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Problem Description
3D ultrasound reconstruction can be used to generate volume data from tracked real-time 2D
ultrasound frames. Compared to other imaging modalities like MRI and CT, ultrasound is a flexible
low-cost solution for generating 3D image maps of the internal organs of the human body using
existing 2D ultrasound scanners. This makes ultrasound the modality of choice for intraoperative
use and enables image guided surgery (e.g. neuro- or laparoscopic) where surgical instruments
are safely navigated inside the human body.

Current CPU-based methods for 3D ultrasound reconstruction are time consuming (typically from
1 minute to 1 hour depending on the quality). The overall goal of this thesis is to use GPU-based
techniques to achieve real-time (or close to real-time) reconstruction and visualization of
ultrasound.

Step 1) GPU-based real-time 3D ultrasound reconstruction of freehand 2D scans using a
tracked ultrasound probe (different algorithms, command-line based).

Step 2) Simultaneous reconstruction and visualization of the ultrasound volume as it gets
built. It would be desirable for the surgeon to see a visualization of the volume while the data is
acquired and the volume is generated (real-time volume rendering and slicing).

Technical issues such as parallelization and memory management techniques as well as recent
platforms such as OpenCL, Nvidia Fermi and recent AMD graphics cards will also be evaluated.
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Abstract

Ultrasound scanning is frequently used in medical practice because it is a non-
invasive, safe and low-cost solution (vs. CT or MR). However, conventional ultra-
sound probes only provide 2D scans. 3D ultrasound reconstruction builds 2D scans
into 3D volumes of the patient’s internals. Since these volumes can be used for
acquiring out-of-angle views, 3D rendering of the anatomy, and for image guided
surgery, they are rapidly expanding the possible uses of ultrasound. However, the
3D reconstruction process is computationally demanding and includes processing
millions of picture and volume elements. This process can currently take minutes
or even hours on conventional systems.

It is very desirable to reconstruct ultrasound images in real-time to guide surgeons
doing surgery. In this thesis, we manage to achieve this by utilizing the parallel
processing power of GPUs with hundreds of computing cores. Our novel optimized
methods take advantage of this power in order to perform entire volume recon-
structions in only fractions of a second. Several optimization techniques have been
developed, including only processing the relevant parts of the input. Novel meth-
ods for real-time incremental reconstruction producing high-quality results based
on advanced interpolation techniques, are also presented.

Using our novel pixel-based and voxel-based methods, we are able to generate a
volume of 67 million voxels in on 0.9 and 0.6 seconds, respectively. These results
are based on the new NVIDIA Fermi GPUs, OpenCL and 434 tracked ultrasound
scans. For high-quality incremental reconstruction, real-time processing times are
obtained for methods based on distance weighted orthogonal projections and on the
probe trajectory (PT). Our GPU implementations give a performance speedup of
14 for pixel-based methods, an impressive 51 for voxel-based methods, and speedup
of 6-8 for the incremental methods, compared with single-threaded CPU imple-
mentations. The cubic interpolation of the PT method is shown to be superior to
the others and preserves the most details. As for possible future work, we point
out techniques for handling memory constraints, complex probe movement and
the device-to-host transfer bottleneck.
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Chapter 1

Introduction

It is of great value for medical doctors to be able to peer into our bodies
in a non-invasive and safe manner when diagnosing patients. Ultrasound
imaging fulfills this need and also offers an important imaging technique
used in IGS (image guided surgery). Performing open surgery on a patient
involves great risk and is often followed by a long hospitalization time. IGS
enables minimally invasive procedures where surgical instruments are safely
maneuvered with the help of imaging technology into the targeted area of
the human body. By reconstructing a 3D volume from ultrasound scans,
the internals of a patient can be visualized in ways not possible by scans
alone, enabling image guidance and diagnostics. Both the reconstruction
and visualization is computationally intensive, and it is desirable to see the
constructed volume while it is being built.

Reconstruction using existing methods can take minutes if not hours. Reduc-
ing this process to only seconds would enable instant feedback during critical
surgical operations. Furthermore, incremental reconstruction while the data
is acquired makes it possible to rescan areas of interest as observed on si-
multaneous real-time visualization. In this thesis, we evaluate how GPUs
(graphical processing units) can be utilized to perform fast 3D ultrasound
reconstruction and visualization, and present methods for incremental and
non-incremental reconstruction with simultaneous visualization on the GPU.

1



1.1. GOALS

1.1 Goals

The goals of this thesis are to:

• Evaluate how to utilize the GPU in the most efficient manner to speed
up computation time of 3D freehand ultrasound reconstruction.

• Develop methods to incrementally reconstruct the volume in real-time
on the GPU as the data is acquired.

• While the data is being reconstructed on the GPU, visualize it in real-
time.

1.2 Contributions

The main contributions of this thesis are:

• A novel method of doing real-time incremental 3D reconstruction using
GPU and CPU.

• Optimization techniques for both pixel-based and voxel-based recon-
struction on modern GPU architectures.

• A software implementation, called Thunder, of GPU-based ultrasound
reconstruction and visualization including:

◦ Fast reconstruction by voxel-based and pixel-based algorithms.

◦ High-quality reconstruction in real-time as data is acquired incre-
mentally.

◦ Simultaneous reconstruction and visualization by both slices through
the volume and ray casting on the GPU.

◦ Multiplatform implementation using the OpenCL standard with
performance results on the newest GPU hardware architectures
from Nvidia and AMD.

1.3 Thesis Outline

The rest of the thesis is structured as follows:

2



CHAPTER 1. INTRODUCTION

Chapter 2 introduces the field of 3D ultrasonography. Methods of recon-
structing a volume from ultrasound scans and techniques to visualize
the volume are described. Previous work in the field of ultrasound
reconstruction and visualization is also presented.

Chapter 3 introduces general purpose computations on GPUs (GPGPU).
A brief history and current state of GPU computing is presented, and
the recent OpenCL architecture for GPGPU is described.

Chapter 4 describes the approach developed in this thesis where the GPU
is utilized to perform fast reconstruction of ultrasound scans acquired
in beforehand.

Chapter 5 describes the approach developed in this thesis for real-time in-
cremental reconstruction and volume visualization performed on the
GPU simultaneously as the data is acquired.

Chapter 6 presents the performance and quality of the ultrasound recon-
struction and visualization as performed in this thesis. These results
are also discussed together with other important issues.

Chapter 7 summarizes the findings of the work described in this thesis and
presents possible avenues of future work.

Appendix A contains an annotated bibliography of selected references.

Appendix B contains large uncropped versions of selected figures.

Appendix C contains a poster summarizing the principles and main results
of this thesis with focus on the incremental reconstruction.

Appendix D contains additional numerical test measurements.

Appendix E contains a paper about ray tracing on the GPU using the
Nvidia OptiX library, including volume ray casting.

Appendix F contains selected code listings from implementations of the
methods described in this thesis.

3



1.3. THESIS OUTLINE
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Chapter 2

3D Ultrasonography

Ultrasound is a non-invasive, safe, low cost and practical way to provide med-
ical doctors with an internal view of a patient’s body. By reconstructing a 3D
volume from hundreds of ultrasound scans, physicians can see the internals of
the body in ways otherwise impossible from scans alone. There are different
ways to reconstruct the volume, and these differ in the reconstruction quality
and speed. There are also different ways to visualize the resulting volume.
This chapter describes how ultrasound is used in medicine and introduces
different methods of reconstruction and visualization. Previous work in the
field of ultrasound reconstruction and visualization is also presented.

2.1 Medical Ultrasound

In medicine, ultrasound probes such as the one shown in Figure 2.1 are
used to obtain 2D ultrasound scans called b-scans. The probe both emits
ultrasound pulses and detects their echo returned. See Figure 2.2 for an il-
lustration. As the ultrasound pulse travels through tissue, echoes are created
when it encounters materials with varying density. Some of the pulse energy
is absorbed by the tissue, some is reflected back as echo and some continues
to move forward.

The speed of sound depends on the transmission material, but one can assume
a constant speed of vsound = 1540 m/s in human tissue [3]. It should be noted
that in reality the speed varies depending on the material, and can be as low
as 1450 m/s in fat and over 1600 m/s in muscle, but we do not take this
into consideration. This means that the distance d from the transducer to

5



2.1. MEDICAL ULTRASOUND

Figure 2.1: GE M12L linear array ultrasound probe (GE Healthcare, Wauke-
sha, Wisconsin, USA)

the density variation can be estimated by the time t it took for the echo to
arrive at the transducer:

d =
tvsound

2
(2.1)

The strength of the echo is given by the difference between acoustic impedances
of the materials next to each other. If the probe emits and receives ultra-
sound in a linear array, a 2D image can be formed where the height is the
distance from the probe, the width is the width of the array and the intensity
of a pixel is the strength of the echo. The resulting image is the ultrasound

Figure 2.2: The basic principles of ultrasound in medicine

6



CHAPTER 2. 3D ULTRASONOGRAPHY

b-scan. The array can also be curved, giving a curvilinear b-scan. Examples
of linear and curvilinear b-scans are shown in Figure 2.3.

Figure 2.3: Linear and curvilinear b-scans (used with permission from A.
Christaras)

To construct a 3D volume, each b-scan is tagged with a timestamp and lo-
cation and rotation of the probe in 3D space. This data together with the
b-scans is then processed, which can take minutes to hours depending on the
desired quality of the reconstructed output. Once reconstructed, the volume
can be used for many purposes. Typically, it can be visualized using direct
volume rendering through ray casting or similar methods. But other tech-
niques are also used, such as multiplanar reformatting slices (MPR slices)
that are created from the volume. The MPR slices are planar slices of sam-
pled points through the volume, like cutting it in half with a sharp flat knife.
More details about visualization of 3D ultrasound data is found in Section
2.4, and description of how to reconstruct a volume from b-scans is found in
Section 2.3.

2.2 Tracking in Ultrasound

Most reconstruction methods rely on an accurate tracking of the ultrasound
probe, and there are several ways to obtain this. Most methods use either
electromagnetic, optical, mechanical or acoustic sensors, but an alternative
is to estimate the orientation from the ultrasound scans themselves. Such
sensorless tracking can be done by analyzing speckle noise in the scans using
decorrelation or linear regression techniques. However, sensorless systems do
not offer the same accuracy as with actual sensors [21].

7



2.3. 3D ULTRASOUND RECONSTRUCTION

Mechanical tracking methods involve attaching the probe to structures with
certain degrees of freedom, or letting a machine move the probe automati-
cally. Disadvantages with this method is the reduced freedom and that ad-
ditionally only one probe at the time can be tracked. Acoustic tracking uses
sound emitters and receivers. The position can be tracked by measuring the
time it takes for the sound to reach the receiver, or by measuring the relative
phase shift when moving the probe. Disadvantages include the required line
of sight for the sound waves, and varying speed of sound depending on factors
such as temperature and pressure. Electromagnetic tracking systems mea-
sure current induced by moving a receiver in an electromagnetic field. This
method has the advantage of being resistant against occlusion, but metallic
objects as well as power sources or CRT monitors can distort the field.

An optical tracking system such as the one used for data collection for our
thesis is shown in Figure 2.4. Spheres that reflect infrared light are attached
to the probe, and two cameras record the reflected infrared light. The posi-
tion of the spheres relative to the cameras can then be used to estimate the
location and orientation of the probe. Obviously, the system requires that
the probe is in line of sight from the cameras.

Figure 2.4: GE M12L linear array probe (GE Healthcare, Waukesha, Wiscon-
sin, USA) with tracking frame and Polaris Spectra optical tracking system
(Northern Digital, Waterloo, Canada) (Photo of Polaris Spectra used with
permission from Northern Digital Inc.)

2.3 3D Ultrasound Reconstruction

There is more than one approach to reconstructing a 3D volume from a
series of 2D b-scans. Two main categories of algorithms exist: pixel-based

8



CHAPTER 2. 3D ULTRASONOGRAPHY

and voxel-based reconstruction. These are sometimes also called forward and
backward reconstruction, and this section describes the two approaches. The
section also describes the basics of geometric transformations in 3D space
that are used by these methods.

2.3.1 Geometric Transformations

A geometric transformation is an operation on a set of coordinates [6]. Oper-
ations that can be applied include rotation, translation, resizing and skewing.
A practical way to represent a transformation on a set of initial coordinates
P, is by a transformation matrix T:

S = T ·P (2.2)

where S are the transformed coordinates. To make it possible to represent
translation by transformation matrices, we convert P to homogenized coordi-
nates P′ by extending it with one dimension with a scalar value of 1. Given
that P is a vector of N dimensions, then P′ is of N + 1 dimensions and T is
a (N + 1)× (N + 1) matrix. The product T ·P′ will then give a homogenized
N + 1 vector that can be converted to normal coordinates by dividing each
element by the value of the added dimension. Typically as this value is still
1, we can simply omit the last dimension.

The identity matrix represent an empty transformation with no effect. The
transformations used in this thesis are rotations and translations. Equation
2.3 give a translation matrix and Equations 2.4, 2.5 and 2.6 give rotation
matrices around the x, y and z axis,

Ttranslate =


1 0 0 x
0 1 0 y
0 0 1 z
0 0 0 1

 (2.3)

Trotatex =


1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

 (2.4)

9
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Trotatey =


cos θ 0 sin θ 0

0 1 0 0
− sin θ 0 cos θ 0

0 0 0 1

 (2.5)

Trotatez =


cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 1 0
0 0 0 1

 (2.6)

where (x, y, z) are the translations in the x, y and z dimension and θ is the
rotation angle. Representing combined translation and rotation is simply
done by multiplying transformation matrices into one matrix. An example
involving a translation and two rotations is given below:

S = Ttranslate ·Trotatex ·Trotatey ·P = Tcombined ·P (2.7)

where

Tcombined = Ttranslate ·Trotatex ·Trotatey (2.8)

The orientation of an ultrasound b-scan can be represented by a transfor-
mation matrix that is given by a tracking system (which is the case in this
thesis).

2.3.2 Pixel-Based Reconstruction

Pixel-based reconstruction, also known as forward reconstruction, iterates
over the ultrasound b-scans and attempts to project their values into a vol-
ume. The term pixel-based comes from that this approach involves processing
each b-scan pixel, and since the b-scans are the input, and the volume is the
output this is dubbed as a forward method, as opposed to the voxel-based
method described in the next section.

For each b-scan j with orientation given by Tj, each pixel i on the b-scan
at location (xi, yi, 0) with intensity cj,i has a contribution Vi,j to the volume
given by:
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Vi,j(x, y, z) = m(xi, yi)w(|(x, y, z)−Tj · (xi, yi, 0)|)cj,i (2.9)

where w is a weighting function and m is a 2D mask function defining a
region-of-interest (ROI) in the b-scan with the value 1 inside the region and
0 outside. The weighting function can be based on the distance between
the voxel and the pixel, and examples of such weighting functions include
Gaussian bell (Equation 2.10) and inverse distance (Equation 2.11) [11].

wGaussian(x) = ae−
(x−b)2

2c2 (2.10)

winverse(x) =
1

x
(2.11)

To perform pixel based reconstruction, the following algorithm can be used
as basis (based on [35]):

• for each b-scan j:

◦ for each pixel i inside mask:

. v = the coordinates of the pixel in volume space.

. for each voxel v′ in kernel k around v:

− add to the voxel’s value the pixel’s value weighted by the
weighting function w.

A number of variations of this basic algorithm exist. The size of the kernel
and the definition of the weighting function can obviously be changed, and
the simplest case is to let the pixel contribute to only the closest voxel without
any weighting. This is called pixel-nearest-neighbor (PNN).

A problem with PNN is that some voxels may never be filled from any pixels,
and this is especially a problem when adjacent b-scans are far apart and thus
have much space between them. To fix this, a hole-filling stage is required
after the PNN volume filling. This can be done by iterating over all unfilled
voxels and set them to the average of all filled neighbors in a kernel around
them.

A consideration needs to be done when filling a voxel with a value, as it
might already be filled from another pixel. The scheme chosen is called a
compounding method. Common compounding methods are:
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• overwrite the old value

• overwrite the old value only if the voxel has not yet been filled

• compute an average/median of the values

• keep the maximum value

If overwriting, one can lose data if the new value is erroneous due to noise in
tracking data or ultrasound sensoring. Averaging reduces noise, but smudges
the volume. Keeping the maximum can be useful to avoid deleting values by
overwriting them with empty (i.e. dark, low-intensity) values.

2.3.3 Voxel-Based Reconstruction

Voxel-based reconstruction methods iterates over the volume to be recon-
structed and for each voxel determines which pixels influence it. This is
called a backwards method since it is based on the output (the volume).
Some of the principles explained for pixel-based methods also apply in voxel-
based methods: Pixels outside the mask should not influence the volume and
a compounding method must be chosen.

Each voxel is processed to determine which pixels influence it, and how they
do it. Several variants of voxel-based reconstruction exist, but the following
algorithm can be used as a basis (based on [35]):

• for each voxel j:

◦ for each b-scan i that is close to the voxel j:

. for each pixel p in i that is inside the mask:

− add to the voxel’s value the pixel’s value weighted by the
weighting function w.

Several variants of voxel-based methods exist. If only the closest pixel to the
voxel is used without any weighting, then the method is called voxel-nearest-
neighbor (VNN). Since all voxels are traversed in voxel-based reconstruction,
no hole-filling is necessary.
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2.4 3D Ultrasound Visualization

The goal of ultrasound reconstruction is to visualize the resulting data. Con-
ventional ultrasound scans offer only a 2D view in the direction the ultra-
sound probe is pointing, but through a reconstructed volume, slices in any
direction can be obtained. Furthermore, volume rendering techniques can
give an overview of the area of interest in three dimensions, akin to look-
ing into the body itself. This section explains two common visualization
techniques for reconstructed ultrasound volumes. The first is multiplanar
reformatting slices through the volume, and the second is volume rendering
by ray casting.

2.4.1 Multiplanar Reformatting Slices

Multiplanar reformatting (MPR) is a technique for generating sagittal, coro-
nal, and oblique views from otherwise one-axial sections [30, 9]. Parts of the
human body can be difficult, if not impossible, to scan in any direction, such
as down the length of the torso. Also, when scanning a brain covered in
ultrasound-resistant bone skull, only a small surgically-made hole will pro-
vide a spot for the probe, not giving much freedom of movement. With
MPR, one is able to generate slices in any arbitrary direction. Typically,
three orthogonal directions are sufficient for clinical utility. Figure 2.5 shows
an example of MPR. Notice how all three dimensions (width, height and
depth) can be seen.

The MPR slices can be generated directly without constructing an actual
volume, and this is demonstrated in the Stradx system [29]. But, the recon-
structed volume is useful for other purposes such as volume rendering and
storing offline for later use. In this thesis, we choose to obtain the MPR slices
from a reconstructed volume.

2.4.2 Volume Ray Casting

Ray casting is a technique where thousands of rays, one for each rendered
pixel, are cast towards the scene [30, 19]. When the rays intersect the ge-
ometry they accumulate color, similar to how light rays work in nature, only
in reverse. An example of a ray casted volume is given in Figure 2.6. The
technique is suitable for rendering volumes without a defined surface, but
that are defined by a massive ”cloud” of voxels. An alternative is to extract
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Figure 2.5: Multiplanar reformatting of ultrasound (generated by our imple-
mentation)

a surface by thresholding the voxel values and constructing facets on it by
such algorithms as marching cubes [18]. However, with noisy data such as
ultrasound scans, it is difficult to extract the exact surface [32]. A better
approach may be to render all voxels so that trained medical personnel can
use their expert knowledge and experience to interpret the visualized data.

The volume ray casting algorithm can be described as follows (based on [30]):

• for each ray:

◦ step along the ray direction in small incremental steps

◦ for each step:

. if inside a voxel, sample the volume and accumulate the value

Several methods for accumulating the voxel values exist, ranging from trivial
addition, to complex estimation of how light is absorbed by mass in nature.
Each ray has a defined origin (the camera position) and direction (determined
by field-of-view and camera direction). The step size should ideally be such
that each voxel is sampled only once and no voxel in the ray’s path is missed,
i.e. a step size larger than the distance between two neighbor voxels along an
axis, and lower than the distance between two neighboring voxels along the
diagonal.
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Figure 2.6: A ray casted render of a fractal volume (from our previous work
[19])

2.5 Previous Work on 3D Ultrasound Recon-

struction

Previous work in the field of 3D ultrasound reconstruction include novel
reconstruction algorithms and methods, as well as designed and implemented
production systems. The field of ultrasound and volume visualization is
extensive in itself. Nelson et al. [22] present approaches to visualization of
3D ultrasound data including simple ray casting and MPR slice visualization,
and Ludvigsen et al. [19] describe GPU-based volume ray casting with the
Nvidia OptiX library. The rest of this section will focus on work in 3D
ultrasound reconstruction. In Appendix A, an annotated bibliography of
selected references can be found.

2.5.1 Categorization of Reconstruction Methods

The vast number of existing reconstruction approaches have been reviewed
and categorized. Fenster et al. [8] present several approaches in 3D ultra-
sound imaging not limited to how to just reconstruct, but also the acqui-
sition of input data and how to render the reconstructed results. An at-
tempt at grouping existing reconstruction algorithms is done by Rohling et
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al. [31]. Their categorization of the methods is broadly defined as either
voxel nearest-neighbor interpolation, pixel nearest-neighbor interpolation or
distance-weighted interpolation. Solberg et al. [35] present a different group-
ing that take additional types of algorithms into account and has a clearer
separation between categories. Their grouping is into voxel-based, pixel-based
and function-based methods, and their work also includes a thorough com-
parison of the algorithms based on performance and quality.

2.5.2 Implemented Reconstruction Systems

Trobaugh et al. [37] present a formative description of a system where optical
tracking is used to orient a freehand ultrasound probe, and includes volume
reconstruction by both a voxel-based and a pixel-based method. A different
approach is described by Prager et al. [29]. Their Stradx system does not
reconstruct a volume, but instead generates MPR slices directly from the ul-
trasound b-scans. Welch et al. [39] describes a volume reconstructing system
under development that allows for updates to the volume during scanning
and also simultaneous visualization at near real-time performance. Another
attempt presented by Gobbi et al. [10] consists of an implemented system
that does simultaneous real-time 3D ultrasound reconstruction and visual-
ization, but is limited to the simple PNN method and only orthogonal MPR
slice visualization. Furthermore, the visualization is not synchronous with
the reconstruction, and is updated at a lower non-real-time framerate.

2.5.3 Reconstruction Algorithms

3D ultrasound reconstruction is often a trade-off between performance and
quality. Trobaugh et al. [37] and Gobbi et al. [10] use the simple PNN
method to enable high performance. The alternative voxel-nearest-neighbor
is used by Sherebrin et al. [34] in their 3D ultrasound system. Barry et al.
[4] use a more sophisticated pixel-based method with an inverse distance
weighting kernel around inserted pixels. Different approaches are described
by Rohling et al. [31] and Sanches et al. [33] that fall into the function-
based category according the terminology of Solberg et al. [35]. Rohling et
al. use splines to construct a volume from the input b-scans, and Sanches
et al. use statistical methods to estimate a function for the interpolation.
A recent voxel-based method is described by Coupe et al. [5] that takes the
probe trajectory into account to improve reconstruction quality, especially for
sparse input where there is much space between the b-scans. A performance
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increasing scheme for fast slice selection is described by Wein et al. [38] and
benefits voxel-based reconstruction methods. Karamalis et al. [15] describe a
high performing hybrid reconstruction method partially implemented using
GPU texture interpolation features. Huang et al. [14] describe a technique
for utilizing the Fourier domain to take redundant frequency components into
account, preserving the high frequencies and resulting in better resolutions.
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Chapter 3

General Purpose Computations
on GPUs

In the field of high performance computing, powerful computers are combined
with engineering ingenuity to solve computationally hard problems such as
weather forecasting, fluid simulation and seismic processing for oil explo-
ration. Computational performance, i.e. how many floating point numbers
can be calculated per second (FLOP/s), can be used to estimate how quickly
problems can be solved. An intuitive way to achieve higher throughput is to
perform calculations in parallel where possible [40], as exemplified by super
computers consisting of thousands of computers merged into a bigger and
often expensive machine. But parallelization is also desirable for desktop
computers due to limits for the frequency that a computer core can operate
at, and for the amount of power it can require.

A recent alternative to super computers and compute clusters is general pur-
pose computations on graphical processing units (GPGPU) [28, 36]. This
computer architecture is cheap, has a low Watt per FLOP/s and currently
offers parallelity of up to hundreds of computation cores on a single com-
modity graphics card. With the OpenCL standard [16], it is also possible to
use any parallel accelerator such as a multicore CPU, IBM and Sony’s CELL
BE processor or a digital signal processor (DSP), and not only the GPU.

In this chapter, a brief history and current state of GPGPU is presented,
followed by an introduction to OpenCL, a platform independent standard
for parallel computations. This chapter gives motivation for doing computa-
tions on GPUs, and explains how OpenCL provides a standard interface and
programming model for GPGPU.
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3.1 GPGPU Computing

GPU technology was developed for graphics processing in computer games
for the purpose of offloading calculations involved in 2D and 3D graphics
from the CPU. Early GPUs were fixed hardware accelerators specialized to
perform the most common graphical operations. Graphical applications have
the tendency to involve the same computations on different data, thus the
GPU employs massive hardware parallelism for the computations. As an
example, consider the task of rotating an object in 2D graphical applications
[12]. Each point Pi is rotated into Si:

Si = R ·Pi (3.1)

where R is a 2 × 2 rotation matrix and the same for all points. Each ro-
tated point Si can be evaluated individually in parallel. With e.g. thou-
sands of points, this can reduce computation time drastically compared to
evaluating them one by one after each other. Fixed function GPUs have
since evolved into programmable units with the same parallel architecture,
but where the parallel operations can be programmed for each stage of the
graphics pipeline. Although meant for graphics processing such as 3D shad-
ing, these programmable GPUs have started to be used for general purpose
computations. Applications that have a natural affinity for the GPU archi-
tecture involve executing similar calculations on thousands, if not millions,
of data elements. GPU manufacturers such as Nvidia and AMD have recog-
nized this potential in their products, and have released GPGPU frameworks
such as Nvidia’s CUDA (Compute Unified Device Architecture) [17, 25] and
AMD’s ATI Stream technology [2].

Current state of GPGPU

Many examples of utilizing the GPU for general purpose computations exist.
In the field of medical ultrasound, Nielsen [23] uses the GPU for image en-
hancement of ultrasound through the wavelet transform. Another example
is Herikstad [13], who estimates and corrects aberration in ultrasound scans
on the GPU.

The third generation of Nvidia GPUs targeting GPGPU computing are based
on the GF100 architecture. The GF100 is used in Nvidia products such as the
GeForce GTX470 for computer games and Tesla C2050 for high performance
computing. AMD’s competing GPU generation is the HD5000 series, which
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is used in products such as HD5870. Specifications for the C2050 and HD5870
series are given in Table 3.1. The Nvidia Quadro FX5800, which is similar
to the Nvidia Tesla C1060 from Nvidia’s second GPU generation is included
for comparison and since it is also used for test measurements in this thesis.
Note that memory bandwidth and performance are highly theoretical figures
stated by the manufactorers [27, 24, 1].

GPU C2050 [27] FX5800 [24] HD5870 [1]
# of cores 448 240 3201

Clock frequency 1150 MHz 1296 MHz 850 MHz
Memory 3 GB 4 GB 1 GB
Theoretical
memory bandwidth 144 GB/s 102 GB/s 153 GB/s
Theoretical
performance 1030 GFLOP/s 933 GFLOP/s 2720 GFLOP/s

Table 3.1: Nvidia C2050, FX5800 and AMD HD5870 specifications

3.2 OpenCL

Open Computing Language Specification (OpenCL) is an open royalty-free
standard for general purpose parallel programming [16] designed to be inde-
pendent of platform and vendor, whether it be CPU, GPU or other class of
accelerator. A detailed investigation of OpenCL and comparison with CUDA
can be found in [7]. The OpenCL standard consists of an architecture, an
API and a programming language. The architecture is a model of the en-
vironment that the computations are performed in, including computational
devices such as GPUs and a host system such as a x86 platform that con-
tains the devices. The API is an interface for the host system to build, launch
and coordinate parallel computations on the devices. The programming lan-
guage is a version of the C programming language intended for writing the
programs, termed kernels, that are executed in parallel on the devices.

A readily available implementation of OpenCL is provided by Nvidia based
on their CUDA architecture [25]. There are over one hundred million GPUs
sold that can execute CUDA programs. Additionally, AMD also has support
for OpenCL as part of their ATI Stream technology [2]. So there is lots of
hardware out there to exploit.

1HD5870 has 320 stream cores with a total of 1600 processing elements
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3.2.1 OpenCL Architecture

The OpenCL architecture defines models for the host system and its com-
putation devices, how the parallel computations are enqueued and executed,
and the memory hierarchy on the devices.

Platform Model

Figure 3.1 depicts the OpenCL platform model. The host system is connected
to one or more devices. The devices consist of one or more compute units
that have a number of processing elements. These processing elements do
the actual computations. An example of a host system is a x86 desktop
computer. Typical devices include GPUs, digital signal processors (DSPs),
IBM and Sony’s CELL BE processors and even multicore CPUs.

Figure 3.1: OpenCL platform model

Execution Model

Figure 3.2 shows the OpenCL execution model. The model is based on
the single-instruction multiple-data model where the same operations are
performed on different pieces of data. In OpenCL terminology, a work-item
is a thread that executes a kernel. The kernel is written in the OpenCL
C-based programming language, which will be described later. Work-items
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are organized in one, two or three dimensional work-groups, and all the work-
groups make up a NDRange which is an index space in the same number of
dimensions as the work-groups. Each work-item has a unique index in this
NDRange.

Figure 3.2: OpenCL execution model

The execution of parallel kernels, memory transfers and synchronization in
OpenCL is organized through command queues. The tasks are called com-
mands, and are inserted into queues to be performed on or in association
with a device. The order of execution can be either synchronous (in-order)
or asynchronous (out-of-order). When in-order, the commands are launched
and completed in the order they appear in the queue. When out-of-order,
the commands are launched in order, but are not guaranteed to complete in
order. The execution environment is defined by a context which holds all
the objects used during execution, such as devices, memory and command
queues. Figure 3.3 shows a context containing command queues that are
mapped to devices.

Memory Model

Figure 3.4 shows the OpenCL memory model. The model is closely tied to
the platform model. The main memory on the device is the global memory,
which together with the read-only constant memory is read- and writeable by
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Figure 3.3: OpenCL command queues and devices

the host system. Global and constant memory may be cached on the device.
Each compute unit has a local memory with the scope of individual work-
groups, and each processing element has a private memory where data with
local scope to individual work-items is stored. Private and local memory are
not directly accessible from host.

3.2.2 OpenCL vs. CUDA

Historically, Nvidia’s CUDA precedes OpenCL. CUDA was initially launched
as a host API and programming model for Nvidia’s GPUs. It’s popularity
made it a de facto standard for GPGPU development. Nvidia has taken this a
step further and introduced a GPU architecture dubbed the CUDA architec-
ture, and Nvidia’s OpenCL implementation runs on the CUDA architecture.
Even though CUDA is an architecture, the CUDA API and programming
model still exists and is heavily used, and the OpenCL architecture clearly
resembles the CUDA architecture. Thus, at the time of writing, OpenCL is
an alternative to the CUDA API and programming model. However, Nvidia
has implemented the OpenCL standard on top of their CUDA architecture,
and in a similar fashion AMD has implemented OpenCL on their ATI Stream
technology.

Some major concepts in OpenCL are analogue to concepts in CUDA. For
readers experienced with CUDA, Table 3.2 shows CUDA terminology and
corresponding equivalent in OpenCL.
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Figure 3.4: OpenCL memory model

3.2.3 Host Programming in OpenCL

OpenCL provides a host API for building, launching and coordinating paral-
lel computations on devices. It is also possible to extract platform dependent
parameters such as memory sizes, maximum work-item sizes and other plat-
form capabilities. This section explains how to use memory, program and
kernel objects from the host system, and how to perform synchronization of
the parallel computations. For a complete overview, see [16].

Using Memory Objects

A memory object is a part of device memory together with its attributes. By
creating memory objects, the host allocates memory on the device. There
are two types of memory objects. Buffers are sequential arrays of scalar
data types such as integers or floating point numbers, and are accessed as a
series of bytes. Images are two- or three- dimensional arrays for the purpose
of containing images such as textures. An important difference between
images and buffers is that images are accessed through samplers with defined
mechanisms for out-of-range coordinates, interpolation between values and
filtering. This section will focus on buffer objects.
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OpenCL terminology CUDA terminology

kernel kernel
host host
NDRange grid
work-item thread
work-group block
global memory global memory
constant memory constant memory
local memory shared memory
private memory local memory
compute unit stream multiprocessor
processing element core
image texture

Table 3.2: OpenCL vs. CUDA terminology

Creating a buffer object is performed by the clCreateBuffer function:

cl_mem clCreateBuffer(cl_context context,

cl_mem_flags flags,

size_t size,

void * host_ptr,

cl_int * errorcode_ret)

where context is the OpenCL context that will contain the buffer; flags

are one or more flags defining attributes of the buffer as given in Table 3.3;
size is the buffer size in bytes and host ptr is an optional host memory
pointer that is used depending on the flags given. The function returns a
device memory pointer to the allocated buffer. clCreateBuffer also returns
an error code in errorcode ret that is not equal to 0 if something went
wrong, as most of the other OpenCL API calls also do.

Flag Description

CL MEM READ WRITE Default flag. Buffer is read and written by kernels
CL MEM WRITE ONLY Write-only access from kernels
CL MEM READ ONLY Read-only access from kernels
CL MEM USE HOST PTR Use previously allocated host ptr as the storage

area for the buffer instead of device memory
CL MEM ALLOC HOST PTR Allocate new memory on host instead of device
CL MEM COPY HOST PTR Copy data from given host ptr to new buffer

Table 3.3: OpenCL buffer flags
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Reading and writing buffer objects is performed by the clEnqueue[Read|Write]Buffer
functions:

cl_int clEnqueue[Read|Write]Buffer(cl_command_queue cmd_queue,

cl_mem buffer,

cl_bool blocking,

size_t offset,

size_t size,

void * ptr,

cl_uint num_events,

cl_event * event_list,

cl_event * event)

where cmd queue is the command queue that enqueues the read/write oper-
ation, buffer is the buffer object of size bytes and blocking is true/false
depending on if the function should be blocking or not. If blocking is enabled,
the function will not return until reading/writing has completed. offset is
an offset into the buffer object to write or read from and ptr is a pointer to
the location on the host to be written to or read from by the procedure.

All functions that enqueue commands optionally have an associated event
object returned via the parameter event, that can be used to query for the
status of the command or wait for its completion (if non-blocking). Further-
more, event list can contain a list of num events events that needs to be
completed before this command is executed.

Using Program and Kernel Objects

An OpenCL program is a set of kernels that can be built (compiled and
linked) and be executed on specified devices. The kernel is usually defined by
a string of code in the OpenCL C-based programming language, but can also
be a previously compiled binary. The approach described here takes kernels
as code strings. The program is created with the clCreateProgramWithSource
function and built with the clBuildProgram function, respectively. For clar-
ity, their argument lists are not stated explicitly here, but can be found in
[16].

When the program is built, it is possible to create, set arguments to, and exe-
cute kernel objects with the functions clCreateKernel, clSetKernelArg and
clEnqueueNDRangeKernel. To create a kernel, a successfully built program
and a kernel name is supplied. The total size of the arguments cannot exceed
a platform dependent maximum (e.g. 4352 bytes for Quadro FX5800). Ker-
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nels are enqueued on a command queue like the buffer read/write operations.
When enqueueing a kernel, the size and dimensionality of the NDRange that
it will operate on must be specified. A global work size is given in n work
dimensions and defines the total number of work-items in the NDRange. An
n-dimensional local work size is also given such that the size in each dimen-
sion evenly divides the corresponding sizes in the global work size. The local
work size defines the work-group size. Events can be used for the kernel
commands just like with buffer operations mentioned above.

Host Synchronization

The previously mentioned event system handles fine-grained synchroniza-
tion between specific commands in the command queue. Each command
can optionally have an associated event, and other commands may depend
sequentially on zero or more events before execution can take place.

For global synchronization in a command queue, the host can use the clFLush
and clFinish functions. The former requires all commands in a queue be
issued to their associated device, but does not have to guarantee that they
complete before the function returns. The latter also blocks until they have
completed, resulting in a full synchronization of commands.

3.2.4 Device Programming in OpenCL

A kernel that executes in parallel on a device is written in the OpenCL C-
based programming language. This language is based on the C99 standard,
but with specific extensions and restrictions. For details, we refer to [16].
The same kernel will be executed in parallel by potentially thousands of
work-items in a NDRange. An example of a N × N matrix multiplication
kernel can be found in Figure 3.5. The kernel is written so that each work-
item computes one value of the output matrix product, implying a two-
dimensional NDRange of size (N,N).

The OpenCL C-based programming language supports vector arithmetic
with integer or floating point vectors of 2, 4, 8 and 16 elements. A num-
ber of built-in functions are provided for scalar and vector math, queries
about NDRange dimensions and work-item index, and for local or global
synchronization. Some restrictions for use of the C99 standard apply, and
these include: no recursion, use of stdio routines or external variables.
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Figure 3.5: OpenCL matrix multiplication kernel
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Chapter 4

Fast Reconstruction on the
GPU

In this chapter, we present our methods for performing fast ultrasound re-
construction using the GPU. Both pixel-based and voxel-based approaches
are considered, and the parallelization, implementation and optimization will
be described. Here, the input data has been acquired before reconstruction;
and so it is not incremental at this time. Some tasks are common for both
pixel- and voxel-based reconstruction, and these are described first.

4.1 Preprocessing of Input Data

For both pixel-based and voxel-based reconstruction, the input data is pro-
cessed before the actual reconstruction. In our case, this means calibrating
the tracking data and handling the different rate of tracking data and ultra-
sound scans.

4.1.1 Calibration of Tracking Data

Figure 4.1 shows a tracking system with a sensor attached to an ultrasound
probe. The tracking system will give the relation between the sensor and the
world space, Tw←s, in the form of a transformation matrix. This transforms
coordinates in the space of the sensor to coordinates in the world reference
space. However, even though the sensor is tightly attached to the probe,
it is not in the origin of the space of the ultrasound images. This relation,
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Figure 4.1: Spaces of a tracking system (used with permission from [21])

Ts←i varies with each tracking system’s setup, so a calibration transformation
is required and is part of the input. Before the reconstruction begins this
calibration matrix is multiplied into the tracking transformations.

4.1.2 Handling Different Tracking and Scanning Rate

While the probe catches ultrasound images, the tracking system outputs a se-
ries of transformation matrices. Ideally, the tracking system and ultrasound
probe should be synchronized such that each b-scan has an associated trans-
formation. However, the tracking system used in this thesis has a slighter
higher rate than the probe. Is is assumed that both systems start and stop
at the same time. As an example, one of the input set used in this thesis has
434 b-scans and 520 tracked positions.

This is handled by interpolating the tracking data stream between the b-scan
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stream. Since the tracking data consists of 4 × 3 matrices of floating point
values, it is obviously easier to interpolate than the b-scans with thousands of
pixels. Each b-scan and tracked position has an associated timetag, but the
probe and tracking system use clocks with different timestamp resolutions.

Given these considerations, the timetags are first normalized to the same
unit by first subtracting the first timetag from all timetags in each stream
respectively. In this manner, each stream begins with the time 0. Then, each
tracking timetag is multiplied by the ratio between the last b-scan timetag
and the last tracking timetag. This makes the tracking timetags end with
the same timetag as the b-scan timetags.

Figure 4.2: Interpolation of tracking data after timetag normalization

Figure 4.2 shows how the tracking data is interpolated using the normalized
timetags. Each interpolated value is given by Equation 4.1 where pinterpolated,i
is the value interpolated between pj and pj+1 given the timetags tbscan and
ttrack of the b-scans and tracking data. The values in the first and last
tracking matrices need not be interpolated (because of tracking and scanning
starting and stopping at the same time).

pinterpolated,i = pj +
tbscan,i − ttrack,j
ttrack,j+1 − ttrack,j

· (pj+1 − pj) (4.1)

4.2 Pixel-Based Reconstruction

Pixel-based reconstruction is an intuitive method to construct a volume from
oriented ultrasound scans. In abstract sense, the scans are simply ”inserted”
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into the volume. However, for a computer to this, a series of algorithmic
steps needs to be devised. To obtain high performance, we can parallelize this
algorithm and optimize the implementation. This section explains how pixel-
based reconstruction is done in this thesis, including how this is parallelized
and optimized for the GPU.

4.2.1 Method

The method is based on pixel-nearest-neighbor (PNN) [20]. The input is
a set of n b-scans images, a mask defining a region of interest (ROI) and n
tracking matrices. The b-scans are w×h arrays of grey-scale intensities, with
1 byte per pixel (28 = 256 possible values). The mask is the same format,
where black is outside the ROI and white is inside, but there is only 1 mask
for all n b-scans. The tracking matrices are interpolated and calibrated using
the 4× 3 floating point transformation matrices as described in the previous
section. The bottom row in the matrices will always be (0, 0, 0, 1), and is
omitted.

Figure 4.3: Steps performed in pixel-based reconstruction

There are 6 steps to be performed, resulting in the reconstructed volume.
These steps are illustrated in Figure 4.3 and given in the list below:

1. Fill pixelpos from mask

2. Fill pixelill from b-scans and mask

3. Transform pixelpos by tracking matrices

4. Convert coordinates to volume indices

5. Fill volume from pixelill and pixelpos

6. Fill volume holes
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In the first step, we construct an array of three-dimensional coordinates,
pixelpos, with one position for each pixel that is in the ROI in the mask.
The coordinates are in world space, and are such that all the b-scans lie
flat on the YZ-plane. This is given by Equation 4.2 where i is the b-scan
index (disregarded), x and y are the pixel indices, and ∆x and ∆y are the
spacings between pixels in x- and y-direction (given as part of input). These
coordinates are to be rotated by the tracking matrices to be positioned in
the volume.

pixelpos(i, x, y) = (0, x∆x, y∆y) (4.2)

In the second step, the grey-scale intensities of the pixels in the ROI are
saved as an array of bytes. The reason for doing this apparently redundant
work is that the ROI can be much smaller than the entire b-scan. Typically,
the scans are captured by a frame-grabber card connected to the ultrasound
machine, and these images include metadata and empty space around the
actual ultrasound data. The ROI is then just a fraction of the entire image.
As an example, in the test data used in this thesis the ROI is 28 % of the
full scan. By extracting these into a separate array, we save memory, and
there is a practical one-to-one mapping between pixel coordinates and pixel
intensities.

With this data ready, the transformation can begin in step three. For each
b-scan, the corresponding tracking matrix is multiplied with the pixel coor-
dinates to yield the coordinates in the volume. The operation is shown in
Equation 4.3. These coordinates are in world space, and in step four these
are converted to volume indices by Equation 4.4 where ∆v is a given spac-
ing between neighbor voxels. With the transformed coordinates converted
to volume indices, the volume can be populated in step five. For each of the
processed pixel coordinates, their corresponding pixel intensity is inserted
into the volume using one of the possible compounding methods given in
Table 4.1. The effect of each specific method is given as an expression of the
old value present in the voxel and the new value to be inserted.

pixelpos(i, x, y) := Ti · pixelpos(i, x, y) (4.3)

pixelpos(i, x, y) := ∆v · pixelpos(i, x, y) (4.4)

The sixth and final step is to fill the volume holes. For each empty voxel, a k×
k×k kernel around it is averaged to give the voxel a value. In this kernel, only
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Method Effect Condition

average voxel← old+new
2

old is not empty
average voxel← new old is empty
max voxel← max(old, new)
ifempty voxel← new old is empty
ifempty voxel← old old is not empty
overwrite voxel← new

Table 4.1: Compounding methods

the non-empty voxels are considered for calculating the average, otherwise
the filled holes would be darker than the surroundings. To save memory, hole
filling is done in place, and thus there is a need for differentiating between
actual holes and the empty voxel values before the first and after the last
b-scan, in addition to those outside the region-of-interest. If every empty
voxel would simply be filled, then non-empty voxels at the edges would be
smudged out in the empty regions. This is resolved by counting the number
of empty voxels in the kernel, and then only using the average to fill the hole
if this number is above a cutoff value. An example cutoff value is (k3/2)− k,
which is slightly lower than half the number of voxels in the kernel. If the
holes are not filled in place, e.g. by using a separate copy of the volume that
has its holes filled, this cutoff is not necessary.

4.2.2 Parallelization

Code listings of the implemented OpenCL kernels can be found in Appendix
F.1. To parallelize the pixel-based reconstruction on the GPU, we need to
divide the work into parts that can be performed simultaneously by many
threads. To fully utilize the GPU, the number of work-items should in the
order of hundreds of thousands or even millions [26]. An elegant split of the
work-domain will also ease the design of the kernels. OpenCL supports an
NDRange of up to three dimensions, but this multidimensional aspect does
not play a role in overall performance [26], so this is not a consideration here.

Another task when parallelizing is to decide what parts to run on the highly
parallel GPU and what parts to run on the relatively sequential CPU. There
are additional overheads associated with doing work on the GPU, such as
transferring data to and from the device memory and launching the kernel.
The task of processing the input by calibration and interpolation is too small
to be worth parallelizing for the GPU. However, each step in the reconstruc-
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tion is parallelized.

After the input b-scans and tracking data has been transferred to the GPU
memory, pixelpos and pixelill are generated and stored on the device. These
arrays are only needed intermittently during reconstruction and thus never
need to be transferred to or from the GPU. There are n × w × h pixels
that need to be processed into n×m coordinates in pixelpos, and intensities
in pixelill, where m is the number of pixels in the ROI. Dividing this into
n×w× h work-items is problematic because each work-item does not know
where in the pixelpos and pixelill buffers to write when they find a ROI
pixel. The solution is to evaluate m on the CPU (negligible computation
time), and give this as parameter to n work-items that process a b-scan each.
Each thread should generate m elements, so a private counter is sufficient to
manage where to write in memory.

The next three steps will process the n×m elements of pixelpos and pixelill.
The transformation task is divided into n×m work-items that each perform
one matrix multiplication. The task of converting the coordinates to voxel
indices and using them to fill the volume has the same number of work-items.
For clarity however, these steps are not merged into one kernel. Filling the
volume holes, on the other hand, is independent of the size of the input. The
massive parallelism of the GPU allows for creating one work-item per voxel,
totaling possibly millions, and where each work-item averages the neighbors
if the voxel is empty. After this step, the volume is transferred back from
the device if so desired. If the volume is visualized while on the GPU, this
step might be skipped to save the transfer time.

4.2.3 Optimization techniques

In addition to increased performance from processing elements in parallel,
there are further optimizations that can be performed. Actually, a naive
porting of sequential code to the GPU does not necessarily utilize the device’s
capabilities, and might even result in a slowdown. To make sure that each
processing element in the device is occupied with work, we need to devise
suitable work group sizes. As each work group is processed on one compute
unit, we also need to ensure that its resources (such as shared memory)
are not exhausted. On the CUDA architecture, groups (warps in CUDA
terminology) of 32 work elements are processed at the same time, so work
group size should1 be a multiple of 32. In order to hide memory latency,

1In fact, if not multiple of 32, they will be padded to be so by CUDA.
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the total number of work groups should also be such that each compute unit
have multiple groups to manage. On the Nvidia Tesla C2050 GPU, there are
16 compute units.

For the task of filling pixelpos and pixelill, the NDRange is only n work-
items, which is typically 200-500. To ensure enough work groups, we use
a work group size of 32 and pad the NDRange to a multiple of this work
size. Such padding is generally done by Equation 4.5, where p is the value of
what n should be a multiple of. The next steps have a substantially higher
NDRange, and we use work groups of 512 work-items which is the maximum
possible size.

npadded = (bn
p
c+ 1) · p (4.5)

For further optimizations, the number of variables in the code is manually
reduced to lower register usage and small data buffers are put in fast con-
stant memory. The transformation matrices are small enough to fit without
modifications, and by compressing the mask it too can fit. As mentioned,
the mask uses the same format as the b-scans, with one byte per pixel. As
the ROI is a boolean value (either in or out), eight pixels can be encoded
into one byte using bitwise operations. This compression is performed on the
CPU and also makes the mask faster to transfer to the device’s memory.

4.3 Voxel-Based Reconstruction

Performing voxel-based (or ”backwards”) reconstruction is not as straight
forward as the pixel-based method. For each voxel, one must find the b-
scan that is closest when transformed into the volume. When found, the
pixel on this b-scan that will contribute to the voxel must then be located.
In this section, the voxel-based reconstruction implemented in this thesis
is described. As in the previous section on pixel-based reconstruction, we
also cover how this is parallelized on the GPU and some of the important
optimization techniques.

4.3.1 Method

The method is based on voxel-nearest-neighbor (VNN) [34]. As with pixel-
based reconstruction, the input tracking data must be calibrated and inter-
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polated. After this has been completed, the two approaches start differ. The
reconstruction consists of the following steps illustrated in Figure 4.4.

Figure 4.4: Steps performed in voxel-based reconstruction

1. Fill planepoints

2. Transform planepoints

3. Fill planeequations from transformed planepoints

4. For each voxel:

(a) Calculate distance from voxel to planes

(b) Calculate orthogonal projection of voxel on closest plane

(c) Calculate 2D coordinates of projection on plane and convert to
pixel indices

(d) Fill voxel using compounding methods

In the first step an array of n triplets of 3D space locations is constructed.
The points in the triplet are the top-left, bottom-left and top-right corners of
the b-scans in world coordinate space such that all b-scans are parallel and
lie flat on the YZ plane. See Equation 4.6. The top-left corner is dubbed
corner0, the top-right cornerx and the bottom-left cornery.

corner0 = (0, 0, 0), cornerx = (0, w∆x, 0), cornery = (0, 0, h∆y) (4.6)

In the second step, these points are transformed according to the tracking
data. The transformation matrix of each b-scan is multiplied by each of
the three corners, and the resulting coordinates are now correctly placed in
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world space. Three points is enough to define a plane, but to avoid redun-
dant calculations, an array of n plane equations is constructed in step three.
Equations 4.7 and 4.8 show how three b-scan corners are used to calculate
the parameters of a plane equation. Each plane equation has four parame-
ters, A, B, C and D, and define a plane implicitly. The plane equation is
given in Equation 4.9. The mathematically inclined reader will notice that
A, B and C are vector coordinates of the plane normal, and D is the distance
from origin to the closest point on the plane.

normal =
(corner0− cornerx)× (cornery − corner0)

|(corner0− cornerx)× (cornery − corner0)|
(4.7)

(A,B,C,D) = (normalx, normaly, normalz,−A · normal) (4.8)

Ax+By + Cz +D = 0 (4.9)

The last step is to iterate over all voxels and fill their value from the closest
b-scan. It is for this purpose that planepoints and planeequations were
constructed in the previous steps. To fill a voxel, a series of substeps are
performed (see previous list). Each voxel with indices (x, y, z) has world
space coordinates given by v = (x∆v, y∆v, z∆v). In the first substep (a), we
calculate the distance of an orthogonal projection from these coordinates to
each of the b-scan planes and find the minimum. The brute force approach
is to test all planes, but a clever optimization technique has been devised
and will be explained under ”Optimization Techniques” below. For a point
v, the orthogonal distance to a plane is found using Equation 4.10.

distance =
(A,B,C) · v +D

|(A,B,C)|
(4.10)

The next substep (b) is then to calculate the world space coordinates p of the
voxel coordinates orthogonally projected onto the plane. Given the distance
and the plane normal, this is given as Equation 4.11.

p = v − distance · (A,B,C) (4.11)

To fill the voxel, we need the pixel intensity at this location (p) on the b-
scan. This requires calculating the pixel indices in the b-scan image. To do
this, substep (c), the vector from the top-left corner (corner0) to the point
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p is projected onto normalized vectors parallel with the x and y axis of the
b-scan. The lengths of the projections are divided by ∆x and ∆y to give
pixel indices (px, py). Equations 4.12 and 4.13 show the calculations.

px =
(p− corner0) · |cornerx− corner0|

∆x
(4.12)

py =
(p− corner0) · |cornery − corner0|

∆y
(4.13)

Given the indices of the contributing pixel, the last substep (d) is to fill the
voxel with the calculated value.

4.3.2 Parallelization

A code listing of the implemented OpenCL kernel can be found in Appendix
F.2. In the previously described method, only step 4 is computationally
demanding enough to require parallelization. There are only three points and
one equation per input b-scan, and as there are typically around 200-500 such
b-scans, the total computation time is negligible compared to iterating over
all the voxels. For example, volume size can typically be 2563 or 5123. Also,
the sizes of the corner points and equation parameters are small enough to
be quickly transferred to the device. To summarize, step 1 to 3 is performed
on the CPU, and step 4 is parallelized on the GPU.

The voxels are processed concurrently in columns. A volume of wvolume ×
hvolume × nvolume voxels will result in wvolume × nvolume threads. Each thread
executes a kernel that iterates over hvolume voxels, performing substep (a)
to (d) on each to fill them. The reason for this separation is that each
voxel processed in a column is not more than than ∆v from the previously
processed voxel, and this property is used in an optimization technique to be
described below.

4.3.3 Optimization Techniques

During voxel-based reconstruction, one of the most computationally demand-
ing tasks is to find the b-scan that is closest to a voxel. The brute force ap-
proach involves testing all n b-scans for each of the wvolume×hvolume×nvolume
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voxels, a computationally expensive task. However, it is possible to exploit
inherent continuity in the b-scans.

Ideally, each b-scan will come ”after” the previous one. In other words no
b-scan will intersect another, and each b-scan is in front of the previous (in
the direction of the probe’s trajectory). Noise in the tracking data and an
unsteady hand can cause the b-scans to be partially shuffled. Additionally,
when rotating the probe, there is a high probability that b-scans will intersect
each other. Even though the b-scans may come in any order, the general
tendency is along the probe trajectory. In other words, they are partially
ordered. This means that if the closest b-scan to a given voxel is found, then
the index of the closest b-scan to the neighbor voxel is probably close to
the index of the previously closest b-scan. To take advantage of this, the
following scheme was devised:

• Let each thread process a column of voxels

• i = index of b-scan closest to first voxel in column found by brute force

• For each voxel in column:

◦ Loop j ∈ 0, 1, 2, ..., n

. Calculate distance to b-scans with index k = i+j and l = i−j
(if they exist)

. i = the closest b-scan of i, k and l

. If difference between distance to i and distance to k or l is
above a given cutoff, stop testing any more ks or ls, respec-
tively

The idea is that b-scans before and after the previous b-scan that was closest
are tested. It is important to process voxels next to each other and not,
for instance, jump from voxel (w − 1, y, z) to (0, y + 1, z) because they are
neighbors in memory. Since the b-scans are partially ordered the assumption
is that when testing a b-scan with an index far enough from the last b-scan
that was closest, it will not be a better (closer) choice than the b-scans tested
so far. The cutoff limit will depend on the nature of the input tracking data.
For example, in one of our test cases, a cutoff of 4∆v was sufficient. After
this, the distances found had ”peaked”, and the search could end.
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Chapter 5

Real-Time Incremental
Reconstruction and
Visualization

In our work described in the previous chapter, all input data was ready and
available before the reconstruction took place. This meant that all data could
be examined and taken into account while reconstructing. Another advan-
tage was that the whole operation can be performed in ”bulk” with small
overhead. An alternative is incremental reconstruction where the volume is
generated while the b-scans and tracking data are acquired. In this situation,
one can only take previously acquired data into account, and a smaller re-
construction procedure is performed for each chunk of data as it is generated
by the ultrasound and tracking system.

In this chapter, we present a novel method to incrementally reconstruct
tracked ultrasound data in real-time on the GPU. Incremental reconstruc-
tion is one of the main contributions of this thesis, and while the meth-
ods in the previous chapter were only nearest-neighbor approaches, we can
also obtain high-quality reconstruction using interpolation techniques from
[5] and [37]. The chapter starts with how to handle different rates of b-
scan and tracking data when acquired incrementally, we describe a simple
pixel-nearest-neighbor scheme performed incrementally on the GPU, which
is then followed by a description of the high-quality incremental reconstruc-
tion. Lastly, we describe how the volume can simultaneously be visualized
while it is reconstructed.
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5.1 Incremental Acquisition and Preprocess-

ing of Input data

When reconstructing incrementally, a method is needed for acquiring the b-
scans from the ultrasound device (typically from a frame-grabber card) and
the tracking data from the tracking system. This thesis does not focus on
what goes on behind the scenes before this data is available in the computer’s
memory, but we define a simple interface that is assumed can be implemented
by the ultrasound and tracking systems:

Call Effect

get last b-scan(timetag,

b-scan)

returns most recent b-scan and associ-
ated timetag

get last tracking(timetag,

matrix)

returns most recent tracking data in
form of transformation matrix and as-
sociated timetag

poll b-scan / poll tracking returns true (once) when new b-
scan/tracking data is ready, and false
at each call after that until another b-
scan/tracking data is ready

end of data returns true if there are no more b-
scans or no more tracking data to be
expected (i.e. system turned off), false
otherwise

Table 5.1: Interface against ultrasound and tracking system

Given this interface, the following algorithm is used for acquiring and pro-
cessing the input data incrementally:

• loop:

1. b-scan = NULL

2. matrix = NULL

3. while (matrix or b-scan is NULL)

(a) if (poll b-scan) get last b-scan(timetag b, b-scan)

(b) if (poll tracking) get last tracking(timetag m, matrix)

4. if (end of data) break loop
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5. interpolate tracking data and calibrate

6. perform reconstruction increment

The reason for doing it in this fashion is that the rate of b-scan generation
is not the same as the rate of incoming tracking data. After the while-
loop in the algorithm has been completed, there has been acquired a b-scan
and tracking data, but the tracking data is either from before or after the
b-scan. As in the non-incremental method, we choose to interpolate the
transformation matrix according to the given timetags. This, together with
the calibration, make up the preprocessing of the input data. After this step,
one increment of the reconstruction can be performed.

5.2 Incremental PNN Reconstruction

The pixel-nearest-neighbor (PNN) method is suitable for incremental recon-
struction as each incoming b-scan can be processed and put into the volume.
Since pixel-based methods work forward, only the voxels affected by a b-
scan are processed. In contrast, voxel-based methods work backwards, and
all voxels must be processed for each increment of the reconstruction.

In this section, we describe how to perform incremental PNN reconstruc-
tion utilizing the GPU for parallel processing. In the incremental algorithm,
not all steps benefit from being offloaded to the GPU, and the distribution
between CPU and GPU is covered here. Although PNN is suitable for in-
cremental reconstruction, the hole-filling stage introduces difficulties when
trying to maintain high performance. This will also be explained, and some
possible solutions are presented.

5.2.1 Method and Parallelization

The method used for incremental PNN is similar to ordinary non-incremental
PNN. This is why PNN was chosen for a simple incremental reconstruction
method. For each increment, we assume that a b-scan and its interpolated
and calibrated tracking transformation matrix has been acquired as described
in the previous section. The steps are then as follows:

• For each acquired b-scan and associated tracking data:

1. Fill pixelill and pixelpos (on CPU)
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2. Transfer b-scan, tracking data, pixelill and pixelpos to GPU

3. Transform pixelpos (on GPU)

4. Convert pixelpos to voxel indices (on GPU)

5. Fill device memory volume (on GPU)

6. Transfer pixelpos to CPU

7. Fill CPU memory volume (on CPU)

The main steps are the same as in the non-incremental version: fill pixelill
and pixelpos, transform, convert to voxel indices and fill the volume. How-
ever, in the incremental version some steps previously done on the GPU are
now performed on the CPU, and in addition we maintain a duplicate volume
on the CPU in addition to the GPU. The reason behind these differences will
be explained below.

In step 1, the mask is used to fill pixelill with pixel intensities and pixelpos
with untransformed coordinates, just like with non-incremental PNN, but
this step is now performed on the CPU. The reason for this is that while it is
straightforward to divide the work into one b-scan per thread, it is harder to
divide the work of a single b-scan. As mentioned in Section 4.2, parallelizing
the sequential code requires each thread to know where in the buffer to write
the data if a pixel in the ROI is found. This could be performed with an
atomic update of a global variable identifying the next position to write to,
but the overhead of maintaining and waiting for this variable overshadows
the benefits of parallelizing the task. This operation is fairly trivial, and
takes negligible time when only processing a single b-scan. So although an
atomic counter or other scheme for parallelizing this might achieve the same
effect, the simplest solution is to perform this sequentially on the CPU and
then transfer the results (of negligible size for single b-scan) to the device.

In contrast to step 1, transforming the coordinates in step 3 is a computa-
tionally heavy task and is best suited for the GPU, and the implementation
is straight forward with m threads (one for each pixel in the ROI). A typical
mask has around 100 000 pixels, which is more than enough to occupy the
compute units on a modern GPU. Again the same approach is used in step
4 where we parallelize using one thread per pixel in the ROI. As the data is
already on the device memory, it is logical to perform this step on the GPU.

In non-incremental reconstruction, if the volume is not solely used for visu-
alization on the GPU, it is transferred from device to host when the recon-
struction is complete. To do the same incrementally would be a performance
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bottleneck as tens of megabytes of data would be transferred for each in-
crement of the reconstruction. To reduce the bandwidth used, we transfer
only the processed pixelpos from device to host, and use the pixelill (from
step 1) that already exists on the host to fill a volume duplicate on CPU
memory. This incrementally updated volume can be used in any third-party
application. If the volume is only used for visualization on the GPU, then
the two last steps may be omitted. It is also possible to visualize the volume
on the GPU during reconstruction, and then transfer the whole volume to
the CPU only at the end of the reconstruction session.

5.2.2 Incremental Pixel-Based Hole Filling

It should be highlighted that hole filling is omitted in the method presented in
the last section. In the non-incremental version, hole-filling can be performed
after all b-scans have been inserted into the volume. This is a computation-
ally heavy task if performed for each increment for the entire volume. In
addition, transferring the entire volume with filled holes is unacceptable if
real-time performance should be maintained. Thus, there are two problems
to be solved: the first is how to find and fill holes incrementally without
processing the entire volume each increment, and the second is how to incre-
mentally maintain a reconstructed volume on the host without transferring
the entire volume each time. We present possible schemes to solve this.

The first method is to use some sort of ”splatting” technique where each
pixel contributes to voxels in a ”splat” around its nearest neighbor. The
splats can be spherical in nature and decrease in intensity as distance to
the center increases. If sphere diameter is greater or equal to the maximum
separation between two b-scans, no holes will occur. To implement this in
the GPU-based PNN reconstruction, the splats are filled on the CPU and
GPU volumes in step 5 and 7. The disadvantages are increased computation
time (on CPU and GPU) spent on filling splats and blurring of the output
volume.

Another approach is to use the parallel processing power of the GPU to fill
holes on device memory volume, but not to transfer any additional hole-
filling information to the host. The GPU volume will then have filled holes
while the CPU volume will not, and it (the GPU volume) can be used for
intermediate visualization where holes are not critical. At the end of the
session, the entire hole-free volume can be transferred to host. Although
bandwidth is saved in this approach, full hole filling is time consuming when
performed on each increment, even on the GPU.
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It should not be necessary to search for holes in the entire volume for each
increment. Holes may occur when two b-scans are more than ∆v from each
other when inserted in the volume, and no other b-scans occur between them.
This can be exploited by searching for holes in an area close to each inserted
b-scan. Assuming no holes wider than q voxels, we can search each inserted
b-scan for holes in the q ×m voxels immediately next to the voxels filled by
the b-scan. In this way, a much smaller subset of the volume is searched,
and we always know the upper limit of how many holes are filled on each
increment. The q×m voxels intensities can be transferred to host in addition
to pixelpos. The locations of the voxels where holes are filled can be set to the
opposite direction of the current probe trajectory, and can thus be calculated
from pixelpos and the tracking data without transferring more coordinates
to the host.

5.3 High-Quality Incremental Reconstruction

While incremental reconstruction with PNN is fast, it has its shortcomings.
Due to the simplicity of the algorithm, the quality of the reconstructed vol-
ume is not as good as can be obtained with voxel-based methods using inter-
polation. Furthermore, hole filling is problematic when aiming for real-time
performance. What is desired is a method that have high hole-free recon-
struction quality, that can preferably be adjusted for a quality-time tradeoff,
and one that is suitable for incremental updates of the volume without pro-
cessing all voxels.

Pixel-based methods have the advantage of processing only the voxels that
is actually updated by each b-scan, but the simplest variants can have the
problem of holes. More advanced voxel-based methods can offer high recon-
struction quality without holes, but are unsuitable for incremental updates.
The method presented in this section combines the advantages from both
approaches. The steps taken will be explained, together with issues from
implementation and parallelization of the method are also covered.

5.3.1 Method

The essence of the method is to transform incoming b-scan planes into the
volume, but also to only process voxels located between b-scans. For the
voxels processed, voxel-based interpolation methods can be used to fill their
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values. This is what is meant by combining the pixel- and voxel-based ap-
proaches (or rather, the forward and backward approaches). B-scans are pro-
cessed forwardly into the volume, but instead of filling the volume directly
from the pixels, voxels between inserted b-scans have their values interpo-
lated from the surrounding b-scans.

Figure 5.1: Finding voxels between b-scans

For each incoming b-scan, we transform its corner points using the tracking
data and construct its plane equation as previously described in Section 4.3.
Figure 5.1 show how the voxels between the current and previous b-scans
are calculated. First, rays are constructed along columns of voxels, starting
at the edge of the volume with one ray per column. These rays are used
for ray-plane intersection calculations with the current and previous b-scan
planes. The distance t along a ray starting at r0 with direction rd to a plane
with equation parameters (a, b, c, d) is given by Equation 5.1, and the voxel
indices (x, y, z) are given by Equation 5.2. Each ray gives one intersection
point with the current b-scan, and another with the previous b-scan. The
voxels between these will lie next to each other.

t = −(a, b, c) · r0 + d

(a, b, c) · rd
(5.1)
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(x, y, z) =
r0 + trd

∆v
(5.2)

After the voxels between the b-scans have been found, they are each filled
using a voxel based method. In our system, one can choose between two
methods: one based on distance weighted orthogonal projections, and one
based on cubic interpolation of the probe trajectory.

Distance Weighted Orthogonal Projections

This method builds on the approach described by Trobaugh et al. [37], where
each voxel filled is orthogonally projected onto nearby b-scans and interpo-
lated using the distance to the b-scan planes. But while Trobaugh et al.
project onto only two surrounding b-scans, we project onto the nw ≤ n b-
scans surrounding the voxel. The number of b-scans (nw) taken into account
for each voxel can be adjusted for a tradeoff between quality and perfor-
mance. The 2D coordinates of the projected point on the b-scan plane can
be found using equations previously described in Section 4.3. What differs,
however, is that we project not only to the closest b-scan, but to all nearby
b-scans. The number of b-scans used for each voxel increases the quality.
For each projection, the pixel intensity is given by a bilinear interpolation of
the 4 pixels closest to the projected coordinates, as shown in Figure 5.2 and
given by Equation 5.3 where xf and yf is a fraction between 0.0 and 1.0 that
says how far the projected point is from the closest pixel coordinates to the
top-left. E.g. 0.5 means halfway between (x, y) and (x+1, y+1) (see figure).
If one or more of the pixels are outside the ROI, the bilinear interpolated
intensity is not used. Each intensity used is weighted by the inverse of the
distance to the b-scan plane given by Equation 4.10. To normalize the result,
it is divided by the sum of the weights as given by Equation 5.4.

bilinear = bscan(x, y)(1− xf )(1− yf ) +

bscan(x+ 1, y)xf (1− yf ) +

bscan(x, y + 1)(1− xf )yf +

bscan(x+ 1, y + 1)xfyf (5.3)

valuedwop =

∑
i(bilineari · weighti)∑

iweighti
(5.4)
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Figure 5.2: Bilinear interpolation

Cubic Interpolation of Probe Trajectory

This method is based on reconstruction as described by Coupe et al. [5],
but performed only on the voxels between two b-scans. The principle is
to perform cubic interpolation of the tracking data as an estimation of the
trajectory of the ultrasound probe. First, the timetags of two adjacent b-
scans are linearly interpolated based on the orthogonal distance from the
voxel coordinates in space to the b-scan planes, as illustrated in Figure 5.3
and given in Equation 5.5. This new timetag is called a virtual timetag and
belongs to a virtual plane going through the voxel.

t =
d2t1

d1 + d2
+

d1t2
d1 + d2

(5.5)

To find the plane equation, top-left corner and x and y-vectors of the b-scan
in the virtual plane, we use cubic interpolation based on the timetags through
the key function given in Equation 5.6 with a = −1

2
. We interpolate plane

equation parameters, corner and vector coordinates from four adjacent b-
scans, where the two internal b-scans are those previously used to interpolate
the virtual timetag. The cubic interpolation is shown in Figure 5.4. For each
parameter or coordinate α to interpolate, the value of the key function is
used in Equation 5.7.
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Figure 5.3: Timetag of virtual plane

φ(β) =


(a+ 2)β3 − (a+ 3)t2 + 1 if 0 ≤ β < 1
aβ3 − 5aβ2 + 8aβ − 4a if 1 ≤ β < 2
0 if 2 ≤ β

(5.6)

α =
4∑

i=0

αiφ(
∣∣∣∣ t− tit1 − t0

∣∣∣∣) (5.7)

When the virtual plane has been obtained, the 2D coordinates of the voxel
(lying on the plane) can be found using the equations described in Section
4.3. These coordinates are then used on each of the four adjacent b-scans,
and the pixels at those locations are bilinearly interpolated using Equation
5.3. The four bilinearly interpolated values are then weighted by the inverse
orthogonal distance to each b-scan from the voxel coordinates according to
Equation 5.4.

5.3.2 Implementation and Parallelization

Code listings of the implemented OpenCL kernels can be found in Appendix
F.4. To be able to interpolate between several b-scans, one solution is to
queue up a buffer of incoming b-scans and tracking data. As incoming data
is pushed into the queue, data is popped from the other end of the queue.
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Figure 5.4: Cubic interpolation of four b-scans

When the session begins, the queue is simply filled without processing any of
the input. During the session, this queue will be a ”sliding window” across
the stream of incoming data. The number of b-scans (each with associated
tracking data) in the window is at least four if the probe trajectory (PT)
method is used to fill the voxels, and a number nw ≤ n if distance weighted
orthogonal projections (DWOP) is used. There are several options for which
two b-scan planes to use in the window when finding voxels to fill between
them. To avoid repeated fillings of the same voxels, we use the planes of the
two b-scans in the center of the window.

When constructing the rays for the ray-plane intersection calculations, any
axis can be used as a direction for the rays. As we parallelize with one
thread per ray, we want to distribute work as evenly as possible. This means
choosing an axis that is the most orthogonal to the normal for each b-scan.
And by this we mean the axis that has the lowest angle between itself and
the normalized b-scan plane normal n as given in Equation 5.8. The axis
used is re-evaluated for each incoming b-scan.

S = {(0, 0, 1), (0, 1, 0), (1, 0, 0)}, ARGMINa∈S(a · n) (5.8)

To handle discontinuities in the input stream (e.g. from pauses in tracking
during one session), a check is made for each incoming b-scan. If the increase
in time according to the timetags is above a cutoff value, the reconstruction
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is restarted from that b-scan instead of attempting to interpolate across the
discontinuity. Ultrasound systems usually have a regular acquisition rate f ,
and so a cutoff at 2

f
is sufficient.

As mentioned, the computations are parallelized with one thread per ray, and
this NDRange is kept as the voxels found by one ray will also be processed
by the same thread. Assuming that the z-axis is always used as the best
axis, the NDRange will be w×h threads, each processing a number of voxels
between 1 and the highest separation between two adjacent b-scans (typically
≤ 5).

5.4 Simultaneous Reconstruction and Visu-

alization

One of the purposes of doing incremental reconstruction is to be able to
see the volume as it is constructed. This allows for immediate feedback
during scanning. There are many ways to visualize a volume, and the system
described in this thesis offers orthogonal multiplanar reformatting (MPR)
slices or volume ray casting. In addition, as the volume is accessible on both
device and host memory, it can be used as input for third-party visualization
packages. In this section, the visualization techniques used are described.

5.4.1 Orthogonal MPR slices

Figure 5.5: Screenshots of orthogonal MPR slices generated by our imple-
mentation
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Figure 5.5 shows some screenshots of the orthogonal MPR slices, and larger
figures can be found in Appendix B. The slices are along each of the three
volume axis, and the voxel values in each slice are rendered on the slice plane.
This is performed by extracting voxel values on indices (x, y, i), (x, i, z) and
(i, y, z) for the z, y and x axis, respectively. The parameter i determines
where on each axis the slices are located, while x, y and z are all the possible
voxel indices in the volume. The slices are extracted from the host memory
volume and used as textures for three orthogonal polygons rendered with
OpenGL. It should be noted that extracting the voxels and using them as
textures takes a negligible amount of time. Using the mouse, the user can
rotate the volume to view the slices at different angles, and pressing keyboard
keys will increase or decrease the i parameter. In this way, all parts of the
volume can be visualized.

5.4.2 Volume Ray Casting

Figure 5.6: Screenshots of volume ray casting generated by our implementa-
tion

Figure 5.6 shows some screenshots of the ray casted volume, and larger figures
can be found in Appendix B. Ray casting is a computationally demanding
task, but the GPU’s processing power is utilized while the volume data is
still on the device memory. The task is parallelized with one thread per ray,
and consists of two steps: first construct the rays, then cast them into the
volume.

Code listings of the implemented OpenCL kernels can be found in Appendix
F.3. The resulting rendered image consists of ws × hs pixels, with one ray
(and thread) per pixel. The camera is defined by a camera location in space,
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a lookat location that the camera is looking at, a vector defining ”up” in
the rendered image, and a vector defining ”flat” (the horizontal direction)
in the rendered image. Each ray’s origin is the given camera location, but
their direction needs to be calculated from their pixel position and a desired
field-of-view.

When the ray directions have been found, they can be cast into the volume.
Instead of stepping from the ray origin, we save computations by first cal-
culating the intersection between the box-shaped volume and each ray. This
saves sampling for steps that are outside the volume.

There are many ways to accumulate voxel intensities while stepping along a
ray. The method used in this work models the voxels as transparent cubes
with a transparency level between 0.0 (fully oblique) and 1.0 (invisible). The
entire procedure is as follows:

1. strength = 255

2. for each step along ray:

(a) if strength < cutoff, then break stepping

(b) transparency = 1− intensityvoxel
255

(c) accumulate strength ·(1− transparency) into ray’s pixel intensity

(d) strength← strength · transparency

Each ray starts with a strength parameter representing how much light has
been absorbed. The initial value is the maximum value of a pixel (255),
and it is reduced for each voxel encountered. For each voxel sampled, its
intensity is weighted by the current strength and accumulated into the final
pixel intensity. To save computations, the stepping is ended if the strength
is below a given cutoff where the voxels simply do not contribute noticeable
intensities.
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Chapter 6

Analysis and Discussion of our
Results

In this chapter, our results obtained using the previously described methods
are presented. The methods and their results are also analysed and discussed.
The results include not only the quantitative performance, but also the vi-
sual quality of the reconstructed volume. The chapter ends with a general
discussion of the pixel-based and voxel-based approaches, and of incremental
versus non-incremental reconstruction.

6.1 Performance

The goal of this thesis is to obtain real-time performance for 3D ultrasound
reconstruction. Here, we present the measured performance of the methods
described in the two previous chapters, and also identify how much of the
computation time is spent on the different algorithmic steps on the device.
We will first start by describing the test setup used in the measurements,
then we present and discuss the performance obtained on different types of
computing hardware (CPU and GPU). Last, the distribution of computation
time between the different steps of the reconstruction procedure as well as
the amount of memory required is presented and discussed.
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6.1.1 Test Setup

Table 6.1 shows the hardware specifications of the computer used to measure
the results in this chapter, with the different GPUs being used one at the
time. All hardware is commercially available as commodity products.

GPU1 Nvidia Tesla C2050
GPU2 AMD ATI Radeon HD5870
GPU3 Nvidia Quadro FX5800
CPU Intel Core 2 Quad Q9550
Memory 4 x 2 GB DDR3
OS Microsoft Windows XP 64 bit
Compiler Microsoft Visual Studio 9.0

Table 6.1: Test computer specifications. See Table 3.1 for GPU details

Table 6.2 gives a specification of the test input and volume size that was
used for the performance tests. In parentheses are the symbols that from
now on will be used to refer to these values. The tracking data were ob-
tained from a Polaris optical tracking system (Northern Digital, Waterloo,
Canada), and the b-scans from a Vivid 7 ultrasound scanner (GE Vingmed
Ultrasound, Horten, Norway), equipped with a GE M12L linear array probe
(GE Healthcare, Waukesha, WI).

Number of b-scans (n) 434
Number of tracking data 520
B-scan size (w × h) 768 x 576 pixels
Region-of-interest size (m) 342 x 356 pixels
Volume size (wvolume × hvolume × nvolume) 512 x 256 x 512 voxels
Pixel spacing x-dimension (∆x) 0.107724 mm
Pixel spacing y-dimension (∆y) 0.111732 mm
Voxel spacing all dimensions (∆v) 0.08 mm
Bits per pixel/voxel 8

Table 6.2: Test input data

Most reconstruction algorithms have one or more parameters that increase
the reconstruction quality at the cost of increased computational complex-
ity. In Table 6.3 a list of important parameter settings is provided for the
algorithms that were considered.
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PNN 53 neighbor voxels used for hole filling
VNN 5∆v distance cutoff to b-scans
Incremental PNN no hole filling
Incremental DWOP4 4 b-scans interpolated per voxel
Incremental DWOP8 8 b-scans interpolated per voxel
Incremental PT cubic interpolation of 4 b-scans per voxel
Ray casting 800 x 600 pixels (i.e. rays)

Table 6.3: Test algorithm parameters

6.1.2 GPU Performance

Figure 6.1: Reconstruction times using Nvidia Tesla C2050

Figure 6.1 shows the time measured when reconstructing the test input using
the Nvidia Tesla C2050 for various algorithms. PNN and VNN are the non-
incremental methods, and as one can see, they complete in under one second.
The incremental PNN is slower, even without the hole filling, with the rea-
son for this being the overhead associated with incremental reconstruction
as previously described. The other incremental methods are substantially
slower, and this is due to increased computations resulting in much higher
reconstruction quality than the simple PNN. The incremental performance
is, however, real-time as about 20-30 seconds are typically used for freehand
scanning.
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The volume size is purposely set at the upper end of what one requires for
normal use. Typically, the voxel spacing is set to the same value as the pixel
spacing, so given a pixel spacing at around 0.1 mm the volume size would
be 450× 200× 450 voxels, which is 40 % less than the one used for testing.
The point to note is that these test sizes are worst case.

There are two variants of the distance weighted orthogonal projections (DWOP)
method examined, which take into account 4 and 8 of the closest b-scans
respectively. As can be seen, the increased quality obtained increases the
reconstruction time by approximately 40 %. The DWOP4 and the method
based on the probe trajectory (PT) take roughly the same time which can
be explained by the fact that they both take 4 b-scans into account for each
voxel evaluation. The PT method, however, is somewhat slower, which is
explained by the higher degree of interpolation used. The complexity of the
PT method is reflected by more complex code, which results in generally
higher register use compared to the DWOP (49 vs. 33 registers).

Figure 6.2: Speedup of Intel Q9550 vs Nvidia Tesla C2050

The reconstruction methods were also implemented using only a single-
threaded sequential CPU for the computations. In all cases the CPU was
slower than the GPU version. Figure 6.2 shows the speedup of utilizing the
GPU compared to only the CPU, with the performance of the GPU versions
between 6 and 14 times faster, and 51 times faster in the case of VNN. In all
cases, this is a substantial speedup. The main limiting factor in the speedup
of the incremental cases is in the transfer of the volume at each increment (the
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specifics will be discussed in Section 6.1.4). One can see that the speedups of
DWOP and PT are in the same order as their respective computation times.
The explanation behind this is that increased computational load means that
the processing power of the GPU can be utilized even more, and that the
host-device transfers are smaller in comparison to the computations.

While the non-incremental PNN gains a 14 times speedup, the non-incremental
VNN gains a significant 51 times increase in performance. Note that these
two algorithms are inherently different, and that they therefore cannot be
expected to behave similarly to each other when utilizing the massively par-
allel GPU. One reason is the determinism of the implementations. Each
of the threads in VNN reconstruction does exactly the same work, with a
small difference at the end of the computations (based on the voxel being
in the ROI or not). For PNN this difference occurs early, as the pixels
are processed in the beginning. Such branching results in low occupancy
on the GPU, and makes it difficult to achieve good performance. As ex-
plained in Section 4.2, one of the major steps of the PNN algorithm is par-
titioned among ”only” 434 threads, one per b-scan. While the VNN can use
wvolume × hvolume × nvolume = 512 × 256 × 512 threads, i.e. one per voxel,
which is a scalability more suitable to the massively parallel GPU. Further-
more, the hole-filling needed in PNN is a task similar in complexity to the
VNN, and thus PNN in total should be slower than VNN. For more details
on the difference between VNN and PNN performance, see Section 6.1.4.

When using the Nvidia Tesla C2050, 100 renders of the 512 × 256 × 512
volume were ray casted in 2.81 seconds, which is equivalent to 35.6 frames
per second. There are many definitions of how many frames per seconds are
required to be considered real-time, but a lower limit of 25 (PAL television
format) or 30 (NTSC television format) should be sufficient. Given a lower
limit of 1 update per reconstruction increment, 434 b-scans over 20 seconds
would require a frame rate of 21.7. Thus, the performance is more than
sufficient for real-time display.

6.1.3 Performance of GPU Platforms

It should now be established that reconstruction performance is substantially
greater using the GPU. However, several GPU platforms are available for
comparison. The C2050 is at the time of writing the latest and most powerful
generation on the market. By using the multiplatform OpenCL standard [16],
it is possible to execute the code on both Nvidia and AMD GPUs. Figure
6.3 shows the performance obtained on the C2050, the older FX5800 also
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Figure 6.3: Performance of reconstruction and ray casting on Nvidia Tesla
C2050, AMD HD5870 and Nvidia Quadro FX5800

from Nvidia, and the HD5870 from AMD. In terms of prior expectations,
the FX5800 is one of the most powerful of the previous generation of Nvidia
GPUs, and the HD5870 is expected to place itself roughly halfway between
these two cards.

With these presumptions, the performance results both confirm and surprise.
The C2050 performs better than the FX5800 in all cases, with up to 2.5
times the performance. While in some cases (like incremental PNN) the
performance is almost equal or only slightly better, but this will be explained
below. The HD5870 however, disappoints in all except in the one case of
VNN, with performance typically around 50 % of the FX5800 and as low as
17 % in the case of PNN. Just as VNN proved to be very suitable for the
GPU with a speedup of 51, it also seems to be the case on the HD5870 and
compares favorably with a performance close to the much newer C2050. In
the other cases, it can be pointed out that the OpenCL standard was made
with CUDA in mind because of its status as a de facto standard at the time.
AMD’s OpenCL implementation obviously has room for improvement, and
the potential is clearly there as seen with the performance of VNN. It should
be noted however, that in all the cases the HD5870 is still between 1.5 and
3.2 times faster than the pure CPU implementation (and 47 times faster for
VNN).

As mentioned, the C2050 beats the older FX5800 in all the cases, but one
notices that the gap is substantially narrower for the incremental methods.
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The explanation in these cases is due to the time spent on transferring the
volume. Even though C2050 represents the next generation of Nvidia GPUs,
the data bus between host and device (PCI Express) is identical for both.
This is evident in the cases of incremental reconstruction, where the compu-
tations are lighter for each increment. Again, this is confirmed by a greater
relative gap (1.23 vs. 1.33) between DWOP4 and DWOP8, where the only
difference is computational complexity.

In the case of VNN and ray casting, the C2050 offers 2.5 and 2.4 times the
performance of the FX5800, but the C2050 has only about twice the number
of computational cores of the FX5800 and 40 % increased memory bandwidth
[27, 24]. The explanation is one key feature to the Fermi GPU architecture
which C2050 belongs to, the addition of L1 and L2 cache. With a L1 cache
per streaming multiprocessor and a global L2 cache for all computation cores,
the effective memory bandwidth can be drastically increased depending on
the application. If the same data is read repeatedly by several threads, the
values will be available in this fast cache. This is especially the case for VNN,
where the b-scan plane equations and corner points are read repeatedly by
neighboring threads, and also for ray casting where neighboring rays read the
same voxel data. In both cases it is hard to estimate exactly which groups
of threads will require what groups of common data, but the cache handles
this temporal locality automatically.

6.1.4 Distribution of Reconstruction Time

To gain a deeper understanding of the reconstruction performance for each
method, one has to look at the time is takes to do the various reconstruction
steps and the data transfers between device and host. In this section we
present this distribution, and explain why it occurs like it does. In all cases,
the C2050 has been used for the measurements.

Figure 6.4 shows the distribution of the time for PNN on the GPU. Note
that transfers between host and device (memcpyHtoDasync and memcpyD-
toHasync) are negligible compared to the computations. In this case, around
200 MB (mainly from b-scans) is transferred to the device and 67 MB (the
volume) is transferred back. The GPU is connected to the host via a PCI
Express 2.x 16X bus, which has an upper transfer limit of 8 GB/s. These
small data sizes are thus negligible. The largest portion is the task of filling
pixelill and pixelpos, and as previously discussed, this is hard to parallelize,
and is indicated by a GPU core occupancy of only 17 % during this step.
The rest of the steps all have a 100 % occupancy. However, there are two

63



6.1. PERFORMANCE

Figure 6.4: Distribution of computation time on Nvidia Tesla C2050 for PNN

other tasks that also take up a large part of the time: filling the volume and
(especially) filling the holes. Actually, processing all the ROI-pixels and in-
serting them into the volume actually takes less time than filling those holes.
This demonstrates how the PNN performance is penalized by the hole filling
required due to of the nature of the algorithm.

Figure 6.5: Distribution of computation time on Nvidia Tesla C2050 for VNN

Figure 6.5 shows the distribution of time for VNN on the GPU. As in the case
with PNN, the transfers between host and device are negligible (in fact, they
are of the same absolute sizes as in PNN). Unfortunately, the VNN recon-
struction was implemented as a single GPU kernel, and thus the distribution
between steps cannot be identified.
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Figure 6.6: Distribution of computation time on Nvidia Tesla C2050 for
incremental PNN

Figure 6.6 shows the distribution of time for incremental PNN on the GPU.
As opposed to the non-incremental cases, transfers between host and device
take a noticeable share as more than a third of the time is now consumed on
this. For each increment, a tracking matrix and the pixelpos and pixelill for
one b-scan must be transferred, approximately 1.6 MB. The transfer back of
the transformed pixelpos is approximately 1.4 MB. However, the overhead
associated with each transfer adds up, as demonstrated by the large share of
the total time. This overhead is especially noticeable for incremental PNN,
due to the total time spent per increment being relatively smaller.

Figure 6.7: Distribution of computation time on Nvidia Tesla C2050 for PT,
DWOP4 and DWOP8

The other incremental methods share the same characteristics in the time
distribution, as shown in Figure 6.7. The transfers between device and host
take up a big share, but this is only from the device to the host, as host to
device is practically negligible. The reason for this is that as each increment
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takes a substantially longer time in these methods than in incremental PNN,
and the overhead of the small host-to-device transfer is hidden, while trans-
ferring the 67 MB volume for each increment still takes its share of the total
time. The same reasoning explains why DWOP8 has a smaller share of trans-
fers than DWOP4; i.e. each increment is more computationally complex. In
fact, incremental PT and DWOP4 has almost identical time distributions,
which is not surprising as their computational complexity is very similar. As
can be seen in the charts, the task of finding the voxels between two b-scans
(trace intersections) is negligible, rather is the filling of those voxels by PT
or DWOP that take up all the computation time.

Figure 6.8: Distribution of computation time on Nvidia Tesla C2050 for ray
casting

Figure 6.8 shows the distribution in the time for ray casting on the GPU.
One quickly sees that transfers between host and device are negligible, as is
expected given only a few camera parameters are sent to the device and a 480
KB rendered frame is sent back. This demonstrates the advantage of already
having the reconstructing volume in the device memory, making additional
transfers unnecessary. Building the ray directions is also a simple task, as
demonstrated in the chart, and this is easily explained when one takes into
account that the number of rays to be built is only 800 × 600 = 480, 000,
while the number of voxels to be sampled is 512× 256× 512 = 67, 108, 864.
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Figure 6.9: GPU memory use

6.1.5 Memory Use

The chart in Figure 6.9 shows how much GPU memory is used by each recon-
struction method and the ray casting when using the previously described
test data as input. It is easy to see that PNN uses the most memory, a total
of 719 MB. Actually, it also requires 183 additional megabytes for the input
b-scans, but as these are processed into the 50 MB pixelill at the beginning
of the procedure they can subsequently be freed from the GPU memory,
hence they are not shown in the chart. The biggest contribution to PNN’s
memory usage is the pixelpos, and this is not surprising with three 4-byte co-
ordinates required per pixel. The VNN on the other hand, requires only the
input b-scans and output volume. In all cases, there are negligible amounts
of memory used for tracking data, timetags, etc. These are so insignificant
that they are not noticeable in the chart, and are so not of interest in this
discussion.

The incremental methods are quite similar in that they do not use much
memory except for the volume, because the input is processed in small chunks
at the time. While incremental PNN only keeps a single b-scan in memory
at the time, incremental DWOP and PT utilize a ”window” of b-scans and
other data as previously described in Section 5.3.2. DWOP4 and PT have
a window size of 4, resulting in approximately 1.7 MB for b-scans and other
data, while DWOP8 uses 8, requiring approximately 3.5 MB, all relatively
small amounts of data. The ray casting of course needs a volume to render,
but it is assumed that this is already present in the device memory, and so
only an additional 2 MB is required (and most of it is the rendered frame).
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6.2 Reconstruction Quality

The last section discussed the quantitative performance of the presented
methods of this thesis. Obviously, there may be a reason for not simply
choosing the fastest method above all else, and that reason is reconstruction
quality. Thus, for a full evaluation both performance and reconstruction qual-
ity need to be taken into account. In this section, we discuss reconstruction
quality and present the quality of the various methods. The effect of noise
in the tracking data and choice of compounding method is also discussed. In
Appendix B, large uncropped figures can be found.

The test input is the same as given in the performance results section. As
a reference point, Figure 6.10 shows some b-scans from this set. As seen in
the b-scans, the probe used is of the linear type. The reconstructed volumes
from each method will be presented shortly, but since they are in general very
similar, we will extract an interesting part of the volume for each method.
To get a view of what the volumes reconstructed by the methods described
look like, Figure 6.11 shows a typical reconstruction result (obtained using
the PT method).

Figure 6.10: B-scan number 60 and 225 of the input set given in Table 6.2

6.2.1 What is Quality

It is difficult to define a scale for a qualitative measure such as reconstruction
quality. The goal of reconstruction is to be as close to the ground truth as
possible, but the reality is that given a ROI of 342 × 356 bytes over 434
b-scans and an output volume of 512 × 256 × 512 bytes, the input is only
79 % of the output. This means that in the case of our test data, even with
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Figure 6.11: Example of three orthogonal slices of a reconstructed volume
(left: X-axis, top-right: Z-axis, bottom-right: Y-axis) generated by our im-
plementation

a perfect reconstruction algorithm, the true volume cannot be calculated as
some interpolation is required.

So given that the volume will be an estimate, the discussion is what the best
estimate is, and this also depends on how the volume will be used. Ultrasound
scans are analyzed by trained medical personnel, and one of the main uses
of the reconstructed volume is to be examined by such people. There is an
important tradeoff between avoiding false positives and hiding true positives.
A false positive is an artifact of the data set that the analyzer can misinterpret
as some symptom that in fact do not exist, while a hidden true positive is an
actual existing artifact that is not noticeable by the analyzer. Both cases are
unwanted. However, one can argue that the latter case is more important to
avoid.

6.2.2 Effect of Noise in Tracking Data

Any reconstruction method can only be as good as the input it is given. For
the input data used in this thesis, the quality of the ultrasound b-scan images
was more than adequate compared to the quality of the tracking data. For
the test data used in this chapter, the ROI is 3.7×4.0 cm in world space, and
the freehand movement covers a stretch of about 2 cm. When dealing with
such small sizes, inaccuracies in the tracking can be expected. Figure 6.12
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Figure 6.12: Noise in the tracking data seen in reconstructed volume (left:
seen along Z-axis, right: seen along X-axis) generated by our implementation

shows the result of reconstructing images of straight lines using the tracking
data. One can clearly see the oscillating disruption from the general probe
trajectory. The effect is especially noticeable because of the small distances
between adjacent scans.

A plausible explanation could be that the freehand movement of the probe
actually was jittery (e.g. an unsteady hand), but if one would look at the
input b-scans before reconstruction, one would see that details are preserved
on the same location over several neighbor images without any jitters. Thus,
we conclude that the accuracy of the tracking data is poor, and this affects
the results of all reconstruction methods.

6.2.3 Reconstruction Quality Results

Figure 6.13 shows the results of various reconstruction methods. An inter-
esting region of the volume is cropped from the rest to make it easier to spot
key differences, and uncropped large figures can be found in Appendix B.
Each crop is a slice of the same area looking in the direction of the X-axis.
The compounding method used for all methods is overwrite.
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Figure 6.13: Cropped section of reconstructed volume generated by our implemen-
tation. (a) PNN. (b) VNN. (c) PNN w/ no hole filling. (d) incremental DWOP4.
(e) incremental DWOP8. (f) incremental PT.
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PNN Quality

As seen in Figure 6.13a, the PNN is somewhat grainy, and this is expected
when using only the nearest neighbor for filling instead of some method
of weighting. Some of the grains are also due to the fact that there are not
enough pixels to fill the entire volume. This means that along a row of pixels,
at some point a voxel is skipped. E.g. if there are 20 pixels along a row of
a b-scan, and they are reconstructed onto a voxel that has 25 voxels along a
row of the same size, then 5 voxels are periodically left empty. This is clearly
seen in Figure 6.13c where hole filling is turned off. In addition to the black
lines of holes between b-scans, there are periodical holes every 4-5 voxels in
a grid because the pixel spacing is ' 0.1, while the voxel spacing is 0.08, i.e.
0.1
0.08

= 11
4
. Additionally, one can also see the tendency for horizontal lines in

the image, but this is mainly due to the tracking noise discussed earlier, and
is present in all cases.

VNN Quality

One can see in Figure 6.13b that the VNN is sharper than the PNN. More
details are preserved in the white spots at the top, and the texture of the gray
area at the right is more clearly visible. This can be caused by the smoothing
effect of averaging voxels when filling the PNN holes. The VNN method is
still based on nearest-neighbor however, and also suffers from graining as
the PNN method. This is unavoidable as two neighboring voxels often have
different closest b-scans when the scans are packed together.

Incremental DWOP Quality

DWOP4 and DWOP8, shown in Figure 6.13d and 6.13e, do not have the
problem of grains that occurs with PNN and VNN. This is of course because
several b-scans influence each voxel, and those b-scans are weighted differ-
ently. The drawback, however, is a slightly noticeable blurring of the volume
when compared to VNN. However, one can argue that the sharper features
of VNN might be largely due to the effect of the grains, thereby effectively
allowing a cluster of grains to be mistaken as a feature.

The difference between DWOP4 and DWOP8 is not substantial, but the
DWOP8 is slightly smoother than the DWOP4. This is explained by the
fact that DWOP8 weights eight neighbor b-scans instead of four, and thus
each voxel is influenced by b-scans further away than with DWOP4, causing
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the blurring. Since the weighting is distance based, this blur is minor, but
the similarity between DWOP4 and DWOP8 does not justify the increase in
computation time associated with DWOP8.

Incremental PT Quality

The result of the PT method is shown in Figure 6.13f, and as the other
weighting based methods, it does not contain grains. However, in comparison
to DWOP, it is clearer and sharper, with the details of the white area at the
top and the texture of the gray area to the right being superior to those from
other methods. With PT having only a slightly greater computation time
than DWOP4 it is evident from this thesis that PT is a superior method.

To illustrate another advantage of the PT method, Figure 6.14 and shows the
results when the input is sparse. With more space between the b-scans, the
approach to filling this space becomes more important. Figure 6.15 highlights
the differences even more by using straight lines instead of ultrasound b-scans
(but using the real tracking data).

Figure 6.14: Reconstruction of sparse input (DWOP8 and PT) generated by
our implementation

As demonstrated in Figure 6.14, because DWOP is based on orthogonal
projections, one can clearly see tendencies for straight lines at approximately
an 80 degrees angle. These lines are orthogonal to the b-scan plane normals.
PT uses cubic interpolation along the probe trajectory, and one can see how
the features curve along the tracked path (with tracking noise).

With the straight lines of Figure 6.15, one can also see how the PT is supe-
rior in filling in values between sparse b-scans. The reconstructed line from
DWOP appears discontinuous across the adjacent planes. PT in contrast,
preserves the intensity of the line along the probe trajectory.
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Figure 6.15: Reconstruction of sparse input (straight lines) (DWOP8 and
PT) generated by our implementation

6.2.4 Effect of Compounding Methods

Figure 6.16: Result of compounding methods generated by our implementa-
tion: overwrite, avg, max and ifempty (PT method)

Figure 6.16 shows the effect of each of the four compounding methods as pre-
sented in Table 4.1: overwrite, avg, max and ifempty. Larger uncropped
figures can be found in Appendix B. As expected, the avg method slightly
blurs the output compared to overwrite, but since the averaging occurs in-
ternally in each voxel, the details and features persist.

The max method is smoother and brighter than the others. This is the case
since only the brightest voxel values are kept, resulting in an overall brighter
output. Some details are lost, however, when comparing to the two previous
methods, and this can be explained by the fact that a single bright voxel
value will dominate any set of darker values for that voxel. With some noise
in the tracking, a bright pixel will thus ”spread out”, resulting in smoother
transitions.

The result of ifempty is somewhat different than overwrite and avg, and
one can see some features appear in this method that do not appear in the
results of overwrite and avg. The main difference between these methods
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is that overwrite keeps the latest value of a voxel, ifempty keeps the first
value, and avg averages them all. Given that overwrite and avg so similar,
it can be speculated that the last voxel values are more ”correct” than the
first values. Noise in the tracking data should be just as likely to cause jitter
forward as well as backward, and so it is believed to be a property of the
incremental reconstruction method.

6.3 General Discussion

As the result of the work done in this thesis, some major topics can be
discussed in general. Here, we discuss the differences between pixel-based and
voxel-based reconstruction, and compare incremental and non-incremental
reconstruction. These approaches have their own challenges and advantages,
and from the experience gained in this thesis we address these.

6.3.1 Pixel-Based vs. Voxel-Based Reconstruction

Although both pixel-based and voxel-based reconstruction have the same
goal, to reconstruct the volume according to given input, they are funda-
mentally different. Pixel-based methods tend to be easier to understand and
implement, as there is a natural path from input to output. This also makes
them intuitively superior for incremental reconstruction, where the input
needs to be processed one slice at a time into the volume, and additionally
we want to avoid processing the entire volume for each new increment.

But simple pixel-based methods such as PNN have a main disadvantage of
leaving holes in the volume. Although these can be filled using averaging
or interpolation methods, doing so is inherently a voxel-based task: for each
voxel with a hole, it must be filled with a suitable value. If such a step is
to be performed anyway, one can argue that the whole process should be
streamlined as voxel- based in the first place.

Another disadvantage of pixel-based methods is that read-write conflicts can
occur in the volume when processing in parallel. When a pixel is used to
update one or more of the volume voxels, they may already have a value that
should be accumulated with the chosen compounding method. Race condi-
tions can occur in such cases where pixels are updating the same voxel(s).
If complex pixel-based methods are used, such as splatting a sphere around
each pixel, then even more conflicts will occur. Although atomic operations
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on the voxels would solve this, it would introduce a potentially heavy perfor-
mance penalty if there were many conflicts (as neighboring pixels are prone
to have).

In general, voxel-based methods can offer high quality in the reconstructed
volume. One can reason for this by claiming that given accurate tracking,
reconstruction is fundamentally a resampling problem: There exists a set
of data points in space defined by the oriented b-scans, and the task is to
resample them onto a rectangular grid of voxels.

Another issue where pixel-based and voxel-based methods differ is how they
scale with increased problem sizes. In the case of reconstruction, the problem
size is determined by many parameters. The most salient are:

• n = number of b-scans

• B = size of b-scans

• V = size of volume

• K = size of hole fill kernel

In addition, there are algorithm specific parameters such as number of b-scans
taken into account for each voxel in DWOP and the values of performance-
linked cutoff limits. For simplicity, we choose to ignore such parameters.
Using big-O notation, PNN has the complexity

O(nB + V K) (6.1)

where the first part is due to each of B pixels of the n b-scans being processed.
The last part is due to the hole filling. VNN on the other hand has the
complexity

O(V n) (6.2)

which is due to taking the n b-scan into account for each of the V voxels.
From the functions, it is clear that both PNN and VNN are dependent on
the volume size and the number of b-scans, which are the two parameters
most likely to vary significantly. However, the PNN has a complexity based
on a sum of these two parameters, while with VNN it is a product.
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6.3.2 Incremental vs. Non-Incremental Reconstruction

The motivation for doing reconstruction incrementally is the ability to per-
form real-time reconstruction, thus allowing the user to get instant feedback
on the freehand ultrasound scanning, and if desirable, to rescan interest-
ing areas or adjust settings early if the original result was not satisfactory.
However, independent of the specific reconstruction method used, there are
some challenges introduced when doing the reconstruction incrementally as
opposed to a bulk-operation with all the data ready.

Unknown Volume Extents

One problem is that the extents of the volume is not known in beforehand.
Even though the location of the first incoming b-scan can be used to assume
the location of the volume in space, its final size in the three dimensions
is unknown. It might also be the case that a specific orientation of the
volume would allow better utilization of the space, e.g. if the scans fit bet-
ter into a volume rotated 45 degrees. The quick fix is to assume a certain
size and orientation from the start, and allocate memory for the volume
given these assumptions. Data outside these extents will then be ignored.
It would be possible to dynamically allocate memory as the volume grows,
but such a scheme would be complex and may reduce performance. In the
non-incremental case, however, the input data can be first analyzed to figure
out a suitable volume size that covers all the data.

Scope of Available Data

Another advantage with non-incremental approaches is that they can take
all the b-scans into account for the reconstruction. By using all available
information, the reconstruction should be closer to the actual ground truth.
Incremental methods, however, only know the past data, and not the future.
The means to overcome this, as described in the previous chapter, is to build
up a buffer of incoming data before the reconstruction begins, and then
update the volume with this queue of b-scan data. In this way, both the
past and some of the future b-scans can be taken into account. The delay
introduced by this approach to the real-time reconstruction is negligible given
a high rate of incoming data.
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Data Transfer Bottleneck

As the volume is reconstructed incrementally on the GPU, it is also a chal-
lenge to keep an updated volume in host memory. In the non-incremental
case, such a transfer need only be performed once at the end of the recon-
struction. Doing this at each increment introduces much overhead, especially
if the reconstruction procedure is computationally easy and the transfer time
dominates the processing time. However, while reconstruction must be per-
formed once per incoming b-scan to be real-time, the host memory volume
need not be updated at the same rate. If the volume in device memory is
used for the visualization, a difference in update rates will not be immediately
noticed by the user.
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Chapter 7

Conclusions and Future Work

Ultrasound is a non-invasive, safe, low cost and practical way to provide
medical doctors with an internal view of a patient’s body. By performing
3D ultrasound reconstruction, 3D volumes can be constructed from 2D ul-
trasound scans, and be used for acquiring out-of-angle views, 3D rendering
of the anatomy, and for image guided surgery. The purpose of this thesis was
to investigate the parallel processing power of the GPU for fast ultrasound
reconstruction. Having the ability to reconstruct a volume in a fraction of
a second enables instant feedback and real-time incremental reconstruction
while scanning. This thesis has presented our techniques to perform fast,
non-incremental and real-time incremental reconstruction using the GPU.
Optimization techniques for both pixel-based and voxel-based approaches
have been described, and a novel method of doing real-time incremental re-
construction was presented. The performance obtained by these methods
have been measured on some of the latest hardware architectures at the time
of writing from both Nvidia and AMD. Issues for future work to look into
are suggested in Section 7.2, and some final thoughts and closing statements
are also given in Section 7.3.

7.1 Conclusions

Our work resulted in Thunder, a software implementation of the developed
techniques. This system included fast reconstruction with the VNN (voxel-
nearest-neighbor) and PNN (pixel-nearest-neighbor) methods, and real-time
incremental high-quality reconstruction by distance weighted orthogonal pro-
jections or based on the probe trajectory. Furthermore, the reconstructing
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volume could be visualized in real-time by orthogonal MPR slices (planar
slices through the volume) or volume ray casting on the GPU.

By utilizing the GPU, a speedup of up to 50 was achieved by VNN on the new
Fermi architecture by Nvidia. PNN obtained 14 times, and the incremental
methods got between 6 and 8 times the performance compared to a pure
CPU implementation. This meant that the reconstruction of non-incremental
PNN and VNN volumes was performed in only 0.9 and 0.6 seconds, and the
incremental methods achieved times of 3.3 seconds (incremental PNN), 24.7
seconds (DWOP of 4 scans), 34.5 seconds (DWOP of 8 scans) and 26.1
seconds (PT).

As for quality, the PT method demonstrated the best results, especially when
handling sparse input. While the parallel nature of ultrasound reconstruction
has proved suitable for the GPU, incremental reconstruction was limited by
the overhead associated with data transfer between device and host for each
increment.

7.2 Future Work

There are many possible avenues to investigate further. Here are some sug-
gestions:

Reduce device memory required for PNN

Older or low-budget GPUs do not have the amount of device memory re-
quired for some of the reconstruction methods presented in this thesis. Also,
for a mobile system, one can imagine GPUs in handheld devices with small
memory sizes being used for the reconstruction. The PNN method as de-
scribed here requires a total of 719 MB, and this is impossible or difficult to
fit on GPUs with 512 or 768 MB of total memory (that may also be used
by other applications). Although memory use can be reduced by a smaller
problem size, it is also desirable to reduce the requirements of the algorithm
itself. Most of the memory used by the PNN is for the three-dimensional
coordinates of each pixel. This can be optimized by calculating these coordi-
nates only when needed. Given a reference point for each b-scan in addition
to its plane equation and given pixel spacings, it is possible to calculate
the coordinates of any pixel on that b-scan. This could reduce the memory
needed by as much as 59 % for the PNN method of reconstruction.
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Dynamic volume allocation and orientation

Currently, the volume extents and orientation are predefined before recon-
struction, and data acquired outside of this is disregarded. A dynamic volume
allocation technique could be devised and implemented, such that the volume
is increased (and perhaps also reduced) according to needs. If feasible on a
performance basis, one could even rotate the volume such that the scanned
data always fits optimally.

Reducing the device-to-host transfer bottleneck

The main bottleneck with incremental reconstruction is the transfer of the
volume from the device to host. Solutions for reducing the bandwidth needed
for this could be devised and implemented. Incremental PNN without hole
filling already employs a simple scheme for sending only the relevant data
from device to host for each increment, but this is more complex when using
the high-quality incremental methods as presented in this thesis. It should
however be possible to design an efficient technique for sending only the
required data for each increment, which is an amount substantially smaller
than the entire volume.

Handle U-turn scanning

When scanning, the probe can be moved in a U-turn. This is problematic for
the voxel-based reconstruction because the b-scans are modeled with plane
equations that stretch infinitely out. The voxels that belong to one arm of
the U might find that b-scans in the other arm are closer (according to the
plane equations). When the ROI is then investigated, it will be concluded
that the voxel is outside the ROI of the b-scan from the other arm even
though it might be inside the ROI of a b-scan from the closest arm. These
challenges should be addressed and solved.

Dynamic adaptation of memory allocation

As mentioned above, some GPUs do not have enough memory for some of the
data buffers used in reconstruction as described in this thesis. Furthermore,
even though the total memory is enough, there are often restrictions on
how much of the memory that can be allocated for a single buffer. The
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solution is to split up the input and output data, and process them in smaller
pieces. To allow for portability of the system, the splitting should be handled
automatically according to the capabilities of the installed GPU. Such an
automatic system needs to allocate buffers of the right sizes, communicate
to the GPU kernels what parts of memory they are to read from and write
to, and merge together the output pieces.

7.3 Final Thoughts

The purpose of this thesis was to utilize the parallel processing power of
the GPU for fast ultrasound reconstruction. We developed techniques that
enable reconstruction of an entire volume in only fractions of a second us-
ing both pixel-based and voxel-based approaches, and for incremental re-
construction, real-time performance was obtained using our methods. This
thesis showed how the parallel nature of ultrasound reconstruction can be
exploited, and the techniques developed can benefit anyone who wants to
utilize the power of the GPU for reconstruction.
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[13] Herikstad, Å. Parallel techniques for estimation and correction of
aberration in medical ultrasound imaging. Master’s thesis, Norwegian
University of Science and Technology (NTNU), 2009.

[14] Huang, W., Zheng, Y., and Molloy, J. 3D ultrasound image
reconstruction from non-uniform resolution freehand slices. In Acoustics,
Speech, and Signal Processing, 2005. Proceedings. (ICASSP ’05). IEEE
International Conference on (18-23, 2005), vol. 2, pp. 125 – 128.

[15] Karamalis, A., Wein, W., Kutter, O., and Navab, N. Fast
hybrid freehand ultrasound volume reconstruction. In Medical Imaging
2009: Visualization, Image-Guided Procedures, and Modeling (2009),
M. I. Miga and K. H. Wong, Eds., SPIE.

[16] Khronos OpenCL Working Group. The OpenCL Specifica-
tion, 2009. http://www.khronos.org/registry/cl/specs/opencl-1.
0.48.pdf, retrived 2010-06-17.

[17] Kirk, D. B., and mei W. Whu, W. Programming Massively Parallel
Processors. Elsevier Inc., 2010.

[18] Lorensen, W. E., and Cline, H. E. Marching cubes: A high reso-
lution 3D surface construction algorithm. In SIGGRAPH ’87: Proceed-
ings of the 14th annual conference on Computer graphics and interactive
techniques (1987), ACM, pp. 163–169.

[19] Ludvigsen, H., and Elster, A. C. Real-time ray tracing using
Nvidia OptiX. In Eurographics Short Papers (2010), The Eurographics
Association, pp. 65–68.

84

http://www.khronos.org/registry/cl/specs/opencl-1.0.48.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.0.48.pdf


BIBLIOGRAPHY

[20] McCann, H., Sharp, J., Kinter, T., McEwan, C., Barillot,
C., and Greenleaf, J. Multidimensional ultrasonic imaging for car-
diology. Proceedings of the IEEE 76, 9 (sep 1988), 1063 –1073.

[21] Mercier, L., Langø, T., Lindseth, F., and Collins, D. L. A
review of calibration techniques for freehand 3-D ultrasound systems.
Ultrasound in Medicine & Biology 31, 4 (2005), 449 – 471.

[22] Nelson, T., and Elvins, T. Visualization of 3D ultrasound data.
Computer Graphics and Applications, IEEE 13, 6 (nov 1993), 50 –57.

[23] Nielsen, E. A. R. Real-time wavelet filtering on the gpu. Master’s
thesis, Norwegian University of Science and Technology (NTNU), 2007.

[24] Nvidia Corporation. Quadro FX 5800 Data Sheet, 2008.
http://www.nvidia.com/docs/IO/40049/NV_DS_QFX_5800_US_

Sep08_LowRes.pdf, retrieved 2010-06-17.

[25] Nvidia Corporation. CUDA Programming Guide, 2009.
http://developer.download.nvidia.com/compute/cuda/3_0/

toolkit/docs/NVIDIA_CUDA_ProgrammingGuide.pdf, retrieved 2010-
06-17.

[26] Nvidia Corporation. OpenCL Best Practices Guide, 2009.
http://developer.download.nvidia.com/compute/cuda/3_0/

toolkit/docs/NVIDIA_CUDA_BestPracticesGuide.pdf, retrieved
2010-06-17.

[27] Nvidia Corporation. Tesla C2050 Board Specification, 2010.
http://www.nvidia.com/docs/IO/43395/Tesla_C2050_Board_

Specification.pdf, retrieved 2010-06-17.

[28] Owens, J., Houston, M., Luebke, D., Green, S., Stone, J.,
and Phillips, J. Gpu computing. Proceedings of the IEEE 96, 5 (may
2008), 879 –899.

[29] Prager, R. W., Gee, A., and Berman, L. Stradx: real-time acqui-
sition and visualization of freehand three-dimensional ultrasound. Med-
ical Image Analysis 3, 2 (1998), 129 – 140.

[30] Preim, B., and Bartz, D. Visualization in Medicine. Morgan Kauf-
mann, 2007.

[31] Rohling, R., Gee, A., and Berman, L. A comparison of freehand
three-dimensional ultrasound reconstruction techniques. Medical Image
Analysis 3, 4 (1999), 339 – 359.

85

http://www.nvidia.com/docs/IO/40049/NV_DS_QFX_5800_US_Sep08_LowRes.pdf
http://www.nvidia.com/docs/IO/40049/NV_DS_QFX_5800_US_Sep08_LowRes.pdf
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_CUDA_ProgrammingGuide.pdf
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_CUDA_ProgrammingGuide.pdf
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_CUDA_BestPracticesGuide.pdf
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_CUDA_BestPracticesGuide.pdf
http://www.nvidia.com/docs/IO/43395/Tesla_C2050_Board_Specification.pdf
http://www.nvidia.com/docs/IO/43395/Tesla_C2050_Board_Specification.pdf


BIBLIOGRAPHY

[32] Sakas, G., and Walter, S. Extracting surfaces from fuzzy 3D-
ultrasound data. In SIGGRAPH ’95: Proceedings of the 22nd an-
nual conference on Computer graphics and interactive techniques (1995),
ACM, pp. 465–474.

[33] Sanches, J. M., and Marques, J. S. A rayleigh reconstruction/in-
terpolation algorithm for 3D ultrasound. Pattern Recognition Letters
21, 10 (2000), 917 – 926.

[34] Sherebrin, S., Fenster, A., Rankin, R. N., and Spence, D.
Freehand three-dimensional ultrasound: implementation and applica-
tions. In Medical Imaging 1996: Physics of Medical Imaging (1996),
R. L. V. Metter and J. Beutel, Eds., vol. 2708, SPIE, pp. 296–303.

[35] Solberg, O. V., Lindseth, F., Torp, H., Blake, R. E., and
Hernes, T. A. N. Freehand 3D ultrasound reconstruction algorithms
– a review. Ultrasound in Medicine & Biology 33, 7 (2007), 991–1009.

[36] Stantchev, G., Juba, D., Dorland, W., and Varshney, A.
Using graphics processors for high-performance computation and visu-
alization of plasma turbulence. Computing in Science and Engineering
11 (2009), 52–59.

[37] Trobaugh, J. W., Trobaugh, D. J., and Richard, W. D. Three-
dimensional imaging with stereotactic ultrasonography. Computerized
Medical Imaging and Graphics 18, 5 (1994), 315 – 323.
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Appendix A

Annotated Bibliography

In this chapter, there is a collection of selected references that are annotated
with a brief explanation and summary of results. These references can also
be found in the ordinary bibliography above.

Stradx: Real-time Acquisition and Visualization of Freehand Three-
dimensional Ultrasound [29]

This paper presents the Stradx system, which instead of constructing a 3D
volume from ultrasound scans generates MPR slices directly. By doing so,
they try to link the acquisition and visualization phases by reducing or elim-
inating the processing time. Their implementation also exploited graphics
acceleration hardware when constructing the slices, although the details are
scarce.

Interactive Intra-operative 3D Ultrasound Reconstruction and Vi-
sualization [10]

This paper presents an implementation of simultaneous real-time 3D ultra-
sound reconstruction and visualization on the CPU. As in this thesis, the
reconstruction occurs while the data is acquired and is done by PNN. In con-
trast to this thesis, the visualization rendered only three orthogonal slices of
the volume, not the volume itself. And the reconstruction is in real-time, but
the visualization is only ”interactive” at a lower framerate. Furthermore, re-
construction and visualization were both done on a dual (933 MHz Pentium
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III) CPU. In the paper, they present performance obtained by four pixel-
based reconstruction method variants. A 256x193x256 volume was recon-
structed from cropped 320x240 b-scans at 12 to 30 scan/s and visualization
was updated simultaneously at 5 fps.

Three-Dimensional Imaging With Stereotactic Ultrasonography [37]

This paper describes a reconstruction method based on distance weighted
orthogonal projections. For each voxel, its distance is calculated to the two
surrounding b-scans (if existing), and the pixel values on the projected points
are weighted by the distance to give the voxel’s value. The authors compare
this method to a simple PNN method. Using a Sun SPARCstation 1, they
reconstructed a 128x128x50 voxel volume from 256x256 pixel scans at 54
seconds per scan.

3D Freehand Ultrasound Reconstruction Based on Probe Trajec-
tory [5]

This paper presents a new reconstruction method that improves quality, es-
pecially on sparse b-scan input. The method is voxel-based and takes an
estimate of the probe trajectory into account when reconstructing. As in
[10], the implementation was on a CPU, in this case a single Pentium 4 3.2
GHz with 2GB RAM. The implementation reconstructed a volume of un-
specified size from 204 and 222 510x441 b-scans in 111 to 124 and 138 to 149
seconds. As future work, the paper suggests acceleration by GPU, as done
in this thesis.

Backward-Warping Ultrasound Reconstruction for Improving Di-
agnostic Value and Registration [38]

This paper presents a novel voxel-based reconstruction method with better
quality/speed properties. The authors used an AMD64 3200+ CPU with
1GB RAM, and reconstructed a 16 and a 134 million voxel volume from 1024
256x256 and 454x454 b-scans in 226 to 942 seconds for ”multiple” mode and
119-510 seconds for ”single” mode. The authors’ goal was obtaining high
performance, and their results can be compared to those obtained in this
thesis.
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Fast Hybrid Freehand Ultrasound Volume Reconstruction [15]

This recent paper uses a hybrid between forward and backward reconstruc-
tion with the goal of high performance. The hardware used was an Intel Xeon
3.2 GHz with 2GB RAM and a Nvidia GeForce 8800GTX with 768MB RAM.
Their implementation reconstructed a 256x256x256 volume from 293 b-scans
in 0.35 seconds with simple interpolation and 0.82 seconds with advanced
interpolation.

Visualization in medicine [30]

This a thorough book on visualization with focus on its use in medicine.
It describes the various algorithms as well as their clinical applications, and
covers acquisition, processing and rendering of medical data in two and three
dimensions. Much focus in the book is on volumetric data, as is commonly
used in medicine, and all of the important direct and indirect visualization
techniques are explained.

Freehand 3D Ultrasound Reconstruction Algorithms: A Review
[35]

This paper is a comprehensive review of reconstruction algorithms for ultra-
sound. As a part of this, the algorithms are categorized into three distinct
groups: voxel based, pixel based and function based methods. The paper
explains implementation of many algorithms and their variants, and focuses
on evaluation and comparison of these with regards to their efficiency and
effectiveness. As a part of the work, some of the methods have been im-
plemented and tested on a laboratory phantom model, and the results are
documented and discussed.
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Appendix B

Large Figures

For clearity, some of the figures in the thesis have been cropped and scaled
down. In this appendix, there are large, uncropped versions of those figures.

Figure B.1: B-scan number 1/434
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Figure B.2: B-scan number 60/434

Figure B.3: B-scan number 100/434
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Figure B.4: B-scan number 165/434

Figure B.5: B-scan number 280/434
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Figure B.6: B-scan number 315/434

Figure B.7: B-scan number 360/434
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Figure B.8: B-scan number 434/434

Figure B.9: Orthogonal MPR slices screenshot 1
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Figure B.10: Orthogonal MPR slices screenshot 2

Figure B.11: Ray casting screenshot 1
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Figure B.12: Ray casting screenshot 2
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Appendix C

Poster

On the next page, one can find a poster from this thesis with focus on the
incremental reconstruction. The poster summarizes the main principles of
the methods and the most important results.
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Real-Time GPU-Based 3D Ultrasound Reconstruction
Holger Ludvigsen Supervisors: Dr. Anne C. Elster, IDI, NTNU  &  Dr. Frank Lindseth, SINTEF

Ultrasound scanning is frequently used in medical practice 
because it is a non-invasive, safe and low-cost solution, but 
convential probes only provide 2D scans. Ultrasound 
reconstruction is to process such scans (b-scans)  into 3D 
volumes of patient internals. The volume can be used for 
acquiring out-of-angle views, 3D rendering of the anatomy and 
image guided surgery. Being able to reconstruct in real-time as 
the data is acquired incrementally means that on can rescan 
areas of interest as observed on simultaneous real-time 
visualization.

The essence of the method is to transform incoming b-scan planes 
into the volume, an then only process voxels located between  the b-
scans. For each incoming b-scan, rays are constructed along columns 
of voxels and used for ray-plane intersection calculations with the 
current and previous b-scan planes (Fig. 1).  To fill the voxels 
between the intersections, voxel-based interpolation methods can be 
used, and one alternative is based on distance weighted orthogonal 
projections [1] (DWOP), and a second one is based on cubic 
interpolation of the probe trajectory [2] (PT).

By utilizing the new Fermi GPU architecture by Nvidia, the 
incremental reconstruction is performed is real-time as the data is 
acquired as shown in Fig. 5. With 434 tracked b-scans. As for 
quality, the PT method demonstrated the best results (Fig. 2). The 
main bottleneck for performance is the overhead associated with 
data transfer between device and host for each increment.

This work shows how the parallel nature of ultrasound 
reconstruction can be exploited for real-time performance, and the 
techniques developed can benefit all who want to utilize the power 
of the GPU for reconstruction.

[1] Trobaugh, J. W., Trobaugh, D. J., and Richard, W. D. Three-
dimensional imaging with stereotactic ultrasonography. Computerized 
Medical Imaging and Graphics, 1994

[2] Coupe, P., Hellier, P., Azzabou, N., and Barillot, C. 3D Freehand 
Ultrasound Reconstruction Based on Probe Trajectory, Lecture Notes 
in Computer Science, 2005
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voxel j=
∑  pixeli⋅distancei

∑ distancei

In DWOP, orthogonal projections are made of each voxel onto 
nearby b-scans. The pixel value at the projected points are 
weighted by the distance to the b-scan plane (Eq. 1).

In PT, a virtual b-scan is created in the middle of four b-scans 
surrounding the voxel. The virtual b-scan is evaluated by cubic 
interpolation (Fig. 3), and the pixel values of the four 
interpolated b-scans are then weighted by orthogonal distance.

Fig. 1: Finding voxels 
between two ultrasound 
scans

Fig. 3: Cubic interpolation 
for PT method

Fig. 2: Result of 
reconstructing straight lines 
(top: DWOP, bottom: PT)

Eq. 1: Distance Weighted Orthogonal Projections

Fig. 5: Performance on Fermi (Tesla C2050)



Appendix D

Additional Test Measurements

On the next page, one can find additional numerical measurements taken
during testing. These include performance speedups of C2050 compared to
CPU and FX5800, and of HD5870 compared to FX5800, as well as core
occupancy numbers, register use and global read and write throughput on
the GPU.
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CPU C2050 FX5800 HD5870
PNN 12.77 13.88 0.92 1.63 1.50 0.17 8.72
VNN 29.61 51.05 0.58 2.47 1.43 2.27 0.63
Incr PNN N/A N/A 3.26 1.01 3.28 0.49 6.67
Incr DWOP4 150.74 6.11 24.69 1.23 30.25 0.49 61.12
Incr DWOP8 255.44 7.40 34.53 1.33 45.83 0.48 95.21
Incr PT 181.48 6.94 26.14 1.18 30.90 0.55 56.43
100 ray casts N/A N/A 2.81 2.40 6.75 0.48 14.05

PNN Time Occupancy
memcpyHtDasync 1.36% N/A N/A N/A N/A
memcpyDtoHasync 0.45% N/A N/A N/A N/A
fill_pixel_ill_pos 42.51% 0.17 16 4.27 414.00
fill_holes 31.75% 1 18 74.07 408.88
fill_volume 12.87% 1 11 14.14 105.29
round_off_translate 6.23% 1 11 15.92 110.05
transform 4.78% 1 17 22.30 185.64

VNN Time Occupancy
memcpyHtDasync 2.16% N/A N/A N/A N/A
memcpyDtoHasync 0.72% N/A N/A N/A N/A
vnn 97.11% 0.5 31 56.92 126.53

Incr PNN Time Occupancy
memcpyHtDasync 12.22% N/A N/A N/A N/A
memcpyDtoHasync 23.05% N/A N/A N/A N/A
fill_volume 27.96% 1 6 10.07 70.48
transform 26.90% 1 13 16.57 71.52
round_off_translate 9.85% 1 3 27.15 163.35

Incr PT Time Occupancy
memcpyHtDasync 0.45% N/A N/A N/A N/A
memcpyDtoHasync 41.17% N/A N/A N/A N/A
adv_fill_voxels 57.23% 0.25 49 43.96 27.92
trace_intersections 1.13% 1 14 5.68 153.98

Incr DWOP4 Time Occupancy
memcpyHtDasync 0.46% N/A N/A N/A N/A
memcpyDtoHasync 42.02% N/A N/A N/A N/A
adv_fill_voxels 56.34% 0.25 33 44.27 85.94
trace_intersections 1.16% 1 14 5.69 154.66

Incr DWOP8 Time Occupancy
memcpyHtDasync 1.08% N/A N/A N/A N/A
memcpyDtoHasync 26.92% N/A N/A N/A N/A
adv_fill_voxels 71.24% 0.25 33 44.07 87.04
trace_intersections 0.74% 1 14 5.69 154.44

100 ray casts Time Occupancy
memcpyHtDasync 0.01% N/A N/A N/A N/A
memcpyDtoHasync 0.01% N/A N/A N/A N/A
build_ray_dirs 0.01% 0.75 20 0 423.14
cast_rays 0.99% 1 16 14.44 65.39

C2050/CPU 
speedup

C2050/FX5800 
speedup

HD5870/FX5800 
speedup

Registers per 
work item

glob mem read 
throughput

glob mem write 
throughput
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throughput

glob mem write 
throughput
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throughput

glob mem write 
throughput

Registers per 
work item

glob mem read 
throughput

glob mem write 
throughput

Registers per 
work item

glob mem read 
throughput

glob mem write 
throughput

Registers per 
work item

glob mem read 
throughput

glob mem write 
throughput

Registers per 
work item

glob mem read 
throughput
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Appendix E

Real-Time Ray Tracing Using
Nvidia OptiX

On the next pages, the paper Real-Time Ray Tracing Using Nvidia OptiX
[19] is included. This paper was written by this thesis’ authors about their
experience with Nvidia’s OptiX library for GPU ray tracing. An implemen-
tation of volume casting was included as an example of the capabilities of
OptiX, and Figure 2.6 in this thesis was generated from this implementation.

The paper was submitted to and accepted by the 2010 Eurographics confer-
ence where the authors held a presentation.
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EUROGRAPHICS 2010 / H. P. A. Lensch and S. Seipel Short Paper

Real-Time Ray Tracing Using Nvidia OptiX

H. Ludvigsen1 and A. C. Elster1

1Dept. of Computer and Info. Science, Norwegian University of Science and Technology, Trondheim, Norway

Abstract
Modern GPUs with their several hundred cores and more accessible programming models are becoming attrac-
tive devices for compute-intensive applications. They are particularly well suited for applications, such as image
processing, where the end result is intended to be displayed via the graphics card. One of the more versatile and
powerful graphics techniques is ray tracing. However, tracing each ray of light in a scene is very computational
expensive and have traditionally been preprocessed on CPUs over hours, if not days. In this paper, Nvidia’s new
OptiX ray tracing engine is used to show how the power of modern graphics cards, such as the Nvidia Quadro FX
5800, can be harnessed to ray trace several scenes that represent real-life applications in real-time speeds ranging
from 20.63 to 67.15 fps. Near-perfect speedup is demonstrated on dual GPUs for scenes with complex geometries.
The impact on ray tracing of the recently announced Nvidia Fermi processor, is also discussed.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Hardware Architecture—
Parallel processing I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Raytracing

1. Introduction

Ray tracing makes it possible to render realistic shadows, re-
flections and glass-like objects, which requires trickery when
only rasterization is used. In rasterization, one computes the
area on the screen where each object is to be shown, but do
not analyze light’s impact on the scene. Ray tracing, how-
ever, provides this features "by nature", because it approx-
imates how light actually behaves. The main drawback of
ray tracing is its computational complexity. The computa-
tions have traditionally been done on the CPU, but modern
graphical processing units (GPUs) with their several hun-
dred cores and now also more accessible programming mod-
els, are attractive devices for compute-intensive applications.
By off-loading the ray tracing calculations to a modern GPU,
ray tracing is becomng viable for computer games and real-
time visualizations. In addition, ray tracing has applications
in optical and acoustical design, radiation research, volume
calculations and collision analysis.

Ray tracing is parallelizable because each ray may be
traced independently. There is typically one ray per pixel,
so common 1024 x 1024 pixel images would require tracing
106 rays. Ray tracing is hence a very attractive application
for the massively parallel newer GPUs. Nvidia thus recently
(Sept. 2009) released OptiX, a ray tracing engine for their

Quadro and Tesla GPUs. This paper describes our initial ex-
periences with this engine for real-time ray tracing.

Traditionally, ray traced images are computed a priori.
This process might take a couple of minutes or several days
per rendered image. Real-time ray tracing (> 20 fps) facili-
tates that realistic graphics can be manipulated interactively,
like in a computer game. Similarly, feedback could be given
instantly during optical design, radiation research and the
other areas mentioned above. Last, but not least, the real-
istic visual effects possible by ray tracing could be added to
games and other real-time visualization applications.

2. Previous work related to real-time ray tracing

Both CPU and customized hardware were used until recently
for real-time ray tracing. However, the performance obtained
in both cases have not been satisfactory compared to rasteri-
zation. Wald et al. [WSBW01] presented a highly optimized
CPU implementation where the algorithms take advantage
of caches, SIMD instructions and coherence in image and
object space. Their implementation outperformed the earlier
ray tracers, and even rasterization with graphics hardware
for complex scenes. In their simplest scene with 40 thou-

c© The Eurographics Association 2010.
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Figure 1: Screenshots from the snow crystals scene and three centerpiece modes implemented in OptiX

sand triangles, they obtained 1.8 fps at a resolution of 512 x
512 pixels on an 800 MHz Pentium III.

A different approach was used by Woop et al. [WSS05],
who developed a programmable ray processing unit (RPU)
chip specialized for real-time ray tracing. At only 66 Mhz,
their prototype was capable of rendering a simple scene of
806 triangles at 21 fps, and a highly complex scene of 187
million triangles obtained 4 fps. However, this was at the
modest resolution of 512 x 384.

In the recent years, attempts have been made to do ray
tracing on the GPU, and the results have been promising.
Purcell et al. [PBMH05] explained how ray tracing can be
mapped to programmable graphics hardware and used a sim-
ulator to analyze the performance one might obtain on future
graphics hardware. Their conclusion was that graphics hard-
ware indeed look promising. Gunther et al. [GPSS07] fol-
lowed up on this work by presenting a GPU ray tracer using
optimized BVH-strctures to obtain 13.6 fps in a 2 million tri-
angle scene at 1024 x 1024 pixels using an Nvidia Geforce
8800 GTX.

Some of the most recent work have obtained true real-
time performance using commodity GPUs. Shih et al.
[SCCC09] implemented a high performance CUDA-based
ray tracer and obtained 30 to 43 fps in scenes ranging
from 66 to 871 thousand triangles at 1024 x 1024 pixels
on the older Nvidia Geforce 8800 GTS. Aila and Laine
(Nvidia Research) [AL09] have developed a CUDA-based
ray tracer which is hand-optimized at the assembly level and
pushed performance towards (their) theoretical limit. Using
the newer Nvidia Geforce GTX285, they obtained from 75
to 142 millions of primary rays per second, which at a res-
olution of 1024 x 768 correspond to 95 to 180 fps. Modern
GPUs may also be used to do real-time implicit surfaces ren-
dering [SN10]. Singh and Narayanan [SN10] also include
several other recent related references.

3. Nvidia OptiX

OptiX [Nvi09c] is a recent programmable ray tracing engine
that runs on top of Nvidia CUDA [Nvi09a]. It is a set of
library functions for both graphics rendering or other appli-
cations that trace rays. The OptiX engine currently only runs
on newer (GT200 core) Nvidia Quadro and Tesla cards. To

use OptiX, the programmer writes programs that handle the
various events of the ray tracing. These programs are really
CUDA kernels, but are called programs in OptiX terminol-
ogy. The events they handle include ray generation, ray hit,
ray miss, etc. In the host code, the API is set up through
a context structure that holds the configuration and compo-
nents of the ray tracing. Such components include the pre-
viously mentioned programs, geometry that the rays hit and
materials that define the surface properties of the geometry.

4. Our implementations using OptiX

Two ray traced scenes have been implemented, where one
of them has several modes that each demonstrate how OptiX
handles different applications of ray tracing. Some screen-
shots are given in Figure 1. Our snow crystals scene was
implemented from scratch with transparent snow crystals
which fall slowly across the screen. Our centerpiece scene
depicts a centered object that changes with different modes
of the scene. The object used include a cow model that
comes with the OptiX SDK. The camera rotates around the
centerpieces. Possible modes of the centerpiece scene are:

1. Phong shaded cow model and spheres
2. Reflective cow model and Phong shaded spheres
3. Reflective cow model and glass spheres
4. Cow model with diffuse reflection on floor
5. Cow model with diffuse shadow on floor
6. High definition car models (1 million triangle polygons)
7. Voxel map of cloud fractal

To compare our results to previous work on real-time
GPU ray tracing, the polygon meshes from [SCCC09] and
[AL09] were obtained, and OptiX used to ray trace them.
The camera angle was adjusted to be approximately equal
to the camera angles used in screenshots given in [SCCC09]
and [AL09]. Note, however, that the results in [SCCC09] are
on older hardware, so in this case, our results are as much
about what scenes one can implement efficiently rather than
fair comparisons. Screenshots of some of the scenes as ren-
dered in the test bench, are given in Figure 4.

Currently most PCs support up to two GPU cards. We
hence also tested OptiX with two identical Nvidia Quadro
FX 5800 GPUs. The performance in fps was measured for

c© The Eurographics Association 2010.
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Figure 2: Screenshots of conference, fairy, bunny and dragon scene from OptiX test bench

some of the scenes that come with the OptiX SDK in addi-
tion to the scenes implemented in this project. The speedup
was calculated as the ratio between performance with 2 and
1 GPUs.

All OptiX testing was done on a system with:

• GPU: Nvidia Quadro FX 5800
• CPU: Intel Core 2 Quad Q9550 2.83 GHz
• Memory: 4 x Corsair 2 GB DDR3 1333 MHz
• OS: Microsoft Windows XP 64 bit
• Compiler: Microsoft Visual Studio 2008

For all scenes, the performance was measured over 100
frames after a 3 second warm-up. The inverse of the average
frame render time gives the fps. Table 1 summarizes the per-
formance of the snow crystals and centerpiece scenes with
its modes.

Table 1: Performance in fps at 1024 x 768 pixels

Scene fps
Snow crystals 22.10
Centerpiece Phong 67.51
Centerpiece reflective 38.73
Centerpiece reflective and refractive 24.41
Centerpiece diffuse reflection 23.10
Centerpiece diffuse shadows 25.32
Centerpiece 1 million polygons 24.99
Centerpiece voxels 22.08

The main issue faced in our snow crystals scene is refrac-
tion and reflection of rays when they hit the snow crystals. At
the initial intersection the ray is branched into two rays. And
when the refracted ray hits exits the crystal, there is another
branching into two rays. This branching imposes a perfor-
mance penalty, especially when the crystals cover much of
the screen area. The performance obtained is real-time with
an average of 22 fps. A major problem is how the fps varies
depending on what happens in the scene. When a large crys-
tal is close to the screen, the fps is low at around 20 fps.
When this crystal exits the screen, the fps spikes up to around
40. This behaviour results in unstable performance, and is
one of the major drawbacks of the ray tracing algorithm.

In our centerpiece scene, the performance varies for each
of the modes. All of the modes offer real-time performance

at 22-25 fps, but the cheaper Phong shading and reflection
only mode results in 67.51 and 38.73 fps, respectively. Dif-
fuse reflection and diffuse shadows were a disappointment
performance-wise. In both cases the ray branching is set to
only into 4 new rays, but the fps is nevertheless barely real-
time. This shows how ray branching is the major challenge
of ray tracing performance. However, the scene consisting of
three car models and a scooter which has a total of 1 million
polygons, shows that OptiX is indeed capable of rendering
real-time scenes with high definition and complex models.
All representable for real-life objects. The voxel mode has
"only" 250,047 voxels, but does not benefit from primitives
being covered by other primitives such as in the mode with 1
million polygons. At an fps of 22.08, this shows that OptiX
is capable of rendering voxels scenes in real-time.

4.1. Performance vs. optimized GPU ray-tracers

Table 2 shows the number of triangle polygons and mea-
sured OptiX performance of scenes from [AL09], and Table
3 shows the same for scenes from [SCCC09]. Also shown
in these tables is the performance the authors of [AL09]
and [SCCC09] obtained with their ray tracer.

Table 2: Triangles and performance in Mray/s of scenes in
[AL09] at 1024 x 768 pixels

Scene Conference Fairy Sibenik
Triangle polygons 282,759 174,117 80,133
Mray/s OptiX 28.22 20.69 38.12
Mray/s [AL09] 142.2 74.6 117.5

Table 3: Triangles and performance in fps of scenes in
[SCCC09] at 1024 x 1024 pixels

Scene Bunny Sponza Dragon
Triangle polygons 69,451 66,454 871,414
Fps OptiX 49.89 28.16 36.43
Fps [SCCC09] 45.30 42.47 31.88

As seen in Table 2, our results using OptiX are 3-4 times
slower than the implementation in [AL09]. The hardware in
both cases is the GT200 generation GPU. This shows that

c© The Eurographics Association 2010.
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OptiX has potential for much higher performance. An ex-
planation of the discrepancy can be the flexibility of OptiX,
and the fact that the implementations in [AL09] was hand
optimized at the assembly level for performance only.

Table 3 shows that our OptiX implementations outper-
form [SCCC09] slightly in the bunny and dragon scene, but
lags behind by about 30 % in the sponza scene. However, the
GPU used in [SCCC09] is a Nvidia Geforce 8800 GTS that
is several generations older and substantially slower than the
Quadro FX 5800 used in our test bench. Again, one would
assume that the implementation in [SCCC09] is heavily op-
timized and not as flexible.

4.2. Multiple GPUs

Figure 3: Multiple GPU speedup in various scenes

Figure 3 compares our results on 2 GPUs with 1 GPU
in various scenes. At the lower extreme, there is actually
a slowdown compared to using 1 GPU. However, at the
other end of the chart, we achieve an almost perfect 200 %
speedup. Common for the scenes that speed up well is that
they spend a lot of time on GPU computations compared
to other tasks such as image display, data transfer and CPU
computations. Hence in order to take advantage of the com-
putational power of the GPU, scenes need to have enough
computational complexity that can be done on the GPU, as
can be seen in our centerpiece scene.

5. Conclusions and future work

This paper studied implementations of animated real-time
scenes that represent actual real-life application areas for ray
tracing. Nvidia’s recently released OptiX ray tracing engine
allows users to harness the power of modern GPUs. Our re-
sults demonstrate that several ray tracing applications may
be performed in real-time on the GPU using OptiX. All of
our test cases gave real-time speeds ranging from 20.63 to
67.51 fps on 1 GPU. Our dual GPU results indicated that
OptiX can give near-perfect speedup on multiple GPUs for
scenes with enough computational complexity. Even though
OptiX has showed to be capable of real-time ray tracing,
our initial implementations were slower (3 to 5 times) than

some hand optimized ray tracers such as in [AL09], indicat-
ing room for improvement. Our results do, however, demon-
strate that OptiX is a flexible engine capable of real-time ray
tracing on both single and multiple Nvidia GPUs.

A major difference between CPUs and GPUs is that GPUs
cannot do branching efficiently. Efficient branching is impor-
tant in ray tracing since the directions the rays are reflected
and refracted is not known in advance. Fortunately, newer
GPUs such as the Nvidia CUDA architecture handle branch-
ing better than previous generations. NVIDIA recently an-
nounced their new Fermi [Nvi09b] GPU which includes L1
and L2 cache, better double precision number support and
concurrent kernel execution. The on-chip GPU cache should
be beneficial for ray tracing since previously read or spatially
coherent data can then be quickly accessed when traversing
acceleration structures. When it is publicly available, its im-
pact on OptiX and real-time ray tracing performance should
be investigated.

Future ray tracer designs should also incorporate the ideas
from recent work such as [AL09] and [SCCC09]. Incorpo-
rating ray tracing into full-scale applications such as medi-
cal and seismic visualizations, should also be investigated.
Finally, we would like to thank Nvidia and other sponsors of
our HPC-lab.
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Appendix F

Code Listings

In this appendix, one can find code listings from the most important parts
of the implementation made for this thesis.

F.1 Pixel-Nearest-Neighbor Kernels

The following code listing contains the kernels for pixel-nearest-neighbor re-
construction as described in Section 4.2.

1 k e r n e l void r o u n d o f f t r a n s l a t e ( g l o b a l f loat ∗ p ixe l po s0 ,
2 g l o b a l f loat ∗ p ixe l po s1 ,
3 g l o b a l f loat ∗ p ixe l po s2 ,
4 g l o b a l f loat ∗ p ixe l po s3 ,
5 g l o b a l f loat ∗ p ixe l po s4 ,
6 g l o b a l f loat ∗ p ixe l po s5 ,
7 f loat volume spacing ,
8 int mask s ize ,
9 f loat or igo x ,

10 f loat or igo y ,
11 f loat o r i go z ,
12 int bscan n ) {
13 int n = g e t g l o b a l i d (0 ) ;
14 i f (n >= bscan n ∗mask s i ze ) return ;
15
16 int a = n/ mask s i ze ;
17 int i = n%mask s i ze ;
18
19 g l o b a l f loat ∗ p i x e l p o s [ 6 ] = { p ixe l po s0 , p ixe l po s1 ,

p ixe l po s2 , p ixe l po s3 , p ixe l po s4 , p i x e l p o s 5 } ;
20

113



F.1. PIXEL-NEAREST-NEIGHBOR KERNELS

21 p i x e l p o s c ( a , i , 0 ) = ( int ) ( ( p i x e l p o s c ( a , i , 0 )−o r i g o x ) /
volume spacing ) ;

22 p i x e l p o s c ( a , i , 1 ) = ( int ) ( ( p i x e l p o s c ( a , i , 1 )−o r i g o y ) /
volume spacing ) ;

23 p i x e l p o s c ( a , i , 2 ) = ( int ) ( ( p i x e l p o s c ( a , i , 2 )−o r i g o z ) /
volume spacing ) ;

24 }
25
26 k e r n e l void f i l l v o l u m e ( g l o b a l f loat ∗ p ixe l po s0 ,
27 g l o b a l f loat ∗ p ixe l po s1 ,
28 g l o b a l f loat ∗ p ixe l po s2 ,
29 g l o b a l f loat ∗ p ixe l po s3 ,
30 g l o b a l f loat ∗ p ixe l po s4 ,
31 g l o b a l f loat ∗ p ixe l po s5 ,
32 g l o b a l unsigned char ∗ p i x e l i l l ,
33 int mask s ize ,
34 g l o b a l unsigned char ∗ volume ,
35 int volume n ,
36 int volume h ,
37 int volume w ,
38 int bscan n ) {
39
40 int n = g e t g l o b a l i d (0 ) ;
41 i f (n > bscan n ∗mask s i ze ) return ;
42
43 int a = n/ mask s i ze ;
44 int i = n%mask s i ze ;
45
46 g l o b a l f loat ∗ p i x e l p o s [ 6 ] = { p ixe l po s0 , p ixe l po s1 ,

p ixe l po s2 , p ixe l po s3 , p ixe l po s4 , p i x e l p o s 5 } ;
47
48 int x = p i x e l p o s c ( a , i , 0 ) ;
49 int y = p i x e l p o s c ( a , i , 1 ) ;
50 int z = p i x e l p o s c ( a , i , 2 ) ;
51 i f ( inrange (x , 0 , volume w ) && inrange (y , 0 , volume h ) && inrange (

z , 0 , volume n ) )
52 volume a (x , y , z ) = p i x e l i l l [ a∗mask s i ze + i ] ;
53 }
54
55 k e r n e l void trans form ( g l o b a l f loat ∗ p ixe l po s0 ,
56 g l o b a l f loat ∗ p ixe l po s1 ,
57 g l o b a l f loat ∗ p ixe l po s2 ,
58 g l o b a l f loat ∗ p ixe l po s3 ,
59 g l o b a l f loat ∗ p ixe l po s4 ,
60 g l o b a l f loat ∗ p ixe l po s5 ,
61 g l o b a l f loat ∗ pos matr i ce s ,
62 int mask s ize ,
63 int bscan n ) {
64 int n = g e t g l o b a l i d (0 ) ;
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65 i f (n >= bscan n ∗mask s i ze ) return ;
66
67 int a = n/ mask s i ze ;
68 int i = n%mask s i ze ;
69
70 g l o b a l f loat ∗ p i x e l p o s [ 6 ] = { p ixe l po s0 , p ixe l po s1 ,

p ixe l po s2 , p ixe l po s3 , p ixe l po s4 , p i x e l p o s 5 } ;
71
72 f loat sum0 , sum1 , sum2 ;
73 for ( int y = 0 ; y < 3 ; y++) {
74 f loat sum = 0 ;
75 for ( int x = 0 ; x < 3 ; x++)
76 sum += pos mat r i c e s a (a , x , y ) ∗ p i x e l p o s c ( a , i , x ) ;
77 sum += pos mat r i c e s a (a , 3 , y ) ;
78 i f ( y==0) sum0=sum ; else i f ( y==1) sum1=sum ; else sum2=sum ;
79 }
80 p i x e l p o s c ( a , i , 0 ) = sum0 ; p i x e l p o s c ( a , i , 1 ) = sum1 ;

p i x e l p o s c ( a , i , 2 ) = sum2 ;
81 }
82
83 k e r n e l void f i l l p i x e l i l l p o s ( g l o b a l unsigned char ∗

bscans0 ,
84 g l o b a l unsigned char ∗

bscans1 ,
85 c o n s t a n t unsigned char ∗ mask

,
86 g l o b a l f loat ∗ p ixe l po s0 ,
87 g l o b a l f loat ∗ p ixe l po s1 ,
88 g l o b a l f loat ∗ p ixe l po s2 ,
89 g l o b a l f loat ∗ p ixe l po s3 ,
90 g l o b a l f loat ∗ p ixe l po s4 ,
91 g l o b a l f loat ∗ p ixe l po s5 ,
92 g l o b a l unsigned char ∗

p i x e l i l l ,
93 int mask s ize ,
94 int bscan n ,
95 int bscan h ,
96 int bscan w ,
97 f loat bscan spac ing x ,
98 f loat bscan spac ing y ) {
99

100 int n = g e t g l o b a l i d (0 ) ;
101 i f (n >= bscan n ) return ;
102
103 g l o b a l f loat ∗ p i x e l p o s [ 6 ] = { p ixe l po s0 , p ixe l po s1 ,

p ixe l po s2 , p ixe l po s3 , p ixe l po s4 , p i x e l p o s 5 } ;
104
105 int mask counter = 0 ;
106 unsigned char f oo ;
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107 unsigned char mask bit ;
108 unsigned char i l l ;
109 for ( int y = 0 ; y < bscan h ; y++) {
110 for ( int x = 0 ; x < bscan w ; x++) {
111 foo = 1 << ( y∗bscan w + x ) %8;
112 mask bit = mask [ ( x + y∗bscan w ) /8 ] & foo ;
113 i f ( mask bit != 0) {
114 i f (n < bscan n /2) {
115 i l l = bscans0 [ x + y∗bscan w + n∗bscan w∗bscan h ] ;
116 } else {
117 i l l = bscans1 [ x + y∗bscan w + (n−bscan n /2) ∗bscan w∗

bscan h ] ;
118 }
119 p i x e l i l l [ n∗mask s i ze + mask counter ] = i l l ;
120 p i x e l p o s c (n , mask counter , 0 ) = 0 ;
121 p i x e l p o s c (n , mask counter , 1 ) = x∗ bscan spac ing x ;
122 p i x e l p o s c (n , mask counter , 2 ) = y∗ bscan spac ing y ;
123 mask counter++;
124 }
125 }
126 }
127 }
128
129 k e r n e l void f i l l h o l e s ( g l o b a l unsigned char ∗ volume ,
130 int volume n ,
131 int volume h ,
132 int volume w ) {
133 #d e f i n e k e r n e l s i z e 5
134 #d e f i n e h a l f k e r n e l ( k e r n e l s i z e /2)
135 #d e f i n e c u t o f f ( k e r n e l s i z e ∗ k e r n e l s i z e ∗ k e r n e l s i z e /2 .0 f −

h a l f k e r n e l )
136
137 int n = g e t g l o b a l i d (0 ) ;
138
139 int z = n/( volume h∗volume w ) + h a l f k e r n e l ;
140 int y = (n/volume w )%volume h + h a l f k e r n e l ;
141 int x = n%volume w + h a l f k e r n e l ;
142 i f ( z >= volume n−h a l f k e r n e l | | y >= volume h−h a l f k e r n e l | |

x >= volume w−h a l f k e r n e l ) return ;
143
144 i f ( volume a (x , y , z ) == 0) {
145 int sum = 0 ;
146 int sum counter = 0 ;
147 for ( int i = −h a l f k e r n e l ; i <= h a l f k e r n e l ; i++)
148 for ( int j = −h a l f k e r n e l ; j <= h a l f k e r n e l ; j++)
149 for ( int k = −h a l f k e r n e l ; k <= h a l f k e r n e l ; k++)
150 i f ( volume a ( x+i , y+j , z+k ) != 0) {
151 sum += volume a ( x+i , y+j , z+k ) ;
152 sum counter++;
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153 }
154 i f ( sum counter > c u t o f f && sum/( f loat ) sum counter <= 255)

volume a (x , y , z ) = sum/( f loat ) sum counter ;
155 }
156 }

F.2 Voxel-Nearest-Neighbor Kernel

The following code listing is the kernel for voxel-nearest-neighbor reconstruc-
tion as described in Section 4.3.

1 #define d i s t a n c e (v , plane ) ( plane . x∗v . x + plane . y∗v . y + plane . z
∗v . z + plane .w) / s q r t ( plane . x∗plane . x + plane . y∗plane . y +
plane . z∗plane . z )

2 #define p l a n e p o i n t s c (n , i ) ( p l a n e p o i n t s [ ( n ) ∗3 + ( i ) ] )
3
4 k e r n e l void vnn ( g l o b a l unsigned char ∗ bscans0 ,
5 g l o b a l unsigned char ∗ bscans1 ,
6 g l o b a l unsigned char ∗ mask ,
7 int bscan w ,
8 int bscan h ,
9 int bscan n ,

10 f loat bscan spac ing x ,
11 f loat bscan spac ing y ,
12 g l o b a l unsigned char ∗ volume ,
13 int volume n ,
14 int volume h ,
15 int volume w ,
16 f loat volume spacing ,
17 g l o b a l f l o a t 4 ∗ plane eq ,
18 g l o b a l f l o a t 4 ∗ p l a n e p o i n t s
19 ) {
20 int id = g e t g l o b a l i d (0 ) ;
21
22 int z = id /volume w ;
23 int x = id%volume w ;
24 i f ( z >= volume n ) return ;
25 i f ( x >= volume w ) return ;
26
27 #d e f i n e k e r n e l r a d i u s ( volume spacing ∗5)
28
29 int cur rent bscan = −1;
30 f loat d i s t = 10000 ;
31 for ( int n = 0 ; n < bscan n ; n++) {
32 f l o a t 4 voxe l 000 = {x∗volume spacing , 0 . 0 f , z∗volume spacing

, 0 . 0 f } ;
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33 f loat temp = fabs ( d i s t a n c e ( voxe l 000 , p lane eq [ n ] ) ) ;
34 i f ( temp < d i s t ) {
35 cur r ent bscan = n ;
36 d i s t = temp ;
37 }
38 }
39
40 int p r i n t c o u n t e r = 0 ;
41
42 for ( int y = 0 ; y < volume h ; y++) {
43 f l o a t 4 voxe l coo rd = {x∗volume spacing , y∗volume spacing , z∗

volume spacing , 0 . 0 f } ;
44 d i s t = 10000;
45 f loat temp ;
46 int done up = 0 ;
47 int done down = 0 ;
48 int min bscan = cur rent bscan ;
49 int n ;
50 for ( int i = 1 ; ! done down | | ! done up ; i++) {
51 i f ( ! done up ) {
52 n = cur rent bscan + i ;
53 temp = fabs ( d i s t a n c e ( voxe l coord , p lane eq [ n ] ) ) ;
54 min bscan = temp < d i s t ? n : min bscan ;
55 d i s t = min ( d i s t , temp ) ;
56 done up = temp−d i s t > k e r n e l r a d i u s | | n >= bscan n −1;
57 }
58
59 i f ( ! done down ) {
60 n = cur rent bscan − i ;
61 temp = fabs ( d i s t a n c e ( voxe l coord , p lane eq [ n ] ) ) ;
62 min bscan = temp < d i s t ? n : min bscan ;
63 d i s t = min ( d i s t , temp ) ;
64 done down = temp−d i s t > k e r n e l r a d i u s | | n <= 0 ;
65 }
66 }
67 cur r ent bscan = min bscan ;
68 d i s t = d i s t a n c e ( voxe l coord , p lane eq [ cur r ent bscan ] ) ;
69
70 f l o a t 4 normal = { p lane eq [ cur r ent bscan ] . x , p lane eq [

cur r ent bscan ] . y , p lane eq [ cur r ent bscan ] . z , 0 . 0 f } ;
71 f l o a t 4 corner0 = p l a n e p o i n t s c ( current bscan , 0 ) ;
72 f l o a t 4 cornerx = p l a n e p o i n t s c ( current bscan , 1 ) ;
73 f l o a t 4 cornery = p l a n e p o i n t s c ( current bscan , 2 ) ;
74
75 f l o a t 4 p = voxe l coo rd + −d i s t ∗normal − corner0 ;
76 f l o a t 4 x vec to r = normal ize ( cornerx − corner0 ) ;
77 f l o a t 4 y vec to r = normal ize ( cornery − corner0 ) ;
78
79 int px = dot (p , x vec to r ) / bscan spac ing x ;
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80 int py = dot (p , y vec to r ) / bscan spac ing y ;
81
82 i f ( px >= 0 && px < bscan w && py >= 0 && py < bscan h )
83 i f ( f abs ( d i s t ) < k e r n e l r a d i u s )
84
85 i f (mask [ px + py∗bscan w ] != 0)
86 i f ( cur r ent bscan < bscan n /2) {
87 volume a (x , y , z ) = bscans0 [ px + py∗bscan w +

current bscan ∗bscan w∗bscan h ] ;
88 } else {
89 volume a (x , y , z ) = bscans1 [ px + py∗bscan w + (

current bscan−bscan n /2) ∗bscan w∗bscan h ] ;
90 }
91 }
92 }

F.3 Ray Casting Kernels

The following code listing contains the kernels for ray casting as described
in Section 5.4.

1 k e r n e l void b u i l d r a y d i r s ( g l o b a l unsigned char ∗ volume ,
2 int volume w ,
3 int volume h ,
4 int volume n ,
5 g l o b a l f l o a t 4 ∗ r a y d i r s ,
6 int bitmap w ,
7 int bitmap h ,
8 f l o a t 4 camera pos ,
9 f l o a t 4 camera lookat ,

10 g l o b a l f loat ∗ p r i n t i n g s ) {
11 int n = g e t g l o b a l i d (0 ) ;
12 i f (n >= bitmap w∗bitmap h ) return ;
13
14 int ray x = n%bitmap w ;
15 int ray y = n/bitmap w ;
16
17 f l o a t 4 camera forward = normal ize ( camera lookat − camera pos ) ;
18 f l o a t 4 temp up = {0 , 1 , 0 , 0} ;
19 f l o a t 4 camera r ight = normal ize ( c r o s s ( temp up , camera forward )

) ;
20 f l o a t 4 camera up = normal ize ( c r o s s ( camera r ight ,

camera forward ) ) ;
21
22 f loat f ov hor = 45/2 ;
23 f loat f o v v e r = fov hor ∗bitmap h /( f loat ) bitmap w ;
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24 fov hor = fov hor /180 .0 f ∗3 .14 f ;
25 f o v v e r = f o v v e r /180 .0 f ∗3 .14 f ;
26
27 f l o a t 4 s t ep fo rward = camera forward ;
28 f loat temp = ( ray x−bitmap w /2) /( f loat ) ( bitmap w /2) ;
29 f l o a t 4 s t e p r i g h t = temp ∗ f ov hor ∗ camera r ight ;
30 temp = ( ray y−bitmap h /2) /( f loat ) ( bitmap h /2) ;
31 f l o a t 4 step up = temp ∗ f o v v e r ∗ camera up ;
32 f l o a t 4 r a y d i r = normal ize ( s t ep fo rward + s t e p r i g h t + step up

) ;
33
34 r a y d i r s [ n ] = r a y d i r ;
35 }
36
37 k e r n e l void c a s t r a y s ( g l o b a l unsigned char ∗ volume ,
38 int volume w ,
39 int volume h ,
40 int volume n ,
41 g l o b a l f l o a t 4 ∗ r a y d i r s ,
42 g l o b a l unsigned char ∗ bitmap ,
43 int bitmap w ,
44 int bitmap h ,
45 f l o a t 4 camera pos ,
46 f l o a t 4 camera lookat ,
47 g l o b a l f loat ∗ p r i n t i n g s ) {
48 int n = g e t g l o b a l i d (0 ) ;
49 i f (n >= bitmap w∗bitmap h ) return ;
50
51 int ray x = n%bitmap w ;
52 int ray y = n/bitmap w ;
53
54 f l o a t 4 r a y d i r = r a y d i r s [ n ] ;
55
56 #d e f i n e s t e p s i z e 1 .0 f
57 #d e f i n e t r a n s p a r e n t l e v e l 54
58 #d e f i n e t ransparency a justment 0 .4 f
59 #d e f i n e r a y s t r e n g t h c u t o f f (255/10 .0 f )
60
61 unsigned char accum = 0 ;
62 f loat t = 0 ;
63
64 f l o a t 4 volume 0 = {0 , 0 , 0 , 0} ;
65 f l o a t 4 volume 1 = {volume w−1, volume h−1, volume n−1, 0} ;
66
67 f l o a t 4 foo0 = ( volume 0 − camera pos ) / r a y d i r ;
68 f l o a t 4 foo1 = ( volume 1 − camera pos ) / r a y d i r ;
69 foo0 = min ( foo0 , foo1 ) ;
70 t = max( foo0 . x , max( foo0 . y , foo0 . z ) ) + 2 ;
71
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72 f l o a t 4 t po s = camera pos + t ∗ r a y d i r ;
73
74 i f ( t po s . x > 0 && t pos . x < volume w−1 &&
75 t pos . y > 0 && t pos . y < volume h−1 &&
76 t pos . z > 0 && t pos . z < volume n−1) {
77 f loat r ay s t r en g t h = 255 ;
78 unsigned char voxe l ;
79 f loat t ransparency ;
80 while ( t rue ) {
81 i f ( t po s . x < 0 | | t po s . x > volume w−1 | |
82 t pos . y < 0 | | t po s . y > volume h−1 | |
83 t pos . z < 0 | | t po s . z > volume n−1) {
84 break ;
85 }
86 i f ( r ay s t r en g t h < r a y s t r e n g t h c u t o f f ) break ;
87
88 voxe l = volume a ( ( int ) t po s . x , ( int ) t po s . y , ( int ) t po s . z )

;
89 i f ( voxe l < t r a n s p a r e n t l e v e l ) voxe l = 0 ;
90
91 transparency = min ( (1 − voxe l /255 .0 f ) +

transparency ajustment , 1 . 0 f ) ;
92
93 accum += r ay s t r en g t h ∗ (1− t ransparency ) ;
94 ra y s t r en g t h ∗= transparency ;
95
96 t += s t e p s i z e ;
97 t po s = camera pos + t ∗ r a y d i r ;
98 }
99 } else {

100 accum = ( ( ray x+ray y )%2)∗150 ;
101 }
102
103 bitmap [ n ] = accum ;
104 }

F.4 Incremental Reconstruction Kernels

The following code listing contains the kernels for incremental reconstruction
with PT and DWOP as described in Section 5.3.

1 k e r n e l void t r a c e i n t e r s e c t i o n s ( g l o b a l f l o a t 4 ∗
i n t e r s e c t i o n s ,

2 int volume w ,
3 int volume h ,
4 int volume n ,
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5 f loat volume spacing ,
6 g l o b a l f l o a t 4 ∗

bscan p lane equat ion queue ,
7 int a x i s ) {
8
9 f l o a t 4 Rd = { a x i s == 0 , a x i s == 1 , a x i s == 2 , 0} ;

10
11 int i t e r e n d [ 3 ] = {( a x i s != 0) ∗volume w+( a x i s==0) , ( a x i s != 1)

∗volume h+( a x i s==1) , ( a x i s != 2) ∗volume n+( a x i s==2)} ;
12
13 int n = g e t g l o b a l i d (0 ) ;
14 i f (n >= i t e r e n d [ 0 ] ∗ i t e r e n d [ 1 ] ∗ i t e r e n d [ 2 ] ) return ;
15
16 int x = ( a x i s != 0) ;
17 int y = ( a x i s != 1) ;
18 int z = ( a x i s != 2) ;
19
20 i f ( a x i s == 0) {
21 y = n%volume h ;
22 z = n/volume h ;
23 }
24 i f ( a x i s == 1) {
25 x = n%volume w ;
26 z = n/volume w ;
27 }
28 i f ( a x i s == 2) {
29 x = n%volume w ;
30 y = n/volume w ;
31 }
32
33 bool i n v a l i d = f a l s e ;
34 for ( int f = 0 ; f < 2 ; f++) {
35 int i = f==0 ? BSCAN WINDOW/2−1 : BSCAN WINDOW/2; // F i l l

v o x e l s between two middle bscans
36 // i n t i = f==0 ? BSCANWINDOW/2−BSCANWINDOW/4−1 :

BSCANWINDOW/2+BSCANWINDOW/4; // A l t e r n a t i v e l y f i l l
v o x e l s between BSCANWINDOW/2 middle bscans

37 // i n t i = f==0 ? 0 : BSCANWINDOW−1; // A l t e r n a t i v e l y f i l l
v o x e l s between f i r s t and l a s t bscan

38 f l o a t 4 Pn = { bscan p lane equat ion queue [ i ] . x ,
b scan p lane equat ion queue [ i ] . y ,
b scan p lane equat ion queue [ i ] . z , 0} ;

39 f l o a t 4 R0 = {x∗volume spacing , y∗volume spacing , z∗
volume spacing , 0} ;

40 f loat Vd = dot (Pn , Rd) ;
41 f loat V0 = −(dot (Pn , R0) + bscan p lane equat ion queue [ i ] . w) ;
42 f loat t = V0/Vd;
43 i f (Vd == 0) i n v a l i d = true ;
44
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45 f l o a t 4 i n t e r s e c t i o n = R0 + t ∗Rd;
46 i n t e r s e c t i o n s [ n∗2 + f ] = i n t e r s e c t i o n ;
47 }
48 }
49
50 k e r n e l void a d v f i l l v o x e l s ( g l o b a l f l o a t 4 ∗ i n t e r s e c t i o n s ,
51 g l o b a l unsigned char ∗ volume ,
52 f loat volume spacing ,
53 int volume w ,
54 int volume h ,
55 int volume n ,
56 g l o b a l f l o a t 4 ∗ x vector queue ,
57 g l o b a l f l o a t 4 ∗ y vector queue ,
58 g l o b a l p l ane p t s ∗

p lane po int s queue ,
59 g l o b a l f l o a t 4 ∗

bscan p lane equat ion queue ,
60 f loat bscan spac ing x ,
61 f loat bscan spac ing y ,
62 int bscan w ,
63 int bscan h ,
64 g l o b a l unsigned char ∗ mask ,
65 g l o b a l unsigned char ∗

bscans queue ,
66 g l o b a l f loat ∗

bscan t imetags queue ,
67 int i n t e r s e c t i o n c o u n t e r ) {
68
69 int i = g e t g l o b a l i d (0 ) ;
70 i f ( i >= i n t e r s e c t i o n c o u n t e r ) return ;
71
72 f l o a t 4 i n t r s 0 = i n t e r s e c t i o n s [ i ∗2 + 0 ]/ volume spacing ;
73 f l o a t 4 i n t r s 1 = i n t e r s e c t i o n s [ i ∗2 + 1 ]/ volume spacing ;
74
75 int x0 = min ( i n t r s 0 . x , i n t r s 1 . x ) ;
76 int x1 = max( x0+1.0 f , max( i n t r s 0 . x , i n t r s 1 . x ) ) ;
77 int y0 = min ( i n t r s 0 . y , i n t r s 1 . y ) ;
78 int y1 = max( y0+1.0 f , max( i n t r s 0 . y , i n t r s 1 . y ) ) ;
79 int z0 = min ( i n t r s 0 . z , i n t r s 1 . z ) ;
80 int z1 = max( z0 +1.0 f , max( i n t r s 0 . z , i n t r s 1 . z ) ) ;
81
82 int s a f e t y = 0 ;
83 for ( int z = z0 ; z <= z1 ; z++) {
84 for ( int y = y0 ; y <= y1 ; y++) {
85 for ( int x = x0 ; x <= x1 ; x++) {
86 f l o a t 4 voxe l coo rd = {x∗volume spacing , y∗volume spacing ,

z∗volume spacing , 0 } ;
87 i f ( inrange (x , 0 , volume w ) && inrange (y , 0 , volume h )

&& inrange ( z , 0 , volume n ) ) {
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88 f loat c o n t r i b u t i o n = 0 ;
89 i f (PT OR DW) { // DW
90 f loat d i s t s [BSCAN WINDOW] ;
91 unsigned char b i l i n e a r s [BSCAN WINDOW] ;
92 bool v a l i d = true ;
93 f loat G = 0 ;
94 for ( int n = 0 ; n < BSCAN WINDOW; n++) {
95 int q idx = n ;
96
97 f l o a t 4 normal = { bscan p lane equat ion queue [ q idx

] . x , b scan p lane equat ion queue [ q idx ] . y ,
b scan p lane equat ion queue [ q idx ] . z , 0} ;

98
99 f loat d i s t 0 = fabs ( d i s tance pp ( voxe l coord ,

bscan p lane equat ion queue [ q idx ] ) ) ;
100 f l o a t 4 p0 = voxe l coo rd + −d i s t 0 ∗normal −

p lane po in t s queue [ q idx ] . corner0 ;
101 f loat px0 = dot ( p0 , x vec to r queue [ q idx ] ) /

bscan spac ing x ;
102 f loat py0 = dot ( p0 , y vec to r queue [ q idx ] ) /

bscan spac ing y ;
103 f loat xa = px0−f l o o r ( px0 ) ;
104 f loat ya = py0−f l o o r ( py0 ) ;
105 int xa0 = ( int ) px0 ;
106 int ya0 = ( int ) py0 ;
107
108 bool va l i d0 = f a l s e ;
109
110 i f ( inrange ( xa0 , 0 , bscan w ) && inrange ( ya0 , 0 ,

bscan h ) && inrange ( xa0+1, 0 , bscan w ) &&
inrange ( ya0+1, 0 , bscan h ) ) {

111 i f (mask [ xa0 + ya0∗bscan w ] != 0 && mask [ xa0+1 +
( ya0+1)∗bscan w ] != 0 && mask [ xa0+1 + ya0∗

bscan w ] != 0 && mask [ xa0 + ( ya0+1)∗bscan w ]
!= 0) {

112 b i l i n e a r s [ n ] = bscans queue a ( q idx , xa0 , ya0 )
∗(1−xa )∗(1−ya ) + bscans queue a ( q idx , xa0
+1,ya0 ) ∗xa∗(1−ya ) + bscans queue a ( q idx ,
xa0 , ya0+1)∗(1−xa ) ∗ya + bscans queue a ( q idx
, xa0+1,ya0+1)∗xa∗ya ;

113 va l i d0 = true ;
114 }
115 }
116
117 v a l i d &= va l i d0 ;
118 d i s t s [ n ] = d i s t 0 ;
119
120 G += 1/ d i s t s [ n ] ;
121 c o n t r i b u t i o n += b i l i n e a r s [ n ] / d i s t s [ n ] ;
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122 }
123
124 i f ( ! v a l i d ) continue ;
125
126 c o n t r i b u t i o n /= G;
127
128 } else { // PT
129 // Find v i r t u a l p lane time stamp :
130 f loat d i s t s [ 4 ] ;
131 bool v a l i d = true ;
132 for ( int n = 0 ; n < 4 ; n++) {
133 int q idx = BSCAN WINDOW/2−2+n ;
134
135 f l o a t 4 normal = { bscan p lane equat ion queue [ q idx

] . x , b scan p lane equat ion queue [ q idx ] . y ,
b scan p lane equat ion queue [ q idx ] . z , 0} ;

136
137 f loat d i s t 0 = fabs ( d i s tance pp ( voxe l coord ,

bscan p lane equat ion queue [ q idx ] ) ) ;
138 f l o a t 4 p0 = voxe l coo rd + −d i s t 0 ∗normal −

p lane po in t s queue [ q idx ] . corner0 ;
139 f loat px0 = dot ( p0 , x vec to r queue [ q idx ] ) /

bscan spac ing x ;
140 f loat py0 = dot ( p0 , y vec to r queue [ q idx ] ) /

bscan spac ing y ;
141 f loat xa = px0−f l o o r ( px0 ) ;
142 f loat ya = py0−f l o o r ( py0 ) ;
143 int xa0 = ( int ) px0 ;
144 int ya0 = ( int ) py0 ;
145
146 bool va l i d0 = f a l s e ;
147 f loat b i l i n e a r 0 ;
148
149 i f ( inrange ( xa0 , 0 , bscan w ) && inrange ( ya0 , 0 ,

bscan h ) && inrange ( xa0+1, 0 , bscan w ) &&
inrange ( ya0+1, 0 , bscan h ) )

150 i f (mask [ xa0 + ya0∗bscan w ] != 0 && mask [ xa0+1 +
( ya0+1)∗bscan w ] != 0 && mask [ xa0+1 + ya0∗

bscan w ] != 0 && mask [ xa0 + ( ya0+1)∗bscan w ]
!= 0)

151 va l i d0 = true ;
152
153 d i s t s [ n ] = d i s t 0 ;
154
155 v a l i d &= va l i d0 ;
156 }
157 i f ( ! v a l i d ) continue ;
158 f loat G = d i s t s [ 1 ] + d i s t s [ 2 ] ;
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159 f loat t = d i s t s [ 2 ] /G∗ bscan t imetags queue [
BSCAN WINDOW/2−1] + d i s t s [ 1 ] /G∗
bscan t imetags queue [BSCAN WINDOW/ 2 ] ;

160
161 // Cubic i n t e r p o l a t e 4 bscan p lane equat ions ,

corner0s and x− and y−v e c t o r s :
162 f l o a t 4 v p lane eq = {0 , 0 , 0 , 0} ;
163 f l o a t 4 v corner0 = {0 , 0 , 0 , 0} ;
164 f l o a t 4 v x v e c to r = {0 , 0 , 0 , 0} ;
165 f l o a t 4 v y v e c to r = {0 , 0 , 0 , 0} ;
166 for ( int k = 0 ; k < 4 ; k++) {
167 int q idx = BSCAN WINDOW/2−2+k ;
168 f loat phi = 0 ;
169 f loat a = −1/2.0 f ;
170 f loat abs t = fabs ( ( t−bscan t imetags queue [ q idx ] )

) /( bscan t imetags queue [1]− bscan t imetags queue
[ 0 ] ) ;

171 i f ( inrange ( abs t , 0 , 1) )
172 phi = ( a+2)∗ abs t ∗ abs t ∗ abs t − ( a+3)∗ abs t ∗

abs t + 1 ;
173 else i f ( inrange ( abs t , 1 , 2) )
174 phi = a∗ abs t ∗ abs t ∗ abs t − 5∗a∗ abs t ∗ abs t + 8∗

a∗ abs t − 4∗a ;
175 v p lane eq += bscan p lane equat ion queue [ q idx ]∗

phi ;
176 v corner0 += phi ∗ p lane po in t s queue [ q idx ] . corner0

;
177 v x v e c to r += phi ∗ x vec to r queue [ q idx ] ;
178 v y v e c to r += phi ∗ y vec to r queue [ q idx ] ;
179 }
180
181 // Find 2D coord ina t e s on v i r t u a l p lane :
182 f l o a t 4 p0 = voxe l coo rd − v corner0 ;
183 f loat px0 = dot ( p0 , v x v e c to r ) / bscan spac ing x ;
184 f loat py0 = dot ( p0 , v y v e c to r ) / bscan spac ing y ;
185 f loat xa = px0−f l o o r ( px0 ) ;
186 f loat ya = py0−f l o o r ( py0 ) ;
187 int xa0 = ( int ) px0 ;
188 int ya0 = ( int ) py0 ;
189
190 // Distance we igh t 4 b i l i n e a r s :
191 f loat F = 0 ;
192 for ( int n = 0 ; n < 4 ; n++) {
193 int q idx = BSCAN WINDOW/2−2+n ;
194 f loat b i l i n e a r 0 = bscans queue a ( q idx , xa0 , ya0 )

∗(1−xa )∗(1−ya ) + bscans queue a ( q idx , xa0+1,ya0
) ∗xa∗(1−ya ) + bscans queue a ( q idx , xa0 , ya0+1)
∗(1−xa ) ∗ya + bscans queue a ( q idx , xa0+1,ya0+1)∗
xa∗ya ;
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195 F += 1/ d i s t s [ n ] ;
196 c o n t r i b u t i o n += b i l i n e a r 0 / d i s t s [ n ] ;
197 }
198 c o n t r i b u t i o n /= F;
199 }
200
201 i f (COMPOUNDMETHOD == COMPOUNDAVG)
202 i f ( volume a (x , y , z ) != 0) volume a (x , y , z ) = (

volume a (x , y , z ) + c o n t r i b u t i o n ) /2 ; else volume a
(x , y , z ) = c o n t r i b u t i o n ;

203 i f (COMPOUNDMETHOD == COMPOUNDMAX)
204 i f ( c o n t r i b u t i o n > volume a (x , y , z ) ) volume a (x , y , z )

= c o n t r i b u t i o n ;
205 i f (COMPOUNDMETHOD == COMPOUND IFEMPTY)
206 i f ( volume a (x , y , z ) == 0) volume a (x , y , z ) =

c o n t r i b u t i o n ;
207 i f (COMPOUNDMETHOD == COMPOUNDOVERWRITE)
208 volume a (x , y , z ) = c o n t r i b u t i o n ;
209 }
210 }
211 }
212 }
213 }
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