
Master of Science in Informatics
June 2010
Herindrasana Ramampiaro, IDI
Trond Aalberg, IDI

Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Searching for, and identifying Protein
Information in the Literature

Espen Klæboe

Abstract

As research papers grow in volume and in quantity, there is still to this day,
a hassle to locate desired articles based on specific protein names and/or
Protein-Protein-Interactions. This is due to the everlasting problem of ex-
tracting protein names and Protein-Protein-Interactions from bio-medical
papers and articles. The goal of this thesis was to investigate an approach
that suggests the use of the Lucene framework for storing and indexing differ-
ent articles found in bio-medical databases and being able to effciently iden-
tify protein names and possible interactions that exist in them. The system,
dubbed MasterPPI, locates protein names and Protein-Protein-Interaction
keywords with the help of two dictionaries, and when these are found and la-
beled, determins a Protein-Protein-Interaction if a specific interaction-keyword
is present in a sentence, between to protein names.

When tested against the test collection from the IAS subtask in the
BioCreAtIvE2 challenge; the prototype system achieved a f-score of 0.34,
showing that the system has potential, but needs a great deal of work.

I

II

Acknowledgements

First of all, I would like to thank my supporting and helpful family and
especially my mother Berit; who, when I rant on about what I do, keeps on
encouraging me but still has no clue to what I’m talking about; and to my
cousin Henriette who took the time to proof-read a thesis from a field she
only has a vague understanding of.

I would also thank my supervisor Heri Ramampiaro for helping me choose
this thesis and offering advice in an hour of need from across the pond.

And last but not least, a big thanks to all the guys at Sule: Jørgen, An-
ders, Sindre, Johan and Kristian1. I could literally not have done this without
all of our relevant discussions and ball-play when deadline was approaching.

1and Trond and Magnus, who sometimes showed up

III

IV

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Specification . 2
1.3 Solution Outline . 3
1.4 Thesis Structure . 3

2 Preliminary knowledge 5
2.1 Information Retrieval . 5

2.1.1 Information Retrieval Models 6
2.1.2 Evaluation . 8

2.2 Biology . 12
2.2.1 Proteins . 12
2.2.2 Protein-Protein-Interaction 15

2.3 Bio-informatics . 17
2.4 Text mining . 17

2.4.1 Biological text mining 19

3 Previous and/or related work 21
3.1 ProtScan . 21
3.2 Yapex . 22
3.3 Textpresso . 22
3.4 PubMed . 22
3.5 ProtIR . 23
3.6 Other . 23

4 Own Approach 25
4.1 The idea and the reasoning behind it 25
4.2 The XML-inputs . 27
4.3 Module 1 - The Parsers and Pre-Token-Processing 28
4.4 Module 2 - The Tokenizer and indexer 30
4.5 Module 3 - The Term Categorization 31

V

VI CONTENTS

4.6 Module 4 - The Evaluation . 33

5 Implementation 35
5.1 Technologies used . 35

5.1.1 Java . 35
5.1.2 XML . 37

5.2 Implementation details . 38
5.2.1 Module 1 . 38
5.2.2 Module 2 . 39
5.2.3 Module 3 . 40
5.2.4 Module 4 . 41

5.3 Class diagrams . 41

6 Evaluation 45
6.1 Evaluation Methods . 45
6.2 Results . 46

6.2.1 The Yapex Test collection 46
6.2.2 The PPI Test collection 47
6.2.3 The BioCreative Test collection 49

6.3 Discussion and Comments . 50

7 Conclusion and future work 53
7.1 Summary and Conclusion . 53
7.2 Future improvements . 54

Appendices 57

A 57

B 59

List of Figures

2.1 Vector space model . 7
2.2 Precision and Recall . 11
2.3 Example of a protein fold . 13
2.4 The text mining process . 18

4.1 Illustration of the Assembly line approach 26
4.2 Illustration of the input files 28
4.3 Illustration of Module 1 . 29
4.4 Illustration of Module 2 . 30
4.5 Illustration of Module 3 . 32
4.6 Illustration of Module 4 . 34

5.1 First part of the class diagram of the System 42
5.2 Second part of the class diagram of the System 43

VII

VIII LIST OF FIGURES

List of Tables

6.1 Results from the PPI evaluation test collection 48
6.2 Analytical data from the BioCreative2 Test Collection 50

IX

X LIST OF TABLES

Chapter 1

Introduction

This chapter will serve as an introduction to the thesis, by introducing the
problem at hand, the motivation for attempting a solution, a short preview
of the skeleton for the proposed solution and an overview of the thesis in
general.

1.1 Motivation

As research papers grow in volume and in quantity, there is still to this day,
a hassle to locate desired articles based on a specific protein name and/or
PPI (Protein-Protein-Interactions). Having grown up with the internet, and
seen how e.g google has evolved with its scholar1 program, this statement
does come across as a little suprising. As an example (to show the size of
the scope), consider MEDLINE; the biggest collection of bio-medical papers
available. This database consist (when this is written) of almost 18 mil-
lion records, gathered from various publications [NLM, 2010]. The database
is accessed through an engine called PubMed2 that adds another 2 million
records from other sources [NLM, 2010]. Untrained users of this system are
sometimes annoyed with the large number of results returned by simple,
straightforward queries, suggesting a system with to high recall but with low
precision3. There exist many collections that try to muster up all the pro-
tein names that are mentioned in different bio-medical papers and provide
useful tools for querying them, e.g SwissProt4 (which is manually annotated
and reviewed) and TrEMBL5 (which is automatically annotated and not re-

1http://scholar.google.com - Stand on the shoulders of giants
2http://www.ncbi.nlm.nih.gov/pubmed/
3Precision and recall is covered in section 2.1.2
4http://au.expasy.org/sprot/
5http://www.ebi.ac.uk/uniprot/

1

http://scholar.google.com
http://www.ncbi.nlm.nih.gov/pubmed/
http://au.expasy.org/sprot/
http://www.ebi.ac.uk/uniprot/

2 CHAPTER 1. INTRODUCTION

viewed). And there exist others who try to unify these “smaller ones” into
one big collection, like UniProt6 who is a combination of the former two.
These may also have connection or refrences to articles that can be found
via PubMed.

When investegating the “hard-to-believe” statement above, one discover
the interesting but fundamental problem of extracting protein names and
PPIs from the papers and articles that are published out there7 in some
digital form. This is complicated with the fact that bio-medical texts are
not the same as your regular paper or article. A collection of texts that
combinds bio-medical terms with natural English produces challenges given
by problems like e.g high ambiguity, since many protein names share lexical
representation with common English words (e.g. by, an, for, can)
[Krauthammer and Nenadic, 2004]. There is also the problem with unstruc-
tured texts and the non-existence of an uniform way of naming the differ-
ent proteins or describing the interactions that may occur between them.
As stated, this makes the extraction complicated, and the return-sets from
queries into existing systems are not as accurate as one would like
[Monsen, 2007].

So the main challenge is to identify the proteins and the interactions,
store and index them, and make this available to the masses8 to query in
ways that they are used to (i.e easy way). Finding a way to streamline
these tasks (or problems) in in an efficient, but traditional way is the main
motivation behind this thesis.

1.2 Problem Specification

This thesis will, with the help of traditional information retrieval techniques,
try to tackle the ongoing problem of identifying and categorising protein
names and PPI’s in bio-medical texts (as outlined in section 1.1). The prob-
lem also consist of storing these terms (ie. names and interactions) efficient
and indexing them so that one can recognise and perform a query on them
at a later stage.

6http://www.uniprot.org
7The world in general.
8The general public who do not have Ph.D’s in medicine, computer science or both.

http://www.uniprot.org

1.3. SOLUTION OUTLINE 3

1.3 Solution Outline

The solution presented will be a Java based system for recognising, storing,
indexing and searching for protein names and PPIs in bio-medical literature.
The approach will take inspiration from ideas found in
[Ramampiaro et al., 2007] and [Egorov et al., 2004], utilising LingPipe9 for
parsing MEDLINE-articles and Lucene10 for storing and indexing the terms
produced. The idea for the approach can be found in 4 and the implemen-
tation will be presented in chapter 5.

1.4 Thesis Structure

This thesis will be structured in the following manner:

Chapter 2: This chapter will provide the reader with the background
knowledge that will/can be important for understanding the different
procedures used for solving the task at hand. Basic concepts of bio-
informatics, information retrieval and text mining will be presented.

Chapter 3: This chapter will present interesting and related work that is
ongoing or have been done in the past.

Chapter 4: This chapter will present the reader with the idea for the ap-
proach and the thoughts behind it.

Chapter 5: This chapter will present, in depth, the implementation of the
approach.

Chapter 6: This chapter will show how the system performed in a con-
trolled test environment.

Chapter 7: This chapter will sum up this thesis, give a conclusion and
present visions of future for the idea that was presented in chapter 4.

9http://alias-i.com/lingpipe/
10http://lucene.apache.org/

http://alias-i.com/lingpipe/
http://lucene.apache.org/

4 CHAPTER 1. INTRODUCTION

Chapter 2

Preliminary knowledge

This chapter will present the reader with knowledge and context that will
be relevant for understanding different concepts, and techniques which is
used later on. This will include fields from information retrieval, biology,
bio-informatics and text mining (with biological texts as a special case).

2.1 Information Retrieval

The term IR (Information Retrieval) can mean a lot of things, and only a
small explanation is given here. Basically it encompasses all that has to do
with a given user’s need to find some sort of information. With that said, as
an academic field of study it is defined by [Manning et al., 2008] as:

. . . finding material (usually documents) of an unstructured
nature (usually text) that satisfies an information need from within
large collections (usually stored on computers).

When Manning and his colleagues talk about “unstructured data”, they mean
data that has no clear, semantically overt, computer-understandable struc-
ture.

A key term to consider in the definition above is document. In our com-
mon world, the term means a textual record, but in the world of IR it can
be so much more. [Buckland, 1997] defines the following points for when an
object is a document, or how it can become one:

• There is materiality: Physical objects and physical signs only.
• There is intentionality: It is intended that the object can be treated

as evidence.

5

6 CHAPTER 2. PRELIMINARY KNOWLEDGE

• The objects have to be processed: They have to be made into
documents.
• There is a phenomenological position: The object is perceived to

be a document.

This list is an attempt to summarise the works of Suzanne Bret, who in 1951
published a manifesto on the nature of documentation [Bret, 1951]. This
starts with the assertion that “A document is evidence in support of a fact”.
Examples of objects that are considered documents and that is regulary prone
to IR is books, movies, sound files, articles and webpages. The goal of IR is
to return these documents to a user in a quick and easy way without him or
her knowing the location of the document in advance.

One important thing to note however is the difference between the terms
IR (information retrieval) and DR (data retrieval). The latter only deter-
mines that a document, in a collection of documents, contains the keywords
specified in a query provided by a user. An example of this is a relational
database1 which also has a clear computer-understandable structure. This
may be to narrow for the user, as he or she might want relevant information
to the keywords stated. This is what IR is trying to accomplish. And it aims
to do this from mostly natural language. It must therefore extract syntactic
and semantic information from the query-text provided, and then rank the
documents that are returned, based on relevance compared to the query.

2.1.1 Information Retrieval Models

The IR-literature (e.g [Manning et al., 2008]) defines three models as tradi-
tional for the IR domain; the Boolean, the vector and the probabilistic model.
A short description of the three will be given here.

The Boolean Model

This model is based on set theory and Boolean algebra, and sees each docu-
ment as set of words. One can then pose any query in the form of a Boolean
expression; that is combining terms with the operators AND, OR and NOT.
The query terms are then considered to be present in the index or not at
all (1 or 0), thus concluding that a document is relevant or not. As a sim-
ple example (from [Manning et al., 2008]; consider the query “Antony AND
Caesar NOT Calpurnia” on a collection of Shakespears’s finest works. This

1A database that stores information based on common characteristics into a specific
group, making it easier to organise, update and maintain.

2.1. INFORMATION RETRIEVAL 7

will look for any of Shakepears plays that will contain both Antony and Cae-
sar, but not Calpurnia. Resulting in an answer-set consiting of “Antony and
Cleopatra” and “Macbeth” amongst others.

The Vector Model

An illustration of this model can be seen in Figure 2.1. Here, a set of doc-
uments is represented as vectors in a common vector space. It differs from
the Boolean model in that one now can give the index-terms non-binary
weights. From this, one can then calculate the degree of similarity between a
given query and a set of documents in a collection, based on the correlation
between the two vectors (i.e the cosine similarity). What we then get is a
ranking of the document based on its similarity with the query.

Figure 2.1: An illustration of the vector space model

The weighing of the index-terms are quantified, often by the tf-idf-term-
weighing-scheme. This is based on the term frequency and the inverse docu-
ment frequency. In short, the term frequency is how often a term is referenced

8 CHAPTER 2. PRELIMINARY KNOWLEDGE

in a document, and the document frequency is how many documents in a col-
lection that contains a given term. By inversing it, we get a boost on all the
terms that are rare and a lower score on a terms that occur more frequently.
For a more elaborate explanation, please refer to [Manning et al., 2008].

The Probabilistic Model

In this model we assume that there exist a perfect return set, R, that contains
exactly the relevant document(s) for a given query. The term weights are all
binary, and we have to initially guess the return set R. The model will then
assign to each document a probability-ratio, which gives an indication of the
relevance that the document has to a given query divided, by the probability
of it not being relevant. The ratio produced is then used as a measure for the
document’s similarity to the given query, and the result set is then ranked in
increasing order based on this ratio.

2.1.2 Evaluation

When designing an IR-system, one would like to be able to test how good it
actually operates when it is being used. This is not just a matter of observing
how well the system retrieves documents (based on a query), but also how
happy the user is with the result. Funny enough, developers and users have
different views on the notion of quality, but in the end it is the user that we are
trying to please. The key word here is user happiness [Manning et al., 2008],
and we can derive from this that the goal of IR evaluation is to measure how
well the system satisfies the user’s need for information.

Test Collections

A test collection is a controlled set of documents, that are given a binary clas-
sification as either relevant or not relevant to a query. [Manning et al., 2008]
defines three things that a collection like this should consist of:

1. A document collection
2. A test suite of information needs, expressible as queries
3. A set of relevance judgments, standardly a binary assessment of either

relevant or non-relevant for each query-document pair

As mentioned above, the evaluation (and thus the relevance) is judged
by the information need, and not the query. This means that a document is
not necessarily relevant just because it contains all the keywords specified in

2.1. INFORMATION RETRIEVAL 9

the given query. It is all about what the user is really after. The misunder-
standing of this distiction is often done in practice, because the information
need is not overt [Manning et al., 2008].

Here follows a list of some of the most standard test collections for IR eval-
uation:

Cranfield: This collection is considered as the pioneering test collection,
dating back to the late 1950s. Assembled in the United Kingdom, it
consist of 1938 abstracts of aerodynamics journals, a set of 225 queries
and relevance judgements of the query-documents pairs
[Manning et al., 2008].

TREC: The Text REtrieval Conference is a series of workshops that aim
to support and encourage research within the IR community. This is
done by providing the infrastructure necessary for large-scale evalua-
tion of text retrieval methodologies and to increase the speed of lab-to-
product transfer of technology. It consists of 1.89 million documents
and 450 information needs[Manning et al., 2008], and was started in
1992 by NIST (The US National Institute of Standards and Technol-
ogy). It is now co-sponsored by NIST and the US. Department of
Defense [NIST, 2008].

GOV2: This is the largest collection of webpages easily availble for research
purposes, and consists of 25 million unique pages. Also evaluated by
NIST it is nevertheless still 2 orders of magnitude smaller than the
document collections indexed by the biggest web search companies (e.g
google, yahoo, etc.) [Manning et al., 2008].

As of this writing there exist no public de-facto test collection for evalu-
ating medical IR systems, though some TREC collections do come close. It
has a “Genomics track” where the goal is to study the retrieval of genomic
data, though not just gene sequences but also supporting documentation, e.g
research papers, lab reports, etc. It also has a “Chemical Track” where the
goal is to develop and evaluate technology for large scale search in chemistry-
related documents, including academic papers and patents, to better meet
the needs of professional searchers, specifically patent searchers and chemists.
But these are, in lack of a better term, to narrow since they only cover parts
of what one can find in the bio-medical literature (i.e MEDLINE).

[Hersh et al., 1994] built their own collection from MEDLINE abstracts
when evaluating their automated IR system (dubbed Saphire). It contained

10 CHAPTER 2. PRELIMINARY KNOWLEDGE

75 queries and 2,334 citations. Closer to home2, the lack of a specific
Swedish collection made Karin Friberg Heppin start the work on MedE-
val [Heppin, 2008] in 2008. The BioCreAtIvE (Critical Assessment of Infor-
mation Extraction systems in Biology) challenge evaluation is perhaps the
closest one would get to a specific medical test collection. It consists of a
community-wide effort for evaluating text mining and information extrac-
tion systems applied to the biological domain, and will be one of the test
collections used to evalutate the approach this thesis presents.

Precision and Recall

When it comes to evaluate a IR system with the use of the set-based metrics,
the most frequently used is the precision and recall measure. These two will
evaluate the quality of an unordered set of retrieved documents, and can give
a good measure of how good the user’s information need is met.

• Precision: Defined as

. . . the fraction of retrieved documents that are relevant,

[Manning et al., 2008]

precision is the the relationship between the number of relevant docu-
ment retrieved and the total number of retrieved documents.

• Recall: Defined as

. . . the fraction of relevant documents that are retrieved,

[Manning et al., 2008]

recall is the relationship between the number of relevant documents
retrieved and the total number of relevant documents in the collection.

As illustrated in figure 2.2, where |R| is the relevant sub-set of documents
to an information need I, and where |A| is the returned answer-set, we see
that the relevant part of the answer-documents, |Ra|, is located in the inter-
section between these to sets. The formulas are pretty straight forward, and
can be seen in equations 2.1 and 2.2.

Precision =
|Ra|
|A|

(2.1)

Recall =
|Ra|
|R|

(2.2)

2Norway

2.1. INFORMATION RETRIEVAL 11

Figure 2.2: An illustration of Precision and Recall

12 CHAPTER 2. PRELIMINARY KNOWLEDGE

One can deduse from this that there is an inverse relationship between pre-
cision and recall, being that one can reduce one metric to increase the other.
For example; one could always increase the recall score with just introduc-
ing more documents in the return/answer-set, though this could increase the
number of irrelevant documents and thus decrease the precision. These scores
however are not usually put in isolation like this. Either they are combined
into one score called the f-measure (F1- or F-score for short), or they are
compared to a fixed measure of its counterpart. The f-measure is a weighted
harmonic between precision and recall, and can be seen in equation 2.3.

fmeasure =
2 · Precision ·Recall

(Precision + Recall)
(2.3)

2.2 Biology

Biology is a vast subject consisting of several subtopics, divisions and disci-
plines. Giving a full account for it here is way beyond the scope of this thesis.
But in its broadest sense we can say that biology is the study of living organ-
isms, including their structure, function, growth, origin, evolution, distribu-
tion, and taxonomy. Simply put; the study of life [IES, 2010, TXT, 2010].

The subdivisions of biology is often specialised desciplines on their own
[WSMNS, 2008] and can be seen, generalised , in the following list:

• Molecular biology: Studies the complex interactions of systems of
biological molecules.
• Biochemistry: Examines the rudimentary chemistry of life.
• Physiology: Examines the physical and chemical functions of the tis-

sues, organs, and organ systems of an organism.
• Cellular biology: Examines the basic building block of all life, the

cell.
• Ecology: Examines how various organisms interrelate with their envi-

ronment.

2.2.1 Proteins

For random events to produce even a single protein would seem
a stunning improbability - like a whirldwind spinning through a
junkyard an leaving behind a fully assembled jumbo jet.

2.2. BIOLOGY 13

Fred Hoyle

Somehow along the way, scientists in the disciplines listed above will come
across the study of this peculiar entity. Proteins are one of the four macro-
molecules3 that all organismes exist of and are, in short, very complex enti-
ties. They are also highly improbable, as stated by the English astronomer
Fred Hoyle. To make a protein, one would need to assemble amino acids in
a particular order, like one would assemble letters to form a word. There are
22 naturally occuring amino acids known on Earth that have been discovered
so far, and only twenty of them are necessary to “produce” a human. Given
that the English alphabet only consists of 27 letters, one would think that
this wouldn’t be to difficult. The challenge arises from the fact that, when
the longest English word (who, ironically or perhaps rather conveniently,
is a name for a protein) coined in a major English dictonary is “just” 45
letters long4, a regular “protein-word” consists of several hundred “amino
acid-letters”. To illustrate, consider this example from [Bryson, 2003]: The
word collagen is a 8 letter word and is a common type of protein. But in
contrast, it is also a 1055 amino-acid-letter “protein-word”. In other words,
to make it, you would have to arrange 1055 amino acids in precisely the right
order. Even scaling it down to a protein word of just 200 amino-acid-letters,
the probability of them all to just conveniently assemble in the right sequence
is 1 to 10260, or in other words 1 to a number larger than the number of all
the atoms in the known universe.

Figure 2.3: An example of what a folded protein could look like.

3The other three being: Nucleic acids, carbohydrates, and lipids
4Pneumonoultramicroscopicsilicovolcanoconiosis [DICT, 2010]

14 CHAPTER 2. PRELIMINARY KNOWLEDGE

To complicate matters even more, a protein is not just a linear chain
of amino acids. They turn, twist and fold into very unique shapes, as can
be seen in figure 2.3. Since the shape it folds into will determine how a
protein functions, it is the subject of intense study, more precisely on four
levels: Primary, secondary, tertiary and quaternary. The primary structure
is the basic amino sequence, which defines its native conformation. The sec-
ondary structure is the basic three-dimensional form of the protein (and the
amino acids), and the tertiary structure describes specific atomic positions
in this three-dimensional space. Lastly, the quaternary structure involves
assembling or co-assembling sub-units that have already folded. Being able
to pre-determine how a protein (or a protein complex) will fold based on a
amino-sequence (or a protein-sequence) is one of the biggest open problems
in science today [Nair, 2007].

Proteins are typically divided into categories according to their functions,
which can be summerised ([ProteinCrystallography.org, 2007]) as:

Enzymes: Proteins that work as catalysts in chemical and bio-chemical re-
actions. Responsible for all metabolic reactions in the living cells. Well
known examples are: DNA5- and RNA6-polymerases.

Hormones: These work as regulators for many processes in an organism. A
commonly known hormone is insulin who regulates the blood sugar (or
more specifically the cells ability to take up glucose from the blood).
Many hormones are predecessors of peptide hormones, such as endor-
phine who works as a “natural pain reliever” for the body.

Transport: Group of proteins that transports or stores ions and/or some
other chemical compound. The most commonly known examples are
hemogloboin and myogloboin who transports oxygen in the blood-
stream.

Defense: Proteins that are involved with the immune responses of the or-
ganism. I.e neutralisation of foreign molecules like bacteries and viruses.
More commonly reffered to as antibodies or immunoglobulin.

Structural: Proteins tasked with the operation of maintaining the structure
of biological components, like cells, tissue and fibers. Take for example
keratin which is important in the formation of nails and hair.

5Deoxyribonucleic acid
6Ribonucleic acid

2.2. BIOLOGY 15

Motion/Motoric: Responsible for converting chemical energy into mechan-
ical energy. Most famous are Actin and Myosin who are responsible for
muscular motion (muscular contraction).

Receptors: A family of proteins which are responsible for signal detection
and conversion into an other type of signal. An example of a protein
from this family is Rhodopsin, a light detecting protein.

Signaling: These proteins work as a form of catalyst (enzyme) in a signaling
translation process. Usually by changing some attribute of itself in
the presence of some signaling molecules. Other types of proteins can
interact with the receptors directly (usually smaller ones).

Storage: Proteins containing energy, ready for release during metabolism.
Almost all proteins can be seen as a source of energy and building
block(s) for other organisms.

2.2.2 Protein-Protein-Interaction

The interactions of proteins is a wast scientific field and is of central impor-
tance to every process in a cell. It involves the direct-contact or long-range
interaction between two or more proteins, whom can be of the same (homo)
or of different type(s) (hetero). When the interactions happen in a non-
covalent7 way, the proteins form what is called a protein complex, which is a
more of long term bond than just an interaction. By direct-contact it is in-
tuitively implied physical contact, but long-range interactions is a little more
ambiguous. These will refer to higher levels of relations between proteins,
and can be very different (as stated by [Rivas and de Luis, 2004]) in the way
they occur:

• Inclusion in multiprotein complexes,
• Common cellular compartements,
• Same signaling pathway,
• Same metabolic pathway,
• Co-expression,
• Genetic co-regulation,
• Co-evolution

PPI’s can also be seen as a series of events within the cell (and even the
organism), in that they can (and will) form a chain of events that affects the

7Any relatively weak chemical bond that does not involve an intimate sharing of elec-
trons. [Berk et al., 2000]

16 CHAPTER 2. PRELIMINARY KNOWLEDGE

cell (and organism). This can be expressed as a directed graph, and is called
(in terms of proteomics8) a PPI-network where an simple interaction is the
basic unit. This kind of network is called an interactome9, and though not
exclusively used about PPI-networks, it is the most common. The study of
interactomes is called interactomics and deals with both the interaction and
the consequences it leads to.

For the same reason one could not list up in a paper every protein that
exist, due to the sheer number of instances, one can neither list up all the
the interactions or associations that occur between them. One of the biggest
databases for PPI’s is the Database for Interacting Proteins (DIP) which has,
as of this writing, a collection of 69171 unique identified PPI’s between 21891
proteins [DIP, 2010]. Even so, a more general list of interactions/associations
can be found in [Rivas and de Luis, 2004]:

1. Co-interacting protein; defined as physical contact:

• Permanent interaction: Proteins forming a stable protein com-
plex that carries out a biomolecular role (structual or functional).
These proteins are protein sub-units of the complex and they work
together.

• Transient interaction: Proteins that come together in certain
cellular states to undertake a biomolecular function.

2. Correlated proteins; defined as proteins that are involved in the same
biomolecular activity but do not physically interact:

• Metabolic correlation: Proteins involved in the same metabolic
pathway. These are mostly enzymes.

• Genetic correlation: Proteins that are encoded by co-expressed
or co-regulated genes. These could be called operontype proteins.

3. Co-located proteins; defined as proteins that work in the same cellular
compartment:

• Soluble location: Proteins placed in the same cellular soluble
space.

• Membrane location: Proteins placed in the same cellular mem-
brane.

8The branch of genetics that studies the full set of proteins encoded by a genome.
9Defined as: “A complete set of macromolecular interactions (physical and genetic).”

[NAT, 2004]

2.3. BIO-INFORMATICS 17

2.3 Bio-informatics

As defined in [Nair, 2007], bio-informatics (and indeed computational biol-
ogy) is:

. . . the application of computer science and allied technologies
to answer the questions of biologists about the mysteries of life.

Bio-informatics is a relatively new field, and the term was coined as late
as 1979 by Paulien Hogeweg for the study of informatic processes in biotic
systems. The constant flood of data from biology is in need of fast but thor-
ough analysises, and to achieve this it makes sense to make use of computers
to do the heavy work. The scope of bio-informatics encompasses in large (but
is not limited to) computational and statistical techniques, algorithms, cre-
ation and advancements of databases, and, of course, theory to solve different
problems arising from analysis of biological data, be it formal or practical.

One thing [Nair, 2007] emphasises is the difference between bioinformatics
and computational biology, even though they have the same definition. They
are both Computers + Biology, but the difference arises from what comes
first in the equation. In short:

Bioinformatics = Biology + Computers (2.4)

and

Computational Biology = Computers + Biology (2.5)

So a biologist who use and develop computational tools to answer ques-
tions of biology is a bio-informatician, but a computer scientist who develop
theories and techniques for such tools is a computational biologist.

2.4 Text mining

Text mining is a process on the intersection of the fields computational
linguistics, IR and NLP (Natural Language Processing), and is defined in
[Mooney and Nahm, 2005] as:

. . . the application of data mining techniques to automated dis-
covery of useful or interesting knowledge from unstructured text.

Simplified we can say that text mining is a sub-field of data mining, where
we spesify that the data pool where we want to extract information from,
consist of textual data. Data mining (or knowledge discovery) as an own
term is defined by [Frawley et al., 1992] as:

18 CHAPTER 2. PRELIMINARY KNOWLEDGE

. . . the nontrivial extraction of implicit, previously unknown,
and potentially useful information from data.

[Kamber and Han, 2006] notes that data mining can be viewed as a re-
sult of the natural evolusion of information technology, but that the term is
somewhat a misnomer. One is not mining for data, but knowledge/informa-
tion from data. Thus a more appropriate name would have been “knowledge
mining” or indeed “knowledge discovery” as used by [Frawley et al., 1992],
but these are considered to be to long and tricky. All in all, one can sum-
merise the process of text mining into a sequence of steps (shown in figure
2.4) that are briefly explained here:

Figure 2.4: The process of text mining

One would start off with pre-processing the input text(s) from the data
pool. This will structure the text with the help of semantic/syntactic analy-
sis. Here, each word will be labeled with the corresponding part of speech10,
in what is called POS(Part-of-Speech)-tagging, and a parser may be used to
obtain a representation of the gramatical structure of the input.

The next step would be text transformation. This could be seen as a
part of the pre-processing step, but to emphasise the differences it gets its
own description. Here the text(s) is divided into single words, who are then
processed induvidually. Sub-tasks of this step is to remove all stop words11

and the use of stemming12.
The third step, here dubbed feature selection, is where one defines the

features one would like to obtain from the mining by reducing the dimension-
ality. Typical sub-tasks here are term-analysis and named-entity recognition.

10Noun, adjective, verb
11Words that occur frequently, but does not have much meaning. E.g and, the, of, it, a.
12Reduce a word to its root. E.g Horses → Horse

2.4. TEXT MINING 19

With this, one can obtain terms that consist of several words, and exclude
words/terms that are deemed not relevant.

Lastly, we have the the actual text mining. The goal here is to iden-
tify patterns in the result uncovered in the previous step, and thus uncover
potentially new knowledge.

2.4.1 Biological text mining

Given the huge growth in digital medical literature, there has been an in-
cresing interest in the use of text mining solutions for searching through
these publications. One doesn’t need to look any further than the MED-
LINE database, as mentioned before. There are though, several differences
and indeed challenges when mining in biological texts versus regular texts
(e.g news stories, books, etc.).

The main one, that have already been adressed above, is the task of
identifing biological entities in the texts (mainly protein names). Since there
is no definitive standard in how one should name or adress a given protein,
there now exists multiple variants of the same term and new ones are made
up every day [Krauthammer and Nenadic, 2004]. All of them need to be
condsidered when deciding which terms to extract. There is also an increased
problem with ambiguity, since regular English words and biomedical-specific
words can be the same but have different meanings, and gene symbols may
also corrrespond to disease names.

Some of the strategies that so far have been developed to tackle these
challengens are ad-hoc rule-based, machine learning and dictionary-based
approaches/techniques. There also exist hybrids of one or more of these. As
before, a short summary of the three will be given here:

Ad-hoc rule-based

A rule-based approach for machine learning when talking about biological
text mining will make use of pre-exististing knowledge about how the bio-
logical literature is structured. The knowledge is specified through a series
of rules (often “hand-written”) that are derived from experts which combine
surface clues13 with syntactic/semantical properties. As one can deduse, the
successfulness of this approach relies on how well defined the rules are. But
it is a system that is easy to support, expand and adjust. As one discover
new knowledge about the structure it is easy to just add a new rule.

13E.g alphanumerical word-composition, presence of special symbols, and capitalisation.

20 CHAPTER 2. PRELIMINARY KNOWLEDGE

Machine learning

The machine learning approach can be seen as a automated version of the
rule-based approach, as one is still interested in rules that describes properties
and so on. The difference lies in that this knowledge-annotation is now
automated, and the system will learn the rules from expert-annoted training-
sets by the use of various statistical algorithms.

Dictionary-based

With this approach, one will use a pre-compiled list of terms (e.g protein
names) when indentifying occuerences in a text. The approach will usually
make use of sub-string matching when comparing possible matches with the
dictionary list. Intuitively, one can see that the performance of this approach
is closely related to the quality of the dictionary, in the same way the perfor-
mance of machine learning and rule-based approaches is related to the rules
they employ. All in all, tests show that a dictionary-approach outperform
the rule-based apporaches on accuracy [Egorov et al., 2004].

Chapter 3

Previous and/or related work

What should be obvious from the previous chapter, is that these fields of
science are very popular and that extensive research is being put down in the
development of new and better methods and systems. In this chapter the
reader will be introduced to some of these systems that are closley related to
the work that this thesis is presenting.

3.1 ProtScan

ProtScan, outlined in [Egorov et al., 2004], is a dictionary-based approach
that utilises carefully constructed dictionaries of mammalian protein names
to indentify protein names in Medline abstracs. This dictionary was based on
the LocusLink1 database, enriched with names and symbols from GenBank2,
GoldenPath and HUGO3. The system was implemented i C, and achieved a
98% precision score and a 88% recall score when applied to Medline abstracts.
Though noting that development and maintenance of these comprehensive
protein name dictionaries is a nontrivial task, since new genes are discovered
every day, the authors argue that this also applies to rule-based and machine
learning techniques, since they require expert work for creation of rules and
manual tagging of corpuses. They also point out that once the inital dictio-
nary is constructed, its maintenance and updating will be a much simpler
task and will require less human interaction.

1http://www.nih.gov/science/models/rat/resources/locuslink.html
2http://www.ncbi.nlm.nih.gov/genbank/
3http://www.hugo-international.org/

21

http://www.nih.gov/science/models/rat/resources/locuslink.html
http://www.ncbi.nlm.nih.gov/genbank/
http://www.hugo-international.org/

22 CHAPTER 3. PREVIOUS AND/OR RELATED WORK

3.2 Yapex

The Yapax system is a rule-based protein name tagger which is outlined in
[Franzén et al., 2002]. The proposed algorithm may be seen as a collection
of seven steps, where the first four are tasked with lexical analysis of single
word tokens. Step five and six are tasked with a syntactic analysis of noun
phrases and the lexical categories derived from in the previous steps, and
the seventh and last step will utilise the syntactic information to indentify
new single- and multi-word protein names. The evalutation of the system
showed a f-score4 of 82.9% under “sloppy” conditions and 67.1% during strict
conditions.

3.3 Textpresso

Texpresso is a text processing system (presented in [Müller et al., 2004]) that
splits biological papers into sentences, and these sentences again into words
and/or phrases. Each of these words and/or phrases are then labeled, using
XML (eXtensible Markup Language), accordingly to the lexicon of an ontolgy
they have constructed. An ontolgy is catalog of types or categories, devised
for discussing a domain of interest. The ontolgy constructed for this system
conists of 33 different categories for the terms or phrases. Then the sentences
are indexed with respect to the different labels the ontolgy has “given” a word
or a phrase. Focusing on 3800 full-text articles and 16000 abstacts on the
topic of Caenorhabditis elegans (a free-living, transparent roundworm, about
1mm in length), the authors report of a precision-score for abstracts of 52%
and a recall-score of 45%.

3.4 PubMed

Pubmed5 is the offical search-tool used to access the tons of data located in
the Medline database. It presentes the user with some rather usefull features,
like MeSH6 term support. Knowing how to use these terms really helps
narrow down the result-set, but the downside is that it has a steap learning
curve. The system also sports ’Clinical Queries’ and ’Systematic Reviews’
options that one can use to indentify more relevant studies by applying special

4Don’t remember F-Scores? See section 2.1.2 and equation 2.3
5http://www.ncbi.nlm.nih.gov/pubmed/
6Medical Subject Headings - a comprehensive controlled vocabulary for the purpose of

indexing journal articles and books in the life sciences. See http://www.nlm.nih.gov/

mesh/

http://www.ncbi.nlm.nih.gov/pubmed/
http://www.nlm.nih.gov/mesh/
http://www.nlm.nih.gov/mesh/

3.5. PROTIR 23

filters to every search. New and untrained users of the system are sometimes
annoyed with the large and wide number of results returned by simple queries.
As of October 2009, PubMed got a new interface that encourages simple
search formulations in contrast to the complex ones that were sported before.

3.5 ProtIR

The ProtIR is a proposed prototype developed for the IAS subtask in the
BioCreAtIvE2 challenge for text mining and information extraction, and can
be viewed in [Ramampiaro et al., 2007]. The system is partitioned into seven
modules where the main ones are dubbed M1-5. The two other last modules,
dubbed MA and MB, are support modules for M4. The main modules are, in
respective order, responsible for tokenization, indexing, term categorisation,
evidence score calculation and relevance classification. In order to recog-
nise proteins and PPI’s the system used a pre-compiled list of protein/gene-
symbols and names, and a list of PPI keywords. Evaluation based on a test
collection from BioCreAtIvE2 produced a f-score of 68.2%

3.6 Other

In her PhD thesis7, Barbara Rosario presents several steps and algorithms
that extract semantics from biomedical texts, using statistical machine learn-
ing techniques. The thesis focuses on indetification of entities and/or roles,
and also the relationship among them (i.e PPI’s). She reports of F-Scores
slightly above and below 70% for all her dynamic models when applying a
smoothing factor.

A dictionary approach, dubbed iMasterThesis, is proposed by Magnus
Skuland in [Skuland, 2005]. Here the protein name dictionary is realised as a
multi-level tree structure of hash-tables, and tried to facilitate a more flexible
and relaxed matching scheme than previous approaches. Evaluated against
a golden standard of 101 expert-annotated Medline abstracts, the solution
achieved a 10% recall score and a precision score of 14%.

7See [Rosario, 2005].

24 CHAPTER 3. PREVIOUS AND/OR RELATED WORK

Chapter 4

Own Approach

This chapter will give the reader an overview of the approach this thesis
is taking; highlighting choices, thoughts, the reasoning behind them and
introduce the system that emerged from it, dubbed MasterPPI.

4.1 The idea and the reasoning behind it

As previously mentioned, MasterPPI will take inspiration from the systems
dubbed ProtScan and ProtIR, which is described in [Egorov et al., 2004] and
[Ramampiaro et al., 2007] respectfully (and briefly outlined in section 3.1 and
3.5 in this thesis). The idea is to use a version of the “assembly line”-like
architecture from ProtIR combined with the use of the several-dictionaries-
type of approach from ProtScan (though not constructed in the same way).
The ProtScan dictionaries required a lot of manual work; like removing all
entries that were purely numerical or just under a length of 1 and moving
entries that had a length of 2-4. MasterPPI will try to simplify this the
whole process, primarily by automating a task or let Lucene1 handle it . The
use of different workstations in the assembly line (where one encloses a work
task in its own module) will make it easy to take out and change/improve
specific parts without having to rewrite the entire system, thus supporting a
software architecture quality known as modifiability [Bass et al., 2007]. An
overall illustration of the proposed system can be seen in figure 4.1, and an
in depht explaination of the modules can be found in sections 4.2 through
4.6.

MasterPPI’s first difference from ProtIR is the re-location of term-filtering
(i.e stopwords) from the catergorization module to the tokenizer and indexer
module. Further on, MasterPPI will not use a weighing-scheme when finding

1More on Lucene in section 5.1.1

25

26 CHAPTER 4. OWN APPROACH

Figure 4.1: Illustration of the Assembly line approach

4.2. THE XML-INPUTS 27

PPI’s and not have the same base for the dictionaries it constructs. ProtIR
used the NTNU annotation database for their recognision of names, and it
was theorised that this database was not complete (or up to date) enough
and that this made the system not as good as it could have been. ProtScan
used LokusLink for its dictionaries that has since then been succeded by
EntrezGene, so though their results were good at the time, the database
is outdated (EntrezGene may not be of course). Based on this, the choice
for MasterPPI will be UniProt which is a collapsed database of two other2

big ones, and offer it free for download in the XML-format. More info on
XML can be found in section 5.1.2. The MEDLINE articles from the PubMed
database will also be indexed before they are term-categorized, thus providing
easy access to its terms and their position/offsets.

ProtScan used a combination of two separate dictionaries, one being cu-
rated and the other being non-curated, when trying to identify protein names
in a text. Further on, the system processed one sentence at a time, scan-
ning them for a sequence of tokens that could be a “protein-word”, and
then tried to match these with entries in the dictionaries. ProtIR applied
weights to terms based on their probable relevance, and then calculated the
probabillity of the existens of a PPI in a given text. MasterPPI will also
work on a sentence-level, first determining if a token is a protein name,
interaction-keyword or just a random word, and then label it accordingly
with their possitions in the sentence. Too achieve this, the tokens will be
checked against two dictionaries that have been compiled from the biggest,
relevant and most recently updated databases on the web. The first dic-
tionary will be for protein names and the second for interaction-keywords
and both dictonaries will be realised as Lucene indices. This also goes for
the MEDLINE index. Having access to information on positions and offsets
from the MEDLINE-Lucene-index, the system can then check the positions
of the different occuring tokens, determining an PPI using the naive approach
that an interaction in a sentence needs at least one interaction-keyword and
at least two protein names. Further on, the position of the keyword should
be between the two proteins.

4.2 The XML-inputs

MasterPPI will take three collections of inputs (illustrated in figure 4.2; The
first will be a collection of MEDLINE “articles” constructed in the same
structure that PubMed offers from their site. These are not full articles, but
consists of the articles PMID (PubMed IDentification), the title, abstract,

2Though MasterPPI will only use the part that is manually annotated and reviewed

28 CHAPTER 4. OWN APPROACH

Figure 4.2: Illustration of the XML-files that works as input

an several other metadata-entries (publishing date, journal, volume, pages,
etc). The second input is a database dump from UniProt, also in the XML
format, and the third is a XML file compiled from the table of keywords
presented in [Temkin and Gilder, 2003].

4.3 Module 1 - The Parsers and Pre-Token-

Processing

This module (illustrated in figure 4.3) will parse the different xml-abstracts,
-database and -keywordlist into useable strings which again will be processed
according to the heuristic rules provided in [Jiang and Zhai, 2007]. These six
rules are briefly summerized here:

1. Replace the following characters with spaces (whitespaces): ! ” # $ %
< = > ? @ \ |

2. Remove the following characters if they are followed by a space: .:;,

3. Remove the following pairs of brackets if the open bracket is preceeded
by a space and the close bracket is followed by a space: ()[]

4. Remove the single quotation mark if it is preceeded or followed by a
space: ’

5. Remove ’s and ’t if they are followed by a space

6. Remove slash / if it is followed by a space

The parsing of the Medline files will be done with a special framework
distributed by the LingPipe project. This framework gives direct access to

4.3. MODULE 1 - THE PARSERS AND PRE-TOKEN-PROCESSING 29

Figure 4.3: Illustration of Module 1

30 CHAPTER 4. OWN APPROACH

elements like the PMID of the document, the title-text and the abstract-text.
For the UniProt database a custom built SAX-parser has to be constructed,
and the same for the keywordlist. All that is gathered from this database is a
proteins full name, and (if it exists) its alternative name. When this is done
the processed data is sent to the next module for tokenization and indexing.

4.4 Module 2 - The Tokenizer and indexer

Figure 4.4: Illustration of Module 2

The tokenizer and indexer are placed in the same module (illustrated
in figure 4.4) because both will be utilising the Lucene library. The tok-
enizer part will consist of a special-written Lucene Analyser that will deal
with the process of dividing a text-string into stand-alone tokens and run-
ning these through one or more filters. The splitting of tokens will occur
when the tokenizer encounters a whitespace. The filters will take care of the
post-tokenizing work, like making all characters lowercase and the removal
of stop words. The regular list of words that are defined as stop words will
be extended with a “special case”-list of words often found in bio-medical
literature, and provided by PubMed (see Appendix A). By removing these

4.5. MODULE 3 - THE TERM CATEGORIZATION 31

in this module (in contrast to ProtIR, who did it in the term categorization
module), the generation-process of the index, and the index itself, will be
much more efficient and accurate. Since the stopword list is defined in low-
ercase, it is crucial that the tokens are made lowercase before applying the
stopwords-filter. [Jiang and Zhai, 2007] recommends not using a stopword-
filter because they could not determin if it helps or not. The decision to
include it here it therefore: “Why not”. As long as it might help, and it does
not decrease overall system performance then why not try it. Of course, this
is just as good an argument for leaving it out, but this system will include
it.

The indexing process is the core of the Lucene library and promises scal-
able, high-performance indexing with a size of roughly 20-30% of the text-
size. This index will provide a list of term-frequency vectors that can be used
in (a) later module(s), for acquiring token offsets, positions and frequencies.
Details on how Lucene works will be covered in the next chapter (see section
5.1.1.Lucene).

4.5 Module 3 - The Term Categorization

The idea for this module (illustrated in figure 4.5) is to put each term ex-
tracted from the MEDLINE-index into one of two pre-defined categories:
Protein name and PPI-keyword. Further more, a term categorized as a pro-
tein name, will also get labeled accordingly if it is a full name or a part of
a name (protein names can consist of multiple words). These possible-part-
of-name tokens will, if the offsets between the end of one and the start of
another is 1, combined and then checked again against the fullname index.
When it comes to recognising different terms, there was in the previous mod-
ule compiled a set of dictionaries from different sources, consistent with the
different categories, for the the terms to be compared against. The potential
protein names will be checked against the dictionary compiled from UniProt,
whereas the potential interaction-keywords will be checked against the dictio-
nary compiled from a list of words provided by [Temkin and Gilder, 2003]3.
Tokens that do not get a match in neither will just simply be discarded as
not important.

If possible, the PPI-keyword should be labeled with the direction of the
interaction that has been identified, since this can be used later for specifying
which protein is the “interacter” in a PPI. Seen as a usefull feature, but not
an essential one, this will not be implemented in MasterPPI but could be an
improvement for the future. If none full-name entites have been found in the

3The XML file can be viewed in Appendix B

32 CHAPTER 4. OWN APPROACH

Figure 4.5: Illustration of Module 3

4.6. MODULE 4 - THE EVALUATION 33

end, the list with potensial-short-name entities will become the primary list
in a last-resort-strategy. In essence, the result will then be that an article (at
least the PMID) will have two pointers, first to a list of protein name-tags
and second to a list of keyword-tags.

4.6 Module 4 - The Evaluation

The last module (as seen in illustration 4.6) is basically where it all comes
together. It takes all the entities tagged in the previous modul and compare
them based on their offsets and position. For a given MEDLINE article
representet by its PMID, its task is to check each interaction-keyword located
in that article with all the protein names identified. If a keyword is found
to have its position between two protein names, an interaction is presumed
and MasterPPI will generate an output marking the article as one that has
a PPI occurence. One should note that a keyword does not have to be just
between the protein names, but can occur between other words as well, as
long as their outer parts are protein names. The example sentence

“Secondly, {some protein name} is essential for the ac-
tivation of the first compartment-specific transcription factor
{some protein name} in the prespore.”

illustrates this. Here we see the keyword “activation” occur between two
protein names, and MasterPPI would therefore label this as a comfirmed
interaction.

34 CHAPTER 4. OWN APPROACH

Figure 4.6: Illustration of Module 4

Chapter 5

Implementation

This chapter will elaborate on, and explain the choice of, the technologies
that have been used in the making of MasterPPI. It will also dive into imple-
mentation details in the different classes and the system as a whole. Finally,
two class diagrams are provided, to illustrate the connections and dependen-
cies among the different classes in the system.

5.1 Technologies used

To be able to make any system, one may have to adopt a wide spectrum of
different technologies, formats and applications. Here follows a short sum-
mary of answers to the “what” and “why” questions surrounding the use and
choice for the adoptations in the development of this system.

5.1.1 Java

The system presented in this thesis has been achieved through the use of
Java 1.61. This is an object-oriented, cross-platform, programming language
developed by James Gosling at Sun Microsystems in 1995, and is now main-
tained and distributed by Sun Microsystems (now a part of the Oracle Cor-
poration2). One of greatest strengths of Java is its cross-platform ability.
This is achieved by compiling the application to byte code, which is designed
to run on any JVM (Java Virtuel Machine). Thus if a system has a JVM-
implementation, any Java application can run on that system.

1http://www.sun.com/java/
2http://www.oracle.com/

35

http://www.sun.com/java/
http://www.oracle.com/

36 CHAPTER 5. IMPLEMENTATION

Eclipse

Eclipse3 is a free, open-source IDE (Integrated Development Environment),
written in Java and distributed under the Eclipse Public License4. The sys-
tem is primarily ment for the development of Java applications, but can with
the help of an extensive plug-in system be extended to support other lan-
guages (C, C++, Python, etc.) and tasks (UML modeling, tex teditor, etc.),
making it a powerful tool and ally when developing applications.

LingPipe

The LingPipe Project5 offers a range of free, open-source libraries for linguis-
tic analysis of the human language, and is also written in Java. The use of
it in this thesis is limited to their parser of Medline abstracts, but it offers
loads of more techniques that are relevant for the field of bio-informatics.

Lucene

Another library written6 in Java, Lucene7 is a free, open-source information
retrieval engine that offers full text indexing and several searching options
from a variety of text formats (PDF’s, HTML, Word) given that the text can
be extracted. The core of the Lucene architechture is the notion of documents
and fields. One or several fields are added to a document where they work
as categories for different tokens. The document will work as a record, and
can be an actual document, a row from a database or something else entirely.
This is all up to the programmer and what he or she is indexing. When a
document is complete, it is added to an index along with an Analyzer. This
entity determins the rules for how a token is made and how the index will
be searched when queried.

Luke

Luke is a simple application that provides a GUI (Graphical User Interface)
for viewing and manipulating the constructed Lucene index. One can browse
a document, the fields constructed for it, the terms they consist of, and also
provide the means to query the index with the help of different pre-compiled
Lucene analysers.

3http://www.eclipse.org/
4http://www.eclipse.org/legal/epl-v10.html
5http://alias-i.com/lingpipe/
6But also portet to Delphi, Perl, C#, C++, Python, Ruby and PHP
7http://lucene.apache.org/

http://www.eclipse.org/
http://www.eclipse.org/legal/epl-v10.html
http://alias-i.com/lingpipe/
http://lucene.apache.org/

5.1. TECHNOLOGIES USED 37

5.1.2 XML

XML is a mark-up language, derived from SGML (Standard Generalized
Markup Language), produced by W3C8 and designed to meet the challenges
of large-scale electronic publishing by defining a set of rules for the encoding
of the document. The advantage of XML is that a document will have a log-
ical layout and have clear accesspoints to different data-entries. XML dates
back to the 14th of November, 1996, when the first draft of the specification
was published. The idea is to contain information in so-called elements that
have a clear start- and end-points. For the XML-element

1 <name id=’13’>Rincewind </name>

from some big XML-file which perhaps stores names from the Discworld-
books, the start-point, or start-tag would be

1 <name id=’13’>

where the id-part is that elements attribute, and the id’s value is 13. Follow-
ing this, the end-point or closing-tag, will be

1 </name>

encompassing the elements value, in this case the name Rincewind. A full
XML-file can be seen in appendix B.

XML-parsing

When using XML-files with a programming language, it is necessery to trans-
form them into strings and/or objects that the language can handle. This
is achieved by parsing, and when it comes to this there is two dominant
techniques to choose from: DOM9 and SAX10.

The DOM (Document Object Model) is, like the name implies, a way of
representing the document and elements in HTML-, XML- and XHTML-files
as objects. It also provides means for accessing these objects and tools for the
manipulation of them. The model views the XML-file as a tree structure,
with the root-element in the file being the root-node, parent-elements be
parent-nodes and so on. With this representation any node/element can be

8http://www.w3.org/XML/
9http://www.w3.org/DOM/

10http://www.saxproject.org/

http://www.w3.org/XML/
http://www.w3.org/DOM/
http://www.saxproject.org/

38 CHAPTER 5. IMPLEMENTATION

reached at any given time. The downside is that the whole tree has to reside
in main memory. With files ranging from a couple of hundred megabytes
to 5 gigabytes (for the UniProt database), this is an approach that will not
work on a regular computer.

With the SAX (Simple API for XML) approach, the XML-tree is not
directly mapped to a data structure as with DOM, but instead every ele-
ment is viewed as a stream of events. The events correspond with when the
parser encounters new elements as it traverses the document. It is up to
the programmer to capture these events and make something useful of them.
It is superior to the DOM in both memory and traversing, but instead of
having access directly to elements, one would have to wait for the parser to
encounter them and fire an event.

For the system proposed in this thesis, there will be several xml-files of
different size, and some of them will be small enough (i.e the keyword list)
for using the DOM approach. But other files, such as the UniProt database,
will require the use of SAX.

5.2 Implementation details

MasterPPI conists of 11 java classes; with 4 i module 1, 2 in module 2, 3
in module 3 and 2 in module 4 respectfully. Here is a quick run-through of
their functions and their responsibilities.

5.2.1 Module 1

MedlineParseImplementation.java

Handles the parsing of MEDLINE articles, with the help of LingPipe. The
LingPipe parser is basically an extended SAX-parser, tailored for the XML-
structure that MEDLINE provides its database in. The values extracted
from the article will be the PMID (for identification), its title and its abstract.
These are put in a Lucene Field object as part of making it ready for indexing.
An article will thus consist of 3 fields; the first for the PMID, the second for
the tokenized and analyzed title, and the third for the tokenized and analyzed
abstract. The last two will each also have a Term-Field-Vector object made
at index time, providing info on position and offsets of the terms.

PPIKeyWordParser.java

A very simple SAX-parser that takes the XML-file provided in appendix B
as input and makes it ready for the indexer. When the parser encounters an

5.2. IMPLEMENTATION DETAILS 39

end-tag of a word, the value of that elementet is extracted and made ready
for indexing. Each keyword will be put in a Field object, consistent with its
category. This will therefore give 15 fields in the index.

UniProtXMLParser.java

A SAX-parser that takes an XML-version of the UniProt database as input
and extracts the full recommended name, short name, alternative name and
the alternative short name. A full version of the name, as well as a tokenized
version is made ready for indexing bringing the Field-count up to eight when
finished.

NonFuncCharRemoval.java

Makes use of the 5 rules seen in section 4.3 to pre-process sentences before
they go to tokenizing and indexing. Each rule uses regular expressions to
deal with the task at hand. As can be seen in this example of rule 1:

1 // Replaces any of the chars !"#$%&*<=>?@\| ←↩

→ with a whitespace

2 private String rule1(String workingText) {

3 return workingText.replaceAll("[\\!\"#\\$ ←↩

→ %&* <= >\\?\\@\\\\\\|]", " ");

4 }

Regular expression, or regex for short, gives concise and flexible ways
of matching strings of text, such as induvidual letters, characters, phrases
and/or syntax.

5.2.2 Module 2

CustomAnalyzer.java

This class extends the abstract Lucene Analyzer class for custom tailoring
how filters are applied and how tokenization is performed. The stopwords
filter will use the array seen in A and there is also a lower-case filter that is
applied to a whitespacetokenizer.

CustomIndexer.java

A simple class that is tasked with handeling the Lucene IndexWriter instance,
who writes the field objects to the index. Its output is the complete Lucene
index.

40 CHAPTER 5. IMPLEMENTATION

5.2.3 Module 3

Entity.java

A datastructure for representing a potential important entity in a text. It
details which section of the text the entity was found (title or abstract), its
offsets and the element token it self. The class implements the Compara-
ble interface, so that entities can be sorted and compared when put in an
array(list) or a set(map).

PreQueryProcess.java

The Lucene search engine is a little picky when it comes to how a query is
structured. An example being that if a parenthesis that have no “mate” (i.e
have noe closing bracket or opening one) exists in a query, this will produce
an error. To deal with this, the static PreQueryProcess class takes a potential
query as its input and formates it in a way that Lucene will accept. Since
this process can lead to a query-string that is Lucene-valid, but may not
make any sense, e.g a lot of whitespaces and numbers or just some random
characters put together, the class also sports a check function to see if the
string is valid for searching.

TermCategorizer.java

With its 234 lines of code, the term-categorizer class is the biggest, and most
essential in the whole system. MasterPPI relies on the identification of names
and keywords, and both of these tasks are located here.

It starts of with extracting a document (a document is, in this case, a
representation of a MEDLINE-article) and its terms from the MEDLINE-
index through a IndexReader object that is part of the Lucene library. So
for each field in a given document it extracts the terms and gives them to
an IndexSearcher, as a query object. When constructing the queries for
the searchers the PreQueryProcess class is used. If a term gets a match
in the PPIKeyword-index, an Entity object is constructed with parameters
gathered from the index, like its field and value, and its offset acquired from
the Term-Field-Vector object of the given term. This Entity object is then
stored in an Arraylist that is put in a TreeMap with the articles PMID as its
key.

The protein name search works in a similar way, but is a bit more complex.
The start is the same, where potential protein name tokens are identified and
put in its respective Arraylist as Entity objects, the same way as with the
keyword-search. After this though, it tries all of these as full protein names,

5.3. CLASS DIAGRAMS 41

before trying to combine tokens that have positions right next to each other.
In other words, if the list contains two potential protein name -terms, where
one of them occurs right after the other in the text, the system combines
them into one entity and tries that in the full name search.

From this one would ideally get a list of perfectly matched protein names
that can be put in a map with the PMID of the article as the key. This is
not always the case for different reasons (some listed in section 6.3), so as a
last desperate resort, if no protein names have been comfirmed, the potential
list as a whole is included instead. This will not produce a good result, but
a bad result is better than no result at all.

5.2.4 Module 4

Evaluation.java

This class will take the two maps generated by the term-categorizer and an
Arraylist of PMIDs. It will then acquire the keyword-Entity list from the
keyword map based on the PMIDs, and for each entry compare its offset to
all of the protein entries in the corresponding protein name list. If a keywords
start-offset comes after an end-offset from a protein name, and its end-offset
comes before another protein names start-offset, the system will label the
PMID as one where an interaction occurs, and the result is passed to the
Output class.

Output.java

A class for writing the result from the evaluation to a plain text-file.

5.3 Class diagrams

As seen in following two class diagrams, the system kan be viewed as two en-
tities; pre-indexing and post-indexing. In part 1 (figure 5.1) the pre-indexing
is detailed showing the creation of the indices, and i part 2 (figure 5.2) is
outlined showing the use of the indices. The system is flexible enough that
these two can be combined with ease into one application, but for the sake
of testing during development, it was divided into two parts.

42 CHAPTER 5. IMPLEMENTATION

Figure 5.1: Class diagram Part 1

5.3. CLASS DIAGRAMS 43

Figure 5.2: Class diagram Part 2

44 CHAPTER 5. IMPLEMENTATION

Chapter 6

Evaluation

This chapter will elaborate on the three evaluation methods the system has
been tested against, and present and discuss the results acquired from these
tests.

6.1 Evaluation Methods

Direct comparison of PPI/protein name extraction methods is difficult be-
cause some methods distinguish between proteins, genes and interactions and
others do not. Further on, there is a wide variation in both the type and
size of the test-sets used by each group to evaluate their methods. This
problem har been adressed in [Pyysalo et al., 2008] and the authors have
proposed a standard that, though still in beta, shows a lot of promise. The
test-collection consists of five different, derived, variants of corpora, including
AIMed1, BioInfer2, HPRD503, IEPA4 and LLL5. From these there is com-
piled a training-set, a test-set with answerfiles and an evaluation-script. This
script takes one of the pre-noted answer files, a compiled answer file from the
system being tested and then produces an output that gives a precision-,
recall-, F- and accuracy-score for the predictions the system being tested has
made.

A downside with this standard is that it focuses solely on the interaction
and not the proteins it occurs between. In fact they have blanced them all
out, switched out each character in the protein name with underscores so

1ftp://ftp.cs.utexas.edu/pub/mooney/bio-data/
2http://mars.cs.utu.fi/BioInfer/
3http://www.bio.ifi.lmu.de/publications/RelEx/
4http://class.ee.iastate.edu/berleant/s/IEPA.htm
5http://genome.jouy.inra.fr/texte/LLLchallenge/

45

ftp://ftp.cs.utexas.edu/pub/mooney/bio-data/
http://mars.cs.utu.fi/BioInfer/
http://www.bio.ifi.lmu.de/publications/RelEx/
http://class.ee.iastate.edu/berleant/s/IEPA.htm
http://genome.jouy.inra.fr/texte/LLLchallenge/

46 CHAPTER 6. EVALUATION

that the offsets still will be correct. This is problematic when it comes to the
system this thesis presents, as it relies on confirming protein name occuranses
and their offsets, as well as the PPI-keyword in a sentence or text. To deal
with this, the test-collection made for the Yapex system (described in chapter
3.2) was introduced6 as an evaluation method for detecting protein names.
This collection consists of a training-set and a test-set, the former containing
99 MEDLINE-abstracts and the latter containing 101 and both annotated
by domain experts connected to the Yapex project.

To be able to see how MasterPPI performed in a complete way, a third
test-was introduced. This time from the IAS subtask in the BioCreAtIvE2
challenge that was also used to evaluate the ProtIR system (See chapter 3.5).
Much like the Yapax-set, this features a set of annoteded MEDLINE-articles
and a boolean answer-set (i.e if an article contains interactions or not).

The reason for using three different collections like this, is to be able to
spot which part of the system that is lacking, thus getting a hint of where
efforts can be put in to improve the system.

6.2 Results

MasterPPI was designed to work on MEDLINE-articles extracted directly
from the MEDLINE database, using the LingPipe MEDLINE-parser. These
test-sets, though all representing MEDLINE articles (excluding the PPI test-
set, which consists of single sentences), where all structured in their own way,
thus providing the need for three different parsers, evaluators and in the PPI
test-sets case, a special term-categorizer. These were implemented as close
to the original idea as possible. Thoughts and comments on the different
results will be given in Section 6.3, and examples of the structure of the
input documents can be seen in the following sections.

6.2.1 The Yapex Test collection

The system was tested on the 101 expert-annotated MEDLINE-articles in
the test-part of the collection. In these articles there is identified 368 protein
names in the title section, and 1528 in the abstract section, making a total
of 1896 names in the whole collection. An example of how an article in the
test collection is represented can be seen here in XML, with the abstract
shortened for readability purposes:

6http://www.sics.se/humle/projects/prothalt/

http://www.sics.se/humle/projects/prothalt/

6.2. RESULTS 47

1 <PubmedArticle >

2 <MedlineID >21256213 </MedlineID >

3 <PMID>11357136 </PMID>

4 <ArticleTitle ><Protname >LDL -receptor -related ←↩

→ protein 6</Protname > is a receptor for ←↩

→ Dickkopf proteins.</ArticleTitle >

5 <AbstractText ><Protname >Wnt glycoproteins </ ←↩

→ Protname > have been implicated in ←↩

→ diverse processes during embryonic ←↩

→ patterning in metazoa. They signal ←↩

→ through frizzled -type seven - ←↩

→ transmembrane -domain receptors to ←↩

→ stabilize <Protname >beta -catenin </ ←↩

→ Protname >. (...)

6 </PubmedArticle >

To clarify; these are unique names in the title and abstract field of an
article. This means that a protein name can occur many times over the span
of the different articles, twice in a single article and only once in a specific
field. The reason for making this distinction is that when one is looking for
a protein name like this, one does only need to find it once to connect the
name and the document. To get more analytical data, the article was split
into the two fields; the title field and the abstract field respectfully. This can
later be used with weighing schemes that for example weigh an occurence in
a title higher than an occurence in the abstract (see chapter 7.2 for future
improvements)

With this setup, the system achieved a precicion-score of 0.08002, a recall-
score of 0.47644 and thus a f-score of 0.13703.

6.2.2 The PPI Test collection

This test will evaluate how well a system is at recognizing PPI’s on a sentence-
based level, utilising the position and offsets of protein names and PPI-
keywords in the text. A corpora is divided into documents, which will have
multiple sentences. These sentences may have protein name entities occur in
them, tagged with an offset, type (what kind of entity that occurs here; pro-
tein, protein compex, etc) and represented in the sentence with underscores.
A sentence may also have a number of pairs that the system is tasked with
checking. A pair will consist of two entities and the goal is to see if there
is an interaction between these two. An example of this setup can be seen
here:

48 CHAPTER 6. EVALUATION

1 <corpus id="AIMed">

2 <document id="AIMed.d3" origId="11781834">

3 <sentence id="AIMed.d3.s32" seqId="s32" ←↩

→ text="The induced expression of ___ , ←↩

→ similar to ___ , produces a senescent - ←↩

→ like phenotype.">

4 <entity charOffset="26-28" id="AIMed.d3. ←↩

→ s32.e0" seqId="e54" type="protein" ←↩

→ />

5 <entity charOffset="42-44" id="AIMed.d3. ←↩

→ s32.e1" seqId="e55" type="protein" ←↩

→ />

6 <pair e1="AIMed.d3.s32.e0" e2="AIMed.d3. ←↩

→ s32.e1" id="AIMed.d3.s32.p0" />

7 </sentence >

8 </document >

9 </corpus >

Corpora Precicion Recall F-Score Accuracy # of Pairs
AIMed 0.261 0.351 0.299 0.713 1095
HPRD50 0.526 0.385 0.444 0.643 70
IEPA 0.500 0.446 0.472 0.588 136
LLL 0.286 0.067 0.108 0.459 61

Overall Average 0.393 0.312 0.331 0.601 -

Table 6.1: Summary of the results from the PPI evaluation test collection

In table 6.1 the results from the different corpora evaluations have been
listed, together with an overall average score. The BioInfer corpora was
ommited from the evaluation due to inconsistency in the notation from the
the other corpora. The problem was found in several entity elements, like
this one:

1 <entity charOffset="121 -127 ,141 -150" id=" ←↩

→ BioInfer.d211.s0.e7" origId="e.492.10" ←↩

→ type="Individual_protein" />

As one can see, the charOffset attribute has listed four offset points, but
on manual inspection of position in the sentence the second one does not
make any sense, often appearing in the middle of another word. Minus the
pairs from the BioInfer corpora, the evaluation testet 1362 different pairs of
possible PPIs.

6.2. RESULTS 49

6.2.3 The BioCreative Test collection

The last collection, which demands both recognition of protein names and
the interactions between them, will give an indication of how MasterPPI
performes as a complete system. The test-set given to the system as input
consists of 677 unique MEDLINE articles, like the two collections before it;
with PMID’s, titles and abstracts. An example a representation of an article
can be seen here, again with the abstract shortened:

1 <ENTRY>

2 <CURATION_RELEVANCE >

3 NONE

4 </CURATION_RELEVANCE >

5 <PPI_DATABASE >

6 NONE

7 </PPI_DATABASE >

8 <PMID>

9 16413544

10 </PMID>

11 <TITLE >

12 Induction of apoptosis by p110C requires ←↩

→ mitochondrial translocation of

13 the proapoptotic BCL -2 family member BAD.

14 </TITLE >

15 <SOURCE >

16 NONE

17 </SOURCE >

18 <ABSTRACT >

19 p110C , a 50-kDa isoform of the PITSLRE ←↩

→ kinase family , was demonstrated to play ←↩

→ an important role in cell apoptosis. ←↩

→ However , how p110C exactly promotes ←↩

→ apoptosis is unclear. Our previous ←↩

→ study showed that p110C interacted ←↩

→ with p21 -activated kinase 1 (PAK1), an ←↩

→ important kinase of the proapoptotic ←↩

→ BCL -2 family member BAD , and evidently ←↩

→ inhibited its kinase activity. (...)

20 </ABSTRACT >

21 </ENTRY>

The answer-set in it self conists of just the boolean answer to the question
if an article contains an interaction or not; represented by a P (positive) or
a N (negative) after the articles PMID like this: 16272158 P or 16272159 N.

50 CHAPTER 6. EVALUATION

The following task was then to compare the answer-set file to the result
file produced by MasterPPI and see if the predictions for an article matched.
Of the 667 possible articles found in the test-set, MasterPPI matched 330 of
them correct. Numbers from the evaluation are shown in table 6.2.

Positive Negative Sum of articles
Answer-Set 338 339 667
Result-Set 175 502 667

Table 6.2: Analytical data from the BioCreative2 test collection

Of the 175 articles that MasterPPI labeled as positive hits; 83 were a
match in the answer set, and of the 502 negative hits; 247 were correct. This
gives MasterPPI, when it comes to finding an article where a PPI occurs, a
precision of 0.4971 and a recall of 0.2574. This combined gives a F-Score of
0.3392.

6.3 Discussion and Comments

As suggested by the result from the Yapex test with its 8% precision-score,
the system lacks an ability to correctly identify most of the protein names in
a random bio-medical text. When manually trying terms and tokens7 in the
search engine found on the UniProt website, a lot of them got a direct hit
in the Tremble database but not in the SwissProt part of UniProt. In other
words, aleast some of the failed terms would be matched if the UniProt index
consisted of the whole database and not just the part that is manually an-
notated. One can therefore argue that this approach could be much more
successful, finding more protein names and thus more possible interactions,
with an expanded dictionary. It should also be noted that searching in only
abstracts and titles, in contrast to the full text, forces the system to work
on a form of text that may have an alternative writing style than the rest of
the text. This comes from the fact that authors, in an abstract, are forced
to compress a lot of information into just one page, thus having to make
sacrifices and compromises on how to structure it. This case is reflected in
[Müller et al., 2004], where the developers of Textpresso reported an improv-
ment of almost 50% in recall when working on the full text, rather then the
abstract.

7Tokens in this case being a collection of terms put together

6.3. DISCUSSION AND COMMENTS 51

Representing the MEDLINE articles as a Lucene index still seems like
a good idea, since one gets a lot of information; like position, offset and
frequencies for free when using it. This was very useful in the development
of MasterPPI, but we also see potential uses when taking different approaches
(e.g the use of weights and applying boost-factors). For the protein name
dictionary, the use of Lucene gave a rather small index (266 megabytes), from
a rather large database (several gigabytes), and gave the system an easy way
of determin the presence of a protein name (given that the database is up
to date, and complete) by the means of a simple query. We can therfore
conclude that this is an efficient and easy way to set up, update and store a
dictionary. Using a Lucene index as a dictionary for the keywords, may seem
a little overkill in retrospect, given that the index takes up approximately the
same size (8 kilobytes) as the XML-file it was constructed from on a harddisk.
The reason for doing it this way, was to standarize the representation of how
the different queries should look like, but this could just as easily have been
represented as a Map or an ArrayList data structure directly within the
system, saving Input/Output time. By large we will argue that the use of
Lucene was a good idea.

There were not performed any tests with this system to see what kind of
impact the removal of non-functional characters had, but a manually inspec-
tion of what was inserted in the index and queries looked promising, and we
will put our trust in what Jing Jiang and Cheng Xiang Zhai reports in their
studies8.

When excluding the protein name identification part of the the system,
and just looking at the PPI interaction, one sees that with just the naive
approach of looking for PPI keywords between positively identified protein
names gets an average precision-score of ≈ 39%; suggesting that it has some
promise, but does not come close to the top systems described in chapter
3. Due note that a direct comparison with these would be invalid, since
none of them were evaluated with the same test collection(s) as MasterPPI.
On manually inspecting the sentences that were part of the PPI test-set, it
was revealed that an interaction keyword is not bound exclusively to appear
between the protein names, but sometimes can occur just before or just after,
like in this sentence from the AIMed coropa:

Interaction of plant with mammalian .

It can also provide false positives when occuring between two names, but
have a negative spin on the sentence; e.g saying that this/that protein does
not interact with this/that protein. This suggests that a more advanced NLP

8[Jiang and Zhai, 2007]

52 CHAPTER 6. EVALUATION

approach, where such things can be detected and tagged, could yield better
results.

Chapter 7

Conclusion and future work

This chapter will present a summary and a conclusion of the thesis to the
reader, as well as thoughts on how to possible improve the system in future
incarnations.

7.1 Summary and Conclusion

The goal for this thesis was to develop means that could identify and locate
protein names and possible PPIs in a bio-medical text, store and index them
and thus making them searchable. This thesis presents a system, dubbed
MasterPPI, that can take an arbitrary number of MEDLINE articles, index
and store them efficiently, and determine which proteins and what possible
PPI’s an article incompasses. The system was tested on three different test
collections; the Yapex protein name test collection, the PPI test collection
and the BioCreative2 IAS test collection, where the latter produced a f-score
of approximatly 33%. The main factor for bringing the overall score down
was identified to be the systems inability to identify complete protein names,
due to an incomplete dictionary.

The findings show that representing both the MEDLINE articles and the
dictionaries as Lucene indexes was an efficient and easy way of approaching
the the problem at hand, but that the quality of the dictionary and the PPI
search-method in itself was lacking. All in all we see promise in the structure
of the data, but not so much in the rather naive identification method that
was used.

53

54 CHAPTER 7. CONCLUSION AND FUTURE WORK

7.2 Future improvements

As noted, including the Tremble part of the UniProt collection in the dic-
tionary will greatly improve the ability of the system for recognising protein
names. There is also nothing that stands in the way of including other
databases like EntrezGene, though a potential problem is that one would get
an overlap of names, making the index unnecessary big and complex. One
would also have to develop a new parser, but this is just nitpicking.

Further on, the method for locating PPIs needs improvment. This can
be done with different approaches; like extending the current method with
more rules, use a weighing scheme, or use another NLP approach. We are
confident that either way, incorporating it into MasterPPI should not be to
much of a hassle. There is also the possibility of indexing a PPI database
like DIP, construct queries from the MEDLINE articles in much the same
way as was done in this approach, and see if they exist there. This will help
to narrow down the real PPIs and exclude false positives, so one could see
what was a real interaction and what was just blind luck.

On the system as a whole, an introduction of a GUI would not go amiss,
and with this combining the two parts shown i figures 5.1 and 5.2 in to a
complete system. There could also be introduced a new index that goes the
other way around, linking protein names and PPIs to a specific article.

Appendices

55

Appendix A

1 String [] STOPWORDS = {

2 "a", "about", "again", "all", "almost",

3 "also", "although", "always", "among",

4 "an", "and", "another", "any", "are",

5 "as", "at", "be", "because", "been",

6 "before", "being", "between","both",

7 "but", "by", "can", "could", "did",

8 "do", "does", "done", "due", "during",

9 "each", "either", "enough", "especially",

10 "etc", "for", "found", "from", "further",

11 "had", "has", "have", "having", "here",

12 "how", "however", "i", "if", "in",

13 "into", "is", "it", "its", "itself",

14 "just", "kg", "km", "made", "mainly",

15 "make", "many", "may", "mg", "might", "ml",

16 "mm", "most", "mostly", "must", "nearly",

17 "neither", "no", "nor", "obtained", "of",

18 "often", "on", "or", "our", "overall",

19 "perhaps", "proteins", "pmid", "quite",

20 "rather", "really", "regarding", "seem",

21 "seen", "several", "should", "show",

22 "showed", "shown", "shows", "significantly",

23 "since", "so", "some", "such", "than",

24 "that", "the", "their", "theirs", "them",

25 "then", "there", "therefore", "these",

26 "they", "this", "those", "through",

27 "thus", "to", "upon", "use", "used",

28 "using", "various", "very", "was", "we",

29 "were", "what", "when", "which", "while",

30 "with", "within", "without", "would"

31 };

57

58 APPENDIX A.

Appendix B

1 <?xml version=’1.0’ encoding=’UTF -8’?>

2 <root>

3 <keywordlist >

4 <category id="Activate">

5 <word>accumulate </word>

6 <word>accumulated </word>

7 <word>accumulates </word>

8 <word>accumulation </word>

9 <word>activate </word>

10 <word>activated </word>

11 <word>activates </word>

12 <word>activation </word>

13 <word>elevate </word>

14 <word>elevated </word>

15 <word>elevates </word>

16 <word>elevation </word>

17 <word>hasten </word>

18 <word>hastened </word>

19 <word>hastenes </word>

20 <word>incite </word>

21 <word>incited </word>

22 <word>incites </word>

23 <word>increase </word>

24 <word>increased </word>

25 <word>increases </word>

26 <word>induce </word>

27 <word>induced </word>

28 <word>induces </word>

29 <word>induction </word>

30 <word>initiate </word>

31 <word>initiated </word>

59

60 APPENDIX B.

32 <word>initiates </word>

33 <word>promote </word>

34 <word>promoted </word>

35 <word>promotes </word>

36 <word>stimulate </word>

37 <word>stimulated </word>

38 <word>stimulates </word>

39 <word>stimulation </word>

40 <word>transactivate </word>

41 <word>transactivated </word>

42 <word>transactivates </word>

43 <word>transactivation </word>

44 <word>up -regulate </word>

45 <word>up -regulated </word>

46 <word>up -regulates </word>

47 <word>up -regulator </word>

48 <word>up -regulation </word>

49 <word>upregulate </word>

50 <word>upregulated </word>

51 <word>upregulates </word>

52 <word>upregulator </word>

53 </category >

54 <category id="Association">

55 <word>associate </word>

56 <word>associated </word>

57 <word>associates </word>

58 <word>association </word>

59 </category >

60 <category id="Attach">

61 <word>add</word>

62 <word>adds</word>

63 <word>addition </word>

64 <word>bind</word>

65 <word>binds</word>

66 <word>bound</word>

67 <word>catalyze </word>

68 <word>catalyzed </word>

69 <word>catalyzes </word>

70 <word>complex </word>

71 </category >

72 <category id="Break Bond">

73 <word>cleave </word>

74 <word>cleaved </word>

61

75 <word>cleaves </word>

76 <word>demethylate </word>

77 <word>demethylated </word>

78 <word>demethylates </word>

79 <word>demethylatation </word>

80 <word>dephosphorylate </word>

81 <word>dephosphorylated </word>

82 <word>dephosphorylates </word>

83 <word>dephosphorylatation </word>

84 <word>sever</word>

85 <word>severe </word>

86 <word>severed </word>

87 <word>severes </word>

88 </category >

89 <category id="Cause">

90 <word>influence </word>

91 <word>influences </word>

92 <word>influenced </word>

93 </category >

94 <category id="Contain">

95 <word>contain </word>

96 <word>contained </word>

97 <word>contains </word>

98 </category >

99 <category id="Create Bond">

100 <word>methylate </word>

101 <word>methylated </word>

102 <word>methylates </word>

103 <word>methylation </word>

104 <word>phosphorylate </word>

105 <word>phosphorylated </word>

106 <word>phosphorylates </word>

107 <word>phosphorylation </word>

108 </category >

109 <category id="Generate">

110 <word>express </word>

111 <word>expressed </word>

112 <word>expresses </word>

113 <word>expression </word>

114 <word>overexpress </word>

115 <word>overexpressed </word>

116 <word>overexpresses </word>

117 <word>overexpression </word>

62 APPENDIX B.

118 <word>produce </word>

119 <word>produced </word>

120 <word>produces </word>

121 <word>production </word>

122 </category >

123 <category id="Inactivate">

124 <word>block</word>

125 <word>blocks </word>

126 <word>blocked </word>

127 <word>decrease </word>

128 <word>decreased </word>

129 <word>decreases </word>

130 <word>decreasing </word>

131 <word>deplete </word>

132 <word>depleted </word>

133 <word>depleting </word>

134 <word>depletes </word>

135 <word>depletion </word>

136 <word>down -regulate </word>

137 <word>down -regulated </word>

138 <word>down -regulates </word>

139 <word>down -regulation </word>

140 <word>downregulate </word>

141 <word>downregulated </word>

142 <word>downregulates </word>

143 <word>downregulation </word>

144 <word>impair </word>

145 <word>impairs </word>

146 <word>impaired </word>

147 <word>inactivate </word>

148 <word>inactivated </word>

149 <word>inactivates </word>

150 <word>inactivation </word>

151 <word>inhibit </word>

152 <word>inhibits </word>

153 <word>inhibited </word>

154 <word>inhibition </word>

155 <word>reduce </word>

156 <word>reduced </word>

157 <word>reduces </word>

158 <word>reduction </word>

159 <word>repress </word>

160 <word>represses </word>

63

161 <word>repression </word>

162 <word>repressed </word>

163 <word>supress </word>

164 <word>supressed </word>

165 <word>supresses </word>

166 <word>supression </word>

167 </category >

168 <category id="Modify">

169 <word>modify </word>

170 <word>modified </word>

171 <word>modification </word>

172 </category >

173 <category id="Process">

174 <word>apoptosis </word>

175 <word>myogenisis </word>

176 </category >

177 <category id="React">

178 <word>interact </word>

179 <word>interacts </word>

180 <word>interacted </word>

181 <word>interaction </word>

182 <word>react</word>

183 <word>reacts </word>

184 <word>reacted </word>

185 <word>reaction </word>

186 </category >

187 <category id="Release">

188 <word>disassemble </word>

189 <word>disassembles </word>

190 <word>disassembled </word>

191 <word>discharge </word>

192 <word>discharged </word>

193 <word>discharges </word>

194 </category >

195 <category id="Signal">

196 <word>signal </word>

197 <word>signals </word>

198 <word>signaled </word>

199 <word>signalled </word>

200 <word>signales </word>

201 <word>mediate </word>

202 <word>mediates </word>

203 <word>mediated </word>

64 APPENDIX B.

204 <word>modulate </word>

205 <word>modulated </word>

206 <word>modulates </word>

207 <word>modulation </word>

208 <word>participate </word>

209 <word>participated </word>

210 <word>participates </word>

211 <word>participation </word>

212 <word>regulate </word>

213 <word>regulates </word>

214 <word>regulated </word>

215 <word>regulation </word>

216 <word>autoregulate </word>

217 <word>autoregulates </word>

218 <word>autoregulated </word>

219 <word>autoregulation </word>

220 <word>auto -regulate </word>

221 <word>auto -regulates </word>

222 <word>auto -regulated </word>

223 <word>auto -regulation </word>

224 </category >

225 <category id="Substitute">

226 <word>replace </word>

227 <word>replaces </word>

228 <word>replaced </word>

229 <word>substitute </word>

230 <word>substituted </word>

231 <word>substitutes </word>

232 <word>substitution </word>

233 </category >

234 </keywordlist >

235 </root>

Bibliography

[Bass et al., 2007] Bass, L., Clements, P., and Kazman, R. (2007). Software
Architecture in Practice. SEI Series. Addision Wesly, second edition edi-
tion.

[Berk et al., 2000] Berk, A., Zipursky, L., Matsudaira, P., Baltimore, D., and
Darnell, J. (2000). Molecular Cell Biology. W. H. Freeman, 4th edition.
Glossary.

[Bret, 1951] Bret, S. (1951). Qu’est-ce que la documentation.

[Bryson, 2003] Bryson, B. (2003). A short history of nearly everything.
Broadway Books.

[Buckland, 1997] Buckland, M. K. (1997). What is a ”document”?

[DICT, 2010] DICT (2010). Pneumonoultramicroscopicsilicovol-
canoconiosis. http://dictionary.reference.com/browse/

Pneumonoultramicroscopicsilicovolcanoconiosis. dictionary.com,
based on Random House Dictionary.

[DIP, 2010] DIP (2010). DIP Statistics. http://dip.doe-mbi.ucla.edu/

dip/Stat.cgi. Database statistics for the Database of Interacting Pro-
teins.

[Egorov et al., 2004] Egorov, S., Yuryev, A., and Daraselia, N. (2004). A
Simple and Practical Dictionary-based Approach for Identification of Pro-
teins in Medline Abstracts. Journal of the American Medical Informatics
Association, 11(3):174–127.

[Franzén et al., 2002] Franzén, K., Eriksson, G., Olsson, F., Asker, L.,
Lindén, P., and Cöster, J. (2002). Protein names and how to find them.
International Journal of Medical Informatics, 67(1-3):49 – 61.

65

http://dictionary.reference.com/browse/Pneumonoultramicroscopicsilicovolcanoconiosis
http://dictionary.reference.com/browse/Pneumonoultramicroscopicsilicovolcanoconiosis
http://dip.doe-mbi.ucla.edu/dip/Stat.cgi
http://dip.doe-mbi.ucla.edu/dip/Stat.cgi

66 BIBLIOGRAPHY

[Frawley et al., 1992] Frawley, W. J., Piatetsky-Shapiro, G., and Matheus,
C. J. (1992). Knowledge Discovery in Databases: An Overview. AI Mag-
azine, 13(3).

[Heppin, 2008] Heppin, K. F. (2008). MedEval - The Construction of a
Swedish Medical Test Collection.

[Hersh et al., 1994] Hersh, W. R., Hickam, D. H., Haynes, R. B., and McK-
ibbon, K. A. (1994). A Performance and Failure Analysis of SAPHIRE
with a MEDLINE Test Collection. The Journal of the American Medical
Informatics Association, 1:51–60.

[IES, 2010] IES (2010). Biology - The science of life. http://www.intstudy.
com/articles/wc266a04.htm. The International Education Site.

[Jiang and Zhai, 2007] Jiang, J. and Zhai, C. X. (2007). An empircal study
of tokenization strategies for biomedical information retrieval. Information
Retrieval, 10(4-5):341–363.

[Kamber and Han, 2006] Kamber, M. and Han, J. (2006). Data mining:
concepts and techniques. Morgan Kaufmann, second edition.

[Krauthammer and Nenadic, 2004] Krauthammer, M. and Nenadic, G.
(2004). Term identification in the biomedical literature. Journal of
Biomedical Informatics, 37(6):512 – 526. Named Entity Recognition in
Biomedicine.

[Manning et al., 2008] Manning, C. D., Raghaven, P., and Schütze, H.
(2008). Introduction to Information Retrieval. Cambridge University
Press.

[Müller et al., 2004] Müller, H.-M., Kenny, E. E., and Sternberg, P. W.
(2004). Textpresso: An Ontology-Based Information Retrieval and Ex-
traction System for Biological Literature. PLoS Biol, 2(11):e309.

[Monsen, 2007] Monsen, T. H. (2007). Googler gener. http://www.

forskning.no/artikler/2007/mai/1179818465.89.

[Mooney and Nahm, 2005] Mooney, R. J. and Nahm, U. Y. (2005). Text
mining with information extraction. http://www.cs.utexas.edu/users/
ml/papers/discotex-melm-03.pdf.

[Nair, 2007] Nair, A. S. (2007). Computational Biolgy and Bioinformatics:
A gentle overview. http://bit.ly/b40ZU4.

http://www.intstudy.com/articles/wc266a04.htm
http://www.intstudy.com/articles/wc266a04.htm
http://www.forskning.no/artikler/2007/mai/1179818465.89
http://www.forskning.no/artikler/2007/mai/1179818465.89
http://www.cs.utexas.edu/users/ml/papers/discotex-melm-03.pdf
http://www.cs.utexas.edu/users/ml/papers/discotex-melm-03.pdf
http://bit.ly/b40ZU4

BIBLIOGRAPHY 67

[NAT, 2004] NAT (2004). Glossary. http://www.nature.com/nrg/

journal/v5/n7/glossary/nrg1383_glossary.html. Nature.com - ”The
worlds best science and medicine on your desktop”.

[NIST, 2008] NIST (2008). Trec overview. http://trec.nist.gov/

overview.html. National Institute of Standards and Technology.

[NLM, 2010] NLM (2010). Data, News and Update Information. http:

//www.nlm.nih.gov/bsd/revup/revup_pub.html. National Library of
Medicine.

[ProteinCrystallography.org, 2007] ProteinCrystallography.org (2007). .
http://proteincrystallography.org/protein/. A web project started
in January 2007 by Dr. Sergey Ruzheinikov, University of Sheffield.

[Pyysalo et al., 2008] Pyysalo, S., Sætre, R., Tsjuii, J., and Salakoski, T.
(2008). Why Biomedical Relation Extraction Results are Incomparable and
What to do about it.

[Ramampiaro et al., 2007] Ramampiaro, H., Chen, Y. H., Lægrid, A., and
Sætre, R. (2007). ProtIR prototype: abstract relevance for Protein-Protein
Interaction in BioCreAtIvE2 Challenge, PPI-IAS subtask.

[Rivas and de Luis, 2004] Rivas, J. D. L. and de Luis, A. (2004). Interactome
data and databases: different types of protein interaction. Comparative and
Functional Genomics, 5(2):173–178.

[Rosario, 2005] Rosario, B. (2005). Extraction of semantic relations from
bioscience text. PhD thesis, Berkeley, University of California.

[Skuland, 2005] Skuland, M. (2005). Identification of biomedical entities
from Medline abstracts using a dictionary-based approach. Master’s thesis,
NTNU.

[Temkin and Gilder, 2003] Temkin, J. M. and Gilder, M. R. (2003). Ex-
traction of protein interaction information from unstructured text using a
context-free grammar. Bioinformatics, 19(16):2046–53.

[TXT, 2010] TXT (2010). Aquarena Wetlands Project: Glossary of Terms.
http://www.bio.txstate.edu/~wetlands/Glossary/glossary.html.
Texas State University.

[WSMNS, 2008] WSMNS (2008). Life Science. http://community.weber.
edu/sciencemuseum/pages/life_main.asp. Weber State Museum of
Natural Science.

http://www.nature.com/nrg/journal/v5/n7/glossary/nrg1383_glossary.html
http://www.nature.com/nrg/journal/v5/n7/glossary/nrg1383_glossary.html
http://trec.nist.gov/overview.html
http://trec.nist.gov/overview.html
http://www.nlm.nih.gov/bsd/revup/revup_pub.html
http://www.nlm.nih.gov/bsd/revup/revup_pub.html
http://proteincrystallography.org/protein/
http://www.bio.txstate.edu/~wetlands/Glossary/glossary.html
http://community.weber.edu/sciencemuseum/pages/life_main.asp
http://community.weber.edu/sciencemuseum/pages/life_main.asp

	Title Page
	Introduction
	Motivation
	Problem Specification
	Solution Outline
	Thesis Structure

	Preliminary knowledge
	Information Retrieval
	Information Retrieval Models
	Evaluation

	Biology
	Proteins
	Protein-Protein-Interaction

	Bio-informatics
	Text mining
	Biological text mining

	Previous and/or related work
	ProtScan
	Yapex
	Textpresso
	PubMed
	ProtIR
	Other

	Own Approach
	The idea and the reasoning behind it
	The XML-inputs
	Module 1 - The Parsers and Pre-Token-Processing
	Module 2 - The Tokenizer and indexer
	Module 3 - The Term Categorization
	Module 4 - The Evaluation

	Implementation
	Technologies used
	Java
	XML

	Implementation details
	Module 1
	Module 2
	Module 3
	Module 4

	Class diagrams

	Evaluation
	Evaluation Methods
	Results
	The Yapex Test collection
	The PPI Test collection
	The BioCreative Test collection

	Discussion and Comments

	Conclusion and future work
	Summary and Conclusion
	Future improvements

	Appendices
	
	

