time. Exposing
these optimizations to users of the high-level API instead of limiting it to
specific tools could potentially result in large improvements in online rebal-
ancing time.

The processing framework introduced in Chapter 7 shows that partition-
ing, repartitioning and rebalancing is possible to implement quickly. Repar-
titioning and rebalancing in order to scale in or out depending on the load
is a viable strategy that can be supported with very few changes to an ex-
isting indexing configuration. This is important in order to minimize the cost
of computing in the cloud. Processing frameworks also enable quick ex-
ploration of different partitioning strategies which is of great value when de-
termining a partitioning scheme for a specific deployment and is essential
in implementing distributed indexing on top of todays full-text index servers
such as Solr and Xapian.

9.1 Further work

Due to time constraints, the benchmarks were only executed once. In order
to gain more confidence in the benchmark numbers, they should be re-run
several times, possibly in several different availability zones and at different
times of the day.

Node failures and message-resending should be considered simulated,
as they are more likely to occur in a non-controlled environment over time
than in the benchmarking environment used in Chapter 8.

In the case of offline-repartitioning, a database specific tool could be
written for splitting a database into one or more partitions to achieve the
same performance as “xapian-compact”.
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The performance under regular query- and continuous indexing load
was not benchmarked, which is likely to be a factor in a real-world deploy-
ment. Additionally, the impact of the repartitioning on the replicas should
be considered, as it might be possible to save synchronization time by per-
forming the repartitioning on some or all of the replicas in concurrently with
the master index repartitioning.

Tools that assist administrators in creating and performing automated
and custom rebalancing processes could be developed. Libraries such as
Fabric [80], Puppet [81] and Chef [82] can be used to enable performing so-
phisticated administration task on a distributed set of machines with relative
ease could be used as a future base for these tools.

Support for performing distributed two-phase commit should be consid-
ered written and included in search systems in order to support distributed
indexing without consistency anomalies. This is made non-trivial by the
existence of replicas, which should be considered to achieve correct dis-
tributed consistency.

Partitions of deliberately different sizes could be looked into and possibly
supported by a well-crafted partitioning function in order to support relative
balancing between nodes of non-uniform sizes.

Distributed file systems should be investigated to see which interesting
features they provide for implementing a distributed search system. Large
indexes can be difficult to scale up even using distributed file systems, partly
because less of the index will fit in the memory of a node, but as a method
of distributing the index databases to query nodes it could prove useful.

The use cases for the different partitioning strategies in Section 5.4
should be explored further to get a better overview of which situations one
of the partitioning strategies are better suited than the others.

Different messaging systems using different policies (see Section 3.5)
and messaging patterns should be compared to see if any of the features
they provide can assist in creating more easily maintainable distributed pro-
cessing systems.
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Appendix A

Indexing implementation

In order to give the reader an insight into how the initial indexes were cre-
ated, this appendix shows how the processing framework were used to cre-
ate the 8 initial partitions used in the benchmarks.

The partitions were created by eight indexing nodes (see Figure A.1)
using configurations that only differ in the database paths used.

Documents from the WEX collection were sent to the partitions by bind-
ing an ZeroMQ PUSH queue (see Section 3.5.1) to localhost:6000 and
sending serialized documents to that queue. This resulted in a load-balanced
partition between the indexing nodes.

89



zmq:
queues:

input:
pipeline: index
type: PULL
sockopts:

- key: HWM
value: 100

connects:
- tcp://0.0.0.0:6000

pipelines:
index:

# unserialize the document
- decode-json
- decode-string:

input_path: wex_document
encoding: base64

- unserialize-xapian-document:
document_path: wex_document

# insert the document into the full-text index
- replace-xapian-document:

unique_term_path: unique_term
document_path: wex_document
index_name: wex

- set-xapian-metadata:
key_path: unique_term
index_name: wex
namespace:

now: datetime.datetime.now
formatter: "baton: dict(index_operation='index', mtime=now())"

commit:
- commit-xapian-index:

index_name: wex

indexes:
wex:

locals:
- !filepath wex.xapian

Figure A.1: index.yaml: an index node configuration.
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Appendix B

Rebalancing implementation

The rebalancing implementation consists of three parts: a source index con-
figuration, a destination index configuration and the rebalancing process.
The configuration files are written in YAML [77] while the rebalancing pro-
cess is written in Python.

## source.yaml
zmq:

queues:
rebalance:

pipeline: rebalance
type: PULL
sockopts:

- key: HWM
value: 100

binds:
- tcp://0.0.0.0:5000

second_index:
type: PUSH
sockopts:

- key: HWM
value: 100

connects:
- tcp://0.0.0.0:6100

# if delete-when-queued or delete-after-flush:
listener:

type: SUB
pipeline: listener
sockopts:

- key: SUBSCRIBE
value: ''

connects:
- tcp://0.0.0.0:7100

pipelines:
commit:

- commit-xapian-index:
index_name: wex

# if delete-when-queued or delete-after-flush:
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listener:
- parse-message:

# operation mtime unique_term
formatter: "message: dict(unique_term=message.split(' ', 2)[-1])"

- delete-xapian-document:
index_name: foobar
key_path: unique_term

- set-xapian-metadata:
index_name: foobar
key_path: unique_term
metadata: '' # setting the metadata to the empty string deletes it

rebalance:
- parse-message:

formatter: "message: dict(unique_term=message)"
- get-xapian-document:

unique_term_path: unique_term
output_path: wex_document
index_name: wex

- serialize-xapian-document:
document_path: wex_document

- encode-string:
input_path: wex_document
encoding: base64

# if delete-early:
- delete-xapian-document:

index_name: wex
unique_term: unique_term

- set-xapian-metadata:
index_name: foobar
key_path: unique_term
metadata: '' # setting the metadata to the empty string deletes it

# encode and send the document to the second index
- processor: encode-json
- processor: send-message

queue_name: second_index

indexes:
wex:

locals:
- !filepath /media/part_01/wex01.xapian

The destination index configuration supports publishing messages about
queued and flushed documents. Compare the following configuration to
the configuration found in Figure A.1 to see the differences between a ba-
sic node and a node that publishes messages that could also be used for
logging and statistics.

## destination.yaml
zmq:

queues:
input:

pipeline: index
type: PULL
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sockopts:
- key: HWM

value: 100
binds:

- tcp://0.0.0.0:6100

# if delete-when-queued or delete-after-flush:
broadcast:

type: PUB
binds:

- tcp://0.0.0.0:7100

contexts:
documents: !!set {}

pipelines:
index:

- decode-json
- decode-string:

input_path: wex_document
encoding: base64

- unserialize-xapian-document:
document_path: wex_document

- replace-xapian-document:
unique_term_path: unique_term
document_path: wex_document
index_name: wex

- set-xapian-metadata:
key_path: unique_term
index_name: wex
namespace:

now: datetime.datetime.now
formatter: "baton: dict(index_operation='index', mtime=now())"

# if delete-when-queued
- send-message:

message_path: broadcast
queue_name: broadcast
namespace:

now: datetime.datetime.now
formatter: "baton: 'queued %s %s'%(now(), baton['unique_term'])"

- fetch-context:
context: documents

# if delete-after-flush:
- add-to-set:

set: documents
formatter: "baton: baton['unique_term']"

commit:
- commit-xapian-index:

index_name: wex

- fetch-context:
context: documents

# if delete-after-flush:
- broadcast-indexed-messages:
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unique_terms: documents
namespace:

now: datetime.datetime.now
formatter: "unique_term: 'indexed %s %s'%(now(), unique_term)"

indexes:
wex:

locals:
- !filepath /media/part_02/wex02.xapian

And finally, the rebalancing process:

## rebalance.py
import zmq
import xapian

from_name = '/media/part_01/wex01.xapian'
from_index = xapian.Database(from_name)
total_docs = from_index.get_doccount()

# create a zmq socket connection to the rebalance queue of the source node
c = zmq.Context()
s = c.socket(zmq.PUSH)
s.setsockopt(zmq.HWM, 100)
s.connect('tcp://0.0.0.0:5000')

for i, unique_term in enumerate(from_index.metadata_keys()):

# sends the unique terms to the rebalance queue
s.send(unique_term)

# rebalance half the documents
if total_docs/2 <= i:

break
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