@ NTNU

Norwegian University of
Science and Technology

Framework for real-time forest fire

animation
Simulating fire spread using the GPU

@ystein Kjeernet

Master of Science in Computer Science

Submission date: June 2010
Supervisor: Torbjgrn Hallgren, IDI
Co-supervisor: Jo Skjermo, IDI

Norwegian University of Science and Technology
Department of Computer and Information Science

Problem Description

A framework for simulating and animating forest fire in real-time applications is to be developed
and implemented. The framework is a two-part system, consisting of a large-scale simulator,
describing the spread of fire between trees in a forest, and a small-scale simulator for fire spread
on a single tree. Only the small-scale part is to be developed in this project. The framework should
support external factors affecting the spread rate, a simple flame representation and should use a
quasi-physically based spread simulation model.

Assignment given: 18. January 2010
Supervisor: Torbjgrn Hallgren, IDI

Abstract

In 2009 Odd Erik Gundersen and Jo Skjermo described a conceptual frame-
work for animating physically based forest fires. This project expands on their
ideas with a focus on how modern graphics hardware can be utilized to achieve
real-time performance. A prototype demonstrating some of the concepts suggested
for the framework have been implemented and tested, successfully achieving real-
time frame rates on a simple animation of a burning tree.

Contents

1

Introduction

1.1 Goals e

Background Theory

2.1 Fundamentalsof Fire

22 FireSpread
2.2.1 Heattransfer,
2.2.2 Dominant Heat Transfer Mechanism
2.2.3 Factors affecting fire propagation
2.24 Regimes of propagation,

Related Work

3.1 Smoke and flame rendering
3.1.1 CFDBasedMethods
3.1.2 OtherMethods

32 FireSpread
32.1 CFDBasedMethods
3.22 OtherMethods

The Framework

4.1 Framework Architecture
4.2 Simulation Synchronization.
4.3 Forest-scale Simulation
4.4 Forest-scale Visualization
441 TreeRendering
4.4.2 Flames and Smoke Rendering
4.5 Tree-scale Simulation
4.6 Tree-scale Visualization
4.6.1 TreeRendering
4.6.2 Flames and Smoke Rendering

The Implemented Prototype

5.1 Prototype Architecture
5.2 Prototype Spread Model
5.3 Prototype Fire Visualization
5.4 Supporting Applications Lo

14
14
15
16
17
17
18
18
20
20
21

6 Results

6.1 Performance Results .
6.2 VisualResultso

7 Conclusion

7.1 Performance

7.2 Realism

7.3 Suitability

7.4 Future Work

7.4.1 Research . . .

7.4.2 Implementation
Bibliography

ii

33
33
33

37
37
38
39
39
39
40

41

I INTRODUCTION

1 Introduction

In nature forest fire is a most devastating phenomenon - an estimated cost of 2.5 billion
USD and 22 deaths was reported for a single wildfire in Southern California in October
— November 2003 [R]. Still, fire can also be a dramatic and beautiful
effect in visual entertainment, and is used extensively in the movie industry and to a
lesser degree in interactive entertainment like video games. The problem with using
computer animated fire for video games and similar is it’s complex and highly dynamic
nature. Much work has gone into making the flames of computer animated fires look
realistic, but the spread of fire through fuel has received less attention from the gaming
society. Just as the appearance of the flames, this is a complex phenomenon that can
be computation intensive to simulate, and thus a challenge to implement in real-time
computer applications. Fire fighters have used computer simulation as a tool in fire
prediction for some time, but these simulations are slow and must be run off-line. This
project aims to develop a framework for supporting realistic fire spread in real-time
applications. It’s goals are simplicity in use and implementation and low computational
overhead, while maintaining a spread pattern that is believable both from a close-up
perspective of a few trees and over whole forests.

1.1 Goals

The main goal of this project is to describe a general method for adding support for
realistic fire spread to real-time, interactive 3D forest scenes. The approach chosen was
to use the framework described in [X] as a basis to expand
on and concretize. The framework should be described in sufficient detail to be a useful
basis for a future implementation. This means potential problems should be thoroughly
investigated and possible solutions should be suggested. The framework should be
general enough to fit the architecture of already existing real-time applications, but
it’s scope is fire in forests and as such it does not need to support fire spread over
arbitrary 3D-objects. It should be easy to understand and implement. The spread of
the fire should seem plausible from the user’s viewpoint, both at a large scale when
considering the whole forest, and at a detailed level when considering the spread over
a single tree. It is, however, aimed at entertainment applications and need not provide
a degree of accuracy suitable for use in forest-fire prediction. As it is a framework for
use in real-time applications it should not impose a large computational overhead. To
achieve this as much as possible of the computational intensive parts of the simulation
should be implemented on graphics hardware.

2 BACKGROUND THEORY

2 Background Theory

To fully understand fire one must touch on several fields of science, including physics

and chemistry. However, the main concerns of this project are the mechanisms involved

in spreading fire across a fuel bed, and it turns out that for this specific aspect of fire

physical factors may be more important than the chemical nature of fire [,
, p- 16].

This chapter first introduces some basic topics related to fire in general to provide
some foundation for the following section, which focus on fire spread. Furthermore,
as this project aims only to achieve believable animations of spreading fire rather than
predicting the behaviour of a real fire for purposes such firefighting, only the most
general cases are considered.

2.1 Fundamentals of Fire

Fire is a complex process and involves a number of chemical reactions. Central is
combustion, a process involving rapid reaction between an oxidizer, and some com-
bustible species [,], accompanied by the release of energy, primarily
in the form of heat [, , p- 17]. Reactions that release energy is called
exothermic, while those that absorb energy are endothermic [s

; s , p- 12; p. 15]. Many chemical compounds are combustible, and
the term “fuel” is used throughout this text to mean whatever compounds are reacting
with the oxidizer in the combustion process, though the case of carbon based fuels from
wood reacting with the oxygen in air will be the one most relevant.

The rate of the chemical reaction, and thereby the rate at which heat is released,
depends on the energies of the fuel and the oxidizer [s ,p- 3,
145]. The hotter the reactants, the quicker heat is released in the combustion. If the
rate at which heat is generated equals the rate at which heat is lost to the surroundings,
a self sustained chain reaction can be achieved, as the heat generated in on cycle of
combustion heats up unburnt fuel maintaining the heat generation rate. Furthermore, if
the rate of heat generation exceeds the rate of heat loss, heat can build up, continually
accelerating the heat release and causing a thermal runaway [, ; ,

, p- 92; p. 82]. This point is called “ignition”, and the temperature at which it
occurs is called the “ignition temperature”[, , p- 3]

When a volume of fuel and air mixture at a temperature less than the ignition tem-
perature is subjected to a local source of energy, such as a spark or a matchstick, that
raises the temperature locally to a point at which some of the mixture reaches ignition,
the ignition can propagate through the fuel. This is called “piloted ignition”, and the
speed at which the ignition propagates is called the “flame speed” [, ;

2 BACKGROUND THEORY 2.2 Fire Spread

R , p- 85-88; p. 31.

In naturally occurring fire the limiting factor of the ignition propagation is usually
the availability of air and fuel mix; the fuel is originally separate from the air, and they
must first mix by diffusion. In larger fires, such as bonfires or forest fires, this process
is helped by the turbulence caused by the effect of the heat on the surrounding air, and
the flames that results are characterized as “turbulent diffusion flames” [. ,
p- 11.

Often when a complex compound burns it goes through another chemical reaction
before it takes part in the combustion: Triggered by heat the compound decomposes
by a process known as pyrolysis, leaving smaller molecules that may become fuel for

the combustion or may be left untouched [. , p- 1]. This is an endothermic
reaction, meaning heat is consumed in the process. When the fire originates from
wood, which consists mainly of cellulose, hemicellulose and ligning [s 1,

pyrolysis may release volatile species leading to flaming combustion [, ,
p 15]. In a forest fire, it is normally these volatiles that ignite first, thus driving the
propagation [s ; s , p- 6;p. 159].

Due to several different phenomena volatile species from the pyrolysis frequently
escapes from the combustion zone without oxidizing. Heated by combustion these
species can form soot particles that rise with the buoyant air flow, and if hot enough
can emit light due to a phenomenon called incandescence. The characteristic yellow
light from most flames come mainly from such incandescent soot, while soot that has
cooled down and is no longer incandescent contributes to the smoke rising from the tip
of the flame [s ; . ; s ,p- 25 p- 1;
pl16].

2.2 Fire Spread

A fire spreading in wood can be seen as a series of alternately endothermic and exother-
mic processes, with the following playing a major role [, ; ,

,p- 6;p. 81:

Dehydration : One of the first effects of the heat transfered from a nearby combus-
tion is the endothermic dehydration of the wood. Water and other liquids with
relatively low boiling points evaporates.

Pyrolysis : As the temperature increases, pyrolysis becomes more dominant, breaking
down the wood into tar, char and several other components, including volatile
species that detaches from the surface into the air. Pyrolysis is also an endother-
mic process.

2.2 Fire Spread 2 BACKGROUND THEORY

Combustion : Some of the products from the pyrolysis reaches ignition temperature,
and a self-sustained exothermic combustion is initiated.

Some of the heat from the combustion then reaches nearby, unburnt fuel, and starts
a new cycle. The combustion continues as long as there is enough heat to sustain
the process, either as flaming combustion if volatile fuel is available, or as a glowing
combustion of solid carbon based fuel. In this way an ever increasing area of the fuel
is, or has been, involved in combustion and we say that the fire spreads over the fuel.
It can be useful to define the boundary between the areas of the fuel that has not been
reached by the combustion and the burning areas. This is often called “the surface of
fire inception” or “inception boundary” and the speed with which this moves in the
direction of it’s normal is called the “spread rate” [,].

2.2.1 Heat transfer

If the energy released in a combustion process is to have any affect on nearby fuel,
clearly a way to transfer energy between a source and a recipient is needed. Heat is
defined in physics as energy transferred between systems as a result of their temperature
difference [R ; s , p- 67; p. 12]. A useful measure for
describing the heat transfer is “heat flux”, which is defined as flow of energy per unit of
area per unit of time. It is a vectorial quantity and it’s magnitude is often measured in
watt per square meter (W/m?) [, , p- 84]. The spread rate, can be related
to the magnitude of the heat flux through the surface of fire inception, using equation 1
known as “the fundamental equation of fire spread”:

pVAh =g ()

derived from applying conservation of energy across the boundary [,

]. In addition to the spread rate, V', and the heat flux, g, it is dependent on the
fuel density, p and the difference in “thermal enthalpy” per unit mass, Ah, between
the fuel at it’s ignition temperature and it’s original temperature. Thermal enthalpy is
a measure of a chemical species’ energy, involving it’s internal energy, pressure and

volume [s ,p. 11].
The heat can be transfered in three by three different mechanisms, often referred to
as the mechanisms of heat transfer [s , p- 31]: Conduction, Convection

and Radiation.

Conduction is transfer of heat between substances or parts of a substance in direct
contact, when substantial movement is not involved [, , p- 12].

2 BACKGROUND THEORY 2.2 Fire Spread

The heat flux for conductive heat transfer in the x direction is given by:

kAT

e @

q =
where AT is the temperature difference over the distance Ax and k is the thermal
conductivity - a material constant [, ,eq. 2.1. p. 32].

Convection transfers heat between a solid and a surrounding, moving fluid [,
, p- 32]. For convective heat transfer an empirical relationship for the heat

flux is
q = hAT 3)

where h depends on both the system, AT and other factors and is known as the
convective heat transfer coefficient.

Radiation is the transfer of heat by electromagnetic waves [, , p- 13]
and does not require direct contact between the source and the receiver [

, , p- 31]. The relatively large soot particles (often 10-100 nm in di-
ameter) present in the yellow luminous flames in naturally occurring fire are
important sources of radiative heat transfer [R , p- 69]. The heat
flux for this type of heat transfer is given by:

q= ¢eoT* €

. The parameters are: ¢ - a factor accounting for the geometrical relationship
between the emitter and the receiver, ¢ - the emissivity of the radiator and o - the
Stefan-Boltzmann constant. The temperature, 7', is in Kelvin in this equation.

2.2.2 Dominant Heat Transfer Mechanism

In reality all three mechanisms probably contribute to the spread of any given fire,
but it is found that a “dominant heat transfer mechanism” can be identified for some
usual situations [, ; , ; s ;

, , p- 12; p. 31]. An important difference is how the direction of spread
relates to the direction of the surrounding gas flow - classified into opposed flow spread
and concurrent spread. The gas flow can be determined by external wind or it can
arise from the buoyancy effect caused by the rising hot gases from the fire. The slope
of the fuel surface plays an important role in the effect of buoyancy induced flow.
As illustrated in figure 1, the buoyancy from the fire on a flat surface, will create a
draft resulting in opposed spread, while on a slope the hot gases will create a upslope

2.2 Fire Spread 2 BACKGROUND THEORY

flow. Thus a fire spreading up the slope will be concurrent and spreading down the
slope it will oppose the flow [,]. It is also usual to differentiate between
spread in thermally thick and thin solids [,]. When an
object is so thin that the internal spatial temperature gradient can be ignored, it is called
thermally thin [, , p- 171]. In thermally thick solids the thickness has an
impact on the rate of spread [, , p- 1285], but the variation with thickness
decreases drastically for solids thicker than 1.5 mm and is virtually zero if thicker
than 5 mm [, , p- 244]. The heat transfer mechanism that dominates
the the spread rate for concurrent spread is radiation from the flame that leans over
the unburnt fuel. For opposed spread the dominating mechanism is slightly different
for thermally thin and thick fuel. While opposed spread through thermally thick fuels
is dominated by heat conduction through the solid, the spread through thermally thin
solids is dominated by heat conduction through the gas as the path for the transfer of
heat through the solid is very limited [s ; s
].

2.2.3 Factors affecting fire propagation

There are a number of physical factors affecting the speed of the propagation, includ-
ing:

Wind is considered the most important factor of forest fire propagation by a large
margin, being able to accelerate the propagation by a factor of 100 compared to
windless fire [s , p- 6, 17]. Among other things, this acceleration is
caused by the gas flow driving the flame ahead of the pyrolysis front, enhanc-
ing the transfer of heat from the flame to the unburnt fuel [

, , p- 19], especially radiative heat transfer as discussed in 2.2.2.
Larger particles, sparks and similar can also be blown by the wind to ignite vir-
gin fuel. Wind opposing the spread direction can for small air velocities increase
the spread rate as it promotes air and fuel mixing and increases combustion. For
higher velocities it can cool the unburnt fuel decreasing the spread rate.

Slope has similar effect on the spread rate to the effect of wind because of the buoyancy-
induced gas flow as explained in section 2.2.2.

Fuel density is another major factor on the spread rate, as low density means only a
small mass of material at the surface needs to be heated for the flame to spread

[s , p- 245]. However, when the fuel becomes discontinuous the in-
creased distance between fuel elements means heat has to be transfered a longer
distance.

2 BACKGROUND THEORY 2.2 Fire Spread

x‘ Solid mass transport

Ry —

%”% — y=4
—

RALILIENY
\ -
indroft

— Internal radiation
— & convection

Indraft /

(a) Horizontal fire spread without wind

Convection

~ 3 3

— Internal radiation
> & convection

Flame contact—»:

(b) Horizontal fire spread in wind

—

—
Radiation
—

(c) Fire on a slope

Figure 1: The effect of wind and slope on the fire. Without wind (1a) the draft causes
opposed spread in any direction. With wind (1b) or slope (1c) the spread is concurrent

if spreading from left to right on the figure and opposed if spreading from right to left.
Illustrations from [s].

2.2 Fire Spread 2 BACKGROUND THEORY

Fuel geometry , in particular the width of a fuel bed can be an important factor: the
size of the flames on a bed of substantial width means radiative heat transfer can
become the dominating heat transfer mechanism [s , p. 246].

Fuel moisture can be a heat sink or a chemical inhibitor in the pyrolysis process [
, , p- 6].

Fuel temperature influences the amount of heat required to pyrolyze and ignite un-
burnt fuel. The fuel temperature for a forest fire depends on environmental fac-
tors such as the ambient temperature and wind conditions.

2.2.4 Regimes of propagation

Forest fires spread mainly through three different layers of the forest: beneath the sur-
face, on the surface and through the tree crowns. The fire behaves quite differently in
the different layers, and it is normal to classify fire spread into three “regimes” accord-
ing to which of the layers that mainly fuel the fire [, , p- 4-5]:

Ground fire Pyrolysis and combustion can propagate in the organic layer of the ground.
This does usually not involve flames but can evolve into surface fire.

Surface fire The forest surface can contain a lot of combustible fuel such as dead
vegetation litter and living plants. This is the most common regime for forest
fire propagation and also the best studied.

Crown fire Foliage can be highly combustible if sufficiently dry, and if the crowns of
the trees form a relatively continuous canopy fire can spread very fast (over 11
km/h [s , p- 69]) in this layer of the forest.

3 RELATED WORK

3 Related Work

There has been done some research in the computer graphics society on the topic of
realistic animation of fire. However, most of it has focused on the appearance of the
flames, rather than how the fire spreads over an object or an area with continuous or
discrete fuel, which has been more or less reserved for research aimed at predicting
fire for fire safety or -fighting. As the main focus of this framework is on the spread
of a forest fire work related to fire spread is treated especially in section 3.2, while
work focusing on the appearance of flames or smoke is mentioned somewhat more
superficial in section 3.1.

3.1 Smoke and flame rendering

There is especially one class of fire modeling methods that has received much attention
by computer graphics researchers in recent years: the ones that models the motion of
gases by descretizing it and solving sets of physically derived equations. They often use
techniques from the field of Computational fluid dynamics (CFD), and a few of them
are summarized in section 3.1.1. Other techniques are reviewed in section 3.1.2. The
animation of smoke is very similar to that of clouds, and the two are not distinguished
between in the following sections.

3.1.1 CFD Based Methods

Computational fluid dynamics (CFD) is a field dedicated to solving problems involving
fluid flows by the use of numerical methods. The equations used to describe the motion
of the fluids are often the Navier-Stokes equations (NSEs) or some derivation of these.
CFD techniques can achieve very accurate results and is used to evaluate new aircraft
designs among other things[Taft,]. Most of these methods require solving a large
set of equations [,] and have traditionally been considered too
computationally intensive for real-time 3D animation. However, fairly recent research
in the computer graphics society, as well as the advances in computers’ processing
power, make CFD based techniques more suitable for such applications.

Simulating fluid motion numerically requires a discrete representation of the prob-
lem. There are two major ways to represent fluid flows, often referred in CFD as the
Eulerian representation and the Lagrangian representation [, ; ,

]. The Lagrangian representation defines a flow by tracking parcels of a specific
volume of the fluid through the flow over time. A natural way to discretize a problem
represented this way is by using particle systems, as introduced in [,]. The
Eulerian representation describe fluid velocity at fixed points in space. The discrete

3.1 Smoke and flame rendering 3 RELATED WORK

version of this representation is normally defining a finite number of such points by
visualizing a grid over the simulation space.

One of the earliest applications of CFD techniques in the computer graphics soci-
ety was [s], which describes how an Eulerian, two dimensional fluid
simulation was used for the animation of the surface of Jupiter for the movie “2010”.
This simulation was run off line on a supercomputer at the time. Similar techniques
were consequently used on several occasions for depicting fluid and gaseous phenom-
ena such as water and smoke [s] and for visualizing flames in
[R]. Real-time performance was achieved in [.

], in simulating the hight field of a water surface with waves in shallow water, but
for complex, turbulent structures such as fire CFD techniques were long considered
too slow for interactive simulation. One of the problems with traditional fluid solvers
is that they put a strict constraint on the size of the time step to guarantee convergence.
[s] demonstrated that a visually realistic animations of tur-
bulent gases can be achieved with Eulerian CFD techniques even at very coarse grids,
thus yielding reasonable simulation performance. In [,] Stam showed how to
overcome the problem of small time steps using a Semi-Lagrangian advection scheme
and an implicit solver. He achieved unconditionally stable fluid simulations, allowing
for arbitrarily large time steps. This fueled new interest in CFD based simulation in
the graphics society, and several researchers have achieved highly realistic flame ani-
mations at interactive or near interactive frame rates using Stam’s solver: [

.] uses a Stable Fluids-based method to simulate the development of fuel
and exhaust gases, air and heat and supports burning of solids at a reported 20 frames

per second (FPS) while [s] produced close to photo realistic flames
using 5 minutes per frame (0.0033 FPS) with the addition of a technique called “vor-
ticity confinement”, invented by [s] and first used with the
stable fluids method in [s 1. [s] uses the stable flu-

ids method with vorticity confinement running all simulation on graphics hardware. By
distributing the simulation over several rendered frames they successfully implemented
the cloud simulation in an interactive flight application. This approach exploits the rel-
atively slow changes in a cloud’s appearance and may not be as suited for simulating
flames. [s] simulates 2D fire using a model similar to that in [s
] and maps the result to a billboard to produce realistic small fires, such as torches
and bonfires for real-time 3D animations. [s | describes
some techniques used to produce realistic fluid simulation in the game “Hellgate: Lon-
don”. Using the MacCormack advection scheme from [,] they reduced
the numerical dissipation that the Stable Fluids approach struggles with. The meth-
ods were all implemented on the GPU to achieve real-time performance. [
s] expands on the authors’ work in [.] by adding

10

3 RELATED WORK 3.2 Fire Spread

deformation of the burning solid. They accomplish this by storing the burning object as
a distance field, moving the implicit surface as it burns and converting it to a polygonal
representation before rendering.

Another method based on CFD techniques is the Lattice Boltzmann Method (LBM),
which instead of focusing on macroscopic qualities of fluids, like velocity, density and
pressure, as the Navier-Stokes equations do, tries to simulate the behavior of micro-

scopic particles [, ; s]. It uses a technique similar to
“cellular automata” with simple local rules for each cell in a regular grid. The technique
was introduced to the computer graphics society in [,], who realized it

was very well suited for being implemented as a parallel algorithm to be run on the
GPU. They render the fire using a volume rendering method known as “texture splats”,
introduced in [,]. This is an extension to “splatting” volume
rendering that adds detail using small textures for each voxel in the rendering volume.

3.1.2 Other Methods

Most of the CFD-based techniques are computationally costly and were for the most
considered impractical until recent years. Even now most real-time applications can
not afford the overhead and use simpler methods. An early procedurally generated
flame is described in [s], where a static rendering of a turbulent 2D fire is
created using a noise function. The method is extended to 3D in [,

]. A very popular technique in games is particle systems. These were introduced
in [,] where such a method was used to visualize an expanding ring of
fire in the movie “Star Trek II: The Wrath of Khan”. Real-time applications often use
textured or billboard particles to reduce the number of particles needed for detailed ani-

mation [,]. The flames in Intel’s real-time demo application “Smoke
demo”[,] are produced by a particle system optimized for par-
allel execution on multi-core CPUs. [s] and [s] describe

particle systems running entirely on the GPU, taking advantage of it’s massive par-
allel computation capability and avoiding any slow transfers of particle data to GPU
memory at run-time.

3.2 Fire Spread

Again, the fire spread methods are divided into those using CFD-techniques, and other
methods including those based on models found in fire safety literature or simply the
researcher’s intuition.

11

3.2 Fire Spread 3 RELATED WORK

3.2.1 CFD Based Methods

[,] describes an early method for simulating fire spread in two di-
mensions by simulating particles flowing through a vortex field. [,
] simulates flames using CFD-techniques, and spreads the fire over solid objects
by making them the source of fuel. [,] simulates fire spread over
solid fuels by enclosing the solid object in a voxel grid and calculating the evolution of
a velocity field using Stam’s Stable Fluids-approach. The ideas of simulating flames
using a method based on the Lattice Boltzmann Method presented in [,]
was later expanded by some of the same authors to simulate fire propagation on a vol-
umetric object in [,]. By running the simulation on graphics hardware
they reportedly achieved a simulation rate of over 14 FPS on commodity hardware'.

3.2.2 Other Methods

[,] takes another approach to simulating fire spread. Instead of
calculating gas motion in a volume, the motion of the fire front is tracked directly as
it expands over the object’s surface. It is represented by a connected set of points,
and the velocity perpendicular to the fire front, or flame speed is calculated by local
rules depending on wind, slope and curvature. The flame speed calculation is based on
[s]and [,], that identified a “dominant
spread mechanism” in different situations. For example will the contribution from
radiation dominate the transfer of heat when the fire burns upslope, while downslope
conductive heat transfer will contribute the most.
Other fire spread animations use similar techniques but with the flame speed cal-
culated from intuition derived equations. [,] and later [s
] expand on [,]’s fire spread method with means to ensure
correct expansion of the front without leaving the object’s surface and without the front
crossing itself. [,] also augments the fire front spreading with a particle
system (the same as the one used to visualize the flames): “flame particles” emitted by
the burning regions fly through the air and ignite any unburnt fuel they collide with.
The collision check is accelerated by using a pre-computed distance field, storing the
distance to the nearest surface point for each point of a coarse grid enclosing ignitable
objects. A similar particle system is used in [,] which is a real-
time application made for demonstration purposes, in which fire is spread by emitting
“heat particles” from burning objects. Another real-world example of fire spread in

A PC having a 2.53 GHz P4 CPU with 1 GB of memory and an Nvidia GeForce4 Ti 4600 graphics card
with 128 MB of memory

12

3 RELATED WORK 3.2 Fire Spread

real-time applications is the computer game “Far Cry 2” which has procedural spread
of fire through trees, grass and other flammable objects[,].

Simulators developed to predict fire spread for fire safety purposes often use several
different models either choosing the most fitting for the specific case or combining them
to account for different aspects of fire spread. CFAST[,] is a model
used to predict compartment fires. It is a “zone model”, meaning it partitions the space
to be modeled into zones, like upper and lower gas layers, and uses physically based
equations to calculate the development of the collection of zones. BEHAVE[

,] models forest fire based on the semi-empirical mathematical model
described by [s 1. FARSITE][s ; , 1
uses, among other models, BEHAVE to produce maps of the fire growth that can be
viewed in geographic information systems (GISs).

13

4 THE FRAMEWORK

4 The Framework

The framework presented here is modeled after the one described in [

,]. The additions to the work of Gundersen and Skjermo is mainly in
exploring alternative simulation and visualization techniques and trying to elaborate
on some specific practical issues. Both are still mainly at the conceptual level, but
for this project there has been developed a prototype that implements a small part of
the framework. The prototype is described in chapter 5, while this chapter details the
framework as a whole. The main focus is on the spread of the fire but possible visual
representations of the flames, smoke and trees are also discussed.

4.1 Framework Architecture

An important feature of Gundersen and Skjermo’s framework is the use of two dif-
ferent levels of simulation for the fire spread: a coarse simulation governs the spread
of fire through the whole forest, while close-up scenes of a small collection of trees
use a separate, more detailed simulation. This is analogous to using “level of detail
(LOD)” schemes when rendering complex 3D scenes: a popular class of techniques
dating back to [,] that exploit the fact that objects that are distant in the
scene are rendered as smaller because of perspective effects. Distant object can there-
fore be represented by simpler models to reduce computation cost. Although most
often associated with rendering 3D scenes LOD schemes has also been suggested for
simulations previously (e.g. [, D.

The basic idea is that, just as for rendering 3D scenes, it is not necessary to simu-
late the fire spread over trees in the distance with the same precision as for trees close
to the viewer. While a close-up view of a burning tree should provide a convincing
animation of the fire spreading through the branches and leaves these details are not
visible from a long range. As mentioned Gundersen and Skjermo suggest using two
separate simulations each having their own grid, and using different spread models.
The simulation responsible for the overall spread through the forest, as seen from a
distance are by Gundersen and Skjermo called “large scale” simulation, and will here
be called “forest-scale” simulation and is described in section 4.3. The detailed simu-
lation of spread over a small collection of trees when observed at close range is han-
dled by the “tree-scale” simulation, called “small-scale” by Gundersen and Skjermo.
This is detailed in section 4.5. Both simulations can be accelerated by utilizing the
highly parallel computing platform that modern programmable graphics cards provide,
as demonstrated in the prototype described in section 5.

14

4 THE FRAMEWORK 4.2 Simulation Synchronization

4.2 Simulation Synchronization

When animating a forest fire in a real-time interactive application in which the user
can freely change perspective at any time it is important that the framework maintains
continuity in the overall development of the forest fire. A few situations need special
attention:

1. When a user changes from a point of view where a part of the forest is far away
to a close-up view of that part of the forest, he will expect the general state of the
trees in that section to be the same as when viewed from afar.

2. The reverse is also true: The trees seen in a close-up view need to be in the same
state if moving the camera to a distant view.

3. Finally, the user will expect the fire to evolve also when not viewed.

To achieve this, Gundersen and Skjermo proposes to let the forest-scale simulation
run continuously, even when not directly seen by the user. A tree-scale simulation is
started only when there are a small number of trees in the user’s immediate view and
only when these trees are close enough that a detailed simulation is necessary. As
soon as this group of trees exits the user’s field of view the tree-scale simulation is
discarded and it’s state is forgotten. However, to account for the situations mentioned,
it is important that the tree- and forest-scale simulations are kept in synchronization at
all times. Gundersen and Skjermo suggests the following course of actions:

1. The user enters a close-up perspective of a group of trees. Tree-scale simulation
is prepared for the nearest trees, but before the simulation starts, it queries the
forest-scale simulation for the initial state of the trees.

2. The tree-scale and forest-scale simulations run in parallel. Gundersen and Skjermo
do not mention if the two simulations are to be synchronized during this step
but not doing so can result in apparent faults in the overall forest-spread. The
synchronization can be done by making the forest-scale simulation periodically
update it’s data with data from the running tree-scale simulation.

3. When the user changes perspective away from the group of trees, the forest-scale
simulation updates it’s data with the last state of the tree-scale simulation.

As the forest-scale simulation does not hold any information about which parts of a tree
is burned there is a problem of figuring out the exact state of the tree when starting a
tree-scale simulation. One possible way to deal with this is to run a sped-up simulation
before the close-up scene is rendered. This requires the forest-scale simulation to keep

15

4.3 Forest-scale Simulation 4 THE FRAMEWORK

some information of the propagation history, such as from which direction each tree
received most heat when it was ignited. It may very well be sufficient to assume the
tree ignited at a random or predefined point.

4.3 Forest-scale Simulation

The forest-scale simulation keeps track of the overall progress of the fire. Gundersen
and Skjermo suggest a CFD-based approach partitioning the forest into a discrete grid
and solving the Navier-Stokes equations as described in section 3.2.1. This is how-
ever a relatively complex and costly model and several of the other fire spread models
mentioned in section 3.2.2 should be just as suitable for this framework. For example
should a method based on moving a fire front, such as [s], be able
to give a visually interesting and believable fire behavior if taking into account slope,
wind and other factors. CFD-based approaches has previously been implemented on
graphics hardware, some examples of which are mentioned in section 3. An example
of a GPU-accelerated two-dimensional method can be found in the prototype imple-
mented for this project, which is described in section 5. Although only the tree-scale
simulation is implemented in the prototype the principle of executing the simulation on
the GPU should be very similar for the forest-scale simulation.

As the forest-scale simulation must run continuously during the whole lifetime of
the fire it should not induce a large computation overhead on the real-time application.
A number of observations are done by Gundersen and Skjermo that validates the use
of a fairly small simulation domain.

First, the speed of the propagation is found to be quite small compared to the size
of the forest. The simulation can therefore use a large timestep and still keep the
propagation moving steadily and smoothly as long as the model can handle it without
becoming unstable.

Furthermore, for a forest fire scene at this scale the spread along the surface is the
most interesting. Even if the surface is not perfectly planar, as long as the forest-floor
does not self-overlap the forest-scale simulation can use a two-dimensional grid. Hight
differences, which is an important factor affecting the spread due to buoyancy (c.f.
section 2.2.3) can be accounted for using a hight map as suggested by Gundersen and
Skjermo.

Forest scenes can contain thousands of trees so the resolution of the top-level sim-
ulation needs to be quite coarse. Figure 3a shows a forest fire seen from a distance.
From this distance one can imagine it would be very difficult to make out the details
of how the fire propagate in each tree, as the density of the trees makes it difficult even
to distinguish between different trees. One can probably see the development from a
barely burning tree to a fully developed fire to a burned down stump, but probably not

16

4 THE FRAMEWORK 4.4 Forest-scale Visualization

pinpoint where the fire starts or whether it burns from left to right or from right to left.
Therefore it should suffice to simulate the top-level spread on at most a per-tree basis.
Taking these factors into consideration Gundersen and Skjermo suggests using a
regular 2D grid covering the area of the forest with each cell holding data such as fuel
density, height, temperature and so on. This data can be stored in a set of textures
with pixels’ color values representing the data. Fuel- and height maps can easily be
constructed from the landscape model. A suitable resolution for the grid will balance
the realism of the spread versus the computational cost of the simulation. This is a
representation very well suited for CFD-based simulation. If, however, other simula-
tion methods are used different representations might be just as suitable. For example
the prototype implemented for this project (see chapter 5) use an irregular, triangular
mesh as it’s simulation domain. In a similar manner, a mesh could be constructed for
the forest-scale simulation in which each node represents a tree and the edges store
distances between neighboring trees. A method similar to one of those used for the
prototype could then be used to model the spread over this mesh. Other possible mod-
els such as the mentioned [,] might not need a simulation grid at
all, simply storing the data needed for each tree (or group of trees) in an indexed list.

4.4 Forest-scale Visualization

As a general method for supporting fire spread in 3D forest scenes, this framework
should not put too hard restrictions on how the scene is rendered, neither for the trees
or the fire at any scale. Still, the visual model must be compatible with the simulation
model and in the forest-scale be able to draw a large amount of trees without dropping
in framerate. In addition, it should be able to give a convincing visual representation
reflecting the state of the tree according to the simulation. This means a dynamic
representation is needed that changes appearance as the tree ignites, the fire spreads and
finally extinguishes and leaves charred remains. Gundersen and Skjermo distinguishes
between three states that a tree can be in: non-burning, burning and burned-out. Both
the non-burning and burned-out state are static as far the fire simulation is concerned.
The burning state should be a smooth transition between these two states. In addition,
flames and smoke must of course be rendered.

4.4.1 Tree Rendering

Forest scenes with a large amount of trees typically use billboard representations of
the trees, like in [,] and [s]. In the non-burning
state the trees are of course rendered as usual. For the burned-out state, the visual
representation can just be replaced by a charred version of the same tree, assuming

17

4.5 Tree-scale Simulation 4 THE FRAMEWORK

the result of the burning is given in advance. In general the result of the burning is
not given in advance, as the fire could extinguish at any point leaving the tree at any
state between almost untouched by the fire to completely burned-down. Taking this
into account the appearance of the burned-out state should if possible be dynamically
chosen as the last appearance of the burning state. The visual representation in the
burning state should change gradually as the fire devours the tree. It could be some
kind of animation changing for example as a function of how much fuel is left in the
corresponding simulation cell.

4.4.2 Flames and Smoke Rendering

There are many different methods for visualizing fire and smoke in 3D animations. The
method chosen for fire should be able to represent different degrees of burning intensity
as a slow barely burning fire, which may occur when spreading against the wind or
downhill, can look significantly different from a violent, full-blown wildfire. Possible
methods suggested by Gundersen and Skjermo are particle systems or physically based,

two dimensional fire textures drawn on billboards like in [s].
Smoke can be simulated in a 3D grid using CFD-based techniques and be rendered
using volume rendering techniques, as described in [,]. This would

require a simulation domain that can hold the whole smoke cloud, which can grow
quite large for a forest fire, and thus be a computationally costly simulation to run.
A much used technique for animating smoke in computer games is using a textured
particle system. This can produce quite realistic smoke using relatively few, simple
particles making it a computationally cheap choice.

4.5 Tree-scale Simulation

As for the forest-scale simulation there are a number methods to choose from for mod-
eling in detail the fire spreading through a small collection of trees. The prototype
implements a simple simulator for the spread through a single tree. A description and
assessment of this is given in chapter 5. Gundersen and Skjermo suggest using a CFD-
based model as in the forest-scale simulation, but using a finer and three dimensional
simulation grid. There are, however, a number of factors complicating this simulation
compared to at the forest-scale:

1. A tree is a much more complex structure than a landscape, wrapping around and
overlapping itself making two-dimensional simulation meshes hard to fit to the
geometry. The prototype creates a two-dimensional mesh over the surface of the
tree, but the problem with this approach is that fire does not only spread along

18

4 THE FRAMEWORK 4.5 Tree-scale Simulation

the surface, but can jump directly between to spots that are far apart if measuring
along the the surface but close in three dimensional space, like points at two
different branches directly above each other.

2. Compared to viewing the forest fire at forest-scale a close-up animation of a few
trees reveals a lot more details about the fire propagation. Factors such as what
part of the tree that first ignites, which direction it spreads the fastest and how
fast it spreads, burns down and extinguishes are now apparent to the user and
needs to appear plausible.

3. In contrast to the spread velocity at forest-scale the velocity relative to the size
of the simulation domain at this scale is much higher and a large time step might
produce jerky progression of the fire front.

These factors suggest that a 3D grid in relatively high resolution would be a fitting
simulation domain for the tree-scale simulation. Gundersen and Skjermo suggest en-
closing the “main actor” tree, the one tree in the user’s main focus, in a 3D simulation
volume and simulating the fire spread over this using CFD-techniques. Again, this is
a costly technique and alternatives can be found. As mentioned in point 1 in the list
of factors above, the prototype uses a simple, two-dimensional grid that follows the
tree’s surface, with the drawback that fire can not take “shortcuts” through the air. An-
other possibility is to spread the fire using a particle system. Examples are found in
[s] and [s] where particles are shot from burn-
ing regions and start new fires if they collide with unburnt fuel. This requires collision
checks between particles and fuel objects, which can amount to quite many and costly
operations.

In their paper, Gundersen and Skjermo do not mention how the fire should spread
between the trees in the user’s view, which may be an important factor. Imagine, for
example, watching two neighboring trees, one burning and about to ignite the other
tree. You would probably expect the non-burning tree to catch on fire at a point near
the burning tree first, not a random spot that could be further away from the heat. This
means that the tree-scale simulation needs to know where the heat comes from and
which point to ignite first. Some communication between neighboring trees is needed.

One possible solution of the problem of which part of the tree ignites first is as
follows: Each tree has a list of it’s closest neighbors (the ones it is most likely to
catch fire from), the direction to each of these neighbors, the distance to it and the
point of the tree that is closest to the neighbor. When a non-burning tree viewed in a
close-up scene is about to ignite (the ignition time can be decided by the forest-scale
simulation) it investigates it’s closest neighbors to see which is giving off the most heat
and ignites the point closest to that neighbor. To be as realistic as possible factors such

19

4.6 Tree-scale Visualization 4 THE FRAMEWORK

as distance, wind and height-difference should be taken into account when finding the
igniting neighbor. On the other hand would it probably be sufficient to approximate the
temperature distribution of each of the neighboring trees with a single temperature for
each tree located at it’s base, geometric center or center of mass.

Another, more accurate solution could be to expand the simulation volume to in-
clude the neighbors. This can make the number of cells very high if the resolution is to
be kept the same.

A third solution is again using a particle system. If particles are used for spreading
the fire within a tree, it would only be natural to extend the scope of these to also ignite
nearby trees. However, such methods could also be used in combination with other
single-tree spread models, as done in [s] where the particles used in the
particle based flame rendering doubles as ignition-particles that augment the surface
spread method.

Fire spread through the foliage may need special treatment as it is often represented
by billboards or billboard clouds. Few billboards with very simple geometry can rep-
resent a large amount of foliage and stretch over a significant part of the tree. Leaves
are also very fine fuel and often burn more violently than wood, making the fire behave
very differently here, and stressing the importance of finding a good spread simulation
for the foliage. It may even be necessary to use a separate, third “foliage-scale” simu-
lation domain, with close communication between it and the tree-scale simulation. A
practical solution to this problem should be a priority for future work.

As already mentioned, there exists several examples of successful implementations
of CFD-based simulations on the GPU, of which some examples are summarized in
section 3.

4.6 'Tree-scale Visualization

Also at tree-scale should the framework allow for different visual representations of
trees and fire, but perhaps to a higher degree here than on the forest-scale visualization
are there techniques that go better with some simulation models than other.

4.6.1 Tree Rendering

For rendering solids, like a tree, two possible representations that often use differ-
ent rendering methods are volumetric representations and boundary representations.
Volumetric representations, like voxel data sets fit very well with simulation methods

using regular 3D simulation volumes as demonstrated in [, 1.
Furthermore, changing the shape of a volumetric representation is often a relatively
straight-forward operation, as shown in [,] and [

20

4 THE FRAMEWORK 4.6 Tree-scale Visualization

,]. This is a great advantage if parts of the tree is to crumble or burn up.
Boundary representations like the commonly used polygon meshes, on the other hand,
might intuitively seem better suited for a 2D surface simulation grid, like the one used
in the prototype. Still, they have also been successfully paired with 3D grids, for ex-
ample by [R]. It is, however, found necessary in several situations
to use voxel-representations of objects inside a fluid simulation domain for the simu-
lation, even if the rendering is done using polygon meshes. This requires at least two
representations of the same object, as demonstrated in [,] and
[s 1. [s] use this set of multiple rep-
resentations among other things to support decomposition of the burning object. The
prototype tries to accomplish a similar effect on a simple polygon mesh using a vertex
displacement technique. This approach has some weaknesses however, as discussed
in 5. The most commonly used high-detail representation in real-time 3D animated
applications is using polygon meshes for the stems and largest branches of the trees,
and rendering the foliage using billboard techniques.

It is usual for real-time applications to use more than two detail levels when draw-
ing trees. A popular method used in games is to create progressively simpler versions
of each detailed model, as in [s]. Which model is used depends on how
fare away the object is from the camera. This may present a problem for the fire spread
simulation as the simulation must be able to continue the simulation between model
switches, which can require costly conversion steps and data transfers between main-
and GPU-memory. Another method, more commonly encountered in off-line rendered
animations than in real-time applications is subdivision surfaces which achieves de-
tailed models by applying a displacement map to a low resolution polygon models. A
recent addition to graphics hardware introduces programmable hardware tessellation
which can make this approach viable also for real-time applications [, ;

,]. As this is done entirely on the GPU it may be better
suited for GPU accelerated fire spread simulation.

4.6.2 Flames and Smoke Rendering

On the rendering of flames and smoke many of the points mentioned in the forest-
scale section also applies here. Flames and smoke can be animated using for example
CFD-based techniques or particle systems.

If using a CFD-based simulation on a 3D grid for animating the fire spread it might
seem intuitive to simply render the flames directly using the data from this simulation.
However, achieving a satisfactory visualization of the large, turbulent flames typically
seen in forest fires demands quite high grid resolution, and other representations may
be better suited for real-time applications. Gundersen and Skjermo suggests using

21

4.6 Tree-scale Visualization 4 THE FRAMEWORK

procedurally created billboard flames, like those suggested for the forest-scale flame
rendering. These can replace, or be combined with, the billboards used for the foliage
if this technique is used. Fire spread through the foliage is, as mentioned, a feature
that need some more consideration. Depending on the number and size of the foliage
billboards a correct fire spread may need to be procedurally drawn directly on the
billboard texture. If a large number of small billboards are used however, flames could
be drawn on top of them while they fade away and vanish as they are devoured by the
fire. Again, a practical solution needs to be researched.

Smoke which is a more stable and simpler phenomenon can do with a coarser grid
than fire, but on the other hand may need a very large simulation domain, as mentioned
in the forest-scale section. A particle system is again a viable choice.

22

4 THE FRAMEWORK 4.6 Tree-scale Visualization

(a) Forest-scale (b) Tree-scale

Figure 2: When the user changes perspective from an overview (2a) to a close-up (2b)
a tree-scale simulation is started for the trees closest to the user (figure from [Kj=rnet,
2009)).

(a) A distant forest fire (b) A close forest fire

Figure 3: Forest fires seen from a distant perspective and a close-up perspective. Photos
by Jon Marshall with permission.

23

5 THE IMPLEMENTED PROTOTYPE

S The Implemented Prototype

A prototype application implementing part of the framework has been developed to
demonstrate and test some of the ideas presented in this report. The prototype imple-
ments a subset of the tree-scale simulation described in section 4.5 and the visualization
techniques mentioned in section 4.6. The prototype simulates fire spreading over the
surface of a single tree without foliage. The visualization of the fire is done by making
the surface glow - no flames or smoke is rendered. All visualization and simulation is
executed entirely on the GPU.

The development of the prototype was started as part of [,] and has
received several improvements during this project including a better spread model af-
fected by wind, support for textured tree models and vertex displacement to simulate
the fire devouring the tree. Two supporting applications have also been added that ease
the tasks of debugging the simulation code and preparing the input 3D model data to
make it compatible with the framework. Missing features that should be implemented
in the future are discussed in section 7.4.2.

5.1 Prototype Architecture

The prototype consists of a vertex and a fragment shader written in OpenGL’s shad-
ing language “GLSL”, a simulator written in OpenCL, a framework and programming
language designed to utilize parallel compute devices such as the GPU, and a base
component in C++ to tie it all together and draw a simple tree animation on the screen.
Three main tasks can be identified for the prototype, and for each task, a part of the
application that has the main responsibility in solving it:

Initializing and controlling the application This is the task of the base component.
This largest subtask here is to read the 3D model data from file and convert it to a
format that is usable both for the spread simulation and the visualization. Other
subtasks include setting up the environment for the OpenCL and OpenGL frame-
works and running the main loop that executes the simulation and visualization
steps.

Simulating the fire spread Calculations has to be done on the simulation domain to
figure out how the fire spreads. This is done by the OpenCL kernels.

Rendering the frame The animation frame has to be rendered to screen. This in-

cludes the tree, the visual products of the fire such as flames and smoke and any
surrounding objects in the scene. This is performed by the OpenGL shaders.

24

5 THE IMPLEMENTED PROTOTYPE 5.1 Prototype Architecture

The program- and data-flow is illustrated in figure 4. The first that happens when
running the prototype is, as mentioned, that the environments for the OpenCL and
OpenGL frameworks are set up. Standard initialization steps are taken to locate the cor-
rect computational device for the OpenCL kernels to use, create a window for OpenGL
to draw on and read the source code for the OpenCL kernels and the OpenGL shaders
from file and compile them. Next, the data for the tree-model is read from file and
converted to a collection of data to be used by the drawing routines and a collection
of data used by the simulation. These are loaded into the appropriate OpenGL and
OpenCL buffers once, after which no further slow data transfers between CPU- and
GPU-memory are needed, with the exception of updating simulation and rendering pa-
rameters. At this point the base component enters a loop calling the simulation kernels
and the shader program sending updated parameters such as the size of the current
time-step or the wind direction for the simulation, or model- or view matrices when
modifying the model or changing the viewer’s perspective. The simulation kernels
communicate directly with the shaders by writing to shared buffers, updating the val-
ues for vertex offsets and glow colors.

GLSL

Y

Simulation kernel Wisualization kernel Wertex shader /Fragment shader
- update fire - update vertex buffer = - vertex displacement - fragment color
spread simulation data from new -vertex glow calculations
simulated data calculations

Y

=@ +—C O®3 L= Tl

iain loop
- calculate time-step
- execute kemels and shaders

Figure 4: Figure illustrating the program and data flow.

25

5.2 Prototype Spread Model 5 THE IMPLEMENTED PROTOTYPE

5.2 Prototype Spread Model

The prototype does not use the CFD-based suggested by [Gundersen and Skjermo,
2009] that encloses the tree model in a 3D voxel-grid simulation domain. Instead it
constructs a 2D triangular mesh corresponding to the surface of the tree model. The
model’s vertex positions are used as nodes and the edges of the model’s triangle sur-
faces as links connecting neighboring nodes in the mesh. This mesh is used as sim-
ulation domain for the fire spread, with nodes storing data such as temperature and
remaining fuel and the links storing distances and directions between neighbors. An
important aspect of the simulation mesh is that there can be only one node at each po-
sition, even if multiple vertices are occupying that position. This happens whenever
vertices of neighboring faces differ in any other property than the position, usually in
seams of geometry (as illustrated in figure 5) or of texture. The prototype relies on the
3D model to supply the radius of the tree at each vertex. This is used to decide how
much fuel each nodes should start with, and how far a vertex can be displaced along
the normal for the decomposition effect (c.f. section 5.3). Two models with this data
included was provided by fellow student Jgrgen Nystad who works on a parallel project
developing an application for producing 3D tree models.

The simulation model used in the proto-
type in [Kjzrnet, 2009] to describe the spread
of the fire was a very simple intuitively de-
rived model inspired by one-dimensional heat
conduction. Temperature distribution over the
simulation mesh was calculated by each node
updating it’s temperature based on the temper-
atures of it’s neighbors weighted by their dis-
tance and a surrounding temperature. When
a node reached a predetermined ignition tem-
perature it would produce heat in an amount
which was also predetermined. Fuel was
stored for each node, initiated to the radius
of the tree under that node and being con-
sumed at a constant rate as long as the node
was above the ignition temperature. The node
stopped burning when the fuel was depleted.
This model had several problems, one of the
most serious being the representation of the
tree as a connected set of discrete fuel sources.
In a tree model with unevenly spaced nodes,

green arrows.

26

Figure 5: The encircled corner of the cube
holds one node but three vertices with three
different normals drawn as red blue and

5 THE IMPLEMENTED PROTOTYPE 5.2 Prototype Spread Model

which is usual for any tree model having a
thick stem and thin branches, nodes that were relatively far away from it’s neighbor
nodes ended up not receiving enough heat to reach ignition temperature. This is un-
likely behavior for a continuous fuel such as the tree the model tries to approximate.
The only ways found to remedy this without changing the vertex data of the 3D-model
was to increase the heat production of burning nodes or decrease the effect of the dis-
tance on the heat transfer. This gave the unwanted side effects of higher spread rates
for respectively the whole tree or the parts with few nodes.

The new simulation model developed for this project is based on the one used
in [,] which models the motion of the inception boundary (c.f.
section 2.2) over a polyhedron. Instead of representing the inception boundary directly
using a connected set of “spread control points” moving over the surface, as done in
[,], the prototype tracks the movement of the boundary along the
links of the simulation mesh. Each link can be seen as a fuse with it’s length initialized
to the length between it’s endpoint nodes. In each time-step each node in the mesh not
yet ignited checks it’s neighbors to see if any of them have ignited, ignoring whether
they are currently burning or have burned out. For each of it’s ignited neighbors it
decreases the length of the corresponding fuse according to the spread rate. When any
of the fuses reach zero, the node ignites itself. The heat produced by burning node
increases polynomially with the node’s temperature as discussed in section 2.1. It is
determined in the prototype by equation 5:

Tproat = Cproamax(Ti—1, Tmin) * Al ®)
To give an easily controllable and predictable temperature behaviour the heat lost to the
surroundings also increases polynomially, but with the difference between the node’s
temperature and the surrounding temperature according to equation 6:
Tiost.t = Clost(Ti—1 — Too)? x At (6)
Finally, the temperature of the node is updated by the difference between the two
Ty = Tprod,t — Tiost,t N
and the fuel is decreased by a constant factor
Fy=F_1 —cpue x At (8)

In equations 5-8 T},,..4,: denotes the heat produced in time-step ¢, T}, ¢ is the heat lost
to the surroundings in, 7;_ is the temperature of the node in the previous time-step,

27

5.2 Prototype Spread Model 5 THE IMPLEMENTED PROTOTYPE

Tnin > 0 is the minimum threshold for the node’s temperature, T, is the tempera-
ture of the surroundings, T} is the temperature of the node after time-step t, F} is the
node’s fuel after the current time-step, F;_1 is the node’s fuel in the previous time-step,
At is the length of the current time-step and cprod, Ciost and cyye are predetermined
coefficients for the heat production, heat loss and fuel loss.
The calculation of the spread rate is quite similar to that found in [,
]. It is based on solving the fundamental equation of fire spread (equation 1) by
approximating the heat flux using the notion of “dominant heat transfer mechanism”
(see section 2.2.2). For opposed spread conductive heat transfer, for which the heat
flux is given by equation 2, is approximated using:

0% = ANTy —T:)/L €))

where ¢, is the heat flux for opposed spread, T’ is the flame temperature, 7; the tem-
perature of the unburnt fuel, L is the fuel’s thickness and A is the thermal conductivity
- for the gas if the fuel is thermally thin or for the fuel material if it is thermally thick.
As explained in section 2.2.2 the thickness of a material is only considered important
for thick solids under 1.5 mm in radius. In practice this means that for the purpose
of modeling the spread over a tree, as seen in the relatively large perspective that this
framework is intended for, the thickness L and the conductivity A can be combined
into a single material-dependent tuning parameter. In fact, Perry and Picard approx-
imates the whole opposed spread heat flux with a constant, and that simplification is
also adopted for this project’s prototype. The dominant heat mechanism for concurrent
spread is radiation, and the heat flux is then given by equation 4 and approximated in
[R] with the equation

ge = €50 Tthysin©y /L (10)

with €7 and o}, being the emissivity of the flame and Boltzmann’s constant, hy is the
height of the flame and O ¢ it’s inclination angle relative to the surface. As the prototype
do not model a flame the height and inclination of the flame is approximated using
the wind vector’s magnitude and orientation angle relative to the surface. This factor
is found by calculating the dot product between the wind vector and the normalized
direction vector for each link. It is updated each time the wind is changed and stored
for use by the spread algorithm. Buoyancy is accounted for in the prototype by adding
a vertical wind to the external wind vector.

There are done a couple of simplifications in the prototype compared to the model
used in [,]. Firstly Perry and Picard models spread control points
that move according to the spread rate perpendicular to the inception boundary. As the
prototype does not model the boundary directly it’s orientation is difficult to find and

28

5 THE IMPLEMENTED PROTOTYPE 5.2 Prototype Spread Model

the spread rate is used without modification as the burning rate of the “fuses” in the
simulation mesh. This gives an error in the fire’s spread rate, but given enough links in
the triangular simulation mesh it should give a reasonable approximation. The second
simplification done is that the effect of curvature is ignored in the prototype. Intuitively
the impact the curvature has on the spread over a tree is limited due to the following
observations:

1. for the stem the curvature is often nearly constant for horizontal spread (around
the tree) and close to zero for vertical spread (lengthwise). It seems probable that
the effect of curvature on the spread over the stem only counteract the effect of
buoyancy, and therefore can be accounted for by simply reducing the effect of
buoyancy.

2. For the branches there is significant curvature around the branch, but in any case
the circumference of the branch is usually so short that the fire spreads all the
way around it virtually instantaneous Along the branch, the curvature is again
almost zero. Branching-points has more interesting curvature features but only
constitutes a small part of the tree model and problems with visualization in these
areas (c.f. section 5.3) probably masks any inaccuracies here.

The implemented model can be called quasi-physically-based, as it is has it’s foun-
dation in the physically derived fundamental equation of fire spread, but ignores several
important factors such as curvature and approximates several variables by constants
among others flame geometry, and temperature. There are, however, given grounds
for most of the simplifications made and some factors considered especially impor-
tant, such as wind and slope, are accounted for. Most likely the single most serious
drawback of the model is it’s two-dimensional representation of a three-dimensional
problem. This becomes most apparent when the tip of a burning branch is close to an
unburnt branch. In reality the heat from the burning branch would likely have ignited
the other branch, but the model can only spread the fire between nodes that are direct
neighbors so the other branch will not be ignited before the spread front has reached it
by moving over the surface.

The mesh is stored in memory as a set of node tables and a set of neighbor tables.
The node tables are one-dimensional arrays each storing a property of the nodes such as
temperature, remaining fuel and number of neighbors. The neighbor tables represent
the links of the mesh and are two-dimensional arrays that contains a row for each
node, in which properties of each of the node’s links is stored. The rows of one of the
neighbor tables store the other endpoint of each link, i.e. the node’s neighbors, while
other tables store the length and direction of these links. An illustrating example of the
mesh’s tables is shown in figure 6.

29

5.3 Prototype Fire Visualization 5 THE IMPLEMENTED PROTOTYPE

5.3 Prototype Fire Visualization

As mentioned, the main focus of this project is on the spread of the fire and the anima-
tion of flames or smoke has not been prioritized. The prototype therefore only use a
simple temperature-dependent glow to visualize the spread of the fire. Possible meth-
ods for flame and smoke animation are mentioned in section 4.6.2. The glow color
and intensity are functions of the node’s temperature and are computed by an OpenCL
kernel tasked with managing the visual representations. The fragment shader blends
the color fetched from the texture with the glow color according to equation 11:

c=gxi+tx(1l—1) (11)

where c is the output color, g is the glow color, ¢ is the texture color and ¢ is the glow
intensity. The vertex shader creates a simple glowing effect by choosing the maximum
value of the external light intensity and the glow intensity for any given vertex. A very
similar method is used to visualize the charring of burned parts of the tree.

To visualize the decomposition of the tree as it burns a very basic vertex displace-
ment technique is deployed. Along with calculating the glow color the visualization
kernel calculates a displacement amount for each node based on how much of it’s fuel
has been spent. This is used by the vertex shader to displace the vertex a negative dis-
tance along it’s normal. The effect of this can be seen in figure 10. One can also see
some visual bugs that result from the displacement method not handling seams in the
3D model correctly. Wherever there are multiple vertices with different normals shar-
ing a position in space, such as at the branching points and the branch tips, geometrical
distortions can arise when displacing them along their normals. This is apparent on
the screenshots as thick, black branching points. An improvement to the displacement
method of the prototype should identify seams in advance and treat these with special
care. Simply not displacing vertices that are part of a seam or for each group of vertices
sharing a position randomly choose one of the vertices’ normals, or a linear interpola-
tion of all, for the displacement could provide better visual results, but this is a problem
that needs more research.

When an OpenCL kernel needs to communicate a change in a vertex’ data, such
as it’s glow color or displacement to an OpenGL shader it uses a section of the GPU
memory declared to be accessible for both OpenCL and OpenGL called a “shared
buffer”. The OpenCL visualization kernel writes glow color and displacement data
to the shared buffer and the vertex shader use this data in it’s color and displacement
calculations. Because each node in the simulation mesh can correspond to more than
one vertex some method is needed to match nodes to vertices to be able to alter vertex
data based on the results from the simulation. As the prototype sorts the vertex data
based on which node it corresponds to only the offsets to the first vertex of each such

30

5 THE IMPLEMENTED PROTOTYPE 5.4 Supporting Applications

group is needed to identify which vertices are to be modified based on which node.

5.4 Supporting Applications

During the development the prototype a need arose for functionality not well suited for
implementation in the prototype application. Two applications were made to provide
supporting functionality for the development of the prototype.

Firstly, development of good spread algorithms was made difficult by the fact that
they are executed on the GPU using OpenCL. Debugging facilities for OpenCL are
still limited and there are few possibilities for generating feedback for programs run-
ning entirely on the GPU. Small errors in the program often ended up freezing the
whole computer without generating any error message. For these reasons an applica-
tion was developed to provide a platform for rapid prototyping and testing of spread
algorithms. The application has a graphical user interface that lets the user change
simulation parameters and initial values and run a step by step or continuous execu-
tion with immediate feedback of the simulation mesh’s numeric values. Simulation
algorithms can easily be changed or replaced and are run for each node in a way very
similar to the OpenCL implementation only with each node being calculated sequen-
tially rather than in parallel. This means it is not suited for debugging problems related
to concurrent execution but it proved to be very helpful for several other problems.

The second supporting application is a script that processes the 3D model data
to comply with the format needed by the prototype. This involves removing unused
vertex positions and faces with no surface area. No visual changes are done to the
model. Some processing is also done by the prototype itself, but to keep it as simple as
possible it does certain assumptions about the 3D model.

31

5.4 Supporting Applications 5 THE IMPLEMENTED PROTOTYPE

Node Tables Neighbor Tables Vertex Tables
Num Vertex
Temp. Fuel Nbors Offset Nborldx Link Lengths Positon Normal TexCoord Displ
40.4 12.3 2 0 1]2 PIGRINON
1221 [102] 73] 5 glza] 2] 0e e
190 00 3 7 WU 2w 780 271 |02p0 | | 23
55.3 2 1]2

09 08 7,3,9\ 9,0,1 \0.1,0.2 2.3
87.2 | I 482 3,2,5 0.0,0.8 4.2

Figure 6: Some of the tables representing the simulation mesh. From the node tables
the example shows temperature, remaining fuel, number of neighbors in the mesh and
the node’s offset into the vertex table. The neighbor tables shown are the tables holding
the indices of the node’s neighbors and the lengths of the links to those. Vertex tables
are exemplified by position-, normal- and texture coordinates and the vertex displace-
ment distance. The lines marked in red are the data belonging to the node with index
1. The vertex data corresponding to the node is found by using the vertex offset table.

32

6 RESULTS

6 Results

To analyze the visual realism achieved in the prototype and the computational over-
head it might impose on a real-time application, this chapter presents some tabulated
performance results and a series of screenshots from running the application.

6.1 Performance Results

The performance results are from a very simple animation of one tree slowly spinning

around it’s vertical axis. The simulation is updated before each frame of the simulation,

and the simulation update frequency and the draw frequency is therefore the same.
The application was tested on the following hardware:

Processor: Intel Core 2 Duo 3.0 GHz with 4 GB DDR RAM main memory.
Graphics card: AMD Radeon HD 4850 with 800 stream processing units and 512
MB RAM.

The simulation was tested on two tree models: A high-resolution model with
22,369 nodes, 23,031 vertices and 44,728 faces and a low-resolution model with 541
nodes, 604 vertices and 1,076 faces. Frame rates of 60 and 829 FPS was achieved when
using the high-resolution and low-resolution model respectively in the animation. The
results are summarized in table 1.

Table 1: Tabulated performance results for the two tree models.

Model Vertices | Faces | Nodes | FPS min- max | FPS avg.
Low-resolution 604 1,076 541 522 - 883 829
High-resolution | 23,031 | 44,728 | 22,369 50-72 60

6.2 Visual Results

Figures 7 and 8 shows two sequences of screenshots taken from the animation of the
high-resolution tree model. In this animation the tree does not spin to better show the
progress of the fire spread. Figure 9 shows a sequence from using the low-resolution
model in the animation, and figure 10 shows a detailed view of a branching point after
it has burned out.

33

6.2 Visual Results 6 RESULTS

(d) =6 (e) =8 ® =10

Figure 7: Screenshots of the tree animation using the detailed tree model. The shots are
taken two seconds apart starting at t = 0 seconds. The sequence is continued in figure 8

34

6 RESULTS 6.2 Visual Results

(a) t=16 (b) t=20 (c) t=24

(d) =28 (e) t=32 () t=56

Figure 8: Screenshots of the tree animation using the detailed tree model. The shots
are taken four seconds apart starting at t = 16 seconds, with the exception of the last
which is taken at t = 56.

35

6.2 Visual Results 6 RESULTS

(a) t=0 (b) t=6 (c) t=20

Figure 9: Screenshots of the tree animation using the simple tree model. The shots are
not equally distributed over time.

Figure 10: Detailed view of a burned branching.

36

7 CONCLUSION

7 Conclusion

A framework for animating forest fires in real-time has been described and several al-
ternative implementation details have been discussed. Some potential difficulties have
been identified, and solutions have been suggested for some of them. Most of the
framework is still on a conceptual level, but a small part has been implemented and
tested in a prototype application. The success of the project in achieving it’s goals can
be measured along three axis according to the goals set up in section 1.1: the compu-
tational overhead the framework imposes on the application, or it’s performance, the
perceived degree of realism of the fire spread and the suitability of the framework for
integration in a real-time application.

7.1 Performance

The total computational overhead imposed by the framework is difficult to analyze
without a working implementation. Several different simulation and visualization meth-
ods are discussed and only a small subset have been implemented and tested in the
prototype. However, this subset should give a rough pointer of the kind of performance
to be expected from the framework.

The methods chosen to be implemented in the prototype was a simple 2D spread
simulation model and a few basic visualization techniques such as a primitive vertex
displacement and programmed texture and lightning.

The frame rate achieved on the animation was very high for the low-resolution tree
model (829 FPS) but dropped significantly for the high-resolution model (60 FPS). It is
still very difficult to perceive any lag at these frame rates, but keeping in mind that these
results were achieved on a very simple animation a somewhat higher frame rate may
be desired for the high-resolution model if it were to be used in a more complicated
scene. A couple of changes to the simulation can, be suggested that may contribute to
improve the performance.

Firstly, to thoroughly test the overhead of the simulation on the application it was
executed before every frame of the animation. In practice it would probably suffice to
update the spread simulation far more infrequent than this. If run on a screen with a
refresh rate of 200 Hz, indeed a very high rate in today’s standard, changes in the ani-
mation occurring less than 5 milliseconds apart would not even be drawn on the screen.
Given the maximum spread speed achieved in the simulation and the scale of the ani-
mation one could probably find a minimum simulation frequency to give a smooth fire
progression. However, the simulation method might impose stricter constraints on the
size of the time-step. For example, the method used in the prototype can not advance
the spread front more than one link at a time. Time-steps that results in fire propagation

37

7.2 Realism 7 CONCLUSION

distances longer than the shortest of the links should be avoided.

Secondly, the optimization of the simulation algorithm for efficiency and memory
usage has not received much focus in this project. Memory alignment and efficiency
improvements on the calculations can have a big impact on performance on parallel
executions, especially on the GPU with it’s massively parallel architecture and limited
memory space.

7.2 Realism

Again, the evaluation of the realism of the framework will have to rely on the impres-
sion given by the small part implemented in the prototype. Furthermore, perceived
realism is difficult to measure objectively. Still, some measure can be given by consid-
ering the number of important affecting factors taken into account versus those ignored
by the simulation.

There is undoubtedly one major shortcoming in the simulation model regarding
the realism of the fire’s behavior: the use of a two-dimensional simulation domain to
model a three-dimensional phenomenon. Because the heat transfer through air can be
substantial a model using only the two dimensional object-surface as simulation do-
main will never behave very realistically. To capture this effect the simulation must
be done on a three dimensional grid enclosing the burning object, or other spread sim-
ulation methods must be used, like Intel’s procedural fire spread with “heat particles”
emitted from hot places and traveling through space. However, both the use of a full 3D
simulation domain and the high number of collision checks needed for use of heat par-
ticles can require too high computational costs to be suited for real-time applications.
[,], which uses a spread model very similar to the one implemented in
the prototype, solves this by creating a distance field surrounding the burning object in
advance and using this to check for collisions between fire particles and unburnt fuel.
As the implemented model uses the object’s vertices as the simulation mesh, it might
suffice to store the distances to some nearby vertices in effect creating a mesh with
links not only following the object surface but also directly through the air. It might
be necessary to treat the air-links different from the surface-links, as the surface-links
represent continuous fuel and should burn steadily without being extinguished while
the air-links more closely should mimic the heat transfer between discrete fuel.

On the other hand, as the model does account for the effect by wind and gravity on
the fire spread the movement of the spread front is not uninteresting, and might very
well be perceived as plausible by a viewer with limited experience with actual forest
fires. With a fast spreading fire with violent flames and large amounts of smoke the
inaccuracies of the fire propagation would likely be masked by all the other elements
drawing focus.

38

7 CONCLUSION 7.3 Suitability

The visualization of the fire is another field where the prototype obviously lack in
realism. The complete lack of flames and smoke is unacceptable for any fire animation.
This is, however, phenomena that are well known in the computer graphics society and
there exists a multitude of potential methods that can provide this for the framework,
and some of these have been discussed in section 5.3. Nevertheless, some interesting
visual features have been implemented in the prototype, including fuel decomposition,
glow and charring.

7.3 Suitability

The third group of goals were related to the suitability of the described techniques
for integration into existing real-time applications. This is difficult to say much about
without detailed knowledge of the design of any existing real-time applications. There
are open source applications available that can provide suitable test platforms for inte-
gration with the framework. This is further discussed in section 7.4.

An effort has been made to rely only on commonly used techniques for visualizing
the forest and the fire. However, some phenomena, such as the decomposition of a
burning tree, is not immediately compatible with normal techniques. The prototype
does use a very common object representation, and simulates decomposition with a
certain degree of success, although several features are missing. There are, for example,
not implemented a method for displaying foliage.

7.4 Future Work

The final verdict must be that although the described framework may very well be a
practical solution to provide spreading forest fire to real-time applications and some
of the features implemented in the prototype seem promising, with so much of the
framework still to be implemented and tested there are still many unknown factors.
Several aspects need more research and much work remains to provide a fully working
fire spread framework.

7.4.1 Research

Some research is still to be desired in some of the problem areas.

The synchronization between the forest-scale and the tree-scale is a difficult aspect.
A method to initialize the tree-scale simulation to an in-progress fire from the data
available in the forest-scale simulation is yet to be found.

Level-of-detail schemes present another difficulty when simulating fire spread. Ei-
ther should a way be found to make the suggested simulation methods compatible with

39

7.4 Future Work 7 CONCLUSION

existing LOD schemes, or new good LOD schemes that work well with the simula-
tion should be investigated. A possible candidate is the mentioned subdivision surfaces
approach.

The burning of foliage is one of the areas that have been somewhat neglected in this
project. Both methods for simulating realistic fire propagation and for visualizing the
fire are needed. This is also a very visible feature of forest fire, and finding solutions to
these problems should be of high priority in further work on this framework.

7.4.2 Implementation

To be complete the framework should also be implemented in it’s entirety and inte-
grated into a real-time application for testing and demonstration. Clearly a lot of work
remains on this prototype implementation.

The implementation of the forest-scale simulation and visualization is not even
started, and the implemented prototype only scratches the surface of the tree-scale part.
Spread between neighboring trees in a tree-scale scene, foliage fire spread and spread
through the air are just some of the features missing from the tree-scale simulation.
The visualization lacks any flame, smoke or foliage representation and the glow and
tree decomposition are still unfinished.

A full-scale forest fire framework need all these parts in place and a method to
synchronize the two scales. If it is to be made use of it should also demonstrate how
to integrate into an existing real-time application. A candidate real-time application to
test integration against is the “Object-oriented Graphics Rendering Engine”, or OGRE,
used among other things to demonstrate an LOD-scheme for forest rendering in [

>]’

40

REFERENCES REFERENCES

References

Andrews, P. and Bevins, C. (1999). BEHAVE Fire Modeling System: Redesign and
Expansion. Fire Management Notes, 59(2):16—19.

Anonymous (2010). combustion. http://www.britannica.com/
EBchecked/topic/127367/combustion (visited May 11th 2010).

Beaudoin, P., Paquet, S., Poulin, P., and Graphics, M. (2001). Realistic and Con-
trollable fire Simulation. Proceedings: Graphics Interface 2001: Ottawa, Ontario,
Canada, 7-9 June 2001, page 159.

Beever, P. (2008). fire dynamics. http://www.britannica.com/bps/
additionalcontent/18/30035543/fire-dynamics (visited May 11th
2010).

Boubekeur, T. and Schlick, C. (2007). A Flexible Kernel for Adaptive Mesh Refine-
ment on GPU. In Computer Graphics Forum, volume 27, pages 102-113. John
Wiley & Sons.

Carlson, D. A. and Hodgins, J. K. (1997). Simulation levels of detail for real-time
animation. In Proceedings of the conference on Graphics interface 97, pages 1-8,
Toronto, Ont., Canada, Canada. Canadian Information Processing Society.

Chen, H., Fahn, C., Tsai, J., Chen, R., and Lin, M. (2006). Generating high-quality
discrete LOD meshes for 3D computer games in linear time. Multimedia Systems,
11(5):480—494.

Chen, S. and Doolen, G. (1998). Lattice Boltzmann method for fluid flows. Annual
Review of Fluid Mechanics, 30(1):329-364.

Chiba, N., Muraoka, K., Takahashi, H., and Miura, M. (1994). Two-dimensional visual
simulation of flames, smoke and the spread of fire. The Journal of Visualization and
Computer Animation, 5(1):37-53.

Clark, J. H. (1976). Hierarchical geometric models for visible surface algorithms.
Commun. ACM, 19(10):547-554.

Crawfis, R. A. and Max, N. (1993). Texture splats for 3d scalar and vector field visu-
alization. In VIS ’93: Proceedings of the 4th conference on Visualization '93, pages
261-266, Washington, DC, USA. IEEE Computer Society.

Drysdale, D. (1998). An introduction to fire dynamics. John Wiley & Sons Inc.

41

http://www.britannica.com/EBchecked/topic/127367/combustion
http://www.britannica.com/EBchecked/topic/127367/combustion
http://www.britannica.com/bps/additionalcontent/18/30035543/fire-dynamics
http://www.britannica.com/bps/additionalcontent/18/30035543/fire-dynamics

REFERENCES REFERENCES

Fedkiw, R., Stam, J., and Jensen, H. (2001). Visual simulation of smoke. In Proceed-
ings of the 28th annual conference on Computer graphics and interactive techniques,
pages 15-22. ACM New York, NY, USA.

Fernandez-Pello, A. and Hirano, T. (1982). Controlling Mechanisms of Flame Spread.
Fire Science and Technology, 2(1):17-54.

Finney, M. (1998). FARSITE: Fire Area Simulator—model development and evalua-
tion. Evaluation.

Finney, M. and Andrews, P. (1999). FARSITE—A Program for Fire Growth Simula-
tion. Fire Management Notes, 59(2):13-15.

Foster, N. and Metaxas, D. (1997). Modeling the motion of a hot, turbulent gas. In SIG-
GRAPH ’97: Proceedings of the 24th annual conference on Computer graphics and
interactive techniques, pages 181-188, New York, NY, USA. ACM Press/Addison-
Wesley Publishing Co.

Fuhrmann, A., Umlauf, E., and Mantler, S. (2005). Extreme model simplification for
forest rendering. Natural Phenomena, pages 57-66.

Griffiths, J. and Barnard, J. (1995). Flame and combustion. CRC.

Guerrero, P. (2006). Rendering of Forest Scenes. Technische Universitit Wien, Institut
fiir Computergraphik und Algorithmen.

Gundersen, O., Rgdal, S., and Storli, G. (2006). Realistic 2D Fire in Real-Time.

Gundersen, O. E. and Skjermo, J. (2009). A framework for physically based forest fire
animation. In Theory and Practice of Computer Graphics 2009, Eurographics UK
Chapter Proccedings. Cardiff University, UK.

Harris, M. J., Baxter, W. V., Scheuermann, T., and Lastra, A. (2003). Simulation of
cloud dynamics on graphics hardware. In HWWS ’03: Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, pages 92—-101,
Aire-la-Ville, Switzerland, Switzerland. Eurographics Association.

Ishikawa, T., Miyazaki, R., Dobashi, Y., and Nishita, T. (2005). Visual Simulation of
Spreading Fire. NICOGRAPH Internation, 5:43-48.

Kass, M. and Miller, G. (1990). Rapid, stable fluid dynamics for computer graphics. In
SIGGRAPH ’90: Proceedings of the 17th annual conference on Computer graphics
and interactive techniques, pages 49-57, New York, NY, USA. ACM.

42

REFERENCES REFERENCES

Keenan Crane, I. L. and Tariq, S. (2007). Real-Time Simulation and Rendering of 3D
Fluids, pages 633-675. Addison-Wesley Professional.

Kipfer, P., Segal, M., and Westermann, R. (2004). Uberflow: a gpu-based particle
engine. In HWWS ’04: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
conference on Graphics hardware, pages 115-122, New York, NY, USA. ACM.

Kjernet, @. (2009). Real-time forest fire on the gpu.

Latta, L. (2005). Massively parallel particle systems on the gpu. ShaderX3: advanced
rendering with DirectX and OpenGL, page 119.

Lee, H., Kim, L., Meyer, M., and Desbrun, M. (2001). Meshes on fire. In Proceed-
ings of the Eurographic workshop on Computer animation and simulation, page 84.
Springer-Verlag New York, Inc.

Loop, C., Schaefer, S., Ni, T., and Casta no, I. (2009). Approximating subdivision sur-
faces with gregory patches for hardware tessellation. ACM Trans. Graph., 28(5):1-9.

Lott, N. and Ross, T. (2006). Tracking and evaluating US billion dollar weather dis-
asters, 1980-2005. NOAA’s National Climactic Data Center, Asheville, North Car-
olina.

Melek, Z. and Keyser, J. (2002). Interactive Simulation of Fire. In Proceedings of the
10th Pacific Conference on Computer Graphics and Applications. IEEE Computer
Society Washington, DC, USA.

Melek, Z. and Keyser, J. (2003). Interactive simulation of burning objects. pages 462
—466.

Melek, Z. and Keyser, J. (2005). Multi-representation interaction for physically based
modeling. In Proceedings of the 2005 ACM symposium on Solid and physical mod-
eling, page 196. ACM.

Nguyen, D., Fedkiw, R., and Jensen, H. (2002). Physically based modeling and ani-
mation of fire. In Proceedings of the 29th annual conference on Computer graphics
and interactive techniques, pages 721-728. ACM New York, NY, USA.

Norton, T. and Sun, D.-W. (2006). Computational fluid dynamics (cfd) - an effective
and efficient design and analysis tool for the food industry: A review. Trends in Food
Science & Technology, 17(11):600 — 620.

43

REFERENCES REFERENCES

Peacock, R., Jones, W., Reneke, P., and Forney, G. (2008). CFAST—Consolidated
Model of Fire Growth and Smoke Transport (Version 6). NIST Special Publication,
1041:103.

Perlin, K. (1985). An image synthesizer. SIGGRAPH Comput. Graph., 19(3):287-296.

Perlin, K. and Hoffert, E. M. (1989). Hypertexture. SIGGRAPH Comput. Graph.,
23(3):253-262.

Perry, C. and Picard, R. (1994). Synthesizing flames and their spread. SIGGRAPH 94
Technical Sketches Notes.

Pettersen, R. (1984). The chemical composition of wood. Advances in chemistry series,
(207):57-126.

Price, J. (2006). Lagrangian and eulerian representations of fluid flow: Kinematics and
the equations of motion.

Pyne, S., Andrews, P., and Laven, R. (1996). Introduction to wildland fire. John Wiley
& Sons Inc.

Quintiere, J. (2006). Fundamentals of fire phenomena. John Wiley & Sons Inc.

Reeves, W. (1983). Particle systems—a technique for modeling a class of fuzzy objects.
ACM Transactions on Graphics (TOG), 2(2):108.

Reif, F. and Reif, F. (1965). Fundamentals of statistical and thermal physics. McGraw-
Hill New York.

Remo, C. (2008). Interview: How far cry 2’s fire fuels, spreads. http://
www.gamasutra.com/php-bin/news_index.php?story=20901 (vis-

ited December 15th 2009).

Riensche, R. and Lewis, R. (2009). Modeling and Rendering Physically-Based Wood
Combustion. In Proceedings of the 5th International Symposium on Advances in
Visual Computing: Part I, pages 896-905. Springer-Verlag.

Rothermel, R. (1972). A mathematical model for predicting fire spread in wildland
fuels. USDA Forest Service Research Paper INT (USA).

Rgdal, S., Storli, G., and Gundersen, O. (2006). Physically based simulation and vi-
sualization of fire in real-time using the GPU. Theory and practice of computer
graphics 2006: Eurographics UK Chapter proceedings, pages 13-20.

44

http://www.gamasutra.com/php-bin/news_index.php?story=20901
http://www.gamasutra.com/php-bin/news_index.php?story=20901

REFERENCES REFERENCES

Selle, A., Fedkiw, R., Kim, B., Liu, Y., and Rossignac, J. (2008). An unconditionally
stable maccormack method. J. Sci. Comput., 35(2-3):350-371.

Smith, H. and Freeman, J. (2008). An Overview of Procedu-
ral fire. http://software.intel.com/en-us/articles/
an-overview—-of-procedural-fire/ (visited December 3rd 2009).

Stam, J. (1999). Stable fluids. In Proceedings of the 26th annual conference on Com-
puter graphics and interactive techniques, pages 121-128. ACM Press/Addison-
Wesley Publishing Co. New York, NY, USA.

Stam, J. (2000). Interacting with smoke and fire in real time. Communications of the
ACM, 43(7):76-83.

Stam, J. and Fiume, E. (1993). Turbulent wind fields for gaseous phenomena. In
SIGGRAPH ’93: Proceedings of the 20th annual conference on Computer graphics
and interactive techniques, pages 369-376, New York, NY, USA. ACM.

Stam, J. and Fiume, E. (1995). Depicting fire and other gaseous phenomena using
diffusion processes. In SIGGRAPH ’95: Proceedings of the 22nd annual conference
on Computer graphics and interactive techniques, pages 129-136, New York, NY,
USA. ACM.

Steinhoff, J. and Underhill, D. (1994). Modification of the Euler equations for “vortic-
ity confinement”: Application to the computation of interacting vortex rings. Physics
of Fluids, 6(8):2738-2744.

Strahle, W. (1993). An introduction to combustion. CRC.

Taft, J. (2000). Performance of the OVERFLOWMLP CFD Code on the NASA/Ames
512-CPU Origin System.

Van der Burg, J. (2000). Building an advanced particle system. Game Developer
Magazine, 3.

Viegas, D. (1998). Forest fire propagation. Philosophical Transactions: Mathematical,
Physical and Engineering Sciences, pages 2907-2928.

Wagner, A. J. (2008). A Practical Introduction to the Lattice Boltzmann Method. Adt.
notes for Statistical Mechanics, 463:663.

Wei, X., Li, W., Mueller, K., and Kaufman, A. (2002). Simulating fire with texture
splats. IEEE Visualization, 2002. VIS 2002, pages 227-234.

45

http://software.intel.com/en-us/articles/an-overview-of-procedural-fire/
http://software.intel.com/en-us/articles/an-overview-of-procedural-fire/

REFERENCES REFERENCES

Williams, F. (1977). Mechanisms of fire spread. In Symposium (International) on
Combustion, volume 16, pages 1281-1294. Elsevier.

Yaeger, L., Upson, C., and Myers, R. (1986). Combining physical and visual
simulation—creation of the planet jupiter for the film “2010”. SIGGRAPH Com-
put. Graph., 20(4):85-93.

Youquan, L., Xue-hui, L., Hong-bin, Z., and Wu, E. (2005). Physically Based Fluid
Simulation in Computer Animation. JOURNAL OF COMPUTER AIDED DESIGN
AND COMPUTER GRAPHICS, 17(12):2581.

Zhao, Y., Wei, X., Fan, Z., Kaufman, A., and Qin, H. (2003). Voxels on fire. In
Proceedings of the 14th IEEE Visualization 2003 (VIS 03), page 36. IEEE Computer
Society.

46

	Title Page
	Problem Description
	Introduction
	Goals

	Background Theory
	Fundamentals of Fire
	Fire Spread
	Heat transfer
	Dominant Heat Transfer Mechanism
	Factors affecting fire propagation
	Regimes of propagation

	Related Work
	Smoke and flame rendering
	CFD Based Methods
	Other Methods

	Fire Spread
	CFD Based Methods
	Other Methods

	The Framework
	Framework Architecture
	Simulation Synchronization
	Forest-scale Simulation
	Forest-scale Visualization
	Tree Rendering
	Flames and Smoke Rendering

	Tree-scale Simulation
	Tree-scale Visualization
	Tree Rendering
	Flames and Smoke Rendering

	The Implemented Prototype
	Prototype Architecture
	Prototype Spread Model
	Prototype Fire Visualization
	Supporting Applications

	Results
	Performance Results
	Visual Results

	Conclusion
	Performance
	Realism
	Suitability
	Future Work
	Research
	Implementation

	Bibliography

