
June 2010
Alf Inge Wang, IDI
Morten Versvik, TellU AS

Master of Science in Computer Science
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Development and Evaluation of
MOOSES games in Flash/Macromedia

Magnus Førland Ekse

Problem Description
MOOSES is an abbreviation for Multiplayer On One Screen Entertainment System and is a new
game technology that makes it possible for several players to play in the same room using a video
projector and their own mobile phones.

In this project, the student should develop the components for making it possible to play Flash-
games in MOOSES. Then own games or available games should be tested in the MOOSES-
framework through user tests. The goal of this project is to make a framework that makes it easy
to produce MOOSES-games in Flash/Macromedia and evaluate the concept and Flash-platform
used for MOOSES games.

Assignment given: 15. January 2010
Supervisor: Alf Inge Wang, IDI

Abstract

Video games are very popular today and the electronic entertainment industry is in
many areas equal to the more mature entertainment industries like film and music
in terms of usage and revenues.

The MOOSES (Multiplayer On One Screen Entertainment System) allows players
to play on one big screen together with the use of their mobile phone as a game
controller. The framework was designed for easy development of multiplayer games
in Java and C++.

Flash is a very popular technology on the Internet, with a great many people using
and developing all kinds of games, video players and other software applications.
Flash applications are easy to develop due to a modern programming language and
a vast amount resources available online.

In this thesis the possibility of creating Flash games for MOOSES will be explored.
A set of components will be developed which will allow Flash games to use the
MOOSES framework. These components will be designed to aid the game creation
as much as possible and still be generic enough to allow as many game types as
possible. Three different games will be developed using the components and each
game will focus on a different multiplayer mode. In the end, the components, the
three games, and the Flash platform will be evaluated.

Preface

This master thesis was written by Magnus Førland Ekse in the period from January
to mid June 2010 at the Department of Computer Science, Norwegian University
of Science and Technology, under the supervision of associate professor Alf Inge
Wang.

Acknowledgements

I would like to thank Alf Inge Wang for his help and guidance throughout the
project.

I would also thank Morten Versvik for technical assistance with MOOSES.

Trondheim, June 11th, 2010

. .

Magnus Førland Ekse

ii

CONTENTS

I Introduction 1

1 Introduction 3
1.1 Motivation . 4
1.2 Project Context . 4
1.3 Stakeholders . 5
1.4 Project Goals . 5

2 Report Outline 7

II Research Questions, Environment and Tools 9

3 Research 11
3.1 Research focus . 11
3.2 Research questions . 11
3.3 Research Methods . 13

4 Test Environment 15
4.1 Desktop computer . 15
4.2 Laptop computer . 15
4.3 Television . 16
4.4 Mobile phone . 16

5 Development Tools and Software 17
5.1 FlashDevelop . 17

iii

5.2 Notepad++ . 19
5.3 Paint .NET . 19
5.4 Dropbox . 21
5.5 Adobe Flex . 21
5.6 MikTex . 21

III Prestudy 23

6 Video Games 25
6.1 Genres . 25

6.1.1 Action . 26
6.1.2 Adventure . 26
6.1.3 Construction and management simulation 28
6.1.4 Role-playing . 28
6.1.5 Strategy . 28
6.1.6 Vehicle simulation . 29

6.2 Multiplayer . 29
6.2.1 “Hot seat” . 30
6.2.2 Network . 30
6.2.3 Split-screen . 30

6.3 Multiplayer interaction . 31
6.3.1 Team versus team . 32
6.3.2 Player versus player . 32

7 MOOSES 33
7.1 Design and architecture . 33

7.1.1 High level architecture . 33
7.2 MOOSES and Bluetooth . 35

8 Adobe Flash 37
8.1 What is Adobe Flash . 37

8.1.1 Popular uses of Flash . 38
8.1.2 ActionScript . 39

8.2 Benefits of Adobe Flash for MOOSES 39

9 State of the Art 41
9.1 Previous work at NTNU . 41
9.2 Multiplayer On One Screen Games 42

9.2.1 ProjectorGames . 42
9.2.2 Carry Small, Game Large . 42

9.3 Flash Games . 43

IV Flash For MOOSES Framework 47

10 Flash For MOOSES Framework 49

iv

10.1 Overview . 49
10.2 Flash For MOOSES Classes . 50

10.2.1 MoosesFrameworkClient . 50
10.2.2 MoosesData . 53
10.2.3 MoosesInfo . 53

10.3 Helper programs . 54
10.3.1 Cross-site Scripting Helper 54
10.3.2 Flash Game Launcher . 54

V Game Development 55

11 Introduction 57

12 TowerDefense 59
12.1 Concept . 59
12.2 Implementation . 62

12.2.1 Game states . 64
12.2.2 User interface . 66
12.2.3 Implementation of the World class 67

13 ProductBall 69
13.1 Concept . 69
13.2 Implementation . 71

13.2.1 Classes . 71
13.2.2 States . 73

14 Achtung 77
14.1 Concept . 77
14.2 Implementation . 79

14.2.1 Classes . 79
14.2.2 States . 81

VI Evaluation and conclusion 83

15 Evaluation 85
15.1 Playtests . 85

15.1.1 Results of the survey . 86
15.2 TowerDefense . 89
15.3 ProductBall . 91
15.4 Achtung . 94
15.5 Flash for MOOSES Framework . 96

15.5.1 How to integrate a game with FMF 96
15.5.2 Further work . 97

15.6 Flash technology . 97

v

16 Research Questions 99

17 Conclusion 103

18 Further Work 105

VII Appendices 107

A Terms and Abbreviations 109

B How to integrate FMF with your game 111

C Data attachement 115

D Source Code 117

E Questionnaire 131

vi

LIST OF FIGURES

5.1 FlashDevelop workspace . 18
5.2 Notepad++ workspace . 19
5.3 Paint .NET workspace . 20
5.4 Dropbox logo . 20

6.1 Call of Duty 4 . 26
6.2 Mario . 27
6.3 Sim City 2000 . 28
6.4 Starcraft . 29
6.5 Red Alert 2 . 30
6.6 Split-screen . 31

7.1 High level view of the MOOSES framework. 34
7.2 Physical view of the MOOSES framework. 35

8.1 Adobe Flash CS4 Professional. 37

9.1 A ProjectorGames event. 42
9.2 Carry Small, Game Large . 43
9.3 Bloons . 44
9.4 GemCraft . 45
9.5 Machinarium . 45

10.1 Flash For MOOSES Classes . 50
10.2 FMF event propagation . 52

vii

12.1 Vector Tower Defense . 60
12.2 Omega Tower Defense . 60
12.3 Illustration of the game concept . 61
12.4 The TowerDefense game . 62
12.5 TowerDefense: class diagram . 63
12.6 TowerDefense: deployment state . 64
12.7 TowerDefense: battle state . 65
12.8 TowerDefense: user interface . 66

13.1 Blobby Volley . 70
13.2 ProductBall concept . 71
13.3 ProductBall: class diagram . 72
13.4 ProductBall: pre-battle state . 74
13.5 ProductBall: battle state . 74
13.6 ProductBall: score state . 75

14.1 Achtung Die Kurve . 78
14.2 Achtung concept . 78
14.3 Achtung: class diagram . 79
14.4 Achtung: game state . 81
14.5 Achtung: round over state . 82

15.1 Survey participant details . 86
15.2 Gaming experience . 88
15.3 Commercial potential . 89
15.4 TowerDefense general experience . 90
15.5 TowerDefense cooperation experience 92
15.6 ProductBall survey results . 93
15.7 Achtung survey results . 95

viii

Part I

Introduction

1

CHAPTER

1

INTRODUCTION

The video gaming industry has grown from single person projects distributed on
floppy disks to projects developed by hundreds of persons with multibillion dollar
companies as distributors. Not only has the size of the projects grown, but also the
games themselves. Graphics have improved from very pixelated representations of
real world objects to high resolution and photo-realistic depictions. The gameplay
has evolved from simple button mashing to emotional pieces of entertainment. The
amount of work needed to publish a state of the art games is now many times more
than before. As a response to this, some companies has developed frameworks
and technologies which allow one man projects to enjoy new technologies, rapid
development and easy distribution. One example of such technology is Flash.

Originally developed as a animation tool, Flash has been improved with extensive
scripting support and is today a full-fledged multimedia platform. Flash has be-
come immensely popular technology on the internet, as almost every computer with
an internet connection has Flash installed. Popular uses include video playback,
animations, advertisements and games. When developing in Flash, the time from
code to screen is very low, allowing for rapid prototyping and testing ideas. While
larger projects are certainly possible, most Flash games are relatively simple and
intended for casual gamers.

MOOSES is short for Multiplayer On One Screen Entertainment System, and it is
a framework for games and interactive applications. MOOSES has been developed
at NTNU as previous master’s theses. The framework allows people to use their

3

mobile phones (although recent development allows laptops and other devices) as
controllers to play games and use interactive applications together on a large, high-
definition screen found in cinemas, lecture halls and convention centers.

1.1 Motivation

The author has been interested in video games ever since playing the first Sonic
game on the Sega Mega Drive, a 16-bit console system for TV screens. This passion
has continued to grow over the years and was one of the reasons he started learning
about programming. Recently, games created by independent game developers
have started to flourish, which have given even more inspiration.

Previous games for the MOOSES framework have been developed in Java, C++
and C#, but so far an implementation in Flash has not been thoroughly tried and
tested. Flash is probably the most popular technology (excluding technologies na-
tively implemented by most browsers) on the web right now. To open up MOOSES
for the thousands of talented Flash programmers and artists, this thesis will look
at what is required to create a Flash game for MOOSES, as well as create the
artifacts needed to ease such development and test those artifacts by developing
several games.

Hopefully the product of this project will serve as a help for people who want to
use Flash for MOOSES.

1.2 Project Context

This report along with the games created is the deliverable of a master’s thesis
written at Department of Computer and Information Science at the Norwegian
University of Science and Technology (NTNU)(IDI). The workload is one semester.

This project is part of a joint research program between Tellu and IDI. At IDI
this is a part of the game technology research program, which Alf Inge Wang is in
charge of.

Tellu is built on Ericssons former department of research in Norway. Today they
further develops the technology used in MOOSES, and other issues related to
mobile phone technology. Tellu is also responsible for the commercialization of
MOOSES.

4

1.3 Stakeholders

This project has four main stakeholders, Tellu, Alf Inge Wang, Department of
Computer and Information Science at the Norwegian University of Science and
Technology (NTNU)(IDI) and the author of this report.

1.4 Project Goals

The goals of this project are to explore the use of Flash technology with MOOSES
and look at different multiplayer modes. These goals will be achieved by imple-
menting a set of artifacts that will facilitate the development of MOOSES games
and using those artifacts to create three games with distinct multiplayer modes.
The artifacts and games will finally be evaluated.

5

6

CHAPTER

2

REPORT OUTLINE

This report has been split into seven parts for easier reading. This chapter will give
a brief description of each part to let the reader navigate the report more easily.

Part I Introduction This part contains an introduction to the project along with
motivation, stakeholders and project goals.

Part II Research Questions, Environments and Tools This part defines the
research questions driving the project, the method of research, and the test
environment and development tools.

Part III Prestudy This part elaborates on some of the research material for
this project, such as video games, the MOOSES framework, Adobe Flash
and state of the art (previous research at NTNU and existing big screen
solutions).

Part IV Flash for MOOSES Framework This part describes the modules cre-
ated to aid and simplify further Flash game development for MOOSES.

Part V Game Development This part describes the concept and some of the
implementation of the three games.

Part V Evaluation and conclusion This part evaluates the game, the Flash
platform and the Flash for MOOSES Framework. It also concludes the report
and brings up some ideas and suggestions for further work.

7

Part VI Appendices This part contains source code and other texts found to be
too technical or unsuitable for any of the other parts of the report, but still
relevant for the work done and for further work.

8

Part II

Research Questions,
Environment and Tools

9

CHAPTER

3

RESEARCH

This chapter will describe what questions that should be answered to get an
overview of using Flash to create MOOSES games, evaluate the player experi-
ence with different multiplayer modes, and the method to obtain the answers to
these questions.

3.1 Research focus

We will explore how to create games for MOOSES using Flash, and to create
reusable components for the development of Flash games for the MOOSES frame-
work. We will also take a look at how the players experience different multiplayer
modes.

3.2 Research questions

This report will answer the many questions that have arisen when attempting to
use Flash for MOOSES.

11

RQ 1 What must be done in order to create a game in Flash for the
MOOSES framework?

Research will be done in order to find out what must be created or prepared
in order to successfully develop a game in Flash for the MOOSES framework.

A) How should the framework and the Flash game communicate?
B) What modifications must be done with the MOOSES framework to allow
communication with a Flash game?

C) What is needed of both experience and software to develop a MOOSES
game in Flash?

RQ 2 What challenges does MOOSES development in Flash pose?

Challenges and constraints by using Flash will be researched, both in game
development in general and in connection with the MOOSES framework.

A) How does a Flash game perform in a high definition resolution?
B) What constraints and differences does an implementation in Flash have
compared to previous implementations of MOOSES games?

RQ 3 How should the modules created in this project be organized for
rapid development of new Flash games for the MOOSES frame-
work?

Research will be done in order to find out how generalise the process of
creating a game for the MOOSES framework in Flash.

A) What parts of the prototype game should be reusable components for
new games?
B) What directions and recommendations for new projects should be formal-
ized?

RQ 4 How is the user experience when playing MOOSES games?

Different games are planned to be created in order to explore different aspects
of multiplayer modes; all versus all, team versus team and team versus team
with shared control of the playable character.

A) Is shared control over a character fun and enjoyable?

B) How do players experience the different multiplayer modes?
C) Does cooperation work in a MOOSES game?

12

3.3 Research Methods

While there are several methods of doing research, Basili [HDRS93] names some
approaches suitable for software engineering.

In the scientific method, the software process is investigated by using analysis,
observation and evaluation. The process is observed and evaluated, and the results
of the evaluation are used to propose improvements to the system. Improvements
can be in the form of better tools and methods, or improvements in the process
itself. The process of observe, evaluate and improve can be repeated until the result
is satisfactory.

A variation of this method is the engineering method. A solution or system is
improved through iterations. The solution is observed and a better solution which
may solve found problems is proposed. The solution is built and then carefully
measured and analyzed. This step by step approach should then be repeated until
the solution is good enough.

On the other hand there is the empirical method, which does not necessarily depend
on an existing solution. A new model of a solution is proposed, then data is
collected, analyzed and evaluated, and in the end the model is validated. The goal
is to study the effects of the process and/or the product. As with the engineering
method, correct measurement and analysis is important, and the data-collection
must be based on reason.

Finally in the mathematical method a theory is proposed (a set of axioms) and
further developed. The results of the theory is derived and compared to empirical
observations to verify the credibility of the theory.

For this project the engineering method is the most useful when it comes to creating
the reusable modules as well as the prototype. A solution will be created, evaluated
and improved upon until the solution is working satisfactory. Literature study (of
papers, articles, books and relevant source code) and lessons learned (from previous
projects and this one) will provide the method of gathering the knowledge necessary
to give an answer to each of the research questions.

In order to gather and evaluate the player experience when using the created games
a simple survey within the test subjects will be conducted. A questionnaire will
be handed out after each playtest. There are many reasons for the use of a ques-
tionnaire instead of other techniques such as interview sessions and usability lab
testing. First and foremost it is a very cheap method, both in the sense of money
(compared to renting a usability lab) and time (conducting several interviews and
performing usability testing). While it is possible to motivate arbitrary people to
test the games, it may be very hard to convince them to do longer usability testing
or interviews, especially without some serious incentives. The results of the survey

13

and observations done during playtests will serve as the basis for evaluating the
games and multiplayer modes.

14

CHAPTER

4

TEST ENVIRONMENT

This chapter will detail what devices will be used for the testing and development
of Flash games for MOOSES.

4.1 Desktop computer

The desktop computer has mainly been used for graphics manipulation as well as
general developing and report writing. It is equipped with an Intel Core2Duo 2.4
GHz processor, 4GB RAM and a ATI Radeon 4850HD graphics card with 512MB
memory. The operating system installed is Windows 7 64-bit.

4.2 Laptop computer

The laptop computer has mainly been used for general developing and report writ-
ing when away from the desktop computer. It is equipped with an Intel Pentium
Dual 1.87 GHz processor, 2GB RAM and an Intel based graphics card. The oper-
ating system installed is Windows 7 32-bit.

15

4.3 Television

The author has a 42 inch LCD television available supporting resolution up to 1920
times 1080 pixels. This will be used for testing MOOSES games.

4.4 Mobile phone

The author has both a Sony Ericsson K800i and a HTC Magic. Only the K800i
supports the MOOSES client, and therefore it will be used for testing. In addition,
Alf Inge Wang has provided seven Sony Ericsson phones for testing purposes.

16

CHAPTER

5

DEVELOPMENT TOOLS AND
SOFTWARE

This chapter will detail what tools and software will be used for the testing and
development of Flash games for MOOSES.

5.1 FlashDevelop

FlashDevelop is an open source, source code editor for Windows supporting the
Flash scripting language ActionScript. It has code completion and syntax high-
lighting for web related languages like PHP, HTML, XML and CSS as well. It
features a look and feel that is similar to Eclipse and Visual Studio, as seen in
Figure 5.1. The interface is intuitive and simple. Unfortunately, it lacks debug-
ging tools like pausing and stepping, and inspecting variables. Despite this, it is
probably the best free alternative for developing Flash components and games.

17

Figure 5.1: FlashDevelop workspace.

18

Figure 5.2: Notepad++ workspace.

5.2 Notepad++

Notepad++ is a free alternative to Windows Notepad with syntax highlighting for
a great number of languages. Other features are plugins, macros as well as a tabbed
interface, see Figure 5.2. It is also possible to split the view of one file into two
distinct parts, so that one can edit different areas of one file at the same time in
the same view. This program is used to write the report as well as edit XML-files
and other text files.

5.3 Paint .NET

Paint .NET is a free graphics manipulation software used to create game graphics
and report figures. The interface is seen in Figure 5.3.

19

Figure 5.3: Paint .NET workspace.

Figure 5.4: Dropbox logo.

20

5.4 Dropbox

Dropbox, logo shown in Figure 5.4, is a personal backup and versioning tool which
automatically synchronizes a folder on your computer with an internet server.
Older versions as well as backups can be restored, and files are accessible from
anywhere by logging in to the Dropbox site. The entire project as well as the re-
port is placed within the Dropbox folder to make sure everything is backed up and
available.

5.5 Adobe Flex

According to Wikipedia [Wikb], “Adobe Flex is a software development kit released
by Adobe Systems for the development and deployment of cross-platform rich in-
ternet applications based on the Adobe Flash platform”. Flex allows a programmer
to approach building a Flash application more like a software product, opposed to
the traditional animation approach. User interfaces are defined by using XML-files,
and behavior and actions are implemented in ActionScript. Included is also a freely
available compiler from Adobe, which allows a programmer to use nothing more
than a text editor to create Flash programs and animations.

5.6 MikTex

MikTex is a LATEX-distribution for Windows used for creating this report.

21

22

Part III

Prestudy

23

CHAPTER

6

VIDEO GAMES

According to Wikipedia, a video game is “... an electronic game that involves inter-
action with a user interface to generate visual feedback on a video device” [Wikc].
The system which the games run on is called a platform, and can be anything from
a portable device such as the Nintendo DS to a personal computer.

To control the game, an input unit or device is needed. The shape and layout
of these devices vary from platform to platform. On handheld devices, the input
device is incorporated into the platform. An input device does not have to be just
buttons; microphone, accelerometers and even video recognition can be used to
control games.

To provide feedback for the player, video games are not limited to only a video
screen, but can also use audio, vibration, and force feedback.

6.1 Genres

Computer games are diverse in all aspects of their qualities, from overall theme,
to graphics, to audio, and to methods. For this reason, video games are typically
categorized in genres by gameplay mechanics, rather than theme and emotional
purpose. A strategy game with a western theme has more in common with a

25

science fiction strategy game than a shooter placed in a western setting. What
follows is a (incomplete) list of common genres. It is important to remember that
these are just major genres, and games within a genre may be very different in
technology or theme. Each genre typically has many sub genres.

6.1.1 Action

The action genre is a genre where games are fast paced, and requires quick reflexes
and precision to overcome the obstacles given by the game. While movement and
placing are important aspects of this genre, it is usually combat which is the main
focus. Popular subgenres are shooters, where projectile combat is the main focus,
and platform games, where precise movement of the player is the key to success.
Call of Duty 4 (Figure 6.1) and Mario (Figure 6.2) are typical games from each
respective subgenre.

Figure 6.1: Call of Duty 4, first person action shooter game.

6.1.2 Adventure

As a contrast to the action genre, the adventure games feature little to no action.
The player is left to explore the world in his or hers own pace. Obstacles presented
are usually puzzles that must be solved in order to advance the plot.

26

Figure 6.2: Mario, a platform action game.

27

6.1.3 Construction and management simulation

Construction and management simulation games let the player manage resources
and/or construct fictional structures in order to achieve and maintain a sustainable
resource economy. Games found in this genre are city-building games (popular
example is SimCity, see Figure 6.3) and business simulation games (such as Theme
Park and Transport Tycoon).

Figure 6.3: Sim City 2000, a city-building game.

6.1.4 Role-playing

Role-playing games let the player control a character which can specialize in certain
skills, such as magic, fighting or bow mastery, and is left to explore a world. The
player typically gains experience by completing objectives and, depending on the
game, can use the new experience to further improve their skills.

6.1.5 Strategy

A typical strategy game let the player control an army of units, and is to place and
direct them in order to win over one or more opponents, or to complete defined

28

objectives. The size of the army, the type of units, and world to play in is up to
each game. The player must carefully plan the movements his army must take in
order to win. Examples of strategy games are Starcraft (see Figure 6.4), Red Alert
series (see Figure 6.5) and chess.

Figure 6.4: Starcraft, a real-time strategy game.

6.1.6 Vehicle simulation

Vehicle simulation games attempt to let the player control various vehicles and
simulate these vehicles as accurately as possible. This genre usually benefits the
most from addition peripherals such as electronic steering wheels.

6.2 Multiplayer

A game is said to support multiplayer if two or more players can interact in the
same game session. Multiplayer can be achieved by using different methods, where
some of them will be detailed in this section.

29

Figure 6.5: Red Alert 2, a real-time strategy game.

6.2.1 “Hot seat”

Hot seat is a method where the players share the same screen and take turn con-
trolling the game with only one input unit. This method typically works well for
turn based games, such as Worms and Civilization.

6.2.2 Network

The most used method of allowing multiplayer is by letting each player have their
own screen and input, and synchronize the game session by using a network con-
nection. Some turn-based strategy games offer the possibility of playing by email.

6.2.3 Split-screen

Split-screen is a method of multiplayer where the players share the same screen,
but have individual input units.

There are many different methods for having several players sharing the same
screen. One can assign a portion of the screen to each player, commonly known

30

Figure 6.6: MotoGP 3 in split-screen mode.

as split-screen (Figure 6.6), or the screen can show the entire playing field at once,
including the players. Variation of the latter can be to zoom and crop the view to
only display the parts of the playfield interesting to the players, such as in football
games where the camera focus on the ball. While no longer technically split-screen,
the principles are the same.

Split-screen is a very common method used by video games to give players the
possibility of playing together without using network connectivity or taking turns.
MOOSES use the split-screen principle, one screen with multiple input units, how-
ever if the actual screen should be split is a design decision left to the MOOSES
game developers.

6.3 Multiplayer interaction

There are many ways of letting the players play together, as detailed in the previous
section. There are also many ways the players can interact with each other. This
section will try to expand on some of them.

31

6.3.1 Team versus team

Players can be divided into teams, and then be encouraged to play in the best
interest of the team. A sense of camaraderie and us versus them often motivates
players, and cooperation is the key to success. How the players interact within a
team and with the other team may vary greatly. The players can cooperate by
controlling one game character each, or in some way share control of the team
entity. A football game may give each player control of one football player, and
play against another team. A strategy game could have multiple players on each
team, where each player can issue commands and thus have equal control of the
team entity.

6.3.2 Player versus player

Players are only encouraged to promote their own interests, which may or may not
be in the best interest of other players.

32

CHAPTER

7

MOOSES

The first implementation of the MOOSES (Multiplayer On One Screen Entertain-
ment System) framework were developed as a part of the students Sverre Morka,
Aleksander Baumann Spro and Morten Versvik depth-study in the autumn of 2006.
It has later been developed and maintained in cooperation with Tellu AS, a tech-
nology company located in Asker. The purpose of the framework is to easily create
games for large screen using the mobile phone as a controller.

7.1 Design and architecture

MOOSES is implemented using Java technology, requiring support for J2SE on the
server side and J2ME on the client side. Although most mobile phones support
J2ME these days, new and popular phones such as the iPhone and Android-based
phones do not. In time, the client side will be made technology independent.

7.1.1 High level architecture

The MOOSES framework is designed to be modular, in order to allow future addi-
tions and modifications. The high level system design consists of a communication
server, a user agent, a game server, the game, a login module , a billing module,

33

a client handler, a framework client and a game client. Figure 7.1 shows the
communication between the various modules.

Figure 7.1: High level view of the MOOSES framework.

Billing Handles the user billing.

Client Handling the client requests and framework feedback.

CommunicationServer Provides access for to the framework for the clients. It
also is responsible to create the initial connection between all modules.

FrameworkClient Handles billing, login and other requests related to the frame-
work.

Game The game module is independent from the framework, but need to support
the given interface.

GameClient Is linked to a specific game, which makes it possible to tailor the
game controllers.

GameServer Handles the information between the framework and the game, and
is responsible for loading game modules.

34

Login Authenticates the users when they tries to connect to the framework

UserAgent Contains all the information to a user, and the communication infor-
mation to- and from the user.

Figure 7.2: Physical view of the MOOSES framework.

7.2 MOOSES and Bluetooth

The MOOSES framework use Bluetooth technology to communicate with the users
mobile phones. Bluetooth is a short range radio data communication protocol
intended for a wide array of devices, and almost every phone today supports the
standard. Popular uses are wireless connection between devices such as mouse and
keyboard and a computer or other device. Wireless headsets for phones are also
a popular use. The standard is designed to use little power and the chipsets it is
based on are low cost.

MOOSES utilizes a Bluetooth hub which supports up to 21 connections per access
point, and more access points can be set up without modifying the MOOSES
framework. MOOSES also supports regular Bluetooth devices, which only allows
up to seven connections. Although not very impressive, it is very useful during
testing to do not have to handle the extra hardware.

35

36

CHAPTER

8

ADOBE FLASH

8.1 What is Adobe Flash

Figure 8.1: Adobe Flash CS4 Professional.

Adobe Flash (previously Macromedia Flash) is a multimedia platform maintained
and developed by Adobe Systems [Wika]. It has become a very popular technology

37

to incorporate animation, interactivity and video to web pages. Most common uses
is to create animated advertisement, rich web applications and components, and
relatively simple browser games.

Flash has grown over time, from vector and raster graphics manipulation to sup-
porting bidirectional video and audio streaming. Scripting is enabled by supporting
a scripting language called ActionScript.

To view Flash movies and components, one needs to have Flash Player installed,
either as a stand-alone player or as a plugin to a browser. Adobe Flash Player has
been implemented on all the major operating systems, as well as a light version for
mobile devices.

8.1.1 Popular uses of Flash

According Adobes web page [Ado], almost 99% of computers connected to the
internet can view content based on Flash, and has almost become a necessity to view
the modern web. Several web pages have been built on using Flash technology, such
as YouTube, DailyMotion, Armor Games, and some web pages are built entirely
of Flash.

Advertisment Flash allows animation, music and video which is used extensively
to catch the users eye and create attractive commercial elements.

Web components Flash can be used and is used to replace otherwise standard
HTML web components such as menus, introduction screens or even a com-
plete web page.

Prototyping Flash offers a familiar scripting language (ActionScript3) and allows
for rapid testing of ideas. The amount of work needed to get an idea moving
on the screen is very low.

Video embedding Flash can be used to embed video in web pages. Popular sites
like YouTube and DailyMotion allows users to upload their videos and share
them with the world.

Games Flash has become a very popular game creation platform. The games are
often so-called casual games, intended to be played for a limited time on an
irregular basis. Web sites such as Armor Games hosts a large number of free
games made in Flash.

38

8.1.2 ActionScript

In order to create interactive animations and components, Flash was given support
for a scripting language, ActionScript. This language has evolved a lot. First
implementation was very simple, only supporting basic navigation commands such
as Play, Stop, GoToFrame and GoToUrl. The current version of the scripting
language is called ActionScript 3, and is a full-fledged object oriented programming
language. The latest version of Flash Player now includes a Just-In-Time compiler,
which increases the performance of Flash significantly.

Although intended as scripting language for Adobe Flash’s authoring tool, it can
be used by itself to create Flash files using new tools released by Adobe. This
allows a developer to create a game or an application without using anything but
a text editor and a compiler.

package com.example
{

import flash.text.TextField;
import flash.display.Sprite;

public class Greeter extends Sprite
{

public function Greeter()
{

var txtHello:TextField = new TextField();
txtHello.text = "Hello World";
addChild(txtHello);

}
}

}

A Hello World example in ActionScript 3. Notice how variables are declared dif-
ferently from Java and C, with the type after the name of the variable.

8.2 Benefits of Adobe Flash for MOOSES

There are two major benefits of using Adobe Flash in conjunction with MOOSES.
The first is prototyping. It is very easy to create prototype games in Flash, and
allowing prototype games to be tested on the large screen with actual hardware is
a huge benefit when testing new gameplay elements.

A second benefit is that Flash is used by more than just programmers; advertising

39

studios might have expertise in using Flash, but not so much in more classical pro-
gramming environments. Allowing Flash makes the MOOSES platform available
for highly skilled persons within advertising. One could imagine such persons cre-
ate a mini-game to advertise a product, and this mini-game could be played before
a movie starts as an interactive commercial.

40

CHAPTER

9

STATE OF THE ART

9.1 Previous work at NTNU

In their master’s thesis, Spro and Versvik [SV07] take a look at the social attributes
of gaming in general and especially of MOOSES games. They also evaluate and sug-
gest improvements to the MOOSES framework and implemented MOOSES games.

Kvasbø, in his master’s thesis [Kva07], evaluated several different game concepts
which could be feasible for the MOOSES framework.

Morka [Mor07] developed a scriptable client for the MOOSES framework. This
allows a customization of the client without redistribution of a recompiled version.

Heggdal [Heg08] explored the possibility of allowing games based on XNA (a game
framework implemented in C#) to connect to the framework. This required the
framework to support a different communication channel than JNI (Java Native
Interface) which C# does not support. The communication method chosen was a
standard TCP-connection, allowing a number of new technologies to interact with
the framework.

Føllesdal [Føl09] implemented and evaluated a game called Selfish for the MOOSES
framework.

41

9.2 Multiplayer On One Screen Games

This section describes some systems which allow players to interact using a single,
shared screen.

9.2.1 ProjectorGames

Figure 9.1: A ProjectorGames event.

ProjectorGames is a company who specializes in hosting game sessions using a
projector, custom controllers and custom games fitted for the large screen. They
develop their own games and use them for large screen events and publish them
to Xbox Live. According to their website [Pro], their large screen system can
be used by up 512 players at once. All in all, their concept is very similar to
MOOSES however ProjectorGames have to supply a controller to all the players,
unlike MOOSES where they can use their own mobile phones and other devices.

They have developed many interesting and promising game concepts which could
be transferrable to MOOSES and should probably be studied further.

9.2.2 Carry Small, Game Large

In an article called “Carry Small, Game Large: Big Shared Screen Multiplayer
Gaming”[RJCW], published on a popular game development website called Gama-
sutra, a new kind of game was presented. The players must, as with MOOSES, be
in the same physical location and share the same, large screen. Unlike MOOSES,
the clients can by any device capable of processing JavaScript techniques such as

42

Figure 9.2: Carry Small, Game Large. Left half is the client screen, the right half
is the screen shared by all players.

AJAX. Since the client is HTML/JavaScript based, it does not require any instal-
lation, players simply have to go to a shared URL and log in.

This approach may be satisfactory for many games that do not have strict latency
requirements, but for fast-paced games the latency might be an issue.

9.3 Flash Games

Typical Flash games today are intended for the casual audience, players who have
a limited playtime and just want some instant entertainment. These games have
a very limited set of features, simple graphics and addictive gameplay. Example
of such a game is Bloons, seen in Figure 9.3, where the main objective is to throw
a limited number of darts in order to pop as many balloons as possible. Another
very popular type of Flash game is tower defense. In tower defense games, such
as GemCraft seen in Figure 9.4, the player must place defensive structures along a
route where enemies will pass through and attempt to reach the end of their path.

There are not just simple games in Flash. Machinarium is an adventure game
where you control a very special robot. The game has a very unique and beautiful
art style, and this is enforced in the game by using little or no text. A screenshot
from the game is seen in Figure 9.5.

The “weird” and experimental gameplay is also typical for Flash games. Flash is
easy and intuitive to begin with, and is used by a great number of people with
different backgrounds, from artists to advertisers to programmers. It is often used
as a prototyping platform.

There are some issues with Flash. The performance is not great as it does not
utilize modern graphics cards. Although there are attempts of creating 3D games

43

using Flash, these are often very simple compared to the regular PC standard, due
to the lack of processing power and lack of official 3D rendering support.

Figure 9.3: Bloons, a popular flash game [Nin]. The goal is simply to pop a mini-
mum amount of balloons per level.

44

Figure 9.4: GemCraft, a flash game in the tower defense genre [Arm].

Figure 9.5: Machinarium, an adventure flash game with a very special art
style [Des].

45

46

Part IV

Flash For MOOSES
Framework

47

CHAPTER

10

FLASH FOR MOOSES
FRAMEWORK

10.1 Overview

One aspect of the project is to facilitate the creation of games for MOOSES using
Flash. A similar challenge was faced by Vebjørn Heggdal when he was to use C#
and XNA to create a game for MOOSES [Heg08]. To solve this, the maintainers of
MOOSES created a TCP connection which games could connect to. This TCP con-
nection is language and technology independent and requires just an understanding
of the protocol MOOSES use. In contrast to previous games for MOOSES, games
based on this TCP connection runs in a different process which helps the stability
of MOOSES. If a game crashes it will no longer crash MOOSES with it.

To aid the development of games and other applications for MOOSES in Flash, a
collection of classes and helper applications, named Flash for MOOSES Framework,
was developed. These classes were designed to be as generic as possible in regards
to use (no ties to a specific game type) and MOOSES client, while still being
as extensive as possible to help development. These classes will be detailed and
explained in the following sections.

49

10.2 Flash For MOOSES Classes

MoosesFrameworkClient

MoosesConnectionEvent

MoosesPlayerEvent

MoosesKeyEvent

MoosesData

MoosesInfo

MoosesPlayer «interface»

MoosesUnit

1

*

1

*

«uses» «uses»

«uses»

«uses»

«uses»

Figure 10.1: The Flash for MOOSES classes.

The FMF consists of three major and separate classes: MoosesFrameworkClient,
MoosesData and MoosesInfo. Each of them has a different responsibility and uti-
lizes some helper classes and interfaces. The relationship is shown in Figure 10.1.
The FMF classes as a whole maintain the connection with MOOSES and propa-
gates events regarding the connection status, player events and key presses.

10.2.1 MoosesFrameworkClient

The MoosesFrameworkClient class maintains a connection with MOOSES and lis-
tens to incoming messages as well as sending responses. Events are generated here
depending on messages recieved and changes to the connection. These events are
picked up by the two other classes, MoosesData and MoosesInfo.

MOOSES message protocol

The structure of messages sent by MOOSES varies by the type of message sent,
but the header of the messages always remain the same. The header contains two

50

integer numbers, first a message type number and secondly the size of the message
in bytes, excluding the header.

MOOSES allows games to send data to the client. How this data is treated is up to
the client. The message structure to send client messages is as follows: a message
type number (integer), played identification number (integer), the number of data
units to send (byte). After this header each unit of data is sent. A unit of data
is sent by sending a data unit type number (byte), then the data. To illustrate
the message structure, suppose one would want to send the number 42 to a player
number 10 with the message type 7. The message will then be i7-i10-b1-b2-i42,
where i in front of the number indicates integer and b indicates byte. The data
unit type number for integer is set to 2.

In order to let MOOSES know what score a player has, a special message can be
sent. The structure of this message is first the message type number (1030 for score
update), the player identification number and finally the score value.

Events fired by MoosesFrameworkClient

MoosesConnectionEvent This type of event is fired whenever the status of
the connection with MOOSES changes. It can be in one of four states,
MOOSES_CONNECTED, MOOSES_ATTEMPTCONNECT, MOOSES_ERRORCONNECT
or MOOSES_DISCONNECTED.

MoosesPlayerEvent When the status of the players change this type of event is
dispatched. It can be in one of two states, either MOOSES_PLAYER_JOIN
or MOOSES_PLAYER_QUIT. A unique number generated by MOOSES
identifying the player is always included in the event, however the name of
the player is only present when a player joins. If used, the MoosesData
module will process this event and keep an updated list of current players.

MoosesKeyEvent If a player press or release a key on their MOOSES controller
this event is generated. The event will contain the data of which player it
concerns, which key and what state the key is in (either pressed, released or
clicked).

The other co-modules of FMF and games who would want to use FMF will listen
to MoosesFrameworkClient and process the events as they see fit. While the co-
modules is not strictly necessary to create a proper MOOSES game, as shown in
the next sections, they can be very helpful.

51

MoosesFrameworkClient receives data

(Data is a keypress by player X)
An event is created and dispatched

MoosesData processes the key event

Key press data is sent to player X

Player X sends the data to the attached unit.

The unit controlled by player X shoots.

Figure 10.2: A simple scenario which attempts to show how an event propagates
through FMF. While it may seem like an unnecessary amount of steps, this allows
for a good amount of freedom for the game creator and it keeps the FMF distinct
from the game and highly reusable.

52

10.2.2 MoosesData

The MoosesData module is an optional (although very useful) helper module which
is responsible for keeping record of connected players, generic player related events
and data. The list of which players who are connected is kept up-to-date by listen-
ing to the MoosesFrameworkClient.

When a player joins the server, a MoosesPlayer object is created and pushed to the
list of connected players. This object contains the player identification number and
the player name, as well as some key functions a MOOSES game can benefit from.
This is the abstract representation of the player in FMF, as it does not appear
graphically, and is distinct from a game unit controlled by a player.

A MOOSES game can iterate through the list of players, and attach a player con-
trolled unit to a player. The player controlled unit must implement the MoosesUnit
interface. When a MoosesKeyEvent is picked up by the MoosesData, it will send
the data to the correct player, and, if a unit is attached, pass the data along to the
unit. In this way, a game unit will get direct input from the players without having
to poll for changes in the input status. This also keeps the game implementation
separate from the reusable components.

MoosesData can buzz (or vibrate a user’s phone, however this depends on the
controller) a player based on the unit, freeing the game from having to look up which
player identification each game unit has. Instead the game can send buzzPlayer
with the game unit to buzz to MoosesData, and the module will go through the list
of connected players and send the proper identification to MoosesFrameworkClient.

10.2.3 MoosesInfo

MoosesInfo is an optional module which logs the events fired by the MoosesFrame-
workClient. The events are logged by sending it to trace (similar to using Sys-
tem.out.print() in Java) and by storing a string representation of the event in a
TextField. Custom messages added by the game creator can also be logged by
MoosesInfo. MoosesInfo can be added to a DisplayContainer in Flash to visually
see the event log as well as see the status of the MOOSES connection. This module
is useful for debugging, and should probably not be viewed by a regular user of the
system.

53

10.3 Helper programs

In order to run Flash games and applications successfully two helper programs were
created.

10.3.1 Cross-site Scripting Helper

As a security measure, the Flash runtime does not allow Flash programs to create
a TCP connection unless the connected party responds with a security token. This
is to combat a security vulnerability called cross-site scripting. The security token
is a XML string which detail the rights the Flash program is given. The token is
intercepted and processed by the Flash runtime without the Flash program ever
seeing it.

The token can be transmitted over the same connection the Flash program is trying
to initiate, or it can be sent over a different TCP connection which is initiated by
the Flash runtime. Since the TCP connection MOOSES provides is supposed to be
language and technology independent, modifying it to send the security token would
be a poor idea. Instead, a simple helper program was created. This program waits
for an incoming connection, hands out the security token, closes the connection
and begins waiting again. The Flash runtime will contact this program and the
connection initiated by the Flash game will be allowed.

10.3.2 Flash Game Launcher

External games (games not bundled with MOOSES) must exist in a specific folder
in the MOOSES system. The external games must also be executable files. Flash
games are distributed as SWF-files, which in turn must be launched a Flash player.
While MOOSES could have been modified to recognize the SWF-files and launch
the appropriate Flash player, a different solution was found.

A simple helper program was created which simply launches the Flash player and
tells it to play the SWF-file with the same file name as the program. As an example,
if you have a Flash game named “achtung.swf”, one would rename the program
to “achtung.exe” and put the program in the same folder as “achtung.swf”. This
way, the program does not have to be recompiled for each new game created, and
MOOSES does not have to be modified.

54

Part V

Game Development

55

CHAPTER

11

INTRODUCTION

In order to test developing with the created framework and to test and evaluate
Flash MOOSES games three games were created. Each game will try to explore
different ways the players can play and work together. Tower Defense puts the
players on opposing team, and each player controls one character. ProductBall also
put the players on opposing teams, but they need to collaborate on controlling their
team character. Both of those games should require teamwork and communication
for the team to succeed. The last game, Achtung, pits the players against each
other in a game of survival. This part will describe the concept of each game in
detail, as well as how they were implemented. In the next part, each game will be
evaluated.

57

58

CHAPTER

12

TOWERDEFENSE

12.1 Concept

This game was inspired by popular tower defense games seen all over the internet
and on handheld devices today. A tower defense game is a game where the player
must strategically place defensive towers on the battlefield to defend against an
incoming horde of enemies. The towers may have different abilities, strengths and
weaknesses. The enemies may follow a pre-determined path, or be forced to follow
a certain path because of the defensive structures placed by the player, or even just
roam freely around the battlefield. The main objective of the game is to stop the
enemies to reach a certain point, the other side of the battlefield, or the end of a
path.

To adapt this game concept to the MOOSES several adjustments will be made.
The MOOSES players will be split into two teams, attackers and defenders. The
attackers must reach the opposite side of the screen, the defenders must stop them.
The attackers may run freely around the battlefield, while the defenders are sta-
tionary, see Figure 12.3. The game should have three distinct states, a deployment
state where the defenders place their towers, a game state where the attackers
attempt to reach the other side, and an intermediary state where statistics and
information could be displayed, and new players are allowed to join.

59

Figure 12.1: Vector Tower Defense.

Figure 12.2: Omega Tower Defense.

60

Figure 12.3: Illustration of the game concept. The attackers (in blue) attempt to
get to the other end of the playfield (the yellow line on the left) and the defenders
(in red) tries to prevent this by aiming and shooting the attackers.

61

The multiplayer mode will therefore be team versus team, but each player controls
one character. Hopefully the game concept should allow and promote team play.
Attackers should want to work together and apply various tactics to reach the
other side, while the defenders must place their towers strategically in relation to
the other defenders. To “spice up” the gameplay, different power-ups (items which
gives temporary advantages to a player) can be placed on the battlefield, either for
the attackers to pick up, or for the defenders to shoot. The battlefield may also
contain items which blocks the path of both attackers and defender bullets.

To balance the game it may be beneficial to have a different number of players on
the attacker and defender side, with more players on the attacker side. A good ratio
should be found by testing. When an attacker reaches the other side the attackers
score a point, when a defender kills an attacker they score a point. The game will
end after a certain amount of points for either side. If an attacker reach the other
side or is killed by a defender it will spawn again at the beginning. There will be
a maximum number of respawns, and if the attackers have not reached their goal
by the time the round is over the defenders will win.

12.2 Implementation

This section will introduce TowerDefense and explain how the various bits and
pieces were implemented. A screenshot from the final game can be seen in Fig-
ure 12.4. A class diagram of the final system can be seen in Figure 12.5.

Figure 12.4: The TowerDefense game.

62

WorldMain

Scorefield

Bullet

HasteHasteBuff

Attacker

Defender

Nameplate

«interface»

IBuff

«interface»

IBuffable

«interface»

MoosesUnit

FMF

«uses»

1 1

1

* 1*

«interface»

IMapObject

1

0..*

1

0..*

«uses»

1
0..*

1

0..*

1
0..*

Figure 12.5: TowerDefense: class diagram.

63

12.2.1 Game states

The game moves between four distinct states, a limbo state, a deployment state, an
battle state, a game over state, all which will be described in detail in the following
sections.

Limbo

The game starts in a limbo state. The purpose of this state is to allow the MOOSES
framework to send the list of connected players and to allow players who connect
after the game was launched to join in. This is a pause state, and players cannot
move any units.

Deployment

In this state, the defenders are allow to move about and choose where to place their
tower, see Figure 12.6. They must work together in order make sure they cover
all entrances to the attackers score area, represented as star symbols in the game.
The attackers are not allowed to move in this state, but are encouraged to try to
devise a plan to breach through the defenders towers.

Figure 12.6: TowerDefense: deployment state. The red tint near the borders is
areas where the defenders are not allowed to place their towers. The white circles
show their range. The attackers are lined up on the left side awaiting the next state.

An important note to make is that when the deployment state is initiated, the

64

connected MOOSES players are assigned either an attacker or a defender. This
is done by retrieving the player list and assigning a minimum of one player as a
defender up to a certain percent of the connected players. The rest of the players
who are not assigned to be a defender will be assigned to be an attacker.

When the game enters the deployment state it will also reset the game board, re-
move all objects, tiles and graphical elements. After the cleanup, necessary objects
will be added.

Battle

In the battle state the attackers are allowed to move, while the defenders must
remain stationary. The defenders are now capable of shooting, and must do so in
order to stop the attackers from scoring points, see Figure 12.7.

Figure 12.7: TowerDefense: battle state. The attackers are attempting to reach the
star symbols, their goal. The defenders are shooting at the attackers and trying to
stop them.

The attackers run over haste objects in order to increase their speed, and defenders
can shoot haste objects to increase their rate of fire.

This state ends if the attackers no longer can respawn, if enough attackers have
breached the defenses, or if time runs out. The side with the best score will be
declared the winner.

65

Game over

When the battle state has ended, the game is paused and a score is displayed. If
the game is set to span over several rounds, the next state will be deployment. If
it is set to only be one round, the game will exit. The time spent in this state will
allow new players to join the MOOSES server and be a part of the next round as
each player is assigned a new game unit in the deployment state.

12.2.2 User interface

The user interface of the game can be seen in Figure 12.8, and explained in the list
below.

Figure 12.8: TowerDefense: user interface.

1. A progress bar indicating the time remaining.

2. A number indicating how many times the attackers have reached the star
symbols on the other side (9). When this reaches zero, the attackers have
won.

3. A number indicating how many more times the attackers can respawn if killed
by the defenders.

4. A haste object which can be picked up by either side. The attackers have to
run over it, the defenders must shoot it. Attackers will run faster, and the
defenders can shoot faster.

66

5. Sparkling stars will appear when an attacker picks up a haste object or when
the attacker reaches a star symbol.

6. This represents an attacker. The attackers’ goal in life is to reach the star
symbols and avoid fire from the defenders.

7. The defender, represented by a bunker, tries to stop the attackers by shooting
at them.

8. The circle represents the defenders range of fire. This is shown to let the
attackers know where not to run, and to let the defenders know how far they
can shoot.

9. If an attacker reaches this star symbol they score a point for the team and
deducts one life point from the defending side.

12.2.3 Implementation of the World class

The most interesting bits of the game are handled in the World class. It is here
connected players are given their unit to control, score is being kept track of, and
the visual parts are being handled. To propagate the update game logic message
throughout the various elements, the Main class listens for the enter frame event.
When this happens it calls the World class’ update method. This method will
again call the update method of each object handled by the World class.

The playfield

The world is made up of two separate grids lying on top of each other covering the
entire screen.

The bottom layer defines mostly the look of the playfield, but can also be queried
to find out if a player is allowed to move to a new location. There are five tiles
currently implemented (grass, trees, river, bridge and concrete), and each tile has
two different boolean properties (traversable, meaning if a player is allowed to walk
on it, or blocking, if a bullet can cross this tile).

The upper layer consists of special objects. Two objects exist, a haste power-up,
and a score area. The haste power-up will increase the movement speed of attackers
who pick it up, and the rate of fire of defenders who shoot it.

67

Game units

The World class maintains one list of attackers, and one list of defenders. These
lists are populated in the beginning of the deployment state by looking at the
players connected to MOOSES.

Particles

Simple particle effects are created by having a list of sprites to draw, move and
remove after a certain time.

State transition

The various states of the game have been explained in more detail in the previ-
ous sections, and the World class will move the game into a new state when the
necessary time has elapsed.

User interface

Finally, the World class updates the user interface.

68

CHAPTER

13

PRODUCTBALL

13.1 Concept

The multiplayer mode in TowerDefense is team versus team, where each player
controls their own character. For this game, a different mode will be implemented
and tested. The players are going to collaborate on controlling one character per
team. The players will need to coordinate with the other players beside them in
order to maximize their effectiveness. The hope is that this kind of multiplayer
mode will produce a different experience than the one in TowerDefense. While
different game concepts may fit this multiplayer mode, the chosen idea was to
make something similar to BlobbyVolley seen in Figure 13.1, a volleyball game
with blobs.

The game to be created, named ProductBall for the many potential places to put
advertising, plays similarly to a volleyball game. The players must attempt to land
the ball on the floor on the opponent’s side. Instead of punching or throwing the
ball, the ball will simply bounce of the head of the players. A mockup of the concept
can be seen in Figure 13.2. Each team has one character, and each character is
controlled by the players on that team. The character should be easy to control,
as the concept of cooperative control might be hard to grasp at first. Therefore,
each character can only move left, right or jump. The players must work together
to move the character in such a position that the ball will bounce to the opponents

69

Figure 13.1: The blobs must jump and position themselves correctly in order to
make the ball bounce to the opponents side.

70

side.

Figure 13.2: Each team has one character to control. Ample amount of advertising.

To control the characters, they player will vote on what the best course of action
is at any time. The character will move in the direction the majority of the voters
decide, and will move at a greater speed depending how many of the players on
that team vote for the direction. To jump, a certain percentage of the players on
that team must agree that jumping is the right course of action.

13.2 Implementation

13.2.1 Classes

Figure 13.3 shows the relationship between the different classes and how FMF was
used. This subsection will go through each class and briefly detail the responsibility
the class has and how it was implemented.

71

ProductBall

Main«uses»

FMF

ProductField ProductPlayer

StateboardVotebar

Voter «interface»

MoosesUnit

0..1

*

0..1 *

1

*

0..1
*

0..1
*

1 1

Figure 13.3: ProductBall: class diagram.

Main

This is the entry class of the program. When started, the main class will initialize
FMF and attempt to connect with MOOSES. Once a connection has been estab-
lished, the Main class initializes ProductField. The main class also has a timer
which sends an update message to ProductField at regular intervals.

ProductField

ProductField is the workhorse of the game and holds the game logic and is ulti-
mately responsible for everything shown on the screen.

When the game is about to begin it divides the connected players into teams.
The teams are represented by a ProductPlayer object. The connected players get
a Voter object attached to them and the Voter object is added to the correct
ProductPlayer.

ProductBall

ProductBall holds the information about the ball and is responsible for making
sure that the ball does not go too fast or off the screen.

Votebar

The Votebar is an UI element which displays the amount of players voting for each
course of action. Its intention is to give the players some feedback.

72

Stateboard

The Stateboard is an UI element which can display messages to all the players.

ProductPlayer

ProductPlayer has a list of Voter objects which are a part of its team. At each
game tick it will sum up all the votes and take the appropriate action.

Voter

A Voter object is what the player has direct control over. A key input is mapped
to each possible vote; idle, left, right and jump. When the game begins the voter
objects are added to one ProductPlayer.

13.2.2 States

Limbo

The game starts in a limbo state. The purpose of this state is to allow the MOOSES
framework to send the list of connected players and to allow players who connect
after the game was launched to join in.

GameBeginning

In this state, the players are divided into two teams, left team and right team.
Lists with which side the players are on are shown, see Figure 13.4. The way the
teams are made up is by attaching a Voter object to each connected player. The
Voter objects are placed alternately in the left and right instance of ProductPlayer.

Battle

The two ProductPlayers finds the majority vote by going through the Voter objects
they hold. Depending on what the majority votes, it will either move right, left,
jump or stand still. The greater the number of people who vote to move in one
direction, the faster the player will move. This is as simple as Speed M̄axSpeed

73

Figure 13.4: ProductBall: pre-battle state. The players are divided into to teams.

Figure 13.5: ProductBall: battle state. The right team is trying to bounce the ball
over to the opposite side.

74

* (NumVotesInDirection / NumVoters). NumVotesInDirection is number of votes
for a specific direction and NumVoters is the number of voters on that team. A
screenshot from the battle state can be seen in Figure 13.5.

Score

Figure 13.6: ProductBall: score state. The left team scored.

After a team lands a score, there is a brief pause where which team scored is
displayed, as seen in Figure 13.6.

GameEnded

After a team reaches the maximum score, there is a brief pause where the match
winner is announced before ending the game.

75

76

CHAPTER

14

ACHTUNG

14.1 Concept

Two team based multiplayer modes have been created. Achtung will explore all
versus all multiplayer mode. The concept is based off an old game called Achtung
Die Kurve, see Figure 14.1. Each player is given control of a curve, which grows in
the direction chosen by the player. The goal of the game is to avoid growing the
curve into an existing curve, and survive the longest. It has similarities with the
mobile game Snake and the light cycle racing game in the movie Tron. The players
control the direction by either turning left or right. At certain intervals there will
be gaps in the curves, see Figure 14.2. These are added to give the players a
chance to survive longer and to do evasive maneuvers through other players and
themselves.

The intention with this game is to create a multiplayer mode which is very different
from the two preceding games. The players will have to battle among themselves to
finally produce a winner. Since the original game was a multiplayer on one screen
game, the concept did not need any tweaking to work with MOOSES.

77

Figure 14.1: The original Achtung Die Kurve. Each player gets one point for each
player who dies while they are still alive. This way, the surviving player gets the
most points.

Figure 14.2: A concept sketch of Achtung. An arrow is placed on the head of each
player to show the direction they are going. The players can turn either left or
right. Gaps are added at regular intervals.

78

14.2 Implementation

This section explains how parts of Achtung were implemented, first by going
through the different classes and then by going through the different states of
the game.

14.2.1 Classes

Main«uses»

FMF

AchtungWorld AchtungPlayer

AchtungStateboardAchtungScoreboard

«interface»

MoosesUnit

0..1 *

0..1
*

0..1
*

1 1

Figure 14.3: Achtung: class diagram.

Figure 14.3 shows the relationship between the different classes and how FMF was
used. This subsection will go through each class and briefly detail the responsibility
the class has and how it was implemented.

Main

This is the entry class of the program. When started, the Main class will initialize
FMF and attempt to connect with MOOSES. Once a connection has been estab-
lished, the Main class initializes AchtungWorld. The Main class also has a timer
which sends an update message to AchtungWorld at regular intervals.

AchtungWorld

AchtungWorld holds the game logic and is responsible for everything on the screen.

When a game is about to begin, this class looks at the connected player list and

79

creates an AchtungPlayer for each of them. The AchtungPlayer is then attached
to the connected Players so that input messages are sent to them.

When the main class sends an update message, the AchtungWorld will send an
update message to each of the AchtungPlayer objects. Below is a pseudo-code of
the update function of AchtungWorld.

function update()
{

for each AchtungPlayer player in playerList {
player.update(); //move and update direction
checkForCollision(player);
draw(player);

}

if (numPlayersAlive() < 2) {
endState();

}
}

If a collision is found then that player is “killed” and all living players are awarded
with some points. The one who survive the longest will therefore end up with the
highest amount of points that round.

AchtungScoreboard

The AchtungScoreboard is an UI element and shows the score of each player as
well as the color of the player.

AchtungStateboard

The AchtungStateboard is an UI element which can display messages to all the
players.

AchtungPlayer

AchtungPlayer is the class which holds all the information about the player such
as position, heading, name and score. It receives input messages from MOOSES
since it is attached to a MoosesPlayer. Based on which keys the player is pressing
it adjusts its direction and moves very slightly forward in that direction.

80

14.2.2 States

This subsection will briefly go through each state in the game.

Limbo

The game starts in a limbo state. The purpose of this state is to allow the MOOSES
framework to send the list of connected players and to allow players who connect
after the game was launched to join in. This is a pause state, and nothing except
a message saying “waiting for more players” is shown. After a specified amount of
time the game moves to the RoundBeginning state.

RoundBeginning

The game field is now shown, and the players can now look for their character on
the screen. A message saying “the game is about to begin” is shown. The players’
start positions are arranged in an elliptical pattern and their initial direction is
towards the center. This was done in order to give players a fair and consistent
start. Figure 14.4 shows the initial pattern quite clearly.

Figure 14.4: Achtung: game state. The game has just begun and the players are
moving in the direction indicated by the arrow on the head of the curve.

81

Battle

After the RoundBeginning state ends, the players start to move and must avoid
hitting any of the other players. Some players may decide to survive by going away
from the other players, while others may try to move to others to trap them in so
that they cannot avoid crashing. The game is over when only one player remains.

RoundOver

After the game is over it will pause for a short time to allow the players to look at
the scores. This can be seen in Figure 14.5. The game can then either begin a new
round, or exit and let the players go back to the MOOSES game selection screen.

Figure 14.5: Achtung: round over state. The game is over and “Alpha”, the red
player, is the winner.

82

Part VI

Evaluation and conclusion

83

CHAPTER

15

EVALUATION

15.1 Playtests

The games were informally tested throughout the course of the semester to ensure
find bugs and attempt to balance the games. In addition to this, a group of
students from the “NTNU School of Entrepreneurship” were looking for ways to
commercialize the MOOSES framework. Two stands were erected at different times
to showcase the MOOSES technology, and the three games created in this project
were available for testing. The first stand were erected during Kreator’10, an event
focusing on innovation and entrepreneurship and the second during the Venture
Cup, a business plan competition, final in Mid-Norway. The people who tested
the games during these stands were observed and their feedback will be used in
addition to the more formal surveys.

At a later time, two playtests were conducted on different occasions, and the par-
ticipants filled out a questionnaire. The questionnaire can be found in Appendix E.
The entire questionnaire was filled out after the playtests were done. Unfortunately,
the playtests were limited in size and thus the results from the questionnaire are
not statistically accurate in any way. However, knowing this, and coupled with the
observation and oral feedback from the players it is still possible to use the results
get a pointer on how the players experienced the different games.

85

15.1.1 Results of the survey

In this subsection some of the general information gathered from the survey will
be presented and commented. The questions regarding a specific game will be
presented in that game’s section.

Details about the participants

These questions were created to get some information about the participants of the
survey.

1

4

1

5

Age distribution

20 to 22

22 to 25

25 to 30

30 or older

(a) Age distribution

6 2

2

Hours spent on electronic games per week

0-2

3-6

6-9

9 - many

(b) Hours spent gaming per week

1

5

4

1

How often do you use a mobile phone

Never

Rarely

Sometimes

Often

All the time

(c) Mobile phone usage

3

7

1

How often do you play on a mobile phone

Never

Rarely

Sometimes

Often

All the time

(d) Playing on the mobile phone

Figure 15.1: Results regarding the details about the participants.

Age Survey participants were asked about their age. The distribution can be
seen in Figure 15.1a. About half of the participants were the age of typical
students, the other half were somewhat older.

Time spent on video games per week To see how familiar the participants
were to gaming they were asked how often they played video games. As

86

seen in Figure 15.1b, most participants did not play a lot of video games.

Mobile phone usage To see how familiar they were with a mobile phone they
were asked to estimate their mobile phone usage. Figure 15.1c shows that
most of the participants use a mobile phone regularly. They might therefore
be familiar with the key layout and general phone usage, which will help
when trying to play games with it.

Playing on the mobile phone If the participants were using their mobile phone
as a gaming platform it may be easier for them to use MOOSES. However,
the participants rarely used their phone to game with, as seen in Figure 15.1d.

General questions about MOOSES concept

In order to find out what the participants thought of the general MOOSES concept
a few statements were included in the questionnaire, which they could indicate how
they agreed or disagreed with. In this section the statements will be presented along
with the results of the survey and comments.

It is easy to use the mobile phone as a gaming controller. While most par-
ticipants agreed that the mobile phone was suitable as a game controller, see
Figure 15.2a, some disagreed or did not form an opinion. In order to im-
prove on this, control schemes using the mobile phone should be well thought
out and created for the phone and not just adapted from a regular console
controller. s

It is an advantage to use your own mobile phone as a controller Everyone
agreed that if one were to use a phone as a controller, it is best if you can
use your own, see Figure 15.2b.

Many people playing at the same time gives an unique gaming experience
The participants agreed to the fact that many people are playing together is
a unique and positive, see Figure 15.2c.

Every player being in the same location increases the social value Most par-
ticipants agreed that being in the same room increases the social value and
experience when playing the games, see Figure 15.2d.

It is an advantage that everyone is using the same screen That everyone used
the same screen were not as agreed upon as the two previous statements, al-
though most were positive, see Figure 15.2e.

I am willing to pay in order to play like this, given it is possible to win a prize
This was a statement which the participants were somewhat ambivalent
about. As seen in Figure 15.3a, some agreed and some disagreed. Noth-
ing was said or indicated about the price, and one might speculate that this
might have affected the results.

87

2

2

7

It is easy to use the mobile phone as a

gaming controller

Strongly disagree

Disagree

No opinion

Agree

Strongly agree

(a) Phone is easy to use as a controller

9

2

It is an advantage to use your own mobile

phone as a controller

Strongly disagree

Disagree

No opinion

Agree

Strongly agree

(b) Own phone is advantageous

7

4

Many people playing at the same time gives

an unique gaming experience

Strongly disagree

Disagree

No opinion

Agree

Strongly agree

(c) Many players gives unique experience

1

7

3

Every player being in the same location

increases the social value

Strongly disagree

Disagree

No opinion

Agree

Strongly agree

(d) Same location enhances social value

3

6

2

It is advantageous that everyone uses the

same screen

Strongly disagree

Disagree

No opinion

Agree

Strongly agree

(e) Same screen is advantageous

3

6

2

The games fit all players, regardless of age

and gender

Strongly disagree

Disagree

No opinion

Agree

Strongly agree

(f) The games suit everyone

Figure 15.2: Questions and statements regarding the gaming experience of
MOOSES.

88

1

3

4

3

I would pay to play given I can win a prize

Strongly disagree

Disagree

No opinion

Agree

Strongly agree

(a) I would pay to play, given a prize

7

4

MOOSES games are better than commercials

at cinemas

Strongly disagree

Disagree

No opinion

Agree

Strongly agree

(b) MOOSES games are better than com-
mercials

Figure 15.3: Questions and statements regarding the commercial potential of
MOOSES.

MOOSES games with product placement is better than watching commercials at a cinema
All agreed that playing MOOSES games were better than watching commer-
cials before a movie at a cinema, see Figure 15.3b.

The games suit all players, independent of age and gender Most of the par-
ticipants agreed that the games they tested could suit everyone, see Fig-
ure 15.2f. However, as one participant pointed out, it may be hard for them
to say anything about how others will perceive the games, the only thing they
can do is guess.

15.2 TowerDefense

TowerDefense was the first game created in this project and is also the most complex
game regarding rules, user interface and possible ways to play it. It was supposed
to encourage teamwork while each player had control of a personal character. This
section will present some positive and negative aspects of the game and suggest
some improvements to counter the negative aspects.

Even though the game has some negative aspects, everyone who participated in
the survey agreed the game was fun, see Figure 15.4b. Making a game fun can be
difficult and it is hard to save a game project with a boring game concept.

The goal of the game was not immediately clear to everyone, as seen in Figure 15.4c.
This is a potential issue, as the game should be easy to pick up and learn in short
time. To improve on this it may be helpful to have an introductory screen explaining
the game mechanics as well as assigning a role to each player before the game begins.
As it is now, the game begins and then the player must find their character on the

89

2

2

7

It is easy to use the mobile phone as a

gaming controller

Strongly disagree

Disagree

No opinion

Agree

Strongly agree

(a) Player role

9

2

It is an advantage to use your own mobile

phone as a controller

Strongly disagree

Disagree

No opinion

Agree

Strongly agree

(b) The game is fun

7

4

Many people playing at the same time gives

an unique gaming experience

Strongly disagree

Disagree

No opinion

Agree

Strongly agree

(c) Understood the goal quickly

1

7

3

Every player being in the same location

increases the social value

Strongly disagree

Disagree

No opinion

Agree

Strongly agree

(d) Located my player on the screen easily

Figure 15.4: Results from statements regarding the general gaming experience with
TowerDefense.

90

screen and determine what role they have. As seen in Figure 15.4d, this was not
easy for everyone either. Letting the players know which role they assume before
the game begins should improve on this, as they then know where to look for their
character.

Another issue was that seeing how well the team did was not easy, see Figure 15.5a.
The players did not see how to win a game, or how far away they or the other team
was from winning. Instead of having only numbers indicating respawns and lives,
larger progress bars or some other form of visual indication could help.

It may seem as cooperation should been given more emphasis, see Figure 15.5b.
Since each player can contribute to the team’s success on their own, some of them
attempt to do so without coordinating with the others on the team. While the
players agreed that cooperation was important for the success of the team (Fig-
ure 15.5c), not everyone felt the team could work together (Figure 15.5d). This
might be especially true for the attackers, as that role does not really depend on
teamwork or cooperation like the defenders. Figure 15.5e shows that players felt
that what they did mattered for the success of the team (which of course is impor-
tant), which might indicate that while working together is not optimal, they made
it work by playing on their own in the best interest of the team.

Technically, the game functioned very well in high definition with no visible slow-
downs or stuttering. The connection to the MOOSES framework was solid during
the playtests and the two stands. There is of course room for improving the graph-
ics as the game does look like a prototype.

15.3 ProductBall

ProductBall was made to test collaborative control of a shared game character,
method of cooperation and multiplayer which is fairly uncommon. It is therefore
interesting to see if the game was fun to play and if the players thought the method
of implementing collaborative play worked.

As with TowerDefense, most people found the game to be fun (Figure 15.6a).
Players were observed verbally communicating phrases “move faster”, “hold up”
and “jump”, which indicates that game was engaging. Everyone understood the
goal easily (Figure 15.6b), which most likely was due to the volleyball concept being
familiar.

This game might have been slightly better at promoting cooperation than Tow-
erDefense (Figure 15.6c), probably due to the fact that there is no way around
working together. Players thought cooperation were roughly equally important in
both games (Figure 15.6d). One could image that cooperation were even more

91

3

2

4

1

It is easy to see my team's progress

Strongly disagree

Disagree

No opinion

Agree

Strongly agree

(a) Team progress visible

1

3

6

1

The game promoted cooperation in a good

way

Strongly disagree

Disagree

No opinion

Agree

Strongly agree

(b) Cooperation promoted

3

8

Cooperation was important for a good result

Strongly disagree

Disagree

No opinion

Agree

Strongly agree

(c) Cooperation important

1

2

6

2

I felt the team could work together in order

to achieve their objective

Strongly disagree

Disagree

No opinion

Agree

Strongly agree

(d) Opportunity to cooperate

1

8

2

I felt my actions contributed to the team's

success

Strongly disagree

Disagree

No opinion

Agree

Strongly agree

(e) Contributed to success

Figure 15.5: Results from statements regarding the cooperation gaming experience
with TowerDefense.

92

1

9

1

ProductBall is fun

Strongly disagree

Disagree

No opinion

Agree

Strongly agree

(a) ProductBall is fun

8

3

I easily understood the goal of the game

Strongly disagree

Disagree

No opinion

Agree

Strongly agree

(b) Understood the goal quickly

3

6

2

The game promoted cooperation in a good

way

Strongly disagree

Disagree

No opinion

Agree

Strongly agree

(c) Cooperation promoted

1

2

8

Cooperation was important for a good result

Strongly disagree

Disagree

No opinion

Agree

Strongly agree

(d) Cooperation important

10

1

I thought it worked to cooperate in this way

to control a game character

Strongly disagree

Disagree

No opinion

Agree

Strongly agree

(e) Collaborative control worked

10

1

I felt my vote contributed to the team's

success

Strongly disagree

Disagree

No opinion

Agree

Strongly agree

(f) My voter mattered

Figure 15.6: Results from statements regarding the gaming experience with Pro-
ductBall.

93

important in ProductBall, but perhaps the players recognized the fact that as long
as most of the team members did the right thing, their actions did not matter too
much. Figure 15.6f seems to indicate otherwise however, everyone thought their
actions were a contribution to the team. Overall, most of the players recognized
that cooperation was important and everyone thought it worked to collaborate on
controlling a shared character in this way, see Figure 15.6e.

Implementation of the voting system was also successful. Each player could control
an abstract voter and the team character polled each voter attached to them to
see what their votes were to take the appropriate action. This scheme worked very
well and can be recommended should anyone attempt to create more collaborative
games. Giving the characters the possibility to take non-discrete actions such as
“slightly left” provided a layer of depth which proved to be successful. The game
characters move at a variable speed depending on how many of the team’s players
are voting in one direction. If all players are voting in the same direction, the
character will move at maximum speed.

Given a slightly coordinated group of people on both teams, the game would be
very easy. Matches could as long as the teams bother to counter the other team.
To counter this, a system to increase the difficulty incrementally was implemented.
The idea was to make the ball go faster and faster, until one of the teams had to lose
either because it became too difficult or impossible to catch the ball. This system
was added at a late stage in development and was never functioning perfectly. The
version currently in the game makes the ball go only horizontally (by design) faster
which does give some weird movements, however if the ball was allowed to go faster
vertically as well the ball would go out of sight for longer periods which would be
boring. This system should be improved.

15.4 Achtung

Achtung is based on an old game for DOS called Achtung Die Kurve or Zatacka.
The intention with Achtung was to explore a free for all game where each player
only was looking out for themselves. Being a remake of an old game, many players
were familiar with it and were excited to try the game in a new setting. Since the
original already was a shared screen with many players type of game, there was no
need to adapt the game concept to MOOSES.

When demonstrating MOOSES on the two different stands, Achtung was the most
popular game by far. The familiarity and simple concept made the game a winner.
The players who participated in the playtests also found Achtung to be a fun game,
see Figure 15.7a. The goal was clear and easy to grasp (Figure 15.7b).

There were two issues with Achtung that should be looked at. The first is a user

94

9

2

Achtung is fun

Strongly disagree

Disagree

No opinion

Agree

Strongly agree

(a) Achtung is fun

8

3

I easily understood the goal of the game

Strongly disagree

Disagree

No opinion

Agree

Strongly agree

(b) Understood the goal quickly

2

2

6

1

I had no problems locating my player on the

screen

Strongly disagree

Disagree

No opinion

Agree

Strongly agree

(c) Located my player on the screen easily

1

7

3

I easily understood how to control the player

Strongly disagree

Disagree

No opinion

Agree

Strongly agree

(d) Understood the controls easily

Figure 15.7: Results from statements regarding the gaming experience with Achtung.

95

interface issue. Some people had trouble finding their character on the screen,
see Figure 15.7c. To find their character, players first had to find their name on
the scoreboard, see which color their name was written in, and then look for the
character with that color. While not terribly difficult, it can be easily fixed by
displaying their name beside the character during the “about to begin” phase. As
one of the survey participants pointed out, the current method does not consider
color blind persons. He had to find his character by looking for a character which
moved according to his actions.

The second issue is that it is too rewarding to play defensively. This is a gameplay
issue which does not have an easy fix. Some players suggested increasing the speed;
this will make the game harder, but still have the same issues. A better suggestion
was to add power ups, which would encourage players to risk playing offensively.
These power ups could be scattered around the play field and be picked up by
running over them. Adding power ups would add a new layer of depth and tactical
play which could be fun.

Achtung was the last game to be developed and really showed how easy it was to
implement a game for MOOSES with FMF created in this project. The game was
first implemented with keyboard input as the only way to control the characters,
and then MOOSES input was added after. More about integrating FMF in a game
in Section 15.5.

15.5 Flash for MOOSES Framework

All three games created used the Flash for MOOSES Framework also created in this
project. The intent with FMF was to make it easy to create games for MOOSES
using Flash. To do this FMF had to be able to give games a stable and consistent
interface. FMF had to be specific enough to make things simpler, but also generic
enough to not exclude any specific game types.

15.5.1 How to integrate a game with FMF

To illustrate how easy it is to make a Flash game work with MOOSES a step by
step recipe on how to do it will be presented.

Before listing what needs to be done it is important to note that FMF assumes
that the game must have some internal representation of a player implemented
in a class, and that this class also is or can be responsible for handling player
input. It could be an Attacker class like in TowerDefense, or a Voter object like in
ProductBall. FMF also assumes that all game code can be halted until a connection

96

to MOOSES has been established. To make this less abstract, the game to give
MOOSES capabilities is a hypothetical racing game. The steps presented are still
very high level, a more detailed and low-level set of instructions can be found in
Appendix B.

1. Make the internal player representation, the Car class, extend and implement
the MoosesUnit interface.

2. Initialize FMF in main method and make the game wait until a connection
has been made.

3. In the beginning of a round, iterate over the list of connected players, provided
by the MoosesData class. For each MoosesPlayer, create a Car object (the
internal representation of the player) and it to the MoosesPlayer object. By
doing this, input from the players can now be handled by the Car object.
To support late joining, listen for join messages from the MoosesData, and
create a Car object and attach it to the MoosesPlayer object.

4. After a game is over, the game should send score data to MOOSES so that
the built-in high score list shows something interesting. Unfortunately, at the
moment this is not working correctly, but it is included for completeness.

Using FMF it should be possible to make almost any already functioning game
playable through MOOSES in less than an hour.

15.5.2 Further work

The make the MOOSES support complete the testing of sending messages and data
from the games to the MOOSES framework should be properly tested. Especially
important is sending player scores back to MOOSES. The functions needed have
been added to FMF, they are however no functioning perfectly.

15.6 Flash technology

Using Flash and the ActionScript3 language has presented no significant challenges.
The development tools used were very similar to Eclipse and Visual Studio, and
the compile process is a simple click. Since Flash is more or less designed to be
contained in a web browser there were a few quirks to work around. To automati-
cally make the Flash game enter full screen, the game had to be run in the debug
player from Adobe. Also, due to some security and MOOSES issues two helper

97

applications had to be created, see Section 10.3. Once countered, these issues were
no longer a concern.

While the performance on Flash is slightly worse compared to technologies like
XNA the games created in this project have not had any performance issues, even
in full HD resolution. Also, games with better and more advanced graphics have
been created in Flash, so with the proper tools and optimization Flash should
perform more than well enough for most game types. An issue with Flash is that it
does not have any proper 3D rendering capabilities, and the hardware acceleration
is limited.

Flash can be an excellent platform to create MOOSES games on. The three games
created in this project support this.

98

CHAPTER

16

RESEARCH QUESTIONS

This chapter will answer the research questions presented in Chapter 3.

RQ 1: What must be done in order to create a game in Flash
for the MOOSES framework?

A) How should the MOOSES framework and the game communicate?

By studying previous game implementations in XNA it was found that they used
a TCP connection to communicate with the framework. Since TCP connections
are technology independent, this is an acceptable way of communicating with the
framework. Other methods, if they exist, would be far to time-consuming to explore
considering the suitability of the already existing TCP connection.

B) What modifications must be done with the MOOSES framework to
allow communication with a Flash game?

Since the Flash games can use the TCP connection developed for XNA games, there
is no need to make special modifications to the framework in order to communicate

99

with Flash. MOOSES cannot launch Flash files directly, but a workaround with
an intermediary executable has been created. This works sufficiently well and the
MOOSES framework does not need to be modified.

C)What is needed of both experience and software to develop a MOOSES
game in Flash?

The scripting language, ActionScript3, is very similar to common programming
languages today and should not take much time to get familiar with.

There are two approaches to creating Flash games. The first one is to use the
suite of programs developed by Adobe. This is probably the best option, and most
widely used among professional developers today, however it is expensive. The
second option is to use a free compiler from Adobe called Flex, along with an
optional development environment. The Flex compiler along with the IDE called
FlashDevelop was used in this project.

RQ 2: What challenges does MOOSES development in Flash
pose?

A) How does a Flash game perform in a high definition resolution?

The games have been tested in high definition resolution and were running at
satisfactory frame rates. If the frame rates lowered at all it was due to bad code
rather than the stress of rendering.

B) What constraints does an implementation in Flash have compared
to previous implementations of MOOSES games?

Previous games in Java, C++ and C# are able to use hardware rendering to take a
load of the CPU. Flash games cannot do this and is at the mercy of the developers
of the Flash platform, Adobe, to ensure good performance. Partly due to this,
Flash games cannot render 3D graphics.

Implementations of the Flash platform has been created for the major operating
systems, however the performance can be different on each operating system. Es-
pecially Linux-based systems suffer from a poorer implementation compared to the
Windows version.

100

RQ 3: How should the modules created in this project be
organized for rapid development of new Flash games for the
MOOSES framework?

A) What parts of the prototype game should be reusable components
for new games?

The direct communication with the MOOSES framework has been separated from
the games to a set of modules and helper applications named FMF, see Chapter 10.
These modules handle communication, as well as maintain a list of connected play-
ers. They also allows the Flash runtime to connect with MOOSES and help the
execution of the Flash games. These modules are generic and are intended to be
used in new Flash MOOSES games.

B) What directions and recommendations for new projects should be
formalized?

A step by step guide for using FMF can be found in Appendix B to aid in creating
new Flash projects with MOOSES.

RQ 4: How is the user experience when playing MOOSES
games?

A) Is shared control over a character fun and enjoyable?

Results from the testing of ProductBall seem to indicate that collaborative control
of a character not only works well, but also is fun. More about the experience with
ProductBall in Section 15.3.

B) How do players experience the different multiplayer modes?

The feedback from the survey suggests that all three games and their multiplayer
modes were fun. When observing the players playing the different games there were
a few differences. Players communicated verbally with each other while playing all
games, but the communication were different when playing ProductBall compared
to TowerDefense and Achtung. The communication was almost exclusively within
the team, trying to coordinate the control of the character. In TowerDefense and
Achtung, players would rather comment on the skill of the opponent or exclaim

101

words of frustration. There were few teamwork messages when playing TowerDe-
fense unfortunately. This might have been due to the apparent lack of need to
coordinate efforts to win. The three multiplayer modes were all fun, the difference
lies in who players are communication to and the nature of the communication.

C) Does cooperation work in a MOOSES game?

Nothing with MOOSES prevents cooperative games. The trick is to design a game
which is both and encourages teamwork. Both ProductBall and TowerDefense are
games where cooperative gameplay works well, but they are rather simple and could
benefit from polish to really shine. Cooperative gameplay, especially collaborative,
should be explored further in the future.

102

CHAPTER

17

CONCLUSION

This project had three connected parts: develop components to facilitate Flash
games for MOOSES, test these components by either creating new games or modi-
fying existing games, and finally evaluate the games created and the Flash platform.

A set of classes and helper applications called Flash for MOOSES Framework were
created. The purpose of these classes was to make it easy to produce MOOSES
games in Flash. These classes were designed so that they would be easy and
intuitive to integrate and still generic enough to not set any restrictions on the
type of games. FMF could potentially have covered more areas such as the game
loop, drawing and sound, but these areas are not difficult in Flash development,
even for beginners, and they are much harder to get just right in a framework.

FMF was tested by creating three games, each with a different multiplayer mode.
These games were tested through playtests and feedback was collected through a
survey. The games received a positive response and the overall opinion was that
they were all fun to play. The different multiplayer modes make people communi-
cate in different patterns and with different purposes. The verbal communication
when playing Achtung was either to comment other players or to exclaim frus-
tration. During ProductBall people would communicate within the team trying
to coordinate the control of the character, and while playing TowerDefense com-
munication resembles the one in Achtung although there was some attempt of
coordination.

103

The current implementation of FMF makes communication with MOOSES and
integrating a existing or new game very easy. Modifying a completed game to be
MOOSES compatible should take less than one hour unless there are unforeseen
issues.

The Flash platform work very well for MOOSES. It is easy to write games due to
the simplicity and familiarity of ActionScript3 and the zero-to-game factor is very
good. There are a lot of resources available to aid when creating games, as well as
message boards and forums. The only potential issue is the performance of Flash
and the lack of 3D rendering support.

104

CHAPTER

18

FURTHER WORK

The goal of each game was understood quickly, but it had to be told by the ones
hosting the stand or the playtests. It could be a good idea to have a quick walk-
through of the game goals and controls before the game starts. Hopefully this
would clear up confusion regarding some of the game mechanics.

The three games developed must implement a good way to deal with infinite
matches and defensive gameplay. In ProductBall’s case, the game could last as
long as the players wanted to, unless some method of increasing the difficulty over
time was implemented. The current implementation is slightly flawed in the sense
that the ball moves oddly after a while, but does its purpose. This method should
be improved upon.

Regarding Achtung, some players would play very defensively, and creating a safe
pattern on “their” side of the game screen. This is an effective, but for everyone else
boring, tactic. To counter this, one could spawn power ups with different effects
randomly on the playing field. These power ups may either be so beneficial to have
that everyone would want to get them, or they might make defensive gameplay
useless.

TowerDefense could use a bit of polishing in both graphics and gameplay depart-
ment if it were to be used further. The graphics need a clearer direction and better
artwork, but as a prototype they are sufficient. The gameplay could use incentives
to avoid the well-travelled path.

105

Collaborative games with shared control should be tested further. This form of
gameplay is very rare, and could become a unique aspect of MOOSES. Collabo-
rative control worked well in ProductBall, and the same scheme could be applied
to many different games. Another scheme could be individual control of a part of
greater entity. As an example, one could have a canoe race. There could be one
canoe per team, and each team could consist of two to four rowers controlled by
a player. Each player could then choose to row on either side of the canoe, but
unless their efforts are coordinated they might lose speed or just steer off course.

The Flash for MOOSES Framework should have a proper test of the talk back func-
tions. As of now the FMF can send messages to MOOSES, but the implementation
has not been tested on a larger scale.

Finally, it would be beneficial to create a generic and game independent phone
client. Although the phone client can be used as a private screen, there are very
few games where this is needed. Furthermore it forces the users to shift focus back
and forth between the phone and the screen which may cause the to lose track of
their player and causing unnecessary frustration.

106

Part VII

Appendices

107

APPENDIX

A
TERMS AND ABBREVIATIONS

2D 2-dimensional

3D 3-dimensional

AI Artificial Intelligence

CD Compact Disk

CPU Central Processing Unit

FMF Flash for MOOSES Framework

FPS First Person Shooter

GB Gigabyte

GHz Gigahertz

HD High definition

HDD Harddisk drive

HTML HyperText Markup Language

IDE Integrated Development Environment

IDI Department of Computer and Information Science at the Norwegian Univer-
sity of Science and Technology (NTNU)

109

IP Internet Protocol

J2ME Java 2 Platform, Micro Edition

LAN Local Area Network

MB Megabyte

Mbps Megabits per second

MHz Megahertz

MMOG Massively Multiplayer Online Game

MMOFPS Massively Multiplayer Online First-Person Shooters

MMORPG Massively Multiplayer Online Role-Playing Game

MMORTS Massively Multiplayer Online Real- Time Strategy Games

MP3 MPEG-1 Audio Layer 3

MOOSES Multiplayer On One Screen Entertainment System

NTNU Norwegian University of Science and Technology

PC Personal Computer

RAM Random-access memory

RPG Role-Playing Game

RTS Real-Time Strategy

RQ Research Question

TCP Transmission Control Protocol

TV Television

USB Universal Serial Bus

UML Unified Modeling Language

WAV Waveform audio format

WMA Windows Media Audio

XML Extensible Markup Language

110

APPENDIX

B
HOW TO INTEGRATE FMF

WITH YOUR GAME

This section will describe how to integrate the FMF with a game written in Ac-
tionScript3. It assumes you have the skills to create a simple game using the
development approach of you choice. Also, it is assumed that you have added the
code files to your project.

Add the following code statements to the top of your Main class (or any class
which persists through all stages of the game, in this how-to that class will be
called Main), before the class description.

import no.ekse.mooses.MoosesConnectionEvent;
import no.ekse.mooses.MoosesData;
import no.ekse.mooses.MoosesFrameworkClient;
import no.ekse.mooses.MoosesInfo;

This will give your class access to the necessary FMF classes. Add the following
statements to your class. It is important to add them to the class and not a function
due to scoping.

private var mooses:MoosesFrameworkClient;

111

private var moosesLog:MoosesInfo;
private var moosesData:MoosesData;

In your Main function, usually placed in your Main class, add the following state-
ments to initialise the FMF modules.

mooses = new MoosesFrameworkClient();
moosesLog = new MoosesInfo(mooses);
moosesData = new MoosesData(mooses);

mooses.addEventListener(MoosesConnectionEvent.MOOSES_CONNECTED,
MoosesHandleConnected);

mooses.addEventListener(MoosesConnectionEvent.MOOSES_DISCONNECTED,
MoosesHandleDisconnected);

Depending on the user interface you have created for you game, you might not want
to connect to the MOOSES game server right away. For games solely for MOOSES
however, the first thing you want to do is connect. This can be done by adding
mooses.connect(); after mooses has been constructed. mooses.connect(); attempts
to open a TCP connection to the default MOOSES game server, which is locally
on the port 1900. For external game servers, use mooses.connectTo(serverAddress,
serverPort);.

The two last statements in the code block above says that the function Moose-
sHandleConnected will be executed when mooses triggers the event MoosesCon-
nectionEvent.MOOSES_CONNECTED, and that the function MoosesHandleDis-
connected will be executed when mooses triggers the event MoosesConnection-
Event.MOOSES_DISCONNECTED.

The actual game mechanics should not start before MoosesHandleConnected is
executed. When executed, you know that your connection with MOOSES is fully
operational. This is all there is to do in the Main class.

It is a good idea to not start the game right away after receiving a connection, as
more players might want to join in. Therefore, the game should begin in pause
mode, and only start after a set time.

At this point it becomes harder to explicitly say what you should do. However,
each game unit which a player is to control must implement the interface called
MoosesUnit. In the beginning of each round, a you can attach an unit imple-
menting MoosesUnit to a MoosesPlayer by calling the AttachUnit(unit) function
to allow that player to control the unit. An unit can later be detached from a
player by using DetachUnit(). You can get the list of players connected by using
moosesData.GetPlayerList();, which returns an array of MoosesPlayer.

112

Now you get input from the MOOSES controller directly in you game unit. Fol-
lowing is a block of code which gives an example of how movement can occur.

import no.ekse.mooses.MoosesPlayer;
import no.ekse.mooses.MoosesUnit;
import no.ekse.mooses.MoosesFrameworkClient;

public class GameUnit extends Sprite implements MoosesUnit
{

...
public function KeyDown(keyId:int):void {

if (keyId == MoosesFrameworkClient.KEY_4) {
x -= 64;

} else if (keyId == MoosesFrameworkClient.KEY_6) {
x += 64;

} else if (keyId == MoosesFrameworkClient.KEY_2) {
y -= 64;

} else if (keyId == MoosesFrameworkClient.KEY_8) {
y += 64;

}
}
...

}

Every time a user clicks the 4 button on his or hers mobile phone, the GameUnit
is moved 64 pixels to the left.

The game should now connect to the MOOSES game server, as well as respond to
input from the players. From this point on, it is up to you.

113

114

APPENDIX

C
DATA ATTACHEMENT

Source Code/ Folder containing all the source code developed in this project.

Debug Executables/ Folder containing debug versions of the three games. These
can be opened in a web browser and watched. Will most likely do random
things, but are there for completeness.

115

116

APPENDIX

D
SOURCE CODE

Included in the sections below is the source code for the Flash For MOOSES Frame-
work. Source code for the games can be found in the attached data.

MoosesFrameworkClient.as
ï»¿package no.ekse.mooses
{

import flash.events.EventDispatcher;
import flash.net.Socket;
import flash.utils.ByteArray;
import flash.events.Event;
import flash.events.IOErrorEvent;
import flash.events.ProgressEvent;

/**
* The main module which maintains a connection between Flash and the MOOSES

framework.
* @author Magnus Ekse
*/

public class MoosesFrameworkClient extends EventDispatcher
{

public static const KEY_STATE_UP:int = 1;
public static const KEY_STATE_DOWN:int = 0;
public static const KEY_STATE_SPECIAL:int = 2;

public static const KEY_0:int = 0;
public static const KEY_1:int = 1;

117

public static const KEY_2:int = 2;
public static const KEY_3:int = 3;
public static const KEY_4:int = 4;
public static const KEY_5:int = 5;
public static const KEY_6:int = 6;
public static const KEY_7:int = 7;
public static const KEY_8:int = 8;
public static const KEY_9:int = 9;
public static const KEY_STAR:int = 10;
public static const KEY_HASH:int = 11;
public static const KEY_A:int = 12;
public static const KEY_B:int = 13;

private var sck:Socket = new Socket ();

private var remoteAddress:String;
private var remotePort:int;

private var hasReceivedStartupSignal:Boolean = false;

public function MoosesFrameworkClient () {

trace(" Mooses : Initializing framework client ");

remoteAddress = " localhost ";
remotePort = 1900;

trace(" Mooses : Framework client ready ");

}

public function initSocket(a:String , p:int):void {

trace(" Mooses : Connecting to socket : " + a + ":" + p);
dispatchEvent(new MoosesConnectionEvent(MoosesConnectionEvent.

MOOSES_ATTEMPTCONNECT , false , false));

sck = new Socket(a, p);

sck.addEventListener(Event.CONNECT , socketConnect);
sck.addEventListener(Event.CLOSE , socketClose);
sck.addEventListener(IOErrorEvent.IO_ERROR , socketIOError);
sck.addEventListener(ProgressEvent.SOCKET_DATA , socketReceive);

}

public function connectedToFramework ():Boolean {

trace(" Mooses : Checking if connected to framework ");

if (hasReceivedStartupSignal) {
trace(" Mooses : Has received startup signal ");

if (sck.connected) {
trace(" Mooses : Socket is connected , connection OK");

return true;
}

}

trace(" Mooses : Not connected to framework ");

return false;

}

118

public function connect ():void {

trace(" Mooses : Attempting to connect to " + remoteAddress + ":" +
remotePort);

hasReceivedStartupSignal = false;
initSocket(remoteAddress , remotePort);

}

public function connectTo(address:String , port:int):void {

trace(" Mooses : Attempting to connect to " + address + ":" + port);

hasReceivedStartupSignal = false;
initSocket(address , port);

}

private function socketConnect(e:Event):void {

trace(" Mooses : Socket connected ");

}

private function socketClose(e:Event):void {

trace(" Mooses : Socket closed ");
dispatchEvent(new MoosesConnectionEvent(MoosesConnectionEvent.

MOOSES_DISCONNECTED , false , false));
if (hasReceivedStartupSignal) {
}

}

/*
* Will buzz the controller of the specified player for a
* duration specified in miliseconds
*
* How the buzz is implemented is up to the controller , a mobile
* phone will vibrate.
*/

public function buzzPlayer(playerId:int , buzzDuration:int):void {

if (hasReceivedStartupSignal && sck.connected && playerId < 9000) {

sck.writeInt (1020);
sck.writeInt(playerId);
sck.writeInt(buzzDuration);

sck.flush();
}

}

/*
* Update the amount of points the player has
*
*/

public function updatePlayerScore(playerId:int , score:int):void {

if (hasReceivedStartupSignal && sck.connected && playerId < 9000) {

trace(" Mooses : Send : Type : " + 1030);

119

sck.writeInt (1030);

trace(" Mooses : Send : Player : " + playerId);
sck.writeInt(playerId);

trace(" Mooses : Send : Score : " + score);
sck.writeInt(playerId);

}
}

/*
* Sends a message to the player. How this message is interpreted is up to

the client script.
* This function is therefore as general as possible to allow maximum

usability. Shorter and
* more concrete functions to update the client should be made on a per -game

basis.
*
* Only two types of data is supported; integer and string.
*/

public function sendMessageToPlayer(playerId:int , messageType:int ,
messageData:Array):void {

if (hasReceivedStartupSignal && sck.connected && playerId < 9000) {

trace(" Mooses : Send : Type : " + messageType);
sck.writeInt(messageType);

trace(" Mooses : Send : Player : " + playerId);
sck.writeInt(playerId);

// sending the number of content units , not necessarily the size
trace(" Mooses : Send : NumPax : " + messageData.length);
sck.writeByte(messageData.length);

for (var i:int = 0; i < messageData.length; i++) {

if (messageData[i] is String) {
//this part is guesswork
trace(" Mooses : Send : Pax " + i + ": String : " + (messageData[i] as

String));
sck.writeByte (5); // 5 -> next data is string
sck.writeUTF(messageData[i] as String);
sck.writeByte (0);

} else if (messageData[i] is int) {
trace(" Mooses : Send : Pax " + i + ": Int : " + (messageData[i] as int)

);
sck.writeByte (2); // 2 -> next data is int
sck.writeInt(messageData[i] as int);

}

}

sck.flush();

trace(" Mooses : Send : Done ");

}

}

private function flushRemainingBytes ():void {

var b:ByteArray = new ByteArray ();
sck.readBytes(b, 0, sck.bytesAvailable);

120

trace(b);

}

private function socketReceive(e:ProgressEvent):void {

trace(" Mooses : Socket received data , bytes in buffer = " + sck.
bytesAvailable);

var bytesActuallyRead:int = 0;

if (sck.bytesAvailable < 8) {
trace(" Mooses : Too little data in the incoming buffer , skipping this and

waiting for more ");

return;
}

if (! hasReceivedStartupSignal) {

// Expected data in the buffer is two int values.
trace(" Mooses : Startup signal recieved , " + sck.readInt () + " . " + sck.

readInt ());

// Should be good to go now.
hasReceivedStartupSignal = true;
dispatchEvent(new MoosesConnectionEvent(MoosesConnectionEvent.

MOOSES_CONNECTED , false , false));

}
if (hasReceivedStartupSignal) {

while (sck.bytesAvailable >= 12) {

trace(" bytes available " + sck.bytesAvailable);

if (sck.bytesAvailable < 4) { flushRemainingBytes (); return; }
var packetId:int = sck.readInt ();
trace(" packetId " + packetId);

if (sck.bytesAvailable < 4) { flushRemainingBytes (); return; }
var playerId:int = sck.readInt ();
trace(" playerId " + playerId);
//Get the size of the packet (without the header).

if (sck.bytesAvailable < 4) { flushRemainingBytes (); return; }
var packetSize:int = sck.readInt ();
trace(" packetSize " + packetSize);

bytesActuallyRead = sck.bytesAvailable;

trace(" Mooses : Packet received : " + packetId + ", " + playerId + ", "
+ packetSize);

if (packetId == 1000) {
// Server started

} else if (packetId == 1010) {
// Player joins
var playerName:String = sck.readUTF ();

trace(" Mooses : Player joined , id = " + playerId + ", name = " +
playerName);

trace(sck.readByte ());

dispatchEvent(new MoosesPlayerEvent(MoosesPlayerEvent.
MOOSES_PLAYER_JOIN , playerId , playerName , false , false));

121

} else if (packetId == 1011) {
// Player quits.

trace(" Mooses : Player quits , id = " + playerId);

dispatchEvent(new MoosesPlayerEvent(MoosesPlayerEvent.
MOOSES_PLAYER_QUIT , playerId , "", false , false));

} else if (packetId == 40) {
// Special button. TBD.
trace(" Mooses : Special button pressed , 40");

dispatchEvent(new MoosesKeyEvent(MoosesKeyEvent.MOOSES_KEY_EVENT ,
playerId , 10, 2, false , false));

} else if (packetId == 80) {
// Special button. TBD.
trace(" Mooses : Special button pressed , 80");

dispatchEvent(new MoosesKeyEvent(MoosesKeyEvent.MOOSES_KEY_EVENT ,
playerId , 11, 2, false , false));

} else if (packetId == 0) {
// Movement key pressed

if (sck.bytesAvailable >= 5) {

if (sck.bytesAvailable < 4) { flushRemainingBytes (); return; }

var keyId:int = sck.readInt ();

if (sck.bytesAvailable < 1) { flushRemainingBytes (); return; }

var keyState:Boolean = sck.readBoolean ();

trace(" Mooses : Movement key packet , key = " + keyId + ", status =
" + keyState);

/* a b | 12 13
* 1 2 3 | 01 02 03
* 4 5 6 | 04 05 06
* 7 8 9 | 07 08 09
* * 0 # | 10 00 11
*/

//The key ids sent by MOOSES are not particulary logical and I
suspect them to be

// dependent on the client. This section _might_ have to be edited
to conform to

// different clients for different games.
if (keyId == 100)
{

keyId = KEY_4;
} else if (keyId == 102)
{

keyId = KEY_2;
} else if (keyId == 101)
{

keyId = KEY_6;
} else if (keyId == 103)
{

keyId = KEY_8;
}

dispatchEvent(new MoosesKeyEvent(MoosesKeyEvent.MOOSES_KEY_EVENT ,
playerId , keyId , keyState == 0 ? 1 : 0, false , false));

} else {

122

trace(" Mooses Warning : Hmm , erroneous number of bytes left in
buffer : " + sck.bytesAvailable);

trace(" Mooses Warning : Peeking at mystery byte : " + sck.readByte ()
);

flushRemainingBytes ();
}

} else {

flushRemainingBytes ();
}

bytesActuallyRead = bytesActuallyRead - sck.bytesAvailable;
trace(" Bytes processed this run :" + (bytesActuallyRead));

}

}

trace(" Mooses : Bytes in buffer after handling : " + sck.bytesAvailable);

flushRemainingBytes ();

}

private function socketIOError(e:IOErrorEvent):void {

trace(" Mooses : Socket IO error ");
dispatchEvent(new MoosesConnectionEvent(MoosesConnectionEvent.

MOOSES_ERRORCONNECT , false , false));
}

}

}

MoosesData.as
ï»¿package no.ekse.mooses
{

import flash.events.EventDispatcher;
import no.ekse.mooses.MoosesFrameworkClient;

/**
* This module maintains a list of players currently connected to the MOOSES

framework.
* When a key event is found , this module sends the key event to the proper

MoosesUnit.
*
* @author Magnus Ekse
*/

public class MoosesData extends EventDispatcher
{

private var client:MoosesFrameworkClient;

private var players:Array = new Array();

public function MoosesData(client:MoosesFrameworkClient)
{

this.client = client;

client.addEventListener(MoosesPlayerEvent.MOOSES_PLAYER_JOIN , playerJoin);
client.addEventListener(MoosesPlayerEvent.MOOSES_PLAYER_QUIT , playerQuit);

client.addEventListener(MoosesKeyEvent.MOOSES_KEY_EVENT , keyEvent);

123

}

public function getPlayerList ():Array {

return players;

}

public function buzzUnit(unitToBuzz:MoosesUnit , duration:int):void {

for (var i:int; i < players.length; i++) {
if (players[i]. getAttachedUnit () == unitToBuzz) {

client.buzzPlayer(players[i]. getPlayerId (), duration);
}

}

}

public function addPlayer(id:int , name:String):void {

players.push(new MoosesPlayer(this , id, name));

}

public function updatePlayerScore(playerId:int , score:int):void {

client.updatePlayerScore(playerId , score);
}
public function sendMessageToPlayer(playerId:int , messageType:int ,

messageData:Array):void {

client.sendMessageToPlayer(playerId , messageType , messageData);

}

public function broadcastMessage(messageType:int , messageData:Array):void {

for (var i:int; i < players.length; i++) {
client.sendMessageToPlayer((players[i] as MoosesPlayer).getPlayerId (),

messageType , messageData);
}

}

public function removePlayer(id:int):void {

var playerId:int = id;
var playerToRemoveIndex:int;

for (var i:int; i < players.length; i++) {
if (players[i]. getPlayerId () == playerId) {

playerToRemoveIndex = i;
}

}

players.splice(playerToRemoveIndex , 1);

}

public function playerJoin(e:MoosesPlayerEvent):void {

addPlayer(e.playerId , e.playerName);

}
public function playerQuit(e:MoosesPlayerEvent):void {

removePlayer(e.playerId);

124

}

public function keyEvent(e:MoosesKeyEvent):void {

for each (var player:MoosesPlayer in players) {

if (player.getPlayerId () == e.playerId) {

if (e.keyState == MoosesFrameworkClient.KEY_STATE_DOWN) {
//State = 0, pressed.
player.keyDown(e.keyCode);

} else if (e.keyState == MoosesFrameworkClient.KEY_STATE_UP) {
//State = 1, released.
player.keyUp(e.keyCode);

} else if (e.keyState == MoosesFrameworkClient.KEY_STATE_SPECIAL) {
//State = 2, pressed and will not be released.
player.keyDown(e.keyCode);

}

}
}

}

}

}

MoosesInfo.as

ï»¿package no.ekse.mooses
{

import flash.display.DisplayObject;
import flash.display.MovieClip;
import flash.display.Sprite;
import flash.text.TextField;
import flash.text.TextFormat;
import flash.utils.getTimer;

public class MoosesInfo extends Sprite
{

private var textLog:TextField = new TextField ();
private var client:MoosesFrameworkClient;

public function MoosesInfo(client:MoosesFrameworkClient) {
this.client = client;
textLog.autoSize = " left ";

log(" Flash for MOOSES \n");

client.addEventListener(MoosesConnectionEvent.MOOSES_ATTEMPTCONNECT ,
moosesAttemptConnect);

client.addEventListener(MoosesConnectionEvent.MOOSES_ERRORCONNECT ,
moosesConnectionError);

client.addEventListener(MoosesConnectionEvent.MOOSES_CONNECTED ,
moosesConnected);

client.addEventListener(MoosesConnectionEvent.MOOSES_DISCONNECTED ,
moosesDisconnected);

client.addEventListener(MoosesPlayerEvent.MOOSES_PLAYER_JOIN ,
moosesPlayerJoin);

125

client.addEventListener(MoosesPlayerEvent.MOOSES_PLAYER_QUIT ,
moosesPlayerQuit);

client.addEventListener(MoosesKeyEvent.MOOSES_KEY_EVENT , moosesKey);

addChild(textLog);
}

public function log(s:String):void {
textLog.appendText("\n" + s);
trace(" MoosesLog : " + s);

}
public function moosesKey(e:MoosesKeyEvent):void {

log(" Key event : key [" + e.keyCode + "] state [" + e.keyState + "] player
id [" + e.playerId + "]");

}
public function moosesPlayerJoin(e:MoosesPlayerEvent):void {

log(" Player connected : " + e.playerName + ":" + e.playerId);
}
public function moosesPlayerQuit(e:MoosesPlayerEvent):void {

log(" Player disconnected : " + e.playerName + ":" + e.playerId);
}
public function moosesAttemptConnect(e:MoosesConnectionEvent):void {

log(" Attempting to connect to framework ");
}
public function moosesConnected(e:MoosesConnectionEvent):void {

log(" Connected to framework ");
}
public function moosesDisconnected(e:MoosesConnectionEvent):void {

log(" Disconnected from framework ");
}
public function moosesConnectionError(e:MoosesConnectionEvent):void {

log(" Connection error ");
}

}
}

MoosesConnectionEvent.as
ï»¿package no.ekse.mooses
{

import flash.events.Event;

/**
* The event which is propagated when the connection between Flash and MOOSES

changes.
*
* @author Magnus Ekse
*/

public class MoosesConnectionEvent extends Event
{

public static const MOOSES_CONNECTED:String = " MoosesConnected ";
public static const MOOSES_DISCONNECTED:String = " MoosesDisconnected ";
public static const MOOSES_ATTEMPTCONNECT:String = " MoosesAttemptConnect ";
public static const MOOSES_ERRORCONNECT:String = " MoosesErrorConnect ";

public function MoosesConnectionEvent(type:String , bubbles:Boolean=false ,
cancelable:Boolean=false)

{
super(type , bubbles , cancelable);

}

public override function clone():Event
{

126

return new MoosesConnectionEvent(type , bubbles , cancelable);
}

public override function toString ():String
{

return formatToString(" MoosesConnectionEvent ", " type ", " bubbles ", "
cancelable ", " eventPhase ");

}

}

}

MoosesKeyEvent.as

ï»¿package no.ekse.mooses
{

import flash.events.Event;

/**
* ...
* @author Magnus Ekse
*/

public class MoosesKeyEvent extends Event
{

public static const MOOSES_KEY_EVENT:String = " MoosesKeyEvent ";

public var keyCode:int = -1;
public var keyState:int = -1;
public var playerId:int = -1;

public function MoosesKeyEvent(type:String , playerId:int , keyCode:int ,
keyState:int , bubbles:Boolean=false , cancelable:Boolean=false)

{
super(type , bubbles , cancelable);

this.playerId = playerId;
this.keyCode = keyCode;
this.keyState = keyState;

}

public override function clone():Event
{

return new MoosesKeyEvent(type , playerId , keyCode , keyState , bubbles ,
cancelable);

}

public override function toString ():String
{

return formatToString(" MoosesKeyEvent ", " type ", " playerId ", " keyCode ", "
keyState ", " bubbles ", " cancelable ", " eventPhase ");

}

}

}

MoosesPlayer.as

ï»¿package no.ekse.mooses
{

127

public class MoosesPlayer
{

//an array holding the current state of all keys
private var keyState:Array = new Array (16);

private var playerId:int = new int();
private var playerName:String = new String(" Unnamed ");

private var attachedUnit:MoosesUnit = null;

private var moosesData:MoosesData;

public function MoosesPlayer(moosesData:MoosesData , playerId:int , playerName
:String)

{
this.playerId = playerId;
this.playerName = playerName;
this.moosesData = moosesData;

for (var i:int; i < 16; i++) {
keyState[i] = false;

}

}

public function attachUnit(unit:MoosesUnit):void {
attachedUnit = unit;
attachedUnit.setMoosesPlayer(this);

}
public function detachUnit ():void {

if (attachedUnit != null)
{

attachedUnit.setMoosesPlayer(null);
attachedUnit = null;

}
}
public function getAttachedUnit ():MoosesUnit {

return attachedUnit;
}

/* a b | 12 13
* 1 2 3 | 01 02 03
* 4 5 6 | 04 05 06
* 7 8 9 | 07 08 09
* * 0 # | 10 00 11
*/

public function keyDown(keyId:int):void
{

keyState[keyId] = true;

if (attachedUnit != null) attachedUnit.keyDown(keyId);
}

public function keyUp(keyId:int):void
{

keyState[keyId] = false;

if (attachedUnit != null) attachedUnit.keyUp(keyId);
}

public function getKeyState(keyId:int):Boolean {
return keyState[keyId];

}

public function getPlayerId ():int {
return playerId;

128

}
public function getPlayerName ():String {

return playerName;
}

public function sendScore(score:int):void {

moosesData.updatePlayerScore(playerId , score);

}

public function update ():void
{

trace(" player update ");
}

}

}

MoosesPlayerEvent.as

ï»¿package no.ekse.mooses
{

import flash.events.Event;

/**
* The event which is propagated if a player joins or quits the MOOSES server.
*
* @author Magnus Ekse
*/

public class MoosesPlayerEvent extends Event
{

public static const MOOSES_PLAYER_JOIN:String = " MoosesPlayerJoin ";
public static const MOOSES_PLAYER_QUIT:String = " MoosesPlayerQuit ";

public var playerId:int = -1;
public var playerName:String = "";

public function MoosesPlayerEvent(type:String , playerId:int , playerName:
String , bubbles:Boolean=false , cancelable:Boolean=false)

{
super(type , bubbles , cancelable);

this.playerId = playerId;
this.playerName = playerName;

}

public override function clone():Event
{

return new MoosesPlayerEvent(type , playerId , playerName , bubbles ,
cancelable);

}

public override function toString ():String
{

return formatToString(" MoosesPlayerEvent ", " playerId ", " playerName ", " type
", " bubbles ", " cancelable ", " eventPhase ");

}

}

}

129

MoosesUnit.as
ï»¿package no.ekse.mooses
{

/**
* ...
* @author Magnus Ekse
*/

public interface MoosesUnit
{

function keyDown(keyId:int):void;
function keyUp(keyId:int):void;
function getMoosesPlayer ():MoosesPlayer;
function setMoosesPlayer(player:MoosesPlayer):void;

}

}

130

APPENDIX

E

QUESTIONNAIRE

Below are the questions from the questionnaire used to gather information during
the playtests.

About you

Gender
Female Male

Age
16 or younger 17–19 20–22 22–25 25–30 30 or older

Hours spent on video games per week
0–2 3–6 6–9 More than 9

How often do you use a mobile phone?
Never Rarely Regularly Often Very often

How often do you use a mobile phone for playing games?
Never Rarely Regularly Often Very often

131

Your gaming experience

How many played with you?
2–3 4–5 6–8 9–11 12 or more

It is easy to use the mobile phone as a gaming controller.
Strongly disagree Disagree No opinion Agree Strongly agree

It is an advantage to use your own mobile phone as a controller.
Strongly disagree Disagree No opinion Agree Strongly agree

Many people playing at the same time gives a unique gaming experience.
Strongly disagree Disagree No opinion Agree Strongly agree

Every player being in the same location increases the social value.
Strongly disagree Disagree No opinion Agree Strongly agree

It is an advantage that everyone is using the same screen.
Strongly disagree Disagree No opinion Agree Strongly agree

The games suit all players, independent of age and gender.
Strongly disagree Disagree No opinion Agree Strongly agree

Technology potential

I am willing to pay in order to play like this, given it is possible to win a prize.
Strongly disagree Disagree No opinion Agree Strongly agree

It is better to play this sort of games with product placement than watching commercials before a movie at a cinema.
Strongly disagree Disagree No opinion Agree Strongly agree

ProductBall

The game is fun.
Strongly disagree Disagree No opinion Agree Strongly agree

I easily understood the objective in the game.
Strongly disagree Disagree No opinion Agree Strongly agree

I felt my vote contributed to the success of the team.
Strongly disagree Disagree No opinion Agree Strongly agree

132

Working together by voting to control a playable character worked well.
Strongly disagree Disagree No opinion Agree Strongly agree

I felt teamwork was important for a good result.
Strongly disagree Disagree No opinion Agree Strongly agree

I felt the game promoted teamwork well.
Strongly disagree Disagree No opinion Agree Strongly agree

Achtung

The game is fun.
Strongly disagree Disagree No opinion Agree Strongly agree

I easily understood the objective in the game.
Strongly disagree Disagree No opinion Agree Strongly agree

I had no problems finding my player on the screen.
Strongly disagree Disagree No opinion Agree Strongly agree

I easily understood how to control the player.
Strongly disagree Disagree No opinion Agree Strongly agree

TowerDefense

My role in the game.
Attacker Defender

The game is fun.
Strongly disagree Disagree No opinion Agree Strongly agree

I easily understood the objective in the game.
Strongly disagree Disagree No opinion Agree Strongly agree

I had no problems finding my player on the screen.
Strongly disagree Disagree No opinion Agree Strongly agree

It is easy to see my team’s progress in the game.
Strongly disagree Disagree No opinion Agree Strongly agree

I felt the team could work together in order to achieve its objective.
Strongly disagree Disagree No opinion Agree Strongly agree

133

I felt the game promoted teamwork well.
Strongly disagree Disagree No opinion Agree Strongly agree

I felt teamwork was important was important for a good result.
Strongly disagree Disagree No opinion Agree Strongly agree

I felt I could contribute to the success of the team.
Strongly disagree Disagree No opinion Agree Strongly agree

134

BIBLIOGRAPHY

[Ado] Adobe, Adobe flash player pc penetration - accessed october 20th 2009,
http://www.adobe.com/products/player_census/flashplayer/PC.
html.

[Arm] ArmorGames, Gemcraft - accessed december 10th 2009, http://
armorgames.com/play/1716/gemcraft.

[Des] Amanita Design, Machinarium - accessed december 10th 2009, http:
//machinarium.net.

[Føl09] Esben André Føllesdal, Implementation and evaluation of selfish - a
social game for mooses, Master’s thesis, Norwegian University of Science
and Technology, June 2009.

[HDRS93] Victor R. Basili H. Dieter Rombach and Richard W. Selby, Experimental
software engineering issues - critical assesment and future directions,
1993, pp. 3–12.

[Heg08] Vebjørn Heggdal, Microsoft xna game development for multiplayer on
one screen entertainment system, Master’s thesis, Norwegian University
of Science and Technology, June 2008.

[Kva07] Audun Kvasbø, Mooses game concept, Master’s thesis, Norwegian Uni-
versity of Science and Technology, June 2007.

135

[Mor07] Sverre Morka, A flexible client for multiplayer on one screen entertain-
ment system (mooses), Master’s thesis, Norwegian University of Science
and Technology, June 2007.

[Nin] NinjaWiki, Bloons - accessed december 10th 2009, http://www.
ninjakiwi.com/Games/Bloons-Games/Play/Bloons.html.

[Pro] ProjectorGames, Projectorgames website - accessed november 20th 2009,
http://www.projectorgames.net.

[RJCW] Omar Rodriguez, Erik J. Johnson, Scott Crabtree, and Brad Werth,
Carry small, game large: Big shared screen multiplayer gaming
- accessed november 20th 2009, http://www.gamasutra.com/view/
feature/3649/carry_small_game_large_big_.php.

[SV07] Aleksander Baumann Spro and Morten Versvik, Multiplayer on one
screen entertainment system, Master’s thesis, Norwegian University of
Science and Technology, July 2007.

[Wika] Wikipedia.org, Adobe flash - accessed september 7th 2009, http://en.
wikipedia.org/wiki/Adobe_flash.

[Wikb] , Adobe flex - accessed september 8th 2009, http://en.
wikipedia.org/wiki/Adobe_Flex.

[Wikc] , Video games - accessed november 26th 2009, http://en.
wikipedia.org/wiki/Video_games.

136

	Title Page
	Problem Description
	masteroppgave.pdf

