
Master of Science in Computer Science
June 2010
Alf Inge Wang, IDI

Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Video Games: Game AI

Remy Jensen

Problem Description
With the breakthrough of games into the mainstream and the increasing popularity of on-line
gaming, creating a believable challenge to the player becomes increasingly challenging. The
gamer no longer accepts challenge by just increasing the numbers of the same simple-minded
enemies, they want an experience as if there was a human player controlling the non playing
characters(NPCs).

The goal of this project is research how to create challenging and believable game AI that controls
a games NPCs given the NPCs restricted actions. Various methods to control the NPCs will be
tested and evaluated. The study will evaluate how believable the NPC controller is, as well as
trade-offs that has to be made concerning the game's computational performance. This particular
project aims for cooperation with a simultaneous ongoing project(http://www.idi.ntnu.no/
education/prosjektoppgaver.php?p_id=974).

Assignment given: 15. January 2010
Supervisor: Alf Inge Wang, IDI

Abstract

The goals of this project was to learn the industry standards of what good and challenging
game AI was. The author reviewed literature on the topic and had personal correspondence
where the research questions was answered by professionals within the field. The availability
of open literature and the openness of the professionals really helped with understanding
the industry standards to game AI.

Using the information from the research a prototype system adhering to the industry stan-
dard was made with the intention of expanding it into an experimental prototype using
unorthodox techniques to achieve the appearance of intelligence. By practical application of
the methods learned it became apparent certain theoretical ideas was not optimally compat-
ible with the provided framework. And a redesign of the conflicting module was nescecary.

The system implemented performed well within the industry standards. But no experimental
prototyping of unorthodox methods could be made with the system due to lack of time to
implement such features. A couple of optimality tweaks been discovered since the end of
the implementation phase of the project and the author will keep theese in mind when
continuing work on the system in the future.

Contents

I Introduction 1

1 Project Background 2
1.1 Motivation . 2
1.2 Project Goal . 2
1.3 Project Context . 3
1.4 Stakeholders . 3

1.4.1 Author . 3
1.4.2 Course Staff . 3
1.4.3 Cooperation Group . 3

2 Research 4
2.1 Research Questions . 4
2.2 Research Methodology . 4

3 Development 5
3.1 Development Method . 5
3.2 Development Tools . 5

II Prestudy 7

4 The Current Situation of Game AI 8
4.1 Traditional AI Game AI intersection . 8

5 Pathfinding 9
5.1 A* Searching Algorithms . 9
5.2 Graphs . 9

5.2.1 Way Points . 10
5.2.2 Navigation Mesh . 11

6 Action Selection 13
6.1 Decision Trees . 13
6.2 Finite State Machines . 13

7 Unreal Development Kit 15
7.1 Navigation . 15

7.1.1 Navigation Meshes . 15
7.2 Controllers . 16

i

ii CONTENTS

7.3 UnrealScript and Finite State Machines . 16

III Own Contribution 17

8 Requirements 18
8.1 Functional Requirements . 18
8.2 Non-Functional Requirements . 19

9 Architecture 20
9.1 UDK Framework . 20
9.2 Class Architecture . 20
9.3 Finite State Machine Architecture . 21

10 Path Finding 24
10.1 GeneratePathToActor . 24
10.2 Navigational Support Functions . 25

10.2.1 ObstructionJump . 25
10.2.2 FindNearestTargetOfType . 25

11 Action Selection 26
11.1 Finite State Machine . 26
11.2 Decision Tree . 26

12 Results 29
12.1 Partially Fulfilled Requirements . 29
12.2 Unfulfilled Requirements . 29

IV Evaluation and Discussion 30

13 Evaluation 31
13.1 Development Method . 31
13.2 Design . 31
13.3 Research . 31

13.3.1 RQ 1: How is the game AI implemented in modern games? 31
13.3.2 RQ 2: How can the answers from the above research questions help

creating a better game AI? . 32

14 Conclusion and Further Work 33
14.1 Conclusion . 33
14.2 Further Work . 33

V Appendix 35

A ”Apocalypse” Concept Document 36

B Correspondence With Game AI Developers 42
B.1 The questionaire . 42
B.2 Chris Jurney . 43

CONTENTS iii

B.3 Crytek . 44
B.4 Epic Games . 46
B.5 Jeff Orkin . 47

C Apocalypse Code 49
C.1 ApocEnemyController . 49

Bibliography 53

iv CONTENTS

Part I

Introduction

1

Chapter 1

Project Background

This chapter explains of the motivation and goals of this project. The first half of this
chapter explains the motivation and the goals of the project. The last half explains the
context of the project as well as stakeholders’ interest in it.

1.1 Motivation

Video games have over the last few years become a multi billion dollar industry[1][6] even
bigger than the music industry[9] With the breakthrough of games into the mainstream and
the increasing popularity of on-line gaming, creating a believable challenge to the player
becomes increasingly challenging. The gamer no longer accepts challenge by just increasing
the numbers of the same simple-minded enemies, they want an experience as if there was a
human player controlling the non playing characters(NPCs)

The graphical capabilities have with the current generation of game consoles and home
computers reached levels many gamers considers ”real enough.” Also the industry’s problems
with the ”power wall”, limiting the speed of the processing unit clock has given rise to multi
core processing units. The division between ”real visuals” and ”fake behavior” breaks the
immersion in a game, this along with more cores to run sequential code on in parallel means
intelligent agents running in their own thread might be the future of game programming.

1.2 Project Goal

The goal of this project is research how to create challenging and believable game AI that
controls a games NPCs given the NPCs restricted actions. Various methods to control
the NPCs will be tested and evaluated. The study will evaluate how believable the NPC
controller is, as well as trade-offs that has to be made concerning the game’s computational
performance. This particular project aims for cooperation with a simultaneous ongoing
project1

1http://www.idi.ntnu.no/education/prosjektoppgaver.php?p id=974

2

1.3. PROJECT CONTEXT 3

1.3 Project Context
This project is a master thesis at the Norwegian University of Science and Technology(NTNU).
It is a part of the game technology research program at the Department of Computer and
Information Science(IDI) under the Faculty of Information Technology, Mathematics and
Electrical Engineering(IME).

1.4 Stakeholders
Following this is a list of stakeholders, and their concerns regarding the project.

1.4.1 Author

• Remy Jensen

The product will be worked on also after the master thesis, and presented at a competition.
The concern of the author regarding the product is the product’s ability to give a fair and
fun challenge to the player. The quality of the documentation, on which the author will be
graded upon, is also important.

1.4.2 Course Staff

• Alf Inge Wang - Supervisor

• Meng Zhu - Assistant supervisor

The course staff is concerned about the academic value of the thesis. This means the quality
of the report and the documentation must be high enough so that further research within
the topic research can be derived from them.

1.4.3 Cooperation Group

• Kjell Ivar Bekkerhus Storstein

• Kjetil Guldbrandsen

The cooperation group’s concern, in regard to this particular thesis, is mainly the quality of
the product and it’s ability to showcase a concept in an entertaining manner.

Chapter 2

Research

This chapter the Research Questions the author wish to be answered, as well as the method-
ology to achieve this.

2.1 Research Questions
RQ 1: How is the game AI implemented in modern games?

RQ 1.1: What methods and algorithms, not typically considered part of traditional
AI, are important for a good game AI?

RQ 1.2: What traditional AI methods and solutions are used in game AI?

RQ 1.3: When and where are traditional AI methods used in game AI?

RQ 1.4: How important are traditional AI methods to game AI?

RQ 1.5: How much leeway is there for implementation of AI methods that requires
a lot of computational resources?

RQ 2: How can the answers from the above research questions help creating a better game
AI?

RQ 2.1: What are the performance issues connected to a game AI and what are the
trade offs usually taken?

RQ 2.2: Which methods from traditional AI, that are currently uncommon in game
AI, could enhance the gaming experience?

RQ 2.3: How much must the game AI know about the game world to give a good
gaming experience, which parts must be omniscient?

2.2 Research Methodology

4

Chapter 3

Development

This chapter explains the method and tools used for the project.

3.1 Development Method

The development method will be a modified version of the waterfall method. The waterfall
method is a well known development method and is described by Braude[2] and others like
this:

1. Requirements analysis - A description of how the system is supposed to work when it
is finished. These are a set of written rules the system has to satisfy.

2. Design - The creation of a plan for the software solution. Includes high level architec-
tures as well as low level algorithms to be implemented into the system.

3. Implementation - The execution of the design plan also known as the coding of the
architecture.

4. Integration - Assembly of the system’s parts into a whole, as the implementation can
occur in parallel on different modules of the system.

5. Testing and debugging - Testing the system through formal tests the system must
succeed at, as well as debugging of the system as a whole after integration.

This project will adopt a modified version of the waterfall method where one can go back
to earlier steps after testing and redesign, reimplement and reintegrate parts or the whole
system if tests were not satisfactory.

3.2 Development Tools

This is the various tools used in the project and a brief description of each.

MiKTeX 2.8 A tool set of TEXfor Microsoft Windows. TEXis a typesetting language for
technical writing popular in academia. It was designed especially for mathematics
writing.

5

6 CHAPTER 3. DEVELOPMENT

TeXnicCenter 1.0 An IDE for the TEXtypesetting language. It uses MiKTeX or TeX Live
distributions. TeXnicCenter provides an overview of the TEXproject as well as code
completion and easy compilation of the whole project to a single output file.

Unreal Development Kit January-April Beta A free version of the Unreal Engine and
tools for visual editing of assets and scripts.

Visual Studio 2008 An IDE for several programming languages, including the C pro-
gramming language family.

nFringe A Visual Studio 2008 language support plugin for UnrealScript, the scripting lan-
guage used in the Unreal Engine.

Tortoise SVN A free subversion client for Windows. Used for version control.

Part II

Prestudy

7

Chapter 4

The Current Situation of Game
AI

Game AI has a very broad and loose definition. Ranging from the popular definition implied
at Wikipedia[19] being the limited sub set of problems centering around action selection and
pathfinding, to the extremely broad defenition of ”The AI part of a game is everything that
isn’t graphics (sound) or networking...”[12]. The defenition that includes animation and
character locomotion as part of game AI is also increasingly geting recognition.

4.1 Traditional AI Game AI intersection
Traditional AI and game AI have generally little in common right now with only a handful
of methods shared between the two fields. These fall on the long used algorithms of A*,
Finite State Machines and decicion trees and their variations. The overall consensus is that
in main stream games the traditional AI methods is simply too CPU and memory intensive
to be of any use. There is allways the odd title that is both main stream and dares using
unorthodox technology for its game AI.B.5;

8

Chapter 5

Pathfinding

The search for an optimal path between two points is essentially a search in a graph. The
pathfinding function explores nodes adjacent to the current node until it reaches it’s goal.
This chapter explores searching algorithms used in pathfinding and the different kind of
graph structures used to represent the game world.

5.1 A* Searching Algorithms

There are several well established algorithms for searching through a graph. Games with few
nodes and a not too complex graph might use Dijkstra’s algorithm to handle navigation, but
the by far most widely used graph search algorithm in video games one is the A* algorithm.

The A* algorithm is an extension of Dijkstra’s algorithm. In addition to evaluating the the
path-cost(g(x)), it also evaluates an heuristic estimate from the node evaluated to the goal
node(h(x)). Thus using a total cost(f(x)) = g(x) + h(x) for it’s evaluations. It follows the
following process:

1. Take the node with the lowest f(x) from the priority queue.

2. Update f and h for it’s neighbors and add them to the priority queue.

3. Repeat 2 until goal is found or there is no nodes left.

The challenge in A* is finding a good formula for h(x), but the Euclidean distance works
pretty well as a staring point. Do not try to use the Euclidean Distance squared to serve
computation power on the skipped square root since this will make the search a greedy
best-first-search on longer routes, essentially ignoring the g(x) focusing only on h(x) in the
computation of f(x).[10]

5.2 Graphs

Purely 2D games can get away with just dividing the surface into a grid, usually the size
of the smallest character moving around, and make each tile of the grid a node. In a 3D
environment this simple setup with an added dimension(i.e. cubes) would make traversing
the graph prohibitively expensive. Games with a 3D environment, where the characters

9

10 CHAPTER 5. PATHFINDING

mostly move around on the ground, need to find other ways, more efficient ways to represent
the area available for movement to a searching algorithm.

5.2.1 Way Points

A common way to make the graph is to make use of way points placed on walkable terrain.
Each way point is connected to one or more other way points, making the graph to be
searched, this is shown in figure 5.1. They are usually placed at junctions and points of
interest to the NPC and with a semi-regular distance between these key points. A variant
of the way points is giving the way points a radius, thus making them circles.

Figure 5.1: A simple way point graph. The path between the two enlarged points is darkened.

5.2. GRAPHS 11

5.2.2 Navigation Mesh

Navigation meshes divides the movable area into convex polygons and makes each polygon
a node in the graph. The connections in the graph is then decided by shared edges. If two
polygons shares an edge, then the two are connected in the graph. A possible navigation of
the map shown in figure 5.1 is shown in figure 5.2.

Figure 5.2: A simple navigation mesh graph. The path between the two points is darkened.

These navigation meshes can be generated to a near optimal level automatically[18] using
the following approach:

1. Start with world geometry fitting the criteria walkable, this is usually those polygons
facing more or less up, and make those your nodes.

12 CHAPTER 5. PATHFINDING

2. Merge nodes into the minimum amount of convex polygons possible with the Hertel-
Mehlhorn algorithm.

3. Run the 3 → 2 algorithm to find and split nodes that might be inefficient. 3 → 2
merging is explained extensively on page 177 in the book AI Game Programming
Wisdom.

4. Run another pass with the Hertel-Mehlhorn algorithm to merge the split nodes into
more optimal convex polygons.

5. Cull nodes with a surface area less than a set minimum to save memory resources used
on trivial nodes.

6. To handle superimposed geometry, subdivide recursively nodes that intersect with the
geometry until the surface area of the trivial node is reached and discard the whole
node if it intersects.

7. Run a final pass with the Hertel-Mehlhorn algorithm to merge the nodes left from the
subdivisions into a minimum amount of convex polygons.

Chapter 6

Action Selection

A central part of game AI, and the part most people probably think about when they hear
or read ”Game AI” is how the NPCs choose which action to what to do next. This chapter
takes a look at the different methods and algorithms, commonly used in games, that makes
the NPCs plan actions that interact with the game world beyond the purely cosmetic.

6.1 Decision Trees
Decision trees is a decision tool using a tree-graph that structures the decisions available
and their consequences in relation to satisfaction and cost. They are modular, easy to create
and easy to visualize and understand during design as shown in figure 6.1. The decision
tree consists of decision nodes as the non-leaf nodes and action nodes as leaf nodes. Each
decision node in the tree is an if-then decision which is followed until an action node is
reached. The action described in the action node is then carried out by the NPC. Decision
trees can be learned relatively fast through methods in machine learning.[7][8]

6.2 Finite State Machines
State machines is a structure where when a character is within a state, it will perform a
set of tasks describing a behavior until a conditional check initiates a transition to another
state. A Finite state machines(FSMs) contains a finite (i.e. countable) number of such states
and a network of transitions between the states. FSMs has traditionally been hard coded,
and while new methods to handle FSMs exists, hard coding is still a common approach to
FSMs.[7][4]

The big problems of FSMs is little code reusability, and non-modularity. Also because
transitions often are coded directly into each state, it becomes difficult to read a complex
FSM.

Hierarchical Finite State Machines

An attempt to solve the problems with FSMs is by arranging the FSM into a hierarchy.
One such approach is to consider each state its own FSMs. By using this structure, small
modular FSMs is encouraged with each modular FSM being grouped into a super-state that

13

14 CHAPTER 6. ACTION SELECTION

Figure 6.1: An example of an decision tree describing simple enemy behavior in the player’s
presence.

keeps its own transitions to states outside the modular FSM.[7] Another approach is to
loosely collect sets of states that share the same transition logic together in super states.
This second approach have a focus on reusability over modularity. Any hybrid version of
this can also be made to achieve a compromise of wanted modularity and reusability.[3]

Chapter 7

Unreal Development Kit

The features the Unreal Development Kit(UDK) provides of interest to this project is nav-
igation handling and means to process decisions and make them into actions. This chapter
gives an overview over the features the UDK provides for game AI programming.

7.1 Navigation

The UDK provides means two means to represent the game world as a graph to search
trough, Way Points and Navigation Meshes. The way points system is referred to as the
old system and implicitly discouraged in favor of the use of the navigation meshes.[15] This
project will therefore focus on the navigation mesh features the UDK provides for navigation.

7.1.1 Navigation Meshes

The features of the navigation meshes in the UDK allows competent A* path finding on a
navigation mesh with no in-depth knowledge about the structures and algorithms involved
in the path finding. These features includes:

Pylons Adding these actors to the game world will automatically generate a navigation
mesh ion a radius around the pylon upon the next run of the built navigation mesh
tool within the UDK editor.[17].

Navigation Handle In order to make a controller path find on the navigation mesh it
needs to:[16]

• implement interface navigationhandle.

• have a navigationhandle component accessible somewhere.

The Navigation Handle provides all the functions to perform search for and follow a
valid path from the current position to a goal position. Additionally the Navigation
Handle contains functions that check for the validity of potentially reachable points.

Path Constraints are the components that define the function f(x). The path constraints
modify both the heuristic function h(x) as well as the actual cost g(x).

15

16 CHAPTER 7. UNREAL DEVELOPMENT KIT

Goal Evaluators determines which nodes are considered a goal node as well as setting up
the search and saving the path found so far.

Relic gives a list over the provided path constraints and goal evaluators on their reference
pages.[14]

7.2 Controllers
In UDK there is a division between the component interacting with the game world and
the component that makes the first perform actions on said game world. The Pawns are
the physical actors in the game world, they are directly affected by the game world through
the physics engine, collisions, taking damage etc. Each Pawn has a non-physical actor, the
Controller, that makes decisions for what a pawn does. A controller can be an interface for
a human player to control a character through input from game pads, keyboards etc. or the
computer controlling the pawn through game AI methods. This system was designed so the
same AI controller is capable of controlling pawns with different abilities.[11]

7.3 UnrealScript and Finite State Machines
UnrealScript is a high level scripting language with syntax and behavior similar to languages
such as Java and C#, with some quirks and extra features that differentiates it from the
two languages mentioned. The biggest difference and the one worth paying attention to
from this project’s point of view is that FSMs are supported on the language level with
UnrealScript, and with UnrealScript3 state stacking.[13]

States in UnrealScript 3 have several features that makes it more than a simple FSM.
They have a hierarchical structure. Each UnrealScript state contains labels, that essentially
functions as a case statement within the state. One can then use the ”Goto(’label name’)”
function to continue executing from the label given as input.

They have inheritance, one can make several states similar to each other and have them all
extend a super-state containing code and labels common to all sub-states. Using a weapon
may have the common functions of drawing the weapon. and reloading the weapon, with
only the firing behavior being different. A super state called ”Use Weapon” may then contain
logic for drawing and reloading the weapon and an label for firing the weapon containing
code that will be overridden. States can then inherit the common functionality and override
the fire weapon accordingly.

The third major feature to UnrealScript states is the state stack. One can now with ease
interrupt a state with a high priority behavior just by pushing it on top of the state stack.
When the high priority state terminates and pops from the state stack, the previous state
it interrupted continues execution of it’s own code from where it was interrupted.[13]

Part III

Own Contribution

17

Chapter 8

Requirements

This chapter describes the requirements to the system and will be used as guidelines for
the design of and implementation of it. The following sections describe what functional and
non-functional requirements the system has.

8.1 Functional Requirements

This section describes the features required from the system. The following tables describes
each functional requirement with an ID, a short description of the requirement and the
priority of the requirement. The ID is a unique identifier of the requirement for easy iden-
tification. The description explains the content of the requirement. The priority shows the
relative importance of the requirement to the rest of the requirements. The priorities are
indicated with the H, M and L which refers to High, Medium and Low.

ID Requirement description Priority
NPCR1 NPCs shall ensure it’s own survivability in a game world not yet

manipulated by the player.
H

NPCR2 NPCs shall path find without getting stuck. H
NPCR3 NPCs should showcase human decision making behavior. M

Table 8.1: NPCR: Overall NPC behavior requirements.

ID Requirement description Priority
PR1 Peasant characters should gather resources for future use. M
PR2 Peasants characters shall ”‘report”’ the player when noticing the

player character.
H

PR3 Peasant characters should execute flavor actions when no emer-
gency is present.

L

Table 8.2: PR: Peasant character behavior requirements.

18

8.2. NON-FUNCTIONAL REQUIREMENTS 19

8.2 Non-Functional Requirements
The non-functional requirements do not directly dictate the system’s demanded functional-
ity, but serve as guidelines for the design of the system.

NFR 1 The game AI shall not reduce the frame rate to below 30 FPS.

NFR 2 The game AI should be designed within the game AI framework provided by UDK.

Chapter 9

Architecture

This chapter explains the initial architecture used to plan and implement the game AI. This
chapter starts by identifying the framework provided by UDK followed by the initial overall
class-level design rounding off with the initial design of a FSM using the knowlege from
section 6.2.

9.1 UDK Framework

UDK provides a distinct division between the visual character and it’s controller through the
Controller - Pawn arrangement, which implies that every Pawn should have a Controller
in order to do something interesting. Likewise the Controller needs a Pawn to make an
impact on the game world. This project is also done in cooperation with an another project
(section 1.4.3) which provides an additional framework to work within, mostly in regards to
what actions the Pawns has that interacts with the game world.

9.2 Class Architecture

The initial overall class architecture of the part of the system that is relevant to this project
is relatively simple. The class-level architecture is shown in figure 9.1.

The Pawn classes consisting of ApocPawn and it’s subclasses mostly contain attributes
relating to the status of the Pawn and logic how these are updated. The subset of attributes
describing the vitality of the Pawn, such as Health, Thirst etc. will be referred to as stats,
which is short for statistics. The enemy classes are supposed to change their speed depending
on their status, and contain functions that change this when certain stats are changed. The
ApocPeasant class also contain functions that estimate the time until certain stats reaches
0 if the ApocPeaant does nothing to improve these. The Pawn classes being extended by
ApocPawn are shown in the architecture to show which classes are polled by the controllers
and how they connect to the UDK framework.

The ApocEnemyController is handles the navigation logic as well as provide the framework
for the action selection. This class is responsible for the pathfinding from the Pawn’s current
position to the location provided to the ApocEnemyController. The ApocEnemyController
also handles the search for the closest instance of a given Actor. The navigation logic in this

20

9.3. FINITE STATE MACHINE ARCHITECTURE 21

class address the NPCR2 requirement described in table 8.1. The DecideWhatToDoNext
state contain only debug code and is in practice acting as an abstract state providing a
framework the subclasses to implements.

The ApocPeasantController handles the action selection for the ApocPeasant pawn. This
class realized the DecideWhatToDoNext state with a decision tree using what was learned
in section 6.1. The DecideWhatToDoNext state address the NPCR3 requirement described
in table 8.1. The remaining behavior logic realized with an FSM.

9.3 Finite State Machine Architecture
The initial FSM in Apocalypse was designed around the DecideWhatToDoNext state acting
as a hub the FSM always returns to when an behavior is completed. The initial FSM design
can be seen in figure 9.2.

The GoHome state makes the ApocPeasant go to his designated home and unload carried
goods as well as replenish the ApocPeasant’s stats if the conditions are right. This behavior
address the NPCR1 requirement described in table 8.1.

The GatherWater and GatherFood states makes the ApocPeasant search for and collect the
given resources, water and food respectively, and then go home to store the resources at
home. This behavior addresses the NPCR1 and PR1 requirements described in the tables
in chapter 8.

The AttendMass state makes the ApocPeasant search for the closest church and activates a
function that fully replenishes the ApocPeasant’s stats. This behavior address the NPCR1
requirement described in table 8.1.

The Strolling state makes the ApocPeasant chose a random point on the map and walk to
it, simulating the peasant taking a stroll to enjoy the scenery. This behavior is purely a
flavor behavior to address the PR3 requirement described in table 8.2.

The RunAway state makes the ApocPeasant run away from a perceived danger and report
the danger to the nearest church. This behavior addresses the NPCR1 and PR2 requirements
described in the tables in chapter 8.

22 CHAPTER 9. ARCHITECTURE

Figure 9.1: The part of the Apocalypse system relevant game AI. The focus of the system
will be on the two controller classes ApocEnemyController and ApocPeasantController.

9.3. FINITE STATE MACHINE ARCHITECTURE 23

Figure 9.2: The initial design for the ApocPeasantController state machine.

Chapter 10

Path Finding

This chapter describes the implementation of the path finding logic and support functions
related to the navigation logic. The GeneratePathToActor function is explained in the first
section followed by a description of the support functions. The creation of the navigation
mesh is just a matter of using the UDK editor to place Pylons in the game world and
automatically generate a mesh. This process is explained in section 7.1.1 and thus will not
be explained here.

10.1 GeneratePathToActor
The GeneratePathToActor function is the function in charge of generating a path to the
desired location given as an input from the current position of the Pawn and return with
the vector describing the next destination in the path generated. The NavigationHandle,
NavMeshPathConstraint and NavMeshPathGoalEvaluator classes and their subclasses are all
native as of the UDK April Beta and thus locked from insight and inheritance. This makes it
so the only means of manipulating how the pathfinding works is through the use of functions
provided by these classes. The GeneratePathToActor therefore mostly contain code handling
exceptions generated by these functions. The full source code of GeneratePathToActor is
found in the appendix C.1.

The function first checks if the Pawn is stuck when it should be moving and handles this
through the use of the TardCounter value and the not yet integrated ObstructionJump
function. The ObstructionJump and it’s intended function is described in section 10.2. The
function then checks for a direct route, if the Pawn can see the goal location from it’s current
position the Pawn will walk directly to the goal location.

After the TardCounter and direct route checks a NavigationHandle is initiated, if not already
initiated, and a A* search is performed on the navigation mesh using the a set of Path Goal
Evaluators and Path Constraints.

The set of Path Goal Evaluators and Path Constraints describe the heuristic function the
A* search operates with. The ApocEnemyController by using the NavMeshGoal At Path
Goal Evaluators will terminate and return true when the Pawn reaches the goal location
within a given distance. The Path Constraints change according to the situation. Under
normal conditions the constraint is NavMeshPath Toward which is constraint describing the

24

10.2. NAVIGATIONAL SUPPORT FUNCTIONS 25

Euclidean distance heuristics. If an enemy is spotted the Path Constraint becomes the
NavMeshPath WithinDistanceEnvelope constraint, which applies a penalty to nodes within
a certain radius range from a point. The point from which to calculate th envelope is set
to the location of the spotted enemy. The max range is a large number, that effectively is
infinite within the game world. The minimum range is set to ApocPawn.AVOID DISTANCE
which currently is set to 300.0f. This effectively makes a heuristic high cost field around the
enemy thus making the Pawn try to avoid the enemy.

10.2 Navigational Support Functions
The functions described in this section are important to the navigation logic and is either
used directly or indirectly by the GeneratePathToActor function.

10.2.1 ObstructionJump

The ObstructionJump function will make the Pawn move in a jumping motion to try getting
out of a situation in which it is stuck in the world geometry. The idea and implementation
is taken from Trendy Entertainment’s Dungeon Defense [5] which is a showcase provided
with open source code for the UDK.

10.2.2 FindNearestTargetOfType

FindNearestTargetOfType is used before the call to GeneratePathToActor to find the goal
location passed to the GeneratePathToActor method.

Chapter 11

Action Selection

This chapter describes the implementation of the action selector as well as the actions
themselves.

11.1 Finite State Machine
The FSM is mostly like the design described in section 9.3 and the states that realizes will
not be described again here. The implemented FSM can be seen figure 11.1, the differences
in the FSM from the designed FSM will be explained below.

The biggest difference is the change of DecideWhatToDoNext from a state in the design to a
function in the final implementation. This partly because the pushed state did not support
forced change to the desired state without a hack, but also because of the discovery of the
latent functions provided by UDKBot. These latent functions provides a framework to run
the code within safely without it interfering with the physics of other world variables. The
choice was made to approximate this design in order to make an eventual move to UDKBot
as a superclass easier.

Each state is also implemented as a collection of states in a hierarchical manner with sub
states pushed for sub behaviors such as Walking and entering buildings. This ensures max-
imum reusability of the Walking state logic.

11.2 Decision Tree
The decision tree is implemented considering the most critical state first. The tree is there-
fore imbalanced as seen in figure 11.2.

The ApocPeasantController evaluates it’s stats in the order of health, the minimum of food
and water, the water stock held and lastly the food stock.

The ”Compare mass to X” choice checks if it is a shorter amount of time left until mass
compared to how long it takes to complete ”X” and chooses the action that takes the least
time.

The weighted random choice gives each action a heuristic based on the status of the stats the
action affect and randomly chooses one of the actions with a higher heuristic representing a

26

11.2. DECISION TREE 27

Figure 11.1: The states of an ApocPeasantController.

higher chance to be picked.

28 CHAPTER 11. ACTION SELECTION

Figure 11.2: The decision tree of an ApocPeasantController.

Chapter 12

Results

In this chapter the results of the implementation is presented. There is not much to say
about successes beyond that the system performed as required within the requirements
given. The following sections will explain what went well and what went wrong within the
confines of each requirement.

12.1 Partially Fulfilled Requirements
The table shows which requirements was partially fulfilled.

ID Requirement description Priority
NPCR3 NPCs should showcase human decision making behavior. M

Table 12.1: Partially fulfilled NPC behavior requirements.

The NPC does not show the optimal human behavior, it does however behave like a human
that ”goes easy” without ever adapting to become better if the human player becomes better.
This requirement is therefore considered partially fulfilled.

12.2 Unfulfilled Requirements
The table shows which requirements was unfulfilled.

ID Requirement description Priority
NPCR2 NPCs shall path find without getting stuck. H

Table 12.2: Unfulfilled NPC behavior requirements.

NPCs occasionally get stuck in their houses, because of this NPCR2 is then considered
unfulfilled.

29

Part IV

Evaluation and Discussion

30

Chapter 13

Evaluation

This chapter provides the author’s own evaluation of the project. This chapter starts with
an evaluation of the development method used and the evaluation of the system’s design.
The chapter rounds off with the answering of the research questions.

13.1 Development Method
Given the that the project had to work within certain restrictions set by the cooperation
group. Since the cooperation group was prototyping a game new ideas for fun game play
was constantly pitched, tested and implemented. The modified waterfall method worked
well for this kind of project since steps back was taken when needed to implement and fit
the rest of the system to a new feature.

13.2 Design
The design of the system was satisfactory according to the requirements set, but could be
better from the when considering the the design with the research questions in mind. The
design adhered to what the industry standards where, and performed well within those
conditions. In regard to how game AI could be improved, the author could have been more
experimental. In the end there was too little time compared to the vision of the author to
implement such an experimental system while still keeping the system operationable and
not hindering the cooperation group.

13.3 Research
This section will look the research questions set in section 2.1 and see what answers the
research provided.

13.3.1 RQ 1: How is the game AI implemented in modern games?

To answer this question a questionnaire was sent out to game developers profiled for their
work on Game AI. Using the answers from the questionnaire and information found in
literature the following trends can be identified in regards to game AI in modern games.

31

32 CHAPTER 13. EVALUATION

Game AI is considered all methods and algorithms that immerses the player into the game
world, making the player believe he/she is a part of the game world. This includes custom
animations as well as NPC action selection and movement within the game world.

The intersection of the methods used in game AI and methods common to traditional aca-
demic AI is a rather limited set of algorithms and methods. Mainly because most traditional
AI methods are too costly in terms of CPU time and memory usage. With as little as 10%
of the total available CPU time budgeted to game AI and even less of the memory, real time
neural networks and genetic algorithms is still a far way off.

13.3.2 RQ 2: How can the answers from the above research ques-
tions help creating a better game AI?

With the answers given in RQ 1 along with knowledge of the field of AI and machine
learning, is may indicate that the focus on game AI should be along the lines of making the
tools currently used in the field more versatile. FSMs have evolved from a flat structure
into increasingly more versatile hierarchical structures using the same base technology, and
further refinement of these techniques seems quite possible.

Parallelization also seems to be a field game AI should focus on. modern games’ optimal
usage of all the CPU cores lags behind hardware manufacturers adding core to the CPU
chip. This may however face the issue of the memory wall.

Because of the nature of AI, it need to know a lot of things to make good choices. so the
AI should know a little more if it gives a fun game experience.

Chapter 14

Conclusion and Further Work

This chapter wraps up the project with a conclusion and what future work of the project.

14.1 Conclusion

The goals of this project was to learn the industry standards of what good and challenging
game AI was. The author reviewed literature on the topic and had personal correspondence
where the research questions was answered by professionals within the field. The availability
of open literature and the openness of the professionals really helped with understanding
the industry standards to game AI.

Using the information from the research a prototype system adhering to the industry stan-
dard was made with the intention of expanding it into an experimental prototype using
unorthodox techniques to achieve the appearance of intelligence. By practical application of
the methods learned it became apparent certain theoretical ideas was not optimally compat-
ible with the provided framework. And a redesign of the conflicting module was nescecary.

The system implemented performed well within the industry standards. But no experimental
prototyping of unorthodox methods could be made with the system due to lack of time to
implement such features. A couple of optimality tweaks been discovered since the end of
the implementation phase of the project and the author will keep theese in mind when
continuing work on the system in the future.

14.2 Further Work

Using chapter 12as a base a couple issues and points of improvement has been identified.

In order to improve the partially fulfilled functional requirement NPCR3. One may consider
using another algorithm than a decision tree for the action selection. To improve performance
a move to the changing the inheritance from the current AIController to the UDKBot class
which provides a framework to implement DecideWhatToDoNext latently, distributing the
computation of the DecideWhatToDoNext over several tics without interrupting the physics
and collision parts of the UDK.

33

34 CHAPTER 14. CONCLUSION AND FURTHER WORK

The ObstructionJump is currently not properly implemented. If implemented this may fulfill
the NPCR2 functional requirement.

Part V

Appendix

35

Appendix A

”Apocalypse” Concept
Document

36

37

1. Game name: Apocalypse: The Four Unmounted Horsepersons
2. Team name: HAX.EXE
3. Game genre: Strategy
4. Multiplayer support: Yes
5. Platform: Xbox 360

38 APPENDIX A. ”APOCALYPSE” CONCEPT DOCUMENT

: THE FOUR UNMOUNTED HORSEPERSONS

Apocalypse is an action-oriented, real-
time tactics game, where your ultimate
goal is to corrupt mankind, thus bringing
the End of Days. By taking command
of the Four Horsemen, which ironically
neither have horses nor are all men,
you will plunge into the land of happi-
ness and bliss, leaving only death and
darkness in your wake.

The game is set in the Dark Ages, whe-
re lawful and God-fearing peasants
happily harvest the fruits of the land.
Peasants are strong and sound, atten-
ding every mass in the local church,
gratefully praising the Lord for their good
health, their wealthy crops and their
pure and fresh water and air. This happy
ecosystem is for you to destroy.

Your various unmounted horsepersons,
have demonic powers related to their
apocalyptic domain. “Pestilence” is the
manifestation of sickness and plague, in-
fecting men and livestock alike, leaving
the lucky dead and the unlucky suffe-
ring horrendously on their deathbeds.
The she-devil “War” possesses demonic
beauty and immense wealth, corrupting
the weak minds of men, turning brother
on brother leaving villages in shambles
and ruins. The mustachioed and fatally

obese “Famine” has the appetite of a
thousand hogs, consuming crops and
livestock as he plods through the land,
leaving the populace starved and wea-
kened in body and mind alike. “Death”
is the ultimate release for the plagued
and starved peasants, harvesting souls
to be sacrificed upon unholy altars in
the eternal fires of Hell. These sacrifices
enable the unmounted horsepersons to
call upon the Seven Deadly Sins to aid
their sinister work.

Unfortunately the Holy Church of Man-
kind stands in your way thwarting your
every move, undermining your powers
by the hands of their zealous priests. The
priests can cure the sick, and remove
the taint of corruption from the land.
Also the priests seek to repel the un-
mounted horsepersons with their blessed
auras. Their one weakness lies in their
dependency on the peasants attending
their holy mass, fueling their powers. The
peasants also benefit from attending
the mass as their curses are lifted and
they recover their strength from the Holy
Commotion. When peasants weaken in
body and spirit, their faith and ability to
attend church diminishes and they stop
attending mass, weakening the powers
of the priesthood and decreasing the

holy aura surrounding the church. As the
situation in the church deteriorates, the
priests are blessed with increased speed
and zeal, counteracting the onslaught
of chaos. At the time of ultimate cor-
ruption, when no peasant is left to serve
the holy cause of the church, the priests
in their despair find the temptation of
sacramental wine to be overwhelming,
and the corruption is total.

The peasants lead a simple life, having
only three major concerns: Gather
precious food to store in their houses,
get pure, pristine water from the surroun-

ding wells, and attend holy mass. The
unmounted horsepersons collectively
possess the necessary skills to disrupt
these activities. Each peasant has a
combination of strengths and weaknes-
ses making them more resilient or more
vulnerable to different types of corrup-
tion. It is paramount that the unmounted
horsepersons combine their strengths
and abilities to destroy each soul.

Gameplaywise Apocalypse is a multi-
player game, intended for 1-4 players.
where one player may control one, two
or all four “hero“-characters. The game

In-game screenshot showcasing the character Pestilence

39

: THE FOUR UNMOUNTED HORSEPERSONS

Apocalypse is an action-oriented, real-
time tactics game, where your ultimate
goal is to corrupt mankind, thus bringing
the End of Days. By taking command
of the Four Horsemen, which ironically
neither have horses nor are all men,
you will plunge into the land of happi-
ness and bliss, leaving only death and
darkness in your wake.

The game is set in the Dark Ages, whe-
re lawful and God-fearing peasants
happily harvest the fruits of the land.
Peasants are strong and sound, atten-
ding every mass in the local church,
gratefully praising the Lord for their good
health, their wealthy crops and their
pure and fresh water and air. This happy
ecosystem is for you to destroy.

Your various unmounted horsepersons,
have demonic powers related to their
apocalyptic domain. “Pestilence” is the
manifestation of sickness and plague, in-
fecting men and livestock alike, leaving
the lucky dead and the unlucky suffe-
ring horrendously on their deathbeds.
The she-devil “War” possesses demonic
beauty and immense wealth, corrupting
the weak minds of men, turning brother
on brother leaving villages in shambles
and ruins. The mustachioed and fatally

obese “Famine” has the appetite of a
thousand hogs, consuming crops and
livestock as he plods through the land,
leaving the populace starved and wea-
kened in body and mind alike. “Death”
is the ultimate release for the plagued
and starved peasants, harvesting souls
to be sacrificed upon unholy altars in
the eternal fires of Hell. These sacrifices
enable the unmounted horsepersons to
call upon the Seven Deadly Sins to aid
their sinister work.

Unfortunately the Holy Church of Man-
kind stands in your way thwarting your
every move, undermining your powers
by the hands of their zealous priests. The
priests can cure the sick, and remove
the taint of corruption from the land.
Also the priests seek to repel the un-
mounted horsepersons with their blessed
auras. Their one weakness lies in their
dependency on the peasants attending
their holy mass, fueling their powers. The
peasants also benefit from attending
the mass as their curses are lifted and
they recover their strength from the Holy
Commotion. When peasants weaken in
body and spirit, their faith and ability to
attend church diminishes and they stop
attending mass, weakening the powers
of the priesthood and decreasing the

holy aura surrounding the church. As the
situation in the church deteriorates, the
priests are blessed with increased speed
and zeal, counteracting the onslaught
of chaos. At the time of ultimate cor-
ruption, when no peasant is left to serve
the holy cause of the church, the priests
in their despair find the temptation of
sacramental wine to be overwhelming,
and the corruption is total.

The peasants lead a simple life, having
only three major concerns: Gather
precious food to store in their houses,
get pure, pristine water from the surroun-

ding wells, and attend holy mass. The
unmounted horsepersons collectively
possess the necessary skills to disrupt
these activities. Each peasant has a
combination of strengths and weaknes-
ses making them more resilient or more
vulnerable to different types of corrup-
tion. It is paramount that the unmounted
horsepersons combine their strengths
and abilities to destroy each soul.

Gameplaywise Apocalypse is a multi-
player game, intended for 1-4 players.
where one player may control one, two
or all four “hero“-characters. The game

In-game screenshot showcasing the character Pestilence

40 APPENDIX A. ”APOCALYPSE” CONCEPT DOCUMENT

: THE FOUR UNMOUNTED HORSEPERSONS

Concept art for the Famine character

is not intended as a network-multiplayer
game, but as a simultaneous hotseat
game, where players may dynami-
cally join and quit as the game passes.
Depending on the number of players,
different players will be assigned diffe-
rent unmonted horsepeople. Since all
characters share the same screen, one
is assigned leader of the group, and is
targeted by the camera.

Leadership is easily transferred between
the different characters, and the pre-
sence and direction of off-screen
char-acters is visualised. The game is
presented through a top-down camera
as seen in many RTS-games, enabeling
broad overview of all players and the
surrounding environment.

The game features a campaign with
several levels. Each level introduces
the players to a peasant community
under one or more church jurisdictions.
A level is completed when all churches
are completely corrupted. Levels start
out in an overly happy, bright and idyllic
environmentwith strong, bright colors,
dan cing peasants, rainbows and sin-
ging birds. As the taint spreads the
environment turns gloomy , the colors
dims, birds die, the sky turns red and
pigs start flying. The music changes from
happy, medieval tunes, to heavy metal.

Despite of the dark theme of the game,
all characters and the environment are
presented in a highly cartoonish style,
contributing to a comical and unrealstic
look and feel.

Peasants have two major statistics:
Health and zeal. Their health is depen-

dent on three factors: Food, pure water
and combat, influenced by the abilities
of respectively Famine, Pestilence and
War. A peasant with low health moves
slower and is thus more vulnerable to
the scythe of the relatively slow moving
Death.

The zeal of the peasants is dependent
on how often the peasant has attended
mass. When zeal is low the peasant is

more receptive to moral corruption such
as bribes and mindless violence against
their fellow peasants.

Priests have one major stat, fanatism,
which increases as peasants in their
jurisdiction start dying and stop atten-
ding mass A priest with high fanatism
runs faster and performs prayers and
blessing faster.

Concept art for the priest character in front of a church

41

: THE FOUR UNMOUNTED HORSEPERSONS

Concept art for the Famine character

is not intended as a network-multiplayer
game, but as a simultaneous hotseat
game, where players may dynami-
cally join and quit as the game passes.
Depending on the number of players,
different players will be assigned diffe-
rent unmonted horsepeople. Since all
characters share the same screen, one
is assigned leader of the group, and is
targeted by the camera.

Leadership is easily transferred between
the different characters, and the pre-
sence and direction of off-screen
char-acters is visualised. The game is
presented through a top-down camera
as seen in many RTS-games, enabeling
broad overview of all players and the
surrounding environment.

The game features a campaign with
several levels. Each level introduces
the players to a peasant community
under one or more church jurisdictions.
A level is completed when all churches
are completely corrupted. Levels start
out in an overly happy, bright and idyllic
environmentwith strong, bright colors,
dan cing peasants, rainbows and sin-
ging birds. As the taint spreads the
environment turns gloomy , the colors
dims, birds die, the sky turns red and
pigs start flying. The music changes from
happy, medieval tunes, to heavy metal.

Despite of the dark theme of the game,
all characters and the environment are
presented in a highly cartoonish style,
contributing to a comical and unrealstic
look and feel.

Peasants have two major statistics:
Health and zeal. Their health is depen-

dent on three factors: Food, pure water
and combat, influenced by the abilities
of respectively Famine, Pestilence and
War. A peasant with low health moves
slower and is thus more vulnerable to
the scythe of the relatively slow moving
Death.

The zeal of the peasants is dependent
on how often the peasant has attended
mass. When zeal is low the peasant is

more receptive to moral corruption such
as bribes and mindless violence against
their fellow peasants.

Priests have one major stat, fanatism,
which increases as peasants in their
jurisdiction start dying and stop atten-
ding mass A priest with high fanatism
runs faster and performs prayers and
blessing faster.

Concept art for the priest character in front of a church

Appendix B

Correspondence With Game AI
Developers

This appendix contain the correspondence the author had with different AI developers.

B.1 The questionaire
This section presents the standard e-mail that was sent to the different game developers
known for their use of game AI:
Dear [SIR/MADAM] ,
I am a computer s c i e n c e student at the Norwegian U n i v e r s i t y o f Sc i ence and

Technology (http ://www. ntnu . no/ e n g l i s h) . I am c u r r e n t l y conduct ing
r e s e a r c h f o r a Master ’ s t h e s i s about how game AI i s implemented in modern
games , with emphasis on how a b e l i e v a b l e and c h a l l e n g i n g AI i s made and
which trade−o f f s that has to be made concern ing the game ’ s computat ional
performance . I hope that t h i s r e s e a r c h could be o f he lp to s t a r t i n g
deve lopers , or s m a l l e r game s t u d i o s .

I have compiled a l i s t o f high−p r o f i l e games I would l i k e to i n v e s t i g a t e , and
[COMPANY] ’ s [GAME(S) /SERIES] i s one o f the se .

My r e s e a r c h q u e s t i o n s are as f o l l o w s (in regards to game AI) :
− What methods and algor i thms , not t y p i c a l l y cons ide r ed part o f t r a d i t i o n a l AI

, are important f o r a good game AI?
− What t r a d i t i o n a l AI methods and s o l u t i o n s are used in game AI?
− When and where are t r a d i t i o n a l AI methods used in game AI?
− How important are t r a d i t i o n a l AI methods to game AI?
− How much leeway i s the re f o r implementation o f AI methods that r e q u i r e s a

l o t o f computat ional r e s o u r c e s ?

I understand that some t h in g s have to stay a company s e c r e t , but I would be
extremely thank fu l i f you have any ma te r i a l you could share that would
shed some l i g h t on these q u e s t i o n s .

S i n c e r e l y ,
Remy Jensen

Listing B.1: Our questionaire e-mail

42

B.2. CHRIS JURNEY 43

B.2 Chris Jurney
This section reproduces our correspondence with Chris Jurney, AI programmer of Brütal
Legend and former AI programmer in Relic Entertainment.
Hi , Remy,

I ’ l l t ry to answer your quest ions , but they ’ re pre t ty broad , so I ’m not sure I
’ l l be ab le to g ive a f u l l answer . You should take a look at http ://
aigamedev . com / . It ’ s run by indust ry AI programmers , and they look at the

c r o s s o v e r between p r a c t i c a l game AI and academic AI on occa s i on .

∗ What methods and algor i thms , not t y p i c a l l y cons ide r ed part o f
t r a d i t i o n a l AI , are important f o r a good game AI?

The main t o o l s in the game AI too lbox are d e c i s i o n t r e e s , h i e r a r c h a l f i n i t e
s t a t e machines , and A∗ search . AI in games i s a l o t c l o s e r to an expert
system custom made f o r the s p e c i f i c game ’ s problems than any kind o f
g e n e r i c academic AI s t y l e system .

∗ What t r a d i t i o n a l AI methods and s o l u t i o n s are used in game AI?
∗ When and where are t r a d i t i o n a l AI methods used in game AI?
∗ How important are t r a d i t i o n a l AI methods to game AI?

Very few t r a d i t i o n a l AI methods are used . Some games have t r i e d us ing very
b a s i c p lanning f o r un i t c o n t r o l (F .E.A.R. , an FPS did t h i s f o r i t s u n i t s) ,

but i t ’ s g e n e r a l l y cons ide r ed not worth the e f f o r t . With the advent o f
camera gaming , there ’ s a l o t more over lap from the f i e l d o f computer
v i s i o n , s i n c e that r e s e a r c h i s g e n e r a l l y d i r e c t l y a p p l i c a b l e .

General ly , t r a d i t i o n a l AI i s avoided because games need r e l i a b l e and
r e p r o d u c i b l e r e s u l t s to c r a f t a q u a l i t y gaming e x p e r i e n c e . T r a d i t i o n a l AI

i s a l s o u s u a l l y p r o h i b i t i v e l y expens ive in terms o f CPU c y c l e s and memory
.

∗ How much leeway i s the re f o r implementation o f AI methods that
r e q u i r e s a l o t o f computat ional r e s o u r c e s ?

On a modern conso le , you have a c c e s s to a number o f c o r e s (6−8) , so the re i s
more opportunity f o r us ing computat ional r e source s , but i t i s s t i l l
l i m i t e d . Anything that consumes more than a few m i l l i s e c o n d s in any one
1/30 th o f a second frame i s probably not u s e f u l . Being ab le to spread the

work a c r o s s cores , or a c r o s s frames he lps . AI i s p re t ty core to many
modern games , so I ’ d say i t ’ s very common f o r the AI system to r e c e i v e
anywhere from 10 to 33% of the o v e r a l l a v a i l a b l e CPU. Memory i s very
c o n s t r a i n e d on conso l e s , with a t o t a l o f 512MB on both PS3 and 360 , so AI
i s u s u a l l y r e s t r i c t e d to use 10−50MB of that t o t a l , depending on the t i t l e
.

I hope that ’ s h e l p f u l . I f you have any more s p e c i f i c quest ions , l e t me know .

Cheers ,
Chris

Listing B.2: The reply from Chris Jurney

44 APPENDIX B. CORRESPONDENCE WITH GAME AI DEVELOPERS

B.3 Crytek

This section reproduces our correspondence with Crytek.

Hel lo Remy,

Below are some answers to your q u e s t i o n s . I am a l s o cc ’ ing a few other
people who may want to add a d d i t i o n a l comments .

− How much leeway i s the re f o r implementation o f AI methods that r e q u i r e
a l o t o f computat ional r e s o u r c e s ?

A: Unfortunate ly not near ly enough as would we would l i k e . Games ,
e s p e c i a l l y c u t t i n g edge games , r e a l l y push the hardware on a l l f r o n t s .
AI has to share l i m i t e d hardware r e s o u r c e s with high end graphics ,
advanced phys i c s s imulat ions , networking , audio , e t c . a l l whi l e
mainta in ing r e a l time frame r a t e s o f 30 to 60 t imes per second . The
good news i s that with GPU’ s doing more and more , and mul t i co re
p r o c e s s o r s becoming more common , AI i s now , and w i l l be in the future ,
r e c e i v i n g s i g n i f i c a n t l y more p r o c e s s i n g power than ever b e f o r e . But
even s t i l l many ’ bas ic ’ s e r v i c e s such as path f ind ing , v i s i b i l i t y
checking , e t c . o f t e n s t i l l have to be time s l i c e d or mult i threaded over
many frames so as not to i n t e r r u p t smooth game play frame r a t e s .

− What t r a d i t i o n a l AI methods and s o l u t i o n s are used in game AI?

A: Most games i n c l u d e b a s i c path f i n d i n g with A∗ . Many games a l s o make
heavy use o f in game s c r i p t e d events . Some games do some b a s i c pattern
r e c o g n i t i o n , e s p e c i a l l y f i g h t i n g games which tend to t ry to l e a r n a
player ’ s f a v o r i t e combo o f moves . State machines , and p r i o r i t y based
behavior t r e e s are used h e a v i l y . I n f l u e n c e maps can a l s o be used in
many games , as can h i e r a r c h i c a l p lanning .

− What methods and algor i thms , not t y p i c a l l y cons ide r ed part o f
t r a d i t i o n a l AI , are important f o r a good game AI?

A: Anything that : 1) f i t s i n t o s t r i c t computat ional /memory budgets , 2)
prov ide s an en joyab l e e x p e r i e n c e f o r the p laye r . I t i s easy to make an
AI that can beat the p laye r . I t i s hard to make an AI that prov ide s
j u s t the r i g h t l e v e l o f d i f f i c u l t y without appear ing to the p laye r to be
e i t h e r god l i k e in power , cheat ing , or s tup id . Being smart i s not the
goal , appear ing smart to the p laye r in ways he/ she can understand and
compete a g a i n s t i s the goa l .

We o f t e n put a l o t o f knowledge in the world i n s t e a d o f AI u n i t s . For
ins tance , i f we have a f e n c e that can be jumped over , i n s t e a d o f
programming each AI to jump over f ences , we have the f e n c e t e l l AI ’ s how
to use the f e n c e . We could a l so , f o r example , have an alarm system
button in the world that takes c o n t r o l o f the AI under c e r t a i n
c o n d i t i o n s and t e l l s the un i t how to use the alarm button to a l e r t other
bots o f the player ’ s e x i s t e n c e . We embed other in fo rmat ion i n t o the
world such as hide spots , or other hand placed markers , s p e c i a l
nav igat i on in format ion , e t c . The f a c t that we have complete c o n t r o l
over the v i r t u a l world means we can do many t h i n g s that someone b u i l d i n g
the mars rover cannot . We t a i l o r our worlds around the AI as much as
p o s s i b l e i n s t e a d o f the other way around .

AI u n i t s can be made to seem smart even when they are doing nothing

B.3. CRYTEK 45

because they play animations and sounds that g ive a sense o f c h a r a c t e r .
AI ’ s seem i n t e l l i g e n t because they play an animation o f smoking a
c i g a r e t t e or something when a c t u a l l y doing nothing , or because they play
animations and prerecorded c o n v e r s a t i o n s i n d i c a t i n g that the un i t i s
scared , s u s p i c i o u s o f a g iven area , or even j u s t t a l k i n g ambiently about
something in the game world . Percept ion o f i n t e l l i g e n c e i s more
important that a c t u a l i n t e l l i g e n c e in a game .

− When and where are t r a d i t i o n a l AI methods used in game AI?

When they : 1) f i t i n t o s t r i c t computat ional /memory budgets , 2) prov ide s
an en joyab l e e x p e r i e n c e f o r the p laye r

More g e n e r a l l y , in a s i n g l e p laye r game we use l e s s fancy t r a d i t i o n a l AI
systems and o f t e n j u s t s c r i p t bots to do s p e c i f i c t h i n g s in the
s i t u a t i o n that w i l l be presented to the p laye r . In mul t ip l aye r type
games with bots we are more l i k e l y to have a wider array o f t r a d i t i o n a l
AI f u n c t i o n a l i t y i n c l u d i n g but not l i m i t e d to machine l ea rn ing ,
knowledge based systems , e t c . This i s because the bots must be more
f l e x i b l e in t h i s environment , where as in s i n g l e p laye r they o f t e n need
to simply do the t h i n g s pre planned f o r the encounter as des igned by the
game d e s i g n e r .

− How important are t r a d i t i o n a l AI methods to game AI?

Game AI programmers t ry to l e a r n from t r a d i t i o n a l academic AI whenever
p o s s i b l e . But because o f l i m i t e d r e s o u r c e s and that our end goa l i s
entertainment , not a l l t r a d i t i o n a l academic methods are c u r r e n t l y
f e a s i b l e or u s e f u l at t h i s time .

I hope that t h i s answers your q u e s t i o n s s u f f i c i e n t l y . I f you have more
q u e s t i o n s p l e a s e f e e l f r e e to emai l me again d i r e c t l y . I a l s o recommend
some game AI r e f e r e n c e m a t e r i a l s : The ”AI Game Programming Wisdom” text
book s e r i e s , as w e l l as ”Game Programming Gems” text book s e r i e s . These
s o u r c e s g ive very good overv iews o f Game AI programming techn iques in
use by many companies today .

−Jeremy Gross
Crytek Sr . AI RnD Programmer

Listing B.3: The reply from Crytek

46 APPENDIX B. CORRESPONDENCE WITH GAME AI DEVELOPERS

B.4 Epic Games
This section reproduces our correspondence with Epic Games.
Hi ,

Here are some quick answers . Also f e e l f r e e to check out the Unreal
Development Kit (www. udk . com) to see our AI code f i r s t h a n d in a game
s c e n a r i o .

> What methods and algor i thms , not t y p i c a l l y cons ide r ed part o f
> t r a d i t i o n a l AI , are important f o r a good game AI?

In a game , AI compr ises systems f o r movement (short−term movement o f
c h a r a c t e r s through an environment) , path−f i n d i n g / nav igat i on (long−term
determinat ion o f movement p lans) , t a c t i c a l AI (d e c i s i o n s about which
weapons to use and which opponents to f i g h t or f l e e from) , and in some
games , s t r a t e g i c AI (f o r example , an army ’ s o v e r a l l s t r a t e g y in a rea l−
time s t r a t e g y game) .

> − What t r a d i t i o n a l AI methods and s o l u t i o n s are used in game AI?
> − When and where are t r a d i t i o n a l AI methods used in game AI?
> − How important are t r a d i t i o n a l AI methods to game AI?

The f i e l d o f game AI isn ’ t r e l a t e d to the f i e l d o f computer s c i e n c e AI as f a r
as I ’m aware .

> − How much leeway i s the re f o r implementation o f AI methods that
> r e q u i r e s a l o t o f computat ional r e s o u r c e s ?

AI i s g e n e r a l l y a s i g n i f i c a n t f r a c t i o n o f our o v e r a l l computat ional budget −−
say , 10% to 20% of o v e r a l l CPU time . While g raph i c s and phys i c s are v i t a l

to a game ’ s appearance , the o v e r a l l e x p e r i e n c e tends to f e e l hol low
without good AI in p lace .

−Tim

Listing B.4: The reply from Epic Games

B.5. JEFF ORKIN 47

B.5 Jeff Orkin

This section reproduces our correspondence with Jeff Orkin, former AI programmer of Mono-
lith Productions.

On Wed, Feb 3 , 2010 at 11 :15 AM, Remy Jensen <remyjensen@gmail . com> wrote :

Dear Sir ,
I am a computer s c i e n c e student at the Norwegian U n i v e r s i t y o f Sc i ence
and Technology (http ://www. ntnu . no/ e n g l i s h) . I am c u r r e n t l y
conduct ing r e s e a r c h f o r a Master ’ s t h e s i s about how game AI i s
implemented in modern games , with emphasis on how a b e l i e v a b l e and
c h a l l e n g i n g AI i s made and which trade−o f f s that has to be made
concern ing the game ’ s computat ional performance . I hope that t h i s
r e s e a r c h could be o f he lp to s t a r t i n g deve lopers , or s m a l l e r game
s t u d i o s .

I have compiled a l i s t o f high−p r o f i l e games I would l i k e to
i n v e s t i g a t e , and the F .E.A.R. and Condemned s e r i e s you worked on whi l e
s t i l l with Monolith Product ions are among these .

My r e s e a r c h q u e s t i o n s are as f o l l o w s (in regards to game AI) :
− What methods and algor i thms , not t y p i c a l l y cons ide r ed part o f
t r a d i t i o n a l AI , are important f o r a good game AI?

The way you ’ ve phrased t h i s ques t i on assumes game AI i s a l l about a lgor i thms ,
which i s an i n c o r r e c t assumption . Game AI i s a combination o f d e c i s i o n
making (a lgor i thms) , p r e s e n t a t i o n (animation) , and author ing (knowledge) .

Characters use knowledge to make d e c i s i o n s , which they expre s s through
animation . T r a d i t i o n a l AI works w e l l f o r d e c i s i o n making algor i thms , but
does not g ive enough i n s i g h t i n t o how best to s e l e c t and blend animation ,
and get knowledge i n t o the system (through author ing t o o l s) .

− What t r a d i t i o n a l AI methods and s o l u t i o n s are used in game AI?

Most games use F i n i t e State Machines . Some use H i e r a r c h i c a l F i n i t e State
Machines , sometimes r e f e r r e d to as Behavior Trees . FEAR and Condemned use

a planning system based on STRIPS . We’ re beg inning to see some games use
h i e r a r c h i c a l p lanning systems , such as H i e r a r c h i c a l Task Networks . Also ,
most games use the A∗ a lgor i thm f o r path planning . There has been l o t s

o f work on opt imized v a r i a n t s o f A∗ .

− When and where are t r a d i t i o n a l AI methods used in game AI?

A∗ f o r path planning . The o th e r s mentioned above f o r d e c i s i o n making ,
sometimes r e f e r r e d to as a c t i o n s e l e c t i o n .

− How important are t r a d i t i o n a l AI methods to game AI?

Well , you need c h a r a c t e r s to make d e c i s i o n s somehow , and you are probably
b e t t e r o f f us ing a w e l l thought out formal ism than something ad hoc . The
beauty o f us ing planning a lgor i thms i s that c h a r a c t e r s can s t a r t to reason

autonomously , r a t h e r than r e l y i n g e n t i r e l y on hard−coded behav ior s . They

48 APPENDIX B. CORRESPONDENCE WITH GAME AI DEVELOPERS

can search f o r sequences o f a c t i o n s to s a t i s f y t h e i r goa l s , and adapt to
whatever they encounter in the game . But , the re i s s t i l l a problem o f how

to author enough a c t i o n s and g o a l s f o r the c h a r a c t e r to do everyth ing
d e s i g n e r s want them to do . Today , t h i s i s l a r g e l y up to the eng inee r s ,
but h o p e f u l l y in the f u t u r e author ing behav ior s w i l l be more a c c e s s i b l e to

d e s i g n e r s .

− How much leeway i s the re f o r implementation o f AI methods that
r e q u i r e s a l o t o f computat ional r e s o u r c e s ?

Graphics and phys i c s w i l l always take the bulk o f the p r o c e s s i n g r e s o u r c e s .
In genera l , AI g e t s maybe 10% (which i s more than used to be a v a i l a b l e) .
But game d e v e l o p e r s can f i n d ways to do more with l e s s by d i s t r i b u t i n g the

p r o c e s s i n g load , to p r o c e s s in smal l increments and cache r e s u l t s f o r
a lgor i thms to e x p l o i t . An e x c i t i n g prospect f o r the f u t u r e i s AI that
runs remote ly ”on the c loud ” , which would f r e e us to spend much g r e a t e r
p r o c e s s i n g re source s , because the re would be no i n t e r f e r e n c e with
render ing on the c l i e n t .

I understand that some t h in g s have to stay a company s e c r e t , but I
would be extremely thank fu l i f you have any ma te r i a l you could share
that would shed some l i g h t on these q u e s t i o n s .

S i n c e r e l y ,
Remy Jensen

Listing B.5: The reply from Jeff Orkin

Appendix C

Apocalypse Code

This appendix contain the excerpts of the source code of the classes discussed in the report.

C.1 ApocEnemyController

This section contain excerpts of the source code in ApocEnemyController class.

event vec to r GeneratePathToActor (ApocNavPointInterface Goal , o p t i o n a l f l o a t
WithinDistance , o p t i o n a l bool bAl lowPart ia lPath)

{
l o c a l vec to r NextDest ;
l o c a l Vector eyePos ;
l o c a l bool samePos ;
l o c a l f l o a t d e l t a D i s t ;

F lushPers i s tentDebugLines () ;

d e l t a D i s t = VSize (Pawn . Locat ion − LastPawnPos) ;
samePos = (d e l t a D i s t < 0 .0001 f) ;

i f (samePos)
{

TardCounter++;
‘ l og (name @ Pawn . Name @ ” i n c r e a s e d ta rdnes s to ” @ TardCounter) ;
}
e l s e
{

TardCounter = 0 ;
}

NextDest = Goal . GetNavPoint () ;

i f (Enemy == none && s e l f . I sWithinLineOfSight (Goal . GetNavPoint ()) && (
TardCounter < 2))

{
// ‘ l og (name @ Pawn . Name @ ” i s in a s t r a i g h t l i n e o f i t ’ s goa l and d e l t a D i s t

i s : ” @ d e l t a D i s t) ;
LastPawnPos = Pawn . Locat ion ;
r e turn NextDest ;
}
// e l s e

49

50 APPENDIX C. APOCALYPSE CODE

//{
// ‘ l og (name @ Pawn . Name @ ” i s c u r r e n t l y re tarded ”) ;
//}

i f (NavigationHandle == None)
{

In i tNav igat ionHandle () ;
}
// Clear cache and c o n s t r a i n t s (i g n o r e r e c y c l i n g f o r the moment)
NavigationHandle . PathConstra intL i s t = none ;
NavigationHandle . PathGoalList = none ;

i f (Enemy != none)
{

// c l a s s ’ NavMeshPath BiasAgainstPolysWithinDistanceOfLocations ’ . s t a t i c .
BiasAgainstPolysWithinDistanceOfLocat ions (NavigationHandle , Enemy .
Location , Enemy . Rotation , ApocPawn(Pawn) .AVOID DISTANCE, VectorL i s t) ;

// c l a s s ’ NavMeshPath MinDistBetweenSpecsOfType ’ . s t a t i c . EnforceMinDist (
NavigationHandle , ApocPawn(Pawn) .AVOID DISTANCE, NAVEDGE Normal , Enemy .
Locat ion) ;

c l a s s ’ NavMeshPath WithinDistanceEnvelope ’ . s t a t i c . StayWithinEnvelopeToLoc (
NavigationHandle , Enemy . Location , 1000000000.0 f , ApocPawn(Pawn) .
AVOID DISTANCE, true , 3000 .0 f , t rue) ;

}
e l s e
{

c l a s s ’ NavMeshPath Toward ’ . s t a t i c . TowardPoint (NavigationHandle , Goal .
GetNavPoint ()) ;

}

c l a s s ’ NavMeshGoal At ’ . s t a t i c . AtLocation (NavigationHandle , Goal . GetNavPoint ()
, WithinDistance , t rue) ;

i f (NavigationHandle . FindPath ())
{

i f (! NavigationHandle . GetNextMoveLocation (NextDest , 120))
{

‘ l og (name @ Pawn . Name @ ”Found path but GetNextMoveLocation f a i l e d hard . He
so want to run to (0 , 0 , 0) but we won ’ t l e t ’ im ”) ;

NextDest = Pawn . Locat ion ;
}
}
e l s e
{

‘ l og (name @ Pawn . Name @ ” found no path to ” @ Goal . Name) ;
}

// TODO f j e r n debug l i n e s
eyePos = Pawn . Locat ion ;
eyePos . Z += Pawn . EyeHeight ;
//DrawDebugLine (eyePos , NextDest , 255 , 0 , 0 , t rue) ;
// NavigationHandle . DrawPathCache (vect (0 , 0 , 0) , true , MakeColor (0 , 0 , 255 ,

255)) ;

NavigationHandle . C l ea rCons t ra in t s () ;
LastPawnPos = Pawn . Locat ion ;
r e turn NextDest ;
}

C.1. APOCENEMYCONTROLLER 51

Listing C.1: The the GeneratePathToActor() event in the ApocEnemyController class

Bibliography

[1] Nate Anderson. Video gaming to be twice as big as music by 2011
[online]. Available from: http://arstechnica.com/gaming/news/2007/08/
gaming-to-surge-50-percent-in-four-years-possibly.ars.

[2] Eric J. Braude. Software Engineering: An Object-Oriented Perspective. Wiley, 1st

edition, 2000.

[3] Alex J. Champandard. Choosing a hierarchical fsm or a hierarchy of nested
fsms? [online]. Available from: http://aigamedev.com/open/articles/
hierarchical-or-nested-fsm/.

[4] Alex J. Champandard. Common ways to implement finite state machines
in games [online]. Available from: http://aigamedev.com/open/articles/
fsm-implementation/.

[5] Trendy Entertainment. Dungeon defense [online]. Available from: http://www.udk.
com/showcase-dungeon-defense.

[6] DFC Intelligence. Dfc intelligence forecasts video game market to reach $57 billion in
2009 [online]. Available from: http://www.dfcint.com/wp/?p=222.

[7] Ian Millington. Artificial Inteligence For Games. Morgan Kaufmann Publishers, 1st

edition, 2006.

[8] Tom M. Mitchell. Machine Learning. McGraw-Hill Companies, Inc, international edi-
tion edition, 1997.

[9] Norwegian Ministry of Culture and Church Affairs. Video games. Reports to the Storting
(2007-2008), 14:29–30, March 2008.

[10] Amit Patel. Heuristics [online]. Available from: http://theory.stanford.edu/
˜amitp/GameProgramming/Heuristics.html.

[11] Steve Polge and Matt Tonks. Ai system overview [online]. Available from: http:
//udn.epicgames.com/Three/AIOverview.html.

[12] Charles Rich. Basic game ai [online]. Available from: http://web.cs.wpi.edu/˜rich/
courses/imgd4000/lectures/B-AI.pdf.

[13] Tim Sweeney. Unrealscript language reference [online]. Available from: http://udn.
epicgames.com/Three/UnrealScriptReference.html#States.

52

http://arstechnica.com/gaming/news/2007/08/gaming-to-surge-50-percent-in-four-years-possibly.ars
http://arstechnica.com/gaming/news/2007/08/gaming-to-surge-50-percent-in-four-years-possibly.ars
http://aigamedev.com/open/articles/hierarchical-or-nested-fsm/
http://aigamedev.com/open/articles/hierarchical-or-nested-fsm/
http://aigamedev.com/open/articles/fsm-implementation/
http://aigamedev.com/open/articles/fsm-implementation/
http://www.udk.com/showcase-dungeon-defense
http://www.udk.com/showcase-dungeon-defense
http://www.dfcint.com/wp/?p=222
http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html
http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html
http://udn.epicgames.com/Three/AIOverview.html
http://udn.epicgames.com/Three/AIOverview.html
http://web.cs.wpi.edu/~rich/courses/imgd4000/lectures/B-AI.pdf
http://web.cs.wpi.edu/~rich/courses/imgd4000/lectures/B-AI.pdf
http://udn.epicgames.com/Three/UnrealScriptReference.html#States
http://udn.epicgames.com/Three/UnrealScriptReference.html#States

BIBLIOGRAPHY 53

[14] Matt Tonks. Navigation mesh path constraints and goal evalua-
tors [online]. Available from: http://udn.epicgames.com/Three/
NavMeshConstraintsAndGoalEvaluators.html.

[15] Matt Tonks. Navigation mesh reference [online]. Available from: http://udn.
epicgames.com/Three/NavigationMeshReference.html.

[16] Matt Tonks. Navigation mesh technical guide [online]. Available from: http://udn.
epicgames.com/Three/NavigationMeshTechnicalGuide.html.

[17] Matt Tonks. Using navigation meshes [online]. Available from: http://udn.
epicgames.com/Three/UsingNavigationMeshes.html.

[18] Paul Tozour. AI Game Programming Wisdom. Charles River Media, 1st edition, 2002.

[19] Wikipedia. Game artificial intelligence [online]. Available from: http://en.
wikipedia.org/wiki/Game_artificial_intelligence.

http://udn.epicgames.com/Three/NavMeshConstraintsAndGoalEvaluators.html
http://udn.epicgames.com/Three/NavMeshConstraintsAndGoalEvaluators.html
http://udn.epicgames.com/Three/NavigationMeshReference.html
http://udn.epicgames.com/Three/NavigationMeshReference.html
http://udn.epicgames.com/Three/NavigationMeshTechnicalGuide.html
http://udn.epicgames.com/Three/NavigationMeshTechnicalGuide.html
http://udn.epicgames.com/Three/UsingNavigationMeshes.html
http://udn.epicgames.com/Three/UsingNavigationMeshes.html
http://en.wikipedia.org/wiki/Game_artificial_intelligence
http://en.wikipedia.org/wiki/Game_artificial_intelligence

	Title Page
	Problem Description
	I Introduction
	Project Background
	Motivation
	Project Goal
	Project Context
	Stakeholders
	Author
	Course Staff
	Cooperation Group

	Research
	Research Questions
	Research Methodology

	Development
	Development Method
	Development Tools

	II Prestudy
	The Current Situation of Game AI
	Traditional AI Game AI intersection

	Pathfinding
	A* Searching Algorithms
	Graphs
	Way Points
	Navigation Mesh

	Action Selection
	Decision Trees
	Finite State Machines

	Unreal Development Kit
	Navigation
	Navigation Meshes

	Controllers
	UnrealScript and Finite State Machines

	III Own Contribution
	Requirements
	Functional Requirements
	Non-Functional Requirements

	Architecture
	UDK Framework
	Class Architecture
	Finite State Machine Architecture

	Path Finding
	GeneratePathToActor
	Navigational Support Functions
	ObstructionJump
	FindNearestTargetOfType

	Action Selection
	Finite State Machine
	Decision Tree

	Results
	Partially Fulfilled Requirements
	Unfulfilled Requirements

	IV Evaluation and Discussion
	Evaluation
	Development Method
	Design
	Research
	RQ 1: How is the game AI implemented in modern games?
	RQ 2: How can the answers from the above research questions help creating a better game AI?

	Conclusion and Further Work
	Conclusion
	Further Work

	V Appendix
	"Apocalypse" Concept Document
	Correspondence With Game AI Developers
	The questionaire
	Chris Jurney
	Crytek
	Epic Games
	Jeff Orkin

	Apocalypse Code
	ApocEnemyController

	Bibliography

