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Abstract

Corpora of  biomedical information typically contains large amounts of  ambiguous data, as proteins and
genes can be referred to by a number of  different terms, making information retrieval difficult. This
thesis investigates a number of  methods attempting to increase precision and recall of  searches within the
biomedical domain, including using the BM25F model for scoring documents and using Named Entity
Recognition (NER) to identify biomedical entities in the text. We have implemented a prototype for
testing the approaches, and have found that by using a combination of  several methods, including using
three different NER models at once, a significant increase (up to 11.5%) in mean average precision (MAP)
is observed over our baseline result.
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Chapter 1

Introduction

1.1 Background

The first automated information retrieval systems were introduced during the 1960s, and the field of  In-
formation Retrieval (IR) was born. As the amount of  electronic information increased, not least because
of  the widespread adoption of  World Wide Web during the 1990’s, Information Retrieval has become a
domain of  great interest, and there has been much research and development in the field (Singhal, 2001).
Even though most of  this research also applies to IR systems for biomedical information, Ramampiaro
(2010) describes several problems that are specific to this domain. One of  the biggest challenges is that
biomedical information typically contains large amounts of  domain-specific terminology with high am-
biguity (Krauthammer and Nenadic, 2004). The same protein or gene can use widely different terms,
and the same term can have several meanings.

1.2 Motivation

The inconsistency and ambiguity described in the previous section can lead to both low recall and low
precision in search results within the biomedical domain. Ramampiaro (2010) successfully addresses
some of  the challenges described in his BioTracer prototype, a search engine tailored for biomedical
information. Johannsson (2009) tries to increase precision of  a search by giving each term in a document
a weight based on the context in which it is found, but concludes that his implementation has little or no
effect on the results. The author suggests methods to combine term boosting with query expansion to
increase both precision and recall of  a search, as well as ways to improve the context weighting.

In this thesis, we will try to extend the research done by Johannsson (2009), and strive to achieve
higher precision in search results from biomedical articles.

1.3 Outline of the solution

We have developed a prototype in Java that tests several retrieval models and weighting algorithms. It
uses Named Entity Recognition to automatically identify biomedical terms in an attempt to increase
the precision of  searches within biomedical corpora. The prototype is evaluated using the document
collection and topics from TREC 2004 Biomedical track. The idea behind the prototype is explained in
Chapter 4, and details about the implementation are found in Chapter 5.

1.4 Thesis structure

The thesis is structured into the following chapters:

1



Introduction This chapter contains a brief  background, the motivation and the problem statement.

Background information This chapter explains the basic concepts and definitions used in the thesis. This
includes theory about information retrieval and the methods used to evaluate results.

Related work This chapter presents other work and research related to this thesis.

Our approach In this chapter, we explain the idea behind the prototype.

Implementation This chapter explains how the prototype is implemented.

Evaluation In this chapter we evaluate the prototype and present the results.

Conclusion and future work Contains interpretations of  the results and the conclusions, as well as future
work.
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Chapter 2

Background information

In this chapter we will give a short introduction to information retrieval (IR), introduce some retrieval
models, and describe some commons methods used to evaluate IR systems.

2.1 Information Retrieval

The term information retrieval can be thought of  as a more academic synonym to the term search, and can
be defined as (Mannning et al., 2008):

Information retrieval (IR) is finding material (usually documents) of  an unstructured nature
(usually text) that satisfies an information need from within large collections (usually stored
on computers).

A traditional IR system provides a way for a user to enter a query, typically using keywords, and the system
will return the documents it deems relevant to the query from the document collection. This could be
done by scanning the collection for matched terms each time a search is performed, but this is obviously a
very time consuming process, even in relatively small document collections. That is why most IR systems
use an index, often referred to as an inverted index. An inverted index is basically a list that maps a specific
term or metadata, such as year or author, to one or more specific documents. The process of  creating an
index is time-consuming, but the index only needs to created once (and then updated when the document
collection changes or at certain intervals).

During the index construction certain linguistic preprocessing tasks are executed and stop words1 are
usually removed. The result is a list of normalised2 and often stemmed or lemmatised3 terms with pointers
to the documents in which they occur. More advanced indexes also stores the position(s) of  the terms
within each document. The same preprocessing tasks that are performed on the index must be done to
all queries as well.

2.2 Information Retrieval models

Every time a user of  an IR system creates a query, the system needs to return some results. How can a
computer tell which documents are relevant to the query, and more important; which results are more
relevant than others?

1 Extremely common words such as and, to and it. Stop words will appear in virtually all documents, and therefore does
not add any value to the index

2 Creating equivalence classes so that for instance different spellings of the same word will map to the same term
3 Stemming is the crude process of chopping off the end of a word to find some kind of base form, even if it is not

necessarily grammatically correct (ponies → poni), while lemmatisation uses a vocabulary to return the true base form
(ponies → pony)

3



Figure 2.1: Information Retrieval model categories: The table shows the categories of  some of  the most
common IR models. German original from Kuropka (2004), English translation by Thomas Hoffmann.
Available from http://commons.wikimedia.org/wiki/File:Information-Retrieval-Models.png under the
GNU Free Documentation License.

There is of  course no definitive answer, but there are many approaches to solving the problem. We
use different Information Retrieval models to represent the documents in the document collection, which
can usually be divided into one (or more) of  three categories; set-theoretic (including boolean) models,
algebraic models, and probabilistic models, as seen in Figure 2.1 (Mannning et al., 2008). In this section
we will first introduce the concept of  term weighting, before we describe the three categories of  retrieval
models.

2.2.1 Scoring and term weighting

In the introduction, we asked the question which results are more relevant? To answer this, we need to assign
some kind of  a score that computes the similarity between a query and its results. There are several ways
to do this, but a common denominator is that they often use the term frequency-inverse document frequency
(tf-idf) model (described below) to create term weights.

2.2.1.1 tf-idf

tf-idf  is a bag of  words4 weighting model used to give weights to the terms in a document collection by
measuring how often a term is found within a document (term frequency), offset by how often the term is
found within the entire collection (inverse document frequency). This means that a term t will have highest
weight when it is found many times within a single document, and lowest when it is found in all documents.

The term frequency (tf), the inverse document frequency (idf) and tf-idf  are defined as follows:

tf(t, d) =
nt,d∑
k nk,d

(2.1)

4 Term order and grammar is ignored, what counts is the number of occurrences of each term. The documents Peter is
smarter than Jane and Jane is smarter than Peter is considered equal in a bag of words model.

4
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idf(t) = log
|D|
dft

(2.2)

tf-idf(t, d) = tf(t, d) · idf(t) (2.3)

where nt,d is the number of  times the term t occurs in document d,
∑

k nk,d is the sum of  all terms k in
document d, |D| is the number of  documents in the collection and dft is the document frequency (the
number of  documents in the collection in which the term t occurs) (Mannning et al., 2008).

2.2.2 Set-theoretic models

Models in this category uses sets of  words or phrases to represent the documents, and uses some sort
of  set-theoretic operations to determine the relevance. The most common model is the Boolean model
(described below), but methods such as Fuzzy retrieval also falls into this category.

2.2.2.1 Boolean model

The Boolean model is a very simple model where, based on a query, a document is either deemed relevant
or irrelevant. When formulating a query, the user can include certain keywords; the most common being
AND, OR, XOR and NOT. If  we let D be a collection of  documents, and let S1, S2 be the set of  all the
documents in D that contains the terms T1 and T2, respectively, we can define the boolean operators
above as follows:

NOT T1 = D − S1 (2.4)

T1 AND T2 = S1 ∩ S2 (2.5)

T1 OR T2 = S1 ∪ S2 (2.6)

T1 XOR T2 = (S1 ∪ S2)− (S1 ∩ S2). (2.7)

An example: Consider a set of  documents D = {D1, D2, D3}, where

D1 = {lorem ipsum dolor sit amet} (2.8)

D2 = {consectetur adipisci velit} (2.9)

D3 = {duis aute irure dolor in reprehenderit}. (2.10)

Let queries Q1, Q2 be:

Q1 = lorem AND ipsum (2.11)

Q2 = dolor OR reprehenderit. (2.12)

If R1, R2 is the results of Q1, Q2 respectively, we have R1 = {D1} because D1 is the only document
that contains both lorem and ipsum, and R2 = {D1, D3} because both documents contains either dolor
or reprehenderit (or both).

The boolean model has no concept of  relevance; a document will either match or not match the user’s
query. That is; every document that matches the query is returned to the user in some kind of  arbitrary
order. In a large document collection, the record set might potentially become very cumbersome (if  at
all plausible) to sift through. As such, it is not very useful on its own, but it has been shown that it can be
a very effective extension to another retrieval model (Ramampiaro, 2010; The Apache Lucene project,
2009). Many commercial IR systems also implements the boolean model to a certain degree.

2.2.3 Algebraic models

In this category, both documents and queries are represented as vectors, tuples or matrices, and relevance
is computed by measuring the scalar distance between the vectors. In addition to the Vector Space Model
(described below), methods based on matrix decompositions such as Latent Semantic Indexing is put in
this category (Mannning et al., 2008).

5
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6.3 The vector space model for scoring 121

0 1
0

1

jealous

gossip

!v(q)

!v(d1)

!v(d2)

!v(d3)

θ

! Figure 6.10 Cosine similarity illustrated. sim(d1, d2) = cos θ.

each term. This representation loses the relative ordering of the terms in each
document; recall our example from Section 6.2 (page 117), where we pointed
out that the documents Mary is quicker than John and John is quicker than Mary
are identical in such a bag of words representation.

How do we quantify the similarity between two documents in this vector
space? A first attempt might consider the magnitude of the vector difference
between two document vectors. This measure suffers from a drawback: two
documents with very similar content can have a significant vector difference
simply because one is much longer than the other. Thus the relative distribu-
tions of terms may be identical in the two documents, but the absolute term
frequencies of one may be far larger.

To compensate for the effect of document length, the standard way of
quantifying the similarity between two documents d1 and d2 is to compute
the cosine similarity of their vector representations !V(d1) and !V(d2)COSINE SIMILARITY

sim(d1, d2) =
!V(d1) · !V(d2)

|!V(d1)||!V(d2)|
,(6.10)

where the numerator represents the dot product (also known as the inner prod-DOT PRODUCT

uct) of the vectors !V(d1) and !V(d2), while the denominator is the product of
their Euclidean lengths. The dot product !x · !y of two vectors is defined asEUCLIDEAN LENGTH

∑M
i=1 xiyi. Let !V(d) denote the document vector for d, with M components

!V1(d) . . . !VM(d). The Euclidean length of d is defined to be
√

∑M
i=1

!V2
i (d).

The effect of the denominator of Equation (6.10) is thus to length-normalizeLENGTH-
NORMALIZATION the vectors !V(d1) and !V(d2) to unit vectors !v(d1) = !V(d1)/|!V(d1)| and

Figure 2.2: Cosine similarity illustrated: sim (d1, d2) = cos θ. Illustration from Mannning et al. (2008).

2.2.3.1 Vector Space Model

The Vector Space Model (VSM) is an algebraic model where both documents and query terms are rep-
resented as vectors in a vector space. The model was developed by Salton et al. (1975), and is still widely
in use. It is for instance used as the default scoring model in the open source search engine Lucene5 (The
Apache Lucene project, 2009).

In VSM, we derive a vector V⃗ (d) from each document, where each dimension in the vector corre-
sponds to a separate term from the document collection. Each term in the vector is given a relevance
weight using a weighting scheme, often using the tf-idf  formula described in Equation 2.3. A key step in
the VSM model is to view the query itself  as a vector in the same vector space as the documents, giving
us V⃗ (q). We can then use for instance the cosine similarity between the query and each of  the documents
to compute the relevance (see Figure 2.2), given by (Mannning et al., 2008):

sim(d1, d2) =
V⃗ (d1) · V⃗ (d2)

|V⃗ (d1)||V⃗ (d2)|
. (2.13)

Because we view the query as a “document” by itself, we can use this formula not just to compute the
relevance between a query and a document, but also the relevance between two documents. This is useful
if, for instance, a search engine wants to support a “show similar documents” feature.

2.2.4 Probabilistic models

Models in this category uses probability theory, such as Bayes’ theorem, to estimate the likelihood that
any given document is relevant to the user’s information need. Models include the Binary Independence
Model, Okapi BM25 and BM25F, different language models and more.

2.2.4.1 Okapi BM25

Okapi BM25 is a bag of  words ranking model developed by Robertson and Jones (1994) used to compute
the relevance between a query and the documents in the collection.

Given a document D and a query Q (containing terms q1 . . . qn), the BM25 score is calculated as
follows (Mannning et al., 2008; Robertson and Jones, 1994):

BM25(D,Q) =
n∑

i=1

idf(qi)
tf (qi, D) · k1 + 1

tf(qi, D) + k1 ·
(
1− b+ b · |D|

avglD

) (2.14)

5 http://lucene.apache.org/java/docs/index.html
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where k1 (k1 ≥ 0) and b (0 ≤ b ≤ 1) are tuning constants, |D| is the length of  document D, and avglD
is the average document length in the collection. A high value for k1 means that the term frequency will
have more impact, while the value b affects length normalisation; a value of  0 means that a document
is long because it is multitopic, while a value of  1 means that it is long because it is repetitive. In the
TREC workshops6, these values were found to be most effective at k1 = 2 and b = 0.75. The idf
formula (defined in Equation 2.2) in the BM25 formula is sometimes replaced with alternative versions,
for instance to achieve a level of  smoothing or account for relevance feedback. Equation 2.15, using a
low value for α, for instance α = 1

2 , is an often used variation:

idf(qi) = log
|N | − df(qi) + α

df(qi) + α
. (2.15)

Using BM25 ensures that the effect of  the term frequency is not too strong and that for a term occur-
ring just once in an average length document, the weight is the inverse document frequency (idf) of  the
term (Robertson and Jones, 1994). However, Robertson et al. (2004) have shown that when weighting
structured documents (such as documents with title, abstract and content etc.), a linear combination of
the scores for the different fields can lead to over-estimating the importance of  a term, especially when
there are big differences in the field lengths.

2.2.4.2 BM25F

BM25F is a variant of  the Okapi BM25 algorithm (described above in Section 2.2.4.1) that is better suited
than plain BM25 for ranking structured documents (Zaragoza et al., 2004; Robertson and Zaragoza,
2007). It uses a weighting algorithm to normalize the term frequencies for each of  the fields in the
document. To calculate this weight for term t in a document D containing the fieldsf1 . . . fn, we use the
following formula (Pérez-Iglesias et al., 2009):

weight(t,D) =
n∑

i=1

tf(t, fi) · boostfi
1− bfi + bfi ·

lfi
avglfi

(2.16)

where tf (t, fi) is the term frequency for term t in field fi, boostfi is a boost value given to the field, bf
(0 ≤ bfi ≤ 1) is a tuning constant related to field length normalisation (corresponding to the b value of
the BM25 formula in Equation 2.14), lfi is the length of  the field and avglfi is the average length of  the
field.

Given a document D and a query Q (containing terms q1 . . . qn), the BM25F algorithm is then cal-
culated as follows:

BM25F(D,Q) =
n∑

i=1

idf(qi) ·
weight(qi, D)

weight(qi, D) + k1
(2.17)

where idf(qi) is calculated as in Equation 2.15 and k1 is a tuning constant, corresponding to the one used
in the BM25 formula in Equation 2.14.

2.3 Evaluation of IR systems

There are two major approaches to evaluating an IR system; user-based evaluation and system evaluation.
The first method, which is qualitative, tries to measure the user’s satisfaction with the system, and is
probably the optimal way of  judging how well the IR system meets the information need of  its users. It is

6 See Section 2.3.1.2.
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hard, however, to execute such an evaluation in a large scale because of  the large number of  representative
users needed and the expenses involved. Instead it is usual to use system evaluation (Voorhees, 2002).

In this section, we will describe some of  the concepts and methods one can use to evaluate or measure
the performance of  an information retrieval system.

2.3.1 Test collections

2.3.1.1 The Cranfield experiments

The Cranfield 2 experiment (Cleverdon, 1967) introduced a methodology for evaluating index languages,
and the notion of  using test collections quickly became the de facto way of  evaluating IR systems, using
concepts such as precision (see Section 2.3.2.2) and recall (see Section 2.3.2.2). A test collection consists
of  three parts; the documents, queries (statements of  the information need), and relevance judgements (the
“solution” to the queries, as evaluated by experts on the topic). The test collection used in the experiment
is way to small for today’s standard, but the methodology the experiment introduced is still used in more
modern test collections.

2.3.1.2 Text REtrieval Conference (TREC)

TREC is a series of  workshops run by the U.S. National Institute of  Standards and Technology (NIST)
every year since 1992. Each year there are one or more tracks, each with a specific challenge as well as
ancillary document collections, definitions of  information needs and sets of  relevance judgements. In
the more recent years, there have been specific tracks for several fields of  study, including the genomics
track which ran from 2003 to 20077. In the prototype developed as part of  this thesis, we have used the
document collection from the genomics 2004/2005 track8, and topics and relevance judgements from
the genomics 2004 track. See Chapter 6 for more information.

2.3.1.3 Other test collections

There are several other test collections available, such as the large GOV2 collection used in the TREC
Terabyte track9 and test collections focused on Asian or European languages instead of  the more English-
centric TREC collections.

2.3.2 Measurements

In this section we present some common measures of  system effectiveness.

2.3.2.1 Precision

The proportion of  relevant documents among the documents retrieved in a search (see Figure 2.3), defined
as

P =
|relevant items retrieved|

|retrieved items|
. (2.18)

If  ten documents were retrieved and six of  these were relevant, we have precision P = 6
10 = 0.6.

7 See http://ir.ohsu.edu/genomics/.
8 The same document collection was used both years.
9 See http://ir.dcs.gla.ac.uk/test_collections/.
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Document collection

Retrieved documents
Relevant documents

Precision and recall

Figure 2.3: Precision and recall illustrated.

2.3.2.2 Recall

The proportion of  relevant documents retrieved in a search among all the relevant documents in the
collection (see Figure 2.3), defined as

R =
|relevant items retrieved|

|relevant items|
. (2.19)

If  six of  the retrieved documents are relevant, and there are a total of  20 relevant documents in the
collection (14 of  which were not returned), we have recall R = 6

20 = 0.3.

2.3.2.3 Precision at k

Measures the precision as described below, but after k documents are retrieved. It is not very stable be-
cause the number of  relevant documents in the collection strongly influences the measurement, especially
if k is smaller than the number of  relevant documents that exists for the topic (Mannning et al., 2008).
Precision at k can still be of  some interest because it mimics the way many people search on the Web; if
a search result returns 10 results on each page, “precision at 10” resembles the fact that very few people
look further than the first page of  results (Eysenbach and Kohler, 2002; Silverstein et al., 1999).

2.3.2.4 R-Precision

R-Precision is the precision after R documents are retrieved, where R is the total number of  relevant
documents in the collection for this query. An R-Precision of  1 means that both precision and recall is
perfect. If k = R, “Precision at k” and R-Precision are equal.

2.3.2.5 Mean Average Precision (MAP)

MAP is a more stable evaluation measure than Precision or R-precision, because it is based on much more
information than the other methods. It also considers the order of  which the documents are returned,
giving a higher score if  the relevant documents are near the top. Mannning et al. (2008) defines MAP as

MAP(Q) =
1

|Q|

|Q|∑
j=1

1

mj

mj∑
k=1

Precision(Rjk) (2.20)
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where {d1 . . . dmj} is the set of  relevant documents for an information need qj ∈ Q and Rjk is the set of
ranked results from the top and down to document dk.

The MAP returns a single score for the search, which might be a disadvantage because of  the many
factors that affects it. The score can be hard to interpret, as the same score can be achieved in a number
of  different ways.

2.3.2.6 Incomplete judgement sets and alternative measures

The Cranfield methodology introduced in Section 2.3.1.1 makes a few assumptions, one of  which is
that the relevance judgements are complete (which means that all relevant documents in the document
collection is known). Evaluation measures that are derived from recall and precision, are not robust when
the relevance judgements are incomplete (Voorhees, 2002).

In practice, for instance on the Internet, getting hold of  complete judgement sets is obviously not
possible. No one can know all web pages that are relevant to an information need when the document
collection contains more than 1012 unique URLs (Alpert and Hajaj, 2008). As such, we can deduce
that in a standard web search (using for instance Google), precision becomes much more important than
recall. If  the user performing the search can find some relevant documents at the first page of  the search
results (alas, high precision), he will probably be satisfied, and he will have no interest in knowing about
the rest of  the relevant documents that were not retrieved (low recall).

The test collections described in Section 2.3.1 are several orders of  magnitude smaller than the World
Wide Web, but most of  them are still so large that getting complete relevance judgements is highly unlikely.
Citing Voorhees (2002):

Assuming a judgment rate of  one document per 30 seconds, and judging round-the-clock
with no breaks, it would still take more than nine months to judge one topic for a collection
of  800,000 documents (the average size of  a TREC collection).

Most test collections therefore use a technique called pooling to create a subset (“pool”) of  the document
collection for each topic, which is then used in the judging process. All documents not in this pool are
deemed to be irrelevant, even if  they in reality are not. In the TREC conferences, documents are added
to the pool by each of  the participating groups. They submit the results of  their runs to the organiser
(NIST), and the top documents returned, for instance the first hundred results, are added to the pool to
be judged (Voorhees, 2002). Because of  the way documents are added, this tends to produce rather good
pools, with most of  the relevant documents for a topic being judged (Yilmaz and Aslam, 2006).

Finding more robust measures than the ones described in the previous sections, have been an area of
much research (Buckley and Voorhees, 2004; Sakai and Kando, 2008; Yilmaz and Aslam, 2006). It has
been shown that the Cranfield methodology is robust to small violations of  the completeness requirement,
and several alternative measures have been introduced. The most “successful”10 of  these measures is the
bpref measure, introduced by Buckley and Voorhees. It have been shown to be more stable and robust
than merely using recall and precision-based methods.

Johannsson (2009) chose to simplify the problem, and removed all unjudged documents from the
document collection. As such, the test set was completely judged, and the author was able to use MAP
in a robust way. To be able to easily compare our scores, we have chosen to follow Johannsson’s lead and
do the same. This is elaborated on in Chapter 6.

10 The measure have been used, in addition to MAP, in many TREC runs since 2005, and is included in the official trec_eval
tool (http://trec.nist.gov/trec_eval/).

10

http://trec.nist.gov/trec_eval/


Chapter 3

Related work

3.1 Strategies used to increase precision and recall

There are several strategies and methods introduced that tries to increase precision and/or recall in IR
systems. Many of  them are based around the issue of synonymy: The terms in a document collection are
often ambiguous; the same concept can be referred to with different words, and conversely, the same word
can relate to totally different concepts. The methods developed to address this problem can be divided
into global and local methods. The global methods works on a global scale and tries to refine the query
based on for instance a thesaurus, while the local methods looks at the documents returned in a search
and tries to extract relevant information from these and use it to refine the query (Mannning et al., 2008).

3.1.1 Relevance Feedback

There are three basic approaches to relevance feedback:

User After a successful search, the system will give the user an opportunity to mark some of  the returned
documents as relevant, and then run the search again. The second run will use information about
the marked, relevant documents to refine and reweight the query terms (for instance using the
Rocchio algorithm), returning an even better search result.

Pseudo This method is similar to the regular user relevance feedback described above, but instead of
letting the user mark documents as relevant, the system will do this automatically by assuming that
the top k documents are relevant.

Indirect This method uses global analysis instead of  the local analysis used by the two methods above.
Rather than letting the user mark documents as relevant, this method uses data collected from a
large number of  users, marking popular documents as more relevant. The idea is that if  a lot of
users uses a document returned from a given term, this document is probably pertinent to that
term.

3.1.2 Query Expansion

The two-step method for query expansion is:

• The user inputs a query.

• The system analyses the query and, using a thesaurus, it can either:

– present some alternative or expanded queries to the user, along with the original results.

– automatically expand the query and then present the user with the results of  the new query.

11



Figure 3.1: An example of  query expansion on Google when searching for query expansion.

Query expansion is an effective tool when the user is searching for ambiguous terms or terms with a
lot of  synonyms. It is effective in increasing the recall of  a search, but might also decrease the precision.
A search for charge, for instance, is quite ambiguous, and a thesaurus might suggest synonyms that are
unrelated to the user’s intended meaning of  the word (Mannning et al., 2008).

Query expansion is popular with web search engines, such as Google. An example can be seen in
Figure 3.1.

The most common form of  query expansion is global analysis using a thesaurus. The most popular
methods for generating said thesaurus are (Mannning et al., 2008):

Controlled vocabulary This method “forces” query expansion by assigning one or more canonical terms
for each concept. The vocabulary is controlled by human editors.

Manual thesaurus Similar to the controlled vocabulary, but without any canonical terms.

Automatic thesaurus generation This method tries to automatically generate a thesaurus from a collec-
tion of  documents in a domain.

Query log mining This method focuses on the manual query expansions made by other users, by suggest-
ing the most used expansions made by other users of  the system.

3.1.3 MeSH Query Expansion/Relevance Feedback

The U.S. National Library of  Medicine produces a controlled vocabulary/thesaurus of  subject headings
for biomedical and health-related information and documents called MeSH® (Medical Subject Head-
ings)1. In 2010, it contains 25,588 descriptors organised hierarchically, and more than 172,000 entry
terms that maps to these descriptors. Almost all articles in the MEDLINE database2 are tagged with
multiple3 MeSH terms.

Using MeSH information in connection with query expansion or relevance feedback have been an
area of  much research4. Camous et al. (2006) uses pseudo-relevance feedback (described in Section 3.1.1)
to select the top n MeSH headings (5 ≥ n ≥ 40) from the top 5 results of  each topic, and uses these

1 See http://www.nlm.nih.gov/mesh/.
2 MEDLINE is a bibliographic database compiled the U.S. National Library of Medicine that contains over 18 million references

to journal articles within medicine and biomedicine.
3 10-12 MeSH tags per article in average, according to Camous et al. (2006).
4 Srinivasan (1996a,b); Shin et al. (2004); Bacchin and Melucci (2005); Camous et al. (2006); Kim and Chen (2007); Lu et al.

(2009), among others.
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MeSH terms to expand the query. They report an increase in MAP of  up to 8.8%. Lu et al. (2009)
reports a more modest improvement using a more classic form of  query expansion, and notes that the
increased retrieval performance in practice might not benefit end users. Others, such as Bacchin and
Melucci (2005), even reports a decrease in the performance.

3.1.4 Weighting different document parts independently

When dealing with structured documents, such as MEDLINE citations, we can give different weights to
each of  the document parts (like the title or the abstract). The idea is that, for instance, if  a term from a
user’s query is found in the title, the probability that the rest of  the document is relevant to this term is
higher than if  the same term is found in the abstract. Ramampiaro (2010) found that weighting the title
twice as much as the abstract produced good results.

3.1.5 Document-Level Term Boosting

As we briefly mentioned in Section 1.2, this thesis is continuing the work of Johannsson. In his thesis
(2009), he described and implemented an IR system that gave a weight to all terms in a document based
on the context of  which the term is found. The context, in this case, was the number of  times biomedical
relevant keywords were mentioned within the same sentence as the term.

In practice, the author did the following to achieve document-level term boosting:

• Used sentence detection to extract each sentence of  the document, using a library from a linguistic
tool kit for Java called LingPipe5.

• Used a text mining technique called Named Entity Recognition (NER) to identify biomedical in-
formation in the sentences. Two different models from the same tool kit (GeneTag and GENIA6)
were used in this process.

• Weighted and normalised the sentence based on this information.

• The sentence weight was used as a boost in conjunction with standard ranking models; namely
the Vector Space Model (described in Section 2.2.3.1) and the Okapi BM25 model (described in
Section 2.2.4.1).

Johannsson concludes that the effect of  the term boost as implemented in his prototype is minimal,
but may be worth further research.

3.2 Implemented retrieval systems

3.2.1 PubMed

PubMed is the official (but not the only) search engine for inquiries to the MEDLINE database. It is de-
veloped and maintained by the U.S. National Center for Biotechnology Information (NCBI) at the U.S.
National Library of  Medicine (NLM). It provides citations and links to full text articles, and will automat-
ically try to map a user’s query to MeSH terms to increase the performance of  the search. PubMed also
offers some advanced features not found in most web search engines, but Herskovic et al. (2007) suggests
that they are infrequently used.

5 The LingPipe tool kit is available from http://alias-i.com/lingpipe/, and the sentence detection is described in detail on
http://alias-i.com/lingpipe/docs/api/com/aliasi/sentences/HeuristicSentenceModel.html. LingPipe is discussed in Section
5.1.1.3.

6 Both models are available from http://alias-i.com/lingpipe/web/models.html.
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PubMed launched an updated and simplified interface in October 20097 that encourages the use
of  simple, Google-like queries instead of  more complex boolean queries, which PubMed then tries to
intelligently parse. Users can still access an advanced search page to use all the features manually.

3.2.2 BioTracer

BioTracer is the work of Ramampiaro (2010), and is a search tool prototype that implements many dif-
ferent strategies to improve the performance of  searches within the BioMedical domain. The author uses
methods such as different weighting for different document parts, user relevance feedback (see Section
3.1.1), extending tf-idf  (see Section 2.2.1.1) and Okapi BM25 (see Section 2.2.4.1) to support more kinds
of  queries, such as boolean queries and wildcard (*) support. BioTracer has shown promising results
against the TREC corpus, but has not yet been tested in a realistic environment.

3.2.3 GoPubMed

GoPubMed is a knowledge-based biomedical search engine that originally added the possibility to browse
PubMed results using Gene Ontology (GO)8, a structured vocabulary of  genes, gene annotations and gene
attributes (Doms and Schroeder, 2005). Later, MeSH support was added, and GO and MeSH are now
both used.

3.2.4 Textpresso

Textpresso9 is a text-mining engine that searches within specific corpora (currently 17 different literatures
are supported). It supports full text search, so that the entire articles are searchable, and support relations
and descriptions of  biomedical concepts, using its own ontology. By using full text search, the authors
claim to increase recall from 45% to 95% (Müller et al., 2004).

7 See http://www.nlm.nih.gov/pubs/techbull/so09/so09_pm_redesign.html
8 See http://www.geneontology.org/
9 See http://www.textpresso.org/
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Chapter 4

Our approach

This chapter elaborates on the ideas on which our prototype is based.

4.1 The idea

The goal of  this thesis is to continue the work of Johannsson, and try to further improve on the results
presented in his thesis (2009). To achieve this, we will try to combine several techniques and methods,
including some changes to the original idea as well as some new ones.

The basic idea is to use data mining techniques to identify biomedical terms in all documents in a
collection. The hypothesis is that a document with a high density of  said terms is, on average, more
relevant than a document with lower density. While Johannsson used sentence extraction to do the data
mining on a per-sentence basis in the document’s abstract, we have chosen to weight the abstract as a
whole, and additionally use both the title field and the mesh fields found in MEDLINE citations in the
weighting process. We propose that because abstracts generally are short and compact, each sentence will
often contain a lot of  biomedical information in a corpora such as MEDLINE. The sentence weighting
done by Johannsson boosted the sentence weight if  a query term matched a term in the sentence, and
the sentence also contained biomedical relevant terms. In Figure 4.1 we have plotted all the boost values
for the 8382 matched sentences used in his solution. We can see that the distribution is somewhat poor
(most values varies only between 1.6 and 1.9), partially invalidating the effects of  the boosting values, as
a very high proportion of  the sentences are boosted with almost the same value.

The basic idea we propose is actually a simplification of Johannsson’s implementation, but it still
brings about some implementational quirks. In addition, we test another approach that identifies biomed-
ical terms in the query and maps these to MeSH terms (see Section 3.1.3 for more information on MeSH),
and then boosts the weight of  documents where the same MeSH terms are found in the MEDLINE ci-
tation.

In the following sections, the ideas are explained in depth.

4.2 Named Entity Recognition

Named Entity Recognition (NER) is the process of  automatically recognising specific terms and concepts
within natural language. Even though researchers have produced NER systems with near-human per-
formance on “normal” English text (Marsh and Perzanowski, 1998), NER tasks within the biomedical
domain have proved difficult (Cohen and Hersh, 2005). The main challenges lies with the fact that there
are no complete dictionaries for most types of  biological entities; the same word or phrase can mean
different things based on the context; and many biological entities have multiple names or annotations
that refers to it.
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Figure 4.1: Distribution of  the 8382 sentence boost values used during retrieval in Johannsson’s prototype,
using his Extended BM25 (GENIA) model. The red line is the average boost value (1.7485999). 4
sentences with a boost value of  0 are not shown.

There are four approaches to Named Entity Recognition (Cohen and Hersh, 2005; Wu et al., 2006;
Mansouri et al., 2008):

Dictionary based Uses a static lexicon to identify known entities in the text.

Rule based Uses a set of  human made rules to identify entities that matches.

Statistically based The systems look for patterns and relationships in already annotated training data,
and using machine learning algorithms and statistical models it can detect similar concepts in new
text. Requires a large amount of  training data, but is very effective.

Hybrid Uses a combination of  the above methods.

In our prototype we use three different NER models, but all are implemented using LingPipe1.
Two of  them are statistically based, namely GeneTag that uses a Hidden Markov Model2, and GENIA,
a token shaping model3 that uses statistical machine learning to identify documents in the GENIA cor-
pus4. Both models are available as pre-trained and pre-compiled “chunkers” from the LingPipe project
(http://alias-i.com/lingpipe/web/models.html).

The last model uses a simple, dictionary based approach, where we have used the 2010 MeSH de-

1 See http://alias-i.com/lingpipe/web/models.html.
2 See http://alias-i.com/lingpipe/docs/api/com/aliasi/chunk/HmmChunker.html for implementation details.
3 See http://alias-i.com/lingpipe/docs/api/com/aliasi/chunk/TokenShapeChunker.html for implementation details.
4 A project that seeks to automatically extract information from the micro-biology domain. See http://www-tsujii.is.s.

u-tokyo.ac.jp/GENIA/home/wiki.cgi for more information.
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scriptors5 to create the lexicon. We used a class from the LingMed project in the LingPipe sandbox6

(com.aliasi.lingmed.mesh.MeshDictionaryCommand) to generate the chunker, which is compatible with
the two previously mentioned chunkers.

4.2.1 Weighting the document fields

The chunkers described in the previous section all return a set of  “chunks”, each consisting of  the term(s)
that were identified as relevant and the type of  the term. To use this information to calculate a weight for
the current field, we use the size of  the chunk set as the measure:

fw(f) = |Rf | (4.1)

where fw(f) is the field weight for the field f , Rf is the set that resulted from the chunking of  the field,
and |Rf | is the size of  the set. To avoid that longer fields dominate the weighting, we use the following
normalisation formula, derived from Okapi BM25 (see Section 2.2.4.1) and Johannsson (2009):

nfw(f) =
(k1 + 1) · (fw(f) + 1)

(fw(f) + 1) + k1

(
1− b+ b

(
|f |

avglf

)) (4.2)

where nfw(f) is the normalised field weight, |f | is the length and avglf is the average length of  the field
f . As in the Okapi BM25 formula, we set the constants to k1 = 2 and b = 0.75. The field weight is 0
if  no relevant terms are found, so we increment it by 1 to avoid that the weight zero out the document
score.

We do the weighting during indexing (as the chunking is a somewhat time-consuming process) and
sets the weight independently for each field of  each document. This score is then multiplied with a length
normalisation score and is saved in the index. When scoring queries during a search, we simply multiply
the saved weight with the normal score calculated by the ranking model in use.

In Figure 4.2, the average field boost value for each of  the 42255 documents in the collection can be
seen. The average field boost value avgfw(D) is defined as the boost value for each field f1 . . . fn ∈ F in
document D as calculated by nfw(f) in Equation 4.2, divided by the number of  fields that are weighted
(|F |). It is given by the following formula:

avgfw(D) =

∑n
i=1 nfw(fi)

|F |
. (4.3)

The values in the graph were calculated at index time. The lowest boost value is 0.6931817, the highest
is 2.4963796, and the average is 1.6932384. Please note that these values differ from the values actually
used during retrieval, due to a limitation in Lucene (see Section 5.7 for more information).

4.2.2 Simple query expansion using NER and MeSH

The idea here is based on the concepts introduced in Section 3.1.3. We are not implementing this in a
large scale, but wanted to see if  we could improve matching of  the MeSH fields if  we used Named Entity
Recognition using the MeSH dictionary chunker introduced in Section 4.2 to map query terms to MeSH
terms. The implementation is simple; for each document we use NER to identify terms in the query that
maps to MeSH descriptors. If  any MeSH terms are found, we add them to the query when searching
the MeSH field, and let the ranking model in use take care of  the scoring and matching. An illustration
of  the process is found in Figure 4.3.

5 Available from http://www.nlm.nih.gov/mesh/filelist.html.
6 The sandbox contains LingPipe projects that are in development or are experimental. It is available from http://alias-i.

com/lingpipe/web/sandbox.html.
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Figure 4.2: Distribution of  the field boost values in our prototype as calculated during indexing, using the
BM25F model extended with GeneTag. The red line is the average boost value (1.6932384).
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Figure 4.3: MeSH query expansion illustrated
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An example using the MeSH dictionary chunker: if  the chunker identifies the term transgenesis as
relevant, the type for the chunk is Gene Transfer Techniques, which is the MeSH descriptor transgenesis
maps to. Gene Transfer Techniques is then added to the query during the scoring process, but only when
scoring the MeSH field.

4.3 Boosting specific document parts

While Johannsson only searched the abstract of  the documents, we are taking advantage of  the structured
nature of  MEDLINE citations. A MEDLINE citation contains many metadata fields, such as author(s),
ISSN number, publication date, title, abstract and MeSH terms. Some of  the fields are mandatory, while
other are optional.

Ramampiaro (2010) and others have explored how you can weight document fields different to im-
prove the ranking, for instance Ramampiaro’s BioTracer search engine implemented this strategy in
combination with Okapi BM25. However, Zaragoza et al. (2004); Robertson et al. (2004) shows that
using Okapi BM25 across fields can lead to over-estimation of  the importance of  the terms. The idea is
therefore to implement the weighting using the BM25F algorithm (outlined in Section 2.2.4.2) instead.
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Chapter 5

Implementation

In this chapter we will elaborate on the technology we have used, and explain the implementation details
of  our prototype.

5.1 Technology

This section gives the reader an overview of  the technologies and tools we have used when developing the
prototype. Where possible, we have used existing libraries and open source tools to reduce development
time.

5.1.1 Java

We have chosen to implement the prototype using Java 61, an object-oriented, open source, cross platform
programming language developed by Sun Microsystems. Applications written in Java are compiled to
byte code and run on a Java Virtual Machine (JVM), enabling the code to run on any computer architecture
as long as there exists a JVM for the platform. Java is a very popular language, and a large number of  both
open source and commercial projects exists for the platform. The Java based products we have utilised
either in the prototype or when developing it, are outlined in the following sections.

5.1.1.1 Eclipse

Eclipse2 is an Integrated Development Environment (IDE) for use in software development. Written in
Java itself, it was originally a developing environment only for Java, but there now exists plug-ins for a
variety of  other languages as well. Eclipse also has a solid base of  other extensions and plug-ins, such as
SubVersive (SVN support) and TeXlipse (LaTEXsupport).

5.1.1.2 Apache Lucene

Apache Lucene3 is a high-performance text search engine library completely written in Java (but is avail-
able in other flavours as well). It provides the necessary libraries and API’s to build a search engine
accustomed to the developer’s need.

Our prototype uses Lucene 3.0.1 for both indexing and retrieval.

1 Available from http://java.sun.com/.
2 Available from http://www.eclipse.org.
3 Available from http://lucene.apache.org/.
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5.1.1.3 LingPipe

LingPipe4 is a text and linguistics toolkit written in Java, with a number of  possibilities. A lot of  the
functionality in LingPipe is aimed at the field of  biomedicine, and through the LingMed project available
from the LingPipe sandbox (available from http://alias-i.com/lingpipe/web/sandbox.html), even more
so. LingPipe provides commercial licences, but is free for educational purposes.

In our prototype we use the following functionality from LingPipe 4.0:

Parsing MEDLINE citations in XML format: LingMed includes a SAX XML parser made especially for this
purpose. SAX (Simple API for XML) means that the parser reads the XML MEDLINE file5 as a
stream, and deals with elements as they appear in the stream by calling event handlers. This is in
contrast to a DOM (Document Object Model) parser, which loads the entire XML file in memory
and provides direct access to the elements in the document. The TREC 2004 Genomics Track
contains about 15 gigabytes of  citations in XML format, which obviously makes using a DOM
parser a bad choice.

Named Entity Recognition: Explained in Section 4.2, we use NER libraries from LingPipe to identify
biomedical terms in the text. In addition to NER models for biomedical entities, LingPipe have a
model available for identifying news entities.

5.2 Implementation overview

In this section we provide the reader with an overview of  our prototype and how it works. The imple-
mentation is inspired by the prototype made by Johannsson (2009), but is almost completely rewritten.
Foremost, it only supports Lucene 3.0 or newer6. This version of  Lucene introduced some large archi-
tectural changes to the API and lost a great deal of  backwards compatibility7. Conversely, plug-ins and
extensions to older versions of  Lucene often breaks in combination with the new version, especially when
it comes to deeper level modifications such as changing the ranking model. Johannsson also had to make
some modifications directly to the Lucene source code. Our prototype is implemented solely by extending
Lucene, not by altering it.

We have also implemented a BM25F ranking model as described in Section 2.2.4.2. There are few
publicly available implementations of  BM25 for Lucene, at least to our knowledge. Ramampiaro (2010);
Johannsson (2009) uses one approach for BM25 weighting and Pérez-Iglesias et al. (2009) have published
another approach that also supports BM25F. Neither of  these approaches are compatible with Lucene
3.0, however. We describe the process of  implementing a BM25F scorer model into Lucene 3.0 in Section
5.6.

The prototype created serves two main functions: indexing MEDLINE abstracts, and, given a query,
retrieving MEDLINE abstracts that matches. The architecture defines one abstract class for indexers, and
one for searchers. To implement a new ranking model, one only have to extend at least one, or preferably
both, of  these classes. Each model we have implemented uses its own index, but the architecture permits
sharing a index between two or more ranking models if  so desired.

The prototype can automatically run searches using predefined queries for one or more ranking
models, and output the results in a format compatible with the trec_eval tool used in the TREC conferences
to evaluate the participating IR systems. This is elaborated on in Chapter 6.

The following sections describes the different parts of  the prototype in depth.

4 Available from http://alias-i.com/lingpipe/.
5 An example XML MEDLINE citation is found in Appendix B
6 It should be compatible with Lucene 2.9.1 as well, but this is untested.
7 See http://lucene.apache.org/java/3_0_1/changes/Changes.html for an overview of the changes.
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5.3 Parsing MEDLINE citations

The parsing process is initialised in the class MyMedlineIndexer, which creates a MedlineParser (from the
LingMed project) that parses the XML file containing the MEDLINE citations. MedlineParser requires
a handler class, specified by the MedlineHandler interface. We create an instance of MyMedlineHandler
(which implements this interface) which in turn calls the addDocument()-method of  the model:

1 public class MyMedlineHandler implements MedlineHandler {
2

3 private MedlineIndexWriter indexWriter ;
4

5 public MyMedlineHandler( MedlineIndexWriter indexWriter ) {
6 this . indexWriter = indexWriter ;
7 }
8

9 @Override
10 public void delete ( String pmid) {
11 / / Unsupported
12 }
13

14 @Override
15 public void handle( MedlineCitation c i t a t i o n ) {
16 indexWriter . addDocument( c i t a t i o n . a r t i c l e () . a r t ic le T i t le T e x t () , ←↩

→ abstrct . textWithoutTruncationMarker () , c i t a t i o n . pmid() , ←↩

→ c i t a t i o n . meshHeadings() ) ;
17 }
18 }

A model is a subclass of MedlineIndexWriter. The architecture is outlined in the class diagram in
Figure 5.1.

5.4 Indexing

As the MEDLINE citations are parsed, they are being added to a index for later look up. We use Lucene
(see Section 5.1.1.2) for this task, using a standard Lucene IndexWriter object. In the case of  our BM25F
implementation (BM25FIndexWriter), we have used the following code to initialise the index:

1 @Override
2 protected IndexWriter init ial izeIndexWriter () throws IOException {
3 ( . . . )
4 IndexWriter writer = new IndexWriter ( dir , AnalyzerFactory . ←↩

→ getBM25MedlineAnalyzer() , true , IndexWriter . MaxFieldLength . LIMITED←↩

→ ) ;
5 writer . setSimilarity (new BM25Similarity () ) ;
6 return writer ;
7 }

This should be fairly straightforward, but two details are worth mentioning:

The Analyzer: The method AnalyzerFactory.getBM25MedlineAnalyzer() returns a regular Lucene StandardAnalyzer
, but with custom stop words8. We have implemented it as a singleton factory to keep the number

8 Instead of using the default stop word list that comes with Lucene, we use the list of stop words recommended by
PubMed, available from http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=helppubmed&part=pubmedhelp&rendertype=
table&id=pubmedhelp.T43. See Section 2.1 for a short primer on stop words.
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Figure 5.1: Class diagram of  the classes used during indexing
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of  instances at one. There is also an AnalyzerFactory.getStandardMedlineAnalyzer(), but in the final
prototype, the two methods are identical and returns the same StandardAnalyzer. The main reason
for implementing it this way is to increase modifiability and extendability for the theoretical future
additions of  new ranking models.

The Similarity: The method writer.setSimilarity(new BM25Similarity()) creates a new BM25Similarity
class, which extends the DefaultSimilarity class from Lucene and overrides some of  its methods.
This class affects the scoring of  the documents, and might have to be overridden when using an-
other ranking model than Lucene’s default vector space model. At indexing time, the following
methods from the Similarity class are used to create a normalisation value (The Apache Lucene
project, 2009):

norm(t, d) = doc.getBoost() · lengthNorm(field) ·
∏
f ′∈d

f .getBoost() (5.1)

where f ′ ∈ d are the fields f in document d that are named the same. No documents in our
collection have duplicate field names.

Details of  the BM25Similarity class can be found in Section 5.6.

See Figure 5.1 for an overview of  the classes used during indexing.

5.4.1 Field boosting using NER weighting

Named Entity Recognition is a time-consuming process, and has to be done during indexing. We use
three different different NER models in the prototype, as explained in Section 4.2.1. All of  the models
are stored as serialized Java objects that implements the Chunker interface from LingPipe, and are loaded
into the application at run-time using the code (Chunker)AbstractExternalizable.readObject(serializedObject
). The following code creates a document and a field, chunks the content of  the field, returns a Set of
Chunk objects, and uses the size of  this set to calculate a normalised boost value for the single field, using
the formula in Equation 4.2. It finally adds the boost value to the field, the field to the document, and
the document to the index:

1 public void addDocument( String fieldText ) {
2 Document doc = new Document() ;
3 Field f i e l d = new Field ( " exampleField " , f ieldText , Field . Store .YES, ←↩

→ Field . Index .ANALYZED) ;
4 Set <Chunk> chunkSet = chunker . chunk( fieldText ) . chunkSet() ;
5 f i e l d . setBoost ( calculateFieldBoost (k1 , b , titleLength , ←↩

→ averageTitleLength , chunkSet . size () ) ) ;
6 doc . add( f i e l d ) ;
7 indexWriter . addDocument(doc) ;
8 }
9

10 public s t a t i c f l o a t calculateFieldBoost ( f l o a t k1 , f l o a t b , int length , f l o a t ←↩

→ averageLength , f l o a t chunkSize) {
11 return ((k1 + 1) * (chunkSize + 1)) / (k1 * (1 - b + (b * ( length / ←↩

→ averageLength) ) ) + (chunkSize + 1)) ;
12 }

calculateFieldBoost() is thus called one time for each document, and produces the values seen in Figure
4.2. We chose to use the native Lucene functionality for storing the field boost. We have outlined the
drawbacks of  this method in Section 5.7. The benefit is that no extensions to Lucene are needed, and
thus not hurting performance.
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5.4.2 Field boosting using multiple NER models

We have also tested if  there is any improvement in performance when combining different NER models.
This is implemented by first chunking the title field and the abstract field normally, but using both GENIA,
GeneTag and MeSH to identify biomedical entities. After removing duplicates (entities that are found
by two or more models), we use the size of  the set as the boost value for the title and the abstract field
in the same way as earlier. Additionally, if  either the matched entity or the type that it maps to is found
in the MeSH field of  the citation, we increment the MeSH field boost by one. The idea is that because
MeSH field only contains MeSH terms which are probably identified by all chunkers, we have to weight
the field in another way. The implementation is as follows:

1 Chunker[] chunkers = new Chunker[] {
2 chunkerGeneTag , chunkerGenia , chunkerMesh
3 } ;
4 String [] searchStrings = new String [] {
5 t i t leText , abstrText
6 } ;
7 int localCounter = 0;
8 HashSet< String > meshSet = new HashSet< String >() ;
9

10 for ( String searchString : searchStrings ) {
11 HashSet< String > querySet = new HashSet< String >() ;
12 for (Chunker chunker : chunkers) {
13 for (Chunk chunk : (chunker . chunk( searchString ) . chunkSet () ) ) {
14 String match = searchString . substring (chunk . start () , chunk . end()←↩

→ ) ;
15 querySet . add(match) ;
16 i f (meshString . contains (match) ) {
17 meshSet . add(match . toLowerCase () ) ;
18 }
19 i f (meshString . contains (chunk . type () ) ) {
20 meshSet . add(chunk . type () . toLowerCase () ) ;
21 }
22 }
23 }
24 i f ( localCounter == 0) {
25 t i t l e F i e l d . setBoost ( calculateFieldBoost (k1 , b , titleLength , ←↩

→ averageTitleLength , querySet . size () ) ) ;
26 } else i f ( localCounter == 1) {
27 abstractField . setBoost ( calculateFieldBoost (k1 , b , abstractLength , ←↩

→ averageAbstractLength , querySet
28 . s ize () ) ) ;
29 meshField . setBoost ( calculateFieldBoost (k1 , b , meshLength , ←↩

→ averageMeshLength , meshSet . size () ) ) ;
30 }
31 localCounter + + ;
32 }

5.5 Retrieval

The main classes involved in the retrieval are very similar to the indexing classes, and can be seen in
Figure 5.2. We have an abstract class MedlineSearcher that all implemented retrieval models have to
extend. At minimum they have to implement the methods initializeIndexSearcher() and parseQuery().
The framework supports executing searches automatically using the TrecEval class. One can choose one
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or more of  the implemented ranking models to use during the search, which outputs the results of  each
ranking model in a text file compatible with the trec_eval tool. The three first lines of  one of  the result
files generated by our prototype looks like this:

1 Q0 12730111 1 20.827084 j e r v i
1 Q0 12393173 2 17.148758 j e r v i
1 Q0 12377801 3 16.286715 j e r v i

where each column is defined as follows (Hersh, 2005):

• The first column is the topic number (1–50).

• The second column is the query number within that topic. This is currently unused and must
always be Q0.

• The third column is the official PubMedID of  the retrieved document.

• The fourth column is the rank at which the document is retrieved.

• The fifth column shows the score (integer or floating point) that generated the ranking. This score
MUST be in descending (non-increasing) order. The trec_eval program ranks documents based
on the scores, not the ranks in column 4. If  a submitter wants the exact ranking submitted to be
evaluated, then the SCORES must reflect that ranking.

• The sixth column is called the “run tag” and must be a unique identifier across all runs submitted
to TREC.

5.6 Implementing a BM25F scoring model into Lucene

As briefly mentioned in Section 5.2, existing Lucene extensions that implements BM25F are sparse. The
only publicly available implementation we could find was by Pérez-Iglesias et al. (2009), but it was not
compatible with Lucene 3.0. A patch, however, made available from the Lucene issues tracker9, claimed
to support Lucene 3.0. We tested the patch, and found that while it sort of  worked, Pérez-Iglesias et al.
had implemented a lot of  classes10 that seemed to just mimic the official BooleanScorer included with
Lucene, and our testing showed that the implementation seemed poor. Using the 50 boolean queries
made by Johannsson (2009) (each corresponding to a topic in the TREC 2004 Genomics Track), only 34
of  the 50 searches returned any results at all.

To fix the problem, we removed the extraneous *BooleanScorer classes and modified the code
to use standard Lucene classes instead. To accomplish this, we use a “query rewriter” approach
introduced by Johannsson (2009): each query (all of  them boolean in nature) is parsed by Lucene’s
MultiFieldQueryParser, which (in the case of  a boolean query) returns a BooleanQuery consisting either of
more BooleanQuery objects or several TermQuery objects. We break down the query and replace each
occurrence of TermQuery with our BM25TermQuery object, as outlined in the following listing:

1 @Override
2 public Query parseQuery( String query) throws ParseException {
3 i f ( parser == null ) {
4 parser = new MultiFieldQueryParser ( Version .LUCENE_30, f i e l d s , ←↩

→AnalyzerFactory . getBM25MedlineAnalyzer() , boosts ) ;

9See http://issues.apache.org/jira/browse/LUCENE-2091.
10AbstractBooleanScorer, MatchAllBooleanScorer, MustBooleanScorer, NotBooleanScorer and

ShouldBooleanScorer
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Figure 5.2: Class diagram of  the classes used during retrieval
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5 }
6 Query parsedQuery = parser . parse (query) ;
7 return replaceQuery (parsedQuery) ;
8 }
9

10 private Query replaceQuery (Query q) throws ParseException {
11 i f (q instanceof TermQuery) {
12 TermQuery tq = (TermQuery) q ;
13 BM25TermQuery bm25tq ;
14 i f ( f i e l d s == null ) / / BM25
15 bm25tq = new BM25TermQuery( tq . getTerm() ) ;
16 else { / / BM25F
17 f l o a t [] boostsArray = new f l o a t [ boosts . size () ] ;
18 for ( int i = 0; i < boostsArray . length ; i ++) {
19 boostsArray [ i ] = boosts . get ( f i e l d s [ i ]) ;
20 }
21 bm25tq = new BM25TermQuery( tq . getTerm() , f i e l d s , boostsArray , ←↩

→BM25FParameters . getBParam() ) ;
22 }
23 bm25tq . setBoost ( tq . getBoost () ) ;
24 return bm25tq ;
25 } else i f (q instanceof BooleanQuery) {
26 replaceBooleanTermQuery (( BooleanQuery) q) ;
27 return q ;
28 } else {
29 throw new ParseException ( " unsupported query type " + q . getClass () + ←↩

→ " : " + q . toString () ) ;
30 }
31 }
32

33 private void replaceBooleanTermQuery(BooleanQuery boolQuery ) throws ←↩

→ ParseException {
34 for ( BooleanClause clause : boolQuery . getClauses () ) {
35 Query q = clause . getQuery () ;
36 Query newQ = replaceQuery (q) ;
37 clause . setQuery (newQ) ;
38 }
39 }

We then start the search. In a typical Lucene search, a Query (in our prototype this is the BooleanQuery
returned from the parseQuery() method seen above) is passed to a Searcher object that executes the search.
Each Query object returns a Weight object used during ranking when the method createWeight(Searcher
searcher) is called. This way, each Query object returns its own weighter/scorer. In the case of  our

BM25TermQuery objects, the scoring is performed by either BM25Scorer or BM25FScorer depending on
whether or not we are performing a multi-field search, in which case the latter of  the two scorers are
used.

The implementation of  the BM25FScorer is implemented as described by Pérez-Iglesias et al. (2009),
and the code that cohere with Equation 2.17 follows:

1 @Override
2 public f l o a t score () throws IOException {
3 f l o a t acum = 0f ;
4

5 for ( int i = 0; i < len ; i ++) {
6 i f ( this . termDocs[ i ] . doc () == doc) {
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7 f l o a t av_length = this . averageLengths [ i ] ;
8 f l o a t fieldNorm = Similarity . decodeNorm(norms[ i ][ this . docID () ]) ;
9 f l o a t length = 1 / ( fieldNorm * fieldNorm ) ;

10

11 f l o a t aux = this . bParam[ i ] * length / av_length ;
12

13 aux += (1 - this . bParam[ i ]) ;
14 acum += ( this . termBoost * this . boosts [ i ] * this . termDocs[ i ] . freq←↩

→ () ) / aux ;
15 }
16 }
17

18 acum /= ( this .K1 + acum) ;
19 acum *= this . i d f ;
20 return acum;
21 }

There are some limitations in the implementation. Firstly, it only supports boolean queries, and
secondly, BM25F requires the inverse document frequency (idf) of  the document, but Lucene always
computes idf  on a field level. Without rewriting Lucene, this is not possible. When doing multi field
searching using BM25F, the prototype therefore uses the workaround of  using the idf  of  the field with the
longest average length, in our case the abstract field.

5.7 Limitations of field boosting using Lucene

Instead of  implementing a new index containing the field boosts calculated by the named entity recogni-
tion (see Section 4.2.1 and 4.2.1), we chose to save the boost value in the standard Lucene index, using
the method field .setBoost(float). The field boost value is multiplied with the document boost and a length
normalisation value (as seen in Equation 5.1) to a “norm”, before being added to the index, so the actual
boost value is lost. In addition, the value is encoded as a single byte to save memory at search time (be-
cause all norms have to be loaded in memory during the search). An effect of  the choice of  using a byte
to save the norm value is that precision is lost, that is decode(encode(x)) ̸= x. The lack of  precision is
apparent in Figure 5.3, especially if  you compare this figure to Figure 4.2 which illustrates the original
boost values during indexing. The Apache Lucene project (2009) notes, however, that:

The rationale supporting such lossy compression of  norm values is that given the difficulty
(and inaccuracy) of  users to express their true information need by a query, only big differ-
ences matter.

While this might be true in many IR settings, this is not the case for this prototype, as all the queries are
carefully constructed according to the topics given in the TREC Genomics 2004 track.
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Figure 5.3: Distribution of  the field boost values in our prototype during search, using the BM25F model
extended with GeneTag. The red line is the average boost value.
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Chapter 6

Evaluation

This chapter explains the evaluation method we have used for measuring the performance of  the proto-
type, and presents our results.

6.1 The document collection

To be able to compare our results with Johannsson’s results, we used the same test collection in our
prototype: a subset based on the TREC 2004 Genomics track test collection, which again consists of  a
subset of  the MEDLINE database. The citations used in the collection were published, last reviewed or
created between 1994 and 2003, totaling 4,591,008 records. 42,255 of  these records have been judged
against the 50 topics or “information needs” published in the TREC. We only use these judged records
in our prototype. The justification for doing this is that indexing the entire document collection would
be to time consuming when using Named Entity Recognition, and the fact that Johannsson (2009) also
used the same subset in his prototype, as previously mentioned. We used a filtering tool developed by
Johannsson to filter out all unjudged documents from the test collection, leaving 42,255 citations. As
discussed in section 2.3.2.6, this allows us to use performance measures that are not robust when used on
incomplete judgement sets (such as MAP, defined in Section 2.3.2.5), bypassing the problem completely.

6.2 Queries

The topics published in the TREC 2004 Genomics tracks consists of  50 information needs and a set of
relevance judgements for each topic. The relevance judgement consist of  a list of  PubMed ID’s that are
judged against each topic and a judgement of  relevance (not relevant, possibly relevant or definitively
relevant). In total, there are 48753 judged records, giving an average of  975 per topic (ranging from 476
to 1450).

An example topic can be seen in Appendix C.
Our prototype only supports boolean queries due to limitations in the BM25 and BM25F implemen-

tations. We thus have to convert the above information needs into structured queries. We have tested a
few different approaches to creating these queries: using the queries created by Johannsson (but slightly
modifying a few of  the queries because of  low performance) and automatically generating the queries
based on the information needs. To do this, we tried to identify biomedical relevant entities in each topic
(bot title, need and context fields were used) using Named Entity Recognition, and use each identified
entity in the query.

The best result using default Lucene scoring (VSM) and automatically created queries had a MAP
score of  0.1988, compared to 0.2371 using Johannsson’s manually crafted boolean queries. For some
topics, however, the automated method scored better than the manual method (see Figure ??), so we
extracted these queries and used them where applicable, and achieved a MAP score of  0.2591 (still using
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Figure 6.1: Comparison of  manually (green) and automatically (red) generated queries, using Lucene’s
default scoring model (VSM).
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Figure 6.2: Comparison of  the new queries (green) and the old queries used by Johannsson (2009) (red),
using Lucene’s default scoring model (VSM).

the VSM model). The final queries can be seen in Appendix A, and how they compare to the Johannsson’s
approach is illustrated in Figure 6.2.

6.3 Evaluation method

To evaluate the performance of  our prototype, we use the tool trec_eval 9.01, which is the same tool
used to evaluate TREC runs. By providing the tool with a result set and relevance judgements, it will
output statistics about the performance, including mean average precision (MAP), R-precision and bpref,
as discussed in Section 2.3.2.

Johannsson (2009) developed a web page interface for running the trec_eval tool and comparing
results. To avoid “reinventing the wheel”, we chose to use the same interface during our evaluation. The
interface is developed using Perl for the back-end and HTML/Javascript for the front-end.

1 Available from http://trec.nist.gov/trec_eval/.
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6.4 Environment

The environment on which the prototype was developed and the tests run, is outlined in Table 6.1. Note
that neither the hardware or the software should affect the results (at least in theory), and are included for
reference only. The Java VM arguments are important though, because the MeSH NER chunker uses
more than the standard allowed memory for Java, and will not run without these arguments.

CPU: Intel Core 2 Duo 2.4 GHz
Memory: 2x2GB

Disk: 160GB SATA 5400RPM
Operating system: Mac OS X 10.6.4

Java version: Sun Java 6 (1.6.0_20) 64-bit
Java VM arguments: -Xms128m -Xmx512m

Table 6.1: This table lists the hardware and software used for evaluating the prototype.

6.5 Results

In this section we present the results from the prototype. Table 6.2 and 6.3 shows the averaged results
for the different models. We have included the results from Johannsson’s Extended BM25 (GENIA) for
comparison reasons. The results are illustrated in the charts in Figure 6.3 and 6.4. The model Extended
BM25F (GeneTag and GENIA) is the approach described in Section 5.4.2, where we used all three NER
models at once during the boosting. We have measured the score after returning 100 and 1000 documents,
the latter being the default value used in TREC runs, but the former maybe a bit more representative as
few or no users actually will sift through a 1000 results. In fact, as mentioned in Section 2.3.2.3, very few
users actually looks at more than 10 results.

MAP bpref R-precision P(5) P(100)

Johannsson's Extended BM25 (GENIA) 0.1992 0.3205 0.2564 0.5320 0.3480
Lucene Default (VSM) 0.2591 0.3745 0.3283 0.6000 0.3938

BM25F 0.2727 0.3708 0.3337 0.6280 0.4026
Extended BM25F (GeneTag) 0.2713 0.3698 0.3318 0.6560 0.4040

Extended BM25F (GENIA) 0.2716 0.3683 0.3322 0.6560 0.4002
Extended BM25F (MeSH) 0.2722 0.3696 0.3340 0.6480 0.4016

Extended BM25F (GeneTag and GENIA) 0.2770 0.3808 0.3351 0.6440 0.4080

Table 6.2: Evaluation measures using the 100 first results. The best results are in bold.

6.6 Simple MeSH Query Expansion

When using the simple MeSH query expansion as explained in 4.2.2, we found a very small increase in
the MAP score, averaging about 0.75%. The increase is neglectable, but as it did not decrease the scores,
we decided to leave it on for all measures. An comparison can be seen in 6.5.
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Figure 6.3: Illustration of  the evaluation measures using the 100 first results.
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Figure 6.4: Illustration of  the evaluation measures using the 1000 first results.
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MAP bpref R-precision P(5) P(100)

Johannsson Extended BM25 (GENIA) 0.3045 0.6275 0.3505 0.5320 0.3480
Lucene Default (VSM) 0.3606 0.6318 0.4216 0.6000 0.3938

BM25F 0.3779 0.6317 0.4326 0.6280 0.4026
Extended BM25F (GeneTag) 0.3777 0.6312 0.4322 0.6560 0.4040

Extended BM25F (GENIA) 0.3769 0.6309 0.4320 0.6560 0.4002
Extended BM25F (MeSH) 0.3772 0.6308 0.4336 0.6480 0.4016

Extended BM25F (GeneTag and GENIA) 0.4023 0.6951 0.4434 0.6440 0.4080

Table 6.3: Evaluation measures using the 1000 first results. The best results are in bold.
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Figure 6.5: Comparison of  MeSH Query Expansion turned on (red) or off  (green).

6.7 Boosting the fields differently

As described in Section 4.3, we tried to boost the sections independently. While Ramampiaro (2010)
found that weighting the title twice as much as the abstract field yielded good results, we have actually
experienced the exact opposite. When weighting the abstract twice as much as the title and the MeSH
fields, we see an 5.67% increase compared to when weighting the title twice as much as the abstract,
using default Lucene weighting (VSM), as illustrated in Figure 6.6.

6.8 Discussion

As seen in the previous sections, we can see that all the BM25F based methods significantly outperforms
standard Lucene weighting using the vector space model. When measuring the first 100 documents, we
see a 6.9% increase in MAP between standard Lucene weighting and the Extended BM25F (GeneTag
and GENIA) model, and when measuring the first 1000 results, we see an 11.5% increase. The increase
of  the bpref  value is 10%.

All the documents in our relatively small document collection are judged and contains all three fields
necessary to perform the proposed weighting. This is, however, a constructed and limited corpora. In
practice, some of  the MEDLINE citations available through PubMed are missing abstracts, and the size
and the growth of  the database makes NER weighting nearly impossible. Except when using the GENIA
NER model, indexing the 42255 citations in our collection varied between 20 seconds and 2:30 minutes
on our hardware. The GENIA model, however, used more than an hour to complete. The generality of
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Figure 6.6: Comparison of  boosting values. Green: boosting abstract field by 2, other fields by 1. Red:
boosting title field by 2, other fields by 1.

this research can therefore be a point of  discussion, but it should be applicable on smaller corpora as well
as collections that have few changes, and thus are rarely in need of  re-indexing.

We also observed improvements just by changing the weighting model from using the vector space
model to BM25F, and this approach is neither time-consuming during indexing or in need of  the abstract
field of  a MEDLINE citation. We conclude that using BM25F is a significant improvement over using
the Okapi BM25 model or VSM, at least on structured documents.
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Chapter 7

Conclusion and future work

7.1 Conclusion

In this thesis we have implemented a prototype that uses the BM25F weighting model in combination
with named entity recognition (NER) to identify biomedical terms in a collection. We use this knowledge
to boost fields with a lot of  identified terms more than fields with fewer identified terms. The NER
models we have used are implemented using three different approaches; GENIA (which uses a token
shaping model), GeneTag (which uses a hidden Markov model) and MeSH (which uses a dictionary
model). We found only small improvements in MAP when used by themselves, but when all three models
were combined, we observed a significant boost in performance (up to 11.5%). Using BM25F for scoring
also increased the performance of  the prototype compared to using Okapi BM25 or VSM.

7.2 Further work

The improvements seen in the performance of  our prototype is promising, and may be worth further work.
A major limitation of  the implemented BM25F model is that it only supports simple boolean queries. A
field that could be researched further is extending the BM25F implementation to support phrase queries,
including for instance wildcard support. Using other NER models could also prove beneficial.
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Appendix A

Custom queries

This chapter lists the 50 queries used in the prototype, corresponding to each of  the topics in the TREC
2004 Genomics Track. The queries are a mix of  queries acquired from Johannsson (2009) and queries
automatically generated from the information needs of  the track.

1 iron AND ( Ferroportin1 OR ( Ferroportin AND 1) OR SLC40A1 OR FPN1 OR HFE4 OR IREG1 OR (←↩

→ Iron AND regulated AND gene AND 1) OR MTP1 OR SLC11A3)
2 ( transgenic OR transgenesis OR (copy AND gene) ) AND (mice OR mouse OR murine)
3 (mouse kidney) (gene expression ) (kidney development) (kidney)
4 kidney AND (( gene OR genes) OR ( expression AND ( p r o f i l e OR p r o f i l e s ) ) ) AND (mice OR ←↩

→mouse OR murine)
5 ( i s o l a t e OR i s o l a t i n g OR fractionation OR purify ) AND ( c e l l OR ( nucleus OR nuclei ) OR ←↩

→ subcellular )
6 FancD2 OR (Fanconi AND anemia) OR (group D2) OR ( type AND 4 AND fanconi AND ←↩

→ pancytopenia )
7 (( oxidative OR oxidation ) AND stress ) AND DNA AND repair
8 ( oxidative OR oxidation ) OR ( cancer OR cancers OR carcinoma OR cancerous ) AND ( disease←↩

→ OR diseases OR carcinogenesis ) AND (gene OR pathway) AND (DNA AND repair )
9 (muty OR hmyh) AND - myoglobin

10 (NEIL1)
11 hairless mice carcinogenesis skin OR UV
12 (gene OR genes) AND smad4
13 (TGFB OR ( transforming growth factor beta ) OR (TGF AND �) ) AND ( homeostasis OR ←↩

→ angiogenesis )
14 (TGFB OR ( transforming growth factor beta ) ) AND ((head and neck squamous c e l l ) OR ←↩

→HNSCC)
15 (ATPase OR ATPases) AND ( apoptosis OR ( c e l l death) )
16 (AAA proteins ) ( l i p i d s ) (AAA protein family ) ( protein interactions )
17 (DO1 OR (p53 AND ( antibody OR anti ) ) ) AND binding
18 ( Gis4 OR YML006C)
19 (GAL1 OR SUC1) AND ( repressors OR reprosessor OR activators OR activator ) AND SNF1
20 ( covalent OR attachment OR covalence OR substrate ) AND ( ubiquitin OR ubiquitously OR ←↩

→ ubiquitylation OR ubiquitination )
21 (p63 OR TP63) OR (TP73 OR p73) (( c e l l cycle arrest ) OR apoptosis ) DNA
22 p53 AND DNA AND (respond OR responding OR response ) AND (break OR damage OR (( single ←↩

→OR double ) AND stranded ) )
23 Saccharomyces OR cerevisiae ( protein OR proteins ) ( ubiquitin OR proteolyt ic OR pathway←↩

→ )
24 (PGRP) (mouse AND peptidoglycan AND recognition AND proteins )
25 ( scleroderma OR (autoimmune AND disease ) ) AND (( genes OR gene OR genome) OR (scan OR ←↩

→ scans ) OR (microarray OR (micro AND array) ) )
26 (BFA1) (BUB2)
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27 (autophagy OR (gene autophagic ) ) AND apoptosis
28 (autophagy OR (gene autophagic ) ) AND apoptosis AND ( proteases OR morphological )
29 (gyrA OR (DNA gyrase ) ) AND (( phenotype OR phenotypes) OR (sequence OR sequences ) ) AND ←↩

→ (mutation OR mutations OR alterat ion ) AND ((E AND c o l i ) OR escherichia )
30 Nkx OR Sax
31 (TOR OR mTOR OR ( Target AND Of AND Rapamycin) OR FRAP1 OR (FK506 AND associated AND ←↩

→ protein ) )
32 Xenograft AND ( tumorogenesis OR cancer OR cancers OR carcinoma)
33 ( histoplasmosis OR ( histoplasma AND capsulatum) OR ( blood borne pathogen) ) AND (mice ←↩

→OR mouse OR murine)
34 Cryptococcus AND (gene OR genes OR genome)
35 ( histoplasmosis OR ( histoplasma AND capsulatum) OR ( blood borne pathogen) ) AND (mice ←↩

→OR mouse OR murine)
36 Cryptococcus AND (gene OR genes OR genome)
37 PAM OR ( peptide AND amidating AND enzyme) OR ( peptidylglycine AND amidating )
38 ( stroke OR ( cerebrovascular AND accident ) OR CVA) AND (( genetic AND ( l o c i OR locus ) ) ←↩

→OR E4 OR ( factor AND V) OR ( risk AND ( factor OR factors ) ) )
39 ( hypertension OR HTN OR ( high AND blood AND pressure ) ) AND (( risk OR danger) AND (←↩

→ genes or gene) )
40 ( antigen OR antigens ) AND ( e p i t h e l i a l OR epithelium ) ( lung OR pulmonary OR lungs )
41 (mutation OR mutations OR altered ) AND (( Cystic AND Fibrosis ) OR CF OR mucovoidosis OR←↩

→ muscoviscidosis )
42 ((chromosome OR chromosomal) AND ( translocations OR translocation ) ) OR ((chromosome OR←↩

→ chromosomal) AND (rearrangement OR rearrangements) )
43 ( sleeping AND beauty) OR ( Kleine AND Levin AND Syndrome) OR KLS
44 (( nerve AND growth AND factor ) OR NGF) AND ( protein OR proteins )
45 (MWH1 OR (mental health wellness ) ) OR (mental ( disorder OR disorders ) (gene OR genes ←↩

→OR genetic ) )
46 RSK2 OR ( ribosomal protein kinase )
47 (BCL OR BCL2 OR (BCL AND 2)) AND (( antagonists OR antagonist ) OR ( inhibitors OR ←↩

→ inhib i tor ) )
48 (UNC OR (homologues OR homolog) OR BGS) AND (( gene OR genes) OR (c AND elegans ) OR (←↩

→ Caenorhabditis AND elegans ) )
49 ( glyphosate OR glycine ) AND ( tolerance OR tolerant OR immune)
50 (temperature OR cold ) AND protein AND ((E AND c o l i ) OR escherichia )
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Appendix B

Example MEDLINE citation in XML format

1 <?xml version = " 1.0 " encoding= "UTF-8 " ?>
2 < !DOCTYPE MedlineCitationSet PUBLIC " - / /NLM/ /DTD Medline Citation , 1st January , 2010//←↩

→EN" " http: / /www. nlm . nih . gov / databases / dtd / nlmmedlinecitationset_100101 . dtd " >
3 <MedlineCitationSet >
4 <MedlineCitation Owner= "NLM" Status= "MEDLINE" >
5 <PMID>10540283< /PMID>
6 <DateCreated>
7 <Year>1999< /Year>
8 <Month>12< /Month>
9 <Day>17< /Day>

10 < / DateCreated>
11 <DateCompleted>
12 <Year>1999< /Year>
13 <Month>12< /Month>
14 <Day>17< /Day>
15 < / DateCompleted>
16 <DateRevised>
17 <Year>2006< /Year>
18 <Month>11< /Month>
19 <Day>15< /Day>
20 < / DateRevised>
21 < Artic le PubModel= " Print " >
22 <Journal>
23 <ISSN IssnType= " Print " >0950-382X< /ISSN>
24 <JournalIssue CitedMedium= " Print " >
25 <Volume>34< /Volume>
26 <Issue >1< / Issue >
27 <PubDate>
28 <Year>1999< /Year>
29 <Month>Oct < /Month>
30 < /PubDate>
31 < / JournalIssue >
32 < T i t l e >Molecular microbiology < / T i t l e >
33 <ISOAbbreviation >Mol . Microbiol . < / ISOAbbreviation >
34 < / Journal>
35 < A r t i c l e T i t l e >Transcription regulation of the nir gene cluster encoding ←↩

→ n i t r i t e reductase of Paracoccus denitr i f icans involves NNR and NirI , ←↩

→a novel type of membrane protein . < / A r t i c l e T i t l e >
36 <Pagination >
37 <MedlinePgn>24-36< / MedlinePgn>
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38 < / Pagination >
39 <Abstract >
40 <AbstractText >The nirIX gene cluster of Paracoccus denitr i f icans i s ←↩

→ located between the nir and nor gene clusters encoding n i t r i t e ←↩

→and n i t r i c oxide reductases respectively . The NirI sequence ←↩

→ corresponds to that of a membrane- bound protein with six ←↩

→ transmembrane helices , a large periplasmic domain and cysteine - ←↩

→ rich cytoplasmic domains that resemble the binding s i t e s of [4Fe←↩

→ -4S] clusters in many ferredoxin - l i k e proteins . NirX i s soluble ←↩

→and apparently located in the periplasm , as judged by the ←↩

→ predicted signal sequence . NirI and NirX are homologues of NosR ←↩

→and NosX, proteins involved in regulation of the expression of ←↩

→ the nos gene cluster encoding nitrous oxide reductase in ←↩

→Pseudomonas stutzeri and Sinorhizobium m e l i l o t i . Analysis of a ←↩

→NirI - def ic ie n t mutant strain revealed that NirI i s involved in ←↩

→ transcription activation of the nir gene cluster in response to ←↩

→ oxygen l imitat ion and the presence of N- oxides . The NirX - ←↩

→ de f ic ien t mutant transiently accumulated n i t r i t e in the growth ←↩

→medium, but i t had a f i n a l growth yield similar to that of the ←↩

→wild type . Transcription of the nirIX gene cluster i t s e l f was ←↩
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Appendix C

Example topic from the TREC 2004 Genomics
Track

1 <?xml version = " 1.0 " encoding= "UTF-8 " ?>
2 <TOPICS>
3 <TOPIC>
4 <ID>8< / ID>
5 <TITLE> Correlation between DNA repair pathways and skin cancer< /TITLE>
6 <NEED>Genes and proteins (pathways) common to DNA repair , oxidative diseases , ←↩

→ skin - carcinogenesis , and UV- carcinogenesis . < /NEED>
7 <CONTEXT>
8 Are there genes and mechanisms that are u t i l i z e d by more than one of these←↩

→ f i e l d s ? A relevant a r t i c l e mentions a gene or pathway , DNA repair , ←↩

→and one or more oxidative or cancerous diseases .
9 < /CONTEXT>

10 < /TOPIC>
11 < /TOPICS>
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