
Master of Science in Computer Science
June 2010
Reidar Conradi, IDI
Jingyue Li, IDI

Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Software Defect Analysis
An Empirical Study of Causes and Costs in the Information
Technology Industry

Jan Maximilian Winther Kristiansen

Problem Description
Company X has introduced a classification scheme based on the orthogonal classification scheme
by IBM. Analysis of the data in this classification scheme was the primary focus of the
specialization project during the fall of 2009. It showed there were significant differences between
correction costs of different defect types.

In this study, we want to investigate the root causes for why defects take extensive effort to correct
as little research have been carried out within this area. In addition, we want investigate if different
project types faces the same challenges with regard to defects which require extensive effort to
correct.

Assignment given: 15. January 2010
Supervisor: Reidar Conradi, IDI

PREFACE

This thesis is the result of the subject TDT4900 - Computer and Information Sci-
ence, Master Thesis at the Department of Computer and Information Science, un-
der Faculty of Information Technology, Mathematics and Electrical Engineering,
at the Norwegian University of Technology and Science.

I would like to thank my main supervisor professor Reidar Conradi for guidance
and support throughout the writing of this thesis, giving me the opportunity to work
on the EVISOFT-project from fall 2009 to spring 2010, and giving me the freedom
to explore my areas of interest. It has been an exciting year for me. I would
also like to thank my co-supervisor researcher and post doc Jingyue Li for helpful
suggestions. He has given me consistent and good advice throughout my work on
this thesis. I would like to thank professor Tor Stålhane for giving me constructive
advice regarding my choice of problem to research, and for valuable insight into
other organisations. I would like to thank the representatives from Company X for
allowing me to work on this project, for giving me access to their defect tracking
database, and for the two summer internships I have had at Company X.

Last, I would like to thank my mom, Irene Winther, and dad, sivilingeniør Jan
Gunnar Kristiansen for continuous support throughout my studies, and proofread-
ing my thesis.

Trondheim, June 30, 2010.

Jan Maximilian Winther Kristiansen

i

EXECUTIVE SUMMARY

The area of software defects is not thoroughly studied in current research, even
though it is estimated to be one of the most expensive topics in industries. Hence,
certain researchers characterise the lack of research as a scandal within software
engineering. Little research has been performed in investigating the root causes
of defects, even thought we have classification schemes which aims to classify the
what, where and why regarding software defects. We want to investigate the root
causes of software defects through both qualitative and quantitative methods.

We collected defect reports from three different types of projects in the defect
tracking system of Company X. The first project was a project concerned with de-
velopment of a general core of functionality which other projects could use. The
second was a project aim at the mass-software market, while the third project was
tailored software to a the needs of a client. These defect reports were analysed
by both qualitative and quantitative methods. The qualitative methods were based
on grounded theory. The methods tried to establish a theory of why some defect
require extensive effort to correct through analysis of the discussions in the de-
fect reports. The quantitative methods were used to describe differences between
defects which required extensive or little effort to correct.

In the qualitative analysis, we found four main root causes which explain why
a group of defects require extensive effort to correct: hard to determine the lo-
cation of the defect, long discussion or clarification of the defect, incorrect cor-
rections introduces new defects, and implementation of missing functionality or
re-implementation of existing functionality. A comparison between the four root
causes and project types revealed the root causes were influenced by the project
types. The first project had a larger degree of discussion and incorrect corrections
than the second and third projects. The second and third projects were more con-
cerned with hard to locate defects and implementation of missing functionality or
re-implementation of functionality. Similarly, a comparison against another or-
ganisation showed there were differences with regard to root causes for extensive
effort. This showed how systematic analysis of defect reports can yield software

iii

IV

process improvement opportunities.

In the quantitative analysis, we found differences among extensive or little effort
to correct defects and project types. The extensive to correct defects of the first
project were due to incorrect algorithms or methods, injected during the design
phase, and high risk of regressions. In the second project, the extensive effort to
correct defects were due to algorithms, methods, functions, classes and objects,
were concerned with the core, platform, and user interface layers and injected
during the design phase, and lower regression risks. In the third project, the defects
which required extensive effort to correct were due to assignation and initialisation
of variables, or function, classes and objects, related to the core-layer, injected
during the coding phase, and average regression risk of medium. The little effort to
correct defects in the core project were concerned with assignation or initialisation
of variables, checking statements, lower regression risk, injected during the code
phase. In the second project, easy to correct defects were concerned with checking
statements in the code which had a low regression risk. In the third project, defects
which required little effort to correct were due to checking statements, interfaces
with third party libraries, lower regression risk and stem from requirements. The
quantitative analysis contained high levels of unspecified values for little effort to
correct defect. The levels of unspecified attributes were lower for defects which
required extensive effort to correct.

We concluded there were differences among project types with regard to root
causes for defects, and that there were differences similar between different levels
of effort required to correct defects. However, the study were not able to measure
how these differences influenced the root causes as the study was performed in a
descriptive manner.

TABLE OF CONTENTS

Preface i

Executive Summary iii

Table of Contents v

List of Tables ix

List of Figures xi

Acronyms xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Project Context . 2
1.3 Thesis Structure . 3

2 State of the Art 5
2.1 Software Engineering . 5

2.1.1 Background . 5
2.1.2 The Software Development Life Cycle 6

2.2 Software Quality . 9
2.2.1 Costs of Software Quality 10
2.2.2 Software Quality Models 11

2.3 Software Maintenance . 12
2.4 Software Defects . 13

2.4.1 The Behaviour of Software Defects 15
2.4.2 Software Process Improvement with Software Defects . . 16
2.4.3 Software Defect Reporting 17
2.4.4 Software Defect Classification 18
2.4.5 Software Defect Correction 19

v

VI TABLE OF CONTENTS

2.5 Verification of Software . 23
2.5.1 Dynamic and Static Analysis 23
2.5.2 Software Testing Process 24

2.6 Relevant Research Methods . 25
2.7 Summary . 26

3 Context of Company X 29
3.1 Background . 29
3.2 Projects . 30

3.2.1 Project Structure . 30
3.2.2 Projects Under Study . 30

3.3 Defect Tracking System . 32
3.3.1 Defect Reports . 32
3.3.2 Defect Report Work Flow 32
3.3.3 Defect Report Attributes 33

4 Research Design 39
4.1 Research Questions . 39
4.2 Case Study Strategies . 39
4.3 Research Design . 40

4.3.1 Data Set and Collection 41
4.3.2 Research Design of Quantitative Study 41
4.3.3 Research Design of Qualitative Study 41

4.4 Validity . 41

5 Results 43
5.1 General Remarks . 43
5.2 Qualitative Analysis . 44
5.3 Quantitative Analysis . 46

5.3.1 Comparison of Extensive Effort Defects in the Projects . . 46
5.3.2 Comparison Between Extensive and Little Effort Defects . 51

6 Discussion and Evaluation 57
6.1 Discussion . 57

6.1.1 Results from Qualitative Analysis 57
6.1.2 Results from Quantitative Analysis 65
6.1.3 Comparison versus Another Organisation 71
6.1.4 Current Research Versus This Study 73

6.2 Validity Threats . 73

7 Conclusion 77

TABLE OF CONTENTS VII

7.1 Main Contributions . 77
7.2 Further Work . 78

7.2.1 Topics Specific to Company X 78
7.2.2 Software Defect Research 78

7.3 Recommendations . 79
7.4 Conclusion . 79

Glossary 83

Bibliography 85

A Research Paper A: Cost Drivers of Software Corrective Maintenance:
An Empirical Study in Two Companies 95

B Draft of Research Paper B: Enhancing Software Defect Tracking Sys-
tem to Facilitate Continuous Software Quality Assessment and Im-
provement 105

C Presentation Slides from Meeting at Company X 23th March 2010 119

D Meeting Minutes April 29th 2010 133

E Script for Defect Report Analysis 135

LIST OF TABLES

2.1 Main Hazards for Industries . 10

3.1 Qualitative Defect Report Attributes 34
3.2 Defect attributes available in a defect report 35
3.3 ODC Defect attributes available in a defect report 37

ix

LIST OF FIGURES

3.1 Project Structure of Company X 31
3.2 Work Flow of Defect Reports . 33

5.1 Defect Reports Collected . 43
5.2 Results from Qualitative Analysis 44
5.3 Placement – Layer for Extensive Effort to Correct Defects 46
5.4 Type of Fix for Extensive Effort to Correct Defects 47
5.5 Root Cause – Identity for Extensive Effort to Correct Defects . . . 48
5.6 Root Cause – Cause for Extensive Effort to Correct Defects 49
5.7 Severity for Extensive Effort to Correct Defects 50
5.8 Regression Risk for Extensive Effort to Correct Defects 50
5.9 Placement – Layer for Little Effort to Correct Defects 52
5.10 Type of Fix for Little Effort to Correct Defects 53
5.11 Root Cause – Identity for Little Effort to Correct Defects 54
5.12 Root Cause – Cause for Little Effort to Correct Defects 55
5.13 Placement – Layer for Little Effort to Correct Defects 55
5.14 Regression Risk for Little Effort to Correct Defects 56

6.1 Software Development Costs per 100 Function Points 60
6.2 Results of Qualitative Analysis in Percent 63
6.3 Unspecified Values for Extensive Effort Defects 63
6.4 Unspecified Values for Little Effort Defects 64
6.5 Defect Reports Created From June 2000 to June 2010 65

xi

ACRONYMS

ADCT Analysis, Design, Coding and Testing

B2B Business to Business

B2C Business to Consumer

CMM Capability Maturity Model

COTS Commercial Off The Shelf

EVISOFT EVidence based Improvement of SOFTware engineering

IEEE Institute of Electrical and Electronics Engineers

ISO International Organization of Standardization

NTNU Norwegian University of Technology and Science

ODC Orthogonal Defect Classification

SPI Software Process Improvement

TDD Test-Driven Development

USD United States Dollar

xiii

CHAPTER 1

INTRODUCTION

The chapter gives an introduction of why this research is important to pursue, and
states the context of the project. Last, the chapter will give an overview of the
thesis structure.

1.1 Motivation

Software engineering topics have been under continuous research since well be-
fore the first conference on software engineering in 1968 [Naur and Randell, 1969].
However, little attention has been paid to research of correction of software defects.
Correction of software defects are the process of detecting, locating, and correcting
defects in software1 [Society, 1990]. Approximately 20% of all software defects
take 80% of all the required effort to analyse, isolate and correct software defects
[Boehm and Basili, 2001]. Authors like Lieberman characterise the overlook of re-
search in this particular area as a scandal within software engineering [Lieberman,
1997].

Software development life cycles, software quality, software testing, software main-
tenance and software defects are related to and affect each other by complex rela-
tionships. Lyu states the purpose of any software engineering activity is to prevent
any defects from being introduced in the first place [Lyu, 2007]. However, it is
impossible to guarantee a defect free software system [Lyu, 2007]. Software de-
fects is estimated to cost U.S. industries USD 60 billion every year [Tassey, 2002].
In contrast, the entire U.S. software sales market is estimated to be worth approx-
imately USD 180 billion [Tassey, 2002]. Consequently, Jones characterise poor
software quality to be the most expensive challenge humanity currently is facing
[Jones, 2008a].

Most of the research performed within the area of software defects is how much
costs poor software quality imposes. Other aspects are how much costs software

1We use the term “defect correction” for the term debugging in to be consistent as explained in
Section 2.4.

1

2 CHAPTER 1. INTRODUCTION

testing and software maintenance impose on projects, and estimation techniques
for these costs. However, little research has been devoted to investigate why cer-
tain software defects are hard to correct, or how much effort they require. De-
fect tracking systems are common in software development organisations today;
hundreds of thousands of defect reports are stored in these systems. Defect clas-
sification schemes are designed to a answer how, what and where about software
defects [Freimut, 2001]. However, none of the most implemented defect classi-
fications schemes have any attributes for classifying the effort required to correct
defects [Freimut, 2001].

The motivation of this study is to continue from the work performed during the
fall of 2009. The study showed there were a difference between software defects
which required extensive effort to correct and those who did not require much
effort to correct [Kristiansen, 2009]. Defects which required extensive effort to
correct were inserted earlier in the software development life cycle, and the type
of corrections was classified as either algorithms, methods, memory management
or concurrency management. On the other hand, defects require little effort to
correct were the result of errors in functions, classes, objects, or statements. The
purpose of this study is to investigate the research questions:

• What are the root causes of the defects which take extensive effort to correct?

• What differences exists between projects in the same organisation with re-
gard to root causes for defects which require extensive effort to correct?

The study is a case study of Company X2.

1.2 Project Context

The thesis is a continuation of the project performed in TDT4520 Program and
Information Systems, Specialization Project. The thesis is written as a part of
the EVidence based Improvement of SOFTware engineering (EVISOFT) project.
EVISOFT is sponsored by the Research Council of Norway. It has 10 industry
participants, and is a research partnership between SINTEF, Norwegian Univer-
sity of Technology and Science (NTNU), and University of Oslo (UiO). The pur-
pose of the project is to provide experience-based Software Process Improvement
(SPI) which help companies deliver software with high quality, within deadline
and within budget [EVI].

2We call the company “Company X” throughout this thesis

1.3. THESIS STRUCTURE 3

1.3 Thesis Structure

The thesis is divided into seven chapters and is organised in the following way:

• Chapter 1 serves as a introduction to the thesis.

• Chapter 2 is the result of a literature study performed during the project. It
gives an introduction to concepts and state-of-the-art within software engi-
neering, software quality, software maintenance, software defects and soft-
ware testing.

• Chapter 3 describes the practices as Company X relevant to this study.

• Chapter 4 details the research process and techniques used in this study.
Research questions is stated, and work plan is presented.

• Chapter 5 presents the results of the performed study.

• Chapter 6 discusses the results described in Chapter 5, and provides an eval-
uation of the validity of the results.

• Chapter 7 brings the thesis to a close with concluding remarks, recommen-
dations, and directions for further research.

The following appendices are attached to this thesis:

• Appendix A contains the draft of research paper Cost Drivers of Software
Corrective Maintenance: An Empirical Study in Two Companies authored
by Li, Conradi, Stålhane and Kristiansen (the candidate). This research pa-
per has been submitted to the International Conference on Software Main-
tenance (ICSM) 2010. It was accepted at June 29th 2010 for presentation
at ICSM 2010 and to be published in the conference proceedings of ICSM
2010.

• Appendix B contains draft of the research paper Enhancing Software Defect
Tracking System to Facilitate Continuous Software Quality Assessment and
Improvement authored by Li, Conradi, Stålhane and Kristiansen (the candi-
date). At the time of writing, this research paper has been submitted to IEEE
Software and is currently under review.

CHAPTER 2

STATE OF THE ART

The purpose of this chapter is to establish a theoretical background for the project.
The focus of this study will be on software defects and effort spent correcting soft-
ware defects. However, it is necessary to explore research areas which influence
or touches software defects. Hence, we include the subjects software engineering,
software quality, software maintenance, and software testing. Software defects af-
fect each of these research areas. For instance, poor software quality may be man-
ifested through severe software defects, or software maintenance may be costly
due to many defects requiring extensive effort to correct. Last, we explore rele-
vant research methods for this study. The following digital sources was consulted:
ScienceDirect1, ACM Digital Library2, IEEE Xplore3, and JSTOR4.

2.1 Software Engineering

The following sections will give an overview of software engineering through the
main concerns of current software engineering practices and a look at the software
development life cycle.

2.1.1 Background

Software engineering is defined by IEEE standard 610.12-1990 [Society, 1990] as:

(1) The application of a systematic, disciplined, quantifiable approach
to the development, operation, and maintenance of software; that is,
the application of engineering to software. (2) The study of approaches
as in (1). [Society, 1990, page 67]

1http://www.sciencedirect.com
2http://portal.acm.com
3http://ieeexplore.ieee.org/Xplore/guesthome.jsp
4http://www.jstor.org/

5

http://www.sciencedirect.com
http://portal.acm.com
http://ieeexplore.ieee.org/Xplore/guesthome.jsp
http://www.jstor.org/

6 CHAPTER 2. STATE OF THE ART

The scope of this definition is general. It consists of both the practice and the study
of the same field. The contents of the definition can be broken down to activities
that are performed during specific points in the software development life cycle.
These activities are concept analysis, requirement analysis, design, implementa-
tion, testing, integration and maintenance [Braude, 2001]. The following is stated
in the introduction to the report from the first conference on software engineering
in 1968 held by North Atlantic Treaty Organization (NATO):

The phrase “software engineering” was deliberately chosen as be-
ing provocative, in implying the need for software manufacture to be
based on the types of theoretical foundations and practical disciplines,
that are traditional in the established branches of engineering. [Naur
and Randell, 1969, page 8]

This is still the current state of affairs. Mahoney states how software engineering
conferences routinely starts their conferences by asking and answering the ques-
tion “Are we there yet?” [Mahoney, 2004]. We still do not have a branch of engi-
neering established in theoretical disciplines. However, we have developed tools
and processes which aid us throughout the software development life cycle. On the
other hand, these processes and tools have a weakness that is fundamental in how
software engineering is performed. Lyu states this fundamental weakness of soft-
ware engineering as an engineering discipline in [Lyu, 2007]: the decisions made
are based on human judgement and bias rather than laws and required processes.

Software engineering research have been characterised by being problem-driven
research in the past [Osterweil, 2007]. This has been of mutual benefit for both
the practitioners and researchers. However, Osterweil argues on how software
engineering research should also be curiosity-driven to complement the problems
faced by the practitioners.

2.1.2 The Software Development Life Cycle

The software development life cycle is a structured approach on how we develop
software [Marakas, 2006]. The model which is used for software development
may differ from each organisation. There are multiple ways of organising the
software development life cycle. However, the legacy of models from the last
decades include the waterfall life cycle, the iterative model and the agile model.

The Waterfall Life Cycle

The waterfall life cycle consists of several phases which are performed in a suc-
cessive order. Each step is completed and perfected before the next step starts. In

2.1. SOFTWARE ENGINEERING 7

orther words, the software development life cycle is assumed to be linear and pre-
dictable. A software development life cycle based on the waterfall life cycle may
include phases such as requirements analysis, design, implementation, integration,
testing and maintenance [Braude, 2001]

Royce has been credited for describing the waterfall life cycle in the paper [Royce,
1987] in 1970. Larman and Basili explains the reasons for the early widespread
adoption of the waterfall life cycle in the seventies and eighties [Larman and Basili,
2003]: The waterfall process is simple to learn and use, the people adopting the
life cycle thought it was a simple, traceable and measurable process, and it was
recommended in literature and software engineering courses.

Critics of the waterfall life cycle like Larman claim [Royce, 1987] was misinter-
preted by the industry which lead to the large scale adoption of the model [Larman,
2003]. Larman has assembled comprehensive evidence of project failures due to
the project following the waterfall life cycle as the software development life cy-
cle of the project in [Larman, 2003]. A fair share of the criticism the waterfall
life cycle has received concerns the assumption of linearity and predictability of
processes. The environment where the software is developed in is in constant flux,
thus not adapting to the current circumstances might yield software which is not
useable in the worst case. Parnas and Clements lists several problems of the water-
fall life cycle in their search for a rational software engineering life cycle [Parnas
and Clements, 1986]:

1. The customer seldom knows exactly what they want.

2. Many small details do not become apparent before they are required.

3. Human minds are unable to comprehend the wast details required in order
to construct error free software.

4. Projects are subject to change due to external conditions.

The waterfall life cycle does not address these issues problems, and in [Larman,
2003] there are numerous examples of how projects failed due to these reasons.

The Agile Life Cycle

The agile life cycle has emerged in the last decade as a reaction to the classi-
cal document-driven software development life cycles. However, the principles
behind the agile life cycle are not new. The principles stem from iterative and in-
cremental development and these principles have been in use by the industry since
the 1950s [Larman and Basili, 2003]. These ideas have been in constant evolu-
tion throughout the decades, and have evolved into different approaches. Dingsøyr

8 CHAPTER 2. STATE OF THE ART

and Dybå distinguish these approaches into several main categories [Dybå and
Dingsøyr, 2008]: crystal methodologies, dynamic software development methods,
feature-driven development, lean software development, scrum, and extreme pro-
gramming. These methodologies differ in how they organise the software devel-
opment life cycle and other areas where they give unique attention. For instance
scrum focuses on project planning in uncertain environments where development
is planned in small steps, while extreme programming focuses on implementing
best practices into the life cycle.

The agile life cycle focuses on agility, the ability to adapt to rather than predict real
world situations. The word “agility” is defined by Erickson, Lyytinen, and Siau as:

means to strip away as much of the heaviness, commonly associated
with traditional software development methodologies, as possible to
promote quick response to changing environments, changes in user
requirements, accelerated project deadlines, and the like. [Erickson
et al., 2005, page 89]

Erickson, Lyytinen, and Siau argue the traditional software engineering life cycles
cannot respond to change quickly enough due to comprehensive processes and
inertia. Ågerfolk and Fitzgerald state how the agile software development life cy-
cle is based on experience from software engineering practitioners [Ågerfalk and
Fitzgerald, 2006]. These decades of experience advice the use of communication,
flexibility, innovation and teamwork in order to succeed with delivering a project
on time and within budget. The leading promoters of the agile software develop-
ment life cycle wrote the “Manifesto for Agile Software Development” in order to
promote the core values of the life cycle [Beck et al.]:

• Individuals and interactions over processes and tools.

• Working software over comprehensive documentation.

• Customer collaboration over contract negotiation.

• Responding to change over following a plan.

The manifesto shows the key differences in how agile life cycles distinguish them-
selves from waterfall inspired life cycles. However, their organisation of the pro-
cess are similar to a certain degree. The activities performed during the agile life
cycle can be broken down to four: analyse, design, code, and test. These four ac-
tivities form a cycle, which is called a ADCT-cycle. Life cycles based on waterfall
or agile are similar because they perform the same activities. However, the differ-
ence between waterfall and agile life cycles is in how they perform the activities
during the project. Waterfall is a single-pass life cycle throughout a project, while

2.2. SOFTWARE QUALITY 9

the agile life cycle performs the activities multiple times in cycles throughout the
project.

Agile life cycles are often coupled with test-driven development (TDD). TDD is
a test-first approach which can be integrated with the ADCT-cycle. The approach
consists of five steps [Beck, 2003]:

1. Create required tests for the desired functionality.

2. Run all tests to verify that the new test fails.

3. Implement desired functionality in the minimal amount of code required.

4. Run all tests to verify that all tests pass.

5. Refactor and clean up the unnecessary code.

2.2 Software Quality

Software quality is standardised through the international standard ISO/IEC 9126-
1:2001 [ISO/IEC, 2001]. Quality is defined by [Society, 1990] as:

(1) The degree to which a system, component, or process meets spec-
ified requirements. (2) The degree to which a system, component, or
process meets customer or user needs or expectations. [Society, 1990,
page 60]

This implies that software quality is related to both how software conforms to its
specified requirements, and what the user excepts of the software. Garvin looked
upon quality from several perspectives based on different demographics [Garvin,
1984]:

• The transcendental view is a philosophical view related to the undefined
characteristics of a product.

• The user view relates to how the user perceives the quality of the product.

• The manufacturing view is regarding how the product conforms to specifi-
cations, design and process.

• The product view looks upon quality as the features of the product.

• The value based view balances cost versus price of the product

Software quality is important. A business developing software must develop soft-
ware on time, within budget, and with high quality in order to remain competitive
[Slaughter et al., 1998]. Others, like Osterweil, have predicted software quality to

10 CHAPTER 2. STATE OF THE ART

Table 2.1: The list of main hazards which could affect industries severely because of low
software quality [Jones, 2008a].

Industry Hazard

Airlines Safety
Defense Security
Finance Financial
Healthcare Safety
Insurance Liability
State, local governments Economy
Manufacturing Operational
National Government Records
Public utilities Safety
Telecommunications Services

be a more important success criterion in the future [Osterweil, 1996]. Software
quality is assured through activities employing techniques, processes and tools
throughout the software development life cycle. These quality assurance activities
are performed at certain points in the life cycle. For instance, such activities in-
clude but is not limited to software testing, software inspections, or code reviews.

Low software quality can impose several hazards on key US industries [Jones,
2008a]. These hazards are listed in Table 2.1. Jones further lists four software
quality hazards for all industries:

1. Software is accused for major business problems.

2. Poor software quality is developing to be one of the most expensive topics
in the world.

3. Organisational culture regards software personnel as a matter of necessity
instead of professionals.

4. Every industry is looking into how to improve software quality.

2.2.1 Costs of Software Quality

The costs of software quality is not well understood. Osterweil estimates that at
least 50-60% of the effort in producing software systems are spent in assuring a
certain standard of quality [Osterweil, 1996]. The costs implied by assuring soft-
ware quality can be divided into two types: conformance and non-conformance
costs [Slaughter et al., 1998]. Conformance costs are the costs associated with

2.2. SOFTWARE QUALITY 11

controlling defects. This is done through preventing defects from occurring, and
evaluating or auditing products to assure conformance to specifications and stan-
dards. Non-conformance costs are the costs concerned with failures related to
internal or external factors.

There are economical arguments for implementing software quality assurance ac-
tivities in the software process. Juran and Gryna argues that “quality is free”. Their
argument tells if voluntary conformance costs to prevent defects are increased, the
decrease of involuntary non-conformance costs will exceed the increase. The sum
of the costs are then positive and thus “quality is free” [Juran, 1999]. On the other
hand, others believe attaining a high degree of software quality is not economi-
cally feasible as other software development activities would have to be sacrificed
in favour of software quality [Slaughter et al., 1998]. The consequence of this
view is postponing software quality assurance activities until the later phases of
the project. Developers would perform ad-hoc testing at the very end instead of
planning and executing tests rigorously throughout the project. Software quality
cannot be tested in at the last minute of a project [Ammann and Offutt, 2008].

Licences distributed with software in general states the software is provided “as-
is”, and software developers takes no responsibility in defects occurring during
use unless a contract establishes the responsibilities. This is regarded as a problem
for software quality. Schneier thinks the software quality problem will persist
until a relationship of responsibility is formed between software developers and
consumers [Schneier, 2004].

2.2.2 Software Quality Models

How do we measure quality in software? This has been a central question when
developing models which tries to describe software quality. The ISO 9126 de-
scribes software quality through a set of characteristics: functionality, reliability,
usability, efficiency, maintainability, and portability [ISO/IEC, 2001]. These char-
acteristics are divided into 20 sub-characteristics and these are further divided into
indicators. The quality of the software is determined by measuring a indicator with
a predetermined metric and comparing it against set targets.

The ISO 9126 standard suffers from several limitations. First, it lacks a rationale
for selecting which quality characteristics to select, and the selection process is
arbitrary. Second, all the measurement is done at the lowest level possible. It is
not possible to measure top level characteristics, thus making the model proposed
untestable. This makes it hard to know if the model represents a complete and
concise definition of quality. Other models, like the quality model of McCall,
suffers from the same problem [Kitchenham and Pfleeger, 1996].

12 CHAPTER 2. STATE OF THE ART

2.3 Software Maintenance

Software maintenance is necessary since all software evolve throughout their life in
use [Belady and Lehman, 1976]. “Software maintenance” is defined by [Society,
1990] as:

the process of modifying a software system or component after deliv-
ery to correct faults, improve performance or other attributes, or adapt
to a changed environment. [Society, 1990, page 46]

However, this definition has received criticism due to it considers software mainte-
nance to be a post-delivery activity [Canfora and Cimitile, 2001]. An organisation
should plan for and prepare software maintenance activities before delivery.

Lientz and Swanson describe three types of software maintenance [Lientz and
Swanson, 1980]: corrective, adaptive, and perfective maintenance. Corrective
maintenance is the maintenance performed in order to remove defects in the soft-
ware. Adaptive maintenance is to adapt the software to the current working envi-
ronment due to environmental changes. Last, perfective maintenance is to enhance
the current software with changes proposed by users.

The costs associated with maintenance of software increases with the age of the
software increases [Porter, 1997]. The research on software maintenance have
been focused to address the costs through studying how to do modifications, how
to live with evolution and how to manage the maintenance process [Porter, 1997].
The costs of software maintenance is influenced by factors. Porter classified these
factors into four categories [Porter, 1997]: product, people, process and task. Prod-
uct factors relate to how system attributes and characteristics affect software main-
tenance costs, while people is related to how attributes of individuals and groups
affect software maintenance. Process factors is how individuals and groups per-
form the activities affect software maintenance. Last, they propose factors related
to tasks. Tasks are how maintenance is performed.

Lehman suggested several laws governing software evolution and maintenance in
[Lehman, 1996]:

An E-type program that is used must be continually adapted else it
becomes progressively less satisfactory. [Lehman, 1996, page 108]

As a program is evolved its complexity increases unless work is done
to maintain or reduce it. [Lehman, 1996, page 109]

The program evolution process is self regulating with close to normal
distribution of measures of product and process attributes. [Lehman,

2.4. SOFTWARE DEFECTS 13

1996, page 109]

The average effective global activity rate on an evolving system is
invariant over the product life time. [Lehman, 1996, page 110]

During the active life of an evolving program, the content of succes-
sive releases is statistically invariant. [Lehman, 1996, page 110]

Functional content of a program must be continually increased to
maintain user satisfaction over its lifetime. [Lehman, 1996, page 110]

E-type programs will be perceived as of declining quality unless rigor-
ously maintained and adapted to a changing operational environment.
[Lehman, 1996, page 111]

E-type Programming Processes constitute Multi-loop, Multi-level Feed-
back systems and must be treated as such to be successfully modified
or improved. [Lehman, 1996, page 111]

A “E-type system” is a system designed to solve a real world problem [Lehman,
1996]. These laws illustrate how important it is to perform software maintenance
throughout a software products life. Failing to maintain software in a production
environment might yield software with dire consequences for its users. However,
the laws have been controversial and has faced criticism from several researchers
when they were proposed [Lehman, 1996].

2.4 Software Defects

It is impossible to produce defect-free software products, however, the main pur-
pose of any software engineering activity is to prevent defects from being intro-
duced in the first place [Lyu, 2007]. A defect5 is defined by [Society, 1990] as:

An incorrect step, process, or data definition in a computer program.
[Society, 1990, page 32]

There is confusion in the terminology used concerning the terms defects, mistakes,
errors and failures. The difference between the terms is explained by [Society,
1990]:

The fault tolerance discipline distinguishes between a human action
(a mistake), its manifestation (a hardware or software fault), the result
of the fault (a failure), and the amount by which the result is incorrect
(the error). [Society, 1990, page 32]

5We use the term defect instead of “fault”.

14 CHAPTER 2. STATE OF THE ART

Software defects are unique compared to physical defects in a product. They are
harder to assess, and more cunning [Pham, 2003]. Software does not deteriorate
like physical products. The deterioration of software is a product of side effects
from changes in the product in order to assess defects or changed requirements.
This implies the total defect count may increase after release during maintenance.
There is a risk of introducing new defects when changing the code.

Software defects can be injected during any phase of the software development
life cycle. Jones lists the following as sources of defects: requirement errors,
design defects, coding defects, documentation defects and incorrect corrections
[Jones, 2008b]. A defect is injected when an employee does a mistake in the work
performed which creates a defect. A failure in the software might manifest itself
and be discovered in either testing or inspections. However, not all defects are
discovered before delivery. Such defects are latent defects and can be harder to
locate, and advanced users are more likely to discover these than normal users
[Jones, 2008b].

Lyu proposes for techniques which is used in the software development life cycle
in order to reduce the amount of defects [Lyu, 1996]:

• Defect prevention takes aim to reduce the number of defects introduced
while producing the software in the software development life cycle. This is
done indirectly in any software engineering activity [Lyu, 2007].

• Defect removal is to detect defects by software verification or software in-
spection. The main goal is to eliminate introduced defects. Strategies to
achieve this may be dynamic analysis, or formal inspections of code.

• Defect tolerance is to provide continuous software service which satisfies
given requirements despite a defect having occurred in the software.

• Defect forecasting is to estimate where new defects are likely to emerge in
the software.

It is favourable to attain a high degree of defect removal efficiency in the organ-
isation according to Jones [Jones, 2009]. The effects of this will have ramifica-
tions well beyond reducing the number of existing non-discovered defects in the
software. The effects will allow the organisation to hit minimum schedules, max-
imise productivity, increase work environment satisfaction, fewer delivered de-
fects, lower maintenance costs and lower risks of legal issues. The most effective
way of improving software productivity is to lower the number of defects in the
software [Jones, 2009]. This reduction can happen through defect prevention and
defect removal, as described by [Lyu, 1996].

2.4. SOFTWARE DEFECTS 15

2.4.1 The Behaviour of Software Defects

Many instances have tried to quantify the economic loss due to defects in software.
A report published by National Institute of Standards and Technology (NIST)
claims software defects costs U.S. industries USD 60 billion every year [Tassey,
2002]. In contrast, the entire U.S. software sales market is estimated to be worth
approximately USD 180 billion [Tassey, 2002]. The economic impact of soft-
ware defects have made software quality an important issue in both industry and
academia. In addition to economical costs, one could argue software defects
impose negative social effects on both software users and software developers
[Lieberman, 1997].

Basili and Boehm assembled a list of ten rules of thumb which main purpose were
to highlight pitfalls in software engineering. Seven of these rules are directly re-
lated to how defects impact the project [Boehm and Basili, 2001]. First, it is 100
times more expensive to correct a defect after delivery than during the require-
ments or design phase. Second, 40 to 50 percent of the effort in the project is
spent on rework which could have been avoided. Third, 20 percent of the defects
results in 80 percent of the rework and 80 percent of the defects come from 20
percent of the modules while half of modules are almost free of defects. Devel-
oping high dependability software are often 50 percent more expensive than low
dependability software, and 90 percent of the downtime comes from 10 percent of
the defects. However, investing the 50 percent extra is well worth it if the software
is to be maintained. Last, 40 to 50 percent of software contains defects which are
nontrivial. The results described by Boehm and Basili in [Boehm and Basili, 2001]
gives an impression of how software defects influence the total costs of software
projects.

Westland did a study of a software project in order to describe the economical cost
behavior of defects [Westland, 2004]. His results shows that defects only gener-
ate significant costs if they required redesign of the system, and the costs growth
of delaying a correction of the defect till later phases supports the exponential
model described by Boehm and Basili in [Boehm and Basili, 2001]. The costs
of correcting a defect decreased during the lifetime of the project as developers
became more familiar with the design and requirements of software. The number
of defects discovered and reported is related to how long the project is running
[Westland, 2004].

Software defects are introduced during phases of the software development life
cycle. However, the type of typical defects introduced by each phase is distinct,
and they have a varying degree of impact on budgets and schedule [Jones, 2009].
Jones describes the defects introduced during the requirements phase as the hardest

16 CHAPTER 2. STATE OF THE ART

to locate and correct. On the other hand, the defects introduced through the code
are the most numerous, however, they are the easiest to locate and correct. The
defects introduced during the design phase are the most grave, while defects in the
documentation can be severe if ignored. Incorrect corrections of defects are very
difficult to locate, and poorly designed test cases are often more of a burden than
help. Another aspect is the data quality, which is hard to measure. These arguments
underline his message of a good software defect removal process include formal
inspections, testing, and static analysis.

Kim and Whitehead studied the defect correction time of two open source systems
[Kim and Whitehead, 2006]. The defect correction time in their study is calculated
by comparing the date of the revision with the defect and the revision with the
correction of the defect in the version control software. They make no distinction
between the severities of the defects. 50 percent of the defects required between
100 to 300 days in order to be corrected, and the median correction time was
approximately 200 days. This method of estimation is inaccurate. It is unlikely a
developer spent 100 days with investigation and correction of a defect.

2.4.2 Software Process Improvement with Software Defects

Grady claims software defect data is the most valuable source of information for
software process improvement decisions [Grady, 1996]. Further, the defect data
provides a way of comparing improvements done against historic defect data in
order to measure the effect of the improvements. He argues how ignoring defect
data might yield dire consequences for business performance of an organisation
through reduced customer satisfaction and increased operational costs. Further,
it may have cultural consequences for the operating organisation ignoring defect
data. First, workforce might become comfortable with reactive thinking and fire-
fighting, and managers might reward this behaviour. Second, the reactive environ-
ment have a motivational effect on workforce through higher levels of stress and
uncertainty [Grady, 1996].

There are three ways organisations approach the handling of defects according to
Basili and Fredericks [Fredericks and Basili, 1998]. The most basic approach is
the firefighters who have no established processes for defect management other
than the ones required to keep track of them. However, firefighters do not use the
defect data to facilitate any change in the software processes. They have defined
processes for collection and handling of defect data, but the defect data is never
used. The second strategy is to be reactive. Organisation employing a reactive
strategy use the collected defect data to improve how they work. The third strategy
is being proactive. An organization employing a proactive strategy analyses defect

2.4. SOFTWARE DEFECTS 17

data continuously in order to prevent similar defects from occurring in the future.
They share defect data across the organization in order to elicit areas on where to
improve.

There are several factors one should consider when trying to improve processes in
an organisation. First, the defect classifications should be repeatable. The same
defect should be classified in the same way by two different people. Second, it is
important to have well defined goals in order to have focused improvement activi-
ties. These goals must be reasonable in order to be achievable. Last, management
must support the goals and process improvement incentive [Fredericks and Basili,
1998].

2.4.3 Software Defect Reporting

Reports of software defects can be collected in four ways. Mullally et al. de-
scribe these four as interactive user reporting, online user reporting, automated
per-incidence reporting, and automated reliability reporting [Li et al., 2008]:

1. Interactive user reporting requires users to initiate the defect reporting pro-
cess through contacting the software organisation directly. This is typically
done by a software support department which fills out a predefined form.
The defect is then analysed by technical personnel.

2. Online user reporting allows the user to initiate the defect reporting process
by providing feedback on a website. The user fills in a predefined form in
order to report the defect.

3. Automated per-incidence reporting reports defects automatically when a de-
fect occurs. The necessary data is collected automatically and sent to the
software organisation for analysis.

4. Automated reliability monitoring is a continuous reporting process which
periodically communicates all the failures or other critical data which have
occurred since the last communication with the software organisation.

The main difference are degree of automation and user involvement during the
defect reporting process. The user is the source of the data in interactive user re-
porting and online user reporting, while the data is collected automatically in the
last two. These four approaches were evaluated against a set of criteria: accuracy,
correctness, comprehensiveness, normalisation, actionable, effort by software de-
velopers and effort by users. Their conclusion favours automated reliability mon-
itoring because it best satisfies the criteria, and provides highest quality of data
for the software developers. However, automated per-incidence reporting can be

18 CHAPTER 2. STATE OF THE ART

sufficient if usage data is not relevant.

Bettenburg et al. investigated how developers perceived the quality of the defect
reports [Bettenburg et al., 2008]. They did a survey among software developers
to identify what information was important to correct the defect, and asked the
software developers to rate the quality of selected defect reports. They found a
significant mismatch between what information developers considered helpful and
what information defect reporters provided. The information developers used most
in order to correct defects were steps to reproduce, observed behaviour, expected
behaviour, stack traces, test cases and screenshots. Steps to reproduce, observed
behaviour, and expected behaviour were the information most frequently provided
by defect reporters. However, stack traces, test cases and screen shots were seldom
provided by defect reporters. Defect reporters preferred to report information such
as product, version, and operating system instead which were not considered very
helpful to correct a defect by software developers.

2.4.4 Software Defect Classification

It is important to classify defects as they contain information regarding the quality
of processes and products. The information gathered from defects can be used to
track and control progress of projects, and improve the project processes [Freimut,
2001]. This is done capturing the what, why and how about defects. The scope of
the defect classification scheme is to cover aspects of defects such as location, tim-
ing, symptom, result of the failure, mechanism, cause, severity and costs [Freimut,
2001].

Defect classification schemes suffers from several problems according to Thi-
bodeau [Thibodeau, 1978]. First, the attributes in the defect classification schemes
include ambiguous, non-orthogonal, and incomplete attribute values. Second,
there are too many attributes in the defect classification schemes. Last, there is
confusion among the root cause of the defect, the symptoms of the defect, and the
actual defects. In order to address these problems outlined by [Thibodeau, 1978],
Freimut suggests several quality attributes a defect classification scheme should
hold [Freimut, 2001]. The attributes in the classification scheme, and their avail-
able values, should be orthogonal. The attribute values should be complete such
that for every defect there is a value which can be selected. The number of values
for each attribute should be kept to a small amount. Last, every attribute value
should be described by a textual description. A classification scheme following
these guidelines should be easy to use, and improve the accuracy of the data cap-
tured [Freimut, 2001]. In addition, several classification schemes impose extra
quality attributes, like the Orthogonal Defect Classification scheme developed by

2.4. SOFTWARE DEFECTS 19

IBM [Chillarege et al., 1992]:

• The classification scheme should provide consistency across phases.

• The classification scheme should provide uniformity across products.

This implies the defect classification scheme should be useable in any phase during
the project, and in any project in an organisation.

Freimut compared the three defect classification schemes in use today with regard
to their scope in [Freimut, 2001]. All three classification schemes investigated
capture information regarding location, symptoms, and mechanism. However, lit-
tle effort is spent on capturing costs information regarding effort to locate, effort
to isolate, and effort to correct the defect in all three of the classification schemes.

2.4.5 Software Defect Correction

We use the term “defect correction” instead of “debug”. Defect correction is de-
fined by [Society, 1990] as:

To detect, locate, and correct faults in a computer program. [Society,
1990, page 25]

Defect correction still remains as a activity based on trial and error despite the ad-
vances in software engineering the 30 years [Lieberman, 1997]. Lieberman notes
how the majority of the technique of choice of programmers when correcting de-
fects are inserting print statements in the code. Eisenstadt collected and analysed
stories from developers regarding correction of defects which were considered by
the developers themselves to be hard to correct [Eisenstadt, 1997]. He classified
the stories against three dimensions in his analysis: why the defect was difficult to
correct, how the defect was found, and what was the root cause of the defect. First,
his findings showed that the correction was difficult due to inconsistencies between
the root cause and the symptom of the defect, or defects where the correction pro-
cess could not use tools. Second, the main techniques for locating the defects were
data gathering such as print statements or hand simulation of the code. These were
the techniques used in over 80 percent of the stories analysed. Last, the dominant
root causes for defects were in third party software or hardware, and defects in
code dealing with memory usage.

The findings of Eisenstadt is in line with our findings in [Kristiansen, 2009]. A
majority of the defects which were considered hard to correct where related to
algorithms, concurrency or memory. In contrast, the majority of the defects which
were considered to be simple to correct were related to user interface issues, or
statements regarding checking or initialisation of variables in the source code.

20 CHAPTER 2. STATE OF THE ART

Agans suggests nine rules which form a framework that aids the developer in cor-
recting defects [Agans, 2006].

1. Make sure the software developer understands the system by reading exist-
ing documentation.

2. Make the defect manifest itself by provoking the failure in the software.

3. Make sure the software developer is looking at the manifested defect in ac-
tion, and do not theorise what might have happened.

4. Divide the search space for the location of the defect by disqualifying loca-
tions.

5. Change only one thing at a time, in order to compare with previous good
results.

6. Leave a trail of actions taken in order to make sure the developer did not
overlook anything.

7. The software developer should question his assumptions of the defect if the
analysis do not yield any results.

8. The software developer should not hesitate to ask colleagues for insight from
other perspectives.

9. The defect is not corrected if the manifestation of the defect vanished with-
out correcting the defect.

However, the rules are not elicited from empirical evidence, but from the authors
own perception of analysing and correcting defects.

There has been research on how we can estimate the effort required to correct
a defect. Weiss et al. used the search engine Lucene and k-nearest neighbours
clustering techniques in order to estimate the effort required to correct the defect,
and then compared it to the actual effort for correcting the defect [Weiss et al.,
2007]. Their first experiment were off by 20 hours on average from the actual
effort, and only 30 percent of the predictions where within a ±50 percent interval
of the actual effort. Their best effort managed to predict effort which was off by
on average 7 hours off from the actual effort, and almost 50% of the defects where
withing a ±50 percent of the actual effort. However, higher accuracy decreased
the applicability of the technique due to computation needs.

The model developed by Weiss et al. in [Weiss et al., 2007] was the basis of the
work of Hassouna and Tahvildari [Hassouna and Tahvildari, 2010]. They proposed
four enchantments to the technique: data enrichment, majority voting, adaptive

2.4. SOFTWARE DEFECTS 21

threshold and binary clustering. In general, every method applied produces im-
provement over the original work. However, it is required to have a substantial
database of historical effort data available in order to estimate efficiently.

Evanco developed a statistical model to estimate the effort required to correct a de-
fect in [Evanco, 1995]. The model was based on characteristics of the defect, such
as number of components involved and complexity of the software architecture.
Their model was calibrated against the effort data from 5 different projects, and
the effort required re-estimated with the same data. Their model underestimated
the effort required to isolate the defect, and overestimated the effort required to
correct the defect. However, their work is meant as a basis for further work, and
it is unknown how their model performs against other data sets. A newer study by
Evanco presented in [Evanco, 2001] found that variables affect the effort required
to isolate or correct a defect differently. The variables for defect locality had a
positive correlation to the effort required to isolate or correct the defect. In other
words, a defect discovered during unit testing requires less effort to isolate and
correct than a defect discovered during systems testing due to defect locality.

Ramanujan, Scamell and Shah studied how individual, software, and organisa-
tional characteristics affects software maintenance effort [Ramanujan et al., 2000].
They used a program which gathered the time every participant used to perform
certain maintenance tasks in source code. A survey was performed in order to
assess the experiences of participants in software development. They found that
experience levels of professional practitioners impacts the effort required to correct
defects. Novice software developers should according to the study not be assigned
to complex software maintenance tasks. In order to reduce effort, they recommend
the software developer organisation to use coding conventions and structured de-
velopment approaches. Another approach they suggested to reduce maintenance
effort is to improve project planning by introducing realistic deadlines and time
pressure.

Lucia, Pompella and Stefanucci presented an estimation model for corrective main-
tenance using multivariate least squares regression [Lucia et al., 2005]. They based
their model on five metrics: the number of maintenance task requiring modifica-
tion of source code, the number of tasks requiring correction of data misalignment,
number of miscellaneous maintenance tasks, the total number of tasks, and the size
of the system in thousands of lines of code (kLOC). They found that the size of
the component in kLOC to be maintained have a larger impact on effort required
than the size of the changes. This is in-line with the study of Niessink and Viet
[Niessink and van Vliet, 1998]. Their best performing model had one prediction
which was off by over 25% of the actual effort and the average error was ±25%.
They argue this is a significant result due to the nature of software maintenance

22 CHAPTER 2. STATE OF THE ART

tasks; their extent is not known at the start of a project.

Ahn, Suh, Kim and Kim proposed an effort model based on function points [Ahn
et al., 2003]. A function point is a metric invented by Albrecht and is a measure-
ment of the functionality provided to a user [Symons, 1988]. The model described
by Ahn, Suh, Kim and Kim in [Ahn et al., 2003] took personal, organisational and
technical factors called into account. Personal factors accounted for were domain
knowledge, programming language proficiency, and knowledge of the software.
Technical factors were how modules are structured, module independence, read-
ability of source code, and reusability of legacy software. Environment factors
were correctness of documentation, conformity with standards, and testability of
the software. Effort in man weeks were then determined to be related to function
points through a exponential equation:

Effort = 0.054× FP 1.353 (2.1)

Their model was tested against one data set, and further testing against new and
larger data sets were required in order to draw conclusions. However, they found
that the personal, organisational and technical factors had less influence on the
effort than expected.

Niessing and Vliet investigated how several factors influenced the maintenance
effort [Niessink and van Vliet, 1998]. The factors were grouped into three main
factors which measured the amount of change which affects flow-of-control, the
increase of system size and the amount of changes in modules. They found that
tasks which change the flow-of-control in the software had the most influential
impact on effort, followed by increase of system size. They discovered factors
might influence factors for analysis, coding, and test differently. Therefore, one
should carefully consider the process which is used for elicitation of factors which
may influence efforts. They further emphasised the importance of following a
standardised process in order to measure the elicited factors more precisely.

Shukla and Misra constructed a neural network in order to estimate maintenance
effort [Shukla and Misra, 2008]. They used 14 technical factors which could be
grouped into complexity, size, and structured programming concepts. However,
they did not include social and organisational factors which influence the defect
correction process [Aranda and Venolia, 2009]. The model of Shukla and Misra
[2008] managed to estimate the effort required with a mean magnitude of relative
error of 5.1% to 5.8%. However, their model was not cross validated against other
data sets.

Slaughter and Banker investigate how software development practices affected
software maintenance effort [Slaughter and Banker, 1996]. They studied two or-

2.5. VERIFICATION OF SOFTWARE 23

ganisations and used regression techniques in order to analyse the data sets. Their
findings gained insight of how influential certain practices may be on the software
maintenance effort. The use of code generators had a significant impact on the
required software maintenance effort. This was due to how code generators may
change the flow throughout the software, thus imposing extra effort on software
developers in order to understand the new code when they need to do changes.
The use of Off The Shelf (OTS) components decreased the effort required due
to changes to 3rd-party components are more likely to be minor than in-house
developed components. The use of a structured process or technique decrease
the software maintenance effort required. This is in-line with research presented
above.

2.5 Verification of Software

The purpose of verification of software is to help developers create software with
high quality through discovering defects early in the development cycle [Harrold,
2000]. The following section will elaborate on both dynamic and static software
testing techniques and explain the software testing process.

2.5.1 Dynamic and Static Analysis

Verification of software can be done through dynamic analysis or static analysis.
Dynamic analysis is a characterisation of techniques which is used to examine
software behavior during the execution of code [Harrold, 2000]. These techniques
include random, functional, control flow, data flow, mutation, regression, and im-
provement testing [Juristo et al., 2004]. Static analysis is a collection of techniques
which investigate software which is not under execution. Static analysis techniques
are inspections [Fagan, 1986], or formal techniques based on logic and mathemat-
ics like deductive methods, abstract interpretation or model checking [Dwyer et al.,
2007].

Dynamic analysis and static analysis are both essential quality assurance activities.
However, there are different advantages and disadvantages with employing either
of them [Harrold, 2000]. Dynamic analysis techniques can be automated and ex-
ecuted with ease, allows the software to be tested in its execution environment,
and provide confidence the software behaves according to the intention. On the
other hand, dynamic analysis cannot be used to show the absence of defects. It
can only be used to show the presence of defects. The results obtained from doing
dynamic analysis in an particular environment or version of the software cannot be
generalised to any environment or another version of the software.

24 CHAPTER 2. STATE OF THE ART

Static analysis techniques based on inspections use the creativity of the human
mind to detect defects. However, humans are error-prone, and like dynamic anal-
ysis techniques, cannot be used to show the absence of defects [Osterweil, 1996].
On the other hand, software inspections has proven to provide substantial cost
savings for organisations. IBM, Motorola, NASA, and Allianz report that up to
95 percent of detected defects before the testing phase are found by software in-
spections [Rombach et al., 2008]. Hence, the ramifications of software inspec-
tions include shorter delivery time and lower development costs [Rombach et al.,
2008]. The techniques based on logic and mathematics are abstractions of the
software. Thus, the main limitation is the precision of the model which is used.
Consequently, some static analysis techniques can prove the absence of defects
[Osterweil, 1996].

2.5.2 Software Testing Process

Testing is in general performed late in the project during the waterfall life cycle,
or continuously during the agile life cycle. Graham et al. describes a test process
independent from the underlying software development life cycle [Graham et al.,
2008]:

1. Planning and control.

2. Analysis and design.

3. Implementation and execution.

4. Evaluation of exit criteria and reporting.

5. Test closure.

It is important the testing process is planned and adapted to the needs of the or-
ganisation [Graham et al., 2008]. Hence, organisations should plan their testing
based on their own policies, strategies and exit criteria. An important artifact is
the test plan. The test plan is a document which contains information regarding
schedule, approach, resources, and activities [Society, 2008]. The policies and
strategies of the organisations is used to design tests which runs in a test environ-
ment and has a certain set of test conditions [Graham et al., 2008]. The test cases
are created and executed during the implantation and execution phase based on
the designs, environments, and conditions created in analysis and design. The test
results from the execution are evaluated against the exit criteria and summarised
in reports distributed to all stakeholders involved with the testing process. The test
closure involves archiving of test cases, maintenance and summarise lessons learnt
during the testing process [Graham et al., 2008].

2.6. RELEVANT RESEARCH METHODS 25

The V-model describes how software testing can be performed in parallel with
other development activities. In the waterfall life cycle, software testing is per-
formed at the very end of the project. The V-model aims to involve testers as soon
as possible in the software development life cycle. The model introduces the con-
cept of test levels. A test level is a of test activities that shares management and
organisation, and is linked to responsibilities [Graham et al., 2008].

• Component testing: the testing of the components functionality.

• Integration testing: the testing of functionality of interfaces between soft-
ware components.

• System testing: the testing of the system as a whole.

• Acceptance testing: the testing of whether the system is acceptable for the
customer with regard to functional and non-functional requirements.

The testing process can be described from a general perspective through seven
questions [Bertolino, 2007]:

• Why: The aim is to determine the test objective.

• How: The problem is to do a test selection that matches the system that is to
be tested.

• How much: How to determine when the testing objective is reached.

• What: At what levels should the system be tested?

• Where: In what environment will the tests be executed?

• When: When will the test executions occur?

2.6 Relevant Research Methods

There are two main research strategies: quantitative and qualitative research [Ring-
dal, 2009]. A qualitative research strategy is based on interpretation of textual data.
The research strategy is inductive, as we observe phenomena and create a theory
of what is occurring. Studies performed with a qualitative strategy observes the
subjects in close proximity in their natural environments. The analysis techniques
used are informal.

On the other hand, quantitative research strategies are concerned with numbers.
The research strategy is deductive. We test theories against phenomena. The study
is performed with distance to the subjects in artificial environments. The analysis
techniques which is used are formal statistical methods.

26 CHAPTER 2. STATE OF THE ART

One can combine both quantitative and qualitative strategies in a mixed-strategy
design. This is called triangulation [Ringdal, 2009]. Oates describes six different
ways triangulation of research can be achieved in [Oates, 2006]: strategy, design,
time, space, investigator, and theoretical triangulation. The idea is to use multiple
sources or choices in either, for instance, the time of data collection or multiple
researchers researching the same topic and comparing results, in order to eliminate
threats to the validity of the study.

Research design is a plan designed to help the researcher how to collect, anal-
yse, and conclude. Its main purpose is to help the researcher answer the research
questions [Yin, 2003]. Ringdal lists five types of research design: experiments,
cross-sectional, longitudinal, case study, and comparative design [Ringdal, 2009].
The experiment is the classical example of cause and effect analysis between inde-
pendent and dependent variables. The cross-sectional and longitudinal designs are
based on a time line. Cross-sectional is based on one point of the time line, while
longitudinal are based on at least two points on the time line. Case studies and
comparative designs are based on the study of units. A unit may be individuals,
organisations, countries or anything. Their difference is that case study designs
takes one unit into account, while a comparative designs compare multiple units
into account.

Yin lists three conditions that should be considered when selecting a research strat-
egy and design [Yin, 2003]:

1. The type of research questions.

2. The level of control the researcher wants.

3. The focus of the study.

2.7 Summary

The literature study has covered a broad perspective. This is due to the lack of
research on the reasons for and effort required in order to correct software defects
specifically. This has led certain people into calling it a scandal due to the over-
look of this particular research area [Lieberman, 1997]. The research performed
within this area is focused on effort estimation. However, there are exceptions.
Eisenstadt studied “war stories” from software developers against software defects
[Eisenstadt, 1997]. He described how defects which required extensive effort to
correct were due to inconsistencies between the root cause and the symptoms of
the defect, or the current circumstances which did not allow any use of tools in
order to analyse the defect.

2.7. SUMMARY 27

Several studies explored in this literature study were concerned with estimation
of corrective maintenance effort. However, these models were built on selected
software metrics from a theory developed by the researchers rather than factors
identified from empirical data. We want to identify these root causes which in-
fluence the effort to analyse, isolate and correct defects in Company X based on
empirical data from defect reports. This leads us to the first question we want to
investigate:

• What are the root causes of the defects which take extensive effort to correct?

Company X have different project types aimed at different markets. We also want
to look at how the project type influences these root causes. This leads us to the
development of the second question we want to investigate:

• What differences exists between projects in the same organisation with re-
gard to root causes for defects which require extensive effort to correct?

CHAPTER 3

CONTEXT OF COMPANY X

Company X is a world leading software development company within their field
of operation. The company currently have over 700 employees worldwide where
a roughly 400 of them are software developers and quality assurance personnel.
Their product line consists of software for the mass-market and software which is
customised to the needs of customers. Company X usually have a major release
ready for the mass-market every half year. This chapter will give a overview of
how they organise their projects, and description of their defect management pro-
cesses. The chapter is based on the own experiences of the candidate from his two
internships at Company X during the summer of 2008 and 2009, the defect track-
ing system, and the presentation slides created in cooperation with Li and Conradi
in Appendix C.

3.1 Background

The following section is based on the presentation held during the meeting with
Company X at March 23rd 2010. Company X have been a official part of the
EVISOFT-project since October 2007.

1. Company X wants to increase their effectiveness and efficiency of their soft-
ware testing practices.

2. Company X wants to increase productivity by software reuse in software
development and software testing. Software reuse is the process of devel-
oping software systems by use of existing software rather than starting from
scratch each time [Krueger, 1992].

3. Company X wants to increase the accuracy of estimates for project and re-
lease management.

4. Company X wants to participate in experience sharing across organisations.

29

30 CHAPTER 3. CONTEXT OF COMPANY X

The study which is part of this thesis is goal one. We need to know why defects
fail in order to select the best strategies for improving software testing practices.
The first improvement was the result of a gap analysis performed in through the
period January to May 2008. The results of the gap analysis showed three areas of
interest for improvement: avoid solutions which is prone to risks, reporting defects
in a formal way, and prioritise defect management. A customised version of the
orthogonal defect classification scheme was introduced to assess the results from
the gap analysis. The classification scheme was introduced during May 2009. Cur-
rently, there are more than 2000 defects classified with the classification scheme,
and over 80 projects have used it to some extent.

3.2 Projects

Company X have different project types and they are distinguished by what part
of the product line they affect and what market they are developed against. The
following sections will give an overview of the projects, their structure, and the
projects elicited for this study.

3.2.1 Project Structure

Company X produces mass market software which is available on almost any com-
puter operating system or handheld device. The projects can be classified in three
categories: business-to-business (B2B), business-to-consumer (B2C), and internal
projects which are both B2B or B2C. B2B projects are projects from clients which
want services or software tailored to their platform, while B2C projects are soft-
ware and services which are aimed for the mass market. The category which is
both B2B and B2C are internal projects which implement the underlying function-
ality which is common in software and services provided in both B2B and B2C
products as depicted in Figure 3.1. Every project have their own designated area
in the defect tracking system described in Section 3.3.

3.2.2 Projects Under Study

The study in this report is based on three different projects: Project A, Project B,
and Project C. Project A develops software which provides all functionality for
other software projects of Company X. The project has been spanning for over a
decade, and is able to run on almost any platform. There are currently over 19500
defect reports reported throughout its life. There are 70 and 222 defect reports
classified with an effort to fix as “time consuming” and “quick fix” as of 15th of
February 2010.

3.2. PROJECTS 31

Figure 3.1: The diagram illustrates the project structure of Company X. The
core-projects are used by both B2C- and B2B-projects. Project A is selected from the core

technology projects, Project B is selected from the B2C-projects, and the Project C is
selected from the B2B-projects.

Project B is a B2C-project and their flag-ship software product. The project is The
project faces stiff competition from the market and users expect high quality. The
software product is available on all mainstream platforms such as Windows, Mac
OSX, and Linux. The mass-market software is under continuous development, and
it faces unique challenges with defect management compared to B2B-projects. The
project has been continuously running for over 15 years, and over 262600 defect
reports have been reported since 1999. It is important to note that a defect reports
is a report of failure, which is a manifestation of a defect, Multiple defect reports
could have been reported for the same failure, and the failure could be invalid.
For instance, 20 percent of the defect reports reported over a year period from
20th of November 2008 to 20th of November 2009 had an actual correction of
the defect. 80 percent of the defect reports turned out to be duplicates of other
defects or deemed invalid as a defect [Kristiansen, 2009]. In a worst case scenario,
approximately 10 percent of all lines of could would have been affected with a
defect if the system size were 3 million lines of code.

Project C is a group of B2B-projects. The data from this group is collected from
multiple projects due to the limited time line and number of defects classified
with ODC-attributes for each project. Another reason is due to legal concerns and
how clients value confidentiality. B2B-projects is done in cooperation with clients
which want a customised version of the software for their use. Their clients value
confidentiality.

We will refer to the three project types as the core-project (Project A), the B2C-
project (Project B), and the B2B-project (Project C) throughout the rest of this
thesis.

32 CHAPTER 3. CONTEXT OF COMPANY X

3.3 Defect Tracking System

Defect tracking is a essential project management tool in Company X. Every
project tracks defect reports, feature requests, and change requests. The defect
tracking system is based on Atlassian JIRA, which is a purchasable general pur-
pose project management system. The defect tracking system offers functionality
to track defects, track projects, custom work flows, reports, analysis, and plug-in
system1.

3.3.1 Defect Reports

A defect report consists of several attributes which aim to describe the defect and
aid the developer in correcting it. The section will give an overview of the work
flow the defect reports goes through throughout the life cycle of the defect report.
However, it is important to distinguish between defect reports and defects. A defect
report is a report of the manifest of a defect which became visible to the user as
a failure. The same defect could in theory have multiple manifestations yielding
different failures, hence implying multiple defect reports may be duplicates.

3.3.2 Defect Report Work Flow

The defect report work flow has been specified by an internal document [Depart-
ment]. The work flow consists of six states from where the defect is discovered
till it is corrected and accepted as a resolution to the defect. The six states are:
NEW, EXAMINED, CONFIRMED, RESOLVED, VERIFIED, and ACCEPTED.
The states and the possible transitions between them are depicted in Figure 3.2.
The defect report is classified as NEW when it is submitted into the system. An
analysis of the defect report by a quality assurance responsible moves the defect
report to the EXAMINED state. When necessary, further analysis may be required
and when the defect report is found to be a cause of a failure, and it is repro-
ducible, it may be moved to the CONFIRMED state. The defect report is moved
to RESOLVED when a solution is determined for the defect. The correction of
the defect is then verified by a quality assurance responsible. If the correction is
deemed to be correct, the state of the defect report is changed to VERIFIED. The
defect is transferred to the accepted state if the client approves the solutions of the
defect.

The defect work flow may under some circumstances not be linear as depicted
by Figure 3.2. If a new defect report contains enough information to propose a
correction of the defect, it may be directly moved from NEW or EXAMINED to

1http://www.atlassian.com/software/jira/

http://www.atlassian.com/software/jira/

3.3. DEFECT TRACKING SYSTEM 33

Figure 3.2: A state diagram of the work flow each defect report goes through from
submission (NEW) to completion (ACCEPTED) and how they may move between the

states. The work f low acts like a state machine and defines the legal transitions between
the states. This is a standard work flow for must defect tracking. The figure is adapted

from [Department].

RESOLVED. A defect may be reprocessed if it is in the CONFIRMED state and
the current information is considered to be incorrect. The defect is then moved
from CONFIRMED to EXAMINED for a new analysis. A defect may be reopened
if the correction of the defect is deemed to be incorrect. This may happen in the
RESOLVED or VERIFIED state. The state is then changed from RESOLVED or
VERIFIED to EXAMINED.

3.3.3 Defect Report Attributes

The defect reports have attributes which contain either qualitative or quantitative
information. The following sections will give a brief overview of the attributes of
the defect reports

Qualitative Attributes

The defect reports have several qualitative attributes where a defect reporter may
fill in information. These attributes are the most important attributes of the defect
reports and they give essential information regarding the defect. Typical uses of
these fields are to provide descriptions of the defect or discussions among involved
parties which may help to correct the defect. These attributes are the title, descrip-
tion, environment and comments attributes. They are explained in Table 3.1.

34 CHAPTER 3. CONTEXT OF COMPANY X

Table 3.1: The defect reports in the defect tracking system have qualitative attributes.
They are listed in this table with a description of what information they seek to capture.

Attribute Description

comments A list of comments from involved parties regarding the defect.
description A description of the defect.
environment What environment the software was running in when the defect occurred.
labels A list of keywords used to group defects together.
title A short summary describing the defect.

Quantitative Attributes

The quantitative attributes consists of two sets: the standard set of attributes used
by Atlassian Jira, and the custom attributes added due to the introduction of the
ODC-scheme. The standard attributes and their possible values are listed in Table
3.2. The ODC attributes used in Company X were proposed by Li and Gan in [Li
and Gan, 2009]. These attributes and their possible values are explained in Table
3.3.

3.3. DEFECT TRACKING SYSTEM 35

Table 3.2: Description of the attributes available for any submitted defect report and all
the possible categories one is able to select for each attribute.

Attribute Description Categories

key The unique identifier of a bug. A string on the form <ProjectCode>-
<DefectReportNumber>

type The type of the issue Bug, Change Request, Feature Re-
quest, Patch, and Task

status The current state in the workflow New, Examined, Confirmed, Re-
solved, Verified, and Accepted

resolution The chosen resolution for the bug. Unresolved, Fixed, Won’t Fix,
Sitepatch, Implemented, Rejected,
Published, Won’t Publish, Duplicate,
Invalid, and Works for Me

priority The priority of the bug. P1, P2, P3, P4, P5, and -
customer priority The priority specified by the cus-

tomer.
P1, P2, P3, P4, P5, and -

assignees The person who is responsible for the
bug.

A string with the name of the as-
signees

reporter The person who reported the bug. A string with the name of the reporter
watchers People that watch for any changes to

the bug.
A list with the names of people who
watch the issue.

creation date Time stamp of the creation date of the
bug.

Date stamp

updated date Time stamp from the last change to
the bug.

Date stamp

due date Time stamp of when the bug is due to
be finished.

Date stamp

build number Which build is affected of the defect
report.

Number.

components Which project specific component
that is affected by the bug.

A list of project specific components.

affected versions Which versions of the product that is
affected by the bug.

A list of project specific versions.

fix versions Which version of the product the bug
is planned to be fixed.

A list of project specific versions.

severity How big impact the bug has on the
product.

Crashes my computer, Crashes the
software, Freezes the software, Other
severe, Privacy issue, Security issue,
Significant, Site compatibility, Spec
violation, and Trivial.

module The module of the product which is
affected by the bug.

A list of project specific modules.

CC People which is participating in the
discussion around the bug.

A list of names of employees.

OS Which operating the product is run-
ning on.

A list of operating systems and ver-
sions of operating systems which is
affected by the defect.

Continued on next page.

36 CHAPTER 3. CONTEXT OF COMPANY X

Attribute Description Categories

platform Which platform the product is running
on.

A list of platforms which is affected
by the defect.

testcase url URL to any testcases associated with
the bug.

A HTTP URL

attached files Any attached file to the bug report. A HTTP URL
custwait If the customer is involved in the bug

report, and await a response from the
customer.

Yes or No

3.3. DEFECT TRACKING SYSTEM 37

Table 3.3: Description of the ODC attributes available for submitted defect reports and
all the possible categories one is able to select for each ODC attribute.

Attribute Description Categories

Effort to Fix The effort used to fix the defect. Quick Fix and Time Consuming.
Placement – Layer The layer where the defect was in-

jected.
Website, Core, Mantle, Platform,
UI and Device.

Type of Fix The type of fix for the defect. Algorithm, Other, Assign/Init,
Software Interfaces, Hardware In-
terfaces, Buffer/Memory Manage-
ment, Checking, Func/Class/Obj,
Timing/Serial and Standard Com-
pliance

Root Cause – Cause The activity where the defect were
injected.

Information, Requirement, Code,
National Languages, Design and
Build

Root Cause – Identity The reason why a defect occurred. Incorrect, Irrelevant and Missing
Severity The severity of the defect. Crashes my computer, Other

severe, Spec violation, Crashes
the Software, Site compatibility,
Blocks testing, Security issue,
Freezes the Software, Significant
and Trivial.

Module(s) The module which was affected by
the defect.

A list of project specific modules

Component(s) The component which was affected
by the defect.

A list project specific components

Regression Risk The risk of a regression occuring
because of the change

High Risk, Medium Risk, Low
Risk and No Risk

Effort to Reproduce The effort spent to reproduce the
defect.

Quick Fix and Time Consuming.

Activity to Discover The activity which was performed
when the defect was discovered

stress testing, Not specified, perfor-
mance testing, Ad hoc browsing,
Other, security regression testing,
URL toplist browsing and browser
tasks testing, fix verification, ex-
tensive regression testing, UI/fea-
ture specific testing, baseline test-
ing, Operator/OEM testing, Gen-
eral regression, system integration
testing, Smoke and release testing

Continued on next page.

38 CHAPTER 3. CONTEXT OF COMPANY X

Field Description Categories

Activity to Reproduce The activity which must be per-
formed to reproduce the defect

Test basic function/feature, Other,
3rd-party software change, Inter-
action with environment, Device
configuration change, Test scenario
with special sequence of opera-
tions, Workload/stress testing, and
Analysis of unexpected use cases or
exception paths

CHAPTER 4

RESEARCH DESIGN

The purpose of this chapter is to detail the research design used in this study.
We will describe the research questions, an overview of case studies, and detailed
research design for the study. In the end, we describe general threats to validity of
this study.

4.1 Research Questions

The following statement were developed at the start of the project:

I am studying defect correction effort, because I am trying to find out
why some defects take substantial effort to correct in order to see how
defect management affects software maintenance effort.

The statement were further refined and developed into research questions. The
following research questions will be addressed in our research:

• RQ1: What are the root causes of the defects which take extensive effort to
correct?

• RQ2: What differences exists between projects in the same organisation
with regard to root causes for defects which require extensive effort to cor-
rect?

4.2 Case Study Strategies

The research strategy we chose to use are case studies based on both qualitative
and quantitative methods. Yin states that case studies are observation of a contem-
porary phenomenon in a real world context when the boundaries between the phe-
nomenon and context is not obvious [Yin, 2003]. A research design for a should
contain the following components according to [Yin, 2003]: research questions,
any propositions, what to be analysed, how the propositions are linked to the data
and how to interpret the findings. Yin makes a distinction of case study designs

39

40 CHAPTER 4. RESEARCH DESIGN

whether they are holistic or embedded. These two approaches can be used on both
single and multiple cases.

A single case design should be used under the following circumstances [Yin,
2003]:

1. When we have a theory and want to test it within certain constraints.

2. When we want to document a special case.

3. When we want to describe a typical situation which may translate to many
others.

4. When we want to describe a situation which has been inaccessible to the
scientific community.

5. When we want to study the same subject over time (longitudinal).

The multiple-case design does not fit descriptions 1, 2, and 4 above. However, a
multiple case design should be focused on replication. The selection of cases to
be studied should be chosen based on whether they predict the same results, or
they predict contrasting results based on theory [Yin, 2003]. The reason why we
chose the case study strategy is because the study satisfies point three, four and five
mentioned above. It satisfies point three because software defects are a well-known
problem within software engineering, as documented by our literature study. We
want to describe reasons and costs of why defects take extensive effort to correct,
and compare the results against other organisations. It satisfies point four because
Company X is world leading within their market, and a scientific community might
show interest in what problems this organisations faces. Last, it satisfies point
five as the involvement of the EVISOFT-project is continuous software process
improvement work. It is interesting to document the current circumstances in order
to facilitate a comparison after improvements have been used to measure the effect
of them.

4.3 Research Design

The following section will describe the research design used in this study. The
study will perform both a qualitative analysis of defect report discussions, and a
quantitative analysis based on the values of the orthogonal defect classifications
attributes.

4.4. VALIDITY 41

4.3.1 Data Set and Collection

This study will examine defect reports from three different projects: the core
project, a B2C-project and a B2B-project. These projects are described in Sec-
tion 3.2.2. The data will be collected from Company X’s software defect database
available online. Every defect classified with an effort to correct as “time con-
suming” or “quick fix” and created before 15th of February 2010 from the three
different projects will be collected. The difference between defects which require
extensive effort (“time consuming”) and little effort (“quick fix”) to correct are the
effort spent. In the orthogonal classification scheme, effort is recorded on an ordi-
nal scale, and every defect which require equal to or more than 4 hours to correct is
classified to be require extensive effort to correct. Similarly, defects which require
little effort to correct require less than 4 hours to correct.

4.3.2 Research Design of Quantitative Study

A quantitative data analysis will be performed on the defect attributes collected
from the defect reports. The purpose of this analysis is to obtain a general overview
of the data set and the differences among the projects. Simple frequency tables will
be constructed and summarised.

4.3.3 Research Design of Qualitative Study

A qualitative data analysis will be carried out on the qualitative attributes of the
defect reports. The attributes which will be analysed are the “title”, “descrip-
tion”, and “comments” attributes. The research method will be based on qualita-
tive methods based on coding of the qualitative data [Strauss and Corbin, 1998].
The research design of this part will follow the process proposed by Shannak and
Aldhmour [Shannak and Aldhmour, 2009]:

1. Data collection of defect reports from Company X.

2. Data extraction from defect reports.

3. Open coding of the qualitative attributes of each defect report.

4. Generate concepts from the codes.

5. Generate categories with concepts as properties.

4.4 Validity

Wohlin et al. lists the following threats to a study’s validity [Wohlin et al., 2000]:

42 CHAPTER 4. RESEARCH DESIGN

• Conclusion validity which concerns whether the conclusions are the result
of a statistical relationships with a given significance.

• Internal validity which concerns whether the relationships discovered be-
tween variables are not the result of an unknown variable.

• Construct validity which concerns whether observations are generalisable
back to theory.

• External validity which concerns whether the results are generalisable to
other populations or contexts.

It has been debated whether the four validity categories could accommodate both
qualitative and quantitative studies, since these categories have traditionally been
used to validate analysis based on quantitative methods [Whittemore et al., 2001;
Trochim and Donnelly, 2006]. Trochim and Donnelly suggests four other cate-
gories which are designed to accommodate the threats against a analysis based on
qualitative methods [Whittemore et al., 2001]:

• Credibility concerns whether the participants of the study find the results
believable.

• Transferability concerns whether the study can be generalised to other con-
texts.

• Dependability concerns whether changes in the context of the study have
been addressed.

• Confirmability concerns the degree where other researchers might come to
the same conclusion.

CHAPTER 5

RESULTS

This chapter describes the results from the qualitative and quantitative analysis
performed of defect report data from the defect tracking system of Company X.

5.1 General Remarks

In total, 810 defect reports were collected. Every defect report which had the
attribute Effort to Fix classified as Time Consuming or Quick Fix and created before
February 15th 2010 were collected. 638 of the defect reports had an effort to
correct classified as little effort required, while 172 of the defect reports had an
effort to correct classified as extensive. They were collected from three project
types: core-, B2C-, and B2B-projects. How many defect reports from each project
type and what effort to correct they had been classified as, is shown in Figure 5.1.
The reason why there were only 14 defect reports collected from B2B-projects is
due legal concerns with external clients of Company X. Hence we had restricted
access to B2B-project defect reports. The defect reports from the core- and B2C-
projects were collected from a single project respectively, while the B2B-project
defect reports were collected from two projects.

Figure 5.1: The chart shows the total number of defect reports collected from each
project type, and the classified effort to correct.

43

44 CHAPTER 5. RESULTS

Figure 5.2: The chart shows the categories and their frequencies for each of the three
project types core, B2C and B2B. The y-axis shows the frequency of defect reports, while

the x-axis is the categories developed in the qualitative analysis.

5.2 Qualitative Analysis

The process used to derive the results from the qualitative analysis is described in
Section 4.3.3. The results presented in this section are based on 176 defect reports
from Project A, Project B, and Project C which had an effort to correct classified
as extensive. There were 70 defect reports from Project A, 96 defect reports from
Project B, and 6 defect reports from Project C. The results is summarised in Figure
5.2.

The main categories developed from the data suggests there are four reasons for
defects requiring extensive effort to correct:

• It is hard to determine the location of the defect: This occurred due to
inconsistencies between symptoms and the location of the defect. Activities
performed to analyse the defect ranged from reading through logs, develop-
ing test cases and trying to reproduce the defect.

• Long clarification and discussion of the defect: This occurred when the
defect Activities which were contributors into facilitating extensive effort
were to analyse competitors software for how similar functionality were im-
plemented. Other activities included discussion of requirements specifica-
tions, checking whether the defect is a duplication, and technical discussion

5.2. QUALITATIVE ANALYSIS 45

of implementation details.

• The original fix introduces new defects or multiple fixes: The defect had
ripple effects beyond the first correction of the defect. This several cases,
multiple corrections of the same defect were required before the defect was
corrected. Other corrections of defects introduced new defects which were
filed as separate defect reports in the defect tracking system.

• The implemented functionality was new or needed a rewrite: The exist-
ing functionality did not satisfy the demands other modules required. These
defects had often missing or incorrectly implemented functions from the
early stages of development. The extensive effort to correct was due to the
effort required to re-implement or implement these missing or omitted func-
tions.

• Other: The reasons for the defect requiring extensive effort to correct was
due to reasons we were to able to connect to any of the other categories.
However, the reason is still valid as an explanation of why the defect re-
quired extensive effort to correct. The reasons were that documentation was
incorrect in one case and the communication was not good enough in the
second case.

• Reasons are not clear: There were no comments to analyse or the com-
ments did not contain any information which could determined the reason
why the defect took extensive effort to correct.

Other Observations

The following observations were noted while reading through the comments of the
172 defect reports.

• Code Reviews: Code reviews were performed in the core-project, and were
not observed in the other two project types. The review took place when a
corrective patch had been developed for the defect, and was conducted by
another developer on the same project before committing to the correction.

• A Black Hole: The defect tracking system was viewed upon as a black hole
of information by a few staff members. That is, information was collected
but never used again after the particular defect was corrected.

• The Persons Involved in Defect Correction: Early analysis of the defects
were frequently conducted by the defect reporter. However, every module
and component had a group of persons as owners, which conducted the ac-
tual correction of the defect.

46 CHAPTER 5. RESULTS

Figure 5.3: The chart shows the “Placement – Layer” attribute values of the defects
which have a “Effort to Fix” classified as extensive effort for each of the three project

types in percent.

5.3 Quantitative Analysis

The attributes Activity to Discover and Activity to Reproduce were excluded from
this analysis due large amounts of unspecified values. Between 95 % and 100
% of both the little effort and extensive effort defect reports had these attributes
unspecified. Unspecified values were omitted from the analysis. However, values
were recorded to assure completeness.

5.3.1 Comparison of Extensive Effort Defects in the Projects

The following section will list the observations of the comparison between defects
which require extensive effort to correct and the differences between project types.

Layer of Placement

The Placement – Layer attribute values for each project is shown in Figure 5.3.
98,5 percent of the extensive effort defects related to the core-project were related
to the core layer, while 18,8 and 66,7 percent of the B2C and B2B project defects
were related to the core-layer. On the other hand, 36,5 and 44,7 percent of the B2C-
project defects were related to Platform and UI. Respectively, the percentages for
Platform and UI were 0 and 1,5 percent for core-projects and 16,7 and 16,7 percent

5.3. QUANTITATIVE ANALYSIS 47

Figure 5.4: The chart shows the “Type of Fix” attribute values of the defects which have
a “Effort to Fix” classified as extensive effort for each of the three project types in

percent.

for B2B-projects. There were unspecified values in both core and B2C. 5,7 and
11,5 percent of the values of Platform – Layer were unspecified in core and B2C
project defect reports.

Type of Correction

The values for the Type of Fix attribute is shown in Figure 5.4. For the core-project,
Algorithm / Method, Checking, Other and Assign / Init accounted for 38,1, 22,2,
12,7, and 7,9 percent of the defects which required extensive effort to correct.
The Standards Compliance, Timing/Serial, Func / Class / Object, Buffer / Memory
Management and Interface with 3rd Party Software categories had less than seven
percent each for the core-project and their percentages are shown in Figure 5.4.
For the B2C-project, the categories Algorithm / Method, Func / Class / Object,
and Checking accounted for 39,1, 23,4, and 14,1 percent of the categories values.
Similarly, there were categories which accounted for less than eight percent of the
total. These categories were Assign/Init with 7,8 percent, Timing/Serial with 6,3
percent, Other with 4,7 percent, Interface with 3rd Party Software with 3,1 per-
cent and Buffer/Memory Management with 1,6 percent. The B2B project had 33,3
percent of the defects classified with a Type of Fix as Assign/Init, while Algorith-
m/Method, Other, Func/Class/Object, and Standard Compliance had 16,7 percent
each. There were 10 and 33,3 percent unspecified values for Type of Fix in the

48 CHAPTER 5. RESULTS

Figure 5.5: The chart shows the “Root Cause – Identity” attribute values of the defects
which have a “Effort to Fix” classified as extensive effort for each of the three project

types in percent.

defect reports from the core and B2C projects respectively.

Identity of Root Cause

For the Root Cause – Identity attribute, the category Code had the largest portion
in all of the projects. The core-project had 49,2 percent, B2C-project had 56,7
percent and the B2B project had 60 percent classified as Code. The next largest
portion were classified as Design. The extensive effort defects had 36,9 and 27,8
percent from the core and B2C projects classified Root Cause – Identity as Design.
The exception were B2B which had 0 percent of its defects classified as Design.
On the other hand, the Requirements category were the largest among the three
project types in B2B with 40 percent. Consequently, 12,3 percent and 13,3 percent
of the core and B2C projects defects were classified as Requirement. Unspecified
values were 7,1 percent for core, 6,3 percent for B2C, and 16,7 percent for B2B.
The values for the Root Cause – Identity attribute is shown in Figure 5.5.

Cause of Root Cause

The values for the Root Cause – Cause attribute is shown in Figure 5.6. The core
project had the largest portion of defects classified with a Root Cause – Cause
as Incorrect (commission) with 60,3 percent. The B2C project had similarly 50,6

5.3. QUANTITATIVE ANALYSIS 49

Figure 5.6: The chart shows the “Root Cause – Cause” attribute values of the defects
which have a “Effort to Fix” classified as extensive effort for each of the three project

types in percent.

percent, while the B2B project had 25 percent classified as Incorrect (comission).
The category Missing (omission) were largest in B2B projects where 75 percent
of the defects were classified with an Root Cause – Cause as Missing (omission).
The percentages for core and B2C projects were 36,5 and 49,4 percent comparably.
Irrelevant (extraneous) were not used in B2C and B2B projects, while 3,2 percent
where classified as Irrelevant (extraneous) in the core project. The unspecified
values were 10 percent for core, 13,5 percent for B2C, and 33,3 percent for B2B.

Severity

The values for the Severity attribute is shown in Figure 5.7. 100 percent of the
B2B project’s defects had a severity classified as Significant, and 54,3 and 60,7
of core and B2C project defects had the same classification. The core project
then had 20 percent classified Severity as Crashes the Software, 14,3 percent as
Spec Violation, 7,1 percent as Site Compatibility, 1,4 as Blocks Testing, 1,4 percent
as Trivial and 1,4 percent as Other Severe. In contrast, B2C had 14,6 percent
classified as Crashes the Software, 13,5 percent as Other Severe, 2,1 percent as
Spec Violation, 1 percent as Security Issue, 1 percent as Freezes the Software and
1 percent as Trivial. All defect reports had the Severity attribute specified.

50 CHAPTER 5. RESULTS

Figure 5.7: The chart shows the “Severity” attribute values of the defects which have a
“Effort to Fix” classified as extensive effort for each of the three project types in percent.

Figure 5.8: The chart shows the “Regression Risk” attribute values of the defects which
have a “Effort to Fix” classified as extensive effort for each of the three project types in

percent.

5.3. QUANTITATIVE ANALYSIS 51

Regression Risk

The values for the Regression Risk attribute is shown in Figure 5.8. The core
project have the highest portion of High Risk defects with 7.7 percent. Compara-
bly, B2C have 2.2 percent and B2B have 0 percent High Risk defects. On the other
hand, B2B have the highest portion of Medium Risk defects with 66,7 percent.
Similarly, the core project have 33,8 percent and the B2C project have 25 percent
of the defects classified as Medium Risk of regression. Last, the B2C project have
the largest portion of Low Risk with 60,9 percent, while the core and B2B projects
have 46,2 and 33,3 percent each. Both core and B2C had a similar share of 12
percent of No Risk regression risks. The unspecified values were 7,1 percent for
core project, 4,2 percent for B2C project, and 0 percent for B2B.

5.3.2 Comparison Between Extensive and Little Effort Defects

The results described in the Section 5.3.1 were compared to a data set of defects
which required little effort to correct. The results from the comparison each of the
ODC attributes are presented below.

Layer of Placement

The values of the Placement – Layer attribute is shown in Figure 5.9. There were
no large differences in the core project, but the rate of unspecified values went up
to 17,1 percent from 5,7 percent and Core layer defects decreased to 94,6 percent
from 98,5 percent. In the B2C project, there were differences. The amount of
defects classified to the Core layer decreased to 12,8 percent from 18,8 percent.
The portion classified to the Platform and UI layers changed to 36,1 percent and 50
percent, from 36,5 percent and 44,7 percent respectively. The unspecified values
in the B2C project increased to 32,8 percent from 11,5 percent. B2B projects
decreased their amount of defects classified to the Core layer to 25 percent from
66,7 percent, the UI layer to 25 percent from 16,7 percent, and the Platform layer
increased from 16,7 percent to 50 percent.

Type of Correction

The values of the Type of Fix is shown in Figure 5.10. There were several dif-
ferences discovered. The largest differences were with the Algorithm / Method
category. Algorithm / Method changed in all of the projects to 17 percent, 14,7
percent, and 20 percent from 38,1 percent, 39,1 percent, and 16,7 percent for the
core, B2C and B2B projects respectively. For the Assign / Init category, the por-
tion increased to 18,8 percent from 7,9 percent for the core project, increased to

52 CHAPTER 5. RESULTS

Figure 5.9: The chart shows the “Placement – Layer” attribute values of the defects
which have a “Effort to Fix” classified as little effort for each of the three project types in

percent.

16,3 percent from 7,8 percent for the B2C project, and decreased to 0 percent from
33,3 percent in the B2B project. There were only observed a change in the In-
terface with 3rd-party software category for B2B projects. The portion for B2B
project increased to 20 percent from 0 percent. There were changes observed in all
projects for the Checking category. The values increased to 32,4 percent from 22,2
percent for the core project, increased to 29,3 percent from 14,1 percent for the
B2C project, and increased to 20 percent from 0 percent for the B2B project. The
category Func / Class / Object were unchanged for the core project, but the values
increased to 25 percent from 23,4 percent for the B2C project and decreased to 0
percent from 16,7 percent for the B2B project. Minor changes were observed in
the Standard Compliance, Timing / Serial, and Other categories. No changes were
observed in the Memory / Buffer Management and Interface with hardware cate-
gories. All of the projects experienced an increase in unspecified values to 20,7
percent for the core project, 54,9 percent for the B2C project, and 37,5 percent for
the B2B project.

Identity of Root Cause

There were several differences when we compared the identity of root causes
among defects which required little or extensive effort to correct. The values of
Root Cause – Identity for defects which required little effort to correct are shown

5.3. QUANTITATIVE ANALYSIS 53

Figure 5.10: The chart shows the “Type of Fix” attribute values of the defects which have
a “Effort to Fix” classified as little effort for each of the three project types in percent.

in Figure 5.11. There were no changes observed in the Requirement category for
the core project. However, the value changed to 7,6 percent and 71,4 percent from
13,3 percent and 40 percent for B2C and B2B projects. In contrast, there were no
change observed in the Design category for the B2B project. The values of the
Design category decreased to 13,6 percent and 18,1 percent from 36,9 percent and
27,8 percent for the core and B2C projects. Last, there were changes observed in
the Code category. For the B2C project, the value of the Code category increased
to 71,9 percent from 56,7 percent. The values of the Code category increased to
67,2 percent from 49,2 percent for the core project, while the values decreased
to 28,6 percent from 60 percent for the B2B projects. The unspecified values in-
creased compared to the extensive effort to correct defects, and were 20,3 percent,
29,4 percent, and 12,5 percent for the core, B2C, and B2B projects.

Cause of Root Cause

The values of the Root Cause – Cause attribute is shown in Figure 5.12. All of
the project types saw a decrease in the portion of Incorrect (commission) causes.
The core project decreased to 54,9 percent from 60,3 percent, while the B2C and
B2B projects decreased to 44,5 percent and 0 percent from 50,6 percent and 25
percent respectively. The core and B2C projects experience an increase of Irrele-
vant (extraneous) causes. The increase was to 5,7 percent from 3,2 percent for the
core project, and to 3,2 percent from 0 percent for the B2C project. The B2B had

54 CHAPTER 5. RESULTS

Figure 5.11: The chart shows the “Root Cause – Identity” attribute values of the defects
which have a “Effort to Fix” classified as little effort for each of the three project types in

percent.

no change in the attribute Irrelevant (extraneous). All projects had a a difference
in the Missing (omission) attribute. The value of Missing (omission) increased to
39,4 percent from 36,5 percent for the core project, increased to 52,3 percent from
49,4 percent for the B2C project, and increased to 100 percent from 75 percent for
the B2B project. All projects experienced an increase of unspecified values. The
unspecified values were 21,2 percent for the core project, 30,6 percent for the B2C
project, and 50 percent for the B2B project.

Severity

There were no apparent changes in the dominant category Significant in any of the
projects. The values shown in Figure 5.13 show a similar distribution as shown
in Figure 5.7. The same categories were dominant although minor changes were
found. For the core project, Spec violation decreased to 11,7 percent from 14,3
percent, Crashes the Software decreased to 16,7 percent from 20 percent, and Site
Compatibility increased to 10,8 percent from 7,1 percent. For the B2C project,
Other Severe increased to 19,4 from 13,5 percent. No changes were noted for the
B2B project.

5.3. QUANTITATIVE ANALYSIS 55

Figure 5.12: The chart shows the “Root Cause – Cause” attribute values of the defects
which have a “Effort to Fix” classified as little effort for each of the three project types in

percent.

Figure 5.13: The chart shows the “Severity” attribute values of the defects which have a
“Effort to Fix” classified as little effort for each of the three project types in percent.

56 CHAPTER 5. RESULTS

Figure 5.14: The chart shows the “Regression Risk” attribute values of the defects which
have a “Effort to Fix” classified as little effort for each of the three project types in

percent.

Regression Risk

There were noted several changes in the Regression Risk attribute values. For the
core project, High Risk decreased to 0,5 percent from 7,7 percent, Medium Risk
decreased to 8,6 percent from 33,8 percent, Low Risk increased to 53,8 percent
from 46,2 percent, No Risk increased to 37,1 percent from 12,3 percent, and Un-
specified increased to 16,2 percent from 7,1 percent. For the B2C project, High
Risk decreased to 0 percent from 2,2 percent, Medium Risk decreased to 3,5 per-
cent from 25 percent, Low Risk decreased to 68,3 percent from 60,9 percent, No
Risk increased to 28,2 percent from 12 percent, and Unspecified increased to 29,7
percent from 4,2 percent. For the B2B project, Medium Risk decreased to 0 per-
cent from 66,7 percent, Low Risk increased to 57,1 percent from 33,3 percent, No
Risk increased to 42,9 percent from 0 percent, and Unspecified increased to 12,5
percent from 0 percent. The values of the Regression Risk attribute is shown in
Figure 5.14.

CHAPTER 6

DISCUSSION AND EVALUATION

The following chapter will interpret the results of the qualitative and quantitative
analysis presented in Chapter 5. The results will be compared versus other re-
search. In the end, a evaluation of the validity of the study is performed.

6.1 Discussion

The first part of this discussion is regarding the results from the qualitative analysis,
and the last part is regarding the results from the quantitative analysis.

6.1.1 Results from Qualitative Analysis

The results from the qualitative analysis signalised there were significant differ-
ences in root causes with regard to project types. The results described in Section
5.2 shows there were four different root causes for defects taking extensive effort
to correct:

• It is hard to determine the location of the defect.

• Long clarification and discussion of the defect.

• The original fix introduces new defects or multiple fixes.

• The implemented functionality was new or needed a rewrite.

These four root causes corresponds to a defect requiring extensive effort to locate,
decide, correct, or due to ripple effects. It was evident the defects required exten-
sive effort to correct were due to several root causes and not a single root cause.
However, the differences among the projects signalised different factors in the or-
ganisation might influence why some defects require extensive effort to correct.
This study was not designed to uncover which of these factors influence the soft-
ware defect correction. In order to determine which factors influence what parts
of the software defect correction process, more research based on the classical
experiment design is needed.

57

58 CHAPTER 6. DISCUSSION AND EVALUATION

Analysis of Defects

“It is hard to determine the location of the defect” were directly related to pro-
cess of analysing the defect. This implies there were an inconsistency between the
symptom and the root cause of the defect as stated by Eisenstadt in his survey of
software defect war stories from developers in [Eisenstadt, 1997]. The comment
discussions in the defect reports of this category were characterized with discus-
sion of stack traces produced by crashes. Another main problem was lack of steps
on how to reproduce the defect in the defect reports. Many defect reports did not
contain these steps, and thus made it harder for developers to correct the defects
as they were unable to reproduce the defects. This was in line with the study of
Bettenburg et al. where they discovered which information was considered help-
ful in defect reports for software developers [Bettenburg et al., 2008]. The steps
to reproduce the defect were considered among one of the most important helpful
parts of a defect report for software developers. Much effort was used on making
the defect reproducible through steps when these details were omitted from the
original defect report.

Decisions

“Long clarification and discussion of the defect” were related to inter-developer
communication. We were not able to find any studies suggesting this as a rea-
son for defects requiring extensive effort to correct. However, in contrast to other
organisations, developers are allowed to have discussions regarding the defect in
the defect tracking system. We found no such functionality in the defect tracking
system of another company in [Li et al., 2010a]. The comments in the defect re-
ports in Company X gave us an unique view on the discussions, and it showed that
prolonged discussions were contributing to increased effort to correct a defect.
Research on communication in organisations have shown that employees prefer
informal communication over formal communication when tasks are diverse and
when they require group members to solve tasks [Ven et al., 1976]. Argote showed
that groups engage in unscheduled meetings and communication when they are
facing tasks with high uncertainty, and that they are more successful in these sit-
uations when they are relying on informal rather than formal communication [Ar-
gote, 1982]. We believe this is why this root cause has not been observed in the
research performed because the communication during the process of correcting a
defect is seldom recorded. Another aspect is the focus of our study, we focused on
analysing the comments in defect reports. Other studies which have relied to de-
fect tracking system data have used quantitative attributes of defect reports such as
date and time stamps [Kim and Whitehead, 2006], number of tasks in the system
[Lucia et al., 2005], attributes from classification scheme [Chillarege et al., 1992]

6.1. DISCUSSION 59

or effort data [Weiss et al., 2007; Hassouna and Tahvildari, 2010].

Ripple Effects

The original fix introduce new defects or multiple fixes. This phenomenon of in-
troducing defects through correction of defects have been given attention in the
research community as regression testing. The purpose of regression testing is to
re-establish confidence that the modified code work as intended [Leung and White,
1989]. Regression testing is one of the most commonly used software testing tech-
niques [Onoma et al., 1998]. Onama, Tsai, Poonawala, and Suganuma describes
the costs associated with regression testing as the effort spent on developing new
test cases, re-validating test cases, execution of the test suite, comparing test results
and tracking test failures [Onoma et al., 1998]. Combined, these activities could
impose significant costs on an organisation due to the total number of test cases
could be large. On the other hand, it could be argued that introducing an incorrect
defect correction is due to a inconsistency between symptom and root cause of the
defect as Eisenstadt noted in his study [Eisenstadt, 1997]. Thus, the developers
may perform an incorrect correction of the defect.

Jones state that incorrect corrections of defects were discovered in almost every
company and project where incorrect corrections were studied [Jones, 2008b].
IBM discovered how 20 percent of all customer reported defects of one of their
operating systems were incorrect corrections. On the other hand, approximately
5 percent of the defects in a application larger than 1000 function points will be
incorrect fixes. This number increases with the complexity of the application and
could reach 60 percent [Jones, 2008b].

Missing Functionality or Rewrite of Functionality

These defect reports were created due to missing functionality or the need to re-
implement already existing functionality. Development of software is known to be
costly. Jones uses the function point metric to describe software development costs
in [Jones, 2008b]. The costs of implementing functionality which is equivalent to
100 function points is shown in Figure 6.1. A system considered to have 1000
function points and written in C could contain between 60000 and 170000 lines of
code [Jones, 2008b]. From this, it is reasonable to argue that cost of implementing
missing functionality or re-implementing functionality can be a significant high
number. On average, implementing 100 function points of software costs the U.S.
industry USD 79536.

We have not found this root cause in any of the research investigated prior to con-
ducting this study. Possible reasons for this could be because of how the current

60 CHAPTER 6. DISCUSSION AND EVALUATION

Figure 6.1: The chart shows the costs of software development per 100 function points.
The chart is visualised based on data from Jones [Jones, 2008b, page 314].

research we investigated has been carried out. The research we investigate mea-
sured how certain factors influence the effort required to correct defects, they did
not consider the root causes of why the defects required extensive effort to correct.

Differences Between Project Types

The results depicted a difference with regard to root causes for the core, B2C
and B2B-projects. The frequencies of each category which was developed can
be seen in Figure 5.2, and their portions in percent can be seen in Figure 6.2.
The first main difference was that there were few B2B defect reports. The result
of this can be seen in Figure 6.2 where small numbers have an impact on the
portions size for each category in B2B-projects. However, we did not have access
to many B2B-project defect reports due to legal concerns between Company X
and their customers. B2B-projects defect reports were either categorised as Hard
to determine the location of the defect or Implemented functionality was new or
needed a rewrite, and have the largest portion of all project types in both categories,
but the lowest frequencies in these categories for each of the project types.

However, the categorisation of the defect reports of the B2B projects among either
Hard to determine the location of the defect or Implemented functionality was new
or needed a rewrite seems to be natural according to the nature of the project.
B2B projects concerns the implementation of the software of Company X on the
customer platform, which would regularly be new hardware and new operating
systems. Thus, defects classified as Implemented functionality was new or needed

6.1. DISCUSSION 61

a rewrite were expected as the platform the project were executed on could be new.

On the other hand, a new platform and operating system might influence the tech-
nical variables associated with development. Therefore, analysis and isolation of
reported defects could become difficult. Research have shown that the experience
of software developers with regard to both the software and the domain of the soft-
ware influence the effort required to analyse, isolate and correct defects [Li et al.,
2010a].

In contrast to B2B projects, 27,1 percent of the core project defects required ex-
tensive effort to correct due to discussions, while the B2C project had 5,2 percent
within the same category. The B2C and B2B projects were concerned with im-
plementation of the product line on different platforms to end users or customers,
whereas the core project was concerned with implementation of the technology
which forms the basis of B2C and B2B projects. The market they enter have fierce
competition and there exists an incentive to be the first provider of a new feature or
technology in the market. This incentive corresponds to a differentiation strategy in
the Porter’s framework for achieving competitive advantage in the market [Porter,
1998]. A strategy based on differentiation tries to achieve competitive advantage
over competitors by introducing aspects which portrays the product as unique in
the market place. On the other hand, according to D’aveni’s model of hypercom-
petition, organisations continuously seek to establish new competitive advantages
over competitors which will be eroded in the future [D’aveni and Gunther, 1994].
The framework and model of Porter and D’aveni give Company X and their com-
petitors incentive to implement functionality from specifications which currently
are working drafts. In addition, these specifications are specified by a non-biased
third party organisation. As a result, much effort was spent on interpretation of
requirements, discussion of how said requirements should be implemented, or dis-
cussion of technical solutions.

The higher rate of ripple effects compared to other projects was another aspect
of the core-project. The total portion of defects that were ripple effects was 18,4
percent from the core project, and 9,4 percent from the B2C project. This differ-
ence was unexpected as code reviews were observed in the core project, but not
in the B2C or B2B projects. Code reviews are a tool which can be used to reduce
the frequency of incorrect corrections of defects [Jones, 2008b]. However, during
the management meeting which took place on the 23th of March 2010, this ob-
servation was discussed. The representatives from Company X informed that the
problem of ripple effects were known. Code reviews were introduced recently as
an improvement in order to reduce ripple effects after an internal analysis by the
project participants. However, the qualitative analysis supports the decision of the
core project team to introduce code reviews in order to lower ripple effects. Nev-

62 CHAPTER 6. DISCUSSION AND EVALUATION

ertheless, we could find no particular reason for why incorrect corrections should
take place more frequently in the core project than the B2C or B2B projects. A
reason for this difference could be the main development foci of the projects. Core
project is not only concerned with incorporating new technology, but is also re-
sponsible for keeping the core functionality compatible with new functionality.
This situation might induce more incorrect corrections than other projects, as they
are mainly concerned with new code. Hence, our recommendation is to introduce
code reviews in the B2C and B2B projects as these projects have ripple effects
from defects too.

The main root causes of the B2C project were Hard to determine the location of the
defect and Implemented functionality was new or needed a rewrite, accounting for
approximately 70 percent of all the defect reports. However, the missing function-
ality or rework required were larger in the B2C project than the core project. This
could be explained through the focus of the B2C project which are implement-
ing new functionality in their flagship products for end users. The B2C project is
where Company X faces the fiercest competition in the market. Time-to-market is
an important factor for development of new products, and products need to be at the
market at the right time, with the right price and the right quality [Minderhoud and
Fraser, 2005]. This can be explained through D’aveni’s model of hypercompeti-
tion [D’aveni and Gunther, 1994] where organisations seek to establish temporary
competitive advantages. As a consequence of the requirement of a short time-to-
market, software which is not sufficiently tested may hit the market. A survey
performed in American software companies by Osterman Research found that 60
percent of defects were due to insufficient testing prior to software release [Inc.,
2010]. These results were similar to the current situation at Company X where the
problems can be related to insufficient testing because of time-pressure on devel-
opers. The software release time is influence by factors such as software reliability,
costs of testing, and current market situation [Xie and Hong, 1998]. Time pressure
may facilitate or inhibit creativity because of social and organisational factors Am-
abile et al. [2002]. In order to increase creativity, staff should feel like they are on
a mission,that the work they perform is vital, and distractions and interruptions of
the organisation should be minimised.

The B2C-project had 11.3 percent larger portion of Reasons are not clear than
core-project. The defect reports were assigned in this category only when there
were not possible to derive a root cause from the comments, description or title of
the defect report.

6.1. DISCUSSION 63

Figure 6.2: The chart shows the result of the qualitative analysis in percentages instead
of frequencies.

Figure 6.3: The chart shows the portion of unspecified values in percent for each
ODC-attribute from the defect reports which required extensive effort to correct of the

three project types core, B2C, and B2B.

64 CHAPTER 6. DISCUSSION AND EVALUATION

Figure 6.4: The chart shows the portion of unspecified values in percent for each
ODC-attribute from the defect reports which required little effort to correct of the three

project types core, B2C, and B2B.

Other Observations

Code Reviews were conducted in the core-project. No observations of code re-
views were observed in the other projects. However, the study was not performed
in such a way which could measure the effect of code reviews on projects, and fur-
ther studies would be required in order to determine this. Code reviews is consid-
ered to be a good practice as frequent software inspections have been documented
to be efficient at locating defects and incorrect corrections [Jones, 2008b].

A discussion in a defect report contained statements from an employee which con-
sidered the defect tracking system as a black hole of information. In other words,
information enter the system in form of defect reports, but they are never used
again in the future. Approximately 262600 defect reports were created in the de-
fect tracking system since 1999, which is 71 defect reports every day in a 10-year
period. Figure 6.5 shows how many defects which were reported every month in
the B2C project throughout the period June 18th 2000 to June 15th 2010. Every
defect report which is entered into the defect tracking system is a potential defect,
and must thereafter be analysed. This process requires substantial effort due to
the sheer amount of defects. The author found that 81.1% of the defects reported
between November 2008 and November 2009 were reported by users. However,
most of these defects were either duplicates or deemed to be invalid defects [Kris-

6.1. DISCUSSION 65

Figure 6.5: The line chart shows number of defect reports created every month from June
18th 2000 to June 15th 2010.

tiansen, 2009]. This is a process where substantial effort could be saved if the
process were automated.

6.1.2 Results from Quantitative Analysis

The following sections will discuss the results obtained from the quantitative anal-
ysis.

Placement – Layer

The distribution of values for the attribute Placement – Layer could be described
by the foci of the projects for the defects which required extensive effort to correct.
Figure 3.1 in Chapter 3 gives an high-level description of how the values of the
attributes were distributed between the three project types. Core project defect
report values of Placement – Layers were related to the core-layer as depicted in
Figure 5.3.

On the other hand, the Placement – Layer values of the B2C project defect reports
were concerned with user interface and platforms. The B2C project is concerned
with development of software which uses the core-project as a basis, and the soft-
ware is developed for four main platforms. However, several issues were discov-

66 CHAPTER 6. DISCUSSION AND EVALUATION

ered that were not related to issues in the B2C project, but needed to be propagated
to the core project. The distribution of Placement – Layer values is consistent with
Figure 3.1 where the core project is responsible for implementation of functional-
ity which serves as a basis for products against different markets for B2C and B2B
projects.

The B2B projects followed a similar distribution among the values of Placement –
Layer as B2C project. However, a larger degree of the defects were propagated to
the core project. The B2B projects are concerned with development and adaption
of the core project on different devices. The multiple-device nature of B2B projects
discover a larger degree of defects needed to be handled by the core project than
the B2C project. The B2B projects were implemented on different platforms than
the core and B2C projects, which explain why a higher portion of defects need to
be propagated to the core project. The distribution of Placement – Layer values is
consistent with Figure 3.1 and shows a similar pattern as the B2C project.

The defects which required little effort to correct followed a similar distribution as
the extensive effort to correct defects. Nonetheless, the portion of defects which
required to be propagated to the core project for correction were smaller. This be-
haviour can be explained through the reason why these defects require little effort.
In [Kristiansen, 2009], we found that Defects which require little effort to correct
were the result of errors in functions, classes, objects, or statements, and were
injected later in the software development life cycle. In contrast, defects which
required extensive effort to correct were result of algorithms, methods, memory
management or concurrency management, and those defects which were injected
earlier in the software development life cycle. Defects which require little effort
to correct have in general less impact on the software system than equivalent de-
fect which requires extensive effort to correct. Hence, the correction of defect
which require little effort was more likely possible to perform locally, rather than
propagating it further to a lower-level project like core than defects which require
extensive effort to correct.

Type of Correction

The dominant type of correction in the core and B2C projects were corrections
based on algorithms and methods. That was followed by checking statements
for the core project, and functions, class, and objects for the B2C project. In
contrast, the dominant correction in B2B projects were assign and initialisation
statements. The differences of the core and B2C project were in line with the
findings of Eisenstadt where hard to correct defects were related to algorithms and
memory management [Eisenstadt, 1997]. The B2B projects were not consistent

6.1. DISCUSSION 67

with the findings of Eisenstadt.

However, a reason for this difference could related to the platform. B2B projects
are developed on other platforms and devices than core and B2C project which are
developed on windows, linux and MacOSX. The reason why assign and initialisa-
tion is a larger issue in B2B projects could be a cross-platform issue. As a result,
different environmental variables which could lead to incorrect assignation or ini-
tialisation of variables in the code. Cusumano describes two different strategies
for cross-platform development of software in [Cusumano and Yoffie, 1999]. The
first strategy is to separately develop platform specific code from scratch for every
different operating system which the software will run on. The second strategy is
to write generic cross-platform code and tailor the generic code to the target oper-
ating system. Company X employs the second strategy by creating cross-platform
software in the core project and tailoring it and development of platform specific
user interfaces with the B2B and B2C projects. This could be the reason why there
was a difference between core, B2C and B2B with regard to type of corrections.

There were differences between project types when we compared the corrections
performed on defects which required extensive and little effort to correct. Figure
5.4 and Figure 5.10 showed these differences. The differences showed a trend
where defects which required little effort to correct to be more code oriented com-
pared to defects which required extensive effort to correct. The little effort to cor-
rect defects where related to program statements regarding conditional checking,
function, classes, and objects. It is easier to analyse, isolate and correct defects
which are directly visible in the code according to Eisenstadt [Eisenstadt, 1997].
In other words, there is not a inconsistency present between the root cause and the
symptom of the defect. This inconsistency between the root cause and the symp-
tom of the defect were present in hard to correct defects in the study of Eisenstadt
[Eisenstadt, 1997].

Root Cause – Identity

There were significant differences between the project types with regard to Root
Cause – Identity. The core and B2C projects followed a similar distribution. The
only differences were that the core project had a larger portion of defects with ori-
gin in the design phase than B2C, and the B2C had a larger portion of defects with
origin from the code phase than the core project. However, the B2B projects had a
significant larger portion of defects with origin from the requirements phase. The
desired functionality in the core and B2C projects are specified in the organisation.
However, many of the requirements specifications for general software technolo-
gies are specified by third parties. Company X embrace open standards in their

68 CHAPTER 6. DISCUSSION AND EVALUATION

software and these specifications are a central part of their implementation of new
technologies.

On the other hand, Christel and Kang classifies the problems of requirements elic-
itation into three categories [Christel and Kang, 1992]:

• Scope is concerned with the scope of the requirements. Factors which
should be considered when eliciting requirements are organisational, envi-
ronmental, and project factors. The scope of the requirement should not be
too board or too narrow.

• Understanding is concerned with taking all stakeholders information and
arguments into account when eliciting requirements to avoid misunderstand-
ings of requirements.

• Volatility is concerned with handling the change of requirement because of
organisational, environmental or project factors.

The three categories of problems with requirements elicitation are all relevant for
Company X. However, in the qualitative analysis, there were occasions were spec-
ification writers were asked questions to help interpretation of requirements. In
addition, volatility is a risk as B2B-projects are under some circumstances devel-
oped on prototype devices.

The most significant difference between the identities of root causes for defects
which require little or extensive effort to correct were requirement for B2B projects.
The majority of the defects which were easy to correct were injected in the require-
ments phase as seen in Figure 5.11. This comparison contradicts the assumption
of defects which require little effort to correct is injected during the coding phase
and concerns program statements such as conditional checking, functions, classes
and objects which was found in [Kristiansen, 2009]. There is no rule which gov-
erns how expensive a defect is to correct based on in which phase of the software
development cycle it was injected. However, according to literature [Boehm and
Basili, 2001], a defect is more likely to be expensive to correct the earlier it is in-
jected to the process. Even though, a defect which is injected in the requirement
phase could be a minor correction, for instance, from a typographical error in the
requirements specification. On the other hand, there were 8 defect reports from
B2B projects which were considered to be easy to correct. The individual defect
report can influence the data to a higher degree. Other issues could be incorrect
classification by the developer responsible for correcting the defect. However, this
issue were a risk in any of the classified defect reports.

6.1. DISCUSSION 69

Root Cause – Cause

The analysis of the attribute Root Cause – Cause showed there were differences
between the core project, and the B2B and B2C projects. The differences showed
that the majority of core project defects were due to incorrect implementations,
while the B2C and B2B projects had a larger portion of defects which were due
to missing implementation. This situation can be related the project structure pre-
sented in Figure 3.1. The B2C and B2B projects are more concerned with develop-
ment of new functionality in the products, while the core project is concerned with
maintenance of existing to a larger degree and development of new functionality
to a lesser degree.

Regression Risk

The core project had the most high regression risk corrections of defects, while
B2B projects had the most medium regression risk correction of defects. In com-
parison, the B2C project had the most low regression risk corrections. The attribute
Type of Fix helps to explain why this difference existed. Current research have fo-
cused on the risk of regressions problem from two approaches. The first approach
is investigation of the properties of the change, and the second approach is to in-
vestigate the properties of the changed code [Mockus and Weiss, 2000]. Mockus
and Weiss found that the risks of regressions were predicted by the properties of
the change such as number of subsystems affected, the duration of the correction
process, the experience of the software developer, and the number of lines of code
added in the change [Mockus and Weiss, 2000]. Tarvo found that software met-
rics such as change metrics, code metrics, dependency metrics, and experience of
software developer metrics [Tarvo, 2008]. On the other hand, Nagappan, Ball and
Zeller found than the risks of regression correlated with the complexity metrics of
the code, but no complexity metric proved to be better at predicting regressions
than others [Nagappan et al., 2006]. First, we could argue the higher risk of re-
gressions in the core project were due to changes in core modules could induce
changes in other projects which used the modules. Second, experience could ex-
plain why regressions risks were higher in B2B projects than B2C projects. B2B
projects use platforms which a software developer could be inexperienced with,
while the B2C project develop software at a specified set of platforms. Last, the
B2C project and B2B projects are more concerned with more implementation of
new functionality than the core project.

There were a significant difference between defects which required extensive effort
or little effort to correct. The risks of defects which required little effort to correct
were lower than corresponding extensive effort to correct defects. This difference

70 CHAPTER 6. DISCUSSION AND EVALUATION

can be explained through the scope of defects which were corrected. It is reason-
able to assume that defects which require little effort to correct have lower values
on code complexity, dependency and experience metrics. Hence, the defects have
less risk of regressions according to [Mockus and Weiss, 2000].

Severity

The severity attribute had the same issues as discovered in [Kristiansen, 2009].
All of the B2B projects defect reports had the default value, while over 54 percent
of the core and B2C attributes had the same value. The majority of the specified
values of the Severity attribute were regarding specification violations, software
crashes, and site compatibility issues for the core project. For the B2C project, the
majority of the specified values were regarding crashes or other severe. The same
categories for each attribute were dominant for the defects which required little
effort to correct.

There are multiple problems with this attribute. First, the attribute is unspecified
in over 50 percent of the cases because it have a default value as Significant. The
author found that default values can influence the results obtained from attributes.
Hence, default values in attributes should be avoided [Kristiansen, 2009]. Second,
the categorises which is the reporter is able to select from the attribute have dif-
ferent abstraction levels. The values attribute can have is listed in Table 3.3. The
contrast can be shown by comparing the categories Trivial and Significant with
Crashes the software and Blocks testing. Both of the latter could be argued to
be either significant or trivial. Last, the information derived from the attribute is
indirectly provided elsewhere. Severity can be looked upon as a tool for prioriti-
sation of which defects should be corrected. However, the defect tracking system
already have two attributes concerning prioritisation of defects. The Priority at-
tribute is given as a direct measure of how important the current issue is, while
the Customer Priority attribute specifies the priority of the defect by a third party
customer.

Unspecified Values

Figure 6.3 shows that the B2C-project had a percentage difference above 3 percent
in 3 of 5 attributes for defects which required extensive effort to correct. Similarly,
the same trend can be seen in Figure 6.4 where B2C attributes have at least a 9
percent larger portion of every attribute than core-project attributes. From these
arguments, it is reasonable to assume the core-project developers have a more
structured approach against defect analysis and classification schemes than B2C-
project developers.

6.1. DISCUSSION 71

In addition, a larger portion of every attribute were unspecified in defects which
have been classified as requiring little effort to correct than extensive effort. This
assumption was determined to be true held when we compared the charts in Figure
6.3 and Figure 6.4. In the context of Company X, they have trouble with defects
which require extensive effort to correct, and this problem were the main foci of
the defect tracking system improvement which was introduced1. For this reason,
we could argue that personnel responsible for updating defect reports pay more
attention to specify accurate details in defect reports of defects which require ex-
tensive effort to correct. This phenomenon could be due to the greater potential
of rewards if the same defect type could be avoided in future software develop-
ment. However, this is speculative, and more data and other research strategies is
required in order to verify this claim.

Another issue were default values in defect attributes. We found that the values of
attributes were significantly influenced by default values if they were available in
[Li et al., 2010b]. A default value is a value which is selected if no choice is made
by the defect reporter. The Severity attribute had this problem in our data set. The
result of this were that a single category dominated all other possible choices. We
read through defect reports and found they should probably have been classified
with another severity. As with in [Li et al., 2010b], we suspect defect reporters
skip this value as it already has one assigned to it when they are creating the defect
report.

6.1.3 Comparison versus Another Organisation

The results from the qualitative and quantitative analysis were compared against
another company in [Li et al., 2010a]. Company Y is a large Norwegian software
developer for the banking and financial sector. Currently, they have a staff of ap-
proximately 700 employees related to software development and quality assurance.
We discovered the root causes of the defects requiring extensive effort to correct
were different in Company X and Company Y. In Company Y, it was discovered
that approximately 95 percent of the defects were due to lack of domain knowl-
edge from developers. First, this further suggest results from the analysis is not
generalisable to a general population, and is valid only for this specific organisa-
tion. This was why we picked the case study research design in order to be able to
describe the current circumstances with software defects in Company X. Further,
we wanted the possibility to compare the results with another organisation.

The results from the qualitative analysis showed other differences. In Company
Y, we discovered a significant share of the defects which required little effort to

1See slide 13 of the presentation in Appendix C.

72 CHAPTER 6. DISCUSSION AND EVALUATION

correct were due to defects in the graphical user interface, misinterpreted require-
ments or defects in the test environment the software developer is running [Li et al.,
2010a]. In contrast, defects which required little effort to correct in Company X
were different in each of the three projects types core, B2C and B2B. In the core
project, the easy to correct defects were concerned with assignation, initialisation
of variables, checking statements, had a lower regression risk and were injected
during the code phase. In the B2C project, easy to correct defects were more
concerned with checking statements in the code which had a low regression risk.
Last, in the B2B projects, defects which required little effort to correct were due
to checking statements, interfaces with third party libraries, had a lower regression
risk and stem from requirements.

Similarly, the differences were found when we compared the defects which re-
quired extensive effort to correct from Company X and Company Y. In company
Y, a third of the extensive effort defects were classified as logical errors in the code,
missing functionality, and were injected during the design phase. In company X,
there were differences between the project types. In the core project, extensive to
correct defects were due to incorrect algorithms or methods, they were injected
during the design phase, and had a high risk of regressions. In the B2C-project,
the extensive effort to correct defects were due to algorithms, methods, functions,
classes and objects. The defects were concerned with the core, platform, and user
interface layers. The defects were injected during the design phase, and were due
to either incorrect implementation or missing functionality. The defects from the
B2C-project had lower regression risks than the core-project, but still higher than
the little effort to correct defects. In the last project, the B2B-project, the defects
which required extensive effort to correct were due to assignation and initialisation
of variables, or function, classes and objects. A large portion of the B2B-project
defects were related to the core-layer, and were injected during the coding phase.
The defects had a average regression risk of medium.

These differences described above illustrate there are differences among organi-
sations with regard to why defects require little or extensive effort to correct. In
addition, it demonstrates there are differences within an organisation based on dif-
ferent project types. The effort required to correct defects are based on both tech-
nical, social and organisational factors [Aranda and Venolia, 2009]. Based on the
comparison above, it is reasonable to argue that an organisation should adapt pro-
cesses based on their own needs, and regularly monitor the progress of projects
with regard to software quality. Literature suggests introducing improvements
through pilot-studies before widespread organisational adaption of the improve-
ment take place [Stålhane, 2008]. The improvement should be planned, imple-
mented, checked for results and acted upon, corresponding to a Shewhart-cycle as

6.2. VALIDITY THREATS 73

described in [Shewhart and Deming, 1986]. However, it is important to note that
improvements which are selected for widespread adoption in the organisation are
monitored after implementation due to the internal differences illustrated above.
In addition, when searching for new improvement opportunities, the old improve-
ment must be adjusted in the analysis, due to these having a dynamic impact on
the organisation [Li et al., 2010a].

6.1.4 Current Research Versus This Study

Current research performed in this area did not try to derive root causes for why a
certain amount of software defects take extensive effort. However, they modelled
the effort required to correct the software defects by choosing an arbitrary set of
software metrics. These software metrics were chosen since they were thought
of having an influence on the effort required to correct the defect. The predicted
effort from the developed model was compared to the actual effort, and how well
each software metric predicted effort required were measured.

The main difference between this study and existing studies is how we developed
the root causes. We developed the root causes through use of grounded theory.
The comments and discussions in the defect reports were coded, further developed
to concepts, and then to categories. The categories presented as results here are
derived from the discussions in the defect reports. The study from Eisenstadt are
the closest study to our study in terms how he derived his results in [Eisenstadt,
1997]. However, Eisenstadt analysed defect correction stories which were writ-
ten down and collected post-correction of the defects. The discussions consisting
of comments analysed in our study were written and collected during the defect
correction process.

6.2 Validity Threats

This sections discusses the validity of this study according to the aspects specified
in Section 4.4. The evaluation of validity against the criteria suggested by [Wohlin
et al., 2000]:

• Internal Validity: The source of the data is from the defect database of
company X and we see two threats to internal validity. The first threat to
internal validity is that defect reports might be incorrectly classified by de-
fect reporters and developers. The defects have been read through and the
few places where we found obvious mistakes have been corrected. The sec-
ond threat is misunderstanding of discussions in the comment attribute in
the defect reports. As the candidate is an external observer, he might not

74 CHAPTER 6. DISCUSSION AND EVALUATION

have sufficient understanding of internal processes. However, this issue was
addressed by presenting and discussing the results with representatives from
Company X during a meeting in mid-March.

• Construct Validity: The quantitative analysis used frequencies in tables,
and difference of portions were used to determine differences. Hence, there
was no use of statistical tests and no statistical significant relationships were
established. The study was performed in a descriptive manner. The quali-
tative analysis followed guidelines set by [Shannak and Aldhmour, 2009].
However, a central concept of grounded theory is to generate a theory from
the data [Strauss and Corbin, 1998]. This is in contrast to quantitative anal-
ysis which sets test a theory against the data.

• External Validity: This study was descriptive of Company X. The com-
parison between the studies performed at Company X and Company Y in
Section 6.1.3 illustrates how the costs of correction extensive defects are
different in each organisation. Hence, one should be careful with generalis-
ing the results to another organisations.

• Conclusion Validity: We see no threat to conclusion validity of the qualita-
tive analysis due to it followed the guidelines set by [Shannak and Aldhmour,
2009]. The results obtained were discussed and compared to findings of
other researchers in both the qualitative and quantitative analysis. All of our
assumptions are stated and justified. Hence, we see no threat to the conclu-
sion validity of this study.

The validity of the qualitative study was evaluated against the criteria suggested
by [Trochim and Donnelly, 2006]:

• Credibility: the results of the qualitative analysis were presented to the
EVISOFT-responsible at Company X during a meeting on March 23rd 2010.
The present personnel from Company X found the results to be believable
and told it reflected the current situation after discussion.

• Transferability: The results from the qualitative analysis is valid for Com-
pany X. The results should not be generalised to other contexts without care-
ful considerations.

• Dependability: The data were collected during one evening where little
changes were done to the defect tracking system. The collected data were
defect reports and the information gathered pose no threats from subjective
bias from the author.

6.2. VALIDITY THREATS 75

• Confirmability: The data set have been analysed by the author. However,
Li analysed parts of the data set during the autumn of 2009 and reached
similar conclusions. Hence, we see no threats to the confirmability of the
study.

CHAPTER 7

CONCLUSION

The following chapter concludes the work performed during the writing of this
thesis, and gives suggestions to further work based on the work in this thesis.

7.1 Main Contributions

This thesis has the following main contributions:

• Four main root causes for defects which require extensive effort to correct.
These were it is hard to determine the location of the defect, long clarifi-
cation and discussion of the defect, the original fix introduces new defects
or multiple fixes, and the implemented functionality was new or needed a
rewrite.

• Project profiles with regard to ODC attributes and differences between de-
fects which require extensive or little effort to correct.

• Unspecified values are a concern in defect reports since attributes with no
values provide incomplete information regarding the defect. And unspec-
ified values are specified to a lesser degree for defects which require little
effort to correct in contrast to defects which require extensive effort to cor-
rect.

• Default values influence the values of the attribute as discovered by [Kris-
tiansen, 2009; Li et al., 2010b].

• Different organisations will have different distributions of root causes on dif-
ferent projects. However, within the same organisations will have different
distributions of root causes for different project. A structured and system-
atic analysis of these differences yields opportunities for software process
improvement.

77

78 CHAPTER 7. CONCLUSION

7.2 Further Work

The following section suggests further work with regard to both specific topics of
Company X and their EVISOFT-participation, and software defect research.

7.2.1 Topics Specific to Company X

Further work for the EVISOFT-project were planned during a meeting with repre-
sentatives on April 29th. The minutes from this meeting can be found in Appendix
D. The planned work related to this thesis is to present the results from this thesis
to developers, quality assurance personnel, and project managers working in Com-
pany X. Other aspects related to the work with this thesis are improvement of the
defect classification scheme, and further analysis of defect reports.

There are several other future activities planned for Company X. Such activities
include duplicate defect detection, development of cost-benefit model for defect
analysis, and improvement of defect management in the defect tracking system.

7.2.2 Software Defect Research

Several aspects are interesting to pursue. First, it could be interesting to do a cost
and benefit analysis of the defect classification improvement. Literature states of
defect tracking system information is one of the most valuable sources of informa-
tion for software process improvement activities [Grady, 1996]. A cost and benefit
analysis could pin-point interesting effects of the improvement, and possibly be
used to gain further support for improvements. For instance, by increasing soft-
ware developers motivation to Hence, facilitating minimisation of the unspecified
values in defect reports.

More similar studies in different organisations in order to create a framework of
factors for defect classification of root causes. This could possibly help organisa-
tions eliciting areas of improvement by helping them overcome similar challenges
faced by other organisations. In addition, it would be interesting to study how and
why identified factors influence the effort required to correct a defect, in order to
establish this framework. The factors derived from defect reports could be used
for defect correction effort estimation.

In general, more similar studies of this one would be interesting as the root causes
of defects were determined to be different for different organisations. This could
lead to establishment of common factors which influence the effort required to
correct defects. As a result, a better understanding of how organisational, social
and technical factors influence the effort required to correct defects.

7.3. RECOMMENDATIONS 79

7.3 Recommendations

This section provides advice to industry and academia. For industries, organisa-
tions seeking to do software process improvement should not use techniques as
silver bullets. An organisation wishing to do software process improvement activ-
ities should analyse the current situation and deal with it accordingly. Graham et
al. suggested that the software testing process is planned and adapted to the or-
ganisation’s own needs [Graham et al., 2008]. We believe this is important for any
software engineering activity. So specifically for using defect data for software
process improvement activities, the following steps were suggested in [Li et al.,
2010a]:

1. Classify randomly selected defects using a orthogonal defect classification
scheme.

2. Analyse the defect rates.

3. Analyse the cost drivers and correction productivity for each category of
defects.

4. Establish a profile of the project which can be compared to similar projects
in the organisation.

Lieberman stated the lack of research of software defects were a scandal [Lieber-
man, 1997]. The survey of the the state-of-the-art showed there were lack of re-
search on software defects, and the results obtained from the studies investigated
were side effects of the study in question. Due to the economic considerations of
software quality and defects in software [Jones, 2008b; Tassey, 2002], more re-
search should be devoted to research of the nature of software defects. It is impor-
tant to study the nature of defects, in order to create better processes for preventing
and handling defects. Bertolini states the main challenge and goal of software test-
ing research is development a unified software testing theory [Bertolino, 2007].
We see no reason for academia to not have the same goal for software defects.

7.4 Conclusion

We have given a brief overview of the fields of software engineering, software
maintenance, software defects and software verification. The literature study showed
there were a lack of research of the software defect phenomenon directly, but there
were diversity in the research of fields which software defects affected.

The research design selected were a descriptive case study of Company X. We used
qualitative methods on the discussions in defect reports in order to establish root

80 CHAPTER 7. CONCLUSION

causes for why defects required extensive effort to correct. In addition, we used
quantitative methods on the orthogonal defect classification attributes in the defect
reports to compare defects which required extensive or little effort to correct. The
orthogonal defect classification attributes were extracted using a script developed
during master fall project of the candidate.

The qualitative analysis derived four main root causes which explain why a group
of defects require extensive effort to correct. The first root cause were that it were
hard to determine the location of the defect. The second root cause were related
to discussion among developers among concepts which required clarification in
order to correct the defect. The third root cause were due to incorrect corrections
of defects which introduced new defects into the system. The last root cause were
implementation tasks of new or existing functionality which needed a rewrite. In
addition, two defect reports were the reason of communication or documentation
issues, while we were unable to determine the root cause of several defect reports
due to limited discussion. One of the root causes were determined to be new con-
tributions and not described in existing literature surveyed in the literature study.
It was the root cause which were concerned with implementation tasks of new or
existing functionality which needed a rewrite.

A comparison between the four root causes and project types revealed the root
causes were influenced by the project types. The core-project had a larger degree
of discussion and incorrect corrections than B2C and B2B-projects. In contrast, the
B2B and B2C-projects were concerned with hard to locate defects and implemen-
tation of missing functionality or re-implementation of functionality. Similarly, a
comparison against another organisation showed there were differences with re-
gard to root causes for extensive effort. In company Y, the main root cause were
insufficient domain knowledge. This showed how systematic analysis of defect
reports can yield software process improvement opportunities.

The quantitative analysis uncovered differences among extensive or little effort to
correct defects, and differences among project types. In the core project, extensive
effort to correct defects were due to incorrect algorithms or methods, they were
injected during the design phase, and had a high risk of regressions. In the B2C-
project, the extensive effort to correct defects were due to algorithms, methods,
functions, classes and objects. The defects were concerned with the core, platform,
and user interface layers. The defects were injected during the design phase, and
were due to either incorrect implementation or missing functionality. The defects
from the B2C-project had lower regression risks than the core-project, but still
higher than the little effort to correct defects. In the last project, the B2B-project,
the defects which required extensive effort to correct were due to assignation and
initialisation of variables, or function, classes and objects. A large portion of the

7.4. CONCLUSION 81

B2B-project defects were related to the core-layer, and were injected during the
coding phase. The defects had a average regression risk of medium.

The little effort to correct defects in the core project were concerned with assigna-
tion or initialisation of variables, checking statements, and had a lower regression
risk and were injected during the code phase. In the B2C-project, easy to fix de-
fects were more concerned with checking statements in the code which had a low
regression risk. Last, in the B2B project, defects which required little effort to
correct were due to checking statements, interfaces with third party libraries, had
a lower regression risk and stem from requirements. The data set for the quantita-
tive analysis contained high levels of unspecified values for little effort to correct
defect. The levels of unspecified attributes were lower for defects which required
extensive effort to correct. A comparison of the quantitative data versus another
organisation showed similarities with regard to defects which required little effort
to correct. However, there were differences between the organisations with regard
to extensive effort defects. In Company Y, the main cause were logical errors in
code for defects which required extensive effort to correct.

In conclusion, we have shown how qualitative methods can be used to derive root
causes. In addition, we have shown the main root causes of defects can be dif-
ferent within the same organisation as well as in other organisations, and how the
extensive effort to correct defects were different from the little effort to correct
defects.

GLOSSARY

agility “means to strip away as much of the heaviness, commonly associated
with traditional software-development methodologies, as possible to pro-
mote quick response to changing environments, changes in user require-
ments, accelerated project deadlines, and the like.” [Erickson et al., 2005,
page 89]

bad fix see incorrect correction.

bug see defect.

code review A process where the code is read through by a qualified person which
has been involved in the code in order to locate defects. Code reviews have
been proven to be efficient to reduce the frequency of incorrect corrections
of defects [Jones, 2008a].

debugging see defect correction.

defect (fault) “An incorrect step, process, or data definition in a computer pro-
gram.” [Society, 1990, page 32]

defect correction “To detect, locate, and correct faults in a computer program.”
[Society, 1990, page 25]

defect removal see defect correction.

dynamic analysis To verify software components during execution [Harrold, 2000,
page 1]. Dynamic analysis techniques include functional, control flow, data
flow, mutation and regression testing.

error “difference between a computed, observed, or measured value or condition
and the true, specified, or theoretically correct value or condition.” [Society,
1990, page 31]

failure “The result of a fault.” (From [Society, 1990, page 32])

83

84 CHAPTER 7. GLOSSARY

fault see defect.

fix see correction.

function points A measurement of the functionality provided to a user in software
[Symons, 1988].

incorrect defect correction A correction of a defect which causes a regression
[Jones, 2008a]

latent defect A defect which is not discovered before the release of the software
[Jones, 2008a]

mistake A human action which produces the software defect. [Society, 1990,
page 32]

quality “(1) The degree to which a system, component, or process meets specified
requirements. (2) The degree to which a system, component, or process
meets customer or user needs or expectations.” [Society, 1990, page 60]

regression testing The process of re-evaluating modified code in order to locate
where the defect occurred after the modification took place [Leung and
White, 1989].

software engineering “The application of a systematic, disciplined, quantifiable
approach to the development, operation, and maintenance of software; that
is, the application of engineering to software.” [Society, 1990, page 67]

software maintenance “the process of modifying a software system or compo-
nent after delivery to correct faults, improve performance or other attributes,
or adapt to a changed environment.” [Society, 1990, page 46]

software reuse The process of developing software systems by use of existing
software rather than starting from scratch each time [Krueger, 1992].

static analysis To verify source code not under execution through use of formal
and informal methods [Harrold, 2000, page 1]. Static analysis techniques
include abstract interpretation, model checking, deductive methods, code
reviews and walkthroughs.

BIBLIOGRAPHY

Evisoft homepage. Website. http://www.sintef.no/Projectweb/
Evisoft/, retrieved 08.12.2009.

David J. Agans. Debugging. Amacom, New York, NY, USA, 2006. ISBN
9780814474570.

Yunsik Ahn, Jungseok Suh, Seungryeol Kim, and Hyunsoo Kim. The software
maintenance project effort estimation model based on function points. Journal
of Software Maintenance, 15(2):71–85, 2003. ISSN 1040-550X. doi: http:
//dx.doi.org/10.1002/smr.269.

Teresa M. Amabile, Constance N. Hadley, and Steven J. Kramer. Creativity under
the gun. Harvard Business Review, 80(8):52–61, 2002. ISSN 0017-8012. doi:
http://dx.doi.org/10.1225/R0208C.

Paul Ammann and Jeff Offutt. Introduction to Software Testing. Cambridge Uni-
versity Press, Cambridge, United Kingdom, 2008. ISBN 9780521880381.

Jorge Aranda and Gina Venolia. The secret life of bugs: Going past the errors
and omissions in software repositories. In ICSE ’09: Proceedings of the 31st
International Conference on Software Engineering, pages 298–308, Washing-
ton, DC, USA, 2009. IEEE Computer Society. ISBN 978-1-4244-3453-4. doi:
http://dx.doi.org/10.1109/ICSE.2009.5070530.

Linda Argote. Input uncertainty and organizational coordination in hospital emer-
gency units. Administrative Science Quarterly, 27(3):420–434, 1982. ISSN
0001-8392. doi: http://dx.doi.org/10.2307/2392320.

Kent Beck. Test-Driven Development: By Example. Addison-Wesley, Boston,
MA, USA, 2003. ISBN 0321146530.

Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunning-
ham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jef-
fries, Jon Kern, Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber,

85

http://www.sintef.no/Projectweb/Evisoft/
http://www.sintef.no/Projectweb/Evisoft/

86 BIBLIOGRAPHY

and Jeff Sutherland. Manifesto for agile software development. Website.
http://agilemanifesto.org/, retrieved 09.15.2009.

Laszlo A. Belady and Meir M. Lehman. A model of large program development.
IBM Systems Journal, 15(3):225–252, 1976. ISSN 0018-8670. doi: http://dx.
doi.org/10.1147/sj.153.0225.

Antonia Bertolino. Software testing research: Achievements, challenges, dreams.
In FOSE ’07: 2007 Future of Software Engineering, pages 85–103, Washington,
DC, USA, 2007. IEEE Computer Society. ISBN 0-7695-2829-5. doi: http:
//dx.doi.org/10.1109/FOSE.2007.25.

Nicolas Bettenburg, Sascha Just, Adrian Schröter, Cathrin Weiss, Rahul Premraj,
and Thomas Zimmermann. What makes a good bug report? In SIGSOFT
’08/FSE-16: Proceedings of the 16th ACM SIGSOFT International Sympo-
sium on Foundations of software engineering, pages 308–318, New York, NY,
USA, 2008. ACM. ISBN 978-1-59593-995-1. doi: http://doi.acm.org/10.1145/
1453101.1453146.

Barry Boehm and Victor R. Basili. Software defect reduction top 10 list. Com-
puter, 34(1):135–137, 2001. ISSN 0018-9162. doi: http://dx.doi.org/10.1109/
2.962984.

Eric Braude. Software Engineering: An Object-Oriented Perspective. Jon Wiley
and Sons, London, United Kingdom, 2001. ISBN 0471322083.

Gerardo Canfora and Aniello Cimitile. Software maintenance. Handbook of Soft-
ware Engineering and Knowledge Engineering, 1:91–120, 2001.

Ram Chillarege, Inderpal S. Bhandari, Jarir K. Chaar, Michael J. Halliday, Di-
ane S. Moebus, Bonnie K. Ray, and Man-Yuen Wong. Orthogonal defect
classification-a concept for in-process measurements. IEEE Transactions on
Software Engineering, 18(11):943–956, 1992. ISSN 0098-5589. doi: http:
//dx.doi.org/10.1109/32.177364.

Michael G. Christel and Kyo C. Kang. Issues in requirements elicitation. Techni-
cal Report ESC-TR-92-012 CMU/SEI-92-TR, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA, USA, 1992.

Michael A. Cusumano and David B. Yoffie. What netscape learned from cross-
platform software development. Communications of the ACM, 42(10):72–78,
1999. ISSN 0001-0782. doi: http://doi.acm.org/10.1145/317665.317678.

http://agilemanifesto.org/

BIBLIOGRAPHY 87

Richard A. D’aveni and Robert Gunther. Hypercompetition: Managing the Dy-
namics of Strategic Manoeuvring. The Free Press, New York, NY, USA, 1st
edition, 1994. ISBN 978-0029069387.

QA Department. Bug states and workflow. Internal document.

Matthew B. Dwyer, John Hatcliff, Robby Robby, Corina S. Pasareanu, and Willem
Visser. Formal software analysis emerging trends in software model checking.
In FOSE ’07: 2007 Future of Software Engineering, pages 120–136, Wash-
ington, DC, USA, 2007. IEEE Computer Society. ISBN 0-7695-2829-5. doi:
http://dx.doi.org/10.1109/FOSE.2007.6.

Tore Dybå and Torgeir Dingsøyr. Empirical studies of agile software development:
A systematic review. Information and Software Technology, 50(9-10):833–859,
2008. ISSN 0950-5849. doi: http://dx.doi.org/10.1016/j.infsof.2008.01.006.

Marc Eisenstadt. My hairiest bug war stories. Communications of the ACM, 40
(4):30–37, 1997. ISSN 0001-0782. doi: http://doi.acm.org/10.1145/248448.
248456.

John Erickson, Kalle Lyytinen, and Keng Siau. Agile modeling, agile software
development, and extreme programming: The state of research. Journal of
Database Management, 16(4):88–100, 2005. ISSN 1063-8016.

William M. Evanco. Modeling the effort to correct faults. In Selected papers
of the sixth annual Oregon workshop on Software metrics, pages 75–84, New
York, NY, USA, 1995. Elsevier Science Inc. doi: http://dx.doi.org/10.1016/
0164-1212(94)00129-B.

William M. Evanco. Prediction models for software fault correction effort. In
CSMR ’01: Proceedings of the Fifth European Conference on Software Mainte-
nance and Reengineering, pages 114–120, Washington, DC, USA, 2001. IEEE
Computer Society. ISBN 0-7695-1028-0. doi: http://dx.doi.org/10.1109/.2001.
914975.

Micheal E. Fagan. Advances in software inspections. IEEE Transactions on Soft-
ware Engineering, 12(7):744–751, 1986. ISSN 0098-5589.

Michael Fredericks and Victor Basili. Using defect tracking and analysis to im-
prove software quality. Report DACS-SOAR-98-2, Experimental Software En-
gineering Group, University of Maryland, College Park, MD, USA, 1998.

Bernd Freimut. Developing and using defect classification schemes. Forschungs-
bericht IESE-Report No. 072.01/E, Fraunhofer Institut Experimentelles Soft-
ware Engineering, Kaiserslautern, Germany, 2001.

88 BIBLIOGRAPHY

David A. Garvin. What does “product quality” really mean? MIT Sloan Manage-
ment Review, 26(1):25–43, 1984. ISSN 1532-9194.

Pär J. Ågerfalk and Brian Fitzgerald. Flexible and distributed software processes:
old petunias in new bowls? Communications of the ACM, 49(10):27–34, Octo-
ber 2006. ISSN 0001-0782.

Robert B. Grady. Software failure analysis for high-return process improvement
decisions. Hewlett-Packard Journal, 47(4):15–24, 1996. ISSN 0018-1153.

Dorothy Graham, Erik Van Veenendaal, Isabel Evans, and Rex Black. Foundations
of Software Testing. Cengage Learning EMEA, London, United Kingdom, 2008.
ISBN 9781844809899.

Mary Jean Harrold. Testing: a roadmap. In ICSE ’00: Proceedings of the Confer-
ence on The Future of Software Engineering, pages 61–72, New York, NY, USA,
2000. ACM. ISBN 1-58113-253-0. doi: http://doi.acm.org/10.1145/336512.
336532.

Alaa Hassouna and Ladan Tahvildari. An effort prediction framework for software
defect correction. Information and Software Technology, 52(2):197–209, 2010.
ISSN 0950-5849. doi: http://dx.doi.org/10.1016/j.infsof.2009.10.003.

Osterman Research Inc. Survey report for electric cloud: An osterman research
survey report. May 2010.

ISO/IEC. ISO/IEC 9126-1:2001 - Software Engineering – Product Quality. Num-
ber 9126-1:2001. ISO/IEC, 2001. ISBN 0-580-36526-3.

Capers Jones. Software quality in 2008: Survey of the state of the
art. Presentation, 2008a. http://www.scribd.com/doc/7758538/
Capers-Jones-Software-Quality-in-2008. Accessed 01.05.2010.

Capers Jones. Applied Software Measurement: Global Analysis of Productivity
and Quality. McGraw-Hill, New York, NY, USA, 3rd edition, 2008b. ISBN
978-0-07-150244-3.

Capers Jones. Software Engineering Best Practices: Lessons from Successful
Projects in the Top Companies. McGraw-Hill, New York, NY, USA, 2009.
ISBN 007162161X.

Joseph M. Juran. Juran’s Quality Handbook. Twayne Publishers, Boston, MA,
USA, 1999. ISBN 9780070340039.

http://www.scribd.com/doc/7758538/Capers-Jones-Software-Quality-in-2008
http://www.scribd.com/doc/7758538/Capers-Jones-Software-Quality-in-2008

BIBLIOGRAPHY 89

Natalia Juristo, Ana M. Moreno, and Sira Vegas. Reviewing 25 years of testing
technique experiments. Empirical Software Engineering, 9(1-2):7–44, 2004.
ISSN 1382-3256. doi: http://dx.doi.org/10.1023/B:EMSE.0000013513.48963.
1b.

Sunghun Kim and E. James Whitehead, Jr. How long did it take to fix bugs? In
MSR ’06: Proceedings of the 2006 international workshop on Mining software
repositories, pages 173–174, New York, NY, USA, 2006. ACM. ISBN 1-59593-
397-2. doi: http://doi.acm.org/10.1145/1137983.1138027.

Barbara Kitchenham and Shari Lawrence Pfleeger. Software quality: The elusive
target. IEEE Software, 13(1):12–21, 1996. ISSN 0740-7459. doi: http://dx.doi.
org/10.1109/52.476281.

Jan M. W. Kristiansen. Using orthogonal defect classification in a norwegian soft-
ware company. Master thesis project, December 2009.

Charles W. Krueger. Software reuse. ACM Computing Surveys (CSUR), 24(2):
131–183, 1992. ISSN 0360-0300. doi: http://doi.acm.org/10.1145/130844.
130856.

Craig Larman. Agile and Iterative Development: A Manager’s Guide. Pearson
Education, 1st edition, 2003. ISBN 0131111558.

Craig Larman and Victor R. Basili. Iterative and incremental development: A brief
history. Computer, 36(6):47–56, 2003. ISSN 0018-9162. doi: http://dx.doi.org/
10.1109/MC.2003.1204375.

Meir M. Lehman. Laws of software evolution revisited. In EWSPT ’96: Pro-
ceedings of the 5th European Workshop on Software Process Technology, pages
108–124, London, UK, 1996. Springer-Verlag. ISBN 3-540-61771-X. doi:
http://dx.doi.org/10.1007/BFb0017737.

Hareton K. N. Leung and Lee White. Insights into regression testing. In Proceed-
ings of Conference on Software Maintenance, pages 60–69, Los Alamitos, CA,
USA, October 1989. IEEE Computer Society Press. ISBN 0-8186-1965-1. doi:
http://dx.doi.org/10.1109/ICSM.1989.65194.

Jingyue Li and Qitao Gan. Proposal for defect analysis and bts improvement, 2009.
Internal document.

Jingyue Li, Tor Stålhane, Jan M. W. Kristiansen, and Reidar Conradi. Cost
drivers of software corrective maitenance: An empirical study in two compa-
nies. 2010a.

90 BIBLIOGRAPHY

Jingyue Li, Tor Stålhane, Jan M. W. Kristiansen, and Reidar Conradi. Enhancing
software defect tracking system to facilitate continuous software quality assess-
ment and improvement. 2010b.

Paul Luo Li, Mingtian Ni, Song Xue, Joseph P. Mullally, Mario Garzia, and Mu-
jtaba Khambatti. Reliability assessment of mass-market software: Insights from
windows vista R©. In ISSRE ’08: Proceedings of the 2008 19th International
Symposium on Software Reliability Engineering, pages 265–270, Washington,
DC, USA, 2008. IEEE Computer Society. ISBN 978-0-7695-3405-3. doi:
http://dx.doi.org/10.1109/ISSRE.2008.60.

Henry Lieberman. The debugging scandal and what to do about it. Com-
munications of the ACM, 40(4):26–29, 1997. ISSN 0001-0782. doi: http:
//doi.acm.org/10.1145/248448.248455.

Bennett P. Lientz and E. Burton Swanson. Software Maintenance Management.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1980. ISBN
0201042053.

Andrea De Lucia, Eugenio Pompella, and Silvio Stefanucci. Assessing effort es-
timation models for corrective maintenance through empirical studies. Infor-
mation and Software Technology, 47(1):3–15, 2005. ISSN 0950-5849. doi:
http://dx.doi.org/10.1016/j.infsof.2004.05.002.

Michael R. Lyu. Handbook of Software Reliability Engineering. McGraw Hill,
Boston, MA, USA, 1996. ISBN 0070394008.

Michael R. Lyu. Software reliability engineering: A roadmap. In FOSE ’07: 2007
Future of Software Engineering, pages 153–170, Washington, DC, USA, 2007.
IEEE Computer Society. ISBN 0-7695-2829-5. doi: http://dx.doi.org/10.1109/
FOSE.2007.24.

Michael S. Mahoney. Finding a history for software engineering. IEEE Annals
of the History of Computing, 26(1):8–19, 2004. ISSN 1058-6180. doi: http:
//dx.doi.org/10.1109/MAHC.2004.1278847.

George Marakas. Systems Analysis and Design: an Active Approach. McGraw-
Hill, New York, NY, USA, 2006. ISBN 0072976071.

Simon Minderhoud and Peter Fraser. Shifting paradigms of product development
in fast and dynamic markets. Reliability Engineering and System Safety, 88(2):
127–135, 2005. ISSN 0951-8320. doi: http://dx.doi.org/10.1016/j.ress.2004.07.
002.

BIBLIOGRAPHY 91

Audris Mockus and David M. Weiss. Predicting risk of software changes. Bell
Labs Technical Journal, 5(2):169–180, 2000. ISSN 1089-7089. doi: http://dx.
doi.org/10.1002/bltj.2229.

Nachiappan Nagappan, Thomas Ball, and Andreas Zeller. Mining metrics to pre-
dict component failures. In ICSE ’06: Proceedings of the 28th international
conference on Software engineering, pages 452–461, New York, NY, USA,
2006. ACM. ISBN 1-59593-375-1. doi: http://doi.acm.org/10.1145/1134285.
1134349.

Peter Naur and Brian Randell. Software engineering: Report of a conference spon-
sored by the nato science committee. Technical report, NATO, Brussels, Bel-
gium, 1969.

Frank Niessink and H. van Vliet. Two case studies in measuring software mainte-
nance effort. In ICSM ’98: Proceedings of the International Conference on Soft-
ware Maintenance, page 76, Washington, DC, USA, 1998. IEEE Computer So-
ciety. ISBN 0-8186-8779-7. doi: http://dx.doi.org/10.1109/ICSM.1998.738495.

Briony J. Oates. Researching Information Systems and Computing. Sage Publica-
tions Ltd., London, United Kingdom, 2006. ISBN 1412902231.

Akira K. Onoma, Wei-Tek Tsai, Mustafa Poonawala, and Hiroshi Suganuma. Re-
gression testing in an industrial environment. Communications of the ACM, 41
(5):81–86, 1998. ISSN 0001-0782. doi: http://doi.acm.org/10.1145/274946.
274960.

Leon J. Osterweil. Strategic directions in software quality. ACM Computing Sur-
veys, 28(4):738–750, 1996. ISSN 0360-0300. doi: http://doi.acm.org/10.1145/
242223.242288.

Leon J. Osterweil. A future for software engineering? In FOSE ’07: 2007 Fu-
ture of Software Engineering, pages 1–11, Washington, DC, USA, 2007. IEEE
Computer Society. ISBN 0-7695-2829-5. doi: http://dx.doi.org/10.1109/FOSE.
2007.1.

David L. Parnas and Paul C. Clements. A rational design process: How and why
to fake it. IEEE Transactions on Software Engineering, 12(2):251–257, 1986.
ISSN 0098-5589. doi: 10.1007/3-540-15199-0_6.

Hoang Pham. Software reliability and cost models: Perspectives, comparison, and
practice. European Journal of Operational Research, 149(3):475–489, 2003.
ISSN 0377-2217. doi: http://dx.doi.org/10.1016/S0377-2217(02)00498-8.

92 BIBLIOGRAPHY

Adam A. Porter. Fundamental laws and assumptions of software maintenance.
Empirical Software Engineering, 2(2):119–131, 1997. ISSN 1382-3256. doi:
http://dx.doi.org/10.1023/A:1009793015685.

Michael E. Porter. Competitive Strategy: Techniques for Analyzing Industries and
Competitors. The Free Press, New York, NY, USA, 1st edition, 1998. ISBN
978-0684841489.

Sam Ramanujan, Richard W. Scamell, and Jaymeen R. Shah. An experimental
investigation of the impact of individual, program, and organizational char-
acteristics on software maintenance effort. Journal of Systems and Soft-
ware, 54(2):137–157, 2000. ISSN 0164-1212. doi: http://dx.doi.org/10.1016/
S0164-1212(00)00033-9.

Kristen Ringdal. Enhet og Mangfold. Fagbokforlaget, 2nd edition, 2009. ISBN
978-82-450-0569-1.

Dieter Rombach, Marcus Ciolkowski, Ross Jeffery, Oliver Laitenberger, Frank
McGarry, and Forrest Shull. Impact of research on practice in the field of in-
spections, reviews and walkthroughs: learning from successful industrial uses.
ACM SIGSOFT Software Engineering Notes, 33(6):26–35, 2008. ISSN 0163-
5948. doi: http://doi.acm.org/10.1145/1449603.1449609.

W. W. Royce. Managing the development of large software systems: concepts and
techniques. In ICSE ’87: Proceedings of the 9th international conference on
Software Engineering, pages 328–338, Los Alamitos, CA, USA, 1987. IEEE
Computer Society Press. ISBN 0-89791-216-0.

Bruce Schneier. Secrets and Lies. Wiley, New York, 2004. ISBN 0471453803.

Rifat O. Shannak and Fairouz M. Aldhmour. Grounded theory as a methodol-
ogy for theory generation in information systems research. European Journal
of Economics, Finance and Administrative Sciences, (15):32–50, 2009. ISSN
1450-2887.

Walter A. Shewhart and William E. Deming. Statistical Method from the Viewpoint
of Quality Control. Dover Publications, Mineola, NY, USA, dover edition, 1986.
ISBN 978-0486652320.

Ruchi Shukla and Arun Kumar Misra. Estimating software maintenance effort: a
neural network approach. In ISEC ’08: Proceedings of the 1st India software en-
gineering conference, pages 107–112, New York, NY, USA, 2008. ACM. ISBN
978-1-59593-917-3. doi: http://doi.acm.org/10.1145/1342211.1342232.

BIBLIOGRAPHY 93

Sandra Slaughter and Rajiv D. Banker. A study of the effects of software devel-
opment practices on software maintenance effort. In ICSM ’96: Proceedings of
the 1996 International Conference on Software Maintenance, pages 197–205,
Washington, DC, USA, 1996. IEEE Computer Society. ISBN 0-8186-7677-9.
doi: http://dx.doi.org/10.1109/ICSM.1996.565007.

Sandra A. Slaughter, Donald E. Harter, and Mayuram S. Krishnan. Evaluating
the cost of software quality. Communications of the ACM, 41(8):67–73, 1998.
ISSN 0001-0782. doi: http://doi.acm.org/10.1145/280324.280335.

IEEE Computer Society. IEEE Standard Glossary of Software Engineering Termi-
nology: IEEE Standard 610.12-1990. Number 610.12-1990 in IEEE Standard.
1990. ISBN 1-55937-067-X. doi: http://dx.doi.org/10.1109/IEEESTD.1990.
101064.

IEEE Computer Society. IEEE Standard for Software and System Test Documen-
tation. Number 829-2008 in IEEE Standard. 2008. ISBN 978-0-7381-5747-4.
doi: http://dx.doi.org/10.1109/IEEESTD.2008.4578383.

Tor Stålhane. Kompendie i TDT4235 Programvarekvalitet og prosessforbedring.
Tapir Akademisk Forlag, Trondheim, Norway, 2008.

Anselm Strauss and Juliet Corbin. Basics of Qualitative Research: Techniques and
Procedures for Developing Grounded Theory. SAGE Publications, New York,
NY, USA, 2nd edition, 1998. ISBN 0803959400.

Charles R. Symons. Function point analysis: Difficulties and improvements. IEEE
Transactions on Software Engineering, 14(1):2–11, 1988. ISSN 0098-5589. doi:
http://dx.doi.org/10.1109/32.4618.

Alexander Tarvo. Using statistical models to predict software regressions. In
ISSRE ’08: Proceedings of the 2008 19th International Symposium on Software
Reliability Engineering, pages 259–264, Washington, DC, USA, 2008. IEEE
Computer Society. ISBN 978-0-7695-3405-3. doi: http://dx.doi.org/10.1109/
ISSRE.2008.21.

Gregory Tassey. The economic impacts of inadequate infrastructure for software
testing. Technical Report RTI Project Number 7007.011, National Institute of
Standards and Technology, Gaithersburg, MD, USA, 2002.

Robert Thibodeau. The state-of-the-art in software error data collection and anal-
ysis. Technical Report ADA075228, Battelle Columbus Labs, Columbus, OH,
USA, 1978.

94 BIBLIOGRAPHY

William Trochim and James P. Donnelly. The Research Methods Knowledge Base.
Atomic Dog Publishing, Cincinnati, OH, USA, 3rd edition, 2006. ISBN 978-
1592602919.

Andrew H. Van De Ven, Andre L. Delbecq, and Richard Koenig, Jr. Determinants
of coordination modes within organizations. American Sociological Review, 41
(2):322–338, 1976. ISSN 0003-1224. doi: http://dx.doi.org/10.2307/2094477.

Cathrin Weiss, Rahul Premraj, Thomas Zimmermann, and Andreas Zeller. How
long will it take to fix this bug? In MSR ’07: Proceedings of the Fourth
International Workshop on Mining Software Repositories, page 1, Washing-
ton, DC, USA, 2007. IEEE Computer Society. ISBN 0-7695-2950-X. doi:
http://dx.doi.org/10.1109/MSR.2007.13.

James C. Westland. The cost behavior of software defects. Decision Support
Systems, 37(2):229–238, 2004. ISSN 0167-9236. doi: http://dx.doi.org/10.
1016/S0167-9236(03)00020-4.

Robin Whittemore, Susan K. Chase, and Carol L. Mandle. Validity in qualitative
research. Qualitative Health Research, 11(4):522–537, 2001. ISSN 1049-7323.
doi: http://dx.doi.org/10.1177/104973201129119299.

Claes Wohlin, Per Runeson, Martin Host, Magnus C. Ohlsson, Bjorn Regnell, and
Anders Wesslen. Experimentation in Software Engineering: An Introduction.
Kluwer Academic, Boston, MA, USA, 2000. ISBN 0-7923-8682-5.

Min Xie and Guan-Yue Hong. A study of the sensitivity of software release time.
Journal of Systems and Software, 44(2):163–168, 1998. ISSN 0164-1212. doi:
http://dx.doi.org/10.1016/S0164-1212(98)10053-5.

Robert Yin. Case Study Research: Design and Methods. McGraw-Hill, New York,
NY, USA, 2003. ISBN 0761925538.

APPENDIX A

RESEARCH PAPER A: COST
DRIVERS OF SOFTWARE

CORRECTIVE MAINTENANCE:
AN EMPIRICAL STUDY IN TWO

COMPANIES

This research paper has been submitted to the International Conference on Soft-
ware Maintenance (ICSM) 2010. It was accepted at June 29th 2010 for presen-
tation at ICSM 2010 and to be published in the conference proceedings of ICSM
2010.

95

1

Cost Drivers of Software Corrective Maitenance: An

Empirical Study in Two Companies

Jingyue Li, Tor Stålhane, Jan M. W. Kristiansen and Reidar Conradi

Department of Computer and Information Science

Norwegian University of Science and Technology

Trondheim, Norway

{jingyue, Tor.Stalhane, Conradi}@idi.ntnu.no

Abstract—To estimate the corrective software maintenance

effort, we must know the factors that have the strongest

influence on the effort of corrective maintenance activities.

In this study, we have analyzed activities and effort of

correcting 810 software defects in one Norwegian software

company and 688 software defects in another. We compared

the defect profiles according to the defect correction effort.

We also analyzed defect descriptions and discussions

between developers in the course of correcting defects to

understand what led to the high cost of correcting some

defects. The study shows that size and complexity of the

software to be maintained, maintainers’ experience, and

tool support are the most influential cost drivers of

corrective maintenance in one company, while domain

knowledge is one of the main cost drivers of corrective

maintenance in the other company. This illustrates that

models for estimating software corrective maintenance

effort have to be customized based on the defect profiles and

cost drivers of each company and project to be useful.

Keywords-software maintenance, maintenance effort,

empirical studies

I. INTRODUCTION

Software maintenance can be costly. Some companies
spent around 80% [1] or even more than 90% [2] of their
software budget on software maintenance. It is therefore
important to estimate the possible maintenance effort to
facilitate planning and managing software maintenance.

Several studies have proposed methods to estimate the
overall software maintenance effort [3-7], and effort of
certain kinds of software maintenance, such as perfective
maintenance [8], adaptive maintenance [9-10], or
corrective maintenance [11-13]. Most of those studies first
proposed or prepared candidate cost drivers of software
maintenance, e.g. size of the system to be maintained [3],
complexity of the system [5], or experience of the
maintainers [4] by literature reviews [5], interviews with
experienced maintainers [3, 14], or brain storming [15].
Those studies then chose the most influential cost drivers
from the candidates and used them as parts of an
estimation model, e.g. neural network, multiple
regression, or pattern recognition, to estimate the
maintenance effort. The candidate cost drivers occurring

in the models varied widely. The most influential cost
drivers were often chosen solely based on statistical data
analysis, such as multiple regression analysis or principal
component analysis. Few follow-up qualitative analyses
have been performed to figure out why certain factors
outperform others when it comes to effort estimation.
Without qualitative analyses to interpret the influential
cost drivers and models generated from such statistical
methods, it is likely that the chosen cost drivers or models
“over-fit” the data and therefore are biased.

To identify the most influential factors for corrective
effort and their reasons, we have analyzed some corrective
maintenance activities, i.e. defect fixing, of software
systems of two large IT companies in Norway, named
company A and company B. In both companies, we first
introduced systematic defect classification schemes, such
as IBM ODC [16], to classify their software defects into
categories. Additionally, we have asked the developers to
classify each defect based on the actual effort spent on
fixing the defect. A few months after the defect
classification schemes were deployed; we downloaded
defect reports from these two companies and analyzed the
defect reports quantitatively and qualitatively. The results
from our study show that cost drivers of corrective
maintenance are quite different in the two companies. The
results indicate that companies must first analyze their
own defect reports and corrective maintenance effort to
identify appropriate cost drivers, and then choose an
appropriate model to predict their corrective maintenance
effort.

The rest of the paper is organized as follows. Section 2
gives an overview of previous studies on maintenance
effort estimation. Section 3 presents the study design.
Section 4 presents the results, and section 5 discusses our
findings and possible limitations of our study. Section 6
concludes.

II. RELATED WORK

A. Cost drivers of software maintenance

Jørgensen [4, 17] showed that the maintenance effort
was significantly influenced by the size of the
maintenance task, the kinds of maintenance task (i.e.

96 APPENDIX A. DRAFT OF RESEARCH PAPER A

2

corrective, perfective, or adaptive), and maintainers’
confidence on the expected task, rather than which
programming language were used, the priority of the task,
the age and size of the system to be maintained, and the
maintainers’ experience. A later study by Jørgensen et al.
[18] showed that experienced maintainers were better to
estimate the effort of small and simple corrective
maintenance tasks than inexperienced maintainers.
Niessink and Vliet et al. [19] observed that the size of the
software component to be modified had more impact on
effort than the size of the change itself. Furthermore, they
concluded that analogy and expert based estimation
outperformed the function-points based estimation. To
estimate maintenance effort, Anh et al. [5] used the
function points of the system to be maintained and ten
maintenance productivity factors, which were classified
into categories, such as engineering skill, technical
characteristics, and maintenance environment, Their
results showed that the size of the system to be maintained
was more influential than other factors on the
maintenance effort [5]. Rao and Sarda [15] examined the
cost drivers of software maintenance in a maintenance
outsourcing context. They concluded that the five most
influential factors were the multiple time zone support,
size and complexity of the system, percentage of online
system in the total system, and the nature of the service
level agreement. Sarang and Sanglikar [6] examined the
effort variances in several software maintenance projects
and showed these were significantly influenced by the
size of the maintained system, the size of the changes
made, and the overall skill level of the maintenance team.

With respect to cost drivers of corrective software
maintenance, Gorla et al. [12] used product metrics, e.g.
size, complexity, and number of variables, as cost drivers
to estimate the defect correction effort. They concluded
that the use of GOTO, structures of the IF-ELSE
constructor, and length of variable names determined the
defect fixing effort. Evanco [20] concluded that defect
locality, software complexity, number of subsystems, and
the maintainers’ familiarity with the software had the
strongest impact on defect correction effort. However, the
investigated cost drivers explained only 20% of effort
needed to locate and fix the defects [20]. A later study by
the same Evanco [21] showed that defects arising during
system/acceptance testing were more costly to be fixed
than defects discovered during unit testing. The reason for
this was that defects discovered during system/acceptance
testing might involve many subsystems and thus needed
coordination among several engineers. In the study by De
Lucia et al. [11], the size of the system to be corrected or
modified was the key cost driver for the corrective
maintenance effort.

Regarding the cost drivers for adaptive software
maintenance tasks, Hayes et al. [10] showed that the
number of lines of code changed and the number of
operators changed had the highest correlation coefficient
with the adaptive maintenance effort. Fioravanti and Nesi
[9] also investigated metrics to estimate the adaptive
maintenance effort. Their study showed that the metrics

related to class complexity and size were the most suitable
ones for predicting the adaptive maintenance effort.

The most influential cost drivers for software
maintenance effort, based on the existing studies are
summarized in Table 1, and show that different studies
observed different cost drivers.

TABLE I. MOST INFLUENTICAL COST DRIVERS FOR SOFTWARE

MAINTENANCE EFFORT FROM EXISTING STUDIES

Studies
The most influential cost drivers

for software maintenance effort
Study context

[4, 17]

Size of the maintenance task
Kind of changes

Maintainers’ confidence

Overall maintenance
effort in a telecom.

company

[18] Maintainers’ experience
Overall maintenance
effort in a telecom.

company

[19]
Size of the component to be

modified

Overall maintenance
effort of a financial

information system

[5]
Size of the component to be

modified

Overall maintenance

effort of applications
in various domains

[15]

Multiple time zone support

Complexity of the system
Percentage of online system in the

total system

Nature of the service level
agreement

Overall maintenance

effort in
maintenance

outsourcing context

[6]

Size of the maintained system

Size of the changes made
Overall skills of the maintenance

team

Overall maintenance

effort in two product
lines within securities

domain

[12]

GOTO usage
Structure of the IF-ELSE

construct

Variable name length

Corrective
maintenance effort of

COBOL systems made

by student

[20]

Defect locality

Software complexity

Familiarity with the software

Corrective

maintenance effort of

Ada projects in NASA

[21]
The phase where a defect was
discovered

Corrective

maintenance effort of

Ada projects

[11] Size of the system to be corrected

Corrective
maintenance effort of

software in various

application domains

[10]
Lines of code changed

Number of operators changed

Adaptive maintenance

effort of two student

projects and two

research projects

[9] Class complexity and size

Adaptive maintenance

effort of an Object-
Oriented music

software system

B. Defect Classification Schemes

Defect classification schemes capture aspects of
defects relating to when, where, and why a defect revealed
itself. The most popularly used defect classification
schemes are the IBM ODC [16], HP [22] scheme, and
IEEE standard [23]. In IBM ODC [16], the attributes are
organized into open and closed process steps. Attributes in
the open steps are filled in when a defect has been
detected, while closed steps attributes are filled in when
the defect has been corrected and closed. An example

97

3

attribute of the open steps is activity (when a defect was
detected, e.g. design inspection), while example attributes
of the closed steps are type (what had to be fixed, e.g.
algorithm) and qualifier (e.g. missing, incorrect, or
extraneous).

III. RESAERCH DESIGN

The goal of this study is to investigate which cost
drivers negatively impact the effort of software
maintenance - especially of the corrective maintenance -
and why. Unlike previous studies, the goal of the study is
not to build an effort estimation model to help companies
predict the possible maintenance effort, but to examine the
reasons for high effort of corrective maintenance activities
and thus to answer the question:

 What can be done to reduce software corrective
maintenance effort?

The underlying objective of this study is software
process improvement (SPI) in the national project
EVISOFT [24], which includes eleven Norwegian IT
companies. The study is also expected to investigate
factors that impact software maintenance effort to validate
or supplement observations from existing studies.

A. Investigated Companies and Projects

Company A is a software product line company with
only one product. The product is deployed on more than
50 operating systems and hardware platforms. The
company has more than 700 employees, including 400
developers and testers. The company is headquartered in
Norway and branches in more than 10 other countries.
The company releases a new version of its software every
three months. The company has a Defect Tracking System
(DTS), which records all the information of defects, from
when they are reported till the defects are corrected and
verified. Every month, thousands of new defects are
registered in this DTS system. The development teams of
this company are organized into three units. One unit
(called core) is developing the reusable or core
components to be used by all products of the product line.
Another unit (called B2C) develops a shareware version
of the product, where users can download the software for
free, but without source code. The third unit (called B2B)
is responsible for customizing, integrating, and packaging
the product for commercial customers, who sell the
product directly to end users.

Company B is a software house that builds business-
critical systems, primarily for the bank and finance sector.
The company has about 800 developers and testers and
has branches in several big cities in Northern European
countries. The company also has an internal Defect
Tracking System (DTS), which is used by developers and
tester to record and to track status of defects. Projects of
this company are usually fixed-price projects, which are
outsourced from financial companies.

B. Data preparation and data collection

As mentioned before, the main purpose of this study is
to improve the software processes to increase testing
effectiveness and to reduce defect fixing effort. Thus,
defect classification schemes were introduced in both
companies to classify defects and to enable effective
defect analyses.

In company A, the DTS included several attributes for
each defect, such as defect id, a short summary, detailed
descriptions, the creation time of a defect report, reporter
of the defect, estimated duration of the defect’s correction,
time when the defect correction is verified and closed,
priority, severity, status, resolution, tester id, test
description, version and hardware platform of the
software with defects, and detailed comments and work
log of the developers. Based on the IBM ODC [16] and
the SPI goals of the company, its DTS was revised to
include new or modified ODC defect classification
attributes. The related ODC attributes to this study are
shown in Table 2.

TABLE II. DTS SYSTEM EHNANCEMENT AND REVISION OF

COMPANY A

Added or

revised

attributes

Value of the attributes

Effort to fix
Time-consuming: more than one person-day effort
Easy-to-fix: less than one person-day effort

Qualifier Missing; Incorrect; or Extraneous

Fixing type
Extended the ODC “type” attributes to reflect the actual

defect correction activities

Root cause
Project entities, such as requirement, design, and
documentation, which should be done better to prevent

the defect earlier

In company B, the internal DTS system included
attributes like defect id, a short summary, the time the
defect is reported, reporter of the defect, priority, severity,
defect status, tester id, and test description. The DTS of
this company was also revised according to the
company’s SPI goals. Revised or added DTS attributes of
this company that are related to this study are shown in
Table 3.

In company A, six months after deploying the
enhanced DTS, we downloaded information of defects,
which were newly reported, confirmed as true defects, and
had been corrected. 810 (40%) of these defects were
chosen for later analysis, because they had the “effort to
fix” attribute filled-in. In company B, six months after the
enhanced DTS was deployed, we downloaded information
of all 1032 defects from system tests in two releases of a
large development project.

C. Data analysis

We used both quantitative methods and qualitative
methods to analyze the defect information.

 First, we divided the defects into categories
“easy-to-fix” and “time-consuming” based on the
value of the “effort to fix” attributes assigned by

98 APPENDIX A. DRAFT OF RESEARCH PAPER A

4

the developers in Company A. In company B,
they had divided the defects into three categories
based on the value of the attribute “effort to fix”

 Then, we compared the distribution of the values
of the defect classification attributes, such as
fixing type, root cause, and qualifiers for these
two categories of defects in company A, and
fixing type and root cause attributes in company
B.

 We also read the discussions between developers
during defect corrections in company A and the
summary and test description of the defects in
company B. Such information was analyzed using
the cross-case analysis method [25].

TABLE III. DTS SYSTEM EHNANCEMENT AND REVISION OF

COMPANY B

Added or

revised

attributes

Value of the attributes

Effort to fix
Simple : less than 20 minutes
Medium: between 20 minutes and 4 hours

Extensive: more than 4 hours

Fixing type
Attributes that reflect the actual defect correction
activities

Root cause

Project entities, such as requirement, design, and

documentation, which should be done better to prevent
the defect earlier

IV. DATA ANALYSIS RESULTS

We hereby present the data analysis results of each
company.

A. Data analysis results of company A

For the 810 defects of company A, their distribution
based on the value of the attribute “effort to fix” is shown
in Table 4 and show that 20% of them are costly to be
fixed. Two causes led to few defects collected and
analyzed from the B2B unit. One was that defects in this
unit usually included the customer information and
therefore blocked our access due to the non-disclose
agreement between the company and its customers.
Another reason was that projects of the B2B unit usually
had a high time-to-market pressure. Thus, few developers
would like to spent time filling in the defect classification
attributes, because it was not mandatory to fill in these
attributes in DTS.

The results of comparing several attributes of the
“time-consuming” defects with those “easy-to-fix” ones
are shown in Table 5. We see that:

 A significant more percentage of “time-
consuming” defects were due to the weaknesses
of the design phase than the “easy-to-fix” ones.

 At least 30% of the “time-consuming” defects in
all units were due to missed functionalities.

 Different types of defect led to different defect
correction efforts. For example, in the core and

B2C units, significant more percentages of “time-
consuming” defects were due to the “algorithm”
type of defects (i.e. incorrect algorithms were
implemented) than the “easy-to-fix” ones.

TABLE IV. DISTRIBUTION OF DEFECTS BASED ON THE VALUE OF

THE ATTRIBUTE “EFFORT TO FIX” IN COMPANY A

Value of the

attribute “effort

to fix”

Number of defects

with these attribute

values

Business unit that

the defects belong to

Time consuming

70 Core

96 B2C

6 B2B

Easy fix

222 Core

408 B2C

8 B2B

By analyzing discussions and conversations between
developers in the course of correcting the “time-
consuming” defects, we found several important reasons
for the high effort of fixing these defects in company A.
The number of defects of each cause is shown in Table 6.
Each cause is shortly discussed below.

 Hard to determine the location of the defect.
The product of the company has three millions
lines of code. Additionally, the company is
organized into three business units based on
business focuses. When a defect was reported, it
took time for developers to figure out the origin of
the defect, because nobody had the complete
picture of the necessary details of the product, due
to its size.

 Implemented functionality was new or needed
a heavy rewrite. Some defects were caused by
missing or wrongly implemented functions, which
did not satisfy the requirements specification. As
such defects were usually introduced in the early
development stages, such as requirement
specifications and design, large segments of the
software needed to be added or modified, which
cost developers a lot of effort.

 Long clarification (discussion) of defect. When
a defect was reported from a customer or tester,
the developers used some time to discuss with its
reporter to decide whether the newly reported
defect was a real defect or a misuse of the
product. There are a half million defect reports
stored in the DTS. Thus, developers also had to
clarify if a newly reported defect was a duplicate
of a previously reported and fixed defect.
Currently the DTS system of the company
supports only keywords based search on the
defect, which is not effective when it comes to
identify defect duplications. For example, when a
developer inputs the keyword “crash”, thousands
of defects will be returned.

99

5

TABLE V. COMPARSIONS OF OTHER DEFECT ATTRIBUTES OF THE

“TIME-CONSUMING” DEFECTS AND “EASY-TO-FIX” ONES IN COMPANY A

Defect

attribute

aPercentage of values of the defect

attributes

Business

unit

Time-consuming

defects

Easy-fix defects

Root
cause

14% in

requirements phase
37% in design

phase

49% in code phase
0% in build phase

16% in

requirements phase
14% in design

phase

67% in code phase
3% in build phase

Core

13% in requirement
phase

28% in design

phase
57% in code phase

2% in build phase

8% in requirement
phase

18% in design

phase
72% in code phase

2% in build phase

B2C

40% in requirement
phase

60% in code phase

72% in requirement
phase

28% in code phase

B2B

Qualifier

60% incorrect
3% irrelevant

37% missing

functionality

55% incorrect
5% irrelevant

40% missing

functionality

Core

51% incorrect

0% irrelevant

49% missing
functionality

45% incorrect

3% irrelevant

52% missing
functionality

B2C

25% incorrect

75% missing
functionality

0% incorrect

100% missing
functionality

B2B

Fixing
type

38% algorithm

13% other fix

8% assignment /

initialization

2% software

interfaces
3% memory

management
22% checking

3% function / class

/ object
5% timing /serial

6% standard

compliance

17% algorithm

11% other fix

19% assignment /

initialization

0% software

interfaces
5% memory

management
33% checking

5% function / class

/ object
1% timing /serial

9% standard

compliance

Core

39% algorithm
5% other fix

8% assignment /

initialization
3% software

interfaces

2% buffer /

memory

management
14% checking

23% function /

class / object
6% timing /serial

0% standard

compliance

15% algorithm
9% other fix

16% assignment /

initialization
1% interface with

3rd party software

2% buffer /

memory

management
29% checking

25% function /

class / object
2% timing /serial

1% standard

compliance

B2C

17% algorithm
17% other fix

32% assign / init
17% function /

class / object

17% standard
compliance

20% algorithm
20% other fix

20% interface with
3rd party software

20% checking

20% standard
compliance

B2B

a. The missing data of each attribute were excluded when analyzing the percentage

 The original fix introduces new defects /
multiple fixes. When developers think that they
have fixed a defect, it is always a possibility that
the new fix has introduced new defects elsewhere.
Although regression testing is used to avoid such
situations, this cannot be fully resolved, unless the
test coverage of the regression testing is very
high. In this company, some defects had to be
reopened, reanalyzed, and fixed after the initial
fix, which led to high effort for fixing such
defects.

TABLE VI. CAUSES FOR HIGH EFFORT NEED TO FIX SOME DEFECS

IN COMPANY A

Reasons for the time-

consuming defect

corrections

Numbers of defects related to

each cause in each business unit

Core B2C B2B

Hard to determine the

location of the defect
20 37 4

Implemented functionality
was new or needed a

heavy rewrite

13 29 2

Long clarification
(discussion) of defect

19 5 0

The original fix introduces

new defects / multiple
fixes

13 9 0

Others (documentation is

incorrect or

communication is bad)

2 0 0

Reasons are not clear 3 16 0

B. Data analysis results of company B

The root cause attribute of the 1032 defects
downloaded from this company has the following six
categories:

 A: misuse or defect introduced by a sub-
contractor.

 D: functional defect

 E: change request

 M: defect caused by wrong test data and in the
system build process

 S: wrong or unclear specification

 U: defect introduced during development.

We ignored defects with categories A and E. In
addition, we excluded 341 defects that had no value for
“effort to fix” attribute filled in, thus reducing the number
of defects for further analysis to 688. As the company
categorized the correction effort into three categories, as
shown in Table 3, we used the conservative values 1, 3
and 10 for these three categories respectively to calculate
the cost index. As shown in Table 7 below, the majority of
the defects with extensive correction costs stems from the
development activities, i.e. category U. Data in Table 7
show that development (U) and requirements and design
(S) account for almost 87% of all corrections costs. Using
the fixing type attributes of the defects in the categories U

100 APPENDIX A. DRAFT OF RESEARCH PAPER A

6

and S, we found that only four fixing types were needed
to account for 70% of all correction efforts. These are
Logical error (i.e. business logic of the system is wrong),
Miscellaneous error (e.g. error message when trying to
open some accounts), Wrong/unclear requirements (i.e.
the requirement specification is wrong), and Wrong
interface (i.e. the graphic user interface is wrong or
meaningless information is shown to the user).

TABLE VII. ROOT CAUSES AND CORRECTION EFFORT FOR DEFCTS

IN COMPANY B

Value of

the “root

cause”

attribute

Value of the “effort to fix”

attribute

Cost

index Percentage Simple Medium Extensive

D 4 5 2 39 2,41

M 60 17 4 151 9,33

S 63 26 12 261 16,12

T 8 1 1 21 1,30

U 187 130 57 1147 70,85

Sum 322 179 76 1619 100,00

The “effort to fix” attribute of this company had three
values. To make the data analysis of this company
comparable with the analysis in company A, we merged
defects of this company into two categories. We merge
defects having “simple” and “medium” values of the
“effort to fix” attribute of this company, because such
defects cost less than 4 person-hours to be fixed. We als
compared several attributes of the merged defects with
defects having “extensive” value of the “effort to fix”
attribute. The comparisons show that:

 A significant share of the defects fixed within
four person-hours was due to mistakes in the
graphic user interface, errors in the developer’s
test environment, or misinterpreted requirements.

 Logical defects accounted for a third of defects
fixing with more than four person-hours.

 Defects due to missing functionality or
weaknesses in the design phase lead to high
defect correction effort.

Unlike company A, company B did not ask developers
to insert information on discussions among themselves in
the DTS system. However, by qualitatively analyzing the
defect summary and test descriptions, we could still get an
insight into why the defects were introduced and the
reasons for the high effort needed for defect fixing. The
qualitative analyses show that approximately 95% of
defects were introduced due to insufficient domain
knowledge of the developers. This led to wrong/missing
functionalities or wrong/missing information displayed.
The company hired many external consultants, who had
excellent programming skills and knowledge. However,
their knowledge of the financial application domain was
limited.

V. DISCUSSION

A. Cost drivers of corrective software maintenance

effort

Jørgensen [4] showed that productivity of corrective
maintenance was significantly different from that of the
adaptive and perfective maintenance. Although Henry and
Cain [8] showed that the differences of productivity of
perfective and corrective maintenance activities were not
significant, their results illustrated that the variance of
productivity of the corrective maintenance was
significantly higher than the productivity variance of the
perfective maintenance activities. De Lucia et al. [11] also
showed that different kinds of corrective maintenance
tasks, i.e. tasks requiring software modification, tasks
requiring fixing of data misalignment, and other tasks
needed different effort estimation models.

The results of our studies have contributed to explain
why the variances of corrective maintenance can be high,
and why different effort estimation models have to be
explored for different corrective maintenance tasks. Our
data show that several factors can be important cost
drivers for corrective maintenance, such as:

 Size of the system to be maintained, as
discovered in [5] [6] [11] [19]. The larger the size
of the system, the more difficult for developers to
have a complete picture of the system and to be
able to locate and eliminate the defects quickly.
Therefore, a lot of effort may be spent on
discussing where a defect stems from.

 Complexity of the system to be maintained, as
illustrated in [9] [15] [20]. Although we did not
measure the complexity of the investigated
systems, data show in Table 6 showed that a
complex architecture of the maintained system
could impact the maintenance effort. As system
size, high system complexity also makes it
difficult to understand the system, and to locate
and correct the defects. In addition, fixing defects
in a complex system may easily introduce new
defects. Jones [26] showed that defect removal
efficiency of defects introduced due to bad fixes
was only 70%. Xie and Yang [13] also proposed
that a cost model should include the possible extra
cost from imperfect debugging.

 The phase a defect is discovered, as mentioned
in [21]. Our data show that when the defects were
introduced in the early lifecycle stages and
discovered in system or acceptance testing, many
lines of code have to be added or modified. The
heavy changes of the system will lead to high
corrective maintenance effort.

 Maintainers’ experience with maintained
system and the application domain of the
system, as discovered in [6] [18]. Data in Table 6
show that familiarity with the system itself can
reduce the time spent on discussing and locating

101

7

the defects. Analyses of defects in company B
show that sufficient domain knowledge can help
developers understand the defects quickly and
thus improve the defect fixing efficiency.

 Tool and process support. Results from
company A show that many possible duplications
of the defects led to a waste of developers’ time.
Results from company B show that the external
consultants’ lack of domain knowledge slowed
down both software development and
maintenance.

B. Generaliability of the model for estimating

maintenance effort

In study [3], seven candidate cost drivers of software
maintenance were extracted from one company and 10
candidate cost drivers of software maintenance from
another company through literature reviews and
interviews with managers and engineers. Among those
candidate cost drivers, only three of them were mentioned
in both companies. After a principal component analysis,
the candidate cost drivers in both companies were
clustered into three similar factors. However, those factors
did not explain the variance of effort in one of the two
investigated company well in a regression analysis.

Our study shows that a corrective maintenance effort
model has to be heavily customized from company
context. Company A is a product line company, which has
a very large system, a complex architecture, and a DTS
system with many defect reports. The cost drivers of
maintenance of this company are size, complexity,
maintainers’ experience, and tool support. Company B
works in several independents projects, each having a
smaller size than the single system in company A. The
main cost driver of projects we investigated in company B
is the insufficient domain knowledge. The domain
knowledge is not an issue in Company A, as all its
developers are internal ones and having a solid
understanding of the application domain.

C. Recommendations for industry

De Lucia et al. [11] examined defect rates and the
mean time between defects to help estimate the corrective
maintenance effort. We also recommend industrial
practitioners to investigate their companies’ defect reports
and find out their own cost drivers for corrective
maintenance, before using any effort estimation model to
estimate their maintenance effort. A company should
randomly choose some defect reports and:

 Classify the defects into orthogonal categories.

 Analyze the defect rate and mean time between
defects of each category of defects.

 Analyze the cost drivers and defect fixing
productivity of each category of defects.

 Use the defect profiles of a project and the mean
effort of fixing its defects to estimate the
corrective maintenance effort of similar projects.

 However, industrial practitioners must be aware that
cost drivers of corrective maintenance are dynamic, not
static. For example, in company A, once an efficient tool
to identify possible defect duplication is deployed, the
impact of defect duplication on the maintenance effort
will be reduced. In company B, once domain knowledge
of the external consultant is improved, the weight of
factor “insufficient domain knowledge” in an estimation
model should be reduced.

D. Recommendations for academia

Our results show that the cost drivers of different
companies are different. The cost drivers can also be
different in different projects of the same company. Thus,
for any proposed models to estimate the maintenance
effort, we recommend researchers to cross-validate the
models in different contexts, or at least explicitly report
the context of the company and project used for validation
in sufficient details to generalize the model properly.

E. Possible threats to validity of the study

1) Possible threats to internal validity: One threat to

internal validity of the study is that developers might

classify the defects wrongly and therefore biased our data

analysis results. The threat is eliminated by our qualitative

analysis, i.e. by reading the detailed log of the defect

fixing in company A and by reading the description of

defects in company B. We have corrected a few defects,

which were obviously wrongly classified. For example,

some defects were initially classified as “easy-to-fix” in

company A. However these defects were later re-opened

and fixed in a “time-consuming” way due to the initial

unsatisfactory fixing. We changed the classification of

such defects into “time-consuming” in our data analysis.

2) Possible threats to conclusion validity: One threat to

conclusion validity of the study is the missing data of

certain defect classification attributes. In Table 5, we

excluded those missing data in data analysis, which might

bias our results. However, such a missing data problem is

difficult to be avoided in real industrial studies, especially

when the data to be filled in are not mandatory.

3) Possible threats to external validity: Our results show

that cost drivers of maintenance effort can be very

different across companies and projects. Thus,

generalizing results of our investigated companies should

be done with caution.

VI. CONCLUSIONS AND FUTURE WORK

Several cost drivers and models have been proposed
for estimating software maintenance effort. This study
investigated around 1500 defect reports from two
companies in details. First, we introduced comprehensive
defect classification schemes in the investigated
companies. Then, developers assigned values to the defect
classification attributes during defect fixing. By analyzing

102 APPENDIX A. DRAFT OF RESEARCH PAPER A

8

the defect attributes and detailed information of the
defects, especially focusing on the differences between
the defects that were fixed quickly and those that were
fixed slowly, we observed that important cost drivers of
maintenance effort of the two companies are different, due
to different company and project contexts. The results
from our study illustrate that models used to estimate
software corrective maintenance effort have to be
customized and updated regularly based on analyses of
the defect profiles and cost drivers of defect corrections.

As the companies involved in our study will improve
their corrective maintenance efficiency after seeing results
of this study, a future study is to examine the impact of
certain software corrective maintenance improvements,
for example introducing a better defect duplication
detection tool in company A, to facilitate decision
makings of implementing these improvements.

ACKNOWLEDGMENT

This study was supported by the Research Council of
Norway through the project EVISOFT (174390/I40).

REFERENCES

[1] T.M. Pigoski, Practical Software Maintenance: Best Practices for

Managing Your Software Investment (1st edition), Wiley, 1996.

[2] E. Len, “Leveraging legacy system dollars for e-business,” IT

Professional, vol. 2, no. 3, 2000, pp. 17-23.

[3] F. Niessink, “Two case studies in measuring software

maintenance effort,” Proc. IEEE International Conference on Software

Maintenance (ICSM'98), IEEE Computer Society, 1998, pp. 76.

[4] M. Jørgensen, “Experience with the accuracy of software

maintenance task effort prediction models,” IEEE Transactions on

Software Engineering, vol. 21, no. 8, 1995, pp. 674-681.

[5] Y. Ahn, et al., “The software maintenance project effort

estimation model based on function points,” Journal of Software

Maintenance, vol. 15, no. 2, 2003, pp. 71-85.

[6] N. Sarang and M.A. Sanglikar, “An analysis of effort variance in

software maintenance projects,” Advances in Computer and

Information Sciences and Engineering, T. Sobh, ed., Springer

Netherlands, 2008, pp. 366-371.

[7] R. Shukla and A.K. Misra, “Estimating software maintenance

effort: a neural network approach,” Proc. 1st India software

engineering conference, ACM, 2008, pp. 107-112.

[8] J.E. Henry and J.P. Cain, “A quantitative comparison of perfective

and corrective software maintenance,” Journal of Software

Maintenance, vol. 9, no. 5, 1997, pp. 281-297.

[9] F. Fioravanti and P. Nesi, “Estimation and prediction metrics for

adaptive maintenance effort of object-oriented systems,” IEEE

Transactions on Software Engineering, vol. 27, no. 12, 2001, pp. 1062-

1084.

[10] J.H. Hayes, et al., “A metrics-based software maintenance effort

model,” Proc. Eighth Euromicro Working Conference on Software

Maintenance and Reengineering (CSMR'04), IEEE Computer Society,

2004, pp. 254.

[11] A. De Lucia, et al., “Assessing effort estimation models for

corrective maintenance through empirical studies,” Information and

Software Technology, vol. 47, no. 1, 2005, pp. 3-15.

[12] N. Gorla, et al., “Debugging effort estimation using software

Metrics,” IEEE Transactions on Software Engineering, vol. 16, no. 2,

1990, pp. 223-231.

[13] M. Xie and B. Yang, “A Study of the effect of imperfect

debugging on software development cost,” IEEE Transactions on

Software Engineering, vol. 29, no. 5, 2003, pp. 471-473.

[14] M. Jørgensen and D.I.K. Sjøberg, “Impact of experience on

maintenance skills,” Journal of Software Maintenance, vol. 14, no. 2,

2002, pp. 123-146.

[15] B.S. Rao and N.L. Sarda, “Effort drivers in maintenance

outsourcing - an experiment using taguchi's methodology,” Proc.

Seventh European Conference on Software Maintenance and

Reengineering, IEEE Computer Society, 2003, pp. 271.

[16] R. Chillarege, et al., “Orthogonal defect classification-a concept

for in-process measurements,” IEEE Transactions on Software

Engineering, vol. 18, no. 11, 1992, pp. 943-956.

[17] M. Jørgensen, “An empirical study of software maintenance

tasks,” Journal of Software Maintenance, vol. 7, no. 1, 1995, pp. 27-48.

[18] M. Jørgensen, et al., “The prediction ability of experienced

software maintainers,” Proc. Conference on Software Maintenance and

Reengineering (CSMR'00), IEEE Computer Society, 2000, pp. 93.

[19] F. Niessink and H.v. Vliet, “Predicting maintenance effort with

function points,” Proc. International Conference on Software

Maintenance (ICSM'97), IEEE Computer Society, 1997, pp. 32-39.

[20] W.M. Evanco, “Modeling the effort to correct faults,” Journal of

Systems and Software, vol. 29, no. 1, 1995, pp. 75-84.

[21] W.M. Evanco, “Prediction models for software fault correction

effort,” Proc. Fifth European Conference on Software Maintenance and

Reengineering, IEEE Computer Society, 2001, pp. 114-114.

[22] R.B. Gardy, Practical Software Metrics for Project Management

and Process Improvement, Prentice Hall, 1992.

[23] IEEE, "Standard Classification for Software Anomalies - IEEE

Std. 1044-1993", 1994.

[24] “EVISOFT project,” http://geomelding.geomatikk.no/evisoft/.

[25] A.C. Strauss and J. Corbin, Basics of Qualitative Research:

Techniques and Procedures for Developing Grounded Theory (2nd

edition), Sage Publications, 1998.

[26] C. Jones, Software Quality: Analysis and Guidelines for Success,

International Thomson Computer Press, 2000.

103

APPENDIX B

DRAFT OF RESEARCH PAPER B:
ENHANCING SOFTWARE

DEFECT TRACKING SYSTEM TO
FACILITATE CONTINUOUS

SOFTWARE QUALITY
ASSESSMENT AND

IMPROVEMENT

At the time of writing, this research paper has been submitted to IEEE Software
and is currently under review.

105

1

Enhancing Software Defect Tracking System to Facilitate Continuous Software

Quality Assessment and Improvement

Data in a defect tracking system is one of the most important sources of information for software quality

improvement. Most previous studies that utilized software defect data did their work after the actual

project was finished. However, for projects that rely on empirical control of processes and that deliver

working versions of software frequently, for example, by using agile methods, quality managers need to

examine problems that pertain to software quality weekly or monthly. It is therefore critical that the

defect tracking system can provide timely, relevant, reliable, and easy-to- analyze data. We investigated

defect tracking systems of nine Norwegian companies. We improved the systems in two of these

companies by introducing new defect classification attributes or customizing existing ones. Experience

gained and lessons learned from the studies provided valuable insights into benefits of and barriers to

improve an existing defect tracking system for continuous software quality assessment and improvement.

Keywords:

D.2.19.d Measurement applied to SQA and V&V, D.2.18.g Process implementation and change

1. Introduction

Following ISO9001 [1], section 7.2.3 on customer communication, most software companies have a

Defect Tracking System (DTS). Although customers, developers, and testers use the DTS mainly for

reporting defects and for tracking defect fixing status, they can also use the defect data to assess the

quality of software and to identify weaknesses in software development procedures and testing.

However, most studies that utilized the defect data for software quality assessment, such as [2], have

been retrospective, i.e. performed by researchers or dedicated quality managers after a project was

finished. Making improvements only after a project is finished is often too late, especially for software

processes that rely on the empirical control of processes and deliver versions of working software

frequently. If developers and testers are asked to identify the root causes of failures that occurred

several months before, the data they provide might not be reliable. In addition, without a DTS that is

designed specifically for Software Quality Assessment (SQA) and Software Process Improvement (SPI),

developers and testers may not be aware of or motivated to provide the data that is needed for later

defect analyses. We examined the DTS of nine Norwegian companies and found that most of the data

collected in these systems were either never used, or were irrelevant, unreliable, and/or difficult to use

for SQA and SPI.

In response to our findings, we developed improved versions of the DTS in two companies. Our purpose

was to enable decisions about SQA and SPI to be made as early as possible. Our main focus was to either

(a) introduce new defect classification attributes into existing DTS or (b) revise existing defect attributes,

106 APPENDIX B. DRAFT OF RESEARCH PAPER B

2

so that developers and testers can better provide relevant, reliable, easy-to-analyze data on defects for

process analyses in a cost-effective manner.

A few months after the companies had implemented the improved DTS; we downloaded data about the

newly reported defects and analyzed them. The defect analyses yielded valuable insights into the

weaknesses of the companies with respect to SQA that could not have been acquired without the

improved DTS. In addition, in one company, we held a workshop to collect feedback on the improved

DTS. In the other company, we conducted a survey by email for the same purpose. The collected

feedback shows that to ensure the reliability and completeness of the reported defect data, several

organizational factors should be addressed.

2. Software quality assessment and improvement

Software quality can be described from several viewpoints [3], for example:

 Users: how well does the software product meet end users’ concrete needs?

 Manufacturing: how well is the software developed the first time?

 Product: how good is the software quality according to internal quality indicators, such as code

complexity?

 Value-based: how cost-effective are the processes for software development, testing, and

defect fixing?

As mentioned above, companies can use data on software defects to track and improve the software

development and testing processes. Several schemes, such as IBM ODC scheme [4], Hewlett Packard

scheme [5], and IEEE standard scheme [6], for classifying software defects have been proposed to

analyze defect data for SQA and SPI purposes. For a defect classification scheme to be useful, it is

important to tailor the scheme to the company’s needs [7].

3. Defect data in our investigated DTS

Attributes included in the DTS of the nine companies that we have examined are marked by “X” and

shown in Table 1. We see that:

 All companies used free text for defect summary, description, or comments items. Most

companies recorded the location, priority or severity, and calendar dates of reporting and

resolving defects.

 None of the companies recorded the effort used to fix defects. Only two companies estimated

the duration or effort needed to fix defects.

107

3

 Only two companies recorded how defects were fixed. Most companies were satisfied that a

defect was fixed, without caring about how.

 Several companies, such as companies AN, CS, SN, and DA, did not use a separate item to

describe how defects were discovered. The procedures that the employees used to discover

defects are mixed with other text in the short summary or detailed description of defects.

Referring to software quality viewpoints [3] and the attributes of the defect classification schemes in

[4][5][6], we found that some defect data of our examined companies can be used for SQA and SPI

purposes:

 Six of the nine companies used a dedicated item to record the email address or name of the person

who created the defect report. It is therefore possible to distinguish between defects that internal

testers reported and those that external customers reported. Combining this information with

defect severity, companies can see how many severe defects the testing team failed to detect. The

greater the number of severe defects that the customer reports, the lower the customer satisfaction

is likely to be.

 Seven companies recorded the name of the infected “module”. This information can help

developers to identify the most error-prone parts of the system, which are obvious targets for

quality improvement.

Although a great deal of information related to SQA and SPI was available, none of the companies had

used the information for such purposes. The assembled information was mainly a data graveyard.

Furthermore, close investigation of defect data illustrated that some data were missing, and even the

data recorded were difficult to analyze or too unreliable to be used for SQA and SPI.

 Difficult to analyze: The free text in comments and work logs includes a large and diverse amount of

information. For example, developers’ complaints about the complex architecture during defect

fixing indicate that software quality is poor from the manufacturing viewpoint. Information in the

work logs indicate what should be improved to speed up the defect fixing. However, without costly

manual investigation, and/or customized text-mining tools, it is difficult to extract and interpret the

information that is needed for analysis.

 Missing and inconsistent data: Although developers or testers are required to provide complete and

accurate data, a lot of data are incomplete, because the company process allowed closing a defect

without providing information for all attributes. When the definitions of the attributes are vague,

the data that is provided will often be inconsistent. For example, we found that some people used

the name of an embedding module or subsystem as the location of a defect, while others gave the

name of a function.

108 APPENDIX B. DRAFT OF RESEARCH PAPER B

4

Table 1. Defect attributes in the examined DTS

Items in the DTS

Company name

AN CO CS PW DP SN DT SA DA

Total number of employees of the company

320 180 92.000 500 6.000 400 9.000 30.000 10

Descriptions Id X X X X X X X

Short
summary

 X X X X X

Detailed
description

X X X X X X

High-level
category*

X X X X X X X

Timestamp
and assignee

Create time X X X X X X X X X

Create by X X X X X X X

Modified
time

X X X X X X X

Modified
by

X X X

Responsible
person

 X X X X X

Due time X X

Closed time X X X

Estimated
duration to
fix

 X X

Remaining
time to fix

 X X

Impact
identification

Priority X X X X X X X

Severity X X X X X X X

Fix Status X X X X X X

Resolution X X

Release
solved

X X

Test activity Test by X X X

Test ID X X X

Test
priority

 X

Test
description

 X X X X X

Location Release X X

Module X X X X X X X

Version X X X X

Operating
system

 X

Hardware
platform

 X

Supplementary
info.

Comments X X X X X

Related link X X X

Work log X X X

* High-level category: bug/enhancement/duplication/not-bug

109

5

 Lack of necessary data: As shown in Table 1, few companies recorded the actual effort spent on

fixing defects. Further, they collected only limited information that would enable the assessment of

software quality from a value-based view.

4. Two case studies of improving DTS

We improved the DTS of two companies, namely DP and PW in Table 1, by following the process of

reusing and introducing a defect classification scheme proposed by the IEEE standard [6].

4.1. DTS improvement in company DP

Motivation: Company DP is a software house that builds business-critical systems, primarily for the

financial sector. Personnel in different departments of the company used the existing DTS in different

ways. Due to the fact that nobody used the system for anything that the developers considered useful,

there were few incentives to improve either the system or its use. However, a gap analysis that we

performed in this company showed that one of the main concerns of the testers and developers is the

company’s defect reporting and prioritization process. Another main concern is to reduce the defect

fixing effort.

Goal: We set ourselves the task of improving the DTS to provide supplementary information that the

Quality Assurance (QA) managers could use to assess their correction costs and to answer questions

such as the following:

 What were the main types of defect?

 How much effort did developers spend on defect fixing?

 What can developers do to avoid defects in the early stages of a project?

Upgrade proposal: We based our proposal for improving the system on an analysis of existing data and

suggestions that the company’s QA manager provided. To avoid abrupt changes, we did not introduce

new attributes, only revised the categories for the existing attributes.

Validation: We performed two rounds of validation of the proposal for improvement, together with the

test manager, one developer, and one project manager, through a detailed analysis of defects from

earlier projects. The improved attributes that we made to the DTS of this company, after validations are:

 Fixing type: Introduced a new set of attributes to reflect the defect fixing activities of the

developers.

110 APPENDIX B. DRAFT OF RESEARCH PAPER B

6

 Effort: Three values that classify effort to reproduce and fix defects in “simple”, “medium”, and

“extensive”. “Simple” means that the developers spent less than 20 minutes of effort.

“Medium” means effort that the developer spent was between 20 minutes and 4 hours, and

“extensive” means the effort that developer spent was more than 4 hours.

 Root cause: The attributes here are project entities, such as requirement, design, development,

and documentation, the improvement of which will enable employees to prevent defects from

occurring.

Follow-up: After the validation, we gave a presentation to developers, testers and project managers, in

which we explained what the company could use the revised attributes for and why this was important

for them. We also revised the work flow of the system, so that developers and testers had to provide all

required attributes except “effort” in order to be able to close a defect.

4.2. DTS improvement in company PW

Motivation: Company PW is a software product line company, with only one product, but they deploy

this product on more than 50 different operating systems and hardware platforms. The results of a

similar gap analysis in this company show that their QA persons prioritized a more formal DTS. The QA

manager wanted a mechanism that would allow them to analyze defect information quickly and

continuously, because the company receives thousands of defect reports every month.

Goal: To improve the DTS to provide supplementary information that the company could use to assess

software quality from a manufacturing and a value-based view and to answer questions such as the

following:

 Which testing activities discovered or reproduced most defects?

 Why did developers spend on so much time on defect fixing?

 What can the company do to prevent defects in the early stages of a project and to detect

defects before the software reaches the customers?

Upgrade proposal: We added and revised attributes of the defects of the system based on the IBM ODC

[4], the “suspected cause” attribute of the IEEE standard [6], and suggestions from the QA managers of

the company.

Validation: We performed two rounds of validation, together with one company QA manager, one

tester, and one developer, through classifying defects that had occurred in previous projects. The newly

added and revised attributes that we made to the DTS of this company, after validations, are:

111

7

 Effort: Two values that classify effort to reproduce and fix defects in “quick-fix” and “time-

consuming”. “Time-consuming” means that the developers spent more than one person-day of

effort.

 Qualifier: Attributes are “missing”, “incorrect”, and “extraneous”.

 Fixing type: Extended the IBM ODC “type” attributes with possible defect fixing activities of the

company.

 Severity: The values of the attributes are defined on the basis of the effect of the defect on

running the software, for example, crash the operating system, crash the software, significant,

and trivial.

 Trigger: Classify testing methods on the basis of the company’s testing activities of the product.

 Root cause: The attributes here are project entities, such as requirement, design, and

documentation, the improvement of which will enable employees to prevent defects from

occurring.

Follow-up: After the validation, we gave a presentation to project managers to explain the added or

revised attributes. We uploaded online manual to the DTS to help people to use the improved DTS. To

avoid making large changes of the system, we separated the newly added attributes from the existing

ones as “extra” attributes.

5. Software quality insights in the companies from improved DTS

5.1. Company DP: Defect data supplemented the results that Post Mortem Analysis (PMA) yielded

In company DP, six months after the company had deployed the new version of the DTS; we

downloaded information on 1053 defects from system tests in two releases of a large system. By

analyzing the root cause and fixing type attributes, we found that 397 of these defects were related to

development and were responsible for 71% of defect fixing effort. We found that the majority of these

397 defects comprised wrong/missing functionality or incorrect/missing information. When the QA

manager saw the results of this data analysis, she realized that those defects were caused by hiring a

large number of consultants who had excellent development and coding experience but insufficient

domain knowledge of banking systems. When the developers did not possess sufficient domain

knowledge of the intended application area, system quality suffered and many defects related to

incomplete functionality or incorrect business rationality occurred. Without such defect data and

analysis, we would not have acquired this insight, especially when an early PMA showed that developers

112 APPENDIX B. DRAFT OF RESEARCH PAPER B

8

of this company were proud of their application knowledge and preferred high-level requirements

specifications, because this allowed them to use their creativity in later design and coding.

In retrospect, we see that an early and continuous analysis of defect reports would have revealed that

the project was lacking application domain knowledge. The company could have prevented this either

by adding domain experts to the project or by writing clearer and self-contained requirements.

5.2. Company PW: Defect data helped to support project manager SPI decision

In company PW, six months after the company had deployed the improved DTS; we downloaded and

analyzed 796 defects from two projects. The developers classified 166 of these defects as time-

consuming. Simple statistical analyses of the 796 defects show that:

 60% of the defects that the developers classified as “time-consuming” were related to defects

that can be easily detected by code reviews, such as wrong algorithms, or missing exception

checking and handling.

 20% more of the root causes for “time-consuming” defects than for the “quick-fix” defects were

related to bad design. In addition, 40% of the values for the “qualifier” attributes of the “time-

consuming” defects were “missing”. This finding indicates that a lot of the defect fixing efforts

for such defects comprised new implementation, because the sought function was absent from

the initial design.

One project manager of the two examined projects had a feeling that his project needed code and

design reviews. However, he had no solid data to support his feeling to make a decision. In retrospect,

the defect analyses revealed that this project could have prevented many defects and saved defect

fixing effort by introducing more formal code and design reviews.

6. Discussion

Our defect analyses in these two companies and the feedback that we collected from the evaluation

activities illustrate important issues that companies need to take into account when improving DTS, so

that they can support continuous and more agile SQA and SPI.

6.1. Cost-effectiveness of the improved DTS

Effort of providing defect data will be compensated for by the subsequent occurrence of fewer defects.

Although developers and testers need to expend a little more effort on providing data in the improved

DTS, these efforts pay dividends. Providing information about a defect takes only person-seconds. Fixing

a defect may take several person-days. For example, in company PW, the ratio of the number of “time-

113

9

consuming” to “quick-fix” defects is 1:4. Avoiding just a few “time-consuming” defects in the early

stages of a project, by utilizing data from the DTS, will more than offset the extra effort spent on

providing defect data.

Our experience from company DP shows that developers are not against collecting data per se; rather,

they are against collecting data when they do not see any concrete benefits for them. Thus, personnel

who are supposed to provide more defect data need to be shown that the company will use the data for

something that will benefit them in their day-to-day work. For agile development, defect data that the

improved DTS provides can help quality managers identify weaknesses in software quality and

development processes right after an iteration, so that they can make decisions about improvement

early and continuously. The fast response to the defect data that developers provide will show them the

actual benefits of providing such data and motivate them to put sufficient effort into supplying it.

6.2. How to ensure quality and completeness of the data?

Training is critical. Abstract category names are found to be a problem when using defect classification

schemes [8]. Some developers of company PW complained, during the evaluation of our improved DTS,

that they did not fully understand the revised classifications, because the training of the improved DTS

was only performed within project managers. Thus, all personnel who are involved need to understand

and accept all categories that a DTS uses. That is, they need to be able to see the categories as being

relevant, they need to see the work as doable, and they must have ready access to a manual or online

help system.

Company level validation is necessary. Improving a DTS is an organizational-level task. In company PW,

although two senior members from the unit that serves commercial customers cross-checked the

proposal for improvement, comments from the evaluation showed that the improvements were

suitable mostly for this particular unit and not for the whole company. However, the classification would

be too complex if those responsible for the improvement were to include all company’s testing and

defect fixing activities in the domain of attribute values. Therefore, there has to be a tradeoff between

completeness and local suitability.

Make the right person provide the right data at the right time. A defect goes through several states in

company PW: from newly reported, confirmed by testers, to resolved and verified. In our improved DTS,

we ask the testers provide information about the attributes about which they have knowledge, such as

“trigger”, when a defect is reproduced and confirmed. We ask developers to classify effort on the basis

of their actual fix of the defect, when the defect is completely resolved and verified. However, without

support from proper work flow, sometimes information is not being provided and sometimes the

information that is provided is inconsistent. For example, we found that the “trigger” attributes were

rarely provided, because testers were not forced or reminded to provide them. From reading the work

114 APPENDIX B. DRAFT OF RESEARCH PAPER B

10

log, we also found that some defects, whose “effort” attribute were classified as “quick-fix”, should

actually have been classified as “time-consuming”. This misclassification occurred in the following

manner: developers initially classified such defects as “quick-fix” after a short defect fixing session; then,

the defect was later reopened and re-fixed in a “time-consuming” way, but not reclassified. In company

DP, we were able to revise the workflow of the DTS to remind or even force testers and developers to

provide certain defect data before they close a defect report. Therefore, missing or inconsistent data in

this company is rare.

Default values can severely bias results. Values of some of the attributes (e.g. severity) in the improved

DTS of company PW were placed in a drop-down menu with a default value to illustrate the meaning of

the attribute. The results of our analysis show that more than 70% of the defects have the default value.

By reading the work logs of many such defects, we found that some of these should have a different

severity level. We suspect that developers and testers simply skipped this attribute, when they saw that

a default value was already provided.

An orthogonal classification scheme does not mean that only a single choice is available during defect

classification. We found that the allowed attribute values should sometimes be multiple-choice to be

more applicable, as researchers also discovered in [8]. For example, the fixing of a complex defect may

include correcting the assignment of a variable and the algorithm for using the variable. Classifying fixing

type of such a defect as either an “assignment” or “algorithm” only will be incorrect.

The company should update the values of the defect attributes regularly. When the company’s

practices change, the values of the defect attributes have to follow suit. In company PW, the developers

started perform code and design reviews after we deployed the improved DTS and showed the

preliminary defect analysis results. Thus, DTS of this company should be updated to include the code

review practice in the “trigger” attributes, so that developers can classify such an activity.

6.3. How can the company facilitate continuous defect analysis?

The improvement of a DTS should be goal-oriented. Before proposing an improvement to the system,

company managers should have a clear idea of what analyses they want to perform and why they want

to perform them. Statistical analysis tools should be part of the DTS to generate appropriate defect

analyses easily and timely.

Data analysis should combine several attributes. To get a complete picture of defects, it is important to

combine data values for several attributes. In company PW, when we analyzed defect fixing activities,

we combined the “qualifier” attributes with the “root cause” attributes. We found that many costly bug-

fixing sessions were caused by missed functions from the design phase. Given that fixing such a bug is

115

11

similar to new development, it was unsurprising that employees had spent a great deal of effort on

them.

 7. Conclusion

Although we improved the DTS in the two companies DP and PW, we found that two issues warrant

further investigation.

How should the company collect and analyze data to identify the root causes of a defect reliably? In

company PW, we let developers or testers specify the root causes of each defect from different aspects,

such as wrong requirements definition or bad design. However, it turned out that developers knew only

what was happening in the code without being able to trace the causes of a defect back to earlier stages

of a project. Thus, the root cause attribute should probably be specified by different persons from

different perspectives; but by whom, and how can personnel resolve conflicting proposals? In company

DP, the statistical analysis of the defect data said a lot about what was occurring, but provided limited

information about why it was occurring. In this company, we had to identify the root causes of defects

by combining statistical analysis of defect data with information in the defect description (free text) and

knowledge of QA managers. Thus, further research needs to investigate how to facilitate root cause

analysis with less costly human involvement.

How can the company change and develop the defect scheme without affecting existing data? As we

observed in company PW, the company must develop the defect classification scheme according to new

or changed development and testing practices. However, such classification scheme changes may

invalidate previous provided data and make it impossible to compare new and old data.

8. References

[1] ISO 9001:2000, “Quality management system – Requirements”, third edition, 2000-12-15.

 [2] M. Butcher, H. Munro, and T. Kratschmer, “Improving Software Testing via ODC: Three Case Studies,” IBM

Systems Journal, vol. 41, no. 1, 2002, pp. 31-44.

[3] B. Kitchenham and S. L. Pfleeger, “Software Quality: the Elusive Target,” Software, vol. 13, no. 1, 1996, pp. 287-

296.

116 APPENDIX B. DRAFT OF RESEARCH PAPER B

12

[4] R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday, D. S. Moebus, B. K. Ray, and M. Y. Wong, "Orthogonal

Defect Classification - A Concept for In-Process Measurements," IEEE Transactions on Software Engineering, vol. 18,

no. 1, 1992, pp. 943-956.

[5] R. B. Grady, “Practical Software Metrics for Project Management and Process Improvement,” Prentice Hall,

1992.

[6] IEEE Standard Classification for Software Anomalies, IEEE Std. 1044-1993, 1994.

[7] B. Freimut, C. Denger, and M. Ketterer, ”An Industrial Case Study of Implementing and Validating Defect

Classification for Process Improvement and Quality Management,” Proc. 11
th

 IEEE Metrics Symposium, 2005, pp. 19.

[8] A. A. Shenvi, “Defect Prevention with Orthogonal Defect Classification,” Proc. of the India software engineering

conference, 2009, ACM press, pp. 83–88.

117

APPENDIX C

PRESENTATION SLIDES FROM
MEETING AT COMPANY X 23TH

MARCH 2010

The following slides were developed to the meeting with Company X on the 23th
March 2010. The slides were created by J. M. Kristiansen, Jingyue Li and had
contributions from Reidar Conradi. The slides have the name of Company X re-
placed with “Company X”, and representatives from Company X have been given
pseudonyms like “Person A”.

119

11.06.2010

1

Company X and EVISOFT/NTNU

SPI research with gap- and defect
analysis, 2008-2010

Manager feedback meeting

23 March 2010

Reidar Conradi, Tor Stålhane,

Jingyue Li, Jan M. W. Kristiansen - NTNU

Outline

• IDI department at NTNU

• Background of EVISOFT and Company X

• Plan and status of the studies

• Results of two studies

– S1: Gap analysis (2008)

– S2: Defect analysis by improving the Bug Tracking
System. BTS (2009-2010)

• Recommendations for future studies

• Discussion
2

120 APPENDIX C. PRESENTATION SLIDES

11.06.2010

2

IDI Department at NTNU

• 140 employees – 31 nationalities!
– 45+ teachers (faculty w/ six women), 22 tech./adm., 52 PhD fellows, 20

temporary researchers/postdocs/teachers incl. 8 adjunct teachers (II”ere).

• 800 full-time students
– participating in 7 study programs
– 6000 individual exams per year
– 150 master candidates per year
– 10 PhD candidates per year.

• Annual budget (2008):
– 67 MNOK from NTNU
– 18 MNOK from projects.

• Important value chain: teachers – postdocs – PhD
students – master students – bachelor students –
IT industry.

3

IDI Department at NTNU (cont’)
• 166 counting ”Frida” publications in 2007, 159?? in

2008, ?? in 2009.
• 11 research groups
• Software engineering (SE) group in 2009:

– 5,2 teachers, 2 researchers, 17 PhD fellows – 13 nationalities!
– Papers: 44/61 of 166/196 (2007), xx/47 of 1xx/181 (2008), xx/nn of

1xx/163 (2009);
i.e. 25 % of IDI total, ca. 20 each year w/ foreign colleagues; 500
papers in last 10 years.

– Ca. 25 master candidates/year; 3 PhDs in 2009, 4? In 2010.
– 7 MNOK in external projects (40% of IDI total.)

6/11/2010 Manager feedback meeting 4

121

11.06.2010

3

Context
• EVISOFT

– User-driven research project financed by Norwegian Research
Council (2006-2010), 8.5 mill. NOK in 2010.

– Focus: Experience-driven Software Process Improvement (SPI)

– 3 research partners: SINTEF, NTNU, and UiO

– Ten IT companies in Norway: ABB, DNV Software, EDB, Firm,
Geomatikk IT (coord.), Kongsberg Spacetec, KnowIT, Software
Innovation, Telenor, and Vital.

• EVISOFT and Company X software
– Company X Software became the 11th industry partner in Oct.

2007, cooperating with NTNU researchers.

– Company X part formally started in Nov. 2007.

5

Goals (EVISOFT plan document)

• Company X Software’s business goals
– Increase effectiveness and efficiency of software testing

– Increase productivity via reuse in development and testing

– Increase estimation accuracy for project/release management

– Increase experience sharing cross companies

• Participants
– Company X initiator: Person A, Person B, Person C

– Company X current contact person: Person D

– NTNU: Reidar Conradi, Tor Stålhane, Jingyue Li, Jan M. W.
Kristiansen (2009-2010)

– EVISOFT: Tor Ulsund/ later Per Øyvind Markussen (EVISOFT
project manager)

6

122 APPENDIX C. PRESENTATION SLIDES

11.06.2010

4

Original research plan and activities
ID Activity name Company

Effort*

R&D

effort*

A1 Administration 50+150 50+30

A2 Improved Defect Management (done):

revised defect classification system and related processes to capture,

analyze and follow up defects

150+570 50+120

A3 Improved Release Management :

improved overall release processes for planning of configurations,

testing (especially) and reuse

320+860 75+100

A4 Improved SPI Management:

gap analysis (done), benchmarking, PMAs and use of wiki technology to

manage and disseminate revised processes

110+570 50+100

A5 Dissemination – internally and externally 30+70 25+100

SUM for 2007: 660 250

SUM for 2008: 2220 450

* Person-hours in 2007 and 2008

* Person-hours in 2009 is not summarized yet

S1: Gap analysis (Jan. - May 2008)

8

• Gap analysis is an internal status survey with
an important extra question added:

How important is this for the future?

• This enables us to tell how far away we are –
how difficult is it to get there.

123

11.06.2010

5

S1: Choosing improvement goals

Improvement activities should in our case be
chosen based on:
– Results from the gap analysis – what is considered

important?

– Cost and benefits – is it worth it? SPI is a company
investment like any other.

– The activity’s ability to support the company’s
overall business goals – will this lead us in the
right direction?

9

S1: Some gap analysis results

• Items ranked as important by all participants:
– The ability to develop products/services that can

be sold

– The ability to identify market needs

– An established process that can be used to
understand the customer’s expectations to the
product

– The ability to estimate needed effort

– The ability to think long-term quality instead of
short-term problem solutions

10

124 APPENDIX C. PRESENTATION SLIDES

11.06.2010

6

S1: Some gap analysis results
(cont’)

• Items ranked as important by Company X
developers only:
– The ability to make optimal code in relation to quality,

maintainability and functionality

– The ability to avoid risk-prone solutions

– A process/standard for module testing

– Failures/defects are reported in a formal way

– Defect management is prioritized

• But no decision on a general, internal SPI initiative.

11

S2: Goals of BTS Improvement

• Gap analysis shows the following important
items:
– The ability to avoid risk-prone solutions (development)

– Failures/defects are reported in a formal way (development)

– Defects are prioritized (development)

• Motivation of the BTS improvement
– Provide timely, relevant, reliable, and easy-to-analyze defect

information for evidence-based software quality assessment
and software process improvement

– “4-2-4 rule”: 40% of Company X developers works with
testing: room for improvements?

12

125

11.06.2010

7

S2: Foci of BTS improvement

• To answer the following Questions (Qs):
– Q1: Effectiveness of testing methods (Which testing

methods discover most defects before release?)

– Q2: Testing should be improved (Which testing methods
reproduce most defects reported by customers?)

– Q3: Most time-consuming defects (Which defects are the
most time consuming ones to be fixed?)

– Q4: Possible early prevention (Which could be done to
prevent the defects in early phases of a project?)

• Use IBM’s Orthogonal Defect Classification (ODC) to
extend and customize a defect classification scheme.

13

S2: Implemented BTS extensions as
extra ”ODC” attributes

• Q1: “Which testing methods discover most pre-release
defects?” and Q2: “Which testing methods reproduce most
post-release defects?”
– Activity to discover defects, with values such as performance testing,

security regression testing, and URL top-list browsing testing etc.

• Q3: “Which defects are the most time-consuming ones to be
fixed?”
– Effort to reproduce, locate and fix, with 4-5 ordinal values such as easy-

fix and time-consuming – not 12:53:97 person-hours!

• Q4: “How to prevent (ripple) defects in early project phases?”
– Defect type, with values as algorithm, assignment, relationship etc.

– Root causes, with values as requirement, design, code, …

14

126 APPENDIX C. PRESENTATION SLIDES

11.06.2010

8

Status of using the ODC defect
classification scheme

• ODC defect attributes introduced in May
2009.

• 80+ projects used ODC defect classification
scheme, and classified over 2137+ defects.

• Core and Desktop projects were the main
users; other projects used it less frequently.

15

S2: Some Analysis activities

1. Downloaded 836+ defect reports from Core
and Desktop projects for analysis (by NTNU)

– 166 classified as time-consuming; 670 as quick-fix

2. Read the log of time-consuming defects and
classified these manually (by NTNU)

3. Performed email survey to collect feedback (by
Person A at Company X): result??

16

127

11.06.2010

9

S2: Findings from analysis of filled-
in defect attributes

• Time-consuming defects with top priority (P1) covered 28% of the
Core project and 20% of the Desktop projects.

• 35% of time-consuming defects in the Core project were
attributed to design, 10% of the quick-fix ones in the Core were
about design.

• 28% of the defects were classified as checking, followed by 22%
as algorithm, and 15% as assignment in these two projects.

• Thus:
– It is necessary to reduce the number of time-consuming defects

– It is necessary to review the design more formally

– It is necessary to introduce code review, since checking and assignment
defects can be easily removed by quick code reviews

17

S2: Observations from analyzing
defect classification data

• Missing values: 20-40 % of every ODC attribute
have their values missing (even if 91 % of such
defect reports are “resolved”).

18

0

20

40

60

80

100

120

Missing Values

Quick Fix (%)

Time Consuming (%)

128 APPENDIX C. PRESENTATION SLIDES

11.06.2010

10

S2: Observations … (cont’)

• Default values severely biased results
– Ex. Severity have the automatic default value Significant,

and 80% defects have such a severity

19

S2: Findings from reading debugging
log of time-consuming defects

6/11/2010 Manager feedback meeting 20

Reasons for the costly debugging Number of cases Suggestions

Core Desktop

Hard to determine the location of the
defect

22 25 Need to further analyze
these defects

Long clarification (discussion) of defect 20 3 Need to facilitate
decision making process
in the core project

Implemented functionality was new or
needed a heavy rewrite

12 23 Need to improve design
of desktop project

The original fix introduces new defects
/ multiple fixes

9 6 Better regression testing
in both projects

Reasons are not clear 4 9

Others (documentation is incorrect or
communication is bad)

2

Four kinds of time-consuming:

-Time consuming to locate

-Time consuming to decide

-Time consuming to fix

- Time consuming from ripple

effects

129

11.06.2010

11

S2: Feedback from BTS users

• Defect classification needs to be more
customized and updated according to
Company X’s context

• Training is needed

• Regular feedback channels are missing (like
today’s meeting)

• Change some attribute values from single- to
set-values (multiple choice)

21

Recommendations: Improve the
BTS further

• The system is on the right track, but small
improvements still needed:

– All relevant defect classification data should be filled-in,
enabling better prevention of critical defects and less time-
consuming debugging.

• Further update the ODC classification scheme based
on business goals of the company, our analyses and
users’ feedback

• Improve the workflow of BTS:

– I.e., let ”right person” fill in ”right data” at the ”right time”

22

130 APPENDIX C. PRESENTATION SLIDES

11.06.2010

12

Reminder: Success or failure of SPI
Success is achieved by:
• Involving personnel in the whole process
• Commitment from management
• Start with simple, but highly visible improvements
• Steady course

Failure is achieved by:
• Uninterested management
• Frequent change of course
• Trying to solve all problems at once

23

We need support
from management
and give training to

BTS users

Discussions

• Plan to improve the BTS further with defect
classification scheme

• Further analysis on the time-consuming
defects, especially those in the B2B projects

• Other current foci of Company X?

6/11/2010 Manager feedback meeting 24

131

APPENDIX D

MEETING MINUTES APRIL
29TH 2010

The meeting was held as a follow up and status meeting from the previous meeting
at the March 23rd 2010. The minutes have the name of Company X replaced with
“Company X”. The minutes were written by Li, Conradi and representatives from
Company X.

133

Minutes from meeting at April 29th 2010

1. S1. Adjustment of defect attributes (ODC): to correct/improve the defect classification

scheme, based on feedbacks from users.

1. Revise the default value of some attributes of the BTS system, for example severity

2. Add online tips of the “metadata” classification attributes to make those attribute

values/terms easy to be understood by the users

3. Further revise the classification attribute values to make them precise, easy to be

understood, and simple, and validate them in some projects

2. S2. Task flow in general: to address missing values in the improved BTS system, by revising

the task flow around the BTS to let “right person” fill in “right data” at the “right time”.

1. Find a mean to remind developers/testers fill in the “metadata” at certain state of the

bug reporting

3. S3. Cost-benefit model for defects: to address the “time-consuming” defects in projects to

speed up project deliveries and to ensure software quality. We need to analyze the

development and debugging cost data of projects to find out the possible problems and

corresponding solutions.

1. Check more B2B projects to see if there are more “metadata” filled-in by some

projects. Currently, we have only access to three projects (i.e.) with limited

“metadata”.

4. S4. Defect management a bit more general: to analyze defect data from more projects to

find out problems of software quality and possible solutions.

1. After revision of the defect classification schema of the BTS and collect more data,

the data will be analyzed for defect management purposes.

2. The main purpose of the software quality improvement is to find out the bugs in core

engine and UI layers as early as possible, before they were delivered to the delivery

projects.

3. Currently, need to roughly decide the software quality improvement focuses, in order

to plan the expected data analysis methods

5. S5. Present EVISOFT work: to advertise the results from using the new ODC and the

improved BTS, so that more developers and testers will start using these improvements.

1. After the revision of the defect classification schema and validations in a few projects,

developers and testers of the whole company will be trained to use the schema

properly.

6. S6. A trial of a new bug clone detector: we have recently developed a tool to find cloned

bugs across products in the product line. Since we found many duplicated bugs across

products in the product line, we would like to try this tool to see whether it can help to reduce

duplicated bugs. The prototype of the tool is almost ready; we just need some projects to try

out the tool and validate it.

1. Company X going to check if there is a high level of code clone/code similarity in the

code and the feasibility of trying the tool

7. S7. Find bug duplication across projects: When a new bug is reported, the developers and

testers want to know whether the bug is a new one or is a duplicated one that has been fixed

by other projects. Currently, the system provide only limited key word search or test case

search to find duplicated bugs. The results are not satisfactory.

1. NTNU will investigate if there is any method to address this issue

134 APPENDIX D. MEETING MINUTES APRIL 29TH 2010

APPENDIX E

SCRIPT FOR DEFECT REPORT
ANALYSIS

This appendix lists a sample script of the technique that was used to extract data
from defect reports. The script was originally developed for the specialisation
project during the fall of 2009 in Kristiansen [2009].

N e c e s s a r y i m p o r t s
from s y s import s t d i n
from B e a u t i f u l S o u p import B e a u t i f u l S o u p
import r e
import os

The pa th o t t h e f i l e
p a t h = ’ p a t h _ t o _ f i l e ’

The name o f t h e a t t r i b u t e t o be pa r se d
a t t r i b u t e = ’ a t r i b u t e _ n a m e ’

d i s c o v e r d i c t = {
’ c a t e g o r y 1 ’ : 0 ,
’ c a t e g o r y 2 ’ : 0 ,
’ c a t e g o r y 3 ’ : 0 ,
’ c a t e g o r y 4 ’ : 0 ,
’ Not s p e c i f i e d ’ : 0 ,

}

a t t r i b u t e s = [d i s c o v e r d i c t]

P ar se s t h e a t t r i b u t e and r e t u r n s a d i c t i o n a r y w i t h e i t h e r
t h e a t t r i b u t e i n c r e m e n t e d or n o t s p e c i f i e d i n c r e m e n t e d .
def p a r s e C u s t o m D a t a A t t r i b u t e (e lement , a t t r i b u t e , d i c t i o n a r y) :

p a r e n t = e l e m e n t . f i n d (t e x t = r e . compi l e (a t t r i b u t e))
i f p a r e n t :

v a l u e = p a r e n t . f i n d N e x t (’ t d ’)
p r i n t v a l u e
i n c = F a l s e

135

136 APPENDIX E. SCRIPT FOR DEFECT REPORT ANALYSIS

f o r key in d i c t i o n a r y . keys () :
i f v a l u e . f i n d (t e x t = r e . compi l e (key)) :

d i c t i o n a r y [key] = d i c t i o n a r y [key] + 1
i n c = True
break

i f not i n c :
p r i n t " I DIDN ’T FIND THIS VALUE! ! "

e l s e :
d i c t i o n a r y [’ Not s p e c i f i e d ’] = d i c t i o n a r y [’ Not

s p e c i f i e d ’] + 1
re turn d i c t i o n a r y

e x t L i s t = [" . htm " , " . h tml "]

b u g L i s t = os . l i s t d i r (p a t h)
i = 0
f o r f i l e n a m e in b u g L i s t :

i f os . p a t h . i s f i l e (p a t h + f i l e n a m e) and
os . p a t h . s p l i t e x t (f i l e n a m e) [1] in e x t L i s t :
i = i + 1
p r i n t " P r o c e s s i n g : " + f i l e n a m e

f = open (p a t h + f i l e n a m e , ’ r ’)
c o n t e n t s = f . r e a d ()

doc = B e a u t i f u l S o u p (c o n t e n t s)

ODC da ta
c u s t o m d a t a = doc . f i n d (’ t a b l e ’ , i d = ’ t a b 2 ’)
d i s c o v e r d i c t = p a r s e C u s t o m D a t a A t t r i b u t e (cus tomda ta ,

a t t r i b u t e , d i s c o v e r d i c t)

p r i n t s t h e r e s u l t s
f o r d i c t i o n a r y in a t t r i b u t e s :

f o r key in d i c t i o n a r y . keys () :
p r i n t key + " \ t " + s t r (d i c t i o n a r y [key])

p r i n t " \ n \ n "

Listing E.1: A sample script of how data was extracted.

To run the script, one would type:

py thon s c r i p t n a m e . py > o u t p u t . t x t

Listing E.2: How to run the script.

	Title Page
	Problem Description
	Preface
	Executive Summary
	Table of Contents
	List of Tables
	List of Figures
	Acronyms
	Introduction
	Motivation
	Project Context
	Thesis Structure

	State of the Art
	Software Engineering
	Background
	The Software Development Life Cycle

	Software Quality
	Costs of Software Quality
	Software Quality Models

	Software Maintenance
	Software Defects
	The Behaviour of Software Defects
	Software Process Improvement with Software Defects
	Software Defect Reporting
	Software Defect Classification
	Software Defect Correction

	Verification of Software
	Dynamic and Static Analysis
	Software Testing Process

	Relevant Research Methods
	Summary

	Context of Company X
	Background
	Projects
	Project Structure
	Projects Under Study

	Defect Tracking System
	Defect Reports
	Defect Report Work Flow
	Defect Report Attributes

	Research Design
	Research Questions
	Case Study Strategies
	Research Design
	Data Set and Collection
	Research Design of Quantitative Study
	Research Design of Qualitative Study

	Validity

	Results
	General Remarks
	Qualitative Analysis
	Quantitative Analysis
	Comparison of Extensive Effort Defects in the Projects
	Comparison Between Extensive and Little Effort Defects

	Discussion and Evaluation
	Discussion
	Results from Qualitative Analysis
	Results from Quantitative Analysis
	Comparison versus Another Organisation
	Current Research Versus This Study

	Validity Threats

	Conclusion
	Main Contributions
	Further Work
	Topics Specific to Company X
	Software Defect Research

	Recommendations
	Conclusion

	Glossary
	Bibliography
	Research Paper A: Cost Drivers of Software Corrective Maintenance: An Empirical Study in Two Companies
	Draft of Research Paper B: Enhancing Software Defect Tracking System to Facilitate Continuous Software Quality Assessment and Improvement
	Presentation Slides from Meeting at Company X 23th March 2010
	Meeting Minutes April 29th 2010
	Script for Defect Report Analysis

