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Chapter 1

Introduction

Similarity Search is finding more and more uses in computational data processing.
Examples include searching for images or sound, recognizing speech, and much
more. Even Google are doing similarity searches, as it is possible to search for
similar images there. Similarity in such searches are usually defined as functions
returning a lower number for similar items and a higher number for dissimilar ones.

Within similarity search, there are primarily two paradigms in use to speed
up the search. The first is spatial indexing, where objects are viewed as point
vectors in an n-dimensional space. Sections of the space that lie far from the query
object (the one we want to find objects similar to) can be discarded without further
processing, thus speeding up the search.

The other paradigm is distance based indexing, often referred to as metric
indexing. A metric index stores only distance data, and uses lower bounds on
distances to discard parts of the index during search. This requires the distance
function to have certain properties. More specifically, it needs it to be triangular.

While metric indexing is the only choice when the data cannot be represented in
a vector space, these are competing when it can. In this thesis, spatial and metric
indexing will be empirically tested and compared on similar data sets, seeking
answer to the following:

How does spatial indexing compare to distance based on quadratic form
distances as the dimensionality of the data increases?

Higher dimensionality on the data means more exact searches, due to more
object information being stored in the index. This involves various indexing chal-
lenges, though. According to [19], metric indexes might be more suited for dealing
with these challenges. In [9], however, they’ve observed a different case, in that
a spatial index (the R-tree) outperformed the metric one in certain cases. Other
studies again have shown that at a high enough dimensionality, indexing becomes
inferior to even a sequential scan [5].

Recently, another possibility for distance-based indexing have been presented in
[13]. It shows that for quadratic form distances, including the euclidean distance,

9
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Ptolemy’s Inequality can be used to discard a potentially larger part of the search
space than metric indexing without risking false negatives. This Ptolemaic Indexing
was only tested on a standard pivot based indexing method (LAESA), meaning
that all objects still would need to be considered. This can be helpful to decrease
the amount of distance comparisons, but can not reach the potential a tree-based
method has.

As this could be an important factor when comparing spatial to distance-based
indexing methods, we will also take a closer look at the following.

Can tree structured distance based indexes benefit from making use of
the ptolemaic inequality as a means of pruning the search space?

For the testing in this thesis, three indexes has been implemented; A spatial
index (X-tree), a metric index (the PM-tree) and a ptolemaic index (a modified
PM-tree). In addition, a sequential list able to perform the same similarity search
operations was implemented for comparison. These are all tested on quadratic form
distances with varying dimensionality.



Chapter 2

Background

2.1 Similarity Search

Similarity searching is searching based on some similarity measure between data
objects. This has become widely used over the last years, and has applications
among other things within genetics, image recognition, voice recognition, speech
processing, video compression and data mining [7].

The basis for similarity search is a distance function able to measure how differ-
ent two of the data objects are. These are often based on a feature vector describing
the object. Examples include feature vectors for images or time series. There are,
however, other approaches as well. The Levenshtein distance, for instance, can
work directly on character strings.

2.1.1 High-Dimensional Data

When the dimensionality for the data increases, so does also the complexity in-
volved in searching said data. Often, distance computations become expensive [19]
and the need for efficient pruning of the search space arises. The difficulty of index-
ing these data also increases. Studies [5] have shown that the relative differences
between distances decrease. Combined with an increased amount of noise from the
extra dimensions, efficiently indexing the data becomes a challenge.

2.2 Spatial Indexing

Whenever the data resides, or can be represented, in a vector space, there is the
possibility that you can utilize some spatial properties of the data and index directly
on the hyperspace defined by them. This enables you to search directly in the region
of the hyperspace where your candidate objects may be located, thus potentially
speeding up the search substantially over a plain linear scan.

11



12 CHAPTER 2. BACKGROUND

2.2.1 R-Tree

One relatively simple spatial index is the R-tree, presented in [12]. The R-Tree in-
dexes multidimensional data by recursively partitioning it into smaller hypercubes.
Each internal node in the tree represents one such hypercube. The hypercube is the
smallest possible cube that contains all the data objects located in that subtree. It
references several, possibly overlapping, subtrees. Leaf nodes contain pointers to
the actual data objects being indexed. An example of this hierarchical structure is
shown in Figure 2.1.

Figure 2.1: Example of an R-tree decomposition in two dimensions

R-tree Building/Insertion

One way of building an R-tree is by starting with an empty tree, and inserting
objects sequentially into the tree. Inserting a new object into the R-tree is done
recursively, starting from the root. At each level, the insertion algorithm evaluates
all the child nodes of the current node, and finds the one that will grow the least
from inserting this object there. This process is then repeated recursively, until a
leaf node is reached. The new object is inserted into that leaf node.

One R-tree node corresponds to a single disk page. The fanout of the tree is
therefore directly related to the disk size. If the above insertion procedure leads
to the object being inserted into a node that would need more space than a single
disk page, this would have to be dealt with. The solution is to split the node in
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two, distributing the objects between the two new nodes. These two new nodes
replaces the overflowed node in it’s parent.

The splitting of a leaf node like this could of course lead to overflow in its
parent as well. If so happens, this node would need to be split as well. This
splitting continues upwards towards the root until a node that does not overflow is
reached. If the root overflows a new root is created, referencing the two subtrees
created when splitting the root.

This has the obvious advantage of the whole tree structure remaining balanced.
That is, all paths from the root to a leaf node is of equal length. If, on the other
hand, split nodes had extended the tree downwards (away from the root), this
would not necessarily be the case. Depending on the order of insertion, that could
potentially lead to very bad worst case performance.

Node Splitting

When it comes to how exactly the node splitting should be done, there have been
several suggestions [12, 2, 11]. In the original R-tree, Guttman suggests the follow-
ing procedure [12]. Start with choosing the two elements of the node that would
be most inefficient when grouped together. The measure used is simply the area of
their union with the area of each of the two elements. Each of these constitute a
seed for it’s own subtree (the two parts of the split). Then iterate through the rest
of the elements, adding each one to the side that would need the least enlargement
by adding it there. Alternatively, alternate between adding the closest object to
each side to it. The latter would lead to a more balanced tree, while the first might
give a better grouping of the objects (for search optimization).

In [11, 2], they suggest using the geometric properties of the hypercube to
determine an axis along which to do the split. Once determined, one sorts the
subelements on their position along that axis. Then one evaluates the different
splits obtained by adding the first m elements to the first side of the split and
N −m elements to the second (N is the amount of elements total). The split that
results in the least overlap between the two resulting subtrees is selected. Empirical
testing have shown that this variant, used in the R*-tree, outperforms Gutmann’s
original R-tree by up to two orders of magnitude when it comes to search efficiency
[2].

Searching the Structure

Searching for similarity in an R-tree as naturally also done in a recursive fashion
[12]. Starting at the root, the search function calls itself recursively on every subtree
that might contain potential candidates. When reaching a leaf node, it evaluates
the distances between the data objects and the query object, adding to the result
set each one that’s within the search boundaries. Far a range search, this boundary
is preset, while a nearest neighbor search has a dynamic bound based on the results
obtained so far.

The most important part of the searching of an R-tree is determining which
subtrees to search or not. In order to improve search efficiency over a linear data



14 CHAPTER 2. BACKGROUND

scan, it is essential that parts of the tree is not searched. The R-tree, and any
structure storing minimum bounding hypercubes, can evaluate each dimension in-
dependently in this case. A lower bound on the distance between the query object
and all elements in the subtree can be found by looking at the distance between the
query object and the minimum bounding hypercube in that dimension. If the dis-
tance is too high in any dimension, it will be possible to prune away the referenced
subtree from the search space.

2.2.2 The Curse of Dimensionality

Though spatial search can be quite simple and intuitive, it is not without draw-
backs. There are several reports that the efficiency of R-trees rapidly decrease as
the dimensionality of the data increases [5, 3]. In [19] for instance, the curse of
dimensionality is mentioned as a problem with this type of index. As the dimen-
sionality increases, spatial indexes tend to become slower than even linear search
or they’ll use too much space. Moreover, while some dimensions might not con-
tain very much information (the data may essentially lie in a lower-dimensional
hyperplane), this isn’t recognized by these structures. That leaves you with a
lot of overhead in the index. Matters could get even worse when each dimension
potentially contains some noise.

Some previous work have been done on mitigating the problems related to high-
dimensional data in spatial searches. FastMap [10], for instance, is based on the
observation that real data often are highly correlated and clustered. It therefore
tries to create a transformation of the data into a lower-dimensional space. Another
observation is that most of the information resides in a smaller subsets of the
dimensions. The TV-tree [15] is an example of such an approach. It tries to store
only the information needed to distinguish between the objects, leading to a more
efficiently stored tree with larger fanout. Yet another approach is taken by the
makers of the X-tree [3], which will be examined next.

2.2.3 eXtended Node Tree

The eXtended Node Tree (X-tree) is an effort to address the problems the R-
tree runs into when the dimensionality of the data increases. Instead of utilizing
the observations made in the previous subsection, the creators of the X-tree made
some observations on why the R-trees performance declined. They noticed that the
overlap between nodes increased proportionally with the decline in search efficiency.

Intuitively, the overlap can be defined as follows [2]. Let E1...EP be the entries
of the current node. The overlap of entry k is defined as

overlap(Ek) =

P∑
i=1,i6=k

area(EkHypercube ∩ EiHypercube) (2.1)

One measure of the overlap in the entire node can then be found by adding
these overlap values for the entire tree. Another measure is to count the amount
of data objects that are covered by more than one subtree.
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When overlap in an index increases, so does the amount of subtrees that need
to be searched. The X-tree addresses this problem by avoiding splitting of nodes
that would lead to a high amount of overlap between the result nodes. Lets have
a closer look at how this index is structured.

Structure of the X-tree

An X-tree consists of two types of nodes, data nodes and directory nodes. Like in
the R-tree, these usually map to a single disk page each. All directory nodes are
made up of a series of entries referencing subtrees/hypercubes. Each entry is made
up of the minimum bounding rectangle of the subtree, a pointer to said subtree,
as well as a split history for that node. This structure is depicted in Figure 2.2. A
leaf node, on the other hand, is simply a list of data objects or pointers to these.

Figure 2.2: Disk Page Structure for an X-tree Directory Node (Source: [3])

Supernodes

In order to cope with situations where you’re not able to split a node without
introducing too much overlap, the X-tree introduces the concept of supernodes.
Instead of splitting that node, the index allows it to extend across several disk
pages. If both nodes would usually need to be accessed anyway, it will be more
efficient to simply scan all of their child nodes directly [3]. This way the X-tree
saves disk accesses and thus CPU time in cases where the R-tree would usually
become inefficient. An example of a tree with supernodes extending across several
disk pages is shown in Figure 2.3.

Figure 2.3: Example Structure for an X-tree (Source: [3])

Note that for point data, it will always be possible to find a non-overlapping
split at the leaf node level. For this kind of data, supernodes like this will only be
located at directory node levels.



16 CHAPTER 2. BACKGROUND

Node Splitting

Obviously, the node splitting process for the X-tree has to reliably determine when
to split a node and when to create a supernode. The approach taken by the X-tree
is to compare the actual overlap and fanout returned by a regular split to index
wide parameters [3].

The splitting procedure starts by performing a regular, topological, split of the
node, similar to the split procedures of other R-tree variants. It then calculates the
overlap value of the two resulting nodes. If this value is below a threshold given
by global parameters of the index, the split is successful and it returns the split. If
not, however, it continues processing the node.

The next step is trying to determine an overlap-minimal split. An overlap-
minimal split is defined as a split where the overlap between the two nodes is as
small as possible. To find a split like this, it uses the split history recorded for
every directory node in the tree. If all nodes that are to be distributed between
the two sides have been split according to the same dimension, that dimension can
be used to distribute said nodes.

An example can be viewed in Figure 2.4. Here you see that node A was first
split into A’ and B using dimension 2. Then node B was split into B’ and C using
dimension 5, and so on. In the end, each of the nodes will be split by all numbers
on the path from that node to the root.

Figure 2.4: Split History for a node (Source: [3])

The important consequence is that, at some point, all nodes in this subtree was
split according to a value in the dimension indexed by the root of the split history.
For all other dimensions there is likely to be a node that’s never been split in
that dimension. As a consequence, it will span the entire length of the hypercube
along that dimension. Therefore, this split procedure only evaluates dimensions in
which all nodes have been split. To distribute the nodes, it suffices to use the same
procedure as described in [2]. That is, sort the nodes according to this dimension
and evaluate the different splits.

Now, though this split will be overlap-minimal, there is no guarantee about it
being balanced. The X-tree operates with another global parameter (in addition
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to the max allowable overlap). This is the minimum fanout allowable from a split.
Each of the sides needs to contain at least a set percentage of the nodes after the
overlap-minimal split. If this does not happen, it abandons the split and creates a
supernode instead.

Figure 2.5: The X-tree adapts to the data it indexes (Source: [3])

As an end result, the X-tree will be more linearly organized in areas of the
tree where there would be more overlap. In areas where it is possible to achieve a
clearer division of the data, the X-tree will be more hierarchical. Consider Figure
2.5. When the dimensionality increases, the tree will have a flatter structure, so
that the overhead from processing the directory nodes will be less likely to need
more resources than what is saved from pruning the search space.

2.3 Metric Indexing

Another widespread means of indexing objects for similarity searches is called Met-
ric Indexing [19]. A metric index assumes that the distance function adheres to
the metric postulates:

∀x, y ∈ O, d(x, y) ≥ 0 (2.2)

∀x, y ∈ O, d(x, y) = d(y, x) (2.3)

∀x, y ∈ O, x = y ⇔ d(x, y) = 0 (2.4)

∀x, y, z ∈ O, d(x, z) ≤ d(x, y) + d(y, z) (2.5)

O is here the set of objects on which the distance function operates.
The strength of metric indexing lies in its ability to utilize the metric postulates,

especially equation 2.5, to prune the search space. Specifically, knowing two of the
three distances referenced will be enough to provide an upper and lower bound on
the last one. (2.5) gives an upper bound as it stands, while a lower bound is found
by rewriting it into the following:

∀x, y, z ∈ O, d(x, y) ≥ d(x, z)− d(y, z) (2.6)
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Especially when the distance measure is expensive to calculate, this is very
valuable. There is also quite a bit to gain when it comes to I/O costs, as only parts
of the data needs to leave secondary memory during search. A third benefit is that
since this is a generic and widely studied search technique, you’ll have access to a
lot of different indexes already. For these reasons it could often be a good idea to
research your data to see if it might conform to a metric space.

2.3.1 Distance-based Data Indexing

In [19], three general ways of indexing data for metric searches are described. Sim-
ilar to all of them is that they utilize precomputed distances to calculate distance
bounds like the ones from (2.5) and (2.6).

• Ball Partitioning recursively divides the data into subsets based on the
distances from chosen pivots. Knowledge of the distances between objects
and pivots, as well as between the pivots and the query object, gives us
bounds on the remaining data. This allows us to prune away whole subtrees
from the hierarchical structure. An example of such a method is the Vantage
Point Tree (as described in [19])

• In Generalized Hyperplane Partitioning, each level contains a set of
pivots (often a pair), as opposed to one from the above mentioned ball par-
titioning. An object is placed into the partition corresponding to the pivot
that lies closest to it. When we’ve calculated the distances between the query
object and the pivots, we could (hopefully) disregard some of the partitions
from the continued search. An example of such a technique is the Generalized
Hyperplane Tree.

• In addition to these two, we’ve got the direct use of Pivot Filtering. This
bases itself on knowing the distances to more than one pivot, and therefore
hopefully getting tighter bounds than by just using one. In LAESA, for in-
stance, a grid of distances between m pivots and all the objects is maintained.
During search, we iterate the pivots and prune away all objects where the
lower bound is higher than the highest interesting distance. Thus saving quite
a few distance computations.

More advanced metric indexes often utilize more than one of these techniques,
as well as others (some of which are also described in [19]).

2.3.2 The Curse of Dimensionality

Though not directly using the dimensions of the data other than for computing
distances, metric indexes does not really avoid the curse of dimensionality. In [5]
some results related to this is presented. Specifically, it observes the behavior of
the distance function as the dimensionality increases.

When more features are added, you also add more noise to the feature vectors.
Assuming new dimensions generally affect the distance as much as the previous,
and also that they likely increase total distance, [5] presents the following result:
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lim
m→∞

|Dmax

Dmin
− 1| = 0 (2.7)

where m is the amount of dimensions. That is, all distances converges towards
the same number as dimensionality increase. Due to this, dividing the hyperspace
based on inter object distances might become hard with more dimensions.

Though metric indexing won’t avoid the curse of dimensionality altogether, it
is not without its advantages compared to a spatial approach. First of all distance
based methods do not suffer as much when the true structure of the indexed data
is intrinsically much simpler than the amount of dimensions would suggest. The
same thing applies if the amount of values along one dimension is a small discrete
number [19]. The complexity of a spatial approach could easily be unnecessary for
that dimension.

In addition to these things, one difference between metric and spatial indexes
lies in the fact that the former will use sphere-shaped division of the data, while
spatial searches like the R-tree uses hypercubes. This leads to potentially smaller
volume for a subtree defined by a distance from a pivot. Lets evaluate the volumes
of the hypercube relative to the hypersphere:

Vcube = (2r)d (2.8)

Vsphere =
2rdπd/2

dΓ(d/2)
(2.9)

Rsphere/cube =
πd/2

d2d−1Γ(d/2)
(2.10)

Rsphere/cube represent the ratio between the sphere volume and the cube volume
for a sphere inscribed in that cube (see Figure 2.6). Obviously, if this was the case,
the ratio would approach zero as the dimensionality approached infinity. Thus,
most of the volume of the hypercubes are located in the corners.

Figure 2.6: Sphere versus hypercube in 2D.
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This case will only appear if none of the data objects are actually located in
those corners. For uniformly distributed data this is very unlikely, so you can not
draw any clear conclusions from this. For instance, if an object is located in the
farmost corner, the sphere could potentially be a lot larger than the cube.

2.3.3 Metric-Tree

The Metric-tree (M-tree) [8] is the metric search equivalent of the R-tree. It is based
on the ball partitioning approach to metric indexing, recursively dividing the data
into subtrees based on their distance from a pivot connected to that specific node.
Each internal node stores a pivot object along with the maximal distance to an
object that resides in that subtree. It also contains the distance from the pivot
object to its parent. An example structure of an M-tree is shown in Figure 2.7.

Figure 2.7: Example M-tree structure (Source: [18])

When searching the tree, these distances can be used with 2.6 to create lower
bounds for the distances to the subtree data objects. If you compute the distance
from your query object to the pivot, you can use the lower bound shown in 2.11
for this pruning. Due to the fact that distances to parent pivots is precomputed, it
might be possible to avoid distance computations altogether, however. Assuming
you’ve already got the distance between the query object and the parent pivot
(from the previous recursive step), the lower bound from equation 2.12 can be
applied.

d(Q,Oi) ≥ d(Or, Q)− r(Or) (2.11)

d(Q,Oi) ≥ |d(Op, Q)− d(Or, Op)| − r(Or) (2.12)

In the above equations, Op is the parent pivot, Or is the current pivot and r(Oi)
is the corresponding ranges.
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M-tree Building/Insertion

The original M-tree is built as the R-tree, by sequentially inserting objects into the
structure. During insertion, the M-tree recursively inserts the new object into a
subtree that requires no increase of covering radius to include that object. If there
are several, it chooses the one with the closest pivot. If there are none, it inserts
into the one requiring the least increase.

Naturally, node overflows can occur in an M-tree as well. The M-tree deals with
this in the exact same way as an R-tree. It splits the node in two and replaces it
in the parent tree. Due to this the M-tree, just as the R-tree, is balanced.

Node Splitting

M-tree node splitting is pretty straight forward. It starts by choosing two seed
objects, one for each side of the split. In the article, they suggest several ways of
doing this [8]. The common goal for each of these is two minimize the covering
radii of nodes resulting from the split. Methods include trying all pairs (variants
minimizing the sum or maximum of the radii), trying a random subset of pairs or
simply choosing the two objects that lie furthest from eachother.

Distribution of the nodes is suggested done in one of two ways. The first is
matching each of the remaining elements with the closest pivot. The other is to
balance the nodes, alternating between matching the closest elements to one or
the other. Experimental results indicate that the former method works best in
practice.

2.3.4 Pivoting Metric-Tree

The Pivoting Metric-Tree (PM-tree) is an extension of the M-tree, combining it
with a pivot filtering approach [18]. The idea is to use pivot filtering to create
tighter bounds than with just a single pivot, pruning away a larger part of the search
space during search. Experimental results indicate that this leads to significant
improvements in CPU costs, as well as a slight increase in disk access costs.

Global Pivot Table

The main addition in the PM-tree compared to an M-tree is a global pivot table.
A number of data objects are chosen as global pivots, visible to all nodes of the
structure. All leaf nodes store the distance from its corresponding to each of
the global pivots. In effect, you get a feature vector of size equaling the number
of pivots used. Directory nodes, meanwhile store the minimum and maximum
distances between the global pivots and each of the objects in that subtree. That
is, they store hyperrings centered at the pivot objects in which all data objects are
located.

The main difference between feature objects in the PM-tree and those in a
spatial index like the R-tree (or X-tree), is that the features stored in the PM-
tree inherits the properties of the distance function. The distance function is as
known assumed to adhere to the metric postulates, and can therefore be used in
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conjunction with the triangular inequality 2.5 to produce lower bounds. This can
give tighter bounds than what is achievable with a regular M-tree, as seen in Figure
2.8.

(a) Knowing pivot distances allow us
to eliminate parts of the search space
in the M-tree

(b) Combining several pivots poten-
tially lets us make tighter bounds in
the PM-tree.

Figure 2.8: Pivoting in the M-tree and the PM-tree. (Source: [18])

In order to keep track of this data in the PM-tree, the insertion method needs
to be adjusted. Whenever a new object is inserted, it’s distances to each of the
global pivots is calculated once for storage in the leaf. These distances can therefore
be reused in all the internal nodes in the path from the root, thus rendering any
additional distance calculations (related to these pivots) unnecessary [18]. One
must also take extra care of correctly setting the hyperrings of the new entries
resulting from a split node.
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2.4 Ptolemaic Indexing

In [13], Hetland suggests using Ptolemy’s inequality as a basis for indexing. That
would of course require the distance function to adhere to it. The inequality is as
follows:

d(OA, OC)∗d(OB , OD) ≤ d(OA, OD)∗d(OB , OC)+d(OA, OB)∗d(OC , OD) (2.13)

Here, Oi is any data object on which the distance functions operates. From
now on, we’ll call a space in which the distance functions adheres to Ptolemy’s
Inequalty (2.13) a ptolemaic space. Rewriting this equation, you can find upper
and lower bounds for distances that has not yet been computed:

d(OA, OC) ≤ d(OA, OD) ∗ d(OB , OC) + d(OA, OB) ∗ d(OC , OD)

d(OB , OD)
(2.14)

d(OA, OC) ≥ d(OA, OD) ∗ d(OB , OC)− d(OA, OB) ∗ d(OC , OD)

d(OB , OD)
(2.15)

Due to the similar natures of ptolemaic and metric indexing, it is quite possible
that already developed techniques for indexing a distance space can be enhanced by
ptolemaic indexing. As the equations above require several precomputed distances
to be efficient, Hetland [13] suggests using them in indexes utilizing pivot filtering.
Like we see in the PM-tree, they will contain several precomputed distances.

2.4.1 Quadratic Form Distance

On family of distance functions that adheres to the ptolemaic inequality is Quadratic
Form Distances [4, 13]. A quadratic form distance is a distance of the form

dQF (x,y) =

√√√√ N∑
i=1

N∑
j=1

aij(xi − yi) ∗ (xj − yj) (2.16)

Where x and y are the feature vectors on which the distance function operates,
while aij are entries in a parameter matrix A, specific to this instance of the
quadratic form distance [4].

One advantage of the quadratic form distance is that its highly modifiable. The
matrix A can be customized to model correlations between the different features
of the vector. This makes it very applicable to similarity searches because of being
able model many different similarity measures [17].

Note that the regular euclidean distance is in fact a special case of the quadratic
form distance, using the identity matrix as the matrix A in the formula.
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Chapter 3

Methodology

In this chapter, there will be given a description of the system that’s been imple-
mented for the testing. It will begin with a short overview of the whole system,
and then move on to the individual components. A short justification for each part
of the system will be given where relevant.

The purpose of the system is to compare the performance of a spatial index
against a metric index, as well as a metric index modified for ptolemaic indexing (as
mentioned in the introduction chapter). The systems are to be tested on different
data dimensionalities, in order to try get an indication on how the performances
changes as dimensionality increases. Also, to get a clearer view of how the ptolemaic
indexing paradigm compares, the system should be able to run tests on distance
functions suited for such indexing.

3.1 System Overview

The whole system has been implemented in the Java programming language. The
choice of Java was heavily based on the availability of an indexing framework,
NEUStore [1], described later in this chapter. This framework facilitates disk
reads/writes, and thus allows testing for amount of disk accesses made by each
of the indexes.

Four different similarity search indexes have been implemented, a sequential
list, an X-tree, a PM-tree, and lastly a PM-tree modified for supporting ptolemaic
pruning of the search space. All four indexes should support quadratic form dis-
tances, as well as the euclidean distance. The latter is a special case of the former,
however, so designing based on the former suffices. In addition, a small module for
generating valid tests was implemented. This generates the test data, ensures that
the tests are run with valid constraints, and also records the results of the tests.

25
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3.1.1 JUnit Testing Framework

Throughout the implementation process, the JUnit testing framework has been
used to ensure the correctness of the code. JUnit testing is a means for setting
up automated tests in Java. A method for setting up the system is given for each
testing class. Implementing this method means that the function will be called
before running each of the separate tests in that specific class.

Among the more complicated tests are those testing insertion and searching in
the indexes. These generate a set amount of randomized data before building the
index. After that, a series of searches are run on those indexes to verify the search
results. This result is compared to the result of a linear search through the data.

In addition to these tests, there are correctness tests for the two distance mea-
sures; the euclidean and the quadratic form. These mainly verify that the methods
return the correct distances.

3.2 Index Implementations

The NEUStore framework [1] forms the basis for all the implemented indexes. All
the most important classes in each index are inheriting classes from NEUStore. This
facilitates a disk page based approach, and thus allows us to keep track of how pages
are swapped in and out of memory. Though it puts some constraints on the actual
implementation, at the same time it forces a more realistic implementation. After
all, most practical indexes will need to store so much data that use of secondary
memory is required. The main classes of the NEUStore framework are depicted in
Figure 3.1.

Figure 3.1: Main classes of the NEUStore framework.

The DBIndex class must be inherited by the actual index class. It represents
the interface the index gives to the outside. The DBIndex class provide methods for
allocating and freeing disk pages. Implementing classes does not need to keep track
of what pages have been used or not. This is all done by the methods provided by
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this class.
DBPage is the class representing a single disk page for the index. In order to

be able to use the buffer and disk reading framework, it is necessary to inherit this
class. That involves implementing two essential methods. The first one is write,
which will write all the information contained in the page to disk. The other one
is the corresponding read method. This one is supposed to read the information
stored in the write method into an otherwise empty page.

In order to represent an interface for memory management, the DBBuffer class
defines buffer methods for accessing the different pages stored. Only through the
DBBuffer can the index actually access the disk pages. This is done though the
readPage and writePage methods. Internally, the buffer keeps track of which pages
are stored in primary memory (buffer) and which are stored on disk. Whenever
a new page needs to be accessed on the disk, it also chooses which one to discard
from the buffer.

The actual implementation of the DBBuffer class uses a RandomAccessFile to
model the disk, so during disk accesses actual writes and reads are being done,
leading to a slower performance when lots of disk accesses are being done. For the
purposes of this system, the provided LRUBuffer class was used as a disk buffer.
This buffer always discards the least recently used disk page when loading a new
page into memory. It is parameterized on page size and buffer size.

In addition to these classes, the framework provides some secondary support
classes. Most of these were not used directly in these implementations, however.

3.2.1 Reference Index - Linear Scan

Storing the data sequentially on disk and scanning through all during searching
is called a linear index. Unless indexes outperforms a regular linear scan, the
point of indexing disappears. This is the most memory efficient index there is, due
to only needing to store the actual data, and other indexes need to show speed
improvements in order to be worthwhile. These can of course from various factors,
more on that later.

Due to this, a sequential list index was implemented on this system as reference.
Each of the tests run on the other indexes will be ran on the linear index as well
in order to see how their performances compare. This is especially interesting
as the performance of both the spatial and metric index is expected to drop as
dimensionality increases. At what number of dimensions are these surpassed by
the linear scan (if ever)?

The linear scan implementation in this system is done as a linked list. Every disk
page contain only a memory address pointer in addition to the actual data. The
pointer points to the next page in the list. The index head only stores the address
to the first page. This setup supports insertion in O(1) time, always inserting into
the first page in the index. If this page is full, we simply create a new page and
add it to the front of the list.

Searching, both the K-Nearest Neighbor search and the range search, is done by
sequentially processing all the pages in the linked list. All data objects are tested
against the search criteria. In the range search, they are simply added directly to
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Figure 3.2: The linear scan index is implemented as a linked list.

the result set. In the k-nearest neighbor search, on the other hand, you don’t know
which objects satisfy the criteria until you’ve checked all of them. Therefore the
procedure keeps a priority queue (heap) with the k best matches found so far, with
the worst match on top. When a better match is found, the worst match is popped
off the heap and the new one is added. When all objects are checked, the objects
that are on the heap are added to the result. The performance of the range search
is therefore O(N), while for the k-nearest neighbor search it is O(N ∗ log(k)).

Note that although the first page might not be full, this has no impact on
performance. All pages need to be accessed anyway.

3.2.2 Spatial Index - X-Tree

The X-tree was chosen for the spatial index in this system. In [16], they describe
it as one of the strongest spatial indexing structures for high-dimensional data.
In contrast to other spatial structures for high-dimensional data, the X-tree does
not make any assumptions about the data set. FastMap [10] assumes that the
n-dimensional data is representable in k-dimensional space without a too large loss
of data. The TV-tree, meanwhile, assumes that most of the information is on
the objects are stored in a smaller subset of the dimensions. This allows it to
index based only on these dimensions, leading to a larger fanout and better query
performance.

The X-tree makes no such assumptions, and is a clear spatial index based on
the R-tree. Other indexes mentioned in [16] (like the SSS-tree) are influenced by
distance-based indexing.

Disk Page Structure

One node in the X-tree is in general represented on a single disk page, with the
exception of supernodes. Luckily, with a little planning, it isn’t necessary to han-
dle supernodes all that different from regular nodes. Leaf nodes are either way
relatively simple. They only store a sequence of data objects, in our case vectors of
floating-point numbers. All information required in the page header is the number
of objects referenced.

Internal nodes, however, are a little more complex, due to more complex refer-
ences and the possibility of supernodes. To deal with supernodes, each page header
stores a reference to a disk page. In all access methods for the page, this reference
is checked. If it is set to a negative number, it is simply ignored. If it is set to a
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positive number, however, we are dealing with a supernode. The access method
then needs to access the referenced page to fetch the information stored there.
That new page can in turn also refer to another page, and so on. You can thus
view these supernodes as being structured as a linked list similarly to the Linear
Scan index described earlier.

References to subtrees are implemented exactly as described in Chapter 2, with
a minimum bounding rectangle, a memory address and a split history. The one
things that perhaps need a little clarification is the implementation of the split
history. As explained, the split history of a node can be viewed as a tree structure,
with all performed splits in internal nodes and the actual subentries as leaf nodes.
You can then notice that every node has been split by all splits in it’s path to the
root. An important observation to make here is that the actual tree is irrelevant.
what really matters is to know along which dimensions each of the subentries have
been split.

Due to this it is enough to store split dimensions along with each of the entries.
Here, this is done with a bitmask. Each bit in the mask maps to a single dimension
in the indexed space. If the bit is set to 1, the entry have been split along that
dimension. If it is set to 0, it is not. As we will see, this simplifies finding common
splits.

Algorithms

The main algorithms in the X-tree index are related to node splitting and actual
searching. Both these are essential to the performance of the index. Without
a decent node splitting procedure, the structure of the tree can easily become
inefficient. A searching procedure is essential to traverse the tree efficiently while
at the same time ensuring that all candidate objects are found.

When a node overflows during insertion, the splitting procedure is initiated.
This one first tries a topological split. The split implemented here is a combination
of Greene’s split [11] and the split used by Beckmann and Kriegel in the R*-tree
[2]. It first chooses a split axis based on the two most distance subentries. Then
it measures the overlap from all splits within the minimal fanout, and chooses the
best one. This procedure does however have the potential of returning a split with
high overlap. If this value is higher than a global value for the maximal overlap, the
splitting procedure instead calls another procedure for finding an overlap-minimal
split.

The procedure for finding an overlap-minimal split is shown in Table 3.1. It is
basically a brute force method, trying all splits along dimensions common to all
subentry split history. Retrieving all valid split dimensions is done by AND’ing
together all split histories of the subentries. The resulting bit vector will contain
have bits set for all candidate dimensions (usually only one). All potential splits
are evaluated in each of the candidate dimensions, and the best one is returned.

The overlap-minimal split will usually return a split that lies within the accepted
limits of overlap. The one condition that might cause it to fail, however, is it being
unbalanced. If the fanout of one of the suggested subtrees lies below a global limit,
a supernode is created instead.
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Algorithm Overlap Minimal Split
1. splits := AND all subentry split history
2. for i = 1 to number of dimensions:
3. if the i’th bit of splits is set:
4. sort the subentries along the i’th dimension
5. for j = 2 to number of subentries:
6. Measure overlap for split where entries 1 to j-1 are in the first part.
7. endif
8. endif
9. endfor
10.Return the best split found

Table 3.1: Finding the split with the least overlap based on the split histories

When it comes to searching, the most important part is to add decent pruning
conditions. The searching is as simple as a recursion through the whole tree, and
without pruning of subtrees it would quickly become much slower than a linear scan.
We therefore avoid visiting subtrees where we can guarantee that the closest object
is farther away than the search range. For euclidean distance, this is as simple as
measuring the distance between the query objects and the closest possible point
in the minimum bounding rectangle. The procedure for quadratic forms is more
complicated, and explained in a bit. When the search reaches a leaf node, distance
to each of the data objects are evaluated, and those within the search range are
added to the result set.

Note also, that it is important to traverse the tree in a depth-first fashion. For
k-nearest neighbor searches, the search range is updated only when visiting leaves.
It is therefore important to visit leaves before considering all internal nodes, in
order to prune as much as possible of the search space.

X-tree Quadratic Form Distance

In order to support the Quadratic Form distance in a spatial index, some adjust-
ments have to be made to the searching functions. Specifically, the calculations
of a lower bound on the distance from a point to a mininum bounding rectangle
is no longer straightforward. This is of course essential to an index like this, as it
would otherwise be far outperformed by a linear scan. It was therefore necessary
to implement a way of finding this value. Recall that the quadratic form distance
function is the following quadratic expression:

dQF (x,y) =

√√√√ N∑
i=1

N∑
j=1

aij(xi − yi) ∗ (xj − yj) (3.1)

Now, we first translate the coordinate system so that the query point is at origo.
We can then attack finding the quadratic form distance from an MBR to a point
by formulating a quadratic program:
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Algorithm Quadratic Form Box Distance
1. translate coordinate system;
2. point := closest(MBR, origo)
3. distance := dQF (point,origo)
4. do
5. g := gradientQF (point)
6. g := truncate(MBR, point, g)
7. s := linearMinimization(point, g)
8. point := closest(MBR, point + s*g)
9. ndist := dQF (point,origo)
10. if(equals(distance,ndist))break
11. distance := ndist
12.until distance < EPSILON
13.return distance

Table 3.2: Finding the minimal quadratic form distance between a minimum
bounding rectangle and a query point

Minimize dQF (x, 0) (3.1)

subject to xi ≤ MBRi,high

xi ≥ MBRi,low

Here, MBRi,high and MBRi,low are the lower and upper limit of the minimum
bounding rectangle of teh box, respectively. The solution to this program will
be the minimum distance between the query object and the minimum bounding
rectangle.

To actually solve this program, ideas from [17] was used. The general algorithm
is to use gradient descent towards the optimal solution. This involves selecting a
starting point, and then iteratively moving along the descending gradient of the
quadratic form function.For every new point calculated, we have to make sure not
to leave the minimum bounding rectangle. Due to the rectilinearity of the MBR,
this becomes slightly easier. Pseudo-code for the algorithm is given in Table 3.2.

In the algorithm, ’point’ and ’g’ and ’origo’ are vectors (origo is the zero vector).
’distance’, ’ndist’ and ’s’ are scalars. The function closest returns the point in the
MBR that lies closest to the point. The function truncate alters the gradient
function to not point out of the box, while linearMinimization returns a scale
value to make the algorithm move faster towards the minimum. Closer descriptions
of these can be found in [17]. The last procedure, gradient, returns the gradient
vector of the quadratic form function in the point. To find the gradient in a single
point, we have to find the derivative of the function in that point. By writing the
quadratic form function as a matrix multiplication, this becomes easier:
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dQF (x,0) = xTAx (3.2)

gradient(x) = d
′

QF (x,0) = 2xTA (3.3)

So finding the gradient becomes as simple as multiplying the point vector with
the quadratic form matrix (A). This is done in O(N2) time. In total, this means
that the algorithm runs in total O(h∗N2) time, where h is the amount of times the
loop is executed. Empirical results, also supported by [17], showed that this loop
usually executes relatively few times. No results higher than 20 were witnessed. It
is important to note, though, that this value might not be entirely exact, due to
the necessary use of EPSILON in floating-point equality comparisons. To ensure
100% correctness in the result, care must be taken not to dismiss subtrees whose
lower bound lie close to the limit value.

3.2.3 Metric Index - PM-Tree

As a metric index, the PM-tree was chosen. The M-tree family in general is a very
common metric index, especially when hierarchical ones are concerned [19]. When
comparing a metric index against an R-tree structure, M-trees are desirable for
their fundamental similarities with them. The PM-tree specifically was chosen for
being suitable for ptolemaic indexing, due to its pivot filtering approach. This is
further explained in the next section.

Essential to the implementation of the PM-tree is a set of global pivots. In this
implementation, this is required to be passed to the constructor of the index prior
to building the index. That way we avoid problems related to having to update
the entire structure as new pivots are added/chosen. There are no constraints on
the amount of pivots, however a too large number of pivots can potentially lead to
worse performance. All pivots are potentially evaluated towards a lower bound on
distances in every node in the tree.

Disk Page Structure

The structure of a node/page in a PM-tree is slightly more complex than that of
of an X-tree. The header only contains the number of subentries contained in that
specific node. Then follow that amount of subtree references. Each of these contain
the following elements:

[Pi, d(Pi, parent(Pi)), r(Pi), ptr(T (Pi)), HRlow, HRhigh]

• Pi - A pivot object.

• d(Pi, parent(Pi)) - The distance from the pivot object to its parent pivot.

• r(Pi) - The radius of the subtree. All objects in the entire subtree will lie
within this distance of the pivot.

• ptr(T (Pi)) - Disk address to the subtree.
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• HRlow - A list of lower limits on distances to the global pivots. Each object
in this subtree are at least this far from the global pivot.

• HRhigh - A similar list of upper limits on distances between global pivots
and the subtree objects.

The radius and the set of distances stored in this entry constitutes the basis
for which pruning the search tree will need. As for leaf nodes, they have a similar
structure. The only differences are due to the subentries in leaf nodes obviously
only containing a single data object. This renders the radius value useless, and the
pivot object can be considered only a regular data object. In addition, the lower
and upper limits on distances will be equal, so it doesn’t make sense to store both
of them explicitly. They are therefore combined into one list of numbers.

Algorithms

As with the other indexes, insertion and searching algorithms are essential. Inser-
tion in a PM-tree is done, as with the X-tree, recursively. At each node, it chooses
the subentry that requires the least radius enlargement, and recursively inserts the
new object in the referenced subtree. If there are more than one option, it chooses
the subtree with pivot closest to the inserted object. Of course this could lead to
the node overflowing here as well, and node splitting is in order. This is done ex-
actly as described in the Background chapter (Chapter 2). The insertion is a little
more interesting. Due to all the distance information, there are several possibilities
of pruning the tree.

Prior to starting the search through the tree, distances between the query object
and all global pivots are computed and stored in a table. The search procedure
then initiates the search at the root page. For each page a series of checks are done
for every subentry to see if a search in that subtree is necessary. If any of the below
checks fail, that specific subtree does not need to be searched. The first check is
using only precomputed distances, as mentioned in chapter 2:

range ≥ |d(pivot, parentpivot)− d(query, parentpivot)| − radius (3.4)

For the root page this will always pass, due to parent distances being set to
zero. Also note that for leaf nodes, the radius will be zero, making the bound a
lot stronger in these nodes. Next the same check is performed using each of the
global pivots in place of the parent pivot. All the necessary distances for this have
also been calculated, due to the precomputation of the pivot-query distances. If all
checks pass, it is time for calculating the distance between the query object and the
pivot. In leaf nodes this equates to calculating the actual query object distances,
and it can thus be compared directly with the search range and possibly added to
the result set. In internal nodes, the following check is then performed:

range ≥ d(pivot, query)− radius (3.5)

If this check also passes, the search procedure recurses into the subtree with
the last computed distance as the new parent distance.
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3.2.4 Ptolemaic Index - Ptolemaic PM-Tree

One of the main reasons for choosing the Pivoting Metric-tree as the metric index
is it’s applicability for ptolemaic indexing. As mentioned in [13], pivot filtering is
especially suitable for ptolemaic indexing. Due to there being four different objects
referenced in Ptolemy’s inequality, a lot more distances are required to apply this
kind of pruning power compared to regular metric indexing.

In addition, the similarities between the M-tree and the R-tree families make
these suitable for comparing the indexing paradigms in general. The PM-tree is
therefore a natural choice. In this section we will take a little closer look at how
one can apply ptolemaic indexing principles to improve the performance of the
PM-tree.

Ptolemaic Search Pruning

The main addition from applying ptolemy’s inequality is increased pruning power.
In [13] empirical results are reported that this can provide tighter lower bounds
on the distances, and thus improve search performance. The tests have only been
run on leaf objects, with actual distances computed, though, using a LAESA-like
index. When searching a tree structure, however, one does not always have access
to all needed distances. Due to there being multiple data objects in a subtree, the
best one can get is lower and upper bounds on distances between pivots and these
data objects.

Luckily the PM-tree stores such bounds for all pivots. So the problem is reduced
to deriving lower bounds on Ptolemy’s Inequality for an entire subtree using these
distances. First, lets reiterate the actual lower bound described in chapter 2.

d(Q,O) ≥ d(Q,P1) ∗ d(O,P2)− d(Q,P2) ∗ d(O,P1)

d(P1, P2)
(3.6)

Here, Q represents the query object, O is a data object and P1 and P2 are
pivots. As mentioned, for leaf nodes in the tree this can be applied directly. For
internal nodes, we don’t have the distances d(O,P1) and d(O,P2). Let LB(d(A,B))
UB(d(A,B)) represent a precomputed lower and upper bound on the distance
between objects A and B, respectively. We can derive a new formula for bounding
the distance to objects in a subtree:

d(Q,O) ≥ d(Q,P1) ∗ d(O,P2)− d(Q,P2) ∗ d(O,P1)

d(P1, P2)

d(Q,O) ≥ d(Q,P1) ∗ LB(d(O,P2))− d(Q,P2) ∗ d(O,P1)

d(P1, P2)

d(Q,O) ≥ d(Q,P1) ∗ LB(d(O,P2))− d(Q,P2) ∗ UB(d(O,P1))

d(P1, P2)
(3.7)

Note that as all distances are assumed to be positive, the transitions in this
derivation will be correct. With equation 3.7, you no longer need distances to the
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unknown data objects in order to apply Ptolemy’s inequality on calculating a lower
bound on distances. A visual representation of this new bound can be viewed in
Figure 3.3.

Figure 3.3: Using Ptolemy’s Inequality for lower bounding distances on subtrees.

PM-tree Modifications

Incorporating these pruning conditions into the PM-tree does not require much
modifications on the original PM-tree. So little, in fact, that the implementations
here use the exact same classes and implementation. The constructor of the index
class takes an additional boolean parameter indicating whether ptolemaic filtering
is to be used or not.

The insertion procedures are identical in the ptolemaic and non-ptolemaic ver-
sions. The main change lies in the searching procedure. During check for pruning
of subtrees, the simple algorithm described in Table 3.3 is added. In short, it simply
iterates through all pairs of objects in the global pivot table, and applies the prun-
ing condition using them. Due to being O(N2), this might lead to worse results
when the numbers of global pivots increase. A simple modification to avoid this
could be to constrain the amount of checks to a number, and choose this amount
of random pairs from the table.

One more addition to the index is needed. Notice that the denominator in the
equations conisists of the distance between the two pivots used. These distances
are not originally stored in a PM-tree. We therefore add computation of a N ×N
matrix (where N is the number of global pivots) of pivot-pivot distances when
creating the index. This operation is only done once, and will not affect the actual
running time of index operations after this.

Regarding choosing what pivots to use in the construction of the index, [13]
discusses pros and cons. While you would want to maximize the numerator in
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Algorithm Ptolemaic Search Pruning
1. prune := false
2. for each pivota in global pivots:
3. for each pivotb in global pivots:
4. if equation 3.6 or 3.7 passes:
5. prune := true
6. break out of all for loops
7. endif
8. endfor
9. endfor

Table 3.3: Checking for the ptolemaic pruning condition. If prune is set to true, it
is unnecessary to recurse the search on this subtree.

equations 3.6 and 3.7 by having one pivot close to the query and the other close to
the object, this is somewhat mitigated by the fact that the result of the subtraction
is divided by the distance between the pivots. For these tests, we simply choose a
random set of pivots.

3.3 Testing

An important part of testing is to set up decent tests. A separate module was
implemented to support quickly setting up and running tests. This module also
records data from every test run in a separate file.

3.3.1 Generating Test Data

The main purpose of indexing data is to speed up search. Unless there is quite
some amount of data, the actual difference between indexed and non-indexed search
won’t be so big. Due to this, indexes are mostly aimed at working well on vast
amounts of data. It is therefore necessary to generate quite some amount of data
for testing this system. The four indexes in this thesis were tested on two different
kinds of data, both vectors of floating-point numbers, with varying dimensionality.

The first data set was merely a randomly generated set. Parameterized on
minimum and maximum value for the actual numbers, amount of dimensions and
number of objects, the data generation procedure was very simple. It creates a
somewhat uniformly distributed data, unlike how much real life data probably
would behave. Still, it gives an important perspective on how the indexes behave
under these circumstances.

The second data set, on the other hand, is based on real data. It uses data from
[14], a site managed by Eamonn Keogh, where different time series data collections
are gathered to be tested on classification problems. The data collection used here
is the Yoga set, consisting of 3000 different time series of length 426. The Yoga set
contains two different classes.
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When generating index data from these time series, a sliding window approach
is used. For each of the time series, a sliding window of length equal to the amount
of dimensions the data set should have is passed over it. At each index, the numbers
in the sliding window is used as a data vector and added to the actual data set. This
is repeated for the following time series until the desired amount of data objects is
reached.

This method is likely to generate a slightly more clustered data set, due to the
original data being meant for classification problems. It is likely that this data
more closely represent a real-life situation than the entirely synthetic data does.
Due to there being a natural correlation between adjacent numbers, quadratic form
distances are naturally more interesting on such data than on purely synthetic data.

3.3.2 Quadratic Form Matrix

It is important that the function represented by the quadratic form matrix adheres
to the metric postulates mentioned in Chapter 2. If not, that could potentially lead
to some unexpected results, as the indexing would no longer be valid. Luckily, this
problem reduces to making sure the matrix is semipositive definite (nonnegative
definite) [17]. That is, independently of the vectors passed to the function, the
result is nonnegative.

In order to make sure that the matrix is indeed semipositive definite, we look at
a property of such a matrix. According to [6], a matrix being semi-positive definite
is equivalent with the determinant of all the following matrices being nonnegative:

• The upper left 1× 1 corner submatrix

• The upper left 2× 2 corner submatrix

• ...

• The upper left (N − 1)× (N − 1) corner submatrix

• The entire matrix itself

In short, all the submatrices starting in the upper left corner of the original
matrix has to have a non-negative determinant.

The determinant of a matrix can be found by Gauss Jordan Elimination. When
the matrix has been diagonalized, it is simply a matter of multiplying all the
numbers along the diagonal. A simple function for verifying that the quadratic form
matrix is therefore to iterate through all submatrices, compute their determinants,
and return true if all of them are greater than or equal to zero.

For the tests of this system, finding valid matrices was done by generating
different matrices and simply verifying that they were semipositive definite using
this procedure. More on this in Appendix A.
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3.3.3 Performance Testing

Each index is tested for performance on insertions, range searches and nearest-
neighbor searches. For each specific test, the four indexes are tested on the exact
same set of data objects, to avoid any discrepancies from ’easier’ data sets. The
performance testing module was designed to record the following results for the
different operations:

• CPU Time - Actual time used

• Disk accesses - Amount times a page was loaded into buffer from disk.

• Distance Calculations - Amount of times the distance calculation was called.

Disk Accesses are kept track of by the buffer class from NEUStore. Whenever
it needs to write/load pages from disk, the counter is updated. Distance calcula-
tions, meanwhile, are kept track of by the distance classes. Both actual distance
computations and the computations of lower bounds for minimum bounding rect-
angles count towards this goal. For the quadratic form distance in the X-tree,
every call to the O(N2) methods (distance and gradient) increases the counter.
The last result, CPU time, is simply recorded from amount of system time used
by the whole process. Before the start of the test, system time reported from
System.currentTimeMillis() is stored. When the test is finished, the difference
between the start time and the current time is recorded.

When the tests have been run, the results are written to a text file.



Chapter 4

Results and Discussion

4.1 Test Setup

When testing the search operations, it was observed that the range search and the
k-nearest neighbor searches gave very comparable searches. The main difference
was that depending on the data set, distance and range used, the range search
would be very variable in amount of results returned. It therefore also had more
variable performances.

In a real life index the range is more likely to fit the data set and distance, and
thus give more reliable performance. When testing searching here, it was therefore
used a k-nearest neighbor search instead. K was set to 40.

All tests were ran several times (50), and the average was used in the result.

Testing Parameters

Both the data sets were generated to contain 500000 (five hundred thousand) ele-
ments. There was a trade-off between having the tests run in reasonable time and
having a large enough set to be indexed.

In order to get reasonable results from the tests, buffer and page sizes were
chosen with several factors in mind. First of all, the buffer shouldn’t in general be
able to contain the whole index. At the same time, it is important to allow enough
disk pages in the buffer for the indexes to keep important pages in the buffer even
when searching other pages. For the page size, this was also constrained by not
having the whole index in the buffer. To avoid getting a too low fanout, it was
important to keep it at some size. In the end, after some testing, the page size was
set to 8192 bytes (8kB), while the buffer size could contain a total of 2048 pages.
This models a main memory size of 16MB. Though most indexes will have more
to play with in real life, this is offset here by a smaller sized data set.

Quadratic form matrices were generated as described in the previous chapter.
More on this can be found in Appendix A.
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X-tree Parameters

According to [3], you can find good parameters for the maximum allowable overlap
between two nodes from inspecting the times required for disk page access (TIO),
time to transfer a page into main memory (TTr) and time needed for processing a
block (TCPU ). A good estimation for a value of the limit can be found by using
the formula below.

MaxO =
TTr + TCPU

TIO + TTr + TCPU
(4.1)

From their results, they recommend using a value around 0.20. That is, if the
nodes overlap by more than 20 percent, the topological split is rejected. This value
is being used in these tests as well.

The same article suggests a value around 0.35 for minimum fanout. That is, for
a split to be accepted, each part of the split needs to contain at least 35 percent of
the subentries.

PM-tree Parameters

The one crucial parameter to the PM-tree is the list of global pivots. For these
tests, 10 pivots were used. These were randomly generated with a value between
-100 and +100 for each dimension.
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4.2 Searching Performance
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4.2.2 Distance Computations
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4.2.3 Disk Accesses
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4.2.4 Observations

The most obvious observation to make on this data is that the X-tree performs
surprisingly poor. For these tests, the X-tree does not show any significant im-
provement over a sequential/linear scan for dimensionalities 12 and above. For
lower dimensionalities on the synthetic data set, it shows results of a similar order
of magnitude as the distance-based indexes.

One explanation of this could be related to the computation of lower bound
distances between query objects and a minimum bounding rectangle requires mul-
tiple actual distance computations when dealing with quadratic form distances. If
few subtrees are actually pruned based on this, it is really a waste of resources.
Judging from the amount of disk accesses, this is the case here.

Another possibility is that the amount of data is too small for the X-tree to
really shine. It could well be that with a larger data set, the fragmentation of the
search space would increase, and a larger scale pruning of the search tree becomes
possible. If, for each distance call, more disk accesses would be saved, the total
performance would of course improve.

To the X-trees defense, the actual index structure is unaffected by the quadratic
form matrix. It is therefore possible to search using different distance measures in
one and the same structure. This can be exploited by allowing for custom distances,
for example through user adaptable searches [17]. In a distance-based index, this
is not possible. All distances could potentially change, and the index structure will
have to be rebuilt to support a new quadratic form distance.

On the other end, the distance based indexes show surprisingly strong and stable
performance. While the X-tree slightly outperforms them on very low dimension-
alities, they don’t seem very affected by the added complexity of more dimensions.
This is in contradiction with some of the information studied previously, showing
that a linear scan will overtake other indexes for high-dimensional data. According
to [5], this effect could happen as early as with 10-15 dimensions. Unless it strikes
very suddenly, these results would be an indication that the effect does not appear
until the dimensionality is a bit larger than this.

Now, for the Yoga dataset, this can probably be explained. As the data has
been generated using a sliding window on time series, there will likely be a strong
correlation between ’adjacent’ dimensions. This can probably have made the data
intrinsically simpler than what the dimensionality should indicate. As a distance-
based index is only indirectly affected by the dimensionalities, this is an advantage
for these.

For the Synthetic data set, an explanation is harder to see. The data is likely
somewhat uniformly distributed, and it is possible that this somewhat eases the
indexing for a distance-based index. The results are still at least a strong indication
that the PM-tree and Ptolemaic PM-tree can handle increasing dimensionality
quite well.

Regarding the second research question stated in the introduction, there are
also some interesting observations to be made. How does the ptolemaic indexing
technique affect the performances of the distance based index?
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We can see that the ptolemaic version consistently use less distance compu-
tations than the regular PM-tree. This is not surprising, as [13] has previously
reported such results. However, in terms of CPU time and disk accesses, this had
little effect on the synthetic data set. In fact, the results were almost identical on
these runs.

As the amount of disk accesses on this set are just as large for the ptolemaic
version as for the non-ptolemaic version, it is very likely that most of the savings
in distance accesses was saved on leaf nodes. Pruning at leaf level will only save
one distance calculation, so this can affect the performance. If a design goal for the
index had been to optimize CPU time, one should take a closer look at the amount
of ptolemaic checks done at leaf level.

Assuming the marginal increase in probability of pruning using the ptolemaic
inequality is strictly decreasing, one can evaluate how many checks it is viable to
make without letting it affect the cpu time. We derive the following formula:

|ptolemaicchecks| ≤ cost(distance) ∗ Pprune

cost(ptolemaiccheck)
(4.2)

Here, cost(distance) and cost(ptolemaiccheck) is the cost of performing a dis-
tance calculation and doing a check for ptolemaic filtering with two pivots. Pprune
is the probability of pruning an element using |ptolemaicchecks| checks for pruning.
If this equation does not hold for the index setup, one will actually lose time because
of the ptolemaic pruning, despite being able to avoid distance computations.

Sadly, measuring Pprune for a given amount of checks is not an easy task. One
can still use this as a guideline for how the index will act, though. In these tests, for
instance, it is not unlikely that with up to 100 ptolemaic checks, the gain from extra
pruning is lost when leaf nodes are concerned. At least for low dimensionalities,
this is intuitively true.

On the other data set, Yoga, the case is different, however. Here a reduced
amount of disk accesses is observed. This means that the search function is able
to use the ptolemaic inequality to prune away more subtrees than would otherwise
have been pruned. This naturally also leads to an improvement in terms of CPU
time, as the procedure processes less data in total.

A similar line of thought as the one above can also be followed for internal tree
nodes, but the calculations become slightly more complicated here. The amount
of operations saved will be larger, so it could quite well be that more checks are
beneficial. At the same time the probability of successfully pruning will decrease,
due to lower bounds in general.

As a final note, the performance of the linear scan for the lowest dimensionalities
is affected by the fact that it’s compact memory representation allowed it to fit the
whole index in the buffer (each data object requires very few bytes to store).
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4.3 Insertion Performance

4.3.1 CPU Time
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4.3.2 Distance Computations
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4.3.3 Disk Accesses
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4.3.4 Observations

The insertion results are in general not much different between the indexes here.
The exception is of course the linear scan, which as we know will insert a new
object in O(1) time with at most 1 disk access. the other indexes are very similar
in their insertion procedures, where mostly only the splitting procedures will differ.
Either way, the insertion performance shown here is pretty strong. The indexes
had on average one disk access per insertion. The CPU time performance mirrors
this effect nicely.

It’s not gold all that glimmers, however. During testing, both the X-tree and
PM-tree showed very varying performance on insertions across the entire index
construction procedure. While most insertions where executed in a flash, there
were periods of significant slow-down as well. Especially for the PM-tree (and thus
for the Ptolemaic PM-tree as well, since these share insertion procedure), this was
very clear.

This can likely be attributed to the way these insertion procedures work. In
faster periods, the object is recursively inserted into a leaf node, and that’s that.
When the tree starts filling up, however, node splits start occurring. If it gets
necessary to split far up the tree, for instance all the way to the root, performance
should be expected to decrease dramatically. Amortized, the times are probably
still pretty good, but one should be aware of poor worst case performances for
indexes like this.

The X-tree did not seem as slow as the PM-tree in this procedure. This can
probably be attributed to the supernodes existing in an X-tree. Supernodes are
never split. When a subnode of a supernode is split, the supernode instead grows
by another entry. If that would overflow the last page of the node, another page
is added to the supernode. This effectively stops the splitting procedure from
travelling the longest paths in the tree, and can potentially ’save’ us from the
worst case performance witnessed in the PM-tree.

Regarding distance computations, we keep in mind that neither the sequential
scan nor the X-tree uses any during insertion. As the two versions of the PM-tree
use the same insertion procedure, we really only have one index to evaluate here.

The one interesting thing to note when looking at the amount of distance com-
putations made here, is that it is actually a tad larger for the lower dimensionalities.
Due to the page entries requiring less space when there are fewer dimensions, the
fanout of the nodes is larger. Unless the height of the tree also is lower, this leads
to more distances being evaluated in each level. Therefore, a slightly larger amount
of computations is to be expected (or at least not come as a surprise).
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Chapter 5

Conclusions

This report have had a closer look at similarity search for high-dimensional data.
The search paradigms spatial and distance based indexing have been studied. The
goal has been to see how they compare when used on high-dimensional data subject
to quadratic form distances.

Using NEUStore, as a framework, one of each index was implemented in the
Java programming language. The eXtended Node tree (X-tree) was chosen as a
spatial index, as it’s been specifically designed with high-dimensional data in mind.
As a distance based index, the Pivoting Metric tree (PM-tree) was chosen. The
PM-tree was shown to be especially suited for ptolemaic indexing, a new form of
search space pruning introduced in [13].

The implementation of the PM-tree was then used as a basis for a ptolemaic
index. This is basically a metric (distance based) index which also incorporates
ptolemaic search filtering. Only a few small changes was necessary in order to create
this ptolemaic index. Finally, a sequential list was implemented as a reference
index.

These indexes was then tested for distance computations, disk accesses and
CPU time needed in order to try finding answers to a couple of research questions
stated in the introduction of this report. Lets have a closer look at these now.

Spatial versus Distance Based Indexing

How does spatial indexing compare to distance based on quadratic form
distances as the dimensionality of the data increases?

Though some results pointing towards one end of the scale was seen, the ques-
tion is too broad to be able to make any clear statements about it.

The results seen through the testing in this report clearly show that the spatial
index struggles as the dimensionality increase. More so than the distance based
index does, which in fact continues to perform relatively well even as the dimension-
ality passes 30. This despite some previous research reporting that sequential scans
can start performing better than indexes like this already at 10-15 dimensions.
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While there are many factors in play, such as test data, buffer size, page size,
implementation specifics and so on, this at least does not write off distance based
methods for vector data. Despite spatial methods being more specialized in terms
of this type of data, the metric and ptolemaic indexes were superior in these tests
when the dimensionality passed 10.

When indexing high-dimensional data, it could thus be a very good idea to at
least consider using a distance based method instead of a spatial one.

Ptolemaic Indexing

Can tree structured distance based indexes benefit from making use of
the ptolemaic inequality as a means of pruning the search space?

On this question, I feel confident in stating that this report have provided a little
more insight. Ptolemaic Indexing is most definitely a promising development in
terms of increased pruning power. A large decrease in total distance computations
was observed, as well as improvements when it came to disk accesses and CPU
time.

This was already known for distances directly associated with an object. Through
these tests, we’ve seen that this also holds true when considering larger sets of ob-
jects, as long as we have lower and upper bounds on the distance between these
objects and at least two pivot objects. The potential is definitely there. Further
studies can perhaps give more insight into exactly how powerful it is.

Another advantage of ptolemaic indexing is that it does not need a fundamen-
tally different structure than other distance based methods. It therefore has the
possibility of being used and tested in a series of different index structures.

Future Work

As the answer to the first research question is far from settled, this is still an area
where more work is needed to be able to make better judgment on whether or not a
distance based index is better than a spatial one in a specific setting. One research
area left open is to look at what criteria specifically makes a distance based better.
If one could find better decision factors, that could potentially make life a lot easier
for those who are about to choose an indexing method for their data.

Another interesting area of research will be on designing a distance based index
structure for high-dimensional data, just as the X-tree have been in the spatial
indexing family. Also for distance based indexing, one will in some cases have to
expect increased overlap between nodes. It could be interesting to try and combine
the strength of the (ptolemaic) PM-tree with the use of the X-tree supernodes.
Perhaps the overall performance could increase even more.

Other than this, the whole field of ptolemaic indexing lies open to further re-
search. Examples include choosing a better set of pivots, finding a better way of
choosing which pivots to use for filtering the search space, adjusting the amount of
ptolemaic checks against the expected gain from pruning that specific node, and
so on. All in all, there are still a lot of things that need closer study. Ptolemaic
indexing is an interesting field that is likely to see more progress in time to come.



Appendix A

QF Matrices

Here are the quadratic form matrices used for the lower dimensionalities. Due to
size considerabilities, the rest of the matrices were omitted here. The numbers in
each matrix have been rounded to three decimals.

Generating Procedure

For small N, where N is the amount of dimensions, it is quite possible to simply
generate entirely random matrices and then test whether they are non-negative
definite. As N grows larger, the probability of finding such a matrix converges
towards zero, however, and some tweaks are in order.

First of all, we can use the property that for all non-negative definite matrices,
the following equation holds [6]:

|mij | ≥
√
mii ∗mjj (A.1)

Here mij are the numbers in the non-negative definite matrix M. By first choos-
ing the numbers along the diagonal, we can add this constraint to the other numbers
generated. This significantly improves the amount of successful generations.

One can then note that because of the submatrices in the upper-left corner needs
to have a non-negative determinant, one can iteratively increase the matrix with one
row and column. Randomize the last row and column until the determinant of the
whole matrix becomes non-negative. This speeds up the generation significantly,
but you can still walk into a corner where it will be near impossible to increase the
size of the matrix with non-zero numbers. It is therefore a good idea to start over
after trying a large amount of times (10000 in the implementation used here).

Still, this doesn’t work when the matrix grows very large (24 dimensions and
above). For this many dimensions, an additional probability of setting the number
to zero was added to all positions except for along the diagonal. As the diagonal
numbers (assumed to be positive) will always contribute positively towards the
determinants (and the distance), this increases the chance of success dramatically,
and generating large matrices was no longer a problem.
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2D ∣∣∣∣4.869 0.442
0.442 0.484

∣∣∣∣
4D ∣∣∣∣∣∣∣∣

0.056 −0.210 −0.197 −0.193
−0.210 0.954 −1.292 −1.718
−0.197 −1.292 3.114 1.957
−0.193 −1.718 1.957 4.169

∣∣∣∣∣∣∣∣
6D ∣∣∣∣∣∣∣∣∣∣∣∣

4.956 −0.955 0.469 −0.381 1.030 −0.442
−0.955 1.878 −1.356 0.514 −1.258 0.032
0.469 −1.356 3.712 −1.134 −0.683 1.304
−0.381 0.514 −1.134 2.063 0.779 −0.477
1.030 −1.258 −0.683 0.779 4.605 −3.194
−0.442 0.032 1.304 −0.477 −3.194 4.887

∣∣∣∣∣∣∣∣∣∣∣∣
8D ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1.154 −1.431 0.202 0.083 0.675 0.133 0.066 0.384
−1.431 3.641 −0.365 0.271 −1.250 −0.263 −0.345 0.084
0.202 −0.365 2.890 −0.298 0.096 0.220 −0.042 −0.223
0.083 0.271 −0.298 2.248 −0.369 −0.080 −0.165 −0.398
0.675 −1.250 0.096 −0.369 1.098 0.081 0.245 0.210
0.133 −0.263 0.220 −0.080 0.081 0.633 −0.072 0.200
0.066 −0.345 −0.042 −0.165 0.245 −0.072 0.101 −0.019
0.384 0.084 −0.223 −0.398 0.210 0.200 −0.019 0.136

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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