
June 2010
Alf Inge Wang, IDI
Bian Wu, IDI

Master of Science in Computer Science
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Lecture Quiz 2.0
A service oriented architecture for educational games

Erling Andreas Børresen
Knut Andre Tidemann

Problem Description
Lecture Quiz is a game similar to Sony's Buzz game used in lecture halls for rehearsing theory and
making learning more fun for the students. The game consists of a server with questions and
statistics, a student client running on iPhones/iPod Touch, mobile phones or lap-top PCs, and a
teacher client running the game shown on a video projector.

The goal of this project is to continue the development of a flexible platform and software
architecture for Lecture Quiz games that can provide various game modes and is easy to extend.
Quality focus in this project is on "fun-ability", usability, and modifiability. This project can be
classified as a mixture of software engineering, software architecture and creativity. It will also be
important to develop various game-modes and run user-tests.

Assignment given: 15. January 2010
Supervisor: Alf Inge Wang, IDI

Abstract

This project takes the work done by Mørch-Storstein and Øfsdahl [1] and builds
a stable and flexible framework for the Lecture Quiz platform. This platform is
a game-like system where teachers can hold quizzes in lectures to increase inter-
activity with students. The previous prototype was a proof of concept application
and the functionality was hard coded to get a working application as fast as possi-
ble. This resulted in a system that was unstable and difficult to expand.

With this in mind, we have created an architecture with the focus on easy expan-
sion and modifiability to let new developers interested in the Lecture Quiz plat-
form create new and different content with ease. The applications we have built
consist of a server and multiple clients. Each game has a teacher client running on
a computer attached to a projector and multiple student web clients accessible by
laptops and smart phones. The students log on to the web client and answer the
questions shown on the projector in a game-like manner.

We have performed an experiment in a lecture to get feedback from students on
how they liked the system. This experiment was performed by running through
a quiz in the class and the students delivered a questionnaire afterwards. The
students were positive to the system and found it easier to use than the application
created by the previous project[1] and many would like to use this system as a
recurring element in lectures.

The main result of this project is the completed framework including both clients
and the server. It enforces few restrictions on new game play mechanics new de-
velopers would like to implement and the base is a stable system. The limitations
found in the first Lecture Quiz prototype have been solved and the framework
is ready to be taken to the next step which includes further development of the
clients to create a spectacular gaming experience.

ii

Preface

This report is a master thesis at the Department of Computer and Information
Science (IDI) at the Norwegian University of Science and Technology (NTNU).
It is based on the work done by two students in the master thesis Game Enhanced
Lectures[1] in 2007.

We would like to thank our supervisor Alf Inge Wang for his great guidance and
enthusiasm for this project. We would also like to thank the students of the course
Software Architecture for participating in our lecture experiment.

Trondheim, 11.06 2010

Erling A. Børresen Knut A. Tidemann

iii

Contents

I Introduction 1
1 Introduction 3

1.1 Problem Definition . 4
1.2 Project Context . 5
1.3 Reader’s Guide . 5

II Research Questions and Method 7
2 Research Questions 9
3 Research Method 11

3.1 Development Method . 12
3.2 Experiment Method . 13

3.2.1 System Usability Scale (SUS) 14
3.2.2 Subjective Assessment 14

III Prestudy 15
4 Previous Work 17

4.1 Game Theory . 17
4.2 State of the Art . 19
4.3 Lecture Quiz 1.0 . 22

5 Technologies 27
5.1 Programming Languages . 27

5.1.1 Java . 28
5.1.2 C# - Microsoft .NET Framework 28

5.2 Graphics Library . 28
5.2.1 OpenGL . 29
5.2.2 Direct3D . 29

5.3 Web Deployment . 29
5.4 Communication Frameworks . 30

5.4.1 Web Services . 31
5.4.2 Own Protocol . 32

5.5 Databases . 33
5.5.1 MySQL . 33
5.5.2 PostgreSQL . 33

v

IV Own Contribution 35
6 Requirements 37

6.1 Functional Requirements . 37
6.2 Quality Requirements . 38

6.2.1 Modifiability . 39
6.2.2 Usability . 40
6.2.3 Performance . 42
6.2.4 Other attributes . 43

7 Architecture 45
7.1 Logic View . 45

7.1.1 Game Server . 46
7.1.2 Teacher Client . 46
7.1.3 Student Client . 47

7.2 Process View . 48
7.2.1 Teacher Client . 48
7.2.2 Student Client . 50

7.3 Deployment Views . 52
7.3.1 One Server . 52
7.3.2 Three Servers . 52
7.3.3 Multiple Game Servers 54

8 Chosen Technologies 57
8.1 Programming Language . 57
8.2 Graphics Library . 58
8.3 Web Deployment . 58
8.4 Communication Framework . 58
8.5 Database System . 59

9 Implementation and Design 61
9.1 Lecture Quiz Game Service . 61

9.1.1 Configuration . 63
9.1.2 Game Modes . 63
9.1.3 Quiz Editing . 64

9.2 Database design . 65
9.3 Teacher Client . 66

9.3.1 Game Modes . 68
9.3.2 Quiz editor . 70
9.3.3 Configuration . 71

9.4 Student client . 72
9.4.1 Model View Presenter 73
9.4.2 Application control . 74
9.4.3 Configuration . 75
9.4.4 Game Modes . 75

10 User’s and Developer’s Guides 77
10.1 Deployment . 78

10.1.1 Lecture Quiz Service . 78
10.1.2 Database Setup . 79
10.1.3 Teacher Client . 79
10.1.4 Student Client . 80

10.1.5 Developer Environment 81
10.2 The Lecture Quiz Service API 81
10.3 Creating a Game Mode . 82

10.3.1 Lecture Quiz Service . 82
10.3.2 Teacher Client . 93
10.3.3 Student Web Client . 101

V Evaluation 105
11 Lecture Experiment 107

11.1 Experiment Delimitation . 107
11.2 Experiment Context . 108

11.2.1 Participants and Environment 108
11.2.2 Success Criteria . 108

11.3 Experiment Execution . 109
11.4 Experiment Results . 110
11.5 Experiment Evaluation . 115
11.6 Experiment Conclusion . 118

12 Evaluation 121
12.1 Research Method . 121
12.2 Development Method . 122
12.3 Requirements . 123

12.3.1 Quality Requirements . 126

VI Conclusion 129
13 Conclusion 131
14 Further Work 135

14.1 Improve Clients . 135
14.2 Implement Tags and Searching 136
14.3 Improve Quiz Editor . 136
14.4 Security . 137
14.5 Additional Game Modes . 137
14.6 Run Larger Empirical Tests . 138

VII Appendices 139
A Questionnaire 140
B Database SQL file 143
C The Lecture Quiz Service API 147

C.1 Web service Procedures . 147
C.1.1 authenticate . 148
C.1.2 endQuiz . 149
C.1.3 getAvailableGameModes 150
C.1.4 getAvailableQuizzes . 151
C.1.5 getCurrentGameStatus 152
C.1.6 getCurrentQuestion . 153

C.1.7 getGameModeInfo . 155
C.1.8 getOverallStatistics . 156
C.1.9 getQuestion . 157
C.1.10 getQuestionList . 159
C.1.11 getQuestionStatistics . 160
C.1.12 getQuiz . 162
C.1.13 getServiceVersion . 163
C.1.14 joinQuiz . 164
C.1.15 newQuiz . 165
C.1.16 saveQuiz . 167
C.1.17 startNextQuestion . 169
C.1.18 submitAnswer . 170

C.2 Exported data types . 172
C.2.1 Answer . 172
C.2.2 QuestionInfo . 172
C.2.3 QuizInfo . 173
C.2.4 FullQuestionInfo . 174
C.2.5 FullQuizInfo . 174
C.2.6 StatisticsEntry and ParameterEntry 175
C.2.7 GameModeInfo . 175
C.2.8 GameStatus . 176

List of Figures

3.1 The Scrum process . 13

4.1 Genre relevance for theoretical knowledge [1] 19
4.2 Ez ClickPro sensor and remote controls [1] 21
4.3 Buzz! cover and controllers [1] 21
4.4 Screenshots of the application developed at University of Mannheim

[2] . 24
4.5 Screenshot of the mobile client of Lecture Quiz 1.0 [1] 25
4.6 Screenshot of the teacher client of Lecture Quiz 1.0 showing a

question [1] . 25
4.7 Screenshot of the teacher client of Lecture Quiz 1.0 showing statis-

tics for a question [1] . 26

7.1 Client-server architecture . 46
7.2 Game server architecture . 47
7.3 A typical teacher client session 48
7.4 A student client session . 50
7.5 A simple setup of Lecture Quiz 53
7.6 A setup of Lecture Quiz with three servers 54
7.7 A setup of Lecture Quiz with multiple game servers 55

9.1 Core class dependencies of the Lecture Quiz Server 62
9.2 ER diagram of database . 66
9.3 Core class dependencies of the Lecture Quiz Teacher Client 67
9.4 Screenshot of a question in the teacher client 70
9.5 Screenshot of question statistics in the teacher client 71
9.6 Core class dependencies of the Lecture Quiz Student Client 73
9.7 Screenshot of the login user interface of the student client 74
9.8 Screenshot of the user interface for displaying questions in the

student client . 76

11.1 Q1: I think that I am an experienced computer user 111
11.2 Q2: I think I payed closer attention during the lecture because of

the system . 112
11.3 Q3 - I found the system had a distracting effect on the lecture . . . 112
11.4 Q4 - I found the system made me learn more 113
11.5 Q5 - I think I learn more during a traditional lecture 113

ix

11.6 Q6 - I found the system made the lecture more fun 114
11.7 Q7 - I think regular use of the system will make me attend more

lectures . 114
11.8 Q8 - I feel reluctant to pay 0.5 NOK in data transmission fee per

lecture to participate in using the system 115

Part I

Introduction

1

2

Chapter 1

Introduction

Today, lectures at university level are still very traditional. The use of slides and
electronic notes has taken part of the lectures, but they are still mostly one way
communication. The teacher will talk about the subject and the students will listen
and take notes. This technique may be thought of as boring and have few ways to
keep the students concentrated.

The technology has now evolved, and smart phones, laptops and wireless net-
working has become normal for many university students. This brings new op-
portunities for interaction in the lecture. With game technology becoming more
important on NTNU, Mørch-Storstein and Øfsdahl [1] proposed in 2007 a way to
make the lecture more fun and interactive. They made a prototype of a quiz game
called Lecture Quiz, that made it possible for the students to participate in a group
quiz using their mobile phone or laptop to answer. The questions were presented
on a big screen and the teacher had the role as host in the game show. This proto-
type was created in a hastily manner to prove that the concept was viable. Due to
the nature of the development part of the project, much of the features was hard
coded and not easy to expand. This resulted in an unstable application with many
limitations.

This master thesis will use the idea from [1] and make a new version from ground

3

up. The outcome will hopefully be used as a basis for further development and
make a change in how students and teachers interact in the future.

1.1 Problem Definition

The implementation of Lecture Quiz 1.0 was clearly a prototype that was made as
a proof of concept and lacked good methods for extension and modifiability. With
everything hard coded it was difficult to extend this prototype into something that
could be used in a larger scale. There were issues with an unstable application
and the architecture it self was not built for actual usage. This could be easily
identified by the many limitations, such as only one session allowed per server
and no ability to edit quiz data from a user perspective. In the light of this, the
aim of this master thesis is to come up with a good architecture that supports both
extensions and modifiability in a good way, and on the same time has a focus on
the possibility that the application may be used in many, and big, lectures, and
thus must be scalable.

When the architecture is decided we will choose the best fit technologies for this
architecture and implement a working solution. The main focus will be to give
a good and solid base for others to extend and further develop the system in the
future, and thus hopefully making it a regular part of university lectures.

After the implementation phase we will test our solution in a real lecture. This
experiment will be compared to the similar experiment of Lecture Quiz 1.0 in
2007. Such test will give vital feedback on how well the concept is received by
regular university students.

4

1.2 Project Context

During the later years the Norwegian University of Science and Technology has
had an increasing focus on computer games in their research. There is now estab-
lished a new research program at the Department of Computer and Information
Science and thus several master theses have had focus on computer games. One
of the focus areas has been how computer games can affect and improve lectures.

The master thesis of Mørch-Storstein and Øfsdahl [1] in 2007 proposed a game
concept for a group quiz designed for use in university lectures. In this thesis
Knut A. Tidemann and Erling A. Børresen will, under the supervision of associate
professor Alf Inge Wang, look at this concept and create a suitable architecture for
this quiz game. Based on this architecture there will be implemented a working
solution with focus on modifiability and extendability. The proposed solution
will be tested in an experiment taking place in a regular lecture at the Norwegian
University of Science and Technology.

1.3 Reader’s Guide

This report is divided into seven parts. The first Part gives an introduction to this
document. It describes the problem definition, the context of the project, as well
as this reader’s guide. In Part II we define the research questions and give an
overview of the research methods we have used. The research questions define
what goals we have for this project. Part III is about our prestudy. The first
chapter in this part describes the literature study we have done to give a summary
of relevant game theory, and earlier work on educational software. The seccond
chapter in the prestudy part is about possible software solutions for our system.

In Part IV we describe the work we have contributed to this project. First we
define a set of requirements based on our findings in the literature study. After
the requirements are defined, we will present our chosen architecture. Then we

5

will explain our chosen technologies suited for this architecture. The next chapter
will present the implementation and design of the system. Here we will look at
how each of the components in the architecture are built. The last chapter in Part
IV will present a set of user’s and developer’s guides. This chapter is meant for
people that are either deploying our software or will extend it. These guides give
detailed explainations of how this is done.

Part V is about the evaluation of our project. First we present and evaluate the
experiment done in a real lecture situation, and then we evaluate our work in
general. In Part VI we conclude our project and give our thoughts of what could
be done in the future. The last Part is Appendices, and include the questionnaire
used in the experiment, as well as the database SQL file and a detailed description
of the Lecture Quiz Service API.

6

Part II

Research Questions and Method

7

8

Chapter 2

Research Questions

From the problem definition in Section 1.1 we have picked out the most critical
aspects of it and created a few research questions to cover the problem. We will
try to answer these questions in this report:

RQ1 What architecture is best suited for the Lecture Quiz game?

We will build an architecture that is well suited for a game where students
can join in with ease to participate in games run in lectures. We will also
look at some of the specific tasks involved in this in the sub-questions of
this research question.

a) How should data be exchanged between the clients and the game server?

We will go through different methods of communication and see which
form is most suited for this type of architecture with weight on both
ease of use and modifiability.

9

b) How does this architecture scale when the number of users increases?

How does our chosen architecture hold up with scenarios where many
users will use the system at the same time and how can we make the
architecture scalable to support this?

c) How do we design the architecture flexible in terms of game modes1?

We want to find out how we can make the architecture allow develop-
ers to create new ways to play the game without the need to rewrite
large parts of the software.

RQ2 What technologies are best fit for the chosen architecture?

We will use our findings in RQ1 and try to find out what existing technolo-
gies would be best suited for the implementation of our architecture.

RQ3 Will students consider the software easier to use if it is web based?

We will compare our architecture to previous work and find out if students
prefer a web based system for the client applications by doing a usability
survey.

RQ4 Do students enjoy playing educational games during lectures?

With the help of the study performed in RQ3 we will get feedback from stu-
dents on the fun parts of the game and see if they enjoy playing educational
games during lectures.

1A game mode defines the rules of a quiz game. It determines how questions are answered and
how scoring is done as well as other aspects of the gameplay.

10

Chapter 3

Research Method

When doing research in software engineering there are often problems to be solved
that has more than one solution, and that none of the solutions could be pointed
out as the correct one. To achieve one of the possible solutions there should be
applied an approved research method. Basili [3] lists three recommended methods
to be used in software engineering, these are shown below.

The engineering approach: In this approach the domain of the problem is ex-
amined to find existing solutions, for then to propose new and better solu-
tions. New solutions are constructed and tested until no more improvements
may be found.

The empirical approach: Based on a proposed model of the problem domain,
statistical/qualitative methods are developed. These are applied to case stud-
ies and then validated against the proposed model. Hence this solution will
give more reliable results.

The mathematical approach: When using this approach, a set of axioms or a
formal theory is proposed . Based on this, results may be derived, and then
it could be possible to compare them with empirical data.

11

Based on these three approaches we have decided to go with the engineering ap-
proach. We will, using a literature study, find and evaluate the previous work on
the field of a lecture quiz game and then propose a new and improved solution.
This solution will then be tested in a small experiment in a real lecture situation.
The method for developing the new solution will be described in the following
section. And then the method used for the experiment will be presented in Sec-
tion 3.2.

3.1 Development Method

Agile and iterative development methods are popular in software development
these days. Where Scrum, as described in [4], is one of the most used. Normally,
iterative processes have iterations lasting from a few weeks to a few months de-
pending on the size of the project. Since this project is fairly small, we have
chosen to set the size of each iteration to two weeks.

The overall scrum process is shown in Figure 3.11. An iteration in scrum terms is
called a sprint. At the beginning of each sprint we would create a sprint backlog
with the set of tasks that are planned to be solved in the sprint. Once every day
there is a scrum meeting where each participant need to answer the following
questions [4].

� What have you completed since the last meeting?

� What obstacles have you met during this work?

� What are you planning to do until the next meeting?

Answering these questions each day will help the other participants to be aware of
each others work and the participants may easier help each other if it is discovered
that someone has a problem.

1Picture from Wikimedia Commons with GNU Free Documentation License

12

Figure 3.1: The Scrum process

At the end of each sprint there is built a working copy of the software and the
sprint is evaluated. This evaluation will work as a basis for deciding what will be
in the next sprint backlog.

Although we have chosen to use Scrum as our development method, the report
is presented more like a waterfall project. This is done to give the report a less
complex structure, and to ease the reading.

3.2 Experiment Method

After developing a prototype, there were held an experiment in a real life situation.
As this experiment was going to be compared with the experiment of 2007 [1],
we tried to use mostly the same methods as that experiment. As defined in ISO
9241-11 [5] there are three main goals of usability and we will try to measure our
usability within these three goals:

� Effectiveness - The ability of users to complete tasks using the system, and

the quality of the output of those tasks

13

� Efficiency - The level of resource consumed in performing tasks

� Satisfaction - Users’ subjective reactions to using the system

3.2.1 System Usability Scale (SUS)

System Usability Scale (SUS) [5] is a scale used to measure the usability of soft-
ware based on a questionnaire of 10 questions. The scale goes from 0 to 100,
where 100 is the best score. All the ten questions are publicly available and SUS
has proven to give similar results as more complex and time consuming usability
tests.

Each question in a SUS test may be rated by the user from 0 to 5, where 0 is
strongly disagree, and 5 is strongly agree. To calculate the final SUS score every
even question gets a score of 5 minus the average rating for that question. While
the odd questions score is calculated by subtracting 1 from the average rating of
that question. The overall SUS score will then be the sum of all the scores of
the individual questions multiplied by 2.5. The result and calculation of our SUS
score is included in Section 11.4

3.2.2 Subjective Assessment

In addition to the SUS questions, we added a set of questions to our questionnaire
that where specific to our software. Some of the questions were taken from the
questionnaire used in 2007 and some where completely new. These additional
questions gave us answers on how well the software worked in a lecture setting
and how the students thought of using it in future lectures. All questions will
be discussed in a non-formal evaluation to get a grip on how our software was
perceived by the students.

14

Part III

Prestudy

15

16

Chapter 4

Previous Work

In this chapter we will look at some of the previous work done in the field of
quiz games and gaming in lecture situations. Most of this theory and research was
done in the master thesis of Ole Kristian Mørch-Storstein and Terje Øfsdahl [1] in
2007, and are summarized here.

4.1 Game Theory

In [1] they present eight important characteristics of good educational games. The
following list of characteristics is meant as a reference for people designing edu-
cational games. They argue that missing one of the characteristics may not mean
that the game will be unpopular or unsuccessful, but including the missing char-
acteristics in the game concept may make it better.

� Variable instructional control - How the difficulty is adjustable or adjusts
to the skills of the player

� Presence of instructional support - The possibility to give the player hints
when he or she is incapable of solving a task

17

� Necessary external support - the need for use of external support.

� Inviting screen design - The feeling of playing a game and not operating a
program

� Practice strategy - The possibility to practice the game without affecting
the users score or status.

� Sound instructional principles - How well the user is taught how to use
and play the game.

� Concept credibility - Abstracting the theory or skills to maintain integrity
of the instruction.

� Inspiring game concept - Making the game inspiring and fun.

The authors of [1] also present a taxonomy of educational games. Using three
criteria, listed below, they group educational games in a set of game genres.

� Player interaction - Is it possible for several players to interact with the
system in some way?

� Fantasy and skills interaction - Is the fantasy of the game extrinsic1 or
intrinsic2?

� Game concept type - In what genre of computer games does the game
concept belong?

Based on this taxonomy they present a model, shown in figure 4.1, that shows how
each game genre provides theoretical knowledge. We may classify the Lecture
Quiz game as a group quiz, and according to this model it is an effective and
simple genre. We will during the design and implementation of our system try to
achieve as many of the presented characteristics as possible, and thus hopefully
make a good system for educational purposes.

1Extrinsic fantasies are fantasies that are independent of the application of skills in the game
[1]

2Intrinsic fantasies are fantasies that are inherent and essential to the game concept [1]

18

Figure 4.1: Genre relevance for theoretical knowledge [1]

4.2 State of the Art

In [1] they present six existing solutions of educational software. Each providing
some kind of support to the lecture environment.

� TVREMOTE Framework - Designed at Darmstadt University of Technol-
ogy, Germany[6]. Supports polling of student opinions and question sub-
missions. The teacher may also broadcast notes, links and multiple choice
questions. Feedback is read by the teacher on a private display, and may
show selective data on a second, public screen. Uses GPRS for data trans-
mission.

� Classroom Presenter - A plug-in to Microsoft PowerPoint developed at
University of Washington, USA. Allows public writing on slides in a pre-
sentation. The plug-in is open source and used in courses teaching software
engineering and algorithms[7, 8].

19

� WIL/MA - Developed at the University of Mannheim, Germany. Is a Java
implementation for digital hand raising, spontaneous comments and multi-
ple choice questions. Using PDAs with J2ME support, and WLAN for data
transmission.

� ClassInHand - Developed at Wake Forest University, USA. Uses PDAs
with Windows Mobile and features a presentation controller, student/teacher
interaction and real time quizzes. The teacher also uses a PDA to interact
with the system[9, 10].

� Ez ClickPro - Commercial classroom polling application developed for
teaching in elementary school by Avrio Ideas. Uses infrared light for data
transmission to the custom handheld controls, shown in Figure 4.2. The
teacher uses a PC to interact with the program. Supports a multiple choice
quiz game with presentation on a projector or TV. The questions can be
supplemented with both pictures and videos[11].

� Buzz! The Schools Quiz - Commercial game for the PlayStation 2. De-
veloped with government funding for schools in the UK[12], it works as
a game show featuring nice graphics and an enthusiastic game host. The
game is shown on a TV or projector using wired custom controls, shown in
Figure 4.3, limiting the game to four players.

The features of the listed applications are summarized in Table 4.1. As shown,
only TVRemote has no need for custom hardware, and only Ez ClickPro and
Buzz! has animated graphics. The most common feature is the quiz mode, but
it is mainly for the teacher to monitor the knowledge of the students and not for
competition.

In addition to the applications described in [1] there was made a prototype appli-
cation at the University of Mannheim, Germany [2], to discover if such an applica-
tion could make the lectures more interactive. The application was run on PDAs
using custom software to allow the students to report questions to the lecturer,
give feedback and for the lecturer to run a quiz on the selected topic. A number

20

Figure 4.2: Ez ClickPro sensor and remote controls [1]

Figure 4.3: Buzz! cover and controllers [1]

of questions would then be transferred to all of the PDAs and the students used
some time to answer the questions. After all answers was submitted the results

21

Feature TVRemote Cl.Pres. WIL/MA ClassInHand Ez ClickPro Buzz!
Digital student comments � � �

Teacher info broadcast � � � �

Quiz mode � � � � �

Public feedback display (�) � � �

Animated graphics � �

No custom HW needs �

Table 4.1: Features of the previous solutions

where reviewed and displayed both on the big screen in the lecture room, and on
the PDAs. Data transfer between the PDAs and the main server was done using
a custom protocol on top of TCP. Wireless network was available in the lecture
room, so no cables where required for the PDAs to communicate. Screenshots of
the application are shown in Figure 4.4. Compared to the idea behind the system
presented i this report, the application from Mannheim is in many ways similar,
but it has no focus on being a game and is more like a tool for the lecturer to see
what the students have learned during the lecture.

4.3 Lecture Quiz 1.0

In this section we are presenting the prototype of the Lecture Quiz game developed
in [1]. This was done as a part of a master thesis on NTNU where they focused
on the impact of using games in a lecture environment. The main focus of this
prototype was to develop a quiz game where students were asked questions and
each student used his or her own mobile phone or laptop to answer.

The developed prototype consisted of one main server, a teacher client and a stu-
dent client. Communication between the different parts were done through a cus-
tom built protocol on top of TCP.

The student client was developed using J2ME, the Java implementation for mo-
bile devices. To begin a session each student had to download the software to their
phone using wireless network, bluetooth or the mobile network(GPRS/EDGE/3G).

22

After the download was finished, the software had to be installed before the stu-
dents were ready to participate. This was seen as a bit of a cumbersome process.
Screenshots of the student client are shown in Figure 4.5

The teacher client was implemented in Java and used OpenGL to display graphics
on a big screen, as shown in Figure 4.6 and Figure 4.7.

The prototype implemented two game modes. One plain game mode where all
the students answered all the questions as they where asked. Each question had
its own time limit, and the students had to answer within that time. After each
question a screen with statistics was displayed, providing information on how
many students that answered on each option. At the end of the quiz, the teacher
client displayed a list of the students having the most correct answers.

The other game mode was last man standing. The questions were asked in the
same way as with the plain game mode, but if a student answered incorrectly he
or she was removed from the game. The game continued until all but one student
had answered a question wrong, and that student was crowned as winner.

One of the main draw backs of this prototype is that it lacks a good architecture,
making it hard to extend, modify and maintain. It also lacks good documenta-
tion and to add a new quiz or a question you have to manually edit the data in
the database. The time spent on downloading and installing the software on the
students devices also made it less interesting for regular use in lectures.

23

Figure 4.4: Screenshots of the application developed at University of Mannheim
[2]

24

Figure 4.5: Screenshot of the mobile client of Lecture Quiz 1.0 [1]

Figure 4.6: Screenshot of the teacher client of Lecture Quiz 1.0 showing a ques-
tion [1]

25

Figure 4.7: Screenshot of the teacher client of Lecture Quiz 1.0 showing statistics
for a question [1]

26

Chapter 5

Technologies

In this chapter we will discuss the various available technologies we can use to
solve our problem. We will describe the most relevant pieces of technology that
can help us create a better and more scalable architecture. We will evaluate and
choose the appropriate technologies for our architecture in Chapter 8.

5.1 Programming Languages

In this project, we have three separate components that all perform different tasks.
As the project is required to reach multiple platforms, including a standalone PC
client and easy to access clients for mobile phones and PCs, we are looking for
a programming language that can work well for the cases we require. The two
largest programming languages out there that support this are Sun’s Java and the
Microsoft .NET Framework. While we could split up the project in different lan-
guages, we decided that it would be best to have all parts written in the same
programming language, as this would ease up the learning curve for any new con-
tributors and unite the project as one entity.

27

5.1.1 Java

Java is a programming language created by Sun Microsystems. In 2006 most of
the implementation code was released under the GNU General Public License[13].
The Java platform consist of a bundle of programs which allow for developing
and running applications written in the Java programming language. The Java
platform runs on many types of devices through different implementations of the
platform. It is also possible to write Java Servlets, which is a way to publish Java
applications on the web. This makes it possible to write web services and web
pages in Java.

5.1.2 C# - Microsoft .NET Framework

The Microsoft .NET Framework was released in 2002 by Microsoft and is cur-
rently at version 4.0[14][15]. The framework is available for the Windows plat-
form as well as on Linux and other Unix/X11 platforms in a limited version
through the help of the Mono project[16]. Many programming languages are
supported by the framework, but C# is the most frequently used and has a very
similar syntax to Java. The .NET Framework can be used to develop standalone
applications, web services and web pages.

5.2 Graphics Library

Our teacher client will be displaying the quizzes on a projector or similar equip-
ment in a large class room, and have the possibility to display advanced graphics.
The two most used graphics libraries today are the OpenGL library and Direct3D
which is a part of the Microsoft DirectX library. By basing our client on one
of these widely known libraries we make it easier to extend the client for new
developers.

28

5.2.1 OpenGL

The OpenGL graphics library is a standard that is developed by the OpenGL
Working Group[17]. OpenGL is an open standard and is available for many plat-
forms, including Windows, Linux, Mac OS X and embedded devices. The API is
originally written for the C programming language, but bindings can be installed
for many other languages. The graphical features of OpenGL is being extended
all the time and is kept up to date with the latest improvements from graphic card
manufacturers. It is capable of rendering both advanced 3D and 2D graphics. In-
stallation of the library it self is not needed as it comes with graphic card drivers,
however bindings to languages other than C and C++ must be packaged with the
application if they are used.

5.2.2 Direct3D

The Direct3D API is a part of the Microsoft DirectX library. It is the main com-
petitor to the OpenGL library and comes pre-installed on all Windows versions.
The API is for C/C++ and C# and runs only on the Windows platform. It is
developed by Microsoft alone, with the exception drivers from graphic card man-
ufacturers. Direct3D can render both advanced 3D and 2D graphics and is widely
used on the Windows platform. While the library it self comes with Windows, up-
dates might need to be installed to ensure a full feature set when using the newest
Direct3D API. Using Direct3D or DirectX locks you to the Windows platform.

5.3 Web Deployment

To publish web services written in Java or the .NET Framework on the web, a
server is required. There are many out there that all suit different needs. Services
and web sites written in the .NET Framework can be deployed on the Microsoft
IIS server or on Apache with the help of the Mono Project. Java services on the

29

other hand are deployed to a web container. The three largest web containers for
Java are JBoss1, Apache Tomcat2 and GlassFish3.

JBoss was developed by JBoss, now a division of Red Hat. As of JBoss 5.1,
released in 2009, it operates as a Java EE 5 application server, which implements
the Servlet 2.5 and JSP 2.1 specifications from Sun Microsystems. Since it is
written in Java, JBoss is platform independent and can operate on any system that
Java supports.

Tomcat is developed by the Apache Software Foundation and implements the
Servlet 2.5 and JSP 2.1 specifications. It is also cross-platform and written in
Java.

The GlassFish application server is developed by Sun Microsystems and is the
Java Enterprise Edition reference implementation, and therefore the first to imple-
ment Java EE 6, which includes the Servlet 3.0 specification. As with the other
application servers, it is also written in Java and is cross-platform.

All of the Java application servers are free and open source. For the .NET platform
Apache and Mono are both free, open source and cross-platform while Microsoft’s
IIS is proprietary and only runs on Windows.

5.4 Communication Frameworks

In this section we will look at different ways components may communicate with
each other to make requests and sharing data.

1http://labs.jboss.com/jbossas/
2http://tomcat.apache.org/
3https://glassfish.dev.java.net/

30

5.4.1 Web Services

Web services is a way to make an API accessible on the internet. This is typically
done over HTTP, but there are other options as well. A web service makes it easy
for a data provider to publish the data in a way that makes it less complicated for a
3rd party to write client software. One of the main benefits of using web services is
that it makes the services independent on what programming language the clients
are written in, thus making it easy to make a new client for your favorite platform.

One of the downsides with web services, is that the client have to initiate the
requests. This means that for the server to send data to a client, it has to answer a
request from the client, and thus making it hard to use patterns like listeners.

There are two main styles of publishing web services, SOAP and REST. These
are described in more detail in the following sections.

SOAP

SOAP is a W3C4 recommendation for web services. SOAP was originally an
acronym for Simple Object Access Protocol, but as of version 1.2 it is just a
name[18]. SOAP relies on XML for formatting messages, and on a protocol for
message transfer. HTTP is the most common used transport protocol[19], but
using SMTP or sending SOAP messages directly over TCP are other options.

To make SOAP easy to use for the client developers, there is a standard way of
contracting the provided services. WSDL5 is used for this purpose. The WSDL
document defines the services provided in an XML file so it may be read by soft-
ware for a number of platforms. With the WSDL document in hand it is possible
to create client-support code, making classes and methods available in the chosen
programming language.

4World Wide Web Consortium
5Web Services Description Language

31

REST

REST6 is an acronym defined by Roy Fielding in his Ph.D. dissertation[20]. REST
is about providing an interface to a set of resources, and each resource is identified
by an unique identifier (URI). REST is restricted to the HTTP protocol, but takes
use of the powers of that protocol to do operations on the resources. HTTP has
several verbs that describe operations on a resource, REST uses POST, PUT, GET
and DELETE, whereas SOAP only use POST and GET.

Where SOAP is a messaging protocol, REST is seen as a style of software ar-
chitecture for distributed systems on the web. REST does not have one standard
way of encoding the data that is transferred, the developers may choose by them
selves. Examples of encodings are XML and JSON.

Compared to SOAP’s WSDL, REST has no standard for contracting the service
provided. The WADL7 document is an effort towards a standard, but it is not yet
official nor widely accepted, thus not provided in a lot of frameworks for creating
or consuming REST services.

5.4.2 Own Protocol

Instead of relying on an already implemented way of communicating it is possi-
ble to write an own application protocol on top of TCP or UDP. Doing so will
give full flexibility on how to make the communication work, but that will also
require more time spent on things that already exist in other protocols. Session
management is one such example.

The server implementing this protocol will also have to run on a non standard TCP
port, making it harder to pass through firewalls, thus giving more job to system
administrators.

6REpresentation State Transfer
7Web Application Description Language

32

5.5 Databases

In our application we need a persistent storage to store information such as quizzes,
users, questions and more. For this task we will consider a database back end. In
the following section we will discuss a two DBMS’s8 that can work as our back
end to persistent information storage. We will take a look at MySQL and Post-
greSQL, but other solutions exist such as Oracle Database and Microsoft SQL
Server.

5.5.1 MySQL

MySQL is an open source relational database system currently owned and devel-
oped by Oracle. It is the worlds most popular open source database software and
has high speed, great reliability and is easy to use[21]. It has two licenses, one
commercial and one open source license. The commercial license is required if
you only distribute your application in binary form to end users. MySQL has a
client API for many languages, including C, C++, Java and C# .NET. It runs as a
server, and both the server and client applications run on many systems, including
Windows, Linux and Mac OS X.

5.5.2 PostgreSQL

PostgreSQL is a powerful open source object-relational database system running
on all major operating systems, including Windows, Linux and Mac OS X[22].
It is released under the PostgreSQL license which is a liberal open source license
similar to the BSD and MIT licenses. With native programming interfaces to many
languages such as C, C++, Java and C# it is easy to integrate in applications. It
runs as a server and have clients connect to it to make query requests.

8Database Management Systems

33

34

Part IV

Own Contribution

35

In this part we will describe our own contribution to the Lecture Quiz system. We
will outline our architecture and explain why we have chosen the technologies
we use. The details of our implementation of the architecture will be laid out
in Chapter 9. There is also included a set of user’s and developer’s guides that
will help both administrators and new developers make use of the Lecture Quiz
system.

36

Chapter 6

Requirements

By taking a look at the previous prototype of the Lecture Quiz platform we created
a set of functional and quality requirements. We looked at the previously identified
issues with the prototype from 2007, and made requirements that would fix many
of these issues. The main focus was to move the Lecture Quiz system from a proof
of concept system to a modifiable application framework for further development.

6.1 Functional Requirements

In this section we will describe a set of functional requirements. These are listed
in Table 6.1. Most of the requirements are of high priority, which means that
they all of them should be implemented. Medium prioritized requirements are
requirements that would be nice to have, but should only be implemented if all the
other requirements are fulfilled.

37

ID Description Priority
FR1 The game shall consist of a teacher client and a num-

ber of student clients
High

FR2 The teachers need to authenticate to use the client High
FR3 It must be possible to extend the game with new game

types
High

FR4 It must be possible for the teachers to store questions
for later use

High

FR5 It must be possible to tag questions for easier reuse
and grouping

High

FR6 A question shall consist of four options High
FR7 Questions must be able to have an individual time

limit
High

FR8 It must be possible to run several quizzes at the same
time

High

FR9 Statistics should be shown after a question has been
answered and after the quiz has been completed

High

FR10 A quiz game may group the students into groups High
FR11 The teacher decides when to start a quiz High
FR12 The students must identify them selves with a user

name when joining a quiz
High

FR13 The students must answer questions before the time
limit is up

High

FR14 The students must supply a quiz code to join a quiz High
FR15 The teacher must be able to pause between questions High
FR16 The teacher must be able to save the statistics from a

quiz round that has just ended
Medium

Table 6.1: List of functional requirements

6.2 Quality Requirements

As well as functional requirements, the non-functional requirements are impor-
tant. In this section we describe these requirements using scenarios, as shown in
Software Architecture in Practice[23], grouped by quality attributes.

38

6.2.1 Modifiability

The overall goal of this thesis is to make the Lecture Quiz applications easy to
modify and extend. This section describes some scenarios regarding modifiability.

M1 - Deploying a new game mode for a client
Source of stimulus Game mode developer

Stimulus The game mode developer wants to deploy a
new game mode for one of the Lecture Quiz
clients or the server

Environment Design time

Artifact One of the Lecture Quiz clients or the game
server

Response A new game mode is deployed and should be
ready for use

Response measure The new game mode should be possible to be
deployed in a couple of hours

M2 - Creating a new client
Source of stimulus Client developer

Stimulus The client developer wants to create a new
client for the Lecture Quiz game

Environment Design time

Artifact The Lecture Quiz service

Response A new client supporting to play the Lecture
Quiz game.

Response measure The server communication part of the client
should be complete within two days

39

M3 - Adding support for a new database back end
Source of stimulus Server developer

Stimulus The server developer wants to add support for
another database back end

Environment Design time

Artifact The Lecture Quiz server

Response A new option for database storage in the server

Response measure The new back end should be finished in two
hours

6.2.2 Usability

This section describes some scenarios for the usability attribute. Usability is nor-
mally associated with how the systems supports the tasks it is supposed to support
and how easy it is to do those tasks.

U1 - Changing server settings
Source of stimulus Server administrator

Stimulus The server administrator wants to change some
of the default settings (e.g. database host, user-
name and password)

Environment Deploy time

Artifact The Lecture Quiz server

Response The new settings in effect

Response measure The new settings should be in effect without
rebuilding the project. The server should only
need a restart.

40

U2 - Getting started
Source of stimulus Student user

Stimulus The student wants to join a quiz game for the
first time

Environment Run time

Artifact The Lecture Quiz Student Client

Response The student is ready to play

Response measure The student should be able to join a quiz game
in less than two minutes

U3 - The game should be fun
Source of stimulus Student user

Stimulus The student user is playing a game of Lecture
Quiz

Environment Run time

Artifact The Lecture Quiz game

Response The student participating in the game

Response measure At least 80% of the students should think the
game is fun.

U4 - Deploying the Lecture Quiz Server
Source of stimulus Server administrator

Stimulus The server administrator wants to deploy the
game server for the first time

Environment Deploy time

Artifact The Lecture Quiz server

Response The server is up and running

Response measure The server should be up and running in less than
one hour

41

U5 - Adding question
Source of stimulus Teacher

Stimulus The teacher wants to add a question to a quiz

Environment Run time

Artifact The Lecture Quiz Teacher Client

Response The question is added to the quiz

Response measure The teacher should be able to save and add the
question to a quiz in less than 1 minute

6.2.3 Performance

In this section we will describe some scenarios grouped under the performance
quality. By performance we think of how well the software is running under
normal conditions, as well as how the response time and other measurable perfor-
mance options scale when the user mass gets bigger.

S1 - Multiple game servers
Source of stimulus The server administrator

Stimulus The server administrator wants to add more
game servers to ease the load of the servers

Environment Deploy time

Artifact The Lecture Quiz Server

Response Multiple game servers are running with the
same database for data storage

Response measure A system should get at least a 50% performance
improvement if the clients are split between two
servers

42

S2 - Number of users
Source of stimulus The teacher and student users

Stimulus The teacher wants to run the Lecture Quiz in a
big class of 100 students

Environment Run time

Artifact The Lecture Quiz Game

Response The game is running smoothly

Response measure The game should run with a response time of no
more than one second

6.2.4 Other attributes

As well as the previous mentioned attributes there are other attributes that are
often used for quality requirements. Such attributes may be availability, testability
and security. In this project these attributes are not regarded as very important
and we will therefore not define specific scenarios and requirements for the three
attributes. Although they are not regarded as important, they are still thought of
in the design of the system.

43

44

Chapter 7

Architecture

We have designed an architecture that is built up of multiple parts. The docu-
mentation of the architecture is divided into views based on the ideas by Phillippe
Kruchten in [24]. To explain how the three parts fit together we have shown the
different parts in form of a logic view. The process flow and the communication
between the parts are outlined in the the process view shown in Section 7.2. In
addition, the physical set up is displayed in the deployment view shown in Section
7.3.

7.1 Logic View

The architecture we have decided to build our system on is based around a three
part system with one game server and two different clients as seen in Figure 7.1.
The two clients are separated by roles, namely the teacher client and the student
clients.

45

Figure 7.1: Client-server architecture

7.1.1 Game Server

As seen in Figure 7.2, the game server takes requests from clients through the
web service layer of the application. Before the client is actually associated with
a game, things like authentication is checked against the database. Once a client
has joined or started a game, the requests are forwarded to the appropriate game
mode instance and processed there.

7.1.2 Teacher Client

The teacher client runs natively on a laptop or another computer, and controls
the flow of a quiz. Every quiz is started on the command from a teacher client,
and this client tells whenever a new question will be started on the server. The
main purpose of this client is to present the quiz and its questions to the audience
which will interact with the game through student clients. A teacher is given full
command over when the questions will start so he can be given time to explain
any answers after a question has been answered by the students.

46

Figure 7.2: Game server architecture

7.1.3 Student Client

The student client is on the other hand a much smaller client. All it needs to
do is to let the students answer the questions given by the quiz. Depending on
the size of the device the student client is running on, the amount of information
displayed can range from everything, including the quiz and answer alternatives,
to simply 4 buttons representing each answer. To help distributing the clients, we
have decided to run them on a web server. This will in practice give us two student
clients, one which runs on the students’ cell phones, laptops and other devices, and
another one in form of the web server handling these web clients. The web server
handling requests will basically forward calls to the game server and render the
results in the form of a web page to the students.

47

7.2 Process View

All the communication between the clients and the game server goes through the
web in form of SOAP requests. On the server these are received by the web
service container and processed by the server application. All communication,
including threading and session handling on the server, is managed by the web
service container.

7.2.1 Teacher Client

Figure 7.3: A typical teacher client session

48

Figure 7.3 shows the communication between the Lecture Quiz service and a
teacher client. As shown, the session is started by a call to authenticate.
This tries to validate the supplied username and password before it sets up a valid
session. If the authentication fails, an error code is returned and the communica-
tion halts.

The next step is to get a list of all available quizzes and game modes by call-
ing getAvailableQuizzes and getAvailableGameModes. These steps
can be omitted if the calling teacher client already knows the IDs of the quiz and
game mode they want to start.

As a final step before the game begins, the teacher client calls newQuiz which
starts a new quiz on the server with the supplied game mode and quiz. A quiz
code is also supplied as a reference for student clients that want to join this game.
If for some reason the quiz or game mode does not exist on the server, an error
code is returned and the creation of the quiz is aborted.

Once a game has been started, the teacher client should typically display a wel-
come screen and can call getCurrentGameStatus to get the current number
of players that have joined as well as information on how many questions the quiz
has and its quiz code. This call can be repeated to get updated information. When
enough players have joined the client calls startNextQuestion. This starts
the first question in the quiz, and starts the count down on the server. Any answers
submitted must be submitted before this countdown has been reached. The teacher
client renders the question returned from the call to startNextQuestion, and
waits until the timeout is reached.

Once a question has timed out, the teacher client calls getQuestionStatist-
ics. This will return general statistics on the answers of the previous question,
like how many selected the different answers and what the correct answer was.
If getQuestionStatistics is called out of order, an error code is returned.
This can happen if it is called before the question timeout has been reached.

The procedure of calling startNextQuestion and getQuestionStat-

49

istics is repeated until the quiz is out of questions. When this happens start-
NextQuestion will return an error code telling the client that there are no more
questions available for this quiz. The client then calls getOverallStatistics
which will return general statistics for the entire quiz.

When the teacher client is done, it will call endQuiz to free up resources on the
server and abandon the quiz. This will prohibit any other student clients to access
the quiz as well. If the teacher wants to start a new quiz the sequence is repeated
from newQuiz.

7.2.2 Student Client

Figure 7.4: A student client session

The session of a student client starts in the same way as a teacher client session, as

50

shown in Figure 7.4. The client first calls authenticate, however the student
client does not supply a password and doesn’t ask for real authentication, just a
name check. This will check if the supplied name is available and not already in
use. If the name is usable, a valid session is created, otherwise an error is returned.

After the client is authenticated with the server, it can now join a quiz. To be
sure that the game mode ran by the quiz is also available on the student client, we
call getGameModeInfo. This will return information of the game mode of the
given quiz. After this check the client is ready to join the quiz. This is done by
calling the joinQuiz procedure and supply the quiz code of the desired quiz. If
the quiz is available and open, the client will be registered with the quiz, otherwise
an error will be returned.

When the client has joined a quiz, it should start to poll for a question. Since
this architecture is based around a web service and the student clients are run
on the web, we cannot directly notify them when the quiz has moved passed the
welcome screen and started a question, so the student clients will have to poll by
calling getCurrentQuestion. This will either return the current question or
return an error code telling the client that the question is not available yet and it
should try again in a few seconds. If another error occurs, the client should abort.

After the question is received, the client has to submit an answer within the time
limit of the given question. This is done by calling the submitAnswer proce-
dure. If the answer is accepted, it will be registered on the server, otherwise an
error will be returned.

After the question is answered, the client should then start to poll for statistics.
This is done by calling getQuestionStatistics. As with the question call,
this will return an error code telling the client that statistics are not available yet
until the question has timed out on the server. The client should keep on calling it
until the question has reached its time limit. The statistics are then returned and
will tell if the user answered correctly or not.

As with the teacher client, the procedure of calling getCurrentQuestion

51

and getQuestionStatistics are repeated for all questions. When the last
question has been reached the appropriate error code will be returned and the
getOverallStatistics method is called to display overall statistics for the
client. At this point the client can be given the ability to join another quiz by
entering a new quiz code.

7.3 Deployment Views

In this section we will describe how the Lecture Quiz can be deployed on differ-
ent server and client hardware. We will point out three ways the Lecture Quiz
Game may be deployed. It is also possible to use variants of these models when
deploying.

7.3.1 One Server

The easiest way of deploying the Lecture Quiz game is to use one physical server
as shown in Figure 7.51. Both the main service and the server part of the student
client will run on this server, as well as the database system. This will make the
delay of transporting data between theses parts as small as possible, though this
one physical server will take all the load from running the game. The clients will
connect to this central server.

7.3.2 Three Servers

The next way to deploy the Lecture Quiz Game is to use one physical server
for each part of the game. That means that there is a need for three servers, as
shown in Figure 7.6. One hosting the database system, one hosting the main

1All the pictures used in the deployment figures are collected from iconseeker.com, being
licensed under LGPL, Creative Commons or other free licenses.

52

Figure 7.5: A simple setup of Lecture Quiz

service and one hosting the server side of the student client. The teacher client
will then connect to the game server using the web service, and the student clients
will connect to the web server using plain HTTP and HTML or AJAX2. This
solution will split the load in some way, but increasing the time spent on data
transfer. Many organizations already have their own database server, so this way
of deployment will make use of this advantage.

2Asynchronous JavaScript and XML

53

Figure 7.6: A setup of Lecture Quiz with three servers

7.3.3 Multiple Game Servers

If the Lecture Quiz Game is to be used in more large scale situations, it may
be smart to divide the load even more than in the three servers solution. In this
solution, shown in Figure 7.7, we have introduced multiple game servers using
the same database server. With this solution it is possible to let a few quiz games
run on different game servers, and still use the same database server. The clients
then have to connect to the corresponding game server or web server. As the game
server collects all data about a quiz from the database once a game is started, the
Lecture Quiz Game will be able to handle a lot more simultaneous games than the
other deployment solutions.

54

Figure 7.7: A setup of Lecture Quiz with multiple game servers

55

56

Chapter 8

Chosen Technologies

In this chapter we will look at the technologies presented in chapter 5, and argue
about which of them to choose for our solution. These technologies will be used
in the implementation described in Chapter 9.

8.1 Programming Language

Microsoft’s .NET platform has been gaining popularity strongly over the last
years, but our choice still falls on the Java platform. The main reasons for this
is the usage of the language on NTNU, both among courses and the students. By
choosing Java, it will be easier for students who do not have the experience with
the .NET platform to continue development on this project. Java is the language
taught and used in many courses at our institute, IDI1. An other reason for our
choice of Java is the multiplatform support. Even though the .NET platform can
run on multiple platforms with the help of projects such as Mono, the Java plat-
form is more widespread and has better support and maturity in this matter.

1Institutt for Datateknikk og Informatikk (Department of Computer and Information Science)

57

8.2 Graphics Library

Once the choice of programming language fell on Java, our graphics library mostly
chose it self. Even though you can access the Direct3D library from Java with the
help of 3rd party wrappers, the multiplatform aspect is lost if this approach is cho-
sen. This is why we went for the OpenGL library and the Java implementation
JOGL.

8.3 Web Deployment

As our institute IDI already have Tomcat servers running and the fact that we al-
ready had some experience using Tomcat, this was our choice of web deployment
software during the implementation. The application will most likely be easy to
deploy on the other mentioned web containers as well.

8.4 Communication Framework

Developing a new communication protocol for the Lecture Quiz game would
probably had taken to much time compared to the advantages we had gained.
Choosing a web service as our communication framework lets us use a lot of the
provided parts already from day one, and it will make it a lot easier for others to
extend and implement new clients for our system. As we chose to use web ser-
vices for communication, we are left with two possible options, REST or SOAP.

Using REST and RESTful development is popular these days, but the support
for REST has not grown as far as we had hoped. The support for SOAP in li-
braries, programming environments and other supporting tools makes our choice
of communication framework quite clear. SOAP’s use of the WSDL file is a huge
advantage and the support for auto-generation of java classes based on the WSDL

58

makes development far easier.

8.5 Database System

While both database systems have pros and cons we went with the MySQL database
system. This is mostly due to the fact that it is MySQL we have the most expe-
rience with and NTNU is already running MySQL on some servers. Despite our
choice, the architecture is designed to make it easy to implement support for other
DBMS’s.

59

60

Chapter 9

Implementation and Design

In this chapter we will describe how we have implemented the architecture pre-
sented earlier. The main component in this architecture is the Lecture Quiz Game
Service, and it is therefore the component we have had the most focus on. The
clients are implemented as flexible components that are easy to extend and fur-
ther develop, although they are regarded as proof of concept and are meant as a
guidance for others in making of new and richer clients.

9.1 Lecture Quiz Game Service

The Lecture Quiz Game Service is the server component that handles all the game
logic. Both teacher and student clients connect to this server through its web
service. The server it self is implemented in Java EE 6 and was running on the
Apache Tomcat application server during development, but should be able to run
on any Java web container.

Figure 9.1 shows the class dependencies in the Lecture Quiz Server. All re-
quests are handled by the LectureQuizService class which does authorization
checking and passes on the requests to the proper classes. The four manager

61

Figure 9.1: Core class dependencies of the Lecture Quiz Server

classes, GameManager, UserManager, DBManager and ConfigurationManager,
are singletons with a shared instance between all clients. Most of the proce-
dures exported by the LectureQuizService class requires an established session
with the server through the authenticate procedure, with the exception of
authenticate it self, getAvailableGameModes, getGameModeInfo
and getServiceVersion.

The UserManager class is responsible for keeping track of all the users logged in
on the server. It is implemented very simplistic with a list of all users and methods
to manipulate this list.

The creation of new games is handled by the GameManager. When a request for
a new game comes through the LectureQuizService class, GameManager checks
for availability of game modes and quiz codes before it creates an instance of the
appropriate game mode class. The instantiation of a game is done by the game
mode factory of the selected game mode. Every game mode registers a factory
with the GameManager class, which lets it create new instances when it needs to.
Every game mode is identified by a string ID. Except for the requirement of being

62

unique, this ID has no restrictions on format.

Access to the persistent database is done through the DBManager class. This
class creates a new instance of a class implementing the DBInterface interface.
This makes switching back ends pretty easy, all that is needed is to implement this
interface in a new class and tell DBManager to create an instance of the newly
created class instead. When a database connection is requested, a new instance is
created for the request. This makes sure that a connection is always available.

9.1.1 Configuration

The ConfigurationManager is just a simple class for holding information found
in the configuration file. This is mainly where the address to the database server
is located. The configuration is read from configuration.xml file in the the WEB-

INF/classes directory from where the web application was deployed.

9.1.2 Game Modes

All game modes derive from the class AbstractGameMode. This class includes
both abstract and implemented methods, easing some of the work to implement a
completely new game mode. Many operations found in LectureQuizService are
passed along to the running game mode of the client that sent the request.

The base implementation of game modes handles the question time limit by check-
ing the elapsed time since the question was started on each call from a client. This
removes the need for an active timer to mark when the time limit has been reached.
The most noticeable use of this time limit check is the getCurrentQuestion,
getQuestionStatistics and submitAnswer functions exported by Lec-
tureQuizService. All of these can behave differently whether the time limit has
been reached. The server will not automatically move on to the next question
before the teacher client tells it to do so. It is therefore the responsibility of the

63

teacher client to keep track of when the time limit is reached so it can ask for
statistics and start the next question when appropriate. This can be done by read-
ing the time left value when calling startNextQuestion and start a timer
locally, or by calling getCurrentQuestion to get an updated time left value.

Plain Game Mode

In this framework we have created a very simple game mode that we call “Plain
game” which is implemented by the PlainGame class. This game mode works as
a very simple quiz where all questions are asked in order and the participants have
a time limit to answer each question. When a question is answered, statistics are
generated to show how the answers were distributed and which answer that was
the correct one. At the end of the quiz, overall statistics are generated to represent
the answers to all of the questions.

9.1.3 Quiz Editing

The ability to edit quizzes is mainly implemented by the MySQLDB class. The
first call comes from a teacher client through the web service asking for a specific
quiz to edit. The user is checked to make sure it has permissions to view a quiz by
checking the session, as only teachers and administrators are permitted to retrieve
entire quizzes from the server. If the authorization passes, the quiz is returned to
the teacher client in from of a FullQuizInfo object. This object contains all the
questions and answers, as well as the quiz name and other similar information.
After the teacher client has done all the modifications needed, the same FullQuiz-
Info structure is sent back. This structure is then passed on to the MySQLDB
class, which processes the information before it saves it into the database. Again,
permission checking is done, and on save the permissions are even stricter. Users
logged in as a teacher are only allowed to save quizzes they are the owner of or
entirely new quizzes. Administrators are able to save to all quizzes. A quiz is
identified as new when the ID field of FullQuizInfo is set to zero. This tells the

64

database back end class to create a new quiz instead of updating an old one. The
same logic is applied to questions who are either created as new if the ID is zero
or updated if it has a valid ID.

9.2 Database design

The database design can be seen in Figure 9.2. It shows the five main tables in
the database. In addition to these five, we have created two reference tables that
help us perform the needed relations between quizzes and questions, as well as the
tags. These to reference tables are named ref_quiz_question and ref_tagged. The
question to quiz relation is done by a simple table that holds both the ID of the
question and the quiz in a single row. The tagged relations are a bit more advanced
as we use the same table for both quiz tags and question tags, since they can both
be tagged with the same tag. To perform this we have three columns, the a tag ID,
a quiz ID and a question ID. In this table we always want either the quiz or the
question ID to be null and only use one of them when we are searching for tags.

The user table contains all users that are able to log in to the teacher client. There
are two notable fields here, the password field and the role field. The password

field stores the SHA-1 hash sum of the actual password and the role field can be
either 1 or 2. A role value of 1 means the user is an administrator and a value of 2
means the user is a teacher. An administrator has higher privileges than a teacher,
most notable the ability to change quizzes the user it self is not the owner of.

All quizzes are stored in the quiz table. This table simply holds the name and
ID of a quiz, and questions are linked up to this quiz by the use of the previously
mentioned ref_quiz_question table. A quiz can have as many questions as it wants,
and is always tied to a single owner.

The question table hold all questions in the database. Every question has a set of
answers and these are stored in the answer table. Each answer holds a reference to
the question they belong to and the question holds a single reference to the correct

65

Figure 9.2: ER diagram of database

answer id. A question can be in many quizzes but answer options are specific to a
single question.

The tag table holds a list of tags. These are just simple single words that somehow
relate to the quiz or question who was tagged with it. A single tag is only stored
once and all quizzes or questions refer to this tag through the ref_tagged table.

9.3 Teacher Client

The teacher client is developed in Java SE 6. The development has mainly focused
on the functional parts of the client, leaving some of the visual aspects pretty ba-
sic. Implemented in the client is a simple menu system, a quiz editor to create and
edit quizzes and questions, and a single game mode. When the teacher client is

66

started, a connection check is performed to make sure the application can reach
the Lecture Quiz web service. This is done by querying the web service version
information though the getServiceVersion function call. If the connection
failed, the user is presented with the options to retry, cancel or open the configu-
ration window where the server address can be changed.

Figure 9.3: Core class dependencies of the Lecture Quiz Teacher Client

Upon a successful connection to the Lecture Quiz web server, the user is pre-
sented with the Main Menu view, handled by the MainMenu class. This class is
responsible for handling the teacher login, as well as selecting which quiz to start.
Quiz selection is done by retrieving a list of available quizzes on the server, as
well as getting a list of supported game modes the server is capable of starting.
The client then compares the server’s game mode list with its own, and displays
a list to the user where only the game modes available to both the teacher client
and the server are shown. The MainMenu class is created as a singleton so game
mechanics classes can easily call up this class and return to the main menu when
the game is complete, should the connection be broken or another error occurs.

All communication with the Lecture Quiz Server goes through the web service
LectureQuizService. The connection to this service is handled by the Connec-
tionManager class. When this class is accessed, a connection to the service is
established with the help of compile time generated classes from the service’s

67

WSDL1 file.

9.3.1 Game Modes

As a user selects a quiz it wants to start, the GameManager class is called up to
handle the creation of the new game. This class has all the information on which
game modes the teacher client supports, and will only try to start games which
are supported. A request to start a new game is sent to the Lecture Quiz server by
calling the exported newQuiz procedure. If the server allows the creation of the
game, the GameManager looks the current game mode up in the list of supported
game modes to get the game mode factory so a new instance can be created.

All game modes on the teacher client must register a factory with the GameMan-
ager class. This procedure is very similar to the registration of game modes on the
server. These factories are implementations of the IGameModeFactory interface
and their purpose is to identify the game mode by name and id, as well as creating
a new instance of this game mode.

The game modes are split into two different parts, the game mode it self that
extends the AbstractGameMode class, and the game mode renderer extending
AbstractGameRenderer. The game mode class queries the server for information
about questions, statistics and other information that is needed by the specific
game mode. It then processes this information before it is passed to the renderer
class. The renderer class simply displays what it gets from the game mode class.
These two classes are split up to make it easier for developers to extend existing
game modes, and separates the logic and rendering parts of a game mode. When
the renderer and the game mode is split up, a developer can choose to only extend
the functionality of one of these classes and use a previous implementation for
the other. This gives the opportunity for many different game modes to share the
same renderer or the other way around.

1Web Service Description Language

68

Plain Game Mode

As with the Lecture Quiz server, we have implemented the very simple game
mode Plain game. The class implementing this game mode in the teacher client
is also called PlainGame. An important part when implementing game modes for
both the server and clients is to make sure they all have identical game mode IDs.
If they do not, the game will not start as it cannot find a common game mode on the
server and clients. This game mode simply calls startNextQuestion when
the teacher moves to a new question and passes the information to the PlainGameRen-
derer class. It also starts a timer matching the number of seconds left on the ques-
tion retrieved. The PlainGameRenderer then renders the question with a simple
screen, consisting of four different boxes with each answer alternative and the
question text at the top. A time left counter is also displayed at the top of the
screen. Figure 9.4 shows a screenshot of a question in the teacher client.

Once the time limit has been reached, the PlainGame class requests statistics for
the previous question. It then passes this information on to the PlainGameRen-
derer, which displays this in the form of four histograms representing the submit-
ted answers for all alternatives. The text of each answer alternative is shown to
the right as seen in Figure 9.5 and the correct answer is lit up in bright green. The
next question is not started until the user either presses the space bar key or clicks
the Next question item in the teacher client Game menu.

The PlainGameRenderer uses the JOGL library. The JOGL project is the de-
velopment version of the JavaTMBinding for the OpenGL RAPI detailed in the
JSR-2312[25]. This library provides full access to the APIs found in the OpenGL
1.3 - 3.0, ¥ 3.1, ES 1.x, and ES 2.x specifications as well as nearly all vendor
extensions[26], however due to to the simple nature of the graphical user interface
of this game mode only OpenGL 1.x is used. This makes the requirements to run
this game mode very low and it can be run by most of today’s computers.

2Java Specification Request

69

Figure 9.4: Screenshot of a question in the teacher client

9.3.2 Quiz editor

The quiz editor is implemented in the QuizEditor class. On load, it retrieves a list
of all editable quizzes and display them in a list so the user can pick one they want
to edit. A user can also choose to create a completely new quiz. The QuizEditor
class is assisted by the AddQuestionDialog class to simplify adding new or exist-
ing questions to a quiz. When editing a quiz, the entire quiz is requested from the
server and returned through the getQuiz web service procedure. The modifica-
tions are then done by the GUI in the QuizEditor class before the entire quiz is
sent back to the server for saving by calling saveQuiz. Any new questions have

70

Figure 9.5: Screenshot of question statistics in the teacher client

the ID of 0 and will be created when saving. If a new quiz is created the same
structure is sent, but the quiz ID is set to zero.

9.3.3 Configuration

Configuration of the teacher client is mainly for the web service connection. The
configuration element consists of two classes, the ConfigurationManager class and
the ConfigurationDialog. Configuration editing is done by the ConfigurationDia-
log class, which can be accessed through the Edit menu in the main application

71

window. The only editable field is the web service URL. When configurations
are saved, a connection test is done by the ConnectionManager before the actual
configuration is saved to disk so the user can make sure the web service URL is
correct and a connection can be established. Saving and loading the configuration
data is done by the ConnectionManager class with the help of the Java Preferences
API, which automatically finds the correct save path for the operating system the
application is running on. The ConnectionManager class is a singleton and con-
figurations are read from the disk on application load and saved when they are
changed by the configuration dialog. Any class can request a configuration vari-
able from the connection manager.

The other configuration option found is the text renderer mipmap3 option, which
tells the graphical part how to render text. This option is for advanced users only
and cannot be changed from the configuration dialog.

9.4 Student client

The student client is developed in Java using the Google Web Toolkit4 (GWT) as
AJAX5 framework. As with the teacher client, the main focus of this implemen-
tation has been on functionality and providing a reference as of how a client can
be implemented. Hence, the graphical design is somewhat minimalistic.

In Figure 9.6 an overview of the classes in the student client is displayed. Each
class will be described in the following paragraphs. The classes are divided into
two main parts, one part running as a servlet on a java web container, and one part
running in the user’s web browser supported by javascript, HTML and CSS. Com-
munication between the two parts is provided by GWT-RPC. In the class diagram,
the LQService interface, it’s implementation, and the ConfigurationManager, are
the only classes running on the web container. All other classes are compiled to

3Mipmaping is a texture filtering method used in 3D graphics
4http://code.google.com/webtoolkit/
5Asynchronous JavaScript and XML

72

Figure 9.6: Core class dependencies of the Lecture Quiz Student Client

javascript for use in the web browser. As GWT lets us write code in Java and com-
pile it to javascript, we will only present the java implementation in this section.

The server part of the student client is quite basic. It is mainly a proxy for the
Lecture Quiz Service, providing support for GWT-RPC. The LQService interface
is used by the client part for making asynchronous RPC calls to the methods ex-
posed by this interface. The LQServiceImpl class handles the incoming requests
and relays most of them to the Lecture Quiz Service.

9.4.1 Model View Presenter

In the implementation of the Lecture Quiz student client, we have followed the
guidelines from Google [27] regarding use of the Model View Presenter (MVP)
architecture. In this way it is possible to keep the logic separated from the data and

73

display, and it is therefore possible to change one part without the need to change
the others, as long as the interfaces are the same. Each presenter implementing the
Presenter interface, is responsible for doing some logic and deliver the computed
data to a view to be displayed. The view may be different depending on the user’s
device, e.g. mobile phone, smart phone or computer.

9.4.2 Application control

When a user opens the student client in a web browser, the AppController is
started. This class is responsible for the main flow of the application. As our
implementation is quite basic, the AppController only starts the log in process
by starting the LogInPresenter. In a richer client with several parts in the user
interface, the AppController will have a bigger role.

The LogInPresenter handles the login sequence using the LogInView to display
input fields for nickname and quiz code, as shown in Figure 9.7. After the user
has successfully joined a quiz, it asks the GameManager for the correct subclass
of AbstractGameModePresenter, and starts it. This is done by asking the server
for the identifier of the running game mode, and providing this id to the GameM-
anager. This is described in detail in Section 9.4.4.

Figure 9.7: Screenshot of the login user interface of the student client

74

9.4.3 Configuration

The ConfigurationManager in the Student Client works in exactly the same way
as the same class in the service implementation described in Section 9.1.1. The
ConfigurationManager class is a singleton that reads from the configuration.xml
file located in the WEB-INF/classes directory from where the application was de-
ployed. The student client configuration holds information about the address to
the service and how long the session timeout should be.

9.4.4 Game Modes

The game modes in the student client are all subclasses of AbstractGameMode-
Presenter. As with the other Presenter classes, they process the logic of a game
mode and gives the data to a corresponding view for it to be displayed.

The GameManager and GameModeFactory in the student client works mostly in
the same way as the corresponding classes in the service described in Section
9.1. The main task of the GameManager is to return an implementation of Ab-
stractGameModePresenter from a given id. The GameManager uses the correct
implementation of GameModeFactory to create a new instance of a GameMode-
Presenter. All supported game modes needs to have a GameModeFactory that is
listed in the GameManager class.

PlainGame

The student client has support for one game mode, namely the implementation of
the PlainGame described in Section 9.1.2. This is implemented in PlainGamePre-
senter which uses the PlainGameView as user interface.

After the PlainGame has started, it starts to ask the server for the current question
of the given quiz game. This polling is done with an interval of 2 seconds. When a

75

question is returned from the server, it displays the question text and four colored
answer buttons, as shown in Figure 9.8. When a user submits his answer the game
mode starts to ask for statistics for the current question, with the same 2 seconds
interval. After statistics are shown it starts to poll for the next question.

Figure 9.8: Screenshot of the user interface for displaying questions in the student
client

This procedure continues until there are no more questions and the user will get
an option to display end statistics. Then the game mode asks for end statistics,
displays it, and the game has ended. They user may then refresh the web page to
join a new quiz game.

76

Chapter 10

User’s and Developer’s Guides

In this chapter we will explain how an end user can get the system up and running
for use in lectures. In Section 10.1 we go through the needed steps to get the
Lecture Quiz service, the teacher clients, and the student clients up and running.

We will also explain how a developer can use this architecture and extend it with
new functionality. This includes a guide explaining how to create a new game
mode for the Lecture Quiz server as well as for the clients in Section 10.3. With
the explanations in this chapter, a developer wanting to continue the development
of this project should have all the information needed to write new game modes
for all clients. The developer should also be able to write completely new clients
should the need arise.

As the ability for further development and expansion of the Lecture Quiz frame-
work is an important part of our work we have decided to include detailed infor-
mation on how this can be done. This information is intended for new developers
wanting to pick up the Lecture Quiz system and continue development on the
many aspects of it.

77

10.1 Deployment

This deployment section explains how all Lecture Quiz system components can
be deployed in order to get a fully working system up and running. Some previ-
ous knowledge of MySQL and the Apache Tomcat server is preferred. The first
component that should be deployed is the Lecture Quiz service and its database,
before the clients are deployed.

10.1.1 Lecture Quiz Service

The deployment of the Lecture Quiz service is done on a Java web container.
During the development of this service we used Apache Tomcat, however the
application should work on other Java web containers as well.

The deployment of the Lecture Quiz service application on to a Apache Tomcat
server consists of two steps, WAR file deployment and configuration. First open
up the Tomcat Web Application Manager. This is usually found as the /manager

application on a default installation of Tomcat. For more information about con-
figuring access to the manager web interface see the Apache Tomcat web page1.
In the management web interface select the LectureQuiz.war in the Deploy sec-
tion to upload and deploy the war file to the server. This LectureQuiz.war file can
be found in the attachments under the dist/LectureQuiz directory.

When the Lecture Quiz application is deployed, the configuration file needs to be
changed on the server. This file is located in the path WEB-INF/classes/configurat-

ion.xml under the deployed application. To find out where your application is de-
ployed, refer to the Tomcat server configuration. There are four options in this
file that needs to be changed in order to get the web service to work. The field
DatabaseHost tells where the web service can locate the database server. The
DatabaseDB field tells which database to use. DatabaseUser and DatabasePa-

1http://tomcat.apache.org/

78

ssword sets the user and password to log in with respectively. Once these four
settings are configured correctly, the service can be used. For more information
see the following section on how to setup the database.

10.1.2 Database Setup

The database server we have chosen for our back end is the MySQL server. An-
other server can be used, but it requires a new database back end class in the
Lecture Quiz server to be written, so we will only discuss MySQL in this section.
It is suggested to create a separate user that the web service will use to connect to
the database, but this is not required.

The creation of the database structure can be done by importing the SQL file found
in Appendix B. This file can also be found as database.sql in the attachments
under the dist/LectureQuiz directory. By importing this file, a database called
lecturequiz will be created and all the tables needed will be created under this
database. If this is not the desired database name, it can be changed my modifying
the two first SQL lines in the SQL file. These two lines can be removed if the
importing is done directly into an existing database. In addition to tables, an
administrator user will also be created with the username “Administrator” and
the password “admin”. The password can be changed by updating the SQL. It is
important to remember that the password field in the user table is the SHA-1 sum
of the password. There is currently no custom user interface to create new users,
so this must be done by directly inserting users into the database the same way the
administrator is inserted in the Appendix B file. For more information about the
table fields see Section 9.2 on database design.

10.1.3 Teacher Client

The teacher client needs Java 1.5 or later to be installed on the target machine. In
addition to this it needs the JOGL library, however this is bundled with the Win32

79

and Win64 ZIP packages. These ZIP packages can be found in the attachments as
the dist/LQTeacherClient/LQTeacherClient_win32.zip and dist/LQTeacherClien-

t/LQTeacherClient_win64.zip. The Win32 package is to be used on 32-bit Win-
dows systems, while the Win64 is meant for 64 bit systems. The last file in that
directory is the LQTeacherClient_all.zip. This file is meant for Linux, Mac OS
X and other users but does not contain the binary JOGL files. The latest JOGL
binaries can be found at their download page2. The only operation needed for the
Windows install is to extract the correct ZIP file for the target architecture and
start the application with the BAT-file that will be extracted. This should start the
application.

A small window saying “Connecting to server” should pop up and will proba-
bly hang for a few seconds while the application tries to connect to the default
localhost server. If the connection fails, a warning box will appear and give the
option to open the configuration window. Here the correct web service url can be
inserted. To get the correct url open the page where the Lecture Quiz web service
has been deployed. On this page there is a link to the WSDL file and it is this link
that should go in the configuration box. Once the correct URL is entered, pressing
OK should return the view to the login window. At this point the application is
ready to be used.

Should the application start up correctly, but not start a quiz when the Start quiz

button is pressed, it is most likely due to missing JOGL binaries. Make sure the
binaries can be found by the application by having them in the current or system
path.

10.1.4 Student Client

The deployment of the Student client works in the same way as for the Service
as described in Section 10.1.1. To get the student client up and running you have
to deploy it from the included LQWebClient.war located in the dist/LQWebClient

2http://download.java.net/media/jogl/builds/archive/

80

directory in the attachments.

After the deployment you should edit the configuration located in WEB-INF/class-

es/configuration.xml in the path of the deployed application. The most important
configuration is the address to the Lecture Quiz Service, which should point to the
provided WSDL file. You may also edit the time limit before sessions expire.

10.1.5 Developer Environment

In this project we have used Netbeans as our primary development environment.
In the attached code there are Netbeans project files included which should give an
up and running development environment without much configuration except for
adding a few libraries. These libraries are the JOGL library and the GWT library.
Once these libraries are installed on the system the projects can be opened in Net-
beans and the missing library problems can be solved by pointing to the installed
JOGL and GWT libraries. For more information on installing these libraries see
their respective documentation.

10.2 The Lecture Quiz Service API

The Lecture Quiz Service API is an important part of our architecture, as all com-
munication between the server and clients go through it. We will therefore provide
a detailed description of all exported procedures3 and data structures, as well as
examples on how to use these in Appendix C.

This API is used both when creating new game modes on the clients as well as
entire new clients. The game modes on the Lecture Quiz service responds to calls
through this API, so information about the expected behavior of these procedures
are preferred when creating new game modes both the server and the clients.

3A procedure is similar to a Java method

81

10.3 Creating a Game Mode

This section will go through the creation of a new game mode for all components
of the Lecture Quiz architecture. The most important part here is the creation of
the actual Lecture Quiz Server game mode, as this is where most of the logic is.
The most of the work on the clients go towards showing the data returned from
the server in a meaningful way.

10.3.1 Lecture Quiz Service

When creating a game mode for the Lecture Quiz Service, the most essential
part is the AbstractGameMode class. All game modes derive from this class or a
subclass of it. We will explain how this class can be used to create a new game
mode.

The factory class

In addition to the actual game mode class, we need to create a factory class that
can instantiate a new instance of our game mode class. To create a factory we
implement the IGameModeFactory interface shown in Listing 10.1.

Listing 10.1: IGameModeFactory

public interface IGameModeFactory {

public String getGameModeID();

public String getGameModeName();

public AbstractGameMode createInstance(Quiz quiz,

String quizCode);

}

The two naming methods getGameModeID and getGameModeName return
the string ID that will identify the game mode and a string representation of the

82

game mode name respectively. The ID is used when requesting a game mode
through the web service layer, while the name is shown in the clients when picking
or querying game modes. These two are usually implemented to return static
strings identifying the game mode the factory creates.

The createInstance method creates a new instance of your game mode and
returns it. The arguments quiz and quizCode are usually passed to the constructor
of your game mode class and not touched by the factory class. A simple factory
class can be viewed in Listing 10.2

Listing 10.2: A simple factory class

public class ExampleFactory implements IGameModeFactory {

public String getGameModeID()

{

return "ExampleGameMode";

}

public String getGameModeName()

{

return "Example Game Mode";

}

public AbstractGameMode createInstance(Quiz quiz,

String quizCode)

{

return new ExampleGameModeClass(quiz, quizCode);

}

}

After creating a factory for your game mode, you need to register the factory with
the GameManager class. This is currently done by modifying the GameManager
constructor, as no plug-in system has been made. The registration is done by
adding an instance of your factory class to the supportedModes list, which is a
private member of the GameManager class. The example in Listing 10.3 shows
the already existing PlainGame factory, as well as our new ExampleFactory being

83

added to the list of supporting modes.

Listing 10.3: Registering a game mode factory

// Private singleton constructor

private GameManager() {

games = new ArrayList<AbstractGameMode>();

supportedModes = new ArrayList<IGameModeFactory>();

supportedModes.add(new PlainGameFactory());

supportedModes.add(new ExampleFactory());

}

The game mode class

When implementing a new game mode you, can derive your class from Ab-
stractGameMode or any subclasses of it. You might want to derive from PlainGame
if you’re only making small changes to the game mode. In this guide we will ex-
plain how to create a game mode by deriving from the AbstractGameMode class.
This class contains some abstract methods that needs to be implemented, as well
as some others that can be overridden if the base functionality is not sufficient for
the new game mode.

Protected variables
There are a number of protected variables in the AbstractGameMode class. Some
of these should be filled out by the deriving class and some are used by methods
that can be overridden. These variables are listed in Listing 10.4 and will be
explained as the methods using them are explained.

Listing 10.4: AbstractGameMode variables

protected String id;

protected String name;

protected String gameModeCode;

protected String quizCode;

84

protected User owner;

protected ArrayList<User> players;

protected Quiz quiz;

protected boolean canJoinStarted;

protected Question currentQuestion;

protected int currentQuestionIndex;

protected Date questionStartTime;

protected boolean quizHasEnded;

The constructor

Listing 10.5: AbstractGameMode constructor

public AbstractGameMode(Quiz quiz,String quizCode)

The AbstractGameMode constructor definition is shown in Listing 10.5. This
method sets the protected variables quiz and quizCode from the method argu-
ments. These variables hold the quiz object and the quiz code sent from the teacher
client that started the game respectively. It also initializes the players array and
sets the variables quizHasEnded to false. The deriving class should call this con-
structor and set the id and name member variables. These represent the game
mode ID and game mode name and should have the same values as the factory
class for this game mode would return. The boolean canJoinStarted should also
be set to true or false whether students can join the game after the first question
has been started or not.

The setParameters method

Listing 10.6: setParameters method definition

public boolean setParameters(List<ParameterEntry>

parameters)

The setParameters method is called upon game mode creation and the pa-
rameters are sent from the teacher client when it calls the web service procedure

85

newQuiz. The default implementation in AbstractGameMode simply ignores
these parameters, but they can be used by new game modes to take per game
configuration options from the teacher client. It is not required to implement this
method if the new game mode does not need any configuration parameters on
creation. This method should return true if the parameters are accepted or false
if something is missing and the game cannot start without it. Be aware that the
parameters argument can be null.

The startQuiz method

Listing 10.7: startQuiz method definition

public void startQuiz();

The startQuiz method of the AbstractGameMode class is called when the
teacher client starts the first question through a call to startNextQuestion

in the web service. The base method simply sets the started variable to true,
the currentQuestionIndex variable to -1 and calls the startNextQuestion

member method. This method can be overridden to make initializations that need
to be done before the quiz starts and should call the base class method or set
started to true and call the member method startNextQuestion manually.

The startNextQuestion method

Listing 10.8: startNextQuestion method definition

public abstract boolean startNextQuestion();

The AbstractGameMode class’ method definition of startNextQuestion can
be seen in Listing 10.8. This is an abstract method and needs to be implemented
by all new game modes. The purpose of this method is to mark the next question in
a quiz as the active question, set the questionStartTime time stamp variable, point
the currentQuestion variable to the next question in the quiz and bump the curren-

tQuestionIndex up to the next value. The currentQuestionIndex variable holds the

86

index of the current question in the quiz. Depending on how you want your game
mode to store and create statistics, answers from the last question might be stored
as well for later use. The method should return true if the game mode was able to
set the new question and false if there are no more questions in the quiz. It is also
important that the protected member variable quizHasEnded is set to true should
there be no more questions available. This method is called by startQuiz and
the web service procedure startNextQuestion.

The getCurrentQuestion method

Listing 10.9: getCurrentQuestion method definition

public Question getCurrentQuestion()

The getCurrentQuestion method returns the current question the game is
currently running. It should only return a question that is running, meaning it has
been started by startNextQuestion and the time limit has not been reached.
If there is no current question running, it should return null. The default im-
plementation in AbstractGameMode returns the currentQuestion variable if the
time limit is not reached, otherwise it returns null. It should not be necessary to
override this method unless the new game mode requires special handling of the
current question.

The joinGame method

Listing 10.10: joinGame method definition

public int joinGame(User player,

List<ParameterEntry> parameters)

The joinGame method is called when a player wants to join a game. The player
argument is the user object of the player that wants to join and the parameters ar-
gument is custom arguments coming from the student client. It has three different
error codes, 0 for success, 1 if the player is already in the game, and 2 if the join

87

is denied for other reasons.

The default implementation of this method checks that the player has not already
joined and checks if the canJoinStarted and started member variables agree on
whether the user can join or not. If everything is in order the player is added to the
list of players, namely the players member variable. The parameters argument
is ignored. A new game mode does not need to implement this method unless it
wants to use the custom parameters sent from the student client or handle joining
in any other way. If this method is overridden the new method should behave in
the same way as the base method in AbstractedGameMode.

The receiveAnswer method

Listing 10.11: receiveAnswer method definition

public abstract int receiveAnswer(int answerID,

User player);

The receiveAnswer method is called when a student submits an answer. This
is an abstract method and the new game mode is required to implement it. The
answerID parameter is the ID of the answer submitted and the player parameter
is the player that submitted it. This method can return four different error codes,
0 for success, 1 if the answer is not a valid answer for this question, 2 if the player
has already answered and 3 if the question time limit has been reached or the first
question has not been started yet. The answer should be discarded in all cases
where the method does not return success.

Listing 10.12: Example receiveAnswer implementation

@Override

public synchronized int receiveAnswer(int answerID, User

player) {

if(currentQuestion == null)

return 3;

if (!currentQuestion.hasAnswer(answerID)){

88

return 1;

}

else if (currentAnswers.containsKey(player)){

return 2;

}

else if (timeoutReached()){

return 3;

}

else{

currentAnswers.put(player, answerID);

return 0;

}

}

The implementation of receiveAnswer in the PlainGame class can be seen in
Listing 10.11. As it can be seen, it checks if the current question has not started
yet and returns error code 3 if the member variable currentQuestion is null which.
It then checks if the answer is a valid answer and if the player submitting it has
already submitted an answer. At last it checks if the time limit has been reached.
If it has not, the answer is stored in a member variable called currentAnswers in
PlainGame. This member variable is not from the AbstractedGameMode class
and answers need to be handled by the new game mode class. In this case cur-

rentAnswers is a a hash map of the user and the id of the answer. This makes
looking up already existing answers easy.

The getQuestionStatistics methods

Listing 10.13: getQuestionStatistics method definitions

public abstract ArrayList<StatisticsEntry>

getQuestionStatistics();

public abstract ArrayList<StatisticsEntry>

getQuestionStatistics(User user);

89

In Listing 10.13 we see the definitions of the abstract method getQuestion-
Statistics in AbstractGameMode. A new game mode is required to imple-
ment both definitions for this method. After each question has reached the time
limit, the clients ask for statistics. This method returns the statistics in form of
key and value pairs of strings. The keys are decided by the game mode and is
interpreted by the clients in their game mode implementation.

The method with the user argument should return the statistics for the single user
that is passed as the argument, while the method without arguments should return
general statistics for all submitted answers of the last question. The methods can
signal failure by returning null instead of a list.

In the PlainGame implementation, the method with the user argument only re-
turns the correct answer ID with the key correctAnswer. The definition with-
out arguments counts all the submitted answers and returns the percentage of an-
swers for each answer option as well as the correct answer. For more details see
the PlainGame class’ full implementation of the getQuestionStatistics
methods in the code for the LectureQuiz project found in the attachments.

The getOverallStatistics methods

Listing 10.14: getOverallStatistics method definitions

public abstract ArrayList<StatisticsEntry>

getOverallStatistics();

public abstract ArrayList<StatisticsEntry>

getOverallStatistics(User user);

The getOverallStatistics methods shown in Listing 10.14 behave very
similar to the getQuestionStatistics methods. The purpose of these
methods are to deliver the overall statistics of the entire game after the last ques-
tion has been answered. These are abstract methods and any new game modes
need to implement both of these definitions. The method with the user argument
returns overall statistics for the user supplied, while the method without arguments

90

returns overall statistics for all users in the game. An implementation of any of
these methods should fail if it is called before the last question has reached its
time limit. The return value is a list of key and value pairs of strings, much in the
same way as getQuestionStatistics. The result is read on the client who
requested it and is interpreted by the game mode implementation running on the
client. The function signals failure by returning null.

The PlainGame implementation of this method with the user argument returns
the percentage of correct answers that user had. The key field of this entry is cor-

rect and is a value between 0.0 and 1.0. The method without an argument returns
the percentage of all submitted answers which were correct with the correct key
and the total number of questions in the quiz with the questionCount key. It also
returns the user who had the most correct answers. The user has the key mostCor-

rectUser, while the number of correct answers this user had is stored with the key
mostCorrectCount. For more details see the PlainGame class’ full implementa-
tion of the getOverallStatistics methods in the code for the LectureQuiz
project found in the attachments.

The removeUser method

Listing 10.15: removeUser method definition

public void removeUser(User user)

The removeUser method seen in Listing 10.15 removes a user from the game.
The parameter user represents the user to remove. This method is called when
a game is shut down to clean up users and also when a user session times out so
there are no dead users left in the quiz. If a user decides to authenticate twice
during a session this method is called if the user is in an active game.

The AbstractGameMode class implements this method by removing the user from
the players protected member variable. A new game mode might want to override
this method to clean up statistics if a user leaves in the middle of a quiz. In this
case the method overriding the AbstractGameMode implementation should either

91

call the parent method or remove the user from the players list manually. The
PlainGame implementation removes the user from the answer statistics then calls
the parent method.

The getGameStatus method

Listing 10.16: getGameStatus method definition

public GameStatus getGameStatus()

The getGameStatus method returns the current status of an ongoing game. The
return type GameStatus is a class with some information about the current state of
the game. The AbstractGameMode implementation fills out this information and
it should not be necessary to override this method unless the player list or question
handling is done in a special manner. For more information on the GameStatus
class see Appendix C.2.8.

Other getter and setter methods
None of the methods in Listing 10.17 should require overriding when making a
simple game mode. The only getters that needs special handling is the getNumb-
erOfPlayers and getPlayers and, this is only if the new game mode chooses
to handle the player list in another way than AbstractGameMode does. For more
information on these methods see the full method documentation found in the
JavaDoc pages in the attachments.

Listing 10.17: The other getter and setter methods

public String getId()

public String getName()

public int getNumberOfPlayers()

public User getOwner()

public ArrayList<User> getPlayers()

public String getQuizCode()

public int getTimeLeft()

public boolean canJoinStarted()

92

public boolean hasQuestionTimedOut()

public boolean hasQuizEnded()

public boolean isStarted()

public void setOwner(User user)

10.3.2 Teacher Client

Creating a new game mode from the teacher client is all about presentation. There
is very little logic in the teacher client, as most of this work is done on the Lecture
Quiz server. When creating a new game mode for the teacher client there are three
classes and one interface of importance, AbstractGameMode, AbstractGameRen-
derer, ConnectionManager and IGameModeFactory.

The AbstractGameMode and AbstractGameRenderer classes are almost entirely
abstract, with the exception of a few protected variables and initialization in the
constructors. One or both of these two classes needs to be subclassed to cre-
ate a new game mode. The ConnectionManager class is a singleton that has one
method of interest, the getPort method. This method returns a reference to the
web service object and with it the web service procedures can be called. To get the
singleton instance of this class call the getInstance method. The IGameMo-
deFactory interface exposes a factory for each game mode the client supports.

The game mode code is split in two between the AbstractGameMode and Ab-
stractGameRenderer classes. This is done so a new game mode can reuse the
renderer of a previous game mode without the need to subclass the renderer. This
will also make sure that rendering code and logic code are separated.

93

The factory class

Like the Lecture Quiz server game modes, the teacher client game modes also
need a factory to create an instance of the correct game mode when a game is
started. This interface can be seen in Listing 10.18 and work very much in the
same way as the Lecture Quiz server factories.

Listing 10.18: IGameModeFactory interface

public interface IGameModeFactory {

public String getGameModeID();

public String getGameModeName();

public AbstractGameMode createInstance(JComponent parent

);

}

A new game mode should create a factory that implements this interface and then
register this game mode with the GameManager class. The getGameModeID
method should return a string representation of an ID that identifies the new game
mode. The getGameModeName method should return a human readable string
representation of the game mode’s name. These two methods are usually im-
plemented to return static strings. The last method createInstance should
create an instance of the new game mode. An example implementation of a fac-
tory can be seen in Listing 10.2 in Section 10.3.1. That example implementation
shows a factory for the Lecture Quiz service, but a factory for the teacher client
would be identical with the exception of the createInstance parameters.

After the factory has been created, it needs to be registered with the GameManager
class. This can be done by adding an instance of it to the supportedModes member
variable in the GameManager class. This is usually done in the constructor. An
example adding the PlainGameFactory as well as a new ExampleGameFactory
can be seen in Listing 10.19.

Listing 10.19: Register a game mode factory

private GameManager() {

94

supportedModes = new ArrayList<IGameModeFactory>();

supportedModes.add(new PlainGameFactory());

supportedModes.add(new ExampleGameFactory());

currentGame = null;

}

The game mode class

The main game mode class is the AbstractGameMode class. A new game mode
should derive from this class. The responsibility of this class is to handle input
from the teacher client GUI by responding to events. It should also handle the
time limit of questions, get the question data as well as statistics from the Lecture
Quiz service. Most of the work in this class goes towards getting data from the
service and deliver it to the renderer. The definition of the AbstractGameMode
class can be seen in Listing 10.20. This shows the abstract methods that needs to
be implemented for the game to work.

Listing 10.20: AbstractGameMode class definition

public abstract class AbstractGameMode {

protected JComponent parent;

protected AbstractGameRenderer renderer = null;

public AbstractGameMode(JComponent parent);

protected abstract void createRenderer();

public abstract void startQuiz(int quizId,

String quizCode);

public abstract void nextQuestion();

public abstract void cleanup();

}

To communicate with the Lecture Quiz web service we use an object we call
the port. This object is an instance of a class that has each web service procedure

95

mapped to an identically named method in this class, so calling any of the methods
on the port object will call the procedure on the other end of the connection. We
can get the port instance from the ConnectionManager class. An example of this
can be seen in Listing 10.21.

Listing 10.21: Get an instance of the port object

LectureQuizService port =

ConnectionManager.getInstance().getPort();

The constructor
The AbstractGameMode constructor implementation sets the parent member vari-
able to the one passed though its parameter. It also sets the parent’s layout to Bor-
derLayout4. It then calls the abstract method createRenderer. A subclass
should make sure to either do these operations on its own or call this constructor
from the new game mode’s constructor.

The createRenderer method
This method is automatically called by the AbstractGameMode constructor and
needs to be implemented in the new game mode. The objective of this method
is to create an instance of a class extending the AbstractGameRenderer class and
set the protected renderer member variable. It should also add this renderer to the
parent in a way that is appropriate for the game mode. This is usually done by
calling the add method on the parent member variable. This method is of interest
if a new game mode is created by only switching out the renderer of a previously
created game mode, as the new game mode can extend the previously created one
and just override this method to create a different renderer.

The startQuiz method
The startQuiz method is called when a quiz is started from the teacher client
GUI. At this stage the teacher client would usually tell the renderer to display a
welcome screen of some sorts and display how many users that have joined the
quiz. A game mode is not required to call the startQuizweb service procedure
as this has already been done by the teacher client GUI in the menu screen.

4BorderLayout is a layout type in Java Swing

96

The PlainGame implementation of startQuiz starts a timer that updates the
welcome screen every 4 seconds with new game information retrieved from the
Lecture Quiz service. The renderer is told to show the welcome screen by calling
the showWelcomeScreen method on the renderer member object.

The nextQuestion method
When a teacher clicks the Next question element in the teacher client’s menu bar,
the nextQuestion method of the running game mode is called. This method
should call the web service procedure startNextQuestion and tell the ren-
derer to display this new question on the screen by calling the showQuestion
method of the renderer member object. A timer should also be started to count
down and fire when the question’s time limit is reached. When this timer fires, the
question statistics should be requested from the Lecture Quiz service by calling
the getQuestionStatistics procedure.

Should the startNextQuestion procedure call signal that the last question
has been answered by returning the error code 5, the overall statistics should re-
trieved from the server with a call to the getOverallStatistics procedure
and the renderer should be told to display it by calling the showOverallStat-
istics method on the protected renderer member object.

For more information see the full implementation of the teacher client PlainGame
class in the LQTeacherClient project code found in the attachments.

The cleanup method
The cleanup method is called when a game mode is shutting down. The typical
task of this method would be to remove the renderer object from the protected
parent member object. The cleanup method on the renderer should also be
called to make sure it cleans up after it self. Other needed cleanup tasks can also
be done in this method.

97

The renderer class

As with the AbstractGameMode class, the AbstractGameRenderer class shown in
Listing 10.22 is mostly built up of abstract methods. The AbstractGameRenderer
class also extends the GLCanvas class and implements the GLEventListener in-
terface. This is done to enable the use of OpenGL in this class and its subclasses.
This class handles calls from the AbstractGameMode class in order to display that
information on screen. A new game mode renderer needs to implement all these
abstract methods, as well as the methods defined by the GLEventListener interface
shown in Listing 10.23. An introduction to programming with OpenGL in Java
can be found at the JOGL site[26]. It is important to notice that the actual ren-
dering does not happen in any of the abstract methods in AbstractGameRenderer
but rather in the display method implemented through the GLEventListener
interface.

Listing 10.22: AbstractGameRenderer class definition

public abstract class AbstractGameRenderer extends

GLCanvas implements GLEventListener {

public AbstractGameRenderer(int width, int height);

public abstract void showWelcomeScreen(GameStatus

gameStatus);

public abstract void showQuestion(QuestionInfo info);

public abstract void showStatistics(

List<StatisticsEntry> stats);

public abstract void showOverallStatistics(

List<StatisticsEntry> stats);

public abstract void cleanup();

}

Listing 10.23: GLEventListener interface

public interface GLEventListener {

public void init(GLAutoDrawable glad);

public void display(GLAutoDrawable glad);

public void reshape(GLAutoDrawable glad, int i,

98

int i1, int i2, int i3);

public void displayChanged(GLAutoDrawable glad,

boolean bln, boolean bln1);

}

The GLEventListener methods
The methods in the GLEventListener interface is not a special set of methods for
this application, but rather methods used by all applications who use the JOGL
library. We will go through a short usage scenario of these methods in a game
mode bellow.

The first method that is called is the init method. In this method initialization
of any OpenGL buffers and other adjustments should be done. This is the same
initialization that is done in most applications utilizing OpenGL. It is also typical
to create and start an FPSAnimator. The FPSAnimator makes sure that display
is called at a certain rate of frames per second. For more information on the inner
workings of the FPSAnimator and how to initialize OpenGL correctly see the
JOGL tutorial page at their homepage[26].

The display method is the method that does all the actual drawing on the
screen. It is usually called repeatedly many times per second. It is a smart idea
to keep a tracker variable inside the new game renderer class to make sure this
method always knows what to draw, should it be the welcome screen, a question
or statistics.

When a user resizes the the teacher client window or any other GUI element
that affects the OpenGL area, the event system will send a call to the reshape
method. The usual response to this would be to call the glViewport method of
the GL object with the new size to resize the current viewport. Again there is noth-
ing special with this method compared to other applications who use OpenGL.

The last method in the GLEventListener interface is the displayChanged

method. This method is called when the display mode or display device changes.
For more information on how to implement this method see the JOGL tutorial

99

site[26].

The constructor
The AbstractGameRenderer base constructor simply calls the GLCanvas con-
structor and adds it self as a listener for GL events. It also sets it’s own size to
what the parameters specify. Any class that derives from AbstractGameRenderer
should make sure to call this constructor.

The showWelcomeScreen method
The renderer class listen to multiple events that come from the game mode class.
The showWelcomeScreen method is one of those. It signals that the game
mode wants the renderer to display a welcome screen and the argument gameS-
tatus tells information about the current state of the game. For more information
about the GameStatus class see Appendix C.2.8. There should be no actual ren-
dering done in this method, but it should signal the class that the next rendered
frame should be the welcome screen with the information passed in the argument.

The showQuestion method
The showQuestion method is called when the game mode wants to display a
question on the screen. The parameter info contains all the information needed to
display the question. Detailed information on the QuestionInfo class can be found
in Appendix C.2.2. As with the showWelcomeScreen method no rendering
should be done here, but it should signal that the next frame should be the question.

The showStatistics method
After a question has reached the time limit, the game mode class should re-
trieve the statistics from the server and send it to the renderer with a call to the
showStatistics method. The statistics passed to this function is a list of key
and value string pairs representing various aspects of the statistics for the previous
question. This method is called after each question and should not be confused
with the show- OverallStatistics method.

The showOverallStatistics method
When all the questions have been answered and the statistics have been shown

100

for the last question, the game mode requests the overall statistics for the en-
tire game from the Lecture Quiz server. These statistics are then sent to the
showOverallStatistics method which signals the renderer that the next
rendered frame should be the overall statistics. The statistics in the parameter
stats is a list of key and value pairs of strings in the same way the parameters of
the showStatistics method work.

The cleanup method
The last method to be called to a renderer is the cleanup method. This signals
that the game is over and the renderer should clean up anything that is needed
after the initialization of the class. If no extra cleanup is needed this method can
be implemented as a blank method.

10.3.3 Student Web Client

Game mode creation in the student web client work in a similar way as the other
two parts, but the important parts are different. As described in Section 9.4, the
student web client uses the MVP architecture suggested for use with the Google
Web Toolkit. This means that the implementation of a new game mode mainly
consists of a Presenter and a least one corresponding View.

The Presenter

The game mode presenter must extend the AbstractGameModePresenter seen in
Listing 10.24. This Abstract class has a constructor that takes a reference to the
rpcService used by the GWT application and the eventBus of the application.
The eventBus is not implemented in the student web client by now, but the refer-
ence is used through out the application so that it may be easily implemented at a
later stage. By now it may be ignored in the game mode presenter.

The go method in the abstract class is used to start the presenter. It takes one

101

argument; the container the corresponding view should be occupying. From this
point the developer is free to do what he or she wants regarding implementation,
but it is advisable to use at least one separate view to be used for display purposes.
In both PlainGamePresenter and LogInPresenter we have specified an interface for
the corresponding views to implement. By doing it this way, it is easy to support
different views for different devices without changing the logic of the presenter.

Listing 10.24: AbstractGameModePresenter

public AbstractGameModePresenter(LQserviceAsync

rpcService, HandlerManager

eventBus) {

this.rpcService = rpcService;

this.eventBus = eventBus;

}

public abstract void go(HasWidgets container);

Calls to methods of the rpcService are done as regular method calls, but takes
one additional argument because AJAX requires asynchronous method calls. An
implementation of AsyncCallback is needed, as the method is non blocking and
returns once it is called. This class is instantiated once the service method have
finished. The onSuccess method is called if the service method succeeded,
otherwise the onFailure method is called.

The View

The View class of a game mode implementation is responsible for all the parts
of the game mode’s graphical user interface. As the user interface may change
for each game mode, we have not designed an own interface or abstract class for
this purpose. As the user interface may be much richer in the future, this may be
something that could be done, so that e.g. questions are displayed in a similar way
in different game modes.

As the view does not have to implement any interfaces or extend any classes the

102

developer of a new game mode may do the implementation the way he or she
wants.

The Factory

The game mode factory functionality of the student web client works in the same
way in the the other two parts. The GameManager is exactly the same and looks
for an implementation of the IGameModeFactory matching the id or name that is
asked for. Each game mode should make a new implementation of IGameMode-
Factory, as seen in Listing 10.25, and add it to the GameManager. The task of the
factory is to return a new instance of the corresponding GameModePresenter. For
further details on how to use the GameManager, see Section 10.3.1.

Listing 10.25: IGameModeFactory

public String getGameModeID();

public String getGameModeName();

public AbstractGameModePresenter createInstance(

LQserviceAsync rpcService,

HandlerManager eventBus);

The Service

The LQServiceImpl class works as a proxy for the Lecture Quiz Service. As
most of the web browsers prevent AJAX calls to different domains, for security
purposes, and we are using GWT, it is not possible to call the Lecture Quiz Service
directly from the Presenter.

Implementation of the parts of the service used by PlainGame is provided in this
class, but additional functionality may be needed in the future. To implement
new functionality in LQServiceImpl you may create a new method like a standard
java method. To access the Lecture Quiz Service use the code snippet shown in

103

Listing 10.26. After the implementation is finished, the interfaces, LQService and
LQServiceAsync, needs to be updated correspondingly.

Listing 10.26: Getting access to the Lecture Quiz Service

LectureQuizService port = (LectureQuizService)

((User)getSession().getAttribute("User")).getPort();

104

Part V

Evaluation

105

106

Chapter 11

Lecture Experiment

In this chapter we will present an empirical experiment where our applications
were tried out in a realistic environment. The method is described in Section 3.2.
In the first part of this section, the context of the experiment will be presented.
Then the results will be presented and analyzed briefly.

11.1 Experiment Delimitation

The goal of this experiment was to get an overall picture of how the Lecture Quiz
service and clients worked in a real life setting, and to compare it to the similar
experiment ran on Lecture Quiz 1.0 in 2007 [1]. As this is just a small test, we
will only point out and discuss trends we see in the results. Statistical analysis and
thorough psychological analysis are out of the scope of this report. For details on
the method used in this experiment see Section 3.2

107

11.2 Experiment Context

This experiment tested the usability and functionality of Lecture Quiz 2.0 by Knut
André Tidemann and Erling Andreas Børresen. The test was prepared by the soft-
ware creators and lead by associate professor Alf Inge Wang. The experiment
took place on May 11

th 2010 at lecture room G1 at NTNU, Trondheim, Norway.
The purpose of this experiment was to collect empirical data about how well our
prototype worked in a real life situation, especially regarding usability and func-
tionality.

11.2.1 Participants and Environment

The experiment was conducted in a lecture in the course TDT4240 Software Ar-
chitecture, and all the participants were students taking this course. 21 students
took part of this experiment, where 81% were male and 19% where female. As the
test was conducted in a class of computer science students, most of the students
look at themselves as experienced computer users, but none of the participants had
tried the software before the experiment. The test was lead by the teacher, and he
controlled the progress of the game with the teacher client running on a laptop
and displayed on a big screen by a projector. The students used their own mo-
bile phone or laptop to participate through a web browser supporting javascript.
The Lecture Quiz server was running on a computer located outside of the lecture
room.

11.2.2 Success Criteria

In this section we will present a set of hypotheses describing what we think of
as important criteria of our experiment. Some of these success criteria are the
same as for the experiment of 2007 [1], and some are new. Basic confirmation of
these hypotheses will be regarded as success, although statistically confirmation

108

of these are out of the scope of this report and this experiment.

� H1 - The system is not conceived as intrusive on the lecture.

� H2 - The system is easy to getting started with and use

� H3 - The system works as it should

� H4 - The system has high usability

� H5 - The students find the system inspiring and fun

11.3 Experiment Execution

21 of the students in class chose to participate in the experiment. The lecture
was a summary lecture in the course TDT4240 Software Architecture. In the first
part of the lecture, theory from this semester was summarized and discussed. The
students were allowed to ask questions.

The experiment took place in the second part of the lecture, after a short break.
The teacher client was started and an URL to the student client was shown on
the projector. Each student logged in on the web client using a desired username
and the quiz code displayed in the teacher client. None of the students reported
any problems with this part, but some asked if they needed to use their NTNU
username or they just could choose one by themselves.

The experiment went on very well. Everyone was able to answer the questions
and there was a relaxed atmosphere in the room. Some of the answer options
made the students laugh a bit. In one of the questions the teacher client was not
able to display the statistics and correct answer. This was displayed correctly on
the student client. The problem was solved by going directly to the next question,
and all the software seemed to handle this well.

109

All of the 21 students that took part of the experiment did also answer the ques-
tionnaire. The questionnaire is found i Appendix A

11.4 Experiment Results

In this section we will present the results of the questionnaire. First we will cal-
culate the SUS score as described in Section 3.2.1. Thereafter we will present the
result of the other important questions. Most of these had five options for the user
to answer. From strongly disagree to strongly agree. These options are displayed
in the graphs as values from 1 to 5 respectively, and -1 means that this question
was not answered by a user.

To calculate our SUS score we had to discard 6 of the 21 returned questionnaires
as they had not answered all of the questions included in the SUS part of the
questionnaire. That made it 15 valid questionnaires for our SUS calculation.

Our software got a SUS score of 84 out of 100. This is displayed in table 11.1,
and shows how we scored on each question. For a description of how SUS is
calculated see Section 3.2.1.

The results of the other questions in our questionnaire are displayed as graphs in
the Figures 11.1 through 11.8. Graphs shows how many who answered on each
option of a question. Where 5 means strongly agree, 1 means strongly disagree
and -1 means did not answer.

110

Question Average SUS/Question
I think that I would like to use this system
frequently

3.53 3.53

I found the system unnecessarily complex 1.40 3.6
I thought the system was easy to use 4.53 3.53
I think that I would need support of a techni-
cal person to be able to use this system

1.13 3.87

I found the various functions in this system
were well integrated

3.73 2.73

I thought there was too much inconsistency
in this system

1.73 2.73

I would imagine that most people would
learn to use this system very quickly

4.73 3.73

I found the system very cumbersome to use 1.73 3.27
I felt very confident using the system 4.33 3.33
I needed to learn a lot of things before I could
get going with this system

1.27 3.73

SUS Score 84.00

Table 11.1: Results of System Usability Scale

Figure 11.1: Q1: I think that I am an experienced computer user

111

Figure 11.2: Q2: I think I payed closer attention during the lecture because of the
system

Figure 11.3: Q3 - I found the system had a distracting effect on the lecture

112

Figure 11.4: Q4 - I found the system made me learn more

Figure 11.5: Q5 - I think I learn more during a traditional lecture

113

Figure 11.6: Q6 - I found the system made the lecture more fun

Figure 11.7: Q7 - I think regular use of the system will make me attend more
lectures

114

Figure 11.8: Q8 - I feel reluctant to pay 0.5 NOK in data transmission fee per
lecture to participate in using the system

11.5 Experiment Evaluation

In this section we look at the trends and opinions in our survey. These are eval-
uated along with the feedback we got on the comment part of the questionnaire.
The evaluation is presented as answers to the success criteria listed in Section
11.2.2.

� H1 - The system is not conceived as intrusive on the lecture.

As we can see in Figure 11.3, over 80% disagreed in some way that the system
had a distracting effect on the lecture, where 57% strongly disagreed. While only
2 persons agreed to this statement. This is a slightly better result than in 2007,
where 70% disagreed to this statement in some way. Having the quiz at the end
of the lecture, and not having to change lecture room, as in 2007, may be factors
changing this result.

115

In 2007 the majority thought that regular use of the system would make them
attend more lectures. In this experiment the distribution of answers was more
even, as seen in 11.7. This proves that more research is necessary before we can
make a valid result on this question.

Most of the students thought they payed closer attention during the lecture because
of the system. While only one person disagreed to this statement. Although 8 did
not have a clear opinion on this and 2 persons did not answer, we find this as a
positive result, as this was more evenly distributed in 2007.

� H2 - The system is easy to getting started with and use

Although these questions are a part of the SUS questions, and therefore describe
the general usability of our system, we think they are so important for our proto-
type that they are included as a separate success criteria. One of the main focuses
of our software is to let the students run the client in a web browser and it should
therefore be fairly easy to start and use.

There are several questions in SUS addressing these questions.

� I thought the system was easy to use

� I think that I would need support of a technical person to be able to use this
system

� I would imagine that most people would learn to use this system very quickly

� I needed to learn a lot of things before I could get going with this system

With an average score on these questions of 4.53, 1.13, 4.73 and 1.27, respectively,
we find the results relatively clear. The people that took our questionnaire find our
system both easy to use and easy to getting started with. All of these results are
somewhat better compared to the experiment in 2007.

116

Although this is a great result, some of the students commented that the graphical
design of the software was not good. Many students complained that the answer
buttons where to small, although this could be solved using the zoom function in
their web browser. We are fully aware that we are not graphical designers, and
that major improvements could be done on this part, but our main focus in this
assignment was to get the technical things on the back end done right.

There were also some complains about the color chosen as a background on option
two on the teacher client. This color was displayed differently on the big screen
than on a standard computer screen and this made the text almost unreadable. In
the experiment the teacher read out all the options, so that all the students did get
the information they needed. In the submitted version of the teacher client the
background color for this option was made darker to improve readability.

From the teacher’s perspective, this was an important part of the experiment. As
the time needed to start a quiz was so little, you only needed to put up an URL
on the big screen and let the students log in, he thought it was much easier to use
the system in a lecture. There was less time wasted compared to the experiment
of 2007, and he felt that the system was not braking the lecture apart in the same
way.

� H3 - The system worked as it should

Out of the 21 returned questionnaires, 18 reported that the software worked as
it should on their device. 1 meant that the software did not work because of the
problem with small buttons described earlier, 1 did not answer, and 1 did complain
that the software did not work in Opera Mini. The reason for the problem in Opera
Mini is that our web software is build on AJAX and therefore needs javascript
support in the browser. In Opera Mini the requests are compressed and handled
on a central server before being sent to the mobile device, and thus javascript
does not work. The class was informed of this before the experiment started, and
the person reporting problems switched browser to use our software without any
further problems.

117

During the experiment the teacher client failed to show the statistics for one of the
questions. The statistics where displayed correctly on all the student clients, and
all answers was stored as normal. The quiz continued as usual when the teacher
pressed the button to start the next question. We think this is only a minor bug in
the teacher client and that the rest of the system works as expected. We were not
able to reproduce this bug.

� H4 - The system has high usability

With a SUS score of 84 we think that our system has high usability. The SUS
score of the experiment in 2007 were 74.25. Our system does mainly the same
things, except for our student client being web based. Thus we may see the web
based approach as an success. Although some of the technical problems of 2007
may have had an effect on that score.

� H5 - The students found the system inspiring and fun

Figure 11.6 shows this quite well. 18 out of 21 think that the system made the
lecture more fun. 1 did not answer and 2 persons did not have a clear opinion on
this statement. This is close to the result in 2007, and we see a clear trend that
students think using the lecture quiz system in lectures make the them more fun.

11.6 Experiment Conclusion

During this experiment we had less technical problems than the comparable exper-
iment in 2007, thus probably making the users more friendly in their evaluation of
the system. The results of this experiment are mostly positive and in some extent
better than last time. The results of this experiment indicate the following trends:

� Most students do not find the system intrusive on the lecture

118

� The students found the system made the lecture more fun

� The system was easy to getting started with and use

� The system has high usability

� Our system worked mostly as expected

119

120

Chapter 12

Evaluation

In this chapter we are going to discuss and analyze our research and development
method and how it was executed according to the given guidelines. We will also
look at the requirements described in Chapter 6 and discuss how well these are
met in our system. The experiment is already analyzed and evaluated in Chapter
11.

12.1 Research Method

As described in Chapter 3, we decided to go for the engineering approach in our
research. In the beginning we started to define a set of research questions. This
was followed by searching for previous work, both regarding game theory and
previous educational software, which gave us a good historical basis for our fur-
ther work.

Based on the findings in the previous work we came up with a set of requirements
for the our system, and based on these requirements a software architecture was
designed. Then there was selected appropriate technologies, followed by imple-
mentation of the system.

121

The chosen solutions and design choices in the architecture and the choice of
technologies are mainly based on our subjective assessments and the findings in
the previous work. The engineering approach has made it possible to experiment
with the combination of our own ideas and things that have been done earlier.

At the end of our project we arranged an empirical experiment to test the usabil-
ity of the system. This has shown some trends and indications of how well the
system was received. Ideally there should be held a larger and more statistically
valid experiment. Such an experiment would probably uncover room for more
improvements and give the system more integrity.

12.2 Development Method

In this project we chose to go for the Scrum process with short iterations. This
has worked out well. There have been some days where the scrum meetings were
missing, but the communication between the two of us has been good all along.

We used the requirements from Section 6 as the product backlog. Taking parts
of the requirements and implementing them in pieces has been successful. It has
been good to see different functions evolve and to see the whole product as a sum
of smaller parts.

At the end of each sprint we have not, as described in scrum, had an evaluation
and testing with external stake holders, but we have done this internally. As this is
not a project driven by a commercial customer, and there were no need to deploy
each sprint in production, this was an acceptable solution for our project.

122

12.3 Requirements

When we designed the architecture we created a set of requirements for our Lec-
ture Quiz system. In this section we will go through how we have completed these
requirements.

FR1 The game shall consist of a teacher client and a number of student clients

Our architecture allows both a teacher client and multiple student clients to be
connected at the same time in the same game.

FR2 The teachers need to authenticate to use the client

Authentication with a username and password through a call to the web service
procedure authenticate is required before a user can use any procedure that
require teacher privileges.

FR3 It must be possible to extend the game with new game types

New game types can be created by extending the already existing game modes in
both the server and clients.

FR4 It must be possible for the teachers to store questions for later use

A teacher or administrator can save questions in the Lecture Quiz system through
the quiz editor and these questions can then be used by new quizzes later.

FR5 It must be possible to tag questions for easier reuse and grouping

123

While the support for question-tagging is implemented in the database, it is not
implemented in the Lecture Quiz server or the teacher client quiz editor.

FR6 A question shall consist of four options

A question in the implemented game mode does consist of four options, but this
is not a hard limit. Any new game mode can allow fewer or more answer options.

FR7 Questions must be able to have an individual time limit

The questions have the ability to have an individual time limit which is set in the
quiz editor.

FR8 It must be possible to run several quizzes at the same time

The system is capable of running both several different quizzes at the same time
as well as multiple instances of the same quiz in different lectures.

FR9 Statistics should be shown after a question has been answered and after the
quiz has been completed

The statistics are shown after each question and after the quiz is completed. The
running game mode determines what and how these statistics are displayed.

FR10 A quiz game may group the students into groups

The possibility for a game mode to group students into teams is available but the
implemented Plain Game mode does not support this feature. A new game mode
can implement this without restrictions.

124

FR11 The teacher decides when to start a quiz

To start a quiz the teacher has to actively start each question after the previous one
has completed. However, it is possible to create a game mode that overrides this
behavior.

FR12 The students must identify them selves with a user name when joining a
quiz

Before a student can join a quiz it needs to identify him or her self with a call to the
authenticate procedure. If the user name is already taken the, authentication
will fail and the user is asked to supply another one.

FR13 The students must answer questions before the time limit is up

If a student tries to answer the question too late, the server returns an error. In the
student client the question is automatically skipped if the timer runs out and the
student loses his or her ability to submit an answer to the question.

FR14 The students must supply a quiz code to join a quiz

To join a quiz a student has to supply the quiz code given out by the teacher. If a
wrong quiz code is inserted an error is returned.

FR15 The teacher must be able to pause between questions

The game automatically pauses when the statistics are shown and the teacher
needs to start the next question manually. This behavior can be overridden by
a game mode if required.

125

FR16 The teacher must be able to save the statistics from a quiz round that has
just ended

The teacher cannot save the statistics in the teacher client at the moment, but
the ability to implement this feature is already there by saving the statistics data
returned from the server.

12.3.1 Quality Requirements

In this section we will go through all the quality requirements and discuss if they
are fulfilled by our system. As there was little time for thorough testing, some of
the requirements are hard to validate. This is left for future tests and experiments.

M1 - Deploying a new game mode for a client
This is not tested as there currently only exists one game mode for the sys-
tem. But the system is designed and implemented in a way that this should
most definitely be a requirement that is possible to reach.

M2 - Creating a new client
This is very hard to test without making a completely new client. This
requirement depends in many ways on how rich the new client should be.
We have made a clear and well documented service, and a small client could
be possible to complete within two days

M3 - Adding support for a new database back end
Again, this is not tested, as we have not implemented support for more than
the MySQL database back end. The system is designed in a way that should
make it easy to implement support for new back ends. We think that if the
person implementing the support are familiar with the new database system,
this should absolutely be a requirement that could be reached.

U1 - Changing server settings

126

This requirement has been fulfilled by our systems use of a configuration
file. The use of the configuration file is described in Section 10.1.1.

U2 - Getting started
This is not tested by use of a stopwatch, but based on the feedback we got
from the experiment, this requirement is perfectly fulfilled.

U3 - The game should be fun
As 18 out of the 21 answered that they in some extent found the system
made the lecture more fun, thus we consider this requirement as fulfilled.

U4 - Deploying the Lecture Quiz Server
By testing this requirement by our selves, we used around 10 minutes. Tak-
ing into account that we are familiar with the system, this makes it plausible
that a system administrator should complete this task in less than one hour.

U5 - Adding question
By simple testing done by us as users that are familiar with the system,
fulfilling this requirement is not a problem. But there should be done more
testing to validate this with inexperienced users.

S1 - Multiple game servers
As the system has really low performance needs in our small test of 21 users,
this requirement is hard to validate. Further experiments and performance
testing should be done to achieve this.

S2 - Number of users
In our test with 21 users our home computer had no problem serving the
system. This makes it likely that 100 users should not cause any problems
on more suited server hardware. Though this should be validated by more
extensive testing.

127

128

Part VI

Conclusion

129

130

Chapter 13

Conclusion

In our thesis we have tried to make a scalable architecture for use in the education
game Lecture Quiz. By looking at the previous work done by Mørch-Storstein
and Øfsdahl[1], we have identified requirements and research questions which we
have solved to create a better and more modifiable architecture. The results of the
research questions are:

RQ1 What architecture is best suited for the Lecture Quiz game?

We have created an architecture based on three separate components and we found
that using a web service as our server eased the development and the modifiability
of the architecture. By using a student web client we could reach more students
in an easier way.

The main features of our architecture is extendable game modes, the ability to run
multiple game servers on the same database and run many different quizzes on the
the same server. Answers from students are delivered via a web application while
the teacher client runs as a native Java application.

a) How should data be exchanged between the clients and the game server?

131

For communications the SOAP protocol fits the needs of the system and is also
easy to implement and use. It gives the ability to develop clients on many differ-
ent platforms without issues and the integration of this protocol is very good in
many libraries and platforms. This protocol has many advantages to the other al-
ternatives, including automatic session handling on the server. By using a remote
procedure protocol we did not have to debug any of the actual protocol communi-
cation our selves.

b) How does this architecture scale when the number of users increases?

The architecture is made scalable by allowing multiple game servers to use the
same database. This means that the quizzes and questions are all stored at the
same place and should the need for more computing power be there, the require-
ments for installing additional Lecture Quiz servers are low. The only component
required is an installed Java web container. This way the load can be distributed
between multiple servers in an environment where there are many lectures running
quizzes at the same time.

c) How do we design the architecture flexible in terms of game modes?

The game modes are designed with a base class that implements the core func-
tionality required for a game mode. These classes can then be extended to allow
new rules in the game play and should the need be there, all the already imple-
mented functionally can be overridden by new code. This allows both for easy
implementation of new game modes, as well as the power to implement complex
new ways to run games. The web service procedures are very generic in their way
and by supporting custom parameters on some of them, a new game mode can
implement things we did not think of at the time of design.

There is also a handshake between clients and the server to make sure only game
modes supported on the server are started on both ends. This ensures compatibility
with clients that do not support certain game modes.

132

RQ2 What technologies are best fit for the chosen architecture?

From both a usability and development perspective, we have concluded that a
web based technology is the most suited and we have therefore selected the Java
platform for our server and SOAP as the communication protocol. The choice of
Java was partially made because of its multiplatform properties and the usage of
it on NTNU.

We could not conclude a definite best database system, so we went with MySQL
which both NTNU and we have experience with. In light of this, we made an
interface for all database calls which makes it easy to switch the MySQL back
end to another database system.

With the overall desire of supporting multiple platforms and devices we think
the Java platform with the use of OpenGL was the best technology to use when
creating the teacher client.

RQ3 Will students consider the software easier to use if it is web based?

To find out if the students preferred the web based student client we performed a
survey and compared the results to the previous study done with the Lecture Quiz
1 prototype by Mørch-Storstein and Øfsdahl[1]. Our results showed a higher SUS
score and students had little problems getting the application up and running. This
shows that the students found it easier to use and participate than they did with the
previous Lecture Quiz prototype, which required application installation on the
used devices.

RQ4 Do students enjoy playing educational games during lectures?

We can conclude from the results of our experiment in Chapter 11 that the stu-
dents thought the use of the Lecture Quiz system made the lecture more fun. We
therefore think the students enjoy playing educational games during lectures.

133

We consider the task of developing a scalable and modifiable architecture for the
Lecture Quiz system to be very successful. Our employer is also very pleased
with the results after reviewing the design and having participated in the lecture
experiment.

134

Chapter 14

Further Work

Our project has focused on building a strong and easily modifiable architecture
for the Lecture Quiz game and we have had less focus on the visual aspects. We
would also have liked to perform larger usability tests on a larger audience to get
as much feed back and testing of the system as possible. We have outlined some
of the changes we think would improve the Lecture Quiz system.

14.1 Improve Clients

When looking at our teacher client is it pretty obvious that we did not prioritize
graphical design. We did what we could to in the timeframe we had, but this area
of the Lecture Quiz system is one that needs the most improvements for the game
to be more spectacular. By improving the design we can make the game more fun
and interesting for the students who play it. We have some graphical data included
in the attachments that were made for us after the code freeze, so we did not have
enough time to implement these. The files can be found under the art/ directory.
These graphic files include a logo and a splash screen as well as some icons that
can be used.

135

We also had a requirement to be able to save statistics from played games, but
we did not manage to complete this in time. This should be an easy addition by
dumping the statistics received from the server in an appropriate format.

The student client can also be improved in numerous ways. There are some im-
provements in usability and error handling that can be implemented to increase
the robustness of the application as well as the user experience for the students.
One of these issues would be to handle the manual refreshing of the client and
make sure the current game is not lost in this case.

14.2 Implement Tags and Searching

When we designed the architecture we wanted the questions and quizzes to be
tagged with keywords that made searching for them easier and faster. This was
implemented in the database but never made it into the other Lecture Quiz com-
ponents. Implementing this aspect should not be hard, but it might require the
addition of a new web service procedure that the teacher client can use to input
search keywords and only get matching quizzes in return. The search functional-
ity is not implemented in the teacher client either and we would want to have the
possibility to search and filter for quizzes when starting a quiz.

14.3 Improve Quiz Editor

The quiz editor implemented in the teacher client works, but is pretty basic. It
has the possibility to edit what questions that should be a part of a quiz and the
ability to create new quizzes and questions. What it does not have is the ability
to edit already existing questions. The user interface could also be improved with
the addition of tags which will let users filter the quiz list. Another feature that
would suit this editor is to give a warning when a user classed as a teacher tries to

136

open and edit a quiz he or she is not an owner of. Currently this will only give an
error when the quiz is saved. The implementation of this feature could be done at
the web service side by implementing a check in the getQuiz procedure.

14.4 Security

While we have taken notice of many intrusion possibilities, we have not focused
on security. A person with enough interest would probably be able to exploit the
applications in several ways we have not yet identified. The user roles are pretty
much secure at this point, but tampering with data supplied to various web service
procedures could lead to unexpected behavior in the web service. We have not
looked at possible denial of service attacks either.

14.5 Additional Game Modes

The solution delivered by us only have one available game mode. While this is
sufficient for basic usage, adding more game modes can make the game more fun
and challenging for the students. By having multiple game modes available to
them, teachers can pick and choose depending on the lecture and student atten-
dance.

We have thought up a couple of different game modes that would be interesting to
implement. One is a game mode were students are split up in different teams and
points are given to teams depending on how many correct answers they had. The
team distribution could either be random or selected on join.

Another interesting game mode would be an elimination game where students are
allowed to answer until they get a question wrong and are then eliminated from
the game. This goes on until there are just a single student left and that student
will be declared the winner. This could require either a long quiz or the ability to

137

select secondary quizzes that will be run if the first one is out of questions.

14.6 Run Larger Empirical Tests

While we have done testing on a small group of 21 people in a single lecture and
performance what not an issue, we were not able to do a large scale test with a
filled auditorium. It would be beneficial to test the architecture on a larger group
of people to make sure it holds performance up to par. Based on the results of
these tests the system can be optimized to increase performance.

138

Part VII

Appendices

139

Appendix A

Questionnaire

140

Questionnaire Lecture Quiz – Software Architecture May 10th 2010

Male Female
Gender

What brand is you mobile/computer?

What operating system did you use?

What browser did you use during this test?

WLAN Cable 3G GPRS/EDGE Other
What connection type did you use?

Strongly Strongly
disagree agree

I think that I am an experienced computer user

I think that I would like to use this system frequently

I thought the system was easy to use

I thought there was to much inconsistency in the system

I felt very confident using the system

I found the system had a distracting effect on the lecture

I found the system made me learn more

I think I learn more during a traditional lecture

I found the system made the lecture more fun

I think that I would need the support of a technical
person to be able to use this system

I found the various functions in this system well
integrated

I would imagine that most people would learn to use this
system very quickly

I needed to learn a lot of things before I could get going
with this system

I think I payed closer attention during the lecture
because of the system

Yes No
Did the client software work properly on your phone/computer?

If no; please describe the problem

Are there other things you would like to comment?

I found the system unneccessarily complex

I found the system very cumbersome to use

I think regular use of the system will make me attend more
lectures

I feel reluctant to pay 0.50 NOK in data transmission fee
per lecture to participate in using the system

Appendix B

Database SQL file

-- SQL Dump

SET SQL_MODE="NO_AUTO_VALUE_ON_ZERO";

/*!40101 SET @OLD_CHARACTER_SET_CLIENT=

@@CHARACTER_SET_CLIENT */;

/*!40101 SET @OLD_CHARACTER_SET_RESULTS=

@@CHARACTER_SET_RESULTS */;

/*!40101 SET @OLD_COLLATION_CONNECTION=

@@COLLATION_CONNECTION */;

/*!40101 SET NAMES utf8 */;

--

-- Database: ‘lecturequiz‘

--

CREATE DATABASE ‘lecturequiz‘ DEFAULT CHARACTER SET utf8

COLLATE utf8_general_ci;

USE ‘lecturequiz‘;

-- --

143

--

-- Table structure for table ‘answer‘

--

CREATE TABLE IF NOT EXISTS ‘answer‘ (

‘id‘ int(11) NOT NULL AUTO_INCREMENT,

‘text‘ text NOT NULL,

‘question‘ int(11) NOT NULL,

PRIMARY KEY (‘id‘),

KEY ‘question‘ (‘question‘)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=90 ;

-- --

--

-- Table structure for table ‘question‘

--

CREATE TABLE IF NOT EXISTS ‘question‘ (

‘id‘ int(11) NOT NULL AUTO_INCREMENT,

‘text‘ text NOT NULL,

‘timeout‘ int(11) NOT NULL,

‘correctAnswer‘ int(11) NOT NULL,

PRIMARY KEY (‘id‘)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=24 ;

-- --

--

-- Table structure for table ‘quiz‘

--

CREATE TABLE IF NOT EXISTS ‘quiz‘ (

‘id‘ int(11) NOT NULL AUTO_INCREMENT,

‘name‘ varchar(64) NOT NULL,

‘description‘ text NOT NULL,

‘owner‘ int(11) NOT NULL,

144

PRIMARY KEY (‘id‘),

KEY ‘name‘ (‘name‘)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=4 ;

-- --

--

-- Table structure for table ‘ref_quiz_question‘

--

CREATE TABLE IF NOT EXISTS ‘ref_quiz_question‘ (

‘quiz‘ int(11) NOT NULL,

‘question‘ int(11) NOT NULL,

KEY ‘quiz‘ (‘quiz‘,‘question‘)

) ENGINE=MyISAM DEFAULT CHARSET=utf8;

-- --

--

-- Table structure for table ‘ref_tagged‘

--

CREATE TABLE IF NOT EXISTS ‘ref_tagged‘ (

‘tag_id‘ int(11) NOT NULL,

‘question_id‘ int(11) NOT NULL,

‘quiz_id‘ int(11) NOT NULL,

KEY ‘question_tag‘ (‘tag_id‘,‘question_id‘),

KEY ‘quiz_id‘ (‘tag_id‘,‘quiz_id‘)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

-- --

--

-- Table structure for table ‘tag‘

--

CREATE TABLE IF NOT EXISTS ‘tag‘ (

‘id‘ int(11) NOT NULL AUTO_INCREMENT,

145

‘name‘ varchar(64) NOT NULL,

PRIMARY KEY (‘id‘)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=1 ;

-- --

--

-- Table structure for table ‘user‘

--

CREATE TABLE IF NOT EXISTS ‘user‘ (

‘id‘ int(11) NOT NULL AUTO_INCREMENT,

‘username‘ varchar(32) NOT NULL,

‘password‘ varchar(40) NOT NULL,

‘role‘ tinyint(4) NOT NULL,

PRIMARY KEY (‘id‘),

KEY ‘user_pass‘ (‘username‘,‘password‘)

) ENGINE=MyISAM DEFAULT CHARSET=utf8;

-- --

--

-- Create administrator user

--

INSERT INTO ‘user‘ (

‘username‘,

‘password‘,

‘role‘

) VALUES (

’Administrator’,

SHA1(’admin’),

1

);

146

Appendix C

The Lecture Quiz Service API

C.1 Web service Procedures

The examples in the sections bellow call web service procedures from an object
known as the port. This port is the link between the client and the web service
and its class and support classes are generated by the development environment.
When coding in the teacher client you can get this port by calling up the Con-
nectionManager class and get an instance from the getPort method. A detailed
example of this can be seen in Section 10.3.2. The student web client stores the
port objects for each connection in the session of each user. An example on how
to retrieve this object can be seen in Section 10.3.3.

Many of the web service procedures have parameters that is of the Holder1 type.
This Holder class makes it possible to return data as a parameter to a web service
procedure. We return data this way so that we can also return error codes at the
same time.

These procedures are listed in alphabetical order.

1javax.xml.ws.Holder

147

C.1.1 authenticate

The authenticate procedure works in two different ways depending on whether
the auth parameter is true or false. If this parameter is true, the client is considered
a teacher client and the server will try to authenticate the user with the password
supplied in the password parameter. This is done by the UserManager class and
if authentication is successful, a session is created with the user object returned
from the UserManager class. During authentication the role of the user will be set
to either teacher or administrator, depending on the role set in the database.

If the auth parameter is false, the calling client tries to log in as a student client.
In this case the password parameter is not used and can be null. The server only
checks if another student has already picked the same user name. If the username
is available the authentication succeeds, if not the error code 2 is returned.

Procedure definition:

Listing C.1: Getting access to the Lecture Quiz Service

public int authenticate(String username, String password,

boolean auth)

Parameters:

username The username of the user trying to authenticate.

password The password of the user trying to authenticate.

auth Tells the server whether it should try to authenticate the client against the
database or not. See details bellow.

Return codes:

0 The authentication was successful, and the session is now valid.

148

1 Authentication failed due to incorrect password in teacher client mode.

2 Username already in use.

3 Invalid parameters. Returned if any of the required objects are null or similar.

Examples
Authentication as a teacher client

Listing C.2: Getting access to the Lecture Quiz Service

port.authenticate ("ExampleTeacher", "ExamplePassword",

true);

Authentication as a student client

Listing C.3: Getting access to the Lecture Quiz Service

port.authenticate ("ExampleStudent", null, false);

C.1.2 endQuiz

The endQuiz procedure tells the server to shut down a running quiz created by
the calling client. This procedure can only be called from an authenticated teacher
or administrator. This will free up the quiz code used for the quiz as well as unlink
all the student from the quiz.

Procedure definition:

Listing C.4: Getting access to the Lecture Quiz Service

public int endQuiz()

Parameters:
None

Return codes:

149

0 Success. The currently running quiz was terminated.

1 Could not find a valid session.

2 Not logged in.

3 Access denied. The user does not have permissions to call this procedure.

4 No active quiz. The calling user does not currently have a quiz running

Example:

Listing C.5: Getting access to the Lecture Quiz Service

port.endQuiz();

C.1.3 getAvailableGameModes

To get a list of supported game modes on the server anyone can call getAvail-
ableGameModes. No authentication is required before this method is called.
This procedure has no additional error codes, so if no supported game modes
are found, the list is simply empty. All available game modes are stored in the
GameManager class and retrieved from there.

Procedure definition:

Listing C.6: Getting access to the Lecture Quiz Service

public int getAvailableGameModes(Holder<List<GameModeInfo>>

gameModes)

Parameters:

gameModes A holder object carrying a list of GameModeInfo classes. This is
an output parameter, all the game modes the server support will be stored in
this list.

150

Return codes:

0 Success.

Example:

Listing C.7: Getting access to the Lecture Quiz Service

Holder<List<GameModeInfo>> gameModesHolder =

new Holder<List<GameModeInfo>>();

port.getAvailableGameModes(gameModesHolder);

List<GameModeInfo>> gameModes = gameModesHolder.value;

C.1.4 getAvailableQuizzes

The getAvailableQuizzes procedure returns a list of all stored quizzes on
the server. Only teachers and administrators are able to call this procedure after
authorization has been done. The request is forwarded to the currently running
database back end and is processed there.

Procedure definition:

Listing C.8: Getting access to the Lecture Quiz Service

public int getAvailableQuizzes(Holder<List<QuizInfo>>

quizzes)

Parameters:

quizzes A holder object carrying a list of QuizInfo classes. This is an output
parameter. All quizzes stored on the server will be listed in this list.

Return codes:

151

0 Success.

1 Could not find a valid session.

2 Not logged in.

3 Access denied.

4 Error occurred on the server.

Example:

Listing C.9: Getting access to the Lecture Quiz Service

Holder<List<QuizInfo>> quizzesHolder =

new Holder<List<QuizInfo>>();

port.getAvailableQuizzes(quizzesHolder);

List<QuizInfo> quizzes = quizzesHolder.value;

C.1.5 getCurrentGameStatus

A teacher or administrator can call getCurrentGameStatus to get an up-
dated status of the game they started. This information contains the number play-
ers joined, quiz code, question count and current question number. For more
information see the GameStatus class documentation.

Procedure definition:

Listing C.10: Getting access to the Lecture Quiz Service

public int getCurrentGameStatus(Holder<GameStatus>

gameStatus)

Parameters:

gameStatus A holder object carrying a GameStatus object holding the informa-
tion about the game status.

152

Return codes:

0 Success.

1 Could not find a valid session.

2 Not logged in.

3 Access denied.

4 No active quiz.

Example:

Listing C.11: Getting access to the Lecture Quiz Service

Holder<GameStatus> gameStatusHolder =

new Holder<GameStatus>();

port.getCurrentGameStatus(gameStatusHolder);

GameStatus gameStatus = gameStatusHolder.value;

C.1.6 getCurrentQuestion

The getCurrentQuestion procedure retrieves the current question of the
game the calling client has joined. This procedure can only be called after a game
has been joined with joinQuiz or started by a teacher or administrator with
newQuiz and the first question has been started with startNextQuestion.
If the first question has not been started the procedure returns 4 telling the user
that the question is not ready yet. The calling user’s current game is looked up in
the session and returns a valid QuestionInfo object which is then sent back to the
client. This object does not contain the ID of the correct answer.

The procedure call will also fail the the last question of the quiz has been answered
and will then return 5. This indicates that the client can now call getOverall-
Statistics as the quiz is over and there are no more questions. A client can
call this procedure multiple times for each question if necessary and the time left

153

value found in QuestionInfo will always be updated. See the QuestionInfo class
documentation for more information.

Procedure definition:

Listing C.12: Getting access to the Lecture Quiz Service

public int getCurrentQuestion(Holder<QuestionInfo> info)

Parameters:

info A holder object with a QuestionInfo object that has all the information needed
to display a question and its possible answers.

Return codes:

0 - Success.

1 - Could not find a valid session.

2 - Not logged in.

3 - No active quiz.

4 - Cannot get question at this time.

5 - No more questions in the quiz.

Example:

Listing C.13: Getting access to the Lecture Quiz Service

Holder<QuestionInfo> questionHolder = new Holder<

QuestionInfo>();

port.getCurrentQuestion(questionHolder);

QuestionInfo questionInfo = questionHolder.value;

154

C.1.7 getGameModeInfo

A student client must call getGameModeInfo before joining a game with join-
Quiz to identify the game mode running on the sever and to make sure the game
mode is supported by the student client. This procedure will try to find the game
identified by the quiz code specified by quizCode and then fill out the GameM-
odeInfo for this game. This procedure can be called without being authenticated
and can therefore be called by all clients.

If no game is found with the quiz code supplied the procedure will return the error
code 1. For more details see the GameModeInfo class documentation.

Procedure definition:

Listing C.14: Getting access to the Lecture Quiz Service

public int getGameModeInfo(String quizCode, Holder<

GameModeInfo> info)

Parameters:

quizCode A unique identifier of the game to query the game mode info from.

info A holder object containing a GameModeInfo object.

Return codes:

0 Success.

1 No such quiz.

Example:

Listing C.15: Getting access to the Lecture Quiz Service

Holder<GameModeInfo> gameModeHolder =

155

new Holder<GameModeInfo>();

port.getGameModeInfo("ExampleQuizCode", gameModeHolder);

GameModeInfo gameModeInfo = gameModeHolder.value;

C.1.8 getOverallStatistics

The getOverallStatistics procedure can be called after a quiz has fin-
ished and all the questions have been answered. This can be identified by the re-
turn value 5 from the getCurrentQuestion or the startNextQuestion
procedures. Should this condition not be met it will return with the error code
4. When this procedure is called it makes the necessary session checks and then
forwards the request the game the client is a part of. The returned data is a list
of StatisticsEntry objects, which are basically key and value pairs with statistics
information.

This procedure is highly game mode specific, as nothing of the data is touched
outside the game mode class that is running the calling client’s game. The output
is also different whether or not the calling client is a teacher or a student. The a
call from the teacher would normally return overall statistics from all users, while
a student client would receive statistical data from his own answers only. As this
data are only key and value pairs of strings, it is up the the calling client to handle
this data properly for the running game mode.

When running the game mode implemented by the PlainGame class the percent-
age of correct answers submitted are returned when a student calls this procedure.
A teacher client receives four entries. The entry with the key “correct” holds the
percentage of all submitted answers who were correct. The “questionCount” sim-
ply says how many questions there was in the quiz. The user who has the most
correct answers of all participants is added by the key “mostCorrectUser”. The
value of this entry is the username of this user. Last we have the “mostCorrect-
Count” key, which tells how many correct answers this user had.

156

See also the getQuestionStatistics documentation.

Procedure definition:

Listing C.16: Getting access to the Lecture Quiz Service

public int getOverallStatistics(Holder<List<StatisticsEntry

>> stats)

Parameters:

stats A holder object containing a list of StatisticsEntry objects.

Return codes:

0 Success.

1 Could not find a valid session.

2 Not logged in.

3 No active quiz.

4 Cannot get statistics at this time.

Example:

Listing C.17: Getting access to the Lecture Quiz Service

Holder<List<StatisticsEntry>> statsHolder =

new Holder<List<StatisticsEntry>>();

port.getOverallStatistics(statsHolder);

List<StatisticsEntry>> entries = statsHolder.value;

C.1.9 getQuestion

The getQuestion procedure is used to get all the information about a specific
question in from of a FullQuestionInfo object. The difference between this class

157

and the QuestionInfo class is that FullQuestionInfo also contains the ID of the
correct answer. This procedure was designed for use when editing quizzes. Only
teachers and administrators can call this procedure so authentication needs to be
completed before use. The question is retrieved by the running database back end
on the server.

Procedure definition:

Listing C.18: Getting access to the Lecture Quiz Service

public int getQuestion(int id, Holder<FullQuestionInfo>

info)

Parameters:

id The ID of the question to retrieve

info A holder object containing a FullQuestionInfo object with all the question
information.

Return codes:

0 Success.

1 Could not find a valid session.

2 Not logged in.

3 Access denied.

4 No such question.

Example:

Listing C.19: Getting access to the Lecture Quiz Service

Holder<FullQuestionInfo> questionHolder =

new Holder<FullQuestionInfo>();

158

// Get the question that has the ID 1

port.getQuestion(1, questionHolder);

FullQuestionInfo questionInfo = questionHolder.value;

C.1.10 getQuestionList

To get a full list of all questions stored in the server database you can call getQu-
estionList. This will return a FullQuestionInfo object but it will only contain
one answer, the correct one. This is done for performance reasons. To get all
the answers for a single question call getQuestion instead with the ID of the
question. This procedure is only available to teachers and administrators and is
meant to be used when editing quizzes to add already existing questions to a quiz.
Return codes are straight forward with the addition of 4, which merely indicates
that there was something wrong when contacting the database.

Procedure definition:

Listing C.20: Getting access to the Lecture Quiz Service

public int getQuestionList(Holder<List<FullQuestionInfo>>

info)

Parameters:

info A holder object containing a list of FullQuestionInfo objects.

Return codes:

0 Success.

1 Could not find a valid session.

2 Not logged in.

159

3 Access denied.

4 Could not get list from DB.

Example:

Listing C.21: Getting access to the Lecture Quiz Service

Holder<List<FullQuestionInfo>> questionListHolder =

new Holder<List<StatisticsEntry>>();

port.getQuestionList(questionListHolder);

List<FullQuestionInfo>> entries = questionListHolder.value;

C.1.11 getQuestionStatistics

The getQuestionStatistics procedure is can be called after each question
has been answered and the time limit has been reached. It is then callable until
the teacher starts the next question with a call to startNextQuestion. If this
procedure is called outside of this state error code 4 will be returned. That usually
means the client called the procedure too early and the question time limit has
not been reached yet. Upon a successful call, a list of StatisticsEntry objects are
returned. These are key and value pairs of strings that tell the calling client about
the statistics of the previous questions’ answers.

As with getOverallStatistics, the behavior this procedure is highly de-
pendent of the running game mode and the client type sending the request. As the
retrieved data is just a list of strings it is up the the running game mode on the
client to display this data to the user in a proper fashion. A teacher client call-
ing this procedure would normally receive statistics for all the answers submitted,
while a student will only get feedback from his own answer.

When running the game mode implemented by the PlainGame class only the cor-
rect answer ID returned when a student calls this procedure with the key “cor-
rectAnswer“. When a teacher calls it, the response contains the correct answer ID

160

as well as the number of submitted answers each of the possible answers got from
the students. The keys for these entries are the ID of the answer they represent.

See also the getOverallStatistics documentation.

Procedure definition:

Listing C.22: Getting access to the Lecture Quiz Service

public int getQuestionStatistics(Holder<List<

StatisticsEntry>> stats)

Parameters:

stats A holder object containing a list of StatisticsEntry objects

Return codes:

0 Success.

1 Could not find a valid session.

2 Not logged in.

3 No active quiz.

4 Cannot get statistics at this time.

Example:

Listing C.23: Getting access to the Lecture Quiz Service

Holder<List<StatisticsEntry>> statsHolder =

new Holder<List<StatisticsEntry>>();

port.getQuestionStatistics(statsHolder);

List<StatisticsEntry>> entries = statsHolder.value;

161

C.1.12 getQuiz

The getQuiz procedure searches the server database for a quiz with the given
ID and then returns this in the form of a FullQuizInfo object through the quizInfo
parameter. Inside this object is the name and description of the quiz, all the ques-
tions and possible answers as well as the which answers that are correct. For more
information see the FullQuizInfo documentation in Section C.2.5. The operation
it self is handled by the running database back end. This procedure was created for
use when editing quizzes and can only be called by teachers and administrators.
If the requested quiz is not found error code 4 is returned.

Procedure definition:

Listing C.24: Getting access to the Lecture Quiz Service

public int getQuiz(int id, Holder<FullQuizInfo> quizInfo)

Parameters:

id The ID of the quiz to retrieve.

quizInfo A holder object containing a FullQuizInfo object.

Return codes:

0 Success.

1 Could not find a valid session.

2 Not logged in.

3 Access denied.

4 No such quiz.

Example:

162

Listing C.25: Getting access to the Lecture Quiz Service

Holder<FullQuizInfo> quizHolder = new Holder<FullQuizInfo

>();

// Get the quiz that has the ID 1.

port.getQuiz(1, quizHolder);

FullQuizInfo quiz = quizHolder.value;

C.1.13 getServiceVersion

The getServiceVersion procedure returns the running version of the Lec-
ture Quiz Web Service the client is connected to. This version is returned in the
form a string though the version parameter. No authentication is required to call
this procedure so it can be called from all clients. This procedure has no other
error codes than success, as there is no dynamic logic behind it.

Procedure definition:

Listing C.26: Getting access to the Lecture Quiz Service

public int getServiceVersion(Holder<String> version)

Parameters:

version A holder object containing a string where the service version will be
stored.

Return codes:

0 Success.

Example:

163

Listing C.27: Getting access to the Lecture Quiz Service

Holder<String> versionHolder = new Holder<String>();

port.getServiceVersion(versionHolder);

String version = versionHolder.value;

C.1.14 joinQuiz

When student clients want to join a quiz, they call the joinQuiz procedure with
the quiz code of the game they want to join. Before a client can call this proce-
dure it requires to authenticate as a student client, teachers and administrators will
receive an error code 4 if they attempt to call this procedure. When a request is
received by the server it tries to find a running game with the quiz code supplied
by the quizCode parameter. If this is not found the error code 3 is returned. If the
join is successful the server will mark this game as the calling users active game
and the client can now try to get questions and submit answers.

The parameters sent by the client is handled directly by the running game mode.
This lets custom game modes take parameters from clients as they join in form of
key and value pairs of strings though a list of ParameterEntry objects. The game
mode implemented by the PlainGame class simply ignore these parameters as no
other configuration is needed.

Procedure definition:

Listing C.28: Getting access to the Lecture Quiz Service

public int joinQuiz(String quizCode, List<ParameterEntry>

parameters)

Parameters:

quizCode The quiz code of the quiz to join.

164

parameters A list of parameters to send to the running game mode on the server.
Can be null depending on game mode.

Return codes:

0 Success.

1 Could not find a valid session.

2 Not logged in.

3 No such quiz.

4 Join denied.

Example:

Listing C.29: Getting access to the Lecture Quiz Service

List<ParameterEntry> parameters =

new List<ParameterEntry>();

ParameterEntry exampleParameter = new ParameterEntry();

exampleParameter.key = "ExampleParameter";

exampleParameter.value = "ExampleParameterValue";

parameters.add(exampleParameter);

// Join a quiz with the quiz code "ExampleQuizCode"

port.joinQuiz("ExampleQuizCode", parameters);

C.1.15 newQuiz

The newQuiz procedure tries to start a new quiz on the server. This procedure
requires the client to be authenticated as a teacher or administrator. When this
procedure is called, the server checks if a game already exists with the quiz code
supplied in quizCode. If a game already exists the error code 4 will be returned.
Should this not be the case it will try to create a game with the game mode iden-
tified by gameMode. If this game mode is not supported on the server the error

165

code 5 will be returned. The quiz identified by quizId will then be retrieved from
the database and the game mode will send questions from this quiz until endQuiz
is called or the last question has been answered. If the quiz is not found the error
code 6 is returned.

The parameters sent to the server are sent directly to the game mode requested
by gameMode in form of key and value pairs of strings. The game mode then
validates these parameters and if these are valid the game is created, if not the
error code 7 is returned. These parameters can be different in all game modes
and can be used to configure game modes on a per quiz basis. The game mode
implemented by the PlainGame class ignores these parameters and will accept
anything.

If the game creation is successful the calling user will be marked as the owner
of the game and all subsequent calls that require an active game will send the
requests to this game. The game will not automatically start the first question.
This is done by a call to startNextQuestion.

Procedure definition:

Listing C.30: Getting access to the Lecture Quiz Service

public int newQuiz(String gameMode, int quizId,

String quizCode, List<ParameterEntry> parameters)

Parameters:

gameMode String ID of the game mode to start.

quizId The ID of the quiz the game mode will run.

quizCode The quiz code students need to join this quiz.

parameters A list of parameters sent to the game mode identified by gameMode.
Can be null depending on game mode.

166

Return codes:

0 Success.

1 Could not find a valid session.

2 Not logged in.

3 Access denied.

4 Quiz code in use.

5 Unsupported game mode.

6 Quiz not found.

7 Invalid parameters.

Example:

Listing C.31: Getting access to the Lecture Quiz Service

List<ParameterEntry> parameters =

new List<ParameterEntry>();

ParameterEntry exampleParameter = new ParameterEntry();

exampleParameter.key = "ExampleParameter";

exampleParameter.value = "ExampleParameterValue";

parameters.add(exampleParameter);

// Start a new quiz with the PlainGame game mode,

// a quiz with id 1, the quiz code "ExampleQuizCode"

// and the test parameters

port.newQuiz("PlainGame", 1, "ExampleQuizCode",

parameters);

C.1.16 saveQuiz

The saveQuiz procedure takes all the information on a quiz (through the quiz-
Info argument) and saves it to the server’s database. This procedure can be used
in two ways, saving changes to an existing quiz or create a new one. It also saves

167

questions and creates any new questions added to the quiz. This procedure can
only be called as a teacher or administrator and teachers are only able to create
new quizzes or change quizzes they are the owner of. All the work of this proce-
dure is done by the running database back end.

To be able to determine whether to save or create a quiz or question the saveQuiz
procedure looks at the given quiz and question IDs. A quiz or question with an
ID of zero is considered to be new and is created. A quiz can consist of both new
and previously created questions. When creating a new question the numbering
of answer IDs should range from 0 to n, where n is the number of answers minus
one. The correctAnswer field should then reference any of these answer IDs.

For more information see the FullQuizInfo documentation in section C.2.5.

Procedure definition:

Listing C.32: Getting access to the Lecture Quiz Service

public int saveQuiz(FullQuizInfo quizInfo)

Parameters:

quizInfo A FullQuizInfo object containing all the information about the quiz to
save.

Return codes:

0 - Success.

1 - Could not find a valid session.

2 - Not logged in.

3 - Access denied.

4 - No such quiz.

5 - Invalid data.

168

6 - Unknown error.

Example:

Listing C.33: Getting access to the Lecture Quiz Service

// Example will not show editation of the data structure

// Get the changed or newly created quiz info

FullQuizInfo quiz = ...;

port.saveQuiz(quiz);

C.1.17 startNextQuestion

When starting a new quiz with newQuiz the first question is not started until
startNextQuestion is called. It is also required to call this procedure after
each question has ended to start the next question. This will not be done auto-
matically on the server. The next question in the quiz is returned through the info
parameter so there is no need for the teacher client retrieve it through a separate
procedure call. This procedure is only callable from a client authenticated as a
teacher or an administrator.

When a teacher client calls startNextQuestion all student clients that are
connected to this game is able to retrieve the question and answer alternatives
though a call to getCurrentQuestion. The time stamp is also stored so the
Lecture Quiz server knows if a submitted answer comes too late or if clients try
to get statistics too early. The two notable error codes of this procedure are the
codes 5 and 6. Error code 5 tells the calling client that there are no more questions
in this quiz and that the client can call getOverallStatistics. Error code
6 tells the client that the next question cannot be started as the previous question
has not reached its time limit yet.

Procedure definition:

169

Listing C.34: Getting access to the Lecture Quiz Service

public int startNextQuestion(Holder<QuestionInfo> info)

Parameters:

info A holder object with a QuestionInfo object with all the information about
the next question in the quiz.

Return codes:

0 Success.

1 Could not find a valid session.

2 Not logged in.

3 Access denied.

4 No active quiz.

5 No more questions in this quiz.

6 Another question is currently active.

Example:

Listing C.35: Getting access to the Lecture Quiz Service

Holder<QuestionInfo> questionHolder =

new Holder<QuestionInfo>();

port.startNextQuestion(questionHolder);

QuestionInfo question = questionHolder.value;

C.1.18 submitAnswer

The submitAnswer procedure is called by student clients when they want to
submit an answer to a question. It can only be called after a student has authenti-
cated and joined a quiz, the teacher has started a question with startNextQue-

170

stion and the time limit for that question has not been reached. A user can also
only answer once on each question.

When a user sends an answer to the server it checks for the active game of that
user. If it cannot find any it returns the error code 3. The answer ID is then sent
to the active game who controls what the server does with it. The handling of
answers are up to the game mode of the running game.

If the time limit is reached or the first question isn’t started yet a call to this pro-
cedure returns the error code 6. If the answer ID sent in the answerId parameter
is not one of the answer alternatives for the current question the error code 4 is
returned. Error 5 is returned if a user tries to answer a question more than once.

Procedure definition:

Listing C.36: Getting access to the Lecture Quiz Service

public int submitAnswer(int answerId)

Parameters:

answerId The ID of the answer the client wants to submit.

Return codes:

0 Success.

1 Could not find a valid session.

2 Not logged in.

3 Not a part of any quiz.

4 Not a valid answer.

5 User has already answered.

6 Quiz does not accept answers at this time.

171

Example:

Listing C.37: Getting access to the Lecture Quiz Service

// Submit an answer with the ID 1

port.submitAnswer(1);

C.2 Exported data types

Many data types are exported as a part of the Lecture Quiz web service. These are
classes that hold data and is transferred between the server and the clients. In this
section we will explain these data types in detail.

C.2.1 Answer

The Answer class is a simple class that holds a single answer alternative. The
definition of this class can be seen in Listing C.38. The id member variable holds
the ID of the answer option while the text variable holds the actual answer text.

Listing C.38: Answer class definition

public class Answer {

public int id;

public String text;

}

C.2.2 QuestionInfo

The QuestionInfo class holds most of the information about a question, with the
exception of the correct answer. This is the data that gets sent between clients

172

when they request the currently running question on the server. The class def-
inition can be seen in Listing C.39. The id member variable is the ID of the
question. The text variable holds the actual question text. All the possible answer
alternatives are stored in the member variable list answers. The timeout variable
tells how many seconds the time out should be for this question and the timeleft

variable tells how many of those seconds that are left when the request for this
information was received.

Listing C.39: QuestionInfo class definition

public class QuestionInfo {

public int id;

public String text;

public ArrayList<Answer> answers;

public int timeout;

public int timeleft;

}

C.2.3 QuizInfo

When a teacher client requests a list of all available quizzes on the server it gets
a QuizInfo object in return. The id variable holds the ID of the quiz and name is
the display name. A short description of what the quiz is about can be found in
the description variable. The owner variable is the user name of the user who
created the quiz and the number of questions this quiz contains can be found in
the questionCount variable.

Listing C.40: QuizInfo class definition

public class QuizInfo {

public int id;

public String name;

public String description;

public String owner;

public int questionCount;

173

}

C.2.4 FullQuestionInfo

The FullQuestionInfo class is an extension of the QuizInfo class. It only holds
one extra data field and that is the ID of the correct answer. The definition of this
class can be seen in Listing C.41. This class is used during the editing of quizzes
and therefore requires the correct answer to be known. Adding a new question as
a part of a quiz the id field is set to 0 and the IDs of all the answers are numbered
upwards starting from 0. The correctAnswer field then references to one of these
answer IDs.

Listing C.41: FullQuestionInfo class definition

public class FullQuestionInfo extends QuestionInfo {

public int correctAnswer;

}

C.2.5 FullQuizInfo

The FullQuizInfo is not a direct extension of the QuizInfo class but they have
many similar variables. The only difference is the questions variable. It replaces
the question count with a list of all the actual questions in the form of FullQues-
tionInfo objects. A FullQuizInfo object holds all the information about a quiz and
is used during editing of quizzes. When creating a new quiz the id field should be
set to 0. This signals that the quiz is a new one and it is created on the server. Any
questions that do not already exist in the database should also have the ID 0. See
the FullQuestionInfo documentation for more information.

Listing C.42: FullQuizInfo class definition

public class FullQuizInfo {

public int id;

174

public String name;

public String description;

public String owner;

public List<FullQuestionInfo> questions;

}

C.2.6 StatisticsEntry and ParameterEntry

The two classes StatisticsEntry and ParameterEntry are identical with the excep-
tion of the type name. Both classes have two member variables, key and value.
These are strings and simply represent a key and value pair. The ParameterEntry
definition can be seen in Listing C.43.

Listing C.43: ParameterEntry class definition

public class ParameterEntry {

public String key;

public String value;

}

C.2.7 GameModeInfo

The GameModeInfo class holds the ID and the name of a game mode in the vari-
ables id and gameName respectively. These are both strings and are usually re-
turned in the form of a list of objects of this class when a client asks the server for
supported game modes.

Listing C.44: GameModeInfo class definition

public class GameModeInfo {

public String id;

public String gameName;

}

175

C.2.8 GameStatus

When a client asks for the updated status of an ongoing game the results are re-
turned in a GameStatus class. The definition of this class can be seen in List-
ing C.45. The member variable quizCode holds the quiz code of the running game.
The playerCount variable is a list of player counts, but it is built as a list of differ-
ent counts. These different counts can represent players on different teams should
the game mode require it. If teams are not a part of the game mode this list only
contains a single entry which is the total number of players. The currentQuestion

variable holds the number of the current question. This number starts on 1 for the
first question and counts upwards. The last parameter is the questionCount which
holds the total number of questions in the running quiz.

Listing C.45: GameStatus class definition

public class GameStatus {

public String quizCode;

public ArrayList<Integer> playerCount;

public int currentQuestion;

public int questionCount;

}

176

Bibliography

[1] Ole Kristian Mørch-Storsteing & Terje Øfsdahl. Game enhanced lectures -
an implementation and analysis of a lecture game. Master’s thesis, NTNU,
2007.

[2] A. Wessels S. Fries H. Horz N. Scheele & W. Effelsberg. Interactive lec-
tures: Effective teaching and learning in lectures using wireless networks.
Computers in Human Behavior, 23(5), 2007.

[3] V.R. Basili. The experimental paradigm in software engineering. Experimen-

tal Software Engineering Issues: Critical Assessment and Future Directions,
1993.

[4] Linda Rising & Norman S. Janoff. The scrum software development process
for small teams. IEEE Software, 2000.

[5] P. W. Jordan B. Thomas B. A. Weerdmeester & A. L. McClelland. Usabil-

ity Evaluation in Industry, chapter SUS - A quick and dirty usability scale,
pages 189–194. CRC Press, 1996.

[6] E. Tews Bär, H. and G. Rössling. Improving feedback and classroom inter-
action using mobile phones. Master’s thesis, Darmstadt University of Tech-
nology, Germany, 2005.

[7] Uw classroom presenter. http://www.cs.washington.edu/

education/dl/presenter/.

[8] et al. Linnell, M. Supporting classroom discussion with technology: A case
study in environmental science. Master’s thesis, 2006.

177

[9] ClassInHand Software User Guide, 2003.

[10] Classinhand. http://classinhand.wfu.edu/.

[11] Ezclickpro. http://www.aclasstechnology.com/

ezClickPro/index.html.

[12] Government backs “buzz! for schools”.
http://www.mcvuk.com/news/25249/

Government-backs-Sonys-Buzz-for-schools.

[13] Free and open source java: Faq. http://www.sun.com/software/
opensource/java/faq.jsp.

[14] Microsoft product lifecycle search. http://support.microsoft.

com/lifecycle/search/default.aspx?alpha=.NET+

Framework.

[15] Microsoft .net framework. http://www.microsoft.com/net/

default.aspx.

[16] The mono project. http://www.mono-project.com/.

[17] Opengl overview. http://www.opengl.org/about/overview/.

[18] W3C Recomondation. Soap version 1.2. http://www.w3.org/TR/

soap12-part1/, April 2007.

[19] Java Web Services: Up and Running. Martin Kalin, 2009.

[20] Roy Thomas Fielding. Architectural Styles and the Design of Network-based

Software Architectures. PhD thesis, University of California, Irvine, 2000.

[21] About mysql. http://mysql.com/about/.

[22] About postgresql. http://www.postgresql.org/about/.

[23] L. Bass P. Clements & R. Kazman. Software Architecture in Practice.
Addison-Wesley, 2003.

178

[24] Phillippe Kruchten. The "4+1" view model of software architecture. IEEE

Software, 1995.

[25] Jsr-231 javaTMbinding for the opengl Rapi. http://jcp.org/en/

jsr/detail?id=231.

[26] Jogl - java binding for the opengl api. http://jogamp.org/jogl/

www/.

[27] Google web toolkit mvp documentation. http://code.google.com/
webtoolkit/articles/mvp-architecture.html.

179

	Title Page
	Problem Description
	masteroppgave.pdf

