
Magnus Jahre

Managing Shared Resources in Chip
Multiprocessor Memory Systems

Doctoral thesis
for the degree of philosophiae doctor

Trondheim, October 2010

Norwegian University of Science and Technology
Faculty of Information Technology, Mathematics and
Electrical Engineering
Department of Computer and Information Science

NTNU
Norwegian University of Science and Technology

Doctoral thesis
for the degree of philosophiae doctor

Faculty of Information Technology,
Mathematics and Electrical Engineering
Department of Computer and Information Science

c©Magnus Jahre

ISBN 978-82-471-2287-7 (printed version)
ISBN 978-82-471-2289-1 (electronic version)
ISSN 1503-8181

Doctoral theses at NTNU, 2010:159

Printed by NTNU-trykk

Typeset with LATEX2ε in Computer Modern 10pt

Abstract
Chip Multiprocessors (CMPs) have become the architecture of choice for high-
performance general-purpose processors. CMPs often share memory system units
between processes. This may result in independent processes competing for mem-
ory bandwidth. Such competition can cause destructive interference which re-
duces performance predictability, decreases operating system scheduler efficiency
and complicates billing for cloud computing providers.

In this thesis, we reduce the effects of these problems by managing miss band-
width. We use dynamic interference feedback to choose the number of Miss Infor-
mation/Status Holding Registers (MSHRs) available in last-level private cache of
each processor. Furthermore, we provide two different allocation approaches that
use this mechanism to improve system performance. The first approach uses simple
measurements to decide miss bandwidth allocations and performance feedback to
determine if the allocations are beneficial. The second approach selects its allo-
cations based on a miss bandwidth performance model. This model leverages a
novel interference measurement scheme called the Dynamic Interference Estima-
tion Framework (DIEF). DIEF provides accurate estimates of the average memory
latency a process would experience with exclusive access to all hardware-managed
shared resources.

We also investigate the effects of managing memory bandwidth to increase memory
bus utilization. Here, we choose prefetches to efficiently utilize the complex DRAM
structure of banks, rows and columns. This policy makes prefetches cheaper than
demand accesses and increases the performance of processes with predictable access
patterns. In addition, efficient prefetch scheduling reduces the degree to which
prefetches interfere with the demand accesses of other processes.

Preface

This doctoral thesis was submitted to the Norwegian University of Science and
Technology (NTNU) in partial fulfillment of the requirements for the degree phi-
losophiae doctor (PhD). The work herein was performed at the Department of
Computer and Information Science, NTNU, under the supervision of Professor
Lasse Natvig.

Acknowledgements

I would like to thank my supervisor Prof. Lasse Natvig for his support, advise
and positive attitude through the long process that eventually became this the-
sis. I also extend my gratitude to my co-supervisors Prof. Mads Nyg̊ard and Dr.
Torstein Heggebø for providing valuable feedback and encouragement in my eval-
uation meetings.

Dr. Marius Grannæs and I cooperated on most of the papers in this thesis. I am very
grateful for his honest, direct and thought-provoking opinions which significantly
increased the quality of the research. I am also grateful to Dr. Haakon Dybdahl
for showing me that it is possible to compete at the highest international level.
Furthermore, I would like to thank all my co-workers at the Section for Complex
Systems for providing a great working environment. I also thank Prof. Otto Anshus
at the University of Tromsø for letting me visit his group in the final stages of the
work on this thesis.

Finally, I would like to thank my family for their support and patience and Anne
for giving me a life outside research.

Magnus Jahre
June 23, 2010

vi

Contents

List of Figures xiii

List of Tables xvii

Abbreviations xix

1 Introduction 1
1.1 Chip Multiprocessors (CMPs) . 1
1.2 CMP Shared Memory System Resources 3
1.3 Research Questions . 4
1.4 Thesis Outline . 5

2 Background 7
2.1 Quantifying CMP Performance . 7

2.1.1 Measuring Performance . 7
2.1.2 Aggregating Performance . 8
2.1.3 Quantifying the Performance Impact of Interference 9
2.1.4 System Performance Metrics 10

2.2 CMP Shared Resources . 11
2.2.1 Shared Cache . 13
2.2.2 Memory Bus and DRAM . 17
2.2.3 On-Chip Interconnect . 20

2.3 Full-System Resource Management 21
2.3.1 Coordinated Resource Allocations 22
2.3.2 Rate-Based Resource Management 22

2.4 Hardware Prefetching . 23
2.4.1 Hardware Prefetch Heuristics 24
2.4.2 Memory Controller Prefetch Scheduling 26
2.4.3 Prefetching in CMPs . 26

3 Methodology 27
3.1 Simulators . 27
3.2 Benchmarks . 29

3.2.1 Choosing Benchmarks . 29

viii Contents

3.2.2 Representative Benchmark Simulation 29
3.3 Simulating Multiprogrammed Workloads 30
3.4 Design Space Exploration . 31

4 Research Process 33
4.1 Preliminary Work . 33
4.2 Category A: Adaptive Miss Handling Architectures 35
4.3 Category B: Memory System Interference 36
4.4 Category C: CMP Prefetch Scheduling 37
4.5 Category D: Prefetching Systems . 39
4.6 Category E: Learning and ICT . 40

5 Research Results 41
5.1 Paper A.II . 41

5.1.1 Abstract . 41
5.1.2 Roles of the Authors . 42
5.1.3 Retrospective View . 42

5.2 Paper A.III . 42
5.2.1 Abstract . 42
5.2.2 Roles of the Authors . 43
5.2.3 Retrospective View . 43

5.3 Paper A.IV . 43
5.3.1 Abstract . 44
5.3.2 Roles of the Authors . 44

5.4 Paper B.I . 45
5.4.1 Abstract . 45
5.4.2 Roles of the Authors . 45
5.4.3 Retrospective View . 46

5.5 Paper B.II . 46
5.5.1 Abstract . 46
5.5.2 Roles of the Authors . 46

5.6 Paper C.I . 47
5.6.1 Abstract . 47
5.6.2 Roles of the Authors . 47
5.6.3 Retrospective View . 48

5.7 Paper C.II . 48
5.7.1 Abstract . 48
5.7.2 Roles of the Authors . 49

5.8 Other Publications . 49

6 Concluding Remarks 51
6.1 Conclusion . 51
6.2 Contributions . 52

6.2.1 Research Question 1 . 52
6.2.2 Research Question 2 . 52
6.2.3 Research Question 3 . 53

Contents ix

6.3 Further Work . 54
6.4 Outlook . 55
Bibliography . 57

A A High Performance Adaptive Miss Handling Architecture for
Chip Multiprocessors (Paper A.II) 71
A.1 Introduction . 75
A.2 Related Work . 77

A.2.1 Miss Handling Architecture Background 77
A.2.2 Related Work on Bus Scheduling, Shared Caches and Feedback 78

A.3 Multiprogrammed Workload Selection and Performance Metrics . . . 79
A.4 The Adaptive Miss Handling Architecture (AMHA) 82

A.4.1 Motivation . 82
A.4.2 AMHA Implementation . 83

A.5 Experimental Setup . 88
A.6 Results . 89

A.6.1 Conventional MHA Performance in CMPs 89
A.6.2 The Performance Impact of the Number of Targets per MSHR 91
A.6.3 Adaptive MHA Performance 92
A.6.4 Choosing AMHA Implementation Constants 94

A.7 Discussion . 95
A.8 Conclusion . 95
Bibliography . 96

B A Light-Weight Fairness Mechanism for Chip Multiprocessor Mem-
ory Systems (Paper A.III) 99
B.1 Introduction . 103
B.2 Background . 104

B.2.1 Shared Cache QoS and Fairness Techniques 105
B.2.2 Memory Bus Scheduling . 105
B.2.3 Miss Handling Architectures 106
B.2.4 CMP Performance Evaluation Metrics 107

B.3 The Dynamic Miss Handling Architecture 108
B.4 The Fair Adaptive Miss Handling Architecture (FAMHA) 109

B.4.1 Measuring Interference with Interference Points 109
B.4.2 A Simple Fairness Policy . 112

B.5 Evaluation Methodology . 112
B.6 Results . 115

B.6.1 Fairness Impact of Shared Hardware-Managed Units 115
B.6.2 Static Asymmetric MHA Fairness 117
B.6.3 Fair Adaptive MHA (FAMHA) Results 119

B.7 Discussion . 121
B.8 Conclusion and Further Work . 121
B.9 Acknowledgements . 122
Bibliography . 122

x Contents

C Managing Chip Multiprocessor Memory Systems with Miss Band-
width Allocations (Paper A.IV) 125
C.1 Introduction . 129
C.2 Background . 130

C.2.1 Interference and Performance Metrics 130
C.2.2 Modern Memory Bus Interfaces 131
C.2.3 Miss Handling Architectures (MHAs) 132

C.3 A Miss Bandwidth Allocation Model 132
C.4 Estimating the Effects of Bandwidth Allocation Changes 134

C.4.1 Shared Memory Latency Estimation 136
C.4.2 Estimating Memory Level Parallelism Change 141
C.4.3 Estimating Memory Stall Time 141

C.5 MHABC - A Practical Miss Bandwidth Allocation System 141
C.5.1 The DMHA Allocation Mechanism 142
C.5.2 The Feedback Mechanisms 143
C.5.3 Allocation Policies . 147

C.6 Methodology . 148
C.7 Results . 149

C.7.1 MHABC Performance . 149
C.7.2 Performance Estimation Accuracy 153

C.8 Discussion . 153
C.9 Related Work . 153
C.10 Conclusion . 154
Bibliography . 155

D A Quantitative Study of Memory System Interference in Chip
Multiprocessor Architectures (Paper B.I) 159
D.1 Introduction . 163
D.2 Related Work . 165
D.3 Methodology . 166

D.3.1 Chip Multiprocessor Architectures 166
D.3.2 Measuring and Reporting Interference 166
D.3.3 Processor Model Scaling . 168
D.3.4 Simulation Methodology . 170

D.4 Results . 171
D.5 Conclusion and Further Work . 176
Bibliography . 177

E DIEF: An Accurate Interference Feedback Mechanism for Chip
Multiprocessor Memory Systems (Paper B.II) 181
E.1 Introduction . 184
E.2 Background . 185

E.2.1 Interference Definition and Metrics 185
E.2.2 Modern Memory Bus Interfaces 186

E.3 Shared Memory System Latency Taxonomy 186
E.4 The Dynamic Interference Estimation Framework 188

Contents xi

E.4.1 Estimating Private Memory Bus Latency 189
E.4.2 Estimating Cache Capacity Interference 193
E.4.3 Estimating Interconnect Interference 193

E.5 Methodology . 194
E.6 Results . 194

E.6.1 Estimation Accuracy . 195
E.6.2 DIEF Parameters . 197

E.7 Related Work . 197
E.8 Conclusion . 200
Bibliography . 200

F Low-Cost Open-Page Prefetch Scheduling in Chip Multiprocessors
(Paper C.I) 203
F.1 Introduction . 207
F.2 Previous Work . 208

F.2.1 Prefetching . 208
F.2.2 Memory Controllers . 209

F.3 Prefetch Scheduling . 209
F.4 Low cost open page prefetching . 210
F.5 Methodology . 212
F.6 Results . 213

F.6.1 Scheduled Region Prefetching 213
F.6.2 Importance of Coverage . 213
F.6.3 Insertion policy . 214
F.6.4 Treshold parameter . 214
F.6.5 Quality of Service . 215

F.7 Discussion . 216
F.8 Conclusion . 217
Bibliography . 218

G Exploring the Prefetcher/Memory Controller Design Space: An
Opportunistic Prefetch Scheduling Strategy (Paper C.II) 221
G.1 Introduction . 225
G.2 Related Work . 226

G.2.1 Prefetching . 226
G.2.2 Memory Controllers . 226

G.3 Prefetch Scheduling Strategies . 227
G.3.1 Opportunistic Prefetch Scheduling 228

G.4 Methodology . 229
G.5 Results . 230

G.5.1 Performance . 230
G.5.2 Maximum Performance Regression 232
G.5.3 Accuracy and Coverage . 232
G.5.4 Increasing DRAM Bandwidth 234

G.6 Discussion . 235
G.7 Conclusion . 236

xii Contents

Bibliography . 236

List of Figures

1.1 The Processor Memory Performance Gap [50] 2
1.2 Performance and Off-chip Bandwidth [62] 3

2.1 Resource Allocation Baselines (Private mode) 10
2.2 Chip Multiprocessor Memory System Example 12
2.3 4-way Set-Associative Shared Cache Example 14
2.4 Generic MSHR File . 15
2.5 The 3D Structure of DRAM . 17
2.6 Simplified DRAM Access Reordering Example [120] 18
2.7 3x3 Mesh Network on Chip . 20
2.8 Reference Prediction Table Entry Format 24
2.9 Delta Table Construction Example 25
2.10 Memory Access Example . 25

3.1 SimPoint-Based Multiprogrammed Workload Simulation Methodology 31

4.1 Paper Overview . 34

A.1 Miss Handling Architecture (MHA) [29] 75
A.2 A Generic MSHR File . 76
A.3 Average MHA Throughput (Aggregate IPC) 82
A.4 General Architecture with Adaptive MHA 84
A.5 Adaptive MHA Engine . 85
A.6 The New MHA Implementation . 87
A.7 MHA Performance with RW12 . 90
A.8 Target Performance with 16 MSHRs 92
A.9 AMHA Average Performance . 93
A.10 AMHA Performance with High-Impact Workloads from ACPW . . . 93
A.11 AMHA Settings . 94

B.1 Dynamic Miss Handling Architecture 109
B.2 Fair Adaptive MHA (FAMHA) Block Diagram 110
B.3 Interference Point Storage . 110

xiv List of Figures

B.4 Performance Impact of a Fair Memory Bus, Fair Crossbar and Fair
Cache . 116

B.5 Offline Best Static MHA Performance (Workload Subset) 118
B.6 FAMHA Results . 119
B.7 FAMHA-2 Fairness with the Multiprogrammed Baseline (Workload

Subset) . 119
B.8 Workload 23 FAMHA-2 Behaviour 120

C.1 Memory Level Parallelism Example 133
C.2 Miss Bandwidth Allocation Flow . 135
C.3 Shared Mode Latency Variation . 136
C.4 Effective Memory Bus Utilization . 137
C.5 Miss Handling Architecture Bandwidth Control (MHABC) System

Architecture . 142
C.6 Dynamic Miss Handling Architecture (DMHA) 143
C.7 Shared Cache Miss Estimation Error 145
C.8 MHABC 4-core Performance . 149
C.9 MHABC 8-core Performance . 150
C.10 MHABC 16-core performance . 150
C.11 MHABC Performance Compared to Offline-Best-Static 151
C.12 MHA Configuration Search Algorithms 152

D.1 Performance Impact of Interference in the 4-core, Crossbar-Based
CMP with 4 Memory Channels . 164

D.2 Crossbar-based CMP . 164
D.3 Ring-based CMP . 165
D.4 Interference Measurement Workflow 168
D.5 4-core Fairness Metric Values . 173
D.6 Interference Impact Breakdown . 173
D.7 4-core CMP Interference Impact (cores-interconnect-channels) . . . 175
D.8 16-core Ring Interference Impact . 175

E.1 Dynamic Interference Estimation Framework (DIEF) Architecture . 188
E.2 Private Memory Bus Emulation . 189
E.3 Memory Bus Queue and Transfer Latency Estimation Example . . . 191
E.4 Relative Estimation Errors and Number of Estimates 195
E.5 Interference Estimation Error Breakdown 195
E.6 ATD Estimation Error . 196
E.7 4-core Bus Queue Error . 197
E.8 8-core CMP Sample Size Accuracy Impact 198
E.9 4-core Page Locality Factor . 199
E.10 4-core Bus Buffer Size . 199

F.1 The 3D structure of modern DRAM. 207
F.2 Prefetch scheduling policies . 210
F.3 IPC improvement as a function of accuracy 211

List of Figures xv

F.4 Speedup in IPC relative to no prefetching using a FR-FCFS memory
controller. 214

F.5 Average speedup in IPC relative to no prefetching. 215
F.6 Effects of insertion policy on average IPC speedup. 215
F.7 IPC improvement as a function of treshold 216
F.8 Maximum IPC degradation for any thread as a function of workloads.216

G.1 3D structure of DRAM. 225
G.2 Average speedup for all cores over all workloads for different schedul-

ing strategies and prefetchers. 231
G.3 Lowest speedup for any core in any workload for different scheduling

strategies and prefetchers. 232
G.4 Average accuracy for all workloads. 233
G.5 Average coverage for all workloads. 233
G.6 Effect of increasing the amount of bandwidth available on sequential

prefetching. 234
G.7 Effect of increasing the amount of bandwidth available on RPT

prefetching. 235

xvi

List of Tables

2.1 Aggregate Performance Alternatives 9
2.2 Multiprogrammed Workload Performance Metrics 11

4.1 Paper Categories . 33
4.2 Paper Category A . 35
4.3 Paper Category B . 37
4.4 Paper Category C . 38
4.5 Paper Category D . 39
4.6 Paper Category E . 40

A.1 Randomly Generated Multiprogrammed Workloads (RW) 80
A.2 Amplified Congestion Probability Workloads (ACPW) 81
A.3 System Performance Metrics . 82
A.4 Processor Core Parameters . 89
A.5 Memory System Parameters . 89

B.1 CMP Performance Metrics . 107
B.2 Interference Point Formulae . 111
B.3 Processor Core Parameters . 112
B.4 Memory System Parameters . 113
B.5 List of Acronyms . 113
B.6 Randomly Generated Multiprogrammed Workloads 114

C.1 Multiprogrammed Workload Performance Metrics 131
C.2 Variable Summary . 134
C.3 L′p Computation Latency . 141
C.4 Feedback Measurement Storage Requirements 144
C.5 CMP Model Parameters (4- /8- /16-core) 148
C.6 Private Mode Estimate Relative Error 153

D.1 Shared Memory System Latency Breakdown 167
D.2 Architecture Parameter Scaling . 169
D.3 Cache Parameters (4-core/8-core/16-core) 169
D.4 Processor Core Parameters . 170

xviii List of Tables

D.5 Interconnect and DRAM Interface 170
D.6 Randomly Generated 4-core Multiprogrammed Workloads 171
D.7 Randomly Generated 8-core Multiprogrammed Workloads 172
D.8 Randomly Generated 16-core Multiprogrammed Workloads 174

E.1 Memory System Latency Taxonomy 187
E.2 Status Bits . 190
E.3 L̂mt Estimates . 190
E.4 CMP Models . 194

F.1 Processor Core Parameters . 212
F.2 Memory System Parameters . 212
F.3 Multiprogrammed Workloads . 217

G.1 Example Page Vector Table showing a strided prefetch pattern for
page address 100. 228

G.2 Processor Core Parameters . 230
G.3 Memory System Parameters . 230
G.4 Multiprogrammed Workloads . 231

Abbreviations

ACK Acknowledgement

AI Aggregate IPC

AMHA Adaptive Miss Handling Architecture

ANTT Average Normalized Turnaround Time

AoC Age of Computers

ATD Auxiliary Tag Directory

AWS Aggregate Weighted Speedup

CMP Chip Multiprocessor

CPI Cycles Per Instruction

CPU Central Processing Unit

C/DC CZone/Delta Correlation

DC Delta Correlation

DCPT Delta Correlating Prediction Tables

DIEF Dynamic Interference Estimation Framework

DMHA Dynamic Miss Handling Architecture

DPC Data Prefetching Championship

DRAM Dynamic Random Access Memory

DSE Design Space Exploration

FAMHA Fair Adaptive Miss Handling Architecture

FCFS First Come First Served

FR-FCFS First Ready - First Come First Served

GHB Global History Buffer

xx Abbreviations

GSF Globally Synchronized Frames

HMoS Harmonic Mean of Speedups

ILP Instruction Level Parallelism

IP Interference Point

IPC Instructions Per Cycle

ITRS International Technology Roadmap for Semiconductors

JILP Journal of Instruction Level Parallelism

LLC Last-Level Cache

LRU Least Recently Used

MHA Miss Handling Architecture

MHABC Miss Handling Architecture Bandwidth Control

MLP Memory Level Parallelism

MPB Multiprogrammed Baseline

MSHR Miss Information/Status Holding Register

MTP Multiple Time-Sharing Partitions

NACK Negative Acknowledgement

NFQ Network Fair Queuing

NoC Network on Chip

NOTUR Norwegian Metacenter for Computational Science

NUCA Non-Uniform Cache Access

OS Operating System

PC Program Counter

PC/DC Program Counter/Delta Correlation

PVC Preemptive Virtual Clock

PVT Page Vector Table

RPT Reference Prediction Table

SMARTS Sampling Microarchitecture Simulation

SPB Single Program Baseline

SRP Scheduled Region Prefetching

STC Stall Time Criticality

Abbreviations xxi

STP System Throughput

TLP Thread Level Parallelism

QoS Quality of Service

VM Virtual Machine

VPM Virtual Private Machine

VTMS Virtual Time Memory System

WAM Weighted Arithmetic Mean

WHM Weighted Harmonic Mean

xxii

Chapter 1

Introduction

1.1 Chip Multiprocessors (CMPs)

In recent years, general-purpose processor manufacturers have started to provide
chips with multiple processor cores [16, 39, 55, 74, 80, 123]. This type of processor is
commonly referred to as a multi-core architecture or a Chip Multiprocessor (CMP)
[113]. CMPs have become a necessity due to four technological and economic
trends.

Firstly, high-performance single-core processors consume a great deal of power,
and high power consumption necessitates expensive packaging and powerful cool-
ing solutions. This trend effectively limits the maximum power consumption of a
processor and is known as the power wall. In a CMP, multiple cores can cooperate
to achieve high performance at a lower clock frequency and with less aggressive
Instruction Level Parallelism (ILP) techniques. Designing for a lower clock fre-
quency makes it possible to use a lower supply voltage [112]. Since dynamic power
is proportional to the square of the supply voltage, the power reduction can be
significant.

Secondly, it has become increasingly difficult to improve performance with tech-
niques that exploit ILP beyond what is common today. Although there is consider-
able ILP available in the instruction stream [150], extracting it has proven difficult
with current process technologies [1]. Thirdly, a processor core is designed once and
reused as many times as there are cores on the chip in a CMP. These cores can
also be simpler than their single-core counterparts. Consequently, CMPs facilitate
design reuse and reduce processor core complexity.

Finally, processor performance has been improving at a faster rate than the main
memory access time for more than 20 years [50]. Consequently, the gap between
processor performance and main memory latency is large and growing. This trend
is referred to as the memory gap or memory wall. CMPs with multi-threading

2 Chapter 1. Introduction

1

10

100

1000

10000

100000

19
78

19
80

19
82

19
84

19
86

19
88

19
90

19
92

19
94

19
96

19
98

20
00

20
02

20
04

20
06

20
08

20
10

Re
la
tiv

e
Pe
rf
or
m
an

ce

Year

Main Memory Latency Processor Performance

Figure 1.1: The Processor Memory Performance Gap [50]

reduce the impact of this problem by exploiting Thread Level Parallelism (TLP)
and shifting the focus from single-thread performance to throughput. To achieve
the benefits of TLP for a single application, the program must be parallelized.
Consequently, programmer effort is required to achieve the performance potential of
CMPs for these programs. Furthermore, CMPs often run at a lower clock frequency
than their single-core counterparts which can create a one-time reduction of the
memory gap.

Figure 1.1 plots the relative improvements in processor performance and main
memory latency from 1978 until today. Although CMPs can reduce the impact
of the memory wall with a reduced clock frequency, the performance difference
is high. As a result, CMPs invest significant resources to hide memory latencies
with techniques such as pipelining [13], out-of-order execution [4] and multi-level
caches [77, 131, 151]. These latency hiding techniques tend to increase the band-
width demand [14]. Furthermore, the CMP memory system must provide enough
bandwidth to support the needs of an increasing number of concurrent threads.
Therefore, CMP memory systems are built to support a significant number of con-
current memory requests [70].

Given these trends, it is likely that future CMPs will need a high-bandwidth mem-
ory system. Currently, the limiting factor is the amount of off-chip bandwidth
[58]. The amount of off-chip bandwidth available is a combination of the number
of I/O pins on the chip and their clock frequency. Figure 1.2 shows the expected
improvement in processor performance and off-chip bandwidth as projected by the
International Technology Roadmap for Semiconductors (ITRS) [62]. To show the
trends clearly, both bandwidth and performance are assumed to be 1 in 2007. ITRS
expects an average annual improvement of 10% for the number of I/O pins and 25%

1.2. CMP Shared Memory System Resources 3

0

5

10

15

20

25

2007 2008 2009 2010 2011 2012 2013 2014 2015

Re
la
tiv

e
Pe
rf
or
m
an

ce
/B
an

dw
id
th

ITRS Year of Production

Processor Performance Off‐Chip Bandwidth

Figure 1.2: Performance and Off-chip Bandwidth [62]

for the off-chip clock frequency. The performance trend combines the expected 5%
annual clock frequency improvement with the 40% annual increase in the number
of processing cores. Figure 1.2 shows a widening gap between performance and
off-chip bandwidth. This gap is not as dramatic as the gap between performance
and main memory latency. However, it indicates the need for architectural tech-
niques that improve bandwidth utilization and that such techniques will become
increasingly important in the future.

1.2 CMP Shared Memory System Resources

CMPs often share on-chip resources to achieve good resource utilization [17] and
fast inter-processor communication [112]. Shared resources are often better uti-
lized than private because they allow resource intensive processes to use all of the
available resources. Commonly, CMPs share the on-chip interconnect, Last-Level
Cache (LLC) and off-chip memory bus. However, the presence of shared resources
creates the possibility for destructive interference which can reduce overall system
performance. Furthermore, destructive interference creates at least four additional
problems [102]:

• Performance predictability is reduced because the performance of a process
depends on the characteristics of the processes it is co-scheduled with. This
makes it difficult to analyze software performance.

• System software (Operating System (OS) or virtual machine) assumes that
the amount of work carried out by a process in one time slice is the same

4 Chapter 1. Introduction

regardless of which processes are co-scheduled. When destructive interference
invalidates this assumption, the efficiency of the OS scheduler is reduced [36].

• Cloud computing systems are emerging as an important arena for CMPs [5].
Here, thousands of distinct users pay for resources and run their applications
on a shared computing infrastructure. In this setting, destructive interference
causes the undesirable effect that the amount of computation the user gets
from a certain investment depends on the activities of other users.

• Finally, malicious programs can deny service to other processes by exploiting
the unfairness inherent in shared resource allocation policies [101].

Resource management techniques can provide good utilization of shared resources
without the negative effects of destructive interference [106]. These techniques con-
trol the division of bandwidth and capacity between running processes. Commonly,
this is achieved by making each shared unit thread-aware. In this thesis, we look
at the resource allocation problem from a different angle. We improve resource
sharing with global bandwidth allocations and leave the allocation policies in each
shared unit unchanged.

1.3 Research Questions

There are two important trends facing future CMP architectures. Firstly, the lack
of control over resource allocation raises the possibility of destructive interference.
The latency impact of interference gets worse as more cores are added to the chip
[69]. Secondly, off-chip bandwidth is a limited resource that CMPs should strive
to utilize efficiently. The aim of this thesis is to provide techniques that reduce
the performance impact of destructive interference and improve the utilization of
off-chip bandwidth.

Consequently, the main research question of this thesis is:

How, and at what cost, can performance be improved by managing
resource sharing in CMP memory systems?

We approach this question with the following three subquestions:

RQ1 How, and at what cost, can CMP performance be improved by managing
miss bandwidth?

RQ2 How, and at what cost, can off-chip bandwidth management be used to in-
crease CMP performance?

RQ3 How, and at what cost, can the performance and latency effects of resource
sharing be estimated?

1.4. Thesis Outline 5

1.4 Thesis Outline

The remainder of this thesis is organized in the following way. First, Chapter 2
presents the theory and techniques related to the contributions in this work before
Chapter 3 discusses the methodology used to provide the research results. Then,
Chapter 4 presents the research process. In this chapter, research projects that
were not included in the final thesis are also discussed. Chapter 5 summarizes the
research results and reviews the papers given the benefits of hindsight. Finally,
Chapter 6 summarizes the contributions, discusses how the contributions are re-
lated to the research questions and provides some indications of further work. In
addition, a short discussion of how the challenges confronted in this thesis may
change in the future is included.

6

Chapter 2

Background

This chapter provides the background necessary to understand the papers included
in this thesis. To achieve this, I introduce the main research results that our contri-
butions build on. In addition, I discuss other approaches to the problems targeted
by this thesis. Section 2.1 provides the necessary background on performance mea-
surements. This information is needed to understand the discussion of CMP shared
resources (Section 2.2) and full-system resource management techniques (Section
2.3). In this thesis, we also use prefetching to better utilize off-chip bandwidth.
Therefore, Section 2.4 introduces the hardware prefetching heuristics used in this
work as well as discussing memory controller prefetch scheduling and prefetching
in CMPs.

2.1 Quantifying CMP Performance

2.1.1 Measuring Performance

Hennessy and Patterson [50] argue that the only consistent and reliable measure
of computer performance is execution time. They define Wall Clock Time as the
latency to complete a program including operating system tasks, disk accesses and
other input/output activities. Furthermore, the wall clock time of a process may
depend on the activities of other processes in a multiprogrammed system. This
may not be appropriate in all contexts. Therefore, they define CPU Time to only
include the time the processor uses to execute the instructions of the process.

CPU Time =
Seconds

Program
=

Instructions

Program
· Clock Cycles

Instructions
· Seconds

Clock Cycles
(2.1)

8 Chapter 2. Background

Equation 2.1 breaks down CPU Time into three components. In simulator-based
computer architecture studies, it is common to run the same sequence of instruc-
tions from a program on different architectural configurations. Furthermore, it is
common to keep the number of seconds per clock cycle (i.e. the clock cycle time)
constant. Under these assumptions, the architectural changes will only affect the
number of Cycles Per Instruction (CPI). Therefore, Equation 2.1 can be simplified
for such studies:

CPU Time ∝ Clock Cycles

Instructions
(2.2)

Computer architecture research often focuses on improving performance. Since
performance is the inverse of execution time, it is common to report the inverse
of CPI. This quantity is commonly referred to as Instructions Per Cycle (IPC).
CPI and IPC measurements can be misleading if the program commits instructions
without making forward progress (e.g. in busy-wait loops) [2].

High performance has a slightly different meaning for a user and a system adminis-
trator. The user is interested in a low turnaround time (i.e. the time from starting
a task until its completion) and a low response time (i.e. the time from starting a
task until it produces its first output). For the system administrator, it is more
important to maximize the total amount of work than to minimize the latency
of any individual task. The amount of work carried out per unit time is called
throughput. Unfortunately, it may not be possible to simultaneously provide both
high throughput and low turnaround time. Consequently, architectural techniques
often need to achieve a good trade-off between these notions of performance.

Speedup =
Ptechnique

Pbaseline
(2.3)

When comparing architectural techniques, the performance of the new technique
relative to some baseline is often more interesting than its absolute performance.
This quantity is called speedup and illustrated by Equation 2.3. Here, Ptechnique is
the performance with a particular architectural enhancement and Pbaseline is often
the performance without it. For instance, Ptechnique may be performance with a
particular prefetcher and Pbaseline performance without prefetching.

2.1.2 Aggregating Performance

General-purpose processors aim to achieve good performance for a variety of pro-
grams. Consequently, it is common to evaluate the performance of architectural
techniques for a number of different programs. These programs are called bench-
marks, and a collection of benchmarks is referred to as a benchmark suite. This
approach has created the need for aggregating performance across a benchmark

2.1. Quantifying CMP Performance 9

Table 2.1: Aggregate Performance Alternatives

Name Formula

Weighted Arithmetic Mean WAM = 1
n

n∑
i=1

ωi · Pi

Weighted Harmonic Mean
WHM = n

n∑
i=1

ωi
Pi

Geometric Mean G = n

√
n∏

i=1

Pi

suite. The most common alternatives for performance aggregation are shown in
Table 2.1.

Correctly aggregating performance with a single number has proven to be difficult
[50, 72, 73, 132]. John [72] proved mathematically that the Weighted Arithmetic
Mean (WAM) and Weighted Harmonic Mean (WHM) can be used interchangeably
as long as the appropriate weights are chosen. For metrics that are ratios (e.g. A

B),
the unweighted arithmetic mean is valid if B is equally weighted. Conversely, the
unweighted harmonic mean is valid if A is equally weighted. With IPC, this implies
the arithmetic mean is valid if the number of clock cycles are kept constant.

Smith [132] advises that the geometric mean should be avoided when aggregating
performance measurements. In general, the geometric mean is most convenient
when component quantities are multiplied while the harmonic and arithmetic means
are convenient when they are added [73]. However, the geometric mean has the
useful property that the baseline cancels out from the ratio of two geometric means
of speedups relative to a common baseline [50]. In this thesis, the geometric mean
is not used.

2.1.3 Quantifying the Performance Impact of Interference

To establish the performance effects of destructive interference it is helpful to
compare to a configuration where interference cannot occur. Figure 2.1 shows
two possible ways to create such baselines. The first, called a Multiprogrammed
Baseline (MPB), is created by statically dividing each shared resource equally be-
tween threads [18, 56, 70]. With MPB, the baseline results can be collected for
all benchmarks in a workload with a single simulator run. Conversely, the pro-
cess is run alone with exclusive access to all shared resources in a Single Program
Baseline (SPB) [70, 93, 103, 153]. In this case, one simulator run is necessary
for each benchmark to collect the baseline results. The baseline configuration (i.e.
either SPB or MPB) is referred to as the private mode. Conversely, the processes
compete for resources in the shared mode.

The performance effects of CMP resource sharing are commonly described with two

10 Chapter 2. Background

Processor A

Processor B

Shared Cache

Processor A

Processor B

Shared Cache

Processor A

Processor B

Shared Cache

Multiprogrammed Baseline (MPB)

Single Program Baseline (SPB)

Interconnect Memory Bus

Interconnect Memory Bus

Interconnect Memory Bus

A

B

Figure 2.1: Resource Allocation Baselines (Private mode)

concepts. Firstly, the performance reduction due to memory system interference
should affect all processes equally [79]. This concept is referred to as fairness.
Secondly, a resource allocation implementation can strive towards putting a limit
on the maximum performance reduction of a process. This is known as Quality
of Service (QoS) [18]. It is not always possible to simultaneously achieve good
fairness/QoS and throughput [56]. Consequently, a resource allocation technique
should strive to provide a balance between these notions of performance [34].

2.1.4 System Performance Metrics

Shared Mode Speedup =
P

P
(2.4)

Equation 2.4 shows the speedup of the shared mode performance P relative to the
private mode performance P. The shared mode speedup is the central component of
many system performance metrics. In general, shared mode quantities are denoted
with regular letters (e.g. P) and private mode quantities with calligraphic letters
(e.g. P). With SPB, the shared mode speedup is a number between 0 and 1.

Table 2.2 shows four common CMP system performance metrics. Eyerman and
Eeckhout [34] showed that Harmonic Mean of Speedups (HMoS) [93] is the in-
verse of Average Normalized Turnaround Time (ANTT) while Aggregate Weighted
Speedup (AWS) [133] represents system throughput. In other words, HMoS is a

2.2. CMP Shared Resources 11

Table 2.2: Multiprogrammed Workload Performance Metrics

Metric Formula System-Level Meaning

AWS or STP
∑n

p=0 Pp/Pp System Throughput [133]

HMoS
n∑n

p=0 Pp/Pp

Inverse of Average Normalized
Turnaround Time (ANTT)

[93]

Fairness min(Pi/Pi)
max(Pj/Pj) i, j ∈ {0, n} Assumed by system software [38]

AI
∑n

p=0 Pp None [34] -

user oriented metric and AWS is a system oriented metric. The AWS metric is also
referred to as the System Throughput (STP) metric while HMoS can be called fair
speedup.

System software assumes that the forward progress of a process is the same regard-
less of which processes it is co-scheduled with. If we assume equal priorities, this
assumption is true if the performance reduction due to sharing effects is distributed
equally among threads. This is measured by the fairness metric [38]. With SPB,
the fairness metric is a number between 0 and 1 where 0 means that at least one
process is not making forward progress while 1 means that the slowdown is perfectly
distributed.

Aggregate IPC (AI) measures raw IPC throughput and is maximized by prioritizing
the processes that can achieve high IPC numbers. These are likely the processes
that are least impacted by memory system interference. For this reason, AI should
not be used to measure throughput since all architectural techniques should ensure
the forward progress of all processes [93, 133].

2.2 CMP Shared Resources

Figure 2.2 shows a possible CMP memory system where each core has a small
private Level 1 (L1) cache. Since accessing the L1 cache is often on the critical
path of the processor, the hit latency is limited to a few processor cycles. This
limits the size of the L1 cache, and a L2 cache is added to increase the amount
of data stored close to the processor core. Then, the private memory systems are
connected to a large shared L3 cache with an on-chip interconnect. Finally, one or
more memory controllers manage the high-speed interface to main memory. This
example architecture is similar to the recent i7 processor from Intel [16].

In Figure 2.2, the processor cores share the on-chip interconnect, the shared cache
and the off-chip memory bus, and inter-process interference can occur in all of
these units [69]. Inter-process interference is due to interleaving of requests from
different processes which may increase queuing latencies and reduce shared cache
and memory bus locality. This results in higher memory latencies, but the perfor-

12 Chapter 2. Background

Shared Level 3 Cache

Private
Level 2 Cache

Interconnect

Private
Level 2 Cache

Processor CoreProcessor Core

Private
Level 1 Cache

Private
Level 1 Cache

Memory
Controller

Memory
Controller

Main Memory

P
riv

at
e

O
n-

C
hi

p
M

em
or

y
S

ys
te

m
S

ha
re

d
O

n-
C

hi
p

M
em

or
y

Sy
st

em
P

rivate O
n-C

hip
M

em
ory S

ystem
S

hared O
n-C

hip
M

em
ory System

Figure 2.2: Chip Multiprocessor Memory System Example

2.2. CMP Shared Resources 13

mance impact of interference depends on the ability of the process to utilize the
latency hiding mechanisms of the processor core and memory system. Resource
management implementations aim to reduce this performance impact. Formally,
interference is defined as [70, 102]:

I = L− L (2.5)

In this equation, interference I is the difference between the shared mode memory
latency L and the private mode memory latency L. In other words, interference is
the additional latency a process experiences due to memory system sharing effects.

Nesbit et al. [106] divide CMP resource management systems into three subsystems:

• Feedback Mechanisms – These mechanisms measure the sharing or perfor-
mance related metrics that the policies can use to make partitioning deci-
sions.

• Allocation Policies – Based on the metrics provided by the feedback mecha-
nisms, the allocation policy chooses a resource partitioning that maximizes a
certain performance metric.

• Partitioning/Allocation Mechanisms – The partitioning mechanisms enforce
the resource allocations selected by the policy.

The mechanisms provide the primitives that the policies can be built upon. These
mechanisms may need to be implemented in hardware if they are sufficiently tightly
coupled to the hardware units they measure or control. For the allocation policies,
flexibility is important because CMPs are used in a variety of contexts. This can
be achieved by implementing the allocation policies in software [106]. However,
this limits the frequency with which resources may be reallocated so a combined
hardware/software approach may be necessary.

It is also possible to reduce the performance effects of interference by making the
OS scheduler interference aware [36, 37]. Here, processes that suffer from interfer-
ence are allowed to use the CPU for longer than other processes. This approach
has the advantage that it can be implemented without hardware support. Since
our primary focus is on hardware support for resource management, scheduling
techniques are not investigated further.

2.2.1 Shared Cache

CMPs have large on-chip caches to reduce the performance impact of the perfor-
mance gap between the processor and main memory. Caches rely on the fact that
most programs exhibit spatial and/or temporal locality. Temporal locality is the
tendency that a recently used data element will be used again in the near future,
while spatial locality is the tendency for accessing data elements with memory
addresses close to the recently used elements.

14 Chapter 2. Background

Tag Data Tag Data0

Tag Data Tag Data1

Tag Data Tag Data2

Tag Data Tag Data3

...

Tag Data Tag Datan

Compare

Process A Process B

IndexTag Request Address

Compare Compare Compare

Replacement Policy Capacity Quotas: A:1 B:3

Cache Management

Offset

Miss Handling Architecture

Tag Data

Tag Data

Tag Data

Tag Data

Tag Data

Tag Data

Tag Data

Tag Data

Tag Data

Tag Data

...

Way 1 Way 2 Way 3 Way 4

Figure 2.3: 4-way Set-Associative Shared Cache Example

Figure 2.3 illustrates the high-level structure of a shared 4-way set associative
cache. In this cache, each data element, called a cache block or line, can be stored
in four possible locations. These four locations are referred to as a set. The set of
a memory request is determined by the index part of the request address. When
searching for a cache block, the tags of all blocks in the set are examined. The tag
is the part of the address that is not part of the index or the cache block offset. This
search can be carried out in parallel for low access latency or serially to conserve
energy [143].

Traditionally, cache misses have been classified according to the 3C model [53, 54].
In this model, a cache miss is either a compulsory, conflict or capacity miss. A
compulsory (or cold start) miss is the first access to a block, and for these misses
the size of the cache does not matter. A conflict miss is a miss that occurs because
of limited set associativity. In other words, these misses would not occur if every
address could be stored in every cache block (i.e. in a fully associative cache).
Finally, a capacity miss occurs because the cache is too small to store the data
needed by the running process.

2.2.1.1 Miss Handling Architectures

The Miss Handling Architecture (MHA) is the cache subsystem that manages cache
misses in a non-blocking or lockup-free cache. A non-blocking cache [81] can con-
tinue to service requests while misses are being serviced by units further down in

2.2. CMP Shared Resources 15

Block Address Target InformationMSHR 1

MSHR 2

MSHR n

Comparators

...
Address

V

Block Address Target Information V

Block Address Target Information V

Figure 2.4: Generic Miss Information/Status Holding Register (MSHR) File

the memory hierarchy. In addition, a non-blocking cache combines accesses to the
same cache block such that only one request is sent. Multiple misses to a single
cache line can happen frequently in out-of-order processors since a cache block is
often significantly larger than a processor word. The first miss to a cache block
is called a primary miss and subsequent misses to cache blocks are referred to as
secondary misses [35].

The main hardware structure in an MHA is the Miss Information/Status Holding
Register (MSHR). Commonly, n MSHRs are combined into an MSHR file which
makes it possible for the cache to handle n concurrent misses without blocking.
A blocked cache cannot service requests. There may be multiple MSHR files in a
cache with multiple banks. Consequently, a Miss Handling Architecture (MHA)
consists of one or more MSHR files [146].

Figure 2.4 shows a generic MSHR file. Here, each MSHR contains a block address,
target information and a valid bit. The block address is the address of the miss
and the valid bit signifies that the MSHR is in use and contain data. If all valid
bits are set, the cache must block since there are no storage available for additional
misses. The target information field stores the miss information that is not needed
further down in the memory hierarchy. Furthermore, its organization determines
which combinations of secondary misses that can be handled without blocking.
Kroft [81] used an implicit target organization where target storage is allocated
for each processor word. Consequently, the cache can only handle one access to a
processor word before it must block. Farkas and Jouppi [35] discussed three other
target storage implementations. With explicit targets, the processor word offset
is stored explicitly which makes it possible to have multiple misses to the same
word without blocking. In addition, they discussed the aggressive inverted MHA
where miss information storage is allocated for all possible destinations of fetch
data. Finally, miss information can be stored in the pending cache line.

Recently, there has been some research targeting MHAs for unconventional archi-
tectures. Tuck et al. [146] proposed the Hierarchical MHA that provides enough

16 Chapter 2. Background

miss parallelism to meet the bandwidth demands of high Memory Level Parallelism
(MLP) processors. In addition, Loh [92] provides a high-capacity MHA for 3D-
stacked memory architectures.

2.2.1.2 Shared Cache Management

In a shared cache, concurrently running processes can evict each others cache
blocks. An interference miss is defined as a cache miss that occurs in the shared
mode but not in the private mode [70]. In addition, Srikantaiah et al. [139] re-
cently proposed the CII model which complements the 3C model. In this model,
a cache miss is classified as a compulsory, inter-processor or intra-processor miss.
The compulsory miss category is the same as in the 3C model. The intra-processor
misses are the misses that are due to a cache block being evicted by the same
processor that owns the cache block. Conversely, inter-processor misses are due to
a different processor evicting the block. An inter-processor miss is not necessarily
an interference miss. The reason is that the block could have been evicted by the
owner if the other processor had not evicted it first.

Most cache partitioning techniques use some form of way-partitioning where each
way of a set associative cache is allocated to a process. A way is sometimes referred
to as a column. In Figure 2.3, process A has been allocated one way and process
B has been allocated three ways. Way-partitioning can be implemented in at least
two different ways. Firstly, it is possible to enforce that the cache blocks of a
process are limited to using a subset of the columns [20, 100, 124]. Secondly, the
replacement policy can be modified such that each process only is allowed to occupy
a certain number blocks in a set [18, 29, 47, 63, 110, 116, 118]. In this case, the
blocks can be physically stored in any of the columns.

Xie and Loh [153] showed that the cache can be managed by controlling the in-
sertion and promotion of cache blocks. Normally, new cache blocks are inserted at
the most recently used position which maximizes their lifetime in the cache. Fur-
thermore, a block is normally promoted to the most recently used position when
it is accessed. By inserting and promoting blocks to positions closer to the least
recently used position, Xie and Loh implicitly partitions the cache among cores.

To establish cache quotas, it is helpful to estimate the cache capacity allocation
sensitivity of a process. Since the cache tag array is much smaller than the data ar-
ray, additional tag arrays can be added at a moderate storage cost. This technique
is based on the observation that the cache tags define which blocks are available
in the cache. An additional tag array is commonly referred to as an Auxiliary Tag
Directory (ATD) or a shadow tag [30, 117]. Set sampling is often employed to
reduce the storage overhead of ATDs. Here, the cache is divided into regions called
constituencies [117]. One set in each constituency is chosen as a leader set and
the other sets become follower sets. By assuming that the leader set events are
representative for the follower sets, it is only necessary to store the leader sets in
the ATD.

2.2. CMP Shared Resources 17

Figure 2.5: The 3D Structure of DRAM

2.2.2 Memory Bus and DRAM

In a traditional random access device, all locations have the same latency. However,
modern Dynamic Random Access Memory (DRAM) devices do not fully comply to
this definition. In order to maximize bandwidth, DRAMs are commonly organized
as a 3D matrix of bits with dimensions of rows, columns and banks. Figure 2.5
illustrates this organization.

Commonly, a DRAM read transaction consists of first sending the row address,
then the column address and finally receiving the data. When a row is accessed,
its contents are stored in a register known as the row buffer, and a row is often
referred to as a page. The row buffer is commonly much larger than a cache line
to leverage the internal bandwidth of the DRAM module. If the row has to be
activated before it can be read, the access is referred to as a row miss or page miss.
It is possible to carry out repeated column accesses to an open page, called row
hits or page hits. This is a great advantage as the latency of a row hit is much
lower than the latency of a row miss [120]. The situation where two consecutive
requests access the same bank but different rows is known as a row conflict and
is very expensive in terms of latency. DRAM accesses are pipelined, so there are
no idle cycles on the memory bus if the next column command is sent while the
data transfer is in progress. Furthermore, command accesses to one bank can be
overlapped with data transfers from a different bank.

2.2.2.1 DRAM Scheduling

The 3D structure of rows, columns and banks makes DRAM subsystem throughput
depend heavily on the order of memory requests. Therefore, throughput can be

18 Chapter 2. Background

P A C(0,0,0)

(0,1,0)
(0,0,1)

(0,1,1)

(1,0,0)

(1,1,0)
(1,0,1)

(1,1,1)

P A C
P A C

P A C

0 10 20 30 405 15 25 35 Time

42 DRAM Cycles Total Latency

...
...

P A C

P A C

(a) Accesses Scheduled in Arrival Order

P A C(0,0,0)

(0,1,0)
(0,0,1)

(0,1,1)

(1,0,0)

(1,1,0)
(1,0,1)

(1,1,1)

P A C
C

P A C

0 105 15 Time

(x,y,z) (Bank, Row, Column)

Precharge (Row Deactivation)

Row Activation

Column Access

P

A

C

Legend

18 DRAM Cycles Total Latency

...
...

C

P A C

20

(b) Accesses Reordered with the FR-FCFS Algorithm

Figure 2.6: Simplified DRAM Access Reordering Example [120]

improved considerably by dynamically reordering requests to improve page locality.
Rixner et al. [120] provide a convincing example that illustrates the benefits of out-
of-order DRAM scheduling (Figure 2.6).

Figure 2.6(a) shows a memory access order that poorly utilizes the parallelism
available in the DRAM subsystem. In this example, we assume a 3 DRAM cy-
cle precharge latency, a 3 cycle row activation latency and 1 cycle column access
latency. In this example, servicing requests in the arrival order results in a total
latency of 42 DRAM cycles. Figure 2.6(b) illustrates the possible latency improve-
ment from reordering. Firstly, we take advantage of that command accesses to
different banks can be carried out in parallel. Secondly, we carry out all pending
column accesses when the row is active. These two optimizations reduce the total
latency to 18 DRAM cycles and improves memory bus utilization from 14% to
33%. Note that only one command can occupy the memory bus at a time and that
precharge and activate commands are sent in their first cycle.

Rixner et al. [120] showed that reordering can be implemented with three rules:

1. Prioritize requests that can be issued in this cycle (i.e. ready commands) over
commands that are not ready

2. Prioritize column commands over other commands

3. Prioritize older commands over younger commands

2.2. CMP Shared Resources 19

This scheduling algorithm is commonly referred to as First Ready - First Come First
Served (FR-FCFS) scheduling, and a few researchers have proposed additions to
it. Shao and Davis [125] proposed burst scheduling which clusters accesses to the
same row into bursts. Furthermore, they prioritize reads over writes, but writes
are piggybacked on read bursts to reduce the probability of blocking due to a full
write queue. Zhu and Zhang [158] observed that performance could be improved
further by taking criticality into account. A criticality-aware scheduler prioritizes
the requests that contain the words that the processors are currently waiting for.
Finally, Shao and Davis [126] observed that bank conflicts can be minimized by
cleverly choosing the address mapping of banks, rows and columns.

2.2.2.2 Process-Aware DRAM Scheduling

The FR-FCFS scheduling algorithm does not differentiate between requests from
different processes. Consequently, a process with good page locality can signif-
icantly delay the requests of other processes. To avoid this, Nesbit et al. [109]
adapted network fair queuing for use in DRAM scheduling. Network fair queuing
was originally used to provide fairness in packet switched networks [40]. Nesbit
et al. augmented the DRAM scheduler with a model of a Virtual Time Memory
System (VTMS) (one per process). Each VTMS is allocated a certain fraction of
the bandwidth available in the real system. This fraction determines the band-
width allocation of the process. Then, the finish time of the request in the VTMS
is used instead of the shared mode arrival time in rule 3 of the FR-FCFS scheduling
algorithm. Furthermore, Nesbit et al. limit the amount of reordering to avoid that
a process with good page locality significantly delays requests with lower virtual
finish times from other processes.

Network fair queuing distributes DRAM bandwidth in a fair manner. However,
fairly distributing DRAM bandwidth does not necessarily result in a fair division
of DRAM latency [102, 119]. Rafique et al. [119] extended the work of Nesbit
et al. [109] by using an adaptive technique to tune bandwidth shares to achieve
the desired average latencies. In addition, Mutlu and Moscibroda [102] provide
a scheduler that equalizes the memory related stall time of different processes.
Finally, Iyer et al. [64] showed that the reordering mechanism can be used to
differentiate between priority classes by letting requests from high priority processes
bypass the requests of low priority processes.

The schedulers discussed so far augment the FR-FCFS algorithm with additional
rules. Mutlu and Moscibroda [103] approach the problem from a different angle
with their batch scheduling technique. Here, they create batches of requests based
on arrival time and which processor the request originated in. A batch is a group of
requests with a limited size, and the batch containing the oldest request is serviced
before other batches to avoid starvation and provide fairness. Within a batch,
requests are scheduled to preserve bank parallelism which improves throughput.
In addition, Ipek et al. [60] showed how machine learning could be applied to the
access scheduling problem.

20 Chapter 2. Background

Processor

Cache

R

Processor

Cache

R

Processor

Cache

R

Processor

Cache

R

Processor

Cache

R

Processor

Cache

R

Processor

Cache

R

Processor

Cache

R

Processor

Cache

R

Figure 2.7: 3x3 Mesh Network on Chip

2.2.3 On-Chip Interconnect

The on-chip interconnect can be constructed in two main ways: by ad-hoc global
wiring or with an on-chip network or Network on Chip (NoC) [24]. For a general-
purpose processor, a NoC has several advantages. Firstly, it uses the available
wires more efficiently since the wires are not necessarily idle when only a few of
the end-points are using the network. Secondly, it adds structure and modularity
to the chip which is helpful during the design process.

There has been a large amount of research on interconnects for high performance
computers [23]. It is likely that much of this knowledge can be used when design-
ing efficient on-chip networks. However, high-performance computer interconnects
have traditionally been limited by the number of available wires and pins [24]. For
NoCs, design trade-offs change since wires are abundant and buffer space is limited.
Figure 2.7 shows a possible CMP NoC.

This difference has lead researchers to propose QoS techniques that take advantage
of the available wires and reduce the need for buffer space. Recently, Lee et al. [87]
proposed Globally Synchronized Frames (GSF). In GSF, packet classification is
carried out at the source nodes to reduce management costs and avoid significantly
increasing router complexity. They achieve QoS by assembling packets into frames.
Each frame contains a limited number of flow control units (flits), and flits in the
current head frame have higher priorities than flits with other frame numbers. The

2.3. Full-System Resource Management 21

identity of the current head frame is communicated through a dedicated barrier
network. This global communication is an example of a feature that can be added
when the network is located on a single chip.

Although GSF only slightly increases router complexity, it does require large source
buffers to achieve good throughput [46]. Furthermore, it can have low throughput
under traffic patterns which only saturate a part of the network due to its global
assignment of frame numbers. Grot et al. [46] recently proposed Preemptive Virtual
Clock (PVC) which alleviates these problems. PVC tracks bandwidth consumption
over a time interval and uses this to prioritize packets. Consequently, it avoids per-
flow buffering in the network and large buffers in source nodes. Since there is no per-
flow buffering in the routers, priority inversion is possible. Priority inversion is the
situation where low priority flits impede the progress of flits with higher priorities.
To avoid this, PVC detects priority inversion and preempts the low priority flits
causing it. This is communicated to the source with a Negative Acknowledgement
(NACK) which causes the source to resend the data. ACK and NACK messages
are sent on a dedicated network.

Das et al. [25] observed that the performance impact of an on-chip bandwidth
allocation depends on process characteristics. They coined the term Stall Time
Criticality (STC) to describe the performance impact of increased memory laten-
cies. The STC of a process depends on three phenomena. Firstly, the cost of a
miss can be amortized by serving multiple misses in parallel. This is known as
Memory Level Parallelism (MLP), and more MLP tends to reduce STC. Secondly,
high average memory latency (e.g. many off-chip accesses) tend to increase STC.
Finally, processes differ in their bandwidth demand from the network. Requests
from processes with a high demand tend to be less critical than requests from low-
demand processes. Das et al. observed that the number of private cache misses per
instruction could be used to indicate the STC of a process. Then, requests from
high STC processes are given higher priorities than processes with low STC.

2.3 Full-System Resource Management

So far, the focus has been on resource management solutions that target specific
shared units in the CMP memory system. However, a system wide approach is
needed to provide fairness or QoS for the complete hardware-managed memory
system since a good partitioning for one shared unit can have adverse effects in
other units [87]. For instance, poor cache partitioning can increase memory bus
queuing latencies enough to reduce overall performance [138]. These approaches
can be divided into two categories. In the first approach (Section 2.3.1), each shared
unit is extended with enforcement and feedback mechanisms. Then, a central policy
collectively manages the allocations for all shared units. In the second approach
(Section 2.3.2), the shared units are only extended with measurement mechanisms.
Then, the memory access frequency of one or more of the processors is modified to
improve resource sharing.

22 Chapter 2. Background

Liu et al. [91] provide an analytical model of the interaction between cache capac-
ity and off-chip bandwidth allocations. To derive the model, they combined an
additive CPI model with queuing theory. They found that the benefits of off-chip
bandwidth partitioning are closely tied to the processes’ shared cache miss rate
differences. This is based on the observation that an unmanaged memory bus par-
titions requests according to their access frequencies. In addition, they observed
that cache partitioning can impact off-chip bandwidth sharing in two ways. Firstly,
cache partitioning can reduce the amount of off-chip traffic and thereby increase
the amount of bandwidth available. Cache partitioning can also reduce or increase
the need for bandwidth partitioning by changing the relationship between off-chip
access frequencies.

2.3.1 Coordinated Resource Allocations

Nesbit et al. [106] proposed to divide the shared memory system by creating a
Virtual Private Machine (VPM) for each process or Virtual Machine (VM). A
VPM is a specification of the micro-architectural resource requirements of a process
and is divided into minimum and maximum VPMs. Hardware mechanisms are
provided to ensure that a process receives at least the amount of resources specified
in its minimum VPM. If there are excess resources, these are distributed to achieve
secondary performance objectives or improve resource utilization.

Iyer et al. [64] provides best-effort Quality of Service (QoS) by providing resources
to one or more high priority processes. To control their technique, they define two
metrics: QoS Targets and QoS Constraints. The QoS Target is the performance
goal for a high priority application while the QoS Constraint is the lowest acceptable
performance for a low priority application. The QoS Targets and QoS Constraints
can be provided by online monitors [70, 156] or offline profiling. Iyer et al. [64]
control cache space allocations with a modified Least Recently Used (LRU) cache
replacement policy. Memory bandwidth is managed by letting requests from a high
priority process bypass low priority requests. In addition, Bitirgen et al. [12] used
artificial neural networks to control memory system resource allocations and power
consumption.

2.3.2 Rate-Based Resource Management

Herdrich et al. [52] provides QoS by reducing the memory system access frequency
of a low priority process if it interferes with a high priority process. This approach
is referred to as rate-based resource management. Herdrich et al. investigated two
enforcement mechanisms: frequency scaling and clock modulation. They found
that frequency scaling was not very effective at providing QoS since memory in-
tensive processes spend most of their time waiting for memory. Consequently, they
were able to cause interference both at high and low clock frequencies. With clock

2.4. Hardware Prefetching 23

modulation, the clock is gated for short intervals. While the clock is gated, the pro-
cessor will not carry out any work. This effectively reduces the access frequency for
both memory intensive and processor intensive processes. In addition to providing
QoS, clock modulation also reduces power consumption.

Ebrahimi et al. [32] recently proposed source throttling which uses two enforcement
mechanisms to provide rate-based resource management. The first enforcement
mechanism manipulates the number of MSHRs available in each core’s last-level
private cache. Secondly, they control the frequency with which a core is allowed
to inject requests into the shared memory system. The resource allocations are
chosen based on runtime interference estimates.

2.4 Hardware Prefetching

Prefetching is the task of fetching data and/or instructions into the on-chip caches
before they are requested by the processor. Consequently, prefetching can have
a considerable performance impact since the cache access latency is significantly
smaller than the DRAM access latency. A prefetcher commonly analyses the access
stream to find patterns that can be used to predict future accesses. However,
prefetching is a speculative technique and fetching the wrong data can lead to
cache pollution and wasted bandwidth.

It is helpful to categorize prefetches as good or bad. A prefetch is good if the
prefetched cache block is referenced by the application before it is replaced [142].
If block is replaced without being used, it is classified as bad.

Accuracy =
Good Prefetches

Good Prefetches + Bad Prefetches
(2.6)

Equation 2.6 defines the accuracy metric which measures how often the prefetcher’s
prediction is correct [142]. For prefetches to be useful, they also need to be issued
ahead of time to ensure that the data is available in the cache when the processor
needs it. This property is known as timeliness.

Coverage =
Good Prefetches

Cache Misses Without Prefetching
(2.7)

Unfortunately, issuing highly accurate and timely prefetches are not necessarily
sufficient to provide a significant performance improvement. In addition, a con-
siderable portion of the cache misses of a process needs to be removed. This is
measured by the coverage metric which is defined in Equation 2.7 [142]. Increasing
coverage often reduces accuracy, and a good prefetching scheme should therefore
strive to achieve a balance. The main advantage of the accuracy and coverage
metrics are that they are simple to use and easy to understand. However, they

24 Chapter 2. Background

PC Address Last Address Stride State

Figure 2.8: Reference Prediction Table Entry Format

do not always accurately explain why prefetching can lead to increased bandwidth
usage or cache pollution [142].

There is a significant amount of research that proposes new prefetching heuristics
[115]. In this thesis, prefetching is used to improve off-chip bandwidth utilization.
Since the choice of prefetching heuristic is largely orthogonal to these techniques,
Section 2.4.1 only discusses the heuristics used in the included papers. Then,
Section 2.4.2 discusses how the prefetcher can be integrated with the memory con-
troller. Finally, Section 2.4.3 discusses how multiple prefetchers can be coordinated
in a CMP. A through review of prefetching is provided by Grannæs [42].

2.4.1 Hardware Prefetch Heuristics

The simplest prefetching heuristic is sequential prefetching [130]. In its simplest
form, sequential prefetching fetches the next cache block in ascending address order
when a cache block is accessed. This policy can be very effective since it efficiently
exploits spatial locality. However, it is often beneficial to fetch a cache block that
has a certain offset to the current block since the processor is much faster than main
memory. This parameter is called the prefetch distance. Furthermore, it is possible
to fetch more than one block at the time. This is known as the prefetch degree. A
tagged sequential prefetcher improves on the sequential prefetcher by adding a bit
to each cache line that is set for prefetched blocks [148]. If the process then hits on
a prefetched block, the prefetcher knows that the prefetch was successful and can
initiate a request for the next line.

A sequential prefetcher will fetch unnecessary data if the process does not access
memory in a continuous fashion. Reference Prediction Table (RPT) prefetching
improves on this by storing the distance between accesses [19, 22]. Figure 2.8
illustrates the structure of an RPT table entry. In this method, each table entry
is indexed by the Program Counter (PC) value of the load instruction. On the
first miss with a particular PC value, a 4-state RPT prefetcher typically stores
the memory address in the Last Address field. On the second miss, the difference
between the current address and the last address is computed and stored in the
Stride field. This address difference is often referred to as a delta. In addition, the
Last Address field is updated. On the third miss, the prefetcher starts prefetching
if the address difference is equal to the stored stride.

RPT is limited to handling constant strides, but more complex access patterns can
occur. Consider the access example in Figure 2.10. To handle such access patterns,
Nesbit and Smith proposed the Global History Buffer (GHB) which is shown in
Figure 2.9 [105, 107]. The GHB is a fixed-length FIFO table which stores the
addresses of the most recent cache misses and hits to previously prefetched cache

2.4. Hardware Prefetching 25

Least Recent Miss

1

9

1

9

Global History Buffer (GHB)

Delta Table

Index Table

Most Recent Miss

-

-

-

-

10

11

20

21

30

100

Figure 2.9: Delta Table Construction Example

Address 10 11 20 21 30
Delta 1 9 1 9

Figure 2.10: Memory Access Example

blocks. The cache misses are aggregated into groups and each miss address contains
a pointer to the previous miss address within that group. For instance, the cache
misses are grouped with the PC address of the load in Program Counter/Delta
Correlation (PC/DC) prefetching. Figure 2.9 shows the contents of the GHB for
the access example in Figure 2.10.

PC/DC prefetching requires the address of the load. Consequently, either the
address of the load must be transmitted alongside the miss address or the prefetcher
must be coupled to the processor core. An alternative solution is to do prefetching
based on the miss address. CZone/Delta Correlation (C/DC) prefetching is a
variant of PC/DC that divides memory into fixed-size concentration zones (CZones)
[108]. Then, the CZones are used instead of the PC to group requests. The grouping
of requests into streams is called localization [26]. Diaz and Cintra [26] observed
that timeliness could be increased by partially reconstructing the temporal order of
accesses to different streams. They implemented this scheme by adding a pointer
to each GHB index table element that points to the likely temporal successor.

PC/DC and C/DC selects prefetches with Delta Correlation (DC). First, the GHB
linked list for the PC or CZone is traversed to produce a sequence of deltas. This

26 Chapter 2. Background

sequence is stored in the Delta Table. DC is the process of searching for the two
most recent deltas in this delta history. In Figure 2.10, the two most recent deltas
(1 and 9) match the oldest pair of deltas. The delta after the match (1) is then
used to calculate the next address (31), and a prefetch for this address is issued.

The main GHB drawback is the complexity associated with retrieving the delta
history. Grannæs et al. [44] provides Delta Correlating Prediction Tables (DCPT)
prefetching which can detect the same patterns as GHB but with a simpler table-
based implementation inspired by RPT. The key difference between DCPT and
RPT is that each table entry can hold multiple deltas.

Finally, Lin et al. [89] used Scheduled Region Prefetching (SRP) to bridge the
performance gap between the processor and DRAM. Here, they divide memory
into fixed-size regions. If the needed memory bus channel is idle, the whole region
is prefetched which can result in very high memory bus utilization.

2.4.2 Memory Controller Prefetch Scheduling

A central decision when integrating the prefetcher with the memory controller is
the relative priorities of prefetches and demand accesses. The two simplest policies
are to either prioritize demand reads over prefetches or prioritize demand reads
and prefetches equally. Lee et al. [85] observed that it is beneficial with equal
priorities when prefetcher accuracy is high while prioritizing reads are useful when
prefetcher accuracy is low. Since the accuracy of the prefetcher depends on the
characteristics of the running process, Lee et al. provide an adaptive scheme that
chooses the relative priorities based on dynamic accuracy measurements.

2.4.3 Prefetching in CMPs

Each core may have its own prefetcher in CMPs. Allowing these prefetchers to
operate in an uncontrolled fashion may create significant interference with both
demand and prefetch accesses of other cores. Ebrahimi et al. [31] provides a scheme
for reducing prefetcher-caused interference by throttling the prefetchers depending
on the state of the memory system. This throttling is based on both local and
global feedback. The global feedback is used to avoid making decisions that are
good from a local point of view but will reduce system performance.

Lee et al. [86] provides a different way of integrating prefetchers in a CMP with
no shared cache. Here, they choose prefetch requests to maximize Memory Level
Parallelism (MLP). In modern DRAM systems, the amount of MLP is closely tied
to how efficiently the process is able to utilize the available DRAM banks. Con-
sequently, Lee et al. chooses prefetches to maximize the bank parallelism of the
concurrent requests. Furthermore, they load the concurrent requests of one proces-
sor into the memory bus queue at the same time to minimize request serialization.

Chapter 3

Methodology

This chapter discusses the experiment methodology used in the papers included in
this thesis. This methodology is used to quantify the effects of our contributions.
Section 3.1 explains why a simulator-based methodology is used and the reasons for
choosing the M5 simulator [11]. Then, benchmarks are discussed is Section 3.2. In
Section 3.3, multiprogrammed workload generation is discussed. In addition, this
section contains an analysis of how accurate multiprogrammed metric results can be
provided. Finally, our use of compute clusters for Design Space Exploration (DSE)
is discussed in Section 3.4.

3.1 Simulators

Computer architectures can be evaluated in three main ways [129]:

• Performance measurement on real hardware

• Simulation

• Analytical modeling

In this thesis, we investigate new hardware techniques. Unfortunately, a significant
effort is involved in implementing these techniques in real hardware. A simulator-
based approach is more efficient since it enables rapid iterations through the im-
provement and evaluation loop. Furthermore, modern simulators have a sufficient
level of detail to make the effects our techniques aim to alleviate observable. Ana-
lytical modeling has a significant advantage for exploration of large design spaces
and early studies of future technologies that are very different from current simu-
lation models [129]. Since our research focuses on architectures that are similar to
current CMPs, the current simulators serve our purpose.

28 Chapter 3. Methodology

There is no shortage of computer architecture simulators. Therefore, finding the
most suitable simulator can be a challenging task. Previously, our research group
have used the SimpleScalar simulator [7, 27]. Unfortunately, SimpleScalar does not
support simulating CMPs without modifications. Furthermore, memory latencies
are calculated in a single operation which makes it difficult to model request inter-
leaving and queuing effects. Consequently, we started to look for a SimpleScalar
replacement. An important step in this process was Lande’s master thesis [84]
where he evaluated Rsim [57], Asim [33], SimOS [121], Simics [95], TFSim [98],
SimFlex [49], GEMS [97] and M5 [11]. Then, he carried out a thorough evaluation
of M5 to establish if it met the needs of the research group. In the end, we decided
to use M5 since it offered CMP support and an event-driven memory hierarchy.
An event-driven memory hierarchy makes it possible to accurately model queuing
and interleaving of memory requests which is a central theme in this thesis.

M5 is an execution-driven simulator which makes it possible to capture dynamic
interactions between instructions and memory requests. In an execution-driven
simulator, a benchmark binary is used to drive the simulated CMP. Alternatively, a
trace-driven simulator uses a trace of the executed instructions or memory requests
to drive the simulator model. Furthermore, M5 supports both system call emulation
and full-system simulation. With full-system simulation, the simulator runs an
Operating System (OS). In contrast, all system calls are handled by the host OS
with system call emulation. Although full-system simulation is more realistic, it
also makes it difficult to find the cause of the observed behavior. Therefore, we
use system call emulation in this thesis and leave full-system evaluation as further
work.

Choosing system call emulation makes running multi-threaded benchmarks compli-
cated. The reason is that communication libraries often have significant interaction
with the OS. Consequently, it is likely that a large number of system calls would
need to be implemented. Full-system simulation avoids this problem because the
simulated OS provides these features. System call emulation also makes it challeng-
ing to adopt new benchmarks and compilers since they often require new system
calls.

Although M5 was well suited to the needs of the research group, we had to im-
plement significant extensions for it to fit our needs. Firstly, we have replaced
the on-chip bus model with a range of different interconnect topologies. Sec-
ondly, the simple off-chip memory bus model has been replaced by a detailed
DDR2 model and various memory bus schedulers (FCFS, FR-FCFS [120] and NFQ
[119]). Thirdly, we have implemented multi-banked shared caches, an Auxiliary Tag
Directory (ATD) [30, 117] and MTP cache partitioning [18]. Fourthly, we have ex-
tended M5 to collect basic block vectors for SimPoints [48] as well as improving
the checkpointing support. Finally, we have developed a large number of Python
scripts that help us run our experiment and analyze the results.

3.2. Benchmarks 29

3.2 Benchmarks

3.2.1 Choosing Benchmarks

In this thesis, we use the SPEC CPU2000 benchmark suite [136] which provides
single-threaded benchmarks. As technology evolves, the benchmark suite require-
ments change. Consequently, SPEC CPU2000 was retired in 2007 and replaced by
SPEC CPU2006 [51]. Unfortunately, supporting new benchmarks in system call
emulation is not trivial. In fact, even the newest version of M5 does not support
the full SPEC CPU2006 suite at the time of writing [94]. Therefore, we did not
prioritize supporting CPU2006 for this work.

A program must be multi-threaded to use all CMP resources to solve a single task.
Consequently, it is likely that this class of programs will become more important in
the future, and a number of benchmark suites are available [9, 128]. In this thesis,
we limit the study to multiprogrammed workloads that are collections of single-
threaded benchmarks. Lifting this restrictions and studying the performance of
workloads with both single-treaded and multi-threaded benchmarks is left as future
work.

3.2.2 Representative Benchmark Simulation

The SPEC CPU2000 benchmarks are real programs chosen to stress the processor
and memory system of real systems. Consequently, simulating them in detail to
completion may take weeks or even months. This problem can be avoided by finding
parts of the benchmarks that are small enough to simulate while still representing
the behavior of the complete benchmark. The start of a benchmark is unlikely
to be representative since it often initializes data structures and carry out other
administrative tasks. For this reason, it is common to functionally emulate bench-
mark execution up to a certain point which is known as fast-forwarding. Then,
simulation statistics are reset and detailed simulation is started. The advantages
of this method are that it is simple and easy to apply to CMP systems. Therefore,
we use clock cycle fast-forwarding in most of the papers in this thesis. However, it
is unlikely that the chosen interval is representative of the complete benchmark.

For this reason, researchers have proposed different methods for choosing repre-
sentative parts of benchmarks. The SimPoint methodology provides representative
benchmark samples by profiling the execution frequency of each basic block in each
sample [48, 114]. Then, a clustering algorithm is used to group similar samples,
and each group is assigned a weight depending on how many of the samples this
cluster represents. These weights make it possible to combine the performance
measurements from each sample into a value that is representative for the full
benchmark. Wunderlich et al. [152] use statistical sampling to achieve the same
effect with their Sampling Microarchitecture Simulation (SMARTS) methodology.
Here, the user supplies the desired confidence and SMARTS computes the number

30 Chapter 3. Methodology

of samples needed to reach this level of confidence. The accuracy of SimPoints and
SMARTS has been validated in an independent study [155]. We use SimPoints in
the last paper in this thesis (Appendix C).

3.3 Simulating Multiprogrammed Workloads

We create multiprogrammed workloads by choosing benchmarks at random from
the whole SPEC CPU2000 benchmark suite. Furthermore, we sometimes limit the
benchmarks available to the selection process to make certain behaviors more likely
(see Appendix A). We avoid that two instances of the same benchmark start on
the same instruction in the detailed simulation since this is a very uncommon event
in real systems and may result in severe interference. To avoid this problem, we
either fast-forward the instances by a different amount or only allow a benchmark
to be used once in a workload.

Vera et al. [149] presents one way of providing representative performance metric
measurements from multiprogrammed workloads called FAME. They observed that
the average IPC for each benchmark will converge if the benchmark samples are
re-executed. Furthermore, they provide an analytical expression that calculates the
number of iterations necessary to put a bound on the IPC variance. FAME relies on
a single simulation point for each benchmark which can be fairly representative of
full benchmark execution [10]. However, this point is only one out of possibly many
benchmark phases which may lead to interesting behavior being missed. Co-Phase
Matrix simulation [10] supports multiple simulation points for each benchmark,
but it does not scale to a large number of cores [149]. In addition, FAME retrieves
simulation statistics when the last benchmark has reached its required number
of iterations. Consequently, the number of instructions executed by the other
benchmarks is not bounded. To ensure that private and shared mode statistics are
computed based on the same instructions, it may be necessary with a private mode
run for each benchmark instance.

For these reasons, we do not use the FAME methodology in our SimPoint based
experiments. Instead, we use a method inspired by Xie and Loh [153] where we
retrieve statistics when a benchmark reaches the required number of instructions,
but continue running until all benchmarks have committed enough instructions.
With this method, private to shared mode comparisons are straightforward since
all results contain the same instructions. In contrast with Xie and Loh [153], we
use multiple simulation points, and Figure 3.1 illustrates our method. First, we
assign an identifier from 1 to s to each of the simulation points of a benchmark.
Then, we group all simulation points with the same IDs into workloads and run
these workloads in the simulator. Then, we retrieve the results from each core and
create an aggregate value with the weights provided by the SimPoint tool. We use
the function w(b, s) to identify the weights in Figure 3.1. In this function, b is the
benchmark and s is the simulation point identifier.

3.4. Design Space Exploration 31

Benchmark 1

Benchmark 2

...

Benchmark n

SimPoint ID 1 SimPoint ID 2 SimPoint ID 3

Full
Benchmark
Execution

Simulator Simulator Simulator

1 1 1Per-Core Results

Aggregate
Results

w(1,1)
w(1,2)

w(1,3)

2 n2 n 2 n

Figure 3.1: SimPoint-Based Multiprogrammed Workload Simulation Methodology

Due to heavy interference, it can take up to 7 billion clock cycles for a benchmark
to commit 25 million instructions in our experiments (see Appendix C). By using
multiple simulation points, we can provide results that represent a large number
of instructions from smaller samples. Since these workloads are independent of
each other, they can be run in parallel. In this way, we trade simulation latency for
simulation bandwidth which significantly increases the efficiency of the method. To
improve performance further, we also create a checkpoint for each simulation point
which eliminates the need for fast-forwarding. This checkpoint contains cache state
which reduces the need for warm-up.

3.4 Design Space Exploration

Most computer architecture research contains an element of Design Space Explo-
ration (DSE). Commonly, a number of architectural configurations are examined
with different workloads or benchmarks, and each combination of workload and
architectural configuration becomes a point in the design space. In practice, these
points are created with different simulator command lines. Commonly, the design
spaces are large, and it is necessary to write software that runs the experiments.
Furthermore, large experiments provide large amounts of data which creates the
need for software that retrieves statistics and visualizes results.

Each point in the design space is independent of all other points. Consequently,
they can be evaluated in parallel which makes computer architecture research well

32 Chapter 3. Methodology

suited to large clusters. Fortunately, the Norwegian Metacenter for Computational
Science (NOTUR) [111] has consistently provided us with annual allocations of
500000 to 600000 CPU hours (57 to 68 CPU years) on the 5632-core Stallo cluster
[147]. This has been a great advantage since it has enabled us to thoroughly
evaluate our proposed techniques.

Chapter 4

Research Process

This chapter discusses how the papers in this thesis were produced. Figure 4.1
views this process from two different angles. Firstly, Figure 4.1(a) illustrates the
logical structure of the papers and how they are related. Secondly, Figure 4.1(b)
shows the duration and concurrency of the work with the different papers. In this
figure, a filled box indicates that the paper is actively worked on and a transparent
box illustrates that the article is under review or being prepared for publication.
To simplify the discussion, the papers are grouped into five categories according to
the main contribution of each paper. The categories are summarized in Table 4.1.

4.1 Preliminary Work

The work described in this thesis has been carried out within the Integrated PhD
Program at the IME faculty. In this program, the last year of the master study
overlaps with the start of the PhD. To take advantage of the synergies of con-
currently working towards two degrees, the master thesis topic is chosen to be a
suitable starting point for future research. Originally, we planned to investigate the

Table 4.1: Paper Categories

Category Name Papers
Total Included

A Adaptive Miss Handling Architectures 4 3
B Memory System Interference 2 2
C CMP Prefetch Scheduling 2 2
D Prefetching Systems 2 0
E Learning and ICT 1 0

34 Chapter 4. Research Process

Included Not Included

(a) Logical Structure

2006 2007 2008 2009 2010

Master Thesis

A.I

A.II

A.III A.IV

B.I

C.I C.II

D.I

D.II

E.I

Not Included

Included

B.II

(b) Chronology

Figure 4.1: Paper Overview

4.2. Category A: Adaptive Miss Handling Architectures 35

Table 4.2: Paper Category A

ID Title Ref.

A.I Performance Effects of a Cache Miss Handling Architecture in a
Multi-core Processor

[66]

A.II A High Performance Adaptive Miss Handling Architecture for
Chip Multiprocessors

[67]

A.III A Light-Weight Fairness Mechanism for Chip Multiprocessor
Memory Systems

[68]

A.IV Managing Chip Multiprocessor Memory Systems with Miss
Bandwidth Allocations

-

performance of parallel applications on a CMP, and this was the topic of my mas-
ter thesis [65]. This avenue was not pursued further because tool support for such
research topics were lacking at the time. Furthermore, I concurrently discovered
the Dynamic Miss Handling Architecture (DMHA) mechanism that is the basis for
paper Category A and provides a use case for the contributions in Category B.

4.2 Category A: Adaptive Miss Handling Archi-
tectures

The Category A papers (see Table 4.2) originated from my effort to try to create
a realistic processor model for the experiments in my master thesis. In particular,
it turned out to be difficult to choose a realistic number of MSHRs for the caches.
Since I had to write a term project for a PhD-level computer architecture course at
that time, I decided to investigate the performance impact of the number of MSHRs
in a CMP. In this work, I observed that too many MSHRs can create memory
bus congestion and degrade performance. This term project became Paper A.I
which is not included in this thesis since its main results are covered by subsequent
contributions.

The next step was to use this observation to improve performance. It turned
out that while too much miss bandwidth degrades performance in some cases,
too little miss bandwidth degrades performance in other cases. Therefore, we
developed an adaptive technique that tries to achieve the best of both worlds. We
observed that off-chip bandwidth was the main bottleneck, and used this to guide
bandwidth allocations. Our first cut at this task eventually became the Adaptive
Miss Handling Architecture (AMHA) and Paper A.II. However, getting this paper
published turned out to be a challenge. As expected, our first submission to ISCA
resulted in heavy criticism and rejection. Since the main part of the criticism was
aimed at our simplistic memory bus and DRAM model, we decided to develop
significantly more detailed memory bus and DRAM model. This model is used in

36 Chapter 4. Research Process

all publications included in this thesis, and the contributions in Category C would
not have been possible without it.

Our next step was to submit the paper to the HiPEAC Journal. However, we
quickly discovered that we used a subset of the cache index bits for bank selection
in our multi-banked caches. Consequently, only 1

b of the cache capacity was used
with b banks. The journal editor allowed us to fix this problem and resubmit the
paper. Again, the paper was criticized by the reviewers, especially for our use
of the Aggregate IPC (AI) metric. However, the editor decided that the paper
would be accepted if we improved our evaluation. The improved evaluation made
it necessary to modify the technique, but the idea remained the same. Although
this process was challenging at the time, it significantly increased the quality of
the paper. Furthermore, the improvements to the methodology have been of great
benefit to later contributions.

While working on Paper A.II, I read a number of papers on CMP resource sharing
and became curious about whether an adaptive MHA could be used to provide
fairness. We coined the term Dynamic Miss Handling Architecture (DMHA) for
a MHA where the number of MSHRs can be changed at runtime. As a first step
towards achieving fairness with a DMHA, I devised an experiment that measures
the performance of a large number of static, asymmetric MHAs. Paper A.III was
built around this experiment, and established that the DMHA mechanism could be
used to improve both performance and fairness in CMP memory systems. In Paper
A.III, we also tried to guide the DMHA with simple interference measurements.
We called this system the Fair Adaptive Miss Handling Architecture (FAMHA).
Unfortunately, FAMHA was only able to achieve the potential of the static asym-
metric MHAs in a few cases. To improve this system, we decided to investigate how
accurate interference measurements could be provided. This turned out to be more
challenging than first expected and resulted in the contributions in Category B.

Paper A.IV leverages the preceding contributions in categories A and B to manage
miss bandwidth allocations in CMP memory systems. In Paper A.IV, we intro-
duce Miss Handling Architecture Bandwidth Control (MHABC) which models the
latency effects of miss bandwidth allocations to dynamically manage the DMHAs.
MHABC can optimize for a range of system performance metrics. Furthermore,
the MHABC approach is general and can be applied if the latency cost of allocation
decisions can be modeled with sufficient accuracy. At the time of writing, Paper
A.IV has been submitted to IEEE Transactions on Computers.

4.3 Category B: Memory System Interference

Although Paper A.III provided promising results for the DMHA mechanism, it did
not provide a practical implementation. To provide such a system, we decided to
develop an accurate interference feedback mechanism. An important design goal
was that we should be able to quantify the measurement error of the mechanism.

4.4. Category C: CMP Prefetch Scheduling 37

Table 4.3: Paper Category B

ID Title Ref.

B.I A Quantitative Study of Memory System Interference in Chip
Multiprocessor Architectures

[69]

B.II DIEF: An Accurate Interference Feedback Mechanism for Chip
Multiprocessor Memory Systems

[70]

Since this goal was difficult to achieve with the Interference Point (IP) mechanism
from Paper A.III, we decided to try a different approach.

The main inspiration for this work was Mutlu and Moscibroda [102] and their
definition that interference is the additional time the processor is stalled waiting
for memory in the shared mode. Processor stall time due to memory depends on
the ability of the process to tolerate memory latencies and utilize the parallelism of
the memory system. Consequently, it is difficult to measure this quantity directly.
Instead, we decided to define interference in terms of the the additional memory
latency which can be measured directly. Furthermore, the total latency is the sum
of the latency in each memory system unit which makes the units’ measurement
techniques relatively independent.

We started working on the system that would eventually become the main con-
tribution of Paper B.II, in the autumn of 2008. Although we quickly developed a
prototype, its accuracy was poor and it proved difficult to find the cause of the inac-
curacies. By December, it was clear that we needed to improve our understanding
of the problem. To achieve this, we started to work on Paper B.I. In Paper B.I,
we quantified the latency impact of each shared unit by comparing the latency of
each memory request in the private and shared modes. As well as improving our
understanding, this work helped us achieve synchronized measurements of shared
and private mode memory requests.

When Paper B.I was finished, we continued work on Paper B.II. This time, progress
was better and we managed to track down the major problems. These problems
were either programming errors or related to combination effects between the shared
cache and memory bus. In particular, shared cache writebacks occur at different
points in the benchmarks execution in the private and shared modes. We finished
Paper B.II in the beginning of summer 2009.

4.4 Category C: CMP Prefetch Scheduling

The feedback we got on the first submission of Paper A.II made it clear that
the memory bus and DRAM model of the M5 simulator was too simplistic for
our research topics. Concurrently, my fellow PhD student Marius Grannæs was
porting his prefetcher implementations from SimpleScalar to M5. Grannæs had

38 Chapter 4. Research Process

Table 4.4: Paper Category C

ID Title Ref.

C.I Low-Cost Open-Page Prefetch Scheduling in Chip Multiprocessors [43]
C.II Exploring the Prefetcher/Memory Controller Design Space: An

Opportunistic Prefetch Scheduling Strategy
-

already observed that the benefits of prefetching are closely tied to DRAM page
locality [41]. Consequently, we decided to join forces and develop a detailed memory
model based on the DDR2 standard document [71].

During the implementation of this model, we became interested in memory access
scheduling. We started by implementing a simple First Come First Served (FCFS)
scheduler and the First Ready - First Come First Served (FR-FCFS) scheduler by
Rixner et al. [120]. While porting his prefetcher implementations to M5, Grannæs
observed that cleverly scheduling prefetches and demand reads can improve per-
formance. In Paper C.I, we piggybacked prefetches to open pages on demand reads
to these pages which make prefetches cheaper than ordinary reads. We observed
that prefetching improved performance as long as the accuracy of the prefetcher
was above 38%. This threshold is found empirically and indicates the break-even
point between the cost of prefetching and the cost of regular reads. In other words,
it indicates the amount of useless data we can allow the prefetcher to fetch from
open pages without degrading performance.

Paper C.II was born as an idea for a new prefetching heuristic. Grannæs observed
that the state of the DRAM system could be used to generate prefetches that can
be efficiently executed. This is the opposite approach to conventional prefetching
heuristics which create prefetches based on the miss address stream. The key
component of this system is the Page Vector Table (PVT) which contains one bit
for each cache line in a DRAM page. While working on this idea, we realized that
the PVT could be used as the interface between the prefetcher and the memory
bus scheduler. In this system, the prefetcher sets the bits of the cache lines it
wants to retrieve in the PVT which facilitate efficient prefetch scheduling. In our
opportunistic prefetch scheduling strategy, we fetch all marked cache blocks in the
PVT at the time the memory bus scheduler closes the page if the accuracy of the
prefetcher is sufficiently high. Paper C.II also explores the prefetch scheduling
design space, indicating that the opportunistic strategy has an advantage when
bandwidth constrained CMPs are combined with aggressive prefetchers. At the
time of writing, Paper C.II is being reviewed by the Journal of Computer Science
and Technology.

In this thesis, we investigate resource management in CMP memory systems. While
the contributions in categories A manage off-chip bandwidth to improve system-
wide performance metrics, prefetching aims to put the available bandwidth to good
use. Consequently, it provides more bandwidth to processes that have predictable
memory access patterns. This may decrease the performance of processes with

4.5. Category D: Prefetching Systems 39

Table 4.5: Paper Category D

ID Title Ref.

D.I Storage Efficient Hardware Prefetching using Delta Correlating
Prediction Tables

[44]

D.II Multi-level Hardware Prefetching Using Low Complexity Delta
Correlating Prediction Tables with Partial Matching

[45]

access patterns that are difficult to predict. In both Paper C.I and C.II, we show
that our prefetch scheduling techniques reduce the maximum slowdown relative to
no prefetching. The reason is that prefetching to open pages in many cases can
be carried out in cycles that would otherwise be wasted due to DRAM command
dependencies.

4.5 Category D: Prefetching Systems

Perez et al. [115] compared a large number of data prefetching heuristics and found
that prefetcher performance could be very different depending on benchmark se-
lection, choice of simulator and other methodological considerations. Furthermore,
they found that the published papers often lacked significant implementation de-
tails. For these reasons, they proposed that the research community should use a
common simulator infrastructure to facilitate efficient sharing of the implementa-
tion of the new techniques.

To address these issues, the Journal of Instruction Level Parallelism (JILP) orga-
nized the first Data Prefetching Championship (DPC) early in 2009. The organizers
provided a common simulator infrastructure with a simple programming interface
to ensure fair and accurate comparison of the different prefetchers. Since Grannæs
already had considerable experience with many different prefetchers, we decided
to participate in the championship. Our prefetcher was able to detect the same
patterns as the top performing PC/DC prefetcher [107] in the study of Perez et al.
with a lower storage cost. We entered the competition with Paper D.I and finished
in fourth place. We further observed that the key ideas from the three better per-
forming prefetchers could easily be incorporated into our prefetching system. This
observation resulted in Paper D.II.

Category D is not included in this thesis because it focuses on prefetching in a single-
core processor. Consequently, the task is to achieve the best possible utilization of
the memory system for a single process. Although this problem is similar to the
core issues in this thesis, it is not the same. Therefore, Category D is left out to
keep a clear focus on CMP memory systems.

40 Chapter 4. Research Process

Table 4.6: Paper Category E

ID Title Ref.

E.I Experimental Validation of the Learning Effect for a Pedagogical
Game on Computer Fundamentals

[127]

4.6 Category E: Learning and ICT

My involvement with Paper E.I was a result of my duty work as a teaching assistant
in our computer fundamentals course. In this course, the main task of the teaching
assistant is the day to day operation of the Age of Computers (AoC) educational
game. AoC also contributes to Learning and ICT (LICT) which is selected as
a strategic research area for NTNU. In the autumn of 2006, Sindre and Natvig
decided to carry out an experiment to investigate the learning effect of AoC since
this had been requested by a reviewer on a pending journal article. Since I was
running the AoC system at the time, I was asked to prepare a version of AoC
for the experiment as well as assist with other practical matters. This experiment
eventually became Paper E.I.

Chapter 5

Research Results

The aim of this chapter is to provide an overview of the papers included in this
thesis. The included papers are discussed in sections 5.1 through 5.7. These sections
contain the abstract of the paper and a description of the contributions of the
different co-authors. Most of the sections also contain a discussion on how the
paper is viewed in retrospective. Paper A.IV, Paper B.II and Paper C.II were
finished very recently so the sections describing these papers do not include a
retrospective view. Finally, Section 5.8 lists the papers that were not included in
this thesis.

5.1 Paper A.II

A High Performance Adaptive Miss Handling Architecture for Chip
Multiprocessors

M. Jahre and L. Natvig
Transactions on High-Performance Embedded Architectures and Compilers

2009

5.1.1 Abstract

Chip Multiprocessors (CMPs) mainly base their performance gains on exploiting
thread-level parallelism. Consequently, powerful memory systems are needed to
support an increasing number of concurrent threads. Conventional CMP memory
systems do not account for thread interference which can result in reduced overall
system performance. Therefore, conventional high bandwidth Miss Handling Ar-
chitectures (MHAs) are not well suited to CMPs because they can create severe

42 Chapter 5. Research Results

memory bus congestion. However, high miss bandwidth is desirable when sufficient
bus bandwidth is available. This paper presents a novel, CMP-specific technique
called the Adaptive Miss Handling Architecture (AMHA). If the memory bus is
congested, AMHA improves performance by dynamically reducing the maximum
allowed number of concurrent L1 cache misses of a processor core if this creates a
significant speedup for the other processors. Compared to a 16-wide conventional
MHA, AMHA improves performance by 12% on average for one of the workload
collections used in this work.

5.1.2 Roles of the Authors

I did most of the work on this paper. Natvig worked as an advisor and provided a
large number of helpful comments and improvements to the revisions of this paper.

5.1.3 Retrospective View

In this paper, we use the Multiprogrammed Baseline (MPB) as the basis for com-
puting the system performance metrics. In other words, the baseline configuration
has a static and equal partitioning of memory bus bandwidth and cache space. This
is not ideal since it makes it difficult to know if the performance improvements are
due to the AMHA technique or due to the process being able to grab more cache
space in the shared mode. Furthermore, Network Fair Queuing (NFQ) partitions
bandwidth but does not necessarily latency [102, 119]. However, the main perfor-
mance trends are consistent with Paper A.IV which uses a significantly improved
methodology.

5.2 Paper A.III

A Light-Weight Fairness Mechanism for Chip Multiprocessor
Memory Systems

M. Jahre and L. Natvig
ACM International Conference on Computing Frontiers

2009

5.2.1 Abstract

Chip Multiprocessor (CMP) memory systems suffer from the effects of destructive
thread interference. This interference reduces performance predictability because
it depends heavily on the memory access pattern and intensity of the co-scheduled
threads. In this work, we confirm that all shared units must be thread-aware

5.3. Paper A.IV 43

in order to provide memory system fairness. However, the current proposals for
fair memory systems are complex as they require an interference measurement
mechanism and a fairness enforcement policy for all hardware-controlled shared
units. Furthermore, they often sacrifice system throughput to reach their fairness
goals which is not desirable in all systems.

In this work, we show that our novel fairness mechanism, called the Dynamic
Miss Handling Architecture (DMHA), is able to reduce implementation complexity
by using a single fairness enforcement policy for the complete hardware-managed
shared memory system. Specifically, it controls the total miss bandwidth available
to each thread by dynamically manipulating the number of Miss Status Holding
Registers (MSHRs) available in each private data cache. When fairness is chosen
as the metric of interest and we compare to a state-of-the-art fairness-aware mem-
ory system, DMHA improves fairness by 26% on average with the single program
baseline. With a different configuration, DMHA improves throughput by 13% on
average compared to a conventional memory system.

5.2.2 Roles of the Authors

The roles of the authors were accurately captured by the description in Section
5.1.2.

5.2.3 Retrospective View

In this paper, we use both the Multiprogrammed Baseline (MPB) and the Single
Program Baseline (SPB). Consequently, it is an improvement compared to Paper
A.II, but there is still some way to go. In particular, fast forwarding for a fixed
number of clock cycles may result in a different part of the benchmark being used in
the private and shared modes. If these parts are from different benchmark phases,
the results will be strange. We cannot see any evidence of this situation in the
results in the paper, but at the same time we cannot say that it did not occur. The
most important result in this publication is the results from the offline-best-static
configuration, and these results are consistent with the results in Paper A.IV.

5.3 Paper A.IV

Managing Chip Multiprocessor Memory Systems with Miss
Bandwidth Allocations

M. Jahre, M. Grannæs and L. Natvig
Submitted to: IEEE Transactions on Computers

2010

44 Chapter 5. Research Results

5.3.1 Abstract

Chip Multiprocessors (CMPs) share on-chip units to achieve good resource utiliza-
tion. This design choice makes destructive interference possible and may cause
performance degradations. Resource allocation systems can avoid this problem,
and previous approaches have provided separate resource allocation systems for
each shared hardware-controlled unit. In this work, we show that resource sharing
can be globally controlled by carefully orchestrating the miss bandwidth avail-
able to each running process. Our Miss Handling Architecture Bandwidth Control
(MHABC) technique improves system performance by tuning the maximum num-
ber of concurrent shared memory requests for each process to runtime interference
patterns. MHABC leverages a novel interference measurement methodology that
estimates the interference-free IPC of a process with an average error of -0.3% and
a standard deviation of 12.0%. When MHABC is configured to optimize for the
Harmonic Mean of Speedups (HMoS) metric, it improves HMoS by up to 106%
and fairness by up to 200% with a worst-case reduction in throughput of 3%.

5.3.2 Roles of the Authors

I did most of the work on this paper. However, I did have several interesting
discussions with Grannæs in the early phases of this work, and he provided many
helpful comments on the paper. Furthermore, Grannæs had the original idea for
how a set-sampled Auxiliary Tag Directory (ATD) could be integrated with the
memory bus interference technique. Natvig worked as an advisor and provided a
large number of helpful comments and improvements.

5.4. Paper B.I 45

5.4 Paper B.I

A Quantitative Study of Memory System Interference in Chip
Multiprocessor Architectures

M. Jahre, M. Grannæs and L. Natvig
11th IEEE International Conference on High Performance Computing and

Communications
2009

5.4.1 Abstract

The potential for destructive interference between running processes is increased
as Chip Multiprocessors (CMPs) share more on-chip resources. We believe that
understanding the nature of memory system interference is vital to achieve good
fairness/complexity/performance trade-offs in CMPs. Our goal in this work is to
quantify the latency penalties due to interference in all hardware-controlled, shared
units (i.e. the on-chip interconnect, shared cache and memory bus). To achieve this,
we simulate a wide variety of realistic CMP architectures. In particular, we vary
the number of cores, interconnect topology, shared cache size and off-chip memory
bandwidth. We observe that interference in the off-chip memory bus accounts for
between 63% and 87% of the total interference impact while the impact of cache
capacity interference can be lower than indicated by previous studies (between 5%
and 32% of the total impact). In addition, as much as 11% of the total impact can
be due to uncontrolled allocation of shared cache Miss Status Holding Registers
(MSHRs).

5.4.2 Roles of the Authors

I had the initial idea, carried out the preliminary investigations and proposed the
initial design. This design was then refined through extensive discussions with
Grannæs. I implemented the refined idea in the common simulator framework
which contains code produced by both Grannæs and myself. Furthermore, I devised
the initial experimental methodology and planned which experiments should be
carried out. The experiment plan and methodology was then discussed thoroughly
with Grannæs.

I wrote the first draft and had the final word in all matters regarding the paper.
Grannæs read the draft thoroughly and provided significant improvements to the
presentation, organization and language. Natvig helped with proof-reading and
guidance.

46 Chapter 5. Research Results

5.4.3 Retrospective View

In this paper, we observed that the latency cost of cache capacity interference can
be a small part of the total interference latency. However, it is not clear from the
paper that cache interference is the only part of the total interference latency that a
resource management technique may remove completely. Consequently, the results
should not be taken as evidence that shared cache resource management is not
useful. However, we do advocate that shared cache techniques should be evaluated
with a realistic bus model to give a more correct view of their overall impact.

5.5 Paper B.II

DIEF: An Accurate Interference Feedback Mechanism for Chip
Multiprocessor Memory Systems
M. Jahre, M. Grannæs and L. Natvig

5th International Conference on High Performance and Embedded
Architectures and Compilers

2010

5.5.1 Abstract

Chip Multi-Processors (CMPs) commonly share hardware-controlled on-chip units
that are unaware that memory requests are issued by independent processors. Con-
sequently, the resources a process receives will vary depending on the behavior of
the processes it is co-scheduled with. Resource allocation techniques can avoid
this problem if they are provided with an accurate interference estimate. Our
Dynamic Interference Estimation Framework (DIEF) provides this service by dy-
namically estimating the latency a process would experience with exclusive access
to all hardware-controlled, shared resources. Since the total interference latency is
the sum of the interference latency in each shared unit, the system designer can
choose estimation techniques to achieve the desired accuracy/complexity trade-off.
In this work, we provide high-accuracy estimation techniques for the on-chip inter-
connect, shared cache and memory bus. This DIEF implementation has an average
relative estimate error between -0.4% and 4.7% and a standard deviation between
2.4% and 5.8%.

5.5.2 Roles of the Authors

The roles of the authors were accurately captured by the description in Section
5.4.2.

5.6. Paper C.I 47

5.6 Paper C.I

Low-Cost Open-Page Prefetch Scheduling in Chip Multiprocessors
M. Grannæs, M. Jahre and L. Natvig

XXVI IEEE International Conference on Computer Design
2008

5.6.1 Abstract

The pressure on off-chip memory increases significantly as more cores compete for
the same resources. A CMP deals with the memory wall by exploiting thread
level parallelism (TLP), shifting the focus from reducing overall memory latency to
memory throughput. This extends to the memory controller where the 3D structure
of modern DRAM is exploited to increase throughput.

Traditionally, prefetching reduces latency by fetching data before it is needed. In
this paper we explore how prefetching can be used to increase memory throughput.
We present our own low-cost open-page prefetch scheduler that exploits the 3D
structure of DRAM when issuing prefetches. We show that because of the complex
structure of modern DRAM, prefetches can be made cheaper than ordinary reads,
thus making prefetching beneficial even when prefetcher accuracy is low. As a
result, prefetching with good coverage is more important than high accuracy. By
exploiting this observation our low-cost open page scheme increases performance
and QoS. Furthermore, we explore how prefetches should be scheduled in a state of
the art memory controller by examining sequential, scheduled region, CZone/Delta
Correlation and reference prediction table prefetchers.

5.6.2 Roles of the Authors

Grannæs had the initial idea, carried out the preliminary investigations and pro-
posed the initial design. This design was then refined through extensive discussions
with me. Grannæs implemented the refined idea in the common simulator frame-
work which contains code produced by both Grannæs and myself. Furthermore,
Grannæs devised the initial experimental methodology and planned which exper-
iments should be carried out. The experiment plan and methodology was then
discussed thoroughly with me.

Grannæs wrote the first draft and had the final word in all matters regarding the
paper. I read the draft thoroughly and provided significant improvements to the
presentation, organization and language. Natvig helped with proof-reading and
guidance.

48 Chapter 5. Research Results

5.6.3 Retrospective View

For this paper, a clarification about the aggregated performance measurements is
in order. Here, the basic component is the per-process IPC speedup of a configura-
tion with prefetching relative to a configuration without prefetching. Then, work-
load performance is quantified with the average of these speedups. Consequently,
the metric used is similar to Aggregate Weighted Speedup (AWS). The difference
is that the baseline is performance without prefetching and not performance in
an interference-free configuration. The per-process performance degradations are
quantified by reporting the largest slowdowns compared to no prefetching.

5.7 Paper C.II

Exploring the Prefetcher/Memory Controller Design Space: An
Opportunistic Prefetch Scheduling Strategy

M. Grannæs, M. Jahre and L. Natvig
Submitted to: Journal of Computer Science and Technology

2010

5.7.1 Abstract

Prefetching is a well-known technique for bridging the memory gap. By predicting
future memory references the prefetcher can fetch data from main memory and
insert it into the cache such that overall performance is increased. Modern memory
controllers reorder memory requests to exploit the 3D structure of modern DRAM
interfaces. In particular, prioritizing memory requests that use open pages increases
throughput significantly.

In this work, we investigate the prefetcher/memory controller design space along
three dimensions: prefetching heuristic, prefetch scheduling strategy and available
memory bandwidth. In particular, we evaluate 5 different prefetchers and 6 prefetch
scheduling strategies. Through this extensive investigation, we observed that prior
prefetch scheduling strategies often cause memory bus contention in bandwidth
constrained CMPs which in turn causes performance regressions. To avoid this
problem, we propose a novel prefetch scheduling heuristic called Opportunistic Pre-
fetch Scheduling that selectively prioritizes prefetches to open DRAM pages such
that performance regressions are minimized. Opportunistic prefetch scheduling re-
duces performance regressions by 6.7X and 5.2X, while improving performance by
17 % and 20 % for sequential and scheduled region prefetching, compared to the
direct scheduling strategy.

5.8. Other Publications 49

5.7.2 Roles of the Authors

The roles of the authors were accurately captured by the description in Section
5.6.2.

5.8 Other Publications

In addition to the above publications, I have contributed to the following articles:

• Marius Grannæs, Magnus Jahre and Lasse Natvig, Multi-Level Hardware
Prefetching using Low Complexity Delta Correlating Prediction
Tables with Partial Matching, 5th International Conference on High Per-
formance and Embedded Architectures and Compilers, 2010, Best Paper
Nominee

• Marius Grannæs, Magnus Jahre and Lasse Natvig, Storage Efficient Hard-
ware Prefetching using Delta Correlating Prediction Tables, 1st
JILP Data Prefetching Championship, 2009

• Guttorm Sindre, Lasse Natvig and Magnus Jahre, Experimental Valida-
tion of the Learning Effect for a Pedagogical Game on Computer
Fundamentals, IEEE Transactions on Education, 2009

• Magnus Jahre and Lasse Natvig, Performance Effects of a Cache Miss
Handling Architecture in a Multi-core Processor, Norwegian Infor-
matics Conference, 2007

Furthermore, the we have been asked to submit extensions of two of our papers to
special issues of two different journals:

• Marius Grannæs, Magnus Jahre and Lasse Natvig, Storage Efficient Hard-
ware Prefetching using Delta Correlating Prediction Tables, To ap-
pear in: Journal of Instruction Level Parallelism, 2010

• Marius Grannæs, Magnus Jahre and Lasse Natvig, Multi-Level Hardware
Prefetching using Low Complexity Delta Correlating Prediction
Tables with Partial Matching, To appear in: Transactions on High-
Performance Embedded Architectures and Compilers, 2010

50

Chapter 6

Concluding Remarks

6.1 Conclusion

In this thesis, we have illustrated how managing bandwidth allocations can im-
prove system performance. We have targeted two partially overlapping types of
bandwidth: miss-bandwidth and off-chip bandwidth.

We have explored several feedback-directed techniques for managing miss band-
width. Our starting point was Paper A.II which uses memory bus utilization mea-
surements to control miss bandwidth allocations and improve performance. In Pa-
per A.III, we showed that managing miss bandwidth also could improve throughput
and fairness. Finally, Paper A.IV models the performance effects of miss bandwidth
allocations at runtime and uses this model to allocate bandwidth. The resulting
system can improve performance, throughput or fairness depending on which per-
formance metric it is configured to optimize for. The model-based approach of Pa-
per A.IV is powered by the Dynamic Interference Estimation Framework (DIEF)
from Paper B.II. DIEF provides accurate estimates of the average memory latency
a process would experience with exclusive access to all hardware-managed shared
resources. We also provide a performance model that uses DIEF to accurately es-
timate what the performance of a process would be in the absence of interference.

In addition, we improve performance by using prefetching to utilize off-chip band-
width more efficiently. Here, we choose prefetches that can be efficiently executed
in the rows, columns and banks of modern DRAMs. In this way, we increase bus
utilization which makes it possible to execute prefetches without severely inter-
fering with demand reads. Furthermore, this technique reduces the performance
reduction of the processes that do not benefit from prefetching.

52 Chapter 6. Concluding Remarks

6.2 Contributions

The main research question of this thesis is:

How, and at what cost, can performance be improved by managing
resource sharing in CMP memory systems?

I approach this question through three subquestions. In this section, I review the
subquestions in light of the results presented in this thesis.

6.2.1 Research Question 1

RQ1: How, and at what cost, can CMP performance be improved by
managing miss bandwidth?

Paper A.II, A.III and A.IV shed light on this research question. These papers man-
age miss bandwidth allocations to reduce interference and improve performance.
We provide two fundamentally different approaches to miss bandwidth manage-
ment. In Paper A.II and A.III, we use an iterative approach. In these papers,
miss bandwidth allocations are chosen based on measurements and evaluated in
the real system. Performance feedback is used to check if the new allocation was
better than the previous one. In Paper A.IV, we provide an analytical model of
the performance effects of miss bandwidth allocations and use this model to make
allocation decisions.

The implementation cost of the miss bandwidth allocation techniques are closely
related to their complexity. For the iterative methods, we use relatively simple
algorithms. Furthermore, the storage overhead is low since a few strategically
placed counters are sufficient to provide the required feedback. For the model-based
method, the algorithms are fairly complex, and the accurate feedback mechanisms
have a moderate storage cost. Since allocation decisions are used for a long period
of time, we can reduce the implementation cost with a high-latency implementation.
In fact, the total storage requirement for the 4-core CMP feedback mechanisms in
Paper A.IV is only 13.8 KB. The main storage cost drivers are the memory bus
interference measurement techniques and the Auxiliary Tag Directory (ATD).

6.2.2 Research Question 2

RQ2: How, and at what cost, can off-chip bandwidth management be
used to increase CMP performance?

We approach this research question in both a direct and indirect manner. In
the direct approach (Papers C.I and C.II), we use prefetching to provide larger
bandwidth allocations to processes with predictable memory access patterns. Thus,
we aim to increase the performance of these processes. By choosing prefetches to
improve DRAM page locality, we increase off-chip memory bus utilization. In Paper

6.2. Contributions 53

C.I, we increase bus utilization by piggybacking prefetches to open pages on demand
reads to these pages. Since this makes prefetches cheaper in terms of latency than
demand reads, it is worthwhile to issue prefetches even when prefetcher accuracy
is moderately low.

In Paper C.II, we propose the opportunistic prefetch scheduling strategy. In this
paper, we use a novel hardware structure called the Page Vector Table (PVT) to
make prefetch information easily available to the memory bus scheduler. We use
the PVT to issue prefetches to open pages when the scheduler closes a DRAM
page. In this way, we increase the performance improvement of prefetching at the
same time as we reduce the performance regressions of the processes which are not
helped by prefetching. The implementation cost of these techniques is mostly due
to adding a prefetcher. In addition, the PVT has a small storage cost.

Paper A.II, A.III and A.IV primarily manage miss bandwidth. Since off-chip band-
width can be an important part of the miss bandwidth, these systems indirectly
manage off-chip bandwidth. They differ from the Category C approaches by focus-
ing on improving system performance rather than improving the performance of
individual processes. The implementation cost of these techniques was discussed
in relation to RQ1.

6.2.3 Research Question 3

RQ3: How, and at what cost, can the performance and latency effects
of resource sharing be estimated?

We provide two methodologies for estimating the latency effects of interference. In
Paper B.I, we provide an offline methodology for estimating interference latency.
We observed that the memory bus is the main interference source for the CMPs we
considered. In addition, we also found that cache capacity interference may not be
a significant part of the total interference. However, alleviating cache interference
can have large performance effects for some benchmarks since it can remove a large
part of the total memory latency. Finally, we observed that shared cache MSHRs
can have a non-negligible interference impact.

An offline approach can provide important insights, but it cannot be used for
runtime resource management. Therefore, Paper B.II provides an online technique
called the Dynamic Interference Estimation Framework (DIEF) which provides
accurate runtime estimates of private mode memory latencies. The underlying
idea is that by either measuring interference or estimating private mode latencies
in each shared unit, the total interference latency can be quantified. In Paper B.II,
we provide interference estimation techniques for crossbar and ring interconnects,
shared caches and a DDR2 memory bus. Consequently, we explore two possible
implementations of the general framework.

Paper A.IV shows how the latency measurements of DIEF can be used to provide
private mode performance estimates. This is made possible by the observation that

54 Chapter 6. Concluding Remarks

the ability of a process to utilize the parallelism available in the memory system
is very similar in the shared and private modes. Consequently, we combine shared
mode Memory Level Parallelism (MLP) measurements with DIEF’s private mode
latency estimates to provide runtime estimates of private mode performance. The
storage overhead of this technique was discussed in relation to RQ1.

6.3 Further Work

There are a number of possibilities for further work. Firstly, we argue in Paper
A.IV that our resource allocation method can be used as long as the latency cost of
allocation changes can be estimated. Consequently, we can apply the same method
to conventional resource allocation mechanisms if we provide models for the latency
cost of cache space and memory bus bandwidth allocations. In this way, we can
leverage the global view of the CMP memory system that our models provide.

Our measurement methodologies may be used to improve the decisions made by
system software (OS or virtual machine). In this context, there are a number of
open questions. For instance, it is not clear which measurements system software
needs and how accurate these measurements need to be. In addition, there is a
trade-off between the frequency of resource allocations and the need for hardware
support. The allocation policies also need to be integrated with system software.

In this thesis, we distribute bandwidth with two different mechanisms: miss band-
width allocations and prefetching. Here, miss bandwidth allocations can be used
to reduce the number of concurrent requests in the memory system. Conversely,
prefetching creates additional memory requests. Thus, combining these two mech-
anisms to improve system performance is an interesting topic for further work. To
achieve this, we need to extend our performance models to account for prefetch-
ing. In this scheme, prefetching may or may not be included in the private mode.
Disabling prefetching in the private mode removes the property that private mode
performance is an upper bound on the achievable shared mode performance. Con-
versely, enabling private mode prefetching will increase the complexity of the pri-
vate mode latency estimation scheme.

So far, we have focused on workloads that are collections of single-threaded pro-
grams. However, it is likely that multi-threaded programs will become more com-
mon as developers acknowledge that they need to parallelize their programs to fully
utilize a CMP for a single task. Consequently, future CMPs need to efficiently sup-
port workloads that are collections of single- and multi-threaded applications. In
this case, it might be possible to adapt the degree of parallelism to sharing effects
in the memory system.

6.4. Outlook 55

6.4 Outlook

The number of processing cores on a chip is expected to increase in the future
[6, 62]. It may not be worth the cost to ensure that all cores have the same shared
cache latency. Therefore, future CMPs will likely have Non-Uniform Cache Access
(NUCA) latencies [78]. Furthermore, Amdahl’s law states that as the number of
threads is increased, the relative impact of the serial part of the program will grow
[3]. For this reason, it may be helpful to have some specialized cores for serial parts
of programs and simpler cores for the parallel parts, making CMPs heterogeneous
[82]. In a heterogeneous CMP, it might also be useful to have special purpose
cores that can execute important program types with high performance and good
energy efficiency. These possibilities indicate that future resource management
systems will exist in a considerably more complicated environment than today.
This both increases the need for resource allocation schemes and the complexities
of implementing them.

Traditionally, programmers have been accustomed to processor manufacturers pro-
viding significant annual performance improvements while upholding the abstrac-
tion of serial execution [50]. With CMPs, programmer effort is required to fully
achieve the performance potential. In the short term, we can achieve good utiliza-
tion of the available hardware by concurrently executing independent programs.
However, there is often a limit on how many different tasks a user needs to carry
out at the same time. Consequently, the focus will likely shift towards parallel
processing which enables using many of the on-chip resources for completing a sin-
gle task. To achieve this, it is helpful to develop support software (e.g. libraries,
runtime systems and debug tools) that facilitate rapid development of parallel pro-
grams. These systems might need hardware support to provide accurate and timely
information that can be used for run-time and design-time performance optimiza-
tion as well as debugging. The mechanisms and methodologies proposed in this
thesis can become important primitives for such support systems.

56

Bibliography 57

Bibliography

[1] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger. Clock Rate
Versus IPC: The End of the Road for Conventional Microarchitectures.
SIGARCH Comput. Archit. News, 28(2):248–259, 2000.

[2] A. Alameldeen and D. Wood. IPC Considered Harmful for Multiprocessor
Workloads. IEEE Micro, 26(4):8–17, july-aug. 2006.

[3] G. M. Amdahl. Validity of the Single Processor Approach to Achieving Large
Scale Computing Capabilities. In AFIPS ’67 (Spring): Proceedings of the
April 18-20, Spring Joint Computer Conference, pages 483–485, 1967.

[4] D. W. Anderson, F. J. Sparacio, and R. M. Tomasulo. The IBM 360 Model
91: Processor Philosophy and Instruction Handling. IBM J. Research and
Development, pages 8–24, 1967.

[5] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. Above the
Clouds: A Berkeley View of Cloud Computing. Technical report, University
of California at Berkeley, 2009.

[6] K. Asanovic and et al. The Landscape of Parallel Computing Research: A
View from Berkeley. Technical Report UCB/EECS-2006-183, EECS Depart-
ment, University of California at Berkeley, December 2006.

[7] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An Infrastructure for
Computer System Modeling. Computer, 35:59–67, 2002.

[8] S. Belayneh and D. R. Kaeli. A Discussion on Non-Blocking/Lockup-Free
Caches. SIGARCH Comp. Arch. News, 24(3):18–25, 1996.

[9] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC Benchmark
Suite: Characterization and Architectural Implications. In PACT ’08: Pro-
ceedings of the 17th International Conference on Parallel Architectures and
Compilation Techniques, pages 72–81, 2008.

[10] M. V. Biesbrouck, T. Sherwood, and B. Calder. A Co-Phase Matrix to Guide
Simultaneous Multithreading Simulation. IEEE International Symposium on
Performance Analysis of Systems and Software, pages 45–56, 2004.

[11] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and S. K.
Reinhardt. The M5 Simulator: Modeling Networked Systems. IEEE Micro,
26(4):52–60, 2006.

[12] R. Bitirgen, E. Ipek, and J. F. Martinez. Coordinated Management of Mul-
tiple Resources in Chip Multiprocessors: A Machine Learning Approach. In
MICRO 41: Proc. of the 41th IEEE/ACM Int. Symp. on Microarchitecture,
2008.

58 Bibliography

[13] E. Bloch. The Engineering Design of the Stretch Computer. In IRE-AIEE-
ACM ’59 (Eastern): Eastern Joint IRE-AIEE-ACM Computer Conference,
pages 48–58, 1959.

[14] D. Burger, J. R. Goodman, and A. Kagi. Memory Bandwidth Limitations of
Future Microprocessors. In ISCA ’96: Proc. of the 23rd An. Int. Symp. on
Comp. Arch., 1996.

[15] J. F. Cantin, M. H. Lipasti, and J. E. Smith. Stealth Prefetching. SIGPLAN
Notices, 41(11), 2006.

[16] J. Casazza. Intel Core i7-800 Processor Series and the Intel Core i5-700
Processor Series Based on Intel Microarchitecture (Nehalem). White paper,
Intel Corp., 2009.

[17] J. Chang and G. S. Sohi. Cooperative Caching for Chip Multiprocessors.
In ISCA ’06: Proceedings of the 33rd Annual International Symposium on
Computer Architecture, pages 264–276, 2006.

[18] J. Chang and G. S. Sohi. Cooperative Cache Partitioning for Chip Multipro-
cessors. In ICS ’07: Proc. of the 21st Annual Int. Conf. on Supercomputing,
pages 242–252, 2007.

[19] T. Chen and J. Baer. Effective Hardware-Based Data Prefetching for High-
performance Processors. IEEE Transactions on Computers, 44:609–623,
1995.

[20] D. Chiou, L. Rudolph, S. Devadas, and B. S. Ang. Dynamic Cache Parti-
tioning via Columnization. Computation Structures Group Memo 430, Mas-
sachusetts Institute of Technology, 1999.

[21] V. Cuppu, B. Jacob, B. Davis, and T. Mudge. A Performance Comparison
of Contemporary DRAM Architectures. In Proc. of the 26th Inter. Symp. on
Comp. Arch., pages 222–233, 1999.

[22] F. Dahlgren and P. Stenstrom. Evaluation of Hardware-Based Stride and Se-
quential Prefetching in Shared-Memory Multiprocessors. IEEE Transactions
on Parallel and Distributed Systems, 7(4):385–398, apr 1996.

[23] W. Dally and B. Towles. Principles and Practices of Interconnection Net-
works. Morgan Kaufmann Publishers Inc., 2003.

[24] W. J. Dally and B. Towles. Route Packets, Not Wires: On-chip Inteconnec-
tion Networks. In DAC ’01: Proceedings of the 38th annual Design Automa-
tion Conference, pages 684–689, 2001.

[25] R. Das, O. Mutlu, T. Moscibroda, and C. R. Das. Application-aware Prior-
itization Mechanisms for On-Chip Networks. In MICRO 42: Proceedings of
the 42nd Annual IEEE/ACM International Symposium on Microarchitecture,
pages 280–291, 2009.

Bibliography 59

[26] P. Diaz and M. Cintra. Stream Chaining: Exploiting Multiple Levels of
Correlation in Data Prefetching. In ISCA ’09: Proceedings of the 36th Annual
International Symposium on Computer Architecture, pages 81–92, 2009.

[27] H. Dybdahl. Architectural Techniques to Improve Cache Utilization. PhD
thesis, Norwegian University of Science and Technology, 2007.

[28] H. Dybdahl and P. Stenstrom. An Adaptive Shared/Private NUCA Cache
Partitioning Scheme for Chip Multiprocessors. In HPCA ’07: Proc. of the
13th Int. Symp. on High-Performance Comp. Arch., 2007.

[29] H. Dybdahl, P. Stenstrom, and L. Natvig. A Cache-Partition Aware Replace-
ment Policy for Chip Multiprocessors. In Proceedings of 13th International
Conference of High Performance Computing (HiPC), pages 22–34, 2006.

[30] H. Dybdahl, P. Stenstrom, and L. Natvig. An LRU-based Replacement Algo-
rithm Augmented with Frequency of Access in Shared Chip-Multiprocessor
Caches. In MEDEA ’06: Proc. of the 2006 workshop on MEmory perfor-
mance, pages 45–52, 2006.

[31] E. Ebrahimi, O. Mutlu, C. J. Lee, and Y. N. Patt. Coordinated Control of
Multiple Prefetchers in Multi-core Systems. In MICRO 42: Proceedings of
the 42nd Annual IEEE/ACM International Symposium on Microarchitecture,
pages 316–326, 2009.

[32] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. Patt. Fairness via Source Throt-
tling: A Configurable and High-Performance Fairness Substrate for Multi-
Core Memory Systems. In ASPLOS XV: Proc. of the 15th Int. Conf. on
Architectural Support for Programming Languages and Operating Systems,
2010.

[33] J. Emer, P. Ahuja, E. Borch, A. Klauser, C.-K. Luk, S. Manne, S. S. Mukher-
jee, H. Patil, S. Wallace, N. Binkert, R. Espasa, and T. Juan. Asim: A
Performance Model Framework. Computer, 35(2):68–76, 2002.

[34] S. Eyerman and L. Eeckhout. System-Level Performance Metrics for Multi-
program Workloads. IEEE Micro, 28(3):42–53, 2008.

[35] K. I. Farkas and N. P. Jouppi. Complexity/Performance Tradeoffs with Non-
Blocking Loads. In ISCA ’94: Proc. of the 21st An. Int. Symp. on Comp.
Arch., pages 211–222, 1994.

[36] A. Fedorova, M. Seltzer, and M. D. Smith. Cache-fair Thread Scheduling for
Multicore Processors. Technical report, Harvard University, 2006.

[37] A. Fedorova, M. Seltzer, and M. D. Smith. Improving Performance Isola-
tion on Chip Multiprocessors via an Operating System Scheduler. In PACT
’07: Proc. of the 16th Int. Conf. on Parallel Architecture and Compilation
Techniques, pages 25–38, 2007.

60 Bibliography

[38] R. Gabor, S. Weiss, and A. Mendelson. Fairness and Throughput in Switch
on Event Multithreading. In MICRO 39: Proc. of the 39th Int. Symp. on
Microarchitecture, pages 149–160, 2006.

[39] S. Gochman, A. Mendelson, A. Naveh, and E. Rotem. Introduction to Intel
Core Duo Processor Architecture. Intel Technology Journal, 2006.

[40] P. Goyal, H. M. Vin, and H. Chen. Start-time Fair Queueing: A Scheduling
Algorithm for Integrated Services Packet Switching Networks. In SIGCOMM
’96: Conf. Proc. on App., Tech., Arch., and Protocols for Comp. Com., pages
157–168, 1996.

[41] M. Grannæs. Bandwidth-Aware Prefetching in Chip Multiprocessors. Mas-
ter’s thesis, Norwegian University of Science and Technology, 2006.

[42] M. Grannæs. Reducing Memory Latency by Improving Resource Utilization.
PhD thesis, Norwegian University of Science and Technology, 2010.

[43] M. Grannæs, M. Jahre, and L. Natvig. Low-Cost Open-Page Prefetch
Scheduling in Chip Multiprocessors. In XXVI IEEE International Conference
on Computer Design (ICCD), 2008.

[44] M. Grannæs, M. Jahre, and L. Natvig. Storage Efficient Hardware Prefetch-
ing using Delta Correlating Prediction Tables. In Data Prefetching Champi-
onships, 2009.

[45] M. Grannæs, M. Jahre, and L. Natvig. Multi-level Hardware Prefetching Us-
ing Low Complexity Delta Correlating Prediction Tables with Partial Match-
ing. In International Conference on High-Performance Embedded Architec-
tures and Compilers, 2010.

[46] B. Grot, S. W. Keckler, and O. Mutlu. Preemptive Virtual Clock: a Flexible,
Efficient, and Cost-Effective QoS Scheme for Networks-on-Chip. In MICRO
42: Proceedings of the 42nd Annual IEEE/ACM International Symposium
on Microarchitecture, pages 268–279, 2009.

[47] F. Guo, Y. Solihin, L. Zhao, and R. Iyer. A Framework for Providing Quality
of Service in Chip Multi-Processors. In MICRO 40: Proc. of the 40th An.
IEEE/ACM Int. Symp. on Microarchitecture, 2007.

[48] G. Hamerly, E. Perelman, J. Lau, and B. Calder. Simpoint 3.0: Faster and
More Flexible Program Analysis. In Journal of Instruction Level Parallelism,
2005.

[49] N. Hardavellas, S. Somogyi, T. F. Wenisch, R. E. Wunderlich, S. Chen,
J. Kim, B. Falsafi, J. C. Hoe, and A. G. Nowatzyk. SimFlex: A Fast, Accu-
rate, Flexible Full-System Simulation Framework for Performance Evaluation
of Server Architecture. In SIGMETRICS Perform. Eval. Rev., pages 31–34,
2004.

Bibliography 61

[50] J. L. Hennessy and D. A. Patterson. Computer Architecture - A Quantitative
Approach, Fourth Edition. Morgan Kaufmann Publishers, 2007.

[51] J. L. Henning. SPEC CPU2006 Benchmark Descriptions. SIGARCH Comput.
Archit. News, 34(4):1–17, 2006.

[52] A. Herdrich, R. Illikkal, R. Iyer, D. Newell, V. Chadha, and J. Moses. Rate-
based QoS Techniques for Cache/Memory in CMP Platforms. In ICS ’09:
Proceedings of the 23rd International Conference on Supercomputing, pages
479–488, 2009.

[53] M. Hill and A. Smith. Evaluating Associativity in CPU Caches. IEEE Trans-
actions on Computers, 38:1612–1630, 1989.

[54] M. D. Hill. Aspects of Cache Memory and Instruction Buffer Performance.
PhD thesis, University of California, Berkeley, 1987.

[55] H. Hofstee. Power Efficient Processor Architecture and the Cell Processor.
HPCA 11: 11th Int. Symp. on High-Performance Comp. Arch., pages 258–
262, 2005.

[56] L. R. Hsu, S. K. Reinhardt, R. Iyer, and S. Makineni. Communist, Utilitarian,
and Capitalist Cache Policies on CMPs: Caches as a Shared Resource. In
PACT ’06: Proc. of the 15th Int. Conf. on Parallel Arch. and Comp. Tech.,
pages 13–22, 2006.

[57] C. J. Hughes, V. S. Pai, P. Ranganathan, and S. V. Adve. RSIM: Simulating
Shared-Memory Multiprocessors with ILP Processors. Computer, 35(2):40–
49, 2002.

[58] J. Huh, D. Burger, and S. W. Keckler. Exploring the Design Space of Future
CMPs. In PACT ’01: Proc. of the 2001 Int. Conf. on Parallel Architectures
and Compilation Techniques, pages 199–210, 2001.

[59] I. Hur and C. Lin. Adaptive History-Based Memory Schedulers. In MICRO
37: Proc. of the 37th An. IEEE/ACM Int. Symp. on Microarch., pages 343–
354, 2004.

[60] E. Ipek, O. Mutlu, J. Martinez, and R. Caruana. Self-Optimizing Memory
Controllers: A Reinforcement Learning Approach. In ISCA ’08: Proc. of the
35th Int. Symp. on Computer Architecture, pages 39–50, 2008.

[61] ITRS. International Technology Roadmap for Semiconductors. http://www.
itrs.net/, 2006.

[62] ITRS. International Technology Roadmap for Semiconductors - 2007 Edition.
http://www.itrs.net/, 2007.

[63] R. Iyer. CQoS: A Framework for Enabling QoS in Shared Caches of CMP
Platforms. In ICS ’04: Proceedings of the 18th An. Int. Conf. on Supercom-
puting, pages 257–266, 2004.

http://www.itrs.net/
http://www.itrs.net/
http://www.itrs.net/

62 Bibliography

[64] R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni, D. Newell, Y. Solihin,
L. Hsu, and S. Reinhardt. QoS Policies and Architecture for Cache/Memory
in CMP Platforms. In SIGMETRICS ’07, pages 25–36, 2007.

[65] M. Jahre. Improving the Performance of Parallel Applications in Chip Mul-
tiprocessors with Architectural Techniques. Master’s thesis, Norwegian Uni-
versity of Science and Technology, 2007.

[66] M. Jahre and L. Natvig. Performance Effects of a Cache Miss Handling
Architecture in a Multi-core Processor. In Norwegian Informatics Conference,
2007.

[67] M. Jahre and L. Natvig. A High Performance Adaptive Miss Handling Ar-
chitecture for Chip Multiprocessors. Transactions on High Performance Em-
bedded Architecture and Compilation, 4(1), 2009.

[68] M. Jahre and L. Natvig. A Light-Weight Fairness Mechanism for Chip Mul-
tiprocessor Memory Systems. In CF ’09: Proc. of the 6th ACM Conf. on
Computing Frontiers, pages 1–10, 2009.

[69] M. Jahre, M. Grannæs, and L. Natvig. A Quantitative Study of Memory
System Interference in Chip Multiprocessor Architectures. In 11th IEEE
International Conference on High Performance Computing and Communica-
tions (HPCC), pages 622–629, 2009.

[70] M. Jahre, M. Grannæs, and L. Natvig. DIEF: An Accurate Interference
Feedback Mechanism for Chip Multiprocessor Memory Systems. In Interna-
tional Conference on High-Performance Embedded Architectures and Com-
pilers, pages 292–306, 2010.

[71] DDR2 SDRAM Specification. JEDEC Solid State Tech. Association, May
2006.

[72] L. K. John. More on Finding a Single Number to Indicate Overall Perfor-
mance of a Benchmark Suite. SIGARCH Comput. Archit. News, 32(1):3–8,
2004.

[73] L. K. John and L. Eeckhout, editors. Performance Evaluation and Bench-
marking. CRC Press, 2005.

[74] R. Kalla, B. Sinharoy, and J. M. Tendler. IBM Power5 Chip: A Dual-Core
Multithreaded Processor. IEEE Micro, 24(2):40–47, 2004.

[75] T. S. Karkhanis and J. E. Smith. A First-Order Superscalar Processor Model.
ISCA ’04: Proceedings of the 31st An. Int. Symp. on Computer Architecture,
2004.

[76] D. Kaseridis, J. Stuecheli, J. Chen, and L. K. John. A Bandwidth-aware
Memory-subsystem Resource Management using Non-invasive Resource Pro-
filers for Large CMP Systems. In HPCA ’10: Proc. of the 16th Int. Symp.
on High-Performance Comp. Arch., 2010.

Bibliography 63

[77] T. Kilburn, D. B. G. Edwards, M. J. Lanigan, and F. H. Sumner. One-level
Storage System. IRE Transactions on Electronic Computers, 11(2):223–235,
1962.

[78] C. Kim, D. Burger, and S. W. Keckler. An Adaptive, Non-Uniform Cache
Structure for Wire-Delay Dominated On-Chip Caches. SIGPLAN Not., 37
(10):211–222, 2002.

[79] S. Kim, D. Chandra, and Y. Solihin. Fair Cache Sharing and Partitioning
in a Chip Multiprocessor Architecture. In PACT ’04: Proc. of the 13th Int.
Conf. on Parallel Architectures and Compilation Techniques, pages 111–122,
2004.

[80] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-Way Multi-
threaded Sparc Processor. IEEE Micro, 25(2):21–29, 2005.

[81] D. Kroft. Lockup-free Instruction Fetch/Prefetch Cache Organization. In
ISCA ’81: Proc. of the 8th An. Symp. on Comp. Arch., pages 81–87, 1981.

[82] R. Kumar, D. M. Tullsen, N. P. Jouppi, and P. Ranganathan. Heterogeneous
Chip Multiprocessors. Computer, 38(11):32–38, 2005.

[83] R. Kumar, V. Zyuban, and D. M. Tullsen. Interconnections in Multi-Core
Architectures: Understanding Mechanisms, Overheads and Scaling. In ISCA
’05: Proc. of the 32nd Int. Symp. on Comp. Arch., pages 408–419, 2005.

[84] A. J. Lande. Evaluering av Chip Multiprosessor Simulatorer (in Norwegian).
Master’s thesis, Norwegian University of Science and Technology, Norway,
June 2006.

[85] C. J. Lee, O. Mutlu, V. Narasiman, and Y. N. Patt. Prefetch-Aware DRAM
Controllers. In MICRO ’08: Proceedings of the 41st IEEE/ACM Interna-
tional Symposium on Microarchitecture, pages 200–209, 2008.

[86] C. J. Lee, V. Narasiman, O. Mutlu, and Y. N. Patt. Improving Memory Bank-
Level Parallelism in the Presence of Prefetching. In MICRO 42: Proceedings
of the 42nd Annual IEEE/ACM International Symposium on Microarchitec-
ture, pages 327–336, 2009.

[87] J. W. Lee, M. C. Ng, and K. Asanovic. Globally-Synchronized Frames for
Guaranteed Quality-of-Service in On-Chip Networks. In ISCA ’08: Proceed-
ings of the 35th Annual International Symposium on Computer Architecture,
pages 89–100, 2008.

[88] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan. Gaining
Insights into Multicore Cache Partitioning: Bridging the Gap between Sim-
ulation and Real Systems. In HPCA ’08: Proc. of the 13th Int. Symp. on
High-Perf. Comp. Arch., 2008.

64 Bibliography

[89] W. Lin, S. K. Reinhardt, and D. Burger. Reducing DRAM Latencies with
an Integrated Memory Hierarchy Design. In HPCA ’01: Proceedings of the
7th International Symposium on High-Performance Computer Architecture,
pages 301–312, 2001.

[90] W. Lin, S. K. Reinhardt, and D. Burger. Designing a Modern Memory
Hierarchy with Hardware Prefetching. IEEE Transactions on Computers,
50(11), 2001.

[91] F. Liu, X. Jiang, and Y. Solihin. Understanding How Off-Chip Memory Band-
width Partitioning in Chip Multiprocessors Affects System Performance. In
2010 IEEE 16th International Symposium on High Performance Computer
Architecture (HPCA), pages 1–12, 2010.

[92] G. H. Loh. 3D-Stacked Memory Architectures for Multi-core Processors. In
ISCA ’08: Proceedings of the 35th International Symposium on Computer
Architecture, pages 453–464, 2008.

[93] K. Luo, J. Gummaraju, and M. Franklin. Balancing Throughput and Fairness
in SMT Processors. In ISPASS, 2001.

[94] M5 Documentation. SPEC2006 Benchmarks. http://www.m5sim.org/wiki/
index.php/SPEC2006_benchmarks. Retrieved 11.03.2010.

[95] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Haallberg,
J. Hogberg, F. Larsson, A. Moestedt, and B. Werner. Simics: A Full System
Simulation Platform. Computer, 35(2):50–58, 2002.

[96] M. M. K. Martin, D. J. Sorin, M. D. Hill, and D. A. Wood. Bandwidth
Adaptive Snooping. In HPCA ’02: Proc. of the 8th Int. Symp. on High-
Performance Comp. Arch., page 251, 2002.

[97] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.
Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood. Multifacet’s Gen-
eral Execution-Driven Multiprocessor Simulator (GEMS) Toolset. SIGARCH
Comput. Archit. News, 33(4):92–99, 2005.

[98] C. J. Mauer, M. D. Hill, and D. A. Wood. Full-System Timing-First Simu-
lation. In SIGMETRICS ’02: Proceedings of the 2002 ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer Sys-
tems, pages 108–116, 2002.

[99] M. Moreto, F. J. Cazorla, A. Ramirez, and M. Valero. Online Prediction
of Applications Cache Utility. In Int. Conf. on Embedded Comp. Systems:
Architectures, Modeling and Simulation (IC-SAMOS), pages 169–177, 2007.

[100] M. Moreto, F. J. Cazorla, A. Ramirez, R. Sakellariou, and M. Valero.
FlexDCP: A QoS Framework for CMP Architectures. SIGOPS Oper. Syst.
Rev., 43(2):86–96, 2009.

http://www.m5sim.org/wiki/index.php/SPEC2006_benchmarks
http://www.m5sim.org/wiki/index.php/SPEC2006_benchmarks

Bibliography 65

[101] T. Moscibroda and O. Mutlu. Memory Performance Attacks: Denial of Mem-
ory Service in Multi-Core Systems. In SS’07: Proceedings of 16th USENIX
Security Symposium, pages 1–18, 2007.

[102] O. Mutlu and T. Moscibroda. Stall-Time Fair Memory Access Scheduling for
Chip Multiprocessors. In MICRO 40: Int. Symp. on Microarchitecture, 2007.

[103] O. Mutlu and T. Moscibroda. Parallelism-Aware Batch Scheduling: Enhanc-
ing both Performance and Fairness of Shared DRAM Systems. In ISCA ’08:
Proc. of the 35th An. Int. Symp. on Comp. Arch., pages 63–74, 2008.

[104] C. Natarajan, B. Christenson, and F. Briggs. A Study of Performance Impact
of Memory Controller Features in Multi-processor Server Environment. In
WMPI ’04: Proc. of the 3rd Workshop on Memory Perf. Issues, pages 80–87,
2004.

[105] K. Nesbit and J. Smith. Data Cache Prefetching Using a Global History
Buffer. In 10th International Symposium on High Performance Computer
Architecture, HPCA-10, pages 96–96, 2004.

[106] K. Nesbit, M. Moreto, F. Cazorla, A. Ramirez, M. Valero, and J. Smith.
Multicore Resource Management. IEEE Micro, 28(3):6–16, 2008.

[107] K. J. Nesbit and J. E. Smith. Data Cache Prefetching Using a Global History
Buffer. IEEE Micro, 25:90–97, 2005.

[108] K. J. Nesbit, A. S. Dhodapkar, and J. E. Smith. AC/DC: An Adaptive Data
Cache Prefetcher. In Proceedings of the 13th International Conference on
Parallel Architecture and Compilation Techniques, pages 135–145, 2004.

[109] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith. Fair Queuing Memory
Systems. In MICRO 39: Int. Symp. on Microarchitecture, pages 208–222,
2006.

[110] K. J. Nesbit, J. Laudon, and J. E. Smith. Virtual private caches. In ISCA
’07: Proc. of the 34th An. Int. Symp. on Comp. Arch., pages 57–68, 2007.

[111] NOTUR. NOTUR Web Page. http://www.notur.no/.

[112] K. Olukotun and L. Hammond. The Future of Microprocessors. Queue, 3(7):
26–29, 2005.

[113] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang. The
Case for a Single-Chip Multiprocessor. SIGPLAN Notices, 31(9):2–11, 1996.

[114] E. Perelman, G. Hamerly, and B. Calder. Picking Statistically Valid and
Early Simulation Points. In PACT ’03: Proc. of the 12th Int. Conf. on
Parallel Architectures and Compilation Techniques, page 244, 2003.

http://www.notur.no/

66 Bibliography

[115] D. G. Perez, G. Mouchard, and O. Temam. MicroLib: A Case for the Quan-
titative Comparison of Micro-Architecture Mechanisms. In MICRO 37: Int.
Symp. on Microarchitecture, pages 43–54, 2004.

[116] M. K. Qureshi and Y. N. Patt. Utility-Based Cache Partitioning: A
Low-Overhead, High-Performance, Runtime Mechanism to Partition Shared
Caches. In MICRO 39: Proc. of the 39th An. IEEE/ACM Int. Symp. on
Microarch., pages 423–432, 2006.

[117] M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt. A Case for MLP-
Aware Cache Replacement. In ISCA ’06: Int. Symp. on Comp. Arch., pages
167–178, 2006.

[118] N. Rafique, W.-T. Lim, and M. Thottethodi. Architectural Support for Op-
erating System-driven CMP Cache Management. In PACT ’06: Proc. of the
15th Int. Conf. on Parallel Architectures and Compilation Techniques, pages
2–12, 2006.

[119] N. Rafique, W.-T. Lim, and M. Thottethodi. Effective Management of DRAM
Bandwidth in Multicore Processors. In PACT ’07: Proc. of the 16th Int.
Conf. on Parallel Architecture and Compilation Techniques (PACT 2007),
pages 245–258, 2007.

[120] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens. Memory
Access Scheduling. In ISCA ’00: Int. Symp. on Comp. Arch., pages 128–138,
2000.

[121] M. Rosenblum, S. Herrod, E. Witchel, and A. Gupta. Complete Computer
System Simulation: The SimOS Approach. IEEE Parallel & Distributed
Technology: Systems & Applications, 3(4):34–43, 1995.

[122] S. L. Scott and G. S. Sohi. The Use of Feedback in Multiprocessors and Its
Application to Tree Saturation Control. IEEE Trans. Parallel Distrib. Syst.,
pages 385–398, 1990.

[123] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey,
S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski,
T. Juan, and P. Hanrahan. Larrabee: a Many-core x86 Architecture for
Visual Computing. In ACM SIGGRAPH 2008, pages 1–15, 2008.

[124] A. Settle, D. Connors, E. Gibert, and A. Gonzalez. A Dynamically Recon-
figurable Cache for Multithreaded Processors. J. Embedded Comput., 2(2):
221–233, 2006.

[125] J. Shao and B. Davis. A Burst Scheduling Access Reordering Mechanism. In
HPCA ’07: Proc. of the 13th Int. Symp. on High-Performance Comp. Arch.,
2007.

Bibliography 67

[126] J. Shao and B. T. Davis. The Bit-Reversal SDRAM Address Mapping. In
SCOPES ’05: Proc. of the 2005 Workshop on Software and Compilers for
Embedded Systems, pages 62–71, 2005.

[127] G. Sindre, L. Natvig, and M. Jahre. Experimental Validation of the Learning
Effect for a Pedagogical Game on Computer Fundamentals. IEEE Transac-
tions on Education, 52(1):10–18, feb. 2009.

[128] J. P. Singh, W.-D. Weber, and A. Gupta. SPLASH: Stanford Parallel Appli-
cations for Shared-Memory. SIGARCH Comput. Archit. News, 20(1):5–44,
1992.

[129] K. Skadron, M. Martonosi, D. I. August, M. D. Hill, D. J. Lilja, and V. S.
Pai. Challenges in Computer Architecture Evaluation. Computer, 36:30–36,
2003.

[130] A. J. Smith. Sequential Program Prefetching in Memory Hierarchies. Com-
puter, 11(12):7–21, dec. 1978.

[131] A. J. Smith. Cache memories. ACM Computing Surveys, 14(3):473–530,
1982.

[132] J. E. Smith. Characterizing Computer Performance with a Single Number.
Communications of the ACM, 31(10):1202–1206, 1988.

[133] A. Snavely and D. M. Tullsen. Symbiotic Jobscheduling for a Simultaneous
Multithreading Processor. In Arch. Support for Programming Languages and
Operating Systems, pages 234–244, 2000.

[134] G. S. Sohi and M. Franklin. High-bandwidth Data Memory Systems for
Superscalar Processors. In ASPLOS-IV: Proc. of the fourth Int. Conf. on
Architectural Support for Programming Languages and Operating Systems,
pages 53–62, 1991.

[135] S. Somogyi, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos. Spatial
Memory Streaming. SIGARCH Computer Architecture News, 34(2):252–263,
2006.

[136] SPEC. SPEC CPU 2000 Web Page. http://www.spec.org/cpu2000/.

[137] B. Sprunt. The Basics of Performance-Monitoring Hardware. IEEE Micro,
22(4):64–71, 2002.

[138] S. Srikantaiah and M. Kandemir. SRP: Symbiotic Resource Partitioning of
the Memory Hierarchy in CMPs. In Int. Conf. on High-Performance Embed-
ded Architectures and Compilers, 2010.

[139] S. Srikantaiah, M. Kandemir, and M. J. Irwin. Adaptive Set Pinning: Man-
aging Shared Caches in Chip Multiprocessors. In ASPLOS XIII: Proc. of
the 13th Int. Conf. on Architectural Support for Programming Languages and
Operating Systems, pages 135–144, 2008.

http://www.spec.org/cpu2000/

68 Bibliography

[140] S. Srikantaiah, M. Kandemir, and Q. Wang. SHARP Control: Controlled
Shared Cache Management in Chip Multiprocessors. In MICRO-42: Proc.
of the Int. Symp. on Microarchitecture, pages 517–528, 2009.

[141] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt. Feedback Directed Prefetching:
Improving the Performance and Bandwidth-Efficiency of Hardware Prefetch-
ers. Technical report, University of Texas at Austin, May 2006. TR-HPS-
2006-006.

[142] V. Srinivasan, E. S. Davidson, and G. S. Tyson. A Prefetch Taxonomy. IEEE
Transactions on Computers, 53:126–140, 2004.

[143] D. Tarjan, S. Thoziyoor, and N. P. Jouppi. CACTI 4.0. Technical report,
HP Laboratories Palo Alto, 2006.

[144] M. Thottethodi, A. Lebeck, and S. Mukherjee. Exploiting Global Knowledge
to achieve Self-tuned Congestion Control for k-ary n-cube Networks. IEEE
Trans. on Parallel and Distributed Systems, 15(3):257–272, 2004.

[145] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi. CACTI 5.1.
Technical report, HP Laboratories Palo Alto, 2008.

[146] J. Tuck, L. Ceze, and J. Torrellas. Scalable Cache Miss Handling for High
Memory-Level Parallelism. In MICRO 39: Proc. of the 39th An. IEEE/ACM
Int. Symp. on Microarchitecture, pages 409–422, 2006.

[147] University of Tromsø. Stallo Web Page. http://docs.notur.no/uit.

[148] S. P. VanderWiel and D. J. Lilja. When Caches Aren’t Enough: Data
Prefetching Techniques. Computer, 30(7):23–30, 1997.

[149] J. Vera, F. J. Cazorla, A. Pajuelo, O. J. Santana, E. Fernandez, and
M. Valero. FAME: FAirly MEasuring Multithreaded Architectures. In PACT
’07: Proceedings of the 16th International Conference on Parallel Architec-
ture and Compilation Techniques, pages 305–316, 2007.

[150] D. W. Wall. Limits of Instruction-Level Parallelism. Technical report, Digital
Western Research Laboratory, 1993.

[151] M. V. Wilkes. Slave Memories and Dynamic Storage Allocation. IEEE Trans-
actions on Electronic Computers, 14(2):270–271, 1965.

[152] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe. SMARTS:
Accelerating Microarchitecture Simulation via Rigorous Statistical Sampling.
In ISCA ’03: Proceedings of the 30th Annual International Symposium on
Computer Architecture, pages 84–97, 2003.

[153] Y. Xie and G. H. Loh. PIPP: Promotion/Insertion Pseudo-Partitioning of
Multi-Core Shared Caches. In ISCA ’09: Proc. of the 36th annual Int. Symp
on Computer Architecture, pages 174–183, 2009.

http://docs.notur.no/uit

Bibliography 69

[154] Y. Xie and G. H. Loh. Scalable Shared-Cache Management by Containing
Thrashing Workloads. In Int. Conf. on High-Performance Embedded Archi-
tectures and Compilers, 2010.

[155] J. J. Yi, S. V. Kodakara, R. Sendag, D. J. Lilja, and D. M. Hawkins. Char-
acterizing and Comparing Prevailing Simulation Techniques. In HPCA ’05:
Proceedings of the 11th International Symposium on High-Performance Com-
puter Architecture, pages 266–277, 2005.

[156] L. Zhao, R. Iyer, R. Illikkal, J. Moses, S. Makineni, and D. Newell.
CacheScouts: Fine-Grain Monitoring of Shared Caches in CMP Platforms. In
PACT ’07: Proc. of the 16th Int. Conf. on Parallel Arch. and Comp. Tech.,
pages 339–352, 2007.

[157] X. Zhou, W. Chen, and W. Zheng. Cache Sharing Management for Perfor-
mance Fairness in Chip Multiprocessors. In PACT ’09: Proc. of the 18th Int.
Conf. on Parallel Architectures and Compilation Techniques, pages 384–393,
2009.

[158] Z. Zhu and Z. Zhang. A Performance Comparison of DRAM Memory System
Optimizations for SMT Processors. In HPCA ’05: Proc. of the 11th Int.
Symp. on High-Performance Comp. Arch., pages 213–224, 2005.

[159] Z. Zhu, Z. Zhang, and X. Zhang. Fine-Grain Priority Scheduling on Multi-
channel Memory Systems. 8th Int. Symp. on High-Performance Comp. Arch.,
pages 107–116, 2002.

70

Appendix A

Paper A.II

A High Performance
Adaptive Miss Handling

Architecture for Chip
Multiprocessors

Magnus Jahre and Lasse Natvig
Transactions on High-Performance Embedded Architectures and

Compilers
2009

72

73

Abstract
Chip Multiprocessors (CMPs) mainly base their performance gains on exploiting
thread-level parallelism. Consequently, powerful memory systems are needed to
support an increasing number of concurrent threads. Conventional CMP memory
systems do not account for thread interference which can result in reduced overall
system performance. Therefore, conventional high bandwidth Miss Handling Ar-
chitectures (MHAs) are not well suited to CMPs because they can create severe
memory bus congestion. However, high miss bandwidth is desirable when sufficient
bus bandwidth is available. This paper presents a novel, CMP-specific technique
called the Adaptive Miss Handling Architecture (AMHA). If the memory bus is
congested, AMHA improves performance by dynamically reducing the maximum
allowed number of concurrent L1 cache misses of a processor core if this creates a
significant speedup for the other processors. Compared to a 16-wide conventional
MHA, AMHA improves performance by 12% on average for one of the workload
collections used in this work.

74

A.1. Introduction 75

Cache
Bank

Cache
Bank

Cache
Bank

Cache
Bank

...

MSHR
File

MSHR
File

MSHR
File

MSHR
File

Miss Handling Architecture

Figure A.1: Miss Handling Architecture (MHA) [29]

A.1 Introduction

Chip multiprocessors (CMPs) are now in widespread use and all major processor
vendors currently sell CMPs. CMPs alleviate three important problems associated
with modern superscalar microprocessors: diminishing returns from techniques that
exploit instruction level parallelism (ILP), high power consumption and large design
complexity. However, much of the internal structures in these multi-core processors
are reused from single-core designs, and it is unclear if reusing these well-known
solutions is the best way to design a CMP.

The performance gap between the processor and main memory has been growing
since the early 80s [10]. Caches efficiently circumvent this problem because most
programs exhibit spatial and temporal locality. However, adding more processors
on one chip increases the demand for data from memory. Furthermore, latency
hiding techniques will become more important and these tend to increase bandwidth
demand [4].

A straightforward way of providing more bandwidth is to increase the clock fre-
quency and width of the memory bus. Unfortunately, the number of pins on a chip
is subject to economic as well as technological constraints and is expected to grow
at a slow rate in the future [12]. In addition, the off-chip clock frequency is limited
by the electronic characteristics of the circuit board. The effect of these trends is
that off-chip bandwidth is a scarce resource that future CMPs must use efficiently.
If the combined bandwidth demand exceeds the off-chip bandwidth capacity, the
result is memory bus congestion which increases the average latency of all mem-
ory accesses. If the out-of-order processor core logic is not able to fully hide this
latency, the result is a reduced instruction commit rate and lower performance.

It is critical for performance that the processor cores are able to continue processing
at the same time as a long-latency operation like a memory or L2 cache access is in
progress. Consequently, the caches should be able to service requests while misses
are processed further down in the memory hierarchy. Caches with this ability are
known as non-blocking or lockup-free and were first introduced by Kroft [14].

76

Block Address Target InformationMSHR 1

Block Address Target InformationMSHR 2

Block Address Target InformationMSHR n

Comparators

...

...

Hit

MSHR File

Address

V

V

V

Figure A.2: A Generic MSHR File

Within the cache, the Miss Handling Architecture (MHA) is responsible for keep-
ing track of the outstanding misses. Figure A.1 shows an MHA for a cache with
multiple banks [29]. The main hardware structure within an MHA is called a Miss
Information/Status Holding Register (MSHR). This structure contains the informa-
tion necessary to successfully return the requested data when the miss completes.
If an additional request for a cache block arrives, the information regarding this
new request is stored but no request is sent to the next memory hierarchy level. In
other words, multiple requests for the same cache block are combined into a single
memory access.

In this work, we investigate the performance impact of non-blocking caches in
shared-cache CMPs and introduce a novel Miss Handling Architecture called Adap-
tive MHA (AMHA). AMHA is based on the observation that the available miss
bandwidth should be adjusted according to the utilization of the memory bus at
runtime. Memory bus congestion can significantly increase the average memory
access latency and result in increased lock-up time in the on-chip caches. If the
processor core is not able to hide this increased latency, it directly affects its perfor-
mance. Memory bus congestion reduces the performance of some programs more
than others since the ability to hide the memory latency varies between programs.
AMHA exploits this property by reducing the available miss bandwidth for the
latency insensitive threads. Since these programs are good at hiding latency, the
reduction in miss bandwidth only slightly reduces their performance. However, the
memory latency experienced by the congestion sensitive programs is reduced which
results in a large performance improvement. For our Amplified Congestion Proba-
bility Workload collection, AMHA improves the single program oriented Harmonic
Mean of Speedups (HMoS) metric by 12% on average.

The paper has the following outline: First, we discuss previous work in Section
A.2 before we introduce our multiprogrammed workload collections and discuss
system performance metrics in Section A.3. Then, our new AMHA technique is
presented in Section A.4. Section A.5 describes our experimental methodology,
and Section A.6 discusses the results from our evaluation of both conventional

A.2. Related Work 77

and adaptive MHAs. Finally, Section A.7 discusses future technology trends and
possible extensions of AMHA before Section A.8 concludes the paper.

A.2 Related Work

A.2.1 Miss Handling Architecture Background

A generic Miss Status/Information Holding Register (MSHR) file is shown in Figure
A.2. This structure consists of n MSHRs which contain space to store the cache
block address of the miss, some target information and a valid bit. The cache
can handle as many misses to different cache block addresses as there are MSHRs
without blocking. Each MSHR has its own comparator and the MSHR file can
be described as a small fully associative cache. For each miss, the information
required for the cache to answer the processor’s request is stored in the Target
Information field. However, the exact Target Information content of an MSHR is
implementation dependent. The Valid (V) bit is set when the MSHR is in use, and
the cache must block when all valid bits are set. A blocked cache cannot service
any requests.

Another MHA design option regards the number of misses to the same cache block
address that can be handled without blocking. We refer to this aspect of the MHA
implementation as target storage, and this determines the structure of the Target
Information field in Figure A.2. Kroft used implicit target storage in the original
non-blocking cache proposal [14]. Here, storage is dedicated to each processor word
in a cache block. Consequently, additional misses to a given cache block can be
handled as long as they go to a different processor word. The main advantage of
this target storage scheme is its low hardware overhead.

Farkas and Jouppi [9] proposed explicitly addressed MSHRs which improves on the
implicit scheme by making it possible for any miss to use any target storage location.
Consequently, it is possible to handle multiple misses to the same processor word.
We refer to the number of misses to the same cache block that can be handled
without blocking as the number of targets. This improvement increases hardware
cost as the offset of the requested processor word within the cache block must be
stored explicitly. In this paper, we use explicitly addressed MSHRs because they
provide low lock-up time for a reasonable hardware cost.

Tuck et al. [29] extended the explicitly addressed MSHR scheme to write-back
caches. If the miss is a write, it is helpful to buffer the data until the miss completes
which adds to the hardware overhead of the scheme. To reduce this overhead, Tuck
et al. evaluated MSHRs where only a subset of the target entries has a write buffer.
In addition, they extended the implicitly addressed MSHR scheme by adding a
write buffer and a write mask which simplify data forwarding for reads and reduce
the area cost. The target storage implementations of Tuck et al. can all be used
in our AMHA scheme to provide a more fine-grained area/performance trade-off.

78

In this paper, we opt for the simple option of having a write buffer available to all
target storage locations as this is likely to give the best performance.

In addition, Tuck et al. proposed the Hierarchical MHA [29]. This MHA provides
a large amount of Memory Level Parallelism (MLP) and is primarily aimed at
processors that provide very high numbers of in-flight instructions. In a CMP,
providing too much MLP can create congestion in shared resources which may
result in reduced performance.

Farkas and Jouppi [9] proposed the inverted MSHR organization which can support
as many outstanding requests as there are destinations in the machine. Further-
more, Franklin and Sohi [26] observed that a cache line that is waiting to be filled
can be used to store MSHR information. These MHAs are extremes of the area/per-
formance trade-off and we choose to focus on less extreme MHAs. In addition,
researchers have looked into which number of MSHRs gives the best performance
for conventional architectures [2, 26].

A.2.2 Related Work on Bus Scheduling, Shared Caches and
Feedback

Mutlu and Moscibroda [17], Nesbit et al. [18] and Rafique et al. [21] are examples of
recent work that use the memory bus scheduler to improve Quality of Service (QoS).
These works differ from AMHA in that they issue memory requests in a thread-fair
manner while AMHA dynamically changes the bandwidth demand to utilize the
shared bus efficiently. Furthermore, memory controller scheduling techniques that
improve DRAM throughput are complementary to AMHA (e.g. [22, 24]).

Other researchers have focused on techniques that use shared cache partitioning to
increase performance (e.g. [7, 20]). These techniques optimize for the same goal as
AMHA, but are complementary since AMHA’s only impact on cache partitioning
is due to a reduced cache access frequency for the most frequent bus user.

Recently, a large number of researchers have focused on providing shared cache
QoS. Some schemes enforce QoS primarily in hardware (e.g. [19]) while others
make the OS scheduler cooperate with hardware resource monitoring and control
to achieve QoS (e.g. [5]). It is difficult to compare these techniques to AMHA as
improving performance is not their primary aim.

Unpredictable interactions between processors may result in performance degrada-
tion in multiprocessor systems. Feedback control schemes can be used to alleviate
such bottlenecks if the reduction is due to inadequate knowledge of the state of
shared structures. For instance, Scott and Sohi [23] used feedback to avoid tree
saturation in multistage networks. Thottethodi et al. [28] used source throttling to
avoid network saturation and controlled their policy by a feedback-based adaptive
mechanism. In addition, Martin et al. [16] used feedback to adaptively choose
between a directory-based and a snooping-based cache coherence protocol. AMHA

A.3. Multiprogrammed Workload Selection and Performance Metrics 79

further extends the use of feedback control by using memory bus and performance
measurements to guide miss bandwidth allocations.

A.3 Multiprogrammed Workload Selection and
Performance Metrics

To thouroughly evaluate Miss Handling Architectures in a CMP context, we create
40 multiprogrammed workloads consisting of 4 SPEC CPU2000 benchmarks [27]
as shown in Table A.1. We picked benchmarks at random from the full SPEC
CPU2000 benchmark suite, and each processor core is dedicated to one benchmark.
The only requirement given to the random selection process was that each SPEC
benchmark had to be represented in at least one workload. We refer to these
workloads as Random Workloads (RW). To avoid unrealistic interference when
more than a single instance of a benchmark is part of a workload, the benchmarks
are fast-forwarded a different number of clock cycles if the same benchmark is run
on more than one core. If there is only one instance of a benchmark in a workload, it
is fast-forwarded for 1 billion clock cycles. The second time a benchmark appears in
the workload, we increase the number of fast-forward clock cycles for this instance
to 1.02 billion. Then, measurements are collected for 100 million clock cycles.

To investigate the performance of AMHA in the situation it is designed for, we
create 40 additional workloads where this situation is more likely than in the ran-
domly generated workload. Here, we randomly select two workloads from the 7
SPEC2000 benchmarks that has an average memory queue latency of more than
1000 processor clock cycles when running alone in the CMP. In our simulations,
these benchmarks (mcf, gap, apsi, facerec, galgel, mesa and swim) have average
queue latencies of between 1116 and 3724 clock cycles. The two remaining bench-
marks are randomly chosen from the 8 benchmarks that have an average memory
queue latency of between 100 and 1000 clock cycles (i.e. wupwise, vortex1, sixtrack,
gcc, art, gzip, mgrid, applu). We also require that a benchmark is only used once
in one workload. We refer to these workloads as Amplified Congestion Probability
Workloads (ACPW) and they are shown in Table A.2.

Eyerman and Eeckhout [8] recently showed that the System Throughput (STP)
and Harmonic Mean of Speedups (HMoS) metrics are able to represent workload
performance at the system level. The STP metric is a system-oriented performance
metric, and the HMoS metric is a user-oriented performance metric. Both metrics
require a performance baseline where all programs receive equal access to shared
resources. In this work, we give each process exactly a 1

P share of the shared cache
and at least a 1

P share of the available memory bus bandwidth where P is the
number of processors. To divide memory bandwidth fairly between threads, we use
Rafique et al.’s Network Fair Queueing technique [21] with a starvation prevention
threshold of 1. Consequently, access to the memory bus is allocated in a round-
robin fashion if all processors have at least one waiting request. The formulae used

80

Table A.1: Randomly Generated Multiprogrammed Workloads (RW)
ID Bench-

marks
ID Bench-

marks
ID Bench-

marks
ID Bench-

marks
ID Bench-

marks

1 perlbmk,
ammp,
parser,
mgrid

9 vortex1,
apsi,
fma3d,
sixtrack

17 perlbmk,
parser,
applu,
apsi

25 facerec,
parser,
applu, gap

33 gzip,
galgel,
lucas,
equake

2 mcf, gcc,
lucas,
twolf

10 ammp,
bzip,
parser,
equake

18 perlbmk,
gzip,
mgrid,
mgrid

26 mcf,
ammp,
apsi, twolf

34 facerec,
facerec,
gcc, apsi

3 facerec,
mesa, eon,
eon

11 twolf, eon,
applu, vpr

19 mcf, gcc,
apsi,
sixtrack

27 swim,
ammp,
sixtrack,
applu

35 swim,
mcf, mesa,
sixtrack

4 ammp,
vortex1,
galgel,
equake

12 swim,
galgel,
mgrid,
crafty

20 ammp,
gcc, art,
mesa

28 swim,
fma3d,
parser, art

36 mesa,
bzip,
sixtrack,
equake

5 gcc, apsi,
galgel,
crafty

13 twolf,
galgel,
fma3d,
vpr

21 perlbmk,
apsi,
lucas,
equake

29 twolf, gcc,
apsi,
vortex1

37 mcf, gcc,
vortex1,
gap

6 facerec,
art, applu,
equake

14 bzip, bzip,
equake,
vpr

22 mcf,
crafty,
vpr, vpr

30 gzip, apsi,
mgrid,
equake

38 facerec,
mcf,
parser,
lucas

7 gcc,
parser,
applu, gap

15 swim,
galgel,
crafty, vpr

23 gzip,
mesa,
mgrid,
equake

31 mgrid,
eon,
equake,
vpr

39 twolf,
mesa, eon,
eon

8 swim,
twolf,
mesa, gap

16 mcf, mesa,
mesa,
wupwise

24 facerec,
fma3d,
applu,
lucas

32 facerec,
twolf, gap,
wupwise

40 mcf, apsi,
apsi,
equake

A.3. Multiprogrammed Workload Selection and Performance Metrics 81

Table A.2: Amplified Congestion Probability Workloads (ACPW)
ID Bench-

marks
ID Bench-

marks
ID Bench-

marks
ID Bench-

marks
ID Bench-

marks

1 mcf, apsi,
applu,
wupwise

9 galgel,
apsi, art,
gcc

17 wupwise,
vortex1,
apsi, gap

25 gzip,
mesa,
apsi, gcc

33 wupwise,
apsi, art,
gap

2 gzip, mcf,
art, gap

10 mcf, mesa,
vortex1,
wupwise

18 mcf, mesa,
vortex1,
gcc

26 galgel,
apsi, art,
gcc

34 art, apsi,
mgrid,
gap

3 gzip,
mesa,
galgel,
applu

11 facerec,
mcf, gcc,
sixtrack

19 mcf,
galgel,
vortex1,
applu

27 facerec,
vortex1,
art, gap

35 swim,
mesa,
mgrid,
wupwise

4 gzip,
galgel,
mesa,
sixtrack

12 gzip, mcf,
mesa,
applu

20 mesa,
applu,
sixtrack,
gap

28 vortex1,
mcf, mesa,
applu

36 facerec,
mcf, art,
sixtrack

5 facerec,
galgel,
mgrid,
vortex1

13 galgel,
apsi,
applu,
sixtrack

21 swim,
mesa, art,
sixtrack

29 swim, gcc,
vortex1,
gap

37 facerec,
gzip, gcc,
gap

6 gzip, mcf,
mesa, art

14 swim,
vortex1,
apsi, art

22 swim,
mcf, gcc,
wupwise

30 swim,
gzip,
galgel, art

38 facerec,
mcf, gcc,
sixtrack

7 swim,
apsi,
sixtrack,
applu

15 swim,
gzip,
mesa,
applu

23 mesa,
apsi,
vortex1,
sixtrack

31 swim,
gzip,
galgel,
wupwise

39 facerec,
swim,
vortex1,
gzip

8 facerec,
swim, art,
sixtrack

16 vortex1,
galgel,
mesa,
sixtrack

24 art,
galgel,
mgrid,
gap

32 gzip, mcf,
mesa,
wupwise

40 facerec,
mcf,
mgrid,
sixtrack

82

Table A.3: System Performance Metrics

Metric Formula

Harmonic Mean of Speedups (HMoS) [15]
1∑P

i=1

IPCbaseline
i

IPCshared
i

System Throughput (STP) [25]
∑P

i=1
IPCshared

i

IPCbaseline
i

-20 %
-10 %

0 %
10 %
20 %
30 %
40 %
50 %
60 %
70 %
80 %
90 %

2 4 8 16 32 64 1024

Number of L1 Data Cache MSHRs

M
et

ric
 V

al
ue

 R
el

at
iv

e
to

 a

B
lo

ck
in

g
C

ac
he

HMoS - RW HMoS - ACPW STP - RW STP - ACPW

Figure A.3: Average MHA Throughput (Aggregate IPC)

to compute the HMoS and STP metrics are shown in Table A.3. The HMoS metric
was originally proposed by Luo et al. [15] and the STP metric is the same as the
weighted speedup metric originally proposed by Snavely and Tullsen [25].

A.4 The Adaptive Miss Handling Architecture
(AMHA)

A.4.1 Motivation

Our Adaptive MHA technique is based on the observation that it is possible to
drastically improve the performance of certain programs by carefully distributing
miss bandwidth between threads when the memory bus is congested. This differs
from earlier research on MHAs where the aim has been to provide as much miss
bandwidth as possible in an area-efficient manner. Unfortunately, our results show
that following this strategy can create severe congestion in the memory bus which
heavily reduces the performance of some benchmarks while hardly affecting others.
Figure A.3 shows the performance of a conventional MHA in a 4-core CMP plotted
relative to the throughput with a blocking cache. To reduce the search space,
we only modify the number of MSHRs in the L1 data cache. The 1024 MSHR

A.4. The Adaptive Miss Handling Architecture (AMHA) 83

architecture is very expensive and is used to estimate the performance of a very
large MHA.

Figure A.3 shows that a large conventional MHA is able to provide high throughput
as measured by the STP metric. Furthermore, throughput increases with more
MSHRs up to 8 MSHRs for the RW collection and up to 16 MSHRs with the
ACPW collection. The reason for this difference is that there are more memory
intensive benchmarks in the ACPW collection which perform better when more
miss parallelism is available. Consequently, we can conclude that throughput is
improved by adding more MSHRs up to 16.

The trend with the HMoS metric in Figure A.3 is very different. Here, the best
values are achieved with 2 or 4 MSHRs while adding 16 or more MSHRs reduces
the HMoS value below that of a blocking cache for both workload collections. The
reason for this trend is that memory bus congestion does not affect all programs
equally. For a memory intensive program, an increase in latency due to congestion
will not create a large performance degradation. The reason is that these programs
already spend a lot of their time waiting for memory. However, less memory in-
tensive programs can hide the most of the access latency and make good progress
as long as the memory latencies are reasonably low. When the memory bus is
congested, the memory latencies become to large to be hidden which result in a
considerable performance degradation. By carefully reallocating the available miss
bandwidth, AMHA improves the performance of these latency sensitive benchmarks
by reducing the available miss parallelism of the latency insensitive ones.

Figure A.3 also offers some insights into why choosing a small number of MSHRs to
avoid congestion results in a considerable throughput loss. When both metrics are
taken into account, the MHA with 4 MSHRs seems like the best choice. However,
this results in an average throughput loss of 9% for the RW collection and 16% for
the ACPW collection. In other words, simply reducing the likelyhood of congestion
carries with it a significant throughput cost and an adaptive approach is needed.

A.4.2 AMHA Implementation

AMHA exploits the observation that throughput can be improved by adapting
the available miss parallelism to the current memory bus utilization. Figure A.4
shows a 4-core CMP which uses AMHA. Implementing AMHA requires only small
changes to the existing CMP design. First, an Adaptive MHA Engine is added
which monitors the memory bus traffic. At regular intervals, the AMHA Engine
uses run time measurements to modify the number of available MSHRs in the L1
data cache of each core. Furthermore, the MHAs of the L1 data caches are modified
such that the number of available MSHRs can be changed at runtime.

84

CPU 1

CPU 2

C
ro

ss
ba

r

L2
Cache

Main
Memory

Memory
Bus

CPU 3

CPU 4

L1

M
H

A

L1

M
H

A

L1

M
H

A

L1

M
H

A

Adaptive
MHA

Engine

CMP Chip

M
em

or
y

C
on

tro
lle

r

Inst. Counter

Inst. Counter

Inst. Counter

Inst. Counter

Figure A.4: General Architecture with Adaptive MHA

A.4.2.1 The AMHA Engine

Figure A.5 shows the internals of the AMHA Engine. It consists of a control unit
and a set of registers called Performance Registers. These registers are used to
measure the performance impact of an AMHA decision on all threads. In addition,
the AMHA Engine stores the average bus utilization during the last sample. Here,
the memory controller increments a counter each time it schedules a memory opera-
tion. The value of this counter is proportional to the actual bus utilization because
each memory request occupies the data bus for a fixed number of cycles and the
time between each AMHA evaluation is constant. For clarity, we will refer to this
quantity as bus utilization even if AMHA uses the counter value internally. Lastly,
the AMHA Engine uses a bit vector called the blacklist and a set of registers called
performance samples. The blacklist is used to mark configurations that should not
be tested again, and the performance samples are used to store the performance
measurements for certain MHA configurations.

The performance registers store the number of committed instructions in the cur-
rent and previous MHA samples. Since the number of clock cycles between each
AMHA decision is constant, this quantity is proportional to IPC. These values are
collected from performance counters inside each processor core when the current
MHA is evaluated. By comparing these values, it is possible to estimate the perfor-
mance impact of a given AMHA decision. This is necessary because it is difficult to
determine the consequences of an MHA change from locally measurable variables
like average queueing delays or bus utilization. The reason is that the performance
with a given MHA is a result of a complex trade-off between an application’s ability
to hide memory latencies and its congestion sensitivity.

A.4. The Adaptive Miss Handling Architecture (AMHA) 85

Bus
Utilization

Adaptive
MHA

Control

CPU 1

CPU n

...

Performance Registers

Previous Committed Instructions
Committed Instructions

CPU n

Previous Committed Instructions
Committed Instructions

CPU 1

...
Data

cache 1
Data

cache n

... Performance
SamplesBlacklist

Figure A.5: Adaptive MHA Engine

A.4.2.2 Evaluating the Current MHA

Every 500000 clock cycles, the current MHA is evaluated using the information
stored in the Performance Registers. This evaluation is carried out by the control
unit and follows the pseudocode outlined in Algorithm 1. We refer to the time
between each evaluation as one MHA sample.

To adapt to phase changes, AMHA returns all data caches to their maximum
number of MSHRs at regular intervals. We refer to the time between two such resets
as an AMHA period. After a reset, we run all data caches with their maximum
number of MSHRs in one sample to gather performance statistics. If the bus
utilization is lower than a configurable threshold in this sample, AMHA decides
that the memory bus is not congested and turns itself off in this AMHA period. We
refer to this threshold as the Congestion Threshold. The AMHA search procedure
has a small performance impact, so we want to be reasonably certain that it is
possible to find a better MHA for it to be invoked.

AMHA has now established that the memory bus is most likely congested, and
it starts to search for an MHA with better performance. This search consists of
two phases. In the first phase, AMHA looks for the best performing symmetric
MHA. A symmetric MHA has the same number of MSHRs in all L1 data caches.
Here, AMHA starts with the largest possible MHA and then tries all symmetric
MHAs where the number of MSHRs is a power of two. At the end of each sample,
AMHA stores the performance with this MHA in a Performance Samples register
and tries the next symmetric MHA. When AMHA has tried all symmetric MHAs,
the Performance Samples registers are analyzed and the best performing MHA is
chosen. Since the performance measurements might not be representable for the
whole period, we require that a smaller MHA must outperform the largest MHA
by a certain percentage called the Acceptance Threshold. For each symmetric con-

86

Algorithm 1 Adaptive MHA Main Algorithm
1: procedure EvaluateMHA
2: if RunCount == PERIODSIZE then
3: Reset all MHAs to their original configuration, set phase = 1 and useAMHA = true
4: return
5: end if
6: if First time in a period and no congestion then
7: Disable AMHA in this period (useAMHA = false)
8: end if
9: Retrieve the current number of committed instruction from the performance counters

10: if phase == 1 and useAMHA then . Search Phase 1
11: if Symmetric MHAs remaining then
12: Reduce the MSHRs of all L1 data caches to the nearest power of 2
13: else
14: Choose the best performing symmetric MHA and enter Phase 2
15: end if
16: else if phase == 2 and useAMHA then . Search Phase 2
17: if Performance improvement of last AMHA decision not acceptable and useAMHA then
18: Roll back previous decision and add processor to the blacklist
19: end if
20: Find the processor with the largest MHA performance impact that is not blacklisted
21: if Processor found then
22: Reduce or increase the number of MSHR to the nearest power of 2
23: else
24: All processors are blacklisted, keep current configuration for the rest of this period
25: end if
26: end if
27: Increment RunCount
28: Move current committed instructions to previous committed instructions
29: end procedure

figuration, we also store the number of committed instructions for each processor.
This information is used in search phase 2.

In search phase 2, AMHA attempts to improve performance by searching for an
asymmetric MHA. Here, we adjust the MHA of one processor each time the MHA
is evaluated. Since a new MHA might have been chosen in phase 1, the bus may
or may not be congested. Therefore, we need to choose between increasing or
decreasing the number of MSHRs in this phase. If the bus utilization is larger than
the Congestion Threshold, AMHA assumes that the bus is congested and decreases
the number of MSHRs to the nearest power of two. If not, the number of MSHRs
is increased to the nearest power of two. At the end of the sample, the performance
impact is computed and the MHA is either kept or rolled back. If the MHA is not
accepted, the processor is blacklisted and phase 2 finishes when all processors have
been added to the blacklist. To maximize the performance benefit, we start with
the processor where the symmetric MHA had the largest performance impact and
process them in descending order.

We use a heuristic to accept or reject an MHA change in search phase 2. If the
last operation was a decrease, we sum the speedups of all processors that did not
have their MSHRs reduced and compare this to the degradation experienced by
the reduced processor. If the difference between the sum of speedups and the
degradation is larger than the configurable Acceptance Threshold, the new MHA is
kept. For simplicity, we use the same acceptance threshold in both search phases. If
the memory bus is severely congested, reducing the number of MSHRs of a processor

A.4. The Adaptive Miss Handling Architecture (AMHA) 87

Block Address Target InformationMSHR 1

MSHR 2

MSHR n

Comparators

...

...

Address

V U

Mask Control

Block Address Target Information V U

Block Address Target Information V U

Increment Num MSHRs

Decrement Num MSHRs

Figure A.6: The New MHA Implementation

can actually increase its performance. In this case, we set the degradation to 0.
In addition, we reject any performance degradations of processors that have not
had its number of MSHRs reduced as measurement errors. If the last operation
increased the number of MSHRs, we sum the performance degradations of the other
processors and weigh this against the performance improvement of the processor
that got its number of MSHRs increased. Again, the difference must be larger than
the Acceptance Threshold to keep the new MHA.

For each AMHA evaluation, we need to carry out P divisions in phase 1 and P
divisions in phase two where P is the number of processors. The reason is that
AMHA’s decisions are based on relative performance improvements or degradations
and not the number of committed instructions. Since there are no hard limits to
when the AMHA decision needs to be ready, it can be feasible to use a single division
unit for this purpose. For simplicity, we assume that the AMHA Engine analysis
can be carried out within 1 clock cycle in this work. Since we need relatively large
samples for the performance measurements to be accurate, it is unlikely that this
assumption will influence the results. We leave investigating area-efficient AMHA
Engine implementations and refining the experiments with accurate timings as
further work.

A.4.2.3 MHA Reconfiguration

An MHA which includes the features needed to support AMHA is shown in Figure
A.6. This MHA is changed slightly compared to the generic MHA in Figure A.2.
The main difference is the addition of a Usable (U) bit to each MSHR. If this is
set, the MSHR can be used to store miss data. By manipulating these bits, it
is possible to change the number of available MSHRs at runtime. The maximum
number of MSHRs is determined by the number of physical registers and decided
at implementation time. As in the conventional MSHR file, the Valid (V) bit is set
if the MSHR contains valid miss data.

The other addition needed to support AMHA is Mask Control. This control unit
manipulates the values of the U bits subject to the commands given by the AMHA

88

Engine. For instance, if the AMHA Engine decides that the number of MSHRs
in cache A should be reduced, cache A’s Mask Control sets the U bits for some
MSHRs to 0. In the current implementation, the number of available MSHRs is
increased or decreased to the nearest power of two.

When the number of MSHRs is decreased, it is possible that some registers that
contain valid miss data are taken out of use. Consequently, these registers must
be searched when a response is received from the next memory hierarchy level.
However, the cache should block immediately to reflect the decision of the AMHA
Engine. This problem is solved by taking both the V and U bits into account on
a cache miss and for the blocking decision. Furthermore, all registers that contain
valid data (i.e. have their V bit set) are searched when a response is received.

We have chosen to restrict the adaptivity to the number of available MSHRs, but
it is also possible to change the amount of target storage available. In other words,
it is possible to manipulate the number of simultaneous misses to the same cache
block that can be handled without blocking. This will increase the implementation
complexity of AMHA considerably. Furthermore, it is only a different way to reduce
the number of requests injected into the memory system. The reason is that the
cache is blocked for a shorter amount of time with more targets which indirectly
increases the bandwidth demand. For these reasons, AMHA keeps the amount of
target storage per MSHR constant.

AMHA only requires slightly more area than a conventional MHA with the same
maximum number of MSHRs as each MSHR only needs to be extended with one
additional bit. Furthermore, the AMHA Engine needs a few registers and logic to
compute and compare application speedups. In addition, the control functions in
both the AMHA Engine and the reconfigurable MHAs require a small amount of
logic.

A.5 Experimental Setup

We use the system call emulation mode of the cycle-accurate M5 simulator [3] to
evaluate the conventional MHAs and AMHA. The processor architecture parame-
ters for the simulated 4-core CMP are shown in Table A.4, and Table A.5 contains
the baseline memory system parameters. We have extended M5 with an AMHA
implementation, a crossbar interconnect and a detailed DDR2-800 memory bus and
SDRAM model [13]. The DDR2-800 memory bus is a split transaction bus which
accurately models overlapping of requests to different banks, burst mode transfer
as well as activation and precharging of memory pages. When a memory page has
been activated, subsequent requests are serviced at a much lower latency (page
hit). We refer the reader to Cuppu et al. [6] for more details on modern memory
bus interfaces. The DDR2 memory controller uses Rixner et al.’s First Ready -
First Come First Served (FR-FCFS) scheduling policy [22] and reorders memory
requests to achieve higher page hit rates.

A.6. Results 89

Table A.4: Processor Core Parameters
Parameter Value

Clock frequency 4 GHz

Reorder Buffer 128 entries

Store Buffer 32 entries

Instruction Queue 64 instructions

Instruction Fetch
Queue

32 entries

Load/Store Queue 32 instructions

Issue Width 8 instructions/cycle

Functional Units 4 Integer ALUs, 2
Integer
Multipy/Divide, 4
FP ALUs, 2 FP
Multiply/Divide

Branch Predictor Hybrid, 2048 local
history registers,
2-way 2048 entry
BTB

Table A.5: Memory System Parameters
Parameter Value

Level 1 Data Cache 64 KB 8-way set
associative, 64B
blocks, 3 cycles
latency

Level 1 Instruction
Cache

64 KB 8-way set
associative, 64B
blocks, 16 MSHRs, 8
targets per MSHR, 1
cycle latency

Level 2 Unified
Shared Cache

4 MB 8-way set
associative, 64B
blocks, 14 cycles
latency, 16 MSHRs
per bank, 8 targets
per MSHR, 4 banks

L1 to L2
Interconnection
Network

Crossbar topology, 8
cycles latency, 64B
wide transmission
channel

Memory Bus and
DRAM

DDR2-800, 4-4-4-12
timing, 64 entry
read queue, 64 entry
write queue, 1 KB
pages, 8 banks,
FR-FCFS scheduling
[22], closed page
policy

A.6 Results

A.6.1 Conventional MHA Performance in CMPs

In Section A.4.1, we established that increasing the number of MSHRs improves
throughput but reduces HMoS performance. However, the cause of this trend
was not explained in detail. In this section, we shed some light on this issue
by thoroughly analyzing the performance of the RW12 workload. This workload
consists of the benchmarks swim, mgrid, crafty and galgel which are responsible for
53%, 39%, 5% and 3% of the memory bus requests with 16 MSHRs, respectively.

Figure A.7(a) shows the speedups relative to the equal allocation baseline plotted
relative to the benchmark’s speedup with a blocking cache configuration. In addi-
tion, the figure shows the performance trend for the system performance metrics
HMoS and STP. The only benchmark that experiences a performance improvement
with every increase in MHA size is galgel. For the other benchmarks, memory bus
congestion causes more complex performance trends.

For crafty, performance is reduced substantially when the number of MSHRs is
increased to 2. Performance is further reduced until the MHA contains 8 MSHRs
before it stabilizes. Figure A.7(b) shows the average memory bus queue latency
as a function of the number of MSHRs. By comparing the performance trend of

90

40 %

60 %

80 %

100 %

120 %

140 %

160 %

180 %

200 %

220 %

swim galgel mgrid crafty HMoS STP
Number of L1 Data Cache MSHRs

Pe
rf

or
m

an
ce

 R
el

at
iv

e
to

 a
 B

lo
ck

in
g

C
ac

he
1 MSHR 2 MSHRs 4 MSHRs 8 MSHRs
16 MSHRs 32 MSHRs 64 MSHRs 1024 MSHRs

(a) Performance

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 4 8 16 32 64 1024
L1 Data Cache MSHRs

Pr
oc

es
so

r C
lo

ck
 C

yc
le

s

(b) Average Memory Bus Queue Latencies

Figure A.7: MHA Performance with RW12

A.6. Results 91

crafty with the average queue latency, we can see that for every increase in average
queue latency there is a decrease in crafty ’s performance. Since the HMoS metric is
dominated by the program with the lowest performance, the HMoS metric has its
highest value with the 1 MSHR MHA. However, the STP metric hides this effect
and reports a throughput improvement with every increase in MHA size.

When galgel is provided with more MSHRs, its ability to hide the memory latencies
improves enough to remove the effects of bus congestion which result in a net
performance improvement. Swim needs a lager number of MSHRs to experience a
performance improvement, but otherwise the performance trend is similar to that of
galgel. The 2 and 4 MSHR MHAs both result in a performance reduction for swim
because they provide to little miss parallelism to hide the long memory latencies.
However, adding more MSHRs improve swim’s ability to hide the memory latency
and result in a performance improvement. Changes in MHA size has a small
performance impact on mgrid, and the performance difference between its best and
worst MHA is only 6%.

Our study of workload RW12 has identified three properties that an adaptive MHA
should be aware of. Firstly, programs with fewer memory requests are more sensi-
tive to MHA size than memory intensive programs. Consequently, the MHA size
of the memory intensive programs can be reduced to speed up the congestion sen-
sitive programs without creating an unnecessarily large throughput degradation.
Secondly, the impact of bus congestion on program performance is application de-
pendent. Therefore, we can only rely on memory bus measurements to detect
congestion while performance measurements are needed to determine the effects of
an MHA change. Finally, the performance impact on an application from a change
in MHA size depends on the relationship between the program’s ability to hide
memory latencies and the combined load the workload puts on the memory bus.

A.6.2 The Performance Impact of the Number of Targets
per MSHR

Figure A.8 shows the results from varying the number of outstanding misses to the
same cache block address that can be handled without blocking (i.e. the number
of targets). We investigated the performance impact of varying this parameter for
L1 caches with 2, 4, 8 and 16 L1 data cache MSHRs, but only report the results
for the 16 MSHR case because the performance trends are very similar. The main
difference is that the performance impact of adding more targets is larger with
more MSHRs. If there is one target per MSHR, the cache has to block on the first
miss, and this is equivalent to a blocking cache.

For both workload collections, throughput is maximized with 8 targets per MSHR.
The reason is that this creates a good compromise between latency tolerance and
memory bus congestion. Unfortunately, the area cost of adding 8 targets is high.
Consequently, the MHA with 4 targets is probably a better choice given the small
performance benefit of increasing the number of targets beyond 4. The performance

92

90 %
95 %

100 %
105 %
110 %
115 %
120 %
125 %
130 %

HMoS RW HMoS ACPW STP RW STP ACPW

Metric and Workload Collection

Pe
rf

or
m

an
ce

 R
el

at
iv

e
to

 2

Ta
rg

et
s

2 Targets 4 Targets 8 Targets 16 Targets 32 Targets 1024 Targets

Figure A.8: Target Performance with 16 MSHRs

impact from adding more targets is larger for the ACPW collection because its
workloads contain a larger number of memory intensive benchmarks by design.
In other words, a greater number of benchmarks are memory intensive enough to
benefit from increased miss parallelism. On the HMoS metric, adding more targets
only slightly affects performance. Although the performance with 4 targets is the
worst out of the examined target counts, the large increase in throughput and
reasonable hardware cost makes a compelling argument for choosing this number
of targets.

A.6.3 Adaptive MHA Performance

In this section, we report the results from our evaluation of the Adaptive MHA. For
the experiments in this section, AMHA has a maximum of 16 MSHRs available in
the L1 data cache. Therefore, the area overhead of this configuration is comparable
to the conventional MHA with 16 MSHRs. AMHA only changes the number of
available MSHRs in the L1 data cache for each core, and we keep the number of
MSHRs in the L1 instruction caches constant at 16 for all conventional and adaptive
configurations. The number of targets is 4 in all MSHRs.

AMHA aims at improving the performance of the applications that are victims of
memory bus bandwidth overuse by other programs. Consequently, we expect an im-
provement on the HMoS metric with a reasonable reduction in system throughput.
Figure A.9 shows AMHA’s average performance compared to various conventional
MHAs. For the RW collection, the performance impact by running AMHA is small
on average, since AMHA only has a significant performance impact on 4 workloads.
This is necessary for AMHA to give stable performance because reducing the num-
ber of available MSHRs can drastically reduce performance if the memory bus is
not sufficiently congested. RW35 is the workload where AMHA has the largest
impact with an HMoS improvement of 193% compared to a 16 MSHR MHA. If we
only consider the 4 workloads where AMHA has a HMoS impact of more than 5%

A.6. Results 93

80 %
90 %

100 %
110 %
120 %
130 %
140 %
150 %
160 %
170 %
180 %

HMoS RW HMoS ACPW STP RW STP ACPW

Metric and Workload Collection

Pe
rf

or
m

an
ce

 R
el

at
iv

e
to

 a

B
lo

ck
in

g
C

ac
he

1 MSHR 2 MSHRs 4 MSHRs 8 MSHRs 16 MSHRs 32 MSHRs AMHA

Figure A.9: AMHA Average Performance

-50 %

0 %

50 %

100 %

150 %

200 %

250 %

300 %

350 %

ACPW7 ACPW21 ACPW13 ACPW15 ACPW28 ACPW9 ACPW20 ACPW12 ACPW39 ACPW36 AVG

Workload

Pe
rf

or
m

an
ce

 R
el

at
iv

e
to

 a
 1

6
M

SH
R

 M
H

A

Harmonic Mean of Speedups (HMoS) System Throughput (STP)

Figure A.10: AMHA Performance with High-Impact Workloads from ACPW

(both improvement and degradation), the result is an average HMoS improvement
by 72% and a 3% average improvement in throughput. Consequently, we can con-
clude that with randomly generated workloads, AMHA has a large performance
impact when it is needed and effectively turns itself off when it is not.

In the ACPW collection, the impact of AMHA is much larger since memory bus
congestion is more likely for these workloads. Figure A.10 shows the performance
of AMHA relative to that of a conventional 16 MSHR MHA for the workloads
where AMHA has a larger HMoS impact (both improvement and degradation) of
more than 10%. Again, AMHA has a large HMoS impact when it is needed and
improves HMoS by 52% on average and as much as 324%. In some cases AMHA
also improve STP, but the common case is a small STP degradation. Since AMHA
reduces the miss bandwidth of the memory bus intensive programs, it is likely that
their performance is reduced which is shown in our measurements as a throughput
reduction.

94

-0,5 %

0,0 %

0,5 %

1,0 %

1,5 %

2,0 %

2,5 %

3,0 %

3,5 %

4,0 %

10 20 30 40

AMHA Period

R
el

at
iv

e
Pe

rf
or

m
an

ce
RW HMoS RW STP ACPW HMoS ACPW STP

(a) AMHA Period

-10,0 %

-8,0 %

-6,0 %

-4,0 %

-2,0 %

0,0 %

2,0 %

4,0 %

6,0 %

8,0 %

35 % 40 % 45 %
AMHA Congestion Threshold

R
el

at
iv

e
Pe

rf
or

m
an

ce

RW HMoS RW STP ACPW HMoS ACPW STP

(b) AMHA Congestion Threshold

Figure A.11: AMHA Settings

For ACPW36 (facerec, mcf, art and sixtrack), AMHA reduces both HMoS and
STP. Here, bus utilization is low enough for AMHA to be turned off in most peri-
ods. However, there are two periods of bus congestion where AMHA’s performance
measurements indicate a large speed-up by significantly reducing sixtrack ’s num-
ber of MSHRs. Although this is correct when the measurements are taken, AMHA
keeps this configuration also after the brief period of congestion has passed. Conse-
quently, the available miss parallelism is reduced more than necessary which results
in a performance degradation on both metrics.

A.6.4 Choosing AMHA Implementation Constants

Up to now, we have used an AMHA implementation with a period of 30, a con-
gestion threshold of 40% and an acceptance threshold of 10%. These values have
been determined through extensive simulation of possible AMHA implementations.
Figure A.11(a) shows the performance impact of varying the AMHA period setting.
Here, the value must be chosen such that the cost of searching for a good MHA is
amortized over a sufficiently long period as well as that a new search is carried our
before the findings from the last search becomes obsolete. Figure A.11(b) shows
the parameter space for the congestion threshold setting which adjusts the bus
utilization necessary to conduct an MHA search. Here, STP is maximized with a
high threshold value and HMoS is maximized with a low threshold value. Since we
in this work aim at increasing HMoS while tolerating a small STP reduction, the
middle value of 40% is a good choice. However, choosing 45% as the threshold is
appropriate if a more throughput friendly AMHA is desired.

Finally, AMHA also needs an acceptance threshold which determines how large the
difference between the performance benefit and performance cost of a sample MHA
must be for the sample MHA to be used for the remainder of the AMHA period.
Here, we investigated values in the 2% to 10% range and found that 10% gave the

A.7. Discussion 95

best results. For the RW collection this parameter had nearly no impact while
for the ACPW collection both HMoS and STP was maximized by choosing 10%.
In general, the acceptance threshold must be large enough to filter out reduction
operations that are not justified and small enough to carry out the MHA reductions
when they are needed.

A.7 Discussion

AMHA works well for the CMP architecture used in this paper. However, it is
important that it will also work well in future CMP architectures. Since AMHA
improves performance when there is congestion in the memory bus, the performance
gains are closely tied to the amount of congestion. The width of the memory bus
and the clock frequency are both subject to technological constraints [12]. Conse-
quently, it is unlikely that bus bandwidth can be improved sufficiently to match
the expected increase in the number of processing cores [1]. Unless a revolutionary
new memory interface solution is discovered, off-chip bandwidth is likely to become
an even more constrained resource in the future [11]. Consequently, techniques like
AMHA will become more important.

Currently, AMHA does not support multithreaded applications or processor cores
with SMT. To support multithreaded applications, we need to treat multiple pro-
cessor cores as a single entity when allocating miss bandwidth. This can be ac-
complished by letting the operating system provide some simplified process IDs
as discussed by Zaho et al. [30] and communicate this to the Adaptive MHA En-
gine. Furthermore, some logic must be added to keep instructions committed in
busy wait loops out of AMHA’s performance measurements. Introducing SMT
further complicates matters as each core now supports more than one hardware
thread. Here, we need to further extend the MHA to allocate a different number
of L1 MSHRs to each hardware thread. We leave the exact implementation and
evaluation of such extensions as further work.

By targeting the victims of memory bus congestion and improving their perfor-
mance, one might argue that AMHA is a fairness technique. However, AMHA
only target unfairness in one situation, namely when the memory bus is severely
congested. Furthermore, AMHA makes no guarantees of how much miss band-
width each processor is given. Therefore, it is better to view AMHA as a simple
performance optimization that can be applied when certain conditions are met.

A.8 Conclusion

When designing Miss Handling Architectures (MHAs), the aim has been to support
as many outstanding misses as possible in an area efficient manner. Unfortunately,
applying this strategy to a CMP will not realize its performance potential. The

96 Bibliography

reason is that allowing too much miss parallelism creates congestion in the off-chip
memory bus.

The first contribution of this paper is a thorough investigation of conventional MHA
performance in a CMP. The main result of this investigation was that a majority of
applications need large miss parallelism. However, this must be provided in a way
that avoids memory bus congestion. Our Adaptive MHA (AMHA) scheme serves
this purpose and is the second contribution in this paper. AMHA increases CMP
performance by dynamically adapting the allowed number of outstanding misses in
the private L1 data caches to the current memory bus utilization.

Bibliography

[1] K. Asanovic and et al. The Landscape of Parallel Computing Research: A View
from Berkeley. Technical Report UCB/EECS-2006-183, EECS Department,
University of California at Berkeley, December 2006.

[2] S. Belayneh and D. R. Kaeli. A Discussion on Non-Blocking/Lockup-Free
Caches. SIGARCH Comp. Arch. News, 24(3):18–25, 1996.

[3] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and S. K.
Reinhardt. The M5 Simulator: Modeling Networked Systems. IEEE Micro,
26(4):52–60, 2006.

[4] D. Burger, J. R. Goodman, and A. Kagi. Memory Bandwidth Limitations of
Future Microprocessors. In ISCA ’96: Proc. of the 23rd An. Int. Symp. on
Comp. Arch., 1996.

[5] J. Chang and G. S. Sohi. Cooperative Cache Partitioning for Chip Multipro-
cessors. In ICS ’07: Proc. of the 21st Annual Int. Conf. on Supercomputing,
pages 242–252, 2007.

[6] V. Cuppu, B. Jacob, B. Davis, and T. Mudge. A Performance Comparison
of Contemporary DRAM Architectures. In Proc. of the 26th Inter. Symp. on
Comp. Arch., pages 222–233, 1999.

[7] H. Dybdahl and P. Stenstrom. An Adaptive Shared/Private NUCA Cache
Partitioning Scheme for Chip Multiprocessors. In HPCA ’07: Proc. of the
13th Int. Symp. on High-Performance Comp. Arch., 2007.

[8] S. Eyerman and L. Eeckhout. System-Level Performance Metrics for Multi-
program Workloads. IEEE Micro, 28(3):42–53, 2008.

[9] K. I. Farkas and N. P. Jouppi. Complexity/Performance Tradeoffs with Non-
Blocking Loads. In ISCA ’94: Proc. of the 21st An. Int. Symp. on Comp.
Arch., pages 211–222, 1994.

Bibliography 97

[10] J. L. Hennessy and D. A. Patterson. Computer Architecture - A Quantitative
Approach, Fourth Edition. Morgan Kaufmann Publishers, 2007.

[11] J. Huh, D. Burger, and S. W. Keckler. Exploring the Design Space of Future
CMPs. In PACT ’01: Proc. of the 2001 Int. Conf. on Parallel Architectures
and Compilation Techniques, pages 199–210, 2001.

[12] ITRS. International Technology Roadmap for Semiconductors. http://www.

itrs.net/, 2006.

[13] DDR2 SDRAM Specification. JEDEC Solid State Tech. Association, May
2006.

[14] D. Kroft. Lockup-free Instruction Fetch/Prefetch Cache Organization. In
ISCA ’81: Proc. of the 8th An. Symp. on Comp. Arch., pages 81–87, 1981.

[15] K. Luo, J. Gummaraju, and M. Franklin. Balancing Throughput and Fairness
in SMT Processors. In ISPASS, 2001.

[16] M. M. K. Martin, D. J. Sorin, M. D. Hill, and D. A. Wood. Bandwidth
Adaptive Snooping. In HPCA ’02: Proc. of the 8th Int. Symp. on High-
Performance Comp. Arch., page 251, 2002.

[17] O. Mutlu and T. Moscibroda. Stall-Time Fair Memory Access Scheduling for
Chip Multiprocessors. In MICRO 40: Int. Symp. on Microarchitecture, 2007.

[18] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith. Fair Queuing Memory
Systems. In MICRO 39: Int. Symp. on Microarchitecture, pages 208–222,
2006.

[19] K. J. Nesbit, J. Laudon, and J. E. Smith. Virtual private caches. In ISCA
’07: Proc. of the 34th An. Int. Symp. on Comp. Arch., pages 57–68, 2007.

[20] M. K. Qureshi and Y. N. Patt. Utility-Based Cache Partitioning: A
Low-Overhead, High-Performance, Runtime Mechanism to Partition Shared
Caches. In MICRO 39: Proc. of the 39th An. IEEE/ACM Int. Symp. on
Microarch., pages 423–432, 2006.

[21] N. Rafique, W.-T. Lim, and M. Thottethodi. Effective Management of DRAM
Bandwidth in Multicore Processors. In PACT ’07: Proc. of the 16th Int. Conf.
on Parallel Architecture and Compilation Techniques (PACT 2007), pages
245–258, 2007.

[22] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens. Memory
Access Scheduling. In ISCA ’00: Int. Symp. on Comp. Arch., pages 128–138,
2000.

[23] S. L. Scott and G. S. Sohi. The Use of Feedback in Multiprocessors and Its
Application to Tree Saturation Control. IEEE Trans. Parallel Distrib. Syst.,
pages 385–398, 1990.

http://www.itrs.net/
http://www.itrs.net/

98 Bibliography

[24] J. Shao and B. Davis. A Burst Scheduling Access Reordering Mechanism. In
HPCA ’07: Proc. of the 13th Int. Symp. on High-Performance Comp. Arch.,
2007.

[25] A. Snavely and D. M. Tullsen. Symbiotic Jobscheduling for a Simultaneous
Multithreading Processor. In Arch. Support for Programming Languages and
Operating Systems, pages 234–244, 2000.

[26] G. S. Sohi and M. Franklin. High-bandwidth Data Memory Systems for Su-
perscalar Processors. In ASPLOS-IV: Proc. of the fourth Int. Conf. on Ar-
chitectural Support for Programming Languages and Operating Systems, pages
53–62, 1991.

[27] SPEC. SPEC CPU 2000 Web Page. http://www.spec.org/cpu2000/.

[28] M. Thottethodi, A. Lebeck, and S. Mukherjee. Exploiting Global Knowledge
to achieve Self-tuned Congestion Control for k-ary n-cube Networks. IEEE
Trans. on Parallel and Distributed Systems, 15(3):257–272, 2004.

[29] J. Tuck, L. Ceze, and J. Torrellas. Scalable Cache Miss Handling for High
Memory-Level Parallelism. In MICRO 39: Proc. of the 39th An. IEEE/ACM
Int. Symp. on Microarchitecture, pages 409–422, 2006.

[30] L. Zhao, R. Iyer, R. Illikkal, J. Moses, S. Makineni, and D. Newell.
CacheScouts: Fine-Grain Monitoring of Shared Caches in CMP Platforms.
In PACT ’07: Proc. of the 16th Int. Conf. on Parallel Arch. and Comp. Tech.,
pages 339–352, 2007.

http://www.spec.org/cpu2000/

Appendix B

Paper A.III

A Light-Weight Fairness
Mechanism for Chip

Multiprocessor Memory
Systems

Magnus Jahre and Lasse Natvig
ACM International Conference on Computing Frontiers

2009

100

101

Abstract
Chip Multiprocessor (CMP) memory systems suffer from the effects of destructive
thread interference. This interference reduces performance predictability because
it depends heavily on the memory access pattern and intensity of the co-scheduled
threads. In this work, we confirm that all shared units must be thread-aware
in order to provide memory system fairness. However, the current proposals for
fair memory systems are complex as they require an interference measurement
mechanism and a fairness enforcement policy for all hardware-controlled shared
units. Furthermore, they often sacrifice system throughput to reach their fairness
goals which is not desirable in all systems.

In this work, we show that our novel fairness mechanism, called the Dynamic
Miss Handling Architecture (DMHA), is able to reduce implementation complexity
by using a single fairness enforcement policy for the complete hardware-managed
shared memory system. Specifically, it controls the total miss bandwidth available
to each thread by dynamically manipulating the number of Miss Status Holding
Registers (MSHRs) available in each private data cache. When fairness is chosen
as the metric of interest and we compare to a state-of-the-art fairness-aware mem-
ory system, DMHA improves fairness by 26% on average with the single program
baseline. With a different configuration, DMHA improves throughput by 13% on
average compared to a conventional memory system.

102

B.1. Introduction 103

B.1 Introduction

The multi-core paradigm has become the norm for high performance processors.
Commonly, these processors share part of the memory system which creates the
possibility that memory requests from different processing cores can interfere with
each other and increase latencies. Depending on the amount of Instruction Level
Parallelism (ILP) available in the application, this can increase the processors’ stall
time and degrade performance. This performance reduction is unpredictable as it
depends heavily on the memory access patterns and access intensity of the ap-
plications running on the other processing cores. A large, unpredictable latency
variation is clearly undesirable, and an important design goal for a Chip Multi-
processor (CMP) memory system is to limit these effects by providing some form
of performance isolation. Unfortunately, the memory systems employed in CMPs
today have no means of controlling this interference, but a number of researchers
have proposed techniques that alleviate this problem [3, 18, 19, 28].

A good performance isolation technique should provide both fairness and Quality
of Service (QoS). A memory system is fair if the performance reduction due to
interference between threads is distributed across all processes in proportion to
their priorities [14]. QoS is provided if it is possible to put a limit on the maximum
slowdown a process can experience when co-scheduled with any other process [3].
Furthermore, the allowed slow-down can depend on the priority of the process. It
is also common to divide fairness/QoS into mechanisms and policies [19]. Here, the
policy decides the desired resource allocation and implements it with the primitives
provided by the mechanism.

CMPs are commonly used in enterprise IT data centres. In this setting, it is im-
portant to have absolute control over how different threads and processes interfere
with each other in order to guarantee that the resources specified in the Service
Level Agreement are made available. Therefore, complex techniques that can pro-
vide QoS are needed. However, CMPs are also used in desktop computers, often
running a collection of single-threaded processes. Here, a less complex solution that
achieves good fairness can be more appropriate.

The main contribution of this work is a novel, light-weight mechanism called the
Dynamic Miss Handling Architecture (DMHA). DMHA’s key feature is that it
makes it possible to change the number of Miss Status Holding Registers (MSHRs)
available in the private L1 data caches at runtime. These registers determine the
number of misses the cache can sustain without blocking, and a blocked cache can
not receive any requests. Consequently, the processor will quickly stall as it will
be unable to fetch more data, thus reducing its execution speed. DMHA uses this
effect to match the execution speeds of the processors such that the slowdown due
to memory system interference is equalized across threads.

DMHA divides the total miss bandwidth between all cores at the end of the private
memory system. In this work, we show that DMHA is able to provide fairness
values comparable to a state-of-the-art fairness-aware memory system or improve

104

throughput compared to a conventional memory system. We establish this result
by exhaustively simulating all 256 combinations of 1, 4, 8 and 16 L1 data cache
MSHRs in a 4-core CMP for 10 randomly generated multiprogrammed workloads
with SPEC CPU2000 benchmarks. In other words, we measure the metric value
DMHA is able to attain if provided with a good policy for this metric. A fairness
policy that uses DMHA as its mechanism can improve on this result by adapting
the number of MSHRs to interference patterns at runtime as well as using more
fine grained MSHR allocation.

To show that DMHA can be used as the mechanism in a practical fairness imple-
mentation, we implement a simple interference measurement scheme which we call
Interference Points (IP). Here, we add a few registers to each shared unit and in-
crement these with a fixed value each time we detect a certain type of interference.
This measurement technique builds on previous work, and our contribution is to
integrate it into a coherent whole [17, 28]. In addition, we implement a simple
hardware policy that searches through different DMHA configurations at runtime
to reduce interference. The combination of these techniques result in a fairness
management system which we call the Fair Adaptive Miss Handling Architecture
(FAMHA). FAMHA is suitable for systems where strict QoS is not needed and a
trade-off between fairness and throughput is desired.

The rest of this paper has the following outline. First, section B.2 gives the nec-
essary background information on fairness techniques, MHAs and metrics. Then,
section B.3 presents our DMHA mechanism before section B.4 discusses IP interfer-
ence measurement and our hardware policy. Section B.5 discusses our simulation
methodology before we present our results in section B.6. Finally, section B.7 dis-
cusses possible DMHA extensions before section B.8 concludes the paper and gives
indications for further work.

B.2 Background

There are three types of shared resources in a typical CMP memory system: the
crossbar or some other form of interconnect, one or more shared caches and a mem-
ory bus. Previous research has established that thread interference is undesirable
as it can lead to unpredictable performance. Consequently, there is a need to con-
trol this interference, and researchers have investigated shared cache fairness/QoS
[3, 9–11, 14, 21, 22, 28], memory bus fairness/QoS [17, 18, 20, 23] or both [2, 12, 19].
We start this section by illustrating the common points of these proposals in sec-
tions B.2.1 and B.2.2. Our novel DMHA mechanism extends the Miss Handling
Architecture (MHA) of the private L1 caches to enable chip-wide allocation of miss
bandwidth. Therefore, a brief introduction to MHA design is given in section B.2.3.
Finally, section B.2.4 discusses the performance evaluation metrics we use in this
work.

B.2. Background 105

B.2.1 Shared Cache QoS and Fairness Techniques

In a shared cache, there are two resources that must be managed in order to provide
fairness: capacity and bandwidth. In current CMPs, cache capacity is managed by
a least recently used (LRU) policy, and cache bandwidth is distributed on a first
come, first served (FCFS) basis [21]. When a cache is shared, more sophisticated
techniques are needed to control the sharing of these resources. The main reason is
that a thread with a higher access frequency will get a larger share of the resource
with both the LRU and the FCFS policy.

The proposed cache capacity sharing techniques often use way-partitioning to con-
trol the cache capacity usage of each thread [11, 12, 14]. Consequently, a thread ID
has to be stored in every cache block. Then, the replacement algorithm is modified
to use these IDs to keep the number of blocks in a set within a quota. Normally, a
single spatial partition is used as long as the running threads are in stable program
phases. However, Chang and Sohi [3] observed that using multiple time sharing
partitions can improve throughput compared to single partition techniques while
still providing QoS. If only resource usage measurement is required, set sampling
[28] can be used to reduce the area overhead. Here, the thread IDs are only stored
for a subset of cache sets.

Nesbit et al. [21] investigated how cache bandwidth could be fairly distributed
between threads. They showed that the order in which the requests are delivered
to the cache must be controlled in order to provide fairness/QoS, and accomplished
this by using an approach inspired by Network Fair Queueing. If there are P
processors, an access latency of l cycles and all other processors have pending
requests, processor A must wait l · P cycles between each access. Consequently,
each processor is under the impression that it has a private cache that is P times
slower than the shared one.

B.2.2 Memory Bus Scheduling

Memory bus scheduling is a challenging problem due to the 3D structure of DRAM
consisting of rows, columns and banks. Commonly, a DRAM read transaction con-
sists of first sending the row address, then the column address and finally receiving
the data. When a row is accessed, its contents are stored in a register known as the
row buffer, and a row is often referred to as a page. If the row has to be activated
before it can be read, the access is referred to as a row miss or page miss. It is
possible to carry out repeated column accesses to an open page, called row hits or
page hits. This is a great advantage as the latency of a row hit is much lower than
the latency of a row miss. Furthermore, a DRAM page is commonly much larger
than a cache line which increases the probability of this event. DRAM accesses
are pipelined, so there are no idle cycles on the memory bus if the next column
command is sent while the data transfer is in progress. Furthermore, command
accesses to one bank can be overlapped with data transfers from a different bank.

106

If data from a different row is requested, the open row must be written back into
the DRAM array. This is accomplished with a precharge command. With a closed
page policy, the page is written back when there are no pending requests for that
row. If a row is left open until there is a request for a different row in the bank, the
controller uses an open page policy. The situation where two consecutive requests
access the same bank but different rows is known as a row conflict. In this case,
the old row must be precharged before the row and column commands can be sent.
This is very expensive in terms of latency. We refer the reader to Cuppu et al. [4]
for more details regarding the DRAM interface.

Rixner et al. [24] proposed the First Ready - First Come First Served (FR-FCFS)
algorithm for scheduling DRAM requests. Here, memory requests are reordered
to achieve high page hit rates which results in increased memory bus utilization.
This algorithm prioritizes requests according to three rules: prioritize ready com-
mands over commands that are not ready, prioritize column commands over other
commands and prioritize the oldest request over younger requests. A number of
researchers have extended the FR-FCFS algorithm to handle multiple threads with
different priorities [8, 17, 18, 20]. Common to these techniques is that they augment
the basic FR-FCFS algorithm with additional rules so that the memory bandwidth
is divided among threads in a fair manner.

B.2.3 Miss Handling Architectures

A Miss Handling Architecture (MHA) consists of one or more Miss Status/Infor-
mation Holding Register (MSHR) files. The MSHR file consists of n MSHRs which
contain space to store the cache block address of the miss, some target information
and a valid bit. The cache can handle as many misses to different cache block
addresses as there are MSHRs without blocking. Each MSHR has its own com-
parator and the MSHR file can be described as a small fully associative cache. For
each miss, the information required for the cache to answer the processor’s request
is stored in the Target Information field. However, the exact Target Information
content of an MSHR is implementation dependent. The Valid (V) bit is set when
the MSHR is in use, and the cache must block when all valid bits are set. A blocked
cache cannot service any requests.

Another MHA design option regards the number of misses to the same cache block
address that can be handled without blocking, and we refer to this aspect of the
MHA implementation as target storage. Kroft used implicit target storage in the
original non-blocking cache proposal [15]. Here, storage is dedicated to each proces-
sor word in a cache block. Consequently, additional misses to a given cache block
can be handled as long as they go to a different processor word. Farkas and Jouppi
[6] proposed explicitly addressed MSHRs which improves on the implicit scheme by
making it possible for any miss to use any target storage location. Consequently, it
is possible to handle multiple misses to the same processor word. This improvement
increases hardware cost as the offset of the requested processor word within the

B.2. Background 107

Table B.1: CMP Performance Metrics

Metric Formula
System-Level
Meaning [5]

Reference

Aggregate
Weighted
Speedup
(AWS)

∑P
i

IPCshared
i

IPCbase
i

System
Throughput (STP)

Snavely and
Tullsen [25]

Harmonic
Mean of
Speedups
(HMoS)

P∑P
i

IPCbase
i

IPCshared
i

Inverse of Average
Normalized
Turnaround Time
(ANTT)

Luo et al. [16]

Fairness (for
one workload)

min(
IPCshared

i

IPCbase
i

)/max(
IPCshared

j

IPCbase
j

)
Assumed by
system software

Gabor et al. [7]

cache block must be stored explicitly. In this paper, we use explicitly addressed
MSHRs because they provide low lock-up time for a reasonable hardware cost.

B.2.4 CMP Performance Evaluation Metrics

To evaluate fairness or QoS it is necessary to identify a fair configuration which can
be used as a performance baseline. We use the three metrics in table B.1 to compare
the thread’s performance in the shared environment with the baseline. Eyerman
and Eeckhout [5] recently showed that these three metrics are sufficient to measure
system throughput (STP), how fast a single program is executed (average single
program turnaround time) and to what extent the effects due to sharing affect all
threads equally (fairness). In table B.1, P is the total number of processors and
i and j are arbitrary processor IDs. In this paper, we use the abbreviations AWS
and HMoS to refer to the Aggregate Weighted Speedup and Harmonic Mean of
Speedups, respectively. We use HMoS instead of Eyerman and Eeckhout’s Average
Normalized Turnaround Time (ANTT) metric because a higher value on the HMoS
metric is better (ANTT is the inverse of HMoS). This makes our plots easier to
read as higher is better on all metrics. When we compare the fairness of different
architecture configurations, we use the arithmetic mean of the per workload fairness
metric values to produce a single fairness number for each configuration.

Researchers have previously used two different fairness/QoS baselines. Firstly,
it is possible to use the benchmark running alone as the baseline [2, 5, 18]. This
baseline is often used when investigating memory bus fairness as any interleaving of
requests might destroy page locality. For shared cache research, it is more common
to compare to a static allocation where each processor is guaranteed an amount of
cache space proportional to its assigned priority [3, 10]. Although this allocation
gives insights into a thread’s performance with a given amount of cache space, it
removes all information on the thread’s ability to put a larger cache capacity to
good use. Since it is reasonable to assume that the choice of baseline will influence

108

Algorithm 2 Fairness Policy Algorithm

Find maximum Interference Point (IP) value
if Maximum Value > Max allowed IP then

if Same interfering and delayed processor as last time then
if Repeat counter > Repeat Threshold then Reduce MSHRs
elseIncrement repeat counter
end if

end if
end if

the results, we use both baselines in this work. We will refer to them as the
Single Program Baseline (SPB) when comparing to the benchmark running alone
and the Multiprogrammed Baseline (MPB) when comparing to the benchmark in
a configuration with equal and static shares of all resources.

B.3 The Dynamic Miss Handling Architecture

Earlier research on memory system fairness has focused on achieving fairness by
dividing bandwidth or capacity between threads for a single shared unit. Our
approach differs in that it allocates per thread miss bandwidth by manipulating
the number of available MSHRs at runtime. Figure B.1 shows an MHA where the
number of MSHRs can be dynamically reconfigured. The main difference between
this MHA and a conventional MHA is the addition of a Usable (U) bit to each
MSHR. If this is set, the MSHR can be used to store miss data. By manipulating
these bits, it is possible to dynamically change the number of available MSHRs.
The maximum number of MSHRs is determined by the number of physical registers
and decided at implementation time. As in the conventional MSHR file, the Valid
(V) bit is set if the MSHR contains valid miss data.

The other addition needed to support DMHA is Mask Control. This control unit
manipulates the values of the U bits subject to the commands given by the miss
bandwidth allocation policy. For instance, if the number of MSHRs in cache A
should be reduced, cache A’s Mask Control sets the U bits for some MSHRs to 0.
When the number of MSHRs is decreased, it is possible that some registers that
contain valid miss data are taken out of use. Consequently, these registers must
be searched when a response is received from the next memory hierarchy level.
However, the cache should block immediately to reflect the policy decision. This
problem is solved by taking both the V and U bits into account on a cache miss
and for the blocking decision. Furthermore, all registers that contain valid data
(i.e. have their V bit set) are searched when a response is received.

B.4. The Fair Adaptive Miss Handling Architecture (FAMHA) 109

Block Address Target InformationMSHR 1

MSHR 2

MSHR n

Comparators

...
Address

V U

Mask Control

Block Address Target Information V U

Block Address Target Information V U

Increment Num MSHRs

Decrement Num MSHRs

Figure B.1: Dynamic Miss Handling Architecture

B.4 The Fair Adaptive Miss Handling Architec-
ture (FAMHA)

A practical fairness system needs to carry out three tasks: measurement, allocation
and enforcement. In this section, we discuss our proposals for the measurement and
allocation tasks as these are needed to use DMHA for fairness enforcement. Figure
B.2 illustrates how our Interference Point (IP) measurement technique provides
data to the allocation module (FAMHA Engine) which in turn controls the DMHA
mechanism. Periodically, the allocation module uses the interference measurements
to modify the number of MSHRs available in each private data cache. In this work,
we present a simple hardware policy for the FAMHA Engine but it is also possible
to implement more sophisticated software policies for flexibility.

B.4.1 Measuring Interference with Interference Points

When implementing the allocation module, it is useful that a common representa-
tion of interference is available. Consequently, we introduce the notion of Interfer-
ence Points (IPs). Table B.2 shows the different types of interference accounted
for in our interference point measurement technique. Since each L2 cache bank
in our model has one input/output channel which is connected to all L1 data and
instruction cache pairs, it is contention for this channel that results in both cross-
bar and shared cache bandwidth interference. Furthermore, we assume that the
shared cache can accept a new request every Ccache cycle time processor clock cycles.
Since the crossbar is pipelined, it can schedule a new request every Ccache cycle time

cycles and a delayed request is therefore delayed by Ccache cycle time cycles. We add

110

FAMHA
Engine

CPU 1

C
ro

ss
ba

r

Main
Memory

Memory
Bus

D-Cache
I-Cache

Interference Point
Storage

CPU 2
D-Cache
I-Cache

CPU 3
D-Cache
I-Cache

CPU 4
D-Cache
I-Cache

L2
 C

ac
he

M
em

or
y

C
on

tro
lle

r

Figure B.2: Fair Adaptive MHA (FAMHA) Block Diagram

0 21350 12930

1928 0 18795 14706

2750 1429 0 12254

5847 4273 18604 0

CPU 0 CPU 1 CPU 2 CPU 3
CPU 0

CPU 1

CPU 2

CPU 3

1783

Interfering Processor

De
la

ye
d

Pr
oc

es
so

r

Figure B.3: Interference Point Storage

Ccache cycle time for each processor which has one or more delayed requests. The
reason is that misses that are clustered together usually have a smaller performance
impact than solitary misses.

Interference due to contention for cache capacity is an important source of interfer-
ence in CMP memory systems. However, it is difficult to estimate the extra delay
resulting from one processor exceeding its cache space quota. Since our hardware
fairness policy is simple, we choose the low complexity option of using the number
of blocks the processor is using beyond its equal allocation baseline as the interfer-
ence point value. This is easy to measure as it simply consists of adding a register
for each processor which is incremented when the processor brings a block into the
cache and decremented on a replacement. Zaho et al. [28] showed that such mea-
surements could be implemented with a small area overhead by using set sampling.
In this work, we assume that we know which processor brought each block into the
cache which results in an area overhead comparable to that of a way-partitioned
cache fairness technique. We also avoid the problem of estimating the impact of
this overuse on the other processors by assuming that it affects all processors by an

B.4. The Fair Adaptive Miss Handling Architecture (FAMHA) 111

Table B.2: Interference Point Formulae

Shared Resource Requirement IP Value

Crossbar Bandwidth At least one request is de-
layed

Ccache cycle time

Shared Cache Capacity The processor uses more than
its static share

max(Occupied Blocks−
Total Blocks

P
, 0)

Memory Bus Bandwidth [17]

At least one ready request is
delayed

Cbus

Row conflict
(Crow+Ccol+Cprecharge)

BankParallelism(i)

equal amount. If more accurate measurements are needed, it is possible to include
the interference and sharing measurement techniques proposed by Zaho et al. [28].

Mutlu and Moscibroda [17] recently proposed a low overhead scheme for measuring
memory bus interference. We use a simplified version of their technique in this work.
Firstly, we account for interference due to accesses being serialized on the memory
bus. In this case, we add an IP quantity that corresponds to the number of processor
cycles used to transfer one last-level cache block over the memory bus (Cbus).
Secondly, processor A might have a request for a bank in which processor B already
has an activated page. This situation is known as a row conflict. Consequently,
it is necessary to precharge the bank before sending the row address and column
address of processor A’s request. Here, we approximate the actual delay by adding
Cprecharge + Crow + Ccol cycles. This is only an approximation since the actual
additional delay may vary depending on the number of cycles the bank has been in
the read or write states [13]. Furthermore, the cost of this delay can be amortized
over requests to other banks. Therefore, we use Mutlu and Moscibroda’s bank
parallelism estimator to reduce the impact of this factor depending on the number
of requests processor A has waiting for other banks.

We are now left with a collection of cycle-based and block-based interference
measurements. Consequently, there is a need to combine these in a meaning-
ful way. Generally, the total interference points follow the formula IPtotal =
α · IPcycles + β · IPblocks. Consequently, the constants α and β should be chosen to
reflect the relative importance of the cycle-based and block-based measurements.
Since interference measurement is not the main focus of this work, we use α = 1
and β = 1. This was sufficient for our simple allocation technique, but more so-
phisticated policies might need better control of the relative impact of block- and
cycle-based metrics.

The interference point storage structure is shown in Figure B.3. Each shared unit
has one such structure, and each entry is incremented when interference is detected.
At regular intervals, the information is read by the FAMHA Engine and the coun-
ters are reset. The values on the diagonal are always zero, and it is not necessary
to allocate storage for these values. The IP structure is similar to Zaho et al.’s
interference tables [28]. The main difference is that Zaho et al. only record cache

112

Table B.3: Processor Core Parameters
Parameter Value

Clock frequency 4 GHz

Reorder Buffer 128 entries

Store Buffer 32 entries

Instruction Queue 64 instructions

Instruction Fetch Queue 32 entries

Load/Store Queue 32 instructions

Issue Width 8 instructions/cycle

Functional units 4 Integer ALUs, 2 Integer Multipy/Divide, 4
FP ALUs, 2 FP Multiply/Divide

Branch predictor Hybrid, 2048 local history registers, 2-way 2048
entry BTB

capacity interference. Our interference tables stores an interference point value
which makes it possible to compare different forms of interference.

B.4.2 A Simple Fairness Policy

To verify that our DMHA mechanism can be used in a practical system, we cre-
ated a simple hardware policy that uses our interference points measurement tech-
nique and the DMHA mechanism to improve CMP memory system fairness. Every
500000 clock cycles, the FAMHA Engine gathers the interference points from all
shared units. Then, it follows a greedy algorithm (Algorithm 2) to determine which
processor should have its number of MSHRs reduced if any. At regular intervals,
all processors are restored to their maximum number of MSHRs to adapt to appli-
cation phase changes.

To control the aggressiveness of the adaptive policy, we add two additional con-
figuration parameters. First, we require that the largest interference point value
must be larger than a threshold for an MSHR reduction to be considered. This
parameter is necessary to avoid reducing the MSHRs when there is little interfer-
ence. Secondly, we require that the greedy algorithm returns the same interfering
processor and delayed processor a configurable number of times before the MSHR
reduction is carried out. A high value on this threshold both guards against mak-
ing wrong decisions and reduces the speed with which the number of MSHRs is
reduced.

B.5 Evaluation Methodology

We use the system call emulation mode of the cycle-accurate M5 simulator [1] for
our experiments. The processor architecture parameters for the simulated 4-core
CMP are shown in table B.3, and table B.4 contains the baseline memory system
parameters. We have extended M5 with a FAMHA implementation, a crossbar
interconnect and a detailed DDR2-800 memory bus and DRAM model [13]. The

B.5. Evaluation Methodology 113

Table B.4: Memory System Parameters
Parameter Value

Level 1 Data Cache 64 KB 8-way set associative, 64B blocks, 16
MSHRs, 3 cycles latency

Level 1 Instruction Cache 64 KB 8-way set associative, 64B blocks, 16
MSHRs, 1 cycle latency

Level 2 Unified Shared Cache 8 MB 16-way set associative, 64B blocks, 18
cycles latency, 16 MSHRs per bank, 4 banks

L1 to L2 Interconnection Network Crossbar topology, 8 cycles latency, 64B wide

Main memory DDR2-800, 4-4-4-12 timing, 64 entry read
queue, 64 entry write queue, 1 KB pages, 8
banks, FR-FCFS scheduling [24], Closed page
policy

Table B.5: List of Acronyms
AWS Aggregate

Weighted
Speedup

HMoS Harmonic Mean
of Speedups

MTP Multiple Time
Sharing Partitions
[3]

CB Crossbar IP Interference Point NFQ Network Fair
Queueing [20]

DMHA Dynamic MHA MHA Miss Handling
Architecture

QoS Quality of Service

FAMHA Fair Adaptive
MHA

MPB Multiprogrammed
Baseline

SPB Single Program
Baseline

FR-FCFS First Ready -
First Come First
Served

MSHR Miss Status/Infor-
mation Holding
Register

shared cache is pipelined and can accept a new request every 2 clock cycles. This
value is based on the cycle time given by the CACTI cache timing analysis tool
[27].

We have implemented a state-of-the-art fairness-aware memory system to evalu-
ate our FAMHA technique. To manage cache capacity, we use Chang and Sohi’s
Multiple Time-Sharing Partitions (MTP) [3] which has been shown to outperform
cache capacity sharing that rely on a single spatial partition. To gather the miss
rate curves for each processor, we employ an auxiliary tag directory for each pro-
cessor core as suggested by Chang and Sohi. However, we have not implemented
their Cooperative Caching throughput optimization because it can not be applied
to shared caches where all banks have a uniform latency.

Furthermore, we use two variants of Rafique et al.’s state-of-the-art, thread-aware
memory bus scheduling scheme based on Network Fair Queueing (NFQ) [23]. NFQ-
1 allows no access reordering while NFQ-3 allows at most three requests to pass the
request with the lowest virtual start time. Our fair crossbar provides fairness with
Start Time Fair Queueing [8]. It also provides fair cache bandwidth allocation
because the crossbar serializes requests to the L2 banks in our model. The fair
crossbar of Nesbit et al. [21] is different from ours since it allocates cache bandwidth
with virtual deadline first scheduling.

114

Table B.6: Randomly Generated Multiprogrammed Workloads
ID Bench-

marks
ID Bench-

marks
ID Bench-

marks
ID Bench-

marks
ID Bench-

marks

1 perlbmk,
ammp,
parser,
mgrid

9 vortex1,
apsi,
fma3d,
sixtrack

17 perlbmk,
parser,
applu,
apsi

25 facerec,
parser,
applu, gap

33 gzip,
galgel,
lucas,
equake

2 mcf, gcc,
lucas,
twolf

10 ammp,
bzip,
parser,
equake

18 perlbmk,
gzip,
mgrid,
mgrid

26 mcf,
ammp,
apsi, twolf

34 facerec,
facerec,
gcc, apsi

3 facerec,
mesa, eon,
eon

11 twolf, eon,
applu, vpr

19 mcf, gcc,
apsi,
sixtrack

27 swim,
ammp,
sixtrack,
applu

35 swim,
mcf, mesa,
sixtrack

4 ammp,
vortex1,
galgel,
equake

12 swim,
galgel,
mgrid,
crafty

20 ammp,
gcc, art,
mesa

28 swim,
fma3d,
parser, art

36 mesa,
bzip,
sixtrack,
equake

5 gcc, apsi,
galgel,
crafty

13 twolf,
galgel,
fma3d,
vpr

21 perlbmk,
apsi,
lucas,
equake

29 twolf, gcc,
apsi,
vortex1

37 mcf, gcc,
vortex1,
gap

6 facerec,
art, applu,
equake

14 bzip, bzip,
equake,
vpr

22 mcf,
crafty,
vpr, vpr

30 gzip, apsi,
mgrid,
equake

38 facerec,
mcf,
parser,
lucas

7 gcc,
parser,
applu, gap

15 swim,
galgel,
crafty, vpr

23 gzip,
mesa,
mgrid,
equake

31 mgrid,
eon,
equake,
vpr

39 twolf,
mesa, eon,
eon

8 swim,
twolf,
mesa, gap

16 mcf, mesa,
mesa,
wupwise

24 facerec,
fma3d,
applu,
lucas

32 facerec,
twolf, gap,
wupwise

40 mcf, apsi,
apsi,
equake

B.6. Results 115

We use the SPEC CPU2000 benchmark suite [26] to create 40 multiprogrammed
workloads consisting of 4 SPEC benchmarks each as shown in table B.6. We picked
benchmarks at random from the full SPEC CPU2000 benchmark suite, and each
processor core is dedicated to one benchmark. The only requirement given to the
random selection process was that each SPEC benchmark had to be represented in
at least one workload. To avoid unrealistic interference when more than a single
instance of a benchmark is part of a workload, the benchmarks are fast-forwarded a
different number of clock cycles if the same benchmark is run on more than one core.
If there is only one instance of a benchmark in a workload, it is fast-forwarded for 1
billion clock cycles. Each time the benchmark is repeated, we increase the number
of fast-forward clock cycles by 20 million. Then, measurements are collected for
200 million clock cycles.

B.6 Results

In this section, we evaluate the fairness and throughput impact of conventional
fairness schemes and our new FAMHA technique. First, we quantify the relative
impact of unfairness in the different shared units in section B.6.1. In section B.6.2,
we quantify the potential of the DMHA mechanism by simulating a large number of
static asymmetric MHAs. Here, we show that DMHA can provide similar (MPB) or
better (SPB) fairness as well as better performance and throughput than a CMP
with a state-of-the-art fairness enabled memory system. Finally, we show that
using DMHA with a simple measurement and allocation technique substantially
improves fairness compared to a conventional memory system in section B.6.3.

B.6.1 Fairness Impact of Shared Hardware-Managed Units

When designing a fair memory system, it is helpful to identify the relative fairness
impact of interference in the different shared units. Figure B.4 provides some in-
sights into this issue. Here, we report the fairness and throughput of the selected
fairness techniques and quantify their relative impact on fairness and throughput.
As expected, employing stricter fairness techniques improves fairness for the mul-
tiprogrammed baseline (MPB) in Figure B.4(a). However, the stricter fairness
enforcement techniques actually yield lower fairness with the single program base-
line (SPB). With SPB, slowdowns should be proportional to the performance of the
application when running alone which is difficult to achieve due to the applications’
varying sensitivity to resource allocations. A resource allocation sensitive applica-
tion might experience a severe slowdown with a static share while the performance
of an allocation insensitive thread would hardly change. If these threads are run
together, there is a large variation in their slowdowns relative to the baseline which
is interpreted as unfairness. Techniques that rely on resource partitioning tend to
make these problems worse, because they limit the resources available to resource
sensitive applications.

116

0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

Single Program Baseline (SPB) Multiprogrammed Baseline
(MPB)

A
ve

ra
ge

 F
ai

rn
es

s
LRU FR-FCFS LRU FR-FCFS Fair CB
LRU NFQ-3 LRU NFQ-3 Fair CB
LRU NFQ-1 LRU NFQ-1 Fair CB
MTP FR-FCFS MTP FR-FCFS Fair CB
MTP NFQ-3 MTP NFQ-3 Fair CB
MTP NFQ-1 MTP NFQ-1 Fair CB
MPB

(a) Fairness (Higher is Better)

0
1
2
3
4
5
6
7

Single Program Baseline (SPB) Multiprogrammed Baseline
(MPB)

A
ve

ra
ge

 A
gg

re
ga

te
 W

ei
gh

te
d

Sp
ee

du
p

LRU FR-FCFS LRU FR-FCFS Fair CB
LRU NFQ-3 LRU NFQ-3 Fair CB
LRU NFQ-1 LRU NFQ-1 Fair CB
MTP FR-FCFS MTP FR-FCFS Fair CB
MTP NFQ-3 MTP NFQ-3 Fair CB
MTP NFQ-1 MTP NFQ-1 Fair CB
MPB

(b) Throughput (Higher is Better)

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

NFQ-3 NFQ-1
Memory Bus Scheduling Technique

Sh
ar

e
of

 F
ai

rn
es

s
Im

pr
ov

em
en

t
(M

ul
tip

ro
gr

am
m

ed
 B

as
el

in
e)

Fair Bus MTP and Fair Bus MTP, Fair Bus and Fair Crossbar

(c) Share of Fairness Improvement (MPB)

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

NFQ-3 NFQ-1

Memory Bus Scheduling Technique

Sh
ar

e
of

 T
hr

ou
gh

pu
t R

ed
uc

tio
n

(M
ul

tip
ro

gr
am

m
ed

 B
as

el
in

e)

Fair Bus MTP and Fair Bus MTP, Fair Bus and Fair Crossbar

(d) Share of Throughput Reduction (MPB)

Figure B.4: Performance Impact of a Fair Memory Bus, Fair Crossbar and Fair
Cache

As expected, Figure B.4(b) shows that stricter enforcement of fairness reduces sys-
tem throughput. The maximum AWS value is 4 for SPB (i.e. equal to the number
of processors). The reason is that SPB balances the shared mode performance
against the performance with exclusive access to all shared resources. For MPB,
the benchmark can seize more resources in the shared mode than is available in the
baseline. Consequently, it is difficult to set a concrete bound on the AWS value for
this baseline.

Figure B.4(c) shows the relative impact of each fairness technique with MTB. Here,
the memory bus controller and cache capacity sharing technique each account for
about 50% of the total fairness improvement with both the NFQ-1 and NFQ-3 con-
trollers. However, the NFQ-3 controller is able to carry out this fairness increase
with a very low impact on system throughput as shown in Figure B.4(d). Conse-
quently, the fair cache sharing technique is responsible for 95% of the throughput
loss due to fairness with MPB. With the NFQ-1 scheduler, the cache is responsible
for 78% of the throughput loss.

B.6. Results 117

The cache is responsible for most of the throughput loss because of the focus on
Quality of Service (QoS). In this case, performance should never drop below a given
baseline. Chang and Sohi [3] define that QoS is achieved if the value on their QoS

metric (
∑P

i min(0,
IPCshared

i

IPCMPB
i

− 1)) is larger than -0.05 for all workloads. In our

experiments, only the configuration with the MTP cache, NFQ-3 bus scheduling
and the fair crossbar achieves this goal. However, this configuration also reduces
system throughput by 7% (SPB) and 28% (MPB) on average.

The configuration with the NFQ-1 bus does not provide QoS because MTP assumes
that a thread’s performance is inversely proportional to its miss rate. In workload
16, this assumption does not hold because the total number of misses is increased
by MTP’s throughput optimization. This creates severe memory bus congestion,
and results in a slowdown for 3 out of 4 benchmarks. Note that the fairness metric
also takes into account that the performance impact from sharing should affect all
threads equally which results in the NFQ-3 controller having considerably poorer
fairness than NFQ-1 in Figure B.4(a).

Our results suggest that the fairness impact of introducing a fair crossbar is very
small. This differs from the results of Nesbit et al. [21] who reported a HMoS
increase of 10% on average by implementing fair cache bandwidth sharing. We
believe that this difference is due to different cache modeling assumptions. In our
cache, all accesses take the same number of clock cycles. The cache is also heavily
pipelined, and we do not account for any resource dependencies.

B.6.2 Static Asymmetric MHA Fairness

A good fairness mechanism should be able to achieve good fairness, throughput and
single program turn around time. This makes it possible to create a policy that
optimizes for the metric of interest which may vary from system to system. In this
section, we show that our DMHA mechanism meets this requirement. To evaluate
DMHA, we simulate all possible asymmetric L1 data cache MHAs with 1, 4, 8 and
16 MSHRs (i.e. 256 possible MHAs in a 4-core CMP). We retrieve the best value for
a given metric and workload and refer to this as the offline-best-static MHA. Note
that the configuration that yields the best performance with one metric does not
necessarily yield the best performance on a different metric. This is appropriate as
the aim of the experiment is to show that an asymmetric MHA can provide good
performance on a given metric when provided with an appropriate policy for this
metric. An adaptive policy might also outperform offline-best-static by dynamically
changing the asymmetric MHA to adapt to application phase changes.

Simulating many combinations of static MHAs quickly become computationally in-
feasible. Consequently, we have selected 10 of our 40 randomly generated workloads
for this experiment. Specifically, workloads 5, 6, 7, 8, 19, 23, 25, 29, 35 and 40 are
used. These workloads all have a fairness value of 0.5 or less for the conventional
memory system with both baselines.

118

-30 %

0 %

30 %

60 %

90 %

120 %

150 %

Fairness
SPB

Fairness
MPB

HMoS
SPB

HMoS
MPB

AWS
SPB

AWS
MPB

Metric and Baseline

M
et

ric
 V

al
ue

 R
el

at
iv

e
to

C

on
ve

nt
io

na
l M

em
or

y
Sy

st
em

Fairness-Aware Memory System Multiprogrammed Baseline
Best Static MHA

(a) Average Performance and Fairness

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

6 7 25 19 5 29 23 35 40 8 AVG
Workload ID

SP
B

 F
ai

rn
es

s

Conventional Memory System Fairness-Aware Memory System
Best Static MHA

(b) Fairness with the Single Program Baseline
(SPB)

Figure B.5: Offline Best Static MHA Performance (Workload Subset)

Figure B.5 shows the performance of the offline-best-static MHA relative to a con-
ventional memory system with no cache partitioning control, a FR-FCFS memory
bus scheduler and conventional crossbar. In addition, the values for the best per-
forming fairness-aware memory system (MTP cache partitioning, NFQ-3 bus sched-
uler and a conventional crossbar) and the multiprogrammed baseline are shown.
Figure B.5(a) shows the average values of the different metrics for the subset of the
randomly generated workloads relative to the conventional memory system. With
SPB, offline-best-static MHA improves fairness by 26% compared to the best per-
forming fairness-aware memory system, and it improves AWS by 13% compared to
the conventional memory system. In addition, it performs better than both the con-
ventional and the fairness-aware memory system on all metrics and baselines except
fairness with MPB. In this case, the offline-best-static MHA is not able to mirror
the per-core performance with the static resource sharing. This result is mainly
due to workload 6 where the L1 data caches of all processors that contribute to
interference have been reduced to a blocking configuration. Consequently, it is not
possible to reduce performance of these benchmarks enough to match the perfor-
mance with a statically shared memory system. However, offline-best-static MHA
achieves fairness values comparable to the fairness-enabled memory system.

Figure B.5(b) shows the fairness results for the selected workloads with the SPB
baseline. Here, the offline-best-static MHA outperforms both the conventional
and fairness-enabled memory systems for 8 of 10 workloads. This indicates that
a good DMHA policy should be able to approach the fairness of today’s state-of-
the-art fairness systems. In workload 23, mgrid (4 MSHRs in offline-best-static) is
allowed to use enough shared cache space to create a slowdown for gzip (1 MSHR),
mesa (4 MSHRs) and equake (1 MSHR). However, reducing mesa’s number of
MSHRs beyond 4 slows it down sufficiently to reduce overall fairness. The same
problem is responsible for the less than ideal performance in workload 29. Here,
cache interference between apsi (4 MSHRs) and gcc (16 MSHRs) reduces fairness

B.6. Results 119

-40 %

-20 %

0 %

20 %

40 %

60 %

80 %

100 %

Fairness
SPB

Fairness
MPB

HMoS
SPB

HMoS
MPB

AWS
SPB

AWS
MPB

Metric and Baseline

M
et

ric
 V

al
ue

 R
el

at
iv

e
to

 a
 C

on
ve

nt
io

na
l

M
em

or
y

Sy
st

em

FAMHA-1 FAMHA-2 FAMHA-3 FAMHA-5 MTP NFQ-3 CB MPB

Figure B.6: FAMHA Results

0
0,2
0,4
0,6
0,8

1

6 40 29 7 5 25 19 8 35 23 AVG

Workload ID

Fa
irn

es
s

FAMHA-2 Offline-Best-Static MHA MTP NFQ-3 CB

Figure B.7: FAMHA-2 Fairness with the Multiprogrammed Baseline (Workload
Subset)

regardless of what number of MSHRs are assigned to them. Consequently, none of
the asymmetric MHAs used by offline-best-static achieves good fairness. However,
it is possible that a more thorough search would uncover an asymmetric MHA with
better fairness than the ones evaluated here.

B.6.3 Fair Adaptive MHA (FAMHA) Results

In the previous section, we established that our DMHA mechanism can achieve
good results when an appropriate policy is provided. Here, we report the results of
the full FAMHA system which uses the IP measurement technique and the greedy
allocation policy. Figure B.6 shows the average values of all metrics with our best
performing FAMHA policy, the best fairness-enabled memory system (MTP, NFQ-
3 and a conventional crossbar) and the multiprogrammed baseline. The FAMHA
configurations evaluated here resets the MSHRs after 40 events (20 million clock
cycles) and allows interference point values up to 5000. We investigated the impact
of varying these parameters and found that it was small as long as FAMHA is

120

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1030 1040 1050 1060 1070 1080

N
um

be
r o

f M
S

H
R

s
A

va
ila

bl
e

Million Clock Cycles

The number of
MSHRs for gzip
and equake are
never reduced

mesa mgrid

Figure B.8: Workload 23 FAMHA-2 Behaviour

given enough time to find a good solution. Furthermore, the allowed number of
interference points should not be too large. The difference between the FAMHA
configurations shown in Figure B.6 is the number of times FAMHA must repeat a
decision before reducing the number of MSHRs.

The aim of FAMHA is to achieve good results on all metrics. FAMHA-2 achieves
the best fairness with a 28% (MPB) improvement over the conventional memory
system. However, this results in a reduction in single thread turn around time
(HMoS) of 11% (SPB) and 5% (MPB) as well as a throughput (AWS) reduction of
3% (SPB) and 15% (MPB). FAMHA-5 is the best performing configuration when
all metrics are taken into account. Here, fairness is improved by 18% (MPB) with
a reduction in single thread turn around time of 4%(SPB) and 1%(MPB) and a
throughput reduction of 1%(SPB) and 6%(MPB). As a comparison, the fairness-
enabled memory system improves fairness by 67% (MPB). However, the cost is
significant: single thread turn around time is reduced by 14%(SPB) and 7%(MPB)
and throughput is reduced by 7%(SPB) and 28%(MPB).

To better understand how FAMHA impacts the fairness of a single workload, we
show FAMHA-2’s MPB fairness for the subset of workloads used to create the
offline-best-static MHA in Figure B.7. FAMHA performs as well as can be ex-
pected and reduces fairness by 22% on average compared to the offline-best-static
MHA. For workloads 8, 23 and 35, FAMHA outperforms the fairness enabled mem-
ory system. FAMHA achieves poor fairness on workload 6 which consists of the
benchmarks facerec, art, applu and equake. Since offline-best-static MHA performs
well, this is due to an inadequate policy. The offline-best-static MHA uses 16
MSHRs for equake and a blocking cache for the other benchmarks. FAMHA even-
tually reaches the same solution, but it is too late to achieve good fairness values.
Consequently, a more aggressive version of our algorithm would be appropriate for
this workload. However, this would degrade performance on other workloads.

B.7. Discussion 121

Figure B.8 shows FAMHA-2’s behaviour with workload 23 in three allocation pe-
riods and illustrates how it can outperform offline-best-static MHA. Here, the best
static solution for fairness gives all applications a blocking cache. However, mesa
and mgrid are the major contributors to interference. FAMHA-2 always reduces
mgrid directly to a blocking cache configuration in all periods while mesa is re-
duced to the blocking configuration in 4 out of 10 periods. Consequently, FAMHA-2
reduces the impact of short periods of interference and the result is that it outper-
forms the best static MHA.

B.7 Discussion

Currently, FAMHA does not support multithreaded applications or processor cores
with SMT. To support multithreaded applications, we need to treat multiple pro-
cessors as a single entity when allocating miss bandwidth. This can be accomplished
by letting the operating system provide some simplified process IDs as discussed by
Zaho et al. [28] to the measurement scheme and resource allocation process. Intro-
ducing SMT further complicates matters as each core now supports more than one
hardware thread. Here, we need to further extend the dynamic MHA to allocate
a different number of L1 MSHRs to each hardware thread. We leave the exact
implementation and evaluation of such extensions as further work.

B.8 Conclusion and Further Work

In this work, we introduced a novel, light-weight fairness mechanism called the
Dynamic Miss Handling Architecture (DMHA). By simulating a large number of
static asymmetric MHAs, we showed that the DMHA mechanism can be used to
provide good fairness, throughput or single program turnaround time. This result
assumes that an appropriate policy is provided, and we introduced a simple policy
which improves fairness considerably compared to a conventional memory system.
Our policy relies on an interference measurement technique that makes it possible
to coherently compare different forms of interference. Together, these techniques
form a radically different approach to fairness which we call the Fair Adaptive Miss
Handling Architecture (FAMHA).

There are many possibilities for further work. One direction is to investigate differ-
ent policies to establish the practical limits on achieving fairness with a DMHA. To
achieve this, it is probably necessary to verify that our interference measurement
mechanism accurately captures all forms of interference and weights them appro-
priately. In particular, we plan to investigate the weighting of the cycle based
and block based measurements further. Furthermore, it is possible to integrate
the DMHA mechanism with other light-weight mechanisms to improve fairness be-
yond what DMHA can achieve on its own. Finally, support for priorities, SMT
processing cores and multithreaded applications should be added.

122 Bibliography

B.9 Acknowledgements

We extend our gratitude to Marius Grannaes and the anonymous reviewers for valu-
able comments on earlier versions of this paper. Furthermore, this work would not
have been possible without the computing resources granted us by the Norwegian
Metacenter for Computational Science (NOTUR).

Bibliography

[1] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and S. K.
Reinhardt. The M5 Simulator: Modeling Networked Systems. IEEE Micro,
26(4):52–60, 2006.

[2] R. Bitirgen, E. Ipek, and J. F. Martinez. Coordinated Management of Multiple
Resources in Chip Multiprocessors: A Machine Learning Approach. In MICRO
41: Proc. of the 41th IEEE/ACM Int. Symp. on Microarchitecture, 2008.

[3] J. Chang and G. S. Sohi. Cooperative Cache Partitioning for Chip Multipro-
cessors. In ICS ’07: Proc. of the 21st Annual Int. Conf. on Supercomputing,
pages 242–252, 2007.

[4] V. Cuppu, B. Jacob, B. Davis, and T. Mudge. A Performance Comparison
of Contemporary DRAM Architectures. In Proc. of the 26th Inter. Symp. on
Comp. Arch., pages 222–233, 1999.

[5] S. Eyerman and L. Eeckhout. System-Level Performance Metrics for Multi-
program Workloads. IEEE Micro, 28(3):42–53, 2008.

[6] K. I. Farkas and N. P. Jouppi. Complexity/Performance Tradeoffs with Non-
Blocking Loads. In ISCA ’94: Proc. of the 21st An. Int. Symp. on Comp.
Arch., pages 211–222, 1994.

[7] R. Gabor, S. Weiss, and A. Mendelson. Fairness and Throughput in Switch
on Event Multithreading. In MICRO 39: Proc. of the 39th Int. Symp. on
Microarchitecture, pages 149–160, 2006.

[8] P. Goyal, H. M. Vin, and H. Chen. Start-time Fair Queueing: A Scheduling
Algorithm for Integrated Services Packet Switching Networks. In SIGCOMM
’96: Conf. Proc. on App., Tech., Arch., and Protocols for Comp. Com., pages
157–168, 1996.

[9] F. Guo, Y. Solihin, L. Zhao, and R. Iyer. A Framework for Providing Quality
of Service in Chip Multi-Processors. In MICRO 40: Proc. of the 40th An.
IEEE/ACM Int. Symp. on Microarchitecture, 2007.

Bibliography 123

[10] L. R. Hsu, S. K. Reinhardt, R. Iyer, and S. Makineni. Communist, Utilitarian,
and Capitalist Cache Policies on CMPs: Caches as a Shared Resource. In
PACT ’06: Proc. of the 15th Int. Conf. on Parallel Arch. and Comp. Tech.,
pages 13–22, 2006.

[11] R. Iyer. CQoS: A Framework for Enabling QoS in Shared Caches of CMP Plat-
forms. In ICS ’04: Proceedings of the 18th An. Int. Conf. on Supercomputing,
pages 257–266, 2004.

[12] R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni, D. Newell, Y. Solihin,
L. Hsu, and S. Reinhardt. QoS Policies and Architecture for Cache/Memory
in CMP Platforms. In SIGMETRICS ’07, pages 25–36, 2007.

[13] DDR2 SDRAM Specification. JEDEC Solid State Tech. Association, May
2006.

[14] S. Kim, D. Chandra, and Y. Solihin. Fair Cache Sharing and Partitioning in a
Chip Multiprocessor Architecture. In PACT ’04: Proc. of the 13th Int. Conf.
on Parallel Architectures and Compilation Techniques, pages 111–122, 2004.

[15] D. Kroft. Lockup-free Instruction Fetch/Prefetch Cache Organization. In
ISCA ’81: Proc. of the 8th An. Symp. on Comp. Arch., pages 81–87, 1981.

[16] K. Luo, J. Gummaraju, and M. Franklin. Balancing Throughput and Fairness
in SMT Processors. In ISPASS, 2001.

[17] O. Mutlu and T. Moscibroda. Stall-Time Fair Memory Access Scheduling for
Chip Multiprocessors. In MICRO 40: Int. Symp. on Microarchitecture, 2007.

[18] O. Mutlu and T. Moscibroda. Parallelism-Aware Batch Scheduling: Enhancing
both Performance and Fairness of Shared DRAM Systems. In ISCA ’08: Proc.
of the 35th An. Int. Symp. on Comp. Arch., pages 63–74, 2008.

[19] K. Nesbit, M. Moreto, F. Cazorla, A. Ramirez, M. Valero, and J. Smith.
Multicore Resource Management. IEEE Micro, 28(3):6–16, 2008.

[20] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith. Fair Queuing Memory
Systems. In MICRO 39: Int. Symp. on Microarchitecture, pages 208–222,
2006.

[21] K. J. Nesbit, J. Laudon, and J. E. Smith. Virtual private caches. In ISCA
’07: Proc. of the 34th An. Int. Symp. on Comp. Arch., pages 57–68, 2007.

[22] N. Rafique, W.-T. Lim, and M. Thottethodi. Architectural Support for Op-
erating System-driven CMP Cache Management. In PACT ’06: Proc. of the
15th Int. Conf. on Parallel Architectures and Compilation Techniques, pages
2–12, 2006.

124 Bibliography

[23] N. Rafique, W.-T. Lim, and M. Thottethodi. Effective Management of DRAM
Bandwidth in Multicore Processors. In PACT ’07: Proc. of the 16th Int. Conf.
on Parallel Architecture and Compilation Techniques (PACT 2007), pages
245–258, 2007.

[24] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens. Memory
Access Scheduling. In ISCA ’00: Int. Symp. on Comp. Arch., pages 128–138,
2000.

[25] A. Snavely and D. M. Tullsen. Symbiotic Jobscheduling for a Simultaneous
Multithreading Processor. In Arch. Support for Programming Languages and
Operating Systems, pages 234–244, 2000.

[26] SPEC. SPEC CPU 2000 Web Page. http://www.spec.org/cpu2000/.

[27] D. Tarjan, S. Thoziyoor, and N. P. Jouppi. CACTI 4.0. Technical report, HP
Laboratories Palo Alto, 2006.

[28] L. Zhao, R. Iyer, R. Illikkal, J. Moses, S. Makineni, and D. Newell.
CacheScouts: Fine-Grain Monitoring of Shared Caches in CMP Platforms.
In PACT ’07: Proc. of the 16th Int. Conf. on Parallel Arch. and Comp. Tech.,
pages 339–352, 2007.

http://www.spec.org/cpu2000/

Appendix C

Paper A.IV

Managing Chip
Multiprocessor Memory

Systems with Miss
Bandwidth Allocations

Magnus Jahre, Marius Grannæs and Lasse Natvig
Submitted to IEEE Transactions on Computers

2010

126

127

Abstract
Chip Multiprocessors (CMPs) share on-chip units to achieve good resource utiliza-
tion. This design choice makes destructive interference possible and may cause
performance degradations. Resource allocation systems can avoid this problem,
and previous approaches have provided separate resource allocation systems for
each shared hardware-controlled unit. In this work, we show that resource sharing
can be globally controlled by carefully orchestrating the miss bandwidth avail-
able to each running process. Our Miss Handling Architecture Bandwidth Control
(MHABC) technique improves system performance by tuning the maximum num-
ber of concurrent shared memory requests for each process to runtime interference
patterns. MHABC leverages a novel interference measurement methodology that
estimates the interference-free IPC of a process with an average error of -0.3% and
a standard deviation of 12.0%. When MHABC is configured to optimize for the
Harmonic Mean of Speedups (HMoS) metric, it improves HMoS by up to 106%
and fairness by up to 200% with a worst-case reduction in throughput of 3%.

128

C.1. Introduction 129

C.1 Introduction

Chip Multi-Processors (CMPs) commonly share parts of the memory system. This
resource sharing is often beneficial since it can lead to improved resource utiliza-
tion and low-latency interprocessor communication. Unfortunately, the presence
of shared resources makes destructive interference possible [27]. Consequently, the
performance of an application may be influenced significantly by the applications it
is co-scheduled with. This lack of performance predictability may be an annoyance
to the desktop user, but it can be a business critical issue for data center operators.
With the advent of cloud computing, where thousands of distinct users share a
common computing infrastructure, on-chip resource allocation may become critical
[1].

A considerable research effort has been aimed at improving the way the shared units
handle independent, co-executing processes. Efforts have been directed towards the
hardware-controlled memory system [3, 13, 20, 27, 37], the shared last-level cache
[4, 12, 21, 29, 30, 38–41], the memory bus [11, 25, 26, 28, 33] and system software
[9, 32]. Common for these approaches is that all running processes have a static
and equal miss bandwidth allocation. In this work, we show that asymmetric miss
bandwidth allocations can be used to partition memory system resources among
processes. We provide a transparent system that adapts per-core miss bandwidth
to inter-process interference which we call Miss Handling Architecture Bandwidth
Control (MHABC).

The subsystems of MHABC and other resource allocation schemes can be divided
into three categories: enforcement mechanisms, feedback mechanisms and alloca-
tion policies [27]. Our enforcement mechanism leverages that modern caches are
non-blocking and potentially support several concurrent cache misses [22]. This
feature is provided by the Miss Handling Architecture (MHA) and the key compo-
nent of the MHA is the Miss Status/Information Holding Registers (MSHRs). The
key observation underlying the design of MHABC is that the number of MSHRs
in the last-level private cache can be used to control the number of concurrent
requests in the shared memory system. We refer to an MHA where the number of
MSHRs can be changed at runtime as a Dynamic MHA (DMHA) [15].

MHABC uses the Dynamic Interference Estimation Framework (DIEF) [17] to pro-
vide interference feedback. DIEF provides measurements of the current memory
latency and estimates the memory latency a process would have experienced with
exclusive access to all shared resources. Modern memory systems have a consid-
erable amount of parallelism available, and the ability of a process to utilize this
parallelism is known as Memory Level Parallelism (MLP) [31]. In this work, we
combine DIEF’s latency estimates with MLP measurements to accurately estimate
the performance a process would experience with exclusive access to shared re-
sources. These IPC estimates have an average relative error of −0.3%, −3.5% and
−5.8% and a standard deviation of 12.0%, 13.0% and 13.7% for our 4, 8 and 16-core
CMPs.

130

MHABC’s allocation policy combines DIEF’s latency estimates with a novel miss
bandwidth performance model to provide runtime estimates of the chosen perfor-
mance metric. Based on these estimates, MHABC finds a good bandwidth allo-
cation by efficiently searching through the solution space provided by the model.
MHABC supports the Harmonic Mean of Speedups (HMoS) [23], Aggregate Weighted
Speedup (AWS) [35], Fairness [8] and Aggregate IPC policy metrics. When MHABC
is configured to optimize for the Harmonic Mean of Speedups (HMoS) metric, it
improves HMoS by up to 106% and fairness by up to 200% with a worst-case reduc-
tion in throughput of 3%. Although we focus on miss bandwidth allocation in this
work, the allocation policy is general. It can be applied to any resource allocation
mechanism if the latency effect of the allocation can be modeled.

C.2 Background

C.2.1 Interference and Performance Metrics

When evaluating CMP memory system fairness, it is convenient to compare to a
baseline where interference does not occur. One way of creating such a baseline is
to let the process run in one processing core of the CMP and leave the remaining
cores idle [6, 26]. Consequently, the process has exclusive access to all shared
resources, and we will refer to this configuration as the private mode. Conversely,
all processing cores are active and the processes compete for shared resources in
the shared mode. We define the interference Ip experienced by a processor p as
the difference between the shared mode latency Lp and private mode latency Lp

(i.e. Ip = Lp −Lp). This definition is an extension of the interference definition by
Mutlu and Moscibroda [25].

A shared mode estimate of a private mode value X̂ may differ from the actual
private mode value X . For these estimates to be useful for allocation decisions,
it is important that the difference between them is minimized. Consequently, we
define the measurement error to be E = X̂ − X . Since latency and cache miss
estimates are used for shared mode allocation decisions, we define the relative error
ES as the absolute error E divided by the shared mode value X (ES = E/X). For
performance measurements, we use the error relative to the private mode EP =
E/X .

Table C.1 shows the system performance metrics used in this work. Here, Pp and
Pp represent the shared and private mode performance of process p, respectively.
Eyerman and Eeckhout [6] showed that the Aggregate Weighted Speedup (AWS) [35]
and Harmonic Mean of Speedups (HMoS) [23] metrics represent system throughput
and average normalized turnaround time, respectively. AWS is a system-oriented
metric, and HMoS is a user-oriented metric. In addition, we use the fairness metric
[8] which measures the difference in shared to private mode slowdown between the
running processes. Consequently, fairness is maximized when all processes experi-
ence the same slowdown. Finally, we also include the Aggregate IPC (AI) metric.

C.2. Background 131

Table C.1: Multiprogrammed Workload Performance Metrics

Metric Formula
System-Level
Meaning [6]

Reference

Aggregate
Weighted
Speedup (AWS)

∑n
p=0 Pp/Pp

System
Throughput

Snavely and Tullsen [35]

Harmonic Mean
of Speedups
(HMoS)

n∑n
p=0 Pp/Pp

Inverse of Average
Normalized
Turnaround Time

Luo et al. [23]

Fairness
min(Pi/Pi)
max(Pj/Pj)

i, j ∈ {0, n} Assumed by
system software

Gabor et al. [8]

Aggregate IPC
(AI)

∑n
p=0 Pp None [6] -

This metric values high IPC numbers and the best performance is achieved by max-
imizing the IPC of the high IPC processes. For this reason, it is not recommended
to use Aggregate IPC as a performance metric [23, 35], and we only include it to
illustrate the effects of not using private mode performance in allocation decisions.

C.2.2 Modern Memory Bus Interfaces

Memory bus scheduling is a challenging problem due to the 3D structure of DRAM
consisting of rows, columns and banks. Commonly, a DRAM read transaction con-
sists of first sending the row address, then the column address and finally receiving
the data. When a row is accessed, its contents are stored in a register known as the
row buffer, and a row is often referred to as a page. If the row has to be activated
before it can be read, the access is referred to as a row miss or page miss. It is
possible to carry out repeated column accesses to an open page, called row hits or
page hits. This is a great advantage as the latency of a row hit is much lower than
the latency of a row miss. The situation where two consecutive requests access
the same bank but different rows is known as a row conflict and is very expensive
in terms of latency. DRAM accesses are pipelined, so there are no idle cycles on
the memory bus if the next column command is sent while the data transfer is
in progress. Furthermore, command accesses to one bank can be overlapped with
data transfers from a different bank.

Rixner et al. [34] proposed the First Ready - First Come First Served (FR-FCFS)
algorithm for scheduling DRAM requests. FR-FCFS reorders memory requests
to achieve high page hit rates which result in increased memory bus utilization.
This algorithm prioritizes requests according to three rules: prioritize ready com-
mands over commands that are not ready, prioritize column commands over other
commands and prioritize the oldest request over younger requests.

132

C.2.3 Miss Handling Architectures (MHAs)

A generic MHA consists of n MSHRs which store the cache block address of the
miss, target information and a valid bit (see Figure B.1 on page 109). The cache can
support as many concurrent misses to different cache blocks as there are MSHRs.
Each MSHR commonly has its own comparator and the MHA can be described as a
small fully associative cache. For each miss, the information required for the cache
to answer the processor’s request is stored. This target information determine the
number of misses to the same cache block that can be handled without blocking
[7, 22]. The cache must block when all valid bits are set, and a blocked cache
cannot service any requests.

C.3 A Miss Bandwidth Allocation Model

To optimize system performance by changing miss bandwidth allocations, it is
helpful to develop a model that describes the performance impact of bandwidth
allocations. We base our model on the model by Karkhanis and Smith [19]. The
underlying idea is that performance can be modeled by quantifying the steady-state
performance (i.e. perfect branch predictor and perfect caches) and then subtracting
the performance loss due to cache misses and branch mispredictions.

Pp = IPCp =
Np

CCompute
p + CMemStall

p

(C.1)

Equation C.1 expresses the performance Pp of processor p as a function of the num-
ber of committed instructions Np, the number of clock cycles used for computation
CCompute

p and the number of clock cycles where the processor is stalled waiting for

memory requests CMemStall
p . Np and CCompute

p mainly depend on the characteristics
of the running process and the processor implementation and are therefore inde-
pendent of miss bandwidth. Consequently, changing the miss bandwidth allocation
will mainly affect CMemStall

p . Branch mispredict stalls are part of CCompute
p in our

model since it is unlikely that changing miss bandwidth allocations will affect the
branch misprediction rate significantly.

Figure C.1 illustrates our performance model. First, the process is running at its
steady-state IPC before it experiences a cache miss. Then, IPC is reduced while
the instructions that do not depend on the pending load are serviced. This results
in two additional cache misses. Finally, only instructions that depend on the three
loads are left in the reorder buffer and the processor stalls. Some time later, the
requested data is received from memory. Then, the processor starts committing
instructions again and the IPC ramps up to its steady-state value.

In this example, the latencies of the two additional cache misses were hidden by
the first cache miss. Consequently, the relationship between the average memory

C.3. A Miss Bandwidth Allocation Model 133

Steady
State
IPC

Steady
State
IPC

Time (Clock Cycles)

Pe
rf

or
m

an
ce

 (I
PC

) Cache
Misses

Cache
Responses

Memory Latency

CStallCCompute CCompute

Figure C.1: Memory Level Parallelism Example

latency Lp and processor stall time due to memory CMemStall
p depends on the ability

of the process to utilize the parallelism available in the memory system. This ability
is commonly referred to as Memory Level Parallelism (MLP) [31].

CMemStall
p = Mp · Lp (C.2)

Equation C.2 relates CMemStall
p to Lp and average MLP Mp. In this work, we

improve performance by adapting the miss bandwidth available to each process
to runtime interference patterns. Consequently, Mp is a function of the available
bandwidth bp, and bp can be controlled by manipulating the number of MSHRs
available in the last-level private cache. Reducing bp will often reduce the per-
formance of process p. However, it may increase the performance of one or more
of the other processes by reducing their average shared memory latencies. Con-
sequently, we extend Equation C.2 by making both Mp and Lp functions of the
current bandwidth allocations:

CMemStall
p = Mp(bp) · Lp(b1, b2, . . . , bn) (C.3)

Similarly, the private mode stall time CMemStall
p can be described by the following

equation:

CMemStall
p =Mp(bmax

p) · Lp(bmax
p) (C.4)

The main component of most CMP performance metrics (see Table C.1) is the
speedup of shared mode performance relative to private mode performance [6]. To
ensure that this inter-mode comparison is valid, we need to compare the same

134

Table C.2: Variable Summary
Shared Mode Private Mode Description

P P Performance (IPC)

n - Number of processing cores

N N Number of committed instructions

CCompute CCompute Clock cycles used for computation

CMemStall CMemStall Clock cycles stalled waiting for memory

M M Memory Level Parallelism (MLP)

L L Total shared memory system latency

b - Miss bandwidth allocation

I - Total interference clock cycles

R - Number of memory requests (i.e. loads, stores and
writebacks)

S - Number of memory loads and stores

F - Number of free bus slots

A - Additional bus requests

instruction sequence from both modes. Consequently, the number of instructions
in the private mode N is equal to its shared mode counterpart N . By substituting
Equations C.3 and C.4 into Equation C.1 and exploiting that N is equal to N , we
can express the shared to private mode speedup with the following equation:

Pp

Pp
=

CCompute
p +Mp(bmax

p) · Lp(bmax
p)

CCompute
p +Mp(bp) · Lp(b1, b2, . . . , bn)

(C.5)

Because of the similarities between the private and shared modes, it is possible
to simplify Equation C.5 further. Firstly, MLP quantifies the ability of a process
to make use of the parallelism available in the memory system. Consequently,
MLP mainly depends on the characteristics of the process and the processor core
implementation. This observation enables the simplifying assumption that Mp is
approximately equal to Mp. Secondly, CCompute

p is by definition independent of
memory latency. Therefore, it can be used interchangeably with its private mode
counterpart CCompute

p .

Equation C.2 states that if we measure two out of Mp, Lp and CMemStall
p we can

compute the last one. In this work, we choose to estimate Lp and CMemStall
p and

compute Mp. For convenience, Table C.2 summarizes the variables used in our
models.

C.4 Estimating the Effects of Bandwidth Alloca-
tion Changes

Figure C.2 illustrates the high-level operation of our miss bandwidth allocation
technique. First, we divide time into fixed-size periods. Then, we collect mea-
surements during an observation period where all processes have their maximum

C.4. Estimating the Effects of Bandwidth Allocation Changes 135

Observation Period e Enforcement Periods

Decision Interval

Private Mode Latency
Estimates

Shared Mode Latency
Measurements

Performance
Measurements

Policy Metric

Latency Model

MLP Model
Best Miss Bandwidth

AllocationFeedback Mechanisms Miss Bandwidth Models

Performance Model

Last Private
Cache 0

Last Private
Cache 1

Last Private
Cache p

Figure C.2: Miss Bandwidth Allocation Flow

Algorithm 3 Online Performance Metric Estimation
procedure EvaluateBandwidthAllocation(b1, . . . , bn)

for Processor p do

if (Rp < Tr or
σRp

µRp
> Tv) and bp < bmax then

return lowest metric value
end if

end for
L′
1, . . . , L

′
n = EstimateSharedLatencies(b1, . . . , bn)

for Processor p do
M ′
p = EstimateMLP(bp) . Equation C.12

P ′
p = EstimatePerformance(M ′

p, L′
p) . Equation C.13

end for
return ComputeMetricValue(P ′

1, . . . , P
′
p,P ′

1, . . . ,P ′
p)

end procedure

bandwidth allocation. This is necessary to gather accurate MLP measurements.
MHA Configuration Search then estimates the value of a policy metric for various
bandwidth allocations. The policy metric can be any of the system performance
metrics in Table C.1. Finally, we enforce the best performing miss bandwidth allo-
cation by changing the number of available MSHRs in the last-level private cache
of each core. This allocation is used for the next e enforcement periods.

In this section, we discuss the miss bandwidth models while the mechanisms and
search algorithms are discussed in Section C.5. Algorithm 3 is the top-level miss
bandwidth performance estimation model, and the rest of this section is devoted
to explaining it in detail. The main part of the algorithm is the procedures used
to estimate the new MLP M ′p and new shared latency L′p. We discuss our L′p
estimation model in Section C.4.1 and our M ′p estimation model in Section C.4.2. In
Section C.4.3, we combine L′p and M ′p with the performance model from Section C.3
to estimate the performance of a process with a certain miss bandwidth allocation.

136

Memory Bus
Queue

Memory Bus
Transfer

Interconnect
Queue

Interconnect
Transfer

0

1000

2000

3000

4000

5000

6000

La
te

n
cy

 (
cl

o
ck

 c
y
cl

e
s)

Figure C.3: Shared Mode Latency Variation

Our miss bandwidth allocation technique assumes that the past predicts the future.
This assumption is unlikely to hold if there are large variations in the number of
requests Rp between periods. To avoid making predictions in these cases, we use
the e enforcement periods to sample Rp. From these samples, we estimate the
standard deviation σRp

of Rp. If the ratio of the standard deviation to the mean of
R (i.e. σRp/µRp) is greater than the acceptable variation threshold Tv, we refrain
from making predictions. Furthermore, DIEF needs a certain number of requests
for the private latency estimates to be accurate. Therefore, we require that the
number of requests must be larger than the request threshold Tr.

C.4.1 Shared Memory Latency Estimation

A large part of the latency in the shared memory system is due to fixed latency
operations like cache accesses and data transfers. Consequently, the latency change
from miss bandwidth reductions will mainly affect queuing latencies. In our mem-
ory system, a request can be queued in the on-chip interconnect and the memory
bus. Figure C.3 visualizes per-unit average latencies for our 4-core CMP with a box
plot. Here, the upper and lower edges of the box are the upper and lower quartiles
of the data, and the line is the median. The whiskers show the maximum and min-
imum value that is within a factor of 1.5 of the interquartile range. Values outside
this range (outliers) are shown as crosses. Figure C.3 shows that the memory bus
queue is the main source of latency variation. This is not surprising as a single bus
transaction takes between 40 and 260 processor cycles in our model which dwarfs
the latencies of the interconnect queue.

This observation makes is possible to simplify the estimation task to only esti-
mating the new memory bus latency, and we discuss our bus latency model in
Section C.4.1.1. However, some of the memory bus latency is caused by shared

C.4. Estimating the Effects of Bandwidth Allocation Changes 137

0 5 10 15 20
Memory Bus Requests per 1000 Clock Cycles

0.0

0.2

0.4

0.6

0.8

1.0

E
ff

e
ct

iv
e
 B

u
s

U
ti

liz
a
ti

o
n

Figure C.4: Effective Memory Bus Utilization

cache interference misses. Reducing the bandwidth allocation for one process will
reduce its shared cache access frequency and thus its ability to evict the cache
blocks of other processes. This indirect effect can have large performance impli-
cations as it can remove a considerable part of the memory latency for processes
that are exposed to severe cache interference. We describe our cache interference
model in Section C.4.1.2. Finally, Section C.4.1.3 leverages the cache and bus mod-
els to provide a miss bandwidth allocation aware latency model for the complete
hardware-managed, shared memory system.

C.4.1.1 Estimating Memory Bus Latency Change

Our memory bus queue model is based on the observation that access control is
necessary when the memory bus is running at its full effective capacity. This effec-
tive capacity is commonly less than the theoretical maximum capacity. The reason
is that the commands necessary to carry out a data transfer can only be partially
overlapped with other data transfers. The ability to overlap commands and data
transfers depend on the page locality of the running processes. Consequently, the
effective memory bus capacity can vary considerably between workloads.

To gain insight into this behavior, we define the term effective utilization which is
the number of cycles the bus is busy serving requests (both commands and data
transfers) over the total number of cycles. Figure C.4 plots the effective memory
bus utilization and the memory bus request intensity (i.e. requests per 1000 clock
cycles) for our 4-core CMP model. There are two main cases. When the memory
bus is working at less than its effective capacity, effective utilization scales roughly
linearly with the request intensity. However, the effective utilization can vary
significantly for a given request intensity. In the other case, the memory bus is

138

Algorithm 4 Shared Memory Latency Estimation
procedure EstimateSharedLatencies(b0, . . . , bn)

Initialize A0, . . . , An = 0
Compute F . Equation C.7
for p from 0 to n do

if SBus
p > TBus

r and bp == bmax then
Compute Ap . Equation C.8

end if
end for
if EffectiveBusUtilization > TB and F > 0 then

Compute R′ . Equation C.9
else

R′
p = Rp ·MRR for p ∈ {0, n}

end if
for p from 0 to n do

if bp == bmax then

Compute LCacheMiss′
p . Equation C.10

else
LCacheMiss′
p = 0

end if
end for
for p from 0 to n do

Compute L′
p . Equation C.11

end for

end procedure

working at its full effective capacity. Here, the effective bus utilization is close to
one for a range of request intensities.

Based on these observations, we focus our efforts towards modeling the effects of
bandwidth redistribution when the memory bus saturates. Our model divides the
capacity of the memory bus into n fixed size slots with a length equal to the average
memory bus transfer latency. Reducing the MLP of one or more of the running
processes will then result in freeing up a certain number of slots F . Processes that
are sensitive to memory latency, will increase their performance and occupy some
of these slots. The combination of these trends will determine the new average
shared latencies. Algorithm 4 outlines this procedure more formally, and the rest
of this section will be used to explain the algorithm in detail.

MRR =
M̂p(bmax

p)

M̂p(bnew
p)

=
R̄Concurrent

p (bnew
p)

R̄Concurrent
p (bmax

p)
(C.6)

Equation C.6 introduces the MLP Reduction Ratio (MRR). MRR estimates the
percentage of the concurrent requests that will be available with the new bandwidth
allocation bnew

p and is the central component of our latency estimation technique.
Qureshi et al. [31] defined mlp-cost as the average of the inverse of the number
of concurrently serviced memory requests. Consequently, the mlp-cost M̂p is a
number between 1

16 and 1 if we assume 16 MSHRs in the last-level private cache.
If a process has an mlp-cost of 1, no memory accesses are overlapped. Conversely,

C.4. Estimating the Effects of Bandwidth Allocation Changes 139

an mlp-cost of 1
16 signifies that there are always 16 concurrent memory request.

Since we use MRR to scale request measurements, we need to divide M̂p(bmax
p) by

M̂p(bnew
p) for the ratio to be proportional to the memory request change.

F =

n∑
p=0

RBus
p · (1−MRR) (C.7)

Equation C.7 estimates the number of bus slots that are made available with a
new bandwidth allocation. If we multiply MRR with the number of bus requests,
we will get an estimate of the number of bus requests with the new bandwidth
allocation. However, we need the number of removed requests for our estimation
procedure. To achieve this, we multiply RBus

p by the complement of MRR (i.e. the
percentage of concurrent requests that are removed).

Ap = SBus
p ·

Lbq
p

L̂bq
p

(C.8)

A bandwidth sensitive process will use the bandwidth made available by the band-
width reduction of others to increase its performance. This behavior results in
an increase in the number of requests per sample, and Equation C.8 shows how
we model it. Here, Ap is the number of additional bus requests. We estimate the
bandwidth need of an application by the ratio of its shared mode bus queue latency
Lbq
p to its estimated private mode bus queue latency L̂bq

p . The idea is that a large
difference in bus queue latencies between the private and shared modes is an indi-
cation that the application can put memory bandwidth to good use. Conversely,
it is unlikely that a process with similar bus queue latencies can make use of the
additional bandwidth.

We only run the Ap estimation for processes that have not had their miss band-
width decreased (see Algorithm 4). This is based on the assumption that a miss
bandwidth reduction reduces the ability of a process to increase its request count.
Furthermore, we assume that a process will not increase its number of requests if
it has fewer than Tr requests in the sample.

R′p =

 Rp ·MRR +
(
F · Ap∑n

i=0 Ai

) n∑
p=0

Ap > F

Rp ·MRR +Ap otherwise
(C.9)

Equation C.9 estimates the number of memory requests R′p this sample would
have contained with the new bandwidth allocation. Since the memory bus has
finite capacity, Equation C.9 consists of two cases. In the first case, the number
additional of bus requests Ap is larger than the number of free bus slots F . Here,
we assume that the running processes will distribute the free bus slots F among
themselves according to their estimated bandwidth needs. In the other case, the

140

number of additional bus requests Ap is less than F and we can use Ap directly.
We only use Equation C.9 if the effective bus utilization is greater than the bus
utilization threshold TB and if there are free bus slots (see Algorithm 4).

C.4.1.2 Estimating Cache Interference Reduction

A reduction in miss bandwidth leads to a reduction in shared cache access frequency.
Consequently, cache capacity interference is also reduced since the new allocation
degrades the ability of a process to evict other processes’ cache blocks. The latency
reduction from this effect may be large as it has the potential of removing a large
part of the memory bus latency.

ICache′

p = ICache
p ·

1−

n∑
p=0

Rp·MRR

n∑
p=0

Rp

= ICache

p · (1− CAF)

(C.10)

Equation C.10 estimates the saved cache interference latency. The main assump-
tion is that the reduction in cache interference latency is proportional to the average
reduction in access frequency. To quantify this notion, we define the Cache Access
Frequency (CAF) metric. CAF is the estimated number of cache requests in one
observation period with a certain miss bandwidth allocation. Since we are inter-
ested in the reduction in cache interference, we use the complement of CAF to scale
the measured cache interference latency ICache

p .

C.4.1.3 The Shared Latency Model

L′p =
(
Lp − LBusQueue

p

)
+

(
LBusQueue
p · Rp

R′p

)
− ICache′

p (C.11)

Equation C.11 combines the memory bus queue and cache interference estimates
to provide a shared memory system latency estimate L′p. First, we compute the
miss bandwidth independent part of the shared memory latency by subtracting
the average memory bus queue latency component LBusQueue

p from the complete
average shared memory latency Lp. Then, we compute the new memory bus queue
latency estimate by scaling the memory bus queue measurement with the estimated
change in request count. Finally, we subtract the estimated latency savings from
the reduction in cache interference.

In this work, we investigate a hardware realization of dynamic access control. Con-
sequently, there are a number of possible implementations of Equation C.11 with
different area- and latency requirements. Since we use the selected MHA for a large
number of cycles, we can afford a high-latency serial implementation. In fact, an
ALU, a multiplier and a division unit are sufficient to compute Equation C.11. This

C.5. MHABC - A Practical Miss Bandwidth Allocation System 141

Table C.3: L′p Computation Latency
Unit Worst Case #Operations Unit Latency Total Latency

Add 6 1 6

Subtract 4 1 4

Multiply 6 3 18

Divide 5 20 100

Total 128

results in a total evaluation latency of 512, 1024 and 2048 cycles for the 4-, 8- and
16-core CMPs, respectively (see Table C.3 for details). In this analysis, control flow
is not taken into account. This is not a problem since we will show that MHABC
is not sensitive to small estimation latency variations (Section C.7.1.3).

C.4.2 Estimating Memory Level Parallelism Change

M ′p = Mp(bmax
p) ·

M̂(bnew
p)

M̂(bmax
p)

(C.12)

We model processor MLP change as shown in Equation C.12. The main observation
underlying this equation is that the available MLP is different when viewed by the
processor core and last level private cache [42]. Therefore, we compute the new
processor MLP M ′p by scaling Mp(bmax

p) with the percentage reduction in mlp-cost.

C.4.3 Estimating Memory Stall Time

P ′p =
Np

CCompute
p + CMemStall′

p

=
Np

CCompute
p +M ′p · L′p

(C.13)

Equation C.13 estimates performance P ′p with the shared latency estimate L′p and
the MLP estimate M ′p. Here, we leverage the observation that miss bandwidth
allocations only influence performance through changing the number of cycles the
processor is stalled waiting for memory (CMemStall′

p).

C.5 MHABC - A Practical Miss Bandwidth Allo-
cation System

This section introduces our Miss Handling Architecture Bandwidth Control (MHA-
BC) technique. MHABC is a complete resource allocation implementation for the
hardware-controlled shared memory system and implements the models discussed
in Section C.3 and C.4. Figure C.5 shows high-level structure of MHABC. The last-
level private caches implement the Dynamic Miss Handling Architecture (DMHA)

142

CPU 0 L1

CPU 1 L1 Private L2

Shared
L3

Measurement Manager

Memory
Controller 0

Memory
Controller 1

Ring

Private L2

Miss Bandwidth Allocation Policy

Figure C.5: Miss Handling Architecture Bandwidth Control (MHABC) System
Architecture

allocation mechanism [14, 15]. Furthermore, the on-chip interconnect, the shared
L3 cache and the memory controllers have been extended to support the Dynamic
Interference Estimation Framework (DIEF) [17]. DIEF provides highly accurate
estimates of the private mode average memory latency through the shared mem-
ory system as well as shared mode latency measurements. In addition, we add
hardware for measuring processor stall cycles due to memory and last-level private
cache MLP. The Measurement Manager is responsible for collecting and aggregat-
ing measurements. These measurements are then provided to the Miss Bandwidth
Allocation Policy (MBAP). The MBAP uses the performance model from Section
C.3 and the estimation model from Section C.4 to find the allocation that maxi-
mizes a given performance metric. This allocation is then enforced by the DMHA
allocation mechanism.

C.5.1 The DMHA Allocation Mechanism

Figure C.6 illustrates the modifications to a conventional Miss Handling Architec-
ture (MHA) that are needed to enable runtime miss bandwidth allocations [14, 15].
Here, the conventional MHA is augmented with one usable bit U for each MSHR
and a control unit. When the usable bit is set, the MSHR is allowed to store
miss data. If all usable MSHRs are occupied, the cache must block. Consequently,
DMHA makes it possible to control the number of concurrent shared memory sys-
tem accesses.

C.5. MHABC - A Practical Miss Bandwidth Allocation System 143

Block Address Target InformationMSHR 1

MSHR 2

MSHR n

Comparators

...

...

Address

V U

Mask Control Set Number of MSHRs

Block Address Target Information V U

Block Address Target Information V U

All MHAs

DMHA Only

Figure C.6: Dynamic Miss Handling Architecture (DMHA)

C.5.2 The Feedback Mechanisms

This section describes the feedback mechanisms used in MHABC. The most com-
plex mechanisms are devoted to estimating private mode latencies and are part of
the Dynamic Interference Estimation Framework (DIEF) [17]. In particular, we
use the memory bus, shared cache and interconnect mechanisms from DIEF. Fur-
thermore, we need measurements of MLP and processor memory stall cycles. The
storage overheads of the feedback mechanisms are summarized in Table C.4.

C.5.2.1 Estimating Memory Bus Interference

Memory bus interference estimation is complicated since modern memory con-
trollers aggressively reorder requests to achieve good page hit rates and high bus
utilization. Consequently, the latency of a memory request depends on the other
requests serviced in close temporal proximity. The estimation task is further com-
plicated by the presence of shared mode only cache misses and shared cache write-
backs.

Fortunately, a core’s access order is very similar in the two modes. Consequently,
the private mode latency can be estimated by adding hardware that emulates pri-
vate mode memory bus scheduling at runtime. We allocate a circular buffer to
store the request addresses in arrival order. In addition, we use B registers to
store the active page address for each memory bank (where B is the number of
memory banks). This makes it possible to estimate if a request is a private mode

144

Table C.4: Feedback Measurement Storage Requirements
Storage Requirements (KB)

4-core 8-core 16-core

Memory Bus Interference 2.3 9.2 18.4

Memory Bus Latency 0.25 0.5 0.5

Auxiliary Tag Directories 10.5 20.0 38.0

Cache Interference Latency 0.25 0.5 1.0

Interconnect Latency and Interference 0.03 0.06 0.13

MLP Estimation 0.27 0.53 1.06

CPU Stall Time Measurement 0.03 0.06 0.13

Measurement Manager 0.17 0.34 0.69

Total 13.8 31.2 59.9

page hit, miss or conflict. To estimate transfer and queue latencies, we emulate the
FR-FCFS scheduling algorithm [34]. For each serviced request, we use a pointer to
store the execution order. We estimate the latency of each element with a lookup
table since only a few of the possible DRAM latencies occur frequently in practice
[17]. By storing a pointer to the oldest pending request at the time of insertion, we
can estimate the queue latency by traversing the execution order and accumulating
transfer latencies. We refer the reader to Jahre et al. [17] for additional details.

If the memory bus queue is full, a request will be delayed in the shared cache
MSHRs. We refer to this latency as a memory bus entry latency. In the private
mode, the number of concurrent memory requests are limited by the number of
MSHRs in the private caches. This number of MSHRs is commonly considerably
less than the number of entries in the memory bus queue since the bus queue is
dimensioned to handle requests from n processors. Consequently, we can assume
that all entry latencies are interference.

The storage overhead of the memory bus interference estimation technique scales
with the number of cores and the number of memory bus channels. The storage
overhead for one core and one channel is 4706 bits [15]. In addition, we need to
measure the shared mode memory bus latency. For this, we allocate a 32 bit counter
for each of the 64 read queue entries. This value only scales with the number of
channels since only one request can occupy a queue entry at the time.

C.5.2.2 Estimating Cache Capacity Interference

To estimate the number of misses a process would experience with exclusive access
to the shared cache, we use one Auxiliary Tag Directory (ATD) per core [5, 31].
The ATDs require significantly less storage than the full cache as they only store
the tag for each cache block and not its data. All shared cache requests from a
process is directed to one of the ATDs. Consequently, an interference miss is a
request that hits in the ATD and misses in shared cache. We measure the latency
of the interference misses by allocating a 32 bit counter for each of the shared cache
MSHRs.

C.5. MHABC - A Practical Miss Bandwidth Allocation System 145

1
6

3
2

6
4

1
2

8

2
5

6

Fu
ll50

40

30

20

10

0

10

20

30

40
4 Cores

1
6

3
2

6
4

1
2

8

2
5

6

Fu
ll60

40

20

0

20

40

60

80
8 Cores

1
6

3
2

6
4

1
2

8

2
5

6

Fu
ll100

50

0

50

100

150

200

250
16 Cores

Number of Leader SetsR
e
la

ti
v
e
 S

h
a
re

d
 C

a
ch

e
 M

is
s

E
rr

o
r

(%
)

Figure C.7: Shared Cache Miss Estimation Error

The original DIEF proposal used complete tag directories to achieve high accuracy
[17]. This choice has a storage cost that we would like to avoid for MHABC. To
achieve this, we employ set sampling [5, 31]. Here, the cache tags are divided into
n constituencies. Then, one leader set is chosen for each constituency and the
remainder of the sets are designated follower sets. Only the leader sets are stored
in the ATD and we assume that the events that occur in this set also will occur in
the follower sets. We use Qureshi et al.’s simple-static policy for selecting leader
sets [31].

The memory bus interference feedback mechanism requires that the cache inter-
ference mechanism informs it of which requests are interference misses and about
private mode shared cache writebacks. With a full ATD, these requirements are
easy to meet as we can detect events with a per set granularity. To meet these
requirements with set sampling, we assume that an interference miss in a leader
set indicates interference misses for all follower sets. We implement this by adding
a counter that is incremented by the number of sets in a constituency for each
detected interference miss. If this counter is larger than 0, we tag the cache miss as
an interference miss and decrement the counter. We use the same policy to insert
private mode only writebacks.

Figure C.7 shows the relative errors with one standard deviation for shared cache
miss estimates and simulation point 0. We remove benchmarks with less than
100 shared mode misses to avoid that they skew the results. A full-map ATD is
very accurate and the variability increases steadily with more aggressive sampling.
However, the impact on the overall latency from these errors are low. Therefore, we
choose 64 leader sets for all our CMPs to achieve a good trade-off between accuracy
and storage overhead.

146

Algorithm 5 Memory Level Parallelism Estimation
procedure MLPEstimation

a = Number of allocated MSHRs
if a > 0 then

for Number of MSHRs m from 1 to bmax do
if m < a then

MLPCost[m] += 1
m

else
MLPCost[m] += 1

a
end if

end foractiveCycles += 1
end if

end procedure

C.5.2.3 Estimating Interconnect Interference

Interconnect interference occur when a request belonging to one core delays requests
from a different core. Since interconnect latency is independent of the order of
memory requests, it is sufficient to detect this situation and add the additional
queue latency for each of the queued requests. Furthermore, the transfer latency
can be different in the two modes if the process is scheduled on different cores. We
avoid this problem by assuming that the process runs on the same core in the two
modes. Finally, all interconnect entry latencies are assumed to be interference since
the buffers are dimensioned to handle the request load of n concurrent processes.
These measurements require two registers for each processor, one for measuring
latencies and one for the interference estimate.

C.5.2.4 Estimating MLP

Our mlp-cost estimator is inspired by Qureshi et al. [31]. Qureshi et al. used their
estimator to determine the mlp-cost of cache misses and prioritize cache space for
blocks that are costly to retrieve from memory. For MHABC, we need to determine
the variation in MLP with different bandwidth allocations. Our solution is to
allocate one register for each possible bandwidth allocation in the last-level private
cache and run the procedure outlined in Algorithm 5. Conceptually, Algorithm 5
runs every cycle. At the end of each observation period, average MLP is computed
by dividing the sum in each register by the number of cycles with outstanding
misses. If we assume a 32 bit fixed-point representation, a 32 bit activity counter
and 16 different MHAs, the storage overhead of this estimator is 544 bit per core.

C.5.2.5 Measuring CPU Stall Time

To estimate performance we need to quantify MLP from the point of view of the
processor core. We opt to do this by measuring the number of clock cycles the
processor is stalled waiting for a memory request. Consequently, we add a 32 bit

C.5. MHABC - A Practical Miss Bandwidth Allocation System 147

Algorithm 6 Decomposed Search
procedure DecomposedSearch(Bus Requests ri to rn)

o = Sort r in descending order
bestMHA = bmax, bmax, . . . , bmax

Initialize bestMetricValue
for Processor p in o do

for m in Available MSHR Counts do
currentMHA = copy(bestMHA), currentMHA[p] = m
v = EvaluateBWAllocation(currentMHA)
if v >= bestMetricValue then

bestMHA[p] = m, bestMetricValue = v
end if

end for
end for
return bestMHA

end procedure

counter to each core. This counter is incremented every cycle the processor does
not commit instructions. When the counter value is increased beyond a threshold,
we assume that the stall is due to a last-level private cache miss. This is based on
the observation that the latency to retrieve a cache block from the last-level private
cache is higher than other events that may cause stalls (e.g. branch mispredicts).
Consequently, the threshold must be greater than the last-level private cache hit
roundtrip latency and less than the minimum shared cache hit roundtrip latency.
When the processor starts committing instructions again, the value is added to a
32 bit register if it is larger than the threshold. Then, the counter is set to 0.

C.5.3 Allocation Policies

Our allocation policies are based on the observation that most system performance
metrics are functions of speedups computed by dividing shared mode performance
by private mode performance [6]. Given our performance estimations, we can then
compute these metrics at runtime (Equation C.5). Furthermore, our miss band-
width models make it possible to estimate the performance metric value for a range
of miss bandwidth allocations. Consequently, finding the best asymmetric MHA
becomes a search for the maximum metric value across all possible MHA config-
urations. We will refer to the algorithm that exhaustively evaluates all possible
MHAs as the Exhaustive Search.

Estimating performance with m different MHAs in each private cache and p proces-
sors requires mp MHA estimations. Consequently, the exhaustive search algorithm
scales poorly with respect to the number of processors. To improve scalability,
we decompose the search space by evaluating each processor independently of the
others and keeping the best MHA. Algorithm 6 illustrates this approach. First, we
order the processors according to the number of bus requests. This is based on the
assumption that the process with the most bus requests has the largest impact on
the latency of the other processors. We refer to this algorithm as the Decomposed

148

Table C.5: CMP Model Parameters (4- /8- /16-core)
Parameter Value

Feature Size 65/45/32 nm

Clock frequency 4 GHz

Processor Cores 128 entry reorder buffer, 32 entry load/store queue, 64 entry instruction
queue, 4 instructions/cycle, 4 integer ALUs, 2 integer multiply/divide, 4 FP
ALUs, 2 FP multiply/divide, hybrid branch predictor with 2048 local history
registers, 4-way and a 2048 entry BTB

L1 Data Cache 2-way, 64KB, 3/2/2 cycles latency, 2 cycles cycle time, 16 MSHRs

L1 Inst. Cache 2-way, 64KB, 3/2/2 cycles latency, 2 cycles cycle time, 16 MSHRs

L2 Private Cache 4-way, 1 MB, 9/6/5 cycles latency, 4/3/2 cycles cycle time, 16 MSHRs

L3 Shared Cache 16-way, 8/16/32 MB, 16/12/12 cycles latency, 4 cycles cycle time, 16/32/64
MSHRs, 4 banks

Ring Interconnect 4/4/8 cycles per hop transfer latency, 1/1/2 pipe stages per hop, 32 entry
request queue, 1/2/2 request rings, 1 response ring

Main memory DDR2-800, 4-4-4-12 timing, 64 entry read queue, 64 entry write queue, 1 KB
pages, 8 banks, FR-FCFS scheduling [34], Open page policy, 1/2/2 channels

Search, and it requires m · p MHA evaluations. Finally, we reduce the search space
further by only considering MHAs where the number of MSHRs is a power of two.
This algorithm is called the Log-Decomposed Search, and it requires (log2m+ 1) · p
MHA estimations.

C.6 Methodology

We use the system call emulation mode of the cycle-accurate M5 simulator [2]
for our experiments and have extended M5 with a ring interconnect as well as a
detailed DDR2-800 memory bus and DRAM model [18]. The parameters of our
CMP models can be found in Table C.5.

To evaluate our proposals, we use benchmarks from the SPEC 2000 benchmark
suite [36]. We use the SimPoint methodology [10] to choose at most 6 25 million
instruction samples that together represent full program execution. Then, we create
workloads by randomly selecting benchmarks from the entire SPEC 2000 suite. The
only requirements given to the random selection process are that a benchmark can
only appear once in each workload and that all benchmarks must appear in at least
one workload for each number of processors. The resulting workloads are available
in [16].

This process leaves us with 6 simulation points per benchmark and a number of
workloads consisting of different benchmarks. To combine these two, we assign an
ID to each simulation point. Then, we create one workload for each simulation
point ID by combining the simulation points for this ID for all benchmarks in
each workload. If a benchmark needs less than 6 simulation points to represent
its entire execution, we start over at simulation point 0 for this benchmark. In
multiprogrammed mode, we dump the statistics when a benchmark has committed
25 million instructions and continue simulation until all benchmarks in the workload

C.7. Results 149

HMoS F AWS AI
0.0

0.5

1.0

1.5

2.0

HMoS Policy

HMoS F AWS AI
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Fairness Policy

HMoS F AWS AI

0.2

0.0

0.2

0.4

0.6

0.8

1.0

AWS Policy

HMoS F AWS AI
0.5

0.0

0.5

1.0

1.5

2.0

2.5

Aggregate IPC Policy

Performance Metric

M
e
tr

ic
 V

a
lu

e
 R

e
la

ti
v
e
 t

o
C

o
n
v
e
n
ti

o
n
a
l

Figure C.8: MHABC 4-core Performance

have committed this number of instructions. If a benchmark terminates before all
benchmarks have committed enough instructions, we restart the benchmark at the
beginning of its simulation point.

We provide performance measurements for a benchmark by taking the result from
each simulation point and combining them using the weight assigned by the Sim-
Point tool. Consequently, our performance measurements reflect 150 million com-
mitted instructions for each benchmark. When we report a system performance
metric from multiple simulation points, we compute the representative performance
of the benchmark first and then use it in the metric. Due to heavy competition
for memory bandwidth, the number of clock cycles used to collect a 25 million
instruction sample can be on the order of 7 billion.

C.7 Results

In this section, we provide the results from our experiments with MHABC. MHABC
uses a number of thresholds. We set the request threshold Tr to 512, the bus request
threshold TBus

r to 256 and the bus utilization threshold TB to 0.9375 for easy
computation. Tr and TBus

r can be computed by logical shifts and then checking if
the resulting number is larger than 0 while TB can be checked by testing if the 4
most significant bits of a 20 bit counter are 1. We use a variation threshold Tv of
10% for stability and a period size of 220 clock cycles. Finally, we use a decision
interval of 32 periods (i.e. 1 observation period and 31 enforcement periods) and
the Log-Decomposed MHA configuration search algorithm. These parameters were
selected based on extensive simulations.

C.7.1 MHABC Performance

C.7.1.1 Performance Metric Results

We evaluate system performance with four metrics: Harmonic Mean of Speedups
(HMoS), Fairness (F), Aggregate Weighted Speedup (AWS) and Aggregate IPC
(AI). In addition, we use the same metrics as online policy metrics which guide the

150

HMoS F AWS AI
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

HMoS Policy

HMoS F AWS AI
0.0

0.5

1.0

1.5

2.0

2.5

Fairness Policy

HMoS F AWS AI
0.2

0.0

0.2

0.4

0.6

0.8

1.0

AWS Policy

HMoS F AWS AI
0.2

0.0

0.2

0.4

0.6

0.8

1.0

Aggregate IPC Policy

Performance Metric

M
e
tr

ic
 V

a
lu

e
 R

e
la

ti
v
e
 t

o
C

o
n
v
e
n
ti

o
n
a
l

Figure C.9: MHABC 8-core Performance

HMoS F AWS AI
0.00

0.01

0.02

0.03

0.04

0.05

0.06
HMoS Policy

HMoS F AWS AI
0.15

0.10

0.05

0.00

0.05

0.10

0.15

Fairness Policy

HMoS F AWS AI

0.10

0.05

0.00

0.05

0.10

AWS Policy

HMoS F AWS AI
0.15
0.10
0.05
0.00
0.05
0.10
0.15
0.20

Aggregate IPC Policy

Performance Metric

M
e
tr

ic
 V

a
lu

e
 R

e
la

ti
v
e
 t

o
C

o
n
v
e
n
ti

o
n
a
l

Figure C.10: MHABC 16-core performance

dynamic miss bandwidth allocations (recall Figure C.2 on page 135). We refer to
MHABC with a particular policy metric as MHABC-HMoS, MHABC-F, etc. The
use of AI as a performance metric has been criticized, and we only include it in the
performance evaluations for completeness.

Figure C.8 shows MHABC’s performance for the 4-core CMP with the four different
policy metrics. Redistributing miss bandwidth can have a significant impact on
the fairness-aware metrics HMoS and Fairness. For instance, MHABC-HMoS can
improve HMoS by 106 % and Fairness by 200 %. This improvement does not hurt
system throughput as the worst case AWS reduction for MHABC-HMoS is 3%.

Throughput and fairness can be conflicting objectives, and this is illustrated by the
MHABC-AWS and MHABC-AI results. In some cases, MHABC-AWS is able to
improve all performance metrics while in other cases it improves throughput and
reduces fairness. MHABC-AI outperforms MHABC-AWS because it does not take
private mode performance into account. Consequently, it aggressively reduces the
bandwidth allocation of the low-IPC processes. If the memory system is severely
congested, these processes spend most of their time waiting for memory. Conse-
quently, the performance improvement from reduced congestion can outweigh the
performance cost of reduced miss bandwidth. However, MHABC-AI is less stable
than MHABC-AWS as its worst observed Fairness reduction is 42%. The worst
Fairness reduction for MHABC-AWS is 26%.

Figure C.9 reports the performance of MHABC on our 8-core CMP. Again, MHABC-
HMoS and MHABC-F provide substantial improvements on the HMoS and Fair-
ness metrics with a low throughput cost. In addition, the performance impact of

C.7. Results 151

17 05
0.0
0.5
1.0
1.5
2.0
2.5
3.0

HMoS Policy (Large)

14 29 06 22 39 04 31 33
0.10
0.05
0.00
0.05
0.10
0.15
0.20
0.25

HMoS Policy (Small)

22 29 14 39 31 33 06 17 04 05
0.05
0.00
0.05
0.10
0.15
0.20
0.25
0.30

AWS Policy

Workload ID

M
e
tr

ic
 V

a
lu

e
 R

e
la

ti
v
e
 t

o
C

o
n
v
e
n
ti

o
n
a
l

MHABC-AI MHABC-F MHABC-HMoS MHABC-AWS Offline-Best-Static

Figure C.11: MHABC Performance Compared to Offline-Best-Static

the throughput policies is larger than for the 4-core CMP. There are also fewer
regressions on the fairness-aware metrics with the throughput policies. In fact,
MHABC-AWS and MHABC-AI improve throughput without a single HMoS re-
gression.

Figure C.10 shows the results for the 16-core CMP. Compared to the two other
architectures, the improvements of MHABC are modest. However, they are con-
sistent and all workloads experience AWS improvements with MHABC-AWS and
MHABC-AI. The main reason for the modest improvements is that we scale the
last-level cache size with the number of cores. Consequently, MHABC’s potential
is smaller for the 16-core model since improved cache sharing caused the large per-
formance improvements for the other CMPs. Furthermore, managing cache space
with bandwidth allocations becomes less effective as more processes share the on
chip cache. Another observation in Figure C.10 is the unstable Fairness results for
MHABC-Fairness. The reason is that this policy only considers the largest and
smallest speedups which makes it unreliable with many processes.

C.7.1.2 Performance Relative to Offline-Best-Static

To approximate the ideal performance improvements from miss bandwidth allo-
cations, we devised the offline-best-static configuration [14]. Offline-best-static is
the best performing static asymmetric MHA chosen from a large collection of dif-
ferent MHAs. In this work, we try all combinations of 1, 2, 4 and 16 MSHRs in
the last-level private cache on our 4-core CMP (i.e. 44 = 256 MHAs). The large
number of static asymmetric MHAs put a limit on the number of workloads and
simulation points that can be simulated. Consequently, we limit our investigation
to simulation point 0 and the 10 workloads with the highest effective bandwidth
utilization for the conventional memory system.

Figure C.11 shows the HMoS and AWS results for MHABC and offline-best-static.
For HMoS, we split the results into two plots to improve readability. MHABC can
provide a significant improvement on the HMoS metric and does in some cases out-
perform offline-best-static due to its dynamic nature. For instance, MHABC-AWS
and MHABC-AI provides better HMoS than offline-best-static for workload 33. On
average, MHABC-HMoS is within 8% of offline-best-static for HMoS. MHABC-AI

152

0 1

6
4

2
5

6

5
1

2

2
0

4
8

0.0

0.2

0.4

0.6

0.8

1.0

Log-Decomposed

0 1

6
4

2
5

6

5
1

2

2
0

4
8

0.0

0.2

0.4

0.6

0.8

1.0

Decomposed

0 1

6
4

2
5

6

0.0

0.2

0.4

0.6

0.8

1.0

Exhaustive

H
M

o
S
 R

e
la

ti
v
e
 t

o
 C

o
n
v
e
n
ti

o
n
a
l

Iteration Latency

Figure C.12: MHA Configuration Search Algorithms

and MHABC-AWS are within 5% and 6% of offline-best-static for AWS, respec-
tively.

MHABC does not achieve the ideal performance improvement for workload 17
which consists of mgrid, facerec, mcf and swim. Here, MHABC-F is able to im-
prove HMoS by 56% while MHABC-HMoS provides an improvement of 22%. Fur-
thermore, none of the policies are able to improve AWS. In this workload, mcf
suffers severely from cache interference with swim. This interference can be allevi-
ated if swim’s bandwidth allocation is reduced significantly. MHABC detects this
interference, but cannot react until mcf tries to access the data swim replaced.
This problem does not affect offline-best-static since the best static MHA is cho-
sen when system performance is known. Consequently, MHABC’s less than ideal
performance on workload 17 is due its reactive nature.

C.7.1.3 Search Algorithms and Estimation Latencies

Figure C.12 shows the HMoS impact of different MHA configuration search algo-
rithms and iteration latencies. For the exhaustive search policy, an iteration latency
of 512 clock cycles would result in the allocation decision being available after the
end of the period. Therefore, the largest iteration latency is 256 clock cycles for this
algorithm. The main observation from Figure C.12 is that HMoS performance is
similar for all algorithms and latencies. The search algorithms choose slightly differ-
ent MHAs which result in different performance for the workloads where MHABC
works well. Furthermore, the iteration latency influences the measurements which
may result in MHABC selecting a different MHA. For the Log-Decomposed algo-
rithm, the difference between two neighboring MHAs can be large. Therefore, it
has a larger performance variation than the other algorithms.

C.8. Discussion 153

Table C.6: Private Mode Estimate Relative Error
Cores Mean Error Standard Deviation

Memory Latency

4 -1.1 % 10.1 %

8 -2.1 % 8.8 %

16 -0.8 % 4.8 %

IPC

4 -0.3 % 12.0 %

8 -3.5 % 13.0 %

16 -5.8 % 13.7 %

C.7.2 Performance Estimation Accuracy

Table C.6 shows the mean relative error and standard deviation of the private
mode shared latency and performance estimates used in this work. Overall, these
estimates are very accurate. To compare the shared mode estimates to the private
mode values, it is important to obtain synchronized measurements from the two
modes. For the shared latency estimates, we achieve this by reporting estimates and
measurements every 1024 memory requests. For the performance measurements,
we provide new estimates and measurements every 500000 committed instructions.
We refer the reader to Jahre et al. for further experimental analysis of DIEF [15].

C.8 Discussion

In this work, we investigate a hardware implementation of the MHABC allocation
policy. However, Nesbit et al. [27] argue that one should strive to implement
allocation policies in software for flexibility. Policy flexibility is important for CMPs
since they are used in a variety of settings. The minimum software interface of
MHABC enables choosing different system performance metrics. To achieve more
flexibility, we can make the performance measurements and DMHA mechanism
available to the operating system and let the it choose the bandwidth allocations.
In this way, MHABC can combine the ease of adoption of hardware techniques
with the flexibility of software policies.

C.9 Related Work

The recent interest in resource allocation techniques for CMPs has resulted in at-
tempts to use memory system measurements to predict performance change. Zhou
et al. [42] proposed a model that predicts private mode performance from shared
cache measurements. This model divides processor cycles into private cycles Cpri,
cycles that are vulnerable to interference Cvul and overlap cycles Covl. Here, Covl

are the cycles where both private and vulnerable work are carried out. Estimating
Covl at runtime requires coordinated measurements from the processor core, private
cache and shared cache. Our model is simpler to implement as Covl is captured

154

by Mp which is computed using the shared mode stall time for memory and the
shared mode average memory latency. In addition, the OPACU methodology [24]
provide dynamic estimates of the performance impact of cache capacity allocations.
Finally, Srikantaiah et al. [39] showed how formal control theory can be applied
to the cache capacity allocation problem. These proposals differ from this work
in that they do not address how their models can be integrated with memory bus
interference measurements.

There has been some research targeting resource allocation systems that cover mul-
tiple shared memory system units. Iyer et al. [13] proposed a high-level framework
for implementing a QoS-aware memory system, while Nesbit et al. [27] proposed
the Virtual Private Machines framework where a private virtual machine is cre-
ated by dividing the available physical resources among applications. Srikantaiah
and Kandemir [37] used shared cache capacity management to avoid memory bus
congestion. Kaseridis et al. [20] proposed a resource management technique for
multi-CMP systems that dynamically migrates processes to avoid congestion. In
addition, Bitirgen et al. [3] showed how machine learning can be applied to the
resource allocation problem. Finally, a number of researchers have looked the re-
source allocation problem for the shared cache [4, 12, 21, 29, 30, 38–41] and memory
bus [11, 25, 26, 28, 33].

C.10 Conclusion

In this work, we show that shared memory system resource sharing can be improved
by controlling miss bandwidth. By adjusting the maximum number of concurrent
memory request for each process, we can alter sharing patterns and improve perfor-
mance. We provide a practical bandwidth allocation system called Miss Handling
Architecture Bandwidth Control (MHABC). MHABC leverages the Dynamic Miss
Handling Architecture (DMHA) enforcement mechanism, the Dynamic Interference
Estimation Framework (DIEF) feedback mechanism and a novel allocation policy.
DIEF provides estimates of private mode IPC with an average error of -0.3% and a
standard deviation of 12.0%. MHABC’s allocation policy models the performance
effects of miss bandwidth allocations to choose an MHA that improves system per-
formance. Consequently, MHABC-HMoS can improve HMoS by up to 106% at a
worst-case throughput cost of 3%. Although we use our estimation methodology for
miss bandwidth allocations in this work, the method is general and can be applied
as long as the latency and MLP cost of a resource allocation can be quantified.

Acknowledgment

The authors thank Jan Christian Meyer for enlightening discussions of the ideas
presented in this paper. In addition, we thank the Norwegian Metacenter for Com-

Bibliography 155

putational Science (NOTUR) for providing compute resources for our experiments.
Lasse Natvig is a member of HiPEAC2 NoE.

Bibliography

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee,
D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. Above the Clouds: A
Berkeley View of Cloud Computing. Technical report, University of California
at Berkeley, 2009.

[2] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and S. K.
Reinhardt. The M5 Simulator: Modeling Networked Systems. IEEE Micro,
26(4):52–60, 2006.

[3] R. Bitirgen, E. Ipek, and J. F. Martinez. Coordinated Management of Multiple
Resources in Chip Multiprocessors: A Machine Learning Approach. In MICRO
41: Proc. of the 41th IEEE/ACM Int. Symp. on Microarchitecture, 2008.

[4] J. Chang and G. S. Sohi. Cooperative Cache Partitioning for Chip Multipro-
cessors. In ICS ’07: Proc. of the 21st Annual Int. Conf. on Supercomputing,
pages 242–252, 2007.

[5] H. Dybdahl, P. Stenstrom, and L. Natvig. An LRU-based Replacement Al-
gorithm Augmented with Frequency of Access in Shared Chip-Multiprocessor
Caches. In MEDEA ’06: Proc. of the 2006 workshop on MEmory performance,
pages 45–52, 2006.

[6] S. Eyerman and L. Eeckhout. System-Level Performance Metrics for Multi-
program Workloads. IEEE Micro, 28(3):42–53, 2008.

[7] K. I. Farkas and N. P. Jouppi. Complexity/Performance Tradeoffs with Non-
Blocking Loads. In ISCA ’94: Proc. of the 21st An. Int. Symp. on Comp.
Arch., pages 211–222, 1994.

[8] R. Gabor, S. Weiss, and A. Mendelson. Fairness and Throughput in Switch
on Event Multithreading. In MICRO 39: Proc. of the 39th Int. Symp. on
Microarchitecture, pages 149–160, 2006.

[9] F. Guo, Y. Solihin, L. Zhao, and R. Iyer. A Framework for Providing Quality
of Service in Chip Multi-Processors. In MICRO 40: Proc. of the 40th An.
IEEE/ACM Int. Symp. on Microarchitecture, 2007.

[10] G. Hamerly, E. Perelman, J. Lau, and B. Calder. Simpoint 3.0: Faster and
More Flexible Program Analysis. In Journal of Instruction Level Parallelism,
2005.

156 Bibliography

[11] E. Ipek, O. Mutlu, J. Martinez, and R. Caruana. Self-Optimizing Memory
Controllers: A Reinforcement Learning Approach. In ISCA ’08: Proc. of the
35th Int. Symp. on Computer Architecture, pages 39–50, 2008.

[12] R. Iyer. CQoS: A Framework for Enabling QoS in Shared Caches of CMP Plat-
forms. In ICS ’04: Proceedings of the 18th An. Int. Conf. on Supercomputing,
pages 257–266, 2004.

[13] R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni, D. Newell, Y. Solihin,
L. Hsu, and S. Reinhardt. QoS Policies and Architecture for Cache/Memory
in CMP Platforms. In SIGMETRICS ’07, pages 25–36, 2007.

[14] M. Jahre and L. Natvig. A High Performance Adaptive Miss Handling Archi-
tecture for Chip Multiprocessors. Transactions on High Performance Embed-
ded Architecture and Compilation, 4(1), 2009.

[15] M. Jahre and L. Natvig. A Light-Weight Fairness Mechanism for Chip Mul-
tiprocessor Memory Systems. In CF ’09: Proc. of the 6th ACM Conf. on
Computing Frontiers, pages 1–10, 2009.

[16] M. Jahre, M. Grannæs, and L. Natvig. A Quantitative Study of Memory
System Interference in Chip Multiprocessor Architectures. In 11th IEEE In-
ternational Conference on High Performance Computing and Communications
(HPCC), pages 622–629, 2009.

[17] M. Jahre, M. Grannæs, and L. Natvig. DIEF: An Accurate Interference
Feedback Mechanism for Chip Multiprocessor Memory Systems. In Inter-
national Conference on High-Performance Embedded Architectures and Com-
pilers, pages 292–306, 2010.

[18] DDR2 SDRAM Specification. JEDEC Solid State Tech. Association, May
2006.

[19] T. S. Karkhanis and J. E. Smith. A First-Order Superscalar Processor Model.
ISCA ’04: Proceedings of the 31st An. Int. Symp. on Computer Architecture,
2004.

[20] D. Kaseridis, J. Stuecheli, J. Chen, and L. K. John. A Bandwidth-aware
Memory-subsystem Resource Management using Non-invasive Resource Pro-
filers for Large CMP Systems. In HPCA ’10: Proc. of the 16th Int. Symp. on
High-Performance Comp. Arch., 2010.

[21] S. Kim, D. Chandra, and Y. Solihin. Fair Cache Sharing and Partitioning in a
Chip Multiprocessor Architecture. In PACT ’04: Proc. of the 13th Int. Conf.
on Parallel Architectures and Compilation Techniques, pages 111–122, 2004.

[22] D. Kroft. Lockup-free Instruction Fetch/Prefetch Cache Organization. In
ISCA ’81: Proc. of the 8th An. Symp. on Comp. Arch., pages 81–87, 1981.

Bibliography 157

[23] K. Luo, J. Gummaraju, and M. Franklin. Balancing Throughput and Fairness
in SMT Processors. In ISPASS, 2001.

[24] M. Moreto, F. J. Cazorla, A. Ramirez, and M. Valero. Online Prediction
of Applications Cache Utility. In Int. Conf. on Embedded Comp. Systems:
Architectures, Modeling and Simulation (IC-SAMOS), pages 169–177, 2007.

[25] O. Mutlu and T. Moscibroda. Stall-Time Fair Memory Access Scheduling for
Chip Multiprocessors. In MICRO 40: Int. Symp. on Microarchitecture, 2007.

[26] O. Mutlu and T. Moscibroda. Parallelism-Aware Batch Scheduling: Enhancing
both Performance and Fairness of Shared DRAM Systems. In ISCA ’08: Proc.
of the 35th An. Int. Symp. on Comp. Arch., pages 63–74, 2008.

[27] K. Nesbit, M. Moreto, F. Cazorla, A. Ramirez, M. Valero, and J. Smith.
Multicore Resource Management. IEEE Micro, 28(3):6–16, 2008.

[28] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith. Fair Queuing Memory
Systems. In MICRO 39: Int. Symp. on Microarchitecture, pages 208–222,
2006.

[29] K. J. Nesbit, J. Laudon, and J. E. Smith. Virtual private caches. In ISCA
’07: Proc. of the 34th An. Int. Symp. on Comp. Arch., pages 57–68, 2007.

[30] M. K. Qureshi and Y. N. Patt. Utility-Based Cache Partitioning: A
Low-Overhead, High-Performance, Runtime Mechanism to Partition Shared
Caches. In MICRO 39: Proc. of the 39th An. IEEE/ACM Int. Symp. on
Microarch., pages 423–432, 2006.

[31] M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt. A Case for MLP-
Aware Cache Replacement. In ISCA ’06: Int. Symp. on Comp. Arch., pages
167–178, 2006.

[32] N. Rafique, W.-T. Lim, and M. Thottethodi. Architectural Support for Op-
erating System-driven CMP Cache Management. In PACT ’06: Proc. of the
15th Int. Conf. on Parallel Architectures and Compilation Techniques, pages
2–12, 2006.

[33] N. Rafique, W.-T. Lim, and M. Thottethodi. Effective Management of DRAM
Bandwidth in Multicore Processors. In PACT ’07: Proc. of the 16th Int. Conf.
on Parallel Architecture and Compilation Techniques (PACT 2007), pages
245–258, 2007.

[34] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens. Memory
Access Scheduling. In ISCA ’00: Int. Symp. on Comp. Arch., pages 128–138,
2000.

[35] A. Snavely and D. M. Tullsen. Symbiotic Jobscheduling for a Simultaneous
Multithreading Processor. In Arch. Support for Programming Languages and
Operating Systems, pages 234–244, 2000.

158 Bibliography

[36] SPEC. SPEC CPU 2000 Web Page. http://www.spec.org/cpu2000/.

[37] S. Srikantaiah and M. Kandemir. SRP: Symbiotic Resource Partitioning of the
Memory Hierarchy in CMPs. In Int. Conf. on High-Performance Embedded
Architectures and Compilers, 2010.

[38] S. Srikantaiah, M. Kandemir, and M. J. Irwin. Adaptive Set Pinning: Man-
aging Shared Caches in Chip Multiprocessors. In ASPLOS XIII: Proc. of
the 13th Int. Conf. on Architectural Support for Programming Languages and
Operating Systems, pages 135–144, 2008.

[39] S. Srikantaiah, M. Kandemir, and Q. Wang. SHARP Control: Controlled
Shared Cache Management in Chip Multiprocessors. In MICRO-42: Proc. of
the Int. Symp. on Microarchitecture, pages 517–528, 2009.

[40] Y. Xie and G. H. Loh. PIPP: Promotion/Insertion Pseudo-Partitioning of
Multi-Core Shared Caches. In ISCA ’09: Proc. of the 36th annual Int. Symp
on Computer Architecture, pages 174–183, 2009.

[41] Y. Xie and G. H. Loh. Scalable Shared-Cache Management by Containing
Thrashing Workloads. In Int. Conf. on High-Performance Embedded Archi-
tectures and Compilers, 2010.

[42] X. Zhou, W. Chen, and W. Zheng. Cache Sharing Management for Perfor-
mance Fairness in Chip Multiprocessors. In PACT ’09: Proc. of the 18th Int.
Conf. on Parallel Architectures and Compilation Techniques, pages 384–393,
2009.

http://www.spec.org/cpu2000/

Appendix D

Paper B.I

A Quantitative Study of
Memory System

Interference in Chip
Multiprocessor
Architectures

Magnus Jahre, Marius Grannæs and Lasse Natvig
11th IEEE International Conference on High Performance

Computing and Communications (HPCC)
2009

160

161

Abstract
The potential for destructive interference between running processes is increased
as Chip Multiprocessors (CMPs) share more on-chip resources. We believe that
understanding the nature of memory system interference is vital to achieve good
fairness/complexity/performance trade-offs in CMPs. Our goal in this work is to
quantify the latency penalties due to interference in all hardware-controlled, shared
units (i.e. the on-chip interconnect, shared cache and memory bus). To achieve this,
we simulate a wide variety of realistic CMP architectures. In particular, we vary
the number of cores, interconnect topology, shared cache size and off-chip memory
bandwidth. We observe that interference in the off-chip memory bus accounts for
between 63% and 87% of the total interference impact while the impact of cache
capacity interference can be lower than indicated by previous studies (between 5%
and 32% of the total impact). In addition, as much as 11% of the total impact can
be due to uncontrolled allocation of shared cache Miss Status Holding Registers
(MSHRs).

162

D.1. Introduction 163

D.1 Introduction

Chip Multiprocessors (CMPs) or multi-core architectures are the prevalent archi-
tecture for modern general-purpose, high-performance processors. In these ar-
chitectures, it is common to share some part of the hardware-controlled memory
system between cores. When multiple processes are run concurrently, the presence
of shared resources makes destructive interference possible. In addition, the on-
chip shared resources are managed by simple hardware policies that are unaware
that the requests belong to different processes. The performance effects caused
by destructive interference are hard to predict since they are a consequence of
the runtime interaction between the memory request streams from co-scheduled
processes. Consequently, destructive interference is an undesirable property and a
considerable research effort has been aimed at developing techniques that reduce
its performance impact [3, 17].

Figure D.1 illustrates that the current CMP memory systems are unable to provide
predictable performance. To evaluate interference, we use a baseline configuration
called the private mode where the benchmark is run in one of the processing cores
while the remaining cores are idle. Consequently, it has exclusive access to all
shared resources. Conversely, all benchmarks in a workload are run concurrently
and compete for access to the shared resources in the shared mode. Figure D.1 shows
the private- and shared mode IPCs of all benchmarks in two of our 40 randomly
generated workloads. These measurements are taken from the 4-core, crossbar-
based architecture with 4 memory channels which is the architectural configuration
with the lowest amount of interference of the configurations used in this work.
In workload 17, facerec and mgrid are heavily impacted by interference with a
performance reduction of 46% and 21%, respectively. However, the performance
of mcf is only reduced by 1%. This illustrates that the performance impact of
interference can be substantial and that it does not affect all running processes
equally. Furthermore, the performance impact of interference is unpredictable since
facerec is only slowed down by 7% in workload 13. Since these effects are clearly
undesirable, there is a need for architectural techniques that provide predictable
performance and improve fairness.

Previously, cache capacity interference has received a great deal of attention [3, 6,
9, 12, 15, 21] while only a few researchers have proposed techniques that reduce
memory bus interference [16, 17, 19]. Furthermore, there has been little interest in
the details of designing a complete, thread-aware memory system [2, 10, 18]. A first
step towards a unified approach to reducing interference in the hardware-managed
memory system is to develop an understanding of the problem. For instance,
we found that memory bus interference accounts for 64% of the total amount of
interference while cache capacity interference only accounts for 25% with a powerful
4-channel memory bus in our 4-core crossbar-based CMP. When the complexity of
current fair cache sharing techniques is taken into account, the fairness requirements
on the system must be strict for thread-aware cache techniques to be worth the
cost.

164

0

0,2

0,4

0,6

0,8

1

1,2

Facerec Mgrid Swim Mcf Facerec Gzip Ammp Equake

Workload 17 Workload 13

Workload and Benchmark

In
st

ru
ct

io
ns

 P
er

 C
yc

le
 (I

PC
)

0

0,2

0,4

0,6

0,8

1

1,2

Sp
ee

du
p

(S
ha

re
d

M
od

e
IP

C
 /

Pr
iv

at
e

M
od

e
IP

C
)

Shared Mode Private Mode Speedup

Figure D.1: Performance Impact of Interference in the 4-core, Crossbar-Based CMP
with 4 Memory Channels

CPU 0
L1 I

L1 D

CPU c
L1 I

L1 D

Shared
L2

Bank 0

Shared
L2

Bank b

Memory
Controller

0

Memory
Controller

m

Channel 0

Channel m

C
rossbar

...

Figure D.2: Crossbar-based CMP

In this work, we aim to increase the understanding of the interference problem and
thus help architects achieve good complexity/fairness trade-offs. This understand-
ing is developed through detailed analysis of interference at the memory request
level. Consequently, we are able to analyze both the relative interference impact
of the different shared units as well as the distribution of interference penalties.
Handling memory bus interference yields the largest gain, and we believe that em-
ploying a fairness-aware technique here will be sufficient for many architectures
and usage scenarios. However, we have also observed interference due to shared
cache Miss Status Holding Register (MSHR) allocation which must be handled if
the fairness requirements are sufficiently strict. Finally, we show that the main
driver of memory system interference is insufficient memory bus bandwidth. Since
this parameter is limited by the number of physical pins on a chip and the elec-
tronic characteristics of the circuit board, it is likely that thread-aware memory
bus schedulers will become a necessity in the near future.

D.2. Related Work 165

CPU 0
L1 I

L1 D

CPU c
L1 I

L1 D

Private
L2

Private
L2

Shared
L3

Bank 1

Shared
L3

Bank b

Memory
Controller

1
Channel 1R

ing Interconnect

Memory
Controller

m
Channel m

...

Figure D.3: Ring-based CMP

D.2 Related Work

It is common to aim an interference reduction technique at providing fairness
and/or Quality of Service (QoS). A memory system is fair if the performance re-
duction due to interference between threads is distributed across all processes in
proportion to their priorities [12]. QoS is provided if it is possible to put a limit on
the maximum slowdown a process can experience when it is co-scheduled with any
other process [3]. Furthermore, the allowed slow-down can depend on the priority
of the process. In other words, the objective of fairness techniques is not to remove
interference completely but to equalize its impact on all running processes.

There has been a considerable amount of research on how the performance impact
from interference can be reduced in the hardware-controlled, shared memory sys-
tem. However, most of these studies have focused on a single component of the
entire system. For example, techniques have been proposed to reduce cache capac-
ity interference [3, 6, 9, 12, 15, 21], cache bandwidth interference [20] and memory
bus transfer interference [16, 17, 19]. Unfortunately, a technique that reduces in-
terference in one component is not adequate to provide interference control for
the complete memory system. Consequently, a few researchers have investigated
how a chip-wide resource management technique can be designed. Iyer et al. [10]
proposed a high-level framework for implementing a QoS-aware memory system,
while Nesbit et al. [18] proposed the Virtual Private Machines framework where
a private virtual machine is created by dividing the available physical resources
among applications. In addition, Bitirgen et al. [2] showed how machine learning
can be applied to the resource allocation problem. The focus of these works has
been to partition all shared resources amongst processes according to some allo-
cation policy. In this work, we investigate the impact of interference and provide
guidance on how trade-offs can be handled in resource allocation implementations.

166

D.3 Methodology

D.3.1 Chip Multiprocessor Architectures

There is still considerable debate regarding the high-level organization of CMPs
[7, 13, 23]. Therefore, we use two different CMP architectures that are similar
to current general-purpose, high-performance CMP implementations for our inter-
ference investigations. Furthermore, we scale these architectures according to the
expected improvements in process technology [8]. The first CMP type uses a cross-
bar interconnect to connect the private L1 caches to a large, shared L2 cache as
shown in Figure D.2. Unfortunately, the crossbar does not scale in terms of area
[14]. Consequently, we also use a different CMP model where a bi-directional ring
is used as the interconnect. Since the ring has lower bandwidth than the crossbar,
we add a private L2 cache to each processor to reduce the number of accesses to the
interconnect. This is reasonable since the ring uses considerably less area than the
crossbar. Furthermore, the number of processing cores and memory bus channels
can be configured in both processor models which makes it possible to investigate
the impact of memory system interference across a wide range of realistic CMP
architectures. For convenience, we will refer to these architectures by the tuple
c-i-m where c is the number of cores, i is the interconnect and m is the number of
memory bus channels.

D.3.2 Measuring and Reporting Interference

To gather accurate interference measurements, it is convenient to compare to a
baseline where interference does not occur [4]. In this work, we create such a base-
line by letting the process run in one processing core and leaving the remaining
cores idle. Consequently, the process has exclusive access to all shared resources
and we will refer to this configuration as the private mode. Conversely, all pro-
cessing cores are active and the processes compete for the shared resources in the
shared mode. Mutlu and Moscibroda observed that memory system interference is
related to the memory latencies in the shared and private modes with the formula:
interference penalty = shared mode latency− private mode latency [16].

In our CMP models, there are three shared units: the interconnect, the memory
bus and the shared cache. To assess the interference impact of each of these units,
we partition the memory request latency through the shared memory system as
shown in Table D.1. For the interconnect, we divide the latency into three types:
entry, transfer and delivery. The interconnect has a finite entry queue. If this queue
becomes full, the interconnect can not accept any more requests and the request is
delayed in the private cache MSHR. We refer to this as Interconnect Entry Inter-
ference if it causes a different delay in the shared mode than in the private mode.
Furthermore, the shared cache can block. In this case, all requests waiting behind
a request for a blocked bank are delayed since reordering requests can cause star-

D.3. Methodology 167

Table D.1: Shared Memory System Latency Breakdown
Type Description
Interconnect Entry The number of cycles a request was kept in the

private cache MSHR before it is accepted into a
interconnect queue

Interconnect Transfer The number of cycles spent in the interconnect queue
plus the interconnect transfer latency

Interconnect Delivery The number of cycles a request was delayed because a
shared cache bank could not accept requests due to
insufficient buffer space

Memory Bus Entry The number of cycles a request was delayed in a
shared cache MSHR before it was accepted into a
memory controller queue

Memory Bus Transfer The number of cycles a request spent in the memory
controller queue plus the number of cycles used to
retrieve the requested data from DRAM

Cache Capacity The number of cycles used to service misses that
would not occur if the process had exclusive access to
the shared cache

vation. We refer to interference arising from this situation as Interconnect Delivery
Interference. Finally, Interconnect Transfer Interference is the difference between
the shared mode and private mode latencies when there is no cache blocking.

In the memory bus, we divide the latency into two types: entry and transfer. Again,
the entry delay is the number of cycles the request is kept in an MSHR before it
is accepted into the memory bus queue. If this latency is different for the shared
and private modes, we refer to it as Memory Bus Entry Interference. In addition,
Memory Bus Transfer Interference is the difference between the memory bus queue
latency plus service latency in the two modes. Since there is no buffer allocation in
the shared cache on a response, the memory bus does not have a delivery latency.

Finally, competition for space in the shared cache can lead to Cache Capacity Inter-
ference. Unlike the interference types discussed above, cache capacity interference
does not have a latency value directly associated with it. The key observation is
that if a request experiences a bus transfer latency in the shared mode and no
bus transfer latency in the private mode, we have a miss in the shared cache that
would have been a hit if the process had the entire cache to itself. The extra latency
caused by this event in our CMP models is the number of cycles used to service the
request in the memory bus. Consequently, the latency penalty of cache capacity
interference is the sum of the bus entry latency and the bus transfer latency of the
request.

Figure D.4 illustrates the two stage process of gathering interference measurements
and aggregating them for a single architecture. In the first stage, we create a com-
pact representation of the measured interference for each benchmark in all work-

168

Shared Mode
Latency Trace

Private Mode
Latency Trace

Interference per
Memory
Request

à
Interference

Penalty
Frequencies

(IPF)

Benchmark
IPFs

Benchmark 1
Workload 1

IPFs

Benchmark m
Workload n

IPFs

Architecture
IIFs

... +

Aggregate IPF
à

Interference
Impact

Factors (IIF)

Stage 1 – For all Benchmarks Stage 2 – For all Architectures

Figure D.4: Interference Measurement Workflow

loads and architectures. First, we record the latency of all shared mode memory
requests and all private mode memory requests. For all shared mode requests, we
find the corresponding private mode request and compute the interference penalties
for all interference types. If there are more than one request for the same address,
we assume that the requests occur in the same order in both the private and shared
modes. Then, we create a histogram representation of the data by counting the
number of requests that experience a certain interference penalty for each interfer-
ence type. For example, if a request for memory address 15 experiences 12 cycles of
interconnect transfer interference, we add 1 to the interconnect transfer interference
entry at position 12. We refer to this data as the Interference Penalty Frequency
(IPF), and stage 1 of the analysis is complete when we have created IPF files for
all workloads and architectures.

Stage 2 is the process of aggregating the per benchmark IPF files into one file for
each architecture. First, we sum the request counts for each interference penalty
from all files belonging to the architecture of interest. For some of the interfer-
ence types, it is very common to not experience interference. These entries are of
little interest and will dominate the results if we use plot the number of requests
per interference penalty directly. Consequently, we devise a new metric called the
Interference Impact Factor (IIF) that balances the latency penalty of interference
against the probability of it arising (i.e. IIF(i) = i · P (i)). For example, an experi-
ment that results in 15 requests with 3 cycles interconnect transfer interference and
100 requests in total gives IIF(3) = 3 · 15

100 . When we have computed the IIFs for
all interference penalties, stage 2 is finished. In most cases, there is a large range of
possible interference values and there is a need to summarize the IIFs for a range
of interference penalties into a single number. To do this, we use the Aggregate
Interference Impact Factor (AIIF) which is simply the sum of the IIFs for all or a

subset of the observed interference penalties (i.e. AIIF(a, b) =
∑b

i=a IIF(i)).

D.3.3 Processor Model Scaling

To investigate the impact of interference in multi-core architectures, it is important
that reasonable parameters are used to scale the latency, bandwidth and capacity

D.3. Methodology 169

Table D.2: Architecture Parameter Scaling
Crossbar Based Architecture Ring Based Architecture
4-core 8-core 16-core 4-core 8-core 16-core

ITRS Year of
Production

2007 2010 2013 2007 2010 2013

Feature Size (nm) 65 45 32 65 45 32
Shared Cache Size
(MB)

8 16 32 8 16 32

Memory Bus
Channels

1, 2 or 4 1, 2 or 4 1, 2 or 4 1, 2 or 4 1, 2 or 4 1, 2 or 4

Interconnect
Latency
(End-to-End/Per
Hop)

8/- 16/- 30/- -/4 -/4 -/8

Table D.3: Cache Parameters (4-core/8-core/16-core)
L1 Private Cache L2 Private Cache L2/L3 Shared Cache

Size 64KB 1 MB 8/16/32 MB
Associativity 2 4 16
Access Latency (cycles) 3/2/2 9/6/5 16/12/12
Cycle Time (cycles) 2 4/3/2 4
MSHRs / WB (per bank) 16MSHRs/4WB 16 16/32/64
Banks 1 1 4
Area (mm2) 2.3/1.1/0.5 14.6/7.0/3.6 94.0/91.9/84.7

of the various units in the memory system. To this end, we have used the Interna-
tional Technology Roadmap for Semiconductors [8] to estimate scaling trends and
CACTI 5.3 [25] to find reasonable caches for the multi-core architectures used in
this work. Table D.2 summarizes the main multi-core model parameters. With each
improvement in feature size, we double the number of processing cores but use the
same core implementation. Furthermore, we follow the ITRS expectation that the
interconnect transfer latency will roughly double with each technology generation.
The only exception is the per hop latency of the 4-core ring architecture which we
assume is limited by the cache cycle time. To account for this latency increase,
we double the ring bandwidth across generations. Since the ITRS projections for
off-chip bandwidth results in a large range of possible pin counts, we simulate all
architectures with 1, 2 and 4 independent memory channels.

Table D.3 contains the parameters of our scaled on-chip caches. Here, we choose
to keep the percentage of the total chip area occupied by L2 and L3 caches in the
ring-based CMP constant. We use the same shared cache for the crossbar based
CMP, but here we only use two levels of caches. Consequently, we assume that the
area made available by using a two level cache hierarchy is sufficient to implement
a crossbar interconnect. To reduce the shared cache access time and increase the
opportunity for cache access parallelism, we divide the shared cache into 4 banks.

170

Table D.4: Processor Core Parameters
Parameter Value

Clock frequency 4 GHz

Reorder Buffer 128 entries

Store Buffer 32 entries

Instruction Queue 64 instructions

Instruction Fetch
Queue

32 entries

Load/Store Queue 32 instructions

Issue Width 4 instructions/cycle

Functional units 4 Integer ALUs, 2
Integer
Multipy/Divide, 4
FP ALUs, 2 FP
Multiply/Divide

Branch predictor Hybrid, 2048 local
history registers,
4-way 2048 entry
BTB

Table D.5: Interconnect and DRAM In-
terface
Parameter Value

Crossbar
Interconnect

8/16/30 cycles
end-to-end transfer
latency, 32 entry
request queue,
Pipelined (2/4/6
pipe stages)

Ring Interconnect 4/4/8 cycles per hop
transfer latency,
1/1/2 pipe stages
per hop, 32 entry
request queue, 1/2/2
request rings, 1
response ring

Point to Point Link 4/3/2 transfer
latency, 32 entry
request queue

Main memory DDR2-800, 4-4-4-12
timing, 64 entry read
queue, 64 entry write
queue, 1 KB pages, 8
banks, FR-FCFS
scheduling [22],
Closed page policy

D.3.4 Simulation Methodology

We use the system call emulation mode of the cycle-accurate M5 simulator [1] for
our experiments. The processor architecture parameters for the simulated CMPs
are shown in Table D.4. Table D.5 contains the interconnect and memory bus pa-
rameters, and the cache parameters are outlined in Table D.3. We have extended
M5 with crossbar and ring interconnects and a detailed DDR2-800 memory bus
and DRAM model [11]. For the shared mode, we generated 40 different 4-core
workloads (Table D.6), 20 8-core workloads (Table D.7) and 10 16-core workloads
(Table D.8) by picking benchmarks at random from the full SPEC CPU2000 bench-
mark suite [24]. The only requirement given to the random selection process is
that a benchmark can only appear once in each workload. These workloads are
fast-forwarded for 1 billion clock cycles before we gather traces for 100 million clock
cycles. For our interference measurement methodology to be accurate, it is critical
to minimize the difference between the memory requests in the shared and private
modes. To ensure this, we use static cache partitioning and an infinite bandwidth
interconnect and memory bus during fast forwarding such that the simulation sam-
ple starts on a similar instruction in both modes. Furthermore, we run the shared
mode experiments first and then retrieve the number of instructions the benchmark
committed. Then, we run the private mode simulation for the exact same number
of instructions.

Since our processor cores are out-of-order, we can get cache misses from wrong
path instructions that only occur in either the private or shared mode. Secondly,
the start and termination of the simulation sample is not perfectly synchronized

D.4. Results 171

Table D.6: Randomly Generated 4-core Multiprogrammed Workloads
ID Bench-

marks
ID Bench-

marks
ID Bench-

marks
ID Bench-

marks
ID Bench-

marks

1 mesa,
twolf, art,
vpr

9 crafty,
twolf,
bzip,
perlbmk

17 mgrid,
facerec,
mcf, swim

25 twolf,
crafty,
bzip, art

33 swim, gap,
vortex1,
perlbmk

2 art,
vortex1,
applu,
crafty

10 eon, twolf,
galgel,
crafty

18 equake,
applu,
eon, gzip

26 applu,
gap,
perlbmk,
crafty

34 equake,
twolf,
bzip,
galgel

3 gap, eon,
art,
wupwise

11 vortex1,
eon, art,
equake

19 galgel,
mesa,
gzip, gcc

27 galgel,
facerec,
eon, mesa

35 applu,
eon,
fma3d,
vortex1

4 fma3d,
applu,
parser,
swim

12 gzip,
lucas,
twolf, apsi

20 art, galgel,
parser,
eon

28 vpr,
crafty,
applu,
vortex1

36 lucas,
ammp,
twolf,
fma3d

5 mcf, swim,
gzip,
vortex1

13 facerec,
ammp,
gzip,
equake

21 bzip, gzip,
perlbmk,
eon

29 twolf, vpr,
swim,
wupwise

37 eon,
parser,
bzip, mcf

6 swim,
galgel,
apsi,
applu

14 swim,
sixtrack,
mgrid,
vortex1

22 vpr, swim,
apsi, gcc

30 parser,
mesa,
vortex1,
gcc

38 vpr,
vortex1,
wupwise,
applu

7 gzip,
wupwise,
eon,
equake

15 sixtrack,
fma3d,
parser,
mcf

23 art, applu,
perlbmk,
mesa

31 lucas,
mgrid,
sixtrack,
gap

39 lucas,
mgrid,
swim, gzip

8 sixtrack,
gcc,
facerec,
perlbmk

16 twolf,
galgel,
crafty,
applu

24 facerec,
eon, bzip,
mesa

32 facerec,
galgel,
vpr,
sixtrack

40 gzip,
swim, eon,
fma3d

between the two modes. Thirdly, our memory controller reorders requests to achieve
high page hit rates which can affect the private cache access patterns and miss
rates. For these reasons, there can be small differences between the private and
shared mode memory request traces. We remove these differences by applying two
preprocessing steps before analyzing the traces. Firstly, we remove the requests
for addresses that only occur in the private or shared modes. Secondly, we remove
the superfluous requests of the mode that has the most requests in the cases where
there are a different number of requests for the same address in the shared and
private modes. These steps result in the removal of 0.1% of the observed requests.

D.4 Results

Modern out-of-order processors and memory systems contain a substantial amount
of logic dedicated to hiding memory latency. Since our interference measurement
methodology is latency focused, it is necessary to verify that the observed inter-

172

Table D.7: Randomly Generated 8-core Multiprogrammed Workloads
ID Benchmarks ID Benchmarks ID Benchmarks ID Benchmarks

1 ammp, mcf,
vpr, fma3d,
equake,
sixtrack, galgel,
bzip

6 applu, mcf,
perlbmk,
parser, crafty,
eon, galgel,
fma3d

11 ammp, lucas,
wupwise, eon,
twolf, fma3d,
gcc, equake

16 apsi, ammp,
vortex1, vpr,
gap, perlbmk,
art, bzip

2 crafty, vortex1,
facerec, ammp,
bzip, parser,
mcf, perlbmk

7 fma3d, gzip,
lucas, perlbmk,
bzip, apsi,
crafty, gap

12 mcf, galgel,
gap, gzip,
swim, sixtrack,
vpr, fma3d

17 gzip, art,
equake, facerec,
eon, apsi, gcc,
wupwise

3 lucas, vpr,
mesa, apsi,
swim, art, gzip,
twolf

8 swim, gzip,
ammp, facerec,
perlbmk,
equake, gcc,
apsi

13 mesa, fma3d,
gap, lucas,
wupwise,
galgel, sixtrack,
parser

18 perlbmk, gap,
parser, swim,
sixtrack,
fma3d, lucas,
vortex1

4 art, mcf,
perlbmk,
wupwise,
ammp, applu,
mesa, swim

9 gap, mcf, vpr,
apsi, vortex1,
lucas, parser,
applu

14 bzip, mgrid,
facerec, art,
eon, swim,
equake, apsi

19 lucas, mesa,
apsi, fma3d,
mcf, parser,
crafty, gcc

5 eon, apsi,
equake, vpr,
fma3d, facerec,
gcc, vortex1

10 mcf, sixtrack,
vpr, swim,
gzip, mgrid,
ammp, lucas

15 swim, vpr, gap,
facerec, twolf,
sixtrack, mcf,
crafty

20 gcc, perlbmk,
sixtrack,
parser, vortex1,
eon, facerec,
galgel

ference result in an asymmetric performance reduction. To this end, we use the
fairness metric of Gabor et al. [5]. This metric expresses the difference between the
largest and smallest shared mode slowdowns for one workload and provides values
in the range from 0 to 1 where 1 indicates that the slowdown is the same for all
benchmarks. A value of 0 indicates that at least one benchmark is not making
forward progress.

Figure D.5 shows the distribution of fairness metric values for all 4-core CMPs used
in this work. Here, we plot the lowest fairness value observed when a certain number
of workloads are taken into account for the different CMP architectures. The
main observation from Figure D.5 is that many workloads have reasonably good
fairness values. However, there are also workloads where interference leads to large
performance differences between the benchmarks (i.e. low fairness). This supports
the claim that interference-aware techniques are necessary to reduce performance
variability.

Figure D.6 shows the interference results for all architectures examined in this
work. The main observation is that memory bus transfer interference is the major
interference contributor across all architectures. This trend is also visible in Figure
D.5. Cache capacity interference is the second most important source of interfer-
ence, but its impact is considerably smaller than the impact of bus interference. In
addition, there are architectures (e.g. 16-CB-4) where the impact of cache capacity
interference is small. Finally, there is more interconnect transfer interference in the
crossbar interconnect than in the ring for the 16-core CMP. This seemingly counter

D.4. Results 173

0

0,2

0,4

0,6

0,8

1

1,2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Number of Workloads

Lo
w

es
t F

ai
rn

es
s

Va
lu

e

Crossbar-Based, 1 channel Crossbar-Based, 2 channels
Crossbar-Based, 4 channels Ring-Based, 1 channel
Ring-Based, 2 channels Ring-Based, 4 channels

Figure D.5: 4-core Fairness Metric Values

0

50

100

150

200

250

C
B

 1

C
B

 2

C
B

 4

R
in

g
1

R
in

g
2

R
in

g
4

C
B

 1

C
B

 2

C
B

 4

R
in

g
1

R
in

g
2

R
in

g
4

C
B

 1

C
B

 2

C
B

 4

R
in

g
1

R
in

g
2

R
in

g
4

4-core CMP 8-core CMP 16-core CMP

A
gg

re
ga

te
 In

te
rf

er
en

ce
 Im

pa
ct

 F
ac

to
r

Memory Bus Entry Interference Memory Bus Transfer Interference
Cache Capacity Interference Interconnect Delivery Interference
Interconnect Entry Interference Interconnect Transfer Interference

Figure D.6: Interference Impact Breakdown

174

Table D.8: Randomly Generated 16-core Multiprogrammed Workloads
ID Benchmarks ID Benchmarks

1 lucas, art, ammp, bzip, sixtrack, vpr,
gzip, fma3d, equake, gcc, vortex1,
facerec, galgel, crafty, apsi, twolf

6 parser, mesa, bzip, vortex1, vpr, fma3d,
gap, gcc, perlbmk, gzip, mcf, crafty, eon,
equake, facerec, galgel

2 lucas, ammp, mgrid, bzip, swim, crafty,
galgel, equake, vortex1, parser, vpr, eon,
wupwise, gzip, twolf, mcf

7 gzip, sixtrack, gap, fma3d, eon, galgel,
perlbmk, art, bzip, ammp, equake, lucas,
parser, facerec, apsi, crafty

3 lucas, ammp, art, bzip, twolf, applu,
facerec, apsi, mesa, eon, swim, galgel,
gzip, crafty, gap, perlbmk

8 perlbmk, gzip, apsi, twolf, wupwise, gap,
vpr, mgrid, galgel, facerec, gcc, eon, mcf,
lucas, fma3d, ammp

4 crafty, twolf, mgrid, applu, wupwise,
swim, parser, fma3d, mesa, perlbmk,
facerec, gcc, lucas, vortex1, galgel, bzip

9 mgrid, art, facerec, gcc, vpr, gzip, parser,
ammp, fma3d, galgel, crafty, applu,
twolf, bzip, mcf, apsi

5 bzip, facerec, vortex1, ammp, gzip, swim,
fma3d, equake, lucas, apsi, applu, vpr,
perlbmk, sixtrack, mcf, mesa

10 apsi, swim, crafty, art, sixtrack, ammp,
galgel, lucas, vortex1, gzip, perlbmk, vpr,
gcc, mesa, gap, equake

intuitive result is due to two factors. Firstly, the ring-based architecture has a
private L2 cache that reduces the pressure on the interconnect. Secondly, we do
not increase the number of banks in the shared cache which reduces the parallelism
available in the crossbar.

Figure D.7 shows the interference distribution for the 4-core CMP for both intercon-
nects and all memory bus configurations used in this work. Here, the interference
impact factors are aggregated into bins of size 300, and we remove all bins that have
a AIIF value of less than 0.35 to improve readability. While Figure D.6 showed
that interference is reduced when more memory bus bandwidth is made available,
Figure D.7 illustrates that the interference distribution also changes significantly.
For the bandwidth constrained architectures (e.g. Figure D.7(a) and D.7(d)), the
interference impact increases to a maximum before it decreases. In the 4-channel
architectures (Figure D.7(c) and D.7(f)), the largest interference impact is in the
0 to 300 bin and the impact decreases rapidly. The interference impact of the low
penalty bins is significantly higher for the 4-channel architectures but the total
impact is lower because of the distribution’s short tail.

Figure D.7 illustrates that the cache capacity interference impact is heavily depen-
dent on the amount of memory bus interference. The reason is that the cost of
cache capacity interference is the memory bus service time of the additional re-
quests. Furthermore, the impact from interconnect transfer interference is small
across all architectures. Although this interference type occurs very frequently, the
interference penalty is small which results in a low interference impact. In addition,
there is some interconnect delivery interference in all architectures which is due to
shared cache blocking. The impact from this type of interference is large enough
that it most likely must be dealt with in architectures with strict QoS requirements.

There is also a considerable amount of constructive interference. With the 4-Ring-
1 architecture (Figure D.7(a)), constructive memory bus interference leads to a
noticeable impact in the -1500 to -1200 cycles bin. This can be explained by taking

D.4. Results 175

-5

 0

 5

 10

 15

 20

-1
50

0
-1

20
0

-9
00

-6
00

-3
00 0

30
0

60
0

90
0

12
00

15
00

18
00

21
00

24
00

27
00

30
00

33
00

36
00

39
00

42
00

45
00

48
00

51
00

54
00

57
00

60
00

63
00

66
00

69
00

72
00

75
00

78
00

81
00

84
00

87
00

90
00

A
gg

re
ga

te
 Im

pa
ct

 F
ac

to
r

Interference Penalty (cycles)

Memory Bus Entry
Memory Bus Transfer

Cache Capacity
Interconnect Delivery

Interconnect Entry
Interconnect Transfer

(a) 4-Ring-1

-5

 0

 5

 10

 15

 20

-6
00

-3
00 0

30
0

60
0

90
0

12
00

15
00

18
00

21
00

24
00

27
00

30
00

33
00

36
00

39
00

42
00

45
00

48
00

51
00

54
00

A
gg

re
ga

te
 Im

pa
ct

 F
ac

to
r

Interference Penalty (cycles)

Memory Bus Entry
Memory Bus Transfer

Cache Capacity
Interconnect Delivery

Interconnect Entry
Interconnect Transfer

(b) 4-Ring-2

-5

 0

 5

 10

 15

 20

-3
00 0

30
0

60
0

90
0

12
00

15
00

18
00

21
00

24
00

27
00

30
00

A
gg

re
ga

te
 Im

pa
ct

 F
ac

to
r

Interference Penalty (cycles)

Memory Bus Entry
Memory Bus Transfer

Cache Capacity
Interconnect Delivery

Interconnect Entry
Interconnect Transfer

(c) 4-Ring-4

-5

 0

 5

 10

 15

 20

-1
20

0
-9

00
-6

00
-3

00 0
30

0
60

0
90

0
12

00
15

00
18

00
21

00
24

00
27

00
30

00
33

00
36

00
39

00
42

00
45

00
48

00
51

00
54

00
57

00
60

00
63

00

A
gg

re
ga

te
 Im

pa
ct

 F
ac

to
r

Interference Penalty (cycles)

Memory Bus Entry
Memory Bus Transfer

Cache Capacity
Interconnect Delivery

Interconnect Entry
Interconnect Transfer

(d) 4-Crossbar-1

-5

 0

 5

 10

 15

 20

-6
00

-3
00 0

30
0

60
0

90
0

12
00

15
00

18
00

21
00

24
00

27
00

30
00

33
00

A
gg

re
ga

te
 Im

pa
ct

 F
ac

to
r

Interference Penalty (cycles)

Memory Bus Entry
Memory Bus Transfer

Cache Capacity
Interconnect Delivery

Interconnect Entry
Interconnect Transfer

(e) 4-Crossbar-2

-5

 0

 5

 10

 15

 20

-3
00 0

30
0

60
0

90
0

12
00

A
gg

re
ga

te
 Im

pa
ct

 F
ac

to
r

Interference Penalty (cycles)

Memory Bus Entry
Memory Bus Transfer

Cache Capacity
Interconnect Delivery

Interconnect Entry
Interconnect Transfer

(f) 4-Crossbar-4

Figure D.7: 4-core CMP Interference Impact (cores-interconnect-channels)

-5

 0

 5

 10

 15

 20

 25

 30

 35

-5
00 0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

55
00

60
00

65
00

70
00

75
00

80
00

85
00

90
00

95
00

10
00

0
10

50
0

11
00

0
11

50
0

12
00

0
12

50
0

13
00

0
13

50
0

14
00

0
14

50
0

15
00

0
15

50
0

A
gg

re
ga

te
 Im

pa
ct

 F
ac

to
r

Interference Penalty (cycles)

Memory Bus Entry
Memory Bus Transfer

Cache Capacity
Interconnect Delivery

Interconnect Entry
Interconnect Transfer

(a) 16-Ring-1

-5

 0

 5

 10

 15

 20

 25

 30

 35

-5
00 0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

A
gg

re
ga

te
 Im

pa
ct

 F
ac

to
r

Interference Penalty (cycles)

Memory Bus Entry
Memory Bus Transfer

Cache Capacity
Interconnect Delivery

Interconnect Entry
Interconnect Transfer

(b) 16-Ring-4

Figure D.8: 16-core Ring Interference Impact

176

into account that our memory controller allows some requests to skip past the queue
to achieve higher page hit rates and better memory bus utilization [22]. For the
interconnect transfer interference, the impact from constructive interference is much
lower. In this case, the constructive interference is due to some benchmarks having
significant interconnect delays when they have the memory bus to themselves. In
the shared mode, memory bus interference reduces execution speed enough that
the interconnect congestion disappears which results in lower transfer delays in the
shared mode.

To illustrate the impact on interference by increasing the number of processing
cores, we show the results of two 16-core ring-based architectures in Figure D.8.
Here, we use a bin size of 500 and only show bins that have an AIIF value of 1.0 or
more. As expected, Figure D.8(a) shows that there is a large amount of interference
if the memory bus bandwidth is not scaled with the number of cores. Furthermore,
memory bus entry interference has a considerable impact for this architecture.
Consequently, a significant part of the interference is due to shared cache misses
not being accepted into the memory bus queue because it is full. This further
illustrates the need for fair buffer management observed in all 4-core architectures.
Figure D.8(b) shows the effect of increasing the number of memory bus channels to
4. Here, the distribution has a considerably shorter tail. However, the impact of the
0 to 500 cycle bin is large which indicates that low-penalty interference is frequent.
In other words, providing more resources reduces the impact of interference but
does not remove it. This indicates that fairness techniques are useful even when
there are no severe performance bottlenecks.

D.5 Conclusion and Further Work

In this work, we have shown that the impact of interference will increase as more
cores are added to the chip by investigating a variety of realistic CMP architec-
tures with 4, 8 and 16 cores. Consequently, techniques that reduce this interference
are needed in future CMPs. We found that memory bus interference is the major
source of interference and it is responsible for between 63% and 87% of the total
interference impact depending on the architectures. Furthermore, it is unlikely
that this situation will improve in the future as memory bus bandwidth is limited
by the number of physical pins on a chip and the electronic characteristics of the
circuit board. We also observed that cache capacity interference can be a relatively
small part of the total interference impact (between 5% and 32%). Consequently,
adding a fair memory controller might be sufficient to achieve acceptable fairness
and QoS for many near-term architectures. However, we have also observed ar-
chitectures where 11% of the total interference impact is due to the shared cache
MSHR allocation policy for which no solutions are currently known.

In this work, we have developed an understanding of memory system interference
that can be useful for future research. However, we have only investigated CMPs
where no fairness techniques have been implemented. A possible avenue of further

Bibliography 177

work is to investigate how implementing fairness techniques in one shared unit will
influence the interference impact of the other shared units. For instance, a cache
capacity sharing technique might reduce the overall number of cache misses enough
to reduce the impact of memory bus interference. On the other hand, it can poten-
tially increase the number misses by limiting the cache space available to a process
which might result in more memory bus interference. In addition, we observed that
shared cache blocking and memory controller blocking can be important contribu-
tors to interference in certain architectures. One possible solution to this problem
is to allocate MSHR entries and memory bus queue space per thread. However, this
must be done carefully to ensure that the provided resources are utilized efficiently.

Bibliography

[1] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and S. K.
Reinhardt. The M5 Simulator: Modeling Networked Systems. IEEE Micro,
26(4):52–60, 2006.

[2] R. Bitirgen, E. Ipek, and J. F. Martinez. Coordinated Management of Multiple
Resources in Chip Multiprocessors: A Machine Learning Approach. In MICRO
41: Proc. of the 41th IEEE/ACM Int. Symp. on Microarchitecture, 2008.

[3] J. Chang and G. S. Sohi. Cooperative Cache Partitioning for Chip Multipro-
cessors. In ICS ’07: Proc. of the 21st Annual Int. Conf. on Supercomputing,
pages 242–252, 2007.

[4] S. Eyerman and L. Eeckhout. System-Level Performance Metrics for Multi-
program Workloads. IEEE Micro, 28(3):42–53, 2008.

[5] R. Gabor, S. Weiss, and A. Mendelson. Fairness and Throughput in Switch
on Event Multithreading. In MICRO 39: Proc. of the 39th Int. Symp. on
Microarchitecture, pages 149–160, 2006.

[6] F. Guo, Y. Solihin, L. Zhao, and R. Iyer. A Framework for Providing Quality
of Service in Chip Multi-Processors. In MICRO 40: Proc. of the 40th An.
IEEE/ACM Int. Symp. on Microarchitecture, 2007.

[7] H. Hofstee. Power Efficient Processor Architecture and the Cell Processor.
HPCA 11: 11th Int. Symp. on High-Performance Comp. Arch., pages 258–
262, 2005.

[8] ITRS. International Technology Roadmap for Semiconductors - 2007 Edition.
http://www.itrs.net/, 2007.

[9] R. Iyer. CQoS: A Framework for Enabling QoS in Shared Caches of CMP Plat-
forms. In ICS ’04: Proceedings of the 18th An. Int. Conf. on Supercomputing,
pages 257–266, 2004.

http://www.itrs.net/

178 Bibliography

[10] R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni, D. Newell, Y. Solihin,
L. Hsu, and S. Reinhardt. QoS Policies and Architecture for Cache/Memory
in CMP Platforms. In SIGMETRICS ’07, pages 25–36, 2007.

[11] DDR2 SDRAM Specification. JEDEC Solid State Tech. Association, May
2006.

[12] S. Kim, D. Chandra, and Y. Solihin. Fair Cache Sharing and Partitioning in a
Chip Multiprocessor Architecture. In PACT ’04: Proc. of the 13th Int. Conf.
on Parallel Architectures and Compilation Techniques, pages 111–122, 2004.

[13] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-Way Multi-
threaded Sparc Processor. IEEE Micro, 25(2):21–29, 2005.

[14] R. Kumar, V. Zyuban, and D. M. Tullsen. Interconnections in Multi-Core
Architectures: Understanding Mechanisms, Overheads and Scaling. In ISCA
’05: Proc. of the 32nd Int. Symp. on Comp. Arch., pages 408–419, 2005.

[15] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan. Gaining
Insights into Multicore Cache Partitioning: Bridging the Gap between Sim-
ulation and Real Systems. In HPCA ’08: Proc. of the 13th Int. Symp. on
High-Perf. Comp. Arch., 2008.

[16] O. Mutlu and T. Moscibroda. Stall-Time Fair Memory Access Scheduling for
Chip Multiprocessors. In MICRO 40: Int. Symp. on Microarchitecture, 2007.

[17] O. Mutlu and T. Moscibroda. Parallelism-Aware Batch Scheduling: Enhancing
both Performance and Fairness of Shared DRAM Systems. In ISCA ’08: Proc.
of the 35th An. Int. Symp. on Comp. Arch., pages 63–74, 2008.

[18] K. Nesbit, M. Moreto, F. Cazorla, A. Ramirez, M. Valero, and J. Smith.
Multicore Resource Management. IEEE Micro, 28(3):6–16, 2008.

[19] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith. Fair Queuing Memory
Systems. In MICRO 39: Int. Symp. on Microarchitecture, pages 208–222,
2006.

[20] K. J. Nesbit, J. Laudon, and J. E. Smith. Virtual private caches. In ISCA
’07: Proc. of the 34th An. Int. Symp. on Comp. Arch., pages 57–68, 2007.

[21] N. Rafique, W.-T. Lim, and M. Thottethodi. Architectural Support for Op-
erating System-driven CMP Cache Management. In PACT ’06: Proc. of the
15th Int. Conf. on Parallel Architectures and Compilation Techniques, pages
2–12, 2006.

[22] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens. Memory
Access Scheduling. In ISCA ’00: Int. Symp. on Comp. Arch., pages 128–138,
2000.

Bibliography 179

[23] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey, S. Junk-
ins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski, T. Juan, and
P. Hanrahan. Larrabee: a Many-core x86 Architecture for Visual Computing.
In ACM SIGGRAPH 2008, pages 1–15, 2008.

[24] SPEC. SPEC CPU 2000 Web Page. http://www.spec.org/cpu2000/.

[25] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi. CACTI 5.1.
Technical report, HP Laboratories Palo Alto, 2008.

http://www.spec.org/cpu2000/

180

Appendix E

Paper B.II

DIEF: An Accurate
Interference Feedback
Mechanism for Chip

Multiprocessor Memory
Systems

Magnus Jahre, Marius Grannæs and Lasse Natvig
5th International Conference on High Performance and Embedded

Architectures and Compilers
2010

182

Abstract
Chip Multi-Processors (CMPs) commonly share hardware-controlled on-chip units
that are unaware that memory requests are issued by independent processors. Con-
sequently, the resources a process receives will vary depending on the behavior of
the processes it is co-scheduled with. Resource allocation techniques can avoid
this problem if they are provided with an accurate interference estimate. Our
Dynamic Interference Estimation Framework (DIEF) provides this service by dy-
namically estimating the latency a process would experience with exclusive access
to all hardware-controlled, shared resources. Since the total interference latency is
the sum of the interference latency in each shared unit, the system designer can
choose estimation techniques to achieve the desired accuracy/complexity trade-off.
In this work, we provide high-accuracy estimation techniques for the on-chip inter-
connect, shared cache and memory bus. This DIEF implementation has an average
relative estimate error between -0.4% and 4.7% and a standard deviation between
2.4% and 5.8%.

Is not included due to copyright

Appendix F

Paper C.I

Low-Cost Open-Page
Prefetch Scheduling in
Chip Multiprocessors

Marius Grannæs, Magnus Jahre and Lasse Natvig
XXVI IEEE International Conference on Computer Design (ICCD)

2008

204

205

Abstract
The pressure on off-chip memory increases significantly as more cores compete for
the same resources. A CMP deals with the memory wall by exploiting thread
level parallelism (TLP), shifting the focus from reducing overall memory latency to
memory throughput. This extends to the memory controller where the 3D structure
of modern DRAM is exploited to increase throughput.

Traditionally, prefetching reduces latency by fetching data before it is needed. In
this paper we explore how prefetching can be used to increase memory throughput.
We present our own low-cost open-page prefetch scheduler that exploits the 3D
structure of DRAM when issuing prefetches. We show that because of the complex
structure of modern DRAM, prefetches can be made cheaper than ordinary reads,
thus making prefetching beneficial even when prefetcher accuracy is low. As a
result, prefetching with good coverage is more important than high accuracy. By
exploiting this observation our low-cost open page scheme increases performance
and QoS. Furthermore, we explore how prefetches should be scheduled in a state of
the art memory controller by examining sequential, scheduled region, CZone/Delta
Correlation and reference prediction table prefetchers.

206

F.1. Introduction 207

Figure F.1: The 3D structure of modern DRAM.

F.1 Introduction

Chip Multiprocessors have been introduced by virtually all makers of high perfor-
mance processors. CMPs shifts the focus away from the traditional uniprocessor
paradigm, where low latency and instruction-level parallelism (ILP) is important
to a paradigm where throughput and thread-level parallelism (TLP) dominates.

This shift is reflected in the memory subsystem as well, where the memory con-
trollers have traditionally been used to reduce system latency. However, as more
cores are added to a chip, off-chip bandwidth are shared across cores, thus in-
creasing the pressure on this resource and lowering locality in the memory access
stream. Thus, memory controllers have been designed to optimize for maximum
throughput, at the expense of increasing worst-case latency.

This increase in throughput has been made possible by exploiting the 3D structure
of modern DRAM [4]. DRAM is organized in several banks. Each bank is organized
as a matrix of rows and columns of DRAM cells as shown in figure F.1. In a normal
read operation, a bank and a row is first selected for activation. The charges from
this row of capacitors are then amplified by sense-amplifiers in the DRAM module
and stored in a large latch. Each such row is commonly referred to as a page. A
page is normally about 1KB to 4KB large, whereas a cacheline is typically 64-256B
large. Thus, a page will typically hold several consecutive cachelines. The portion
of the page that was requested is then transferred over the data-bus. When the
page is no longer needed, the memory controller instructs the DRAM module to
write the latch contents back into the DRAM cells, preserving the contents of the
page. This is referred to as closing the page.

In terms of latency, opening and closing a page is expensive, while getting data out
of the latches and over the data-bus is comparatively cheap. In addition, there is a
minimum allowed time between opening and closing a page (the minimum activate-

208

to-precharge latency). Thus a single read is slow, but reading the next cache block
is relatively cheap as the page is already open and the data is in the latch. This
property is exploited by the First Ready, First Come, First Served (FR-FCFS)
memory controller proposed by Rixner et al. [16]. This type of memory controller
allows accesses that uses an already open page to be scheduled even if the request
is not the oldest.

Traditionally, prefetching has been used to decrease latency for a single operation
by speculatively bringing data into the cache before it is needed. In this paper
we exploit the 3D structure of modern DRAM to demonstrate how prefetching
can be used to increase off-chip bandwidth utilization. Because there is a lower
cost associated with fetching data that resides in an open page, we prefetch this
data, provided that our confidence that the data will be useful is high enough. In
addition, we show that prefetching can be effective at relatively low accuracy, due
to the low cost of piggybacking prefetches compared to single reads. Finally, we
present our low cost open page prefetching scheduling heuristic which exploits this
observation.

F.2 Previous Work

F.2.1 Prefetching

Previously, Wei-Fen et al. [9] have examined how prefetches can be scheduled in a
uniprocessor context with Rambus DRAM. They used a dedicated prefetch queue
with a LIFO insertion policy with a scheduled region prefetcher. In addition,
Cantin et al. [2] exploited open pages to increase the performance of their stealth
prefetcher.

There exists a multitude of different prefetching schemes. The simplest is the
sequential prefetcher [18], which simply fetches the next block whenever a block is
referenced. However, more complex types exists as well, such as the CZone/Delta
Correlation (C/DC) prefetcher proposed by Nesbit et al. [12, 13]. C/DC divides
memory into CZones and analyses patterns contained in the reference stream by
using a Global History Buffer (GHB) to store recent misses to the cache. Lin et al.
[8] introduced scheduled region prefetching (SRP) which issues prefetches to blocks
spatially near the addresses of recent demand missed when the memory channel
is idle. Other types, such as the Reference Prediction Table Prefetcher (RPT)
proposed by Chen and Baer [3] examines the pattern generated by a load instruction
with a state machine. Somogyi et al. proposed Spatial Memory Streaming (SMS)
[19]. SMS uses code-correlation to predict spatial access patterns.

F.3. Prefetch Scheduling 209

F.2.2 Memory Controllers

Memory access scheduling is the process of reordering memory requests to improve
memory bus utilization. Rixner et al. [16] showed that significant speed-ups are
possible when memory request reordering is applied to stream processors. In ad-
dition, Shao et al. [17] proposed burst scheduling in which multiple read and write
requests to the same DRAM page are issued together to achieve high bus utilization.
Finally, Zhu et al. [24] showed that it is beneficial to divide the memory requests
into smaller parts, and give priority to the words responsible for a processor stall
in a multi-channel DRAM system.

CMPs, processors with SMT support and conventional shared-memory multipro-
cessors also benefit from memory access scheduling. Zhu et al. [23] showed that
DRAM throughput could be increased in an SMT processor by using ROB and IQ
occupancy status to prioritize requests. Furthermore, Hur et al. [5] use a history-
based arbiter to adapt the DRAM port and rank schedule to the application’s mix
of reads and writes for the dual-core Power5 processor. In addition, Natarajan et al.
[11] showed that a significant performance improvement is available by exploiting
memory controller features in a conventional, shared-memory multiprocessor.

In CMPs, the memory bus is shared between all processing cores and a number of
researchers have looked into how this can be accomplished in a fair way [6, 10, 14,
15]. In general, bandwidth is divided among threads according to their priorities at
the same time as requests are scheduled in a way that improves DRAM throughput.

F.3 Prefetch Scheduling

A prefetching heuristic can be characterized by using two distinct metrics: Accuracy
is a measure of how many of the issued prefetches have actually been useful to the
processor [22], while coverage measures how many of the potential prefetches have
been issued.

Because prefetching is a speculative technique, there are two potential sources for
performance degradation. Firstly, prefetching consumes additional bandwidth as
some data transferred over the memory bus is not used. Secondly, it can pollute
the cache, by displacing data that is still needed.

The FR-FCFS memory scheduler [16] is a high throughput memory scheduler. It
exploits the 3D structure of modern DRAM by allowing requests that would access
an already open page to bypass the normal FCFS queue. FR-FCFS prioritizes
memory requests in the following manner: 1) Ready operations (operations that
access open pages), 2) CAS (column selection) over RAS (row selection) commands,
and 3) Oldest request first. In addition, reads have a higher priority than writes.

There are two basic ways to introduce prefetching into the FR-FCFS memory con-
troller. The simplest approach is to insert prefetch requests into the read queue, as

210

(a) Conventional prefetch scheduling

(b) Dedicated prefetch queue

Figure F.2: Prefetch scheduling policies

shown in figure F.2(a). A more sophisticated approach introduced by Lin Wei-Fen
et al. [9] is to use a dedicated queue for prefetches as shown in figure F.2(b). In this
approach, prefetches are prioritized after writebacks, so the priority rule becomes:
Prioritize read operations over writeback operations over prefetch operations.

F.4 Low cost open page prefetching

After a demand read to DRAM is serviced, the page that the demand read resided
in is still open, and in most cases cannot be closed due to the minimum activate to
precharge latency. Other DRAM banks can still be utilized. If a prefetch or read
is issued to this open page, there is little latency as the data requested is already
in the latch. In this paper we refer to this as piggybacking.

By allowing prefetches to piggyback on regular read requests, the cost of prefetching
is effectively reduced. In the dedicated prefetch queue approach, prefetches are only
issued if they can piggyback on another request, or if the bus is idle. Suppose a
processor requires data at locations X1 and X2 that are located on the same page
at times T1 and T2. There are two separate outcomes: If T1 and T2 are sufficiently
close, both requests will be in the memory controller at the same time, and request

F.4. Low cost open page prefetching 211

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

-40 -20 0 20 40 60

A
cc

ur
ac

y

IPC improvement (%)

Sequential prefetching
Scheduled Region prefetching

CZone/Delta Correlation prefetching
Reference Predicton Tables prefetching

Treshold

Figure F.3: IPC improvement as a function of accuracy

2 can piggyback on request 1. Thus the page only needs to be opened once. If
the two requests are sufficiently separated in time, the two requests cannot be
piggybacked on each other, thus forcing the page to be opened twice. This reduces
overall throughput. In the second case, prefetching X2 can increase performance
by both reducing latency and increase memory throughput. However, because
prefetching is a speculative technique, its prediction for what data is needed in
the future might be wrong. Thus, there is a break-even point where the benefit of
prefetching is balanced against the cost of prefetching.

To test this assumption we have conducted experiments on 4 different prefetching
heuristics (Sequential, SRP, C/DC and RPT) with 10 different prefetching con-
figurations (each) on 40 different workloads. We measured the accuracy of the
prefetcher and the IPC improvement (versus a configuration with no prefetching).
Our results are shown in figure F.3.

In this graph it is clear that most of the points fall into 2 quadrants. One where
accuracy is below 38% and performance is decreased, while another where accuracy
is above 38% and performance is increased.

Our prefetch scheduler exploits this observation by measuring prefetch accuracy
at runtime. If the accuracy falls below a treshold (in our experiments 38%) then
prefetches are no longer piggybacked on open pages and only issued if the bus is
idle.

We use an accuracy estimator similar to the one used by Sriniath et al. [21]. When a
prefetch is issued, a counter is increased (indicating the number of prefetches issued)
and a prefetched-bit is set in the corresponding cache line. This bit is already

212

Table F.1: Processor Core Parameters
Parameter Value

Processor Cores 4

Clock frequency 3.2 GHz

Reorder Buffer 128 entries

Store Buffer 32 entries

Instruction Queue 64 instructions

Instruction Fetch
Queue

32 entries

Load/Store Queue 32 instructions

Issue Width 8 instructions/cycle

Functional units 4 Integer ALUs, 2
Integer
Multipy/Divide, 4
FP ALUs, 2 FP
Multiply/Divide

Branch predictor Hybrid, 2048 local
history registers,
4-way 2048 entry
BTB

Table F.2: Memory System Parameters
Parameter Value

Level 1 Data Cache 64 KB, 8-way set
associative, 64B
blocks, 3 cycles
latency

Level 1 Instruction
Cache

64 KB, 8-way set
associative, 64B
blocks, 1 cycle
latency

Level 2 Unified
Shared Cache

4 MB, 16-way set
associative, 64B
blocks, 14 cycles
latency, 8 MSHRs
per bank, 4 banks

L1 to L2
Interconnection
Network

Crossbar topology, 9
cycles latency, 64B
wide transmission
channel

DDR2 memory 400 Mhz Clock, 8
banks, 1KB
pagesize, 4-4-4-12
timing, dual channel
in lock-step

present when using sequential prefetching, and thus causes no additional overhead.
The first time a cache line with this bit set is referenced by the program, the bit
is cleared and another counter (indicating the number of successful prefetches) is
increased. By sampling the successful prefetch counter every time the 10 bit issued
counter wraps, we get an estimate of the prefetchers accuracy.

F.5 Methodology

We used the system call emulation mode of the cycle-accurate M5 simulator [1]
to evaluate our scheme. The processor architecture parameters for the simulated
4-core CMP are shown in table F.1, and table F.2 contains the baseline memory
system parameters. We have extended M5 with a crossbar interconnect, a de-
tailed DDR2 memory bus and DRAM model, a FR-FCFS memory controller and
prefetching.

Our DDR2-implementation [7] models separate RAS, CAS and precharge com-
mands. In addition, we model pipelining of requests, independent banks, burst
mode transfers and bus contention. The FR-FCFS memory controller has a 128
entry read-queue, 64 entry writeback queue and a 128 entry prefetch queue. As the
conventional method of issuing prefetches has no separate prefetch queue, the read
queue has been increased to 256 entries to make comparison more fair in terms of
area. Unless otherwise noted, we use 4KB regions in scheduled region prefetch-
ing, 256KB CZones, a 1024-entry global history buffer and a 16-entry reference
prediction table.

F.6. Results 213

The SPEC CPU2000 benchmark suite [20] is used to create 40 multiprogrammed
workloads consisting of 4 SPEC benchmarks each as shown in table F.3. We picked
benchmarks at random from the full SPEC CPU2000 benchmark suite, and each
processor core is dedicated to one benchmark. The only requirement given to the
random selection process was that each SPEC benchmark had to be represented in
at least one workload. To avoid unrealistic interference when more than a single
instance of a benchmark is part of a workload, the benchmarks are fast-forwarded a
random number of clock cycles between 1 and 1.1 billion. Then, detailed simulation
is carried out for 100 million clock cycles measured from the clock cycle the last core
finished fast forwarding. As our metric of throughput we have used the average
IPC of all 4 cores. In most cases, performance is measured as the relative increase
in speed compared to the no prefetching case.

F.6 Results

F.6.1 Scheduled Region Prefetching

In figure F.4 we show the relative performance of each of the prefetch scheduling
policies. In this experiment we use a scheduled region prefetcher (SRP) with 4KB
regions. The conventional and dedicated prefetch queue options give an average
of 14.4% increase in performance versus the no prefetching case, while the average
increase for our scheme is 17.1%. In addition, prefetching causes performance
degradation in 9 out of the 40 cases. Our prefech scheduling policy reduces the
performance penalty on 6 of these workloads. However, a lot of information is lost
in averages. For instance, the performance increased on workload 1 is only 1% in
other schemes, while our method increases performance by 15%. Similar results
can be seen in workload 6, 7, 23, 25, 27, 28, 32 and 38.

F.6.2 Importance of Coverage

In figure F.5 we show the average relative performance increase by using other
types of prefetchers, including Scheduled Region Prefetching, CZone/Delta Corre-
lation and Reference Prediction Tables. Both C/DC and RPT prefetching have
high accuracy. Because yhe prefetching accuracy is higher than the treshold in
almost all workloads, our method degrades into the dedicated prefetch queue. In
turn, the performance of our prefetch scheduling scheme is almost equal to the
dedicated prefetch queue scheme. However, this graph shows another interesting
property. Scheduled Region Prefetching, which has a comparatively low accuracy,
outperforms both of the more complex prefetcher heuristics. This is due to it hav-
ing a much higher prefetch coverage. It provides more prefetches with acceptable
accuracy, thus increasing performance.

214

-20

 0

 20

 40

 60

 80

 100

 120

 1 2 3 4 5 6 7 8 9 1
0

 1
1

 1
2

 1
3

 1
4

 1
5

 1
6

 1
7

 1
8

 1
9

 2
0

 2
1

 2
2

 2
3

 2
4

 2
5

 2
6

 2
7

 2
8

 2
9

 3
0

 3
1

 3
2

 3
3

 3
4

 3
5

 3
6

 3
7

 3
8

 3
9

 4
0

A
V

G

IP
C

 im
pr

ov
em

en
t (

%
)

Workload

Dedicated Prefetch Queue
Low Cost Open Page Prefetching

Figure F.4: Speedup in IPC relative to no prefetching using a FR-FCFS memory
controller.

F.6.3 Insertion policy

In our scheme and the dedicated prefetch queue scheme there is a separate queue for
handling prefetches. There are multiple possibilities on how to insert new prefetches
into the queue. If the prefetch queue is full, then there are two possibilities, either
discard the prefetch or insert the prefetch and evict the oldest prefetch. In figure F.6
we show the performance of FIFO and LIFO policies with and without evictions.
From this graph it is clear that evicting old data is beneficial, as well as using a
LIFO policy. Evicting old prefetches is useful, because newer prefetches are based
on newer demand reads, thus increasing both the accuracy and the probability
that it can be piggybacked. The LIFO policy ensures that the newest prefetches
are given priority over old ones. As shown in the graph, for both techniques,
evicing old data is preferable, while a LIFO policy gives marginally better results
over FIFO.

F.6.4 Treshold parameter

In figure F.7 we show the average speedup as a function of the required accuracy
(treshold). In effect, setting the treshold to 0% makes the low cost open page

F.6. Results 215

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

Scheduled Region C/DC RPT

IP
C

 im
pr

ov
em

en
t (

%
)

Dedicated Prefetch Queue
Low Cost Open Page Prefetching

Figure F.5: Average speedup in IPC relative to no prefetching.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

Dedicated Prefetch Queue Low Cost Open Page Prefetching

IP
C

 im
pr

ov
em

en
t (

%
)

FIFO
FIFO w/eviction

LIFO
LIFO w/eviction

Figure F.6: Effects of insertion policy on average IPC speedup.

prefetcher a dedicated queue prefetcher. Both RPT and C/DC prefetching have
a very high accuracy, so the treshold doesn’t affect performance until it becomes
too high, effectively disabling prefetching, and in turn degrades performance. In
addition, the peak for both sequential and scheduled region prefetching is relatively
low (around 20-30 %). This further supports the observation that coverage is more
important as long as accuracy is acceptable.

F.6.5 Quality of Service

We have measured the maximum slowdown for any thread compared to the case
where no prefetching is performed on each workload to get an indicator of the
quality of service. Figure F.8 shows the maximum performance degradation as a
function of the number of workloads included. This graph shows three important
properties. Firstly, 25% of the workloads experience no performance degradation
on any thread when doing prefetching. Secondly, our scheme gives consistently
higher quality of service. Using the other scheme 33% of the workloads show a
thread getting a performance degradation of above 10%. In our scheme only 20%

216

 2

 4

 6

 8

 10

 12

 14

 16

 0 10 20 30 40 50 60 70 80 90 100

IP
C

 im
pr

ov
em

en
t (

%
)

Accuracy treshold (%)

Sequential prefetching
SRP prefetching

C/DC prefetching
RPT prefetching

Figure F.7: IPC improvement as a function of treshold

-50

-40

-30

-20

-10

 0

 10

0 25 50 75 100

M
ax

im
um

 p
er

fo
rm

an
ce

 d
eg

ra
da

tio
n

fo
r a

ny
 th

re
ad

Portion of workloads (%)

Dedicated Prefetch Queue
Low Cost Open Page Prefetching

Figure F.8: Maximum IPC degradation for any thread as a function of workloads.

of the workloads show a thread getting more than 10% performance degradation.
Finally, the maximum degradation for any thread for our scheme is only 36%, while
the maximum for the dedicated prefetch queue approach is 49%.

F.7 Discussion

Our results show that it is more important to have good prefetching coverage, while
having acceptable accuracy. This is due to the relatively lower cost of piggybacked
prefetches compared to isolated demand reads. Normally prefetch heuristics have
been optimized for maximizing accuracy, so that the impact on bandwidth is as
low as possible. This is due to the assumption that the cost of a single prefetch
is about the same as a demand read. By carefully scheduling prefetches so that
they are piggybacked on normal demand reads, this assumption no longer holds.
We have demonstrated that a simpler, high coverage prefetcher outperforms more
sophisticated high accuracy prefetchers in a bandwidth-constrained, 4-core chip
multiprocessor system.

F.8. Conclusion 217

Table F.3: Multiprogrammed Workloads
ID Benchmarks ID Benchmarks ID Benchmarks ID Benchmarks

1 ammp, mgrid,
perlbmk, parser

11 vpr, twolf,
applu, eon

21 perlbmk, apsi,
lucas, equake

31 mgrid, equake,
vpr, eon

2 lucas, gcc, mcf,
twolf

12 galgel, crafty,
mgrid, swim

22 vpr, crafty,
vpr, mcf

32 wupwise, gap,
twolf, facerec

3 eon, eon, mesa,
facerec

13 twolf, fma3d,
galgel, vpr

23 gzip, equake,
mgrid, mesa

33 galgel, equake,
lucas, gzip

4 vortex1, ammp,
equake, galgel

14 bzip, vpr, bzip,
equake

24 facerec, applu,
fma3d, lucas

34 facerec, gcc,
facerec, apsi

5 gcc, galgel,
apsi, crafty

15 galgel, crafty,
vpr, swim

25 gap, applu,
parser, facerec

35 mesa, mcf,
swim, sixtrack

6 applu, equake,
art, facerec

16 mcf, wupwise,
mesa, mesa

26 mcf, apsi,
twolf, ammp

36 mesa, sixtrack,
equake, bzip

7 applu, gap, gcc,
parser

17 applu, parser,
apsi, perlbmk

27 swim, sixtrack,
ammp, applu

37 mcf, gap, gcc,
vortex1

8 gap, swim,
twolf, mesa

18 mgrid,
perlbmk, gzip,
mgrid

28 art, fma3d,
swim, parser

38 facerec, lucas,
mcf, parser

9 sixtrack,
fma3d, apsi,
vortex1

19 mcf, sixtrack,
gcc, apsi

29 apsi, gcc,
vortex1, twolf

39 twolf, eon,
mesa, eon

10 ammp, bzip,
equake, parser

20 ammp, gcc, art,
mesa

30 mgrid, gzip,
apsi, equake

40 apsi, apsi, mcf,
equake

In our prefetch scheduling heuristic, we have used an accuracy estimator to control
when prefetches should be issued. Other researchers have used such an estimator
to control the aggressiveness of the prefetcher [21]. Such a technique can be used in
conjunction with our scheduler. By using a feedback directed prefetcher, coverage
can be increased while keeping accuracy at an acceptable level, thus providing
higher performance.

Our simulator does not include a power model. However, our scheme piggybacks
prefetches on demand reads. If a prefetch is successful then a later read is not
needed, thus reducing the number of pages opened and closed, which in turn reduces
power consumption in the DRAM module. Prefetching invariably increases bus
traffic as some data transferred is not needed. Our scheme reduces the amount
of useless traffic compared to other schemes by filtering out prefetches with low
accuracy, thereby saving power.

F.8 Conclusion

In this paper we have shown that by carefully scheduling prefetches so that they
piggyback on ordinary demand reads, performance can be increased. This is done
by exploiting the 3D structure of modern DRAM, where opening and closing pages
is an expensive operation. As it becomes more important to issue prefetches that

218 Bibliography

can be piggybacked on ordinary demand reads, emphasis shifts from high accuracy
to high coverage with acceptable accuracy.

We have demonstrated our own prefetch scheme on a state of the art memory
controller that exploits these findings. Our prefetch policy outperforms traditional
scheduling policies in terms of performance, quality of service and power consump-
tion.

Bibliography

[1] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and S. K.
Reinhardt. The M5 Simulator: Modeling Networked Systems. IEEE Micro,
26(4):52–60, 2006.

[2] J. F. Cantin, M. H. Lipasti, and J. E. Smith. Stealth Prefetching. SIGPLAN
Notices, 41(11), 2006.

[3] T. Chen and J. Baer. Effective Hardware-Based Data Prefetching for High-
performance Processors. IEEE Transactions on Computers, 44:609–623, 1995.

[4] V. Cuppu, B. Jacob, B. Davis, and T. Mudge. A Performance Comparison
of Contemporary DRAM Architectures. In Proc. of the 26th Inter. Symp. on
Comp. Arch., pages 222–233, 1999.

[5] I. Hur and C. Lin. Adaptive History-Based Memory Schedulers. In MICRO 37:
Proc. of the 37th An. IEEE/ACM Int. Symp. on Microarch., pages 343–354,
2004.

[6] R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni, D. Newell, Y. Solihin,
L. Hsu, and S. Reinhardt. QoS Policies and Architecture for Cache/Memory
in CMP Platforms. In SIGMETRICS ’07, pages 25–36, 2007.

[7] DDR2 SDRAM Specification. JEDEC Solid State Tech. Association, May
2006.

[8] W. Lin, S. K. Reinhardt, and D. Burger. Reducing DRAM Latencies with an
Integrated Memory Hierarchy Design. In HPCA ’01: Proceedings of the 7th
International Symposium on High-Performance Computer Architecture, pages
301–312, 2001.

[9] W. Lin, S. K. Reinhardt, and D. Burger. Designing a Modern Memory Hier-
archy with Hardware Prefetching. IEEE Transactions on Computers, 50(11),
2001.

[10] O. Mutlu and T. Moscibroda. Stall-Time Fair Memory Access Scheduling for
Chip Multiprocessors. In MICRO 40: Int. Symp. on Microarchitecture, 2007.

Bibliography 219

[11] C. Natarajan, B. Christenson, and F. Briggs. A Study of Performance Impact
of Memory Controller Features in Multi-processor Server Environment. In
WMPI ’04: Proc. of the 3rd Workshop on Memory Perf. Issues, pages 80–87,
2004.

[12] K. J. Nesbit and J. E. Smith. Data Cache Prefetching Using a Global History
Buffer. IEEE Micro, 25:90–97, 2005.

[13] K. J. Nesbit, A. S. Dhodapkar, and J. E. Smith. AC/DC: An Adaptive Data
Cache Prefetcher. In Proceedings of the 13th International Conference on
Parallel Architecture and Compilation Techniques, pages 135–145, 2004.

[14] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith. Fair Queuing Memory
Systems. In MICRO 39: Int. Symp. on Microarchitecture, pages 208–222,
2006.

[15] N. Rafique, W.-T. Lim, and M. Thottethodi. Effective Management of DRAM
Bandwidth in Multicore Processors. In PACT ’07: Proc. of the 16th Int. Conf.
on Parallel Architecture and Compilation Techniques (PACT 2007), pages
245–258, 2007.

[16] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens. Memory
Access Scheduling. In ISCA ’00: Int. Symp. on Comp. Arch., pages 128–138,
2000.

[17] J. Shao and B. Davis. A Burst Scheduling Access Reordering Mechanism. In
HPCA ’07: Proc. of the 13th Int. Symp. on High-Performance Comp. Arch.,
2007.

[18] A. J. Smith. Cache memories. ACM Computing Surveys, 14(3):473–530, 1982.

[19] S. Somogyi, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos. Spatial
Memory Streaming. SIGARCH Computer Architecture News, 34(2):252–263,
2006.

[20] SPEC. SPEC CPU 2000 Web Page. http://www.spec.org/cpu2000/.

[21] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt. Feedback Directed Prefetching:
Improving the Performance and Bandwidth-Efficiency of Hardware Prefetch-
ers. Technical report, University of Texas at Austin, May 2006. TR-HPS-
2006-006.

[22] V. Srinivasan, E. S. Davidson, and G. S. Tyson. A Prefetch Taxonomy. IEEE
Transactions on Computers, 53:126–140, 2004.

[23] Z. Zhu and Z. Zhang. A Performance Comparison of DRAM Memory System
Optimizations for SMT Processors. In HPCA ’05: Proc. of the 11th Int. Symp.
on High-Performance Comp. Arch., pages 213–224, 2005.

[24] Z. Zhu, Z. Zhang, and X. Zhang. Fine-Grain Priority Scheduling on Multi-
channel Memory Systems. 8th Int. Symp. on High-Performance Comp. Arch.,
pages 107–116, 2002.

http://www.spec.org/cpu2000/

220

Appendix G

Paper C.II

Exploring the
Prefetcher/Memory

Controller Design Space:
An Opportunistic Prefetch

Scheduling Strategy

Marius Grannæs, Magnus Jahre and Lasse Natvig
Submitted to Journal of Computer Science and Technology

2010

222

223

Abstract
Prefetching is a well-known technique for bridging the memory gap. By predicting
future memory references the prefetcher can fetch data from main memory and
insert it into the cache such that overall performance is increased. Modern memory
controllers reorder memory requests to exploit the 3D structure of modern DRAM
interfaces. In particular, prioritizing memory requests that use open pages increases
throughput significantly.

In this work, we investigate the prefetcher/memory controller design space along
three dimensions: prefetching heuristic, prefetch scheduling strategy and available
memory bandwidth. In particular, we evaluate 5 different prefetchers and 6 prefetch
scheduling strategies. Through this extensive investigation, we observed that prior
prefetch scheduling strategies often cause memory bus contention in bandwidth
constrained CMPs which in turn causes performance regressions. To avoid this
problem, we propose a novel prefetch scheduling heuristic called Opportunistic Pre-
fetch Scheduling that selectively prioritizes prefetches to open DRAM pages such
that performance regressions are minimized. Opportunistic prefetch scheduling re-
duces performance regressions by 6.7X and 5.2X, while improving performance by
17 % and 20 % for sequential and scheduled region prefetching, compared to the
direct scheduling strategy.

224

G.1. Introduction 225

G.1 Introduction

The pressure on off-chip memory increases significantly as more cores compete for
the same resources. A CMP deals with the memory wall by exploiting thread
level parallelism (TLP), shifting the focus from reducing overall memory latency to
memory throughput. This extends to the memory controller where the 3D structure
of modern DRAM (Figure G.1) is exploited to increase throughput. Because of this
3D structure, the latency of a memory operation varies depending on bank conflicts
and open pages. In particular, fetching data from open pages is beneficial as it has
low latency and increases DRAM throughput [14].

Banks

Columns

DRAM

Rows

Figure G.1: 3D structure of DRAM.

Prefetching reduces latency by fetching data before it is needed. Research has
shown that prefetching can also increase bandwidth utilization by tight integra-
tion of the prefetcher with the memory controller [4, 8]. This is achieved through
prioritizing prefetches based on prefetcher accuracy, available memory bandwidth
and interaction with open pages. Fetching data from an open page has a much
lower cost in latency than a complete cycle of opening a page, fetching the data
and closing the page. Because of this difference in cost, speculatively prefetching
data from an open page is beneficial even at relatively low prefetcher accuracy [4].
However, this is a trade-off between latency and the available bandwidth.

Because of the complex interaction between the prefetcher and the memory con-
troller, prefetch scheduling can be as important as determining which addresses
to prefetch. In this work, we investigate the prefetcher/memory controller de-
sign space along three dimensions: data prefetching heuristic, prefetch scheduling
strategy and available memory bandwidth. In particular, we evaluate 5 different
prefetchers and 6 prefetch scheduling strategies. Through this extensive investi-
gation, we observed that prior prefetch scheduling strategies often cause memory
bus contention in bandwidth constrained CMPs, which in turn causes performance
regressions. To avoid this problem, we propose a novel prefetch scheduling heuristic
called Opportunistic Prefetch Scheduling that only issues prefetches to open DRAM
pages such that performance regressions is minimized.

226

This strategy has to major effects: The drawback is that prefetching opportunities
might be lost, because a demand read is always required prior to prefetching to
a new DRAM page. This reduces overall performance when prefetch accuracy is
high and there is ample bandwidth. The advantage of this strategy is that because
prefetches cannot open new pages, a prefetch cannot delay a demand read by
opening and closing pages. Overall, this makes opportunistic prefetching a defensive
strategy, which sacrifices some performance in an effort to minimize performance
regressions in cases where the prefetcher performs badly.

This scheduling strategy also bridges the performance gap between the simpler
prefetchers (e.g. sequential) and the more complex prefetchers in future multicore
architectures where there will be more contention for off-chip bandwidth. Using
simple prefetchers is an advantage because they are easier to implement and verify.

G.2 Related Work

G.2.1 Prefetching

There exists a multitude of different data prefetching schemes. The simplest is the
sequential prefetcher [16], which simply fetches the next block whenever a block is
referenced. However, more complex types exists as well, such as the CZone/Delta
Correlation (C/DC) prefetcher proposed by Nesbit et al. [12, 13]. C/DC divides
memory into CZones and analyses patterns contained in the reference stream by
using a Global History Buffer (GHB) to store recent misses to the cache. Lin et
al. [9] introduced scheduled region prefetching (SRP) which issues prefetches to
blocks spatially near the addresses of recent demand missed when the memory
channel is idle. Other types, such as the Reference Prediction Table Prefetcher
(RPT) proposed by Chen and Baer [3], examines the pattern generated by a load
instruction with a state machine. Delta Correlating Prediction Table (DCPT) is
a table based approach which stores the history of each load instruction in the
form of address deltas [5]. DCPT prefetches new data by using delta correlation
to find patterns in the history of deltas. Somogyi et al. proposed Spatial Memory
Streaming (SMS) [17]. SMS uses code-correlation to predict spatial access patterns.

G.2.2 Memory Controllers

Memory access scheduling is the process of reordering memory requests to improve
memory bus utilization. Rixner et al. [14] showed that significant speed-ups are
possible when memory request reordering is applied to stream processors. In ad-
dition, Shao et al. [15] proposed burst scheduling in which multiple read and write
requests to the same DRAM page are issued together to achieve high bus utilization.
Finally, Zhu et al. [20] showed that it is beneficial to divide the memory requests

G.3. Prefetch Scheduling Strategies 227

into smaller parts, and give priority to the words responsible for a processor stall
in a multi-channel DRAM system.

CMPs, processors that support SMT (Simultanous Multi-Threading) and conven-
tional shared-memory multiprocessors also benefit from memory access scheduling.
Zhu et al. [19] showed that DRAM throughput could be increased in an SMT
processor by using ROB (ReOrder Buffer) and IQ (Instruction Queue) occupancy
status to prioritize requests. Furthermore, Hur et al. [6] use a history-based arbiter
to adapt the DRAM port and rank schedule to the application’s mix of reads and
writes for the dual-core Power5 processor. In addition, Natarajan et al. [11] showed
that a significant performance improvement is available by exploiting memory con-
troller features in a conventional, shared-memory multiprocessor.

G.3 Prefetch Scheduling Strategies

Earlier work have focused on the interaction between a specific prefetcher and
the memory controller. Wei-Fen et al. [10] have examined how prefetches can be
scheduled in a uniprocessor context with Rambus DRAM. They used a dedicated
prefetch queue with a LIFO insertion policy with a scheduled region prefetcher.
Cantin et al. [2] exploited open pages to increase the performance of their stealth
prefetcher. In this work, we decouple the prefetching scheduling strategy from the
prefetcher and examine new combinations of prefetcher and prefetch scheduling
strategy. This allows us to do a design space exploration where we examine many
combinations of prefetchers and prefetch scheduling strategies.

The simplest way to schedule prefetches in a memory controller is to treat them
as demand reads. This method requires no additional infrastructure and most
controllers can easily accommodate this technique. Because the prefetches are
treated as reads, they cannot be discarded by the memory controller which in turn
can lead to memory congestion and memory controller blocking due to full queues.
In this paper, we refer to this strategy as the Direct prefetch scheduling strategy.

This situation can be improved by adding an additional queue called the prefetch
queue [2, 8, 10]. A dedicated prefetch queue can hold prefetches separate from the
reads which enables the memory controller to selectively issue or discard prefetches.
Because prefetches can be discarded, the memory controller can choose to discard
prefetches in the prefetch queue rather than block. However, because there are now
two (in addition to the write queue) queues, a method for choosing which queue to
issue reads or prefetches from is needed.

The most restrictive method is to only issue prefetches from the dedicated prefetch
queue when there are no other operations pending. We refer to this as the Idle
prefetch scheduling strategy. A more aggressive approach is to schedule prefetches
when any of the prefetches currently in the queue would read data from a currently
open page. This is often beneficial because a prefetch into an open page costs less
than a demand read. In this paper, we refer to this strategy as the Ready prefetch

228

Page Address Bit Vector

...

100 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01

...

Table G.1: Example Page Vector Table showing a strided prefetch pattern for page
address 100.

scheduling strategy. Because the dedicated prefetch queue has a finite size, a policy
for clearing space for new prefetches is needed when the queue is full. In this paper,
we simply drop the oldest prefetch request. This method has been shown to be the
most effective policy as it removes the least timely prefetches [4].

The accuracy of the prefetcher can be measured at runtime by tagging each pre-
fetched cache block with a prefetch bit. This bit is set when a cache block is inserted
by a prefetch. The first time the cache block is accessed, the bit is cleared and the
“good prefetches” counter is incremented. Similarly, when a prefetch is issued by
the memory controller the “prefetches issued” counter is incremented. The ratio
between these two counters is the estimated accuracy.

Grannaes et al. used this estimated accuracy to switch between the Idle and the
Ready prefetch scheduling strategy [4]. If the estimated accuracy was below 40%,
the Idle strategy was used. If it was over 40% the Ready strategy was used. In
this work, we refer to this strategy as the Low Cost strategy.

Lee et al. used the estimated accuracy to switch between the Ready and the Direct
scheduling strategies [8]. When the accuracy was estimated to be high, the Direct
strategy was used. Conversely, the Ready strategy was used when the accuracy was
estimated to be low. In this paper, we refer to this strategy as the Hybrid strategy.

G.3.1 Opportunistic Prefetch Scheduling

In this paper, we propose a prefetch scheduling strategy called Opportunistic Pre-
fetch Scheduling which is strongly tied to the observation that prefetching from
open pages is beneficial. Instead of using a queue of prefetches, we use a Page
Vector Table (PVT) indexed by the page-address. An example of a PVT is shown
in Table G.1. In this paper, we use a 256 entry PVT with a LRU replacement
policy.

The page-address is the portion of the memory address which maps to physical
DRAM pages. In our setup, each DRAM page is 1KB large and each cache block
is 64B large. Each PVT entry consists of a 16 entry two-bit vector where each pair
of bits represents one cache block in the page. The two bits represents demand
reads and prefetches (demand bit and prefetch bit). When the memory controller
issues a demand read for a cache block, it marks the corresponding demand read
bit in the vector for that page. When the prefetcher generates a prefetch for a
cache block, it looks up the DRAM page in the table and sets the corresponding
prefetch bit in the vector for that page.

G.4. Methodology 229

We assume a FR-FCFS memory controller with a closed page policy (idle page
close). The PVT is consulted before the memory controller closes any page (e.g.
after all demand reads have been serviced). If the prefetch bit is set, but not the
demand read bit, then a prefetch is issued for the corresponding address. This
approach ensures that prefetches are only issued if they access an open page. The
bitvector representation is very compact as only two bits are stored per prefetch
(excluding the page tag) compared to the traditional approach using queues which
holds the full address.

To reduce the potential for performance regressions, Opportunistic estimates the
accuracy of the issued prefetches to choose one of two substrategies. If accuracy is
high, prefetches are issued when a page is closed. If accuracy is low, prefetches are
only issued when a page is closed and there are no demand reads in the queue.

The end result of using the opportunistic prefetch scheduling strategy is that pages
are never opened due to prefetching. This strategy has to major effects: The
drawback is that prefetching opportunities might be lost, because a demand read
is always required prior to prefetching to a new DRAM page. This reduces overall
performance when prefetch accuracy is high and there is ample bandwidth. The
advantage of this strategy is that because prefetches cannot open new pages, a
prefetch cannot delay a demand read as much due to the opening and closing of
pages. Overall, this makes opportunistic prefetching a defensive strategy, which
sacrifices some performance in an effort to minimize performance regressions in
cases where the prefetcher performs badly.

G.4 Methodology

To examine the impact of different prefetch scheduling strategies we have used the
M5 simulator [1]. The processor architecture parameters for the simulated 4-core
CMP are shown in Table G.2, and Table G.3 contains the baseline memory system
parameters. We have extended M5 with a crossbar interconnect, a detailed DDR2
memory bus and DRAM model and a detailed FR-FCFS (First Ready, First Come,
First Served) [14] memory controller with integrated prefetching capabilities.

Our DDR2-implementation [7] models separate RAS, CAS and precharge com-
mands. In addition, we model pipelining of requests, independent banks, burst
mode transfers and bus contention. All prefetchers use a prefetching degree of
10. We use 1KB regions in scheduled region prefetching, 256KB CZones, a 1024-
entry global history buffer and a 16-entry reference prediction table. DCPT uses a
128 entry table with each entry holding 20 18-bit entries. The Page Vector Table
consists of 256 32 bit vectors.

The SPEC CPU2000 benchmark suite [18] is used to create 40 multiprogrammed
workloads consisting of 4 SPEC benchmarks each as shown in Table G.4. We picked
benchmarks at random from the full SPEC CPU2000 benchmark suite, and each
processor core is dedicated to one benchmark. The only requirement given to the

230

Table G.2: Processor Core Parameters
Parameter Value

Processor Cores 4

Clock frequency 3.2 GHz

Reorder Buffer 128 entries

Store Buffer 32 entries

Instruction Queue 64 instructions

Instruction Fetch
Queue

32 entries

Load/Store Queue 32 instructions

Issue Width 8 instructions/cycle

Functional units 4 Integer ALUs, 2
Integer
Multipy/Divide, 4
FP ALUs, 2 FP
Multiply/Divide

Branch predictor Hybrid, 2048 local
history registers,
4-way 2048 entry
BTB

Table G.3: Memory System Parameters
Parameter Value

Level 1 Data Cache 64 KB, 8-way set
associative, 64B
blocks, 3 cycles
latency

Level 1 Instruction
Cache

64 KB, 8-way set
associative, 64B
blocks, 1 cycle
latency

Level 2 Unified
Shared Cache

4 MB, 16-way set
associative, 64B
blocks, 14 cycles
latency, 8 MSHRs
per bank, 4 banks

L1 to L2
Interconnection
Network

Crossbar topology, 9
cycles latency, 64B
wide transmission
channel

DDR2 memory 400 Mhz Clock, 8
banks, 1KB
pagesize, 4-4-4-12
timing, dual channel
in lock-step

Memory Controller 128 entry queue,
Ready First - First
Come, First Served
policy for reads

random selection process was that each SPEC benchmark had to be represented in
at least one workload. Each workload is first fast forwarded 1 billion clock cycles
and then detailed simulation is carried out for 100 million clock cycles.

G.5 Results

G.5.1 Performance

Figure G.2 shows the average speedup of each prefetch scheduling strategy with five
different prefetchers (Sequential, RPT, C/DC, SRP and DCPT) in a system with
one DRAM channel. Opportunistic performs well in combination with both the se-
quential and the SRP prefetcher. For RPT, C/DC and DCPT, the Ready and Low
cost strategies performs slightly better. However, Opportunistic prefetch schedul-
ing is able to bridge the performance gap between the simple sequential prefetcher
and the more complex RPT, CDC and DCPT prefetchers. This is because the
overall accuracy of these prefetchers is typically higher than for sequential and
SRP prefetching. This same effect can be observed for the Direct strategy where
performance is low for the sequential and SRP prefetcher while it is higher for
the other prefetchers. This is because the strategy does not make any distinction
between prefetches and demand reads. Thus, inaccurate prefetches can disrupt
demand reads. The performance for the Idle strategy is comparably low for most

G.5. Results 231

Table G.4: Multiprogrammed Workloads
ID Benchmarks ID Benchmarks ID Benchmarks ID Benchmarks

1 ammp, mgrid,
perlbmk, parser

11 vpr, twolf,
applu, eon

21 perlbmk, apsi,
lucas, equake

31 mgrid, equake,
vpr, eon

2 lucas, gcc, mcf,
twolf

12 galgel, crafty,
mgrid, swim

22 vpr, crafty,
vpr, mcf

32 wupwise, gap,
twolf, facerec

3 eon, eon, mesa,
facerec

13 twolf, fma3d,
galgel, vpr

23 gzip, equake,
mgrid, mesa

33 galgel, equake,
lucas, gzip

4 vortex1, ammp,
equake, galgel

14 bzip, vpr, bzip,
equake

24 facerec, applu,
fma3d, lucas

34 facerec, gcc,
galgel, apsi

5 gcc, galgel,
apsi, crafty

15 galgel, crafty,
vpr, swim

25 gap, applu,
parser, facerec

35 mesa, mcf,
swim, sixtrack

6 applu, equake,
art, facerec

16 mcf, wupwise,
applu, mesa

26 mcf, apsi,
twolf, ammp

36 mesa, sixtrack,
equake, bzip

7 applu, gap, gcc,
parser

17 applu, parser,
apsi, perlbmk

27 swim, sixtrack,
ammp, applu

37 mcf, gap, gcc,
vortex1

8 gap, swim,
twolf, mesa

18 mgrid,
perlbmk, gzip,
mgrid

28 art, fma3d,
swim, parser

38 facerec, lucas,
mcf, parser

9 sixtrack,
fma3d, apsi,
vortex1

19 mcf, sixtrack,
gcc, apsi

29 apsi, gcc,
vortex1, twolf

39 twolf, eon,
mesa, lucas

10 ammp, bzip,
equake, parser

20 ammp, gcc, art,
mesa

30 mgrid, gzip,
apsi, equake

40 apsi, gzip, mcf,
equake

 1

 1.1

 1.2

 1.3

 1.4

Sequential RPT C/DC SRP DCPT

A
ve

ra
ge

 S
pe

ed
up

Prefetcher

Direct
Idle

Ready
Low Cost

Hybrid
Opportunistic

Figure G.2: Average speedup for all cores over all workloads for different scheduling
strategies and prefetchers.

232

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

Sequential RPT C/DC SRP DCPT

Lo
w

es
t S

pe
ed

up

Prefetcher

Direct
Idle

Ready
Low Cost

Hybrid
Opportunistic

Figure G.3: Lowest speedup for any core in any workload for different scheduling
strategies and prefetchers.

prefetchers because it issues less prefetch requests due to it’s strict policy. The dif-
ference between the Low cost and Ready strategies is also apparent. In combination
with high accuracy prefetchers such as RPT, C/DC and DCPT, the Ready strategy
performs better than Low Cost. In combination with low accuracy prefetchers, the
situation is reversed. Finally, the performance of the Hybrid strategy is between
the Ready and Direct strategies.

G.5.2 Maximum Performance Regression

Prefetching can drastically increase average system performance. Because prefetch-
ing is a speculative technique it might also lead to performance regressions on some
workloads. In Figure G.3, we show the lowest speedup for any core on any workload
for all the prefetch scheduling strategies. Overall, we observe that the prefetchers
with low accuracy shows the largest performance regressions. The strategies utiliz-
ing prefetch accuracy measurements (Low cost, Opportunistic) perform quite well
as they are mostly able to adapt to this situation, thus avoiding large performance
regressions. The Direct strategy shows quite large performance regressions because
it does not differentiate between prefetches and demand reads. Thus, a prefetcher
which issues many useless prefetches can saturate off-chip bandwidth and delay
demand reads. The Idle strategy has comparatively low performance regressions,
because the strategy is inherently defensive and only issues prefetches when there
are no demand reads in the queue. Hybrid uses accuracy estimates to select between
two strategies (Direct and Ready). By increasing the threshold, the behaviour of
this strategy can be made more similar to the Ready strategy.

G.5.3 Accuracy and Coverage

Figure G.4 shows the average accuracy of every workload in each combination of
prefetcher and prefetch scheduling strategy. In this figure, we measure the ratio of

G.5. Results 233

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Sequential RPT C/DC SRP DCPT

A
cc

ur
ac

y

Prefetcher

Direct
Idle

Ready
Low Cost

Hybrid
Opportunistic

Figure G.4: Average accuracy for all workloads.

 0

 0.2

 0.4

 0.6

 0.8

 1

Sequential RPT C/DC SRP DCPT

C
ov

er
ag

e

Prefetcher

Direct
Idle

Ready
Low Cost

Hybrid
Opportunistic

Figure G.5: Average coverage for all workloads.

successful prefetches to the number of issued prefetches by the memory controller
for each workload and calculate the arithmetic average of these ratios. This ratio
is not necessarily the same as the accuracy of the prefetcher itself, because the
prefetch scheduling strategy may drop prefetches. However, the Direct strategy
does not drop prefetches and issues all prefetches generated by the prefetcher. By
examining the results for sequential and SRP, we observe that Idle, Low Cost and
Opportunistic are able to achieve higher degrees of accuracy than the Direct ap-
proach. In the high accuracy prefetchers, there is little difference in the scheduling
strategies.

Figure G.5 shows the average coverage of every workload in each combination of
prefetcher and prefetch scheduling strategy. Because the Direct strategy issues
every prefetch generated by the prefetcher, it has a very high coverage. Conversely,
Idle has very low coverage because it issues few prefetches. Opportunistic has a
comparatively low coverage compared to the other prefetch scheduling strategies
because it issues fewer prefetches than the other strategies. The Hybrid strategy
is very near the performance of the Direct strategy in terms of coverage. This is
due to the value of the accuracy threshold used in our experiments. Low Cost has

234

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1 2 3 4 5 6 7 8

A
ve

ra
ge

 S
pe

ed
up

 (%
)

DRAM Channels

Direct
Idle

Ready

Low Cost
Opportunistic

Hybrid

Figure G.6: Effect of increasing the amount of bandwidth available on sequential
prefetching.

a slightly lower coverage than Ready for the low accuracy prefetchers (sequential,
SRP), because it drops prefetches when the accuracy becomes too low.

G.5.4 Increasing DRAM Bandwidth

Figure G.6 and G.7 shows the effect of increasing the amount of bandwidth in the
system for sequential and RPT prefetching respectively. Note that the speedup
is computed versus a system with the same amount of bandwidth but with no
prefetching. Thus, the speedup for 8 DRAM channels is lower than for 1 DRAM
channel, although the performance is higher. For sequential prefetching, we observe
that the relative performance of opportunistic versus the other prefetch scheduling
strategies is highest in low bandwidth situations. Furthermore, we observe that Idle
performs well compared to the other scheduling algorithms with one channel, but
relatively worse when more bandwidth is available. Because there is more band-
width available, the amount of time the memory controllers are idle is increased,
leading to more issued prefetches, thus performance is increased. However, idle is a
very defensive strategy and fails to exploit the additional bandwidth as effectively
as the other prefetch scheduling policies.

For RPT prefetching we observe a similar pattern as the amount of bandwidth is
increased. RPT is a high accuracy prefetcher and the aggressive strategies such as
Direct, Low Cost, Hybrid and Ready performs better when bandwidth is increased
compared to Idle and Opportunistic.

G.6. Discussion 235

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1 2 3 4 5 6 7 8

A
ve

ra
ge

 S
pe

ed
up

 (%
)

DRAM Channels

Direct
Idle

Ready

Low Cost
Opportunistic

Hybrid

Figure G.7: Effect of increasing the amount of bandwidth available on RPT
prefetching.

G.6 Discussion

Three of the strategies (Low Cost, Hybrid and Opportunistic) examined in this
paper utilizes prefetch accuracy measurements. All of these use a threshold value
to switch between two strategies. Typically, if accuracy is high, then an aggressive
strategy is used. Conversely, if accuracy is low, then a more restrictive strategy
is used. Thus, the behaviour of these strategies can be adapted by changing the
threshold value. In this paper, we have used the same threshold value for all three
strategies for easier comparison. The value we have chosen matches the value used
in previous work [4, 8].

In this work, we use the same method for estimating prefetch accuracy for all strate-
gies. This method uses special bits in the cache to mark prefetched cache blocks
(cache tagging). However, Opportunistic prefetch scheduling offers another method.
All prefetches generated by the prefetcher are stored in the PVT, while the cache
tagging method only stores prefetches that have been issued and completed. Thus,
the cache tagging method measures the combined accuracy of the prefetcher and
the scheduling strategy, while the PVT combined with the cache tagging method
can, in addition, isolate the accuracy of the prefetcher. We have examined this
method and found that it offers slightly better performance. However, the thresh-
old value has to be changed, because this method measures something different
(issued prefetches accuracy vs. generated prefetches accuracy). Therefore, we have
opted to use the same estimation technique for all prefetchers to achieve a fair
comparison.

Temporal information is lost when using a page vector table to track issued prefetches.
Thus, there is no way to reconstruct the order of which prefetches are to be issued

236 Bibliography

from the page vector table. However, this problem can be reduced by using a large
prefetch distance.

G.7 Conclusion

It is clear from our results that no single prefetch scheduling strategy is suitable
for every scenario. The best strategy depends on a variety of factors such as: the
prefetcher, the memory controller, the amount of memory bandwidth, the appli-
cation, design complexity and the amount of acceptable performance regressions.
For instance, Idle is a good option for minimizing performance regressions. On
the other end, Low Cost and Ready provides the highest average performance.
Opportunistic provides a trade-off between these two. Because it actively reduces
performance regressions, it also provides the highest average performance for se-
quential and SRP prefetchers.

In this paper, we have presented a novel prefetch scheduling strategy called Oppor-
tunistic. This strategy emphasises the use of open pages to provide good average
performance without large performance regressions. It is particularly suited for sys-
tems with relatively low amounts of bandwidth combined with highly aggressive
prefetchers. As more cores compete for the same shared off-chip bandwidth, utiliz-
ing this limited resource becomes more important. Opportunistic prefetch schedul-
ing addresses this problem by utilizing open pages to increase effective bandwidth,
while using accuracy estimates to avoid bandwidth saturation. We show that Op-
portunistic prefetch scheduling reduces performance regressions by 6.7X and 5.2X,
while improving performance by 17 % and 20 % for sequential and scheduled region
prefetching, compared to the direct scheduling strategy.

Bibliography

[1] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and S. K.
Reinhardt. The M5 Simulator: Modeling Networked Systems. IEEE Micro,
26(4):52–60, 2006.

[2] J. F. Cantin, M. H. Lipasti, and J. E. Smith. Stealth Prefetching. SIGPLAN
Notices, 41(11), 2006.

[3] T. Chen and J. Baer. Effective Hardware-Based Data Prefetching for High-
performance Processors. IEEE Transactions on Computers, 44:609–623, 1995.

[4] M. Grannæs, M. Jahre, and L. Natvig. Low-Cost Open-Page Prefetch Schedul-
ing in Chip Multiprocessors. In XXVI IEEE International Conference on
Computer Design (ICCD), 2008.

Bibliography 237

[5] M. Grannæs, M. Jahre, and L. Natvig. Storage Efficient Hardware Prefetch-
ing using Delta Correlating Prediction Tables. In Data Prefetching Champi-
onships, 2009.

[6] I. Hur and C. Lin. Adaptive History-Based Memory Schedulers. In MICRO 37:
Proc. of the 37th An. IEEE/ACM Int. Symp. on Microarch., pages 343–354,
2004.

[7] DDR2 SDRAM Specification. JEDEC Solid State Tech. Association, May
2006.

[8] C. J. Lee, O. Mutlu, V. Narasiman, and Y. N. Patt. Prefetch-Aware DRAM
Controllers. In MICRO ’08: Proceedings of the 41st IEEE/ACM International
Symposium on Microarchitecture, pages 200–209, 2008.

[9] W. Lin, S. K. Reinhardt, and D. Burger. Reducing DRAM Latencies with an
Integrated Memory Hierarchy Design. In HPCA ’01: Proceedings of the 7th
International Symposium on High-Performance Computer Architecture, pages
301–312, 2001.

[10] W. Lin, S. K. Reinhardt, and D. Burger. Designing a Modern Memory Hier-
archy with Hardware Prefetching. IEEE Transactions on Computers, 50(11),
2001.

[11] C. Natarajan, B. Christenson, and F. Briggs. A Study of Performance Impact
of Memory Controller Features in Multi-processor Server Environment. In
WMPI ’04: Proc. of the 3rd Workshop on Memory Perf. Issues, pages 80–87,
2004.

[12] K. J. Nesbit and J. E. Smith. Data Cache Prefetching Using a Global History
Buffer. IEEE Micro, 25:90–97, 2005.

[13] K. J. Nesbit, A. S. Dhodapkar, and J. E. Smith. AC/DC: An Adaptive Data
Cache Prefetcher. In Proceedings of the 13th International Conference on
Parallel Architecture and Compilation Techniques, pages 135–145, 2004.

[14] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens. Memory
Access Scheduling. In ISCA ’00: Int. Symp. on Comp. Arch., pages 128–138,
2000.

[15] J. Shao and B. Davis. A Burst Scheduling Access Reordering Mechanism. In
HPCA ’07: Proc. of the 13th Int. Symp. on High-Performance Comp. Arch.,
2007.

[16] A. J. Smith. Cache memories. ACM Computing Surveys, 14(3):473–530, 1982.

[17] S. Somogyi, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos. Spatial
Memory Streaming. SIGARCH Computer Architecture News, 34(2):252–263,
2006.

238 Bibliography

[18] SPEC. SPEC CPU 2000 Web Page. http://www.spec.org/cpu2000/.

[19] Z. Zhu and Z. Zhang. A Performance Comparison of DRAM Memory System
Optimizations for SMT Processors. In HPCA ’05: Proc. of the 11th Int. Symp.
on High-Performance Comp. Arch., pages 213–224, 2005.

[20] Z. Zhu, Z. Zhang, and X. Zhang. Fine-Grain Priority Scheduling on Multi-
channel Memory Systems. 8th Int. Symp. on High-Performance Comp. Arch.,
pages 107–116, 2002.

http://www.spec.org/cpu2000/

	Title page
	Contents
	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Chip Multiprocessors (CMPs)
	CMP Shared Memory System Resources
	Research Questions
	Thesis Outline

	Background
	Quantifying CMP Performance
	Measuring Performance
	Aggregating Performance
	Quantifying the Performance Impact of Interference
	System Performance Metrics

	CMP Shared Resources
	Shared Cache
	Memory Bus and DRAM
	On-Chip Interconnect

	Full-System Resource Management
	Coordinated Resource Allocations
	Rate-Based Resource Management

	Hardware Prefetching
	Hardware Prefetch Heuristics
	Memory Controller Prefetch Scheduling
	Prefetching in CMPs

	Methodology
	Simulators
	Benchmarks
	Choosing Benchmarks
	Representative Benchmark Simulation

	Simulating Multiprogrammed Workloads
	Design Space Exploration

	Research Process
	Preliminary Work
	Category A: Adaptive Miss Handling Architectures
	Category B: Memory System Interference
	Category C: CMP Prefetch Scheduling
	Category D: Prefetching Systems
	Category E: Learning and ICT

	Research Results
	Paper A.II
	Abstract
	Roles of the Authors
	Retrospective View

	Paper A.III
	Abstract
	Roles of the Authors
	Retrospective View

	Paper A.IV
	Abstract
	Roles of the Authors

	Paper B.I
	Abstract
	Roles of the Authors
	Retrospective View

	Paper B.II
	Abstract
	Roles of the Authors

	Paper C.I
	Abstract
	Roles of the Authors
	Retrospective View

	Paper C.II
	Abstract
	Roles of the Authors

	Other Publications

	Concluding Remarks
	Conclusion
	Contributions
	Research Question 1
	Research Question 2
	Research Question 3

	Further Work
	Outlook
	Bibliography

	A High Performance Adaptive Miss Handling Architecture for Chip Multiprocessors (Paper A.II)
	Introduction
	Related Work
	Miss Handling Architecture Background
	Related Work on Bus Scheduling, Shared Caches and Feedback

	Multiprogrammed Workload Selection and Performance Metrics
	The Adaptive Miss Handling Architecture (AMHA)
	Motivation
	AMHA Implementation

	Experimental Setup
	Results
	Conventional MHA Performance in CMPs
	The Performance Impact of the Number of Targets per MSHR
	Adaptive MHA Performance
	Choosing AMHA Implementation Constants

	Discussion
	Conclusion
	Bibliography

	A Light-Weight Fairness Mechanism for Chip Multiprocessor Memory Systems (Paper A.III)
	Introduction
	Background
	Shared Cache QoS and Fairness Techniques
	Memory Bus Scheduling
	Miss Handling Architectures
	CMP Performance Evaluation Metrics

	The Dynamic Miss Handling Architecture
	The Fair Adaptive Miss Handling Architecture (FAMHA)
	Measuring Interference with Interference Points
	A Simple Fairness Policy

	Evaluation Methodology
	Results
	Fairness Impact of Shared Hardware-Managed Units
	Static Asymmetric MHA Fairness
	Fair Adaptive MHA (FAMHA) Results

	Discussion
	Conclusion and Further Work
	Acknowledgements
	Bibliography

	Managing Chip Multiprocessor Memory Systems with Miss Bandwidth Allocations (Paper A.IV)
	Introduction
	Background
	Interference and Performance Metrics
	Modern Memory Bus Interfaces
	Miss Handling Architectures (MHAs)

	A Miss Bandwidth Allocation Model
	Estimating the Effects of Bandwidth Allocation Changes
	Shared Memory Latency Estimation
	Estimating Memory Level Parallelism Change
	Estimating Memory Stall Time

	MHABC - A Practical Miss Bandwidth Allocation System
	The DMHA Allocation Mechanism
	The Feedback Mechanisms
	Allocation Policies

	Methodology
	Results
	MHABC Performance
	Performance Estimation Accuracy

	Discussion
	Related Work
	Conclusion
	Bibliography

	A Quantitative Study of Memory System Interference in Chip Multiprocessor Architectures (Paper B.I)
	Introduction
	Related Work
	Methodology
	Chip Multiprocessor Architectures
	Measuring and Reporting Interference
	Processor Model Scaling
	Simulation Methodology

	Results
	Conclusion and Further Work
	Bibliography

	DIEF: An Accurate Interference Feedback Mechanism for Chip Multiprocessor Memory Systems (Paper B.II)
	Introduction
	Background
	Interference Definition and Metrics
	Modern Memory Bus Interfaces

	Shared Memory System Latency Taxonomy
	The Dynamic Interference Estimation Framework
	Estimating Private Memory Bus Latency
	Estimating Cache Capacity Interference
	Estimating Interconnect Interference

	Methodology
	Results
	Estimation Accuracy
	DIEF Parameters

	Related Work
	Conclusion
	Bibliography

	Low-Cost Open-Page Prefetch Scheduling in Chip Multiprocessors (Paper C.I)
	Introduction
	Previous Work
	Prefetching
	Memory Controllers

	Prefetch Scheduling
	Low cost open page prefetching
	Methodology
	Results
	Scheduled Region Prefetching
	Importance of Coverage
	Insertion policy
	Treshold parameter
	Quality of Service

	Discussion
	Conclusion
	Bibliography

	Exploring the Prefetcher/Memory Controller Design Space: An Opportunistic Prefetch Scheduling Strategy (Paper C.II)
	Introduction
	Related Work
	Prefetching
	Memory Controllers

	Prefetch Scheduling Strategies
	Opportunistic Prefetch Scheduling

	Methodology
	Results
	Performance
	Maximum Performance Regression
	Accuracy and Coverage
	Increasing DRAM Bandwidth

	Discussion
	Conclusion
	Bibliography

