
From Improving Processes to
Improving Practice

Software Process Improvement in Transition from Plan-
driven to Change-driven Development

Thesis for the degree of Doctor Philosophiae

Trondheim, September 2011

Norwegian University of Science and Technology
Faculty of Information Technology, Mathematics and
Electrical Engineering
Department of Computer and Information Science

Nils Brede Moe

NTNU
Norwegian University of Science and Technology

Thesis for the degree of Doctor Philosophiae

Faculty of Information Technology, Mathematics and Electrical Engineering
Department of Computer and Information Science

© Nils Brede Moe

ISBN 978-82-471-3010-0 (printed ver.)
ISBN 978-82-471-3011-7 (electronic ver.)
ISSN 1503-8181

Doctoral theses at NTNU, 2011:226

Printed by NTNU-trykk

The real voyage of discovery consists not in seeing new landscapes
 but in having new eyes

- Marcel Proust

- i -

!"#$%&'$(
(

As information technology’s role in the modern economy grows in importance, society
makes exponentially greater demands on the diversity and quality of the software being
produced. To develop high quality software, a good software development process is
important. Software process improvement is about improving software quality and
reliability, employee and client satisfaction, and return on investment. From the mid
1990s onwards, agile software development has been challenging the traditional (plan-
driven) view of software development. Agile software development accords primacy to
uniqueness, ambiguity, complexity, and change, as opposed to prediction, verifiability,
and control.

The fundamental differences between traditional and agile software process
improvement and the lack of research on these differences, gave rise to the overall
problem addressed by this thesis: “How does Software Process Improvement work
change with the introduction of agile software development in plan-driven companies?”
This thesis focus on answering the following research questions: What characterizes
SPI in plan-driven companies?, What characterizes SPI in change-driven companies?,
and What are the key SPI challenges when implementing change-driven development?

This thesis summarizes six years of studies in three small and medium-sized companies
in Norway. The overall research method has been the same: case study and action
research. Qualitative data in the form of interviews and participant observations
constitute the most important source of evidence.

Through a synthesis of contributions from twelve papers, ten key findings connected to
the three research questions has been identified. To summarize, software process
improvement in plan-driven companies is characterized by a participative bottom-up
approach when creating company best practice, focus on project management support,
high individual autonomy, and long cycles of single-loop learning; the goal of reflection
on projects is to improve future projects. Software process improvement in change-
driven companies is characterized by supporting the whole team and not only project
management, practice is improved by short cycles of single-loop learning, and the goal
of reflection in projects is to improve the current project. Finally, software process
improvement challenges while implementing change-driven development are to
increase redundancy to create conditions for the team to self-manage, to learn how to

- ii -

learn, and to perceive the adoption of change-driven development as a large, long-term
organizational change project.

The overall contribution of this thesis is that it shows empirically that the goal of
software process improvement changes from improving processes to improving
practice. However, achieving this goal is challenging when only part of the organization
is involved in the change. Also contributions are deep knowledge about software
process improvement in plan- and change-driven small- and medium-sized companies,
knowledge about software process improvement challenges when implementing
change-driven development, and increase the body of literature on longitudinal action
research.

- iii -

)%*+&'*(,($-*("*./00/0.(

I was introduced to teamwork, continuous improvement, learning, and reflection when I
played handball in one of Norway’s best clubs. Handball (also known as team handball
or European handball) is a team sport in which two teams of seven players each (six
outfield players and a goalkeeper) pass a ball to throw it into the goal of the other team.
The game is quite fast, physical, and it involves body contact as the defenders try to
stop the attackers from approaching the goal.

When I started playing, my father was the coach, and he told us that for a team to
perform, all players need to master all positions on the field. When I was 16, we got a
new coach. It was his first job as a coach and he demanded discipline – you always
showed up on time, you were well prepared and motivated to do your best. After a few
weeks, some of the most experienced and talented players left because they did not want
to comply with this new way of running the team. In addition, some started to question
whether the new coach was the right man for the job. However, the results speak for
themselves; we started in the third division and after three years we were in the top
division.

Planning and evaluation was an important part of the philosophy of the new coach. Each
month started with setting a plan, each practice usually started with presenting its aim,
and ended with a short evaluation: what was good and what was not so good. During
training, the coach sometimes interrupted an exercise to let players know whether their
performance was excellent, poor, or needed improvement. In addition to reflection as a
team, I had my own training diary for personal reflection. We practiced 10 to15 hours a
week, mostly together as a team. 10-20% of the time was allocated to individual
training, focusing on each player’s needs.

Our coach has now been working for various teams for more than 25 years, and he is
still focusing on improving his skills. Important aspects of his philosophy are joint
responsibility, involvement, and commitment to goals. In 2006 he was voted the coach
of the year in Norway, and in 2010 he won the world championship for the women’s
national team.

I learned five things about teamwork through my handball experiences. You need hard
work, team discipline, involvement, frequent reflection, and it takes a long time to build
a cohesive team. I have been a coach myself, and I came to the conclusion that there is
no single best practice to achieve success.

- iv -

!'10234*5.*6*0$#

This thesis is the tangible result of work in which I have depended on the help, support,
and inspiration of many people. First, I wish to thank my father and Thorir Heirgerisson
for introducing me to the field of teamwork. Then I wish to thank my fellow researchers
at SINTEF. SINTEF is a unique institution, and I am grateful for the opportunity to
work in such an excellent environment and professional atmosphere. Special thanks go
to Torgeir Dingsøyr and Tore Dybå for participating in several of the studies reported in
this thesis and for discussing both research method and results of these studies. Also, I
wish to thank Geir Kjetil Hanssen, Tor Erlend Fægri, and Børge Haugset for fruitful
discussions and valuable feedback. I would also like to thank my manager, Eldfrid Øfsti
Øvstedal, for always supporting my work.

The starting point of this thesis is the research I conducted together with Tore Dybå in
2004. Tore introduced me to the combination of software process improvement,
organizational science, and socio-technical theory, which strongly influenced my
research perspective. Because the work with this thesis has been done without a
supervisor, discussing my findings with Tore was of outmost importance to me.

I met a number of researchers outside of my research group who inspired me in many
different ways. During my stay at UNSW Sydney (Australia) I had time to get to know
new theories and to write some of the most important papers included in this thesis;
therefore I would like to thank Aybuke Aurum for being my host. I would also like to
thank Darja Smite and Pekka Abrahamsson for introducing me to new perspectives in
the field of computer science and process improvement, and for asking important
questions about my studies and my results. I also thank Maria Line for all the inspiring
discussions at the coffee bar.

My thanks also go to the three companies where the studies were conducted. The close
and long-term cooperation with them forms the basis of my work. I thank the Research
Council of Norway for funding the projects I have been working on, and Chris Wright
and Ewa Huebner for proofreading this thesis.

Finally, I offer heartfelt thanks to my family for their care, support, and encouragement.
Special thanks go to my wife Ela who has motivated me, given me valuable feedback,
and has been my coach in the field of organizational learning. Without the ability to
discuss my work with her, this thesis would never have been finished. Also I wish to
thank my parents in law, Anne-Marie and Kjell, who has supported my family during

- v -

the vacations I have been working on my thesis. My children has put up with a great
deal due to my overtime work and mental absence, so I owe a special debt of gratitude
to Emrik, Ask, and Helma.

Trondheim, May 2011
Nils Brede Moe

- vi -

720$*0$(

!"#$%&'$(/(

)%*+&'*(8($-*("*./00/0.(///(

!'10234*5.*6*0$#(/9(

720$*0$(9/(

:/#$(2+(;/.<%*#(/=(

:/#$(2+(>&"4*#(=(

!""%*9/&$/20#(=/(

:/#$(2+()&?*%#(=//(

@(A0$%25<'$/20(@(

!"!# $%&'()*+,-#.*)#/01#)121%)&0# !#
!"3# 4121%)&0#(%52# 6#
!"6# 4121%)&0#5)*7819#%,-#:+12/;*,2# <#
!"=# 4121%)&0#&*,/1>/# <#

!"="!###?@ABC# D#
!"="3###CEA?FGH# D#
!"="6###CEAICJ?C# D#

!"<# 4121%)&0#%55)*%&0# K#
!"D# 4121%)&0#-12;(,# K#
!"K# L8%;91-#&*,/);7+/;*,2# M#

!"K"!###L*,/);7+/;*,#*.#/012;2# M#
!"K"3###A,&8+-1-#5%51)2# !N#

!"O# H012;2#2/)+&/+)1# !K#

B(C&'1.%2<05(@D(

3"!# ?*./P%)1#-1Q18*591,/# !M#
3"!"!###@8%,R-);Q1,#-1Q18*591,/# 3N#
3"!"3###L0%,(1R-);Q1,#-1Q18*591,/# 3!#
3"!"6###G)*9#58%,R#/*#&0%,(1R-);Q1,#-1Q18*591,/# 33#

3"3# ?*./P%)1#@)*&122#A95)*Q191,/# 36#
3"3"!###L0%881,(12#*.#2*./P%)1#-1Q18*591,/#%,-#?@A# 3=#
3"3"3###J*)9R-);Q1,#%55)*%&0#/*#?@A# 3<#
3"3"6###H%;8*);,(#712/#5)%&/;&1# 3K#

- vii -

3"3"=###L0%,(1R-);Q1,#%55)*%&0#/*#?@A# 3K#
3"6# ?@A#%,-#*)(%,;S%/;*,%8#;22+12# 3M#

3"6"!###?*./P%)1#-1Q18*591,/#/1%92# 6N#
3"6"3###?18.R9%,%(;,(#/1%92# 6!#
3"6"6###L**)-;,%/;,(#/01#-1Q18*591,/#5)*&122# 66#
3"6"=###F)(%,;S%/;*,%8#81%),;,(#%,-#?@A# 6<#
3"6"<###?@A#%,-#5%)/;&;5%/;*,# 6K#

E(F*#*&%'-(6*$-25(&05(5*#/.0(ED(

6"!# T&/;*,#)121%)&0# =N#
6"3# L%21#2/+-U#)121%)&0# =6#
6"6# 4121%)&0#21//;,(# ==#

6"6"!###J*)?*./# =<#
6"6"3###C%2/?*./# =<#
6"6"6###V;-?*./# =D#
6"6"=###@)*&122#W+;-1# =K#
6"6"<###?&)+9# =O#

6"=# 4121%)&0#91/0*-2#%558;1-#;,#/01#58%,R-);Q1,#51);*-# =M#
6"<# 4121%)&0#91/0*-2#%558;1-#;,#/01#&0%,(1R-);Q1,#51);*-# <N#
6"D# ?/+-;12#%,-#-%/%#%,%8U2;2# <6#

G(F*#<4$#(HI(

="!# ?@A#;,#58%,R-);Q1,#&*95%,;12# <K#
="!"!###B1U#G;,-;,(#!X#$12/#5)%&/;&1#9%;,8U#2+55*)/2#5)*Y1&/#9%,%(191,/# <O#
="!"3###B1U#G;,-;,(#3X#A,Q*8Q191,/#%..1&/2#0*P#712/#5)%&/;&1#;2#%-*5/1-# <M#
="!"6###B1U#G;,-;,(#6X!A,-;Q;-+%8#1>51)/2#%55)*%&0#;2#%#2;9581#2/)%/1(U#/*#9%,%(1##
###################################5)*Y1&/2# DN#
="!"=###B1U#G;,-;,(#=X#@*2/R5)*Y1&/#)1.81&/;*,#;2#%,#;95*)/%,/#81%),;,(#2/)%/1(U# D!#

="3# ?@A#;,#&0%,(1R-);Q1,#&*95%,;12# D!#
="3"!###B1U#G;,-;,(#<X#?0*)/#;/1)%/;*,2#9%'1#5)*Y1&/#9%,%(191,/#1%2;1)# D3#
="3"3###B1U#G;,-;,(#DX#L0%,(1R-);Q1,#-1Q18*591,/#1,&*+)%(12#.)1:+1,/#5)*7819##
######################################)15*)/;,(# D<#
="3"6###B1U#G;,-;,(#KX#Z*,(R/1)9#:+%8;/U#;2#;,#&*,.8;&/#P;/0#20*)/R/1)9#5)*()122# DD#

="6# B1U#?@A#&0%881,(12#;958191,/;,(#&0%,(1R-);Q1,#-1Q18*591,/# DK#
="6"!###B1U#G;,-;,(#OX#?51&;%8;S%/;*,#0;,-1)2#218.R9%,%(191,/# DK#
="6"3###B1U#G;,-;,(#MX#@)*&122#)18%/1-#5)*78192#%)1#-;..;&+8/#/*#2*8Q1# DM#
="6"6###B1U#G;,-;,(#!NX#H01)1#%)1#9%Y*)#*)(%,;S%/;*,%8#7%));1)2#/*#218.R9%,%(191,/# KN#

H(J/#'<##/20(IE(

<"!# [!X#\0%/#&0%)%&/1);S12#?@A#;,#58%,R-);Q1,#&*95%,;12]# K6#
<"!"!###@%)/;&;5%/;Q1#7*//*9R+5#%55)*%&0#/*#&)1%/;,(#&*95%,U^2#712/#5)%&/;&1# K6#
<"!"3###Z*,(#&U&812#*.#2;,(81R8**5#81%),;,(#%,-#5*2/R5)*Y1&/#)1.81&/;*,# K=#
<"!"6###@)*Y1&/#9%,%(191,/#2+55*)/#.*&+2#%,-#0;(0#;,-;Q;-+%8#%+/*,*9U# K<#

<"3# [3X#\0%/#&0%)%&/1);S12#?@A#;,#&0%,(1R-);Q1,#&*95%,;12]# KD#
<"3"!###?0*)/#&U&812#*.#2;,(81R8**5#81%),;,(#/*#;95)*Q1#&+))1,/#5)*Y1&/# KD#
<"3"3###?+55*)/;,(#/01#P0*81#/1%9#%,-#,*/#*,8U#/01#5)*Y1&/#9%,%(191,/# KK#

- viii -

<"6# [6X#\0%/#%)1#/01#'1U#?@A#&0%881,(12#P01,#;958191,/;,(#&0%,(1R-);Q1,##
-1Q18*591,/]# KM#
<"6"!###L)1%/;,(#&*,-;/;*,2#.*)#218.R9%,%(191,/# KM#
<"6"3###Z1%),;,(#/*#81%),# O!#
<"6"6###L0%,(;,(#/01#*)(%,;S%/;*,# O3#

<"=# A958;&%/;*,2#.*)#)121%)&0#%,-#5)%&/;&1# O6#
<"<# Z;9;/%/;*,2# O<#
<"D# 41&*991,-%/;*,2#.*)#.+/+)1#P*)'# OD#

K(720'4<#/20(LI(

F*+*%*0'*#(D@(

- ix -

:/#$(2+(;/.<%*#(

G;(+)1#!#?/+-U#-12;(,#"""#O#
G;(+)1#3#?;,(81#%,-#-*+781R8**5#81%),;,(#_T)(U);2#%,-#?&0`,#!MMDa#""""""""""""""""""""""""""""""#6D#
G;(+)1#6#?/+-U#-12;(,#%,-#5%51)2#5)*-+&1-#;,#/01#58%,R#%,-#&0%,(1R-);Q1,#51);*-#""""#6M#
G;(+)1#=#H01#LT4#5)*&122#_I%Q;2*,b#V%)/;,2*,2#1/#%8"#3NN=a#"""#=3#
G;(+)1#<#L*,&15/+%8#9*-18#.*)#/01#2+)Q1U#/12/1-#;,#2/+-U#!#"""#=M#
G;(+)1#D#C>%9581#*.#/01#&*-;,(#5)*&122#;,#2/+-U#=#""#<<#
G;(+)1#K#I1.1&/2#.*+,-#%,-#&8*21-#;,#/01#58%,R-);Q1,#50%21#"""#D6#
G;(+)1#O#I1.1&/2#.*+,-#%,-#&8*21-#;,#/01#?&)+9#50%21#"""#D=#
G;(+)1#M#G)%91P*)'#.*)#*)(%,;S%/;*,%8#&0%,(1#_T-81)#%,-#?01,0%)#!MMNa#"""""""""""""""""""#O3#

- x -

:/#$(2+($&"4*#

H%781#!#?/+-;12#51).*)91-#;,#/01#/012;2#%,-#)12+8/;,(#5%51)2#"""#O#
H%781#3#I1/%;81-#&*,/);7+/;*,#*.#/012;2X#0*P#/01#'1U#.;,-;,(2#%,-#/01#)121%)&0##

:+12/;*,2#_4[a#%)1#)18%/1-#"""#!N#
H%781#6#@%51)2#;,&8+-1-#;,#/01#/012;2#%,-#/01#&*95%,;12#;,Q*8Q1-#;,#1%&0#2/+-U#"""""""""#!N#
H%781#= V%;,#-;..1)1,&12#71/P11,#&0%,(1R-);Q1,#%,-#58%,R-);Q1,#-1Q18*591,/##

_J1)+)b#V%0%5%/)%#%,-#V%,(%8%)%Y#3NN<a"#""#36#
H%781#<#c,-1)8U;,(#-;..1)1,&12#71/P11,#/)%-;/;*,%8#%,-#%(;81#2*./P%)1#-1Q18*591,/#

%,-#?@A#_?%8*#%,-#T7)%0%922*,#3NNKa#"""#3O#
H%781#D#L0%)%&/1);2/;&2#*.#/01#LVV#%,-#T(;81#9;,-21/#;,#?@A#_T%1,b#$`)Y122*,#%,-#

V%/0;%221,#3NN<a#"""#3M#
H%781#K#H1%92#%,-#-%/%#&*881&/;*,#2*+)&12"#"""#<!#
H%781#O#H01#+21#*.#B81;,#%,-#VU1)2^#5);,&;5812#;,#/0;2#.;18-#)121%)&0"#""""""""""""""""""""""""""""#<3#
H%781#M#418%/;*,20;5#*.#Q%);*+2#5%51)2#/*#/01#'1U#.;,-;,(2#%,-#/01#)121%)&0##

:+12/;*,2#_4[a#""#<K#
H%781#!N#H1%92#;,/)*-+&;,(#%(;81#%55)*%&0#""#D3#

- xi -

!""%*9/&$/20#((

ASD Agile Software Development
CMM Capability Maturity Model
CMMI CMM Integration
EPG Electronic Process Guide
GUI Graphical User Interface
ICT Information and Communication Technology
ISO International Organization for Standardization
PMA Post-mortem analysis
QA Quality Assurance
RUP Rational Unified Process
RQ Research Question
SE Software Engineering
SEI Software Engineering Institute
SINTEF The Foundation for Scientific and Industrial Research at the

Norwegian Institute of Technology
SME Small and Medium-sized Enterprises
SPI Software Process Improvement
SPICE Software Process Improvement and Capability dEtermination
STS Socio-Technical System
SW Software
SW-CMM Capability Maturity Model for Software
TQM Total Quality Management
UNSW University of New South Wales

- xii -

:/#$(2+(?&?*%#(

No. Paper
P1 An Empirical Investigation on Factors Affecting Software Developer Acceptance and

Utilization of Electronic Process Guides, Metrics (Dybå, Moe and Mikkelsen 2004)
P2 Measuring Software Methodology Usage: Challenges of Conceptualization and

Operationalization, Isese (Dybå, Moe and Arisholm 2005)
P3 The Use of an Electronic Process Guide in a Medium-sized Software Development

Company, SPIP (Moe and Dybå 2006)
P4 Improving by involving: a case study in a small software company EuroSPI (Moe and

Dybå 2006)
P5 The Impact of Employee Participation on the Use of an Electronic Process Guide: A

Longitudinal Case Study, TSE (Dingsoyr and Moe 2008)
P6 Understanding Self-organizing Teams in Agile Software Development, Aswec (Moe,

Dingsøyr and Dybå 2008)
P7 Understanding Decision-Making in Agile Software Development: A Case Study,

Euromicro (Moe and Aurum 2008)
P8 Putting Agile Teamwork to the Test – An Preliminary Instrument for Empirically

Assessing and Improving Agile Software Development
XP (Moe, Dingsøyr and Røyrvik 2009)

P9 Understanding Shared Leadership in Agile Development: A Case Study, HICCS (Moe,
Dingsøyr and Kvangardsnes 2009)

P10 Overcoming Barriers to Self-Management in Software Teams, IEEESW (Moe, Dingsøyr
and Dybå 2009)

P11 Transition from a Plan-Driven Process to Scrum – A Longitudinal Case Study on Software
Quality, ESEM (Li, Moe and Dybå 2010)

P12 A teamwork model for understanding an agile team: A case study of a Scrum project, IST
(Moe, Dingsøyr and Dybå 2010)

The full citation for each paper, its relevance to this thesis, and its contribution is
provided at the end of the first chapter. Hereafter, the papers will be referred to by their
number.

!T"##$#%#&'(()*+#,-#./'012.#

Introduction#

- 1 -

M !"#$N%&'#(N"((

MOM C)'*+$N&"%(,N$(#-.($./.)$'-(

Information technology play a significant role in all areas of modern human activity,
including science, engineering, business, government, entertainment, education, energy,
defense, health, and medicine. In the same way as electricity and the combustion engine
made industrial society possible, information technology enables the global information
society. The knowledge workers, the creative industries, and the service industries
cannot exist without information systems.

As information technology’s role in the modern economy grows in importance, society
makes exponentially greater demands on the diversity and quality of the software being
produced. Time-to-market can spell the difference between a successful product release
and bankruptcy. Software process improvement (SPI) has become the primary approach
to improving software quality and reliability, employee and client satisfaction, and
return on investment (Mathiassen, Ngwenyama and Aaen 2005). Therefore, SPI is
becoming increasingly important.

The environment in which software is designed and created is also changing. Software
systems are becoming larger and more complex, commercial off-the-shelf components
are playing increasingly significant role, and the already rapid pace of requirement
changes is accelerating. When software professionals refer to today’s software
development as solving the “wicked problems” (Nerur and Balijepally 2007), they are
not simply considering technical issues. Rather, software development today forces
developers to interact with and consider the viewpoints of a wide variety of
stakeholders, many of whom have conflicting views on the desirability of the software
features and its functionality. Today’s turbulent environment requires that managers
continuously coordinate and adjust priorities of diverse change initiatives. Agile SPI
approaches provide an answer to this development (Mathiassen, Ngwenyama and Aaen
2005).

The traditional software development environment is characterized by the product-line
approach using a standardized, controllable, and predictable software engineering
process (Dybå 2000). The traditional way of developing software is to involve extensive
planning, codified processes, and rigorous reuse to make development an efficient and

Introduction#

- 2 -

predictable activity (Boehm 2002). Increased complexity is addressed by relying on
foresight to develop and impose architectures, which can often moderate adverse impact
of change on the system (Boehm and Turner 2003). This view of developing software is
also known as a plan-driven approach, and it is usually guided by a life cycle model
such as the waterfall model or the spiral model, with the focus on the quality of the
software artifacts and the predictability of their processes (ibid.). This engineering
approach favors explicitly defined processes, which can be standardized both within and
across organizations (Lycett, Macredie et al. 2003).

From the mid 1990s onwards, agile software development principles and methodologies
have been increasingly challenging the traditional view of software development. In
contrast to the plan-driven perspective, agile processes address the challenge of an
unpredictable world by relying on ‘‘people and their creativity rather than on processes”
(Dybå 2000; Nerur, Mahapatra and Mangalaraj 2005). The goal of optimization of
design is being replaced by flexibility and responsiveness (Nerur and Balijepally 2007).
Agile development is ‘‘about feedback and change” (Williams and Cockburn 2003).
Erickson et al. (2005) define agility as follows:

Agility means to strip away as much of the heaviness, commonly associated
with the traditional software development methodologies, as possible to promote
quick response to changing environments, changes in user requirements,
accelerated project deadlines and the like. (p. 89)

The inherent differences between the plan-driven and the agile approaches require new
SPI mechanisms to fit the context of agile software development. Software process
improvement has its roots in general improvement strategies like total quality
management, which has been tailored to software engineering, for example the Quality
Improvement Paradigm (QIP) (Basili 1989), and in efforts on standardization, for
example the ISO 9001 (ISO 2000) and the Software Engineering Institute’s Capability
Maturity Model Integration (CMMI) (SEI 2002). Classical SPI techniques like CMMI
relate software processes, standardization, software metrics, and process improvement
(Hansen, Rose and Tjornehoj 2004). This focus on software processes is based on the
premises that:

• The process of producing and evolving software products can be defined,
managed, measured, and progressively improved.

• The quality of a software product is largely governed by the quality of the
development process (Humphrey, Kitson and Kasse 1989).

This approach prescribes norms for how individuals, teams, and organizations should
operate, and for how processes should be standardized and improved (Hansen, Rose and
Tjornehoj 2004).

Introduction#

- 3 -

When describing traditional or plan-driven development this thesis relies on the
prescriptive and norm-driven approach to SPI as described by Hansen (Hansen, Rose
and Tjornehoj 2004). The prescriptive approach is more concerned with how the
strategies should be formulated than with how they are actually implemented. The
norm-driven approach is based on an underlying normative model of software process
improvement (Aaen, Arent et al. 2001). The motivation for the research leading to this
thesis was to fill the gaps in the field of SPI, which tends to be dominated by one
approach (the capability maturity model (CMM) which is norm-driven) and heavily
biased towards prescriptive methodologies (Hansen, Rose and Tjornehoj 2004).

MOP 0./.)$'-(+)Q/((

There are several fundamental differences between traditional and agile software
development from the perspective of SPI. First, while SPI in the plan-driven approach
prescribes norms for how individuals, teams, and organization should operate, agile
software development addresses the improvement and management of software
development practices within individual teams (Lycett, Macredie et al. 2003). In agile
development processes are not products, but rather practices which evolve dynamically
within the team as it adapts to the particular circumstances (Aaen 2008). The
empowered self-managing team should base work coordination on face-to-face
communication, and is responsible for finding the best way of developing software
through frequent reflection. This has been stated in three of the twelve principles of the
Agile Manifesto1:

• The most efficient and effective method of conveying information to and within
a development team is face-to-face conversation.

• At regular intervals the team reflects on how to become more effective, then
tunes and adjusts its behavior accordingly.

• The best architectures, requirements, and designs emerge from self-organizing
teams.

Another difference is that plan-driven methods, such as the waterfall model, usually
adopt a top-down approach to improving the software development process (Salo and
Abrahamsson 2007), while the agile development represents a bottom-up approach.
Furthermore, SPI in plan-driven development often emphasizes the continuous
improvement of the organizational software processes for future projects, while the
principles of agile software development focus on iterative adaption and improvement
in the ongoing projects. Short development cycles provide continuous and rapid loops
of iterative learning, to enhance the processes and to test the improvements.

1 http://agilemanifesto.org
2 SPI based on Knowledge and Experience

Introduction#

- 4 -

Because adopting agile approach entails changing many aspects of the organization
including its structure, culture, and management practice (Nerur, Mahapatra and
Mangalaraj 2005), it requires significant organizational changes which take a long time
to implement (Pyzdek 1992; Vinekar, Slinkman and Nerur 2006). Longitudinal studies
on adoption of agile practices are needed to understand the differences between SPI in
plan-driven and change-driven environments. In an extensive review of literature on
agile software development Dybå and Dingsøyr (2008) found seven studies addressing
how agile development methods are introduced and adopted in companies. However,
none of the studies on adoption focused on SPI. In addition, the conclusion of the study
of Aaen et al. (Aaen, Börjesson and Mathiassen 2005) is that there is no recognized SPI
model supporting the agile approach.

There were however a few studies focusing on software process improvement and the
introduction of agile development. One such study is the work by Salo and
Abrahamsson (2007). They argue that because of the fundamental differences between
traditional and agile software development, there is a need to define new SPI
mechanisms for agile software development. Salo and Abrahamsson suggest an iterative
improvement process for conducting SPI within agile software development teams.
However, they only studied student projects lasting from eight to eleven weeks. A study
by Qumer and Henderson-Sellers (2008) suggests a framework which can be used to
create, modify, and tailor situation-specific agile software processes. The model
includes among others an agility measurement model and an agile adoption and
improvement model. However, this framework was only explored in a limited way; the
first case study only applied a few agile methods for a short period, and the second case
study only involved two developers.

The field of software engineering is largely influenced by and based on the needs of
large organizations like the US Department of Defense (Fayad, Laitinen and Ward
2000) and by military applications. However, most software companies are small. Even
in the USA, 94% of the software industry consist of companies with fewer than 50
employees (ibid.). Because problems of big organizations are in many ways different
from the problems of small organizations, most current research in software engineering
is not automatically useful for resolving problems faced by small organizations.
Therefore, it is necessary to study small and medium-sized companies.

Introduction#

- 5 -

MOR 0./.)$'-(Q$N12.3()"%(4&./#(N"/((

The fundamental differences in SPI between traditional and agile software, and the lack
of research in this area, gave rise to the overall problem addressed by this thesis:

How does Software Process Improvement work change with the introduction of
agile software development in plan-driven companies?

To narrow the focus of the investigation, the research problem addressed by this thesis
can be summarized by the following research questions:

RQ 1:

What characterizes SPI in plan-driven companies?

RQ 2: What characterizes SPI in change-driven companies?

RQ 3: What are the key SPI challenges when implementing change-
driven development?

Because of the importance of studies on small and medium-sized companies, the
answers to these questions in this thesis are based on the study of such companies.

MOS 0./.)$'-('N"#.5#(((

This thesis culminates about six years of studies in three small and medium-sized
companies, and shows how these companies changed from a plan-driven to a change-
driven approach to software development.

The research presented in this thesis has been conducted within the context of three
research projects: SPIKE2, EVISOFT3 and EVIDENSE4. In SPIKE and EVISOFT, the
target group was small and medium-sized software companies, research and
development departments in large companies, as well as universities, colleges, and
consulting companies, which develop and offer SPI services. Action research (Susman
and Evered 1978) was the preferred research method, and it involved me helping the
organizations in improving their software development processes according to
company-specific quality goals. In EVIDENSE the goal was to develop a theoretical

2 SPI based on Knowledge and Experience
3 EVidence based Improvement of SOFTware engineering
4 EVIDENce-based Software Engineering

Introduction#

- 6 -

understanding of the trade-offs between agile methods and plan-based methods in
effective software development

MOSOM 67!89(

SPIKE (SPI based on Knowledge and Experience) was a national SPI program partially
funded by the Research Council of Norway from 2003 to 2006. Ten small and medium-
sized software companies participated in the program together with the Norwegian
University of Science and Technology, the University of Oslo, and SINTEF. SPIKE
focused on context dependent methods and guidelines for software process
improvement with the aim to find the right method for the specific project. Key areas
were incremental and evolutionary methods, object oriented analysis and design,
electronic process guides, knowledge management, estimation and project management,
and evolutionary projects.

MOSOP 9:!6;<=(

EVISOFT (EVidence based Improvement of SOFTware engineering) – was a user-
directed innovation program funded by the Research Council of Norway (grant
174390/I40), which started in 2006 and ended in 2010. Three research institutions
(SINTEF, Norwegian University of Technology, and the University of Oslo), together
with ten large and medium-sized Norwegian ICT companies cooperated to find methods
and technologies for producing software with the right quality, within a given
timeframe, and at the right price. EVISOFT focused on agile and evolutionary methods,
model based development, estimation and risk management, and component based
development.

MOSOR 9:!J9>69(

EVIDENSE (EVIDENce-based Software Engineering) was a strategic internal project
at SINTEF ICT funded by Research Council of Norway (grant 181658/I30), which
started in 2007 and ended in 2009. The objective of EVIDENSE was to develop a better
theoretical and empirically based understanding of the trade-offs between agile methods
and plan-based methods in effective software development. EVIDENSE focused on
project management, collaborative processes, and team learning. These issues are of the
utmost importance for building scientific knowledge on software development as well
as for innovation and value creation in the ICT industry.

The action research projects in the companies involved in EVISOFT and SPIKE
constitute the main empirical basis of this thesis.

Introduction#

- 7 -

MOT 0./.)$'-()QQ$N)'-(

The papers included in this thesis represent contributions stemming from research at
three organizations; each paper has different, specific research objectives and hence
distinct perspectives for analysis. The overall problem formulation and the associated
research questions of this thesis are addressed by synthesizing (Cruzes and Dybå 2010)
individual contributions of the studies performed earlier. The synthesis did not alter the
original elements, and the aim was to contribute through combined analysis from a
more evolved perspective. This thesis relied on interpretive synthesis (Dixon-Woods,
Agarwal et al. 2005). Through an interpretive synthesis, the concepts identified in the
primary studies were subsumed into a higher order theoretical structure. The main
product is not aggregation of data, but of theory. The primary concern has been the
development of concepts and of theories integrating these concepts. In the interpretive
synthesis the concepts were not specified in advance, but were derived from the
combined data reported by the primary studies (Dixon-Woods, Agarwal et al. 2005).
The perspective defined by the research problem and the research questions allowed for
interpretation of the papers included in this thesis within a new conceptual frame.

In addition to software process improvement in software development, this thesis covers
the areas of organizational issues in SPI. There are two reasons for this. First,
organizational issues are of great importance in SPI (Børjesson and Mathiassen 2004;
Hansen, Rose and Tjornehoj 2004; Dybå 2005; Mathiassen, Ngwenyama and Aaen
2005). Second, introducing agile software development requires the organization to
change its culture, strategy, and structure (Vinekar, Slinkman and Nerur 2006). The
magnitude of such changes is relatively large, the level of learning required is high, and
the time to adjust is long (Adler and Shenhar 1990).

The position taken in this thesis regarding organizational issues is strongly influenced
by socio-technical theory (Trist 1981). Its central concept is that organizations are both
social and technical systems, and that the core of the software organization is
represented through the interface between the technical and human (social) system.
Instead of a search for global best practices, this thesis points to the importance of
organizational learning as described by (Argyris and Schön 1996).

MOU 0./.)$'-(%./(+"((

Five studies in three companies were conducted over six years, resulting in twelve
publications (Figure 1). EastSoft was located in the southeast of Norway, MidSoft in the
middle of Norway and NorSoft in the North of Norway. Studies 1 and 2 were performed
in the plan-driven period, where the SPI focus was on the whole development at the

Introduction#

- 8 -

department and organizational level. Studies 3 and 4 started in the plan-driven period
and continued into the change-driven period. After Scrum training, the processes in
projects in study 3 and 4 were tailored to agile methods, and the projects were classified
as change-driven development. Study 5 was conducted fully in the change-driven
period. A different SPI focus (the organization versus the team) in the two periods
called for a different research approach, from studying how developers were using
technology to studying how developers worked together. This resulted in two
methodologically different phases of the research. An overview of the purpose of each
study and the resulting papers is given in Table 1.

Figure 1 Study design
Table 1 Studies performed in the thesis and resulting papers

Study Purpose Paper
Study 1 To understand factors, which influence the usage and acceptance of the electronic

process guide (EPG) in the organization by inspecting documents, analyzing
usage logs and surveys, and by interviewing the users.

P1,
P2, P3

Study 2 To understand the importance and the effect of participation in SPI, with a
particular focus on process workshops as a technique for involving participants
when creating an EPG. The researchers and the company designed the process
workshop, and the effect of the workshop was evaluated by interviews and
inspection of access logs.

P4, P5

Study 3 To understand the process of the introduction of change-driven development in
the middle of long-term projects. Observations and interviews were the primary
source of evidence. The nature of the study made it possible to study defect data
from the same project before and after Scrum was introduced

P7,
P8,
P10,
P11

Study 4 To understand the process of the introduction of change-driven development at
the beginning of a project. An important part of this study was also to document
the change-driven approach. The change-driven perspective was explored by
observations, interviews, and inspection of documents.

P6,
P7,
P10,
P12

Study 5 To understand change-driven development by looking from inside of the project.
To get a deeper understanding of the phenomena investigated in this study action
research included working as a software developer. In this study, in addition to
ethnographic observations, interviews were important.

P9,
P10

?@AB!("3#!"##!$##!%# #$%&!('&#!'##!(##!")##!""#
#
#
#
#

*+,-./0#

#$%&!((&#!1##!2#3/4./0#

#$%&!()&#!5##!'##!")##!"$## #$%&!(*&#!6##!")#789./0#

!:+;<948=>;#9>=>:/?@>;-#
A>,>+4BC#DE>,F/;#"#

GC+;H><948=>;#9>=>:/?@>;-#
A>,>+4BC#DE>,F/;#$#I#%#

Introduction#

- 9 -

MOV 7+,-./0(1N234-563-N27((

MOVOM 7N234-563-N2(N8(39/7-7(
The objective of the thesis is to investigate how Software Process Improvement work
change with the introduction of agile software development in small- and medium-sized
plan-driven companies. Based on the objective of this study and the answers provided to
the research questions posed in this thesis, I claim that the thesis has unique
contributions for theory and practice in Software Process Improvement. The main
contributions are:

• Increased awareness of both importance and challenges of improving
practice. SPI has traditionally focused on improving process descriptions and
identifying best practice. The overall contribution of this thesis is that it shows
empirically that the goal of SPI changes from improving processes to improving
practice. However, achieving this goal is challenging when only part of the
organization is involved in the change.

• Deep knowledge about SPI in plan- and change-driven small- and medium-
sized companies. The field of software engineering is largely influenced by and
based on the needs of large organizations. Therefore, an important contribution
of this thesis is to the body of knowledge on SPI in plan- and change-driven
small- and medium-sized companies. This knowledge constitutes answers to
research question Q1 and Q2.

• Knowledge about SPI challenges when implementing change-driven
development. Change-driven development is found to be a strong infrastructure
for SPI. However, I found several key SPI challenges implementing change
driven development. These key challenges answer research question Q3.

• Methodological contribution: longitudinal action research. Despite the
relevance of action research in the software industry, the method is seldom used
in the field of software engineering (SE) and information systems (IS).
Therefore an important contribution of this thesis is to increase the body of
literature on longitudinal action research studies.

Moreover, twelve papers have been included in this thesis and from the papers, and
through a synthesis ten Key findings emerged (Table 2). These key-findings also
contribute to the body of knowledge in SPI, however they are on a more detailed level
than the contributions mentioned above.

Introduction#

- 10 -

Table 2 Detailed contribution of thesis: how the key findings and the research questions (RQ) are
related

No RQ Key finding Papers
1 1 Best practice mainly supports project management. 2, 3, 5
2 1 Involvement affects how best practice is adopted. 3, 4, 5
3 1 Individual experts approach is a simple strategy to manage projects. 6, 7
4 1 Post-project reflection is an important learning strategy. 1, 4
5 2 Short iterations make project management easier. 11
6 2 Change-driven development encourages frequent problem reporting. 7, 10, 12
7 2 Long-term quality is in conflict with short-term progress. 7, 9, 10, 11, 12
8 3 Specialization hinders self-management. 6, 8, 9, 10, 12
9 3 Process related problems are difficult to solve. 6, 8, 10, 12
10 3 There are major organizational barriers to self-management. 6, 7, 9, 10

MOVOP !21+60/0(Q,Q/47(

Twelve published papers are included in this thesis.
Table 3 shows the papers and companies in which the studies were performed.

Table 3 Papers included in the thesis and the companies involved in each study

No Paper Company
P1 An Empirical Investigation on Factors Affecting Software Developer

Acceptance and Utilization of Electronic Process Guides, Metrics (Dybå, Moe
and Mikkelsen 2004)

EastSoft

P2 Measuring Software Methodology Usage: Challenges of Conceptualization
and Operationalization, Isese (Dybå, Moe and Arisholm 2005)

EastSoft

P3 The Use of an Electronic Process Guide in a Medium-sized Software
Development Company, SPIP (Moe and Dybå 2006)

EastSoft

P4 Improving by involving: a case study in a small software company EuroSPI
(Moe and Dybå 2006)

NorSoft

P5 The Impact of Employee Participation on the Use of an Electronic Process
Guide: A Longitudinal Case Study, TSE (Dingsoyr and Moe 2008)

NorSoft

P6 Understanding Self-organizing Teams in Agile Software Development, Aswec
(Moe, Dingsøyr and Dybå 2008)

MidSoft

P7 Understanding Decision-Making in Agile Software Development: A Case
Study, Euromicro (Moe and Aurum 2008)

MidSoft
EastSoft

P8 Putting Agile Teamwork to the Test – An Preliminary Instrument for
Empirically Assessing and Improving Agile Software Development
XP (Moe, Dingsøyr and Røyrvik 2009)

NorSoft,
EastSoft

P9 Understanding Shared Leadership in Agile Development: A Case Study,
HICCS (Moe, Dingsøyr and Kvangardsnes 2009)

MidSoft

P10 Overcoming Barriers to Self-Management in Software Teams, IEEESW (Moe,
Dingsøyr and Dybå 2009)

MidSoft,
NorSoft,
EastSoft

P11 Transition from a Plan-Driven Process to Scrum – A Longitudinal Case Study
on Software Quality, ESEM (Li, Moe and Dybå 2010)

EastSoft

P12 A teamwork model for understanding an agile team: A case study of a Scrum
project, IST (Moe, Dingsøyr and Dybå 2010)

MidSoft

Introduction#

- 11 -

The relevance of the papers to this thesis and my contribution to each paper are
described next.

P1: Dybå, T., Moe, N. B. and Mikkelsen, E. M. (2004). An Empirical Investigation

on Factors Affecting Software Developer Acceptance and Utilization of
Electronic Process Guides. Proceedings of the International Software Metrics
Symposium (METRICS), Chicago, Illinois, USA, 220–231.
Relevance to this thesis: The objective of this paper was to investigate the
factors affecting software developer acceptance and utilization of electronic
process guides (EPGs) - a tool for describing and communicating work
processes in software organizations. The paper identified factors that have a
significant and positive effect on software developer acceptance and utilization
of EPGs. The results showed that perceived usefulness is the fundamental driver
in explaining current system usage and future use intentions. Furthermore,
perceived compatibility, perceived ease of use, and organizational support were
the key determinants of perceived usefulness. Organizational support included
Post-project support, which comprised facilitation of post-project reviews and
evaluation of the infusion to gather lessons learned regarding the deployment of
the EPG as well as on the use of the EPG in the projects. The paper contributes
to key finding 4.
My contribution: Tore Dybå was the one responsible for the study design and
analysis. I was responsible for the data collection, and Edda Mikkelsen helped
me distributing the 120 questionnaires. 97 usable responses were received after
using a lot of effort chasing the missing respondents, resulting in a good overall
response rate of 81%. I was also in charge of the literature review on process
guides. The discussions and writing was done collaboratively.

P2: Dybå, T., Moe, N. B. and Arisholm, E. (2005). Measuring Software
Methodology Usage: Challenges of Conceptualization and Operationalization.
Fourth International Symposium on Empirical Software Engineering (ISESE),
Noosa Heads, Australia, IEEE Computer Society, 447 - 457.
Relevance to this thesis: The purpose of this paper was to better understand
EPG usage in the plan-driven period by comparing subjective (self-reported
usage) and objective (number of hits on the EPG, and documents produced by
the projects) operationalization of usage. All project documentation for all
projects was studied to investigate if the self-reported usage level and usage-logs
corresponded to the actual use-level. There was a difference between the
subjective self-reported methodology usage construct on the one hand, and the
objective template usage and computer-recorded usage constructs on the other

Introduction#

- 12 -

hand. This paper confirmed that projects produced deliverables according to the
EPG, which demonstrated that processes and checklists supporting management
activities were used. The paper contributes to key finding 1.
My contribution: Tore Dybå was responsible for the study design. I was
responsible collecting the data. Together with Tore Dybå, I inspected and
analyze about 1,000 documents in 23 projects in order to measure the ratio of
actual template usage. I was also responsible for analyzing the number of server
hits on the EPG template pages. Tore Dybå and Erik Arisholm were responsible
for the rest of the analysis. Discussing the results of the analysis and writing of
the paper was done collaboratively.

P3: Moe, N. B. and Dybå, T. (2006). The use of an Electronic Process Guide in a
medium sized Software Development Company. Software Process Improvement
and Practice 11(1): 21-34.
Relevance to this thesis: This paper describes the findings that emerged from a
part of Study 1, where we interviewed 19 developers and project managers. The
analysis was guided by grounded theory. It was found that the EPG provides
mostly management support, and no or little support for the developers. Also,
while the goal was to involve the users in developing the EPG, the interviewees
did not report being involved. Also, the use-level was found to be low. The
paper contributes to key finding 1 and 2.
My contribution: As the principal author I was in charge of the study design. I
conducted all the interviews, which was the data source for this article. I was
also responsible for analyzing the interview material, by coding and re-coding it
in NVivo. Discussing the results and writing of the paper was done
collaboratively.

P4: Moe, N. B. and Dyba, T. (2006). Improving by involving: a case study in a

small software company. EuroSPI 2006, Joensuu, Finland, 158 – 169.
Relevance to this thesis: The paper describes how long-term participation can
be realized in various SPI initiatives using several participation techniques like
search conferences, survey feedback, autonomous work groups, quality circles,
and learning meetings. The paper describes how post project learning in the
form of postmortem review was used to collect experience after the project was
finished, and further the use of quality circles when organizing process
workshops to create the electronic process guide. The paper report from a part of
Study 2 and contributes to key finding 2 and 4
My contribution: As the principal author I was in charge of the study design. I
was the only author partaking in introducing and assisting the company in four

Introduction#

- 13 -

of the five participative techniques introduced: search conferences, autonomous
work groups, quality circles, and learning meetings. Tore Dybå was the one
responsible for the last technique (survey feedback). The literature review on
participation, discussing the results of the analysis, and writing of the paper was
done collaboratively.

P5: Dingsøyr, T. and Moe, N. B. (2008). The Impact of Employee Participation on

the Use of an Electronic Process Guide: A Longitudinal Case Study. IEEE
Trans. Softw. Eng. 34(2): 212-225.
Relevance to this thesis: The paper studied the long-term effect on
participation. Through collecting data from three rounds of interviews and 19
months of usage logs, we found that employees who were involved in
developing the EPG showed a higher degree of usage, used a larger number of
functions, and expressed more advantages and disadvantages than those not
involved. Also, the study confirms that the EPG supports project management.
The paper contributes to key finding 1 and 2
My contribution: I participated in the whole process, from planning of the
study to analysis, and reporting. We interviewed half of the developers each and
I was the one responsible for collecting and analyzing the access logs on the
electronic process guide. The first author had the overall responsibility of the
study, and made the final decisions on form.

P6: Moe, N. B., Dingsøyr, T. and Dybå, T. (2008). Understanding Self-Organizing

Teams in Agile Software Development. 19th Australian Conference on Software
Engineering, 76-85.
Relevance to this thesis: The aim of the paper was to study autonomy in agile
teams. Through investigating a team applying Scrum, we found that autonomy
exist on the individual and team level. On the team level the autonomy is both
internal (how the team-members coordinate work and make decisions) and
external (the influence of management and other individuals outside the team on
the team’s activities). Understanding the different levels of autonomy is
important for understanding how to create the self-managing team. The most
important barrier to self-management was highly specialized skills of the
developers and the corresponding division of work. This paper contributes to
key finding 3, 8, 9 and 10.
My contribution: As the principal author I was in charge of the study design.
The second author and I conducted all the interviews and observations. I was
also responsible for analysing the qualitative material, by coding and re-coding

Introduction#

- 14 -

it in NVivo. Discussing the results and writing of the paper was done
collaboratively.

P7: Moe, N. B. and Aurum, A. (2008). Understanding Decision-Making in Agile

Software Development: A Case-study. Software Engineering and Advanced
Applications, 2008. SEAA '08. 34th Euromicro Conference, Parma, Italy, 216-
223.
Relevance to this thesis: The paper describes the importance of decision-
making in agile software development. Decision-making is important in
software development and SPI because it affects how problems are solved. A
challenge with introducing agile software development is changing the way
decisions are made. We found that a prerequisite for introducing Scrum is the
alignment of decisions on all levels in the organization. In addition,
specialization can be a barrier for the decision-making process on the
operational level because it often results in a decentralized decision-making
process. Also we found that people are left out of important decisions. The paper
contributes to key finding: 3, 6, 7 and 10.
My contribution: As the principal author I was in charge of the study design,
collecting and analyzing the data. The second author was responsible for the
literature review on decision-making. Discussing the results of the analysis and
writing of the paper was done collaboratively.

P8: Moe, N. B., Dingsøyr, T. and Røyrvik, E. A. (2009). Putting Agile Teamwork to

the Test – An Preliminary Instrument for Empirically Assessing and Improving
Agile Software Development. 10th International Conference on Agile Processes
in Software Engineering and Extreme Porgramming, Sardinia, Italy.
Relevance to this thesis: The interviews in this paper showed the effect of
specialization on how work is coordinated in the project. Also, the study shows
that when problems are not handled, team-members stop reporting them. This
article identifies the key concerns and characteristics of teamwork in change
driven development, and presents them along five dimensions that must be
addressed when improving teamwork in agile software development. The
dimensions are shared leadership, team orientation, redundancy, learning and
autonomy. The paper contributes to key finding 8 and 9.
My contribution: As the principal author I was in charge of the study design. I
did the interviews in two of the three projects in this article. I also lead the work
on creating the team radar tool. Discussing the results and writing of the paper
was done collaboratively.

Introduction#

- 15 -

P9: Moe, N. B., Dingsøyr, T. and Kvangardsnes, Ø. (2009). Understanding Shared
Leadership in Agile Development: A Case Study. Hawaii International
Conference on System Sciences, Hawaii, 1-10.
Relevance to this thesis: This aim of the paper is to understand the concept of
shared leadership, because shared leadership is one of the fundaments of
change-driven development and self-managing teams. In this paper I
participated as a developer in the studied project. From looking from inside, this
approach gave a new and better understanding of the improvement work, shared
leadership, importance of single- and double loop learning and the problem with
developers working on several projects. The paper contributes to key finding 7,
8, and 10.
My contribution: As the principal author I was in charge of the study design.
Øyvind Kvangardsnes (master student) and I conducted ethnographic
observations and interviews from April 2007 until January 2008. All authors
participated in the discussions and writing of the material, however I was
responsible for analyzing the qualitative data in Nvivo.

P10: Moe, N. B., Dingsøyr, T. and Dybå, T. (2009). Overcoming Barriers to Self-

Management in Software Teams. IEEE Software 26(6): 20-26.
Relevance to this thesis: The aim of the paper is to synthesis the results from
five teams doing agile software development in three studies (3, 4 and 5). Self-
management emerged as the key higher-order topic. Both team and
organizational barriers to self-management were found. Lack of redundancy and
conflict between team and individual autonomy were found to be key issues
when transforming from traditional command-and-control management to
collaborative self-managing teams. The paper contributes to key finding 6, 7, 8
and 9.
My contribution: As the principal author I was in charge of the study design.
The second author and I conducted all the interviews and observations in two of
the companies. I conducted all the interviews and observations in the last
company. I was also responsible for analysing the qualitative material, by coding
and re-coding it in NVivo. Discussing the results and writing of the paper was
done collaboratively.

P11: Li, J., Moe, N. B. and Dybå, T. (2010). Transition from a plan-driven process to

Scrum: a longitudinal case study on software quality. Proceedings of the 2010
ACM-IEEE International Symposium on Empirical Software Engineering and
Measurement. Bolzano-Bozen, Italy, ACM: 1-10.

Introduction#

- 16 -

Relevance to this thesis: The aim of the paper was to understand the effect of
change driven development on software quality and quality processes through
combining qualitative interview and observational data with quantitative defect
data. Especially this study contributes to understanding the process of correcting
defects and the conflict between the need for short term progress and long term
quality and improvement work. From a methodological perspective, the study
shows the importance of combining qualitative and quantitative data when
understanding how the change-driven perspective affects the quality. The paper
became the “best paper award” at ISESE and contributes to key finding 5 and 7.
My contribution: I participated in the planning of the study. I conducted and
analysed all the interviews and the observations. Discussing the results of the
analysis and writing of the paper was done collaboratively. The first author had
the overall responsibility of the study, and made the final decisions on form.

P12: Moe, N. B., Dingsøyr, T. and Dybå, T. (2010). A teamwork model for

understanding an agile team: A case study of a Scrum project. Information and
Software Technology 52(5): 480-491.
Relevance to this thesis: The self-managing team is responsible for SPI on the
project level in change-driven development. This paper report from a part of
Study 4. The objective was to provide a better understanding of the nature of
self-managing agile teams, as well as the teamwork challenges (on both team
and organizational level) that arise when introducing such teams, and finally to
relate the findings to current research on teamwork. The paper was first on the
list of “the top 25 hottest articles” in Information and Software Technology in
April – June 2010, and is still the second hottest article (May 2011). The paper
contributes to key finding 6, 7, 8 and 9.
My contribution: As the principal author I was in charge of the study design.
The second author and I were both involved in the nine month fieldwork. We
interviewed, observed the team, and collected the documentation. I conducted
most of the observations. I identified the team-work model used in this article
and I was also responsible for analysing the qualitative material, by coding and
re-coding it in NVivo. Discussing the results and writing of the paper was done
collaboratively.

Introduction#

- 17 -

MOW :9/7-7(73461364/(

The remainder of this thesis consists of two parts.

PART I – Summary of studies

Chapter Content
2 – Background This chapter consists of a short introduction to the background of the

research presented in this thesis, which deals with software development and
SPI. This is followed by an introduction to SPI and relevant organizational
issues, which is important for understanding and analyzing the results.
Organizational issues relevant to SPI cover the areas of work coordination,
team and self-management, organizational learning, and participation.

3 – Research method
 and design

This chapter first present the overall research approaches: case studies and
action research. The context this research has been conducted in will then be
discussed, followed by the description of the methods used in each of the
five studies.

4 - Results The results are organized according to the three research questions. Each
question is discussed in a separate section: SPI in plan-driven companies,
SPI in change-driven companies, and SPI challenges implementing change-
driven development. The key findings presented in this chapter are the
results of the synthesis of the contributions made in individual papers using
the method described in the method chapter.

5 – Discussion When answering the research questions, each question will be discussed in
terms of SPI, organizational learning, and self-management. Further, the
chapter explains the implication for research and practice, limitations and
recommendations for future research.

6 – Conclusion Uses the results and the discussions of the research questions to conclude.

PART II – Included publications

1. Dybå, T., Moe, N. B. and Mikkelsen, E. M. (2004). An Empirical Investigation on

Factors Affecting Software Developer Acceptance and Utilization of Electronic
Process Guides. Proceedings of the International Software Metrics Symposium
(METRICS), Chicago, Illinois, USA, 220–231.

2. Dybå, T., Moe, N. B. and Arisholm, E. (2005). Measuring Software Methodology
Usage: Challenges of Conceptualization and Operationalization. Fourth
International Symposium on Empirical Software Engineering (ISESE), Noosa
Heads, Australia, IEEE Computer Society, 447 - 457.

3. Moe, N. B. and Dybå, T. (2006). The use of an Electronic Process Guide in a
medium sized Software Development Company. Software Process Improvement
and Practice 11(1), 21-34.

Introduction#

- 18 -

4. Moe, N. B. and Dyba, T. (2006). Improving by involving: a case study in a small
software company. EuroSPI 2006, Joensuu, Finland, 158 – 169.

5. Dingsøyr, T. and Moe, N. B. (2008). The Impact of Employee Participation on the
Use of an Electronic Process Guide: A Longitudinal Case Study. IEEE Trans.
Softw. Eng. 34(2), 212-225.

6. Moe, N. B., Dingsøyr, T. and Dybå, T. (2008). Understanding Self-Organizing
Teams in Agile Software Development. 19th Australian Conference on Software
Engineering, 76-85.

7. Moe, N. B. and Aurum, A. (2008). Understanding Decision-Making in Agile
Software Development: A Case-study. Software Engineering and Advanced
Applications, 2008. SEAA '08. 34th Euromicro Conference, Parma, Italy, 216-223.

8. Moe, N. B., Dingsøyr, T. and Røyrvik, E. A. (2009). Putting Agile Teamwork to the
Test – An Preliminary Instrument for Empirically Assessing and Improving Agile
Software Development. 10th International Conference on Agile Processes in
Software Engineering and Extreme Programming, Sardinia, Italy, 114-123.

9. Moe, N. B., Dingsøyr, T. and Kvangardsnes, Ø. (2009). Understanding Shared
Leadership in Agile Development: A Case Study. Hawaii International Conference
on System Sciences, Hawaii, 1-10.

10. Moe, N. B., Dingsøyr, T. and Dybå, T. (2009). Overcoming Barriers to Self-
Management in Software Teams. IEEE Software, 26(6), 20-26.

11. Li, J., Moe, N. B. and Dybå, T. (2010). Transition from a plan-driven process to
Scrum: a longitudinal case study on software quality. Proceedings of the 2010
ACM-IEEE International Symposium on Empirical Software Engineering and
Measurement. Bolzano-Bozen, Italy, ACM, 1-10.

12. Moe, N. B., Dingsøyr, T. and Dybå, T. (2010). A teamwork model for
understanding an agile team: A case study of a Scrum project. Information and
Software Technology 52(5), 480-491.

Statement of authorship of joint publications from Erik Arisholm
Statement of authorship of joint publications from Aybuke Aurum
Statement of authorship of joint publications from Torgeir Dingsøyr
Statement of authorship of joint publications from Tore Dybå
Statement of authorship of joint publications from Øyvind Kvangardsnes
Statement of authorship of joint publications from Jingyue Li
Statement of authorship of joint publications from Edda Mikkelsen
Statement of authorship of joint publications from Emil Røyrvik

Background#

- 19 -

P C,1;<4N620((

Like manufacturing, software development can change the essence of the product. The
goal is to build improved products. However, unlike manufacturing, creating software is
development not production. The same objects are not reproduced; each product is
different from the last. In addition, software systems are becoming larger and more
complex, and software developers are forced to interact with and consider the
viewpoints of a wide variety of stakeholders, many of whom have conflicting views on
the desirability of the software features and its functionality (Boehm 2006). As a result,
problems with software development are common, and SPI is becoming more critical.

This chapter consists of a short introduction to the background of the research presented
in this thesis, which deals with software development and SPI. This is followed by an
introduction to SPI and relevant organizational issues, which is important for
understanding and analyzing the results. Organizational issues relevant to SPI cover the
areas of work coordination, team and self-management, organizational learning, and
participation.

POM =N83>,4/(0/?/+NQ./23(

In the history of software development different models and approaches were suggested
for coping with the increasing complexity and uncertainty of such development: from
the Code-and-fix model in the 1950s via the waterfall model (Royce 1970) to the
iterative and incremental spiral model (Boehm 1988). Life cycle models such as the
waterfall model or the spiral model, focus on the quality of the software artefacts and
the predictability of their processes (Boehm and Turner 2003). These models are also
known as plan-driven methods. Furthermore, the software development field has largely
had an engineering orientation. This is reflected in the adoption of a large number of
engineering tools and techniques, e.g. concurrent engineering, prototyping, and
computer-aided software engineering (Nambisan and Wilemon 2000).

Agile software development emerged in the mid 1990s (Dybå and Dingsøyr 2008). In
2001, practitioners who proposed many of the agile development methods wrote the
Agile Manifesto. While agile software development represents a major departure from
traditional, plan-based approaches to software development, the underlying assumptions

Background#

- 20 -

of agile software development are not novel in any sense, and can be classified as
iterative and incremental. Agile software development is also known as change-driven
development.

The concepts of plan-driven and change-driven development will be explained first to
help understand software development and SPI.

POMOM @+,2X04-?/2(0/?/+NQ./23((

Plan-driven methods are usually guided by a life cycle model such as the waterfall
model or the spiral model. The focus is on the quality of the software artefacts and the
predictability of their processes (Boehm and Turner 2003). The goal is to minimize
change in the course of the project through rigorous upfront requirement gathering,
analysis, and design; the intent is to attain higher quality results under a controlled
schedule (Vinekar, Slinkman and Nerur 2006).

The life cycle model guiding a plan-driven method describes how software is moved
through a series of phases from requirements to finished code. The process descriptions
specify the tasks to be performed, the desired outcome of each phase, and assign roles
(such as systems analyst or programmer) to individuals who will perform these tasks. At
every step there is a concern for completeness of documentation followed by
verification (Royce 1970; Boehm and Turner 2003). The early version of the waterfall
model was introduced in 1970 by Royce (1970), and it has since evolved into a concept
consisting of the sequential phases of requirement analysis, design, and development
(Larman and Basili 2003).

The field of software development and SPI has been found to be dominated by the plan-
driven model defined by the Software Engineering Institute’s, capability maturity model
(CMM and CMMI) (Hansen, Rose and Tjornehoj 2004). Software process maturity is
an important concept in CMM and influences SPI work when this approach is applied:

Software process maturity is the extent to which a specific process is explicitly defined,
managed, measured, controlled, and effective. Maturity implies a potential for growth in
capability and indicates both the richness of an organization's software process and the
consistency with which it is applied in projects throughout the organization. (Paulk,
Weber and Chrissis 1999) page 5.

CMMI can be classified as prescriptive and norm-driven (Hansen, Rose and Tjornehoj
2004). The prescriptive approach is concerned with how the processes should be
formulated rather than how they are actually implemented. The norm-driven approach,
which is a category of the prescriptive approach, is based on an underlying normative

Background#

- 21 -

model of software process improvement (Aaen, Arent et al. 2001), and describes the
norms for how individuals, teams, and organizations should operate, and the norms for
how processes should be standardized and improved (Hansen, Rose and Tjornehoj
2004). The dominance of CMM and CMMI in the field of software development is the
main reason why in this thesis plan-driven development is understood as prescriptive
and norm-driven. This perspective is further explained in the chapter on process
improvement.

Another reason for this view of the plan-driven approach is that two of the companies
under study relied on the prescriptive and norm-driven approach. One was inspired by
CMM and the other based the process descriptions on an extensive system for quality
control in accordance with quality routines of the European Cooperation for Space
Standardization.

POMOP 79,2</X04-?/2(0/?/+NQ./23(

Methods for agile software development constitute a set of practices for software
development created by experienced practitioners (Ågerfalk and Fitzgerald 2006). Agile
methodologies are characterized by short iterative cycles of development driven by
product features, periods of reflection and introspection, collaborative decision-making,
incorporation of rapid feedback and change, and continuous integration of code changes
into the system under development (Cockburn and Highsmith 2001; Nerur, Mahapatra
and Mangalaraj 2005). Agile development relies on people and their creativity rather
than on processes (Cockburn and Highsmith 2001). As opposed to plan-driven methods,
agile methods assume that change during the development process is not only
inevitable, but also necessary, and aim at achieving innovation through individual
initiative (Venkatesh and Davis 2000; Cockburn and Highsmith 2001). The importance
of change is the reason why agile software development is also known as change-driven
development.

The term agile software development originated from the Agile Manifesto – a statement
that expresses a set of basic principles and rules for (agile) software development:

1) Individuals and interactions over processes and tools,
2) Working software over comprehensive documentation,
3) Customer collaboration over contract negotiation and
4) Responding to change over following a plan.

Furthermore, Boehm and Turner (2005) describe agile methods as actively involving
users to establish, prioritize, and verify requirements, and as relying on the team’s tacit
knowledge as opposed to documentation. A truly agile method must be iterative (take

Background#

- 22 -

several cycles to complete), incremental (not deliver the entire product at once), self-
managing (teams determine the best way to handle work), and emergent (processes,
principles, and work structures emerge during the project rather than being
predetermined) (Boehm and Turner 2005). Agile software development comprises a
number of practices and methods (Abrahamsson, Salo et al. 2002; Cohen, Lindvall and
Costa 2004; Erickson, Lyytinen and Siau 2005). Among the best known and most
widely adopted agile methods are Extreme Programming (XP) (Beck and Andres 2004)
and Scrum (Schwaber and Beedle 2001). The companies studied in this thesis all relied
on Scrum.

POMOR <4N.(Q+,2X(3N(19,2</X04-?/2(0/?/+NQ./23(

The level of adoption of agile systems development is increasing (Dybå and Dingsøyr
2008). Some proponents of agile development claim universal applicability of agile
methods, while others believe that it is only suitable in particular situations. Boehm and
Turner (2003) argue that there is a pragmatic need to balance stability and agility.
Moreover, some industry surveys seem to indicate that most systems development
organizations are trying to use both approaches (Venkatesh and Davis 2000). Boehm
and Turner (2003) assert that the choice between plan- and change-driven methods for a
given project is largely contingent on five factors:

• The size of the systems development project and team
• The consequences of failure (i.e. criticality)
• The degree of dynamism or volatility of the environment
• The competence of personnel
• Compatibility with the prevailing culture

Boehm and Turner point out that plan-driven development is desirable when the
requirements are stable and predictable and when the project is large, critical, and
complex. They argue that change-driven development, on the other hand, is suitable
when there is a high degree of uncertainty and risk in the project, arising from
frequently changing requirements and/or the novelty of technology used. Vinekar et al
(2006) argue that the client’s culture may be the deciding factor in selecting change- or
plan-driven methods for a project. First, the client may be uncomfortable with agile
systems development’s flexible budgets and schedules, and may prefer an upfront
contractual obligation to specific features, deadlines, and costs. Second, using a change-
driven approach entails significant responsibility on the client’s part. Agile methods
require that the client identifies and prioritizes features, and collaborates continuously
and actively throughout the development. The client may be unwilling to take on this
amount of responsibility. Third, the client’s organization may dislike constant

Background#

- 23 -

interruptions by frequent deliveries of partial implementations for user feedback.
Similarly, it may also be possible that the client organization has a highly flexible,
adaptive culture, and it is uncomfortable with the upfront, explicit, formal, and detailed
specification characterizing traditional plan-driven development. Finally, Vinekar et al
(2006) argue that new organizational structures are needed to sustain the opposing
cultures so that systems development organizations can realize full benefits of both
agile and traditional systems development. Table 4 shows a comparison of traditional and
agile development.

Table 4 Main differences between change-driven and plan-driven development (Nerur, Mahapatra
and Mangalaraj 2005).

 Traditional development Agile development
Fundamental
assumption

Systems are fully specifiable,
predictable, and are built
through meticulous and
extensive planning.

High quality adaptive software is
developed by small teams using the
principles of continuous design
improvement and testing based on rapid
feedback and change.

Management style Command and control. Leadership and collaboration.
Knowledge
management

Explicit. Tacit.

Communication Formal. Informal.
Development
model

Life-cycle model (waterfall,
spiral, or some variation).

The evolutionary delivery model.

Desired
organizational
form/ structure

Mechanistic (bureaucratic with
high formalization), aimed at
large organizations.

Organic (flexible and participative,
encouraging cooperative social action),
aimed at small and medium-sized
organizations.

Quality control Extensive planning and strict
control. Late, exhaustive testing.

Continuous control of requirements,
design, and solutions. Continuous testing.

POP =N83>,4/(@4N1/77(!.Q4N?/./23(

In software development there is a long tradition of work on software processes
(Conradi and Fuggetta 2002; Mathiassen, Ngwenyama and Aaen 2005). Software
process improvement is also one of the most widely used approaches in innovative
software organizations (Aaen, Börjesson and Mathiassen 2005). Process improvement
is about making things better – as opposed to fire fighting or handling crises. It is a way
to look at how software developers can do their work better. If software developers only
concentrate on solving a problem or correcting a fault, they risk not finding the
underlying causes. In the worst case, their actions can make things worse. In addition to
identifying problems, the result of SPI should be to identify underlying causes of the
problem, define, implement, and evaluate the results of the actions, and finally to carry
out possible changes in the rest of the organization. When engaging in process

Background#

- 24 -

improvement, the goal is to learn about what happened in a process, and to use that
knowledge to improve the process as well as the resulting services and products. The
improvement work need to be continuous (Aaen, Arent et al. 2001)

While it is easy to argue the importance of SPI, the literature acknowledges that SPI
implementation faces various challenges (Aaen, Börjesson and Mathiassen 2005;
Mathiassen, Ngwenyama and Aaen 2005). One challenge is related to the importance of
organizational issues in SPI (Børjesson and Mathiassen 2004; Hansen, Rose and
Tjornehoj 2004; Dybå 2005; Mathiassen, Ngwenyama and Aaen 2005), which means
that the whole organization needs to participate in and support the SPI work - from top
management to project teams and developers.

This thesis will examine software process improvement in plan-driven companies
introducing change-driven development. Because SPI is about making the development
process better, it is important to understand the challenges in software development.
After explaining these challenges, the norm-driven approach to SPI will be discussed
(Hansen, Rose and Tjornehoj 2004), including how this approach can be implemented
and tailored to an organization. The change-driven SPI will then be elaborated on.

POPOM 79,++/2</7(N8(7N83>,4/(0/?/+NQ./23(,20(=@!(

All software processes are expected to deliver a quality product on schedule and on
budget in order to achieve client satisfaction and thereby to ensure long-term
profitability for the software organization. Moreover, these fundamental characteristics
are important to both the clients and the software organization, and they are, therefore,
important for understanding and definition of SPI success. This is also clear in
Krasner’s (1999) model of the challenges in software development projects, which
focuses on the dynamic relationships between software processes and three outcome
factors: cost, schedule, and quality.

However, delivering a product on time, on schedule, and with the right quality seldom
happens. The main reason is that software development experiences problems with
breakdowns, coordination, and communication (Walz, Elam and Curtis 1993; Kraut and
Streeter 1995; Barthelmess 2003), and the challenges are both on the project/product
level and on the organizational level. Kraut and Streeter (1995) argue that the
challenges of software development are caused by the following characteristics:

• Scale. Most software systems are large, and this often results in specialization
and division of labor. This in turn leads to compartmentalization of
interdependent actors, which limits people’s opportunities and eagerness to

Background#

- 25 -

share information. It also limits people’s breadth of experience, leading to
errors, narrowness, and insufficient opportunity for comparing knowledge.

• Uncertainty. Often the system is one-of-a-kind, and its specification changes
because of the changes in the external world. These changes are inevitable
because it is often only by using the software that the client and the end-user
understand its capabilities and limitations. In addition, limited domain
knowledge among the developers, division of labor, and the extremely complex
process of translating user needs into requirements, increase the uncertainty.

• Interdependence. Software requires precise integration of its components. Poor
coordination between subgroups producing software modules can lead to failure
in integrating the modules to create the final product.

• Informal communication. Formal communication is useful for coordinating
routine transactions, like written specification documents and tracking program
errors. However, formal communication often fails in the face of uncertainty,
which typifies much of the software work. Informal, interpersonal
communication is the primary way information flows in a development
organization, but most attention has been on formalizing communication among
specialists. In addition, informal communication is a challenge in larger projects
because it is impossible for everyone to talk to everyone else. Informal
communication is often too imprecise to work well and it is usually not suitable
as a record of the information exchanged.

In addition to facing the challenges described by Kraut and Streeter (1995), software
developers often need to consider the viewpoints of a wide variety of stakeholders,
many of whom have conflicting views on the desirability of the software features and its
functionality. Furthermore, software systems are becoming larger and the development
process is often distributed. As a consequence, software development is becoming even
more complex. This complexity is the reason why today’s software development is
often referred to as solving the “wicked problems” (Nerur and Balijepally 2007).
Because software development is becoming more complex, so is the improvement work
independently of the SPI approach.

POPOP AN4.X04-?/2(,QQ4N,19(3N(=@!((

By reviewing 322 SPI papers, Hansen et al (2004) categorized SPI using a simple
classification: whether the primary goal is prescriptive (to tell SPI professionals what to
do), descriptive (to report actual instances of SPI programs in software organizations),
or reflective (theoretically analytical). The field was found to be dominated by the
capability maturity model (CMM), and heavily biased towards prescriptive solutions.

Background#

- 26 -

Within prescriptive SPI, the norm-driven approach has been dominant (Aaen, Arent et
al. 2001). This approach can also be seen as a top-down approach to SPI (Thomas and
McGarry 1994)

A major driving force behind the norm-based approach has been the world’s largest
consumer and producer of software, the U.S. Department of Defense. Faced with
increased reliance on software suppliers, in 1984 the Department of Defense established
SEI to guide software development organizations toward better practices (Iversen,
Mathiassen and Nielsen 2004).

The norm-driven approach focuses on software development processes at the
organizational, project, team, and individual level, and is concerned with standardizing
and improving these processes (Hansen, Rose and Tjornehoj 2004). Software process
norms have emerged from a number of schools, for example CMM and CMMI,
Bootstrap, SPICE, and ISO standards. They all prescribe norms for how individuals,
teams, and organizations should operate, and for how processes should be standardized
and improved. These are also known as best practice and are rooted in the rationalistic
paradigm, which promotes a product-line approach to software development using a
standardized, controllable, and predictable software engineering processes (Dybå 2000).
The main purpose for the SPI initiative in a norm-driven approach is to align the
software company with the best practice.

The rationale behind norm-driven approaches to SPI is the convergence hypothesis
(Mintzberg 1989) assuming that there exists one best way. The idea is that the quality of
a software product is largely governed by the quality of the processes used to create and
maintain it (Humphrey, Kitson and Kasse 1989). The main motivation for an
organization to apply this approach is to increase the average performance, and at the
same time to reduce the variance in performance (increase predictability) (Dybå 2000).

One important assumption of the norm-based approach is that processes can be
measured, both as a baseline for improvement and to provide indications for subsequent
improvements. The idea behind this approach is that there are well understood software
development processes that everyone agrees on, which can be recommended in all
situations. Organizational improvement in this context is normally related to a maturity
ideal; the mature organization has articulated, standardized, measurable software
development processes, and measures them in order to learn how to improve them
further. Maturity levels can be measured using various questionnaire-based techniques,
and ‘immature’ organizations should normally follow a prescribed roadmap to achieve
the next maturity level. Success is largely defined as progress up the CMM/CMMI

Background#

- 27 -

levels. However, it is important to realize that compliance does not automatically lead to
success (Aaen, Arent et al. 2001). An organization may comply with what is seen as
best practice, but still fail to meet its own needs.

POPOR :,-+N4-2<(5/73(Q4,13-1/(

Several studies indicate that standardization and the usage of software development
methods tend to increase the productivity and quality of software development (Iivari
1996). However, a methodology cannot have an impact unless it is used (Devaraj and
Kohli 2003). One challenge when standardizing the development process is the fact that
there is often a wide disparity between the official development process and the actual
behaviour of developers in practice (Fitzgerald 1997). One reason for this is the belief
that there exist software development processes that everyone agrees on which can be
recommended in all situations. However, research has shown that the development
methods need to be tailored to the actual development context (Fitzgerald, Russo and
O'Kane 2003).

A common way of tailoring the best practice methods to the company’s needs is to
assign the task to a group of expert process engineers as described by Becker-
Kornstaedt (2001). These process engineers are in charge of the process improvement
planning, execution, and evaluation, and for documenting the newly tailored process.
Best practice can be implemented in the organization in the form of an electronic
process guide (EPG) (Scott, Carvalho et al. 2002). Kellner et al. (1998) argue that
process guides can help users of processes to track their work and implement the
processes effectively.

An argument that has been presented against using process guides is that the
mechanistic nature of structured development does not fit the complex reality (Ciborra
1993). Parnas and Clements (1986) acknowledged that process descriptions do not
represent real-life complexity, but argued that they are useful nonetheless, because the
description of an ideal process can help users of the process to bring the real process
closer to this ideal. In spite of the problems with process guides, most companies make
them available on the company Intranet or on wikis creating electronic process guides.

POPOS 79,2</X04-?/2(,QQ4N,19(3N(=@!(

Change-driven development has a different focus on how work is coordinated and
subsequently on how SPI is implemented. Change-driven development focuses on
leadership and collaboration, informal communication, and aims at an organic (flexible
and participative, encouraging cooperative social action) organizational form (Nerur,

Background#

- 28 -

Mahapatra and Mangalaraj 2005). The ideologies of agile software development
emphasize the need for process adaptation within ongoing projects, and seek to move
process control from the organizational level to the practitioners (Lycett, Macredie et al.
2003). Because software developers work in teams, the SPI work in the change-driven
approach should focus on improving teamwork.

While SPI in the plan-driven environment focuses on reflection after the projects are
finished in what is often known as post-mortem meetings (Dingsøyr 2005), Salo and
Abrahamsson (Salo and Abrahamsson 2007) argue that the SPI in the change-driven
environment is concerned with constant reflection and therefore continuous
improvement. The primary focus is on the immediate use of the experiences of
developers in improving the ongoing project. Table 5 shows how Salo and Abrahamsson
(ibid) understand the underlying differences between traditional and agile software
development and SPI.

Table 5 Underlying differences between traditional and agile software development and SPI (Salo
and Abrahamsson 2007)

 Traditional software development
and SPI

Agile software development and SPI

Software
development
process

Universal approach and
repeatable solutions to provide
predictability and high assurance.

Flexible approach adapted to collective
understanding of contextual needs to
provide shorter development times,
responsiveness to rapid changes, increased
client satisfaction, and lower defect rates.

Process control Control on organizational level. Self-managing teams.
Primary means of
knowledge transfer

Document based knowledge
transfer.

Face-to-face communication.

Immediate focus of
process
improvement

Improvement of organizational
software development processes
and future projects.

Improvement of daily work practices in the
ongoing project.

Aaen et al (Aaen, Börjesson and Mathiassen 2005) describe SPI in the agile mindset as
decentralized and bottom-up with an emphasis on project and team level standardization
of processes. Key to this approach is the support for adaptive SPI practices. Learning
takes place within the project through continuous sense-and-response cycles, which
identify current weaknesses, initiate new efforts, and implement their results as the
project evolves and delivers its outcomes. The characteristics of the CMM and agile
mindset according to Aaen et al (ibid) are shown in Table 6.

Background#

- 29 -

Table 6 Characteristics of the CMM and Agile mindset in SPI (Aaen, Börjesson and Mathiassen
2005)

Issue CMM mindset Agile mindset
Organization Centralist, top-down Decentralized, bottom-up
Coordination Between SPI projects Between SPI and practice
Process Generic Dedicated
Diffusion Process push Practice pull
Learning Software organization level Software project level

The agile team is also supposed to be self-managing and empowered, which means
from a socio-technical perspective that the team members are responsible for managing,
monitoring, and improving their own processes (Trist 1981). Therefore, SPI in change-
driven development can be classified as a bottom-up approach.

POR =@!(,20(N4<,2-Y,3-N2,+(-776/7((

Organizational issues are of great importance in SPI (Børjesson and Mathiassen 2004;
Hansen, Rose and Tjornehoj 2004; Dybå 2005; Mathiassen, Ngwenyama and Aaen
2005). In a quantitative survey of 120 software organizations on the key factors of
success in SPI, Dybå (2005) found that success depends critically on six organizational
factors: business orientation, involved leadership, employee participation, concern for
measurement, exploitation of existing knowledge, and exploration of new knowledge.
According to Mathiassen et al. (2005) the organization must be able to change four
related organizational elements for SPI to have a lasting effect: process, structure,
people, and management. In addition, to succeed with SPI work, it is essential to regard
the software development organization as a learning organization (Mathiassen,
Ngwenyama and Aaen 2005). People are the key ingredient of any well functioning
software process (Aaen, Arent et al. 2001); therefore, improving and coordinating work
in software teams should be at the heart of software process improvement.

Because of the importance of teams in SPI and software development, a brief
introduction to this field will be given. Further, because the complex process of
developing software is about coordinating work, SPI is about improving this
coordination. Therefore, a model that helps understanding how work is coordinated
when developing software will be explored. Finally, SPI is about learning and
participation, which will be discussed at the end of this chapter.

Background#

- 30 -

POROM =N83>,4/(0/?/+NQ./23(3/,.7(

Software development depends significantly on people and team performance, as does
any process that involves human interaction. A common definition of a team is “a small
number of people with complementary skills who are committed to a common purpose,
set of performance goals, and approach for which they hold themselves mutually
accountable” (Katzenbach and Smith 1993). The topic of teamwork has attracted
research from several disciplines (Guzzo and Dickson 1996; Cohen and Bailey 1997;
Sapsed, Bessant et al. 2002), and teams developing software have been studied
extensively. This section will briefly introduce the field of teamwork in software
development.

One major challenge that often makes software teams different from other teams is the
fact that software development teams are typically formed anew for each project,
depending on project requirements and who is available (Constantine 1993). It is
extremely rare for an entire team to move from one project to another. Thus, software
development teams seldom develop a history of working as a team over multiple
projects. This is one reason why it takes time for software teams to develop shared
mental models. In software teams specialization and division of labor is common
(Krasner 1999), and because shared mental models are often missing, this can
sometimes lead to a divergence in knowledge about the group processes by individual
members (Levesque, Wilson and Wholey 2001). Subsequently, division of labor and
missing shared mental models are a threat to well functioning software teams, and their
ability to improve the development processes.

To increase the commitment and shared mental models among the team members,
project goals, system requirements, project plans, project risks, individual
responsibilities, and project status must be visible and understood by all parties
involved (Jurison 1999). In addition, for achieving cooperation in such teams, face-to-
face communication, repeated interactions, monitoring of rule compliance, and
sanctions for non-compliance are important (Tenenberg 2008). Job satisfaction is also
essential in software teams. Acuna et al. (2009) studied personality factors, cohesion,
conflict, task characteristics, and team satisfaction, and found that software developers
need to have control over their own work, and over the scheduling and implementation
of their own tasks. This is also known as individual autonomy.

Software development teams can be organized in several different ways. Sawyer (2004)
argues that there exist three generic archetypes of software development teams:
sequence, group, and network.

Background#

- 31 -

• The sequence archetype enacts the belief that a good process leads to a good
product. Software development is seen as a linear, task-driven, structured effort
driven by a known and predefined ordering of the requisite tasks. People’s roles
are task-specific, discrete, specialized, and identifiable. The control orientation,
formalized interactions among team members, and emphasis on automation
suggest that there is little need for strong social bonds. Examples of the
sequence archetype include software teams following the traditional waterfall
model, the CMM, and the SPICE approach.

• The group archetype is based on a set of predefined tasks, which are assigned
based on the collective skills and weaknesses of the group members. The tasks
are sequential but iterative, and there is explicit attention to process
improvement by the members of the group. The examples of group archetype
are the iterative and the evolutionary approaches to software development.

• The product is the central focus in the network archetype; production processes
are secondary. The development effort takes shape through the network ties
developed by the participants. The strength of these ties reflects the frequency
and value derived from interaction. In the network archetype, the people’s
connections and the tasks they perform define the process. One belief underlying
the network archetype is that a good product comes from having good people.
This people-first approach recognizes that it is difficult (if not impossible) to
replace key members of a network because they represent important hubs. Open
source software development efforts represent a form of the network group
archetype.

Furthermore, Sawyer (2004) argues that a range of hybrid approaches exists, and that
these can be decomposed into some combination of the three social structure
archetypes. I argue that a team following the plan-driven approach can be seen as the
sequence archetype team, and the team following the change-driven approach can be
described as the group archetype team.

With the introduction of agile software development, self-managing software teams
have become widely accepted. Therefore, to understand fully software teams and
change-driven development in particular, it is necessary to understand the concept of
self-management. Self-managing software teams are discussed in the next section.

POROP =/+8X.,2,<-2<(3/,.7((

Self-managing teams (Hackman 1986) are also known as autonomous or empowered
teams (Guzzo and Dickson 1996; Uhl-Bien and Graen 1998; Kirkman and Rosen 1999;

Background#

- 32 -

Langfred 2000; Tata and Prasad 2004). Self-managing teams represent a radically new
approach to planning and managing software projects. However, the notion of self-
management is not new; research in this area has been conducted since Eric Trist and
Ken Bamforth’s study of self-regulated coal miners in the 1950s (Trist and Bamforth
1951).

In a self-managing team members have responsibility not only for executing the task
but also for monitoring, managing, and improving their own performance (Hackman
1986). Furthermore, leadership in such teams should be diffused rather than centralized
(Morgan 2006). Shared leadership can be seen as a manifestation of fully developed
empowerment of a team (Kirkman and Rosen 1999). When the team and the team
leaders share the leadership, it is transferred to the person with the key knowledge,
skills, and abilities related to the specific issues facing the team at any given moment
(Pearce 2004). While the project manager maintains the leadership for project
management duties, the team members lead when they possess the knowledge that
needs to be shared during different phases of the project (Hewitt and Walz 2005).
Therefore, improvement work in such teams needs to focus on improving both the
processes owned by the project manager (project management duties), and the processes
owned by the team (decision-making, performing tasks, solving problems, coordinating
feedback).

Self-management can also be understood as a strategy for SPI itself, since it can directly
influence team effectiveness, improvement work, and innovation. Self-management has
also been found to result in more satisfied employees, lower turnover, and lower
absenteeism (Cohen and Bailey 1997). Others also claim that self-managing teams are a
prerequisite to the success of innovative projects (Takeuchi and Nonaka 1986),
especially the innovative software projects (Hoegl and Parboteeah 2006). Moreover,
self-management brings decision-making authority to the level of operational problems
and uncertainties, thus increasing the speed and accuracy of problem solving (Tata and
Prasad 2004), which is essential when developing software. Adaptability is especially
important in such teams since operational decisions are made incrementally while
important strategic decisions are delayed as much as possible, in order to allow for a
more flexible response to last minute feedback from the market place (Takeuchi and
Nonaka 1986). Furthermore, having team members cross-trained to do various jobs
increases functional redundancy, and thus the flexibility of the team in dealing with
personnel shortages.

Although self-management seems to be a sensible strategy for SPI, some studies offer a
more mixed assessment of the effect of self-managing teams. One reason is that such

Background#

- 33 -

teams can be difficult to implement. Effective self-managing units cannot be created
simply by exhorting democratic ideals, by tearing down organizational hierarchies, or
by instituting one-person-one-vote decision-making processes (Hackman 1986).
Research on team performance also indicates that the effects of such teams are highly
situation dependent, and depend on factors such as the nature of the workforce and the
nature of the organization (Guzzo and Dickson 1996; Cohen and Bailey 1997). Also,
self-managing teams risk failure when used in inappropriate situations or without
sufficient leadership and support (Hackman 1987).

POROR 7NN40-2,3-2<(39/(0/?/+NQ./23(Q4N1/77((

Independently of the level of self-management and of which team archetype or
combination of archetypes is used (sequence, group, or network) (Sawyer 2004), the
software development team needs to coordinate their work in an effective manner. The
team must coordinate the efforts of those who are part of the process, as well as ensure
coordination with suppliers, clients, and other groups both outside and inside the
organization. The team has to make sure the work is done and fits together, that there is
no duplication, and that components of the work are handed off expeditiously (Kraut
and Streeter 1995). Coordination mechanisms are the organizational arrangements,
which allow individuals to realize a collective performance (Okhuysen and Bechky
2009). In addition, research on software development teams found that team
performance is linked with the effectiveness of teamwork coordination (Kraut and
Streeter 1995; Hoegl and Gemuenden 2001). Understanding how work is coordinated is
therefore essential to understanding software development and software process
improvement.

One of the most common methods to maximize efficiency by coordinating work has
been scientific management. Scientific management operated by examining the work
which was being performed and decomposing it into its most basic elements, thereby
allowing for specialization and the reduction or elimination of waste (Okhuysen and
Bechky 2009). Software development has always been influenced by this view (Dybå
2000). However, as the nature of work in software organizations changed due to the
shift away from the manufacturing way of thinking, the limitations of this coordination
theory have become evident. In the creative work of software design, a single optimal
solution may not exist and progress towards completion can be difficult to estimate
(Kraut and Streeter 1995). One reason is that interdependencies between different
pieces of work may be uncertain or challenging to identify, making it difficult to know
who should be involved in work, and whether there is a correct order in which parties
should complete their own specialized work (Okhuysen and Bechky 2009). Early
research by efficiency experts and organization design theorists rested on the

Background#

- 34 -

assumption that organizational arrangements can be designed for optimum performance.
Recent research is less concerned with optimizing structures for a given environment,
assuming that people in organizations must coordinate the work regardless of the
organizational design (ibid).

This thesis relies on the framework for coordinating work suggested by Mintzberg
(1989). According to Mintzberg, three basic coordinating mechanisms describe the
fundamental ways in which organizations can coordinate their work:

1. Mutual adjustment - based on the simple process of informal communication.
2. Direct supervision - one person takes responsibility for the work of others by

issuing instructions and monitoring their actions.
3. Standardization - of which there are four types: work processes, output, skills (as

well as knowledge), and norms.

The mechanisms may be somewhat substitutable by each other, but all will typically be
found in a reasonably developed organization. In the area of software development, all
these coordinating mechanisms are important. Different task complexities require
different coordination mechanisms (Mintzberg 1989). Mintzberg argues that simple
tasks are easily coordinated by mutual adjustment, but when work becomes more
complex, direct supervision tends to be added and takes over as the primary means of
coordination. When things get even more complicated, standardization of work
processes (or outputs) takes over as the primary coordinating mechanism, in
combination with the other two. Then, when things become really complex, mutual
adjustment tends to become primary again, but in combination with the other
coordination mechanisms.

As explained earlier, software organizations often employ experts in multidisciplinary
teams which carry out projects in a complex and dynamic environment. According to
Mintzberg (1989), such an organization can be classified as innovative, and in such
organizations, mutual adjustment should be the most important coordinating
mechanism. The managers should avoid rigid control (direct supervision) that impairs
creativity and spontaneity (Takeuchi and Nonaka 1986). To innovate means to break
away from established patterns, and thus the innovative organization should not rely on
any form of standardization for coordination. The paradox is that standardizing work
(development) processes has always been important for software organizations (Dybå
2000).

The plan-driven approach is often described as promoting a hierarchy structure
involving a command-and-control style of management with clear separation of roles

Background#

- 35 -

(Nerur, Mahapatra et al. 2005; Nerur and Balijepally 2007). In this approach, the project
manager is responsible for most decisions, and common understanding can be
developed when plans are handed over to the team members from the project
management. Therefore, in addition to standardization of the development process,
direct supervision is important in plan-driven development. The change-driven team
relies on shared decision-making, which involves stakeholders with diverse
backgrounds and goals. This is more complicated compared to the traditional approach,
where the project manager is responsible for most decisions (Nerur, Mahapatra and
Mangalaraj 2005). Therefore, change-driven development favors mutual adjustment.
Mutual adjustment in its pure form requires everyone to communicate with everyone
(Groth 1999). Hence, to employ mutual adjustment as the primary coordinating
mechanisms the software team needs to be cohesive and, since our communication
abilities are limited, it has to be small.

POROS B4<,2-Y,3-N2,+(+/,42-2<(,20(=@!(

One of the most important driving forces for software process improvement is that the
software developers actually learn how to improve their activities (Dybå 2000; van
Solingen, Berghout et al. 2000; Børjesson and Mathiassen 2004). SPI can be seen as an
organizational change mechanism; therefore, commitment to learning rather than to any
SPI model is needed to succeed with SPI. The learning process when conducting SPI
demands group learning (van Solingen, Berghout et al. 2000), because software
development is a highly collaborative activity carried out within teams, projects,
departments, and companies; it always concerns a group of people.

While learning is important in SPI (Dybå 2005), there are several reasons why it is also
challenging. First, Aaen et al (2001) claim that the SPI literature is not informed by
organizational change and learning theory. Thus, approaches to SPI overlook many
issues of organizational learning that affect how experience is perceived, and how
change is institutionalized. Second, software development is a highly complex task.
When problems become increasingly complex and ill-structured, the need for learning
increases, but so does the difficulty in carrying out effective learning (Argyris 1976).

In their theory on learning, Argyris and Schön (1996) distinguish between what they
call single and double-loop learning in organizations. Single-loop learning is to change
practice as problems arise in order to avoid the same problem in the future. For
example, management often engages in single-loop learning by monitoring
development costs, software quality, sales, client satisfaction, and other indicators of
performance to ensure that the organizational activities remain within established limits,
keeping the organization “on course”. In single-loop learning, if outcomes of actions are

Background#

- 36 -

not met, the actions are changed slightly to achieve the desired results. It is a feedback
loop from observed effects to making some changes or refinements that in turn
influence the effects, see Figure 2.

Double-loop learning, on the other hand, is when time is taken to understand the factors
that influence the effects, and the nature of this influence, called the governing values
(Argyris and Schön 1996). It is about using the problems being experienced to
understand their underlying causes, and then to take some action to remedy these
causes. One example is what happens when a software error is corrected. Correcting the
error itself can be seen as single loop learning, but if something is done with whatever
caused the error to be introduced, that is considered double-loop learning. The changes
based on this type of understanding will be more thorough. Even the act of introducing
agile methods to a project team is a change act that requires double-loop learning. One
example is the introduction of the self-managing team, which requires that operating
norms and rules are allowed to change (double-loop learning) along with transformation
in the wider environment (Morgan 2006). When focus is on single-loop learning, norms
and values remain unchanged (McAvoy and Butler 2009).

Figure 2 Single and double-loop learning (Argyris and Schön 1996)

Single-loop learning is nevertheless predominant in most organizations (Argyris and
Schön 1996). Although some organizations have been successful in institutionalizing
systems for double-loop learning, many fail to do so. This failure is especially true in
bureaucratized organizations, whose fundamental organizing principles often operate in
a way that actually obstructs the learning process (Morgan 2006).

To sum up, in single-loop learning a specific problem is solved, while in double-loop
learning, a set of governing variables (goals and constraints) is questioned, which may
impact many future problems. Single-loop learning is about asking “are we doing things
right?”, while double-loop learning is about asking “are we doing the right things?”.

ConsequenceActions Error

Expectation
Governing

values

Single-Loop Learning

Double-Loop Learning

Background#

- 37 -

POROT =@!(,20(Q,43-1-Q,3-N2((

Employee participation in organizational development has always been important in the
Scandinavian work tradition. The reason is the importance of workplace democracy and
the socio-technical tradition in the Scandinavian countries (Emery and Thorsrud 1976;
Bjerknes and Bratteteig 1995). Participation is also included as an important element in
most works on improvement, from Total Quality Management (Deming 2000) to the
knowledge management tradition in Communities of Practice (Wenger 1998).
Furthermore, participation is one of the most important foundations of organization
development and change, and a critical factor for success in software process
improvement (Dybå 2005).

Riordan et al. (2005) use a framework with four attributes to define employee
involvement:

• Participative decision-making – employees have control over, or a say in,
decisions that affect their work.

• Information sharing – information about the organization, including its plans
and goals, is made available to employees.

• Training – employees receive appropriate training, which enables them to
acquire the knowledge and develop the skills required for effective performance.

• Performance-based rewards – employees perceive that incentives link their
actions to outcomes within the organization.

Several techniques are available for promoting participation. For example, search
conferences (Purser and Cabana 1997), survey feedback (Baumgartel 1959), self-
managing teams (Hackman 1986; Guzzo and Dickson 1996), and quality circles
(Lawler and Mohrman 1987; Guzzo and Dickson 1996) are all predicated on the belief
that increased participation will lead to better solutions and enhanced organizational
problem solving capability.

This thesis, within the context of software process improvement (SPI), relies on the
definition of employee participation as defined by Dybå (2005): the extent to which
employees use their knowledge and experience to decide, act, and take responsibility for
SPI.

Background#

- 38 -

Research method and design#

- 39 -

R C/7/,419(./39N0(,20(0/7-<2(

Five studies in three companies were conducted over six years (Figure 3). Studies 1 and 2
were performed in the plan-driven period, where the SPI focus was on the whole
development at the department and organizational level. Studies 3 and 4 started in the
plan-driven period and continued into the change-driven period. After Scrum training,
the processes in projects in study 3 and 4 were tailored to agile methods, and the
projects were classified as change-driven development. Study 5 was conducted fully in
the change-driven period. A different SPI focus (the organization versus the team) in the
two periods called for a different research approach, from studying how developers
were using technology to studying how developers worked together. This resulted in
two methodologically different phases of my research, which will be further described
in this chapter.

Figure 3 Study design and papers produced in the plan- and change-driven period

Although the research approach has changed during the study, the overall research
methodology has always been the same: case study and action research. Case study
research was chosen because this methodology is recommended when individual,
group, organizational, and social phenomena are investigated (Yin 2002). Furthermore,
case studies are found helpful when evaluating the benefits of methods and tools in
software companies, because case studies provide a cost-effective way to ensure that
process changes produce the desired results (Kitchenham, Pickard and Pfleeger 1995).
Finally, case studies make it possible to study a “contemporary phenomenon within its

#$%&!("&#!"##!$##!%# #$%&!('&#!'##!(##!")##!""#
#
#
#
#

*+,-./0#

#$%&!((&#!1##!2#3/4./0#

#$%&!()&#!5##!'##!")##!"$## #$%&!(*&#!6##!")#789./0#

!:+;<948=>;#9>=>:/?@>;-#
A>,>+4BC#DE>,F/;#"#

GC+;H><948=>;#9>=>:/?@>;-#
A>,>+4BC#DE>,F/;#$#I#%#

Research method and design#

- 40 -

real-life context, especially when the boundaries between phenomenon and context are
not clearly evident” (Yin 2002), which can be said to be true for several of the studies
presented in this thesis.

The main reasons why action research (Avison, Lau et al. 1999) has been a part of the
overall research strategy, is that the research presented in this thesis took place in the
context of two larger action research programs, SPIKE and EVISOFT. In these research
programs several companies performed improvement work in response to identified
problems. Baskerville and Wood-Harper (1998) suggest that action research, as a
research method in the study of human methods, is one of the most scientifically
legitimate approach available. Action research is also in line with the basic ideas behind
Evidence-Based Software Engineering for establishing a fruitful cooperation between
research and practice (Dybå, Kitchenham and Jørgensen 2005). Indeed, where a specific
new methodology or an improvement to a methodology is being studied, the action
research method may be the only relevant research method presently available.

Despite the relevance of action research in the software industry and the fact that action
research has been accepted as a valid research method in other applied fields such as
organization development and education (Baskerville and Myers 2004), the method is
seldom used in the field of software engineering (SE) and information systems (IS).
Glass et al (2004) analyzed 1485 papers from the leading journals on Computer
Science, SE, and IS in the period from 1995 to 1999. They found that only 0.8% of
papers in IS and none of the papers in SE reported using action research as the research
method. A review of the software process improvement literature found that most of the
work published is prescriptive, and that there is a lack of descriptive and reflective work
(Hansen, Rose and Tjornehoj 2004). !
The following sections will first present the overall research approaches: case studies
and action research. The context this research has been conducted in will be discussed
next, followed by the description of the methods used in each of the five studies in the
two phases of the research.

ROM !13-N2(4/7/,419(

Action research has been defined as “a post-positivist social scientific research method,
ideally suited to the study of technology in its human context” (Baskerville and
WoodHarper 1996)(p.235). Baskerwille and Wood-Harper argue that action research is
a method that could be identified as a paragon of the post-positivist research methods. It
is empirical, yet interpretive. It is experimental, yet multivariate. It is observational, yet

Research method and design#

- 41 -

interventionist. In addition, the research subjects are often quite willing to carry the
costs of being studied, especially since they are allowed to influence the outcomes of
the project. To an arch-positivist, it would seem very unscientific. To the post-positivist,
it seems ideal (ibid, p.236).

Action research merges research and practice, and its main goal is to achieve change.
Together, the researchers and the stakeholders define the problems to be examined,
learn about these problems, conduct social research, take actions, and interpret the
results of these actions in light of what they have learned (Greenwood and Levin 1998).
In other words, I have assisted the companies by not only suggesting and planning the
introduction of various SPI and software development techniques and methods, but also
in implementing them. One example is that I was involved in Scrum training in all
companies and later involved in tailoring and evaluating the development method.

There is a variety of different forms of action research approach. Baskerville and Wood-
Harper (1998) identify ten distinct forms of action research in information systems. This
thesis uses Davison et al.’s (2004) canonical action research (CAR) method (Figure 4), as
it is one of the most widely adopted in the social sciences. The method formalizes an
iterative, rigorous, and collaborative research process by describing it in terms of the
following five cyclical model phases (originally proposed by Susman and Evered
(1978)):
• Diagnosing refers to the joint (researcher and practitioner) identification of actual

problems and their underlying causes. During this phase, researchers and
practitioners jointly formulate a working hypothesis of the research phenomenon to
be used in the subsequent phases of the action research cycle.

• Action planning is the process of specifying the actions to improve the problem
situation.

• Action taking refers to the implementation of the intervention specified in the action
planning phase.

• Evaluating entails the joint assessment of the intervention by practitioners and
researchers.

• Specifying learning denotes the on-going process of documenting and summarizing
the learning outcomes of the action research cycle. These learning outcomes should
contribute knowledge to both theory and practice, but they are also recognized as a
temporary understanding, which serves as the starting point for a new cycle of
inquiry.

Research method and design#

- 42 -

Figure 4 The CAR process (Davison, Martinsons et al. 2004)

Davison et al (2004) developed a set of methodological principles for CAR, and for
each principle identified a checklist of specific criteria, which can be used for
evaluating a CAR study. The five principles are:
• The principle of researcher-client agreement: given the importance of collaboration

in action research, this principle seeks to ensure that researchers and practitioners
(clients) develop a mutual understanding of and a commitment to the research
project, i.e. its scope, focus, and mode of inquiry.

• The principle of the cyclical process model: this principle highlights the importance
of rigor, as it advocates progressing through all five action research phases in a
sequential and systematic manner.

• The principle of theory: acknowledging that action research without theory does not
constitute research, this principle highlights the importance of using one or more
theories not only to guide and focus the research activity, but also to relate the
findings to the existing body of knowledge.

• The principle of change through action: since the purpose of action research is to
change an unsatisfactory situation, this principle stipulates that only interventions
appropriate to the problem and the client organization should be designed and
implemented.

• The principle of learning through reflection: this principle highlights the importance
of drawing insights from the research as well as identifying implications for other
situations and research contexts.

Action research projects were initiated in each company, hence the overall framework
of the research is identified as action research. Together, researchers and the company
wrote an improvement plan, which was evaluated and updated three to four times a

Research method and design#

- 43 -

year. While all research was conducted within action research programs, and studies 2,
3, and 4 were action research studies, in several of the papers they were reported as case
studies. One reason was that some of the problems revealed in the diagnosing phase
needed a dedicated case study to enable the company and the researchers to understand
the underlying cause of the problem. One example was the problem identified early in
the change-driven phase, i.e. how to make a team to self-manage. The underlying cause
of the problem was not understood until after a longitudinal multiple case study on self-
management. Another example was the first study on the EPG. To suggest actions for
improvement of the EPG, it was necessary to understand how this tool was actually
used and what were the factors affecting its usage level.

ROP 7,7/(7360D(4/7/,419(

Like action research, case study research is concerned with the researcher gaining an in-
depth understanding of particular phenomena in real-world settings. This thesis relies on
case studies as described by Yin (2002). According to Yin case studies are the preferred
research strategy “...when a «how» or «why» question is being asked about a
contemporary set of events over which the investigator has little or no control.” (ibid p
9). Yin proposes a process consisting of the following phases:

1. Case study design: objectives are defined and the case study is planned.
2. Preparation for data collection: procedures and protocols for data collection are

defined.
3. Collecting evidence: execution of data collection on the studied case.
4. Analysis of collected data.
5. Reporting.

Case studies can be based on any mix of quantitative and qualitative evidence, and
having multiple sources of evidence is the way to ensure construct validity and to
achieve triangulation. By using triangulation, any finding or conclusion in a case study
is likely to become more convincing and accurate. According to Yin, there are four
types of triangulation: 1) of data sources, 2) among different evaluators (researchers), 3)
of perspectives to the same data set (theory triangulation), and 4) of methods.

Yin suggests six major sources of evidence when performing data triangulation. Various
sources are highly complementary, and a good case study will therefore use as many of
the following sources as possible:

• documentation,
• archival records,
• interviews,

Research method and design#

- 44 -

• direct observation,
• participant observation, and
• physical artifacts.

All of the above sources were used in the studies presented here. Examples of
documentation are minutes of meetings, project plans, specifications, system
documentation, and schedules. Examples of archival records are defects records and
usage logs capturing the interactions between the EPG and its users on the intranet.
Examples of physical artifacts are the Scrum board and the story cards, which were
photographed.

Yin identifies four types of case studies. A case study can be single or multiple. A
single or multiple case study can be either holistic (single unit of analysis) or embedded
(multiple units of analysis). The evidence from a multiple case study is often considered
more compelling and more robust. However, each case in a multiple case study must be
carefully selected so that it either a) predicts similar results or (b) predicts contrasting
results but for predictable reasons. This thesis relied on both single and multiple case
studies.

Considering the importance of the context in both action research and case studies, the
next section will describe the research setting of the work presented here.

ROR C/7/,419(7/33-2<(

The three companies were selected for this work, because they all participated in the
SPIKE and EVISOFT projects, and all focused on developing process guides and later
on implementing change-driven development. Although the companies varied in size,
they can all be classified as small or medium-sized. In addition, all companies
developed products for clients, which was the reason why all projects studied in the
companies combined development activities and client support.

No results are reported from MidSoft implementation of an electronic process guide,
because this SPI initiative failed, producing no data to collect and no results to publish.
My initial research focus was on understanding process guides in the context of SPI, but
the SPI focus changed when all companies decided to introduce Scrum methodology.
Research questions 2 and 3 evolved as a result of studying the introduction of Scrum in
the three companies.

Research method and design#

- 45 -

The following subsections will give a brief description of the three companies involved,
followed by the description of the two most important technologies studied: EPG and
Scrum. More details on the companies and the technology used can be found in the
individual papers.

ROROM AN4=N83(

This company is one of the leading producers of receiving stations for data from
meteorological and earth observation satellites. The company works with large
development projects, both as a prime contractor and a subcontractor. Clients range
from universities to companies such as Lockheed Martin and Alcatel, and government
institutions such as the European Space Agency and the Norwegian Meteorological
Institute. Most of the software systems developed at NorSoft run on Unix and the
remainder - on Linux operating system.

The company has approximately 60 employees. The staff is stable and highly skilled,
many with Master’s degrees in computer science, mathematics, or physics, and it has
what can be described as an engineering culture. Prior to implementing the electronic
process guide, the company relied on an extensive system for quality control, which was
in accordance with quality routines from the European Cooperation for Space
Standardisation and ISO 9001-2000 (ISO 2000). This system was cumbersome to use
and did not emphasize aspects such as incremental and component development. As a
part of being certified according to ISO 9001-2000, the company decided to develop a
process-oriented system for quality control. Two people from the quality department
were responsible for coordinating the SPI work in this company. The action research
presented in this thesis included working with the company to define the processes for
software development and their electronic process guide. Later, the company needed to
be able to build stronger teams and to deliver in shorter increments. To this end they
decided to implement Scrum.

ROROP 9,73=N83(

EastSoft has approximately 150 employees in three organizational units. About 80% of
the employees have a Master’s or a Doctoral degree. The company has very low staff
turnover; less than 10% per year in its software division. Most of the people working in
the software development department have been trained as engineers (2/3 of the staff)
rather than professional software developers (1/3 of the staff) but the proportion of
software developers is increasing. The company aims to hire only the best people. Most
of the projects relied on the .NET framework in Visual Studio using C#.

Research method and design#

- 46 -

EastSoft produces specialized software for the engineering domain. The company sells
mass-market software, but also writes client specific software on a contract basis. In
addition to Norway, the company conducts software development in its offices in
China, Eastern Europe, and UK. All developers in the projects investigated were located
at the company’s headquarters in Oslo, Norway.

In the plan-driven period, a separate group within the company, called the SPI group,
was responsible for building competence in software development processes,
methodology, and supporting tools. This group was also responsible for coordinating
the use of processes, methodologies, and supporting tools across all projects. This
responsibility included the development, support, and deployment of the company’s
EPG. The EPG was developed in cooperation with the intended users through small
workshops and meetings, where the company’s best working practice had been mapped.
The EPG used fundamental concepts of the Capability Maturity Model (CMM),
Microsoft Solution Framework (MSF), and Rational Unified Process (RUP) (Krutchen
2000). The model is meant to be scalable to both smaller and larger assignments. The
EPG was mainly supplementary to the company’s work procedures, thus, it was of a
voluntary nature.

ROROR E-0=N83((

This company was established in 1996. It has three regional divisions and one separate
ICT division. The ICT division consists of a consulting department, an IT management
department, and a development department. In addition to software development
projects for outside clients, the ICT division develops and maintains a series of off-the-
shelf software products, which are developed in-house. During the study, the
development department had about 16 employees, divided into a Java and a .NET
group.

The company develops a software system for archiving, planning, and coordination,
with a combination of textual user interfaces and map functionality. The clients are
from all over Norway; one important client was the local government of a Norwegian
city’s. For their planning and coordination system, winter is the low season of use; the
high season begins in spring (March/April). The seasonal constraints gave a relatively
narrow time frame for introduction of the new version of software.

Like the other two companies, MidSoft planned to implement their own process guide.
However, this failed because they could not allocate the needed resources or motivate
the organization for such an investment. The main reason was that the company had a

Research method and design#

- 47 -

lot fewer developers than the other two companies and therefore, they could not afford
having personnel working full time on SPI.

ROROS @4N1/77(C6-0/(

EastSoft and NorSoft both implemented an EPG (Scott, Carvalho et al. 2002; Dybå,
Moe and Mikkelsen 2004). Another term - system development methodologies - is used
in a similar fashion in the field of information systems. For example, Avison and
Fitzgerald (1995) defined this as “a collection of procedures, techniques, tools, and
documentation aids, which help systems developers in their efforts to implement a new
information system”. In software engineering there is a long tradition of work on
software processes (Conradi and Fuggetta 2002). Many research groups have focused
on software process modelling languages and process-centred software engineering
environments (Ambriola, Conradi and Fuggetta 1997).

An EPG may be viewed as an online, structured, workflow-oriented (Georgakopoulos
and Hornick 1995) reference document for a particular process, which exists to support
participants in carrying out the intended process. An EPG may include the following
basic elements:
• Activities: descriptions of “how things are done”, including an overview of the

activities and details regarding each individual activity.
• Artifacts: details of the products created or modified by an activity, as either a final

or an intermediate result of the activity or as a temporary result created by one of the
steps.

• Roles: details of the roles and actors involved in performing the activities.
• Tools and techniques: details of the tools and techniques used to support or

automate an activity.

Meso et al. (2006) distinguish between process guides developed for specific purposes,
calling them strong problem-solving approaches, and general purpose process guides,
calling them weak problem-solving approaches.

There were some important differences between the EPGs in two companies studied.
The EPG at EastSoft was based on ISO standards and thus was of a voluntary nature.
This EPG was inspired by CMM and RUP. At NorSoft, the EPG was inspired by
quality routines from the European Cooperation for Space Standardization and ISO
9001, and each project had to generate a tailored instance of the process guide.
Therefore, the EPG was not of a voluntary nature. In addition, NorSoft included several
tools in their EPG. Examples of such tools are an action list tool with automatic e-mail

Research method and design#

- 48 -

alerts when the due date of an action passed, a tool providing a template for work
breakdown structure, and a tool for following up risk and calculating project risk level.

ROROT =146.((

The Scrum teams were given significant authority and responsibility for many aspects
of their work, such as planning, scheduling, assigning tasks to members, and making
decisions. The Scrum master was in charge of solving problems, which could prevent
the team from working effectively. He or she did not organize the teams (designers and
developers), but let them organize themselves and make decisions concerning their own
activities. The prime responsibility of the Scrum master was to remove the impediments
to the process, conduct the daily meetings, make decisions in these meetings, and
corroborate these decisions with the management (Schwaber and Beedle 2001).

In Scrum, the self-managing team develops software in increments (called sprints); each
sprint starts with planning followed by performing tasks, and ends with a review. The
team coordinates and makes decisions on a daily basis. Features to be implemented are
registered in a product backlog, and a product owner decides which backlog items
should be developed in the following sprint. The product backlog defines everything
that is needed in the final product based on the current knowledge. It comprises a
prioritized and constantly updated list of business and technical requirements for the
system being built or enhanced. Backlog items can include features, functions, bug
fixes, requested enhancements, and technology updates. Multiple stakeholders, such as
clients, project team, marketing and sales, management and support (Abrahamsson,
Salo et al. 2002), can participate in the planning phase to identify the product backlog
items. Prioritizing the backlog is a complex communication and negotiation process;
however, the product owner is the one responsible for the final prioritization. During the
planning meeting (usually every second or fourth week) the product owner is
responsible for presenting a prioritized product backlog. The highest priority items from
the product backlog are then detailed in a sprint backlog by the developers.

While the product backlog is constantly updated, the sprint backlog should not be
changed during the sprint, unless critical business requirements suddenly change, or if
the team is not able to deliver as planned. The Scrum team members are empowered
and expected to make day-to-day decisions within the project. They are also expected
always to select the task with the highest priority when starting to work on the items in
the sprint backlog.

Research method and design#

- 49 -

The next two sections will describe the research methods applied in the plan-driven and
change-driven period respectively, including the discussion of Scrum and process
guides. !
ROS C/7/,419(./39N07(,QQ+-/0(-2(39/(Q+,2X04-?/2(Q/4-N0(

In the plan-driven period, the focus of the SPI initiatives was on creating a strong
development infrastructure for all projects. Hence, the focus was on the organization
and the development department level.

Study 1 can be classified as a single case holistic case study as described by Yin (2002),
in that the usage of the EPG was studied in one company. To understand the EPG
usage, self-reported measures were combined with objective, computer-recorded
measures, and measures of EPG template usage. This study relied on documentation,
archival records, interviews, and a survey of 97 EPG users.

Figure 5 Conceptual model for the survey tested in study 1

The research model empirically tested in the survey is depicted in Figure 5. The model
derives its theoretical foundations from combining prior research in technology
acceptance (Davis 1989; Venkatesh and Davis 2000) with aspects of innovation
diffusion theory (Rogers 1995) and empirically tested research on software developer
acceptance of methodologies (Riemenschneider, Hardgrave and Davis 2002). Due to the
voluntary nature of using the EPG within the company, voluntariness was not included
as a separate construct. In addition, the model was extended to include organizational
support.

Organizational
Support

Perceived
Usefulness

Perceived
Ease of Use

Perceived
Compatibility

Subjective
Norm

Current
System Usage

Future
Use Intention

Infusion

Research method and design#

- 50 -

The objective computer-recorded measures consisted of the total number of server hits
on the EPG, and measures of template usage by recording the number of server hits on
the template pages. However, simply studying the usage level does not offer an
unambiguous interpretation. Is the low usage due to developers knowing what to do
without any need for further guidance or is it due to developers believing it is not
helpful? Is the high usage due to inexperienced project participants seeking guidance on
unfamiliar tasks, or is it due to developers finding it really useful in their daily work?
Consequently, there is no general answer to whether low usage is better or worse than
high usage with this method of gathering data. Therefore, it was necessary to interview
the users and study the documents produced in various projects in more detail. About
1,000 documents in 23 projects were inspected in order to measure the ratio of actual
template usage, and 19 users from five different departments were interviewed.

Study 2 was an action research study in a single company. The focus of this longitudinal
study was to understand the importance of employee participation in process
improvement. An important part of this action research study was to assist the company
not only by suggesting and planning the introduction of various participation
techniques, but also in applying these techniques. For example the researchers
participated in planning the introduction of the EPG, designing and facilitating the
process workshop, identifying the processes, and evaluating the usage. Ten users were
interviewed in three rounds, and 116 000 look-ups on the EPG over a period of 19
months were analyzed.

ROT C/7/,419(./39N07(,QQ+-/0(-2(39/(19,2</X04-?/2(Q/4-N0((

In this period the focus changed from studying SPI in the whole development
organization to studying SPI in individual projects. The reason was that SPI work in the
companies changed from improving the EPG to improving the running projects. To
understand SPI in running projects it was necessary to observe the teams and individual
developers.

As part of the action research program, I designed a Scrum training program together
with the three companies under study. On the first day of the project the participants
were introduced to Scrum by a well known and experienced Scrum master. The second
day focused on tailoring agile practices to the projects, which were later included in this
study. Having the thorough knowledge of the companies and experience with agile
development I facilitated this tailoring process. After introducing agile software
development in the companies, the teamwork and the processes were regularly
evaluated, and new improvement measures were suggested. Five teams were observed

Research method and design#

- 51 -

(see Table 7) over three years. In addition to the initial training program, the Scrum
masters were given extra training and coaching.

Table 7 Teams and data collection sources.

 No. of
developers

Agile introduced Team
no

Team
size

Project
length

No. of
interviews

No. of
observations

MidSoft 16 At the beginning
of the two
projects

1 6 11 months 12 75
2 6 12 months 12 45

NorSoft 60 In the middle of
the project

3 7 20 months 13 9

EastSoft 150 In the middle of
the two projects

4 8 30 months 11 10
5 7 30 months 11 10

Study 3, which was an action research study including a longitudinal multiple case
holistic study, involved teams 3, 4, and 5, which were studied introducing change-
driven development in the middle of the project. In addition to interviews and
observations, defect reports were collected from team 4: 449 defects reported during the
pre-Scrum phase and 895 defects reported during the Scrum phase. This made it
possible to understand how the introduction of the change-driven approach affected the
product quality.

Study 4 was an action research study, introducing Scrum in MidSoft. The study
included a single case holistic study of a project, which used Scrum from the beginning,
focusing on mechanisms that influence teamwork. The study was an interpretative field
study (Klein and Myers 1999). The seven principles for conducting such studies, which
were proposed by Klein and Myers, were applied in order to determine the main choices
related to research method. Table 8 gives an overview of these principles and a
description of how they were used in study 4.

Research method and design#

- 52 -

Table 8 The use of Klein and Myers’ principles in this field research.

The principles for interpretive field
research (Klein and Myers 1999)

How each principle was used

1. The fundamental principle of the
hermeneutic circle

The understanding of the project was improved by moving
back and forth between phases and events. The project had
three main phases, each with different characteristics and
different events. The data analysis involved multiple
researchers having ongoing discussions about the findings.

2. The principle of contextualization

To clarify how situations emerged, the work and
organization of the company as well as the context of the
project were described.

3. The principle of interaction between
researchers and subjects

The researchers’ understanding of the project developed
through observations, interviews, and discussions with the
team participants during coffee and lunch breaks. Project
status, progress, and project issues were discussed.

4. The principle of abstraction and
generalization

Findings were described and related to the teamwork model
proposed by Dickinson and McIntyre (Dickinson and
McIntyre 1997).

5. The principle of dialogical
reasoning

Dickinson and McIntyre’s model was used to identify areas
of investigation in the case. The researchers’ assumptions
were also based on the general knowledge of agile
development, SPI, teamwork, and self-management.

6. The principle of multiple
interpretations

To collect multiple, and possibly contradictory
interpretations of events, data was collected from all
participants in the project and from multiple data sources.
The case study narrative and findings have been presented to
the project participants and led to feedback.

7. The principle of suspicion

By means of analysis, the researchers made themselves
aware how roles and personalities affected attitudes to
teamwork in order to discover false preconceptions.
In addition to observations, interviews with different role
holders at different levels, and multiple interviews with all
team members were conducted. This increased the chance of
unveiling possibly incorrect or incomplete meanings.

Study 5 was a single case holistic study motivated by the need for studying agile teams
in practice. I conducted ethnographic observations of participants from April 2007 until
January 2008. In addition to participant observation (Jorgensen 1989), interviews and
documents were used as data sources. Choosing this approach was inspired by Sharp
and Robinson (2004). In the beginning of the project I worked extensively with the
team on GUI-design, then I was involved in workshops on high-level architectural
design, estimation, and participated in planning meetings. From sprint 3 and onwards,
the research method changed and the involvement was limited to observing the
meetings. During the first research phase no interviews were conducted. The reason was

Research method and design#

- 53 -

to create a perception that I was one of the developers. This was a successful approach,
judging by discussions with the developers and the problems I was involved in. The
observation sessions lasted from ten minutes to eight hours, and the team was visited up
to five times a week. As for documents, material from Microsoft Team System was
gathered, which gave an overview of items in each sprint, estimates, and burndown
charts for the first eight sprints.

ROU =360-/7(,20(0,3,(,2,+D7-7(

A variety of approaches was used for collecting the data, and the five studies resulted in
twelve published papers. This section will give a high level overview of how data was
analyzed. Because the qualitative data has been my most important source of evidence
in this thesis, this will be the main focus of this section. A more detailed view of all data
analysis can be found in the individual papers.

All data from the interviews, minutes, and observations were transcribed and imported
into a tool for analysis of qualitative data – NVivo, available from QSR International.
All interviews were semi-structured, and all followed a predefined interview guide. The
guides can be found in the individual papers.

In the plan-driven phase the interviews were shorter than in the change-driven phase.
The reason was that the focus in the first phase was on how developers and managers
used and perceived the EPG. Because the EPG was only accessed a few minutes a day
at most, the developers did not have much to say about it. In the change-driven phase
the interviews focused on teamwork, how the project was running, how decisions were
made, what was good and bad, etc. The interviewees subsequently had a lot more to talk
about.

All material imported into NVivo has been read and coded several times. Coding was
done by assigning interesting expressions of opinions in the text to a specific category
with other similar expressions. In this way, concepts were identified and their properties
and dimensions were discovered in the data. Events, happenings, objects, and
actions/interactions, which were found to be conceptually similar in nature or related in
meaning, were grouped under more abstract concepts termed categories. A category
represents a phenomenon, that is a problem, an issue, or an event that is defined as
being significant to the respondents or to the phenomena observed. An example of
coding are the expressions ‘‘you have one place to find information’’ and ‘‘the
documentation you need in the project is available’’, which were both coded into
category ‘‘information available’’. After the coding, where concepts and categories

Research method and design#

- 54 -

were created, the connections between categories and their subcategories were
identified.

In the plan-driven phase of study 1 the interview data analysis was guided by the
principles of grounded theory as described by Strauss and Corbin (1998). A grounded
theory is a research method, which seeks to develop a theory grounded in data, which
has been systematically gathered and analyzed. As Strauss and Corbin (1998)
explained:

A grounded theory is one that is inductively derived from the study of phenomenon it
represents. That is, it is discovered, developed, and provisionally verified through
systematic data collection and analysis of data pertaining to that phenomenon.
Therefore, data collection, analysis, and theory stand in reciprocal relationship with
each other. One does not begin with a theory, then prove it. Rather, one begins with an
area of study and what is relevant to that area is allowed to emerge (p. 23).

Inspired by Strauss and Corbin we tried to allow the theory to emerge from the data.
Constant comparison is the heart of this process. In this study the interviews were
compared to other interviews. By comparing the interviews a theory emerged, and when
it began to emerge the data was compared with other existing theory.

Multiple materials describing an event or a phenomenon were collected in the change-
driven phase. This enabled a variety of strategies to analyze the material (Langley
1999). First, the project and context were described in a narrative to achieve an
understanding of what took place in the project studied. Then analysis was performed
across all sources and the results synthesized, as shown in the example from study 4
(Figure 6). Because all team members were interviewed and all teams observed, it was
possible to get a deep and thorough understanding of the phenomenon observed.

A variety of techniques and tools were used when analyzing quantitative data. The
survey in study 1 was analyzed using Statistical Product and Service Solutions (SPSS).
Correlation and multiple regression analyses were used to investigate measurement
characteristics and the effects of the independent variables on methodology usage. The
EPG look-ups in studies 1 and 2 were imported into Microsoft Excel and analyzed
through plots over time for an average number of look-ups per person per month. The
defect analysis in study 3 was also performed using Microsoft Excel. The defects of
both pre-Scrum and the Scrum phases were classified into different defect types using
the Orthogonal Defect Classification (ODC) (Chillarege, Bhandari et al. 1992). ODC
focuses on tracing each defect back to a specific stage of development.

Research method and design#

- 55 -

Figure 6 Example of the coding process in study 4

Research method and design#

- 56 -

Results#

- 57 -

S C/76+37(

The results are organized according to the three research questions. Each question is
discussed in a separate section: SPI in plan-driven companies (4.1), SPI in change-
driven companies (4.2), and SPI challenges implementing change-driven development
(4.3). The key findings are the result of the synthesis the contributions made in
individual papers using the method described in the previous chapter.

Table 9 shows how the key findings are related to the research questions, and which
papers contribute to which key findings. Important quotes from the interviews and
observations are highlighted in the text to illustrate the key findings. A description of
each key finding starts with presenting the key finding itself, followed by an
explanation of how the finding is related to the underlying studies.

Table 9 Relationship of various papers to the key findings and the research questions (RQ)

No RQ Key finding Papers
1 1 Best practice mainly supports project management. 2, 3, 5
2 1 Involvement affects how best practice is adopted. 3, 4, 5
3 1 Individual experts approach is a simple strategy to manage projects. 6, 7
4 1 Post-project reflection is an important learning strategy. 1, 4
5 2 Short iterations make project management easier. 11
6 2 Change-driven development encourages frequent problem reporting. 7, 10, 12
7 2 Long-term quality is in conflict with short-term progress. 7, 9, 10, 11, 12
8 3 Specialization hinders self-management. 6, 8, 9, 10, 12
9 3 Process related problems are difficult to solve. 6, 8, 10, 12
10 3 There are major organizational barriers to self-management. 6, 7, 9, 10

SOM =@!(-2(Q+,2X04-?/2(1N.Q,2-/7(

The process improvement focus in EastSoft and NorSoft was on explicitly defining
processes, so called best practices, which could be standardized both within and among
the teams. These processes were documented in electronic process guides. MidSoft had
a different strategy, where individual experts became responsible for solving client
problems directly; developers had full responsibility for a product, from development to
client support. Even though the companies relied on different strategies for organizing

Results#

- 58 -

work, they all used a waterfall approach: a long period of planning and design was
followed by implementation, which was then followed by testing. In NorSoft and
EastSoft, after a project ended experiences were discussed in what is known as post-
project reviews or learning meetings.

The major part of the findings regarding plan-driven companies is related to the concept
of best practices.

SOMOM 8/D(<-20-2<(MZ(C/73(Q4,13-1/(.,-2+D(76QQN437(Q4NF/13(.,2,</./23(

In both EastSoft and NorSoft, the most important SPI initiative was their Electronic
Process Guide (EPG), which was based on CMM, RUP, and quality routines from the
European Cooperation for Space Standardization. The goal was to describe the
companies’ best working practice in cooperation with the intended users through small
workshops and meetings. Although the goal was to support everyone participating in a
project, EPGs ended up mostly supporting project management while the developers
received little support. Two reasons for this will be described in the following
paragraphs.

First, the process guides were mostly designed to give support for writing
documentation and reporting status (paper 3 and 5), both functions being the project
managers’ responsibility. In addition, the EPG supported mainly project startup and
close down, which were also the responsibility of the project management. Other
examples of project management support were following up risk and calculating project
risk level, progress reporting, writing requirements according to the company standard,
documenting use cases, and documenting the minutes of meetings (paper 5). In a study
on Measuring Software Methodology Usage: Challenges of Conceptualization and
Operationalization at EastSoft (paper 2), about 1,000 documents in 23 projects were
examined to determine whether the self-reported
usage level and usage logs corresponded to the
actual usage level. This study confirmed that
projects produced deliverables according to the
EPG, which demonstrated that processes and
checklists supporting management activities were
used.

Second, in a study on the use of an electronic
process guide in a medium-sized software
development company (paper 3) the developers at

How do developers get
support?
“it is important that you know
people. You must know whom
to talk with if you are going to
have a chance of knowing how
to solve the tasks. . . . if you
are new here, you are not
helpless, but it takes a while
before you are up and
running.”
EastSoft (paper 3) p. 27

Results#

- 59 -

EastSoft described the EPG as not useful because it gave them little or no support
during the implementation process. Some developers even claimed that the EPG
reduced their productivity. For the developers it was more important to talk to others
when performing their tasks (see text box). Although the respondents at NorSoft also
claimed that the EPG mostly supported the project managers (paper 5), the developers
reported a higher usage than at EastSoft. Studying the usage logs showed that the reason
for this was the associated tools, which were part of the EPG. Although mainly
supporting project management, NorSoft also included some tools supporting the
developers, such as tracking errors, a checklist, and action lists for developers.

SOMOP 8/D(<-20-2<(PZ(!2?N+?/./23(,88/137(9N>(5/73(Q4,13-1/(-7(,0NQ3/0((

The management in both EastSoft and NorSoft believed that for the EPG to have an
effect, it needed to be adopted by the whole organization. To achieve this, the
companies focused on involving the intended users when creating the EPG. Two results
confirmed the importance of involvement (paper 5 and 3).

First, the usage level was significantly higher in NorSoft, who involved more users than
EastSoft (paper 5). Both companies claimed to involve the intended users. However, in
EastSoft only two out of 19 people who were interviewed reported such involvement
(paper 3). At NorSoft, nine out of the 31 employees in the primary user group were
involved in developing the EPG through process workshops (paper 5). The aim of the
process workshops at NorSoft was to make people discuss the current working
processes and how they wanted to work in the future. The process workshops, which
can be classified as a quality circle, relied on creative group techniques and involved
marketing and sales personnel, developers, and project managers. The process
workshops are described in detail in papers 4 and 5. One alternative explanation of the
higher usage level at NorSoft could be that the EPG was mandatory for all projects
there, while it was voluntary at EastSoft. This was the motivation for investigating the
effect of participation in NorSoft, which is described next.

Second, the importance of involvement was confirmed when studying the usage level in
NorSoft (paper 5). By investigating usage logs and interviews it was found that those
involved in the process workshops showed a higher degree of usage, used a larger
number of functions, and reported more advantages and disadvantages than
nonparticipants. On average, a workshop participant at NorSoft accessed the electronic
process guide 65% more often than a nonparticipant did. In addition, the findings
suggest that employee participation has long-term positive effects on electronic process
guide usage.

Results#

- 60 -

SOMOR 8/D(<-20-2<(RZ!!20-?-06,+(/GQ/437(,QQ4N,19(-7(,(7-.Q+/(734,3/<D(3N(.,2,</(
Q4NF/137(

While EastSoft and NorSoft focused on describing and institutionalizing best practice
through an EPG, MidSoft relied on a strategy, which gave developers the lifetime
responsibility for a product or a part of a product. There was a common understanding
among managers and developers that this was the most efficient way of working. While
introducing Scrum in MidSoft two reasons were found why this strategy was seen as a
simple way to manage projects, and one reason why this strategy was problematic
(paper 6 and 12).

First, it allowed many tasks to be completed in parallel. All developers were given
responsibility for their own project or module, and there was little dependence on others
(paper 6), meaning that there was little need for coordination between developers. This
strategy was enabled by the way the company organized development projects and
support. Traditionally the company had small projects, mostly with only one or two
persons involved. When several developers were allocated to a project, the projects
were usually split so each person ended up being responsible for his or her own module.
A developer then worked on the module where he or she was seen as a specialist (e.g.
map-interfaces or databases).

Second, task responsibilities were clearly defined and understood. Giving the
developers’ lifetime responsibility also meant that the developers were responsible for
client support of the system or module he or she developed (paper 6). The client could
usually call the developer directly, and ask him or her to solve problems. The
management regarded this approach as a competitive advantage because they were
responding quickly to the client requests, faster than their competitors were.

While it was a common understanding that work was performed and coordinated the
best way possible, nevertheless developers experienced difficulties. One was that the
developers never knew when the client would call, which resulted in work interruptions,
therefore progress planning was difficult for development projects (papers 6 and 12).

Even though it was not the primary focus, NorSoft and EastSoft also used specialization
as a means to coordinate work efficiently. EastSoft relied on specialization regarding
domain models, technology, and roles. As an example, there was often one person
responsible for the GUI, one for the business logic, and the chief architect responsible
for the architecture. In one project, the chief architect was the one making most
decisions on the design and architecture, and he seldom let others participate (paper 7).

Results#

- 61 -

SOMOS 8/D(<-20-2<(SZ(@N73XQ4NF/13(4/8+/13-N2(-7(,2(-.QN43,23(+/,42-2<(734,3/<D(

Learning from own experience was considered important in all companies. EastSoft and
NorSoft focused on learning after the project by organizing post-project reviews or
learning meetings. There are three main reasons why this was regarded as an important
strategy (papers 1 and 4).

The paper Improving by involving: a case study in a small software company (paper 4)
describes how project participants in NorSoft accumulated experience and how they
reflected on the finished projects to improve their future practice. Answering the
following questions facilitated the reflection: What went well? What did not go so well?
How to repeat the success? How to improve what did not go so well? NorSoft organized
learning meetings in the form of so called post-mortem review. If a project lasted
several years, then the post-mortem was sometimes conducted during the project as
well. Details on how this was organized can be found in paper 4.

In the same paper it is also described how the company collected experience from the
projects to be able to improve the organization as a whole. The tangible outcome of a
meeting was a post-mortem report. This report was handed over to the project
management forum. This forum, in the form of a learning meeting, then discussed the
post-mortem results from several projects, and suggested which improvement actions
should be implemented in future projects.

A further motivation for post-project reflection was found in EastSoft (paper 1), where
the goal of the post-project reviews was also to evaluate the acceptance and usage of the
EPG. The post-project reflection helped the method and tool group, which was also
represented in these meetings, to gather lessons learned regarding the deployment of the
EPG.

SOP =@!(-2(19,2</X04-?/2(1N.Q,2-/7(

In 2006, all three companies decided to introduce change-driven development. Common
for all companies was the need to improve their ability to deliver iteratively and on
time, increase software quality, as well as improve teamwork and team communication.

Prior to introducing Scrum, EastSoft was reorganized because of changes in the market.
They could no longer afford a separate method and tools group; the group was
dissolved, and its members started working in regular software development projects.
However, there was still a need for SPI work, and at the same time clients and some
developers started talking about using agile software development. It was decided to

Results#

- 62 -

introduce Scrum. At NorSoft, the motivation for Scrum was the need for a process that
better supported short iterations, and the need to strengthen the team. In MidSoft, the
size of the projects was growing, and they needed a method for coordinating work in
bigger teams. They also needed to deliver more frequently.

The following key findings deal with the characteristics of software process
improvement after introducing agile approach. Five teams in the three companies were
observed (see Table 10) over three years.

Table 10 Teams introducing agile approach

 Total no. of
developers

Agile introduced Team
no

Team
size

Project
length

MidSoft 16 at the beginning of two
projects

1 6 11 months
2 6 12 months

NorSoft 60 in the middle of the project 3 7 20 months
EastSoft 150 in the middle of two projects 4 8 30 months

5 7 30 months

SOPOM 8/D(<-20-2<(TZ(=9N43(-3/4,3-N27(.,;/(Q4NF/13(.,2,</./23(/,7-/4(

The short iterations characterizing change-driven development made project
management easier. This was especially noticeable in team 5 (EastSoft). By following
the transition from plan-driven process to Scrum in EastSoft (Paper 11), three main
reasons for this finding could be identified.

First, when the team had frequent feedback on the quality it resulted in fewer surprises
and better control of the software quality and release
date. The reason was that the team was conducting
continuous system and acceptance testing, and
defect fixing. In the pre-Scrum phase, a long period
of planning and designing was followed by a long
period of implementation, before testing and
debugging commenced (Figure 7 and Figure 8). In the
seven-month period of testing and defect fixing, no
one actually had the overview of the quality of the
code until a few weeks before delivery (see text
box). One reason was that correcting one defect

Missing a good overview
“There was an enormous list of
defects and errors in the last
phase of pre-Scrum phase. It
was not easy to have a good
overview of this list regarding
required work to fix them.
Also when correcting one
defect, another was found. This
resulted in new defects being
found late in the process.”
EastSoft (paper 11), p. 5

Results#

- 63 -

often led to detection of additional defects. In addition, it took the developers a long
time to remember the code they had worked on several months earlier. A consequence
of missing a good overview of the software quality was that the release date was
postponed several times. Furthermore, problems were reported to the whole team in the
daily meetings, so team members received frequent feedback on their individual
problems, which was seen as a valuable support for fixing defects.

Figure 7 Defects found and closed in the plan-driven phase

J#
KJ#
4J#
5J#
6J#
7J#
8J#
9J#
:J#
;J#

KJJ#

!"#
$%&
#

'(
)$%
&#

*"
+$%
&#

T,
+$%
&#

*"
-$%
&#

!.#
($%
&#

!./
-$%
&#

T.
0$%
&#

1(
,2$
%&
#

34
2$%
&#

56
7$%
&#

8(
4$%
&#

!"#
$%9
#

'(
)$%
9#

*"
+$%
9#

T,
+$%
9#

*"
-$%
9#

!"
#
$%

&('
(()

%(
%*
+,
(&%

-'
&+
%)

(

.%(%*+(&%-'&+%)()/+%(

%#
:%#
;%#
<%#
=%#
>%#
&%#
9%#
?%#
@%#

!"#
$%&
#

'(
)$%
&#

*"
+$%
&#

T,
+$%
&#

*"
-$%
&#

!.#
($%
&#

!./
-$%
&#

T.
0$%
&#

1(
,2$
%&
#

34
2$%
&#

56
7$%
&#

8(
4$%
&#

!"#
$%9
#

'(
)$%
9#

*"
+$%
9#

T,
+$%
9#

*"
-$%
9#

!"
#
$%

&('
(()

%(
%*
+,
(*0
',
%)

(

.%(%*+(*0',%)()/+%(

8(7(/6,A(#2#6#/-# 1-B2(AC"44(,2"#4(#
2(BD#0#"#E#E(F(42#
GHD#0#

Results#

- 64 -

Figure 8 Defects found and closed in the Scrum phase

Second, it became easier to understand and plan the effort needed to solve defects.
Defects were now being solved shortly after they were reported, which made it easier to
remember the code and understand the cause of the defect.

L#

!"#

#"#

$"#

%"#

&""#

&!"#

&#"#

&$"#

'()
*+!

""
,##

'(-
.+!

""
,#

T(
/+"

,#

0*
12+
#",
#

34
2+"
,#

56
7+"

,#

8*
4+#"

,#

'9)
+"%
#

:*
;+"

%#

<9=4
>+#
"%
#

T1
=+#"

%#

<9.+
"%
#

'()
*+#
"%
#

'(-
.+"

%#

T(
/+#
"%
#

0*
12+
#"%
#

34
2+#"

%#

56
7+#"

%#

8*
4+#"

%#

'9)
+#"
?#

!"
#
$%

&('
(()

%(
%*
+,
(&%

-'
&+
%)

(

.%(%*+(&%-'&+%)(./+%(

@*-*9A*#&# @*-*9A*#!# @*-*9A*#B# @*-*9A*###

"#
!"#
#"#
$"#
%"#

&""#
&!"#
&#"#
&$"#
&%"#

'()
*+!

""
,##

'(-
.+!

""
,#

T(
/+"

,#

0*
12+
#",
#

34
2+"
,#

56
7+"

,#

8*
4+#"

,#

'9)
+"%
#

:*
;+"

%#

<9=4
>+#
"%
#

T1
=+#"

%#

<9.+
"%
#

'()
*+#
"%
#

'(-
.+"

%#

T(
/+#
"%
#

0*
12+
#"%
#

34
2+#"

%#

56
7+#"

%#

8*
4+#"

%#

'9)
+#"
?#

!"
#
$%

&('
(()

%(
%*
+,
(*0
',
%)

(

.%(%*+(*0',%)(./+%(

Results#

- 65 -

Third, introducing shorter iterations also made
project management simpler by making it easier to
protect the team resources (see text box). Without
control over the team resources it would be
impossible for the team to really commit to what
they decided in the planning process.

While the focus on software quality and knowledge
sharing was stronger after introducing Scrum, the
new process did not seem to affect the quality of the
software produced in each iteration. Hence, the
developers did not introduce fewer defects when writing code.

SOPOP 812(<345346(UZ(778461X593:14(51:1;NQ<14=(14>N?9861@(A91B?14=(Q9NC;1<(
91QN9=346(

Introducing various Scrum meetings created new arenas for the product owner and the
team to meet on a regular basis for continuous planning, decision-making, and solving
problems. Reporting and solving problems was also given more attention (paper 10).

There were four arenas for frequent problem reporting: the daily meeting, the
retrospective, the review meeting, and the planning
meeting, each with different types of issues being
reported. The daily meeting was found to be an
arena for continuously reporting problems and
removing impediments to the effective work (paper
7). The agenda of this meeting was to answer the
following questions: What have you done since
yesterday? What are you going to do today? Did you
experience any difficulties? The Scrum master was
the one in charge of making sure that the problems
reported were taken care of. The frequent team
discussions and problem reporting (paper 6) resulted
in early identification of problems (see text box).

The retrospective, the second arena for reporting problems, was organized at the end of
each iteration. In this meeting, the team focused on what was working well and what
needed to be improved, often by comparing the actual situation with what is described
by Scrum. Examples of reported problems were defining a stable sprint backlog and
finishing it, and problems with the daily meeting (paper 12). Measures were then taken

Shorter iterations make it
easier to protect
resources
“When other projects ask for
resources and they know you
are going to deliver in 12
months, it is difficult to deny
helping other projects. Now,
when using Scrum, we deliver
every sprint, and then it is
much easier to say no.”
EastSoft (paper 11), p. 8-9

Problems are reported
early
“If the team get stuck, and
don’t know what to do because
of missing or conflicting
decisions, this is discovered
early. Then we together decide
what to do. Before Scrum,
developers could use months
before we discovered that there
were problems we needed to
discuss. “
EastSoft (paper 6), p. 220

Results#

- 66 -

to remedy the issues. By observing these meetings, it became clear that different
problems were reported in the retrospective compared to the daily meetings (paper 12).
In the daily meetings the focus was mostly on small technical issues (e.g. problems with
an error, a library, or component integration), while bigger issues were reported in the
retrospective (e.g. problems with the client, the testing framework, and the planning
process). The reason was that the daily meetings focused on what the developers were
working on at the moment, while retrospective meetings focused on the whole sprint.

Finally, the planning meeting and the review meeting were also arenas for reporting and
discussing problems. During the planning meeting held at the beginning of each
iteration, problems related to resources, technology, and estimation of tasks were
frequently discussed (paper 12). In the review meeting, the team shows the product
owner what has been developed during the iteration. The problems discussed in this
meeting were related to the product and how the team had handled their tasks (paper
12).

Although problems were reported frequently, it became clear from the interviews and
the observations that many problems related to the team process were not reported
(paper 12). This is the focus of key finding 9 concerned with why process related
problems were difficult to solve. !
SOPOR 812(<345346(VZ(DN46X=19<(B?8;3=2(3@(34(>N4A;3>=(D3=7(@7N9=X=19<(Q9N691@@(

Short iterations in change-driven development are about creating the most business
value for the client (immediate value creation). However, this often seemed to be in
conflict with the need for long-term quality, which was especially evident when
observing the tension between keeping the time schedule and meeting the quality
requirements.

While short iterations and frequent testing made it possible to fix defects continually
(paper 11), several teams were not strict about the “done” criteria - what does it mean
that a component or a feature is finished? (papers 10, 11, and 12). Teams stopped
performing thorough testing at the end of iterations in order to be able to deliver all
planned features. The main reason for this was that the team felt they needed to show
progress, i.e. to deliver what was decided upon in the planning meeting (paper 12).
Some Scrum masters and team members even tried to give the impression that the team
was better than it actually was. The desire to keep the time schedule in some of the
teams hindered the recognition of serious problems with, for instance, a third party
component, testing, integration, or performance (papers 9 and 12).

Results#

- 67 -

Another challenge was that it seemed difficult to
prioritize quality related processes that would
improve the quality in the long run (paper 11), when
these activities would reduce the pace of producing
new features or when the whole team did not agree
on the importance of these activities (see text box).
Furthermore, it seemed difficult to prioritize
architectural work and design. One product owner
felt that the team was so busy implementing features
that no one was taking care of the biggest concern,
which was to build an architecture to last for ten
years (paper 7).

All teams discussed the conflicts related to the
challenges above. Still, they found it difficult to give
priority to quality improvement activities when
planning and conducting the sprint. The reason was that keeping the schedule and
delivering features according to the plan was seen as more important by the team.

SOR 812(E@!(>78;;1461@(3<Q;1<14=346(>78461X593:14(51:1;NQ<14=(

Short development cycles provide continuous and rapid loops of iterative learning, to
enhance the processes, and to guide the improvement. The self-managing team was
responsible for these improvement initiatives. However, all teams under study still
experienced major SPI challenges, especially related to becoming truly self-managing
and to handling problems reported during team reflection (team learning).

SOROM 812(<345346(WZ(EQ1>38;3Y8=3N4(734519@(@1;AX<84861<14=(

The ability of the teams to self-manage was essential for the ability to identify
problems, problem solving, and subsequently to determine how SPI was progressing in
the companies. However, problems regarding self-management occurred in all teams,
and were challenging throughout all projects. Reasons on the team level were the team
members not genuinely committing to the team plan, as well as missing shared
leadership and shared decision-making. Specialization is identified as the main reason
for this, and the results supporting this finding are outlined below.

Because of specialization, it was usually prescribed who should do what in the project
(paper 8). Hence, developers mostly worked independently on particular modules

Difficult to prioritize long
term quality
“Using Scrum is like having a
pistol against your neck. It’s
good and bad. You fix things
now and not later. But there are
also tasks you should have
done like code refactoring. I
think we do not use enough
time on refactoring, because
you need to deliver what you
promised. … During our
meetings it is difficult to argue
for investing resources in
doing such tasks. The sprint
always seems to be more
important.”
EastSoft (paper 11), p. 7

Results#

- 68 -

according to their specific knowledge (see text box),
and they were seldom involved in the work of other
developers (paper 10). As a result, shared leadership
was difficult. In addition, because developers
worked independently (see text box) and had full
control over their time schedule and the
implementation of their tasks (paper 12), the
interaction between the group members did not
increase as expected when introducing change-
driven development.

Another effect of specialization was lack of team
commitment resulting in team members giving
higher priority to individual goals, even though the team goals should be the priority in
a self-managing team. A number of the respondents explained that because of
specialization, they found it difficult to commit to work they were not involved in
(paper 12), and consequently it was problematic for them to take part in decisions
regarding work of others. This made shared decision-making hard; an individual and
decentralized decision-making process resulted in difficulties aligning decisions on the
operational level because team members did not know what others were doing (paper
7). In addition, some were unintentionally left out of decision-making processes. Not
everyone can be involved in everything, but some team members felt they were
excluded from important decisions.

Finally, because of specialization the teams developed unrealistic plans. The planning
meeting is where the team is expected to do shared planning and decision-making.
However, the meetings often ended up with only a few people talking and the rest
listening (paper 7). Some people even fell asleep (paper 9). The poorly managed
planning meetings resulted in unrealistic plans with
too many tasks. As described earlier, some teams
pretended to be more effective than they really were.
As a consequence, a new iteration often started by
completing what was officially done in the previous
iteration. The effect was that the plans became even
more unrealistic, and team members focused even
more on their own goals and individual plans.

Because of highly specialized developers and the
problems this caused for self-management in the

No time for collaborating
on tasks
“Let the person that knows
most about the task solve it! It
will take too many resources if
several persons are working on
the same module, and there is
no time for overlapping work
in this project. The tasks are
delegated and solved the best
possible way today. Maybe we
can do more overlapping in the
next project...”
MidSoft (paper 10), p. 22

Developers working
independently
“When it comes to the daily
scrum, I do not pay attention
when Ann is talking. For me,
what she talks about is a bit far
off the topic and I cannot stay
focused. She talks about the
things she is working on. I
guess this situation is not good
for the project.”
MidSoft (paper 12), p. 486

Results#

- 69 -

teams, improvement work was challenging and improvement measures were often
motivated by individual needs (e.g. solving technical problems, getting new
development infrastructure) instead of what the whole team needed.

SOROP 812(<345346([Z(@9N>1@@(91;8=15(Q9NC;1<@(891(53AA3>?;=(=N(@N;:1(

Through various Scrum meetings, there was an increased focus on reporting problems
as described in key finding 6. However, all three companies seemed to have difficulties
solving their process related problems. The two main reasons, why process related
problems were difficult to solve, were related to difficulties with team reflection in the
retrospective meeting and to not reporting process related problems. In Scrum, the
retrospective meeting is the most important meeting for discussing and suggesting how
to solve process related problems.

All teams had problems making their retrospective meetings work as intended. As an
example, team 1 reported the same problems in several consecutive retrospectives (e.g.
lack of backup, problems not being reported, and lack of feedback) (paper 12), but no
measures were taken to address the cause of the problems. When process issues were
discussed, teams often ended up talking about the symptoms and not the cause of the
problems. In addition, teams usually discussed whether they were doing things right
according to the Scrum theory, but they seldom discussed whether they were doing the
right things. One example was the conflict between the need for quality and the need for
short-term progress. When a team experienced problems with the product quality, the
team discussed how to improve the testing process and the testing framework. The real
problem however, was that short-term progress was seen as more important by the team
than the quality.

For problems to be solved first they have to be identified. However, some process
problems were not reported or talked about (paper 12). This became evident when
comparing data from observations of daily work and interviews with observations from
retrospectives and daily meetings. Team members mostly reported problems related to
technology (e.g. development tools, bugs, and integration of third party components).
They seldom talked about important process problems such as why the backlog was
never completed, why the sprint plan often ended up being unrealistic, why meetings
often became unproductive, why some developers were mostly silent in the planning
meetings, or why some developers often ended up working on other issues than
originally planned.

To understand why problems were not solved it is important to understand why
problems were not reported. One reason was that some of the team members perceived

Results#

- 70 -

the problems as personal and wanted to solve these
problems themselves (paper 6) (see text box).
Another reason was that some felt that there was too
little trust within the team (paper 12) and between
the team and the product owner; hence, they did not
feel confident reporting problems. Another team
experienced relationship problems with the product
owner, since he never provided a clear prioritizing
of the features for the next iteration. At no point in
time however, did the team confront the product
owner (paper 7). In team 1 the developers started reporting fewer problems because
they did not trust the Scrum master to handle the problems correctly (paper 12). They
felt he was overreacting to problems stated in the
daily meetings. A third reason for not reporting
problems was that when the problems were not
handled, the team members stopped reporting them
(paper 8). This was seen in team 4, where the team
stopped conducting retrospectives for a long period
because they felt this type of meeting did not give
any value (see text box).

SOROR 812(<345346(M\Z(F7191(891(<8GN9(N96843Y8=3N48;(C899319@(=N(@1;AX<84861<14=((

The implementation of self-managing teams is difficult, if not impossible, if there are
critical barriers at the organizational level. Misalignment between team structure and
organizational structure can be counterproductive, and attempts to implement self-
managing teams can cause frustration for both developers and management. In paper 10
- Overcoming Barriers to Self-Management in Software Teams - two important barriers
to self-management on the organizational level were identified and discussed.

First, shared resources were a challenge because when developers worked on two or
more projects in parallel, and different team goals or needs were in conflict, it
threatened at least one of the self-managing teams (paper 9). In addition, some
developers had to stop suddenly what they were doing, and support projects they had
worked on earlier, without even being formally allocated to such projects. If a developer
got involved in a project, he or she was bound to it forever. The developers described
this as the “quagmire” (see text box). The reason for this was that parts of the
organization expected developers to work even if no resources were provided (see text
box). This was a part of the company culture. When team members knew they would

Problems are personal
“When we discover new
problems, we feel we own
them ourselves, and that we
will manage to solve them
before the next meeting
tomorrow. But this is not the
case; it always takes longer
time.”
MidSoft (paper 6), p. 80

Retrospective do not give
value
 “the retrospective turned out
to be just another nice meeting
without really discussing the
problems”
EastSoft (paper 8), p. 120

Results#

- 71 -

always lose resources during an iteration, it did not make sense for them to commit to
the team plan.

Second, a self-managing team needs generalists - members with multiple skills who can
perform each other’s jobs and substitute as needs arise. However, all companies relied
on specialization, and company incentives often supported this culture. An example was
found in EastSoft, where one of the most prestigious roles was a chief architect (paper
7). In the project studied, the chief architect participated in important decision meetings
with the management; the management trusted him, and he had much influence on
future strategy of their products. Becoming a chief architect was seen as positive both
from an individual and the company perspective. Because the chief architect was the
one solely responsible for the architecture, other
team members were rarely involved in the decision-
making. In NorSoft, developers were found
protecting their knowledge, that is defending their
code by not letting others work on it. If the code was
important, then the developers became important to
the company. Three years before introducing Scrum,
NorSoft had to let some developers go, but not any
of the “important” specialists (paper 10). Therefore,
letting others work on your code was considered a
risk that could result in a loss of job. However,
being the only one working on important parts of the
code was stressful during hectic periods and delayed
the team as a whole.

The “quagmire”
[The developer is picking up a coffee at the coffee machine when an internal customer
passes]
Internal customer: Hi, you need to fix the issue I sent you an e-mail about
Developer [starting to walk back]: I do not have the time now
Internal customer [walking after him]: This is really important and it must be solved now
Developer [walking faster and obviously stressed]: I’m working on something very
important now, and I do not have the time now
Internal customer [getting irritated, but stops]: it need to be solved now
[The developer gets back to his computer and talks about what just happened]
Developer: This is the problem with working here. If you ever get involved in developing a
system you get stuck in the quagmire. And for every new project you are on, it get worse.
We should build a wall of Plexiglas around the developers. When someone want us to do
anything they could come over and ring a bell, and leave a note. Later we could look on
the notes and decide what to do [laughing].
MidSoft (paper 6), p. 82

Developers dilemma
“the developers end up in a
dilemma. Like today, it’s crazy
in the other project. The
customers are starting to use
the system this week, and I’m
the only one who can fix
problems. Then I just need to
help if they are having
problems. I do not like to
decide which project will not
meet its deadlines”
MidSoft (paper 10), p. 24

Results#

- 72 -

Discussion#

- 73 -

T J3@>?@@3N4(

The previous chapter described ten key findings from studying SPI in three companies,
which transformed from change-driven to plan-driven development. To summarize the
results briefly: in the plan-driven period NorSoft and EastSoft focused on reflection
after the end of the projects to achieve continuous improvement. Furthermore, all
companies provided little support for developers, which resulted in a high degree of
freedom for the developers (individual autonomy). The change-driven approach made it
easier to manage the project; however, there was a constant conflict between product
quality and the need for short-term progress. In addition, problems were reported more
frequently, which made change-driven development a strong infrastructure for SPI, but
process related problems were difficult to solve. This was caused by problems related to
learning and self-management. This section will discuss the results in light of the
research questions. When answering the research questions, each question will be
discussed in terms of SPI, organizational learning, and self-management.

TOM HMZ(H78=(>7898>=193Y1@(E@!(34(Q;84X593:14(>N<Q8431@](

In the plan-driven phase, the employees were involved in identifying company’s best
practice; however, they were less involved in improving it. The process of identifying
best practice can be seen as double-loop learning, while the process of improving it can
be seen as single-loop learning. In addition, best practice mainly supported project
management activities, giving the developers a high degree of control over their own
tasks. These characteristics of plan-driven approach will now be discussed.

TOMOM @89=3>3Q8=3:1(CN==N<X?Q(8QQ9N8>7(=N(>918=346(>N<Q842^@(C1@=(Q98>=3>1(

NorSoft and EastSoft relied on the norm-driven approach (Aaen, Arent et al. 2001),
which is typically a top-down approach to SPI (Dybå 2000; Aaen, Börjesson and
Mathiassen 2005; Salo and Abrahamsson 2007). Surprisingly, it was found that best
practice was created through a participatory bottom-up approach to SPI.

Contrary to the top-down character of norm-driven approach, it was found that best
practice was based on the local domain and culture indicating a bottom-up approach
(Thomas and McGarry 1994). In addition, since process improvement was driven by

Discussion#

- 74 -

knowledge of the software developers and their managers, the SPI could be
characterized as a participatory bottom-up approach. One explanation for this
participatory approach when creating the EPG, is the tradition of relatively high degree
of workplace democracy and the influence of the socio-technical tradition in the
Scandinavian countries (Emery and Thorsrud 1976; Bjerknes and Bratteteig 1995),
which both imply involvement and participation.

Participation was enabled through workshops and meetings to give the users an
opportunity to discuss the underlying idea of how software should be developed.
NorSoft organized process workshops in the form of a quality circle (Lawler and
Mohrman 1987); people discussed problems with the existing process, and identified a
new way of working through a brainstorming technique.

TOMOP DN46(>2>;1@(NA(@346;1X;NNQ(;1894346(845(QN@=XQ9NG1>=(91A;1>=3N4(

After the EPG was created, the strategy and the nature of the process improvement work
changed from identifying best practice to improving best practice. This can be
understood as phases of double-loop and single-loop learning. When creating the EPG,
e.g. through the process workshop, existing norms and rules were challenged and
changed, and new ways of working were found. This approach to organizational
learning is understood as double-loop learning (Argyris and Schön 1996), because the
organizations were discussing if they were doing the right things. These findings are in
agreement with Morgan (2006), who argues that quality circles offer a perfect
illustration of double-loop learning in practice. Descriptions of best practice were
improved and changed after discussing project problems in post-project reviews. The
question was now: Are we doing things right? From an organizational learning
perspective, this SPI strategy can be understood as a feedback loop from observed
problems to making changes or refinements, which in turn influence these problems,
hence a single-loop learning (Argyris and Schön 1996).

The goal of the SPI work in the plan-driven phase was to avoid repeating problems by
reflecting on finished projects. The improvement processes took place outside and were
not a part of the project. The underlying assumption of this improvement strategy was
that once the process is improved, the next project will use a better process, and
therefore, the product being created will improve, or in the least, the risks of conducting
new projects will be reduced. This SPI approach was continuous and incremental, and it
can be categorized as an evolutionary approach (Aaen, Arent et al. 2001). Although the
focus was on continuous improvement through single-loop learning, the speed of
learning at the organizational level was slow because reflection was only performed at

Discussion#

- 75 -

the end of a project, and process improvement initiatives were not evaluated before
being applied in the next project.

Although the project participants were involved in the post-project reflection, it was
mainly the quality department or the SPI group that analyzed and suggested
improvements to the process descriptions of the company best practice. This way of
centralizing SPI in a separate group can be seen as a separation of thinkers (quality
department or SPI group) and doers (project participants), which has been the traditional
approach to SPI (Aaen, Börjesson and Mathiassen 2005). Such separation can reduce
motivation for SPI among the practitioners (ibid) and the level of participation in SPI
work.

TOMOR @9NG1>=(<84861<14=(@?QQN9=(AN>?@(845(7367(3453:35?8;(8?=N4N<2(

Plan-driven methods are often characterized by standardization of the work processes
(Hansen, Rose and Tjornehoj 2004; Nerur and Balijepally 2007). However, because
only part of the work processes were standardized this was found to be only partially
true. The goal of the EPG was to support the whole organization in all project activities;
however, it ended up supporting mainly project management activities and not
development activities. In addition, at MidSoft there was almost no control or process
support for the developers solving development problems, because the company relied
on specialization, division of work, and personal responsibility.

As a consequence of little or no developer support, developers in all companies ended
up relying on the simple process of informal communication as the primary
coordination mechanism when solving problems. This is also known as mutual
adjustment (Mintzberg 1989). According to Mintzberg (1989), mutual adjustment
should be the primary coordination mechanism when solving complex tasks and when
engaging in innovative work, as opposed to standardization and direct supervision. Even
though this study was not concerned with how the developers used various coordination
mechanisms, it can be argued that little focus on standardization and direct supervision
enabled mutual adjustment as the primary coordination mechanism among developers.
Hence, failing to support development activities resulted unintentionally in the
companies supporting innovation and complex problem solving.

Because the developers had few rules and procedural constraints, they had high control
over the nature and pace of their work. Using socio-technical theory, this can be
understood as developers having task control (Cummings 1978) and high individual
autonomy (Van Mierlo, Rutte et al. 2005). Even though this positive effect of high
individual autonomy was not the focus of this study, prior research on teams (including

Discussion#

- 76 -

software teams) found that high individual autonomy makes individuals motivated and
satisfied with their jobs (Langfred 2000), and that employees care more about their
work, which in turn leads to greater creativity, more helpful behavior, higher
productivity, and higher service quality (Fenton-O'Creevy 1998). Furthermore,
motivated software developers often look for better ways to do their job (Yamamura
1999). In addition, Baddoo and Hall (2002) found that autonomy was an important
motivator for SPI. So by giving the developers high individual autonomy, the company
made it possible for the improvement work to be driven by the developers in the
running project. While the literature reports many positive effects of high individual
autonomy, the negative effects were observed when the organizations tried to empower
their teams by introducing agile software development. The conflict between individual
and team autonomy will be further discussed when answering the last research question.

TOP HPZ(H78=(>7898>=193Y1@(E@!(34(>78461X593:14(>N<Q8431@](

The motivation for introducing agile software development was that all companies
started to question their current project methodology and SPI strategy.

TOPOM E7N9=(>2>;1@(NA(@346;1X;NNQ(;1894346(=N(3<Q9N:1(>?9914=(Q9NG1>=(

By questioning the plan-driven approach, i.e. asking if we are doing the right things, the
organizations once again turned to double-loop learning (Argyris and Schön 1996).
Indications of double-loop learning were:

• The SPI group in EastSoft was dissolved because a dedicated group working full
time on SPI was seen as too expensive. The members of this group were
transferred to ordinary projects, making their SPI competence available for
running projects.

• The goal of creating strong empowered teams able to deliver more frequently
than before.

After the decision of introducing change-driven development, the focus turned to
asking: “Are we doing agile right?”. The main goal of the improvement work was to
conduct development according to the processes and roles described by the Scrum
methodology, hence single-loop learning (Argyris and Schön 1996)

The change-driven approach was found to provide a strong infrastructure for continuous
improvement and single-loop learning, because it encourages frequent problem
reporting and fast feedback on improvement measures. The daily meetings made it
possible to continuously correct failures and potentially modify the development

Discussion#

- 77 -

processes based on actual experience. The outcome was sometimes immediate as it led
to an on-the-spot adjustment of actions.

The awareness of a problem is often the first important step towards a solution, and
therefore it can be argued that change-driven development is a great facilitator for SPI.
This is in agreement with the research of Mathiassen et al (2005), who found that such a
strong infrastructure greatly enhanced SPI implementation. The observed effect of short
iterations supporting more learning and better facilitating change is also in agreement
with the findings of Børjesson and Mathiassen (2004), who studied the Swedish
company Ericsson.

By introducing change-driven development, the organization moved from reflection on
finished projects to continuous reflection within projects, and therefore changed focus
from improving future project to improving current projects. However, while it became
less important to put effort into preparation for improving future projects, the
developers spread the knowledge from running projects to future projects in which they
participated.

It was also found that short iterations made it easier to manage the projects because they
gave the team and project managers a continuous and updated overview of the project
status and emergent issues, even though some problems were not reported. It was also
less complex to correct defects because the time between the introduction and reporting
was shortened, making it possible for a developer to still remember the code he or she
wrote when the defect was introduced. In the plan-driven period it could be months
between introducing and solving a defect.

To summarize, frequent reporting of project and Scrum issues followed by the team
suggesting solutions, and a constant overview of the project progress, significantly
reduced the time between suggesting and evaluating SPI measures. The result was short
cycles of single-loop learning to improve the current project.

TOPOP E?QQN9=346(=71(D7N;1(=18<(845(4N=(N4;2(=71(Q9NG1>=(<84861<14=(

After introducing change-driven development, the focus shifted to creating strong self-
managing teams and to improving these teams. In the self-managing team (Hackman
1986), team members are responsible not only for executing the task but also for
monitoring, managing, and improving their own performance. Involving the whole team
in the frequent problem reporting and feedback sessions made this possible. Therefore,
it can be argued that there was an explicit attention to process improvement by the
whole team and that improving the ongoing project was driven by a participative

Discussion#

- 78 -

bottom-up approach. In addition, the SPI work no longer focused only on project
management activities and the startup and the closedown phase, but on all project
activities.

One example of SPI focus at the team and project level was the frequently reported
conflict between long-term quality and short-term progress. This conflict is usually
found in all projects because of the dynamic relationships between software processes
and the three outcome factors: cost, schedule, and quality (Krasner 1999), however in
the change-driven phase this conflict appeared at the end of every iteration. It was found
that the need for long-term quality was given a lower priority than the need for short-
term progress. This is in agreement with Ramesh et al (2010), who found that agile
practices result in non-functional requirements being neglected. Also, the iteration
pressure made developers stop following the process implemented (i.e. not proper
testing). This is in agreement with Zazworka et al (2010) that received the following
answer when asking developers why they did not follow agile practices: ”the
implementation of new features to satisfy customer needs had a higher priority than
following the steps of the process” p. 8. There seemed to be three main reasons for this.
First, the team felt that their primary goal was to deliver according to the release plan
and that they always needed to show progress. This could also be one explanation why
Scrum masters and team members sometimes tried to give the impression that the team
was doing better than it actually was. Second, discussing and changing the release plan
was troublesome, because it meant involving top-level management, steering group, and
clients. Third, it was observed that the product owner seldom expressed quality as an
explicit requirement. Apparently, it was so obvious that often it was not even
mentioned.

Although change-driven development enables early identification of problems and a
strong SPI focus at the team and project level, it did not improve the quality of the
software products in the studied team. Most likely, the productivity of the developers
also did not improve, despite the fact that it became easier to correct defects.

Short iterations and frequent feedback enabled SPI support for the whole team. Berente
and Lyytinen (2007) argue that iterative development is a more complex concept, and a
more complex development process might affect the ability to improve it. The argument
supporting the higher complexity of iterative development is that project members need
to move back and forth between cognitive or material spaces by constantly refining
families of artifacts including conceptual, representational, process instantiations, or
methodology. Although this study was not concerned with these particular phenomena,
it was found that the iterative approach was challenging mainly because it required the

Discussion#

- 79 -

teams to coordinate work more frequently. Frequent face-to-face coordination of work
made mutual adjustment even more important as the primary coordinating mechanism
within the team, as well as between the team and the product owner. Using the
framework for coordinating work by Mintzberg (1989), it can be argued that this made
the teams even more capable of solving problems, executing highly complex tasks, and
performing innovative work.

TOR HRZ(H78=(891(=71(I12(E@!(>78;;1461@(D714(3<Q;1<14=346(>78461X593:14(
51:1;NQ<14=]((

The self-managing team is the one responsible for SPI on the project level. However,
this requires that the team is really able to self-manage, which was found to be a
challenge. For a team to self-manage the team autonomy must be strong and the team
needs to adopt double-loop learning and learn to learn. In addition, the team must be
able to affect managerial decisions, which influence the ability to improve the team’s
internal processes.

TOROM 7918=346(>N453=3N4@(AN9(@1;AX<84861<14=((

Creating team autonomy was a challenge because the high individual autonomy from
the plan-driven period persisted, and this often seemed to be in conflict with the need
for high team autonomy. High individual autonomy resulted in individual goals
becoming more important than team goals. Interaction between group members was
difficult and, therefore, threatened collaboration, cooperation, and subsequently the
teamwork. The observed effects are in agreement with the findings of Kraut and
Streeter in their survey on coordination in software development (Kraut and Streeter
1995). The conflict in combining high team autonomy with individual autonomy was
also confirmed by Langfred (2005), who found that when high autonomy exists both at
the team and individual level, team performance decreases. One explanation why team
members did not reduce their individual autonomy was that it was seen as beneficial by
the developers. In other words, team level goals did not immediately become more
important than individual goals through implementation of change-driven development.
While the organizations seldom debated this problem, they frequently experienced and
discussed its symptoms. Examples of symptoms were team members making their own
individual plans, not reporting problems, taking decisions without informing others,
known as decision-hijacking (Aurum, Wohlin and Porter 2006), and team members
taking decisions based on expert power, known as technocracy (Morgan 2006).

Through frequent planning, daily, and retrospective meetings, team level autonomy
increased. Team members experienced this as a positive change; however, at the same

Discussion#

- 80 -

time they saw it as a more rigid control of each team member compared to the plan-
driven period. This is in agreement with Barker (1993), who pointed out that self-
managing teams may end up controlling group members more rigidly than with
traditional management styles. Even though this particular phenomenon was not
investigated in this study, it can be argued that it caused resistance against change
because the need for reducing the individual autonomy was not seen as an immediate
improvement by the individuals. Resistance against change also made it difficult for the
team to improve their development processes. Hence, this was a challenge for
implementing SPI in change-driven development.

Teams were also hindered from affecting managerial decisions, which influenced the
ability to improve the team’s internal processes, and subsequently the ability to self-
manage. Management outside the team did not always respect the team’s efforts for
improvement, which caused the teams to experience symbolic self-management.
Symbolic self-management is a well-known obstacle to true self-management (Tata and
Prasad 2004). There seem to be two reasons why management outside the team did not
respect or support improvement measures suggested by the team.

First, management did not agree with or understand the reason for the problems
reported, because management activities and processes changed little by the adoption of
the change-driven approach. Introducing change-driven development requires the whole
organization to change (Vinekar, Slinkman and Nerur 2006). Examples of the areas
with the greatest need for organizational changes were management of resources across
teams and handling support. Changing the organizational culture at project level was
probably also seen as a threat because it conflicted with existing and established habits
of the management. The effect of such threats is confirmed by the argument of van
Solingen et al. (2000) explaining why SPI and organizational learning are difficult, and
Schneider et al (2002) who found that management might end up blocking emerging
change when they do not understand the implication of change.

Second, top management was not involved in the process improvement, although it is a
prerequisite for becoming a well-functioning SPI organization (Aaen, Arent et al. 2001;
Dybå 2005). Salo and Abrahamsson (2005) found that without support from the
organizational level, a majority of improvement measures agreed upon within project
teams cannot be implemented. One example of an organizational SPI issue not
addressed at the organizational level was the need for building redundancy, to make
developers cooperate more, and to make the team flexible and adaptable to changing
conditions. From a socio-technical perspective building redundancy is necessary for the
team to have boundary control (Cummings 1978), which is essential for creating the

Discussion#

- 81 -

self-managing team. However, building redundancy requires additional resources,
which should be the responsibility of the organization (Fægri, Dybå and Dingsøyr
2010). However, the top management did not see this as a problem, and hence this did
not change much.

TOROP D1894346(=N(;1894((

Although the teams frequently reported problems, they experienced difficulties making
the necessary changes to solve them. It can be argued that when an organization only
suggests improvement measures without being able to implement them, only a potential
for improvement exist. One reason for difficulties with implementation was the high
individual autonomy, which caused resistance to change. Another reason was that team
members either did not manage or were not willing to discuss the underlying cause of
problems. Some developers wanted to avoid interpersonal conflict, and some found it
more important to conform to other group members, which is an indication of a lack of
openness in the team. As a result the teams experienced ineffective decision-making
when discussing the need for improvement. This is in agreement with the findings of
McAvoy and Butler (2009) on reasons for ineffective decision-making in agile teams.
The effect of lack of openness on SPI is also in agreement with van Sollingen et al
(2000), who argue that openness and the ability to discuss the underlying problems is
one of the most important prerequisites for software process improvement and
organizational learning. Because the teams were not able to create a climate for
openness and change the way decisions were made, they did not improve the way of
reflecting and learning together. In other words, they did not learn to learn. Learning to
learn is also known as deutero-learning (Argyris and Schön 1996).

Organizational deutero-learning is critically dependent on individual deutero-learning
(Argyris and Schön 1996). This occurs in a team by questioning if we are doing things
right (single-loop learning), if we are doing the right things (double-loop learning), and
if we make these decisions, when answering “are we doing the right things?” correctly.
The teams did mostly single-loop learning by focusing on improving existing agile
practices. There were three important reasons for this. First, single-loop learning was
the main focus of the plan-driven period. Second, several proponents of agile
development claim universal applicability of agile methods, which results in teams
focusing on doing things according to the book when focusing on improvement work,
and not on questioning if they were doing the right things. Third, some teams tried to
give the impression that they were doing better than they actually were. The desire to
keep the schedule hindered the recognition of serious problems with the code quality.
Impression management (Morgan 2006) is a face-saving process where team members

Discussion#

- 82 -

seek to protect themselves from management. This generates shared norms and patterns
of group-thinking, which prevent people from addressing key issues.

From an organizational learning perspective, it can be claimed that engaging mostly in
single-loop learning was a challenge to SPI, because this stopped the teams from
questioning if they were doing the right things. Moreover, after several SPI problems
were not solved, team members stopped reporting them, which again affected the ability
to improve. It also affected the ability to become self-managing. For a team to become
self-managing it needs to change the operating norms and rules within the team, as well
as in the wider environment. This is in agreement with the arguments of Morgan (2006),
that a team needs to engage in double-loop learning to become self-managing.

TOROR 77846346(=71(N96843Y8=3N4(

The framework for organizational change proposed by Adler and Shenhar (1990) is
useful (Vinekar, Slinkman and Nerur 2006) to explain why it was so difficult for the
organizations to change the way of improving and learning to learn after introducing
change-driven development (Figure 9). Technological and process changes, like
introducing new ways of planning and new ways of coordinating work, were observed
in all companies. Such changes occur at the skill and procedure levels, where the
magnitude of change is small, the level of learning needed is low, and the time to adjust
is short (Adler and Shenhar 1990). However, there was also a need for the organizations

Figure 9 Framework for organizational change (Adler and Shenhar 1990)

!"#$%&'()(*+(,-"$#).%/)(&*("(0'1&

2)3)4(*+(4)"5$%$#(5)6'%5)(

!"#$$%

&'()*+,'*%

!-',)-,'*

!-'.-*/0

1,$-,'*

!2.$$ 3.'/*4**"%5(6-7%8*.'%

Discussion#

- 83 -

to change at the levels of culture, strategy, and structure. The magnitude of such change
is relatively large, the level of learning required is high, and the time to adjust is long
(Adler and Shenhar 1990). Therefore, it can be argued that introducing and improving
change-driven development requires substantial changes in the whole organization,
which will take years to implement. This argument is in agreement with Schneider et al
(2002) who argue that it takes a long time to create a learning organization.

TOS !7Q89:8;9N<=(>N?(?@=@8?:A(8<B(Q?8:;9:@((

This multiple case study of software process improvement in three small and medium-
sized companies introducing change-driven development has a number of implications
for research and practice.

For research, this thesis shows a clear need for more empirical studies of organizational
learning in change-driven development. There are two reasons for this. First, for a
change-driven team to improve, it needs to question not only if the team is doing things
right (single-loop learning), but also if the team is doing the right things (double-loop
learning) and how to develop new structures and strategies to achieve double-loop
learning. Second, for an organization to implement change-driven development it needs
to change, not only in terms of skills and procedures but also in terms of structure,
strategy and culture, which requires a high level of organizational learning. How to do
this in practice is not well understood, especially not in the context of change-driven
development. In addition, such changes take years, which means that there is a need to
do more longitudinal studies on the adoption of agile methods. There is also a need for a
better understanding of what a mature agile organization means. Based on the results in
this thesis, practicing agile methods for only one or two years is obviously not enough.
(
Furthermore, this study also shows a need for more empirical studies on self-managing
software teams. Self-management is fundamental for change-driven development and
for SPI in change-driven development. However, self-management has been largely
ignored in research literature on agile methods (Hoda, Noble and Marshall 2011) and it
is usually taken for granted. Also self-management is difficult to implement because of
the complex nature of software development, which seems to encourage high individual
autonomy and specialization. Research needs to explore how to balance individual and
team autonomy in a software team, iteration pressure and the need for improvement
work, and cross functionality and specialization on an individual level as well as on a
team level. Researchers also need to understand the implications for this balancing act
on the individual, team and organizational level, because the balancing act is about

Discussion#

- 84 -

changing the mindset of individuals, team decision-making and leadership, and informal
and formal organizational structures.

As previously pointed out, a main point in the discussion of the results of this research
dealt with learning. While the teams were mostly focusing on single-loop learning, it
was found that the organization engaged in double-loop learning when creating the EPG
and when introducing change-driven development. The companies moved from a period
of change to a period of stability, and then back into change (introducing agile
methodology), before once again achieving stability (improving agile practices), which
can also been described using the punctuated equilibrium model (Lant and Mezias
1992). To succeed with SPI, a balance should be found between optimizing current
processes (single-loop learning) and experimenting with new approaches to determine
whether they are better than the existing ones (double-loop learning). This is in
agreement with van Solingen et al (2000), who argue that there should be a parallel
application of optimization of current practices and experimentation with new ones.
Hence, the future research should look into the balance between process innovation
(Davenport 1993) and process improvement. Also, there is a need for understanding
how to develop new structures and strategies to achieve double-loop learning in
software organizations.

Learning to learn is difficult; a post-iteration workshop for agile teams, as suggested by
Salo and Abrahamsson (2007), could be one framework to apply when the team is
having problems learning. This framework relies on an external facilitator helping the
team to reflect and to use techniques like the root cause analysis to understand the
problems better. All organizations studied in this thesis could have benefitted from
improving their retrospectives.

Based on the previous discussion the following recommendations for practice are
proposed:

• Involve the whole organization. Because of the magnitude of change and
learning required to implement change-driven development, and to make SPI
effective, the whole organization needs to be involved to be able to succeed.

• Long-term horizon. The magnitude of change requires that the organization
focuses on both long-term and short-term aspects of SPI.

• Experiments with new approaches. There should be a balance between
optimizing current processes and experimenting with new approaches.

• Create a climate for openness. Openness is important for learning how to reflect
and discuss problems together.

Discussion#

- 85 -

• Balance individual and team autonomy. Autonomy at the individual level may
conflict with autonomy at the group level, counteracting cohesiveness and,
indirectly, effectiveness of the team.

TOT D979;8;9N<=(

The main limitation of this multiple case study is the possibility of bias in data
collection and analysis. While the studies in the plan-driven period focused on the
organizational level, the focus in the change-driven period was mostly on teams and
projects. The reason for this change of focus was the change in the SPI work focus,
from the organization to the team. The consequence of this change in focus is that I did
not fully investigate SPI on the team and project level in the plan-driven period, and I
did not fully investigate SPI on the organizational level in the change-driven period.
Subsequently this is reflected in my answer to research question one and two.

The fact that a multiple case holistic design was used makes it possible to reduce some
of this bias. The general criticisms of case studies, such as uniqueness and special
access to key informants, may also apply to this study. However, the rationale for
choosing three companies and several projects in these companies was that they
represent a critical case for explaining the challenges, which arise for SPI in plan-driven
and change-driven development. The goal was not to provide statistical generalizations
about a population on the basis of data collected from a sample of that population.

Another possible limitation is that much of the data collection and analysis was based
on semi-structured interviews and participant observation. The consequence of this
limitation is that the results are under the influence of my interpretation of the
phenomena observed and investigated. The use of multiple data sources made it
possible to confirm evidence for episodes and phenomena. The study included
observing, talking to, and interviewing team members and managers in all companies
and all projects, which made it possible to investigate the phenomena from different
viewpoints as they emerged and changed, thus reducing this limitation. Also giving
feedback to the observed teams and discussing my interpretation of what was going on
helped validating my conclusions.

With action research, the SPI work was also influenced by me participating in planning
and conducting the improvement work, as well as in the introduction of the change-
driven approach. The consequence of this is that the improvement measures suggested
was heavily influenced by what I believed was beneficial for the companies
investigated. This approach however provided a unique insight into the problem

Discussion#

- 86 -

investigated; also my aim was not to evaluate the success or failure of the SPI work
conducted.

TOU C@:N77@<B8;9N<=(>N?(>C;C?@(DN?E(

This work is an attempt to understand SPI in change- and plan-driven development.
Implementing SPI on all levels of the organization and enabling self-management are
essential success factors for SPI in change-driven development; however, none of the
organizations investigated was able to establish fully self-managing teams during the
period of observation. Accordingly, further work should focus on investigating SPI in a
fully self-managing team to determine what characterizes the SPI process and how
learning is organized in such a team.

Furthermore, there is a need for exploring how to involve and change the whole
organization when adopting change-driven development, and how to make management
commit to long-term organizational transformation in a dynamic and turbulent
environment. It is therefore important to investigate how the process of organizational
change should be conducted in the challenging and complex environment of software
development.

Last, there is a need for research on the emerging trend of global sourcing in change-
driven development (Smite, Moe and Ågerfalk 2010) and software process
improvement. Global sourcing promises organizations the benefits of reaching mobility
in resources, obtaining extra knowledge through deploying the most talented people
from around the world, accelerating time-to-market, increasing operational efficiency,
improving quality, expanding through acquisitions, reaching proximity to market, and
many more. However, as the history of previous emerging trends shows, these benefits
are neither clear cut nor can their realization be taken for granted. One emerging
tendency is that many companies are applying change-driven methods to their
distributed projects to meet challenges related to process improvement, communication,
and coordination. This will make SPI an even more challenging task because of cultural
diversity, time zone differences, and geographical distances. An important area for
future research is therefore to understand SPI when applying change-driven methods in
global software development.

Conclusion#

- 87 -

U 7N<:8C=9N<(

The previous chapter discussed the answers to the three research questions posed in
Chapter 1. This final chapter presents the conclusions regarding the overall research
problem and questions, and lists the contributions made by this thesis.

Motivated by the importance of SPI in software development, the fundamental
differences in SPI between traditional and agile software development, and the lack of
research in this area, the overall problem put forward in this thesis was:

How does Software Process Improvement work change with the
introduction of agile software development in plan-driven companies?

To narrow the focus of the investigation, the research problem was addressed by
studying three research questions. To solve the overall problem formulated in this thesis
the answer to each research question will be first presented.

RQ 1:

What characterizes SPI in plan-driven companies?

The dominant perspective in NorSoft and EastSoft in the plan-driven period was to
identify company’s best practice, and to document it in an EPG through a participative
bottom-up approach. The goal was to make projects predictable by identifying a
common process for developers, managers, sales, and support. Using the concepts of
Argyris and Schön (1996), the creation of the EPG can be understood as a double-loop
learning activity, while improving it through reflection on finished projects can be
understood as single-loop learning. The main focus was on single-loop learning and
continuous improvement, however the speed of learning at the organizational level was
slow because reflection only took place at the end of a project, and process
improvement initiatives were not evaluated before they were applied to the next project.
In addition, while the project management activities were well supported, the
developers experienced little or no support for their tasks, which made the organization
unintentionally support innovation and solving complex problems through mutual
adjustment. In addition, all companies relied on specialization and corresponding

Conclusion#

- 88 -

division of work. As a result, the developers had high individual autonomy, which is an
important motivator for SPI.

The main conclusion drawn from the answer to the first research question is that SPI in
plan-driven companies is characterized by a participative bottom-up approach when
creating company best practice, project management support focus, high individual
autonomy, and long cycles of single-loop learning; the goal of reflection on projects is
to improve future projects.

RQ 2:

What characterizes SPI in change-driven companies?

Introducing agile software development can be understood as double-loop learning,
while improvement work centered on making agile methods work in the project has
been described as single-loop learning. Improvement work also changed focus from
improving future projects to improving the ongoing project, which resulted in short
feedback loops on improvement measures. Short feedback loops gave the team a good
overview of the project progress, which was helpful in managing the project and the SPI
work. In addition, SPI changed focus from supporting project management activities to
supporting the whole team and all activities. Change-driven development provided a
strong infrastructure for SPI because the team reported problems frequently, however it
was challenging to solve process related problems.

The main conclusion drawn from the answer to the second research question is that SPI
in change-driven companies is characterized by supporting the whole team, not only
project management; practice is improved by short cycles of single-loop learning, and
the goal of reflection in projects is to improve the current project.

RQ 3:

What are the key SPI challenges when implementing change-
driven development?

Software process improvement in the change-driven period was planned, executed, and
evaluated by the empowered self-managing team. The team’s ability to implement self-
management, i.e. shared leadership, shared decision-making, and high team autonomy,
was therefore a key SPI challenge, while specialization was the main obstacle to
achieving this. Process problems were identified but often not solved, therefore only the

Conclusion#

- 89 -

potential for improvement existed. Software process improvement from an
organizational learning perspective was particularly challenging because it became
evident that the organizations had problems to engage in double-loop learning and to
learn how to learn. Introducing change-driven development required a change in skills,
procedures, structure, strategy, and culture, which required changes on the individual,
project, and organizational level. This is why the transition from plan-driven to change-
driven development takes months and years.

The main conclusion drawn from the answer to the third research question is that SPI
challenges while implementing change-driven development are the problems of
increasing redundancy to create conditions for the team to self-manage, to learn how to
learn, and to perceive the adoption of change-driven development as a large long- term
organizational change project.

Taken together, the answers to these three research questions constitute the main
contribution of this thesis. So, returning to the original question on how software
process improvement work changes when introducing agile software development in
plan-driven companies, the following was found:

• Organizational learning changed from post-project reflection to reflection as part
of the project.

• The goal of improvement work changed from improving future projects to
improving current projects.

• Improvement work changed from supporting project management to supporting
the whole team, and from supporting startup and closedown to supporting all
processes in the project.

• The role of participation changed from being a part of creating and improving
the best practice descriptions to being a part of improving practice.

• In regards to autonomy, focus changed from individual autonomy to team
autonomy and self-management, and as a result, the teams controlled group
members more rigidly than in plan-driven development.

While the focus of this thesis was to identify how SPI work changed, I also found that
some aspects did not change:

• Single-loop learning was the major focus, and hence the organizations had
problems learning to learn.

• The primary coordinating mechanism was mutual adjustment.
• SPI was bottom-up and relied on involvement.
• Developers retained high individual autonomy.

Conclusion#

- 90 -

Finally, I found that organizations take self-management for granted. However, a team
does not automatically become self-managing by introducing change-driven
development, with the main barrier being specialization. Also, creating self-managing
software teams is about balancing individual autonomy and team autonomy, iteration
pressure and the need for improvement work, and cross functionality and specialization
on an individual level as well as on a team level.

"2-2'2<=2%#

- 91 -

C@>@?@<:@=(

"#$%&!'(!)*++,-(!.//$%0$1!2#03435#53%6!"634$!'%%78#537%(!"634$!9:70$//$/!3%!;7<5=#:$!.%63%$$:3%6!#%>!.?5:$@$!9:76:#@@3%6(!9(!"A:#B#@//7%&!C(!D#/E$:8344$&!F(!G7%A7H$5!#4&!;I:3%6$:!D$:43%!J$3>$4A$:6(!K1!LML+(!"#$%&!'(&!":$%5&!N(&!O#5B3#//$%&!P(!#%>!Q6=$%H#@#&!R(!)*++L-(!"!07%0$I5S#4!@#I!7<!/7<5=#:$!I:70$//!3@I:78$@$%5(!;0#%>(!N(!'%<(!;H/5(!LT1!L*TMLUV(!"#$%&!'(&!DW:X$//7%&!"(!#%>!O#5B3#//$%&!P(!)*++Y-(!Q#836#53%6!;7<5=#:$!9:70$//!'@I:78$@$%5!9:7X$05/(!DS/3%$//!"63435H!#%>!'%<7:@#537%!Z$0B%7476H![3<<S/37%(!C(!D#/E$:8344$&!P(!O#5B3#//$%&!N(!9:3$/MJX!#%>!N(![$\:7//&!;I:3%6$:!D7/57%(!L,+1!YTM]L(!"A:#B#@//7%&!9(&!;#47&!R(&!C7%E#3%$%&!N(!#%>!^#:/5#&!N(!)*++*-(!"634$!/7<5=#:$!>$8$47I@$%5!@$5B7>/!M!C83=!#%>!#%#4H/3/&!_ZZ!9SA430#537%/(!"0S%#&!;(!Z(&!\7@$`&!O(!#%>!NS:3/57&!Q(!)*++K-(!J7=!>7!I$:/7%#435H&!5$#@!I:70$//$/!#%>!5#/E!0B#:#05$:3/530/!:$4#5$!57!X7A!/#53/<#0537%!#%>!/7<5=#:$!aS#435Hb!'%<7:@#537%!#%>!;7<5=#:$!Z$0B%7476H!YL)T-1!V*]MVTK(!">4$:&!9(!;(!#%>!;B$%B#:&!"(!)LKK+-(!">#I53%6!H7S:!5$0B%747630#4!A#/$1ZB$!7:6#%3`#537%#4!0B#44$%6$(!;47#%!O#%#6$@$%5!C$83$=!)T*-L1!*YcT](!"@A:374#&!_(&!G7%:#>3&!C(!#%>!2S66$55#&!"(!)LKK]-(!"//$//3%6!9:70$//MG$%5$:$>!;7<5=#:$!.%63%$$:3%6!.%83:7%@$%5/(!"GO!Z:#%/#0537%/!7%!;7<5=#:$!.%63%$$:3%6!O$5B7>7476H!V)T-1!*,TMT*,(!":6H:3/&!G(!)LK]V-(!;3%64$M477I!#%>!>7SA4$M477I!@7>$4/!3%!:$/$#:0B!7%!>$03/37%!@#E3%6(!">@3%3/5:#538$!;03$%0$!dS#:5$:4H!*L!)T-1!TVTcT]Y(!":6H:3/&!G(!#%>!;0BW%&![(!"(!)LKKV-(!R%!R:6#%3`#537%#4!P$#:%3%6!''1!ZB$7:H&!O$5B7>!#%>!9:#053/$(!C$#>3%6&!O"&!">>3/7%!^$/4$H(!"S:S@&!"(&!^7B43%&!G(!#%>!97:5$:&!"(!)*++V-(!"436%3%6!;7<5=#:$!9:7X$05![$03/37%/1!"!G#/$!;5S>H(!'%5$:%#537%#4!N7S:%#4!7<!;7<5=#:$!.%63%$$:3%6!#%>!F%7=4>6!.%63%$$:3%6!LV)V-1!]KYM,L,(!"83/7%&![(&!P#S&!2(&!OH$:/&!O(!#%>!Q3$4/$%&!9(!"(!)LKKK-(!"0537%!:$/$#:0B(!G7@@S%30#537%/!7<!5B$!"GO!U*)L-1!KUMK](!"83/7%&![(!.(!#%>!235`6$:#4>&!\(!)LKKY-(!'%<7:@#537%!;H/5$@/![$8$47I@$%51!O$5B7>74763$/&!Z$0B%3aS$/!#%>!Z774/(!Q$=!e7:E&!O0\:#=MJ344(!D#>>77&!Q(!#%>!J#44&!Z(!)*++*-(!O7538#57:/!7<!;7<5=#:$!9:70$//!'@I:78$@$%51!#%!#%#4H/3/!7<!I:#053537%$:/f!83$=/(!N7S:%#4!7<!;H/5$@/!#%>!;7<5=#:$!V*)*-1!,YMKV(!D#:E$:&!N(!C(!)LKKT-(!Z36B5$%3%6!5B$!':7%!G#6$!M!G7%0$:538$!G7%5:74!3%!;$4<MO#%#63%6!Z$#@/(!">@3%3/5:#538$!;03$%0$!dS#:5$:4H!T,)T-1!U+,MUT](!D#:5B$4@$//&!9(!)*++T-(!G744#A7:#537%!#%>!077:>3%#537%!3%!I:70$//M0$%5$:$>!/7<5=#:$!>$8$47I@$%5!$%83:7%@$%5/1!#!:83=!7<!5B$!435$:#5S:$(!'%<7:@#537%!#%>!;7<5=#:$!Z$0B%7476H!UY)LT-1!KLLMK*,(!

"2-2'2<=2%#

- 92 -

D#/343&!_(!C(!)LK,K-(!;7<5=#:$!>$8$47I@$%51!#!I#:#>36@!<7:!5B$!<S5S:$(!9:70$$>3%6/!7<!5B$!LT5B!'%5$:%#537%#4!G7@IS5$:!;7<5=#:$!#%>!"II430#537%/!G7%<$:$%0$!)GRO;"G-1!U]LMU,Y(!D#/E$:8344$&!C(!#%>!OH$:/&!O(![(!)*++U-(!;I$03#4!'//S$!7%!"0537%!C$/$#:0B!3%!'%<7:@#537%!;H/5$@/1!O#E3%6!3/!C$/$#:0B!C$4$8#%5!57!9:#0530$!M!27:$=7:>(!O3/!dS#:5$:4H!*,)T-1!T*KMTTY(!D#/E$:8344$&!C(!#%>!^77>MJ#:I$:&!"(!Z(!)LKK,-(![38$:/35H!3%!3%<7:@#537%!/H/5$@/!#0537%!:$/$#:0B!@$5B7>/(!.S:7I$#%!N7S:%#4!7<!'%<7:@#537%!;H/5$@/!])*-1!K+ML+](!D#/E$:8344$&!C(!P(!#%>!^77>J#:I$:&!"(!Z(!)LKKV-(!"!0:3530#4!I$:/I$0538$!7%!#0537%!:$/$#:0B!#/!#!@$5B7>!<7:!3%<7:@#537%!/H/5$@/!:$/$#:0B(!N7S:%#4!7<!'%<7:@#537%!Z$0B%7476H!LL)T-1!*TYM*UV(!D#S@6#:5$4&!J(!)LKYK-(!g/3%6!$@I47H$$!aS$/537%%#3:$!:$/S45/!<7:!3@I:783%6!7:6#%3`#537%/1!ZB$!/S:8$H!h<$$>A#0Eh!$?I$:3@$%5(!F#%/#/!DS/3%$//!C83=!L*1!*MV(!D$0E&!F(!#%>!"%>:$/&!G(!)*++U-(!.?5:$@$!9:76:#@@3%6!.?I4#3%$>1!.@A:#0$!GB#6$!)*%>!$>-&!">>3/7%M^$/4$H(!D$0E$:MF7$:%/5#$>5&!g(!)*++L-(!Z7=#:>/!;H/5$@#530!F%7=4$>6$!.43035#537%!<7:![$/0:3I538$!;7<5=#:$!9:70$//!O7>$43%6(!9:70$$>3%6/!7<!5B$!9:7>S05M<70S/$>!/7<5=#:$!I:70$//!3@I:78$@$%5!07%<$:$%0$!)9CR2.;-(!2(!D7@#:3S/!#%>!;(!F7@3M;3:83W(!D$:43%!J$3>$4A$:6&!;I:3%6$:!_$:4#6(!*L,,1!TL*!M!T*Y(!D$:$%5$&!Q(!#%>!PHH53%$%&!F(!)*++]-(!^B#5!3/!A$3%6!35$:#5$>b!C$<4$0537%/!7%!35$:#537%!3%!3%<7:@#537%!/H/5$@!$%63%$$:3%6!I:70$//$/(!G7%0$I5S#4!@7>$443%6!3%!3%<7:@#537%!/H/5$@/!$%63%$$:3%6(!"(!;i48A$:6&!N(!F:76/53$&!"(!RI>#B4!#%>!;(!D:3%EE$@I$:(!D$:43%!j!Q$=!e7:E&!;I:3%6$:1!*VLM*],(!DX$:E%$/&!\(!#%>!D:#55$5$36&!Z(!)LKKY-(!g/$:!9#:5303I#537%!#%>![$@70:#0H1!"![3/0S//37%!7<!;0#%>3%#83#%!C$/$#:0B!7%!;H/5$@/![$8$47I@$%5(!;0#%>3%#83#%!N7S:%#4!7<!'%<7:@#537%!;H/5$@/!])L-1!]TMK,(!D7$B@&!D(!)LK,,-(!"!/I3:#4!@7>$4!7<!/7<5=#:$!>$8$47I@$%5!#%>!$%B#%0$@$%5(!G7@IS5$:!*L)Y-1!VLM]*(!D7$B@&!D(!)*++*-(!\$5!C$#>H!<7:!"634$!O$5B7>/&!=35B!G#:$(!G7@IS5$:!TY)L-1!VUMVK(!D7$B@&!D(!)*++V-(!"!83$=!7<!*+5B!#%>!*L/5!0$%5S:H!/7<5=#:$!$%63%$$:3%6(!9:70$$>3%6/!7<!5B$!*,5B!3%5$:%#537%#4!07%<$:$%0$!7%!;7<5=#:$!$%63%$$:3%6(!;B#%6B#3&!GB3%#&!"GO1!L*M*K(!D7$B@&!D(!#%>!ZS:%$:&!C(!)*++T-(!D#4#%03%6!"63435H!#%>![3/03I43%$1!"!\S3>$!<7:!5B$!9$:I4$?$>&!">>3/7%M^$/4$H!!D7$B@&!D(!#%>!ZS:%$:&!C(!)*++Y-(!O#%#6$@$%5!GB#44$%6$/!57!'@I4$@$%53%6!"634$!9:70$//$/!3%!Z:#>3537%#4![$8$47I@$%5!R:6#%3`#537%/(!'...!;7<5=#:$!**)Y-1!T+MTK(!Di:X$//7%&!"(!#%>!O#5B3#//$%&!P(!)*++U-(!;S00$//<S4!I:70$//!3@I4$@$%5#537%(!'...!;7<5=#:$!*L)U-1!TVMUU(!GB344#:6&!C(&!DB#%>#:3&!'(!;(&!GB##:&!N(!F(&!J#443>#H&!O(!N(&!O7$AS/&![(!;(&!C#H&!D(!F(!#%>!^7%6&!O(Me(!)LKK*-(!R:5B767%#4![$<$05!G4#//3<30#537%M"!G7%0$I5!<7:!'%M9:70$//!O$#/S:$@$%5/(!'...!Z:#%/#0537%/!7%!;7<5=#:$!.%63%$$:3%6!L,)LL-1!KUTMKYV(!

"2-2'2<=2%#

- 93 -

G3A7::#&!G(!)LKKT-(!Z$#@/&!O#:E$5/!#%>!;H/5$@/1!DS/3%$//!'%%78#537%!#%>!'%<7:@#537%!Z$0B%7476H(!G#@A:3>6$&!gF&!G#@A:3>6$!g%38$:/35H!9:$//(!G70EAS:%&!"(!#%>!J36B/@35B&!N(!)*++L-(!"634$!/7<5=#:$!>$8$47I@$%51!ZB$!I$7I4$!<#057:(!G7@IS5$:!TU)LL-1!LTLMLTT(!G7B$%&![(&!P3%>8#44&!O(!#%>!G7/5#&!9(!)*++U-(!"%!'%5:7>S0537%!57!"634$!O$5B7>/(!">8#%0$/!3%!G7@IS5$:/&!">8#%0$/!3%!;7<5=#:$!.%63%$$:3%6(!O(!_(!k$4E7=35`(!"@/5$:>#@&!.4/83:(!V*(!G7B$%&!;(!\(!#%>!D#34$H&![(!.(!)LKK]-(!^B#5!@#E$/!5$#@/!=7:E1!\:7SI!$<<$0538$%$//!:$/$#:0B!<:7@!5B$!/B7I!<477:!57!5B$!$?$0S538$!/S35$(!N7S:%#4!7<!O#%#6$@$%5!*T)T-1!*TKM*K+(!G7%:#>3&!C(!#%>!2S66$55#&!"(!)*++*-(!'@I:783%6!;7<5=#:$!9:70$//!'@I:78$@$%5(!'...!;7<5=#:$!LK)U-1!K*MKK(!G7%/5#%53%$&!P(!P(!)LKKT-(!^7:E!7:6#%3`#537%1!I#:#>36@/!<7:!I:7X$05!@#%#6$@$%5!#%>!7:6#%3`#537%(!G7@@S%(!"GO!TV)L+-1!TYMUT(!G:S`$/&![(!;(!#%>![HAl&!Z(!)*+L+-(!;H%5B$/3`3%6!$83>$%0$!3%!/7<5=#:$!$%63%$$:3%6!:$/$#:0B(!9:70$$>3%6/!7<!5B$!*+L+!"GOM'...!'%5$:%#537%#4!;H@I7/3S@!7%!.@I3:30#4!;7<5=#:$!.%63%$$:3%6!#%>!O$#/S:$@$%5(!D74`#%7MD7`$%&!'5#4H&!"GO1!LML+(!GS@@3%6/&!Z(!\(!)LK],-(!;$4<MC$6S4#53%6!^7:E!\:7SI/1!"!;7037MZ$0B%30#4!;H%5B$/3/(!ZB$!"0#>$@H!7<!O#%#6$@$%5!C83=!T)T-1!V*YMVTU(![#8$%I7:5&!Z(!J(!)LKKT-(!9:70$//!'%%78#537%1!C$$%63%$$:3%6!^7:E!5B:7S6B!'%<7:@#537%!Z$0B%7476H(!D7/57%&!O#//(&!J#:8#:>!DS/3%$//!;0B774!9:$//(![#83/&!2(![(!)LK,K-(!9$:0$38$>!g/$<S4%$//&!9$:0$38$>!.#/$!7<!g/$&!#%>!g/$:!"00$I5#%0$!7<!'%<7:@#537%!Z$0B%7476H(!O3/!dS#:5$:4H!LT)T-1!TLKMTU+(![#83/7%&!C(&!O#:53%/7%/&!O(!\(!#%>!F70E&!Q(!)*++U-(!9:3%03I4$/!7<!0#%7%30#4!#0537%!:$/$#:0B(!'%<7:@#537%!;H/5$@/!N7S:%#4!LU)L-1!VYM,V(![$@3%6&!.(!^(!)*+++-(!RS5!7<!5B$!G:3/3/(!G#@A:3>6$&!O#//#0BS/$55/&!ZB$!O'Z!9:$//!)<3:/5!ISA43/B$>!3%!LK,*!AH!O'Z!G$%5$:!<7:!">8#%0$>!.>S0#537%#4!;$:830$/-(![$8#:#X&!;(!#%>!F7B43&!C(!)*++T-(!9$:<7:@#%0$!3@I#05/!7<!3%<7:@#537%!5$0B%7476H1!'/!#05S#4!S/#6$!5B$!@3//3%6!43%Eb!O#%#6$@$%5!;03$%0$!UK)T-1!*]TM*,K(![30E3%/7%&!Z(!P(!#%>!O0'%5H:$&!C(!O(!)LKK]-(!"!07%0$I5S#4!<:#@$=7:E!7<!5$#@=7:E!@$#/S:$@$%5(!Z$#@!9$:<7:@#%0$!"//$//@$%5!#%>!O$#/S:$@$%51!ZB$7:H&!O$5B7>/&!#%>!"II430#537%/(!O(!Z(!D:#%%30E&!.(!;#4#/!#%>!G(!9:3%0$(!QN&!9/H0B7476H!9:$//1!LKMUT(![3%6/7H:&!Z(!#%>!O7$&!Q(!D(!)*++,-(!ZB$!'@I#05!7<!.@I47H$$!9#:5303I#537%!7%!5B$!g/$!7<!#%!.4$05:7%30!9:70$//!\S3>$1!"!P7%635S>3%#4!G#/$!;5S>H(!'...!Z:#%/#0537%/!7%!;7<5=#:$!.%63%$$:3%6!TU)*-1!*L*M**Y(![3%6/iH:&!Z(!)*++Y-(!97/5@7:5$@!:$83$=/1!IS:I7/$!#%>!#II:7#0B$/!3%!/7<5=#:$!$%63%$$:3%6(!'%<7:@#537%!#%>!;7<5=#:$!Z$0B%7476H!U])Y-1!*KTMT+T(![3?7%M^77>/&!O(&!"6#:=#4&!;(&!N7%$/&![(&!e7S%6&!D(!#%>!;S557%&!"(!)*++Y-(!;H%5B$/3/3%6!aS#435#538$!#%>!aS#%535#538$!$83>$%0$1!#!:83=!7<!I7//3A4$!@$5B7>/(!N!J$#45B!;$:8!C$/!97430H!L+)L-1!UYMYT(![HAl&!Z(!)*+++-(!'@I:783/#537%!3%!;@#44!;7<5=#:$!R:6#%3`#537%/(!'...!;7<5=#:$!L])Y-1!,*M,](!

"2-2'2<=2%#

- 94 -

[HAl&!Z(!)*++Y-(!"%!$@I3:30#4!3%8$/536#537%!7<!5B$!E$H!<#057:/!<7:!/S00$//!3%!/7<5=#:$!I:70$//!3@I:78$@$%5(!'...!Z:#%/#0537%/!7%!;7<5=#:$!.%63%$$:3%6!TL)Y-1!UL+MU*U(![HAl&!Z(!)*++Y-(!"%!.@I3:30#4!'%8$/536#537%!7<!5B$!F$H!2#057:/!<7:!;S00$//!3%!;7<5=#:$!9:70$//!'@I:78$@$%5(!'...!Z:#%/#0537%/!7%!;7<5=#:$!.%63%$$:3%6!TL)Y-1!UL+!M!U*U(![HAl&!Z(!#%>![3%6/iH:&!Z(!)*++,-(!.@I3:30#4!/5S>3$/!7<!#634$!/7<5=#:$!>$8$47I@$%51!"!/H/5$@#530!:$83$=(!'%<7:@#537%!#%>!;7<5=#:$!Z$0B%7476H!Y+)KML+-1!,TTM,YK(![HAl&!Z(&!F350B$%B#@&!D(!"(!#%>!Ni:6$%/$%&!O(!)*++Y-(!.83>$%0$MD#/$>!;7<5=#:$!.%63%$$:3%6!<7:!9:#053537%$:/(!'...!;7<5=#:$!**)L-1!Y,MVY(![HAl&!Z(&!O7$&!Q(!D(!#%>!":3/B74@&!.(!)*++Y-(!O$#/S:3%6!;7<5=#:$!O$5B7>7476H!g/#6$1!GB#44$%6$/!7<!G7%0$I5S#43`#537%!#%>!RI$:#537%#43`#537%(!27S:5B!'%5$:%#537%#4!;H@I7/3S@!7%!.@I3:30#4!;7<5=#:$!.%63%$$:3%6!)';.;.-&!Q77/#!J$#>/&!"S/5:#43#&!'...!G7@IS5$:!;703$5H1!UU]MUY](![HAl&!Z(&!O7$&!Q(!D(!#%>!O3EE$4/$%&!.(!O(!)*++U-(!"%!.@I3:30#4!'%8$/536#537%!7%!2#057:/!"<<$053%6!;7<5=#:$![$8$47I$:!"00$I5#%0$!#%>!g5343`#537%!7<!.4$05:7%30!9:70$//!\S3>$/(!9:70$$>3%6/!7<!5B$!'%5$:%#537%#4!;7<5=#:$!O$5:30/!;H@I7/3S@!)O.ZC'G;-&!GB30#67&!'4&!g;"1!**+M*TL(!.@$:H&!2(!#%>!ZB7:/:S>&!.(!)LK]V-(![$@70:#0H!#5!=7:E1!5B$!:$I7:5!7<!5B$!Q7:=$63#%!3%>S/5:3#4!>$@70:#0H!I:76:#@(!P$3>$%&!O#:53%S/!Q3XB7<<!;703#4!;03$%0$/![383/37%(!.:30E/7%&!N(&!PHH53%$%&!F(!#%>!;3#S&!F(!)*++Y-(!"634$!O7>$43%6&!"634$!;7<5=#:$![$8$47I@$%5&!#%>!.?5:$@$!9:76:#@@3%61!ZB$!;5#5$!7<!C$/$#:0B(!N7S:%#4!7<![#5#A#/$!O#%#6$@$%5!LV)U-1!,,!M!L++(!2#H#>&!O(!.(&!P#353%$%&!O(!#%>!^#:>&!C(!9(!)*+++-(!;7<5=#:$!$%63%$$:3%6!3%!5B$!/@#44(!G7@@S%30#537%/!7<!5B$!"GO!UT)T-1!LLYMLL,(!2$%57%MRfG:$$8H&!O(!)LKK,-(!.@I47H$$!3%8748$@$%5!#%>!5B$!@3>>4$!@#%#6$:1!$83>$%0$!<:7@!#!/S:8$H!7<!7:6#%3`#537%/(!N7S:%#4!7<!R:6#%3`#537%#4!D$B#837:!LK)L-1!V]M,U(!235`6$:#4>&!D(!)LKK]-(!ZB$!S/$!7<!/H/5$@/!>$8$47I@$%5!@$5B7>74763$/!3%!I:#0530$1!#!<3$4>!/5S>H(!'%<7:@#537%!;H/5$@/!N7S:%#4!])T-1!*+LM*L*(!235`6$:#4>&!D(&!CS//7&!Q(!P(!#%>!RfF#%$&!Z(!)*++T-(!;7<5=#:$!>$8$47I@$%5!@$5B7>!5#347:3%6!#5!O757:74#(!G7@@S%30#537%/!7<!5B$!"GO!UV)U-1!VUM]+(!2m6:3&!Z(!.(&![HAl&!Z(!#%>![3%6/iH:&!Z(!)*+L+-(!'%5:7>S03%6!E%7=4>6!:$>S%>#%0H!I:#0530$!3%!/7<5=#:$!>$8$47I@$%51!.?I$:3$%0$/!=35B!X7A!:75#537%!3%!/SII7:5!=7:E(!'%<7:@#537%!#%>!;7<5=#:$!Z$0B%7476H!Y*)L+-1!LLL,MLLT*(!\$7:6#E7I7S47/&![(!#%>!J7:%30E&!O(!)LKKY-(!"%!R8$:83$=!7<!^7:E<47=!O#%#6$@$%51!2:7@!9:70$//!O7>$43%6!57!^7:E<47=!"S57@#537%!'%<:#/5:S05S:$(![3/5:3AS5$>!#%>!9#:#44$4![#5#A#/$/!T)*-1!LLKM!LYT(!\4#//&!C(!P(&!C#@$/B&!_(!#%>!_$//$H&!'(!)*++U-(!"%!#%#4H/3/!7<!:$/$#:0B!3%!07@IS53%6!>3/03I43%$/(!G7@@S%30#537%/!7<!5B$!"GO!U])V-1!,KMKU(!\:$$%=77>&![(!#%>!P$83%&!O(!)LKK,!-(!'%5:7>S0537%!57!#0537%!:$/$#:0B1!/703#4!:$/$#:0B!<7:!/703#4!0B#%6$(!ZB7S/#%>!R#E/&!G#&!;#6$(!\:75B&!P(!)LKKK-(!2S5S:$!R:6#%3`#537%#4![$/36%1!ZB$!;07I$!<7:!5B$!'ZMA#/$>!.%5$:I:3/$(!Q$=!e7:E&!N7B%!^34$H!n!;7%/(!

"2-2'2<=2%#

- 95 -

\S``7&!C(!"(!#%>![30E/7%&!O(!^(!)LKKV-(!Z$#@/!3%!7:6#%3`#537%/1!C$0$%5!:$/$#:0B!7%!I$:<7:@#%0$!#%>!$<<0538%$//(!"%%S#4!C$83$=!7<!9/H0B7476H!U]1!T+]MTT,(!J#0E@#%&!N(!C(!)LK,V-(!ZB$!I/H0B7476H!7<!/$4<M@#%#6$@$%5!3%!7:6#%3`#537%/(!9/H0B7476H!#%>!=7:E1!9:7>S053835H&!0B#%6$&!#%>!$@I47H@$%5(!O(!;(!9#44#0E!#%>!C(!R(!9$:47<<(!^#/B3%657%&![G&!"@$:30#%!9/H0747630#4!"//703#537%(!J#0E@#%&!N(!C(!)LK,]-(!ZB$!>$/36%!7<!^7:E!Z$#@/(!J#%>A77E!7<!7:6#%3`#537%#4!A$B#837:(!N(!P7:/0B(!.%64$=77>!G43<</&!Q(!N(!!&!9:$%530$MJ#44(!J#%/$%&!D(&!C7/$&!N(!#%>!ZX7:%$B7X&!\(!)*++U-(!9:$/0:3I537%&!>$/0:3I537%&!:$<4$0537%1!5B$!/B#I$!7<!5B$!/7<5=#:$!I:70$//!3@I:78$@$%5!<3$4>(!'%5$:%#537%#4!N7S:%#4!7<!'%<7:@#537%!O#%#6$@$%5!*U)V-1!UY]MU]*(!J$=355&!D(!#%>!^#4`&![(!)*++Y-(!g/3%6!;B#:$>!P$#>$:/B3I!57!27/5$:!F%7=4>6!;B#:3%6!3%!'%<7:@#537%!;H/5$@/![$8$47I@$%5!9:7X$05/(!9:70$$>3%6/!7<!5B$!T,5B!J#=#33!'%5$:%#537%#4!G7%<$:$%0$!7%!;H/5$@!;03$%0$/!)J'GG;-1!LMY(!J7>#&!C(&!Q7A4$&!N(!#%>!O#:/B#44&!;(!)*+LL-(![$8$47I3%6!#!6:7S%>$>!5B$7:H!57!$?I4#3%!5B$!I:#0530$/!7<!/$4<M7:6#%3`3%6!"634$!5$#@/(!.@I3:30#4!;7<5=#:$!.%63%$$:3%61!LMTL(!J7$64&!O(!#%>!\$@S$%>$%&!J(!\(!)*++L-(!Z$#@=7:E!dS#435H!#%>!5B$!;S00$//!7<!'%%78#538$!9:7X$05/1!"!ZB$7:$530#4!G7%0$I5!#%>!.@I3:30#4!.83>$%0$(!R:6#%3`#537%!/03$%0$!L*)U-1!UTYMUUK(!J7$64&!O(!#%>!9#:A75$$#B&!9(!)*++V-(!"S57%7@H!#%>!5$#@=7:E!3%!3%%78#538$!I:7X$05/(!JS@#%!:$/7S:0$!@#%#6$@$%5!UY)L-1!V](!JS@IB:$H&!^(!;(&!F35/7%&![(!J(!#%>!F#//$&!Z(!G(!)LK,K-(!ZB$!/5#5$!7<!/7<5=#:$!$%63%$$:3%6!I:#0530$(!9:70$$>3%6/!7<!5B$!LL5B!3%5$:%#537%#4!07%<$:$%0$!7%!;7<5=#:$!$%63%$$:3%6(!9355/AS:6B&!9$%%/H48#%3#&!g%35$>!;5#5$/&!"GO1!*]]M*,Y(!'38#:3&!N(!)LKKV-(!^BH!#:$!G";.!5774/!%75!S/$>b!G7@@S%30#537%/!7<!5B$!"GO!TK)L+-1!KUML+T(!';R!)*+++-(!';R!K++L1*+++!dS#435H!@#%#6$@$%5!/H/5$@/!MM!C$aS3:$@$%5/(!';R(!'8$:/$%&!N(!J(&!O#5B3#//$%&!P(!#%>!Q3$4/$%&!9(!"(!)*++U-(!O#%#63%6!:3/E!3%!/7<5=#:$!I:70$//!3@I:78$@$%51!"%!#0537%!:$/$#:0B!#II:7#0B(!O3/!dS#:5$:4H!*,)T-1!TKYMUTT(!N7:6$%/$%&![(!P(!)LK,K-(!9#:5303I#%5!RA/$:8#537%1!"!O$5B7>7476H!<7:!JS@#%!;5S>3$/(!ZB7S/#%>/!R#E&!G#43<7:%3#&!;#6$!ISA430#537%/(!NS:3/7%&!N(!)LKKK-(!;7<5=#:$!I:7X$05!@#%#6$@$%51!5B$!@#%#6$:f/!83$=(!G7@@S%30#537%/!7<!"';!*(!F#5`$%A#0B&!N(!C(!#%>!;@35B&![(!F(!)LKKT-(!ZB$![3/03I43%$!7<!Z$#@/(!J#:8#:>!DS/3%$//!C83=!]L)*-1!LLLML*+(!F$44%$:&!O(!'(&!D$0E$:MF7:%/5#$>5&!g(&!C3>>4$&!^(!.(&!Z7@#4&!N(!#%>!_$:4#6&!O(!)LKK,-(!9:70$//!\S3>$/1!.<<$0538$!\S3>#%0$!<7:!9:70$//!9#:5303I#%5/(!9:70$$>3%6/!7<!5B$!Y5B!'%5$:%#537%#4!G7%<$:$%0$!7%!5B$!;7<5=#:$!9:70$//1!G7@IS5$:!;SII7:5$>!R:6#%3`#537%#4!^7:E&!P3/4$&!'443%73/&!g;"1!II(!LLM*Y(!F3:E@#%&!D(!P(!#%>!C7/$%&!D(!)LKKK-(!D$H7%>!/$4<M@#%#6$@$%51!"%5$0$>$%5/!#%>!07%/aS%0$/!7<!5$#@!$@I7=$:@$%5(!"0#>$@H!7<!O#%#6$@$%5!N7S:%#4!U*)L-1!Y,M]U(!F350B$%B#@&!D(&!930E#:>&!P(!#%>!9<4$$6$:&!;(!P(!)LKKY-(!G#/$!;5S>3$/!<7:!O$5B7>!#%>!Z774!.8#4S#537%(!'...!;7<5=#:$!L*)U-1!Y*MV*(!

"2-2'2<=2%#

- 96 -

F4$3%&!J(!F(!#%>!OH$:/&!O(![(!)LKKK-(!"!/$5!7<!I:3%03I4$/!<7:!07%>S053%6!#%>!$8#4S#53%6!3%5$:I:538!<3$4>!/5S>3$/!3%!3%<7:@#537%!/H/5$@/(!O';!aS#:5$:4H!*T)L-1!V]MKT(!F:#/%$:&!J(!)LKKK-(!ZB$!9#H7<<!<7:!;7<5=#:$!9:70$//!'@I:78$@$%51!^B#5!35!3/!#%>!J7=!57!\$5!35&(!.4$@$%5/!7<!;7<5=#:$!9:70$//!"//$//@$%5!#%>!'@I:78$@$%5(!F(!.(!.@#@!#%>!Q(!J(!O#>B#8X3(!P7/!"4#@357/&!G#43<7:%3#&!'...!G7@IS5$:!;703$5H!9:$//1!LYL!M!L]V(!F:#S5&!C(!.(!#%>!;5:$$5$:&!P(!"(!)LKKY-(!G77:>3%#537%!3%!/7<5=#:$!>$8$47I@$%5(!G7@@S%30#537%/!7<!5B$!"GO!T,)T-1!VKM,L(!F:S50B$%&!9(!)*+++-(!ZB$!C#537%#4!g%3<3$>!9:70$//1!"%!'%5:7>S0537%(!O#//#0BS/$55/&!g;"&!">>3/7%M^$/4$H(!P#%6<:$>&!G(!^(!)*+++-(!ZB$!I#:#>7?!7<!/$4<M@#%#6$@$%51!'%>383>S#4!#%>!6:7SI!#S57%7@H!3%!=7:E!6:7SI/(!N7S:%#4!7<!R:6#%3`#537%#4!D$B#837:!*L)Y-1!YVTMY,Y(!P#%6<:$>&!G(!^(!)*++Y-(!"S57%7@H!#%>!9$:<7:@#%0$!3%!Z$#@/1!ZB$!OS4534$8$4!O7>$:#53%6!.<<$05!7<!Z#/E!'%5$:>$I$%>$%0$(!N7S:%#4!7<!O#%#6$@$%5!TL)U-1!YLTMY*K(!P#%64$H&!"(!)LKKK-(!;5:#5$63$/!<7:!ZB$7:3`3%6!<:7@!9:70$//![#5#&!"0#>$@H!7<!O#%#6$@$%5(!*U1!VKLM]L+(!P#%5&!Z(!F(!#%>!O$`3#/&!;(!N(!)LKK*-(!"%!R:6#%3`#537%#4!P$#:%3%6!O7>$4!7<!G7%8$:6$%0$!#%>!C$7:3$%5#537%(!R:6#%3`#537%!;03$%0$!T)L-1!U]M]L(!P#:@#%&!G(!#%>!D#/343&!_(!C(!)*++T-(!'5$:#538$!#%>!3%0:$@$%5#4!>$8$47I@$%51!"!A:3$<!B3/57:H(!G7@IS5$:!TV)V-1!U]MYV(!P#=4$:&!.(!.(!#%>!O7B:@#%&!;(!"(!)LK,]-(!dS#435H!G3:04$/!M!#<5$:!5B$!J7%$H@77%(!R:6#%3`#537%#4![H%#@30/!LY)U-1!U*MYU(!P8/aS$&!P(!P(&!^34/7%&!N(!O(!#%>!^B74$H&![(!C(!)*++L-(!G76%3538$!>38$:6$%0$!#%>!/B#:$>!@$%5#4!@7>$4/!3%!/7<5=#:$!>$8$47I@$%5!I:7X$05!5$#@/(!N7S:%#4!7<!R:6#%3`#537%#4!D$B#837:!**1!LTYMLUU(!P3&!N(&!O7$&!Q(!D(!#%>![HAl&!Z(!)*+L+-(!Z:#%/3537%!<:7@!#!I4#%M>:38$%!I:70$//!57!;0:S@1!#!47%635S>3%#4!0#/$!/5S>H!7%!/7<5=#:$!aS#435H(!9:70$$>3%6/!7<!5B$!*+L+!"GOM'...!'%5$:%#537%#4!;H@I7/3S@!7%!.@I3:30#4!;7<5=#:$!.%63%$$:3%6!#%>!O$#/S:$@$%5(!D74`#%7MD7`$%&!'5#4H&!"GO1!LML+(!PH0$55&!O(&!O#0:$>3$&!C(![(&!9#5$4&!G(!#%>!9#S4&!C(!N(!)*++T-(!O36:#53%6!#634$!@$5B7>/!57!/5#%>#:>3`$>!>$8$47I@$%5!I:#0530$(!G7@IS5$:!TV)V-1!]KM,Y(!O#5B3#//$%&!P(&!Q6=$%H#@#&!R(!F(!#%>!"#$%&!'(!)*++Y-(!O#%#63%6!0B#%6$!3%!/7<5=#:$!I:70$//!3@I:78$@$%5(!'...!;7<5=#:$!**)V-1!,UMKL(!O0"87H&!N(!#%>!DS54$:&!Z(!)*++K-(!ZB$!:74$!7<!I:7X$05!@#%#6$@$%5!3%!3%$<<$0538$!>$03/37%!@#E3%6!=35B3%!"634$!/7<5=#:$!>$8$47I@$%5!I:7X$05/(!.S:7I$#%!N7S:%#4!7<!'%<7:@#537%!;H/5$@/!L,)U-1!T]*MT,T(!O$/7&!9(!#%>!N#3%&!C(!)*++V-(!"634$!;7<5=#:$![$8$47I@$%51!">#I538$!;H/5$@/!9:3%03I4$/!#%>!D$/5!9:#0530$/(!'%<7:@#537%!;H/5$@/!O#%#6$@$%5!*T)T-1!LKMT+(!O3%5`A$:6&!J(!)LK,K-(!O3%5`A$:6!7%!O#%#6$@$%51!'%/3>$!RS:!;5:#%6$!^7:4>!7<!R:6#%3`#537%/(!Q$=!e7:E1!2:$$!9:$//(!!

"2-2'2<=2%#

- 97 -

O7$&!Q(!D(!#%>!"S:S@&!"(!)*++,-(!g%>$:/5#%>3%6![$03/37%MO#E3%6!3%!"634$!;7<5=#:$![$8$47I@$%51!"!G#/$M/5S>H(!;7<5=#:$!.%63%$$:3%6!#%>!">8#%0$>!"II430#537%/&!*++,(!;.""!f+,(!TU5B!.S:7@30:7!G7%<$:$%0$&!9#:@#&!'5#4H1!*LVM**T(!O7$&!Q(!D(&![3%6/iH:&!Z(!#%>![HAl&!Z(!)*++,-(!g%>$:/5#%>3%6!;$4<MR:6#%3`3%6!Z$#@/!3%!"634$!;7<5=#:$![$8$47I@$%5(!LK5B!"S/5:#43#%!G7%<$:$%0$!7%!;7<5=#:$!.%63%$$:3%61!]VM,Y(!O7$&!Q(!D(&![3%6/iH:&!Z(!#%>![HAl&!Z(!)*++K-(!R8$:07@3%6!D#::3$:/!57!;$4<MO#%#6$@$%5!3%!;7<5=#:$!Z$#@/(!'...!;7<5=#:$!*V)V-1!*+M*V(!O7$&!Q(!D(&![3%6/iH:&!Z(!#%>![HAl&!Z(!)*+L+-(!"!5$#@=7:E!@7>$4!<7:!S%>$:/5#%>3%6!#%!#634$!5$#@1!"!0#/$!/5S>H!7<!#!;0:S@!I:7X$05(!'%<7:@#537%!#%>!;7<5=#:$!Z$0B%7476H!Y*)Y-1!U,+MUKL(!O7$&!Q(!D(&![3%6/iH:&!Z(!#%>!F8#%6#:>/%$/&!o(!)*++K-(!g%>$:/5#%>3%6!;B#:$>!P$#>$:/B3I!3%!"634$![$8$47I@$%51!"!G#/$!;5S>H(!J#=#33!'%5$:%#537%#4!G7%<$:$%0$!7%!;H/5$@!;03$%0$/&!J#=#331!LML+(!O7$&!Q(!D(&![3%6/iH:&!Z(!#%>!CiH:83E&!.(!"(!)*++K-(!9S553%6!"634$!Z$#@=7:E!57!5B$!Z$/5!c!"%!9:$43@3%#:H!'%/5:S@$%5!<7:!.@I3:30#44H!"//$//3%6!#%>!'@I:783%6!"634$!;7<5=#:$![$8$47I@$%5(!L+5B!'%5$:%#537%#4!G7%<$:$%0$!7%!"634$!9:70$//$/!3%!;7<5=#:$!.%63%$$:3%6!#%>!.?5:$@$!97:6:#@@3%6&!;#:>3%3#&!'5#4H1!LLUML*U(!O7$&!Q(!D(!#%>![HAl&!Z(!)*++V-(!'@I:783%6!AH!3%87483%61!#!0#/$!/5S>H!3%!#!/@#44!/7<5=#:$!07@I#%H(!.S:7;9'!*++V&!N7$%/SS&!23%4#%>1!LYKML]+(!O7$&!Q(!D(!#%>![HAl&!Z(!)*++V-(!ZB$!S/$!7<!#%!.4$05:7%30!9:70$//!\S3>$!3%!#!@$>3S@!/3`$>!;7<5=#:$![$8$47I@$%5!G7@I#%H(!;7<5=#:$!9:70$//!'@I:78$@$%5!#%>!9:#0530$!LL)L-1!*LMTU(!O7:6#%&!\(!)*++V-(!'@#6$/!7<!R:6#%3`#537%/(!ZB7S/#%>!R#E/&!G"&!;"\.!ISA430#537%/(!Q#@A3/#%&!;(!#%>!^34$@7%&![(!)*+++-(!;7<5=#:$!>$8$47I@$%5!#%>!%$=!I:7>S05!>$8$47I@$%51!975$%53#4/!<7:!0:7//M>7@#3%!E%7=4>6!/B#:3%6(!'...!Z:#%/#0537%/!7%!.%63%$$:3%6!O#%#6$@$%5!U])*-1!*LLM**+(!Q$:S:&!;(!#%>!D#43X$I#44H&!_(!)*++]-(!ZB$7:$530#4!:$<4$0537%/!7%!#634$!>$8$47I@$%5!@$5B7>74763$/!M!ZB$!5:#>3537%#4!67#4!7<!7I53@3`#537%!#%>!07%5:74!3/!@#E3%6!=#H!<7:!4$#:%3%6!#%>!3%%78#537%(!G7@@S%30#537%/!7<!5B$!"GO!Y+)T-1!]KM,T(!Q$:S:&!;(&!O#B#I#5:#&!C(!#%>!O#%6#4#:#X&!\(!)*++Y-(!GB#44$%6$/!7<!@36:#53%6!57!#634$!@$5B7>74763$/(!G7@@S%30#537%/!7<!5B$!"GO!U,)Y-1!]*M],(!REBSH/$%&!\(!"(!#%>!D$0BEH&!D(!"(!)*++K-(!G77:>3%#537%!3%!R:6#%3`#537%/1!"%!'%5$6:#538$!9$:/I$0538$(!"0#>$@H!7<!O#%#6$@$%5!"%%#4/!T1!UVTMY+*(!9#:%#/&![(!P(!#%>!G4$@$%5/&!9(!G(!)LK,V-(!"!C#537%#4![$/36%!9:70$//1!J7=!#%>!^BH!57!2#E$!'5(!'...!Z:#%/#0537%/!7%!;7<5=#:$!.%63%$$:3%6!L*)*-1!*YL!M!*Y](!9#S4E&!O(!G(&!^A:&!G(!_(!#%>!GB:3//3/&!O(!D(!)LKKK-(!ZB$!G#I#A3435H!O#5S:35H!O7>$4!<7:!;7<5=#:$(!.4$@$%5/!7<!;7<5=#:$!9:70$//!"//$//@$%5!n!'@I:78$@$%5(!(!F(!.4!.@#@!#%>!Q(!J(!O#>B#8X3(!P7/!"4#@357/&!G#43<7:%3#(&!'...!G7@IS5$:!;703$5H1!TM**(!9$#:0$&!G(!P(!)*++U-(!ZB$!<S5S:$!7<!4$#>$:/B3I1!G7@A3%3%6!8$:530#4!#%>!/B#:$>!4$#>$:/B3I!57!5:#%/<7:@!E%7=4>6!=7:E(!"0#>$@H!7<!O#%#6$@$%5!.?$0S538$!L,)L-1!U]MY](!

"2-2'2<=2%#

- 98 -

9S:/$:&!C(!.(!#%>!G#A#%#&!;(!)LKK]-(!'%8748$!$@I47H$$/!#5!8:H!4$8$4!7<!/5:#5$630!I4#%%3%6(!dS#435H!9:76:$//!T+)Y-1!VVM]L(!9H`>$E&!Z(!)LKK*-(!Z7!'@I:78$!e7S:!9:70$//!M!F$$I!'5!;3@I4$(!'...!;7<5=#:$!K)Y-1!LL*MLLT(!dS@$:&!"(!#%>!J$%>$:/7%M;$44$:/&!D(!)*++,-(!"!<:#@$=7:E!57!/SII7:5!5B$!$8#4S#537%&!#>7I537%!#%>!3@I:78$@$%5!7<!#634$!@$5B7>/!3%!I:#0530$(!N7S:%#4!7<!;H/5$@/!#%>!;7<5=#:$!,L)LL-1!L,KKMLKLK(!C#@$/B&!D(&!G#7&!P(!#%>!D#/E$:8344$&!C(!)*+L+-(!"634$!:$aS3:$@$%5/!$%63%$$:3%6!I:#0530$/!#%>!0B#44$%6$/1!#%!$@I3:30#4!/5S>H(!'%<7:@#537%!;H/5$@/!N7S:%#4!*+)Y-1!UUKMU,+(!C3$@$%/0B%$3>$:&!G(!F(&!J#:>6:#8$&!D(!G(!#%>![#83/&!2(![(!)*++*-(!.?I4#3%3%6!;7<5=#:$![$8$47I$:!"00$I5#%0$!7<!O$5B7>74763$/1!"!G7@I#:3/7%!7<!238$!ZB$7:$530#4!O7>$4/(!'...!Z:#%/#0537%/!7%!;7<5=#:$!.%63%$$:3%6!*,)L*-1!LLTYMLLUY(!C37:>#%&!G(!O(&!_#%>$%A$:6&!C(!N(!#%>!C30B#:>/7%&!J(!"(!)*++Y-(!.@I47H$$!'%8748$@$%5!G43@#5$!#%>!R:6#%3`#537%#4!.<<$0538$%$//(!JS@#%!C$/7S:0$!O#%#6$@$%5!UU)U-1!U]L!M!U,,(!C76$:/&!.(!O(!)LKKY-(![3<<S/37%!7<!'%%78#537%/(!Q$=!e7:E&!ZB$!2:$$!9:$//(!C7H0$&!^(!^(!)LK]+-(!O#%#63%6!5B$!>$8$47I@$%5!7<!4#:6$!/7<5=#:$!/H/5$@/(!^.;GRQ&!'...!!;#47&!R(!#%>!"A:#B#@//7%&!9(!)*++Y-(!'%5$6:#53%6!#634$!/7<5=#:$!>$8$47I@$%5!#%>!/7<5=#:$!I:70$//!3@I:78$@$%51!#!47%635S>3%#4!0#/$!/5S>H(!'%5$:%#537%#4!;H@I7/3S@!7%!.@I3:30#4!;7<5=#:$!.%63%$$:3%6!)';.;.-(!Q77/#!J$#>/&!"S/5:#43#&!'...1!L,]MLKV(!;#47&!R(!#%>!"A:#B#@//7%&!9(!)*++]-(!"%!35$:#538$!3@I:78$@$%5!I:70$//!<7:!#634$!/7<5=#:$!>$8$47I@$%5(!;7<5=#:$!9:70$//1!'@I:78$@$%5!#%>!9:#0530$!L*)L-1!,LML++(!;#I/$>&!N(&!D$//#%5&!N(&!9#:53%657%&![(&!Z:#%<3$4>&![(!#%>!e7S%6&!O(!)*++*-(!Z$#@=7:E3%6!#%>!E%7=4$>6$!@#%#6$@$%51!#!:$83$=!7<!07%8$:63%6!5B$@$/(!'%5$:%#537%#4!N7S:%#4!7<!O#%#6$@$%5!C83=/!U)L-1!]LM,Y(!;#=H$:&!;(!)*++U-(!;7<5=#:$!>$8$47I@$%5!5$#@/(!G7@@S%(!"GO!U])L*-1!KYMKK(!;0B%$3>$:&!F(&!87%!JS%%3S/&!N(!9(!#%>!D#/343&!_(!C(!)*++*-(!.?I$:3$%0$!3%!3@I4$@$%53%6!#!4$#:%3%6!/7<5=#:$!7:6#%3`#537%(!'...!;7<5=#:$!LK)T-1!UVMUK(!;0B=#A$:&!F(!#%>!D$$>4$!)*++L-(!"634$!;7<5=#:$![$8$47I@$%5!=35B!;0:S@&!gII$:!;#>>4$!C38$:1!9:$%530$!J#44(!;0755&!P(&!G#:8#4B7&!P(&!N$<<$:H&!C(&![f"@A:#&!N(!#%>!D$0E$:MF7$:%/5#$>5&!g(!)*++*-(!g%>$:/5#%>3%6!5B$!S/$!7<!#%!$4$05:7%30!I:70$//!6S3>$(!'%<7:@#537%!#%>!;7<5=#:$!Z$0B%7476H!UU)L+-1!V+L!M!VLV(!;0755&!P(&!G#:8#4B7&!P(&!N$<<$:H&!C(&![f"@A:#&!N(!#%>!D$0E$:MF7:%/5#$>5&!g(!)*++*-(!g%>$:/5#%>3%6!5B$!S/$!7<!#%!$4$05:7%30!I:70$//!6S3>$(!'%<7:@#537%!#%>!;7<5=#:$!Z$0B%7476H!UU)L+-1!V+LMVLV(!;.'!)*++*-(!G#I#A3435H!O#5S:35H!O7>$4!p!'%5$6:#537%!)GOO';O-&!_$:/37%!L(L(!G#:%$63$!O$447%!;7<5=#:$!.%63%$$:3%6!'%/535S5$(!;B#:I&!J(!#%>!C7A3%/7%&!J(!)*++U-(!"%!$5B%76:#IB30!/5S>H!7<!q9!I:#0530$(!.@I3:30#4!;7<5=#:$!.%63%$$:3%6!K)U-1!TYTMT]Y(!

"2-2'2<=2%#

- 99 -

;@35$&![(&!O7$&!Q(!D(!#%>!r6$:<#4E&!9(!N(!)*+L+-(!"63435H!"0:7//!Z3@$!#%>!;I#0$1!'@I4$@$%53%6!"634$!O$5B7>/!3%!\47A#4!;7<5=#:$!9:7X$05/(!D$:43%&!J$3>$4A$:6&!;I:3%6$:M_$:4#6(!;5:#S//&!"(!#%>!G7:A3%&!N(!)LKK,-(!D#/30/!7<!dS#435#538$!C$/$#:0B1!Z$0B%3aS$/!#%>!9:70$>S:$/!<7:![$8$47I3%6!\:7S%>$>!ZB$7:H(!ZB7S/#%>!R#E/&!G"&!;#6$!9SA430#537%/(!;S/@#%&!\(!#%>!.8$:$>&!C(!)LK],-(!"%!#//$//@$%5!7<!5B$!/03$%53<30!@$:35/!7<!#0537%!:$/$#:0B(!">@3%3/5:#538$!;03$%0$!dS#:5$:4H!*T)U-1!Y,*MV+T(!Z#E$S0B3&!J(!#%>!Q7%#E#&!'(!)LK,V-(!ZB$!Q$=!Q$=!9:7>S05![$8$47I@$%5!\#@$(!J#:8#:>!DS/3%$//!C83=)!VU-1!LT]MLUV!!Z#5#&!N(!#%>!9:#/#>&!;(!)*++U-(!Z$#@!;$4<M@#%#6$@$%5&!R:6#%3`#537%#4!;5:S05S:$&!#%>!NS>6@$%5/!7<!Z$#@!.<<$0538$%$//(!N7S:%#4!7<!O#%#6$:3#4!'//S$/!_74(!LV!)'//S$!*-1!I*U,!M!*VY(!Z$%$%A$:6&!N(!)*++,-(!"%!3%/535S537%#4!#%#4H/3/!7<!/7<5=#:$!5$#@/(!'%5(!N(!JS@(MG7@IS5(!;5S>(!VV)]-1!U,UMUKU(!ZB7@#/&!O(!#%>!O0\#::H&!2(!)LKKU-(!Z7IM[7=%!8/(!D7557@MgI!9:70$//!'@I:78$@$%5(!'...!;7<5=#:$!LL)U-1!L*MLT(!Z:3/5&!.(!)LK,L-(!ZB$!$874S537%!7<!/7037M5$0B%30#4!/H/5$@/1!#!07%0$I5S#4!<:#@$=7:E!#%>!#%!#0537%!:$/$#:0B!I:76:#@(!R00#/37%#4!I#I$:!Q7!*(!Z7:7%57&!R%5#:37&!R%5#:37!dS#435H!7<!^7:E3%6!P3<$!G$%5:$(!Z:3/5&!.(!#%>!D#@<7:5B&!F(!^(!)LKYL-(!;7@$!;703#4!#%>!9/H0B747630#4!G7%/aS%0$/!7<!5B$!P7%6=#44!O$5B7>!7<!G7#4M\$553%6(!JS@#%!C$4#537%/!U)L-1!TMT,(!gB4MD3$%&!O(!#%>!\:#$%&!\(!D(!)LKK,-(!'%>383>S#4!/$4<M@#%#6$@$%51!"%#4H/3/!7<!I:7<$//37%#4/f!/$4<M@#%#63%6!#0538353$/!3%!<S%0537%#4!#%>!0:7//M<S%0537%#4!=7:E!5$#@/(!"0#>$@H!7<!O#%#6$@$%5!N7S:%#4!UL)T-1!TU+MTY+(!_#%!O3$:47&!J(&!CS55$&!G(!\(&!F7@I3$:&!O(!"(!N(!#%>![77:$=##:>&!J(!)*++Y-(!;$4<M@#%#63%6!5$#@=7:E!#%>!I/H0B747630#4!=$44MA$3%61!C83=!7<!#!@S4534$8$4!:$/$#:0B!>7@#3%(!\:7SI!n!R:6#%3`#537%!O#%#6$@$%5!T+)*-1!*LLM*TY(!8#%!;743%6$%&!C(&!D$:6B7S5&!.(&!FS/5$:/&!C(!#%>!Z:3$%E%/&!N(!)*+++-(!2:7@!I:70$//!3@I:78$@$%5!57!I$7I4$!3@I:78$@$%51!$%#A43%6!4$#:%3%6!3%!/7<5=#:$!>$8$47I@$%5(!'%<7:@#537%!#%>!;7<5=#:$!Z$0B%7476H!U*)LU-1!KVYMK]L(!_$%E#5$/B&!_(!#%>![#83/&!2(![(!)*+++-(!"!5B$7:$530#4!$?5$%/37%!7<!5B$!Z$0B%7476H!"00$I5#%0$!O7>$41!27S:!47%635S>3%#4!<3$4>!/5S>3$/(!O#%#6$@$%5!;03$%0$!UV)*-1!L,VM*+U(!_3%$E#:&!_(&!;43%E@#%&!G(!^(!#%>!Q$:S:&!;(!)*++V-(!G#%!"634$!#%>!Z:#>3537%#4!;H/5$@/![$8$47I@$%5!"II:7#0B$/!G7$?3/5b!"%!"@A3>$?5:7S/!_3$=(!'%<7:@#537%!;H/5$@/!O#%#6$@$%5!*T)T-1!TL!M!U*(!^#4`&![(!D(&!.4#@&!N(!N(!#%>!GS:53/&!D(!)LKKT-(!'%/3>$!#!/7<5=#:$!>$/36%!5$#@1!E%7=4>6!#0aS3/3537%&!/B#:3%6&!#%>!3%5$6:#537%(!G7@@S%30#537%/!7<!5B$!"GO!TV)L+-1!VTM]](!^$%6$:&!.(!)LKK,-(!G7@@S%353$/!7<!I:#0530$1!4$#:%3%6&!@$#%3%6!#%>!3>$%535H(!G#@A:3>6$&!gF&!G#@A:3>6$!g%38$:/35H!9:$//(!^3443#@/&!P(!#%>!G70EAS:%&!"(!)*++T-(!"634$!/7<5=#:$!>$8$47I@$%51!35f/!#A7S5!<$$>A#0E!#%>!0B#%6$(!G7@IS5$:!TV)V-1!TKMUT(!e#@#@S:#&!\(!)LKKK-(!9:70$//!3@I:78$@$%5!/#53/<3$/!$@I47H$$/(!'...!;7<5=#:$!LV)Y-1!,TM,Y(!

"2-2'2<=2%#

- 100 -

e3%&!C(!F(!)*++*-(!G#/$!/5S>H!:$/$#:0B1!>$/36%!#%>!@$5B7>/(!ZB7S/#%>!R#E/&!G#43<(&!;#6$(!k#`=7:E#&!Q(&!;5#I$4&!F(&!F%#S//&!.(&!;BS44&!2(&!D#/343&!_(!C(!#%>!;0B%$3>$:&!F(!)*+L+-(!":$!>$8$47I$:/!07@I4H3%6!=35B!5B$!I:70$//1!#%!q9!/5S>H(!9:70$$>3%6/!7<!5B$!*+L+!"GOM'...!'%5$:%#537%#4!;H@I7/3S@!7%!.@I3:30#4!;7<5=#:$!.%63%$$:3%6!#%>!O$#/S:$@$%5(!D74`#%7MD7`$%&!'5#4H&!"GO1!LML+(!r6$:<#4E&!9(!N(!#%>!235`6$:#4>&!D(!)*++V-(!24$?3A4$!#%>!>3/5:3AS5$>!/7<5=#:$!I:70$//$/1!R4>!I$5S%3#/!3%!%$=!A7=4/b!G7@@S%30#537%/!7<!5B$!"GO!UK)L+-1!*VMTU(!!

(

&T"##$$#9#$<=>,020#?,@>#=.-#,<%#
#

#

"#$%&!'!

Dybå, T., Moe, N. B. and Mikkelsen, E. M. (2004). An Empirical Investigation on
Factors Affecting Software Developer Acceptance and Utilization of Electronic
Process Guides. Proceedings of the International Software Metrics Symposium
(METRICS), Chicago, Illinois, USA, 220–231.

Is not included due to copyright

"#$%&!(!!!
Dybå, T., Moe, N. B. and Arisholm, E. (2005). Measuring Software Methodology
Usage: Challenges of Conceptualization and Operationalization. Fourth International
Symposium on Empirical Software Engineering (ISESE), Noosa Heads, Australia,
IEEE Computer Society, 447 - 457.

Is not included due to copyright

"#$%&!)!
!

Moe, N. B. and Dybå, T. (2006). The use of an Electronic Process Guide in a medium
sized Software Development Company. Software Process Improvement and Practice
11(1): 21-34.!

! !

Is not included due to copyright

"#$%&!*!
!

Moe, N. B. and Dyba, T. (2006). Improving by involving: a case study in a small
software company. EuroSPI 2006, Joensuu, Finland, 158 – 169.
!

!
!
! !

Is not included due to copyright

"#$%&!+!
!

Dingsøyr, T. and Moe, N. B. (2008). The Impact of Employee Participation on the
Use of an Electronic Process Guide: A Longitudinal Case Study. IEEE Trans. Softw.
Eng. 34(2): 212-225.!

! !

Is not included due to copyright

"#$%&!,!
!

Moe, N. B., Dingsøyr, T. and Dybå, T. (2008). Understanding Self-Organizing Teams
in Agile Software Development. 19th Australian Conference on Software Engineering !"#$%.!

!
! !

Is not included due to copyright

"#$%&!-!
!

Moe, N. B. and Aurum, A. (2008). Understanding Decision-Making in Agile
Software Development: A Case-study. Software Engineering and Advanced
Applications, 2008. SEAA '08. 34th Euromicro Conference, Parma, Italy, 216-223
!

! !

Is not included due to copyright

"#$%&!.!
!

Moe, N. B., Dingsøyr, T. and Røyrvik, E. A. (2009). Putting Agile Teamwork to the
Test – An Preliminary Instrument for Empirically Assessing and Improving Agile
Software Development. 10th International Conference on Agile Processes in Software
Engineering and Extreme Programming, Sardinia, Italy, 114-123.!

!
! !

Is not included due to copyright

"#$%&!/!
!

Moe, N. B., Dingsøyr, T. and Kvangardsnes, Ø. (2009). Understanding Shared
Leadership in Agile Development: A Case Study. Hawaii International Conference on
System Sciences, Hawaii, 1-10
!

! !

Is not included due to copyright

"#$%&!!"!
!

Moe, N. B., Dingsøyr, T. and Dybå, T. (2009). Overcoming Barriers to Self-
Management in Software Teams. IEEE Software 26(6): 20-26.!

! !

Is not included due to copyright

"#$%&!''!
!

Li, J., Moe, N. B. and Dybå, T. (2010). Transition from a plan-driven process to
Scrum: a longitudinal case study on software quality. Proceedings of the 2010 ACM-
IEEE International Symposium on Empirical Software Engineering and
Measurement. Bolzano-Bozen, Italy, ACM: 1-10.!

! !

Is not included due to copyright

"#$%&!'(!!!
Moe, N. B., Dingsøyr, T. and Dybå, T. (2010). A teamwork model for understanding
an agile team: A case study of a Scrum project. Information and Software Technology
52(5): 480-491.

Is reprinted with kind permission from Elsevier, sciencedirect.com
 !! !!!!!!!!!!!!

A teamwork model for understanding an agile team: A case study of a Scrum project

Nils Brede Moe *, Torgeir Dingsøyr, Tore Dybå
SINTEF, NO-7465 Trondheim, Norway

a r t i c l e i n f o

Article history:
Received 30 July 2009
Received in revised form 26 October 2009
Accepted 12 November 2009
Available online 20 November 2009

Keywords:
Agile software development
Scrum
Software engineering
Teamwork
Empirical software engineering
Case study

a b s t r a c t

Context: Software development depends significantly on team performance, as does any process that
involves human interaction.
Objective: Most current development methods argue that teams should self-manage. Our objective is
thus to provide a better understanding of the nature of self-managing agile teams, and the teamwork
challenges that arise when introducing such teams.
Method: We conducted extensive fieldwork for 9 months in a software development company that intro-
duced Scrum. We focused on the human sensemaking, on how mechanisms of teamwork were under-
stood by the people involved.
Results: We describe a project through Dickinson and McIntyre’s teamwork model, focusing on the inter-
relations between essential teamwork components. Problems with team orientation, team leadership and
coordination in addition to highly specialized skills and corresponding division of work were important
barriers for achieving team effectiveness.
Conclusion: Transitioning from individual work to self-managing teams requires a reorientation not only
by developers but also by management. This transition takes time and resources, but should not be
neglected. In addition to Dickinson and McIntyre’s teamwork components, we found trust and shared
mental models to be of fundamental importance.

! 2009 Elsevier B.V. All rights reserved.

1. Introduction

Software development depends significantly on team perfor-
mance, as does any process that involves human interaction. A
common definition of a team is ‘‘a small number of people with
complementary skills who are committed to a common purpose,
set of performance goals, and approach for which they hold them-
selves mutually accountable” [22].

The traditional perspective on software development is rooted
in the rationalistic paradigm, which promotes a plan-driven prod-
uct-line approach to software development using a standardized,
controllable, and predictable software engineering process [15].
Today, this traditional mechanistic worldview is challenged by
the agile perspective that accords primacy to uniqueness, ambigu-
ity, complexity, and change, as opposed to prediction, verifiability,
and control. The goal of optimization is being replaced by those of
flexibility and responsiveness [33].

Setting up a work team is usually motivated by benefits such as
increased productivity, innovation, and employee satisfaction.
Research on software development teams has found that team per-
formance is linked with the effectiveness of teamwork coordina-
tion [19,25]. In the traditional plan-driven approach, work is

coordinated in a hierarchy that involves a command-and-control
style of management in which there is a clear separation of roles
[33,34]. In the agile approach, work is coordinated by the self-man-
aging team, in which the team itself decides how work is coordi-
nated [8].

A team that follows a plan-driven model often consists of inde-
pendently focused self-managing professionals, and a transition to
self-managing teams is one of the biggest challenges when intro-
ducing agile (change-driven) development [33]. Neither culture
nor mind-sets of people can be changed easily, which makes the
move to agile methodologies all the more formidable for many
organizations [8]. In addition, it is not sufficient to put individuals
together in a group, tag them ‘‘self-managing”, and expect that
they will automatically know how to coordinate and work effec-
tively as an agile team.

Our objective is to provide a better understanding of the nature
of self-managing agile teams, which can in turn benefit the effec-
tive application of agile methods in software development. To this
end, we conducted a longitudinal study that draws on the general
literature of teamwork and self-managing teams. Such a study can
provide valuable insights for understanding the challenge of intro-
ducing the self-managing agile team. We sought to answer the fol-
lowing research question:

How can we explain the teamwork challenges that arise when
introducing a self-managing agile team?

0950-5849/$ - see front matter ! 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.infsof.2009.11.004

* Corresponding author. Tel.: +47 93028687; fax: +47 73592977.
E-mail addresses: nilsm@sintef.no (N.B. Moe), torgeird@sintef.no (T. Dingsøyr),

tored@sintef.no (T. Dybå).

Information and Software Technology 52 (2010) 480–491

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

The remainder of this paper is organized as follows: Section 2
gives an overview of the literature on teamwork and agile software
development. Section 3 describes our research question and meth-
od in detail. Section 4 presents results from a nine-month field-
work of teamwork in a Scrum team. Section 5 contains a
discussion of the findings. Section 6 concludes and provides sug-
gestions for further work.

2. Background: teamwork and agile software development

In this section, we give a short introduction to the field of team-
work, teamwork in agile development, and the teamwork model
that is used as the basis for our work.

2.1. Teamwork

The topic of teamwork has attracted research from several dis-
ciplines [10,17,41]. The concept of teamwork carries with it a set of
values that encourage listening and responding constructively to
views expressed by others, giving others the benefit of the doubt,
providing support, and recognizing the interests and achievements
of others [22]. Such values are important because they promote
individual performance, which boosts team performance, and they
help teams to perform well as a group, and good team performance
boosts the performance of the organization.

Research on teamwork includes the development of tests to
identify personality characteristics, because it has often been ar-
gued that good teams need a certain blend of personalities. Exam-
ples are the Belbin test [7] and the Myers–Briggs Type indicator.
There is also a great deal of research on climate at work group
and team level. The most studied model of team climate is that
of [48] who suggests that four climate factors (vision, participative
safety, task orientation, and support for innovation) are essential
for team innovation to occur.

Furthermore, there are studies of teams over time, which indi-
cate that teams go through set phases. The most well-known of
these studies are those of Tuckman [46], who identified the phases
as forming, storming, norming, and performing. Other studies have
focused on the relationships between team members and argue
that group cohesiveness is important for team success (cited in
[41]). However, the use of teams does not always result in success
for the organization [17]. Team performance is complex, and the
actual performance of a team depends not only on the competence
of the team itself in managing and executing its work, but also on
the organizational context provided by management.

Much research has been devoted to what is described as self-
managing, autonomous, or empowered teams [17,23,26,45,47].
One of the reasons that the use of self-managing teams has become
popular is that some research suggests that their use promotes
more satisfied employees, lower turnover, and lower absenteeism
[10]. Others also claim that self-managing teams are a prerequisite
for the success of innovative projects [20,44].

Although the majority of studies report that using self-manag-
ing teams has positive effects, some studies offer a more mixed
assessment; such teams can be difficult to implement, and they
risk failure when used in inappropriate situations or without suffi-
cient leadership and support [18]. In addition, research on team
performance indicates that the effects of autonomous work groups
are highly situational dependent and that the effects of autono-
mous work-group practices depend on such factors as the nature
of the workforce and the nature of the organization [10,17]. Fur-
ther, autonomy on the individual level may conflict with autonomy
on the group level. When a team as a whole is given a great deal of
autonomy, it does not follow that the individual teammembers are
given high levels of individual autonomy. Barker [5], for example,

pointed out that self-managing groups may end up controlling
group members more rigidly than they do under traditional man-
agement styles, while Markham and Markham [29] suggested that
it may be difficult to incorporate both individual autonomy and
group autonomy in the same work group. For Individuals to be
motivated and satisfied with their jobs they need to have control
over their own work and over the scheduling and implementation
of their own tasks [1,26].

2.2. Teamwork in agile development: the Scrum team

In a software team, the members are jointly responsible for the
end product and must develop shared mental models by negotiat-
ing shared understandings about both the teamwork and the task
[28]. Project goals, system requirements, project plans, project
risks, individual responsibilities, and project status must be visible
and understood by all parties involved [21].

Most current development methods have it as a premise that
software teams should self-organize or self-manage [36,42].
Scrum, which is a project-management-oriented agile develop-
ment method, was inspired by a range of fields, such as complexity
theory, system dynamics, and Nonaka and Takeuchi’s theory of
knowledge creation [35], and has adapted aspects of these fields
to a setting of software development. Self-management is a defin-
ing characteristic in Scrum. Compared with traditional command-
and-control oriented management, Scrum represents a radically
new approach for planning and managing software projects, be-
cause it brings decision-making authority to the level of opera-
tional problems and uncertainties.

Rising and Janoff [36] describe Scrum as a development process
for small teams, which includes a series of short development
phases or iterations (‘‘sprints”). A Scrum team is given significant
authority and responsibility for many aspects of their work, such
as planning, scheduling, assigning tasks to members, and making
decisions: ‘‘The team is accorded full authority to do whatever it
decides is necessary to achieve the goal” [43].

However, despite the popularity of the method, a systematic
review of empirical studies of agile development [16] found
only one case study of Scrum in the research literature prior to
2006.

2.3. Dickinson and McIntyre’s teamwork model

The issue of what processes and components comprise team-
work and how teamwork contributes to team effectiveness and
team performance has been much studied [9,19,26,30,39], but
there is no consensus concerning its conceptual structure [38].
Salas et al. [40] identify 136 different models in their literature re-
view and present a representative sample of 11 models and
frameworks.

Using recent research and previous reviews, Dickinson and
McIntyre [13] identified and defined seven core components of
teamwork. Using these components and their relationships as a ba-
sis, they proposed the teamwork model that is used in this work.
The model consists of a learning loop of the following basic team-
work components: communication, team orientation, team leader-
ship, monitoring, feedback, backup, and coordination (Fig. 1).

We selected the Dickinson and McIntyre teamwork model for
the following reasons:

1. It includes the most common elements that are considered in
most research on teamwork processes [38,39]. In addition, it
considers important elements that are required in self-managed
teams: team orientation, functional redundancy and backup
behavior [32,35], communication, feedback and learning [33],
and shared leadership [22]. Further, the model covers important

N.B. Moe et al. / Information and Software Technology 52 (2010) 480–491 481

elements that are found in software teams, such as coordination
of work [25].

2. It specifies what teamwork skills should be observed, in that the
model is presented with a conceptual framework for developing
measures of teamwork performance that can ensure effective
individual and team performance [13], pp. 22.

3. It considers the teamwork process as a learning loop in which
teams are characterized as adaptable and dynamically changing
over time. Continuous self-management requires a capacity for
double-loop learning that allows operating norms and rules to
change along with transformation in the wider environment
[32].

Each component of the model is explained in Table 1. According
to Dickinson and McIntyre, team leadership and team orientation
are ‘input’ components of teamwork because at least one of these
attitudes is required for an individual to participate in a team task.
Team leadership can be shown by several team members that is
also a prerequisite for a team’s being self-managing. In such teams,

team members should share the authority to make decisions,
rather than having: (a) a centralized decision structure in which
one person (e.g. the team leader) makes all the decisions or (b) a
decentralized decision structure in which all team members make
decisions regarding their work individually and independently of
other team members [20]. So, while the traditional perspective of
a single leader suggests that the leadership function is a specialized
role that cannot be shared without jeopardizing group effective-
ness, when leadership is shared, group effectiveness is achieved
by empowering the members of the team to share the tasks and
responsibilities of leadership [22].

In the Dickinson and McIntyre model, the components of mon-
itoring, feedback, and backup are the intermediate processes for
ensuring effective teamwork. Finally, the ‘output’ component is
coordination because it defines the performance of the team. Com-
munication is a transversal component of particular importance,
because it links the other components. To build software effec-
tively, there is a need for tight coordination among the various ef-
forts involved so that the work is completed and fits together [25].

Fig. 1. The Dickinson and McIntyre teamwork model [13].

Table 1
The Dickinson and McIntyre teamwork model: definitions of teamwork components.

Team orientation: Refers to the team tasks and the attitudes that team members have towards one another. It reflects an acceptance of team norms, the level of group
cohesiveness, and the importance of team membership, e.g.

! assigning high priority to team goals
! participating willingly in all relevant aspects of the team
Team leadership: Involves providing direction, structure, and support for other teammembers. It does not necessarily refer to a single individual with formal authority

over others. Team leadership can be shown by several team members, e.g.
! explaining to other team members exactly what is needed from them during an assignment
! listening to the concerns of other team members
Monitoring: Refers to observing the activities and performance of other teammembers and recognizing when a teammember performs correctly. It implies that team

members are individually competent and that they may subsequently provide feedback and backup, e.g.
! being aware of other team members’ performance
! recognizing when a team member performs correctly
Feedback: Involves the giving, seeking, and receiving of information among teammembers. Giving feedback refers to providing information regarding other members’

performance. Seeking feedback refers to requesting input or guidance regarding performance and to accepting positive and negative information regarding
performance, e.g.

! responding to other members’ requests for information about their performance
! accepting time-saving suggestions offered by other team members
Backup: Involves being available to assist other team members. This implies that members have an understanding of other members’ tasks. It also implies that team

members are willing and able to provide and seek assistance when needed, e.g.
! filling in for another member who is unable to perform the task
! helping another member correct a mistake
Coordination: Refers to teammembers executing their activities in a timely and integrated manner. It implies that the performance of some teammembers influences

the performance of others. This may involve an exchange of information that subsequently influences another member’s performance. Coordination represents
the output of the model and reflects the execution of team activities such that members respond as a function of the behavior of others, e.g.

! passing performance-relevant data to other members in an efficient manner
! facilitating the performance of other members’ jobs
Communication: Involves the exchange of information between two or more team members in the prescribed manner and using appropriate terminology. Often, the

purpose of communication is to clarify or acknowledge the receipt of information, e.g.
! verifying information prior to making a report
! acknowledging and repeating messages to ensure understanding

482 N.B. Moe et al. / Information and Software Technology 52 (2010) 480–491

In the rest of the paper, we will explain the challenges that arise
when introducing agile methods by appeal to the mechanisms that
influence teamwork that are suggested by Dickinson and McIntyre
[13].

3. Research method

We designed a single-case holistic study [49] of a project that
used Scrum, focusing on mechanisms that influence teamwork.
When designing the study, we focused on human sensemaking
and on how the mechanisms of teamwork were understood by
the people involved. Given that our study was an interpretative
field study, we used the seven principles for conducting such stud-
ies that were proposed by Klein and Myers [24] in order to deter-
mine the main choices that were related to research method. Table
2 gives an overview of these principles and a description of howwe
used them.

3.1. Study context

The field study was conducted in a company that introduced
Scrum in order to improve their ability to deliver iteratively and
on time, increase quality, and improve teamwork. The company
has three regional divisions with one separate ICT division. The
ICT division consists of a consulting department, an IT management
department, and a development department. The ICT division
develops and maintains a series of off-the-shelf software products
that are developed in-house, in addition to software development
projects for outside customers. During the study, the development
department had 16 employees, divided into a Java and a .Net group.

The goal of the project studied was to develop a plan and coor-
dination system for owners of cables (e.g. electricity, fiber) and

pipes (water, sewer). We refer to the project as ‘‘Alpha”, because
this was the first project for which the company used agile meth-
ods, in this case Scrum. Alpha produced a combination of textual
user interfaces and map functionality. Alpha was to use a commer-
cial package for the map functionality, which was to be customized
by a well-known subcontractor located in another city. The sub-
contractor could only deliver their part of the system 4 weeks be-
fore the first deliverable to the customer. This was recognized as a
risk, but it was decided that it would be even riskier to develop this
component internally. The company would also be responsible for
maintenance and support after final installation. Four thousand
hours, six developers, one Scrum master, and a product owner
were allocated to the project. The product owner was employed
by the same company as the developers and acted as a representa-
tive for the client, which was the local government of a Norwegian
city. Internally, there were plans for reusing deliveries from Alpha
and to re-sell the product to other public departments when it was
finished. An extra 800 h were allocated to achieve this aim. Before
Alpha was begun in May 2006, some initial architectural work was
done and some coding activities had started. Alpha used .Net tech-
nology and was supposed to last for 10 months.

The developers had usually worked alone on projects divided
into modules or on smaller projects, so Alpha was the first experi-
ence of working on a larger project for most.

3.2. Data sources and analysis

The two first authors conducted direct observation and col-
lected documents throughout the whole project. In addition, we
interviewed the Scrummaster, product owner, and developers (Ta-
ble 3). The interview guide covered the components in the Dickin-
son and McIntyre model in addition to questions related to Scrum
(Appendix A).

Table 2
The use of Klein and Myers’ principles in this field research.

The principles for interpretive field research [24] How we used each principle

1. The fundamental principle of the hermeneutic circle We improved our understanding of the project by moving back and forth between phases and
events. The project had three main phases, which had different teamwork characteristics. For
each of the phases, we described concrete events. The data analysis involved multiple
researchers having ongoing discussions about the findings

2. The principle of contextualization To clarify for our readers how situations emerged, we describe the work and organization of
the company, as well as the context of the project we used to study teamwork

3. The principle of interaction between researchers and subjects The researchers’ understanding of the project developed through observations, interviews and
discussions with the team participants in the coffee breaks and during lunch. We discussed
project status, progress, and how issues were perceived by team participants

4. The principle of abstraction and generalization We describe our findings and relate them to the model of Dickinson and McIntyre [13]
5. The principle of dialogical reasoning We use Dickinson and McIntyre’s model to identify areas of investigation in the case. Our

assumptions are also based on the general literature of teamwork and self-management
Our social background is European

6. The principle of multiple interpretations To collect multiple, and possibly contradictory interpretations of events we collected data
from all participants in the project and from multiple data sources. The case study narrative
and findings have been presented to Alpha and led to feedback

7. The principle of suspicion By means of the analysis, we were sensitive to how roles and personalities affected attitudes to
teamwork to discover false preconceptions
In addition to observations, we also performed interviews with different roles at different
levels, and multiple interviews with all team members. This increased the chance of unveiling
possibly incorrect or incomplete meanings

Table 3
Data sources.

Source Comment

Observations and
informal dialogues

Participant observation and observation of the daily stand-up, sprint and planning meetings, sprint reviews, and sprint retrospective
as well as other meetings. The 60 observations and informal dialogues were documented in field notes, which also include pictures

Interviews We interviewed the Scrum master and three developers in June 2006, five of the developers in September 2006, and all developers,
the Scrum master, and the product owner after the project was completed (March 2007). The 17 interviews were all transcribed

Documents Product backlog, sprint backlogs, burn-down charts, minutes from review, retrospective and planning meetings

N.B. Moe et al. / Information and Software Technology 52 (2010) 480–491 483

We visited the team once or twice a week, conducting a total of
60 observations, each of which lasted from 10 min to 8 h. We ob-
served project meetings and developers working. We often dis-
cussed Alpha’s status and progress, and how team participants
perceived issues during their coffee breaks and lunch. Notes were
taken on dialogues, interactions, and activities. The dialogues were
transcribed and integrated with notes to produce a detailed record
of each session. We also collected Scrum artifacts, such as product
backlogs, sprint backlogs, and burn-down charts. All data from the
interviews, observations, and documents were imported into a tool
for analyzing qualitative data, Nvivo (www.qsrinternational.com).
We categorized interesting expressions, observations, and text
from documents, using the teamwork concepts proposed by Dick-
inson and McIntyre as the main categories.

We used a variety of strategies to analyze the material [27].
First, we described the project and context in a narrative to achieve
an understanding of what was going on in the project. Then, we de-
scribed aspects of teamwork using Dickinson and McIntyre’s model
by pointing to events in three main phases of the project, which
had different teamwork characteristics.

In the analysis, we emphasized how events were interpreted by
different participants in the project. Material to describe an event
was taken across all sources and synthesized, as shown in the
example in Fig. 2.

4. Results: teamwork in an agile project

The team that worked on Alpha organized the project according
to generally recommended Scrum practices. Plans were made at
the beginning of each sprint, after the team had reviewed what
was produced in the previous sprint. Features were recorded in
the sprint backlog. The team that worked on Alpha held three pro-
ject retrospectives to identify and discuss problems and opportuni-
ties that arose during the development process. Daily meetings
were organized throughout the project, though these were less fre-
quent in the last two sprints. These meetings were usually about
updating the others on progress, development issues, and the pro-
ject in general. The daily meetings we observed lasted from 10 to

35 min, but were usually shorter than 15 min. The product owner,
who was situated in another city, often participated in these meet-
ings by telephone. He participated because both he and the Scrum
master thought that it was important to share information con-
stantly and participate in the decision-making process.

Alpha began in May 2006, with the first installation planned for
October and the final installation for November 2006. However,
the first installation was not approved until December 2006 and
from January 2007, two developers continued working with change
requests until the final installation was approved in October 2007.
Five of the sprints lasted 1 month, the sprint during summer for
two. Fig. 3 shows major events in the project together with a pro-
ject-participant satisfaction graph. This figure was created by the
team in the final project retrospective and was based on a timeline
exercise [12]. To create the project-participant satisfaction graph,
each team member first drew his own graph for the emotional ups
and downs during the project, after which the graphs were merged.

In the initial planning phase, before coding began, several meet-
ings were used to discuss the overall architecture, and decide on
the technology and development platform. As can be seen from
Fig. 3, the team was frustrated in this period, because of what
the team described as ‘‘endless discussion without getting any-
where”. After Scrum was introduced and code writing began, the
team was more satisfied with Alpha. In the first retrospective,
the team itself concluded that the team members were taking
responsibility, that they were dedicated to the project, and that
the teamwas protected against external issues. Meetings and work
were perceived as well-coordinated. During the first retrospective,
a developer said:

Earlier we worked more alone, and when you got a project
doomed to failure, youwould get a lot of negative response. That
was unpleasant. Now we share both the risk and opportunities.

The team was satisfied with their performance in sprints 1–4.
However, in sprint 5, problems with integrating a deliverable from
the subcontractor emerged, which resulted in the two last sprints
being chaotic and the project being delayed. During this period,
we saw many empty pizza boxes in the office space, which

Fig. 2. Overview of the coding process. Example material from the concept ‘‘team orientation”.

484 N.B. Moe et al. / Information and Software Technology 52 (2010) 480–491

indicated that the developers were working late. Developers told
us they also worked at weekends. The team became less satisfied,
as shown in Fig. 3.

However, after the client had approved the first installation, the
team became more satisfied. In the last retrospective, the team de-
scribed the project as a good one, except for the problems related
to the deliverable from the subcontractor. Then again, the team
saw this as something beyond their control.

Despite the teams’ overall satisfaction with the teamwork,
throughout the project we observed problems with completing
the backlog and following the sprint plan, unproductive meetings,
developers often being silent in the planning meetings, and devel-
opers often reporting working on issues other than those that it
had been initially planned to work on. In addition, the developers
received little feedback when talking about what they were doing.
In what follows, we will use the data we collected to try to explain
some of our observations.

4.1. Introducing Scrum: sprints 1–2

The project leader participated in a Scrum master certification
course. The first sprint was initiated with a two-day Scrum course.
The first day was spent on introducing Scrum to the whole devel-
opment department, the second on planning the first sprint for
Alpha.

The first sprint completed most of the backlog, and the team
was satisfied with the progress. However, in the first retrospective
(see Fig. 4), the team reported problems with both defining a stable
sprint backlog and finishing it. We observed these problems as
well. The team also ended up working on tasks that were not dis-
cussed or identified during the sprint planning meeting.

In this company, each team member is usually assigned to work
on a specific software module from the beginning to the end. This
way of working is known as an isomorphic team structure [21].
The advantages with this structure are that it is organizationally

Fig. 4. From the review and retrospective meeting in sprint 2.

Fig. 3. Main events in the project and project satisfaction.

N.B. Moe et al. / Information and Software Technology 52 (2010) 480–491 485

simple, it allows many tasks to be completed in parallel, and task
responsibilities can be clearly defined and understood. The Scrum
master subscribed to this view [interview]:

Let the person who knows most about the task perform it!
We cannot afford several people doing the same thing in this
project. We need to continue working as we have done
before.

The team mostly kept this structure after introducing Scrum. A
developer said [interview]:

Because we have to deliver every month, there is never time to
swap tasks.

Because of the division of work, the developers typically created
their own plan for their own module, often without discussing it
with the team. A developer commented [interview]:

Some are more motivated by the perfect technical solution, than
thinking of when things need to be done.

In this phase, one developer even implemented features for fu-
ture projects, without informing the others (this kind of behavior is
often referred to as decision hijacking [3]). This was discussed in a
daily stand-up of the second sprint:

Developer: The customer databases will be used by several
applications, so I have implemented support for dealing with
various technologies, including Oracle. It took a lot of time.
Scrum master: Did we not agree on postponing this?
Developer: We need this later and now it is done.

This illustrates how developers prioritized individual goals
over team goals, and subsequently a lack of team orientation. As
a result of this incident, the Scrum master lost trust in this devel-
oper and started to supervise him. Consequently, the developer
was not part of the team leadership any more, even when discuss-
ing modules where he was seen as the expert. We observed that
he was sometimes absent from the daily meetings. This is consis-
tent with findings from Bandow such that if team members do
not feel that their input is valued, they may be less willing to
share information [4].

The Scrum master also observed that the team was not report-
ing problems. In interviews, we found that the developers thought
that the Scrum master was overreacting to problems stated at the
daily meetings, which resulted in the team not reporting problems
when the Scrum master was present. After the Scrum master con-
fronted the team with this issue, the situation improved. However,
for the rest of the project, the Scrum master still felt that problems
were reported too late. This was confirmed by our observations of
daily stand-ups.

In the second retrospective of Alpha, we found two more rea-
sons for problems not being reported: problems were discovered
late and they were seen as personal. One developer said:

People working alone results in the team not discovering prob-
lems, because you do not get feedback on your work.

Because of the isomorphic team structure, the developers per-
ceived new emerging tasks and new problems as personal; as a re-
sult, they did not seek assistance when needed. They focused on
their own modules, which resulted in problems with monitoring
each other and subsequently with giving feedback and implement-
ing backup behavior. In the second retrospective meeting, one
developer said:

When we discover new problems, we feel we own them our-
selves, and that we will manage to solve them before the next
meeting tomorrow. But this is not the case, it always takes
longer.

When individuals are independent and have more control over
their schedule and the implementation of their tasks, there is less
interaction between the group members [26]. One developer said
[Retrospective sprint 2]:

When it comes to the daily scrum, I do not pay attention when
Ann is talking. For me, what she talks about is a bit far off the
topic and I cannot stay focused. She talks about the things she
is working on. I guess this situation is not good for the project.

In Alpha, this resulted in problems with communication, giving
feedback, and the possibility of monitoring teammates. In addition,
team orientation was hindered, because information sharing and
feedback was delayed by people not listening. It seemed that the
isomorphic team structure resulted in individual goals being seen
as more important than team goals.

In this phase, the team spent more than 100 h rewriting a mod-
ule. The developer responsible for the module said [interview]:

I was supposed to create a database that every project could
use. After I had created it, I explained how it was done during
a stand-up, and then I went on vacation. Later, when they
started using it, they did not understand how it was supposed
to be used, and they decided to rewrite the whole module.
The team had probably not understood what I was talking about
when I explained the database in the daily stand-up. If I had not
gone on vacation they would not have needed to do the
rewriting. . . another problem is the daily meeting. It’s only a
short debrief, there is never time to discuss what you are work-
ing on.

The developer did not verify that the team had understood how
he had implemented the module (communication), and no one gave
feedback to the effect that they did not understand how the module
was implemented during the stand-up. In addition to missingmon-
itoring, the lack of communication and feedback was the reason for
the rewriting, and the consequence was reduced progress and
team efficiency.

In the second retrospective, the team concluded [retrospective
report]:

The team must work more on the same tasks, and then no one
will sit alone. Working alone results in knowledge not being dis-
seminated, and there is no backup. Also, problems are being dis-
covered late and developers not getting feedback on their work.

4.2. Everyday work: sprints 3–4

When the team was getting used to planning and conducting
sprints, work was perceived as motivating and developers ex-
pressed satisfaction at having something completed early in the
project. However, in this phase, many expressed having problems
in transferring what was written in the sprint backlog to actual
work tasks. Initially, the team viewed this difficulty as being
caused by the introduction of ‘‘features” rather than the specifica-
tion of technical requirements. However, the difficulty seemed to
run deeper. One developer expressed:

I have the impression that the sprint backlog has been some-
what distanced from what we have really planned to do.

Another stated:

It is really difficult to get answers to questions, because no-one
really knows where we are going.

This indicates that the team lacked a clear idea of how to
achieve the final result. Applying two different visions for Alpha,
one covering the Alpha project and the other future projects,

486 N.B. Moe et al. / Information and Software Technology 52 (2010) 480–491

did not help this situation and weakened the team orientation.
Team leadership was already weak and was seldom shown by
team members other than the Scrum master and the product
owner. The product owner described the challenge with giving
clear direction, support, and structure to the developers
[interview]:

You need to give an answer according to what you think, and
sometimes I’m not certain I’m giving the right answer. . .. and
you need to give a quick answer; otherwise the developers will
start doing something else.

The team discussions, communication, and feedback improved in
this period. One developer said [interview]:

Using Scrum forces us to work closer with each other, and the
result is more communication.

Another said:

The good thing about Scrum is that Scrum reminds us to talk to
each other about the project.

However, often, discussions ended without conclusion. One
developer said [interview]:

When we discuss technical issues, it often ends in a kind of
‘‘religious” discussion, and then I give up. And then you let peo-
ple continue to do what they are doing.

This shows a challenge with respect to team leadership. The per-
son leading the discussion does not listen to the concerns of other
team members.

In this period, we observed the structure of the stand-up pro-
posed by Scrum being followed. However there was little commu-
nication, coordination, and feedback between the developers in
these meetings. One developer said after a stand-up:

The daily meetings are mostly about reporting to the Scrum
master. When he is not there, the meetings are better because
then we communicate with each other.

Another developer said:

When he is in the meeting we often end up only giving a
brief report about status and not the issues we need to talk
about.

Without a clear understanding of the system being developed,
planning was difficult. In addition, the monthly planning meet-
ings somehow excluded the developers and turned out to consti-
tute communication only between the Scrum master and the
product owner. During the retrospective, the team identified a
need to spend more time planning, but two of the developers
whom we observed being silent in the planning meeting thought
that they spent too much time on planning. Nevertheless, a lack
of thorough discussion was probably one reason for important
tasks sometimes not being identified before the end of each
sprint. This reduced the validity of the common backlog, did not
strengthen the communication, coordination of tasks or the possi-
bility of giving feedback, and again resulted in the developers
focusing more on their own plan, thereby weakening the team
orientation.

Another reason for the developers performing tasks other than
those identified in the planning meeting was the need to adapt to
the constantly changing environment. The high complexity of the
project and open issues regarding technology, client, and subcon-
tractor resulted in a high level of uncertainty when creating the
sprint backlog. We observed the team being sensitive to changes
in both the internal and external environment. However, the team
did not manage to update the plan to adapt to the changing

conditions. Subsequently, it was unclear how much progress had
been made, which made it difficult to monitor team members’
performance.

Despite the lack of monitoring, the developers did sometimes
look at each other’s code. One developer described [interview]
the difficulty of giving feedback and raised the issue of trust regard-
ing this matter:

You look at someone’s code, and then you think, that was a
strange way of doing it. There is no problem getting criticism
from people you feel safe with, but when you get feedback from
people you do not like, it is different. It is also difficult to give
feedback when you are not 100% sure you know that your
way of doing it is better.

4.3. Emergency Scrum: sprints 5–6

The major event in this phase was that the deliverable from the
subcontractor was delayed, and when it was delivered it was found
not to work as intended. The code was unstable and the response
time was too long. This came as a surprise to the team. One devel-
oper said [interview]:

This was a shock to us. The end users could not start testing and
we had to spend a lot of time trying to fix this. It took almost a
month to locate the problems.

Given that the developers were specialized, only two develop-
ers worked on this problem, even at weekends. One developer ex-
plained [interview]:

It’s chaotic now. We work long hours, but I do not do too much.
I have done what I was supposed to, and I cannot help them. I
do not know anything about what they are doing, so it does
not help if I try assist.

The isomorphic team structure and missing monitoring resulted
in a lack of backup behavior.

The integration problem resulted in a backlog not being fin-
ished, but it also became evident that not being strict about the cri-
teria for marking work as having been completed affected this. One
developer said [interview]:

We classified tasks as finished before they were completed and
we knew there was still work to be done. It seems that the
Scrum master wants to show progress and make us look a little
better than we really are. These tasks are then not on the list of
the next sprint since they officially are done, but we know there
is still some more work needed. Each sprint starts with doing
things that we have said were finished and then you know
you will not finish the sprint.

The Scrum master and some team members gave the impres-
sion that the team was better than they actually were and this is
related to a particular challenge to team leadership, which is known
as ‘‘impression management” [32]. Impression management is a
barrier for learning and improving work practices.

Before this last period began, developers had given priority
to the project for 6 months and had worked more than initially
planned. Now, new projects began to start, and because the
completion of Alpha was planned to release resources at this
time, several developers were supposed to start working full-time
on the new projects. Alpha started losing resources, and this be-
came a problem because of poor backup. One developer said
[interview]:

When correcting errors in this phase, each person was respon-
sible for correcting the errors he had introduced. This is not
how it should have been done.

N.B. Moe et al. / Information and Software Technology 52 (2010) 480–491 487

The Scrum master said [interview]:

We are having problems in one of the modules, but other devel-
opers do not want to fix the problem. They want to wait for the
developer who wrote the code.

In this phase, it also became clear that insufficient attention had
been paid to long-term planning. One developer said [interview]:

It turned out that certain parts of the system were simply for-
gotten. There has been a failure somewhere. . . the product
owner and the client asked for things that no one had thought
of and that were not in the backlog.

Two reasons for this omission of certain parts of the system
were that the dissemination of information was not coordinated
among the team-members and that no one had the responsibility
for the overall technical solution. Dissemination of information
among the team-members became an even bigger challenge at
the end. Because the team was losing resources, key personnel
were absent from the daily stand-up, which resulted in the rest
of the team having problems in monitoring the progress of the
project and in coming to a common understanding of the changing
situation.

After the last planned sprint, only two developers continued to
work on the project, in addition to the Scrum master and the prod-
uct owner. The rest of the team members joined other projects, as
had been planned earlier. The two remaining programmers spent
1400 h on finalizing the project (correcting errors and doing more
testing). The final testing was done 7 months after the last sprint.

The client was satisfied with the delivered functionality but not
with the system performance.

5. Discussion

We have described the introduction of the agile process Scrum
in a software development project, using the teamwork model pro-
posed by Dickinson and McIntyre [13], Fig. 1. We now discuss the
case in light of our research question: ‘‘How can we explain the
teamwork challenges that arise when introducing a self-managing
agile team?” We found the following:

Dickinson and McIntyre proposed that team leadership and
team orientation promote team members’ capability to monitor
their teammates’ performance. This does not seem to be borne
out by our case study, in a number of ways. Due to the isomorphic
team structure, the developers focused on their own modules and
often created their own plan and made their own decisions. In
addition, problems were seen as personal. This low team orienta-
tion on the part of the developers resulted in them not knowing
what the others were doing, and as a result it was difficult to mon-
itor others’ performance. The team members seemed to be used to
having a very high degree of individual autonomy. This created
problems when the team members tried to change their normal
way of working to become part of a self-managed team. Our find-
ings confirm previous research by Langfred [26], such that there
can be a negative effect on team performance when teams are try-
ing to function as a self-managed team when the team members
have high individual autonomy. Team leadership was also not dis-
tributed as it should be in a self-managing team [32]. Only a few
team-members participated in the decision-making, and the Scrum
master focused more on command-and-control than providing
direction and support for other team members. The Scrum master
even ended up supervising one developer because this developer
implemented features for future projects, without informing the
others. Because the team-members felt the Scrum master overre-
acted when they reported problems, they started reporting fewer

problems, which again limited the possibility of monitoring each
other.

The Dickinson and McIntyre model suggests that performance
monitoring drives both the content of feedback and timely backup
behavior. Due to the fact that the team members did not monitor
each other much, there was little feedback and almost no backup,
which become evident when the team started to lose resources at
the end of the project. The team members did provide some posi-
tive feedback, but several found it difficult to both give and accept
negative feedback. Our findings also confirm the results of previous
research by Levesque et al. [28], such that when the roles that
group members play become increasingly specialized and as a re-
sult reduce team redundancy and backup, there is a corresponding
decline in the amount of time that team members spend working
with or communicating with each other. This is also consonant
with Marks et al. [30], such that if effective backup is to be pro-
vided, teammates need to be informed of each others’ work in or-
der to identify what type of assistance is required at a particular
time. Marks et al. [30] identify three ways of providing such back-
up: (1) providing a teammate with verbal feedback or coaching, (2)
physically assisting a teammate in carrying out a task, or (3) com-
pleting a task for a teammate when it is observed that the work-
load is too much for him. These means seems to be missing at
Alpha.

Dickinson and McIntyre argue that, when all the aforemen-
tioned teamwork competences occur in unison, they serve syner-
gistically as a platform for team coordination. The Alpha team
had problems with all the teamwork competences and as a conse-
quence they had problems coordinating the teamwork. Important
tasks were even forgotten. Marks et al. [30] also argue that when
teams have communication problems they are likely to experience
problems with coordinating their work.

According to the Dickinson and McIntyre model, the feedback
resulting from team coordination should serve as input back into
the team processes. The team identified early on [second retro-
spective] the need for developers to start working on the same
tasks, the lack of backup, problems not being reported, and lack
of feedback. The researchers observed, and the team members
thought, that the teamwork improved during the course of the pro-
ject. However, it seemed to be difficult to change the teamwork,
because changing meant changing not only the developers’ way
of working but also organizational structures. The team worked
better together in the later phases, but did not improve the team
orientation and team leadership in such a way that monitoring
was improved. One reason is the observation of what Morgan
[32] defines as ‘‘impression management”, when the team gave
the impression to be better than they actually were. Impression
management is a barrier to learning [32]. Continuous self-manage-
ment requires a capacity for learning that allows operating norms
and rules to change in response to changes in the wider environ-
ment [32].

In the Dickinson and McIntyre model, communication acts as
the glue that links together all other teamwork processes. In
Scrum, the daily stand-up is the most important mechanism for
achieving such communication. Everyone should communicate
with everyone else. However, because of problems with team lead-
ership and a lack of monitoring, these meetings were mostly used
by the Scrum master for getting an overview of what was going on
in the project. Developers were reporting to the Scrum master and
not talking to each other. Communication improved when the
Scrum master was absent. As a result of the highly specialized
skills and corresponding division of work, there was less interac-
tion and communication between the group members. However,
this improved in the last phase of the project because by that time,
the developers had become accustomed to talking to each other at
the daily stand-up.

488 N.B. Moe et al. / Information and Software Technology 52 (2010) 480–491

5.1. Implications for theory

The Dickinson and McIntyre model explains most of our obser-
vations. However, it does not model any of the critical antecedents
and outcomes of the team process. In the case of Alpha, it was obvi-
ous that the team had problems becoming a well-functioning team
from the beginning, and that this was one reason for the team hav-
ing problems in self-managing.

In addition, Dickinson and McIntyre do not describe certain
important components, such as trust and shared mental models.
We observed that the team had not developed trust at the group
level. A lack of trust among the Scrum master and the members
of the team was an important reason for why problems were not
reported and why a team member was given instructions on what
to do. Our findings are consonant with those of Salas et al. [39]:
without sufficient trust, team members will expend time and en-
ergy protecting, checking, and inspecting each other as opposed
to collaborating to provide value-added ideas. It is evident that
trust is a prerequisite for shared leadership, feedback, and commu-
nication. Our finding regarding the lack of trust also confirms
previous research on trust [4], such that team members may not
be willing to share information if they fear being perceived as
incompetent.

The team lacked a shared mental model on what the outcome of
the project should be. Working cooperatively requires the team to
have shared mental models [39]. Our results are also consonant
with Salas et al.’s [39] findings that without a shared understand-
ing, the individual members may be headed toward different goals,
which in turn will lead to ineffective/lack of feedback or assistance.
Shared mental models are also a prerequisite for communication,
monitoring, and team orientation. In addition, our finding confirms
the results of previous research on shared mental models in soft-
ware development teams, such that not all teams develop increas-
ingly shared mental models over time [28].

Having problems with trust and developing shared mental
models could also be a reason why the team did not manage to
change the team process more than we observed. In addition, the
previous ways of working in the company hindered effective team-
work, and in this setting the team did not succeed in improving
their teamwork skills significantly during the project.

For theory, this study shows that:

! There is a vast literature on teamwork that is very relevant
for agile development and that deserves more attention.

! Dickinson and McIntyre’s model [13] should be extended to
include trust and shared mental models.

5.2. Implication for practice

Agile software development emphasizes that teams should be
self-managed. However, Scrum and agile methods offer no advice
on how shared leadership should be implemented. A practical
implication of Langfred’s [26] findings is that, if an organization be-
lieves in letting teams be more self-managing, great care must be
taken in the implementation. This is especially important when
the team members have high individual autonomy.

The Alpha project was the first big project for most developers.
Even though they had worked together for years, they should prob-
ably have spent more time together focusing on improving team-
work in the initial phase of the project. The successful teams that
Katzenbach et al. [22] observed all gave themselves the time to
learn to be a team. If developers who work together have problems
becoming a team, they will also have problems becoming a self-
managing team.

What people should do to provide backup is not specified
clearly in Scrum. In the literature on self-managed teams, backup
behavior has been identified as an important prerequisite for
self-management [32,35]. In our study, highly specialized skills
and a corresponding division of work was the most important bar-
rier to achieving backup and then self-management.

Scrum is not very specific on how to establish monitoring in
development teams, although this is implicitly a prerequisite for
feedback, coordination, and backup. Combining Scrum with, for
example, the practice of pair programming in XP [6] would im-
prove monitoring, feedback, and backup.

We believe that our study has the following main implications
for practice:

! An isomorphic project structure will hinder teamwork
because the division of work will make it more difficult for
developers to develop shared mental models, trust each
other, communicate, coordinate work, and provide backup.
One way of handling this is to organize cross-training and
appreciate generalist to build redundancy in the organiza-
tion [31].

! Self-management should be enabled when starting to use
agile methods such as Scrum, and be aware that high indi-
vidual autonomy may results in problems creating a self-
managing team.

! The way in which agile practices are taken up is dependent
on the companies’ former development process. Changes
take time and resources, and for the company in this study,
previous practices were sustained throughout their first agile
project.

! Thedevelopment process should be adjusted for enabling effi-
cient work, by making room for reflection and learning. How-
ever, achieving learning in software processes is not trivial.

5.3. Limitations

The main limitations of our study are the single-case design and
the possibility of bias in data collection and analysis. The fact that
we used a single-case holistic design makes us more vulnerable to
bias and eliminates the possibility of direct replication or the anal-
ysis of contrasting situations. Therefore, the general criticisms
about single-case studies, such as uniqueness and special access
to key informants, may also apply to our study. However, our ratio-
nale for choosing Alpha as our case was that it represents a critical
case for explaining the challenges for teamwork that arise when
introducing self-managing agile teams. We used Alpha to deter-
mine whether we could confirm, challenge, or extend Dickinson
and McIntyre’s [13] teamwork model. Our goal was not to provide
statistical generalizations about a population on the basis of data
collected from a sample of that population. On the contrary, our
mode of generalization is analytical, i.e., we used a previously
developed theory as a template with which we compared the
empirical results of the case study, which is similar to Yin’s [49]
concept of Level Two inference.

Another possible limitation is that we based much of our data
collection and analysis on semi-structured interviews [14]. The
use of multiple data sources made it possible to find evidence for
episodes and phenomena from more than one data source; we also
observed, talked to, and interviewed the teammembers over a per-
iod of 9 months, which made it possible to study the phenomena
from different viewpoints as they emerged and changed.

Could it be that we as researchers influenced the teamwork
characteristics by our presence in the project? Our presence and
questions might have made the team members more aware of
teamwork characteristics, but we do not think their behavior was

N.B. Moe et al. / Information and Software Technology 52 (2010) 480–491 489

influenced by our presence. The everyday demands of the projects
were high, and we did not observe changes in behavior that
seemed to relate to our interview or observation phases.

5.4. Future work

The results of this study point out a number of directions for fu-
ture research. Firstly, our study highlights several challenges that
must be met when self-managing teams are introduced into agile
development. Accordingly, further work should focus on identify-
ing and addressing other problems that may arise when introduc-
ing agile development.

Secondly, the extended teamwork model should be used for
studying mature agile development teams, in order to get a better
understanding of the main challenges in such teams. Also, teams
using shorter sprints (e.g. 2–3 weeks) should be studied, since this
will give the team more frequent feedback, which affect team
learning and the other elements in the Dickinson and McIntyre
teamwork model.

Thirdly, our study tries to answer ‘‘How can we explain the
teamwork challenges that arise when introducing a self-managing
agile team?” through Dickinson and McIntyre’s teamwork model.
However, there are other relevant streams of research to address
the adoption of methods and technology, e.g. the diffusion of inno-
vation literature [37]. Other models that attempt to explain the
relationship between user perceptions, attitudes and use inten-
tions include the technology acceptance model (TAM) [11], and
the theory of planned behavior [2].

6. Conclusion

We have conducted a nine-month field study of professional
developers in a Scrum team. We found that the model of Dickinson
and McIntyre [13], together with trust and shared mental models,
explain our findings. In addition to these teamwork components,
highly specialized skills and a corresponding division of work
was the most important barrier for achieving effective teamwork.
We have also seen that Scrum has several mechanisms in place
for supporting the recommendations of the framework, but that
many of these mechanisms are not easy to implement in practice.

Transitioning from individual work to self-managing teams re-
quires a reorientation not only by developers but also by manage-
ment. Making such changes takes time and resources, but it is a
prerequisite for the success of any kind of agile method based on
self-management.

Acknowledgement

This work was supported by the EVISOFT project, which is par-
tially funded by the Research Council of Norway under Grant
174390/I40.

Appendix A

A.1. Interview guide

The respondent was informed of the nature of the study and
how long the interview will take. The respondent was told why
it is important to tape the interview and that only the researchers
would have access to the transcript. The respondent was finally
asked if he/she would agree to the interview being taped.

Questions for warm-up:

! What are you working on now?
! What is the status of the project?

Main body of the interview:

! How is work coordinated in the project?
" How was it done in earlier projects?
! How are problems that emerge in the project solved?
" How was it done in earlier projects?
! Do you have an overview of what others are doing?
" How was it done in earlier projects?
! How easy is it to carry on work that was begun by others?
" How was it done in earlier projects?
! How do you discover changes in the project?
" How was it done in earlier projects?
! How do you deal with changes in the project?
" How was it done in earlier projects?
! Does the team have a common project goal?
" Did earlier projects have a common project goal?
! Does everyone know the expected outcome of the project?
" How was it done in earlier projects?
! Do team members give each other feedback in the project?
" How was it done in earlier projects?
! Do team members share relevant project information with

each other?
" How was it done in earlier projects?
! How is the team communication?
" How was it done in earlier projects?
! How is the team performance?
" How was it done in earlier projects?
! How do you think Scrum is working in the project?
" What is working?
" What is not working?
! Is there anything else you would like to add that you think is

interesting in this context, but not covered by the questions
asked?

References

[1] S.T. Acuna, M. Gomez, N. Juristo, How do personality team processes and task
characteristics relate to job satisfaction and software quality?, Information and
Software Technology 51 (3) (2009) 627–639

[2] I. Ajzen, The theory of planned behavior, Organizational Behavior and Human
Decision Processes 50 (2) (1991) 179–211.

[3] A. Aurum, C. Wohlin, A. Porter, Aligning software project decisions: a case
study, International Journal of Software Engineering and Knowledge
Engineering 16 (6) (2006) 795–818.

[4] D. Bandow, Time to create sound teamwork, The Journal for Quality and
Participation 24 (2) (2001) 41–47.

[5] J.R. Barker, Tightening the iron cage – concertive control in self-managing
teams, Administrative Science Quarterly 38 (3) (1993) 408–437.

[6] K. Beck, C. Anders, Extreme Programming Explained: Embrace Change, second
ed., Addison-Wesley, 2004.

[7] R.M. Belbin, Team Roles at Work, Butterworth-Heinemann, Boston, MA, 1993.
[8] B.W. Boehm, R. Turner, Balancing Agility and Discipline: a Guide for the

Perplexed, Addison-Wesley, 2003.
[9] C.S. Burke, K.C. Stagl, C. Klein, G.F. Goodwin, E. Salas, S.A. Halpin, What type of

leadership behaviors are functional in teams? A meta-analysis, Leadership
Quarterly 17 (3) (2006) 288–307.

[10] S.G. Cohen, D.E. Bailey, What makes teams work: group effectiveness research
from the shop floor to the executive suite, Journal of Management 23 (3)
(1997) 239–290.

[11] F.D. Davis, Perceived usefulness, perceived ease of use, and user acceptance of
information technology, MIS Quarterly 13 (3) (1989) 319–340.

[12] E. Derby, D. Larsen, Agile retrospectives: making good teams great, Pragmatic
Bookshelf, 2006.

[13] T.L. Dickinson, R.M. McIntyre, A conceptual framework of teamwork
measurement, in: M.T. Brannick, E. Salas, C. Prince (Eds.), Team Performance
Assessment and Measurement: Theory, Methods, and Applications,
Psychology Press, NJ, 1997, pp. 19–43.

[14] T. Diefenbach, Are case studies more than sophisticated storytelling?
Methodological problems of qualitative empirical research mainly based on
semi-structured interviews, Quality and Quantity 43 (6) (2009) 875–894.

[15] T. Dybå, Improvisation in small software organizations, IEEE Software 17 (5)
(2000) 82–87.

[16] T. Dybå, T. Dingsøyr, Empirical studies of agile software development: a
systematic review, Information and Software Technology 50 (9–10) (2008)
833–859.

490 N.B. Moe et al. / Information and Software Technology 52 (2010) 480–491

[17] R.A. Guzzo, M.W. Dickson, Teams in organizations: recent research on
performance and effectiveness, Annual Review of Psychology 47 (1996) 307–
338.

[18] J.R. Hackman, The design of work teams, in: J. Lorsch (Ed.), Handbook of
Organizational Behavior, Prentice-Hall, Englewood Cliffs, NJ, 1987.

[19] M. Hoegl, H.G. Gemuenden, Teamwork quality and the success of innovative
projects: a theoretical concept and empirical evidence, Organization Science
12 (4) (2001) 435–449.

[20] M. Hoegl, K.P. Parboteeah, Autonomy and teamwork in innovative projects,
Human Resource Management 45 (1) (2006) 67–79.

[21] J. Jurison, Software project management: the manager’s view, Communi-
cations of AIS 2 (1999).

[22] J.R. Katzenbach, D.K. Smith, The discipline of teams, Harvard Business Review
71 (2) (1993) 111–120.

[23] B.L. Kirkman, B. Rosen, Beyond self-management: antecedents and
consequences of team empowerment, Academy of Management Journal 42
(1) (1999) 58–74.

[24] H.K. Klein, M.D. Myers, A set of principles for conducting and evaluating
interpretive field studies in information systems, MIS quarterly 23 (1) (1999)
67–93.

[25] R.E. Kraut, L.A. Streeter, Coordination in software development,
Communications of the ACM 38 (3) (1995) 69–81.

[26] C.W. Langfred, The paradox of self-management: individual and group
autonomy in work groups, Journal of Organizational Behavior 21 (5) (2000)
563–585.

[27] A. Langley, Strategies for theorizing from process data, Academy of
Management (1999) 691–710.

[28] L.L. Levesque, J.M. Wilson, D.R. Wholey, Cognitive divergence and shared
mental models in software development project teams, Journal of
Organizational Behavior 22 (2001) 135–144.

[29] S.E. Markham, I.S. Markham, Self-management and self-leadership
reexamined: a levels-of-analysis perspective, The Leadership Quarterly 6 (3)
(1995) 343–359.

[30] M.A. Marks, J.E. Mathieu, S.J. Zaccaro, A temporally based framework and
taxonomy of team processes, Academy of Management Review 26 (3) (2001)
356–376.

[31] N.B. Moe, T. Dingsøyr, T. Dybå, Overcoming barriers to self-management in
software teams, Software, IEEE 26 (6) (2009) 20–26.

[32] G. Morgan, Images of Organizations, SAGE publications, Thousand Oaks, CA,
2006.

[33] S. Nerur, V. Balijepally, Theoretical reflections on agile development
methodologies – the traditional goal of optimization and control is making

way for learning and innovation, Communications of the ACM 50 (3) (2007)
79–83.

[34] S. Nerur, R. Mahapatra, G. Mangalaraj, Challenges of migrating to agile
methodologies, Communications of the ACM 48 (5) (2005) 72–78.

[35] I. Nonaka, H. Takeuchi, The Knowledge-Creating Company: How Japanese
Companies Create the Dynamics of Innovation, vol. 12, Oxford University
Press, New York, 1995.

[36] L. Rising, N.S. Janoff, The Scrum software development process for small teams,
IEEE Software 17 (4) (2000) 26–32.

[37] E.M. Rogers, Diffusion of Innovations, fourth ed., The Free Press, New York,
1995.

[38] V. Rousseau, C. Aube, A. Savoie, Teamwork behaviors – a review and an
integration of frameworks, Small Group Research 37 (5) (2006) 540–
570.

[39] E. Salas, D.E. Sims, C.S. Burke, Is there a ‘‘big five” in teamwork?, Small Group
Research 36 (5) (2005) 555–599

[40] E. Salas, K.C. Stagl, C.S. Burke, G.F. Goodwin, Fostering Team Effectiveness in
Organizations: Toward an Integrative Theoretical Framework. in: 52nd
Nebraska Symposium on Motivation, Lincoln, NE, 2007.

[41] J. Sapsed, J. Bessant, D. Partington, D. Tranfield, M. Young, Teamworking and
knowledge management: a review of converging themes, International Journal
of Management Reviews 4 (1) (2002) 71–85.

[42] B. Schatz, I. Abdelshafi, Primavera gets agile: a successful transition to agile
development, IEEE Software 22 (3) (2005) 36–42.

[43] K. Schwaber, Beedle, Agile Software Development with Scrum, Prentice Hall,
Upper Saddle River, 2001.

[44] H. Takeuchi, I. Nonaka, The new product development game, Harvard Business
Review (64) (1986) 137–146.

[45] J. Tata, S. Prasad, Team self-management, organizational structure, and
judgments of team effectiveness, Journal of Managerial Issues 16 (2) (2004)
248–265.

[46] B.B.W. Tuckman, Developmental sequence in small groups, Psychological
Bulletin 63 (1965) 384–399.

[47] M. Uhl-Bien, G.B. Graen, Individual self-management: analysis of
professionals’ self-managing activities in functional and cross-functional
work teams, Academy of Management Journal 41 (3) (1998) 340–350.

[48] M.A. West, The social psychology of innovation in groups, in: M.A. West, J.L.
Farr (Eds.), Innovation and Creativity at Work: Psychological and
Organizational Strategies, Wiley, Chichester, 1990, pp. 309–333.

[49] R.K. Yin, Case Study Research: Design and Methods, vol. xiv, Sage, Thousand
Oaks, CA, 2009. p. 219 s.

N.B. Moe et al. / Information and Software Technology 52 (2010) 480–491 491

#0#0$%$&0!'!!#10"#23"$%!#!!&#$'0!%1()$*#0$#'3!
!!&'(')*)+'!,-!(.'/,01/23!,-!4,2+'!3.5627('2,+1!-0,*!!"#$!""#%&'()!*+,+-)-.+!'/!,0+&'"%!'/!2'#.+!103(#4,+#'.%!/"')!"530$-!"0"0)!*+,+-)-.+!'/!,0+&'"%!'/!2'#.+!103(#4,+#'.%!/"')!6'"7-#"!8#.7%95"!*+,+-)-.+!'/!,0+&'"%!'/!2'#.+!103(#4,+#'.%!/"')!6'"-!853:!*+,+-)-.+!'/!,0+&'"%!'/!2'#.+!103(#4,+#'.%!/"')!;5<#.=!><,.7,"=%.-%!*+,+-)-.+!'/!,0+&'"%!'/!2'#.+!103(#4,+#'.%!/"')!?#.750-!@#!*+,+-)-.+!'/!,0+&'"%!'/!2'#.+!103(#4,+#'.%!/"')!!==,!A#$$-(%-.!*+,+-)-.+!'/!,0+&'"%!'/!2'#.+!103(#4,+#'.%!/"')!!)#(!B95"<#$!!!!!!!!!!!!!

