
Master of Science in Computer Science
February 2011
Svein Erik Bratsberg, IDI

Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Metric indexing by database techniques

Stian Erlandsen

Problem Description
Metric indexing and search is a recent technique to do similarity search.
There is a large potential for improved performance by combining
algorithms from the metric indexing field with well known techniques
from the database field.
There has been built a prototype to implement the LAESA algorithm
using traditional database indexes in NTNUstore: B+-trees and R*-trees.

The task of this master thesis is to design and implement a version of the
LAESA algorithm which is faithful to the original algorithm. This new LAESA
version should be compared with the version that has been implemented already.
One of the issues is whether B+-trees or heap files should be basis for the
new version. The data sets to be used is the NASA picture data and the
COLORS data, both from the SISAP library.

Assignment given: 30. August 2010
Supervisor: Svein Erik Bratsberg, IDI

Abstract

Similarity search is very useful in many applications. Because of the complex-
ity and expensive nature of such search operations, many existing methods re-
quire special access methods and cannot be directly integrated with commercial
DBMSs(Database Management Systems). NTNUStore is a framework to aid re-
search in this field and focuses on disk-based metric indexing to keep it compatible
with commercial DBMSs.

This project has implemented and experimented with a version of the LAESA
(Linear Approximating and Eliminating Search Algorithm) in NTNUStore. The
results are close to what was represented in Erik Bagge Ottesen’s master thesis
[10]. The biggest contribution in this project is that the new algorithm solves KNN
search without the need of providing a range parameter in the query.

Preface

This thesis is the final work for the Master of Science education at the Norwe-
gian University of Science and Technology. The work is a contribution to the
NTNUStore platform which was built by Svein Erik Bratsberg and Magnus Lie
Hetland [3] and then expanded by Erik Bagge Ottesen [10] through his master
thesis. NTNUStore is based on NEUStore [17].

A LAESA method already exists in NTNUStore. A new version that is true to the
original algorithm [8] will be implemented and the two versions will be compared
with each other.

Big thanks to my supervisor Svein Erik Bratsberg for the valuable inputs on the
research and the writing of this report.

Contents

1 Introduction 1

1.1 Metric Space . 2

1.2 Range- and KNN Search . 2

1.3 Motivation, objectives and contributions 5

1.3.1 General Motivation . 5

1.3.2 Objectives . 5

1.3.3 Contributions . 6

1.4 Challenges and problems . 6

1.5 Report outline . 7

2 Related work 9

2.1 Pivot-based methods . 9

2.1.1 AESA and LAESA . 9

2.1.2 NTNUStore . 10

2.1.3 Omni-family . 13

2.2 Metric ball-based methods . 14

2.2.1 VP-tree, BS-tree and Their Descendants 14

2.3 Metric planes and Dirichlet domains 17

3 Implementation 19

3.1 Analysis and Decisions . 19

3.1.1 The Original LAESA . 19

3.1.2 Existing Framework . 22

i

CONTENTS

3.2 Implementation Part 1 - Pivot Selection 22

3.3 Implementation Part 2 - Search Algorithm 23

3.3.1 NN Search - No Pivots . 24

3.3.2 KNN Search - No Pivots . 25

3.3.3 NN Search - With Pivots . 26

3.3.4 KNN Search - With Pivots 28

4 Experiments 29

4.1 System Specification . 29

4.2 Data Sets . 30

4.3 Experiments on the Nasa Data-set 30

4.4 Experiments on the Colors Data-set 32

5 Conclusion and Future Research 35

5.0.1 Conclusion . 35

5.0.2 Future Research . 35

6 References 39

A Original LAESA Source Code 41

B Final LAESA Source Code 45

ii

List of Figures

1.1 Filtering process . 4

1.2 How the lower bound is found in KNN search 5

2.1 Filtering step for range search in NTNUStore with radius r = 1.1. . 11

2.2 Filtering step for KNN search in NTNUStore with radius r = 1.2. . 12

2.3 Schematic view of the OmniB-Forest. 14

2.4 Generating the VP-tree, step 1. 15

2.5 Generating the VP-tree, step 2. 15

2.6 Schematic view of the BS-tree. 16

2.7 GH- and GNAT partitioning styles 17

3.1 pseudo code for the LAESA pivot selection. 20

3.2 Pseudo code for the LAESA. 21

3.3 Logic for the LAESA algorithm. 24

3.4 No pivots and K=1 . 25

3.5 No pivots and K=5 . 26

3.6 Using pivots and K=1 . 27

4.1 System specification. 30

4.2 Number of distance computations for the nasa data-set 31

4.3 Time spent on building and sorting lower bounds Nasa 31

4.4 Response time for nasa data-set with 1ms distance calculations . . . 32

4.5 Number of distance computations for the colors data-set 33

4.6 Time spent on building and sorting lower bounds Colors 33

iii

LIST OF FIGURES

4.7 Response time for colors data-set with 1ms distance calculations . . 34

iv

Acronyms

AESA Approximating and Eliminating Search Algorithm

BS-tree Bisector-tree

DBMS Database Management System

GH-tree Generalized Hyperplane tree

GNAT Geometric Near-neighbour Access Tree

KNN K Nearest Neighbour

LAESA Linear Approximating and Eliminating Search Algorithm

MVP-tree Multi-Vantage Point-tree

RAF Random Access File

SAM Spatial Access Method

VP-tree Vantage Point-tree

Terminology

Candidate Refers to an object that may or may not be a part of the result and
exact calculations have to be done in order to determine this.

Base-Prototype See Pivot.

Euclidean Space Our intuitive understanding of two- or three dimensional space
is the Euclidean space - the principles of Euclidean geometry apply.

Foci See Pivot.

Hyperplane In the Euclidean space the hyperplane(midset) will be the set of all
points that are equidistant from pivot A and B.

Intrinsic Dimensionality Dimensionality Estimation.

Lower Bound An Objects lower bound defines the lowest possible distance it can
be from another object(usually a pivot).

Metric Ball A partitioning method of the metric space.

Metric Space Our intuitive understanding of space is the one-, two- and three-
dimensional Euclidean Space. The metric space is a generalization of the
n-dimensional space where some mathematic properties must hold true.

Pivot An object in the metric space chosen as a reference point for other objects
in the space. Sometimes referred to as foci or base-prototype.

Pivoting A partitioning method of the metric space.

Prototype Objects in the data-set are sometimes refered to as prototypes.

Similarity Search Finding closest points in a metric space by utilizing a distance
function(metric).

Chapter 1

Introduction

Similarity search is a query-by-example search where the result is one(nearest
neighbour) or more items(K nearest neighbours) that are similar to the example.
What defines two items as similar can vary between applications. In a geometric
model, the distance between the items determine how similar they are. In a trans-
formational model however the transformation cost in relation to transforming one
item into the other determine how similar they are. The two scenarios below gives
a couple examples of similarity search applications.

Scenario 1 Kate is sitting on the bus on her way home from work. The radio
plays a song she has never heard but she really likes it and wants to buy it online.
She holds her phone close to the speaker and her application searches for the song
by “listening” to it. The application finds out what song it is and returns all the
information she needs about the song.

Scenario 2 Jonas works as a technical specialist in a law enforcement agency.
He receives some video footage taken from a surveilance camera at a crime scene.
The footage contains images of the prime suspect. He runs the images against
their criminal database and the search engine retrieves the most similar person.

Similarity search and nearest neighbour problems are ubiquitios, meaning that a
solution for one isolated problem might perform well on its own but interoperability
is not easily achieved. This is the reason why similarity search is not supported
by commercial DBMSs yet. Generic solutions are being researched and improved
over time, so one can almost be certain that one day this will change.

A metric space is a generalization of space where the metric is a distance function
that defines how similar or dissimilar two objects are.

1

CHAPTER 1. INTRODUCTION

1.1 Metric Space

The formal definition of a metric space is as follows: Let X be a set. A function
d : X ×X → R+ is called a metric if it satisfies these three conditions:

1. ρ(x, y) = 0 ⇐⇒ x = y (positive definitness).

2. ρ(x, y) = ρ(y, x) (symmetry).

3. ρ(x, z) ≤ ρ(x, y) + ρ(y, z) (triangle inequality).

A metric space is a pair (X, ρ), where ρ is a metric or distance function X.

The simplest example of a metric space is the Euclidean space. If this space is a
two-dimensional space, the metric is a geometric distance function and defined as
ρ(x, y) =

√
(x1 − y1)2 + (x2 − y2)2

Finding the best suited distance function within a given problem domain is a study
of its own and is outside the scope of this report. That said, whatever the dis-
tance function might be for a certain space, the general concept is a mathematical
expression that calculates the distance between two objects.

1.2 Range- and KNN Search

The two most basic types of similarity search are KNN(K-Nearest Neighbour)
search and range search. KNN search answers questions like “What is the closest
object to object x and what is the distance between these?” or “What are the five
closest objects to object x and what is the distance between x and each five?”.
Range search answers questions like “How may objects are within range of object
x using radius y?”. The scenario examples given earlier are KNN search where k
= 1 since we only want the closest object and nothing else. In range search we are
interested in all objects within a specified distance from the query object. This
project focus on KNN search.

The most basic solution for the similarity search problem , is to scan the whole
dataset and calculate distances from all objects to the query object and return
the object with the shortest distance as result. This requires n amount of distance
calculations each time we query and since distance calculations are generally viewed
as the most expensive factor when it comes to response time, we need a way to
reduce this amount. Chapter 2 will explain some existing methods that achieve
this. This report will only be focusing on the method called pivoting, since LAESA
is based on that concept. Reducing the amount of distance calculations is the main
objective of LAESA or similar algorithms and is possible through the following
three steps:

2

CHAPTER 1. INTRODUCTION

1. Selecting x amount of pivots(outskirt objects. Sometimes called base-prototype
or foci), calculating distances from each pivot to all objects in the set and storing
an index for each pivot. This is a very cumbersome process but is only necesarry to
run once for a given dataset unless we are trying to figure out an optimal number
of pivots through trial and error.

2. Filtering out objects. With the pre-calculated distances now stored in the
indexes, some objects can be eliminated by taking advantage of the triangular
inequality. How many objects that can be eliminated in KNN search depends on
some factors:

� How many pivots that are used.

� How the testobject is positioned in the metric space with respect to the
pivot(s) and the other objects.

� How big K is set to. The more neighbours we want, the less pruning can be
done.

� The size of the database.

The triangular inequality is a basic property of metric space and is defined as:

d(x, z) ≤ (x, y) + d(y, z)

In range search, this translates to all objects outside the range d(p,q) - r and
d(p,q) + r are eliminated, while objects inside becomes candidates. The more
pivots used, more objects are eliminated and the candidate set becomes smaller.
Albeit choosing too many pivots will give a negative effect in performance since at
some point an extra pivot will exclude very few objects, maybe not even a single
one. In this case the cost of managing the extra pivot will simply overcome the
gain. See figure 1.1 for a visual representation of the filtering process with range
search.

3

CHAPTER 1. INTRODUCTION

q

p1

r

D(p1,q + r)

D(p1,q - r)

p2
D(p2,q - r)

D(p2,q + r)

q

p1

r

D(p1,q + r)

D(p1,q - r)

qr

a)

b)

c)

Figure 1.1: a) Set of objects in a two-dimensional space where q is the query object
and r is the query range. b) Using one pivot, all objects outside the gray area are
eliminated. c) Using two pivots, the gray area becomes smaller and more objects
are eliminated compared to b) with one pivot.

4

CHAPTER 1. INTRODUCTION

This looks a little different with KNN since we do not operate with a range.
Instead, the known distances between pivot p and object Oi(stored in the index)
and the distance between the query object q and p(calculated by the algorithm)
are exploited to create a lower bound for the distance between Oi and q. See figure
1.2

q

p

o1

d(q,O1)?

d(p,O1)

Stored in index

d(p,q)Calculated by the algorithm

Figure 1.2: How the lower bound is found in KNN search. The lower bound for
d̆(q, O1) is found by |d(p, q)− d(p,O1)|

3. Sort the lower bounds in ascending order. With NN search, stop if the lowest
real distance so far is less than the next lower bound. In KNN search, store the
lowest K distances found so far and stop if the highest value of these is lower than
the next lower bound.

1.3 Motivation, objectives and contributions

1.3.1 General Motivation

The purpose of this thesis is to assist in the NTNUStore project by developing
a solution for the original LAESA. A general platform for disk-based similarity
search is an important part of the research field and is the architectural choice for
NTNUStore. As mentioned earlier, similarity search is at a stage where it is only
usable in specialized database systems and not integrated in commercial DBMSs.

1.3.2 Objectives

The goal of NTNUStore is to provide a platform which is able to support multiple
similarity search applications. The new LAESA version can serve as a building
block towords this goal. NTNUStore, in its current version, is focused towords
range search and solves KNN problems through range search. The implementation
in this project can provide a new and hopefully better method for solving these
query types.

5

CHAPTER 1. INTRODUCTION

Therefore, the goal of this project is to implement the original LAESA in NTNU-
Store and see how it performs compared to existing algorithms.

1.3.3 Contributions

A version of the LAESA has been implemented and presents the following contri-
butions:

� A new algorithm for choosing pivots.

� The LAESA containing four components:

� NN search using zero pivots.

� KNN search using zero pivots

� NN search using one or more pivots.

� KNN search using one or more pivots.

These components will be explained in more detail in the implementation, chapter
3.

1.4 Challenges and problems

The biggest challenge in this project has been to get a full overview of all the
existing classes and methods. Particularly the process of creating, writing and
reading indexes involves many classes and single methods tends to jump over sev-
eral classes before terminating. This makes it challenging to debug problems that
might occur with these processes.

The original LAESA presumes that all input information needed is available in
main memory. LAESA takes three variables as input:

1. Set of Pivot-object distances. This will take up most of the needed storage
space.

2. Set of all objects.

3. Set of all pivots, only keys needed.

This fact does not handshake with the NTNUStore intention, which is to store the
data in general access structures on disk to avoid limitations on the dataset size.
To not put a constraint on the data-set size, it was decided to store pivot-object
distances and all objects on disk while pivot information is stored as random-access
files. [enter more here]

6

CHAPTER 1. INTRODUCTION

1.5 Report outline

The remainder of this report is organized into the following chapters:

Chapter 2 is a survey of related work conducted over the years. It explains the
three different methods of divinding the metric plane(pivoting, metirc balls and
hyperplanes) and some important work in each of these is given.

Chapter 3 introduces some analysis and descision that had to be taken before and
during the implementation. Secondly it explains the two algorithms implemented
and how the four search methods were done.

Chapter 4 presents the results from the experiments. The chapter is split between
experiments on the NASA data-set and the Colors data-set.

Chapter 5 concludes the project and discusses some challanges that might be
interesting for future projects.

7

CHAPTER 1. INTRODUCTION

8

Chapter 2

Related work

Metric indexing techniques can be divided into three groups: Pivot-based, metric
balls/shells-based and metric planes and Dirichlet domains-based methods. Several
methods that provide relatively fast similarity search exists within these groups,
albeit very few can be implemented directly into standard DBMSs. As mentioned
earlier, this is because they require the set of objects and the index to be kept in
memory at run-time. This effectively puts a constraint on the database size.

2.1 Pivot-based methods

Pivot-based methods was introduced in the previous chapter. This chapter is a
survey of pivot-based methods and work that has been done in this area.

2.1.1 AESA and LAESA

One might say that the AESA (Approximating and Eliminating Search Algorithm)
is the predecessor of other pivot-based similarity search algorithms. It was pre-
sented by E. Vidal in 1986 [11] and has been the best known algorithm for a long
time. One downside of the algorithm was that it needed to store distances from
all objects to all other objects at runtime, that is O(n2) memory consumption and
preprocessing time. Needless to say, the algorithm was only feasible for databases
that fit in main memory.

The Linear AESA (LAESA) was presented in [8] and has a time and space complex-
ity that grows linearly with the number of base prototypes(pivots) used. LAESA
achieves this through two separate algorithms. The first one selects a small subset
of the prototypes(objects), they call this subset for base prototypes. While this
selection is going on, the distances between the base prototypes and the other
objects are kept in memory for future use. The pseudo code for this algorithm is

9

CHAPTER 2. RELATED WORK

shown in figure 3.1.

The second algorithm is a best-first Branch and Bound implementation like the
AESA but unlike the AESA, only a subset of interprotoype distances is available.
In terms of performance, AESA executes fewer distance calculations than LAESA
and is thus still the best choice for small databases. LAESA is not far behind and
that is quite impressive considering the circumstances. The pseudo code for this
algorithm is shown in figure 3.2.

2.1.2 NTNUStore

NTNUStore is the foundation for this master thesis and is based on NEUStore [17].
It was created by Svein Erik Bratsberg and Magnus Lie Hetland [3] and expanded
by Erik Bagge Ottesen [10]. The purpose of NTNUStore is to explore the use of
standard database indexes and query processing as a basis for metric indexing.
The implementation focuses on range-based search and KNN problems are also
solved via range-search. The user have two options when providing a radius for a
KNN search. It can either be provided through trial and error or by the intrinsic
dimensionality. After pivot selection is complete, a filtering step prunes objects
deemed to be either outside the radius or too far away to be a nearest neighbour
depending on which type of query is conducted. The logic for filtering these two
query types are almost the same, the main difference is what happens after the
candidate sets are joined together. Figure 2.1 and 2.2 shows a filtering example
with range search and KNN search respectively. The data-set contains 6 objects
and 3 pivots are used. The radius r is set to 1.1 and 1.2 respectively. Note that
the numbers used in these examples might be unrealistic and even mathematically
incorrect, the only point of the figures is to show the mechanics of the filtering
procedure.

10

CHAPTER 2. RELATED WORK

d(p,q)

2.3

1.6

3.2

1.8

1.7

1.05

d(p,oi)

1.24

2.4

1.6

2.1

1.94

3.7

Object

Object 1

Object 2

Object 3

Object 4

Object 5

Object 6

LB

1.06

0.8

1.6

0.3

0.24

2.65

Candidate?

no

yes

no

yes

yes

no

d(p,q)

1.8

2.7

1.9

2.6

3.4

3.1

d(p,oi)

3.6

1.5

2.6

2.2

2.5

1.05

Object

Object 1

Object 2

Object 3

Object 4

Object 5

Object 6

LB

1.8

1.2

0.7

0.4

0.9

2.05

Candidate?

no

no

yes

yes

yes

no

d(p,q)

2.3

2.4

1.1

3.1

3.1

3.5

d(p,oi)

2.7

2.1

2.3

1.7

3.3

3.9

Object

Object 1

Object 2

Object 3

Object 4

Object 5

Object 6

LB

0.4

0.3

1.2

1.4

0.2

0.4

Candidate?

yes

yes

no

no

yes

yes

Candidate set

Object 4 Object 5Object 2

Candidate set

Object 5 Object 6Object 2Object 1

Candidate set

Object 4 Object 5

Candidate set

Object 5

Index 1 Index 2 Index 3

Candidate set

Object 4 Object 5Object 3

Figure 2.1: Filtering step for range search in NTNUStore with radius r = 1.1.

11

CHAPTER 2. RELATED WORK

d(p,q)

2.3

1.6

3.2

1.8

1.7

1.05

d(p,oi)

1.24

2.4

1.6

2.1

1.94

3.7

Object

Object 1

Object 2

Object 3

Object 4

Object 5

Object 6

LB

1.06

0.8

1.6

0.3

0.24

2.65

Candidate?

yes

yes

no

yes

yes

no

d(p,q)

1.8

2.7

1.9

2.6

3.4

3.1

d(p,oi)

3.6

1.5

2.6

2.2

2.5

1.05

Object

Object 1

Object 2

Object 3

Object 4

Object 5

Object 6

LB

1.8

1.2

0.7

0.4

0.9

2.05

Candidate?

no

yes

yes

yes

yes

no

d(p,q)

2.3

2.4

1.1

3.1

3.1

3.5

d(p,oi)

2.7

2.1

2.3

1.7

3.3

3.9

Object

Object 1

Object 2

Object 3

Object 4

Object 5

Object 6

LB

0.4

0.3

1.2

1.4

0.2

0.4

Candidate?

yes

yes

yes

no

yes

yes

Candidate set

Object 5 Object 4 Object 2

Candidate set

Object 5 Object 6Object 2 Object 1
Candidate set

Object 4 Object 5

Index 1 Index 2 Index 3

Object 4 Object 5Object 3Object 1

0.24 0.3 0.8 1.06

Object 2

Candidate set

0.4 0.7 0.9 1.2

Object 3

0.2 0.40.3 0.4 1.2
Object 2

0.4 0.9 1.2

Candidate set

Object 5 Object 2

0.9 1.2

Figure 2.2: Filtering step for KNN search in NTNUStore with radius r = 1.2.

The next step is the post processing step. If the query is a range search, the input
will be a candidate set returned from the filtering step. This set is formed by
intersecting all the sets returned from each index. In other words if a candidate is
returned by one index but is not present in every other set, it will be discarded.
All exact distances has to be calculated for candidates present after the filtering
step.

For KNN search the lower bound distances returned from each index are joined
by an equi-join to form the greatest lower bound. One fact that can sometimes
be difficult to get around is why one want to keep the highest lower bound values.
Why call it lower bound and then we are interested in the highest value? It does
indeed require some opposite thinking. Lets say we have three objects A, B and
C. We want to find out if B or C is closest to A. Lets say we calculated B to

12

CHAPTER 2. RELATED WORK

be 1.2 distance away from A and two pivots gave lower bound values for C to
be 0.6 and 1.3. The 1.3 lower bound states that C cannot be closer than 1.3
distance to A and with this information we can discard C without calculating the
exact distance. This is why the highest lower bound values are favored. The lower
bounds are sorted in ascending order and as each distance calculation is performed,
the candidate is moved to an ordered list of K entries. If the next lower bound
has a value higher than the K entries found so far, the process stops since the K
entries contains the answer.

The access methods developed in NTNUStore are B-tree and R-tree. The test
results showed that R-tree is superior in its performance. It is more CPU intensive
but can easily be processed on multiple CPUs. Furthermore it was shown that
the optimal number of pivots to be used is dependent on the distribution of the
data-set and on the query.

2.1.3 Omni-family

The authors of the omni-technique [13] introduces yet another expression for pivots
- the omni-foci. Three access structures, also called members of the omni-family,
are presented: The Omni-Sequential, OmniR-Tree and OmniB-Forest. These ac-
cess structures requires specialized implementations although they can be imple-
mented on top of standard access methods. Figure 2.3 shows the design of the
OmniB-Forest.

13

CHAPTER 2. RELATED WORK

Random Access File
Containing objects

OmniB-Forest

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Part o
f B

-Forest

Containing omni-coordinates

Figure 2.3: Schematic view of the OmniB-Forest.

This design is very similar to NTNUStore. Objects are read from the RAF(Random
Access File), focis are selected and distances between each foci and the objects are
stored in B+ -Trees. One B+ -Tree is generated for each foci and all these trees
form the OmniB-Forest.

2.2 Metric ball-based methods

Instead of performing exact distance-calculations to build up an index, Metric
balls uses pivots with covering radii that provide an upper bound for the distance
between the pivot and any object in the region.

2.2.1 VP-tree, BS-tree and Their Descendants

The VP-tree (Vantage Point-tree) [16] [6] uses a single ball to create two re-
gions: One inside and one outside the ball. The object chosen as the first vantage
point(pivot) becomes the root node in the index and the two regions becomes child
nodes of this vantage point, figure 2.4. The radius r is obtained by calculating the

14

CHAPTER 2. RELATED WORK

median distance from the vantage point to the remaining objects. This continues
recursively and in the next step(figure 2.5) a new vantage point is chosen within
S1’s and S2’s bounding regions two form four new nodes. The metric balls will
now be smaller since the median distances is now obtained within the subspace.
This process continues until all objects have been covered and the resulting index
is a static balanced binary tree.

The range query procedure traverses the index from root to leaves. The distance
between the pivot of the current node and the query object is evaluated. Lower
bounds are required to decide if a subtree needs to be checked or not. In some
situations the query object (with its radius) will be covered by both subtrees
bounding regions. In such cases both subtrees needs to be checked.

v

r

S1

S2

v

S1 S2

Figure 2.4: Generating the VP-tree, step 1.

S21

v

S1 S2

S12

S22

S11 S12 S21 S22

S11

Figure 2.5: Generating the VP-tree, step 2.

The BS-tree (Bisector-tree) [12] creates a ball for both regions so the top node has
two pivots, PL for the left subtree and PR for the right subtree. When an object
Oi is to be inserted, it will be inserted into the left subtree if d(Oi, PL) < d(Oi, PR)

15

CHAPTER 2. RELATED WORK

and into the right subtree if d(Oi, PL) > d(Oi, PR). If a node does not have two
pivots, it will be added as a pivot for this node. The resulting tree is a balanced-
or unbalanced dynamic binary tree depending on the distribution of the data-set,
see figure 2.6.

P1 P2

P3 P4 P5 P6

P7

Figure 2.6: Schematic view of the BS-tree.

The MVP-tree (multi-vantage point-tree) was proposed by Bozkaya and Ozsoyoglu
[1] [2] and is a descendant of the VP-tree. It uses two pivots in each node and
multiple radii to partition the dataset into shells.

The M-tree [5] was an effort to combine the strengths of balanced and dynamic
SAMs (Spatial Access Methods). Each subtree is contained in a metric ball and
new objects are inserted into the closest ball. The resulting access structure was
a dynamic disk based balanced tree. This property can be viewed as the most
innovative one and is probably the reason why several later contributions have
based their work on the M-tree.

The Slim-Tree [14] is one of these. It uses algorithms that defines and reduces
the “fat-factor” of a tree. The fat-factor is a measurement for the overlap between
trees where the optimal tree has a fat-factor of 0 and the worst has a fat-factor
of 1. Having trees with low fat-factor results in improved query performance.
An algorithm called “slim-down” is also presented. This algorithm improves the
fat-factor of existing trees.

iDistance [7] focuses on KNN search in high-dimensional metric space. It is also
based on metric balls, but what is unique about iDistance is that it transforms
the high-dimensional space into a one-dimensional space by a three-step algo-
rithm. The transformed space is indexed in a B+-tree. This access structure was
chosen because it is available in most commercial DBMSs and it is efficient on
one-dimensional data.

16

CHAPTER 2. RELATED WORK

2.3 Metric planes and Dirichlet domains

The GH-tree (Generalized Hyperplane tree)[15] introduces a new(and in some cases
perhaps better) way of dividing the space. The metric space can be divided by a
hyperplane(midset) between two pivots so that an object is closer to either pivot
A or pivot B. In general metric spaces the hyperplane is not defined so easily but
in the Euclidean space the hyperplane will be the set of all points in the space that
are equidistant from A and B. GNAT (Geometric Near-neighbour Access Tree)
[4] expands this by using multiple pivots to generate a multi way midset. The
resulting regions are called Dirichlet domains. See figure 2.7 for a schematic view
of these partitioning styles [6].

(a) (b)

Figure 2.7: a) How the hyperplane is formed in the GH partitioning style. b) How
the multi way midset is formed by adding pivot in GNAT partitioning style.

As with pivoting and metric balls, there are several variations to these partitioning
styles. A good survey of these can be found in [12] and [6].

17

CHAPTER 2. RELATED WORK

18

Chapter 3

Implementation

3.1 Analysis and Decisions

A couple of decisions had to be made when implementing the LAESA in NTNU-
Store. One direction was to stay 100% true to the algorithm as described in [8].
Another direction was to use the existing framework in NTNUStore 100%. Ful-
filling both was impossible. For example, the NTNUStore framework is based on
the idea of using disk based storage to support standard database systems. The
LAESA described, on the other hand, focus on storing in main memory. This
dilemma and other problems will be elaborated on in this chapter.

3.1.1 The Original LAESA

The method searches for the nearest neighbour(NN-search) of the query object.

The first algorithm selects the pivots while the second algorithm performs the
search. Figure 3.1 and figure 3.2 contains the pseudo code for these two algorithms

19

CHAPTER 3. IMPLEMENTATION

respectively.

input : P ⊂ E; m ∈ N; {finite set of objects; number of pivots;}
output: B ⊆ P , |B| = m; D ∈ R|P |×|B|; {set of m pivots; set of distances

between pivots and objects;}
Function: d : E × E −→ R {distance function}
Variables: A ∈ R|P |; b, b′ ∈ P ; max ∈ R; {distance accumulator array; used to
store pivots; used to store the highest accumulated distance}
begin

b′ ← arbitrary element(P);
while |B| < m do

max← 0; b← b′;
for p ∈ P −B do

D[b, p]← d(b, p);
A[p]← A[p] +D[b, p];
if A[p] > max then

b′ ← p;max← A[p];
end

end
B ← B ∪ {b′}

end

end

Figure 3.1: pseudo code for the LAESA pivot selection.

input : P ⊂ E, n = |P |; B ⊆ P ; D ∈ Rn×m; x ∈ E; {finite set of objects; set
of pivots; precomputed n×m array of distances; test sample;}

output: p∗ ∈ P ; d∗ ∈ R; {nearest neighbour; the distance to NN;}
Functions: d : E × E → R {distance function}
Variables: p, q, s, b ∈ P ,dxs, gp, gq, gb ∈ R;
G ∈ Rn {lower bounds array};
nc ∈ N{number of computed distances};
CONDITION : Boolean {controls the elimination of pivots};
CHOICE : B × (P −B)→ P {selection of object(non-pivot) or pivot}

20

CHAPTER 3. IMPLEMENTATION

begin
d∗ ←∞; p∗ ← indeterminate; G← [0];
s← arbitrary element(B); nc← 0;
while |P | > 0 do

dxs← d(x, s); P ← P − {s}; nc← nc+ 1;
if dxs < d∗ then

p∗ ← s; d∗ ← dxs;
end
q ← indeterminate; gq ←∞; b← indeterminate; gb←∞;
for every p ∈ P do

if s ∈ B then
G[p]← max(G[p], |D[p, s]− dxs|);

end
gp← G[p];
if p ∈ B then

if gp ≥ d∗&CONDITION then
P ← P − {p};

end
else

if gp < gp then
gb← gp; b← p;

end

end

end
else

if gp ≥ d∗ then
P ← P − {p};

end
else

if gp < gq then
gq ← gp; q ← p

end

end

end

end
s← CHOICE(b, q);

end

end

Figure 3.2: Pseudo code for the LAESA.

A big while loop covers the entire search algorithm and runs through each object
one at a time. If the current object is a pivot, a lower-bound array from this

21

CHAPTER 3. IMPLEMENTATION

pivot to all objects is computed. If the current object is a non-pivot, it is either
eliminated or the distance is calculated. Two parameters, choice and condition,
allow for different strategies concerning pivot management. choice, decides wether
the next object sohuld be a pivot or a non-pivot and condition decides if the
elimination of a pivot can occur or not. The purpose of these two parameters is
to add optimizing abilities direcly into the algorithm. These parameters might be
redundant if a seperate optimizer is developed.

An attempt to implement the original LAESA in NTNUStore was conductet but
with storage on disk and not in main memory(The source code can be found in
Appendix A). It managed to calculate NN correctly, but something caused it to
run in suspiciously long time. This was caused by either misinterpreted pseudo
code or an error in the pseudo code itself. Either way at some point the algorithm
looped thousands of times without eliminating objects. This problem was difficult
to pinpoint and in the end the decision was made to rewrite the alorithm in a
simpler form. The rewritten algorithm is very similar to the one explained in [9]
and supports KNN-search in addition to NN-search. The two differences worth
mentioning is that the rewrite does not use condition nor choice and it processes
lower bounds for all the pivots first before continuing with non-pivots. The source
code of this final version is given in Appendix B.

3.1.2 Existing Framework

The existing framework in NTNUStore is focused on range-queries and so-called
cursors that contain results from the range-queries. The methods requires a range
input r together with the query object and the existing KNN-search also requires
a range input. It would have been easier to compare results with the existing
methods if the implemention in this project also used range-based search. Due to
time-constraint and being true to the original algorithm, it was decided against
this.

With the reservation that nothing was overlooked in the source-code, the existing
BTree-framework does not provide an easy solution for extracting pivot-related
information such as key and data. A very minimal helper class, pivot, was imple-
mented for this purpose. This was much less timeconsuming than rewriting/de-
bugging the quite complex BTree structure.

3.2 Implementation Part 1 - Pivot Selection

The implementation is split into two seperate parts. LaesaPivotSelection is the first
one and as you may have guessed, it selects the pivots. The LaesaPivotSelection
algorithm is prsented in this section, while the LaesaAlgorithm is covered in section
3.3.

22

CHAPTER 3. IMPLEMENTATION

Tools used in the implementation are:

� Eclipse Version: Helios Release, Build id: 20100617-1415

� Java SE Version: 1.6.0 21.

The pivot-selection method is called laesaPivotSelection and is an implementation
of the method found in [8]. There is one slight difference, the first randomly
selected object is not included in the final set of pivots. The laesaPivotSelection
first picks a random object o1. This object is actually just the first object in the
set, similar to [10]. Then it finds the object o2 furthest away from o1. The object
furthest away from o2 will become o3 and so on. This goes on until the number of
pivots provided by the user plus one is reached. The reason for adding one extra, is
that the first randomly picked object o1 will be deleted at the end. Reason being,
o1 might not be an outer-edge object and thus might not perform well as a pivot.

The laesaPivotSelection builds a B-tree for every pivot in each loop with support
from the exisitng LaesaBTree framework. These trees are stored in the ntnus-
tore/trunk/data folder and is given the name pivot[intkey=x] where x is the key of
the pivot. This is just to visiualize which object has been selected. Two additional
random access files are created; pivotKeys and pivots. pivotKeys is just an array
containing all the keys of all the pivots and the pivotsfile is a hashmap of all pivots.
The hashmap also contains the pivot keys but additionally has a mapping key ->
FloatArrayData. These two files would be redundant if it was possible to retrieve
this information directly from the B-trees.

3.3 Implementation Part 2 - Search Algorithm

The method takes three maps(O, P and D), one array(PK), one testobject(x),
one matrix (only used with QFDistance) and an int(k). Maps were often the most
natural choice since the objects have a key - data relationship.

� O: A map containing all the objects in the set. Both pivots and non-pivots.
The map maps an IntKey to a FloatArrayData.

� P: A map containing all the pivots selected by the algorithm described in the
previous section. The pivot’s IntKey maps to the pivots FloatArrayData.

� D: This map contains all the pivots BTrees or indexes and the pivots IntKey
points to the respective BTree.

� PK: This is an array containing the keys to all the pivots.

� x: The testobject. This object is randomly selected from the set contained in
the map O. When the searching algorithm iterates, it will delete the object x
when it stumbles upon it, otherwise the algorithm will give out wrong nearest
neighbor with distance 0.0(the distance to itself).

23

CHAPTER 3. IMPLEMENTATION

� k: The number of closest neighbors to calculate. This nubmer is provided
by the user.

The logic is split into two seperate parts, part A and part B. Part A is chosen
when no pivots are provided, when PK.size equals zero. If one or more pivots are
provided, part B is chosen. Both these two parts are again split, depending on if
the user asked for just the nearest neighbor(k = 1) or several neighbors(k > 1).
See figure 3.3 for an overview.

Start

Pivots provided?NN or KNN? Yes NN or KNN?No

Search for NN
without pivots.

NN

Search for KNN
without pivots.

KNN
Search for KNN

using pivots.
KNN

Search for NN using
pivots.

NN

End

Figure 3.3: Logic for the LAESA algorithm.

3.3.1 NN Search - No Pivots

This is the least complicated problem of the four. One variable pmin keeps the
lowest distance found so far. Pmin starts out infinately large and while looping
through all the objects one at a time, the distance between the current object and
the testsubject is stored in the variable dpx. Pmin will replace its stored value
when dpx contain a smaller distance. After looping through all objects, pmin
will contain the lowest distance between the winner and the testsubject. This
procedure obviously require n distance calculations. An example of this procedure
is shown in figure 3.4

24

CHAPTER 3. IMPLEMENTATION

2.1

1.9

2.2

1.05

2.42

pmindpx

Compare

Pmin

Infinity

2.1

1.9

1.9

1.05

1.05

Step 0

Step 1

Step 2

Step 3

Step 4

Step 5

Figure 3.4: An example showing a few steps of the procedure when using no pivots
and k = 1.

3.3.2 KNN Search - No Pivots

This procedure is very similar to the previous one. The main difference is that one
variable is not good enough for storing the lowest distance since K distances needs
to be stored. It also needs to answer the two questions:

� How to compare the current distance with the distances found so far?

� How to replace the looser with the current object if the current object has a
smaller distance?

This is done by using a sorted array[k] and two procedures. The first procedure
is chosen if the array is not filled up yet. It inputs an infinately large distance in
the first index to begin with. This is just for the first object to have a distance to
compare against. If the current object has a lower distance than array[0], array[0]
is shiftet right and array[0] is replaced by the current object. See figure 3.5 a) for
an example of this procedure.

The second procedure takes over when the array is filled with objects. Since the
array is sorted, it starts to compare from the right instead of left of the array.
When the correct spot for the current object is found, all objects from this spot
and to the right is shiftet right. The rightmost object is pushed out of the array

25

CHAPTER 3. IMPLEMENTATION

2.1

1.9

2.2

1.05

1.95

Infinity

2.1 Infinity

1.9 2.1 Infinity

1.9 2.1 2.2 Infinity

1.05 1.9 2.1 2.2 Infinity

1.05 1.9 1.95 2.1 2.2

dpx

Array

Step 1

Step 2

Step 3

Step 4

Step 5, infinity is pushed
out of the array

Resulting array

a)

2.15

1.902

2.3

1.01

2.6

dpx

1.05 1.9 1.95 2.1 2.2

1.05 1.9 1.95 2.1 2.15

1.05 1.9 1.902 1.95 2.1

1.05 1.9 1.902 1.95 2.1

1.01 1.05 1.9 1.902 1.95

1.01 1.05 1.9 1.902 1.95

Step 6

Step 7

Step 9

Step 8

Step 10

Resulting array

b)

Figure 3.5: An example showing a few steps of the procedure when using no pivots
and k = 5. The procedure in a) is run when the array is not filled up (not counting
infinity) and compares values from left to right. The procedure in b) takes over
when the array is filled up and compares from right to left.

and becomes a looser. Finally, the object is inserted to its rightfull place. After
all objects have been calculated, the array will contain the k closest neighbors in
sorted order. See figure 3.5 b) for an example.

3.3.3 NN Search - With Pivots

A map containing lower bound values for every object is calculated first. Let x
be a testobject, p is a pivot and o is a normal object. The lower bound for the
distance between o and x is found by the formula:

26

CHAPTER 3. IMPLEMENTATION

g[o] = MAX
np

i=1(|d(pi, o)− d(pi, x)|) (3.1)

This formula is derived from the triangle equality. d(pi, o) is the distance between
pivot i and the object and d(pi, x) is the distance between pivot i and the testobject.

A variable pmin stores the best value found so far and is set to infinity initially.
After a complete lower bound map is built, the next step sorts the map based on
its values. This is because when the map is sorted, we can compare lower bound
values from left to right, or lowest to highest, against the best real distance found
so far. When the lower bound value is lower than the best distance found so far, the
exact distance needs to be calculated. This exact distance is compared with pmin
and pmin will replace its value if this exact distance is lower. If it is higher, the
current object can not the nearest neighbor and is discarded. However, when the
lower bound value is higher than pmin, we know that the rest of the set will also be
higher since the map is sorted. This means that none of the remaining objects can
be the nearest neighbor, pmin now contains the answer and the algorithm stops
at this point. See figure 3.6 for an example.

1.05 1.05 1.26 1.35 1.88 2.223 2.46 2.48 2.55 2.66

Pmin before

infinity

2.1

1.89

1.89

1.89

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10

Lowerbound

1.05

1.05

1.26

1.35

1.88

2.223

2.46

2.48

2.55

2.66

Object i

object 1

object 2

object 3

object 4

object 5

object 6

object 7

object 8

object 9

Object 10

Exact distance

1.99

1.89

2.3

1.95

1.45

< or > ?

<

<

>

>

<

Pmin after

2.1

1.89

1.89

1.89

1.45

Map containing 10 objects with their
respective lowerbound values

Figure 3.6: An example showing a few steps of the procedure when using pivots
and k = 1. The procedure stops after step 5 since all the following lower bound
values are higher than the best real distance found so far(pmin). Object 5 is the
nearest neighbor with 1.45 distance to the testobject.

27

CHAPTER 3. IMPLEMENTATION

3.3.4 KNN Search - With Pivots

The last procedure handles similarity search when using pivots and k > 1. This
procedure is exaclty the same as in previous section 3.3.3 with the exeptions that
a) the K best distances so far is sorted in an array, b) the logic that handles the
array and whether it is filled up/not filled up is the same as in section 3.3.2 and c)
the algorithm does not stop until the array is filled and the current lower bound
is higher than the last value in the array.

As one can see in Appendix B, the main method is quite large. This is because it
contains all code for handling the tests. The main method performs the following
tasks in order:

1. Loops throgh an array that contains the number of pivots that should be
tested.

2. Reads the necesarry data from disk that is required by the pivot selection
algorithm.

3. Runs the pivot selection algorithm.

4. A variable containing number of testrounds forms an inner loop. If it is set to
100, every number of pivots in the array mentioned above will be tested 100
times each. The pivot selection algorithm is only run once for each number
of pivots.

5. Most of the remaining code evolves around gatering the input that is required
by the searching algorithm.

6. In the end some statistics are written to textfiles. If a test was run with
5 pivots, there will be a file called average5.txt which contains the average
number of distance computations for 5 pivots.

28

Chapter 4

Experiments

The LAESA is aimed for situations where the distance computations are expensive.
The existing framework in NTNUStore together with the data-sets (see section for
details.) used, computes one distance in almost negligible time. This is unfortunate
because in this case it will always be best to run the algorithm without any pivots
and this does not depict the real world in a good way. To simulate more costly
distance computations, each computation are weighted an extra 1ms. This is
exactly the same as was done in [10].

The results shown in each charts are collected by running 100 independent queries
and calculating the average. The query object is selected randomly from the
whole set of objects in each query and the Euclidean metric is used in all these
experiments.

4.1 System Specification

Figure 4.1 contains the system specification used in the experiments. Unfortu-
nately, only a personal computer was available during the experiments so one
might see better results on a server system, especially if the server has RAID-0
capability. This is due to the many disk-reads performed in the experiments.

29

CHAPTER 4. EXPERIMENTS

CPU Intel(R) Core(TM) 2 Duo CPU E6850 3.00Ghz

Memory 4GB main memory

Disk Western Digital Raptor 1500ADFD

Rotational speed: 10.000 rpm

Average Latency 2.99 ms

Buffer: 16MB

Average Read Seek Time: 4.6 ms

Operating system Windows 7 64-bit

Virtual machine SUN Java SE 1.6.0_21

Figure 4.1: System specification.

4.2 Data Sets

The data sets used in the experiments are two different vector sets; nasa and
colors.

Nasa is a set of 40,150 20-dimensional feature vectors, generated from
images downloaded from NASA (at http://www.dimacs.rutgers.edu/
Challenges/Sixth/software.html) and with duplicate vectors elim-
inated. Colors is a set of 112,544 color histograms (112-dimensional
vectors) from an image database (at http://www.dbs.informatik.

uni-muenchen.de/~seidl/DATA/histo112.112682.gz, there are oth-
ers in the same page) with duplicates removed.

(Figueroa, Navarro & Chávez, 2008).

4.3 Experiments on the Nasa Data-set

This section explains all tests done with the nasa data-set while Section 4.4 deals
with all tests concerning the colors data-set.

30

http://www.dimacs.rutgers.edu/Challenges/Sixth/software.html
http://www.dimacs.rutgers.edu/Challenges/Sixth/software.html
http://www.dbs.informatik.uni-muenchen.de/~seidl/DATA/histo112.112682.gz
http://www.dbs.informatik.uni-muenchen.de/~seidl/DATA/histo112.112682.gz

CHAPTER 4. EXPERIMENTS

0

500

1000

1500

2000

2500

3000

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

D
is

ta
n

ce
 C

o
m

p
u

ta
ti

o
n

s

Number of Pivots

Distance Computations Nasa data-set

K=1

K=5

K=10

K=20

Figure 4.2: Number of distance computations for the nasa data-set with growing
number of pivots and with four different K values.

The first obvious observation is that when K grows, the number of distance com-
putations grows. In addition, the increasingly number of pivots has less impact
when K is low and bigger impact as K grows. If we observe the curve for K=1,
the curve is more or less flat and the number of distance calculations are almost
the same with ten pivots versus one hundred pivots.

Although distance computations are considered the dominating factor when it
comes to response time, pivot management does also have some impact. The
next experiment takes a look at how big this impact is. There are two factors
that takes up almost all time when it comes to pivot management; building lower
bounds and sorting the lower bounds. This time grows linearly with the number
of pivots. Figure 4.3 contains recorded time spent on these two operations with
varying numbers of pivots.

Number of pivots 5 10 15 20 25 30 35 40 45 50

Time building

 lowerbounds (ms) 785 1287 1466 1857 2120 2476 2817 3345 3667 3787

Number of pivots 55 60 65 70 75 80 85 90 95 100

Time building

 lowerbounds (ms) 4014 4860 5041 6441 7863 9418 8954 11217 10420 12253

Figure 4.3: Time spent on building and sorting lower bounds with varying numbers
of pivots.

31

CHAPTER 4. EXPERIMENTS

Lets consider that one distance computation takes 1 ms as an example. Let Ci be
the number of distance computations and TLBi(figure 4.3) be the time it takes to
build lower bounds for i pivots. The total response time for i pivots would then
approximately be (Ci×1ms)+TLBi. Figure 4.4 shows the result of this equation.

0

2000

4000

6000

8000

10000

12000

14000

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Ti
m

e
 (m

s)

Number of Pivots

Response time

K=1

K=5

K=10

K=20

Figure 4.4: Response time for nasa data-set with 1ms distance calculations

The figure above shows that using 10 pivots would be more or less the best choice
for all four values of K. This is not unexpected since the number of distance
calculations was more or less flat beyond 10 pivots(Figure 4.2). The response time
grows in a linear fashion because of time spent on managing lower bounds.

4.4 Experiments on the Colors Data-set

The experiments conducted in the previous section was also performed on the col-
ors data-set and as mentioned, colors is larger and has more dimensions compared
to the nasa data-set. Figure 4.5 below shows the number of computations for the
colors data-set.

32

CHAPTER 4. EXPERIMENTS

0

10000

20000

30000

40000

50000

60000

70000

80000

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

D
is

ta
n

ce
 C

o
m

p
u

ta
ti

o
n

s

Number of pivots

Distance Computations Colors data-set

K=1

K=5

K=10

K=20

Figure 4.5: Number of distance computations for the colors data-set with growing
number of pivots and with four different K values.

If we compare this result with the same experiment on the nasa data-set (figure
4.2), the difference is quite huge. The colors data-set clearly favors a pivot count
higher than 30 but also stays very consistent all the way up to 100 pivots for all
four K-values. Lets take a look how this fares with response times. Figure 4.6
contains the values for time spent building and sorting lower bounds for the colors
data-set.

Number of pivots 5 10 15 20 25 30 35 40 45 50

Time building

 lowerbounds (ms) 772 1220 1478 1519 1960 2186 2864 3716 4221 5727

Number of pivots 55 60 65 70 75 80 85 90 95 100

Time building

 lowerbounds (ms) 5427 5694 6394 7165 11197 9375 9941 15301 10652 17065

Figure 4.6: Time spent on building and sorting lower bounds with varying numbers
of pivots.

The cost for managing lower bounds has not changed much. There is a slight
difference when using many pivots though.

33

CHAPTER 4. EXPERIMENTS

0

10000

20000

30000

40000

50000

60000

70000

80000

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Ti
m

e
 (m

s)

Number of pivots

Response time Colors data-set

K=1

K=5

K=10

K=20

Figure 4.7: Response time for colors data-set with 1ms distance calculations

Now we are dealing with larger numbers of distance computations and time spent
on lower bounds becomes more suppressed. This is why the curves looks very
similar to distance computations chart(Figure 4.5).

34

Chapter 5

Conclusion and Future Research

5.0.1 Conclusion

This project has been a contribution to the larger NTNUStore project. The goal
of this work has been to implement the original LAESA in NTNUStore and has
focused on KNN search. There has been some difficulties with implementing the
original pseudo code. Because of this and the time constraint, a decision to simplify
the algorithm slightly was taken. As such, this project was not a 100% success.
Despite this fact, the implemented algorithm is not very different from the original
so labeling the project a partly success would be a fair assessment.

NTNUStore contained existing methods for solving KNN search via range search.
The big question is if these methods have been improved. When comparing results
from this projects with results presented in Erik Bagge Ottesen’s thesis [10], it is
difficult to nail a definite verdict. The reason for this is that the results are not
very different and the fact that the results come from different environments with
different system specifications. One advantage with the new algorithms presented
is that one is no longer required to provide a range when performing a KNN search.
For the end user it is more intuitive to not provide a range in a KNN search
although, as mentioned earlier, this can be done automatically by the intrinsic
dimensionality. In Erik Bagge Ottesen’s thesis [10] it was shown that the number
of distance computations in KNN search can quickly rise in numbers the further
off the range is from the perfect range. How accurately the intrinsic dimensionality
provide a range in the general case has not been studied in this project so it remains
unclear if the benefit is significant or not.

5.0.2 Future Research

Some pieces of the implementation was made in a bit of a hurry but should not
require extensive work to improve upon. Not just with respect to performance but
also for better overview and integration in NTNUStore. This section will discuss

35

CHAPTER 5. CONCLUSION AND FUTURE RESEARCH

these issues in more detail and then widen the view to discuss other research that
is not directly tied to this project.

As mentioned earlier the pivot information is stored in separate random access files.
This information should be provided by the indexes themselves because this solu-
tion will require less code(the random access files will be obsolete). Furthermore
it gives better overview and perhaps less disk-accesses since we can just retrieve
the pivot information at the same time as we scan the index.

To store the lower bounds in memory the java hashmap was used. The choice fell
on this because of its built-in feature that connects key to data. At one point this
hashmap had to be sorted based on its values and this is not really intended by the
library(the library only provides sorting based on the key). This was solved with
the class MapValueSort.java. It is unclear if this procedure is a potential time sink
so it is definitely something that should be analyzed further.

The algorithms currently accepts only the Btree. It should not be difficult to
expand this to multiple access structures. Additionally it lacks generalization with
respect to which metric is used and is currently hard coded with the L2Distance
and the QFDistance.

It might be possible to reduce the amount of classes in the NTNUStore framework
for better overview. The B-tree access structure, for example, has two different
classes: BTree.java and LaesaBtree.java where the last extends the first. The
LaesaBtree uses the distance as key, that is d((p, oi), ki) where ki is the objects
key. The Btree stores in opposite order(an actual key is used as key in the index).
This might be a bit confusing for researchers that are not familiar with NTNUStore
beforehand. The suggestion then is to merge these classes into a single class that
provides the combined features and also provides a choice to store with the actual
key as the key or with the data as the key. If this is not feasible, then LaesaBtree
can be extended to provide this choice.

Lets take a step back now and look at the bigger picture. It would be interesting
to see how methods based on other indexing techniques, i.e metric balls, would
perform in NTNUStore. Methods that uses disk-based storage exists so it should
be possible to implement. If one would then have more data-sets that simulates
different real world applications, one could do more extensive testing with these
technologies. These tests could then possibly give results such as the metric ball
based method is fastest on data-set A or range queries on data-set B is performed
best by the pivoting algorithm A. Eventually one might have enough information to
feed an optimizer that will make the best choice for a given situation automatically.

Speaking of optimizers, developing an optimizer for NTNUStore could be a very
interesting project. Choosing the right algorithm for a certain job is not the only
thing one can optimize. The respective algorithms can be optimized themselves
and this can on its own be a big enough task for a project. As we have seen there
are several factors that decides how fast a query will complete: Dimensionality,

36

CHAPTER 5. CONCLUSION AND FUTURE RESEARCH

data-set distribution, the size of K(how many neighbours is searched for) and the
database size.

37

CHAPTER 5. CONCLUSION AND FUTURE RESEARCH

38

Chapter 6

References

[1] Tolga Bozkaya and Meral Ozsoyoglu. Distance-based indexing for high-
dimensional metric spaces. In Proceedings of the 1997 ACM SIGMOD in-
ternational conference on Management of data, SIGMOD ’97, pages 357–368,
New York, NY, USA, 1997. ACM.

[2] Tolga Bozkaya and Meral Ozsoyoglu. Distance-based indexing for high-
dimensional metric spaces. SIGMOD Rec., 26:357–368, June 1997.

[3] Svein Erik Bratsberg and Magnus Lie Hetland. Scaling metric indexing and
search by applying database techniques. 2000.

[4] S. Brin. Near neighbor search in large metric spaces. In 21th International
Conference on Very Large Data Bases (VLDB 1995), 1995.

[5] Paolo Ciaccia Deis, Paolo Ciaccia, Marco Patella, and Pavel Zezula. M-tree:
An efficient access method for similarity search in metric spaces. pages 426–
435, 1997.

[6] Magnus Lie Hetland. The basic principles of metric indexing. Swarm Intelli-
gence for Multi-objective Problems in Data Mining, 2009.

[7] H. V. Jagadish, Beng Chin Ooi, Kian-Lee Tan, Cui Yu, and Rui Zhang.
idistance: An adaptive b+-tree based indexing method for nearest neighbor
search. ACM Trans. Database Syst., 30:364–397, June 2005.

[8] Luisa Micó, José Oncina, and Enrique Vidal. A new version of the nearest-
neighbour approximating and eliminating search algorithm (aesa) with linear
preprocessing time and memory requirements. Pattern Recognition Letters,
pages 9–17, 1994.

[9] Francisco Moreno-Seco, Luisa Micó, and José Oncina. Extending laesa fast
nearest neighbour algorithm to find the k nearest neighbours. In Proceedings

39

CHAPTER 6. REFERENCES

of the Joint IAPR International Workshop on Structural, Syntactic, and Sta-
tistical Pattern Recognition, pages 718–724, London, UK, UK, 2002. Springer-
Verlag.

[10] Erik Bagge Ottesen. Similarity search in large databases using metric in-
dexing and standard database access methods. MSc thesis at Department of
Computer and Information Science, NTNU, 2009.

[11] Enrique Vidal Ruiz. An algorithm for finding nearest neighbours in (approx-
imately) constant average time. Pattern Recognition Letters, 4(3):145 – 157,
1986.

[12] Hanan Samet. Foundations of Multidimensional and Metric Data Structures
(The Morgan Kaufmann Series in Computer Graphics and Geometric Model-
ing). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2005.

[13] Caetano Traina, Jr., Roberto F. Filho, Agma J. Traina, Marcos R. Vieira,
and Christos Faloutsos. The omni-family of all-purpose access methods: a
simple and effective way to make similarity search more efficient. The VLDB
Journal, 16:483–505, October 2007.

[14] Caetano Traina, Jr., Agma J. M. Traina, Bernhard Seeger, and Christos
Faloutsos. Slim-trees: High performance metric trees minimizing overlap
between nodes. In Proceedings of the 7th International Conference on Ex-
tending Database Technology: Advances in Database Technology, EDBT ’00,
pages 51–65, London, UK, 2000. Springer-Verlag.

[15] Jeffrey K. Uhlmann. Satisfying general proximity/similarity queries with met-
ric trees. Inf. Process. Lett., 40(4):175–179, 1991.

[16] Pavel Zezula, Giuseppe Amato, Vlastislav Dohnal, and Michal Batko. Simi-
larity Search - The Metric Space Approach, volume 32. Springer, 2006.

[17] Donghui Zhang. NEUStore: A Simple Java Package for the Construction of
Disk-based, Paginated, and Buffered Indices. 2005.

40

Appendix A

Original LAESA Source Code

public pivot laesaAlgorithm (Map O , Map P , Map D , List PK , FloatArrayData x) ←↩
throws IOException{
int y = 0 ;
int z = 0 ;
O . remove (new IntKey (randomInt2)) ;
int nc ;
float d_star ; //d*

pivot p_star ; //p*
float dxs ; //dxs
L2Distance distanceType = new L2Distance () ;
pivot q ;
pivot b ;
float gq ;
float gb ;
pivot s ;
float gp = 0.0 F ;
Map G = new HashMap () ;

System . out . println (”pivot s e t ” + P . keySet ()) ;

//begin
d_star = Float . POSITIVE_INFINITY ;
p_star = nu l l ;
s = new pivot (new IntKey ((Integer) PK . get (0)) , (FloatArrayData) (P . get (new←↩

IntKey ((Integer) PK . get (0))))) ;
nc = 0 ;
distanceType . initialize (x) ;
int i = 0 ;

whi l e (O . s i z e () > 0) {
int a = 0 ;
int c = 0 ;
int d = 0 ;
int e = 0 ;

i++;
System . out . println (”RUNDE ” + i) ;
dxs = distanceType . distance (s . getData ()) ;
O . remove (s . getKey ()) ;
nc++;
// UPDATING p_star , d_star

i f (dxs < d_star) {
p_star = s ;

41

APPENDIX A. ORIGINAL LAESA SOURCE CODE

d_star = dxs ;
}
q = nu l l ;
gq = Float . POSITIVE_INFINITY ;
b = nu l l ;
gb = Float . POSITIVE_INFINITY ;

int i2 = 0 ;
// ELIMINATING AND APPROXIMATING LOOP

Iterator it = O . entrySet () . iterator () ;
System . out . println (”Total s i z e ” + O . s i z e ()) ;
int u = 0 ;
whi l e (it . hasNext ()) {

u++;
Map . Entry pairs = (Map . Entry) it . next () ;
i2++;
// UPDATING G , IF POSSIBLE

e++;

i f (P . containsKey (s . getKey ())) {
y++;
BTree distances = (BTree) D . get (s . getKey () . value ()) ;
IntKey aa = (IntKey) pairs . getKey () ;
Float p_distance_s = (Float) distances . search ((IntKey)←↩

pairs . getKey ()) . value () ;
i f (! G . containsKey (pairs . getKey ())) {G . put (pairs . getKey () ,←↩

0 .0 F) ;}
i f ((Float) G . get (pairs . getKey ()) < Math . abs (p_distance_s ←↩

− dxs)) {
G . put (pairs . getKey () , Math . abs (p_distance_s − dxs)) ;

}
}
i f ((Float) G . get (pairs . getKey ()) != nu l l) {

gp = (Float) G . get (pairs . getKey ()) ;
}

i f (P . containsKey (pairs . getKey ())) { // i f pEB

// ELIMINATING FROM B

i f (gp >= d_star){//&& nc > PK . s i z e () /20
it . remove () ;
c++;

}
e l s e {

i f (gp < gb) {
// System . out . println (”APPROXIMATING : SELECTING ←↩

FROM B ”) ;
gb = gp ;
b = new pivot ((IntKey) pairs . getKey () , (←↩

FloatArrayData) pairs . getValue ()) ;
}

}
}
e l s e {

// ELIMINATING FROM P−B
i f (gp >= d_star) {

// System . out . println (”ELIMINATING FROM P−B ”) ;
it . remove () ;
c++;

}
// APPROXIMATING : SELECTING FROM P−B
e l s e {

i f (gp < gq) {
// System . out . println (”APPROXIMATING : SELECTING ←↩

FROM P−B ”) ;
gq = gp ;
q = new pivot ((IntKey) pairs . getKey () , (←↩

FloatArrayData) pairs . getValue ()) ;

42

APPENDIX A. ORIGINAL LAESA SOURCE CODE

}
e l s e {z++;}

}
}

}
System . out . println (”Antall ganger i whi le ” + u) ;
System . out . println (”Number of records deleted ” + c) ;
System . out . println (”Number of records left ” + O . s i z e ()) ;
i f (b != nu l l) {

s = b ;
}
e l s e {s = q ;}

}
System . out . println (”Antall ganger inn i whi le ” + y) ;
System . out . println (”z = ” + z) ;
p_star . setDistance (d_star) ;
r e turn p_star ;

}

43

APPENDIX A. ORIGINAL LAESA SOURCE CODE

44

Appendix B

Final LAESA Source Code

public class LaesaKNN {
private static final String DATA_FILE = ”data/colors ”;
// private static final String DATA_FILE = ”data/nasa ”;
int randomInt ;
private static final int PAGE_SIZE = 8192 ;
private static final int BUFFER_SIZE = 10000;
private List<FloatArrayData> queryStrings ;
private List<FloatArrayData> queryPivots ;
private LRUBuffer buffer ;
private BTree<IntKey , FloatArrayData> dataFile ;
private BTree<IntKey , FloatArrayData> bp ;
private Map pivots ;
private Map allObjectsKeys ;
private List pivotKeys ;

// Number of neighbours

private static final int k = 1 ;
// private static final int k = 5 ;
// private static final int k = 10 ;
// private static final int k = 20 ;

private static pivot [] result = new pivot [k] ;
int distanceCalcs = 0 ;
FloatArrayData nasa_sample = nu l l ;
FloatArrayData colors_sample = nu l l ;
long timerBuildLowerBounds ;
long timerBuildLowerBounds2 ;
long timerBuildLowerBoundsTotal = 0 ;
long timersortLowerBounds ;
long timersortLowerBounds2 ;
// INDEX_TYPE : −1=HeapFile , 0=BTree

private int INDEX_TYPE = −1;

public void laesaPivotSelection (int bpCount , LRUBuffer buffer) throws ←↩
IOException , InterruptedException{

System . out . println (”***”) ;
System . out . println (”* *”) ;
System . out . println (”* Pivot Selection *”) ;
System . out . println (”* *”) ;
System . out . println (”***”) ;
System . out . println (””) ;
System . out . println (”You have chosen to use ” + bpCount + ” Pivots . ”) ;

45

APPENDIX B. FINAL LAESA SOURCE CODE

buffer . flush (nu l l) ;
buffer . clearIOs () ;
pivots = new HashMap () ;
pivotKeys = new ArrayList () ;
Map distanceAccumulator = new HashMap () ;
float distance = 0.0 F ;
int i = 1 ;
pivot b_marked = nu l l ;
pivot b = nu l l ;

Cursor<IntKey , FloatArrayData> c2 = dataFile . query (new IntKey (0) , new ←↩
IntKey (Integer . MAX_VALUE)) ;

c2 . next () ;
b_marked = new pivot ((IntKey) c2 . getKey () , (FloatArrayData) c2 . getData ()) ;
c2 = nu l l ;
int counter = 0 ;

whi l e (pivots . s i z e () <= bpCount) {
counter++;

LaesaIndex index = nu l l ;
// HeapFile index = nu l l ;
// LaesaBTree indexB ;

// System . out . println (”ROUND : ” + counter) ;
Cursor<IntKey , FloatArrayData> c = dataFile . query (new IntKey (0) , new←↩

IntKey (Integer . MAX_VALUE)) ;
float maxDistance = 0 ;
b = b_marked ;
Distance<FloatArrayData> initializeDistance = new L2Distance ((←↩

FloatArrayData) b . getData ()) ;
i f (INDEX_TYPE == 0) {

index = new LaesaBTree<FloatArrayData>(buffer , ”data/pivot ” + b .←↩
getKey () + ”. BTree ” , initializeDistance) ;

}
e l s e {

index = new LaesaHeapFile (buffer , ”data/pivot ” + b . getKey () + ”.←↩
HeapFile ” , initializeDistance) ;

// index = new HeapFile (buffer , ”data/pivot ” + b . getKey () + ”.←↩
HeapFile ” , true , new IntKey (0) , colors_sample) ;

}
whi le (c . next ()) {

whi le (pivots . containsKey (c . getKey ())) {c . next () ;}
distance = index . insert2 ((IntKey) c . getKey () , (FloatArrayData) c .←↩

getData ()) ;
i f (distanceAccumulator . containsKey (c . getKey ())) {

float temp = (Float) (distanceAccumulator . get (c . getKey ())) ;
distanceAccumulator . put (c . getKey () , temp+distance) ;

}
e l s e {distanceAccumulator . put (c . getKey () , distance) ;}
i f ((Float) (distanceAccumulator . get (c . getKey ()))> maxDistance) {

b_marked . setKey ((IntKey) c . getKey ()) ;
b_marked . setData ((FloatArrayData) c . getData ()) ;
maxDistance = (Float) distanceAccumulator . get (c . getKey ()) ;

}
}

pivots . put (b_marked . getKey () , b_marked . getData ()) ;
pivotKeys . add (b_marked . getKey () . value ()) ;

index . c l o s e () ;
buffer . flush (nu l l) ;
i++;

}
/*

46

APPENDIX B. FINAL LAESA SOURCE CODE

HeapFile inde = new HeapFile (buffer , ”data/pivotIntKey [value=27978] .←↩
HeapFile ” , false , new IntKey (0) , new FloatData (0 . 0 F)) ;

Cursor cc = inde . fullScan () ;
whi l e (cc . next ()) {

System . out . println (cc . getKey () + ” data ” + cc . getData ()) ;
}*/

i f (! pivotKeys . contains (1)) {new File (”data/pivotIntKey [value=1]”) . d e l e t e←↩
() ;}

pivots . remove (b_marked . getKey ()) ;
pivotKeys . remove (pivotKeys . s i z e ()−1) ;
System . out . println (”pivots selected : ” + pivots . keySet ()) ;
ObjectOutputStream output ;

try // open file

{
output = new ObjectOutputStream (new FileOutputStream (”data/pivot .←↩

keys ”)) ;
output . writeObject (pivotKeys) ;
output . c l o s e () ;
output = new ObjectOutputStream (new FileOutputStream (”data/pivots .←↩

hashmap ”)) ;
output . writeObject (pivots) ;
output . c l o s e () ;

} // end try

catch (IOException ioException)
{

System . err . println (”Error opening file . ”) ;
} // end catch

}

private void readData () throws IOException {

List<FloatArrayData> fileData = TestUtil . readFloatDataFromFile (DATA_FILE←↩
+ ”. data ”) ;

buffer = new LRUBuffer (BUFFER_SIZE , PAGE_SIZE) ;
dataFile = new BTree (buffer , ”data/test ” , true , new IntKey (0) , fileData .←↩

get (0)) ;
int key = 0 ;
f o r (FloatArrayData data : fileData) {

key++;
dataFile . insert (new IntKey (key) , data) ;

}
dataFile . c l o s e () ;

}

static Map sortByValue (Map map) {
List list = new LinkedList (map . entrySet ()) ;
Collections . s o r t (list , new Comparator () {

public int compare (Object o1 , Object o2) {
r e turn ((Comparable) ((Map . Entry) (o1)) . getValue ())

. compareTo (((Map . Entry) (o2)) . getValue ()) ;
}

}) ;

Map result = new LinkedHashMap () ;
f o r (Iterator it = list . iterator () ; it . hasNext () ;) {

Map . Entry entry = (Map . Entry) it . next () ;
result . put (entry . getKey () , entry . getValue ()) ;

}
r e turn result ;

}
//O = a l l Objects , P = pivots , D = pivot−object−distances , PK=pivot−keys , x = ←↩

test−object k = number of nearest neighbors

47

APPENDIX B. FINAL LAESA SOURCE CODE

@SuppressWarnings ({ ”rawtypes ” , ”unchecked ” })
public pivot [] laesaAlgorithm (Map O , Map P , Map D , List PK , FloatArrayData x←↩

, float [] [] matrix , int k) throws IOException{
System . out . println (”***”) ;
System . out . println (”* *”) ;
System . out . println (”* Laesa KNN Algorithm *”) ;
System . out . println (”* *”) ;
System . out . println (”***”) ;
System . out . println (””) ;

O . remove (new IntKey (randomInt)) ;
float dxs ; //dxs
// QFDistance distanceType = new QFDistance () ;
L2Distance distanceType = new L2Distance () ;
distanceType . initialize (x) ;
Map G = new HashMap () ;
Map dxsAll = new HashMap () ;
float pmin = Float . POSITIVE_INFINITY ; ;
float gmin = 0.0 F ;
IntKey Resultkey = nu l l ;
FloatArrayData ResultData = nu l l ;
float bestRealDistanceSoFar = Float . POSITIVE_INFINITY ;
pivot init = new pivot (nu l l , nu l l) ;
init . setDistance (Float . POSITIVE_INFINITY) ;
result [0] = init ;
int added = 0 ;
int counter2 = 0 ;
pivot candidate = nu l l ;

// i f no pivots used

i f (PK . s i z e () == 0) {
Iterator it = O . entrySet () . iterator () ;
whi l e (it . hasNext ()) {

counter2++;
Map . Entry pair = (Map . Entry) it . next () ;
float dpx = distanceType . distance ((FloatArrayData) O . get (pair .←↩

getKey ())) ;
distanceCalcs++;
// i f NN search

i f (k == 1) {
i f (dpx < pmin) {

ResultData = (FloatArrayData) O . get (pair . getKey ()) ;
Resultkey = (IntKey) pair . getKey () ;
candidate = new pivot (Resultkey , ResultData) ;
pmin = dpx ;

}
}
// i f KNN search and result array is not filled up

e l s e i f ((added < k) | | (result [k−1] != nu l l && dpx < result [k←↩
−1] . getDistance ())) {
ResultData = (FloatArrayData) O . get (pair . getKey ()) ;
Resultkey = (IntKey) pair . getKey () ;
candidate = new pivot (Resultkey , ResultData) ;
candidate . setDistance (dpx) ;
i f (added < k) {

f o r (int a = 0 ; a < k ; a++){
i f (result [a] != nu l l && dpx < result [a] . getDistance←↩

()) {
f o r (int b = added+1; b > a && b <= k ; b−−){

i f (b == k) {b = 4;}
result [b] = result [b−1] ;

}
result [a] = candidate ;
break ;

}
}

}

48

APPENDIX B. FINAL LAESA SOURCE CODE

// i f KNN search and result array is filled up

e l s e {
int counter = 0 ;
int k2 = k−1;
i f (dpx <= result [k−1] . getDistance ()) {

f o r (int b = k2 ; b > 0 ; b−−){
i f (dpx <= result [b−1] . getDistance ()) {

counter++;
}
e l s e {break ;}

}
f o r (int c = 0 ; c < counter ; c++){

int indeks = (k−1)−c ;
result [indeks] = result [indeks −1] ;

}
result [k2 − counter] = candidate ;

}
}
added++;

}
i f (k == 1) {

candidate . setDistance (pmin) ;
result [0] = candidate ;

}
}

}
//If pivots used

e l s e {
timerBuildLowerBounds = System . currentTimeMillis () ;
//go through pivots and compute distance to x (the test object)
f o r (int ii = 1 ; ii <= P . s i z e () ; ii++){

IntKey key = new IntKey ((Integer) PK . get (ii−1)) ;
FloatArrayData data = (FloatArrayData) P . get (key) ;
pivot BP = new pivot (key , data) ;
dxs = distanceType . distance (BP . getData ()) ;
distanceCalcs++;
dxsAll . put (key , dxs) ;

}
// iterate through pivots

Iterator itr = dxsAll . entrySet () . iterator () ;
long t1 = System . currentTimeMillis () ;
BTree distancesB = nu l l ;
HeapFile distancesH = nu l l ;
Cursor testCursor = nu l l ;
whi l e (itr . hasNext ()) {

Map . Entry pair = (Map . Entry) itr . next () ;
IntKey BPkey = (IntKey) pair . getKey () ;
Float dBPs = (Float) pair . getValue () ;
int BPkeyi = BPkey . value () ;
i f (pmin > (Float) pair . getValue ()) {

pmin = (Float) pair . getValue () ;
}
i f (INDEX_TYPE == 0) {

distancesB = (BTree) D . get (BPkeyi) ;
testCursor = distancesB . query (new IntKey (1) , new IntKey (←↩

Integer . MAX_VALUE)) ;
}
e l s e {

distancesH = (HeapFile) D . get (BPkeyi) ;
testCursor = (HeapFileCursor) distancesH . fullScan () ;

}
Iterator it = O . entrySet () . iterator () ;
int counter = 0 ;
int counter1 = 0 ;
long timer1_2 = 0 ;
long timer3_4 = 0 ;

49

APPENDIX B. FINAL LAESA SOURCE CODE

// iterate through a l l objects and create lower bounds

whi le (testCursor . next ()) {
// System . out . println (”test cursor : ” + testCursor . getKey ())←↩

;
// i f the cursor contains the test object , skip to next

i f (((IntKey) ((testCursor . getKey ()))) . value () == randomInt) {
testCursor . next () ;

}
long timer3 = System . currentTimeMillis () ;
whi l e (dxsAll . containsKey (testCursor . getKey ()) | | testCursor .←↩

getData () == nu l l) {
testCursor . next () ;

}
Float p_distance_s = ((FloatData) testCursor . getData ()) . value←↩

() ;
long timer2 = System . currentTimeMillis () ;
i f (! G . containsKey (testCursor . getKey ())) {G . put (testCursor .←↩

getKey () , 0 . 0 F) ;}
i f ((Float) G . get (testCursor . getKey ()) < Math . abs (p_distance_s←↩

− (Float) pair . getValue ())) {
G . put (testCursor . getKey () , Math . abs (p_distance_s − (←↩

Float) pair . getValue ())) ;
i f (Math . abs (p_distance_s − (Float) pair . getValue ()) > ←↩

gmin) {
gmin = Math . abs (p_distance_s − (Float) pair . getValue←↩

()) ;
}

}
// System . out . println (”G : ” + G) ;

}
}
G . remove (new IntKey (randomInt)) ;
long t2 = System . currentTimeMillis () ;
long timersortLowerBounds = System . currentTimeMillis () ;
// s o r t the lowerbounds

SortedMap sortedData = new TreeMap (new MapValueSort . ValueComparer (G)←↩
) ;

sortedData . putAll (G) ;
long timersortLowerBounds2 = System . currentTimeMillis () ;
// MapValueSort s o r t = new MapValueSort () ;
// s o r t . printMap (sortedData) ;
Iterator it = sortedData . entrySet () . iterator () ;
timerBuildLowerBounds2 = System . currentTimeMillis () ;
timerBuildLowerBoundsTotal = timerBuildLowerBoundsTotal + (←↩

timerBuildLowerBounds2 − timerBuildLowerBounds) ;
long t3 = System . currentTimeMillis () ;

// interate through lowerbounds and calculate result

pmin = Float . POSITIVE_INFINITY ;
whi l e (it . hasNext ()) {

counter2++;
Map . Entry pairs = (Map . Entry) it . next () ;
ResultData = (FloatArrayData) O . get (pairs . getKey ()) ;
Resultkey = (IntKey) pairs . getKey () ;
candidate = new pivot (Resultkey , ResultData) ;
float dpx = 0.0 F ;

// i f NN search

i f (k == 1) {
i f ((Float) sortedData . get (pairs . getKey ()) > pmin) {

System . out . println (”lowerbound > best distance found so ←↩
far , breaking . . . ”) ;

break ;
}

50

APPENDIX B. FINAL LAESA SOURCE CODE

i f (dxsAll . containsKey (pairs . getKey ())) {pairs = (Map . Entry) it←↩
. next () ;}

e l s e {
// System . out . println (”counter : ” + counter2 + ” pairs .←↩

getKey () ” + pairs . getKey () + ” O . get ” + O . get (←↩
pairs . getKey ())) ;

dpx = distanceType . distance ((FloatArrayData) O . get (pairs .←↩
getKey ())) ;

distanceCalcs++;
i f (dpx < pmin) {

pmin = dpx ;
candidate . setDistance (pmin) ;
result [0] = candidate ;

}
}

}
// i f KNN search and result array is not filled up

e l s e i f ((added < k)) {
dpx = distanceType . distance ((FloatArrayData) O . get (pairs .←↩

getKey ())) ;
distanceCalcs++;
candidate . setDistance (dpx) ;
f o r (int a = 0 ; a < k ; a++){

i f (result [a] != nu l l && dpx < result [a] . getDistance ()) {
f o r (int b = added+1; b > a && b <= k ; b−−){

i f (added == 2) {System . out . println (”b ” + b)←↩
;}

i f (b == k) {b = k−1;}
result [b] = result [b−1] ;

}
result [a] = candidate ;
added++;
break ;

}
}

}
// i f KNN search and result array is filled

e l s e {
i f ((Float) sortedData . get (pairs . getKey ()) > result [k−1] .←↩

getDistance ()) {
System . out . println (”stopped after going through ” + ←↩

counter2 + ” objects ”) ;
break ;

}

dpx = distanceType . distance ((FloatArrayData) O . get (pairs .←↩
getKey ())) ;

distanceCalcs++;
candidate . setDistance (dpx) ;
int counter = 0 ;
int k2 = k−1;

i f (dpx <= result [k−1] . getDistance ()) {
f o r (int b = k2 ; b > 0 ; b−−){

i f (dpx <= result [b−1] . getDistance ()) {
counter++;

}
e l s e {break ;}

}
f o r (int c = 0 ; c < counter ; c++){

int indeks = (k−1)−c ;
result [indeks] = result [indeks −1] ;

}
result [k2 − counter] = candidate ;

}
}

}

51

APPENDIX B. FINAL LAESA SOURCE CODE

long t4 = System . currentTimeMillis () ;
System . out . println (”Time spent calculating distances : ” + (t4 − t3)←↩

/1000 + ” Seconds . ”) ;

}

System . out . println (”Total number of Objects ” + O . s i z e ()) ;
System . out . println (”Total distancecalculations : ” + distanceCalcs) ;
r e turn result ;

}

public static void main (String [] args) throws Exception {
LaesaKNN test = new LaesaKNN () ;
float [] n_sample = {−0.214579F , 0 .224219F , −0.123123F , 0 .0759739F , ←↩

0.433112F , 0 .23946F , −0.0233754F , 0 .327327F , 0 .0959396F , 0 .115914F , ←↩
0.0110738F , −0.16896F , −0.0705952F , 0 .306239F , 0 .263311F , −0.0360219←↩
F , −0.0268898F , 0 .164756F , 0 .121092F , −0.0319838F } ;

test . nasa_sample = new FloatArrayData (n_sample) ;
float [] c_sample = {0.1977F , 0 .34111F , 0 .0347584F , 0 .01284F , 0 . 0 F , 0 . 0 F ,←↩

3 .6169 E−5F , 0 . 0 F , 0 . 0 F , 0 . 0 F , 0 . 0 F , 0 . 0 F , 0 . 0 F , 0 . 0 F , 0 .00141059F , ←↩
7 .2338 E−5F , 0 . 0 F , 0 . 0 F , 0 . 0 F , 0 . 0 F , 0 . 0 F , 0 . 0 F , 0 . 0 F , 0 . 0 F , ←↩
0.0584852F , 0 . 0 F , 0 .0210142F , 0 .0616319F , 0 . 0 F , 0 . 0 F , 0 . 0 F , 0 . 0 F , ←↩
0 .0 F , 0 . 0 F , 0 . 0 F , 0 . 0 F , 0 . 0 F , 0 . 0 F , 0 .00669126F , 0 .0010489F , 0 . 0 F , ←↩
0 .0 F , 0 .0396412F , 0 . 0 F , 0 .0279225F , 0 .0240524F , 0 . 0 F , 0 . 0 F , 0 . 0 F , ←↩
0 .0 F , 0 . 0 F , 0 . 0 F , 0 . 0 F , 0 . 0 F , 0 . 0 F , 0 . 0 F , 0 . 0 F , 0 . 0 F , 0 . 0 F , 0 . 0 F , ←↩
0 .0 F , 0 . 0 F , 0 .053928F , 0 .00115741F , 0 . 0 F , 0 . 0 F , 0 . 0 F , 0 . 0 F , 0 . 0 F , ←↩
0 .0 F , 0 . 0 F , 0 . 0 F , 0 .0298756F , 0 . 0 F , 0 .00329138F , 0 . 0 F , 0 . 0 F , 0 . 0 F , ←↩
0 .0 F , 0 . 0 F , 0 .0581236F , 0 .00842737F , 0 . 0 F , 0 . 0 F , 0 . 0 F , 0 . 0 F , 0 . 0 F , ←↩
0 .0 F , 0 . 0 F , 0 . 0 F , 0 . 0 F , 0 . 0 F , 5 .78704E−4F , 0 . 0 F , 0 . 0 F , 0 . 0 F , 0 . 0 F , ←↩
0 .0 F , 0 .0160229F , 1 .80845E−4F , 0 . 0 F , 0 . 0 F , 0 . 0 F , 0 . 0 F , 0 . 0 F , 0 . 0 F , ←↩
0 .0 F , 0 . 0 F , 0 . 0 F , 0 . 0 F , 0 . 0 F , 0 . 0 F } ;

test . colors_sample = new FloatArrayData (c_sample) ;
BTree allObjects ;

//array with number of pivots to be used

int [] pivots = new int [2 0] ;
pivots [0] = 5 ;
pivots [1] = 10 ;
pivots [2] = 15 ;
pivots [3] = 20 ;
pivots [4] = 25 ;
pivots [5] = 30 ;
pivots [6] = 35 ;
pivots [7] = 40 ;
pivots [8] = 45 ;
pivots [9] = 50 ;
pivots [1 0] = 55 ;
pivots [1 1] = 60 ;

pivots [1 2] = 65 ;
pivots [1 3] = 70 ;
pivots [1 4] = 75 ;
pivots [1 5] = 80 ;
pivots [1 6] = 85 ;
pivots [1 7] = 90 ;
pivots [1 8] = 95 ;
pivots [1 9] = 100 ;

f o r (int iii = 0 ; iii < pivots . l ength ; iii++){

BufferedWriter out2 = new BufferedWriter (new FileWriter (”data/←↩
average ” + pivots [iii] + ”. txt ”)) ;

BufferedWriter out = new BufferedWriter (new FileWriter (”data/←↩
lowerbounds ” + pivots [iii] + ”. txt ”)) ;

52

APPENDIX B. FINAL LAESA SOURCE CODE

LRUBuffer buffer = new LRUBuffer (10000 , 8192) ;
int average = 0 ;
int testRounds = 100 ;

Random randomGenerator = new Random () ;
i f (DATA_FILE == ”data/colors ”) {

allObjects = new BTree (buffer , ”data/colors_data_and_keys ” , ←↩
false , new IntKey (0) , test . colors_sample) ;

test . dataFile = new BTree (buffer , ”data/colors_data_and_keys ” , ←↩
false , new IntKey (0) , test . colors_sample) ;

}
e l s e {

allObjects = new BTree (buffer , ”data/nasa_data_and_keys ” , false ,←↩
new IntKey (0) , test . nasa_sample) ;

test . dataFile = new BTree (buffer , ”data/nasa_data_and_keys ” , ←↩
false , new IntKey (0) , test . nasa_sample) ;

}

TestUtil . deleteFiles () ;

long timerCreatePivots = System . currentTimeMillis () ;
test . laesaPivotSelection (pivots [iii] , buffer) ;
long timerCreatePivots2 = System . currentTimeMillis () ;

f o r (int iiii = 1 ; iiii <= testRounds ; iiii++){
test . distanceCalcs = 0 ;
System . out . println (”Testround ” + iiii + ” of ” + testRounds) ;
long timerTotal = System . currentTimeMillis () ;

i f (DATA_FILE == ”data/colors ”) {test . randomInt = randomGenerator .←↩
nextInt (112682) ;}

e l s e {test . randomInt = randomGenerator . nextInt (40149) ;}
/*
int sz = 0 ;
f o r (FloatArrayData query : fileData) {

sz = query . s i z e () ;
break ;

}

float [] [] matrix = new float [sz] [sz] ;
// create identity matrix

f o r (int i = 0 ; i < sz ; i++) {
f o r (int j = 0 ; j < sz ; j++) {

i f (i == j)
matrix [i] [j] = 1 .0 F ;

e l s e
matrix [i] [j] = 0 ;

}
}
*/

FloatArrayData random = (FloatArrayData) (allObjects . search (new ←↩
IntKey (test . randomInt))) ;

System . out . println (”Random object selected : ” + random) ;
System . out . println (”With key : ” + test . randomInt) ;
Map pivotsHashmap = new HashMap () ;
Map allObjectsKeys = new HashMap () ;
List pivotKeys = new ArrayList () ;
Map allObjectsMap = new HashMap () ;

ObjectInputStream inputStream = nu l l ;
ObjectInputStream inputStream2 = nu l l ;
ObjectInputStream inputStream3 = nu l l ;

try {

53

APPENDIX B. FINAL LAESA SOURCE CODE

// Construct the ObjectInputStream object

inputStream = new ObjectInputStream (new FileInputStream (”←↩
data/pivots . hashmap ”)) ;

inputStream2 = new ObjectInputStream (new FileInputStream (”←↩
data/pivot . keys ”)) ;

Object obj = nu l l ;
Object obj2 = nu l l ;

whi l e ((obj2 = inputStream2 . readObject ()) != nu l l) {
i f (obj2 instanceof ArrayList) {

pivotKeys = (ArrayList) obj2 ;
}
whi le ((obj = inputStream . readObject ()) != nu l l) {

i f (obj instanceof HashMap) {
pivotsHashmap = (HashMap) obj ;

}
}

}
}
catch (EOFException ex) { //This exception will be caught when ←↩

EOF is reached

// System . out . println (”End of file reached . ”) ;
} catch (ClassNotFoundException ex) {

ex . printStackTrace () ;
} catch (FileNotFoundException ex) {

ex . printStackTrace () ;
} catch (IOException ex) {

ex . printStackTrace () ;
} finally {

//Close the ObjectInputStream

try {
i f (inputStream != nu l l) {

inputStream . c l o s e () ;
}
i f (inputStream2 != nu l l) {

inputStream2 . c l o s e () ;
}

} catch (IOException ex) {
ex . printStackTrace () ;

}
}

Map listOfBtreesHeapfiles = new HashMap () ;

long timerOther3 = System . currentTimeMillis () ;
f o r (int i = 0 ; i < pivotKeys . s i z e () ; i++){

// System . out . println (”data/pivotIntKey [value=” + pivotKeys .←↩
get (i)) ;

i f (test . INDEX_TYPE == 0) {
BTree index = new BTree (buffer , ”data/pivotIntKey [value←↩

=” + pivotKeys . get (i) + ”] . BTree ” , false , new IntKey←↩
(0) , new FloatData (0 . 0 F)) ;

listOfBtreesHeapfiles . put (pivotKeys . get (i) , index) ;
}
e l s e {

HeapFile index = new HeapFile (buffer , ”data/pivotIntKey [←↩
value=” + pivotKeys . get (i) + ”] . HeapFile ” , false , ←↩
new IntKey (0) , new FloatData (0 . 0 F)) ;

Cursor c = index . fullScan () ;
/*
whi le (c . next ()) {

System . out . println (c . getKey () + ” data ” + c . getData←↩
()) ;

}*/
listOfBtreesHeapfiles . put (pivotKeys . get (i) , index) ;

}

54

APPENDIX B. FINAL LAESA SOURCE CODE

}

Cursor allObjectsCursor = allObjects . query (new IntKey (1) , new ←↩
IntKey (Integer . MAX_VALUE)) ;

whi l e (allObjectsCursor . next ()) {
allObjectsMap . put (allObjectsCursor . getKey () , ←↩

allObjectsCursor . getData ()) ;
}

pivotsHashmap . remove (new IntKey (1)) ;
long timerOther4 = System . currentTimeMillis () ;
long t1 = System . currentTimeMillis () ;
System . out . println (””) ;

pivot [] p = test . laesaAlgorithm (allObjectsMap , pivotsHashmap , ←↩
listOfBtreesHeapfiles , pivotKeys , random , nu l l , k) ;

long t2 = System . currentTimeMillis () ;
f o r (int i = 0 ; i < result . l ength ; i++){

System . out . println (”Result [” + i + ”] distance = ” + result [←↩
i] . getDistance () + ” key = ” + result [i] . getKey ()) ;

}

average = average + test . distanceCalcs ;
/*

f o r (int i = 0 ; i < pivotKeys . s i z e () ; i++){
BTree tempindex = (BTree) listOfBtreesHeapfiles . get (←↩

pivotKeys . get (i)) ;
tempindex . c l o s e () ;

}*/

long timerTotal2 = System . currentTimeMillis () ;
System . out . println (”Time spent total : ” + (timerTotal2 − ←↩

timerTotal) /1000 + ” Seconds . ”) ;
System . out . println (”Time spent creating pivot : ” + (←↩

timerCreatePivots2 − timerCreatePivots) /1000 + ” Seconds . ”) ;
System . out . println (”Time spent building lowerbounds in total : ” ←↩

+ test . timerBuildLowerBoundsTotal + ” Milliseconds . ”) ;
System . out . println (”Time spent sorting : ” + (test .←↩

timersortLowerBounds2 − test . timersortLowerBounds) /1000 + ” ←↩
Seconds . ”) ;

}
int totalaverage = average / testRounds ;
System . out . println (”Totalaverage : ” + totalaverage + ” average : ” + ←↩

average) ;
String averagestring = Integer . toString (totalaverage) ;
int temp = iii+1;
allObjects . c l o s e () ;
out2 . write (”pivot number : ” + pivots [iii] + ” average : ” + ←↩

averagestring) ;
out2 . newLine () ;
out . write (”data/lowerbounds ” + pivots [iii] + ” ” + test .←↩

timerBuildLowerBoundsTotal + ”. txt ”) ;
out . newLine () ;
out2 . c l o s e () ;
out . c l o s e () ;

}

}
}

55

APPENDIX B. FINAL LAESA SOURCE CODE

56

	Title Page
	Problem Description
	Introduction
	Metric Space
	Range- and KNN Search
	Motivation, objectives and contributions
	General Motivation
	Objectives
	Contributions

	Challenges and problems
	Report outline

	Related work
	Pivot-based methods
	AESA and LAESA
	NTNUStore
	Omni-family

	Metric ball-based methods
	VP-tree, BS-tree and Their Descendants

	Metric planes and Dirichlet domains

	Implementation
	Analysis and Decisions
	The Original LAESA
	Existing Framework

	Implementation Part 1 - Pivot Selection
	Implementation Part 2 - Search Algorithm
	NN Search - No Pivots
	KNN Search - No Pivots
	NN Search - With Pivots
	KNN Search - With Pivots

	Experiments
	System Specification
	Data Sets
	Experiments on the Nasa Data-set
	Experiments on the Colors Data-set

	Conclusion and Future Research
	Conclusion
	Future Research

	References
	Original LAESA Source Code
	Final LAESA Source Code

