
From Agile Software Product

Line Engineering Towards

Software Ecosystems

Thesis for the degree of Philosophiae Doctor

Trondheim, November 2010

Norwegian University of Science and Technology
Faculty of Information Technology, Mathematics and
Electrical Engineering
Department of Computer and Information Science

Geir Kjetil Hanssen

NTNU

Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

Faculty of Information Technology, Mathematics and Electrical Engineering
Department of Computer and Information Science

© Geir Kjetil Hanssen

ISBN 978-82-471-2427-7 (printed ver.)
ISBN 978-82-471-2426-0 (electronic ver.)
ISSN 1503-8181

Doctoral theses at NTNU, 2010:219

Printed by NTNU-trykk

Alla dessa dagar som kom och gick,
inte visste jag att det var livet

- Stig Johansson

- i -

Abstract
Development and evolution of software products is a challenging endeavor and a significant sub-

field of software engineering. One of the commonly applied approaches to control and manage this
process is software product line engineering (SPLE). There exist a few process frameworks where
the development of lines of related software products is basically a sum of two processes: the
development of reusable assets and the rapid construction of software applications using pre-
developed assets. Agile software development (ASD) is another major paradigm, which also has
been widely adopted by the industry over the past decade.

SPLE and ASD seek to achieve the same goal i.e. rapid and efficient construction of software.
However, the former emphasizes extensive up-front investment in the development of assets for later
re-use in contrast to ASD, which emphasizes a reactive approach, avoiding up-front planning and
development

Even though these two approaches may seem to oppose each other, the industry has lately
showed great interest in combining them both, aiming to cover the weaknesses of the one with the
strengths of the other. In combination with the overall shift in the software industry from closed
systems mindset towards open systems, the uptake of some ASD principles (for example active
customer engagement, incremental and iterative development, and open information flows) in
product line organizations may contribute to the emergence of more flexible software ecosystems.

This thesis presents a longitudinal study of a software product line organization, which has
adopted an adapted ASD methodology in an SPLE context and to a large extent has successful in
gaining benefits from both approaches, developing towards more open yet controlled processes. Data
have been collected over a period of approximately five years following the progression from a
strictly waterfall oriented approach, via the adoption of the agile method Evo, up to the current
combined agile software product line engineering approach.

The following research questions have been addressed in this thesis:
RQ1: How can software product line engineering and agile software development be combined?
RQ2: How does a software ecosystem shape?

The main contributions of this work are:
C 1. Through a longitudinal study of a software product line organization we provide detailed

insight into an industrial case and how they have changed over time.
C 2. We have illustrated some of the details of how SPLE and ASD can be combined in practical

terms. We describe the current organization, their product line and their agile software
product line engineering process.

C 3. We have illustrated how the incorporation of some of the central agile principles has enabled
a closer cooperation with external actors.

C 4. We have explained the emergence and mode of operation of a software ecosystem, and
provided a conceptual model of software ecosystems based on our findings.

C 5. We have proposed a theory of software ecosystems, rooted in socio-technical theory and the
concept of organizational ecology.

- ii -

Preface

This thesis is submitted to the Norwegian University of Science and Technology

(NTNU) for partial fulfillment of the requirements for the degree of Philosophiae
Doctor.

The work leading to this thesis has been performed at the Department of Computer
and Information Science, NTNU, Trondheim, with Professor Reidar Conradi (NTNU)
as the main supervisor, and Chief Scientist Tore Dybå (SINTEF ICT) and Professor Eric
Monteiro (NTNU) as co-supervisors.

This work was conducted as part of the EVISOFT research project, supported by the
Research Council of Norway under grant 174390/I40.

- iii -

Acknowledgements
There are many persons that have encouraged, helped, and supported my work on

this thesis in various ways over the last four years. First, I would like to thank my
supervisors Reidar Conradi (NTNU), Tore Dybå (SINTEF), and Eric Monteiro (NTNU)
for their timely advice and kind pressure whenever needed. During my studies I have
continued to work at SINTEF ICT but with a part-time position. It has been of great
importance to me to have this contact with my colleagues throughout the study, both for
professional and social reasons. Thanks to Tore Dybå, Tor Erlend Fægri, Torgeir
Dingsøyr, Nils Brede Moe, Børge Haugset, and all the other great people at SINTEF
ICT. I would also like to thank my manager, Eldfrid Øfsti Øvstedal for giving me this
opportunity; I hope your investment will pay off. I am also grateful to Pekka
Abrahamsson that has provided valuable advice through burning discussions during his
time as my colleague at SINTEF. I am also grateful to the Research Council of Norway
that have supported my work through grant number 174390/I40, funding the EVISOFT
research project which was managed by Tor Ulsund. Thank you Tor! I also need to
thank the good people at my case company CSoft for their support over many years. My
non-disclosure agreement with them prohibits me from mentioning names, but you
know who you are – thank you.

During the time of this study I have been a member of a group of PhD students and
the like, that – despite the slightly humorous name “The Scientist Factory” – provided a
highly valuable arena for discussing good and bad ideas, learning from failures and
successes of others, getting nice and nasty feedback, and the sharing of frustrations.
Thanks to Eric Monteiro and Torgeir Dingsøyr for managing our meetings, and thanks
to my peers; Børge Haugset, Gasparas Jarulaitis, Gro Alice Hamre, Kirsti Elisabeth
Berntsen, Ole Andreas Alsos, Øyvind Hauge, Thomas Østerlie, Tor Erlend Fægri,
Torstein Hjelle, and Vigdis Heimly. I have also benefited immensely from numerous
conversations with a lot of other great people at the university, with industrial partners,
at SINTEF, and other places. Some of them are: Anita Gupta, Sven Ziemer, Knut
Harald Hassel Nielsen, Tor Stålhane, Maria Letizia Jaccheri, Anders Kofod-Petersen,
Sverre Tinnen, Haakon Fougner Spilde, Hans Westerheim, Øyvind Pettersen, Frank
Bertheussen, Darja Šmite, mom, and dad. I also need to thank my co-authors at the
University of Oslo and the SIMULA research laboratory, Aiko Fallas Yamashita and
Leon Moonen. Finally I want to thank my wife Randi for her unfaltering support, and
my children Mikael, Silje, and Marius for accepting that at evenings, weekends, and
holidays their dad put priority on work instead of spending time with them. Well guys –
now I’m done!

NTNU, September 10, 2010
Geir Kjetil Hanssen

- iv -

- v -

Contents

Abstract.. i�

Preface... ii�

Acknowledgements ... iii�

Contents .. v�

List of Figures.. viii�

List of Tables ... ix�

Abbreviations ... x�

1� Introduction.. 3�

1.1� Problem Outline 3�
1.2� Research Context 4�
1.3� Research Questions 4�
1.4� Research Design 6�
1.5� Publications 7�
1.6� Contributions 9�
1.7� Thesis Structure 13�

2� Background .. 15�

2.1� State of the art and research 15�
2.1.1� Software product line engineering... 15�
2.1.2� Agile software development .. 18�
2.1.3� Concepts combined: Agile software product line engineering.............. 20�
2.1.4� Software Ecosystems ... 23�
2.1.5� Organizational change ... 26�

2.2� The case 29�
2.2.1� Organization... 29�
2.2.2� Product line .. 31�
2.2.3� Processes .. 33�
2.2.4� A retrospective of the development of the organization........................ 36�

- vi -

2.3� A theoretical framework: organizational ecology 38�

3� Research Approach.. 42�

3.1� Studying software engineering 42�
3.2� The applied research process of the thesis 48�

3.2.1� The selection of the case organization... 51�
3.2.2� Data sources ... 52�
3.2.3� Data analysis .. 54�

4� Results ... 60�

4.1� Study 1 – Adoption of Evo 60�
4.1.1� Paper 1 ... 60�
4.1.2� Paper 2 ... 62�

4.2� Study 2 – Combining agile software development and software product line
engineering 63�

4.2.1� Paper 3 ... 63�
4.3� Study 3 – Process agility and software entropy 64�

4.3.1� Paper 4 ... 65�
4.4� Study 4 – Software ecosystem emergence 67�

4.4.1� Paper 5 ... 68�
4.4.2� Paper 6 ... 69�

5� Discussion and implications .. 76�

5.1� An agile software product line engineering process 76�
5.1.1� Actions taken to combine the processes .. 76�
5.1.2� Effects of the combined process .. 80�
5.1.3� Contextual factors .. 84�

5.2� An emerging software ecosystem 85�
5.2.1� Changing from agile software product line engineering to a software

ecosystem 85�
5.2.2� A case of improvisational change.. 86�
5.2.3� A conceptual model of a software ecosystem.. 87�

5.3� Implications for theory 91�
5.4� Implications for practice 95�
5.5� Limitations 95�

6� Conclusions and further work .. 97�

6.1� Answering the research questions 97�
6.2� Directions for future work 99�

- vii -

References... 101�

Appendix A... 108�

Study 1 – Adoption of Evo 108�
Data #1: Group interview (postmortem analysis) with 6 developers 108�
Data #2: Guide for three semi structured interviews with customers.............. 108�
Data #3: Guide for five semi structured interviews with PMT members 109�

Study 2 – Agile SPL 110�
Data #4: Guide for one semi structured interview with the CTO.................... 110�
Data #5: Guide for one semi structured interview with PMT manager........... 111�

Study 3 – Software entropy 112�
Data #8: Guide for one semi-structured interview with a team leader 112�
Data #9: Guide for one semi structured interview with one of the developers 113�

Study 4 – Software ecosystems 113�
Data #11: Guide for one interview with the R&D manager 113�
Data #12: Guide for one interview with the manager of professional services114�
Data #13: Guide for one interview with the PSG manager 114�
Data #14: Guide for three interviews with PSG members............................... 115�
Data #15: Guide for one interview with a Technical Account manager 115�
Data #17: Observation of the 2008 product conference 115�
Data #18: Observation of review meeting ... 115�

 - viii -

List of Figures
Figure 1 - Study design... 6�
Figure 2 - Evolution of research ... 7�
Figure 3 - High-level SPLE processes.. 16�
Figure 4 - A software product line engineering framework ... 17�
Figure 5 - Agile software development .. 19�
Figure 6 - Orlikowski’s and Hofman’s model of improvisational change 27�
Figure 7 - The Shewhart/Deming improvement cycle ... 28�
Figure 8 - High-level product line overview .. 31�
Figure 9 - An external-actor centric development process... 33�
Figure 10 - Timeline of the development of the case organization 36�
Figure 11 - The socio-technical system and the organizational ecosystem.................... 39�
Figure 12 - Types of organizational environments... 40�
Figure 13 - Empirical software engineering ... 43�
Figure 14 - Open innovation... 89�
Figure 15 - A conceptual model of a software ecosystem.. 90�

 - ix -

List of Tables
Table 1 - Focus of the studies... 6�
Table 2 - ASD and SPLE compared... 22�
Table 3 - Software Ecosystem Taxonomy.. 24�
Table 4 - OSS and closed-source ecosystems - similarities and differences.................. 26�
Table 5 - The iteration week plan... 35�
Table 6 - The application of the seven principles of interpretive field studies 49�
Table 7 - Data sources .. 53�
Table 8 - Example coding nodes .. 57�
Table 9 - Values from being a network actor ... 88�

 - x -

Abbreviations
ASD Agile Software Development
ASP Application Service Provider
ASPLE Agile Software Product Line Engineering
CEO Chief Executive Officer
CI Continuous Integration
CSO Chief Strategy Officer
CTO Chief Technical Officer
EPG Electronic Process Guide
ICT Information and Communication Technology
IET Impact Estimation Table
IPR Intellectual Property Rights
KLOC K (1000) Lines of Code
NTNU Norwegian University of Science and Technology
OSS Open Source Software
PDCA Plan Do Check Act
PMA Post-mortem analysis
PMT Product Management Team
PSG Product Strategy Group (succeeding the PMT from approx. 2006)
QA Quality Assurance
R&D Research & development (also the name for the development

department)
SE Software Engineering
SECI Socialization Externalization Combination Internalization
SEI Software Engineering Institute
SOAP Simple Object Access Protocol
SPLE Software Product Line Engineering
TAM Technical Account Manager

 - 1 -

PART I - Summary of studies

Introduction

 - 3 -

1 Introduction

1.1 Problem Outline

Development of software products as well as the maintenance and evolution of these
products over time is a complex and challenging task for most software product
organizations (Adler, 2005). To support this effort, a large section of the product
oriented software industry applies variants of software product line engineering (SPLE)
(Clements and Northrop, 2002; Pohl, Böckle et al., 2005). SPLE is an extensive
approach to organizing the continuous development of software products, where the
main property is the planned, prepared, and anticipated reuse of a set of domain artifacts
for later fast and efficient composition of applications. This is in principle a better
approach than developing each product from scratch each time (Böckle, Clements et al.,
2004), a principle which have been supported by industrial case studies, for example
(Buhrdorf, Churchett et al., 2004; Kiesgen and Verlage, 2005), and more recently
(Babar, Ihme et al., 2009). Several rather comprehensive SPLE methods or frameworks
exist, and have been adopted and practiced in the industry for more than a decade.
These frameworks are based on the development of assets for later (anticipated) use, an
approach, which may seem to conflict with another major recent methodological
development in the software industry: agile software development (ASD). Recently,
there has been a lively interest in combining these two approaches as they both promise
to improve the efficiency of the software product development process and the
responsiveness towards an increasingly volatile market (Tian and Cooper, 2006).

The first challenge this creates is how to practically combine the two methods: SPLE
imposing up-front investments and a pro-active approach, and ASD emphasizing
flexibility and a fundamentally re-active approach. The second challenge, more relevant
to this thesis, is to understand the rationale of such a combination and how it affects the
product line organizations ability to produce quality software solutions.

This combination of processes is related to a change in the industry and its market,
from traditional closed processes towards open development processes crossing
organizational borders (Moore, 1993), a trend that may lead towards a new entity –
software ecosystems (Bosch, 2009; Messerschmitt and Szyperski, 2003). This change
seems inevitable, and it is important to understand its development and how to respond
to it.

Introduction

 - 4 -

1.2 Research Context

This thesis summarizes about five years of studies of a software product line
organization called CSoft (a pseudonym1), and shows how they have progressed from a
plan-based and closed process approach towards a more open process, where feedback
and collaboration with various external actors are fundamental drivers. This change in
process has affected how the organization relates to its external environment – which
we describe as a software ecosystem. The adoption of Evo (Gilb, 2005), an agile
method, in 2004 has been an important enabler for this change. During the period from
2004 to 2010, four studies have been conducted, starting with an investigation of the
early adoption of Evo and its preliminary effects, and then the later studies looking into
how the organization collaborates with its external environment in both planning and
development. Thus, the object of study in this thesis is twofold. Firstly, we describe and
investigate the present organization, its processes, and its product line. This is the result
of fourteen years of development since the establishment of CSoft, and is an example of
an agile software product line engineering process. Secondly, we study this change that
has taken place and how the situation has progressed towards a software ecosystem.

1.3 Research Questions

What are we studying?
� We have conducted four successive studies of a medium-sized software

product line organization. The first study started in 2004 and the last one was
completed in 2010, with completion of data collection in 2009 – thus
covering almost five years of development. The focus of study has been 1)
the longitudinal development of this organization, and 2) the resulting
(present) organizational set-up, its planning and development processes, its
product line, and its relations with its organizational environment.

Why are we interested in it?
� The investigated organization has adopted an agile development method in a

product line environment, and matured this combination over a period of five
years in order to improve software process performance in general and the
relationship with actors external to the organization in particular.

� The organizational development being described in this thesis – a movement
towards an open product line engineering process – is strongly related to an

1
 Due to a non-disclosure agreement with CSoft; company, product, and domain-specific details are

omitted to maintain the anonymity of the case organization.

Introduction

 - 5 -

increasing focus on the concept of software ecosystems. This concept is still
poorly understood within software engineering, and no explicit coupling to
relevant and well-established theories on organizational ecology has been
developed.

Why should this be interesting to others?
� The company’s position as the market leader is a strong indication of a well

functioning organization (including its processes and products). Generalized
descriptions of their agile software product line engineering approach,
founded on data and related to theory, have a great potential of revealing
valuable implications for practice. Likewise, we also propose implications for
theory as a contribution to the research community and continued research on
software ecosystems.

� Based on the four studies and the resulting six publications, this thesis seeks
to answer the following two research questions:

�

������ �	
�����	��
������	����� ����������������

�������	��
���������	���������	�������

����� �	
��	������	��
������	��������������

�

Introduction

 - 6 -

1.4 Research Design

The complete study of how CSoft has developed over time and their resulting
approach to evolving their product line builds on four recent studies, reported in six
publications. Studies 1-3 are used to answer research question 1, and study 4 is used to
answer research question 2. In sum, these studies constitute a longitudinal study and
each of the underlying studies focuses on topics related to the research questions of this
thesis. This longitudinal study has been exploratory, and the overall objective has been
to collect data to describe the ongoing development of CSoft as well as the resulting
process and organization. This means that the study did not start out with a hypothesis
or theory to be tested but rather that it is a theory building type of study. For example
implications for theory being discussed in section 5.4 have emerged throughout the
study.

Figure 1 - Study design

The four studies covered the following topics:
Table 1 - Focus of the studies

 ����� !	���� "�����

 ������� #��� ������� ��	���	� 	�� ���� ������ ����	�� $�	� �� ��
���������

	������� ��	����� ���� 	����%���	&�
���� �� ��������� 	� �	
�

�����	����� ������� �	� ����	����� ��� ���� ���������� 	�� ���� ������

����	���'

"�&�"��

 ������� #����	������	�	��()���� "*$���������		������	����
���

�������������&���������&����	������	�����	������'�

"+�

 �����+� #��� �������� ��	����� 	�� �	��
���� ���	��&� ���� �	�������

����	����� ������� ��	�� ���� ������ �����	����� ��	����&� ���

�	��������	����	���	�����	��������������	'�

",�

 �����,� #��� ��������� 	������ 	�� ��	�����	� ������� ��� ��	���

	����%���	����	����	����	'�

"-&�".�

Introduction

 - 7 -

In addition to the six publications we have also made use of two earlier background
studies (by other authors) for details related to the early development of the case
organization (Johansen, 2005; Moe, Dingsøyr et al., 2002).

All these studies, conducted sequentially in time, build on the results from previous
studies. The initial focus was the adoption of agile software development in a software
product line engineering context (discussed in section 5.1). This is followed by a
discussion of the emergence of a software ecosystem (section 5.2).

�

Figure 2 - Evolution of research

1.5 Publications

P1: G.K. Hanssen, T.E. Fægri, Agile Customer Engagement: a Longitudinal
Qualitative Case Study, in: Proceedings of the 5th International Symposium on
Empirical Software Engineering (ISESE'06), IEEE Computer Society, Rio de
Janeiro, Brazil, 2006, pp. 164-173.

 Relevance to this thesis: This paper presents the results of a study of the change
from a waterfall-like approach to the agile Evo development process, and how it
has affected the way the development organization relates to the customers in
their release projects. This study was conducted shortly after the adoption of Evo,
and presents the initial effects.

 My contribution: As the principal author I initiated and conducted the study with
the case organization. The analysis of data was done collaboratively.

P2: T.E. Fægri, G.K. Hanssen, Collaboration and process fragility in evolutionarily
product development, IEEE Software 24 (3) (2007) 96-104.

 Relevance to this thesis: This paper reports on a study of the transition to Evo,
and explains both positive and negative effects that were experienced shortly after
the process adoption.

 My contribution: I participated in the whole process, from planning of the study
to data collection, analysis, and reporting. The first author had the overall
responsibility, and made the final decisions on form and language.

Introduction

 - 8 -

P3: G.K. Hanssen, T.E. Fægri, Process Fusion - Agile Product Line Engineering: an

Industrial Case Study, Journal of Systems and Software 81(2008) 843-854.
 Relevance to this thesis: This paper reports on the study of the same case, but

builds on new data collected. The paper has a holistic focus on the development
and evolution of the product line, and explains how the long-term strategic
planning process relates to the tactical processes of developing software and the
day-to-day operational processes. The data in this study were collected some years
after the initial adoption of Evo (reported in P1 and P2), and thus represent a more
mature organization.

 My contribution: As the principal author I had the overall responsibility, and
made the final decisions on form and language. The whole process, from planning
of the study to data collection, analysis, and reporting was done collaboratively.

P4: G.K. Hanssen, A.F. Yamashita, R. Conradi, L. Moonen, Software entropy in

agile product evolution, in: Proceedings of the 43rd Hawaiian International
Conference on System Sciences (HICSS'10), IEEE Computer Society, Hawaii,
USA, 2010.

 Relevance to this thesis: This paper goes deeply into one of the most severe
problems in the case organization and one of the main impediments in the agile
software development process, namely software entropy. Based on a thorough
overview of relevant empirical studies on code-smell2 detection and the resulting
code refactoring as well as new data collected, this paper gives an insight into the
causes behind the problem and the negative effects it has on the agile workflow.
Potential solutions are discussed.

 My contribution: As the principal author I was in charge of the study design,
data collection, and analysis. The second author was in charge of the inherent
literature review, but with my contribution for some of the summary of results.
The second author also contributed significantly to the discussion of the results,
both from the case study and the literature review.

P5: G. K. Hanssen, Opening up Software Product Line Engineering, In proceedings

of the 1st International Workshop on Product Line Approaches in Software
Engineering, in conjunction with the 32'nd International Conference on Software
Engineering (ICSE). 2010. Cape Town: ACM.

 Relevance to this thesis: This workshop paper builds on the same data as
reported in P6 but elaborates the topic of open processes and cross-organizational

2
 “Code-smells” is a term close to “anti patterns” and refers to symptomatic flaws in code

structures.

Introduction

 - 9 -

collaboration. Doing so, relevant literature is referred to and discussed in relation
to the study of CSoft.

 My contribution: All work was done by the sole author.

P6: G. K. Hanssen, An Emerging Software Ecosystem: A Longitudinal Case Study,

submitted to the Journal of Systems and Software, special call on “Software
Ecosystems”, guest editor is Jan Bosch. See: http://eventseer.net/e/12074/.

 Relevance to this thesis: This paper is the main contribution in the series of
studies of CSoft as it summarizes the organizational development over time. It
also identifies a relevant theoretical foundation (organizational ecology), to which
the results are related.

 My contribution: All work was done by the sole author.

(Note: the pseudonym of the case organization were CompNN in papers 1-3 and CSoft

in papers 4-6 as well as in this thesis. These names refer to the same organization.
The shift of name is only due to aesthetical reasons.)

1.6 Contributions

This thesis contributes to ongoing research on (1) how agile methods can be applied
in software product line engineering (Babar, Ihme et al., 2009; Carbon, Lindvall et al.,
2006; Ghanam and Maurer, 2009; Ghanam and Maurer, 2010; Hanssen and Fægri,
2008; Mohan, Ramesh et al., 2010; Noor, Rabiser et al., 2008), and (2) how software
ecosystems shape and function (Bosch, 2009; Bosch and Bosch-Sijtsema, 2009; Jansen,
Brinkkemper et al., 2009; Jansen, Finkelstein et al., 2009; Messerschmitt and Szyperski,
2003).

Through a longitudinal study of a software product line organization and its change,
we have studied the practicalities and outcome of such a process combination. Through
this study, we have discovered how some of the fundamental agile principles have
improved collaboration with the external environment of the product line organization,
consisting of customers and external organizations relating to the product line. Based on
these insights we propose a theory on software ecosystems, illustrated by our studies.

In more detail, this thesis has five main contributions. C1-C3 gives insight into the
combination of ASD and SPLE (based on the discussions in section 5.1). C4-C5 relates
to the development of the concept– and a theory on software ecosystems (based on the
discussions in section 5).

C 1. Through a longitudinal study of a software product line organization we provide

detailed insight into an industrial case and how they have changed over time.

Introduction

 - 10 -

C 2. We have illustrated some of the details of how SPLE and ASD can be combined
in practical terms. We describe the current case organization, their product line
and their agile software product line engineering process.

C 3. We have illustrated how the incorporation of some of the central agile principles
has enabled a closer cooperation with external actors.

C 4. We have explained the emergence and mode of operation of a software
ecosystem, and provided a conceptual model of software ecosystems based on
our findings.

C 5. We have proposed a theory of software ecosystems, rooted in socio-technical
theory and the concept of organizational ecology.

The following list summarizes contributions reported in the selected papers

supporting this thesis:

P1: Agile Customer Engagement: a Longitudinal Qualitative Case Study (ISESE

Conference, 2006)

� Active engagement of external stakeholders in the development process requires

continuous proactive management. An external stakeholders’ motivation to
contribute relies on immediate benefits, in return active stakeholders positively
affect developers’ motivation and confidence in the result.

� The adoption of agile principles within a software product line context requires a
high degree of discipline to coordinate activities. Also, a technical infrastructure
automating repetitive tasks improves the effectiveness of agile development
practices.

� Applying agile principles in a product development context improves process
visibility both internally in a development organization as well as externally
among stakeholders.

P2: Collaboration and process fragility in evolutionary product development

(IEEE Software, 2006)
� Maintaining a watchful, vigorous stakeholder management capability is

paramount to successful application of core agile principles in a product
development context. Rapid feedback on developed code, appropriate metrics, and
efficient decision-making reduce uncertainty and thus improve motivation.

� To reduce the risk of architectural erosion, involvement of external stakeholders
should be balanced with internals, with the focus on the product as an engineering
artifact. (Relates to P4).

Introduction

 - 11 -

� An agile process with a high iteration frequency increases vulnerability to
irregularities. Unresponsive stakeholders expose this fragility. Maintaining a high
iteration frequency is expensive and requires a high degree of discipline at many
organizational levels.

P3: Process fusion: An industrial case study on agile software product line

engineering (Journal of Systems and Software, 2008)
� SPLE naturally supports a long-term strategic process, and ASD naturally

supports a short-term tactical process. The day-to-day operational process
connects these two. This three-process focus enables exploitation of long-term
ambitions for innovation as well as small-scale tactical innovations, respectively
radical and incremental innovations.

� Running an explicit strategic process and working closely with external
stakeholders poses additional overhead but promotes valuable creativity.

P4: Software entropy in agile product evolution (HICSS Conference, January

2010)
� Complexity of the software product hampers productivity and quality of the agile

development process. The focus on high speed in short iterations may not leave
enough time to resolve problems related to system entropy.

� In order to manage system entropy, agile development processes need additional
support for understanding, planning, and evaluating the impact of changes. Code
smell analysis and refactoring is a viable solution.

P5: Opening Up Software Product Line Engineering (PLEASE Workshop, May

2010)
� The orientation of the software industry towards software ecosystems can be

supported by an opening of 1) information flow, 2) innovation processes, and 3)
technical interfaces.

P6: A Longitudinal Case Study of an Emerging Software Ecosystem:

Implications for Practice and Theory (Submitted to the Journal of Systems
and Software, April 2010)

� The software (product) industry is going through a change where the traditional
closed system mindset is being replaced by more open collaboration between the
software provider and external actors.

� Agile software development principles, in particular iterative/incremental
development and active stakeholder participation, may enable a product line
organization to manage and to benefit from the change in the industry.

Introduction

 - 12 -

� We propose a conceptual model of software ecosystems.
� The theory on organizational ecology is used to 1) explain results of the case

study, and 2) establish a common platform for future research.

Introduction

 - 13 -

1.7 Thesis Structure

This remainder of the thesis consists of two parts.

PART I – Summary of studies

/�������� /	����

��0�1��2��	��� "������� ���� ���2��	��� �	�� ���� �������&� ��������	&� ��� ����

�	�����	��	�������������'�#������������	����������������'�!�����

��� ������ ������� ��	� ���� ������� ����� 	����%���	� ��� ����

�����	����� 	���� ����&� �� ����������� �	�� ���� ����� ����� �����'�

 ��	�&� �������������	������
�	������������	�� �������&��������

������ 	�� ��������� 	� �	��
���� ��	����� ���� ��������&� ������

�	��
���� �����	����&� ���� �	������	� 	�� ������ �
	�

����	�����&�����������������	�����	���	��
������	�������'�

#����&� ���� ���2��	��� �������� ���������� �� ���	��������

�����
	�2�������	��	��	���������� ���	������	����%���	���

��	�	��'�

+�0����������

(���	����

 ��������������������	����������������������������3�����	�'�4��

���	� �	�������� �	�� ��� �5������ ���� ��������� ����	���'� #���

�������� ������ �������� 	� �	
� ����� ����� ���� �	�������� ���

����%��'�

,�0��������� "�������������	�����	��������������	�������	����������'�

-�0�)�������	�

���4��������	��

)������������������	�������������������������������	���&�

���������������	��
������	�����������������&�����	�����	��

���� �����	����� ��	����&� ��� �	
� ����� ������ �	
����� ��

��	������'� !������&� ���� �������� �5������ ���� ���������	�� �	��

���	��������������'�

.�0�/	�����	�� 6����������������	�	�����������	���
����������������3�����	��

����	�����������������������������	���������	�������	��	������

������'�7�����	���	������������	���	�����������������'�

Introduction

 - 14 -

PART II – selected publications

1. Hanssen, G.K. and Fægri, T.E., Agile Customer Engagement: a Longitudinal
Qualitative Case Study. In proceedings of 5th International Symposium on
Empirical Software Engineering (ISESE'06), 2006, Rio de Janeiro, Brazil.
ACM: p.164-173.

2. Fægri, T.E. and Hanssen, G.K., Collaboration and Process Fragility in
Evolutionarily Product Development. IEEE Software, 2007. 24(3): p. 96-104.

3. Hanssen, G.K. and Fægri, T.E., Process Fusion - Agile Product Line
Engineering: an Industrial Case Study. Journal of Systems and Software,
2008. 81: p. 843-854.

4. Hanssen, G.K., Yamashita, A.F, Conradi, R., and Moonen, L., Software
Entropy in Agile Product Evolution. In proceedings of 43rd Hawaiian
International Conference on System Sciences (HICSS'10). 2010. Hawaii,
USA: IEEE Computer Society. p. 1-10.

5. Hanssen, G.K. Opening up Software Product Line Engineering. In
proceedings of 1st International Workshop on Product Line Approaches in
Software Engineering, in conjunction with the 32nd International Conference
on Software Engineering (ICSE). 2010. Cape Town, South Africa. p. 1-7.

6. Hanssen, G.K., A Longitudinal Case Study of an Emerging Software
Ecosystem: Implications for Practice and Theory, submitted to Journal of
Systems and Software, under review.

Statement of authorship of joint publications from Tor Erlend Fægri
Statement of authorship of joint publications from Aiko Fallas Yamashita
Statement of authorship of joint publications from Reidar Conradi
Statement of authorship of joint publications from Leon Moonen
Listing of all publications

Background

 - 15 -

2 Background
This chapter is organized in three main sections. First, we give an overview of a set

of relevant topics, which forms a basis for the later discussion of our findings. Second,
we present and explain the details of the case organization we have studied: the
organization, their product line, their processes, and a retrospective of how this
organization has changed over the past years. Third, we present a theoretical framework
explaining the concepts of socio-technical theory and organizational ecology.

2.1 State of the art and research

The topic of this thesis relates to several areas of Software Engineering, with a
particular emphasis on three of them: 1) Software Product Line Engineering, 2) Agile
Software Development, and 3) Software Ecosystems. The former two are relatively
well-established concepts as they both have been practiced in industry and researched
by academia for 10-15 years – a long time span in software engineering. This chapter
explains concepts and ideas, and gives an overview of relevant research. Lately, the idea
of combining SPLE and ASD, seemingly conflicting methodologies, has emerged to
take advantage of their respective strengths. This chapter covers this recent
development. The latter concept, Software Ecosystems, is currently emerging, enriched
by ideas from several related fields, thus it is as yet “unpolished” as a sub-discipline.
However, importantly to the discussion and conclusions of this thesis, the substance of
this concept is presented together with some viewpoints on the probable development in
the near future.

2.1.1 Software product line engineering

SPLE is an extensive and organization-wide approach to developing and evolving
lines of software products. In this context, a product line is a set of related software
products that have some common parts, for example software components, architectural
design, data structures, but that still show distinct and different characteristics. The main
concept of SPLE is to prepare for and support this variability in the characteristics of the
products in the product line, in order to prepare for reuse, to reduce time-to-market, to
reduce development costs, to reduce maintenance effort, to improve the quality of
software products and to cope with complexity (Pohl, Böckle et al., 2005) p.9. For
example, industry reports a reduction of time-to-market less than 50% (Philips Medical
Systems) (ibid., p.233) and a reduction of resource consumption by 20-30% (Bosch
Gasoline Systems) (ibid., p.133).

A similar term, product families (Linden, 2002), is also frequently used, but for
simplicity the product line term will be used throughout this text.

Background

 - 16 -

Various comprehensive and detailed descriptions of SPLE practices and principles
are available, for example, in the frequently quoted books by Clements and Northrop
(2002), Pohl et al. (2005) and van der Linden et al. (2007). These descriptions vary
somewhat in their use of terminology. At a conceptual level, they all describe SPLE as
two main complementary processes. As Figure 3 (derived from (Clements and
Northrop, 2002), p.30) illustrates, the first process deals with the development and
maintenance of a reusable core or domain assets, typically code organized as
components or modules. The second process deals with the development of software
products, or applications, using these core assets for rapid and (cost) efficient
composition of software products. Variants of this fundamental process are the pro-
active approach where core assets are developed up-front due to an anticipated need in
the near future and the re-active approach where re-usable assets are derived or
harvested from products and stored for later re-use in other applications (McGregor,
2008).

�

Figure 3 - High-level SPLE processes

Beyond the central dual process of domain asset development and product

development, various other supportive processes and techniques are described, for
example management processes and software architecture practices. Pohl et al. (2005)
(p. 22) has developed a software product line engineering framework that defines and
relates these practices (Figure 4). Another extensive SPLE process description is the
guidelines provided by the Software Engineering Institute, which describes 29 practice
areas in detail (Clements and Northrop, 2002)

Background

 - 17 -

This approach to product development and evolution of products over time is very
much inspired by practices in other industries. For example, the idea is comparable to
how consumer electronics products are made today. A supplier of home appliances
offers lines of e.g. washing machines having variable characteristics such as number of
programs, motor size etc., but that still share many common parts or components, for
example the door locking mechanism and the water pump. This gives the customer the
opportunity to find a product matching the intended use at a suitable price level. These
two concepts of reuse and variability are equally essential when it comes to software
product lines.

The fundamental principle of SPLE is that extensive initial investment should be
made in the development of a platform of reusable domain-generic assets for anticipated
later use in products. Following this principle presents an opportunity for the efficient
construction of new products, but carries with it a risk of not getting an economically
viable return from the investment, if pre-developed assets are not sufficiently reused for
any reason (McGregor, 2008). This real risk is caused by the time span between
development (investment) and use (pay-off).

SPLE is a holistic approach to software engineering, affecting aspects from process
to technology. van der Linden et al. (2007) has defined the BAPO-model which
identifies four interrelated aspects; Business, Architecture, Process and Organization. In
order to describe and practice SPLE, these four concerns must be addressed. The
description of the case organization in section 2.1 addresses these concerns as well as
providing an overview of their historical development.

Figure 4 - A software product line engineering framework

Background

 - 18 -

2.1.2 Agile software development

Agile software development (ASD) is a way of organizing the software development
process, emphasizing direct and frequent communication – preferably face-to-face,
frequent deliveries of working software increments, short iterations, active customer
engagement throughout the whole development life-cycle, and responsiveness to change
rather than change prevention. This can be seen to be in contrast with plan-based
processes, which emphasize thorough and detailed planning and design upfront
followed by consequent plan conformance. Over the past ten years or so, agile methods
have gained lively interest and great popularity as they promise to avoid schedule
overruns, development of wrong features, excessive overhead, heavy documentation,
excessive formalism, costly re-planning, and extensive management. A relatively large
number of (more or less) empirical studies on the use and effects of agile methods were
reported in the past years, yet the sum of these studies provide little qualified knowledge
about agile software development (Dybå and Dingsøyr, 2008). The most thoroughly
investigated agile techniques or practices so far are pair programming (Arisholm, Gallis
et al., 2007), test-driven development (Erdogmus and Morisio, 2005; Müller and
Hagner, 2002) and the customer on-site practice (part of XP) (Martin, 2009). Other,
more complex techniques and aspects of ASD are still not sufficiently investigated and
understood.

There exists a wealth of introductions to the basic concepts of agile software
development, one of the more fundamental and most referred to is the so called agile
manifesto (http://www.agilemanifesto.org) which defines four fundamental values and
twelve principles. Several methods based on these ideas are in use, all sharing the
common set of values and principles. The best known and the most used agile methods
are Extreme Programming (XP) (Beck, 1999) and Scrum (Schwaber, 2001). The ideas
behind agile software development are not new (Merisalo-Rantanen H., 2005), as they
were clearly inspired by agile and lean manufacturing which has been in use in many
types of industries for decades. The radical innovations in the Japanese post-war
industry is probably the best known example (Takeuchi and Nonaka, 1986). Yet, some
important changes need to be made to make these ideas fit software development, which
unlike other industries does not include the manufacturing and handling of physical
goods (Poppendieck and Poppendieck, 2003). The most fundamental principle of lean
development is that of waste reduction, i.e. all work and its products not directly
contributing to the development of software should be considered as waste and thus
avoided or minimized. Since the first book on Extreme Programming was published in
1999 (Beck), the interest and industrial use grew surprisingly fast (Abrahamsson, Salo
et al., 2002). The enormous interest seen in industry stems mostly from the grass-root,
that is the developers, and can be explained by the simple and human-centric values
inherent to agile methods, which may be appealing to practitioners but perhaps

Background

 - 19 -

threatening to management du to the de-emphasizing of traditional command and
control mechanisms. The basic principles are easy to grasp, and seem to address the
most fundamental problems concerning developers. However, among this interest and
willingness to radically change the development process, several critical voices have
emerged and many reports indicate that it is not straight-forward, and in most cases it is
an act of balancing agility and discipline (Boehm and Turner, 2004).

Available agile methods such as XP, Scrum and others vary in detail and focus level.
Scrum for example, can be seen as a management framework whilst XP is a collection
of practices and techniques. It is quite common to combine elements from various agile
methods (Kniberg, 2007) leading to a well of variants. However, in principle all agile
projects share the same structure, summarized in Figure 5.

Figure 5 - Agile software development

An agile project typically has a relatively short start-up phase without extensive

engineering of requirements specifications, domain models, architecture definitions etc.
The major part of the project consists of a series of iterations, each lasting a few weeks
normally. Each iteration starts out by evaluating – in collaboration with the customer
side – the outcome of the previous iterations to verify whether the resulting product
increment meets the requirements or not. Then, requirements for the next iteration are
prioritized. Requirements are by principle expressed as simple and short stories. The
team of developers defines estimates per requirement or feature and the customer
representative does the prioritization. This forms an iteration backlog of stories to
implement. Then, the development develops the next product increment, which is
released – preferably as working software – to the customer representative for
demonstration and evaluation. In this way, the whole development project consists of a
series of iterations, each resulting in increments that in sum forms the resulting product
by the end of the project (when time or money runs out).

Background

 - 20 -

2.1.3 Concepts combined: Agile software product line
engineering

SPLE methods aim for large-scale development of product lines that serve large and
diverse markets over long periods of time, whereas ASD methods address small-scale
development from scratch for a single, well-defined customer. These two approaches
have different home grounds. Typically when a new paradigm or field of thought is
introduced and especially when it promises commercial success, researchers and
industry respond by experimenting with the new ideas. Such experimentation results in
these new ideas being developed in new directions. One such recent and promising
development is the potential combination of SPLE and ASD (Tian and Cooper, 2006).
Although relatively new, there are already a few empirical studies (Babar, Ihme et al.,
2009; Carbon, Lindvall et al., 2006; Ghanam and Maurer, 2009; Ghanam and Maurer,
2010; Hanssen and Fægri, 2008; Mohan, Ramesh et al., 2010; Noor, Rabiser et al.,
2008).

Carbon et al. (2006) did a simple experiment, where students were given
development tasks following an agile SPLE approach based on Fraunhofers PuLSE-I
framework (Bayer, Gacek et al., 2000), being extended with the practice of incremental
design (which is fundamental in all agile methods), and one other practice that is
specific to XP called the “planning game” (a planning meeting held in each iteration).
Results showed that practices such as the planning game, for instance, includes a great
potential to increase the agility of a product line organization, but also other practices
like continuous integration or automated regression testing can contribute.

Noor et al. (2008) performed a small-scale industrial case study. They found that it is
feasible to combine ASD and SPLE and that it gave a collaborative process relying
mostly on face-to-face conversation as a means of communication, but that it requires
involvement of both business and technical people to work. The authors derived three
success factors from their case study. (i) It is important that participants are familiar
with fundamental concepts of product line planning to allow a smooth start. (ii)
Preparation is required on part of the process facilitators but also on part of the industry
partner. (iii) The willingness to collaborate in a team is also essential.

Babar et al. (2009) report on a case study of a Finnish software product line
organization that has been using XP and Scrum for years. Two important lessons can be
learned from this study. Firstly, product development projects need documented
background information about the system architecture of the product line and a project
team that has tacit knowledge pertaining to and experience of constructing the system
architecture. Secondly, considerable proactive exploratory work has to be done on the
agile development projects before development begins. Related to these findings, the
authors also observed that the studied company introduced two new roles to
communicate architectural decisions and information. Hanssen at al. (2010) also

Background

 - 21 -

observed a similar development where a software architecture team was established to
serve the agile product line organization.

Ghanam and Maurer (2009),(2010) have, through two case studies found that besides
being practically feasible, the combination of some XP practices and SPLE reduced
rework and the cost of producing customized solutions and that it was feasible to target
customers with diverse needs without having to disturb the agility of their practices. The
proposed approach was found to have a potential to substantially reduce the adoption
barriers of a product line practice through its incremental and non-burdening nature.
The agile SPLE approach that was tested gave customer involvement a special treatment
by enabling customers to pick from variants and contribute to the variability model
when available variants are not satisfactory.

In a recent study, Mohan et al. (2010) applied the theory of complex adaptive
systems (CAS) to define a set of practices to balance the long-term strategic objectives
of SPLE and the short-term tactical objectives of ASD. Together, these practices aim to
prepare the product line organization to be flexible and able to handle changing
environmental conditions.

Finally, in this overview of empirical studies on the combination of SPLE and ASD
we see that our own studies (Fægri and Hanssen, 2007; Hanssen and Fægri, 2006;
Hanssen and Fægri, 2008) support and complement the research being discussed here.
We have also, as others, concluded that it is practically feasible to implement such a
combination of processes, which is supporting strategic and tactical objectives, and that
an operational (day-to-day) process constitutes the experience-bearing link from the
tactical to the strategic process.

To summarize, the collective impression from these relatively few existing empirical
studies of the combination of ASD and SPLE is mainly that these two approaches may –
in practical terms – very well be combined. On the one hand, some of the central agile
practices may increase flexibility and customer collaboration. On the other hand, the
concepts of SPLE are needed in order to manage the diversity of products, the larger
customer base, and the long-term perspective, that are characteristics of managing and
developing a product line over time.

Building on this overview of research, we take a step back and compare the key agile
practices with SPLE as described in various source (Clements and Northrop, 2002;
Linden, Schmid et al., 2007; Pohl, Böckle et al., 2005).

Background

 - 22 -

Table 2 - ASD and SPLE compared
�������	�
��������
8�����99

'������������	'	��9���������'����:�

�		����
��
��������	��������

�:��"��	�����	�����������	���	������������	��
����������	��
���'�

)������� ��	� "*$� ����	���'� (� ���������

�	���� ����	���� ������ ��������� 	�� ���������

�	��
���� 8	� ����������� �����
���� �������� �	�

�	���	�����������:'�

�:� 7���	��� ������� ��3��������&� ���� �����

�� �����	����'� (����� ��	������� �������

������ �	�� ���� ����	���;�� �	����������

��������'�

!	������ ������� �	������ ��� �����	��� ���

������������ �	����� ���� �����'� <����� �������

���	��� ����������� �5������� ��� ����� �������

�	������������� ���������&�
����� ���� ���

�	��	���� 	�� ��������� ��	�����&� ��� �����

������������	��������	���	����������'�

+:�)�������
	�2����	��
�������3�����&� ��	����

�	�����	��
��2���	����	�����	���	���&�
����

�������������	��������	��������������'�

(� "*$�����	�����	���	����=����	��������������

��������'� "�	����� ��������� ��&� �����������&�

�	��
���� ��	
��� �	
� �	������� �	� ������

�����	����&� ���� �	� ���� 	�������� 	�� ����

���������������
����������	����������	��'�

,:�1������� ��	���� ��������	����������
	�2�

�	����������������	���	���������	=���'�

(� "*$� ����	���� ������� ��=����� 	�� ��������

�������������'��

-:�1�������	=�������	����	������������������'�

>���� ����� ���� ����	���� ��� ����	���

����� ���&� ��� ������ ����� �	� ���� ���� =	��

�	�'�

(��������	����������&��� "*$�����	�����������

��=����� 	�� �������� ����� ��������'� (�� ����

�����	��� �����&� �	
����&� �	��� �	�������� ���

��3�����'�

.:� #��� �	��� ��������� ��� ���������� ����	�� 	��

�	������ ��	�����	� �	� ���
����� ��

�����	����� ����� ��� ������	������

�	�������	'�

 "*$&� ���� �	� ��������� ��������� ��9	��

	����%���	����	����5���&� ���	������ ��������

�	�� �	��� �5������&� �	����&� ��� �����������

�	��������	'�

?:�7	�2����	��
���������������������������	��

��	�����'�

 "*$� ��	��	������ ���������� ������ �� ����

�����	��� ����� ��� �	��� ���������� �	� �������'�

�	
����&� �	�� ��	����� �����	����&� ���� "*$�

����	���� ������� ��=����� 	�� �������� �����

��������'�

@:��(����� ��	������� ��	�	��� �����������

�����	����'�#�����	�	��&������	����&����

��������	�������������	�����������	�����

���������������'�

 "*$� ��	�	���� ����������� �����	����� ��� ��

������������'�

A:�/	���	���������	��	�����������5��������

����		����������������������'�

 "*$� �����	���� ���	��� ��������� �5��������

����������	�����	�����������	�������������	'�

�B:� ���������� 0� ���� ���� 	�� ��5���%��� ����

��	���	��
	�2�	���	��0������������'�

#��������	������	��	�� "*$�������������0�����

��� �5��	����� ������ �	� ���������
	�2'� 4� ��

��������� "*$�����	���&��������2�	������������

	�2�����������'�

Background

 - 23 -

�������	�
��������
8�����99

'������������	'	��9���������'����:�

�		����
��
��������	��������

��:� #��� ����� �������������&� ��3��������&� ���

����������������	�������	����%��������'�

#�����������	�	�� "*$���� ����� ���� ���������

����3��������&��������������&��������������

��� ������� ������������� ���	��� ���������

��	�����'�

��:� (�� �������� ��������&� ���� ����� ��������� 	�

�	
� �	� ���	��� �	��� ���������&� ���� �����

�����=���������������	�����	������'�

(� "*$� ����	���� ������� ��=����� 	�� ��������

����� ��������'� 4� ����&� ���� �	� ��������� �� ����

�����	��&� �	��� "*$� 	����%���	�� ��	�	���

�5��������������������������'�

This comparison shows that ASD and SPLE have few principal conflicts according

to our interpretation of these software engineering paradigms. They are virtually
independent of each other. On most counts, they possess complimentary properties
(Carbon, Lindvall et al., 2006; Tian and Cooper, 2006). Whereas SPLE attempts to
introduce large-scale cross-product economic benefits through reuse, ASD focuses on
delivering single products with the best possible quality for the customer. Thus, there is,
prima facie, no reason why these two approaches should not be combined. On the
contrary, there is a clear motivation to combine them.

2.1.4 Software Ecosystems

Software ecosystems is a very recent term, referring to a networked community of
organizations, which base their relations to each other on a common interest in a central
software technology. Some other definitions of this emerging concept have been
proposed, for example by Jansen et al. (2009): “a set of businesses functioning as a unit
and interacting with a shared market for software and services, together with the
relationships among them” (p. 2). Another definition by Bosch (2009), focusing more
on the common interest in the software and its use, is: “the set of software solutions that
enable, support and automate the activities and transactions by the actors in the
associated social or business ecosystem and the organizations that provide these
solutions” (p. 2).

Well known examples of communities that may be seen as software ecosystems are
Apples iPhone/Appstore platform and the open-source development environment
Eclipse. The first is an example of a partially closed and controlled ecosystem, and the
latter is an example of an open ecosystem allowing more flexibility in use and
development. This simply illustrates that the ecosystem concept may refer to a wide
range of configurations. Yet, they all involve two fundamental concepts: 1) a network of
organizations or actors, and 2) a common interest in the development and use of a
central software technology. These organizations may have different relations to the
central software technology, and for this reason, different roles in the ecosystem. In our
definition of the concept, there are at least three key role types. First, one organization

Background

 - 24 -

(or a small group) acts as the keystone organization, and is in some way leading the
development of the central software technology. The second key organizational role is
the end-users of the central technology, who need it as a tool to carry out their business,
whatever that might be. The third key role is third party organizations that use the
central technology as a platform for producing related solutions or services. In addition
to these key roles, various other related roles might be part of the ecosystem, for
example standardization organizations, resellers, and operators (Jansen, Brinkkemper et
al., 2009).

A fundamental property of the central software technology is that it is extensible
beyond the keystone organization (Alspaugh, Hazeline et al., 2009). This extensibility
can be achieved in various ways, for example by providing an application programming
interface (API) or a software development kit (SDK), by supporting exchange of open
data formats, or by offering parts of the technology as open source. Opening up the
technology in these, and potentially other ways, enables external organizations to use
the central software technology as a platform where existing services or data can be
used and extended. Bosch (2009) (p. 112) proposed a Software Ecosystem Taxonomy
that identifies nine potential classes of the central software technology, according to
classification within two dimensions. The first one is the category dimension, which
ranges from operating systems to applications, and to end-user programming. The
second one is the platform dimension, ranging from desktop to web, and to mobile. The
case discussed in this thesis is an application-web category. Accordingly, implications
for practice and theory that are developed later in the thesis relate to this category.

Table 3 - Software Ecosystem Taxonomy

A keystone organization has a special position in an ecosystem as it controls, strictly

or loosely, the evolution of the central software technology. This may include various

Background

 - 25 -

responsibilities, for example certain software product development activities such as
strategic planning, R&D, and operational support. These responsibilities come in
addition to activities specific to ecosystems, such as enabling efficient external
extensibility, provision of insight into planning and development, and supporting
ecosystem partners in various other ways.

One potential benefit of being a member of a software ecosystem is the opportunity
to exploit open innovation (Chesbrough, 2006), an approach derived from open source
software (OSS) processes where actors openly collaborate to achieve local and global
benefits. External actors and the effort they put into the ecosystem may result in
innovations being beneficial not only to themselves (and their customers) but also to the
keystone organization, as this may be a very efficient way of extending and improving
the central software technology as well as increasing the number of users. Closer
relationships between the keystone organization and the other actors may drive both an
outside-in process as well as an inside-out process, as described by Enkel et al. (Enkel,
Gassman et al., 2009). Also, the proximity between the organizations in an ecosystem
may enable and improve active engagement of various stakeholders in the development
of the central software technology (Hanssen and Fægri, 2008).

When explaining the concept of software ecosystems it is also necessary to address
how software ecosystems relate to the development of open source software (Fitzgerald,
2006). There are clear similarities between these two concepts, but also several
differences, which justify the definition of software ecosystems as a unique concept.
The main difference between these two relates to the underlying business model. Brown
and Booch (2002) explain the open-source business model as follows:

“The basic premise of an open-source approach is that by “giving away” part of the
company’s intellectual property, you receive the benefits of access to a much larger
market. These users then become the source of additions and enhancements to the
product to increase its value, and become the target for a range of revenue-generating
products and services associated with the product.”

In a (closed) software ecosystem – like the case being studied in this thesis – the
intellectual property (the code) is not shared in any way. This leads to some
fundamental differences, listed in Table 4. (When using the term ‘ecosystem’ in this
thesis, we implicitly refer to the development of closed-source systems.)

Background

 - 26 -

Table 4 - OSS and closed-source ecosystems - similarities and differences
A community of organizations and actors.
A shared interest in the development, evolution, and use of a software product.
Independent actors collaborate and contribute to development.
Open innovation. Si

m
ila

rit
ie

s

New business models as compared to traditional licensed software.
OSS (Close source) ecosystems
Open source code. Closed source code.
Ownership is shared. Ownership and control lies with the

keystone organization.
Free use (with options for paying for
specializations and related services)

Pay for use. D
iff

er
en

ce
s

Extensibility through open source code. Extensibility through controlled interfaces.

The ultimate objective for investing in and working towards an ecosystem is that all

members will derive more benefits from participating, as compared to the more
traditional approach to software product development with segregated roles, a low level
of collaboration, and closed processes. A well functioning ecosystem is, in summary, a
complex configuration with collaboration across traditionally closed organizational
borders (Bosch, 2009). Such multi-organizations are most likely not established as a
deliberate planned effort. Rather, they emerge as a result of many congruent factors
such as domain and business development, technology development, globalization, new
collaborative patterns, and customers becoming more and more accustomed to
participating in the shaping of the technology they use.

2.1.5 Organizational change

An important aspect of understanding an organization and its functions is to
understand how it changes. Kurt Lewin, one of the original contributors to the study of
organizational change even stated: “You cannot understand a system until you try to
change it” (Lewin, 1951). In relation to this, he also coined the term and the concept of
action research (Lewin, 1946), which is the repeated process of evaluating a situation,
planning, and executing a change, evaluating the effects, and implementing a permanent
change. A key feature of this model is that change is not done in a laboratory-like
setting but in a real context, for instance in industry and in production. This principle is
also fundamental to Lewin’s original model of organizational change. According to this
model, change is performed through three steps: unfreeze – change – freeze. This
concept has been formative to the wide understanding of how organizations change.
Unfreeze refers to an organization that exits a stable phase, an equilibrium, so the
established structures and processes become open to change. Change refers to the actual
change of the organization, and freeze refers to the establishment of the new

Background

 - 27 -

organization or processes as the new standard, and the new equilibrium. This model
represents a view of organizational change as planned or episodic (Weick and Quinn,
1999). A premise for such an approach is stability (in the business domain, technology,
market etc.) – which again is a premise for planning the change and foreseeing its
effects.

Stability is, however, not the case for many organizations (Emery and Trist, 1965), in
particular software organizations (Baskerville, Ramesh et al., 2003), which work with
rapidly developing technologies and with business domains that change in line with
technology. Consequently, developing plans of change up-front, based on the
knowledge of a changing and turbulent environment may not be a good idea as such
plans may be obsolete, wrong, or even harmful at the time of their execution.
Orlikowski and Hofman (1997) address this problem and suggest a model of
improvisational change. Their model contrasts the idea of change as punctuated
equilibrium (Weick and Quinn, 1999) with change as an ongoing process and a result of
a series of events. They define three types of change: anticipated, emergent, and
opportunity-based. Anticipated changes “are planned ahead of time and occur as
intended”. Emergent changes are “changes that arise spontaneously out of local
innovation, which are not originally anticipated or intended”. Opportunity based
changes are “changes that are not anticipated ahead of time but are introduced
purposefully and intentionally during the change process in response to an unexpected
opportunity, event, or breakdown.” (ibid., p.4). In practice, the total change consists of
an arbitrary series of these types of changes, which can be understood as responses to
the internal events in the organization as well as the events in the external environment.

Figure 6 - Orlikowski’s and Hofman’s model of improvisational change

A change of an organization usually stems from the need to improve this

organization; to improve a process, restructure the organization, reduce schedule, or
costs etc. In line with the concept of improvisational change, and as an instrument to
manage it, W. E. Deming (2000) formulated principles for transformation and the Plan-

Background

 - 28 -

Do-Study-Act improvement cycle. This is well known as the Deming cycle, or as the
Shewhart cycle (ibid., p.88) as Deming himself named it (after W. A. Shewhart).

Figure 7 - The Shewhart/Deming improvement cycle

Plan – is to analyze the present situation, to observe or experience a potential for a

change, and to suggest how to perform the change. Do – is to implement the change.
Study – is to evaluate the change, to create an understanding of the effect and causality
of the change. Act – is to make the change permanent, assuming that the effect of the
change creates a better situation than before the change. Over time, these cycles
represent a change, and an improvement. Change can be of any of the types defined by
Orlikowski and Hofman, meaning that planning can vary from explicit planning to more
improvisational responses to emergent and opportunity-based events.

Background

 - 29 -

2.2 The case

This section describes the present case organization, their product line and their
development processes. We also give a retrospective of the past organizational change
that have led to the present state.

2.2.1 Organization

CSoft is a medium-sized Norwegian software company that develops, maintains, and
markets a product line under the same name. They serve the high-end segment of the
market and have a wide international customer base, mainly consisting of Global 50003
companies. Products are marketed and sold by several resellers throughout the world.
Despite facing considerable challenges in the first years, CSoft is now one of the market
leaders. The company was established in 1996, and has grown continuously since then
with a major increase in size through an acquisition of a former competitor in 2006.
Currently, CSoft employs more than 200 people, including over 60 developers.

CSoft has several development locations across Europe and Eurasia, as well as sales
and support departments in U.K. and USA. The main office, including the main section
of R&D, is located in Norway.

The most relevant (to this study) roles and organizational functions are:
The product management team (PMT) is a group of five product managers, each

being responsible of one of the main modules in the product line. The product managers
are responsible of developing the product roadmaps, one per module, in collaboration
with externals and internals. In the development projects, the product managers are the
connection between the development teams, other internal roles and external actors,
typically customers which act as stakeholders. Thus, this role resembles the Scrum-
master role in Scrum projects, but with additional responsibilities of developing the
product strategy as well as supporting development.

The development teams. Each module of the product line is developed and evolved
by a fixed team of developers (no job rotation). Each team has a team leader, which is
highly experienced and has the most insight into the solution and the business domain.

The Chief Technical Officer (CTO) has a special role as he has worked on the
solution from the very start and thus possesses the most insight into the product line. He
participates in strategic planning and plays a guru-role in development.

3 http://theglobal5000.com/

Background

 - 30 -

The R&D manager plays an important role with respect to the development
processes and was the initiator of the change from the plan-driven process to the agile
development.

The architecture team consists of four experienced developers and has the
responsibility of improving the structure/architecture of the product line and improving
the technical infrastructure being used by the R&D organization. This team was formed
in 2007 to counteract increasing difficulties with the growing technical complexity of
the product line and the development of it.

Professional services provide support, training and adaptation of the solution to
make the product work optimally for customers requesting such services. This
department knows the clients, the business domain and the market very well and can be
considered to be experts on the use of the product line.

Technical account management (TAM) is the customers primary contact in case of
support needs or if customers want to provide input, needs or ideas. TAM
communicates this type of input to the PSG, which takes it into account when
developing product roadmaps.

It is important to realize that the SPLE process that is being used at CSoft is not the

result of an immediate, deliberate adoption and introduction of one of the commonly
used frameworks; rather it is the result of years of development and adjustments. This
transition will be discussed in more detail later on.

Background

 - 31 -

2.2.2 Product line

The CSoft software is a highly modular product line that allows many configurations
and variations in use. It contains five main modules that serve various business-related
activities. In addition, it offers an Application Programming Interface (API). This is
implemented as open standard web services. The composition and use of the modules
varies according to customer and case. Some modules can be used in any configuration,
while the use of others depends on the situation. CSoft software comes with a set of
predefined configurations for the most common usage scenarios, and it provides built-in
support for detailed customization to create more variants.

�

Figure 8 - High-level product line overview
�

The product line, or family, consists of several modules that together support a value
chain of planning, data collection, analysis, and reporting of results. The composition of
a specific product based on the product line can be varied in several ways:

Variability in task: Data can be collected in various ways using different modules.

For example, there is one module for collecting data via telephone and one for
collecting data via the Internet. All variants of the product use the same core component
for storing and analyzing data, and have the same functionality for reporting. It is
possible to select dynamically which features to include according to the license, in
order to satisfy the greatly varying needs of the customers.

Variability in application domain: The product line is being used in three different
but strongly related domains.

Variability in feature richness: The product comes in two main variants, the full
professional suite and a simple version. The simple version offers only the basic
features, is low in cost, and is not supported.

Background

 - 32 -

Variability in operation: The product is a three-tier application with a web-browser
front-end only. This allows for a dual operational model. A customer may buy the
product entirely as a service provided by CSoft, meaning that the software runs within a
remote hosted environment together with all data, and all access is done through an
ordinary web browser (software as a service - SAAS). Alternatively the total solution
can be hosted locally. This is more suitable for customers who use the product
extensively and need to retain maximum operational control. However, the largest
clients only use this variant.

A common commercial model for a software product line supplier is to either sell

licenses to use a product (a derivation of the line), or as a commodity for local
deployment or, increasingly, as access to the software through a service. CSoft apply a
different model. The principle is that cost of use is based on the extent of use; customers
pay a certain amount of money per completed transaction, that is, cost is related to the
actual generated business value to the customer.

Background

 - 33 -

2.2.3 Processes

Taking a process view of CSoft shows that the organization’s development-related
activities can be grouped into one of three types of processes: a long-term strategic
process, an intermediate-term tactical process, and a short-term operational process. The
common denominator of these three processes is their interplay with external actors
(customers and third-parties that extend the product line through the API’s).

Figure 9 - An external-actor centric development process

Background

 - 34 -

Strategic (long-term, SPLE): Evolution at the SPLE level addresses the need to

implement long-term strategic plans. SPLE supports CSoft’s need to introduce tactical
innovation, which is fuelled, for example, by innovations in technology, changes in the
business models, or new business opportunities. CSoft is a product platform that
contains a set of building blocks that can be tailored to provide different product
offerings. This platform can be considered as the vehicle used by the Chief Technical
Officer (CTO) and the Product Management Team (PMT) to implement long-term
vision. More often than not, these innovations are costly in terms of effort and risk.
Thus, they should be planned and introduced with great care, in order to exploit the
organization’s development capability. SPLE-style development inherently supports this
ambition.

Tactical (medium-term, ASD): Evolution at the project level (note that a release
typically includes one project per module) addresses the customer’s detailed
requirements and needs. Close cooperation in planning and evaluation of the two-week
development iterations ensures that customers’ ideas and experience with the software
is translated into what we may call tactical innovation, i.e. reactive innovation that seeks
to polish, improve, adjust, or otherwise make small to moderate adjustments to the
product. According to the ASD method Evo, Customers’ requirements are defined as
product qualities and documented in an impact estimation table (IET). This is a simple
list of prioritized (by a customer stakeholder) product qualities of the product under
development with an estimate (by the development team) of the anticipated effort
needed to implement the quality. An example of such a quality is
“Usability.Productivity” for a given task, e.g. “Define a simple report”. This product
quality can be defined as number of seconds needed by a novice user to complete the
task. The IET also contains the goal value of the quality and the present value. Thus, the
quality is improved until it has reached its goal value performance. (See Part II, paper 2,
for a more detailed example). The IET correspond to the more known concept of
product and sprint backlogs which are important components of the more known and
practiced agile method Scrum (Kniberg, 2007).

Background

 - 35 -

Each development project follows a common process template of successive
fortnightly iterations:

Table 5 - The iteration week plan

One of the first

days

Meeting with external stakeholder

Iteration postmortem

Technical meeting 1 Monday

Development iteration kickoff

2 Tuesday

3 Wednesday

4 Thursday

W
ee

k
1

5 Friday

1 Monday

2 Tuesday

Development

Internal demo (prepare for next meeting) 3 Wednesday

Evo iteration planning and review meeting

4 Thursday Fix change requests

Retrospective

W
ee

k
2

5 Friday

Project Status Meeting

�

Operational (short-term, day-to-day operations): Customers rely on the software
to help them implement vital business functions in their own organizations. Thus, it is of
great importance that CSoft is able to sustain a good level of customer satisfaction with
the software in its day-to-day use. During operation, the products are exposed to more
users, and this exposure increases the potential amount of feedback to the innovations
implemented at the strategic and tactical levels.

Background

 - 36 -

2.2.4 A retrospective of the development of the organization

CSoft was established in 1996 and has grown continuously since then, with more
than 200 employees in 2010. Their development went through three phases and has now
entered a fourth. This section presents a summary of these phases of development and
indicates some important milestones in the development of the organization. The
timeline in Figure 10 shows main events in the development of the organization and the
growth in staff. We have identified four phases of the organizational development.

!�������B���#�������	�����������	�����	�����������	����%���	�

1996-1999: “Creative chaos”
The company initially grew out of a small business providing manual services to

very few customers. A simple homemade supportive software tool developed into a
solution that could be sold as a stand-alone software product. The main focus of the
company changed, and the development of this product became the main objective. In
the beginning, in 1996, there were only a few employees providing this product to a
handful of customers. The process can best be described as ad-hoc as the main driver
was feedback from customers obtained in almost daily interactions. A customer request
was literally routed directly to the developers. This start-up phase was a creative chaos –
that is, it had nearly no plans and no control but was undoubtedly extremely creative
and productive. The product grew rapidly, not only in terms of features and
functionality but also in terms of defects and complexity. Work became stressful, with
little control and a lot of overtime work.

Background

 - 37 -

1999-2003: Waterfall and software product line engineering
As the number of customers grew, the organization formalized the development

process according to the principles of the waterfall model, famously described by W. W.
Royce (1970). This somewhat disreputable approach (Boehm, 2006; Takeuchi and
Nonaka, 1986) to organizing software development emphasizes upfront detailed
planning of requirements, design, and development. The development is divided into
consecutive phases, where requirements are developed into a design, and the design is
developed into a software system, which is tested close to deployment.

Prior to this, the R&D department was extended with a QA-manager and a few other
supportive roles. The waterfall-like process was also documented as an electronic
process guide (EPG), being available to all developers as a tool to spread knowledge
and control process compliance (Moe, Dingsøyr et al., 2002). This structured approach
established a certain level of control and helped the organization in the continuing
development of their product, which grew alongside the customer base. After a few
years, several problems arose clearly related to the waterfall approach (Johansen, 2005);
testing and verification was postponed until late stages leading to late identification of
problems which in turn caused much rework. Also, requirements were nearly solely
focused on functionality, leaving out the quality perspective. The product expanded and
eventually became a product line, being capable of serving various usage scenarios. To
manage this increasing complexity a Product Management Team (PMT) was formed – a
group of experienced employees with other responsibilities that were supposed to spend
part of their time in strategic product planning. In addition various specialized functions,
beyond software development, were introduced such as Technical Account Managers
(TAM), the operations department, training services etc.

2004 – approx. 2008: Agile product line engineering
Due to a critical decline in process performance, management of R&D was looking

for a way to improve the situation. At a software engineering conference, a few
representatives from the company learned about the evolutionary development and the
Evo method (Gilb, 2005). As it seemed to address some of their concerns they initiated
a three-month test period to try out this radically different development approach in a
real release project. Instead of an extensively prepared process adoption, they started out
with a few principles, focusing on requirements management, where functional
requirements were replaced by explicit expression and evaluation of product qualities,
preferably stated by customers involved in the development process (Hanssen and
Fægri, 2006). Early experience showed that the amount of issues near release was
reduced, and that the delivered product matched customer expectations better than
before. After this initial process trial, Evo was adopted on a permanent basis (Fægri and
Hanssen, 2007; Hanssen and Fægri, 2008). Alongside the growth in organization and

Background

 - 38 -

product line the PMT group was re-established as a full-time Product Strategy Group
(PSG) with a dedicated management by a Chief Strategy Officer (CSO). Another
supportive service, the architecture team, was established, originally with three full time
members. Their task was to handle the excessively high level of system complexity, and
to support R&D in architecture-related issues. In 2006 CSoft acquired a former
competitor and boosted the number of employees up to more than 200. Adding new
offices, for both R&D and marketing, was a considerable challenge. Through extensive
internal training in the following year, the new organization was using Evo almost
exclusively as the development process, and was following the release cycles.

Approx. 2008 →→: Towards a software ecosystem
Since the first use of Evo, the actual use of it has further matured and was adapted to

the organization’s needs. During the past few years an external community has
emerged, using the CSoft product line as a platform for value-adding services and
products. CSoft supports the operation of this community through the offering of a set
of API’s for extending the product line. Also, during the most recent years,
collaboration with external stakeholders, first of all customers, has been
professionalized, and the first product conference was held in 2008 with extensive
participation from employees, customers, prospects, and external partners. In sum – the
organization is opening up and is increasing collaboration with external actors. We see
this as a transition towards a software ecosystem.

2.3 A theoretical framework: organizational ecology

In search for a foundation to understand and communicate our findings from the
study of CSoft we look to the pioneering work done by Eric Trist, Fred Emery et al.
from the Tavistock Institute of Human Relations4. Their studies of the development and
behavior of work groups and organizations have lead to theories on socio-psychological,
socio-technical and socio-ecological theories whereof we look into the two latter ones.

Socio-technical theory is a view of the organization as the sum of and interplay
between a social system and a technical system. That is 1) the people, their relations,
their knowledge, and how they work together as a whole, and 2) the tools and
techniques being used to perform the work. The fundamental principle of socio-
technical theory is the interdependence between these two systems, meaning that to
improve the performance of the organization (productivity, quality of work etc.) both
subsystems have to be considered at the same time. Changing one affects the other. This

4 http://www.moderntimesworkplace.com/archives/archives.html

Background

 - 39 -

principle was first drafted by Trist and Bamforth in 1951, based on their studies of
changes of work processes in coalmines (Trist and Bamforth, 1951).

Through studies that followed, the theory has been developed to consider how
organizations relate to their external environment (Emery and Trist, 1965). This implies
that an organization has to be understood as both 1) the internal interplay between a
social subsystem and a technical subsystem (the socio-technical system), and 2) the
interplay between the organization and its external environment.

Figure 11 - The socio-technical system and the organizational ecosystem

Emery and Trist (ibid.) developed a simple classification system of four types of

organizational environments – forming a series, in which the degree of causal texturing
is increased. Thus, understanding and ordering the types of environments is useful in
understanding socio-technical systems beyond the limits of a single organization.

1) The first and simplest is the placid randomized environment where “goods” and
“bads” are unchanging, and are randomly distributed in the environment (ibid., p.7).
The optimal strategy is to do one’s best on a purely local basis – there is no difference
between strategy (planning) and tactics (execution).

2) The second type is the placid clustered environment where “goods” and “bads”
are not randomly distributed but band together in certain ways. Strategy is different
from tactics, and survival becomes critically linked with what an organization knows
about its environment. Organizations in this environment tend to become hierarchical,
with a tendency towards centralized control and coordination (ibid., p.8).

3) The third type, the disturbed reactive environment, is an environment where there
is more than one organization of the same kind. The existence of a number of similar
organizations becomes the dominant characteristic of the environmental field. These
organizations compete, and their tactics, operations, and strategies are clearly
distinguished. The flexibility encourages a certain decentralization, and it also puts a
premium on quality and speed of decisions at various peripheral points (ibid., p.9).

Background

 - 40 -

4) The fourth, and the most recent type is the turbulent fields. This type implies that
significant variances arise from the field itself, not simply from the interaction of the
component organizations. Three trends contribute to the emergence of these dynamic
field forces: i) the growth to meet type-three conditions, ii) the deepening
interdependence between the economic and other facets of the society, and iii) the
increasing reliance on research and development to achieve the capacity to meet
competitive challenge. A change gradient is continuously present in the field (ibid.,
p.10).

Figure 12 - Types of organizational environments

This interplay, inherent in turbulent organizational environments, has been further

studied, leading to the development of the concept of organizational ecology (Trist,
1977). It is particularly relevant to organizations operating in complex and unstable
domains. Viewing the organizational environment as an ecosystem means that it is
considered to be an open system as opposed to a closed one. Organizational borders are
permeable, and organizations relate dynamically to other organizations in the same
field.

Developing the ecology concept further, Trist (ibid.) describes three classes of
organizations within the turbulent environment. In a Class 1 system, member
organizations are linked to a key organization among them. The key organization acts as
a central referent organization, doing so even though many of the member organizations
are only partially under its control, or linked to it only through interface relations.
Interface relations are as basic to systems of organizational ecology as superior-
subordinate relations are to bureaucratic organizations. Interface relations require
negotiation as distinct from compliance – a basic difference between the two types of
systems. In a Class 2 system, the referent organization is of a different kind. It is a new
organization brought into being and controlled by the member organizations, rather than
being one of the key constituents. A Class 3 system has no referent organization at all.

Background

 - 41 -

Technocratic bureaucracies have been the natural organizational form for disturbed-
reactive environments (up to the 1960’s or so), and this is a form that has been applied
to many software engineering organizations. However, this type of system fails to adapt
to conditions of persistent and pervasive environmental turbulence, mostly because it is
constructed and optimized to work well in stable environments. This leads to the
emergence of the new ecologically oriented systems, which show clear differences in
that they promote self-regulation (as opposed to centralized control), and that they have
a networked character (as opposed to segregated organizations). According to Trist
(ibid., p.172), such systems, lacking formal structure, exist through the use of
technology. Further, they also need shared values. Trist used the example of the 60/70’s
youth-culture that had a set of distinct (political) values. A more appropriate example
from a business perspective is a shared value in growth and profit. An even more low-
level example may be the software product as a shared value.

Unlike the micro-level systems (the single organization) and the macro-level systems
(society), the intermediate level systems (organizational ecosystems) are hard to
observe, understand, and describe due to their weak structuring. They are also the most
recent type, so there is less experience with them. This relates especially to software
engineering ecosystems, which is a new but rapidly advancing concept (Bosch, 2009;
Messerschmitt and Szyperski, 2003). This approach is driven by the Internet as a rich
and fast collaborative platform (the technology), and a common interest in the product
line (the shared value).

Research approach

 - 42 -

3 Research Approach
This section will explain the chosen research approach. We begin with a general

discussion of the variety of approaches to research in software engineering. This
overview forms a background, and it is used to argue for the approaches we have chosen
and applied, and it justifies why we disregarded others. We then continue by explaining
the components of the applied research design of this thesis: how we selected the case,
how data were collected, and how data were analyzed. Finally we discuss issues related
to the validity of the results.

3.1 Studying software engineering

Software engineering (Vliet, 2002) is the discipline of specifying, designing,
developing, deploying, and maintaining software systems. This includes many types of
interdependent tasks such as management, budgeting, requirements management,
application design, architectural design, coding, testing, maintenance, deployment and
several other high- and low-level tasks. Most commonly, software in an industrial
setting is being developed within the project format, which includes one or more
suppliers and one or more contractors. However there are many variations, from
developing tailor-made solutions for a well-defined customer or group of customers, to
the production of standard commercial products being offered to a large and diverse
market. Regardless of the variant, the basic task is to capture and understand
requirements, needs, and ideas – tacit and explicit – to engineer a solution that meets
requirements, within limits of time and cost. This can be a challenge as requirements are
evolving or may be unclear, thus requirements engineering is an important practice
within software engineering. Accordingly, testing is also a challenge; the engineered
solution must be validated to ensure that it meets the requirements.

Software engineering is both a technical process and a human-intensive process. To
understand this diverse practice we thus need to understand the interplay between
technology and humans, who are typically organized in teams.

The term empirical software engineering (Basili, 1996) describes the discipline of
applying empirical methods to measure, evaluate, and thus understand the practice of
software engineering in general, and tools, techniques, and practices in detail. Such an
understanding is needed by the industry to select an appropriate approach. The term
empirical study (Wohlin, Runeson et al., 2000) refers to the practice of observing an
object of study to collect experience-based data, and describing the object through its
features, effects, and outcomes. Data are analyzed in order to understand how the object
works and evolves within a given context. Typically within software engineering, the
studied objects are software development methods and guidelines in general, as well as

Research approach

 - 43 -

design techniques, tools, programming languages etc. Data of interest are mostly in
some way connected to costs and gains, for example the level of code quality related to
a given testing technique. In its most general form, empiricism is the process of learning
from experience, thus being able either to validate theory or build new empirically
qualified theory. This process should be transparent, explaining how data were
collected, how they were analyzed, and how they relate to the existing research. Within
the software engineering field, the terminology is somewhat diffuse: besides the term
empirical software engineering we can find other similar terms such as evidence-based
software engineering (Kitchenham, Dybå et al., 2004), experimental software
engineering (Basili, 1996), and other variants. However, they all refer to the basic
concept of systematizing experience in order to generalize new knowledge – as in most
other sciences.

To place the practice of empirical software engineering in a broader context, Figure
13 shows how it relates to the software engineering discipline, and how it forms
connections between research, industry, and users of technology:

Figure 13 - Empirical software engineering

This value chain shows the role of the software engineering industry and its relations,

both to their customers and users, and to the research community. The value chain here
is two ways; from left to the right it shows how knowledge, based on experience
(empiricism), is applied in the construction and application of software systems. Going
the other way, it shows how experience from the use of software systems and
development processes is captured and externalized. In this way the figure shows a
learning loop where empirical software engineering is the vehicle.

Research approach

 - 44 -

There exist several strategies and tools to plan, execute, and report empirical studies.
These are general approaches applicable to many domains and disciplines, including
software engineering. Software engineering is in many respects an immature
engineering discipline, and so is empirical software engineering. For example, looking
to medicine or social sciences, we find a much more mature and widespread use of
empirical methods that we can learn from (Kitchenham, Dybå et al., 2004). However,
there are differences between fields, and software engineering has its peculiarities that
influence how we can utilize these methods. Further on, we will give a brief overview
of a set of empirical approaches with emphasis on the field of software engineering.

Wohlin et al. (2000) refers to two main types of empirical studies: qualitative and

quantitative, a very high-level taxonomy of research approaches.
Qualitative studies refer to studies where data is collected from humans (either

directly or through their actions) using techniques such as interviews, surveys, and
observations etc. This type of data is to some extent subjective and can be biased, since
the subject’s or the observer’s viewpoints can be affected by belief and personal
standards. Qualitative research is mainly concerned with phenomena not possible to be
expressed or measured quantitatively. Raw data is often represented in the form of
words (written or spoken) or as pictures or illustrations (Seaman, 1999), or through
instruments like questionnaires using psychometric scales (Cooper and Schindler,
2006). The type of data being collected naturally influences the type of analysis that can
be performed. Typically, qualitative data cannot be analyzed mechanistically but need
to be interpreted in some way, thus risking a bias. Qualitative research methods have
been developed mainly by researchers in the social disciplines focusing on humans,
their relations, and their actions (Seaman, 1999).

Quantitative research refers to studies that quantify properties of the phenomenon
being studied, thus representing data as numbers which can be of nominal, ordinal,
interval, or ratio types (Cooper and Schindler, 2006) (p. 312). This approach comes
mainly from the natural sciences where data is available through measurement either by
direct empirical observations or by the use of instruments and calculations. Having data
in a numerical form makes it possible to do sample-based statistical calculations to find
values describing populations and to compare results mathematically (less, greater or
equal). Doing quantitative studies also makes it possible to demonstrate the quality of
the analysis through measures of significance and validity, which are important factors
when findings are to be applied in practice. However, there are many pitfalls that may
introduce errors during data collection, analysis, and reporting, for instance poor
construct validity.

Research approach

 - 45 -

Wohlin et al. define three high-level types of empirical strategies: surveys, case
studies, and experiments. Variations of these and more types can be added, as there is
no commonly accepted taxonomy of empirical strategies within the field of software
engineering as yet.

A survey is a retrospective type of study where data, quantitative or qualitative or
both, are collected after an event, thus not being able to control the event, for example a
development project. Questionnaires and interviews are commonly used techniques for
data collection. Data can be interpreted to reach either descriptive or explanatory
conclusions.

A case study is basically a study of a phenomenon over time, which makes it an
observational type of study. Both quantitative and qualitative data may be collected,
either alone or in combination. A combination, often referred to as triangulation, is often
productive as one type of data may support or complement another type (Davison,
Martinsons et al., 2004). The term case study is not well defined, and it may take many
forms with respect to intervention, data collection techniques, and analysis (Yin and
Campbell, 2002), however it can be defined as simple as ‘the study of a restricted case’.

Experimentation implies a high level of control (as opposed to a survey). An
experiment can be done in a laboratory-like setting or in a real-life (field) setting.
However, the most prominent feature is the ability to control the variables being
studied. Control, in this context, means that the values of the variables are known
through some kind of manipulation, and can be measured with a certain known level of
accuracy. There are three types of variables:

1. Dependent variables, also called response variables, which represent the effect or
outcome in an experiment. An example of a dependent variable may be the
productivity or quality of a software development process, which again can be
operationalized in various ways.

2. Independent variables are controlled or manipulated in the experiment setting.
Examples are the type of design technique or development tool being used by
different experiment groups. An experiment can be planned to evaluate the co-
variance between several variables. The main goal of the experiment is to study
how the independent variables influence the dependent variables or how changes
in variables correlate.

3. In addition there may be context variables, which are also believed to have an
influence on the dependent variables. It is important to know these variables and
their (interfering) effect on the dependent variables to be able to better evaluate
the direct relationship between the independent and the dependent variables.

Control may ensure accuracy and data of high quality, but it also imposes costs and a

risk of bias. As stated by several authors, e.g. (Fenton, 1994; Kitchenham, Pfleeger et

Research approach

 - 46 -

al., 2002; Tichy, 1998), both the level and the quality of experimentation is poor in the
field of software engineering.

Wohlin et al. present one interpretation of the term controlled experimentation, but

there exist others. Zelkowitz and Wallace (1998) give a more detailed definition and
explanation of the term as they suggest a taxonomy for software engineering
experimentation. First, they define four categories of experimentation: the scientific
method (a theory explaining a phenomenon is validated through testing of a hypothesis
variation), the engineering method (a solution to a hypothesis is developed, tested, and
refined until no further improvement is needed), the empirical method (a hypothesis is
validated by the use of statistical methods), and the analytical method (a formal theory
is developed and results are compared with empirical observations). Through a review
of multiple examples of technology validation approaches, Zelkowitz and Wallace
identified 12 different experimental approaches grouped into three categories:
observational, historical, and controlled. In the observational category they define
project monitoring, case study, assertion, and field study. In the historical category they
define literature search, legacy, lessons learned, and statistical analysis. In the third
category, controlled, they define replicated experiments, synthetic environment
experiments, dynamic analysis, and simulation. Some of these approaches resemble the
description by Wohlin et al. Some terms are used in a similar ways, others differ.

Some other descriptions give other variations, different focus, and levels of detail, for
example in the paper Preliminary guidelines for empirical research in software
engineering by Kitchenham et al. (2002). The title is unclear, as the paper focuses
mostly on experimental design, using terms slightly different from the other referenced
sources. This simply illustrates the diversity of definitions and descriptions for methods
of empirical research within software engineering. This diversity is believed to
contribute to a certain level of confusion in the various study reports that mix terms as
well as in the actual use of methods, and as a consequence, an unsatisfactory level of
quality of empirical studies (Dybå and Dingsøyr, 2008).

In addition to the empirical strategies discussed here, some other approaches also
deserve to be described. First, action research may be viewed either as an empirical
strategy or a research method. However, it is mostly a framework that defines how the
researcher(s) should cooperate and intervene with client(s) to plan, carry out, and
evaluate a study. Davison et al. (2004) defines the concept of canonical action research
through five principles. These are diagnosing (what is the problem?), action planning
(what can we do about it?), intervention or action taking (do it), evaluation (assess the
effect of the change with respect to the defined problem), and finally reflection (learn
from the experience, both specifically and generally).

Research approach

 - 47 -

Another important meta-strategy related to empirical research is systematic literature
reviews as described by Kitchenham (Kitchenham, Pfleeger et al., 2002). This is an
approach to systematically and rigorously search, evaluate, and systematize published
research results in a given field or for a given topic or problem. Systematic reviews are
not an empirical strategy in the direct sense. However, it is a useful approach to
interpret and understand published results from existing empirical studies to build a
wider and composite view and understanding, or at least an updated overview of a
research field.

The strategies briefly presented and discussed here do not give the whole picture;

there are variants and combinations of these, as well as other approaches that may have
been missed out in this overview.

Common to most strategies and guidelines for empirical research, regardless of
flavor, is the definition of the overall process describing a set of phases. These do vary,
however in general they address the following five phases:

1. Problem definition - that is, identifying and justifying a problem or question,
sometimes related to a need for improvement. This may also include planning of
a potential action to correct the problem or improve some performance. This
phase is crucial to identify the most important problem to be addressed with
respect to criticality and significance.

2. Planning of the study may include the definition of one or more hypotheses to be
tested or some other type of activities to evaluate a case (producing experience)
to gain knowledge about the defined problem. For historical types of studies such
planning may be irrelevant, but in any case requiring some kind of intervention
or data collection during an event, this must be planned.

3. Operation or execution is the implementation of the plan. This may cover
manipulation of a subject, e.g. to carry out a treatment, or simply observations to
collect data without any intervention.

4. Analysis is the phase where data is interpreted either to test a defined hypothesis
or to build, edit or verify a theory or hypothesis.

5. Presentation and dissemination is the final phase where results are made
available externally, thus constituting a potential addition to the existing
knowledge base on the topic.

Research approach

 - 48 -

3.2 The applied research process of the thesis

As we have shown, the variety in study approaches and techniques is great, and it
depends on the type of research question and the context of the study. The particular
study being reported in this thesis can be described using the following attributes:

(1) A case study of a single industry organization.
(2) An interpretative field study.
(3) A longitudinal study.

Given these premises for the study of CSoft, we have applied the following principal

guidelines for planning and conducting our studies:
(1) Case study: All four studies underlying this thesis have been exploratory and

qualitative, and the focus and the defined research goals were rather widely defined.
This made the case study approach the preferred overall research strategy. In contrast,
controlled experimentation based on a few isolated and controlled variables, and their
hypothesized relationships was not found to be suitable for understanding the selected
case organization and their processes, especially as we were interested in following a
development over time and its unforeseen outcomes. Further more, the state of research
on agile methods, which lies at the basis of this study, is in a rather nascent state.
Despite the widespread adoption of agile processes and techniques in the software
industry - and the correspondingly large interest in academia - there are relatively few
empirical studies of good quality (Dybå and Dingsøyr, 2008). There is nearly no
theorizing in the present studies. This calls for more qualitative and explorative studies
(ibid., p.852).

According to Yin (2002), case studies are the preferred research strategy “…when a
«how» or «why» question is being asked about a contemporary set of events over which
the investigator has little or no control.” (p. 9). This is a very adequate description of
the context of our studies of CSoft.

Research approach

 - 49 -

(2) Interpretive field study: More specifically, our study of CSoft can be classified
as an interpretive field study according to a definition given by Klein and Myers (Klein
and Myers, 1999). This definition includes seven principles for conducting interpretive
field research that suits the aim of our study:

Table 6 - The application of the seven principles of interpretive field studies

Principles (from Klein and Myers (Klein and
Myers, 1999), p. 72)

Practiced in the case study

1. The Principle of the Hermeneutic Circle
This principle suggests that all human
understanding is achieved by iterating between
considering the interdependent meaning of parts
and the whole that they form. This principle of
human understanding is fundamental to all the
other principles.

Data are collected through repeated interviews
with actors playing various roles. The data
collection is supported by observations and
collection of relevant documentation. The
growing knowledge of the case has guided the
data collection.

2. The Principle of Contextualization
Requires critical reflection of the social and
historical background of the research setting, so
that the intended audience can see how the
current situation under investigation emerged.

The study of the case is conducted from two
viewpoints – the present organization, and how it
has emerged over time.

3. The Principle of Interaction Between the
Researchers and the Subjects
Requires critical reflection on how the research
materials (or “data”) were socially constructed
through the interaction between the researchers
and participants.

A large part of the collected data is based on
semi-structured interviews (Seaman, 1999) that
followed open interview guidelines to ensure a
balance between thematic focus and room for
reflection, correction, and discussions. This
allows for unplanned but relevant topics to be
addressed.

4. The Principle of Abstraction and
Generalization
Requires relating the idiographic details revealed
by the data interpretation through the application
of principles one and two to theoretical, general
concepts that describe the nature of human
understanding and social action.

Findings are related to the concept of
organizational ecology (Trist, 1977). Key
principles from this theoretical background are
applied to the studied case (section 5.3).

5. The Principle of Dialogical Reasoning
Requires sensitivity to possible contradictions
between the theoretical preconceptions guiding
the research design and actual findings (“the
story which the data tell”) with subsequent
cycles of revision.

The theory applied to the case was not used to
plan and guide the data collection. The
applicability of the theory became evident
through the analysis after the data had been
collected.

Research approach

 - 50 -

Principles (from Klein and Myers (Klein and
Myers, 1999), p. 72)

Practiced in the case study

6. The Principle of Multiple Interpretations
Requires sensitivity to possible differences in
interpretations among the participants as are
typically expressed in multiple narratives or
stories of the same sequence of events under
study. Similar to multiple witness accounts even
if all tell it as they saw it.

This principle was followed by collecting data
from both external actors and people with various
roles in the product line organization.

7. The Principle of Suspicion
Requires sensitivity to possible “biases” and
systematic “distortions” in the narratives
collected from the participants.

The data were collected and analyzed by the
author, who is external to the organization,
having no formal responsibilities, interests or
agenda, except to create an unbiased view of the
organization and its development.

(3) Longitudinal study: An important feature of the study of CSoft is that it was a

longitudinal study with data collected from 2004 to 2009. This means that we can
describe how the organization has developed over time, some of the reasons for the
changes that took place, and the results of these changes. From the start we have
acknowledged that the organizational change is usually not a plan-driven and strictly
controlled process. Given turbulent, flexible, and uncertain organizational and
environmental conditions in today’s industry, such an approach would be less
appropriate (Orlikowski and Hofman, 1997). On the contrary, power, chance,
opportunity, and accident are as influential in shaping outcomes as are design,
negotiated agreements, and master plans (Pettigrew, 1990).

When the focus of a study is the change of an organization, a longitudinal approach
is the only approach to understand the change. Tushman and Romanelli (1985) (p. 174)
say:

“The call for longitudinal, historical perspectives stems (1) from a pervasive
dissatisfaction with static, cross-sectional views of organizations that illuminate covariant
attributes to organizations, but tell little of the impact of history and precedent on current
organization behavior; and (2) from simple curiosity for answers to such questions as,
“How and why did this firm evolve? Why did certain firms succeed while others did not?”

This view is supported by Pettigrew (1990) who describes a theory of method for
longitudinal field research on change. His fundamental view is that theoretically sound
and practically useful research on change should explore the contexts, content, and
process of change together with their interconnections through time (ibid., p.268). We
have applied these guidelines by explaining the context of our study and the change that
the case organization has undergone (see section 2.2.4).

Research approach

 - 51 -

3.2.1 The selection of the case organization

The selection of CSoft as the sole organization to study was based on a long-term
relationship between the researchers and the company. The author and others have
studied this company and their product line more or less continuously over ten years
(Johansen, 2005; Moe, Dingsøyr et al., 2002). The study reported herein adds to the
previous studies. Together, the reports describe how CSoft have moved from a start-up
company to an organization with a mature product. The present day status of the
organization is not the result of a sudden adoption of a defined SPLE method; rather, it
is the result of years of organizational development and evolution. This organization
and the course of its development is, therefore, a relevant subject for an exploratory and
descriptive case study, such as the one reported here. CSoft is a particularly interesting
case, given that the organization’s use of SPLE also incorporates some of the
fundamental principles of ASD. This combination of the two approaches is the result of
being able to move outside disciplinary boundaries (Hughes, 1989). Other organizations
considering making similar choices may well find it productive to turn to the CSoft case
as a valuable source of experience.

When the object or phenomenon being studied is a large, diverse, and complex
organization like CSoft, gaining access to necessary data may be difficult, for reasons of
both practicality and confidentiality. In the case of CSoft, a high level of trust has been
developed over several years, making it possible to access people and data that would
otherwise not be available. Such sources may reveal information confidential to the
organization and include even negative information about the company or its product.
To formalize this relationship, we have signed a non-disclosure agreement with CSoft.

The empirical studies underpinning this thesis have all been conducted within this
single case organization, CSoft. The first study started in 2004 (reported in Paper 1
(Hanssen and Fægri, 2006)), the last finished in 2009 (reported in Paper 6 – a
manuscript submitted to a special issue of the Journal on Systems and Software).
Together, four consecutive studies were reported in six publications, covering
approximately five years of the development at CSoft.

Research approach

 - 52 -

3.2.2 Data sources

Nearly all data that were collected throughout the studies of CSoft were qualitative,
and their sources were interviews, workshops, observations, and collections of relevant
documents. All interviews were semi-structured, and most of them followed a
predefined interview guide but with a clear rule of conduct for allowing discussions
outside the guide (meeting the third principle of Klein and Myers (1999) p.72). Table 7
- Data sources, shows which interviews that were based on a guide and appendix A lists
all interview guides used in all four studies as well as some background of other types
of data collection. In total, we did two group interviews and twenty single person
interviews. All interviews and some observations were recorded digitally and
transcribed completely. Observations that were not suitable for recording, for example
ad hoc conversations were documented through notes. In this way, all data became
textual. Table 7 lists all collected data, explaining study number (ref. Figure 1 - Study
design), data source and whether appendix A gives more details on interview guides and
techniques for data collection. In addition to these data, we have had continual
discussions with various members of the case organization throughout the whole study.
The outcome of such discussions has not been documented explicitly but has
contributed to a better understanding of the case. The table also indicates which papers
that report the data. Each paper give more detail on data collection, analysis and results.

Research approach

 - 53 -

Table 7 - Data sources

Study Data sources A
Interviews
1. One group interview with six developers using the PMA technique

(Birk, Dingsøyr et al., 2002) ��
2. Three semi-structured interviews with the participating customers ��

Study 1
(paper 1 & 2)

3. Five semi-structured interviews with the PMT members ��
Interviews
4. One semi-structured interview with the CTO ��
5. One semi-structured interview with the PMT manager ��
Documents

Study 2
(paper 3)

6. Six business plans for product line modules and main features
Reusing data from study 1 and 2. New data:
Interviews
7. One group interview with two of three members of the architecture

team. The interview was done after the architecture analysis as an open
discussion about software entropy.

8. One semi-structured interview with one of the team leaders ��
9. One semi-structured interview with a team member/developer ��
Other

Study 3
(paper 4)

10. Architecture analysis using NDepend5. Results are documented in
(Hanssen, Yamashita et al., 2010; Hanssen, Yamshita et al., 2009;
Smaccia, 2008).

Interviews
11. One interview with the R&D manager ��
12. One interview with the manager of Professional Services ��
13. One interview with the PSG manager ��
14. Three interviews with PSG members ��
15. One interview with the a Technical Account manager ��
16. One follow up interview with the PSG manager to clarify issues and

notes after observation of customer review meeting (source #18).

Observations
17. Product conference, London 2008 ��
18. Customer review meeting, 2008 ��
Documentation

Study 4
(paper 5&6)

19. Five module product plans, four presentations at the 2008 product
conference (CSO’s, CEO’s, VP Product Marketing’s presentation and
customer’s presentation)

5
 http://www.ndepend.com/

Research approach

 - 54 -

The selection of interview respondents throughout the studies have been based on a
growing knowledge of the case in combination with the focus and research aim of each
study. For some cases, we have based the selection of interview respondents based on
the input or even direct guidance from the previous respondent, an approach similar to
snowball sampling (Cooper and Schindler, 2006) (p.204).

Due to the geographical distance between the researchers and the case organization
as well as very limited opportunities for on-site visits for observational studies, a large
portion of the collected data have been done through telephone interviews. Further on,
since a large part of the data in the studies comes from interviews we risk that the
collected information can be biased, incomplete or even wrongful due to
misunderstandings, lack of insight etc. To reduce this risk we have (when
possible/feasible):
(1) Done interviews with several individuals sharing the same function in the

organization. For example, in study 1, we interviewed three customer
representatives and all five members of the product management team. In study
four we interviewed four out of five members if the product strategy group.

(2) We have also sought to cover a variety of organizational roles to get various
viewpoints in order to be able to build a balanced overview of the organization,
their product line and their development processes.

(3) Besides interviews, we have done observations and collected documentation,
which have been used to complement data from the interviews.

3.2.3 Data analysis

When working with qualitative data, such as interview transcripts, documentation,
and field notes, several strategies are available for analyzing the material. These depend
partly on the form of the data and partly on how the results are going to be presented.
Langley (1999) defines seven strategies for what she calls sense making. Of these, the
grounded theory strategy was found to suit the CSoft case study best because it is
appropriate for the analysis of eclectic and ambiguous data. Other strategies have a
varying potential for accuracy, simplicity, and generality.

According to Langley, grounded theory has the potential for high accuracy, but it can
be difficult to move from substantive theory to a more general level. The level of
generality that can be achieved depends on a number of factors, such as the degree of
the scope of replication and the source of ideas. In the study of CSoft, the combination
of SPLE and ASD was investigated. These are both well-established strategies for
software engineering, each with a considerable legacy of research, models, methods,
and nascent theoretical foundations. This allows for a high degree of generality, because
the results can be compared to a large body of recent research. The overall goal of the
CSoft study has been to contribute to the development of generally applicable theories

Research approach

 - 55 -

for agile software product line engineering and to the more recent concept of software
ecosystems.

Grounded theory aims towards theory building. This approach to analysis was
originally defined by Lewin (1946), later revitalized by Glaser and Strauss (1967), and
then developed into a few variants. Regardless of variant, the main principle is to
analyze (usually textual) qualitative data step-wise and bottom-up by coding text
fragments, adding a meaning to data, thus following an inductive process. Codes, which
are short textual descriptors of the text, can then be grouped to reveal higher-level
concepts in the data material. These concepts can be further grouped into categories,
which can eventually be used to put forward and support a theory explaining the
phenomena being studied.

This approach to analyzing data is also referred to as constant comparison, which
according to Seaman (Seaman, 1999) is the classical method for theory construction. In
the various studies supporting this thesis, textual data were reviewed constantly while
they were being collected in order to identify concepts of interest. For example, the
concept of cross-organizational participation in planning was formulated and developed
in the course of data collection. The increasing knowledge of the case was used to guide
the collection of new data, thus making it an iterative process, where understanding of
the case is built incrementally. Recent findings were typically used in interviews, for
example to elaborate seemingly interesting concepts or to clarify confusions. This
continual interplay between the use of information that had already been acquired and
the information that was being acquired is an example of the hermeneutic circle as
described by Klein and Myers (1999).

Due to the nature of the data that have been collected in the four studies of CSoft,
which in sum are a large amount of text, it is not feasible to include all this material in
this summary. Thus, we give details on how the analysis in each study have been done
and supplement these descriptions with examples.

Study 1 – Adoption of Evo
Transcripts from all eight interviews and the postmortem analysis with a team of

developers were analyzed using NVivo™, a software tool for analyzing textual data by
tagging data and then grouping analytical fragments into larger constructs. Each tag
(called a node in NVivo) explains the meaning of the coded text. For example, one of
the interviewed customers explained the reason for spending time as an external
stakeholder in the Evo project:

Interviewer [following up on previous statements in the interview]: “..do you

actually define requirements for the product?”

Research approach

 - 56 -

Respondent: “Yes, and very detailed to. Only yesterday we did two requests about
two things that didn’t work in the reporting module, which is very important to us.”

This and other text fragments was tagged with “Evo enabled participation in

development”. Another customer were telling about how they provided ideas to the
development project:

“We provided development ideas and feedback for CSoft’s new Panel Sample

Builder. We were asked to provide input on what we require for pulling panel sample
efficiently, and how we could help improve CSoft’s existing sampling tool. “

This and other text fragments were tagged with “Providing concrete input”. These

two tags, and others, were later in the analysis grouped together under a higher-order tag
(called tree nodes in NVivo) and called “Motivation to participate”.

Through several iterations of analysis, done by the two authors of paper 1 and 2

(Fægri and Hanssen, 2007; Hanssen and Fægri, 2006), a structure of tags was
developed. This can be seen as an iterative and incremental approach to analyzing
qualitative (textual) data and a case of constant comparison. The defined aim of the
study was “to present a real case of agile customer engagement showing prerequisites,
benefits, costs and risks in a software product setting”. This study aim was used as an
analytical lens in the study, both for designing the interview guides and for analyzing
the data.

Research approach

 - 57 -

To illustrate the outcome of this type of analysis we list the structure of the tags
developed for the interviews with the customers (45 nodes ordered under 10 tree-
nodes):

Table 8 - Example coding nodes

Premises for Evo
o Customer participation needs preparations
o Knowledge of each other is important

Engagement
o Customer was invited to participate

Communication
o Customer appreciated dialogue
o CSoft listened
o Good communication
o Frequent communication
o Used emails
o Used telephone
o Wants a close dialogue

Customers perception of the process
o Good management of expectations
o Spent a small amount of time
o Detailed requirements from customer
o Was not able to test administration and

performance issues
o Satisfied with the participation
o Satisfied with CSoft’s response
o Informative
o Little interaction
o Wants to be involved in future projects
o Missed focus on some important

requirements
o Want explicit feedback from CSoft
o Weekly iterations are too short

Customers’ practical tasks
o Found errors, which was corrected
o Did not use the test server
o Requested, and got a local installation
o Tested the software and provided feedback
o Used the test server
o Customers’ tasks perceived as casual

Customers’ background
o Have an existing relationship
o Customer is an expert user
o Have a close relationship with CSoft
o Considered to be a large and important

customer

Educating customers
o Training (in the Evo process) was simple
o Training customers (for participation) is

important

Motivation to participate
o Evo enables customer to participate
o Expressing concrete requirements
o Customer is highly engaged in the product
o Need more in return for the time spent

Local organization at the customer
o Involved other persons from own

organization
o Involved own customers

o Previous practice
o Did not see new versions until final release
o Support is perceived to be impersonal
o Feedback used to go through customer

support only
o A low level of communication
o Development was perceived as informal

Research approach

 - 58 -

(Similar structures were developed for the interviews with the five members of the
product management team and from the postmortem analysis with the developers.)

Having developed this structure of tags and an overview of the textual data, we used
it in the papers to report on what we found to be the most interesting results with respect
to the defined study aim. Due to the nature of the data collected (several pages of text),
it is not feasible to present data in its raw form. We used the NVivo tool to extract
tagged text for nodes we found interesting or even combination of nodes, for example,
text fragments that were coded with more than one node.

These insights were used to develop the discussions in the papers. For example, in
paper 1 (Hanssen and Fægri, 2006), we have sections discussing “Stakeholders’
practical roles”, “Specifying quality goals”, and others.

Study 2 – Agile SPLE
In study 2 we reused the data and NVivo-analysis from study 1, and added two extra

interviews. The outcome of the analysis was presented in paper 3 (Hanssen and Fægri,
2008), discussing findings related to the defined research aim of the study, which was
“to describe and analyze an industrial case to understand how SPLE and ASD can be
combined and to clarify associated costs and gains.” Like in paper 1 and 2, we use the
analyzed data to discuss relevant topics and findings. This was supported by a set of
business plans for a release of the CSoft product line.

Study 3 – Software entropy
The three transcribed interviews were analyzed in NVivo, using the same approach

as described under study 1. The research goals of the study guided this analysis: 1) How
may system entropy and agile processes mutually negatively affect each other? And, 2)
Can code smell analysis and refactoring be a viable solution?

This analysis was supported by the outcome of the architecture analysis, which
documented facts about the internal structure of the CSoft product line. The results were
presented in paper 3 which reports and discusses the facts from the architecture analysis
and the most important findings from the qualitative analysis of the interview data
which were 1) analyzability and comprehensibility of the product line, 2) modifiability
and deployability, 3) testability and stability, and 4) organization and process.

Study 4 – Software ecosystems
Eight new interviews were made as well as two observations and collection of

relevant documentation. Data was analyzed in two steps:
Step1 – All data were first examined to produce an intermediate analysis report in

order to produce an updated overview of the CSoft development process in terms of
roles, activities, and artifacts, in addition to high-level concepts, necessary to understand

Research approach

 - 59 -

how product planning and development is conducted. This analysis created a structure
by grouping information coming from the various data sources. Examples of such
concepts are teamwork, planning, customer interaction and innovation.

Step 2 – All data, in textual format, was analyzed using NVivo, using the same
approach as explained for the other studies.

The outcome of this analysis are presented in paper 5 (Hanssen, 2010) and 6
(Hanssen, 2010). The latter includes several extracts from the data to illustrate the
concepts being discussed.

The case description
The description of the case organization, the product line and their processes in

section 2.2, is a summary of all information which have collected in all four studies. The
overview in the subsections 2.2.1 to 2.2.3 represents the present organization and
situation, while section 2.2.4 explains the development towards the present situation.
This information is the result of several interviews and observations, done over several
years and is supported and complemented with information from the organizations web
site, marketing information and company presentations. Some of these data sources are
listed in Table 7. These descriptions of facts about the case have been shared with
persons from the case organization, which have verified the correctness. For example,
we shared the manuscript of paper 4 with the architecture team.

Results

 - 60 -

4 Results
This chapter presents a synopsis of the results from the four studies reported in the

six papers that support this thesis. As the thesis is solely based on the supporting
publications (listed in section 1.5), no additional results or data are added in this
chapter.

Each section gives an introduction explaining the aim of each of the studies and
papers, and the main results. Further details and information about study approach,
related research, analysis, discussions, and conclusions can be found in the original
papers in part II of this thesis.

4.1 Study 1 – Adoption of Evo

The first study of CSoft did coincide with the first attempt to try the agile method
Evo in 2004, as an alternative to the plan-driven approach that CSoft had used for
several years. Due to declining process performance and problems related to the late
user feedback on new functionality, the development managers decided to try Evo for
one of the modules in the product line. One of the most obvious changes was the change
from long-lasting sequential release projects to extremely short development iterations
with frequent interactions with external actors. This case represented an unexpected and
unique opportunity for the researchers, who followed this process trial. Evo was used
for two main releases and two intermediate releases, covering a year and a half of
activity. This study resulted in two publications, focusing on important aspects of the
adoption of Evo, respectively customer engagement (Hanssen and Fægri, 2006) and
process fragility (Fægri and Hanssen, 2007).

In sum, our focus in study 1 was the initial adoption of the agile method Evo in a
waterfall-oriented product line organization, with an emphasis on how developers
relate to customers and the fragility of the agile approach.

4.1.1 Paper 1

(Agile customer engagement - a longitudinal qualitative case study.)

Due to the sudden start of this software process improvement initiative and our study

of it, the study aim was simply to investigate and present an industrial case of agile
customer engagement showing prerequisites, benefits, costs, and risks in a software
product setting.

Our analysis of the interviews identifies a number of prerequisites for succeeding
with an agile development approach in a software product line setting. Proactive

Results

 - 61 -

stakeholder management is the foundation. CSoft operates in a dynamic market in
which long-term planning in advance of development is unrealistic. This applies equally
to the customers, which are inherently unpredictable in their role as collaborative
partners. CSoft depends upon mutual benefits in the collaboration to maintain
motivation and contribution. Lack of continuity has significant bad effects on the
performance. In turn, achieving these mutual benefits depends upon selecting relevant
customers with sufficient expertise. These are all volatile and difficult factors. Thus, the
capability to constantly review and manage the selection of stakeholders is critical.
Furthermore, our analysis shows that Evo is a highly demanding process with respect to
personal discipline and professional behavior. Due to the frequent iterations there is
little room for unrestrained activity. All roles must be meticulously filled. Additionally,
some sophistication in technical infrastructure, such as continuous integration of the
solution under development, simple backlogs of requirements (called impact estimation
tables (IET) in this case) and ASP-based software delivery, has been essential in CSoft’s
use of Evo.

Further on, we have seen that CSoft has achieved a number of benefits as a result of
Evo and the introduction of the product management team (PMT). First, close customer
cooperation has a highly motivating effect on the developers. Second, developers’
confidence has increased as a result of continuous settlement of expectations in that
stakeholders assist in the prioritization of goals. The direct cooperation with users is a
positive experience for the developers as it increases the quality of the communication
and leads to an improved understanding of customers’ business problems. Third, Evo
has increased the visibility of the process internally in the organization and externally
among the stakeholders.

Although these benefits, we have seen that the adoption of agile customer
engagement practices has incurred additional costs. Our analysis emphasizes the extra
overhead in actually running the process and the human resources required. Essentially,
each Evo week/iteration is a complete development process, spanning a number of
phases that demands frequent changes of context and thus occupy significant resources.
Also, the technical infrastructure, being a prerequisite, is costly. Furthermore, the
analysis shows a significant cost incurred by the continuous need to maintain it.

Through our analysis we have come to consider increased exposure to risk as a cost.
First, short iterations with insufficient attention to management and process compliance
increase the fragility of the software process and create a risk of leaving developers with
a high workload. Secondly, engaging in this kind of strong cooperation with a small
selection of customers also means a reduced capability to capture the needs of other,
non-appointed customers.

Results

 - 62 -

4.1.2 Paper 2

(Collaboration and process fragility in evolutionarily product development.)

Following the results from paper 1, using the same data material, we investigated and

discussed in more detail the transition from a waterfall-oriented approach to an agile
approach and in particular the collaboration with external stakeholders and the related
fragility in the new process.

Our study of the introduction of Evo at CSoft showed that the agile process made the
relationships with the customers more collaboratively and that a constant focus on
delivering customer value increases the synergetic value of these relationships. This
becomes a significant competitive advantage, enabling more efficient innovation
transfer between CSoft and the collaborating customers. However, we also clearly saw
that maintaining a watchful, vigorous stakeholder management capability, as
implemented by the product management team, is paramount for Evo’s success. Further
more, Evo increased the product’s exposure and resource usage compared to the
original process. More people can observe or criticize prioritizations. This can help
maintain focus on generating value, but it also influences the nature of the demands on
the product. This follows implicitly from the increase in direct stakeholder feedback.
However, the R&D department also saw a lack of attention to software engineering
principles, therefore, companies should also select stakeholders with a particular interest
in the product as an engineering artifact (called “internal stakeholders” in Evo) at
intervals to counter architectural erosion and subsequent excessive costs of
implementing improved quality. We also learned that short cycles of specification,
design, development, and testing reduce tolerance toward inefficient tools, for example
tools for automated testing and continuous integration. On the other hand, we believe
that these rapid, direct feedback loops explain most of the increase in employee
motivation and enthusiasm that we saw, particularly in R&D. Rapid feedback on
developed code, appropriate metrics, and effective decision making help reduce
uncertainty and thus increase developer motivation. The positive experiences reported
by stakeholders stemmed mainly from a feeling of being listened to and able to affect
the development.

Evo is an agile process but also a sophisticated one, highly dependent on diligent
fulfillment of the specified roles and activities. This sophistication is also Evo’s
Achilles’ heel. We have found that Evo, as practiced in the case we have studied, is very
vulnerable to irregularities. This process fragility increases with the frequency of
iterations, which put higher demands on the timeliness of role fulfillment and activities.
Unresponsive stakeholders expose this fragility.

Results

 - 63 -

4.2 Study 2 – Combining agile software development and
software product line engineering

Based on the results from study 1 and an initial understanding of some of the effects
and challenges we observed, we continued our study of CSoft and their continuous
adoption of Evo. Now in a larger scale, covering more parts of the.

The focus of study 2 was the combination of ASD and SPLE and the coordination
between the strategic, tactical, and operational processes.

4.2.1 Paper 3

(Process fusion - an industrial case study on agile software product line engineering.)

Building on the results reported in paper 1 and 2 we collected more data to

investigate the broader consequences of combining an ASD process with a SPLE
practice. We were interested in learning how this combination affected various levels of
the organization, not only the development department. The aim of the study reported in
this paper was to describe and analyze an industrial case to understand how SPLE and
ASD can be combined and to clarify associated costs and gains.

At a high level, we have found that the integrated software processes at CSoft
support three key virtues of product development. (1) Technical excellence: an open and
modular platform architecture implemented using industry-standard technology enables
simple development and maintenance of the product line. (2) Market knowledge and
relevance: the well organized, yet nimble strategic process provides adequate decision
support for company management and guidance for the development projects. (3)
Agility: the adoption of Evo, and agile principles such as short and frequent iterations
with active participation by external stakeholders, enables fast response to changes in
stakeholder requirements and accurate delivery of desired features and qualities to the
users.

An important observation from our findings is that CSoft’s integrated development
process is not just an accidental collection of strategic, tactical and operational
processes. Rather, these three processes play distinct, supplemental and important roles
at three different levels in CSoft’s overall software development business, all three
being lightweight to reduce unnecessary work. We also saw that these three processes
together have the same function and effects as the more general Shewhart/Deming
improvement cycle (Deming, 2000) (See Figure 7). This is also known as the PDCA
cycle, from its four main activities: Plan (plan how to satisfy improvement
requirements); Do (accomplish planned actions); Check (monitor the actions and verify
the outcome with respect to the planned effects); and Act (implement actions for
improvement based on the acquired information).

Results

 - 64 -

Although a feasible combination, this approach has its costs; running the strategic
process and working closely with stakeholders entails a considerable extra overhead,
resources that could have been invested in development (as was the previous practice).
Arguably, the most important benefit of this process configuration is that it helps CSoft
to exploit both strategic long-term ambitions for innovation and smaller-scale tactical
innovations, such as refinement of the software to meet more detailed end-user
requirements.

Further, the process configuration is a potent foundation for further process
innovations. As long as the PDCA cycle is maintained, any component in the
configuration can be further refined to improve performance. If the company
experiences the expected growth, the modularization gives extra organizational
flexibility. For example, introduction of separate roles for platform and product
development within R&D can readily be supported because the objectives of strategic
and tactical development are already defined and well established. Additionally, the
explicit engagement of primarily external stakeholders in the tactical development
process ensures that the company is able to supplement strategic planning by selecting
stakeholders based on long-term as well as short-term interest.

Engaged stakeholders provide requirements and feedback on a detailed level but it is
the responsibility of the development projects to suggest practical solutions that will
meet the quality goals stated by the stakeholders. This close cooperation with a few
selected stakeholders promotes valuable creativity. If process innovation at CSoft had a
more revolutionary style, replacing all existing practices with a pure and very formal
SPLE approach, this potential could have been lost.

4.3 Study 3 – Process agility and software entropy

Through the initial studies of CSoft and their adoption of Evo we noticed a growing
concern regarding problems related to the increasing entropy in the code base. Actors
being close to the code, like developers and in particular the dedicated software
architecture team, were worried about the increasing level of entropy in the system as an
invidious result of the agile software product line engineering practice which by now
had been adopted in the whole organization. Based on this, we initiated a study to
understand better the relationship between the agile development process and the
entropy of the system.

The focus of study 3 was the emerging problem of software entropy, the potential
reinforcing effect from the agile development process, and potential solutions to
improve the situation.

Results

 - 65 -

4.3.1 Paper 4

(Software entropy in agile product evolution.)

Based on the increased understanding of the agile software product line engineering

at CSoft we sought to investigate a concern of software entropy, which have emerged
from the previous studies. We set out to answer to research questions: First, do system
entropy and agile processes negatively affect each other? And secondly, can “code-
smell” analysis and refactoring be a viable solution?

First of all, we constructed an overview of the technical structure of the CSoft
product line, needed to understand problems of system entropy. The system has been
under constant development since 1996 and is based on several technologies that have
emerged over those years. Aging solutions from years ago are still part of the system,
such as older ASP solutions, COM+ components, VB6 code and other legacy
technologies. Today, most new code is developed in C#, and is spread over
approximately 160 .Net assemblies. The complete product is best described as a
traditional three-tier system with an MS SQL Server driving the data layer, a business
layer and a presentation layer based on a dozen ASP.Net applications. There is a clean
separation between the presentation- and the business layer. However the most obvious
problem in the software is what the architects refer to as “the Blob”: a very large
assembly (aptly named Core) consisting of approximately 150K lines of code in 144
namespaces. Section 1.1.1 contains more details.

Through interviews with the architecture team and actors from one of the
development teams we uncovered four types of problems related to the level of entropy
in the system.

(a) Analyzability and comprehensibility. Due to the high complexity of the system, it
is very hard for developers to get an overview of the code and its structure. Especially
the central component has grown extremely large and has many internal references
(each namespace depends directly or indirectly on another namespace), making it
difficult to understand how it really works. This was clearly not by design, but the result
of years of intense development. The system is structured as vertical modules, but as it
is now there are too many relationships between the verticals – changing one will
inevitable affect many others. New developers joining R&D have a steep learning curve
and require close follow-up over a long period of time by more experienced developers.
There exists no documentation or models that explain the structure of the system, even
though this clearly would be highly useful both to existing and new developers. Even
worse, having problems understanding how the code is structured leads to a fear of
changing the code, both for adding new features and for improving existing code. The
unclear internal structure creates a cognitive overload and a common (unfortunate) way
to deal with this is code duplication: instead of modifying existing code, developers

Results

 - 66 -

create their own copy over which they have full control. This leads to a larger cognitive
overload for other developers; only making the problem worse – it has become a self-
reinforcing effect.

(b) Modifiability and deployability. As a result of the duplication and entanglement
of code, developers frequently need to perform so-called ‘shotgun surgery’, meaning
that even the modification of a small detail forces them to identify and change code in
many places. These problems slow down the development process and the potential for
errors increases due to the high chance of overlooking one or more locations. Having to
deal with bad code is frustrating to the developers as they in some ways in practical
terms are enforced to build bad code on bad code as there is no room to actually resolve
the problem. Besides development and maintenance, also deployment of the product
suffers from its structure: The current core component aggregates features and
functionality for every possible configuration of the product and it has to be released as
a whole, even though only a fraction of the functionality may actually be needed for a
particular configuration.

(c) Testability and stability. Due to the size of the code and the many cross-
references, there are too many paths through the code to test them all systematically.
The test coverage is not high enough and existing tests have shown to be unstable and
inconsistent. For example, the same tests run on similar systems may produce different
outcomes that are hard to explain. Also, a lot of the existing tests are extremely large,
meaning that they too are hard to maintain and use. When a test fail, it often takes a lot
of time to locate and fix the actual problem that triggered the failure. Although such
tests are supposed to act as a safety net and give developers the courage to make
changes they are not trusted. This increases the fear or at least reluctance to change
existing code – since the effects of a change are hard to foresee and errors can have
considerable negative effects. Nevertheless, regression testing is done, albeit with a
lower than desired quality.

(d) Organization and process. As both the business domain and the system are
highly complex, each of the development teams (4-6 developers in each) has an expert
(the so-called guru). This guru has high technical skills and extensive experience with
the code, which is vital for the team to solve its tasks. Consequently, this organization
represents a considerable vulnerability; losing just a few of these gurus would have
devastating effects on the development. The development process is based on two-week
iterations and it is a strong focus on delivering working software by the end of each
iteration. A negative effect of this focus is that delivering quality software is at times
traded in for creating a working version. Each iteration ends with a review, but the high
velocity typically does not give enough time to catch all issues. This causes extra work
close to a release when the system is thoroughly tested as a whole, yet entropy is
allowed to grow from release to release. The development teams are set up to have

Results

 - 67 -

separate areas of concern, each team being responsible for a part of the total product,
e.g., the reporting solution or the data storage. The idea is to build competence around a
well-defined part. Unfortunately, the structure of the system does not reflect this
organization in practice, because functionality is spread throughout the code. This
forces the teams to operate outside their area of concern, which has shown to negatively
affect their ability to produce enough new and improved features of the product in their
releases. The total request for improvements from the market is constantly higher than
what actually is delivered, thus indicating a need to improve development efficiency.

As part of the discussions with the architects, we also collected several of their high-

level ideas to further improve the product and development process:
(a) Process automation. Currently too much testing is done manually and more

automation is desired. In addition, to establish an efficient and trustworthy safety net for
the developers, tests need to become more stable and trustworthy. With this in place, the
architects can introduce what they call “pain-driven development”. That is, when a
developer introduces or changes code that breaks the tests, he or she will get notified
immediately to correct it.

(b) Restructuring and refactoring goals. The architects feel that components of the
software need to be de-coupled from the core and the overlapping and duplicated code
has to be removed. They also agreed that the system should have a clearer separation of
concerns were vertical modularization should reflect business segments and
horizontally, the system should better separate business and platform related code.

(c) Continuous monitoring of quality. The architects proposed a principle that they
refer to as “quality-from-now”, meaning that any change to the code should be analyzed
at development time, to check that it does not conflict with defined rules of good design.
This can, for example, be achieved using tools to detect code smells and monitor
potential problems nearly constantly during development. The architects believe that
this approach would considerably reduce the fear of changing the code.

4.4 Study 4 – Software ecosystem emergence

By now, having followed CSoft over five years - observing how they have changed
their development process - it became evident that this change also affected how they
relate to external actors, beyond single customers acting as stakeholders. This initiated a
new iteration of data collection and analysis with the primary objective of understanding
how the organization relates to its external organizational environment. These new data
revealed an image of an organization that was opening up their strategy and
development processes, moving towards a situation that can be understood as a software
ecosystem in development.

Results

 - 68 -

The focus of this final study of CSoft was the increasing openness of information
sharing and cross-organizational collaboration.

4.4.1 Paper 5

(Opening up product line engineering.)

Based on the lessons learned from the study of CSoft so far, this paper looks into the

change that the product line organization is experiencing. The aim of the paper was (i)
to explain how the SPLE process can be opened up and why this may be a necessary
development, (ii) to illustrate some practical issues, and (iii) to provide some
preliminary guidelines to industry and indicators for future research.

Actions taken: The initial waterfall-like approach with extensive up-front planning
required a considerable amount of resources and blocked input from customers and
other important stakeholders during the development phase. Through the adoption of
core agile development principles, fewer resources are spent on making detailed up-
front plans and controlling plan conformance during development. The iterative process
opens for continuous corrections during development based on a close dialogue with
stakeholders, including invited customers. This enables a reactive approach to SPLE
where no assets are changed or added to the line unless they are explicitly founded on
concrete needs.
Observed effects: The resulting SPLE process at CSoft helps addressing some of the
inherent risks that comes with this approach. McGregor (2008) describes that, for a pro-
active approach, there is a risk of developing assets that will become obsolete and not
used in later applications. For a reactive approach, there is a risk of missing short-
termed business opportunities due to increased time-to-market and that it might require
considerable effort to, reactively, prepare assets for later reuse. CSoft’s incremental and
iterative approach meets these risks as a compromise between the proactive and reactive
approaches. Continuous corrections by involved stakeholders ensure that changes and
additions to the product line actually will be used. The process also opens for
corrections close to the release, if found necessary. In addition, the proximity of
representatives from the business domain and the extensive use of direct and
conversational exchange of information improve the ability to catch both explicit and
implicit (tacit) requirements (Grunbacher and Briggs, 2001). One potential effect on the
negative side is a reduced maintainability of the product line. The agile development
process emphasizing a continuous focus on short termed goals seems to reduce the
focus on maintaining the code and architecture properly, thus causing escalating system
entropy which seriously hampers the organizations ability to improve and develop the
existing code base.

Results

 - 69 -

Enabling factors: The opening of the SPLE process at CSoft has been supported by
some additional measures. One of the most noteworthy is that a community of third
party organizations has emerged, partly supported by CSoft and partly as an effect of
the accessibility to the product line via the API’s. Approximately 60 organizations are
now offering software products and/or services partly or completely based on the CSoft
product line. This means that CSoft may keep full focus on developing the core product
line and that customers are offered a large number of specializations and applications of
the product line. The emergence and growth of this community come as a result of not
only the technical accessibility via the API’s but also the sharing and external visibility
of product plans and roadmaps. Key clients are given insight into these plans; some are
even visiting the R&D department to elaborate business needs and ideas, and to discuss
potential solutions directly with the development teams. CSoft has also (once so far)
organized a large product conference where strategies were announced, new features
introduced and third parties got to expose their solutions.
Contextual factors: This change in CSoft’s approach to developing their product line is
moderated by a set of contextual factors. First of all, the changes done to the
development process is a reaction to the volatility of the business domain being
addressed. This particular domain is still shaping, its boundaries still being determined.
This is an alternating process; the technology being developed and offered through the
product line is creating new business opportunities, which in return leads to new
requirements. In this context, it is more important to be able to respond quickly to the
market than to produce reusable components that might be useful at a later moment.
Enabling an agile and responsive development organization gives it control over how
the domain and its supportive technology develops – a clear advantage in a competitive
business. Another factor affecting the shaping of the SPLE process is the strongly
emerging software-as-a-service (SAAS) delivery model. Software is not procured as a
commodity, installed and managed locally, but rather as a service accessed over the
Internet. This simplifies the delivery of software and consequently also the development
process. For example, this model makes it practical to engage selected stakeholders,
which frequently and with a minimum of effort can access the latest increments to
assess and provide corrective feedback.

4.4.2 Paper 6

(A longitudinal case study of an emerging software ecosystem: implications for
practice and theory.)

Based on the previous studies of CSoft we collected more data, now from a more

mature organization than for the first studies, to develop a more thorough understanding
of the development towards a situation, which can be named as a software ecosystem.

Results

 - 70 -

Our research question was: Why and how is software product line engineering
developing towards a software ecosystem?

The results from this study relates to CSoft’s engagement of customers and the
emerging third party community constituting a software ecosystem.

The main motivation for customers to spend time participating in the
development projects is the ability to affect development: no payment or any other
compensation is provided. One of the product managers explained:

“…they see their wishes or their requirements or whatever in the product at the end.
And then you get very nice feedback like ‘I can see that I said this and that, and in the
next release you did it’”.

This collaboration forms a self-regulating system where the supplier and the
stakeholders mutually adapt to each other through their shared interest in developing the
software product line. This usually works well, but there is always a risk of having
external stakeholders, which do not provide the necessary input, as explained by the
manager of the PSG team:

“Everybody has busy jobs and projects that need to be on time etc. It happens quite
often that we have to cancel these meetings or that they haven’t done anything since the
last time. Then we can only show them what we’ve done and get some ad-hoc
feedback...”

The PSG manager also explained that it is relatively easy to discuss ideas, but that it
is more of a challenge when they are included in the development process:

“There’s no problem to get them to discuss high-level plans, but it varies when it
comes to the development process”

 Maintaining the motivation for participating is an important task for the PSG.
Interestingly, large and leading customers tend to expect and demand to be more and

more involved at both planning and development stages. One example is a product
conference keynote given by the VP from one of the large customers. He stated several
‘requirements’ (this was the word he used) for being involved, for example:

“Regular meetings with product development teams”, “To work as a stakeholder on
new software developments that are key to us.”, “Help to guide product strategy.”, and
others.

Finding the “right” stakeholders for participation in the development projects is
not done through a formal and structured process, but is mostly based on the collective
knowledge about the customers. The PSG manager says,

“We don’t have a formal process for selecting stakeholders. We have internal
discussions, listening to sales people etc. We know which customers have asked for
certain features or improvements or those that are heavy users of a particular type of
functionality.”

In addition, experience from previous participation is also useful as explained by the
R&D manager:

Results

 - 71 -

“We have become better at selecting [external stakeholders]. Those that have
disappointed us are never asked again. You end up with a pool of persons that you
know you can trust.”

An important part of recruiting customers as external stakeholders is to communicate
to them clearly the opportunity, which is given to them. The PSG manager explains:

“..quite often we talk about our development process. We do it in sales situations
because it tells that our goal is to solve business problems for our customers. This level
of interaction and the way we try to listen has been well received, and now some
customers insist on being involved in development.”

In the very start when Evo and collaboration with external stakeholders were at an
experimental stage it took quite some effort to recruit stakeholders to the development
projects and to keep them active (Fægri and Hanssen, 2007). After some releases where
collaboration with external stakeholders have become an integrated part of the
development process the situation is turned upside-down. When asked to explain this
relationship, one of the product managers told us:

“It's almost a problem because as soon as you offer the capability of being a
stakeholder, the hardest part is rejecting people, turning them away from actively
participate. So people are very keen on participating.”

Co-creating the product line is one of the most significant effects of engaging and
communicating with external stakeholders. The rationale is simple, CSoft have the most
up to date knowledge of the technology, and the ability to make use of it in the
development. Likewise, customers hold the most up to date knowledge of their own
business domain, and how it seems to develop. These two pools of knowledge and
competence are joined in several ways. One important arena for sharing and gaining
knowledge is the product conference where management, strategists, developers and
other internal actors get to meet externals from various customers and third parties.
Equally important – customers can meet other customers, third parties can meet
customers or internals etc. This shows the networked character of the ecosystem that is
shaped around the product line. Some examples from the product conference in 2008:

A former customer of a competing solution was seeking experienced customers to
discuss the product line and share experience. Several providers of third party products
and services were having stands at the conference, communicating with both existing
and potential customers and developers from CSoft.

Another major event, which is more directly focused on the development of the
product line, is the annual Advisory Board meeting. Top management from some of the
largest and most demanding clients meet with the PSG and other actors who are
involved in the shaping of the product strategy. A PSG member explains that they meet
to:

“…discuss high level product strategy and how the demands of their companies and
the market are developing.” Bringing together major competitors like this was a
daring thing to do according to the PSG manager: “The first time we did this it was a

Results

 - 72 -

bit exciting – would they discuss issues openly, and would they open up? It turned out
that they did very fast. They have many concurrent needs, and even though they are
competitors they see the value of doing this.”

From a practical viewpoint, we see that tools and infrastructure for collaboration are
important enablers for co-creating the product line. Especially the Webex™6 online
meeting solution lowers the threshold for having frequent and detailed meetings with
stakeholders:

From our observation of one of the customer review meetings we saw a lot of very
detailed discussions that were made possible by on-the-fly demonstration of the
software through the screen sharing solution. This sparked detailed discussions both on
the customer side and among the development team. The meeting resulted in a list of
clear actions points to be addressed in the next development iteration.

Close corrective feedback in the Evo development projects is another approach to
co-creating the product line, but on a tactical level. One of the developers describes the
meeting with the external stakeholder at the end of the two-week Evo iteration:

“What you get during a meeting is often very valuable. Especially when you are
about to move in the wrong direction, which you can adjust. We get feedback saying
that our solution is not quite what they had in mind or what they need.”

This demonstrates one important function of the agile process; the development
teams get nearly immediate (within two weeks) and detailed (face-to-face) feedback.
This closeness to a few selected customers means that CSoft must also consider the
needs of other customers, as they are the referent organization, which always has the
last word in the development of the product line. This is partly achieved through Evo’s
focus on product qualities instead of product features, which are typically emphasized in
plan-driven development methods. This is a useful abstraction, and it turns the focus
from predefined design (features) to effect and impact (qualities). Both the product
roadmaps and the evaluation meetings at the end of the Evo iterations evaluate the
product qualities. This means that both the development teams and the external
stakeholders have to consider why something is needed, leaving the how to the
developers. The PSG manager explains:

“..we take one step back, and try to think about why our stakeholder needs this, and
then rethink other ways of solving their problem. It is in this type of process that the
smart things can turn up – that your thinking is totally new and that you come up with a
solution which may be a totally different way of doing it, maybe faster...”.

Catching and following up on customer ideas on an ad-hoc basis is equally
important as involving customers in regular processes such as roadmapping and the Evo
development projects. At the product conference:

A customer representative told about a case where his company gave input to CSoft
on some changes they would have liked to see. This led CSoft to invite a delegation

6
 www.webex.com

Results

 - 73 -

from the (abroad) customer to the R&D department in Oslo. Ten CSoft people spent the
whole day discussing the solution with four representatives of the customer. This was
perceived very positively, and in the end actually affected the software.

Some of the largest customers may also request dedicated workshops to discuss
needs and ideas. The PSG manager talks about this:

 “…for some of our largest customers, mostly by their initiative, we organize
workshops once a year, usually on a strategic level. They want to know what the
roadmaps may bring for the next couple of years, and talk a lot about their needs etc.”.

The close contact with customers is also a valuable source of learning about
competing solutions. One of the team leaders talks about customers visiting the R&D
department:

“In these meetings they demonstrated the solution they used today, and actually
demonstrated how they used the competing solutions – what worked well and what
needed improvements, as well as ideas they might have. These meetings gave the team a
wealth of details, and it was quite clear what to deliver to the stakeholder.”

The PSG manager also explains the value of learning of the use of competing
solutions:

“…alternatively they do it using other tools today when not using our solution. The
option to work more closely with them and to get that knowledge made us more capable
to meet their needs better than before when the development was more of the black-box
type”.

A phrase from one of the roadmaps illustrates the business impact this may have:
 “Through a client we have been given a thorough demonstration of the competing

solution NN, and by implementing support for [some advanced functionality] and a
couple of small features, the X-module will by far exceed their corresponding
functionality. These improvements alone will ensure we win one [sales] deal, and have
also been brought up by several other clients/prospects.”

Learning the business processes and domain is another valuable outcome from the
direct contact with selected stakeholders. One of the developers talks about one of the
stakeholder meetings in an Evo project:

“…we have tried to solve a task in a way we believed would be reasonable, but to
people who actually use this it is obvious that we have misunderstood the process. This
gives us guidance as early as possible.”

A PSG member tells about another case:
“They [the customer] were here in a workshop for two days. We presented the

roadmap [for module X] and they presented their wishes and their business, [related
to] what they are doing.”

This illustrates the shared interest that the customers and the supplier have –
customers want to learn about the product line and its development. Correspondingly,
CSoft learns about the business that their product line is supporting.

Results

 - 74 -

At present around 60 external organizations base their business completely or partly
on CSoft as a platform. This can be value-adding solutions or products, related services,
and consulting. Examples are solutions for data visualization or voice data capture
technology, assistance in using various components in the product line, and training.
This networked community (Fricker, 2009) has not been planned and deliberately
established by CSoft, it has emerged spontaneously over the past years. This emergence
is mostly driven by customers’ need for additional features and services on one hand,
and the opportunity to extend and use the product line as a platform on the other hand.
Also, building solutions and providing services based on the product line means that
external organizations get immediate access to a large group of established users of the
product line.

Providers of third-party solutions are considered to be important external
stakeholders, and are included in the development of the product line in very much the
same way as customers.

During a product conference, a representative from a third party company,
delivering an integrated product, explained that when they needed to improve the
integration with the CSoft platform they took on the role of an Evo stakeholder.
Communication was mostly done by phone, supported by web meetings with screen
sharing.

Offering an efficient integration technology enables a third party community.
Over the past few years a set of simple APIs have been offered to enable external actors
to make extensions to the product line. The development of these APIs have followed
the development of the product line, where each new release has improved existing and
offered new APIs due to requests from external actors. This means that there is a long (a
year) connection time between a request for an interface and its actual release. As more
and more externals have made use of this connection point to the software it has been
given increasingly higher priority in the development of the product line. An excerpt
from one of the roadmaps exemplifies this:

“We are in dialogue with some clients/prospects who are building their portal in a
Content Management System, and need to integrate content from [module X] into it.
Some competitors seem to have APIs that are easier to use than our SOAP7 based APIs,
making it easier to integrate with other portals/communities. It is therefore an ambition
to provide an easier API for including [module X] content into an external portal.”

Due to the extensive use of the API’s by externals and their increasing demand for
integration with the product line it became clear that the simple web-service based
interface had become obsolete. This has led CSoft to develop and offer a new API
called FlexibilityFramework8 (FF), which enables a closer integration to core services in
the product line than the previous (and still existing) simple messaging-based APIs

7
 Simple Object Access Protocol, http://www.w3.org/TR/soap12-part1/

8
 A fictitious name to protect the anonymity of the case.

Results

 - 75 -

offer. A recent webcast, where the CSO presents FF explains further the motivation for
this improved interface:

“CSoft is like a supertanker. It is large, can take huge loads, travel far, and take
heavy weather. These are all very positive things; on the other hand, the consequence
of that approach is that we are quite careful at looking after the supertanker. That
means various procedures, on policy, on quality assurance and so forth. And that
means that we get less nimble than we would like. The question we posed ourselves is
how can we behave like a speedboat while having all the benefits of the supertanker?
I’d like you to think of FF as the speedboat. The tanker is still there. It will still take
heavy loads and perform extremely well, but in order to be nimble we can build a few
speedboats. And they have independent lives from the supertanker and can run on
different development schedules.”

The last argument is worth a comment; with this new interface to the product line
external actors are disconnected from the long release cycles of the product line, and
can develop value-adding solutions independently. This is likely to further drive the
growth of the third party community.

Actively supporting the community has become a regular activity in addition to the
continuous development of the product line. As this community has emerged and
grown, CSoft have seen its value, and started to actively support it. In 2007 a dedicated
web-portal was launched to make this community visible and each partner is listed and
presented. There are five types of partners, those offering technology that is integrated
with the product line, those offering value adding services, some can prepare the use of
the product line, some can use it on behalf of clients and some offer consultancy
services.

Discussion and implications

 - 76 -

5 Discussion and implications
In the discussion of the results of the studies of CSoft we will emphasize 1) how the

combination of SPLE and ASD created a more open development organization and 2)
how this change leads towards the formation of a software ecosystem. Based on this
discussion we state implications for theory and practice.

5.1 An agile software product line engineering process

5.1.1 Actions taken to combine the processes

By comparing the processes and organization at CSoft with what can be referred to
as a traditional SPLE approach we see that CSoft has taken two major steps to shape
their development process: (i) the overall simplification of processes and organization,
and (ii) the close engagement of customers, both in planning and in development.

Simplification of process and organization: CSoft has simplified their

development process in the following three ways.
1) There is no clear separation between core asset development and product

development, which is an important distinction in traditional SPLE. The idea of having
two distinct processes is to enable the separation of the different concerns of building a
robust platform on the one hand, and of effectively building products based on that
platform on the other. In the CSoft case, there is no dedicated sub-process for core asset
development, yet the total organization manages to handle both the development of core
assets and applications simultaneously (Sanchez and Mahoney, 1996). Variability is
implemented through a simple system where features are activated or deactivated
according to the needs of customers. This simplification with respect to product
development and variability management means that there are fewer roles and fewer
dedicated sub-activities. Although simpler, it also means that the product line has less
variability. This drawback is balanced because it is easier to manage the CSoft product
line with the development resources focused on the next release, not on managing an
extensive set of variations, which can be costly (Bosch, Florijn et al., 2001).

2) The second simplification is how requirements are managed. Related to the first
type of simplification discussed above, CSoft does not implement a dual requirements
engineering processes, one for core assets and one for application development as
explained by traditional SPLE approaches such as the SEI guidelines (Clements and
Northrop, 2002) (p.109). The equivalent is the strategic and tactical processes as
described in section 2.2.3, but with the difference that the roadmaps represent high-level
guidelines for the long-term development of the product line and not requirements for

Discussion and implications

 - 77 -

developing core assets in the product line. At CSoft, requirements engineering is done
as part of every iteration where external stakeholders define and re-define requirements
based on experience from the previous iterations – in line with principles of ASD
(Takeuchi and Nonaka, 1986). Furthermore, CSoft’s agile SPLE approach means that
the product managers in the PSG and the development teams does make use of practices
such as domain analysis techniques, stakeholder-view modeling, feature modeling etc.
(described e.g. by the SEI guidelines, (Clements and Northrop, 2002) (p. 114)).

3) The third type of simplification concerns internal communication and
coordination. The general principle of openness, visibility, and direct communication is
adopted from ASD (Cockburn, 2002). The status of development of roadmaps and the
status of the ongoing software development is made visible to everyone internally, and
to some extent also to external stakeholders. The primary artifact that communication is
based on is the most recent version of the working software, rather than a set of models
or documentation of the product line. In addition, direct face-to-face communication is
emphasized. Written communication is kept to a minimum. This strategy improves the
efficiency of communication (Daft, Lengel et al., 1987). Teams usually work in open
offices to enhance communication. The product managers from the PSG are present at
most meetings. When someone cannot be physically present at a meeting (typically
external stakeholders abroad), the development teams use an online conferencing
system with voice communication and screen sharing for live demonstrations of the
software. Feedback from involved stakeholders is provided primarily as direct oral
feedback, not as written communiqués, thereby improving efficiency (Bosch, 2001).

Engagement of customers: Another major step taken to enable the agile software

product line engineering process is the engagement of customers in both planning and
development of the product line. Interacting with customers is an obvious but
nevertheless critical factor for success in any type of software engineering (Reel, 1999),
software product line engineering included. From a purely business perspective,
collaboration with actors outside the organization is considered to be important for
creating and sustaining competitive advantage (Sawhney, Verona et al., 2005). The
objective of interacting with the customer is to define short and long term requirements,
to gain access to domain and business knowledge, to verify and to validate results, and
even in some cases to involve the customers in the innovation process (von Hippel,
1996). According to Damodarran (1996), collaborating wisely may yield several
benefits for software development, such as improved system quality due to more
accurate user requirements, the avoidance of costly system features that the user does
not want or cannot use, improved levels of end-user acceptance of the system, and better
understanding of the system by the user resulting in more effective use.

Discussion and implications

 - 78 -

 In contract-regulated development, it is obvious who the customer is and what the
conditions for collaboration are. In SPLE, this is not evident at all due to the large
number of customers. At CSoft, the multiple links between internal and external
stakeholders play an important role. Members of the PSG interact frequently with
existing customers, prospective customers, and third parties such as producers of related
products and services. Others work in technical account management, support services,
and consulting services, and assist customers in using the products. In addition, there is
the annual Advisory Board meeting, several dedicated meetings with specific
customers, and product conferences – events enabling customer communication. All in
all, this means that CSoft has wide and rich communication with direct and indirect
users of their product line. In some cases, the relationship with given customers is very
informal.

Acquiring information from the customer base and other important actors, and
maintaining relationships, takes a lot of resources. This however pays off because it has
become a valuable source of knowledge for the company. Communication is mainly
direct and verbal (usually over the telephone), not on formal documentation (indirect).
This is what Keil and Carmel (1995) define as direct customer-developer links. They
show that direct communication between the supplier and a participating customer
reduces problems caused by filtering and distortion of information. The more links that
are used, the better the communication becomes, up to a certain point. In short, the
value of this direct communication is twofold: (i) it is simpler, and (ii) it improves the
quality of the communication. The claimed value of direct communication is supported
by the media richness theory (MRT) (Daft, Lengel et al., 1987), which ranks several
media according to “richness” in communication (face-to-face being the richest, written
documents the poorest).

Although valuable, we have also seen that customer relationships might be fragile,
and there is a clear need to manage the multiple inputs received from, and the
expectations of, numerous external actors. This concern, that the customer role can be
very demanding have been pointed out in recent research on the customer role in ASD.
For example, Martin (2009) did a series of case studies of XP-projects and found that
participating customers were experiencing fatigue over time, threatening sustainability
of the customer role.

One important aspect of a customer’s motivation to invest time and resources is the
ability to affect the course of development. However, input, requirements, and ideas
may sometimes conflict with other concerns of the product line, which means that the
PSG need to consider the input carefully, and that the final decision on which changes
should be implemented in the product line must be an internal matter. In some cases,
this may be difficult and there is an evident risk of losing the engagement of a customer
if the response to his input is considered too weak or insignificant. As an example, when

Discussion and implications

 - 79 -

we studied the initial adoption of Evo at CSoft, we observed that one customer
(stakeholder) withdrew from its allocated project because the goals had been reached
successfully (Fægri and Hanssen, 2007) (p. 102). However, this is an inevitable price
that the development organization has to pay. Users’ involvement in the development
process may vary from informative, through consultative, to participative (Damodarran
(Damodaran, 1996)). CSoft users may be considered to be informative for planning and
consultative for development, but never truly participative with respect to decision-
making. One risk of not giving customers full participative powers is that the
development may “…fail to reflect real human and organizational needs” (ibid.).

The development iterations are short and the increments are small and focused, thus
driving what may be called incremental innovations as described by e.g. Lettl (2007). In
the long term, focusing on incremental innovations at the cost of radical innovations can
be a serious threat to the product line and consequently the business. Böckle (2005)
refers to this problem as innovation lock-in, and points out that this can be a barrier in
software product line engineering, because components and variability are predefined.
This problem is recognized within CSoft, but no changes are planned as yet to address
it. It is likely that if they were given the opportunity, CSoft customers could play an
active role in radical innovations. Lettl’s study (2007) gives examples of capable and
knowledgeable end-users that act as technology inventors. However, doing so would
probably require an extension (and complication) of the present development process.

When discussing ASD and customer engagement we also have to address one of the
most fundamental practices in ASD, which is the ‘customer on-site’ practice, an
important part of XP (Beck and Andres, 2004). According to a systematic literature
review by Dybå and Dingsøyr (2008), this is also one of the most researched practices
within ASD. Examples are (Hanssen and Fægri, 2006; Hansson, Dittrich et al., 2004;
Korkala, Abrahamsson et al., 2006; Korkala, Pikkarainen et al., 2009; Koskela and
Abrahamsson, 2004; Martin, Biddle et al., 2004; Martin, 2009). With respect to the
study of CSoft it is important to notice that the principle of customer on-site is relevant
to smaller and simpler development projects with a single customer or a small group of
customers, which is the initial home ground of most agile methods, at least XP.
However, in cases where a software organization serves a large market with a high
number of customers (like CSoft) this approach to customer interaction is not feasible
due to the high number of customers, their diversity and their geographically
distribution. Still, applying ASD in such a context needs to find ways to collaborate
closely with these customers. Scaling up ASD has emerged as a sub-field of its own
(Eckstein, 2004; Larman and Vodde, 2008; Leffingwell, 2007), but the understanding
on how to establish efficient customer interaction in large-scale development is still
only nascent. We believe that the study of CSoft may contribute to some deeper
understanding of customer engagement in large-scale product line development.

Discussion and implications

 - 80 -

5.1.2 Effects of the combined process

Risk reduction: Developing and improving a software product line may carry with it
a set of risks that need to be managed. McGregor (2008) describes a set of risks that are
inherent in SPLE, depending on whether a proactive or reactive strategy is applied.
With a proactive strategy, where assets are predeveloped with the assumption that they
will be used in future applications, there is a risk that these assets may become obsolete,
thereby becoming a lost investment of resources. With a reactive strategy where assets
are harvested from applications for later reuse, there is a risk that short-term business
opportunities will be missed because the production of applications is not as fast as it
could have been. There is also a risk that a lot of rework will be needed to prepare such
assets for future and more generalized reuse. CSoft’s approach for managing their
product line is best defined as incremental. Further it constitutes a compromise between
the proactive and reactive approaches, which reduces the risks mentioned above. Given
that all development is aimed towards the next release a year ahead with external
stakeholders involved in each increment, there is a low risk of developing features that
will not be used. This is actually a central motivation for using the Evo process (Gilb,
2005), which is driven by short-term goals. Another observed effect of the agile
approach to requirements management is that frequency of interaction and closeness to
customers increase the ability to capture both explicit and implicit (tacit) requirements
(Grunbacher and Briggs, 2001). An example of this, from an iteration review meeting
with one of the development teams and a customer team, is when the product manager
demonstrates a new feature and says “we’re al anxious to see what happens”. The
customer breaks in “this is nice, because in the current version you have to do this
manually”. This initiated more detailed discussions between the team leader and the
customer.

Organizational development: Over a period of 13 years, CSoft has gone through

roughly three phases of organizational development, as described in more detail in
section 2.2.4. The introduction of ASD (Evo) has been a vital factor for re-establishing
efficiency and the ability to respond to the market (Fægri and Hanssen, 2007). This adds
to the findings of a study of key business factors in SPLE by Ahmed and Capretz
(2006), who conclude that an SPLE organization needs to understand that the
customers’ business process supports the product line, which in turn supports the
business process. This mutual support is one of the important benefits of interacting
closely with customers. The third-party community of related companies that base their
business on the CSoft product line contributes greatly to the development of the
organization because this symbiotic relationship helps CSoft to maintain a strict focus
on the continuous development of the product line, leaving specialized ways of use and
extensions to others.

Discussion and implications

 - 81 -

Reduced maintainability: The present situation at CSoft has emerged over several

releases as the organization made it a priority to serve the market rapidly with new and
improved features and functional qualities at the expense of internal “tidiness”. This
may have been a wise strategy to establish a position as the present market leader,
however, this more or less deliberate strategy for the shaping of the organization and the
product line has come at a cost of escalating system entropy, which makes it more and
more difficult to improve the product line. Through a recent study of the maintainability
of CSoft product line architecture (Hanssen, Yamashita et al., 2010; Hanssen, Yamshita
et al., 2009) we found that the R&D department experiences severe problems with
respect to maintainability of the product line related to the agile development process.
The two-week Evo iterations means that the development teams needs to focus on short-
term goals, at the expense of the overall structuring of the product line. It is very
difficult for even experienced developers to understand the inner structure and workings
of the core parts of the product line. We found that the CSoft product line has a high
complexity, which negatively affects the developer’s analyzability and
comprehensibility, which again leads to, reduced modifiability and deployability of the
software. We also found that the system is hard to test and that developers actually may
display a fear of changing the code because it is hard to see effects of changes. To deal
with the complexity, each development team needs a team leader that is highly skilled
in one of the modules in the product line. Loosing one of these experts represents a
great vulnerability. All in all we see that the agile approach to evolving the product line
makes these problems permanent.

Community building: The products and services from the third-party community,

which is supported by CSoft through the API and by exposing their partners, represents
in total a large variability and flexibility in the CSoft product line, far larger than CSoft
would have been able to develop and manage by themselves. As a product line grows in
size and complexity, it becomes a platform that opens up opportunities for the
development of related products and services and, which represents a business potential
but also present a large challenge for the organization (Cusumano, Kahl et al., 2006).
Opening up the technical interface has earlier shown to support the growth of an
external community, for example IBM’s opening of the PC architecture. This enabled
the establishment and growth of a community (Moore, 1993), but also the growth of
competitors.

The existence of the third-party community supports CSoft establishment of their
agile product line organization in two respects. Firstly, it allows CSoft to maintain the
maximum focus on the development and progression of the core product line (Zook,
2010). This is important - if the level of complexity were to become too high, their

Discussion and implications

 - 82 -

ability to improve the product line would be seriously impeded. Secondly, the third-
party community increases the actual value of the product line to the customers,
growing sales, and thus increasing the probability of a self-funding and economically
sustainable SPLE process. In order to enable the third-party community to direct their
efforts and development appropriately, CSoft share their high-level plans openly and, in
some cases, invite third parties to planning and development meetings, just as they do
with their customers.

This nearly symbiotic relationship between the third-party community and CSoft, as
a SPLE organization and a provider of a partially open platform, can be described as a
software ecosystem (Bosch, 2009), which is an emerging concept within software
engineering and a potentially important shift in how the industry relates to other actors
in the market. The term “ecosystem” is borrowed from biology (just like the term
“evolution” is), and can be defined as a unit of mutually dependent organisms co-
existing in the same habitat. Here, it is used as an analogy to the software industry
where organizations are organisms and the marketplace is the habitat. Bosch (ibid.)
discusses this concept in relation to SPLE and comments that “…enabling a software
ecosystem causes processes optimized for intra-organizational purposes to no longer
work” (p. 177). He calls for a change from a centralized approach to a decentralized
one, in which individual and partially self-managed teams are able to develop their
solutions without having to coordinate with a central organization. This is what
happened at CSoft, as part of the adoption of agile development practices. It is
reasonable to believe that Evo, with participation from actors outside the organization
and the self-managed component teams, has been an enabling factor in the
establishment of a viable software ecosystem.

Openness and visibility: CSoft has developed into a partially open organization,

making their plans and processes available, both internally and in part externally. They
also promote frequent communication across various levels and roles in the
organization, not necessarily following a regular pattern from case to case. The work is
driven by the PSG, but is best seen as a collective effort with contributions being
welcomed from practically all parts of the organization. Besides creating a common
responsibility for and ownership of the process, this modus operandi also opens up the
planning process to the influx of ideas from external sources, and helps to balance the
concerns of various stakeholders. This openness is also very much in evidence outside
the company, for example, at seminars and product conferences. Long-term visions and
ideas, and more detailed and short-term plans, are communicated to a mix of new and
potential customers as well as third parties. These events open up a dialogue with
external actors that may have complementary needs or ideas and even corrective
feedback, which may become valuable input to the planning process.

Discussion and implications

 - 83 -

This way of interacting with customers and third parties resembles what Chesbrough
and others have termed open innovation (Chesbrough, 2003; Enkel, Gassman et al.,
2009). Open innovation is, as the name implies, an approach in which innovation takes
place partly across organizational boundaries, rather than within them. Such boundary-
crossing processes of innovation may take many forms. Open source software
development is an example of open innovation. As Chesbrough (2003) says, “…open
innovation is based on a landscape of abundant knowledge, which must be used readily
if it is to provide value for the company that created it.”. In the case of CSoft, the rapid
development cycles and frequent corrections from invited stakeholders enable the
development organization to achieve this readiness.

Enkel et al. (2009) presents open innovation as consisting of one of three core
processes. The first, which is called the outside-in process, enriches the company’s own
knowledge base through the integration of supplier, customers, and external knowledge
sourcing. The second is called the inside-out process, in which ideas are brought to the
market, which may generate new streams of income through spin-offs or joint ventures.
The third, which is called the coupled process, combines the first two and best describes
CSoft’s approach. This openness across organizational borders and the ability to
manage both internal and external innovation processes may constitute a clear
competitive advantage (von Hippel, 2005). In the case of CSoft, it has enabled the
organization to improve the processes by which their software product line continues to
develop.

Company culture: Since its incorporation about 13 years ago, CSoft has grown

considerably. Despite its growth in size and complexity, CSoft has maintained an
interest in taking opportunities to improve, and has retained the willingness to change.
For example, prior to the introduction of Evo, the situation became untenable because of
the development process rigidity. The decision to dramatically change the development
process was made very swiftly and took effect within weeks (Fægri and Hanssen, 2007).
This is an example of the company culture, which is, to a large degree, aware of the
company’s weaknesses and open to new approaches. Although inspired by the latest
trends in the software industry, the organization has managed to maintain a rather sober
attitude, trying to consider what may and may not be relevant to it in practice. Hughes
refers to this as “enthusiastic problem solving and dedicated system building” without
being constrained by disciplinary and knowledge boundaries (Hughes, 1989). At CSoft,
this culture has enabled the organization to adopt their agile software product line
approach. Studying standard descriptions of ASD or SPLE may give the impression that
these two approaches are irreconcilable. However, by selecting process components
from each, without being constrained by what may be called the disciplinary rules of

Discussion and implications

 - 84 -

each approach, CSoft have managed to apply a simple, yet seemingly powerful
combination.

5.1.3 Contextual factors

Domain volatility: One assumption about SPLE organizations and their target
domains is that the detailed practice of product line engineering as described by e.g. the
Software Engineering Institute (SEI) is suitable where the domain is fairly stable
(McGregor, 2008). Serving a domain that does not change too much, means that there is
a lower risk in pre-developing assets for later (re)use in application engineering. In
contrast, the domain that CSoft serves is unstable, because its boundaries are still being
determined. New technologies and business ideas emerge frequently; hence, it is more
important to be able to respond quickly to the market than to produce reusable
components that might be useful at some later time, but are not sure to be.

The software-as-a-service delivery model: Early in the development of the CSoft

product line, the software-as-a-service (SAAS) deployment model (Dubey and Wagle,
2007) was adopted. When a new release is ready, all parts of the product line are
released simultaneously and are deployed on a server farm. This allows customers to
use the new release instantly through an ordinary web browser. This model ensures
simple release of new versions of the product line, offers an easy upgrade path for the
customers, and provides opportunities for reducing the costs since no local operational
infrastructure and services are needed. In addition, the model is advantageous when
external stakeholders are providing feedback on the recent increment – which is
released on a test server, as SAAS.

Discussion and implications

 - 85 -

5.2 An emerging software ecosystem

Building on the understanding of how the combined processes work in the product
line organization and the changes this has lead to, we continue the discussion by looking
into how this has enabled a change from software product line engineering towards a
situation which eventually can be described as a software ecosystem. We summarize
this part of the discussion by proposing a model of a software ecosystem.

5.2.1 Changing from agile software product line engineering
to a software ecosystem

The initial motivation for changing the waterfall-like development process by
adopting Evo in 2004/2005 was that CSoft struggled with unstable requirements,
incurring high costs due to little flexibility in the process. Much emphasis was given to
extensive and thorough requirements engineering upfront, but with little effect (Hanssen
and Fægri, 2006). The immediate experience from involving stakeholders in the short
Evo development iterations was that developers felt more comfortable and secure by
having this close and continuous dialogue on requirements and results (ibid.). However,
in the first release projects using Evo, it became a considerable challenge to maintain
the motivation of the external stakeholders throughout the project. As we have seen, the
new process was fragile (Fægri and Hanssen, 2007).

(Change 1 – engaging customers) From the more recent study (Hanssen and Fægri,
2008) we see that this has clearly changed; now external stakeholders are keen to
participate – CSoft actually have to turn down stakeholder candidates. This change is
the result of a learning process that took place during the first years of using Evo –
customers have gotten to know of this practice and some gained experience as
stakeholders. The engagement of customers and users is generally considered to be an
important success factor in any kind of software development (Chiasson and Green,
2007; Keil and Carmel, 1995).

(Change 2 – learning by doing) We can also observe another change that took place
internally at CSoft. The first experiment with Evo was done as an R&D-internal matter,
like a kitchen experiment. However, as this turned out to be an improvement of the
development practice, this way of working eventually became adopted by the rest of the
organization. Now, all parts of the organization, from operational support to the top
management, are supporting this practice. An example is the CEO explaining the
software development process Evo and its strategic importance in his keynote at a large
product conference. Another example is the strengthening of the PSG, which has a
liaison function between customers and development teams. This tells us that changing
a product line organization takes effort and time, and that both internal and external

Discussion and implications

 - 86 -

actors need to learn from practice to accept this opening of the organization and its work
processes.

(Change 3 – increasing visibility) Another change we can see from the results is an
increasingly higher external visibility of plans and strategies. Initially this kind of
information was kept confidential, but it is now more and more openly communicated
through various channels such as product conferences, at ad-hoc meetings with
customers and in development projects. It has turned out that doing so does not
introduce the presumed risk of leaking vital information to competitors, but that it is
rather an advantage. As external actors see what might be coming, they can relate it to
their own business, and potentially respond to it.

(Change 4 – increasing extensibility) Another related change is the opening of the
product line at the technical level with the APIs. Initially this represented a minimal and
very limited opportunity for extending the product line, but it quickly grew to a
considerable extent as it represented a tangible business value. This aspect has
eventually been given more attention, and has been designated as strategically important
in some of the roadmaps. We see several benefits from allowing externals to use the
product line as a platform. Firstly, it increases the variability of the product line – it can
be used in more specialized ways, serving more needs. Secondly, existing users
represent a great opportunity to the third parties (being the second component of a
symbiosis-like relationship). Thirdly, letting externals deal with specialization and
minor extensions enables the product line organization itself to maintain focus on
developing the core product line (Zook, 2010). This may be the most important effect.

5.2.2 A case of improvisational change

As the four studies of CSoft show, the organization has undergone an extensive
change over the time under study. Using the theoretical background on organizational
change from section 2.1.5 as a lens, we see that CSoft is not a case of episodic change
as described in Lewin’s model (1951). The organization was not “unfrozen” in terms of
removing inertia and anxiety of change. Rather, the state of the organization had
stretched to a limit where the “pain” (poor process performance, low motivation, and
code errors) was so high that nearly any change was perceived as better than none. One
of the product managers even stated laconically: “Whatever changes we implemented, it
would probably be a good thing.” Thus, the motivation to change had grown in parallel
with, and as a consequence of, the increasingly bad performance. The decision to try
Evo can be seen as a case of opportunity-based change (Orlikowski and Hofman, 1997)
as the decision was made quite abruptly, based on the newly acquired knowledge about
Evo and iterative and incremental development.

Following CSoft through this period of time (Fægri and Hanssen, 2007) we observed
several iterations of the Deming/Shewhart improvement cycle. At first only a few

Discussion and implications

 - 87 -

aspects of the new process were applied and only in one project. Then, having verified
that iterative work was applicable, external stakeholders were invited in the next cycle.

The introduction and adoption of Evo can be seen as a large opportunity-based
change, taking several cycles to implement. From our continued study of CSoft we have
also seen examples of other types of change. For example, we saw that the iteration
length was increased from one to two weeks (in release 9.1 - the third release where Evo
was used (ibid., p.101)), and we later observed the introduction of the green-week
concept (an week dedicated to error correction and stabilization of the system). These
may be seen as cases of emergent change (Orlikowski and Hofman, 1997).

All in all – we see CSoft and the development they have undergone over the past
years as an example of improvisational change. Further, we believe that this case also
exemplifies that a low level of formalization of processes (self-managed teams, little
process documentation, no domain models) and the flat organizational structure of this
company makes improvisational change easier to implement. As Dybå (2000) says:
“Too much reliance on previously learned patterns tends to limit the explorative
behavior necessary for improvisation.” (p. 83).

5.2.3 A conceptual model of a software ecosystem

The study of CSoft, as a supplier of a product line, and their collaboration with
external actors leads us to develop a conceptual model of a software ecosystem of the
web/application type (Bosch, 2009).

CSoft has changed their role to become a central actor in a network of organizations
having an interest in the product line. Customers and third parties form the external
environment and can participate in both strategy making and actual development
projects. Likewise, third parties can also collaborate with the supplier, as well as its
customers through offering value-adding products and/or services. The product line is
the central asset that collaborations and interactions are based upon. This networked
organization is not deliberately created – it has developed through symbiotic
relationships, meaning that each actor in some way benefits from the relationship with
the others. These benefits must be in place in order to make the ecosystem work as a
whole.

Discussion and implications

 - 88 -

Table 9 - Values from being a network actor

The supplier has the central role and controls the development of the ecosystem to a

large extent by controlling the flow of information and involvement of other
participants. This controlling role is called the keystone advantage by Iansiti & Levien
(2004). In the type of software ecosystem being described here, this lack of
“democratic” influence is compensated by the deliberate support from the product line
supplier. External actors are supported through information about strategies and plans
and – for a few selected external actors – through direct involvement in both planning
and development.

A fundamental aspect of an ecosystem is the opportunity the various actors have to
learn about the product line, its development, and its use. Also, talking directly to
customers, allows for learning about the domain. On the other hand, customers and third
parties learn about the ongoing development. Such proximity are found to be important
to balance long-term strategic objectives of SPLE and the short-term tactical objectives
of ASD, and to make the development organization adaptive with respect to its external
environment (Mohan, Ramesh et al., 2010).

However, there is also a reason to be concerned with the effects of increased
customer proximity and iterative development. As we have seen from CSoft (Hanssen,
Yamashita et al., 2010) this can aggravate software entropy due to the strong focus on
low-level product qualities, at the cost of high-level qualities such as for example
system architecture.

Developing a product line within such an ecosystem has the potential of producing
some beneficial effects. By having external organizations dealing with minor extensions
or specialized variants, the supplier can maintain focus on developing the core (Zook,
2010). Also, having externals to build on the product line, using it as a platform,
increases the diversity and potential value of the product line and increases its
variability. Collaborating with deliberately selected external actors enables open
innovation (Chesbrough, 2003), both in the long-term in strategic planning and in the

Discussion and implications

 - 89 -

short-term. We interpret CSoft’s ecosystem and its evolutionary development process as
a variant of Chesbrough’s open innovation model (ibid., p.xxv):

Figure 14 - Open innovation

The borders of the organization are permeable in the sense that external organizations

influence and even contribute to research (strategic planning and road-mapping) and
development (agile development projects). New releases enter the market, which is
extended by external actors who run their own research and development processes,
building on and extending the product line.

Another aspect of the ecosystem is how it relates to knowledge creation and
dissemination. Compared with a closed approach (CSoft prior to the adoption of Evo
and the engagement of external stakeholders) an ecosystem enables new spaces for
creation of knowledge. We have described some of these, for example the advisory
board, ad-hoc meetings with customers, and the participation of stakeholders in the
development projects. Nonaka and Konno (2008) refer to such spaces as “ba” -
Japanese for space. “Ba” can be physical (e.g. office space), virtual (e.g. e-mail
conversations), mental (e.g. ideas), or any combination of the above. Knowledge
creation is a spiraling process of interactions between explicit and tacit knowledge.
Nonaka’s SECI9-model describes four types of knowledge transition (ibid., p.43).
Socialization is the transfer of tacit knowledge between individuals. Externalization is
the transition of tacit knowledge to explicit knowledge, which can be understood by
others indirectly. Combination is the construction of more complex sets of explicit
knowledge. Internalization is the transition of explicit knowledge into the
organization’s collective tacit knowledge. Applying these principles to the study of
CSoft, we see that the establishment of the ecosystem, with its spaces/ba of contact

9

Socialization, Externalization, Combination, Internalization

Discussion and implications

 - 90 -

between internals and externals enables knowledge creation through such transitions.
For example, frequent meetings between teams of developers and external stakeholders
(as close to face-to-face as practically and technically possible) enable transition of tacit
knowledge (socialization). During the iteration evaluation meetings stakeholders can
explain directly to the development team how they work and how they use the software
product under development. This demonstrates the effect of the agile components in the
SPLE process where direct and frequent communication enables knowledge creation.

To wrap up this discussion, we propose a simple conceptual model of a software
ecosystem. This model represents the case we have studied, and could serve as a basis
to reflect on and guide other cases.

Figure 15 - A conceptual model of a software ecosystem

The model illustrates the main actors in a software ecosystem. The supplier

(keystone organization) develops the product line. This development is guided by a
strategy, which points out needs and opportunities and main paths of development. Both
the strategy and the development of the product line are to some extent visible to
external actors. These consist of (at least) customers and third parties, but can also
involve others. Third parties use the product line as a platform to serve customers with
additional solutions and services. Being a part of an ecosystem means that these actors
learn about each other. The supplier learns about requirements, needs, ideas,
opportunities etc. In return, external actors learn about the development of the

Discussion and implications

 - 91 -

technology of common interest (the product line), and may even participate actively in
the development.

5.3 Implications for theory

We believe that software ecosystems have the potential of becoming an important
field of practice and research in the years to come. As shown in section 2.1.4, the
interest is growing and some work has been done, but the overall impression is that this
concept is yet poorly developed and understood. As a contribution to future
development of this concept, we propose to form a theoretical platform. Just like the
taxonomy suggested by Bosch (2009), a theory of software ecosystems, as suggested in
this section, can become valuable and useful to generalize the concept and bring
together results from more empirical studies. It may over time develop towards a unified
and empirically justified understanding of the concept (Sjøberg, Dybå et al., 2007),
being useful to both research and practice.

The theory of organizational ecology (Trist, 1977) which was briefly presented in the

background section (2.3), are used a framework for the following reasons:
� It builds on the concept of socio-technical systems, which covers the interaction

between humans and technology. ‘Technology’ also covers organizational
structures, processes, techniques etc. This is a useful concept in order to understand
the CSoft case, which is a social system, a technical system and the interaction
between these. For example, the people in this organization collaborate internally to
continuously develop a software product line, the technology. The other way
around, this technology clearly affects how these people develop the technology,
for example illustrated by the problems related to the system entropy.

� It defines the concept of the external environment. This has become a very
important aspect for CSoft as they have moved from a closed water-fall like
approach with little emphasis on, and contact with, external actors to the present
practice where customers and third parties are closely involved in planning and
development, supported by ASD principles such as short iterations, incremental
development and frequent feedback through interaction with external actors.

� It discusses types of organizational environments, ordered according to complexity
whereof the most complex type and most recent in development, called turbulent
fields describes CSoft’s environment. CSoft operates in a turbulent domain where
their product line is constantly changing, the development organization is changing,
as well as the technology they use and the business domain they serve. Trist says
“..with the increasing salience of turbulent conditions, systems of aggregate control

Discussion and implications

 - 92 -

are becoming increasingly insufficient and inefficient, no matter how large the
outgrowths.” (ibid., p.169).

Related to the study of CSoft reported in this thesis, we use Trist’s theory as a
framework and derive a set of theoretical propositions suitable for describing software
ecosystems. This means that we have not done a 1:1 adoption of concepts from Trist’s
description, but used it as a basis for our own. Sjøberg et al. (2007) explains three ways
in which theories are built, whereof the second type is applied here: “Theories from
other disciplines may be adapted to software engineering before use.” (p. 5). This
means here that the theory of organizational ecology identifies concepts, which we have
found to be relevant to the field of software engineering. As a mean to describe this
theory we have looked to the guidelines and a five-step approach provided by Sjøberg et
al. (ibid., p.13) and thus describe it as a set of propositions, which explains how basic
constructs relate to each other (step 1 and 2). Five propositions have been derived from
Trist’s work and adapted to software engineering. In addition, we also propose two new
ones, based on the study of CSoft. Each of the seven propositions is supported by
explanations from our case study to justify the theory (step 3). Finally we discuss the
scope of the theory (step 4). Step 5 is to test the theory through empirical research and
will be left to later work. Later empirical studies may extend, change, confirm or
criticize the theory, as presented here.

1. Member organizations in a software ecosystem are linked to a key organization

among them, which acts as a central referent organization, doing so even though
many of the members are only partially under its control or linked to it only through
interface relations. (This is a Class 1 system according to Trist’s classification
(1977) (p. 165))

CSoft is an example of a referent organization in a software ecosystem, where other
members are their customers, and third party organizations that use CSoft’s
technology as a platform for providing related products and/or services. None of
these external organizations are formally controlled by CSoft. However, all activity
in the ecosystem is related to the product line, which is owned, developed and thus
controlled by CSoft. These relationships resemble those in open source initiatives,
however with the distinction that the software is closed and owned by one actor10.
The interface relations between the referent organization and other members are
nurtured by ASD practices such as customer engagement in the planning of
iterations and the evaluation of the outcome and by the open communication of
product strategies, for example on product conferences or on an ad-hoc basis.

10

 Future research on open source ecosystems may consider Trist’s second class of socio-

ecological organization as an explanatory model.

Discussion and implications

 - 93 -

2. Software ecosystems promote self-regulation.

Our study of CSoft shows that the collaborative approach can be seen as a self-
regulating system in that the referent organization to a large degree adapts to its
external environment, and that the external environment adapts to the referent
organization. The main enabler for this is the close and frequent co-operation
between CSoft and externals, which takes place in the development iterations.
Demonstration of results, feedback and correction takes place in each iteration. This
stands in contrast to the previously centralized control that was applied in the
development of the product line where feedback was rare.

3. Software ecosystems have a networked character.

CSoft and its external environment constitute an open-ended network of customers
and third party organizations, where all relate to the referent organization but with
the additional opportunity of relationships between member organizations outside
the direct control of the referent organization. For example, some of CSoft’s
customers are also customers of third part organizations, using related services or
extensions or specializations of the product line. The referent organization benefits
from this network and in the case of CSoft also support it actively, for example by
marketing third parties and by offering technological interfaces enabling these third-
party operations.

4. Software ecosystems exist through the use of information and communication
technology (ICT).

The ecosystem, which CSoft is a part of, relies considerably on the use of ICT to
enable the collaboration with its external environment. Examples are the web-
meetings with external stakeholders in the development iterations. This enables
collaboration with actors at different locations than the development teams. We have
also seen that the software-as-a-service deployment model makes distribution of
increments easy and efficient, which enables external stakeholders to test increments
and provide feedback.

5. Software ecosystems exhibit shared values.

In the CSoft ecosystem the software (product line) is a shared value. For CSoft, the
value is revenue from licenses and services, for the customers the value is improved
business operations, and for the third parties the value is revenue from sales of
value-adding services and solutions (see Table 9). This common interest creates a
motivation to care collaboratively for the shared value. For example, since the

Discussion and implications

 - 94 -

product line has become an inevitable part of the business of the customers, they are
willing to invest time to participate in the development of this value.

These five propositions constitute a foundation of a theory for software ecosystems.
In addition to these principles adopted from Trist’s work (ibid.) we also propose two
extensions:

6. The shared value of a software ecosystem is both the software product and the

business domain.

The focus of the referent organization is not restricted to the product line only. It
also covers the business domain that is supported/enabled by the product line. The
better the product line is at supporting the business of customers and third parties,
the stronger the incentive to use the product line becomes as well as the incentive to
participate in the continuous development of it. The continuous dialogue between
the referent organization and external stakeholders, in each iteration in the
development projects, addresses both how to develop or improve the product line as
well as how the product line supports the business of the stakeholders. We see this
as a case of open innovation.

7. As a software ecosystem emerges, control moves from the supplier of the software
to its users.

Prior to the adoption of Evo, the only guiding input from the customers was through
formal requirements documents. Feedback came late, very close to release. CSoft
controlled all aspects of the development. However, this was not a beneficial
situation due to low input from customers. Now, some of this control has moved to
(participating) external stakeholders that to a larger extent control the development
of the product line. Yet, CSoft still owns the product line and controls the main lines
of development, but now in combination with vital input from external actors. Here
lies a clear distinction from open source initiatives.

The fourth step of building a software engineering theory (Sjøberg, Dybå et al.,
2007) is to determine the scope. The propositions given here are based on the study of a
single software product line organization (and inspired by a general theory on
organizational ecology). With this in mind, we identify the following limits of the
scope:

� The proposed theory concerns software product line organizations similar to CSoft,

which emphasize iterative and incremental development and participation by
externals in strategy making and in development.

Discussion and implications

 - 95 -

� We believe that this theory is relevant to software organizations serving business
domains that is still shaping and not mature domains.

� We believe that this theory is relevant to software organizations that develop
products that are vital to the business performance of the customers and where the
use of the product is long-term.

5.4 Implications for practice

Based on our combined study of CSoft, our overview of related research and
literature, and our discussions we propose a set of implications for practice. We shape
these implications as advice or guidelines for software organizations similar to CSoft –
or – software organizations that consider a change towards agile software product line
engineering and software ecosystems.

� Support the external environment by being open. Sharing information on plans,

strategies, and development may create a fundament for collaboration and new
patterns of innovation. If appropriate, encouraging and supporting a third party
community can be a valuable extension to the normal development of the product
line.

� Reducing the variability in the product line consequently reduces the costs of
maintaining and managing variability. The potential drawback of reduced
variability can be compensated through offering interfaces for extending the
product line by externals, and thus increasing the overall variability.

� Establishing and benefiting from a software ecosystem takes time. A successful
development relies on repeated cycles of experimentation and learning. This
learning process needs to involve all types of actors.

5.5 Limitations

The case study of CSoft is subject to four limitations.

(1) This is a single case study, which naturally affects the generalizability of the

conclusions. Yet there are good reasons for choosing such an approach. First of all, the
number of relevant cases is still low. Nevertheless, we have had the opportunity to study
a case, which we believe is both advanced and relevant to other parts of the software
industry. In addition, focusing on a single case means that the study can be more
thorough than a study of multiple cases, with respect to available resources. Yin (2002)
discusses the single case study design (p. 38-41) and presents several arguments in
favor of choosing such a design. One of these is particularly applicable to CSoft, namely

Discussion and implications

 - 96 -

that it is a unique case. According to Yin, such a study may act as a prelude to further
studies of a relatively new topic, such as software ecosystems in this case.

(2) A large part of the data that has been collected comes from group and single-
respondent interviews with internals and externals. This type of data can potentially be
biased, incomplete or even wrongful due to misunderstandings, lack of insight etc. We
have sought to address this threat to validity by collecting data from various respondents
and supplementing these data with documents and observations.

(3) The third limitation concerns the completeness of the study. Only a subset of the
employees was contacted. Likewise, relatively few samples of all available
documentation were collected and analyzed. This is due to natural limitations such as
limited time and resources.

(4) The fourth limitation concerns the applicability of the findings and conclusions of
this study. The organization investigated is a medium-size product line organization and
a web/application type of ecosystem (according to the taxonomy proposed by Bosch
(2009)). Thus, results do not necessarily apply to all other types of software ecosystems.

Conclusions

 - 97 -

6 Conclusions and further work
The overall goal of this study has been to understand the need for and implications of

a more open approach to software product line engineering. To establish this
understanding, we have followed a growing software product line organization and the
changes they have undergone over a period of approximately six years.

This longitudinal study of CSoft and their development began by investigating the
abrupt change of the development process through the adoption of some key agile
principles in the inflexible development process. The main focus of study 1 was how the
development organization changed the way they related to their customers. The insight
into this change and the results of the study led to the collection of new data used in
studies 2 and 3, focusing on agile software product line engineering and software
entropy, respectively. Through these studies, we became aware of how the relationships
with external actors were changing, and we initiated the collection of more data to
investigate in more detail how this organization developed their relationship to external
actors, leading to study 4.

This brief retrospect shows that the focus and the motivation of the studies have
shaped and developed during the course of the study of CSoft. This means that the
research questions have also developed in this way.

6.1 Answering the research questions

�

������ �	
�����	��
������	����� ����������������

�������	��
���������	���������	�������

�

Firstly, we have shown that combining the plan-driven product line engineering

approach with an incremental and iterative agile development process is practically
feasible. Developing and evolving a product line requires long term planning, which
results in high-level plans. These are used to initiate shorter-term agile development
projects. We have described the process combination as a sum of three processes with
varying time-horizons. Long-term planning and activities related to the evolution of the
product line are organized within a strategic process. Development is organized as a
tactical process. These two interact with the operational process, encompassing day-to-
day functions. Active engagement of and collaboration with external stakeholders is the
driving force in this process combination. We have found several desirable effects of
collaborating with externals such as increased motivation among developers as well as
faster and more frequent feedback. Continuous collaboration with externals requires

Conclusions

 - 98 -

continuous management of the relationship to maintain motivation and to replace
stakeholders if needed. Frequent feedback and re-planning from short iterations come
with the risk of architectural erosion and increased system entropy. We have seen the
need to compensate potential erosion by a dedicated function (the architecture team),
which ensures the maintenance and development of the overall architecture of the
product line. We have also observed process fragility caused by the increased frequency
of iterative development. An agile development process within a product line
organization requires a high level of process discipline, and small deviations may cause
process instability. We have observed such fragility when external stakeholders failed to
fulfill their role. Also, we have demonstrated that frequent collaboration with external
stakeholders in strategic, tactical, and operational processes creates additional overhead
as compared to a traditional plan-driven product line approach.

�

����� �	
��	������	��
������	��������������
�

Based on the answer to RQ 1, we have further investigated how the process

combination led towards a situation that we describe as a software ecosystem.
Fundamental to this change is the process of opening up. We have shown how the case
organization moved towards a software ecosystem by 1) opening the information flow
internally and externally, 2) opening the innovation processes by collaborating with
external actors at various levels, and 3) opening the technical interfaces, enabling
external actors to use the product line as a platform for additional services and solutions.
The transition to an ecosystem has come along with a change from a traditional closed
systems mindset to an open systems mindset. We have shown how actors in the external
environment contribute to both long-term strategic planning and to short-term tactical
development. Externals can be both customers/end-users and third parties. We have also
observed how the product line organization actively supports a community of external
actors and the benefits that come from such collaboration. Examples of such benefits
are: increased focus on the development of the core product line, increased variability of
the product line, and business opportunities for third parties.

The change from a closed product line approach to a partly open ecosystem
happened as an improvisational change process. It did not happen through the
implementation of a plan of change but began with careful testing of some core
principles in practice. Based on experience, new changes where introduced, forming a
continuous process improvement initiative.

To foster further studies of the emergence and functions of software ecosystems we
proposed a theory of software ecosystems, derived from socio-technical theory and
organizational ecology.

Conclusions

 - 99 -

Finally, we revisit our overall research objective:

�
 �������������������	��������������	��	�����	���

	�������	�����	��	��
������	�����������������!�

�

The software product industry recognizes an increasing need to become more open

and responsive to its market. Software technology becomes an increasingly important
part of most businesses, and the users of this technology expect a more influential role
for themselves in its development (Messerschmitt and Szyperski, 2003; von Hippel,
2005). This attitude is reinforced by an increased opportunity to collaborate in terms of
technology, tools, and agile processes.

The implications of this change are an increased proximity to the customers and a
potential to better capture needs and opportunities in the market. The software product
supplier gets a larger role in the shaping of both software products and services, and the
business domain they support. Understanding, supporting, and exploiting software
ecosystems become a competitive advantage.

6.2 Directions for future work

(1) As Jansen et al. also point out (2009), we need to see more empirical studies of
various types of software ecosystems, how they develop, and the effects they
produce. Such studies should naturally be focused towards the industry, and be
longitudinal as well as exploratory.

(2) To build a common understanding of software ecosystems: how they shape, how
they work, and what their effects are, we advise a further refining of a theory of
software ecosystems, as the one proposed in section 5.3.

(3) The emergence of software ecosystems comes with new business models
affecting intellectual property rights, economic models, competition etc. We
need to see more dedicated studies of these issues to realize the potential of
ecosystems.

(4) Software ecosystems are closely related to the more mature concept of open
source software development. We need to better understand the similarities and
the differences in order to transfer knowledge between these two related
domains (Fitzgerald, 2006).

(5) The engine of a software ecosystem is the collaboration with external actors. We
have showed some examples through our studies, but this is a broad topic that
needs further investigation.

Conclusions

 - 100 -

(6) The study of software ecosystems potentially relates to several disciplines such
as business strategy, sociology, technology and innovation management,
economy, and others. We have briefly touched a few of these and we see a need
to investigate these links further.

(7) Software ecosystems affect the shape of control structures. We believe that
control shifts from the supplier towards the users, a transition that needs to be
better understood.

References

 - 101 -

References
Abrahamsson, P., Salo, O., Ronkainen, J. and Warsta, J. (2002). Agile software development methods -
Review and analysis, VTT Electronics: 112.

Adler, P. S. (2005). The Evolving Object of Software Development. Organization 12(3): 401-435.

Ahmed, F. and Capretz, L. F. (2006). Managing the business of software product line: An empirical
investigation of key business factors. Journal on Information and Software Technology 49(2): 194-208.

Alspaugh, T. A., Hazeline, U. A. and Scacchi, W. (2009). The Role of Software Licenses in Open
Architecture Ecosystems. In proceedings of First International Workshop on Software Ecosystems
(IWSECO´09), Milan, Italy, September 27. 4-18.

Arisholm, E., Gallis, H. G., Dybå, T. and Sjøberg, D. I. K. (2007). Evaluating Pair Programming with
Respect to System Complexity and Programmer Expertise. IEEE Transactions on Software Engineering
33(2): 65-86.

Babar, M. A., Ihme, T. and Pikkarainen, M. (2009). An industrial case of exploiting product line
architectures in agile software development. In proceedings of 13th International Software Product Line
Conference, San Fransisco, California, 24-28 August. 171-179.

Basili, V. R. (1996). The Role of Experimentation in Software Engineering: Past, Current, and Future. In
proceedings of 18th International Conference on Software Engineering (ICSE´96), Berlin, Germany,
March 25-29. 442-449.

Baskerville, R., Ramesh, B., Levine, L., Pries-Heje, J. and Slaughter, S. (2003). Is "Internet-speed"
software development different? IEEE Software 20(6): 70-77.

Bayer, J., Gacek, C., Muthig, D. and Widen, T. (2000). PuLSE-I: Deriving Instances from a Product Line
Infrastructure. In proceedings of Seventh IEEE International Conference and Workshop on the
Engineering of Computer-Based Systems (ECBS 2000), Edinburgh, Scotland, 3-7 April. 237-245.

Beck, K. (1999). Extreme programming explained: embrace change. Boston: Addison-Wesley
Professional.

Beck, K. and Andres, C. (2004). Extreme programming explained: embrace change (2nd Edition).
Boston: Addison-Wesley Professional.

Birk, A., Dingsøyr, T. and Stålhane, T. (2002). Postmortem: Never Leave a Project without It. IEEE
Software 19(3): 43 - 45.

Böckle, G. (2005). Innovation management for product line engineering organizations. In proceedings of
9th International Software Product Line Engineering Conference (SPLE'05), Rennes, France, 26-29
September. 124-134.

Böckle, G., Clements, P., McGregor, J. D. and Muthig, D. (2004). Calculating ROI for software product
lines. IEEE Software 21(3): 23-31.

Boehm, B. (2006). A view of 20th and 21st century software engineering International conference on
Software engineering (ICSE).

Boehm, B. and Turner, R. (2004). Balancing Agility and Discipline - A Guide for the Perplexed. Boston:
Addison-Wesley.

References

 - 102 -

Bosch, J. (2001). Software product lines: organizational alternatives. In proceedings of 23d International
Conference on Software Engineering (ICSE'01), Toronto, Canada 12-19 May. 91-100.

Bosch, J. (2009). From Software Product Lines to Software Ecosystems. In proceedings of 13th
International Software Product Line Conference (SPLC'09), San Fransisco, USA, 24-28 August. 111-119.

Bosch, J. and Bosch-Sijtsema, P. (2009). From integration to composition: On the impact of software
product lines, global development and ecosystems. Journal on Systems and Software 83(1): 67-76.

Bosch, J., Florijn, G., Greefhorst, D., Kuusela, J., Obbink, H. and K., P. (2001). Variability Issues in
Software Product Lines. In proceedings of Fourth International Workshop on Product Family
Engineering, Bilbao, Spain, 3-5 October. 1-9.

Brown, A. W. and Booch, G. (2002). Reusing Open-Source Software and Practices: The Impact of Open-
Source on Commercial Vendors. In proceedings of 7th International Conference on Software Reuse:
Methods, Techniques, and Tools, Austin, USA, April 15-19. 123-136.

Buhrdorf, R., Churchett, D. and Krueger, C. W. (2004). Salion’s Experience with a Reactive Software
Product Line Approach. In proceedings of Software Product-Family Engineering, Siena, Italy. 317-322.

Carbon, R., Lindvall, M., Muthig, D. and Costa, P. (2006). Integrating Product Line Engineering and
Agile Methods: Flexible Design Up-front vs. Incremental Design. In proceedings of 1st International
Workshop on Agile Product Line Engineering (APLE'06), Baltimore, USA, 21 August. 1-8.

Chesbrough, H. (2003). Open Innovation: The New Imperative for Creating And Profiting from
Technology. Boston: Harvard Business School Publishing Corporation.

Chesbrough, H. (2006). Open Innovation: A New Paradigm for Understanding Industrial Innovation. In
Open Innovation: Researching a New Paradigm. Chesbrough, H., Vanhaverbeke, W. and West, J. (eds.).
Oxford: Oxford University Press: 1-12.

Chesbrough, H. W. (2003). The Era of Open Innovation. MIT Sloan Management Review 44(3): 9.

Chiasson, M. W. and Green, L. W. (2007). Questioning the IT artefact: user practices that can, could,
and cannot be supported in packaged-software designs. European Journal of Information Systems(16):
542-554.

Clements, P. C. and Northrop, L. (2002). Software Product Lines: Practices and Patterns. New Jersey:
Addison-Wesley.

Cockburn, A. (2002). Agile Software Development. Boston: Addison-Wesley.

Cooper, D. R. and Schindler, P. S. (2006). Business Research Methods. New York: McGraw-Hill.

Cusumano, M., Kahl, S. and Suarez, F. F. (2006). Product, Process, and Service: A New Industry
Lifecycle Model (Working Paper), Harvard Business School.

Daft, R. L., Lengel, R. H. and Trevino, L. K. (1987). Message Equivocality, Media Selection, and
Manager Performance: Implications for Information Systems. MIS Quarterly 11(3): 355-366.

Damodaran, L. (1996). User involvement in the systems design process - a practical guide for users.
Behavior & Information Technology 15(6): 363-377.

Davison, R. M., Martinsons, M. G. and Kock, N. (2004). Principles of canonical action research.
Information Systems Journal 14(1): 65-86.

Deming, W. E. (2000). Out of the Crisis. Cambridge: The MIT Press.

References

 - 103 -

Dubey, A. and Wagle, D. (2007). Delivering software as a service. The McKinsey Quarterly May: 1-12.

Dybå, T. (2000). Improvisation in small software organizations. IEEE Software 17(5): 82 - 87.

Dybå, T. and Dingsøyr, T. (2008). Empirical Studies of Agile Software Development: A Systematic
Review. Information and Software Technology 50(9-10): 833-859.

Dybå, T., Dingsøyr, T. and Moe, N. B. (2004). Process Improvement in Practice - A Handbook for IT
Companies. Dordrecht: Kluwer Academic Publishers.

Eckstein, J. (2004). Agile Software Development in the Large - Diving Into the Deep. New York: Dorset
House Publishing.

Emery, F. E. and Trist, E. L. (1965). The Causal Texture of Organizational Environments. Human
Relations 18: 21-32.

Enkel, E., Gassman, O. and Chesbrough, H. (2009). Open R&D and open innovation: exploring the
phenomenon. R&D Management 39(4): 311-316.

Erdogmus, H. and Morisio, M. (2005). On the Effectiveness of the Test-First Approach to Programming.
IEEE Transactions on Software Engineering 31(3): 226-237.

Fægri, T. E. and Hanssen, G. K. (2007). Collaboration and Process Fragility in Evolutionarily Product
Development. IEEE Software 24(3): 96-104.

Fenton, N. (1994). Software Measurement: A Necessary Scientific Basis. IEEE Transactions on Software
Engineering 20(3): 199-205.

Fitzgerald, B. (2006). The Transformation of Open Source Software. MIS Quarterly 30(3): 587-598.

Fricker, S. (2009). Specification and Analysis of Requirements Negotiation Strategy in Software
Ecosystems. In proceedings of First International Workshop on Software Ecosystems, Milan, Italy, 28
September. 19-33.

Ghanam, Y. and Maurer, F. (2009). Extreme Product Line Engineering: Managing Variability &
Traceability via Executable Specifications. In proceedings of Agile Conference 2009, Chicago, USA, 24-
28 August. 41-48.

Ghanam, Y. and Maurer, F. (2010). Extreme Product Line Engineering – Refactoring for Variability: A
Test-Driven Approach. In proceedings of 11th International Conference on Extreme Programming
(XP2010), Trondheim, Norway, 1-4 June. 43-57.

Gilb, T. (2005). Competitive Engineering: A handbook for systems engineering, requirements
engineering, and software engineering using Planguage. Burlington: Elsevier Butterworth-Heinemann.

Glaser, B. G. and Strauss, A. L. (1967). The Discovery of Grounded Theory: Strategies for Qualitative
Research. New York: Aldine Transaction.

Grunbacher, P. and Briggs, R. O. (2001). Surfacing tacit knowledge in requirements negotiation:
experiences using EasyWinWin. In proceedings of 34th Hawaii International Conference on System
Sciences (HICSS'01), Hawaii, USA, 3-6 January. 1-8.

Hanssen, G. K. (2010). A Longitudinal Case Study of an Emerging Software Ecosystem: Implications for
Practice and Theory Journal on Systems and Software Under review.

Hanssen, G. K. (2010). Opening up Software Product Line Engineering. In proceedings of 1st

References

 - 104 -

International Workshop on Product Line Approaches in Software Engineering, in conjunction with the
32'nd International Conference on Software Engineering (ICSE), Cape Town, 2 May. 1-7.

Hanssen, G. K. and Fægri, T. E. (2006). Agile Customer Engagement: a Longitudinal Qualitative Case
Study. In proceedings of 5th International Symposium on Empirical Software Engineering (ISESE'06),
Rio de Janeiro, Brazil, 21-22 September. 164-173

Hanssen, G. K. and Fægri, T. E. (2008). Process Fusion - Agile Product Line Engineering: an Industrial
Case Study. Journal of Systems and Software 81: 843-854.

Hanssen, G. K., Yamashita, A. F., Conradi, R. and Moonen, L. (2010). Software Entropy in Agile Product
Evolution. In proceedings of 43d Hawaiian International Conference on System Sciences (HICSS'10),
Hawaii, USA, 4-7 January. 1-10.

Hanssen, G. K., Yamshita, A. F., Conradi, R. and Moonen, L. (2009). Maintenance and agile
development: challenges, opportunities and future directions. In proceedings of 25th International
Conference on Software Maintenance (ICSM'09), Edmonton, Canada, 20-24 September. 487-490.

Hansson, C., Dittrich, Y. and Randall, D. (2004). Agile processes enhancing user participation for small
providers of off-the-shelf software. In proceedings of Extreme Programming and Agile Processes in
Software Engineering (XP 2004), Garmisch-Partenkirchen, Germany. 175-183.

Hughes, T. P. (1989). The Evolution of Large Technological Systems. In The Social Construction of
Technological Systems. Bijker, W., Hughes, T. P. and Pinch, T. (eds.). Camebridge: The MIT Press: 51-
82.

Iansiti, M. and Levien, R. (2004). Strategy as Ecology. Harward Business Review(March): 1-12.

Jansen, S., Brinkkemper, S. and Finkelstein, A. (2009). Business Network Management as a Survival
Strategy: A Tale of Two Software Ecosystems. In proceedings of First International Workshop on
Software Ecosystems, Milan, Italy, 28 September. 34-48.

Jansen, S., Finkelstein, A. and Brinkkemper, S. (2009). A sense of community: A research agenda for
software ecosystems. In proceedings of 31st International Conference on Software Engineering (ICSE'09),
Vancouver, Canada, 16-24 May. 187-190.

Johansen, T. (2005). Using evolutionary project management (Evo) to create faster, more userfriendly
and more productive software. Experience report from FIRM AS. In proceedings of 6th International
Conference on Product Focused Software Process Improvement (PROFES'05), Oulu, Finland, 13-15
June. 216-223.

Keil, M. and Carmel, E. (1995). Customer-Developer Links in Software Development. Communications
of the ACM 38(5): 33-44.

Kiesgen, T. and Verlage, M. (2005). Five years of product line engineering in a small company.

Kitchenham, B. A., Dybå, T. and Jørgensen, M. (2004). Evidence-based Software Engineering. In
proceedings of International Conference on Software Engineering (ICSE´04), Edinburgh, Scotland, 23-28
May. 273–281.

Kitchenham, B. A., Pfleeger, S. L., Pickard, L. M., Jones, P. W., Hoaglin, D. C., El Emam, K. and
Rosenberg, J. (2002). Preliminary guidelines for empirical research in software engineering. IEEE
Transactions on Software Engineering 28(8): 721 -734.

Klein, H. K. and Myers, M. D. (1999). A set of principles for conducting and evaluating interpretive field
studies in information systems. MIS Quarterly 23(1): 67 - 93.

References

 - 105 -

Kniberg, H. (2007). Scrum and XP from the Trenches - How we do Scrum: InfoQ.

Korkala, M., Abrahamsson, P. and Kyllönen, P. (2006). A Case Study on the Impact of Customer
Communication on Defects in Agile Software Development. In proceedings of Agile Conference, 23-28
July. 76-88.

Korkala, M., Pikkarainen, M. and Conboy, K. (2009). Distributed Agile Development: A Case Study of
Customer Communication Challenges. In proceedings of Agile Processes in Software Engineering and
Extreme Programming (XP´09), Sardinia, Italy. 161-167.

Koskela, J. and Abrahamsson, P. (2004). On-site customer in an XP project: Empirical results from a
case study. In proceedings of European Conference on Software Process Improvement (EuroSPI 2004),
Trondheim, Norway, 10-12 November. 1-11.

Langley, A. (1999). Strategies for Theorizing from Process Data. Academy of Management Journal
24(4): 691-710.

Larman, C. and Vodde, B. (2008). Scaling Lean & Agile Development - Thinking and Organizing Tools
for Large-Scale Scrum. Boston: Pearson Eduction Inc.

Leffingwell, D. (2007). Scaling Software Agility - Best Practices for Large Enterprises. Boston: Pearson
Education Inc.

Lettl, C. (2007). User involvement competence for radical innovation. Journal of Engineering and
technology management 24(1-2): 53-75.

Lewin, K. (1946). Action Research and Minority Problems. Journal of Social Issues 2(4): 34-46.

Lewin, K. (1951). Field Theory in Social Sciences. New York: Harper & Row.

Linden, F. v. d. (2002). Software product families in Europe: The ESAPS and CAFÉ projects. IEEE
Software. 19: 41-49.

Linden, F. v. d., Schmid, K. and Rommes, E. (2007). Software Product Lines in Action. Berlin
Heidelberg: Springer Verlag.

Martin, A., Biddle, R. and Noble, J. (2004). The XP customer role in practice: three studies. In
proceedings of Agile Development Conference, 2004, Salt Lake City, USA, 22-26 June. 42-54.

Martin, A. M. (2009). The role of customers in extreme programming projects (thesis). Victoria
University of Wellington.

McGregor, J. D. (2008). Agile Software Product Lines, Deconstructed. Journal of Object Technology
7(8): 7-19.

Merisalo-Rantanen H., T. T., Rossi M. (2005). Is Extreme Programming Just Old Wine in New Bottles: A
Comparison of Two Cases. Journal of Database Management 16(4): 41-61.

Messerschmitt, D. G. and Szyperski, C. (2003). Software Ecosystems, Understanding an Indespensable
Technology and Industry. Cambridge: The MIT Press.

Moe, N. B., Dingsøyr, T., Dybå, T. and Johansen, T. (2002). Process guides as software process
improvement in a small company. In proceedings of EuroSPI, Nuremberg, Germany, 18-20 September.
177-188.

Mohan, K., Ramesh, B. and Sugumaran, V. (2010). Integrating Software Product Line Engineering and
Agile Development. IEEE Software 27(3): 48-55.

References

 - 106 -

Moore, J. F. (1993). Predators and prey: A new ecology of competition. Harvard Business Review 71(3):
75-86.

Müller, M. and Hagner, O. (2002). Experiment about test-first programming. Software, IEE Proceedings
149(5): 131-136.

Nonaka, I. and Konno, N. (2008). The concept of "ba": Building a foundation for knowledge creation.
California Management Review 40(3): 40-54.

Noor, M., Rabiser, R. and Grünbacher, P. (2008). Agile product line planning: A collaborative approach
and a case study. Journal of Systems and Software 81: 868-882.

Orlikowski, W. J. and Hofman, J. D. (1997). An Improvisational Model for Change Management: The
Case of Groupware Technologies. Sloan Management Review Winter.

Pettigrew, A. M. (1990). Longitudinal Field Research on Change: Theory and Practice Organization
Science 1(3): 267-292.

Pohl, K., Böckle, G. and F., v. d. L. (2005). Software Product Line Engineering: Foundations, Principles,
and Techniques. Heidelberg: Springer Verlag.

Poppendieck, M. and Poppendieck, T. (2003). Lean Software Development: An Agile Toolkit for Software
Development Managers. New Jersey: Addison Wesley.

Reel, J. S. (1999). Critical Success Factors In Software Projects. IEEE Software 16(3): 18-23.

Royce, W. W. (1970). Managing the development of large software systems. In proceedings of IEEE
WESCON, Loas Angeles, USA, 25-28 August. 1-9.

Sanchez, R. and Mahoney, J. T. (1996). Modularity, Flexibility, and Knowledge Management in Product
and Organization Design. Strategic Management Journal 17(Special Issue: Knowledge and the Firm): 63-
76.

Sawhney, M., Verona, G. and Prandelli, E. (2005). Collaborating to Create: the Internet as a Platform
for Customer Engagement in Product Evolution. Journal on Interactive Marketing 19(4): 4-28.

Schwaber, K., Beedle, M. (2001). Agile Software Development with Scrum. New Jersey: Prentice Hall.

Seaman, C. B. (1999). Qualitative methods in empirical studies in software engineering. IEEE
Transactions on Software Engineering 25(4): 557-572.

Sjøberg, D. I. K., Dybå, T., Anda, B. C. D. and Hannay, J. E. (2007). Building Theories in Software
Engineering. In Advanced Topics in Empirical Software Engineering. Shull, F., Singer, J. and Sjøberg, D.
I. K. (eds.). Heidelberg: Springer Verlag.

Smaccia, P. (2008). Getting rid of spaghetti code in the real-world: a Case Study. Retrieved March, 2009,
from http://codebetter.com/blogs/patricksmacchia/archive/2008/09/23/getting-rid-of-spaghetti-code-in-
the-real-world.aspx.

Takeuchi, H. and Nonaka, I. (1986). The New New Product Development Game. Harward Buisiness
Review(Jan/Feb).

Tian, K. and Cooper, K. (2006). Agile and Software Product Line Methods: Are They So Different? In
proceedings of 1st International Workshop on Agile Product Line Engineering (APLE'06), Baltimore,
USA, 21 August.

References

 - 107 -

Tichy, W. (1998). Should Computer Scientists Experiment More? IEEE Computer 31(5): 32-40.

Trist, E. L. (1977). A Concept of Organizational Ecology. Australian Journal of Management 2(2): 161-
175.

Trist, E. L. and Bamforth, K. W. (1951). Some social and psychological consequences of the longwall
method of coal-getting. Human Relations 4(1): 3-38.

Tushman, M. L. and Romanelli, E. (1985). Organizational Evolution: A Metamorphosis Model of
Convergence and Reorientation. In Organization Change: A Comprehensive Reader. Burke, W. W.,
Lake, D. G. and Paine, J. W. (eds.). San Fransisco: Jossey-Bass.

Vliet, H. v. (2002). Software Engineering - Principles and Practice. New York: John Wiley & Sons.

von Hippel, E. (1996). Lead Users: A Source of Novel Product Concepts. Management Science
32(7): 791-805.

von Hippel, E. (2005). Democratizing innovation. Cambrige: MIT Press.

Weick, K. E. and Quinn, R. E. (1999). Organizational Change and Development. Annual review of
psychology 50(Feb.): 361-386.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B. and Wesslén, A. (2000). Experimentation
in software engineering: an introduction. Boston: Kluwer Academic Publishers.

Yin, R. and Campbell, D. T. (2002). Case Study Research. Thousand Oaks: Sage Publications Inc.

Zelkowitz, M. V. and Wallace, D. R. (1998). Experimental Models for Validating Technology. IEEE
Computer 31(5): 23-31.

Zook, C. (2010). Profit from the core: a return to growth in turbulent times. Boston: Bain & Company,
Inc.

 Appendix A

 - 108 -

Appendix A

Study 1 – Adoption of Evo

Data #1: Group interview (postmortem analysis) with 6 developers
"�#$"��������	����%�������
��������	�	��	�����	��&�����������������

�����	�������	��	��	�����������	����������&����������������'�	��

�	���������	�������������������%������������������	�����������	���!�(�

���������������	����
��������	��
���������	�������	������������������

��	���	�	�������������	��
���������	���������	��)�	!�(���	��&�����

������������������'����	�
�������	�������������	��	������	�����	��%�����

�	��������%��������!�*�������������������������������	���	���
�����	����

�%������������������	����������	��������	��!�"���������&�������	����	�������

��������������	�����	���	�����������	�����������	������	������!�+����������

��	���������������������	���	��	���������������������!�������	���������
���

��	����������	������������!�*����������	��������������������	����������

�%��������&�
�������������������������	�����	����������	�!�

�

���������������	���%�������&�����������������������	����,��������	����	��

���������%�����������	������	����	������	��������������!�*�����������

���	����,����	���-�.�������������	����		����������������-�/".!�*�������

��������	����������������������	������
�����(���'�
����������

-�����	�.&�
�������	
���������������	��������������	�������	�����	�������!�

�

"�#$"�����������
�����������0����������������������������	������
�	�������	����

���������������	!�*������	�����	������������������������	����1�������

�%�������2	���	�!�*�����������	�����������	�������������������������������

�����	������	��������	��!�3���-4��5&�4���6��������!&��778.��	���	�����������

	������������0���!�

Data #2: Guide for three semi structured interviews with customers
� Customer background information (briefly)

o Personal
� Name (person and company)
� Briefly about your background/experience
� Role(s) and responsibilities
� CSoft experience level

o Company
� Type of business
� Years as CSoft customer (Company)
� Type of customer (ASP or server)
� Type of CSoft-use

� Have you participated in previous projects and, if so, how?
� Describe the CSoft 9.0 project

o How did you, as a representative from the company, get appointed?
o Describe the project start

 Appendix A

 - 109 -

o Describe your every-day routines in the project.
� Activities/contact with CSoft
� Responsibilities/roles
� Other…

o What happened if you, personally, couldn’t respond?
� If not mentioned before: how did you express your requirements and needs, and what do

you think of it?
� Did CSoft respond to your feedback?

o Can you see that your contribution has affected the product?
o Was your contribution to the project worth the effort?
o In general: was this a good process?

� Three most negative aspects of the project?
� Three most positive aspects of the project?
� How do you, internally in your company, determine requirements and response to

CSoft?
o How do you function as a representative for your company?

� How do you compare your experiences with this project to previous projects (if you have
any such relevant experience)?

� Did you get any knowledge about the practical process prior to, or as part of, the project?
� How and why did you get involved in the project?
� Would you participate in a new project if asked by CSoft and do you have any

improvement suggestions to the process?
� Are there other aspects that you feel are important to the study?

Data #3: Guide for five semi structured interviews with PMT members
� Personal

o Name
o Role
o Role in PMT
o Years in CSoft
o Years in PMT
o EVO knowledge/training?
o How well do you know EVO?
o How did you get this knowledge?

� About PMT
o Could you describe PMT briefly, with respect to function, tasks,

responsibilities and interaction with other parts of CSoft and interaction
with customers and users?

o How do you get customers’ requirements and requests for features?
o How do you document requirements and requests for features?
o Do you interact with customers and if so, how?
o How can you assure that you get the right picture of the customer’s

requirements and requests for features, both the explicit and the
tacit/unexpressed?

o How do you interact with the development project?
� About EVO and the role of PMT, seen from a PMT perspective

o How do you interact with customer?
o How do you interact with the development projects?
o What are the most negative aspects of this?

 Appendix A

 - 110 -

o What are the most positive aspects of this?
� Expectations to EVO? (before project start)

o From a PMT perspective?
o Generally?

� Positive effects of EVO, seen from a PMT perspective
o What are the most positive effects of EVO, so far.

� Negative effects of EVO, seen from a PMT perspective
o What are the most negative effects of EVO, so far?

� Product quality; how does EVO affect the product quality?
� About the realism in being a surrogate user

o How realistic is it to represent the users/customers?
o Have you any suggestions to improve this function?

� Other issues
o In this context, have you any other information of importance.

�

Study 2 – Agile SPL

Data #4: Guide for one semi structured interview with the CTO
� The architecture proper

o Can you name key characteristics prescribed by the CSoft architecture?
� General principles (e.g. components, Service Oriented

Architecture…)
� Patterns (e.g. layering, client-server, facade etc.)
� Are the server-version and the ASP-version of CSoft

architecturally identical?
o How is the architecture proper represented/maintained? (e.g. documents,

models supported by tools…)
� Are developers routinely trained, briefed or simply expected to

“teach themselves” the architecture on a need-to-know basis?
o What are the oldest “explicit” architecture elements in the current

architecture? (and how old are they?)
o Can you roughly estimate the size of the CSoft code today? What is the

expected growth rate?
� Designing and maintaining the architecture

o How was the architecture of CSoft first designed?
o What are the main architectural drivers in the current generation of CSoft

products? Name 2-3 of them (for example: modularization, supporting
multiple product variants, performance, maintainability, testability…)

o Is the architecture of CSoft adapted/designed/constructed to suit the agile
development approach Evo?

� In particular: Is it your opinion that the introduction of Evo
increased or decreased the need to pay attention to architectural
issues?

o Name some examples of events/situations/business opportunities that have
caused major new revisions to the CSoft architecture

� Do you see different stimuli causing architecture revisions now,
using an agile software process, compared to before, when using a
sequential process?

 Appendix A

 - 111 -

o Some years ago, the CSoft architecture was “modernized” as it was ported
to the .Net platform. Which changes did you do to CSoft? Did you add
“something” to support customization and potential future extensions?

o How is the architecture of CSoft maintained?
� Which stakeholders are involved and what are their

responsibilities?
� CTO: You interact with the Evo-process once per iteration to

check decisions that affects the overall structure/architecture of the
product; what guidelines do you use when doing so? (For example:
roadmaps, overall plans, design guidelines etc.)

� Do you have any examples of conflicts and how they were
resolved?

� A formal or informal process?
� How do you deal with conflicts between short-term

project/solution objectives, CSoft architecture, and product
roadmaps?

� We have heard so-called “interim releases” of CSoft being
mentioned – are they mainly motivated by the need to target
platform/architecture-oriented work?

� Please describe the influence of the product roadmaps with respect
to the maintenance of the CSoft architecture

o Have you ever been forced to say no to a business opportunity because of
too large divergence from CSoft architecture?

Data #5: Guide for one semi structured interview with PMT manager
� Product roadmaps

o Can you describe a product roadmap?
o What is the main objective(s) of a product roadmap?
o Who ”owns” the product roadmap?
o How does guidelines in a roadmap (long term) relate to project-level

requirements (short term)
o Are the various solutions included in the roadmap?
o Do you have an “architecture roadmap”?

� Product planning in general
o How is product planning done?

� Formal/informal process?
� Which stakeholders are involved?
� How do you capture future needs and how do these get into

development projects?
• What are the main sources of ideas for future development

plans? In your experience, has this changed as a result of
using Evo?

• Do you see a difference in the kind of ideas stemming
from different sources?

• If yes, do you use this consciously to direct a “balance” in
requirements towards the product?

� Do you consciously deal with the balance between short-term and
long-term (architectural) issues during product planning?

� How are product roadmaps used in projects?

 Appendix A

 - 112 -

� What is the typical lifecycle of a road map? Are there different
phases of product planning?

o Which events/situations/occurrences may trigger major rewriting of road
maps?

o Apart from the problem of predicting the future, what is the most difficult
aspect of product planning?

o In your opinion; is the “nature” of product planning different in agile
software development compared to traditional, plan-based/sequential
development? If so, how?

o Do you see particular challenges/critical factors stemming from agile
development that affects product planning?

� Product planning with multiple solutions
o What are the most important effects on product planning caused by

offering multiple solutions?
o How do you define the scope of CSoft? When/how do you extend the

scope?
� Working with product plans

o Who are the main users of product plans and/or product roadmaps?
o How do the development projects use the roadmaps?
o Are roadmaps affecting how you select and communicate with customers

being engaged in development projects?
� Product planning and software architecture

o Does (expected) future needs affect product architecture? Are parts of the
solution (components) pre-developed?

o What is your opinion of the architecture of CSoft with respect to being an
enabler or inhibiter of innovation? Please elaborate.

� Misc
o How many versions of CSoft exist?

� Only one version alive (except several older ones in use in the
market)?

o A bit about the five standard configurations:
� We assume that the close engagement of selected customers

provides a rich source for detailed feedback and requirements to
CSoft functionality. Is it fair to say that this primarily address user-
near parts of the total system (e.g. the GUI-layer?)

� What type of directions do you use to develop and improve other
(non-visual) parts of CSoft?

o When extending CSoft (new features/modules/etc.); what types of input do
you use? Custom development, internal decisions (based on market
analysis?), others?

o What role does feedback to support play in developing roadmaps and in
development projects?

Study 3 – Software entropy

Data #8: Guide for one semi-structured interview with a team leader
� How does the team know what do develop?

o How does the developers get to know requirements and specifications?

 Appendix A

 - 113 -

� How do you test and verify new and improved code?
� How do you and your team contribute in the planning of the next release and ahead?
� How often do you speak with users and customers?
� How do you do this?
� Who else are you in touch with?
� How much of your work can be described as refactoring or improvement of architecture

and structure?
� Which challenges do you have with respect to improving the systems architecture and

structure?
� How and by whom are decisions of such work made?
� We have learned that the structure in CSoft has some weaknesses – how does this affect

your job?
� What is the largest change with respect to Evo as compared with the old process?

Data #9: Guide for one semi structured interview with one of the
developers

� Can you please describe what your job is about?
� Do you and the team contribute in the planning of new releases (roadmaps and plans)?
� In which ways do you have contact with external stakeholders during development?

How does this affect the job you do?
� What is the best about the way you work today and which are the biggest challenges?
� We have learned that the structure in CSoft has some weaknesses – how does this affect

your job?
� What are your ideas to improve the situation?

Study 4 – Software ecosystems

Data #11: Guide for one interview with the R&D manager
� [In this interview I would like to focus on how you communicate with the market and

with your customers]
� Would you say that the roadmap is the start of requirements specification?
� What is new about your process as compared to before?
� When developing roadmaps, who do you talk with, which type of information do you get

and how are decisions made?
� Could you tell a bit about the annual customer panel meeting?
� Who are your major competitors in the market?
� Can you tell a bit about your pricing policy?
� Are the development teams co-located or distributed?
� Do you still practice the green-week concept?

How do you go about verifying the deliveries from the iterations?
� How does a stakeholder provide feedback?
� Do you have an active software process initiative at the time?

 Appendix A

 - 114 -

Data #12: Guide for one interview with the manager of professional
services

� I would like to hear a bit about your role at CSoft, your tasks and the area of
responsibility you have.

� Do you (Professional Services) participate in the development of roadmaps, which is
managed by the PSG?

� Could you tell a bit about the department you run?
� I have recently observed one of your customer review meetings; do you communicate

with the development teams in a similar fashion?
� Could you explain what the ‘quality center’ is?
� Do you/how do you participate in the development of roadmaps?
� Who operates your solution?
� How do you respond when customers report bugs or errors?

Data #13: Guide for one interview with the PSG manager
� About you

o Roles, responsibility and tasks?
� About PSG

o Who is part of PSG?
o What is the role of PSG?
o How does the PSG differ from PMT?
o What was the rationale behind establishing the PSG?

� About customer engagement
o What is the rationale of involving customers?
o How does customers contribute in strategic planning?
o How does customers contribute in product development (Evo)?
o How do you motivate customers to participate?
o How do you identify/select customers to participate?
o How does the ideal customer (for participation) look like?
o Engagement of third parties?

� Modes of involvement
o What channels/practices do you use for engaging customers?

� Operational and strategic user groups
� Sales/market
� Forums
� Others?

� Third parties
o How do you work with third parties?

� Innovation
o How does new ideas/solutions come up?
o Do you pilot ideas, make mock-ups, demos etc.? How do you evaluate

these?
� Connection with R&D

o In strategic planning
o During development

� Roadmap
o What is the role of product roadmaps in strategic planning and in R&D?
o How is the process of developing roadmaps?

� Who participates?
� How do PSG contribute in developing roadmaps?

 Appendix A

 - 115 -

Data #14: Guide for three interviews with PSG members
 We used the same guide as for the interview with the PSG manager (Data #13,
above).

Data #15: Guide for one interview with a Technical Account manager
� About you

o Roles, responsibility and tasks?
� About TAM
� Are you mostly involved into sales and dealing with prospects or do you do any kind of

support?
� Do you participate in any way in making roadmaps?
� Do you meet external stakeholders in web conferences like the development teams do?
� Having gained some experience with the Evo process; what do you think of it?

Data #17: Observation of the 2008 product conference
#�������	����������������������
�	��������8����������:'� �������������	��

����	�����������	����
��������'������������������	��
�����	�������'�

����������������	��������2���������	�����������
�������	��	�������'�

Data #18: Observation of review meeting
(�����	���������
��������
���	��������������
�����������		�'�#���

�	�������	��������������
������	������������������������'� ������	���

������2�����	���	����������������	�������	������	'��<���5��������

 Appendix A

 - 116 -

�

PART II – selected publications

Paper 1

Hanssen, G. K. and Fægri, T. E. (2006). Agile Customer Engagement: a Longitudinal
Qualitative Case Study. In proceedings of 5th International Symposium on Empirical
Software Engineering (ISESE'06), Rio de Janeiro, Brazil, 21-22 September. 164-173

Is not included due to copyright

Paper 2

Fægri, T. E. and Hanssen, G. K. (2007). Collaboration and Process Fragility in
Evolutionarily Product Development. IEEE Software 24(3): 96-104.

Is not included due to copyright

Paper 3

Hanssen, G. K. and Fægri, T. E. (2008). Process Fusion - Agile Product Line
Engineering: an Industrial Case Study. Journal of Systems and Software 81: 843-854.

Process fusion: An industrial case study on agile software product
line engineering

Geir K. Hanssen a,b,*, Tor E. Fægri a

a SINTEF ICT, NO-7465 Trondheim, Norway
b Norwegian University of Science and Technology, Department of Computer and Information Science, NO-7491 Trondheim, Norway

Received 27 March 2007; received in revised form 19 July 2007; accepted 10 October 2007
Available online 7 November 2007

Abstract

This paper presents a case study of a software product company that has successfully integrated practices from software product line
engineering and agile software development. We show how practices from the two fields support the company’s strategic and tactical
ambitions, respectively. We also discuss how the company integrates strategic, tactical and operational processes to optimize collabora-
tion and consequently improve its ability to meet market needs, opportunities and challenges. The findings from this study are relevant to
software product companies seeking ways to balance agility and product management. The findings also contribute to research on indus-
trializing software engineering.
� 2007 Elsevier Inc. All rights reserved.

Keywords: Software product development; Software product management; Software product line engineering; Agile software development

1. Introduction

Software engineering is a complex task that involves
fast-paced product development, competitive market con-
ditions, knowledge management, organizational factors,
rapidly evolving technologies, etc. As a means of handling
this complexity, establishing control and using resources
efficiently, development organizations normally adopt a
method that defines how their software engineering activi-
ties should be carried out within the given context. A
method may cover a broad range of issues; typically esti-
mation, design, and development, among others. A great
many methodologies are available and they vary a lot; from
strict plan-based approaches to agile approaches and any
variant in between. Regardless of the method being used,
most software projects strive to reach a balance between

three basic goals: satisfactory software quality (scope),
the right cost and timely delivery. Attempting to satisfy
these requirements causes further complications to arise,
particularly with respect to long-term product management
issues.

This paper discusses two popular development approaches;
software product line engineering (SPLE) and agile soft-
ware development (ASD). It describes how these have been
combined to improve the ability to achieve the three basic
goals. These two approaches can, in their most radical
forms, be placed in each end of a plan-based/agile spectrum
(Boehm, 2002). The former is based on planning and prep-
arations for efficient software development based on rapid
construction by assembling predeveloped assets, while the
latter aims at efficient change response instead of extensive
up-front planning. They may correspondingly be catego-
rized as proactive and reactive approaches to software
engineering. The principles of SPLE have been in use for
a long time and industrial experience shows that the
approach has substantial advantages when it comes to
cost-efficient development, product quality and the ability

0164-1212/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

doi:10.1016/j.jss.2007.10.025

* Corresponding author. Address: SINTEF ICT, NO-7465 Trondheim,
Norway.

E-mail addresses: ghanssen@sintef.no (G.K. Hanssen), tor.e.fegri@
sintef.no (T.E. Fægri).

www.elsevier.com/locate/jss

Available online at www.sciencedirect.com

The Journal of Systems and Software 81 (2008) 843–854

to deliver on time (Birk et al., 2003; Linden, 2002; Bosch,
2000; Clements and Northrop, 2002). ASD is a more recent
trend within the software engineering community and has
attracted wide interest in both industry and academia. Ini-
tial evidence from the results of ongoing research suggests
that using ASD is advantageous, given the right context
(Boehm, 2002; Erickson et al., 2005). Both approaches
have the same overall objective; that of improving software
development efficiency.

Recently, there has been interest in investigating
whether, and if so how, SPLE and ASD can be combined
to complement each other (Carbon et al., 2006; Tian and
Cooper, 2006), but little empirical research on the topic
has been conducted. In this paper, we present our findings
from a case study of a medium-sized, Norwegian software
product company called CompNN (real name made anon-
ymous). CompNN has used and matured the ASD method
Evo, short for Evolutionary Project Management (Gilb,
2005) for three years, covering four releases of their main
product.

Our study is based on a well established industry–
researcher relationship that began several years ago. The
study expands upon a previous one, in which we investi-
gated the introduction and preliminary effects of Evo
(Hanssen and Fægri, 2006). This previous study gave us
insights into several important aspects of the use of an agile
process in a product development context, with respect to
benefits, problems and prerequisites.

The aim of the study reported herein was to describe and
analyze an industrial case to understand how SPLE and
ASD can be combined and to clarify associated costs and
gains.

Next, we provide an overview of SPLE and ASD and
explain how they both relate to, and conflict with, each
other (Section 2). Then we explain the context of the case
study (Section 3). Then, we present the study method (Sec-
tion 4). Subsequently, we present the findings from the
study (Section 5), discuss the results (Section 6) and offer
our conclusions (Section 7).

2. State of the practice

SPLE is an approach to software engineering in which
a set of products is built on a common set of core assets
(Bosch, 2000; Clements and Northrop, 2002). SPLE draws
upon principles similar to those that have been used for
decades in most other industries, in which production
includes the assembly of prefabricated parts. SPLE is
claimed to have numerous benefits: large-scale productiv-
ity gains, decreased time-to-market, increased product
quality, increased customer satisfaction, more efficient
use of human resources, and improved ability to apply
mass customization, maintain market presence and sustain
unprecedented growth. However, achieving these claimed
benefits requires careful attention to a wide range of issues
(Linden, 2002; Knauber et al., 2000; Käkölä and Dueñas,
2006).

The basic assumption underpinning SPLE’s claimed
advantages is that there is sufficient commonality among
multiple products to justify investment in their systematic
reuse. Reusable assets, of various kinds, are said to consti-
tute the product line platform. Examples include require-
ments, architectures, designs, code and test cases.
Domain engineering consists of the set of activities neces-
sary to define, extend and maintain the platform. The plat-
form, the key to an SPLE approach, bears the cost of
domain engineering, which can, presumably, be amortized
across multiple, derived products.1

Multiple preconditions must be satisfied if an SPLE
approach is to be profitable, but the most fundamental of
these is that the market for the products be predicted accu-
rately. If prediction of market trends is inaccurate, SPLE
will inhibit the business potential of the organization by
enforcing wasteful effort related to adherence to reference
architectures, organizational overhead, reuse strategies,
etc., essentially slowing down the software production. In
addition, product management is more complicated due
to complex dependencies between product variants and
the scope of the platform (Bosch, 2006; Helferich et al.,
2006). SPLE has an influence on most practices in software
engineering in an organization. Thus, SPLE activities must
be based on the strategic ambitions of the organization
and, in the service of such ambitions, careful planning.
SPLE demands long-term investment and effort. Neverthe-
less, given the right processes and a suitable product plat-
form, new products can be derived faster, at lower cost,
and with more predictable quality (Birk et al., 2003). SPLE
has already become economically necessary for some com-
panies (Linden, 2002).

There are more or less rigorous ways to apply SPLE
practices. For example, product derivation can be imple-
mented using proactive engineering or reactive engineering.
In a proactive approach, the reusable assets are developed
before the product is built. In a reactive approach, the
product is built first and subsequently the reusable assets
are recovered from the product and integrated back into
the platform. Further, variability models are used to repre-
sent variation among the products that the platform should
support, i.e. which variation defines the scope of the prod-
uct line? A vast number of different techniques and sup-
portive artifacts exist for doing SPLE, but their
discussion lies beyond the scope of this paper. For further
details, please refer to, e.g. (Bosch, 2000; Clements and
Northrop, 2002). It is useful to consider SPLE as a spec-
trum of approaches to software engineering.2 SPLE may
have a wide impact on business, organization, process
and technological factors (Sugumaran et al., 2006). There-
fore, organizations that adopt SPLE must choose their own
path by introducing a set of practices that suit the

1 We say that a product is derived from the platform if a significant part
of the product is reused from it.
2 http://www.sei.cmu.edu/productlines/framework.html (accessed

December 2006).

844 G.K. Hanssen, T.E. Fægri / The Journal of Systems and Software 81 (2008) 843–854

objectives and capabilities of the organization (Lorge Par-
nas and Clements, 1986). Naturally, as with any other
innovation in software processes, SPLE practices should
be reviewed and revised continually to ensure learning
and improvement.

Agile software development (ASD) lies at the other end
of the plan-based/agile spectrum. ASD focuses little on
planning and expects limited predictability. Further, it does
not address issues of reuse. Hence, it contrasts sharply with
the plan-centric SPLE approach. While SPLE supports the
strategic objectives of the organization, ASD primarily
benefits tactical ambitions, for example, addressing the
immediate demands of customers or targeting smaller-scale
development efforts.

ASD is a common name for a set of defined methods for
software development. Some of the best known and used
are Extreme Programming (Beck, 2000) and Scrum (Schw-
aber and Beedle, 2001). Although these agile methods vary
in focus and presentation, they are all based on a few sim-
ple guidelines for ASD, defined by the Agile Manifesto3

which states four basic values: (1) Individuals and interac-

tions over processes and tools; ASD emphasize self-organiz-
ing teams, close cooperation with the user(s) and informal
and direct communication. (2) Working software over com-

prehensive documentation; the main goal, and main proof of
progress, is working software, not models or demonstra-
tors. Documentation is kept on a strictly need-to-have
basis. (3) Customer collaboration over contract negotiation;
the customer is given an active role in development and
thus has a direct responsibility to state requirements and
correspondingly to verify both incremental and final
results. (4) Responding to change over following a plan;
development is a dynamic and creative endeavor, so plans
are kept on a minimum with the focus being on flexibility
and response to change. In addition to these four values,
the Agile Manifesto also defines a handful of principles
that form rules for development. These again are used to
form a set of practices in the various agile methods. Some
methods emphasize practice and technique descriptions
(such as Extreme Programming), while others place more
emphasis on management activities (such as Scrum) (Abra-
hamsson et al., 2002).

As part of the interest in, and uptake of, agile methods
in industry a variety of experiences have been reported.
Most of these can be defined as simple, single-case studies,
but there are some reports that have investigated more dee-
ply and have contributed to a growing knowledge base on
the costs and benefits of agile methods. The agile method
Extreme Programming has attracted the most attention.
Within this method, the practice of pair programming
has been the most investigated by far (Erickson et al.,
2005). In this regard, a recent large controlled experiment
has clarified the conditions under which pairs of developers
perform better than individuals and vice versa (Arisholm

et al., 2007). Task complexity and level of experience were
shown to influence the outcome. Another relatively well-
investigated agile practice is test-driven development
(TDD) (Müller and Hagner, 2002; George and Williams,
2004; Erdogmus and Morisio, 2005). The results are some-
what contradictory. Erdogmus and Morisio (2005) showed
that TDD improves productivity but not quality, yet their
results also indicated that TDD programmers achieve more
consistent quality results. With respect to Extreme Pro-
gramming as a whole, Erickson et al. (2005) has reviewed
numerous studies on the method and found no clear evi-
dence as to its benefits. A possible reason is that Extreme
Programming, as along with other agile methods, is consti-
tuted by a set of diverse guidelines, each of which should be
investigated individually.

SPLE and ASD have significant differences due to the
fundamentally different challenges they are intended to
solve. SPLE addresses longer-term strategic objectives
related to life-cycle product management, whereas ASD
addresses short-term tactical objectives, such as single pro-
jects developing one specific product. In practice, an orga-
nization will face both strategic and tactical challenges.
Thus, it makes sense to investigate whether, and if so
how, these two approaches can complement each other.
The table below summarizes how the SPLE approach cor-
responds to the twelve principles of the Agile Manifesto
(see Table 1).

This comparison shows that ASD and SPLE have few
conflicts. They are virtually independent of each other.
On most counts, they possess complimentary properties
(Carbon et al., 2006; Tian and Cooper, 2006). Whereas
SPLE attempts to introduce large-scale cross-product eco-
nomic benefits through reuse, ASD focuses on delivering
single products with the best possible quality for the cus-
tomer. Thus, there is, prima facie, no reason why these
two approaches should not be combined. On the contrary,
there is a clear motivation to combine them.

SPLE as such is agnostic regarding processes of software
development. One can use product line engineering with dif-
ferent software process models. However, intuitively, there
are a number of interesting issues to be addressed when con-
sidering the use of agile methods in a SPLE setting:

– SPLE advocates a conscious adherence to architecture.
Software reuse beyond the most trivial level demands
that numerous constraints and guidelines be respected
regarding both the reused asset and the consumer of
the asset. Agile methods have a reputation for paying lit-
tle attention to architecture, and occasionally being
downright damaging to it. Naturally, architecture ero-
sion will result if constraints and guidelines are broken.
Hence, it is useful to discuss the practices used by agile
product companies that enable long-term architecture
conformity and prosperity of the product line.

– Agile methods are (arguably) best suited to projects of
modest to moderate size (Boehm and Turner, 2004).
The different products (or variants) in a product line3 www.agilemanifesto.org (accessed November 2006).

G.K. Hanssen, T.E. Fægri / The Journal of Systems and Software 81 (2008) 843–854 845

can be considered as semi-autonomous projects within
the line. In this regard, SPLE may be considered as a
way of partitioning the work of software product com-
panies and subsequently assisting the use of agile meth-
ods in larger-scale development efforts.

How can potential benefits and challenges be managed
in practice?

3. Study context

CompNN is a medium-sized Norwegian software com-
pany that develops, maintains and markets a product line
called ProdNN (real name made anonymous). The prod-
ucts derived from the product line are aimed at the high-
end market of market and customer surveys. CompNN
has a wide customer base that includes some of the world’s
largest market research agencies. The company was estab-
lished by three friends in 1996 and has since grown steadily,
such that it now has about 90 employees and offices in Nor-
way, the UK, Vietnam, and the USA. There has been a
gradual shift from building custom-made applications to
a product line. Today, licenses for the ProdNN products
constitute most of the revenue.

The bulk of research and development is done at the
main office in Norway supported by developers in Viet-

nam. The other offices are mainly devoted to marketing,
sales, and customer support. However, as we will show
later, they have a clear role to play in providing important
input to the development process. Physical presence near
the largest markets abroad is important both to serve cus-
tomers and to include them in the development of the
product.

ProdNN can be defined as a single product, but there
are many ways to use it. The system is modular. It has five
main modules (with numerous submodules): authoring to
assist the planning of surveys, panel to support panel sur-
veys, a survey engine that serves most use cases, reporting
to produce survey reports, and data transfer to feed the
database for analysis. The use of these modules varies
according to the use case. Some modules are central and
always in use, while the use of the others depends on the
situation. As CompNN’s customers vary greatly in size
and operation, the ProdNN tool is built to be customiz-
able. CompNN operates with a set of predefined configura-
tions for the most common use cases, but there is also
built-in support for detailed customization to support more
variants. However, in some cases, a customer has needs
that go beyond the functionality available in the product
platform. In these cases, CompNN may provide a cus-
tom-developed solution for the customer, with the proviso
that the result may be included in the platform. If this is

Table 1
Comparing ASD and SPLE

Agile principle SPLE correspondence

Priority on early and continuous delivery of valuable software Dependent upon SPLE approach. A reactive model supports early delivery of
valuable software (no particular bias with respect to continuous delivery)

Welcome changing requirements, even late in development. Agile
processes harness change for the customer’s competitive advantage

Foreseen changes covered by platform and variability models are cheap.
Other changes become increasingly expensive closer to domain engineering
artifacts as they may participate as elements in multiple products, and thus
increase the cost of maintenance

Deliver working software frequently, from a couple of weeks to a couple
of months, with a preference to the shorter timescale

An SPLE approach does not reject or inhibit this principle. Product delivery
is, nevertheless, somewhat slowed down compared to agile development, due
to overhead in maintaining integrity with the product platform

Business people and developers must work together daily throughout the
project

An SPLE approach neither rejects nor inhibits this practice

Build projects around motivated individuals. Give them the environment
and support they need, and trust them to get the job done

At the product level, an SPLE approach neither rejects nor inhibits this
practice. At the platform level, however, more formalism is required

The most efficient and effective method of conveying information to and
within a development team is face-to-face conversation

SPLE, due to increased technical and/or organizational complexity,
introduces a need for more explicit, formal and disciplined communication

Working software is the primary measure of progress SPLE incorporates significant value in the platform that is more difficult to
measure However, for product development, an SPLE approach neither
reject nor inhibits this principle

Agile processes promote sustainable development. The sponsors,
developers, and users should be able to maintain a constant pace
indefinitely

SPLE promotes sustainable development at a larger scale

Continuous attention to technical excellence and good design enhances
agility

SPLE platforms encode technical excellence and design to support rapid
product derivation

Simplicity – the art of maximizing the amount of work not done – is –
essential

The main motivation for SPLE is the same – but by using reuse as vehicle for
eliminating work. In a reactive SPLE approach, the risk of doing unnecessary
work is reduced

The best architectures, requirements, and designs emerge from self-
organizing teams

The assumption of SPLE is that investments in requirements, architectures,
and designs can be reused successfully across multiple products

At regular intervals, the team reflects on how to become more effective,
then tunes and adjusts its behavior accordingly

An SPLE approach neither rejects nor inhibits this practice. In fact, due to
investments in the platform, most SPLE organization promotes experience
gathering and learning

846 G.K. Hanssen, T.E. Fægri / The Journal of Systems and Software 81 (2008) 843–854

not acceptable to the customer CompNN will deny the
request. This strategy of restrictive scoping is chosen to
avoid too heavy a burden with respect to single-case devel-
opment, because that would hamper the continuous devel-
opment of the platform.

The adoption of Evo was a deliberate choice to move on
from an inefficient waterfall-like process (Fægri and Hans-
sen, 2007). In this case, SPLE was not introduced deliber-
ately, as prescribed by common guidelines, e.g. the
Software Engineering Institute’s guidelines.4 However, this
company’s development process clearly coincides with
some of the fundamental principles of SPLE. Thus, we
were able to use this case to understand how the company
has combined SPLE and ASD and to identify the experi-
enced effects of the combination. We believe that this is
valuable input to the process of shaping an agile product
line engineering practice, which is in its early stages.

Several roles cooperate at different levels in the develop-
ment of the product platform. At a tactical level, the devel-
opers in the R&D department handle the software
development, guided by the Evo process. The developers
are organized in small teams, each of which has three to
five persons. To ensure that focus is maintained, each team
is usually dedicated to the development of just one of the
main modules in the platform. In addition, each team
may also cooperate directly with a selected stakeholder.
The R&D department has a Chief Technical Officer
(CTO), who is responsible for the platform architecture
and for ensuring technical alignment with the business
domain, and who oversees overall product planning.
CompNN puts great emphasis on new and improved qual-
ities which leads to a high pace in the development projects
and an unsatisfactory error density in released products.
This issue is now being addressed by the adoption of
test-driven development.

To handle the diverse processes towards the market at
both strategic and tactical levels, CompNN has a Product
Management Team (PMT). This function was established
at the same time as Evo was introduced, in 2004. The
PMT has six members, one of whom acts as the PMT man-
ager. The PMT plays an important role at several levels.
They are responsible for marketing initiatives, sales, and
key account management. The product roadmap, together
with supporting business cases, are the main assets devel-
oped by the PMT. Two main channels of information are
used to develop these. First, there is the PMT member’s
knowledge of the domain, market and specific customers.
Secondly, the ProdNN Advisory Board, was established
recently. This is a group of the most important customers,
who provide their ideas and state their requirements for
future development. The members of this forum are CEOs
(Chief Executive Officer), board members and other repre-
sentatives from top management.

One of the core principles in the adopted Evo process is
the close cooperation with selected stakeholders (selected
representatives of important requirements). When a prod-
uct roadmap has been approved by the executive manage-
ment, the PMT appoints stakeholders, who agree to
participate actively in the release projects. Usually, one
stakeholder per project is appointed, which again places
the focus on one of the modules or a well-defined feature
(Fægri and Hanssen, 2007). The criterion for appointing
a stakeholder is that the development focus or goal of
the project addresses a module or feature in which the
stakeholder has a special interest, which in turn provides
sufficient motivation for investing resources in develop-
ment. In some cases, internal stakeholders are appointed,
typically when the project addresses issues that are not
directly visible to the end users. External stakeholders are
not given any compensation for participating. The sole rea-
son for cooperating is the opportunity to affect and direct
the development.

The roles and their participation in product develop-
ment activities are summarized in Fig. 1. Their interplay
is further elaborated in Section 5.

4. Study method

4.1. Rationale

As this study sought to investigate the diverse and com-
plex topic of the fusion of product-line engineering and
agile software development, which touches on a variety
of factors, such as technology, architecture, process, mar-
ket development, innovation, and management and organi-
zational issues, we chose a qualitative approach. Our aim
was to present a broad view and to explain how this fusion
has worked in practice in actual industry, with a view to
understanding how SPLE and ASD can be adopted and
used to complement each other. We believed that we
needed to understand the practicalities and opportunities
of this fusion better before we can plan more specific stud-
ies on, for example, the effect on time, cost and quality.
Thus, we performed a single-case study (Yin and Camp-
bell, 2002) to obtain detailed knowledge about a complete
product development organization to be able to under-
stand how internal and external roles interplay at various
levels.

4.2. Data collection

Our main source of data collection was a series of inter-
views. We used existing interviews from a previous study
(Hanssen and Fægri, 2006). There were nine interviews in
total, which three roles: three customers (different compa-
nies) from the development of a single release (three inter-
views), all members of a product management team (five
interviews) and a group of six developers (group interview)
where all of these had recent experience from Evo-projects.
To acquire a deeper understanding of the strategic and

4 http://www.sei.cmu.edu/productlines/adopting_spl.html (accessed
December 2006).

G.K. Hanssen, T.E. Fægri / The Journal of Systems and Software 81 (2008) 843–854 847

tactical processes and how the development process and
the product line system architecture relate to each other,
we extended the interview material with thorough semi
structured interviews with the PMT manager and the
CTO. These two roles are central to the planning and man-
agement of the product development process. We defined
an interview guide for each of the PMT manager and
CTO, but the interviews were semi-structured so that addi-
tional information, which was not originally covered in the
interview guides, could be acquired. All interviews except
the group interview with the developers were done via tele-
phone. Furthermore, all interviews were recorded using a
Dictaphone. In sum, we thus base our case study on eleven
interviews covering all roles involved in the product line
engineering and the applied agile process.

As a secondary data source, we used documents such as
product roadmaps and business cases, which are important
assets in long- and short-term development of the product
line. These documents were used to understand the overall
practice of software development and market-related activ-
ities and how these relate to each other.

4.3. Data analysis

All recorded interviews were transcribed to form a basis
for a thorough and detailed textual analysis. In cases of
interviews that covered more than one individual per role,
for example the members of the product management
team, we analyzed the material according to the principles
of constant comparison (Seaman, 1999) using the NVivoTM

tool for textual encoding. The transcribed interviews and
the documents were used to make a description of the
product development (see Section 5).

4.4. Bias and limitations

Several factors restrict the credibility and generalizabil-
ity of the study. (1) We collected and analyzed data from
only one company. However, if we had involved more
company cases, the study would have been much more dif-
ficult to perform. In addition, we only know of, and have

access to, one company that has adopted and combined
both SPLE and ASD practices; the one that we studied.
Despite this limitation, a reader may, by considering the
context information, be able to identify experiences that
may be transferred to another software development orga-
nization. (2) There is a threat with respect to the complete-
ness of our study. We did not interview all parties involved
in the total process of developing the product platform, but
we believe we have selected the most central; those that
could give us a good basis for reflection. To strengthen
the study further, we incorporated the analysis of impor-
tant documentation.

5. Findings – a holistic view of software engineering at

CompNN

We now describe, from a holistic point of view, how
CompNN develops and maintains their product platform.
We have identified three distinct software processes and
describe how they interact. Then we describe the product
platform architecture and related services followed by a
description of how the organization has shifted to this
new development regime.

5.1. A symbiosis of three interacting customer-centric

software processes

Organizations of some size need well defined structure
and operational formalism to ensure that important func-
tions are implemented and maintained in a professional
manner. CompNN has matured their approach to software
engineering over the last 10 years. As new challenges have
appeared, CompNN has responded by making different
adjustments and innovations in their processes. Because
CompNN operates in a highly competitive market, they
must continually look for opportunities to improve the
way they do business. Thus, the description presented here
is merely a snapshot of how things are done currently.

The Fig. 2 illustrates how CompNN, through a symbio-
sis of three different software processes, connects software
development and customer collaboration. The embedded

AcPro

Roles

PM
T

CTO
CEO

Adv.board

Pro
j. m

gmt.

R&D
Stak

eh
olde

rs

Use
rs

Support

ArtifactsActivitiesProcess level

Strategic Product planning X X XX X

Feedback
Market knowledge
Roadmap
Business case

Release development X X X X X Roadmap

Proj. Management X X
IET
Software

Operational
Software use
Customer support XX X

Software
Feedback
Change req.

Tactical

Fig. 1. Roles, activities and artifacts.

848 G.K. Hanssen, T.E. Fægri / The Journal of Systems and Software 81 (2008) 843–854

table highlights the various issues of particular attention in
the three processes. As a result, CompNN is able to
embrace the market all the way down to individual users,
and thus improve their ability to respond and interact with
their customers. We believe this works well because the
three processes serve different but important needs:

Strategic (long-term, SPLE): Evolution at the SPLE
level addresses the need to implement long-term strategic
plans. SPLE supports CompNN’s need to introduce tacti-
cal innovation, which is fuelled, for example, by innova-
tions in technology, changes in the business models, or
new business opportunities. ProdNN is a product platform
that contains a set of building blocks that can be tailored to
provide different product offerings (ProdNN solutions).
This platform can be considered as the vehicle used by
the CTO and PMT to implement long-term visions. More
often than not, these innovations are costly in terms of
effort and risk. Thus, they should be planned and intro-
duced with great care, in order to exploit the organization’s
development capability. SPLE-style development inher-
ently supports this ambition.

Tactical (medium-term, ASD): Evolution at the project
level (note that a release typically includes 4–6 projects)

addresses the need to embrace customers and listen to their
more down-to-earth needs. Close cooperation ensures that
a customer’s ideas and experience with the software is
translated into what we may call tactical innovation, i.e.
reactive innovation that seeks to polish, improve, adjust
or otherwise make small to moderate adjustments to the
product. As the customer’s requirements mature during
the project, ASD-style development with moderate-size
projects works well to accomplish this aim.

Operational (short-term, day-to-day operations): Cus-
tomers rely on the software to help them to implement vital
business functions in their own organizations. Thus, it is of
great importance that CompNN is able to sustain a good
level of satisfaction with the software in its day-to-day
use. During operation, the products are exposed to more
users, which exposure increases the potential amount of
feedback to the innovations implemented at the strategic
and tactical levels.

These three processes are concurrent. They overlap in
terms of activities, people and artifacts. All three embrace
the customers and give CompNN the opportunity to
build strong, cross-level, collaborative relationships with
them.

Stratetic (1-2yr
horizon)

Tactical (2wk-4mnth
horizon)

Operational (day-to-
day operations)

Function Strategic,
technological
innovation

Tactical (reactive)
innovation

Systematize experience

Process elements SPLE practices Evo, IET Request driven,
prioritization

Deliverables Product
roadmaps,
business cases

Software

Technical focus ProdNN software
platform

Release projects Fixes, updates,
upgrades

Key roles Management,
PMT, CTO

R&D, PMT, CTO Support, QA

Customer
collaboration

Advisory Board Key stakeholders End users, ASP
operations personel

Fig. 2. A customer-centric product development process.

G.K. Hanssen, T.E. Fægri / The Journal of Systems and Software 81 (2008) 843–854 849

5.1.1. The strategic process elaborated

The market process is at a strategic level and provides
vital input to the work on the biannual releases and the
development projects. This strategic work is operated by
the product management team (PMT), who are engaged
both in product development and other general market-ori-
ented activities, such as sales, marketing, and key account
management. Thus, they act as a link between market (stra-
tegic) and development (tactical) activities.

The central activity in the market process is the develop-
ment of a roadmap. This is a strategic document where
needs, ideas and opportunities for future development are
documented. In practice, the roadmap is a set of Power-
Point slides that defines growth opportunities, main chal-
lenges and strategies. Each issue is described at a high
level, to prevent the view of features and functionality from
becoming too detailed. On the basis of the suggested direc-
tion for developing the product platform, the PMT also
indicates how existing or new resources should be used;
for example, a need to extend the R&D department. The
roadmap also defines what is called ‘Commitments and
must haves’, which is a high-level list of improvements
and extensions that presumably, will meet the identified
opportunities and challenges. To operationalize the road-
map, the PMT also suggests how to set up a handful of
development projects to reach the defined commitments
and must haves. This includes the development focus per
project and staffing (number of developers per project).
To establish a long-term view on development, e.g. to
expose resource needs, this part of the roadmap character-
izes the release projects for both upcoming and subsequent
releases, though subsequent releases are characterized more
loosely. The last part of the roadmap looks even further
into the future and defines potential new areas for the fol-
lowing two years. This overview is developed further in the
following year’s roadmap.

The PMT develops a new roadmap once a year. A pro-
posal is given to executive management in the autumn for
approval, and is then used as a guide to decide formally
which parts of the product platform will be addressed in
the upcoming releases. The goal descriptions in the road-
map are deliberately kept at a high-level. Thus, the possi-
bility is left open that projects may suggest refinements to
the platform to facilitate achieving the goals. This is impor-
tant, because the development projects will utilize core
agile principles, such as short iterations and close customer
engagement as defined by the Evo development process, to
capture detailed requirements for finding the best possible
practical solution for achieving the high-level goals defined
in the roadmap.

The roadmap relates to a set of business cases, which are
documents that illustrate the assumed effect of achieving
the high-level goals. A business case usually addresses
one of the modules in the product platform to obtain a
manageable focus and follows a standard structure: it
defines the stakeholders, the scope of the project (what is
to be done), and its rationale. A business case also contains

a discussion on the return on investment, identified risks
and threats, and associated costs.

To provide management with the best possible founda-
tion for making their decisions what is proposed in the
roadmap, it also contains descriptions of cases that are
not a part of it, thus illustrating trade-offs that must be
made by executive management due to limitations of time
and resources; the total quantity of ideas always exceeds
the quantity that can be developed for one release. The
PMT thus keep track of ideas that are excluded from the
roadmap and these are revised each time a new roadmap
is developed.

5.1.2. The tactical process elaborated

Gilb (2005) is the agile method that CompNN adopted
at the tactical level, i.e. the level where software is devel-
oped. It is not as well-known as Extreme Programming
(Beck, 2000) and Scrum (Schwaber and Beedle, 2001), yet
it is clearly an agile method, because it is customer-centric
and strongly emphasizes short iterations and the frequent
delivery of working software. In Evo, the product evolves
iteratively as new requirements are discovered, constructed
into the code, and subsequently tested. Stakeholders (cus-
tomers or internal) are expected to give feedback on each
of the iterations of the product in order to guide the devel-
opment of the next iteration. Finally, suites of integration
tests are performed before the final system test. Evo is a rig-
orous process that draws upon principles from the risk-dri-
ven Spiral model (Boehm, 1988) but is ultimately driven by
the highest possible stakeholder value in each iteration,
rather than by risk reduction.

The core process of Evo is requirements management,
which serves two purposes per iteration. Firstly, selected
stakeholders evaluate the achievements in the previous iter-
ation in terms of a hands-on test or some other type of
review. This helps to ensure that progress is in line with
stakeholders’ expectations. Secondly, on the basis of stake-
holders’ feedback, it is decided what existing requirements
need to be improved and what new requirements should be
targeted for the next iteration. Requirements are not spec-
ified as functions or features, but as product goals that
address real business concerns of the customer business
concerns. Great emphasis is placed on identifying metrics
and associating them with each goal. CompNN uses
Impact Estimation Tables (IET) as its key project manage-
ment tool. Each of the projects within a release has an IET,
which is essentially a spreadsheet that lists goals vertically
and project iterations horizontally. Each of the iterations
is broken down into one or two solutions (design propos-
als) that are believed to address the goals. The structure
helps to separate requirements from solutions. By docu-
menting both requirements and project progress (measured
results) per iteration, the IET becomes both a plan for, and
historical record of, the project. Before release of the itera-
tion is initiated (which initiation spans roughly two weeks),
selected customers are invited to give input to product
plans with initial goals for the release. During initiation,

850 G.K. Hanssen, T.E. Fægri / The Journal of Systems and Software 81 (2008) 843–854

the most promising ways of addressing the initial goals are
noted and laid out for a number of future iterations in the
IET. CompNN’s CTO explained: ‘‘This plan helps us
ensure adherence to an overall technical strategy for prod-
uct development’’. Evo at CompNN is a tightly scheduled
process in which biweekly iterations follow a fixed schedule
(called the ‘Evo-week’) that defines each role’s responsibil-
ities per day.

In addition to playing a vital role in the strategic pro-
cess, the PMT also have responsibilities in the tactical pro-
cess, in connection with the software development in the
release projects. Because they have the best access to
knowledge of the market and the customers (Keil and Car-
mel, 1995), the PMT are responsible for appointing cus-
tomer stakeholders in the development projects and for
maintaining the link between CompNN and these stake-
holders. If a customer stakeholder leaves a project for
any reason, it is vital that the PMT take action to appoint
another stakeholder or to fill the gap in some other way.

During the second Evo-release, CompNN introduces an
additional concept: the green week. This is a week dedi-
cated to error correction and improvements, without
engaging with customers directly.

Another great aid in the development process (while not
being a part of Evo) is the Continuous Integration frame-
work (CI). This is a set of well-integrated tools for code
management, automated tests and builds that enable swift
production of product versions ready for testing by
stakeholders.

5.1.3. The operational process elaborated
The operational process consists of the day-to-day activ-

ities in connection with the customer’s use of the products
based on the product platform. As CompNN provides up
to two releases per year, which surpasses the update fre-
quency of most customers, there are several versions of
the platform in use at any one time. In addition, there
are many variants based on the product platform in use,
all of which may be considered advanced applications. In
sum, this means that there is great variance in the support
requests to CompNN, which are handled by a dedicated
support department. Depending on the situation, support
may involve guidance in use of the product, scripting, pro-
gramming, quality assurance of customers’ use, or issues
related to maintenance. Some requests also address errors
and flaws in the software, even ideas for future develop-
ment. Such requests are recorded in a support system and
are used as input to the strategic process that is aimed at
upcoming releases. In addition to assisting in the use of
the software and recording issues that pertain to potential
improvement, the support department develops user
documentation.

5.2. Product platform architecture and services

The ProdNN architecture is deliberately kept simple to
achieve flexibility. From a technical point of view, it is a

traditional three-tiered application with a data layer, a
business layer and a web-based (ASP) interface layer. The
whole platform is based on the Microsoft.Net platform.
Some old COM-components are present and constitute a
legacy from the first years of shaping the platform.
Recently, the R&D department did so-called interim
releases, in which no external stakeholders were involved,
and concerning which the only purpose was to port old
code, fix errors and resolve pressing open issues. Now,
these types of task are performed using free development
resources in between the ordinary releases.

All end-user interaction with the software is done via a
cross-platform web-based interface and two alternative
delivery models; for sophisticated use or large organiza-
tions, CompNN offers ProdNN as a stand-alone server
solution, which allows the customer to operate the server
locally. For less demanding users, CompNN offers an
ASP alternative, in which the application is hosted by
CompNN.

From a functional point of view, the platform consists
of five main modules (with submodules), each of which
supports specific features or tasks in the survey process.
Some modules are essential in all use cases, while others
are optional and depend on the situation. Each module is
designed to be configurable to achieve the benefit of devel-
oping one common component that can serve many situa-
tions of use. Variability in customers use is handled simply;
a license file is defined for each customer, which file deter-
mines the modules that the customer can use. This solution
is the same for both the local server and web-access vari-
ants. Working on the next release, development is usually
organized such that one development team (defined as a
project) is responsible for one of these modules. R&D will,
in the future, establish dedicated teams for the modules,
which teams will specialize in the features and the related
sub domain. ProdNN may be extended by a customer or
a provider of third-party solution providers by the use of
a set of API’s (offered as web services), there being one
library for each of the five modules.

ProdNN is not provided as a single standard product,
but is defined as a product platform that forms the basis
for many variants. As a part of this paradigm, CompNN
offers a set of services to assist each customer in deciding
upon a variant that matches their specific needs in each
case. In most cases, this is done through the ‘customized
solution’ service, where the basic modules are composed
and adjusted. This service may also include documentation,
training, support and maintenance. Examples of custom-
ized solutions in use are help-desk quality feedback systems
and claim management systems. In cases where a customer
has requirements that are not supported by the product
platform, CompNN offers the ‘custom development’ ser-
vice which, besides customization, also involves the devel-
opment of new features. This service may be offered if
the new features under consideration are thought to be
reusable in a future version of the product platform. It is
an absolute requirement that the customer agrees to allow

G.K. Hanssen, T.E. Fægri / The Journal of Systems and Software 81 (2008) 843–854 851

the new features to become available to other customers as
part of the product platform. If this is not feasible for the
customer, CompNN will not develop the features. This pol-
icy contributes to keeping the product platform within a
manageable scope.

Due to the nature of the product platform, customers
often desire to integrate it with other software systems.
CompNN offers the ‘system integration’ service to support
these cases. Typical systems integrated with ProdNN are
CRM-systems, help-desk systems, and call-centre systems.

5.3. The shift to the new approach

From the start of the company, ten years ago, the devel-
opment process matured from a more or less ad hoc type of
process to a well-defined waterfall-inspired process. This
was a non iterative process with emphasis on extensive
planning and up-front design. Though this process helped
them to structure the development of the product platform,
it became apparent that market needs and trends were not
being met to their satisfaction. Customers also started to
raise questions regarding close collaboration, as the prod-
ucts became an important part of their core business. By
chance, some representatives from the company met Tom
Gilb at a workshop and became interested in the concept
of iterative and evolutionary development. After an intro-
duction, they decided to try Evo in the upcoming release.
At the same time, they introduced the PMT function.
These two changes were not originally planned together,
but experience quickly showed that they fitted well together
and formed the basis for the combination of SPLE and
ASD (Johansen, 2005).

6. Discussion

The integrated software processes at CompNN support
three key virtues of product development. (1) Technical
excellence: an open and modular platform architecture
implemented using industry-standard technology enables
simple development and maintenance of the product line.
(2) Market knowledge and relevance: the well organized,
yet nimble strategic process provides adequate decision
support for company management and guidance for the
development projects. (3) Agility: the adoption of Evo,
and agile principles, enables fast response to changes in
stakeholder requirements and accurate delivery of desired
features and qualities to the users. This process configura-
tion has been developed and matured within the organiza-
tion to provide a useful balance between discipline and
agility. We believe this case is an example of how to build
‘your home ground’ (Boehm and Turner, 2004) for agile
SPLE.

An important observation from our findings is that
CompNN’s integrated development process is not just an
accidental collection of three processes. Rather, the three
processes play distinct, supplemental and important roles
at three different levels in CompNN’s overall software

development business. All three are lightweight to reduce
waste, that is, unnecessary work (Imai, 1997). Taking a
broad view of the strategic, tactical and operational pro-
cesses, we see a complete process that has the same func-
tion and effects as the more general Deming improvement
cycle (Deming, 2000). This is also known as the PDCA
cycle, from its four main activities: Plan (plan how to sat-
isfy improvement requirements); Do (accomplish planned
actions); Check (monitor the actions and verify the out-
come with respect to the planned effects); and Act (imple-
ment actions for improvement based on the acquired
information). This improvement process, simple in princi-
ple, comes in many variants and is central in, for example,
Total Quality Management (TQM) (Mathiassen et al.,
2001). In CompNN’s case, the Plan and Act steps coincide
in the strategic process where business cases, technology
trends and other high-level objectives are used to create
the product roadmap. Both SPLE and ASD allow and
encourage continuous learning. The fact that the cycles
have different durations poses no noticeable problems:
strategic planning is intrinsically a long-term process. The
roadmap is a stable artefact during the development of
two released versions. Thus, the tactical process can be
managed using the roadmap as a guide to the priorities
and selection of stakeholders in the Evo process. The
released products may be amended with patches during
their lifetime. However, this is not a problem for the sup-
port department in charge of the operative software pro-
cess, because feedback from customers is associated with
the patch level of their software. Indeed, the issuing of
patches enables the support department to verify whether
patches actually help solve the immediate problems that
customers may experience. All feedback to the support
department is available for the PMT when preparing the
next roadmap. In this way, the three cycles feed each other
with up-to-date, accurate knowledge from the customers.

It is worth noting though, that this approach has its
costs; running the strategic process and working closely
with stakeholders entails a considerable extra overhead,
resources that could have been invested in development
(as was the previous practice). Despite this drawback,
CompNN holds the benefits of these additional activities
to be more valuable than spending the majority of
resources purely on development activities.

Arguably, the most important benefit of this process
configuration is that it helps CompNN to exploit both stra-
tegic long-term ambitions for innovation and smaller-scale
tactical innovations, such as refinement of the software to
meet more detailed end-user requirements. In order to
implement this scheme, the PMT plays a crucial role in
mediating and facilitating processes (Fægri and Hanssen,
2007). Further, the process configuration is a potent foun-
dation for further process innovations. As long as the
PDCA cycle is maintained, any component in the configu-
ration can be further refined to improve performance. If
the company experience the expected growth, the modular-
ization gives extra organizational flexibility. For example,

852 G.K. Hanssen, T.E. Fægri / The Journal of Systems and Software 81 (2008) 843–854

introduction of separate roles for platform and product
development within R&D can readily be supported because
the objectives of strategic and tactical development are
already defined and well established. Additionally, the
explicit engagement of primarily external stakeholders in
the tactical development process ensures that the company
is able to supplement strategic planning by selecting stake-
holders based on long-term as well as short-term interest.
This is an extra benefit for use by the PMT.

The conscious engagement of market representatives is
used as an important driver in the development process as
a whole. It is interesting to see the differences in how this
is done in practice at the strategic and tactical levels. During
the development of roadmaps, knowledge obtained by
PMT and CTO via any kind of market- or technology-ori-
ented activities is exploited. In addition, key customer rep-
resentatives influence the process directly through the
ProdNN Advisory Board. Input is deliberately kept to a
general level to establish a sufficiently wide scope. A first
release is presented in detail, less detail is captured for the
second, and only a rough outline is delivered for the 2-year
vision, which allows for less prescriptive plans into the
future. Having documented the main ambitions in the road-
map, customer representatives are given a much more
detailed and direct role in the Evo projects. Selecting and
involving the right stakeholders is critical however (Fægri
and Hanssen, 2007). Engaged stakeholders provide require-
ments and feedback on a detailed level but it is the respon-
sibility of the development projects to suggest practical
solutions that will meet the quality goals stated by the
engaged stakeholders. This close cooperation with a few
selected stakeholders promotes valuable creativity (Hans-
sen and Fægri, 2006). If process innovation at CompNN
had a more revolutionary style, replacing all existing prac-
tices with a pure and very formal SPLE approach, this
potential could have been lost.

The present practice in CompNN was not defined and
introduced from scratch as a major initiative for improving
processes. However, the organization, the product plat-
form, and the processes and their interplay, have each
developed and matured over time. This has been a natural
evolution, based on experience and needs (Dybå, 2000).
Our overall impression from this case is that CompNN
has been successful in combining and balancing practices
from SPLE and ASD, essentially adopting those practices
that are valuable to them, as a company.

Referring back to the figure, the strategic SPLE prac-
tices creates a fertile, controlled environment in which the
tactical ASD practices can exploit the creative potential
of the developers. Cockburn (2002) defines five dimensions
to describe ‘an agile home ground’. These are: size (number
of personnel), criticality (loss due to impact of defects), per-
sonnel (level of software method understanding and use),
dynamism (percent requirement change per month) and cul-
ture (percent thriving on chaos versus order). The dimen-
sions size and criticality are not significantly affected by
the SPLE/ASD synergy. Looking at the personnel dimen-

sion, we see that their SPLE practices, combined with the
rather disciplined IET planning tool, give the organization
a rigid framework for requirement specifications. However,
due to the freedom of the solution concept in Evo, develop-
ers are still encouraged and motivated to creative problem
solving. Thus, the discipline enforced by SPLE and IET
enables agility and creativity. Considering the dynamism
dimension, much of the long-term planning is performed
within the strategic SPLE process, leaving a comfortable
and controlled amount of dynamism to the individual pro-
jects. Last, regarding the culture dimension, we see that a
high level of order does not inhibit agility, it enables it.

7. Conclusions

The aim of this study was to describe and analyze an
industrial case to understand how SPLE and ASD can be
combined and to clarify associated costs and gains.

We found that these two approaches, which at first sight
may seem contradicting, in fact complement each other.
SPLE and ASD work together, supporting strategic and
tactical objectives, respectively. At CompNN, an opera-
tional process constitutes the experience-bearing link from
the tactical to the strategic process, thus completing the
improvement circle. We found that this, as a whole, consti-
tutes a framework that balances discipline and agility
(Boehm and Turner, 2004).

The overall process described and discussed here
involves multiple disciplines, such as product planning,
knowledge management, organizational aspects, and inno-
vation. We believe that our conclusions constitute a valu-
able contribution to determining the practicalities and
effects of agile SPLE, being an interesting approach to
industrialized software engineering.

Acknowledgements

The authors would like to thank CompNN for their
time and valuable inputs. We are also grateful to Chris
Wright for proofreading. This work was done as part of
the EVISOFT project funded by the Research Council of
Norway under Grant 156701/220.

References

Abrahamsson, P. et al., 2002. Agile software development methods –
Review and analysis. VTT Electronics, 112.

Arisholm, E. et al., 2007. Evaluating pair programming with respect to
system complexity and programmer expertise. IEEE Transactions on
Software Engineering 33 (2), 65–86.

Beck, K., 2000. Extreme Programming Explained: Embrace Change.
Addison-Wesley.

Birk, A. et al., 2003. Product line engineering, the state of the practice.
Software, IEEE 20 (6), 52–60.

Boehm, B., 1988. A spiral model of software development and enhance-
ment. IEEE Computer 21 (5), 61–72.

Boehm, B., 2002. Get ready for agile methods, with care. IEEE Computer
35 (1), 64–69.

G.K. Hanssen, T.E. Fægri / The Journal of Systems and Software 81 (2008) 843–854 853

Boehm, B., Turner, R., 2004. Balancing Agility and Discipline – A Guide
for the Perplexed. Addison-Wesley, p. 266.

Bosch, J., 2000. Design and Use of Software Architectures – Adopting and
Evolving a Product-Line Approach. Addison-Wesley.

Bosch, J., 2006. The challenges of broadening the scope of software
product families. Communications of the ACM 49 (12), 41–44.

Carbon, R. et al., 2006. Integrating product line engineering and agile
methods: flexible design up-front vs. incremental design. In: Workshop
on Agile Product Line Engineering.

Clements, P.C., Northrop, L., 2002. Software Product Lines: Practices and
Patterns. Addison-Wesley.

Cockburn, A., 2002. Agile Software Development. In: Cockburn, A. (Ed.),
The Agile Software Development Series. Addison-Wesley.

Deming, W.E., 2000. Out of the Crisis. The MIT Press.
Dybå, T., 2000. Improvisation in small software organizations. IEEE

Software 17 (5), 82–87.
Erdogmus, H., Morisio, M., 2005. On the effectiveness of the test-first

approach to programming. IEEE Transactions on Software Engineer-
ing (31), 3.

Erickson, J., Lyytinen, K., Siau, K., 2005. Agile modeling, agile software
development, and extreme programming: the state of research. Journal
of Database Management 16 (4), 88.

Fægri, T.E., Hanssen, G.K., 2007. Collaboration and process fragility in
evolutionarily product development. IEEE Software 24 (3).

George, B., Williams, L., 2004. A structured experiment of test-driven
development. Information and Software Technology 46 (5 SPEC ISS),
337–342.

Gilb, T., 2005. Competitive engineering: A handbook for systems
engineering, requirements engineering, and software engineering using
P language. Elsevier Butterworth-Heinemann, p. 480.

Hanssen, G.K., Fægri, T.E., 2006. Agile customer engagement: a
longitudinal qualitative case study. In: International Symposium
on Empirical Software Engineering (ISESE). Rio de Janeiro,
Brazil.

Helferich, A., Schmid, K., Herzwurm, G., 2006. Product management for
software product lines: an unsolved problem? Communications of the
ACM 49 (12), 66–67.

Imai, M., 1997. Gemba Kaizen: A Commonsense Low-Cost Approach to
Management. McGraw-Hill.

Johansen, T., 2005. Using evolutionary project management (Evo) to
create faster, more userfriendly and more productive software.
Experience report from FIRM AS. In: International Conference on
Product Focused Software Process Improvement. Springer Verlag,
Oulu, Finland.

Käkölä, T., Dueñas, J.C., 2006. Software Product Lines: Research Issues
in Engineering and Management. Springer Verlag.

Keil, M., Carmel, E., 1995. Customer–developer links in software
development. Communications of the ACM 38 (5), 33–44.

Knauber, P. et al., 2000. Applying product line concepts in small and
medium-sized companies. Software, IEEE 17 (5), 88–95.

Linden, F.V.D., 2002. Software product families in Europe: The ESAPS
and CAFÉ projects. In: IEEE Software, pp. 41–49.

Lorge Parnas, D., Clements, P.C., 1986. A rational design process: how
and why to fake it. IEEE Transactions on Software Engineering 12 (2),
251–257.

Mathiassen, L., Ories-Heje, J., Ngwenyama, O., 2001. Improving software
organizations: From principles to practice. In: The Agile Software
Development Series. Addison-Wesley Professional, p. 368.

Müller, M., Hagner, O., 2002. Experiment about test-first programming.
Software, IEE Proceedings 149 (5), 131–136.

Schwaber, K., Beedle, M., 2001. Agile Software Development with Scrum.
Prentice Hall.

Seaman, C.B., 1999. Qualitative methods in empirical studies in software
engineering. IEEE Transactions on Software Engineering 25 (4), 557–
572.

Sugumaran, V., Park, S., Kang, K.C., 2006. Software product line
engineering. Communications of the ACM 49 (12), 28–32.

Tian, K., Cooper, K., 2006. Agile and software product line methods: are
they so different? In: 1st International Workshop on Agile Product
Line Engineering (APLE’06). IEEE Computer Society: Baltimore,
Maryland, USA.

Yin, R., Campbell, D.T., 2002. Case Study Research. Sage Publications
Inc.

Geir Kjetil Hanssen works as a researcher on software process improve-
ment and methodologies at SINTEF ICT, Norway’s largest independent
research institution. He has a M.Sc. degree in informatics from the Uni-
versity of Trondheim and 3 years of industrial experience. Currently he
also holds a position as Ph.D. student at the Norwegian University of
Science and Technology.

Tor Erlend Fægri works as a researcher on software process improvement
and software architecture at SINTEF ICT, Norway’s largest independent
research institution. He has a M.Sc. degree in computing science from the
University of Glasgow and 6 years of industrial experience. Currently he
also holds a position as Ph.D. student at the Norwegian University of
Science and Technology.

854 G.K. Hanssen, T.E. Fægri / The Journal of Systems and Software 81 (2008) 843–854

Paper 4

Hanssen, G. K., Yamashita, A. F., Conradi, R. and Moonen, L. (2010). Software
Entropy in Agile Product Evolution. In proceedings of 43d Hawaiian International
Conference on System Sciences (HICSS'10), Hawaii, USA, 4-7 January. 1-10.

Is not included due to copyright

Paper 5

Hanssen, G. K. (2010). Opening up Software Product Line Engineering. In proceedings
of 1st International Workshop on Product Line Approaches in Software Engineering, in
conjunction with the 32'nd International Conference on Software Engineering (ICSE),
Cape Town, 2 May. 1-7.

Is not included due to copyright

Paper 6

Hanssen, G. K. (2010). A Longitudinal Case Study of an Emerging Software
Ecosystem: Implications for Practice and Theory. Journal on Systems and Software
(under review).

�

�����

A Longitudinal Case Study of an Emerging Software
Ecosystem: Implications for Practice and Theory∗∗

Geir K. Hanssen a, b.

 a Department of Computer and Information Science, Norwegian University of Science and Technology
(NTNU), Sem Sælands vei 7-9, NO7491 Trondheim, Norway

b SINTEF ICT, NO7465 Trondheim, Norway

Abstract

Software ecosystems is an emerging trend within the software industry implying a
shift from closed organizations and processes towards open structures, where actors
external to the software development organization are becoming more involved in
development. This forms an ecosystem of organizations that are related through the
shared interest in a software product, leading to new opportunities and new challenges
to the industry and its organizational environment. To understand why and how this
change occurs, we have followed the development of a software product line
organization for a period of approximately five years. We have studied their change
from a waterfall-like approach, via agile software product line engineering, towards
an emerging software ecosystem. We discuss implications for practice, and propose a
nascent theory on software ecosystems. We conclude that the observed change has
led to an increase in collaboration across (previously closed) organizational borders,
and to the development of a shared value consisting of two components: the
technology (the product line, as an extensible platform), and the business it supports.
Opening up both the technical interface of the product and the organizational
interfaces are key enablers of such a change.

Keywords: software ecosystems, software product line engineering, agile software development,
longitudinal case study.

1 Introduction
A recent development within software engineering is the emergence of software
ecosystems [1, 2]. This new concept and its implicit reference to ecology imply a shift
of focus from the internals of the software organization (the individual organism)
towards its environment and the relations and actions within (the ecosystem).
Viewing the software industry and the market it serves as an ecosystem may introduce
a set of new challenges and opportunities [3], for example new business models, open
innovation, collaborative development, issues of ownership, strategic planning, and
variability management. This seems to be a part of a general development in the
software industry [4], where customers expect to be more involved in the shaping of
the technology they use, where innovation is no longer an internal matter, where time
to market is decreasing, and adoption rates are increasing.

��

*) Submitted to the Journal of Systems and Software - Under review

�

�����

To understand some of this ongoing development we have studied CSoft, a medium
size software product line organization for a period of approximately five years.
During this time they have moved from a closed and plan-driven approach to a
practice of agile software product line engineering (SPLE) and now further towards a
software ecosystem. Based on three recent studies of this organizational development
we have designed and conducted a final study, collecting new qualitative data to
investigate in more detail this development in general, and how the organization
relates to its environment in particular. Thus, the research question for this study is:

Why and how is software product line engineering developing towards a
software ecosystem?

Our study will give insight into three aspects of this question: 1) how this ecosystem
has emerged, 2) how the present organization works in terms of its structure, its
processes, and its product line, and 3) how the organization relates to actors in its
external environment.

To help develop this understanding and to contribute to the growing research on
software ecosystems, we relate our findings from this case study to the general theory
of organizational ecology [5, 6], which is derived from socio-technical theory. This
theoretical platform has matured for decades and describes how organizations in
general relate to their external environment. We have found that this knowledge is
relevant, applicable and beneficial to the software engineering domain, and that
existing literature on software ecosystems lacks this theoretical connection. Several
recent studies have suggested definitions and developed important concepts but the
terminology and connectivity between these concepts are still vague. We believe that
this field of research can benefit from the development of an empirically grounded
theory of software ecosystems. The results obtained from this study are used to
propose such a theory, as a starting point. We also discuss implications for practice as
well as providing advice for further research.

2 Background

2.1 Socio-technical theory and organizational ecology
Socio-technical theory is a view of the organization as the sum of and interplay
between a social system and a technical system. That is 1) the people, their relations,
their knowledge, and how they work together as a whole, and 2) the tools and
techniques being used to perform the work. A fundamental principle of socio-
technical theory is the natural interdependence between these two systems, meaning
that to improve the performance of the organization (productivity, quality of work
etc.) both subsystems have to be considered at the same time. Changing one affects
the other. This principle was first drafted by Trist and Bamforth in 1951, based on
their studies of changes of work processes in coalmines [7].

Through studies that followed, the theory has been developed to consider how
organizations relate to their external environment [5]. This implies that an
organization has to be understood as both 1) the internal interplay between a social
subsystem and a technical subsystem (the socio-technical system), and 2) the
interplay between the organization and its external environment.

�

�����

Figure 1 - The socio-technical system and the organizational ecosystem

Emery and Trist [ibid.] developed a simple classification system of four types of
organizational environments – forming a series, in which the degree of causal
texturing is increased. Thus, understanding and ordering the types of environments is
useful in understanding socio-technical systems beyond the limits of a single
organization. The first, and the simplest type, is ‘the placid, randomized environment’
where “goods” and “bads” are unchanging, and are randomly distributed in the
environment [ibid., p.7]. The optimal strategy is to ‘do one’s best’ on a purely local
basis – there is no difference between strategy (planning) and tactics (execution). The
second type is ‘the placid, clustered environment’ where “goods” and “bads” are not
randomly distributed but band together in certain ways. Strategy is different from
tactics, and survival becomes critically linked with what an organization knows about
its environment. Organizations in this environment tend to become hierarchical, with
a tendency towards centralized control and coordination [ibid., p. 8]. The third type,
‘the disturbed-reactive environment’, is an environment where there is more than one
organization of the same kind. The existence of a number of similar organizations
becomes the dominant characteristic of the environmental field. These organizations
compete, and their tactics, operations and strategy are distinguished. The flexibility
encourages a certain decentralization, and it also puts a premium on quality and speed
of decisions at various peripheral points [ibid., p 9]. The fourth, and the most recent
type is ‘turbulent fields’. This type implies that significant variances arise from the
field itself, not simply from the interaction of the component organizations. Three
trends contribute to the emergence of these dynamic field forces: i) the growth to
meet type-three conditions, ii) the deepening interdependence between the economic
and other facets of the society, and iii) the increasing reliance on research and
development to achieve the capacity to meet competitive challenge. A change
gradient is continuously present in the field [ibid., p. 10].

�

�����

Figure 2 Types of organizational environments

This interplay, inherent in turbulent organizational environments, has been further
studied, leading to the development of the concept of organizational ecology [6]. It is
particularly relevant to organizations operating in complex and unstable domains.
Viewing the organizational environment as an ecosystem means that it is considered
to be an open system as opposed to a closed one, organizational borders are
permeable, and organizations relate dynamically to other organizations in the same
field.

Developing the ecology concept further, Trist describes three classes of organizations
within the turbulent environment. In a Class 1 system member organizations are
linked to a key organization among them. The key organization acts as a central
referent organization, doing so even though many of them are only partially under its
control, or linked to it only through interface relations. Interface relations are as basic
to systems of organizational ecology as superior-subordinate relations are to
bureaucratic organizations. Interface relations require negotiation as distinct from
compliance – a basic difference between the two types of system. In a Class 2 system
the referent organization is of a different kind. It is a new organization brought into
being and controlled by the member organizations rather than being one of the key
constituents. A Class 3 system has no referent organization at all.

Technocratic bureaucracies have been the natural organizational form for disturbed-
reactive environments (up to the 1960’s or so), and this is a form that has been applied
to many software engineering organizations. However, this type of system fails to
adapt to conditions of persistent and pervasive environmental turbulence, mostly
because it is constructed and optimized to work well in stable environments. This
leads to the emergence of the new ecologically oriented systems, which show clear
differences in that they promote self-regulation (as opposed to centralized control),
and that they have a networked character (as opposed to segregated organizations).
According to Trist [ibid. p. 172], such systems, lacking formal structure, exist through
the use of technology. Further, they also need shared values. Trist used the example of
the 60/70’s youth-culture that had a set of distinct (political) values. A more
appropriate example from a business perspective is a shared value in growth and
profit.

Unlike the micro-level (the single organization) and the macro-level systems
(society), the intermediate level systems (organizational ecosystems) are hard to see,
understand, and describe due to their weak structuring. They are also the most recent

�

�����

type, so there is less experience with them. This relates especially to software
engineering ecosystems, which is a new but rapidly advancing concept [1, 2] despite
decades of development of software engineering as a practice and business. This
approach is driven by the Internet as a rich and speedy collaborative platform (the
technology), and a common interest in the product line (the shared value).

2.2 Software ecosystems
Software ecosystems is a more recent term, that refers to a networked community of
organizations, which base their relations to each other on a common interest in a
central software technology. Some other definitions of this emerging concept have
been proposed, for example by Jansen et al. [8]: “a set of businesses functioning as a
unit and interacting with a shared market for software and services, together with the
relationships among them.” (p. 2). Another definition by Bosch [1], focusing more on
the common interest in the software and its use, is: “the set of software solutions that
enable, support and automate the activities and transactions by the actors in the
associated social or business ecosystem and the organizations that provide these
solutions.” (p 2).

Well-known examples of communities that may be seen as software ecosystems are
Apples iPhone/Appstore platform, and the open-source development environment
Eclipse. The first is an example of a partially closed and controlled ecosystem, and
the latter is an example of an open ecosystem allowing more flexibility in use and
development. This simply illustrates that the ecosystem concept may refer to a wide
range of configurations. Yet, they all involve two fundamental concepts: 1) a network
of organizations and, 2) a common interest in central software technology. These
organizations may have different relations to the central software technology, and for
this reason, different roles in the ecosystem. There are three key role types. First, one
organization (or a small group) acts as the keystone organization, and is in some way
leading the development of the central software technology. The second key
organizational role is the end-users of the central technology, who need it to carry out
their business, whatever that might be. The third key role is third party organizations
that use the central technology as a platform for producing related solutions or
services. In addition to these key roles, various other related roles might be part of the
ecosystem [9], for example standardization organizations, resellers, and operators.

A fundamental property of the central software technology is that it is extensible
beyond the keystone organization [10]. Extensibility can be achieved in various ways,
for example by providing an application programming interface (API) or a software
development kit (SDK), by supporting exchange of open data formats, or by offering
parts of the technology as open source. Opening up the technology in these, and
potentially other ways, enables external organizations to use the central software
technology as a platform where existing services or data can be used and extended.
Bosch proposed a Software Ecosystem Taxonomy [1] that identifies nine potential
classes of the central software technology, according to classification within two
dimensions. The first one is the category dimension, which is ranging from operating
system to application, and to end-user programming. The second one is the platform
dimension, ranging from desktop to web, and to mobile. The case discussed in this
paper is an application-web type.

The keystone organization has a special position in the ecosystem as it controls,
strictly or loosely, the evolution of the central software technology. This may include

�

�����

various responsibilities, for example typical software product development activities
such as strategic planning, R&D, and operational support. These responsibilities come
in addition to activities specific to ecosystems such as enabling efficient external
extensibility, provision of insight into planning and development, and supporting
ecosystem partners in various other ways.

One potential benefit of being a member of a software ecosystem is the opportunity to
exploit open innovation [11], an approach derived from open source software
processes where actors openly collaborate to achieve local and global benefits.
External actors and the effort they put into the ecosystem may result in innovations
being beneficial not only to themselves (and their clients) but also to the keystone
organization, as this may be a very efficient way of extending and improving the
central software technology as well as increasing the number of users. Closer
relationships between the keystone organization and the other actors may drive both
an outside-in process as well as an inside-out process, as described by Enkel et al.
[12]. Also, the proximity between the organizations in an ecosystem may enable
active engagement of various stakeholders in the development of the central software
technology [13].

The ultimate objective for investing in and working towards an ecosystem is that all
members will gain more benefits from being a part of it, as compared to the more
traditional approach for software product development with segregated roles, a low
level of collaboration, and closed processes. A well functioning ecosystem is, in
summary, a complex configuration with collaboration across traditionally closed
organizational borders. Such multi-organizations are probably not established as a
deliberate, planned effort. Rather, they emerge as a result of many congruent factors
such as technology development, globalization, new collaborative patterns, and
clients becoming more and more accustomed to participating in the shaping of the
technology they use.

3 Study method
The case study reported in this paper is the last in a series of four consecutive studies
of the software product line organization CSoft, constituting a longitudinal study
started in 2004, and now covering five years of the organization’s history [13-16]. In
addition, two earlier papers written by other authors provide background information
on the historical development of the organization [17, 18]. Together, this provides a
valuable insight into the longitudinal development of a software product line
organization.

The name of the case organization and its product is kept anonymous due to a non-
disclosure agreement that has been signed by the author.

�

	����

3.1 Study type
The study can be classified as a longitudinal single case study. We have applied a set
of principles for interpretative field studies defined by Klein and Myers [19]:

Table 1 – Application of Klein and Myers seven principles of interpretive field research.
Principles (from Klein and Myers [16], p. 72) Practiced in the case study

1. The Principle of the Hermeneutic Circle

Data are collected through repeated interviews
with actors playing various roles. The data
collection is supported by observations and as
collection of relevant documentation. The
growing knowledge of the case has guided the
data collection.

2. The Principle of Contextualization

The study of the case is conducted from two
viewpoints – the present organization and its
activities, and how this organization has emerged
over time.

3. The Principle of Interaction Between the
Researchers and the Subjects

A large part of the collected data is based on
semi-structured interviews [17] that followed
open interview guidelines to ensure a balance
between thematic focus and room for reflection,
correction, and discussions. This allows for
unplanned but relevant topics to be addressed.

4. The Principle of Abstraction and
Generalization

Findings are related to the concept of
organizational ecology [5], derived from socio-
technical theory. Key principles from this
theoretical background are applied to the studied
case. Some are adopted, some are adjusted, and
some are added.

5. The Principle of Dialogical Reasoning

The theory applied to the case was not used to
plan and guide the data collection. The
applicability of the theory became evident
through the analysis after the data had been
collected.

6. The Principle of Multiple Interpretations

This principle is followed by collecting data from
both external actors and people with various roles
in the product line organization.

7. The Principle of Suspicion

The data have been collected and analyzed by the
author, who is external to the organization,
having no formal responsibilities, interests or
agenda, except to create an unbiased view of the
organization and its development.

�

F����

3.2 Data sources
During 2008, 2009 and 2010 new data were collected to investigate the agile software
product line organization, its processes, and in particular how they relate to external
actors. Data are of three types: interviews, observations, and collected documents.
Table 2 shows the list of content for each type.

Table 2 - Collected data

Interviews R&D manager (semi-structured interview)
Manager of Professional Services (semi-structured interview)
Product Strategy Group manager (semi-structured interview)
Product Strategy Group members (3 semi-structured interviews)
Technical Account Manager (semi-structured interview)
Team leader (semi-structured interview)
Team member/developer (semi-structured interview)
Product Strategy Group manager (follow-up interview after observation of the
review meeting)
2 (of 3) members from the Architecture Team (group interview)

Observations Product conference (various presentations and ad-hoc conversations)
Customer review meeting (one R&D team + customer team + sales)
Webinar presentation of the new API

Documents Component A-E project roadmaps
Chief Strategy Officers keynote at a product conference
Chief Executive Officers keynote at a product conference
Vice President Product marketing – presentation at a product conference
Customer’s presentation at a product conference

3.3 Sampling and collection
The focus of this study has been to investigate how CSoft relates to external actors
such as customers and third party organizations. This has guided the sampling of
interview respondents, selection of events for observation and documents to be
collected. Interview respondents have been asked to recommend other respondents,
based on their understanding of the study (snowball sampling). A single-person
interview lasted approximately 30-40 minutes. Group interviews lasted up to 3 hours.

All data have been collected and stored in a database for later analysis. Interviews
were recorded using a digital voice recorder and then transcribed.

3.4 Analysis
Data has been analyzed in two steps:

Step1 – All data were first examined to produce an intermediate analysis report,
which documents the development process in terms of roles, activities, and artifacts,
in addition to high-level concepts, necessary to understand how product planning and
development is conducted. This analysis created a structure by grouping information
coming from the various data sources. Examples of such concepts are teamwork,
planning, and innovation. The objective of this report was to establish a broad
understanding of the context, i.e. the organizational set-up and its processes. The
report has been used in the description of the study context (3.5), as well as a
preparation for step 2.

�

G����

Step 2 – All data, in textual format, were analyzed using a tool for qualitative data
analysis, NVivo™. Data were coded, meaning that fragments of text, for example
statements, facts, comments, concerns, and ideas, were tagged with nodes describing
the data fragment. Examples of such nodes, which emerged from the analysis, are ‘co-
creation’, ‘finding the right stakeholders’, ‘learning of business processes and
domain’ etc. These are detailed in chapter 4 (Results). This way of analyzing the data
develops a meaning and an interpretation of the data, and relates fragments from
different locations in the data material to concepts, which may be grouped into
categories. These results can then be used as the basis for formulating a theory
explaining some of the findings. This approach resembles ‘grounded theory’ in that a
theory is developed, and that it is grounded on data [20]. The theory being developed
may be new, but it can also be related to an already established theory. In the case of
the CSoft study, the analysis is related to the organizational ecology concept
explained in section 2.1, and it seeks to apply this theory in a software product-
engineering context. Implications for theory are discussed in section 5.1.

3.5 Study context

3.5.1 The organization, processes and the product line
The organization. CSoft is a medium-size software company that develops,
maintains, and markets a single product line under the same name. They have now
become the market leader in the high-end segment of the market. Currently CSoft
employs about 260 people, including more than 60 developers. The main office is
located in Oslo, which houses the main section of the development department as well
as top management and various support services such as operations, technical support,
sales, training and others. The rest of the organization is distributed internationally
with development departments, sales and other support services in Eurasia and in the
USA.

The development department is organized as a set of teams, each responsible for one
of the main modules in the product line. A team is mostly a fixed group of 4-6
developers and a team leader, who is experienced in the domain and the technology.
The teams share some supportive services such as the Chief Technical Officer (CTO),
a system architecture team, and QA-services.

Being a product line organization means that strategic planning is a natural and
important activity. This used to be a side activity of some of the supportive roles but
has now developed into a fulltime prioritized internal service. A Product Strategy
Group (PSG), consisting of five product managers, is responsible for developing a
product roadmap for each of the main modules, and supports their development.

The processes. The overall SPLE process at CSoft can be described as three
interacting main processes, each with a different time horizon [13]. First, the PSG
drives a continuous long-term (1-2 years) strategic process, creating product
roadmaps based on input from nearly all parts of the organization as well as several
external sources. These roadmaps are high-level plans, or a vision, for the product line
looking one to two years ahead. They typically present business cases, key
stakeholders to participate in development, and prioritized product qualities, instead
of functional requirements or feature descriptions. The main content of these plans is
made visible externally to the organization through various meetings with customers
and partners, at conferences, and through other channels. Roadmaps do not describe

�

�
����

specific design decisions but rather high-level guidelines, which are elaborated when
detailed plans are laid out for the development projects. In some cases, customers or
related third parties visit the R&D department to have close meetings directly with
one or more of the development teams to elaborate ideas and discuss needs.

The second main process is the agile development process Evo [21], which the R&D
department follows to manage the approximately one-year long development projects,
leading towards the next main release of the product line (all components are released
at the same time). Each component team runs an Evo-project, meaning that
development is done in fortnightly iterations, and that each iteration delivers new
working software. Each iteration ideally starts with a meeting with an external
stakeholder to explain and discuss needs and requirements. At the end of the iteration
the team meets with the stakeholder again to get feedback on the outcome (new or
improved software) from the iteration. Customers come from all over the world, using
a web meeting solution (WebEx™) to communicate as effectively and closely as
possible. This is a radical change compared with the previous waterfall approach
where feedback was rare.

The third and last process is the operational process, which encompasses the day-to-
day operations such as support, training, sales and marketing, and high-level
maintenance. Apart from being common functions in a product organization they are
also highly valuable sources of input to both the strategic process and the Evo
development processes as they represent a wide, diverse, and continuous interface
with customers.

The product line consists of five main modules, which together support the core
business operation of the customers: a value chain of planning, data collection,
analysis, and reporting of results. The composition and use of the modules varies
according to customer and case. Some modules can be used in any configuration,
while the use of others depends on the situation. The software comes with a set of
predefined configurations for the most common usage scenarios.

The product line offers an Application Programming Interface (API), which is
implemented as standard web-services. Most modules offer an API, which enables
clients to integrate the product with other systems, and which is extensively used by
other third-party organizations to offer additional software solutions and/or services.
More than 60 such partners now base their business partly or completely on using the
CSoft product line as a platform through these APIs.

�

������

3.5.2 From creative chaos to an emerging software ecosystem
CSoft was established in 1996 and has grown continuously since then. This
development has gone through three phases, and has now entered a fourth. This
section presents a summary of these phases of development, and it indicates some
important milestones in the development of the organization.

The timeline in figure 3 shows the main events [22] in the development of the
organization, the approximate increase in staff, and the studies of the organization.

Figure 3 - Timeline of the development of the case organization

1996-1999: “Creative chaos”
The company initially grew out of a small business providing manual services to very
few clients. A simple homemade software tool grew into a solution that could be sold
as a stand-alone software product. The main focus of the company changed, and the
development of this product became the main objective. At the start, in 1996, there
were only a few employees providing the product to a handful of clients. The process
can best be described as ad-hoc since the main drivers were almost daily interactions
with and feedback from customers. A customer request was literally routed directly to
the developers. This start-up phase was a ‘creative chaos’ – that is, it had nearly no
plans and no control, but it was undoubtedly extremely creative and productive. The
product grew rapidly, not only in terms of features and functionality, but also in terms
of defects and complexity. Work became stressful, with little control, and a lot of
overtime.

1999-2003: Waterfall
As the number of customers increased the organization formalized the development
process, mostly according to the principles of the waterfall model [23]. This
somewhat disreputable approach to organizing software development emphasizes
upfront detailed planning of requirements, design, and development. The
development is divided in consecutive phases, where requirements are developed into
a design, and the design is developed into a software system, which is tested close to
deployment. Prior to this, the R&D department was extended with a QA-manager.
This structured approach established a certain level of control, and helped the
organization in the continuing development of their product, which grew alongside
the customer base. After a few years, several problems arose, clearly related to the
waterfall approach [17]. Testing and verification was postponed to the final stages
leading to late identification of problems, which in turn caused much rework. Also,

�

������

requirements were almost solely focused on functionality, leaving out the quality
perspective. To support a growing R&D department, and to spread knowledge about
the formalized development process, an electronic process guide (EPG) was
developed, and made available via the intranet [18]. The product expanded and
eventually became a product line, capable of serving various usage scenarios. To
manage this increasing complexity a Product Management Team (PMT) was formed
– a group of experienced employees with other main responsibilities, who were
supposed to spend part of their time in strategic product planning. In addition various
specialized functions, beyond software development, were introduced such as
Technical Account Managers (TAM), the operations department, and training
services.

2004 – approx. 2009: Agile product line engineering
Due to a critically declining process performance, management of R&D was looking
for a way to improve the situation. At a software engineering conference, a few
representatives from the company learned about evolutionary development and the
Evo method [21]. As it seemed to address some of their concerns they initiated a
three-month testing period of this radically different development approach in one of
the release projects. Instead of an extensively prepared process adoption, they started
out with a few principles, focusing on requirements management, where functional
requirements were replaced by explicit expression and evaluation of product qualities,
preferably stated by customers involved in the development process [15]. Early
experience showed that the number of issues near release was reduced, and that the
delivered product matched customer expectations better than before. After this initial
process trial, Evo was adopted on a permanent basis [13, 14]. Alongside the growth in
the organization and the product line the PMT group was re-established as a full-time
Product Strategy Group managed by a Chief Strategy Officer (CSO). Another
supportive service, the architecture team, was established, originally with three full
time members. Their task was to handle the excessive level of system entropy [16],
and to support R&D in architectural issues. In 2006 CSoft acquired a former
competitor (PSoft), and boosted the number of employees to 260. Adding new offices,
for both R&D and marketing, was a considerable challenge. Through extensive
internal training in the following year, the new organization was mostly using Evo as
the development process.

4 Results
This section structures and summarizes the results obtained from the recent study of
CSoft. First, we look at how the present product line organization relates to its clients.
Then we describe the recent emergence of a community of third party organizations.
Together, these results show how CSoft relates to its external environment,
constituting a software ecosystem.

4.1 Engaging customers
An important aspect of the continuous change over the past years is how CSoft now
relate to their customers. The shift from a plan-driven approach to an agile approach
has included an increased proximity to the customers. The initial experience from
collaborating with customers as external stakeholders in development projects [14,
15] showed positive effects such as better management of requirements, and
improved motivation among developers. It also showed that the relationships with the

�

������

stakeholders were fragile, and that it takes continuous and careful management to
maintain their motivation to participate. These initial lessons inspired CSoft to further
develop and actively exploit close relationships with their customers.

The main motivation for customers to spend time participating in the
development projects is the ability to affect development: no payment or any other
compensation is provided. One of the product managers explained:

“…they see their wishes or their requirements or whatever in the product at the end.
And then you get very nice feedback like ‘I can see that I said this and that, and in the
next release you did it’”.

This collaboration forms a self-regulating system where the supplier and the
stakeholders mutually adapt to each other through their shared interest in developing
the software product line. This usually works well, but there is always a risk of having
external stakeholders, which do not provide the necessary input, as explained by the
manager of the PSG team:

“Everybody has busy jobs and projects that need to be on time etc. It happens quite
often that we have to cancel these meetings or that they haven’t done anything since
the last time. Then we can only show them what we’ve done and get some ad-hoc
feedback...”

The PSG manager also explained that it is relatively easy to discuss ideas, but that it is
more of a challenge when they are included in the development process:

“There’s no problem to get them to discuss high-level plans, but it varies when it
comes to the development process”

 Maintaining the motivation for participating is an important task for the PSG.

Interestingly, large and leading customers tend to expect and demand to be more and
more involved at both planning and development stages. One example is a product
conference keynote given by the VP from one of the large customers. He stated
several ‘requirements’ (this was the word he used) for being involved, for example:

“Regular meetings with product development teams”, “To work as a stakeholder on
new software developments that are key to us.”, “Help to guide product strategy.”,
and others.

Finding the “right” stakeholders for participation in the development projects is
not done through a formal and structured process, but is mostly based on the
collective knowledge about the customers. The PSG manager says,

“We don’t have a formal process for selecting stakeholders. We have internal
discussions, listen to sales people etc. We know which customers have asked for
certain features or improvements or those that are heavy users of a particular type of
functionality.”

In addition, experience from previous participation is also useful as explained by the
R&D manager:

“We have become better at selecting [external stakeholders]. Those that have
disappointed us are never asked again. You end up with a pool of persons that you
know you can trust.”

�

������

An important part of recruiting customers as external stakeholders is to communicate
to them clearly the opportunity, which is given to them. The PSG manager explains:

“..quite often we talk about our development process. We do it in sales situations
because it tells that our goal is to solve business problems for our customers. This
level of interaction and the way we try to listen has been well received, and now some
customers insist on being involved in development.”

In the very start when Evo and collaboration with external stakeholders were at an
experimental stage it took quite some effort to recruit and stakeholders to the
development projects and to keep them active [14]. After some releases where
collaboration with external stakeholders have become an integrated part of the
development process the situation is turned upside-down. When asked to explain this
relationship, one of the product managers told us:

“It's almost a problem because as soon as you offer the capability of being a
stakeholder, the hardest part is rejecting people, turning them away from actively
participate. So people are very keen on participating.”

Co-creating the product line is one of the most significant effects of engaging and
communicating with external stakeholders. The rationale is simple, CSoft have the
most up to date knowledge of the technology, and the ability to make use of it in the
development. Likewise, customers hold the most up to date knowledge of their own
business domain, and how it seems to develop. These two pools of knowledge and
competence are joined in several ways. One important arena for sharing and gaining
knowledge is the product conference where management, strategists, developers and
other internal actors get to meet externals from various customers and third parties.
Equally important – customers can meet other customers, third parties can meet
customers or internals etc. This shows the networked character of the ecosystem that
is shaped around the product line. Some examples from the product conference in
2008:

A former customer of a competing solution was seeking experienced customers to
discuss the product line and share experience.

Several providers of third party products and services were having stands at the
conference, communicating with both existing and potential customers and
developers from CSoft.

Another major event, which is more directly focused on the development of the
product line, is the annual Advisory Board meeting. Top management from some of
the largest and most demanding clients meet with the PSG and other actors who are
involved in the shaping of the product strategy. A PSG member explains that they
meet to:

“…discuss high level product strategy and how the demands of their companies and
the market are developing.” Bringing together major competitors like this was a
daring thing to do according to the PSG manager: “The first time we did this it was a
bit exciting – would they discuss issues openly, and would they open up? It turned out
that they did very fast. They have many concurrent needs, and even though they are
competitors they see the value of doing this.”

From a practical viewpoint, we see that tools and infrastructure for collaboration are
important enablers for co-creating the product line. Especially the Webex online

�

������

meeting solution lowers the threshold for having frequent and detailed meetings with
stakeholders:

From our observation of one of the customer review meetings we saw a lot of very
detailed discussions that were made possible by on-the-fly demonstration of the
software through the screen sharing solution. This sparked detailed discussions both
on the customer side and among the development team. The meeting resulted in a list
of clear actions points to be addressed in the next development iteration.

Close corrective feedback in the Evo development projects is another approach to
co-creating the product line, but on a tactical level. One of the developers describes
the meeting with the external stakeholder at the end of the two-week Evo iteration:

“What you get during a meeting is often very valuable. Especially when you are
about to move in the wrong direction, which you can adjust. We get feedback saying
that our solution is not quite what they had in mind or what they need.”

This demonstrates one important function of the agile process; the development teams
get nearly immediate (within two weeks) and detailed feedback. This closeness to a
few selected customers means that CSoft must also consider the needs of other
customers, as they are the referent organization, which always has the last word in the
development of the product line. This is partly achieved through Evo’s focus on
product qualities instead of product features, which are typically emphasized in plan-
driven development methods. This is a useful abstraction, and it turns the focus from
predefined design (features) to effect and impact (qualities). Both the product
roadmaps and the evaluation meetings at the end of the Evo iterations evaluate the
product qualities. This means that both the development teams and the external
stakeholders have to consider why something is needed, leaving the how to the
developers. The PSG manager explains:

“..we take one step back, and try to think about why our stakeholder needs this, and
then rethink other ways of solving their problem. It is in this type of process that the
smart things can turn up – that your thinking is totally new and that you come up
with a solution which may be a totally different way of doing it, maybe faster...”.

Catching and following up on customer ideas on an ad-hoc basis is equally
important as involving customers in regular processes such as roadmapping and the
Evo development projects. At the product conference:

A customer representative told about a case where his company gave input to CSoft
on some changes they would have liked to see. This led CSoft to invite a delegation
from the (abroad) customer to the R&D department in Oslo. Ten CSoft people spent
the whole day discussing the solution with four representatives of the customer. This
was perceived very positively, and in the end actually affected the software.

Some of the largest customers may also request dedicated workshops to discuss needs
and ideas. The PSG manager talks about this:

 “…for some of our largest customers, mostly by their initiative, we organize
workshops once a year, usually on a strategic level. They want to know what the
roadmaps may bring for the next couple of years, and talk a lot about their needs
etc.”.

�

������

The close contact with customers is also a valuable source of learning about
competing solutions. One of the team leaders talks about customers visiting the R&D
department:

“In these meetings they demonstrated the solution they used today, and actually
demonstrated how they used the competing solutions – what worked well and what
needed improvements, as well as ideas they might have. These meetings gave the
team a wealth of details, and it was quite clear what to deliver to the stakeholder.”

The PSG manager also explains the value of learning of the use of competing
solutions:

“…alternatively they do it using other tools today when not using our solution. The
option to work more closely with them and to get that knowledge made us more
capable to meet their needs better than before when the development was more of the
black-box type”.

A phrase from one of the roadmaps illustrates the business impact this may have:

 “Through a client we have been given a thorough demonstration of the competing
solution NN, and by implementing support for [some advanced functionality] and a
couple of small features, the X-module will by far exceed their corresponding
functionality. These improvements alone will ensure we win one [sales] deal, and
have also been brought up by several other clients/prospects.”

Learning the business processes and domain is another valuable outcome from the
direct contact with selected stakeholders. One of the developers talks about one of the
stakeholder meetings in an Evo project:

“…we have tried to solve a task in a way we believed would be reasonable, but to
people who actually use this it is obvious that we have misunderstood the process.
This gives us guidance as early as possible.”

A PSG member tells about another case:

“They [the customer] were here in a workshop for two days. We presented the
roadmap [for module X] and they presented their wishes and their business, what
they are doing.”

This illustrates the shared interest that the customers and the supplier have –
customers want to learn about the product line and its development. Correspondingly,
CSoft learns about the business that their product line is supporting.

4.2 An emerging third party community
At present around 60 external organizations base their business completely or partly
on CSoft as a platform. This can be value-adding solutions or products, related
services, and consulting. Examples are solutions for data visualization or voice data
capture technology, assistance in using various components in the product line, and
training. This networked community [24] has not been planned and deliberately
established by CSoft, it has emerged spontaneously over the past years. This
emergence is mostly driven by customers’ need for additional features and services on
one hand, and the opportunity to extend and use the product line as a platform on the
other hand. Also, building solutions and providing services based on the product line
means that external organizations get immediate access to a large group of established
users of the product line.

�

�	����

Providers of third-party solutions are considered to be important external
stakeholders, and are included in the development of the product line in very much
the same way as customers.

During a product conference, a representative from a third party company,
delivering an integrated product, explained that when they needed to improve the
integration with the CSoft platform they took on the role of an Evo stakeholder.
Communication was mostly done by phone, supported by web meetings with screen
sharing.

Offering an efficient integration technology enables a third party community.
Over the past few years a set of simple APIs have been offered to enable external
actors to make extensions to the product line. The development of these APIs have
followed the development of the product line, where each new release has improved
existing and offered new APIs due to requests from external actors. This means that
there is a long (a year) connection time between a request for an interface and its
actual release. As more and more externals have made use of this connection point to
the software it has been given increasingly higher priority in the development of the
product line. An excerpt from one of the roadmaps exemplifies this:

“We are in dialogue with some clients/prospects who are building their portal in a
Content Management System, and need to integrate content from [module X] into it.
Some competitors seem to have APIs that are easier to use than our SOAP1 based
APIs, making it easier to integrate with other portals/communities. It is therefore an
ambition to provide an easier API for including module X content into an external
portal.”

Due to the extensive use of the API’s by externals and their increasing demand for
integration with the product line it became clear that the simple web-service based
interface had become obsolete. This has led CSoft to develop and offer a new API
called FlexibilityFramework (FF), which enables a closer integration to core services
in the product line than the previous (and still existing) simple messaging-based APIs
offer. A recent webcast, where the CSO presents FF explains further the motivation
for this improved interface:

“CSoft is like a supertanker. It is large, can take huge loads, travel far, and take
heavy weather. These are all very positive things, on the other hand, the consequence
of that approach is that we are quite careful at looking after the supertanker. That
means various procedures, on policy, on quality assurance and so forth. And that
means that we get less nimble than we would like. The question we posed ourselves is
how can we behave like a speedboat while having all the benefits of the supertanker?
I’d like you to think of FF as the speedboat. The tanker is still there. It will still take
heavy loads and perform extremely well, but in order to be nimble we can build a few
speedboats. And they have independent lives from the supertanker and can run on
different development schedules.”

The last argument is worth a comment; with this new interface to the product line
external actors are disconnected from the long release cycles of the product line, and
can develop value-adding solutions independently. This is likely to further drive the
growth of the third party community.

��

1 Simple Object Access Protocol, http://www.w3.org/TR/soap12-part1/

�

�F����

Actively supporting the community has become a regular activity in addition to the
continuous development of the product line. As this community has emerged and
grown, CSoft have seen its value, and started to actively support it. In 2007 a
dedicated web-portal was launched to make this community visible and each partner
is listed and presented. There are five types of partners, those offering technology that
is integrated with the product line, those offering value adding services, some can
prepare the use of the product line, some can use it on behalf of clients and some offer
consultancy services.

5 Discussion
We have now described the CSoft case, emphasizing the present organizational set-
up, its processes and the product line, the development timeline of the organization
(section 3.5.2), and how the present organization relates to its external environment
(section 4). Using this insight we now seek to provide answers to our research
question: Why and how is software product line engineering developing towards a
software ecosystem?

First of all, the initial motivation for changing the waterfall-like development process
by adopting Evo in 2004/2005 was that CSoft struggled with unstable requirements
incurring high costs due to little flexibility in the process. Much emphasis was given
to extensive and thorough requirements engineering upfront, but with little effect [15].
The immediate experience from involving stakeholders in the short Evo development
iterations was that developers felt more comfortable and secure by having this close
and continuous dialogue on requirements and results [ibid]. However, in the first
release projects using Evo, it became a considerable challenge to maintain the
motivation of the external stakeholders throughout the project. The new process was
fragile [14].

(Change 1) From the recent study we see that this has clearly changed; now external
stakeholders are keen to participate – CSoft actually have to turn down candidates.
This change is the result of a learning process that has progressed during the first
years of using Evo – customers have gotten to know of this practice and some have
gained experience as stakeholders. �����������������������������������
������H���H�����������������

� �������!��"���#$

(Change 2) We can also observe another change that took place internally at CSoft.
The first experimentation with Evo was only done as an R&D-internal matter, like a
kitchen experiment. However, as this turned out to be an improvement of the
development practice, this way of working eventually became adopted in the rest of
the organization. Now, all parts of the organization, from operational support to the
top management, are supporting this practice. An example is the CEO explaining the
software development process Evo and its strategic importance in his keynote at a
large product conference. Another example is the strengthening of the PSG, which
has a liaison function between customers and development teams. This tells us that
changing a product line organization takes effort and time, and that both internal and
external actors need to learn from practice to accept this opening of the organization
and its work processes.

�

�G����

(Change 3) Another change we can see from the results is an increasingly higher
external visibility of plans and strategies. Initially this kind of information was kept
internal, but it is now more and more openly communicated through various channels.
It has turned out that doing this does not introduce the presumed risk of leaking vital
information to competitors, but that it is rather an advantage as external actors see
what might be coming, they can relate it to their own business, and potentially
respond to it.

(Change 4) Another related change is the opening of the product line at the technical
level, first with the SOAP-based APIs and now the recent and more efficient
Flexibility Framework. Initially this represented a minimal and very limited
opportunity for extending the product line, but it quickly grew to a considerable
extent as it represented tangible business value. This aspect has eventually been given
more attention, and has been designated as strategically important in some of the
roadmaps. We see several benefits from allowing externals to use the product line as a
platform. Firstly, it increases the variability of the product line – it can be used in
more specialized ways, serving more needs. Secondly, existing users represent a great
opportunity to the third parties (being the second component of a symbiosis-like
relationship). Thirdly, letting externals deal with specialization and minor extensions
enables the product line organization itself to maintain focus on developing the core
product line. This may be the most important effect [27].

To recap the research question - this change and the organization it has resulted in
explains why and how software product line engineering at CSoft has developed
towards a software ecosystem.

Why 1) Customers expect and have learned to value to be involved in
development and in product strategy making. 2) A plan-based development
approach is unfit when serving a volatile domain where the product line is
under continuous and extensive development. 3) The total demands and
requirements from customers can become too high for one product line
organization to manage alone.

How 1) CSoft learns about the business it serves through active collaboration with
customers and third parties. 2) CSoft makes strategy and plans visible
externally. 3) The technical interface of the product line is opened. 4) Both
customers and value-adding third parties are considered as external
stakeholders. 5) CSoft actively support and assist the community of third
parties.

5.1 Implications for theory
Software ecosystems, as a concept, have the potential of becoming an important field
of practice and research in the years to come. We propose to shape a theoretical
platform for this research. Just like the taxonomy suggested by Bosch [1], a theory of
software ecosystems is valuable and useful to generalize the concept and bring
together results from more empirical studies. It may over time develop towards a
unified and empirically justified understanding of the concept.

Fortunately, the theory of organizational ecology [6], briefly presented in the
background section, seems to fit well as a starting point. It concerns organizations
operating in complex and unstable domains, in principle a suitable description of
software ecosystems – and certainly of CSoft. Using this general theory of

�

�
����

organizational ecology, we derive a set of theoretical propositions suitable to software
ecosystems:

1. Member organizations in a software ecosystem are linked to a key organization
among them, which acts as a central referent organization, doing so even
though many of them are only partially under its control or linked to it only
through interface relations. (This is the Class 1 system according to Trist’s
classification). CSoft is an example of such a referent organization. None of the
external organizations are formally controlled by CSoft. However, all activity in
the ecosystem is related to the product line, which is controlled by CSoft.

2. Software ecosystems promote self-regulation. Our study of CSoft show that the
collaborative approach can be seen as a self-regulating system in that the referent
organization to a large degree adapts to its external environment, and that the
external environment adapts to the referent organization. This is in contrast to the
previously centralized control that was applied in the development of the product
line.

3. Software ecosystems have a networked character. CSoft’s and its external
environment constitutes a network of customers and third party organizations.
Even competitors may be considered a part of this network, although this aspect
has not been studied in particular here.

4. Software ecosystems exist through the use of technology. The ecosystem,
which CSoft is a part of, relies on the use of technology to enable collaboration.
Examples are web-meetings, web-casting, and the software-as-a-service
deployment model.

5. Software ecosystems have shared values. In the CSoft ecosystem the software
(product line) is this shared value. For CSoft, the value is revenue from licenses
and services, for the customers the value is improved business operations, and for
the third parties the value is revenue from sales of value-adding solutions. This
common interest in the shared value creates motivation to collaboratively care for
the shared value.

These five propositions constitute a start of a theory for software ecosystems. In
addition to these principles adopted from Trist’s work [ibid.] we also propose two
extensions:

6. The shared value of a software ecosystem is both the software product and
the business domain. Through the increased proximity to the external
environment, CSoft have an interest in both the product line and the business it
serves. Likewise, customers have an interest both in their business and the
technology they use to drive it.

7. As a software ecosystem emerges, control moves from the supplier of the
software to its users. An opening of the product line process, with external
stakeholders participating in development and with external visibility of plans and
strategies, means that some of the control move towards the users. Users in this
case are both customers and third-parties. This affects the motivation to
collaborate, and is of benefit to all members of the ecosystem.

�

������

5.2 Implications for practice
From the analysis of our findings we derive a set of implications for practice, relevant
to other software product line organizations similar to CSoft.

• Support the external environment by sharing information on plans and strategies –
this opens a channel for valuable input and enables collaboration with externals.

• If appropriate, encourage and support a third party community; it can be a
valuable extension to the normal development of the product line.

• Establishing and benefiting from a software ecosystem takes time. A successful
development relies on repeated cycles of experimentation and learning. This
learning process needs to involve all types of actors.

Based on our findings we can derive a strategy that can be of practical value to other
product line organizations. The shared interest in the product line (the shared value) is
a key enabler for driving the collaboration between the actors in the ecosystem. Thus,
a viable strategy would be to 1) make the product line supplier more involved in the
development of the business domain and 2) make external actors more engaged in the
development of the technology.

�

������

5.3 Limitations
The case study of CSoft is subject to three limitations.

Firstly, this is a single case study, which naturally affects the generalizability of the
conclusions. Yet there are good reasons for selecting such an approach. First of all,
the number of relevant cases is still low. In addition, focusing on a single case means
that the study can be more thorough than a study of multiple cases, with respect to
available resources. Yin discusses the single case study design [28] (p. 38-41) and
presents several arguments in favor of choosing such a design. One of these is
particularly applicable to CSoft, namely that it is a unique case, at least for the
researcher who conducted the study. According to Yin, such a study may act as a
prelude to further studies of a relatively new topic, such as software ecosystems in
this case.

The second limitation concerns the completeness of the study. Only a subset of the
employees was contacted. Likewise, relatively few samples of all available
documentation were collected and analyzed. This is naturally due to the relatively
long duration of the study.

The third limitation concerns the applicability of the findings and conclusions of this
study. The organization investigated is a medium-size product line organization and a
web/application type of ecosystem (according to the taxonomy proposed by Bosch
[1]). Thus, results do not necessarily apply to all other types of software ecosystems.

6 Conclusions
Over a period of approximately five years we have studied a software product line
organization and its external environment, showing and explaining an emerging
software ecosystem.

We conclude that the development that has occurred has produced effects both
internally in the product line organization and in its external environment. The change
has led to an increase in collaboration across (previously closed) organizational
borders, and it has developed a shared value consisting of two components: the
technology (the product line) and the business it supports. Opening up both the
technical interface of the product and the organizational interfaces are key enablers of
such a change

We propose two directions for further research. First, like Jansen et al. also point out
[9], we need to see more empirical studies of various types of software ecosystems,
how they develop and what effects they produce. Secondly, more studies should
contribute to the shaping of a theory of software ecosystems.

7 Acknowledgements
We are grateful to the people at CSoft for sharing their precious time, and providing
highly valuable input to this study. This work was done as a part of the EVISOFT
project (grant 156701/220) and the Agile project (grant 179851/I40), both partly
funded by the Research Council of Norway.

�

������

8 References
�$� 1����"�%$"���������	
���������	�������	�����	
����������	���"������	��

��	����	���������	
���������	����������������������� !$��

G"�4$$$�
/�������&����H'�&���!��������"�(&($�

�$�)����������"�)$>$�����/$�&*H�����"����	
����������	���"�#�����	�����$�
��������%����&���'�������$�����������	��$��

�"�/�������"�

)�����������"�(&('����)4��+���$����$�
�$� %����"�&$"�����$"���	�����	����	��	�����������$�����	�������	�(��)���%����

���	
����������	���"��������	���	����	������(��)���%�������	
����
������	���$��

G"�/$(,-.&$�

�$� /������"�$$"�������������*���
��������������	����������	���
���
����+��
�������&�������$��

G'�%����.��H�0�&���$�

�$� $��H"�!$$$�����$$1$������"�'����������'�,	�������-�$���.�	������
��+�������	�/�������,�������"��G��$���'��$���-��$�

�$� �����"�$$1$"�0������%	����-�$���.�	�����������$�/�(����������%����������
)�������"��G		$��2�3'��$����-�	�$�

	$� �����"�$$1$�����4$.$�1�������"�����������������%�������$����������1�������
���	������$
������	�����������2$�		��$/�������,�������"��G��$��2�3'��$��-
�F$�

F$� %����"�&$"�($�!��������"�����&$�1��������$�0�����������������	�*�0�
����������$������������	
����������	���$�������	���	����	�����������������
������	
������$�������$�������� !$��

G$�5����� �"�/�����'�4$$$�
/�������&����H$�

G$� %����"�&$"�&$�1��������"�����($�!��������$�3��������4�	
��)�
5���$����	���������+�+����	��	�$�*�0�'�������'
�����	
����������	���$����
����	�(��)���%�������	
����������	���$��

G$�

�
$� (�������"��$($"�($($���*���"�����.$�&������"�'���6����������	
�������������
���-%���0����	��	����������	���"��������	���	����	������(��)���%����
���	
����������	���"�&$�%����"�����$"�$������$��

G"�/$(,-.&$�

��$� /��������"��$"�-%�������+�	���*�0�4�
������$������#�����	�����$�
�����	���������+�	���"����-%�������+�	���*�6���������$���4�
������$�"��$�
/��������"�.$�5���� ���"�����%$�.��"�$������$��

�"�67�����

(�� ����H�+���'�67����$��$��$�
��$� $���"�$$"�6$�>������"������$�/��������"�-%���678������%�������+�	���*�

�,%�����$�	���%���������/�,0)�)�������"��

G$���2�3'��$����-���$�
��$� ������"�>$4$������$$$�!8���"���������������2�0$���������	������

��$�������$*���������	�����������	���/�%����������&H���������&������"�

�

F$���'��$�F��-F��$�
��$� !8���"��$$$�����>4�������"������&���	��������%����������$���	�����

�+���	���������%�����	���+���%���	/�4$$$�&������"��

	$���2�3'��$�G�-
�
�$�

��$� ������"�>$4$������$$$�!8���$�0$�������	�������$�$����	*������$�	�������
9����	�	�+��������	���$����:	����	����	���������%�����������%�������
���	
������$�������$���������;!$��

�$�,�����%�����"�1��*��'�4$$$�
/�������&����H$�

��$� ������"�>$4$"�����$����	
������	��%������$����%�����	��+���	���$����<���
=�
��������	����	�����������������������	�������������=�������!$��
�
$�
������"�(&('�4$$$�/�������&����H$�

�

������

�	$� %������"��$�#���$��+���	�������%��>��	�����$����	���+�!�	������	�����	��"�
���������������������������%�����	�+�����	
���/��,%����������%��	������
��65�0�$����;	����	����	�������������������������	������������	
����
���������%��+����	��6-�����:!$��

�$�6���"�!������'�&�������5����$�

�F$�)�"�9$1$"�����$"��������$������������	
����%���������%��+����	������������
���%���"����������$��

�'�9������"�>����H$�

�G$� 4���"��$4$�����)$)$�)H��"�0���	����%�����%��������������	��$�����
�+����	��$���	��%��	�+���������	����������������	�������	���/�)4&�/������H"�

�GGG$���2�3'��$��	�-�G�$�
�
$� >����"�1$>$�����($1$�&������"�'���8����+�������?��������'�����*��	��	�$����

����9����	�	�+��6�������$��G�	"�9��:���'�(����������������$��	�$�

��$� >���"��$"����%�	�	�+����$�������$*�0�����&��)��������	������$�������$"�
��1�������	����$�������$"��������	
������$�������$�����$����$��$�$�
�

�'�$�� ���1���������-�������$��F
�����$�

��$� +������"�($)$"����$�	�������������6���������������$�*�'����������
���	����6�����*������&����"��GG
$��2�3'��$���	-�G�$�

��$� ,�H�"�.$.$�5���$��$�	�����+���%���	�������$�����	
�������	���$���������
(���-4$��G	
$�

��$� !�����"�&$"��%�������	��������0�����������6�1�������	��4�$�	��	�����	��	�$��
������	
����������	���"��������	���	����	������(��)���%�������	
����
������	���"�&$�%����"�����$"�$������$��

G"�/$(,-.&$�

��$� /�������"�)$.$�����1$.$�>��"�9���	�����$�	����'���	����	*������%���	�����
	��	����"������"����������	�&����%%��	������%��)�$��2���	
��������$��/�
$�������%����������4�����������&H����"��

	2��3'��$����-���$�

��$� 4��"�)$�����$$�/����"����	����28�+���%������)��������	
����8�+���%���	/�
/��������������������(/)"��GG�$���2�3'��$���-��$�

�	$� ;���"�/$"�����	������	�������*�����	����	��$��
	�����	��&����	�	����$��
�
'�
1����0�/�����H"�4��$�

�F$� :��"�,$�����)$�$�/������"�������	����6�������$��

�'�&���+������������
4��$�

�
Geir Kjetil Hanssen works as a researcher on software process improvement and
methodologies at SINTEF ICT, Norway’s largest independent research institution. He
has a M.Sc. degree in informatics from the University of Trondheim.

Declarations on co-author consensus

Papers P1, P2 and P3: Tor Erlend Fægri
Paper P4: Aiko Fallas Yamashita, Reidar Conradi and Leon Moonen

All publications

Hanssen, G. K., Yamashita, A. F., Conradi, R. and Moonen, L. (2010). Software
Entropy in Agile Product Evolution. In proceedings of 43d Hawaiian International
Conference on System Sciences (HICSS'10), Hawaii, USA, 4-7 January. 1-10.

Hanssen, G. K. (2010), Agile Software Product Line Engineering: Enabling Factors,
accepted (minor revision) for publication in Software: Practice and Experience (Wiley).

Hanssen, G. K. (2010). Opening up Software Product Line Engineering. In proceedings
of 1st International Workshop on Product Line Approaches in Software Engineering, in
conjunction with the 32'nd International Conference on Software Engineering (ICSE),
Cape Town, 2 May. 1-7.

Hanssen, G. K., Yamshita, A. F., Conradi, R. and Moonen, L. (2009). Maintenance and
agile development: challenges, opportunities and future directions. In proceedings of
25th International Conference on Software Maintenance (ICSM'09), Edmonton,
Canada, 20-24 September. 487-490.

Hanssen, G. K. and Haugset, B. (2009). Automated Acceptance Testing Using Fit. In
proceedings of 42d Hawaiian International Conference on System Sciences (HICSS'09),
Hawaii, USA, 5-8 January. 1-8.

Stålhane, T. and Hanssen, G. K. (2008). The application of ISO 9001 to agile software
development. In proceedings of Product Focused Software Process Improvement
(PROFES 2008), Frascati, Italy, 23-25 June. 371-385.

Haugset, B. and Hanssen, G. K. (2008). Automated Acceptance Testing: a Literature
Review and an Industrial Case Study. In proceedings of Agile Conference, Toronto,
Canada, 4-8 August. 27-38.

Hanssen, G. K. and Haugset, B. (2008). Automated Acceptance Testing Using Fit. In
proceedings of EuroSPI 2008, Dublin, Ireland, 3-5 September.

Hanssen, G. K. and Fægri, T. E. (2008). Process Fusion - Agile Product Line
Engineering: an Industrial Case Study. Journal of Systems and Software 81: 843-854.

Hanssen, G., Bjørnson, F. and Westerheim, H. (2007). Tailoring and Introduction of the
Rational Unified Process. In proceedings of European Systems & Software Process

Improvement and Innovation (EuroSPI 2007), Potsdam, Germany, 26-28 September. 7-
18.

Fægri, T. E. and Hanssen, G. K. (2007). Collaboration and Process Fragility in
Evolutionarily Product Development. IEEE Software 24(3): 96-104.

Dybå, T., Dingsoyr, T. and Hanssen, G. K. (2007). Applying Systematic Reviews to
Diverse Study Types: An Experience Report. In proceedings of Proceedings of
International Symposium on Empirical Software Engineering and Measurement
(ESEM), Madrid, Spain, 20-21 September. 10.

Westerheim, H. and Hanssen, G. K. (2006). Extending the Rational Unified Process
with a User Experience Discipline: a Case Study. In proceedings of European Systems
& Software Process Improvement and Innovation (EuroSPI 2006), Joensuu, Finland,
11-13 October. 3.11-13.19.

Hanssen, G. K. and Fægri, T. E. (2006). Agile Customer Engagement: a Longitudinal
Qualitative Case Study. In proceedings of 5th International Symposium on Empirical
Software Engineering (ISESE'06), Rio de Janeiro, Brazil, 21-22 September. 164-173

Dingsøyr, T., Hanssen, G. K., Dybå, T., Anker, G. and Nygaard, J. O. (2006).
Developing Software with Scrum in a Small Cross-Organizational Project. In
proceedings of European Systems & Software Process Improvement and Innovation
(EuroSPI 2006), Joensuu, Finland, 11-13 October. 2-12.

Westerheim, H., Hanssen, G. K. (2005). The Introduction and Use of a Tailored Unified
Process - A Case Study. In proceedings of 31st EUROMICRO Conference on Software
Engineering and Advanced Applications (Euromicro 2005), Porto, Portugal, 31 August
- 2 September. 196-205.

Hanssen, G. K., Westerheim, H., Bjørnson, F. O. (2005). Using Rational Unified
Process in an SME - A Case Study. In proceedings of European Systems & Software
Process Improvement and Innovation (EuroSPI 2005), Budapest, Hungary, 9-11
November. 142-150.

Hanssen, G. K., Westerheim, H., Bjørnson, F. O. (2005). Tailoring RUP to a defined
project type: A case study. In proceedings of Product Focused Software Process
Improvement (PROFES 2005), Oulo, Finland, 13-15 June. 314-327.

Hanssen, G. K., Dingsøyr, T. (2003). A Comparison of Automated and Manual
Functional Testing of a Web-Application. In proceedings of European Systems &
Software Process Improvement and Innovation (EuroSPI 2003), Graz, AUstria, 10-12
February. 1-10.

Hanssen, G. K., Westerheim, H. (2003). Extending Lightweight Postmortem Analyses
for Use in Software Process Improvement. In proceedings of 2nd Workshop in
Workshop Series on Empirical Software Engineering, Rome.

Westerheim, H., Dingsøyr, T. and Hanssen, G. K. (2002). Studying the User Experience
Discipline extension of the Rational Unified Process and its effects on Usability - The
design of a case study. In proceedings of First International Workshop on Empirical
Studies in Software Engineering, Rovaniemi, Finland. 69 - 74.

Hanssen, G. K., Dybå, T., Stålhane, T., Westerheim, H. (2002). SPI - easy in theory,
hard in practice. In proceedings of European Systems & Software Process Improvement
and Innovation (EuroSPI 2002), Nuremberg, Germany. 327-336.

Dingsøyr, T., Hanssen, G. K. (2002). Extending Agile Methods: Postmortem Reviews
as Extended Feedback. In proceedings of Workshop on Learning Software
Organizations (LSO 2002), Chicago, 6 August. 4-12.

Stålhane, T., Hanssen, G. K., Westerheim, H. (2002). Improving the Software
Estimation Process. In proceedings of Quality Week Europe, Brussels, Belgium, 11-15
March.

Stålhane, T., Dingsøyr, T., Hanssen, G. K. (2001). Post Mortem - An Assessment of
Two Approaches. In proceedings of European Systems & Software Process
Improvement and Innovation (EuroSPI 2001), Limmerick, Ireland, 10-12 October. 129-
141.

