
June 2010
Lasse Natvig, IDI
Cyril Banino Rokkones, Yahoo! Technologies Norway A/
S

Master of Science in Computer Science
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Parallel query evaluation on multicore
architectures

Ulf Lilleengen

Problem Description
The introduction of multicore architectures brings the promise of great performance at low cost.
However, achieving high performance on multicores requires an adequate application model, i.e.
with a level of parallelism in line with the underlying hardware architecture. Tuning for multicore
requires insights into complex resource sharing (e.g., caches and bandwidth) and thread
interaction (e.g., synchronization, coherence and false sharing) and the application workload.

This project is an experimental redesign of a search engine threading model for multicore
processors. The main goal of this project is to implement an alternative thread parallelisation
based on a per-core index partitioning scheme for the search core in Vespa, and evaluate its
performance compared to today's model.

The project is in cooperation with Yahoo! Technologies Norway AS (YTN), who wants to optimize
performance of its search engine (Vespa) on multicore architectures.

Assignment given: 15. January 2010
Supervisor: Lasse Natvig, IDI

Abstract

Multicore processors are common in server systems sold today. Writing application
software that takes advantage of such systems, not to mention adopting existing
software to the parallel domain, is complex. Workloads such as web servers, data-
base servers and search engines are easy to parallelize, because each incoming client
may be handled in a separate thread of execution. However, as as cache coherence
schemes on multicore processors do not scale with the number of cores, new ways
of scaling existing applications may be needed to make better use of the cache
hierarchy.

This study evalutes an alternative method of running search engine queries in a
search engine core developed by Yahoo! Technologies Norway. The method seeks to
lower query latencies and average memory access times of the search core by making
better use of multicore processor caches. Through the study of Vespa, the search
engine platform used at Yahoo!, and techniques for using processor caches as good
as possible, an alternative design based on parallel query evaluation is proposed.
The design is evaluated in a simulator of the search engine core and tested in
different configurations. The performance of the alternative design depends highly
on the workload. However, the alternative design can be configured to act as the
existing design, which makes it possible to get the best of both worlds.

Preface

This thesis was written at the Department of Computer and Information Science,
Norwegian University of Science and Technology. I would like to thank my super-
visors, Professor Lasse Natvig at IDI and Cyril Banino-Rokkonnes at Yahoo! Tech-
nologies Norway for their guidance and support. Thanks to Henning Baldersheim
for sharing his technical expertise and experience with the Vespa search engine. I
would also like to thank the employees at Yahoo! Technologies Norway and friends
in the Computer Architecture group at IDI for our interesting discussions and for
your support.

Contents

1 Introduction 1
1.1 Assignment interpretation . 2
1.2 Main contributions . 3
1.3 Report outline . 3

2 Background and state of the art 5
2.1 Search engines . 5

2.1.1 Retrieval . 6
2.1.2 Indexing . 6
2.1.3 Searching . 7

2.2 Vespa . 7
2.2.1 Indexing . 9
2.2.2 Disk index and attributes . 9
2.2.3 Query Result Server . 10
2.2.4 Top Level Dispatch . 10
2.2.5 The Vespa search node . 12
2.2.6 Vespamalloc . 13
2.2.7 Radix sort . 13

2.3 Multicore processors and cache coherency 13
2.3.1 Cache coherence . 14
2.3.2 Cache affinity . 14
2.3.3 Software techniques for improving multicore performance . . 16

2.4 Measuring effects on the cache hierarchy 18
2.4.1 Central Processing Unit (CPU) simulators 18
2.4.2 Performance counters . 19
2.4.3 Comparing against the target platform 20

2.5 Software profiling tools . 20
2.5.1 Profiling tools using performance counters 20
2.5.2 Valgrind . 21
2.5.3 What kind of profiling tool to use? 22

2.6 Amdahl’s and Gustafson’s law . 22
2.7 Software libraries . 24

2.7.1 POSIX Threading library . 24
2.7.2 Affinity APIs . 25

ii CONTENTS

3 Vespa search core design 27
3.1 Query evaluation strategies . 27
3.2 Query evaluation in the Vespa search core 28
3.3 Parts eligible for parallelisation . 30
3.4 Alternative query evaluation design 30

3.4.1 Cache effects . 31
3.4.2 Latency effects . 33
3.4.3 Parallel query evaluation in the Vespa search core 33

3.5 Using Amdahl’s and Gustafson’s law 35
3.6 Implications of parallel query evaluation 35

4 Vsim - Vespa search core simulator 37
4.1 Considerations regarding language and tools 37

4.1.1 Boost . 38
4.2 Simulator requirements . 38
4.3 Development methodology . 39
4.4 User interface . 40

4.4.1 Vsim output . 42
4.5 Software design . 43

4.5.1 Vsim overview . 43
4.5.2 Partitions, slots and hit distributions 44
4.5.3 General framework code . 44
4.5.4 Query generators and query data 45
4.5.5 Document storage and ranking 47
4.5.6 Queue generalizations . 48
4.5.7 Vsim threading model . 49
4.5.8 Collecting hits and storing the result 50
4.5.9 Autopartitioning . 52
4.5.10 Simulation setup and configuration management 53
4.5.11 Collecting statistics and generating a simulation report . . . 54

4.6 Alternative designs and ideas . 54
4.6.1 Parallel merge . 54
4.6.2 Experimenting with alternative HitCollector implementa-

tions . 55
4.7 Initial flaws . 55
4.8 Accuracy of Vsim model . 55

5 Evaluation methodology 57
5.1 Target platform . 57

5.1.1 Intel Xeon E5530 . 58
5.2 Performance counters . 58
5.3 OProfile . 60
5.4 Basic metrics used to evaluate Vsim 61

5.4.1 Throughput . 61
5.4.2 Latency . 61
5.4.3 Speedup and efficiency . 61

CONTENTS iii

5.4.4 Average memory access time 62

6 Experiments 63
6.1 Vsim parameters . 63
6.2 Scalability . 63

6.2.1 Scalability of query handlers 64
6.2.2 Scalability of parallel query evaluation 65

6.3 Performance of parallel query evaluation 69
6.3.1 Using the same number of hits per query 69
6.3.2 Using Query Result Server (QRS) logs from Yahoo! News . . 71
6.3.3 Using QRS logs from Yahoo! Image Search 71

6.4 Behavior of the cache hierarchy . 72
6.4.1 L1 cache miss ratio . 73
6.4.2 L2 cache miss ratio . 74
6.4.3 L3 cache miss ratio . 76
6.4.4 Average memory access time 77

6.5 The impact of slots and autopartitioning 77
6.6 Discussion . 79

7 Conclusion and further work 83
7.1 Conclusion . 83
7.2 Further work . 84

A Additional notes 91
A.1 Vsim alternative designs and ideas 91

A.1.1 Alternative HitCollector implementations 91
A.1.2 Allocating a QueryHandler and Fetchers for each Query . . 93

A.2 Initial flaws in Vsim . 93
A.2.1 Performing result sorting instead of merging in the QueryHandler 93
A.2.2 Initial implementation of the VSimStore 94

A.3 Techniques to promote effective cache reuse 94

B Clarifications 95
B.1 Performance counter mappings . 95

C Code 97
C.1 Vsim source code . 97

C.1.1 barrier.h . 97
C.1.2 barrier.cpp . 97
C.1.3 cond.h . 98
C.1.4 cond.cpp . 98
C.1.5 fetcher.h . 99
C.1.6 fetcher.cpp . 101
C.1.7 hitcollector.h . 102
C.1.8 hitcollector.cpp . 103
C.1.9 hitvector.h . 105

iv CONTENTS

C.1.10 hitvector.cpp . 106
C.1.11 main.cpp . 107
C.1.12 mergequeue.h . 111
C.1.13 misc.h . 112
C.1.14 misc.cpp . 112
C.1.15 mutex.h . 112
C.1.16 mutex.cpp . 113
C.1.17 partitionqueue.h . 113
C.1.18 query.h . 115
C.1.19 query.cpp . 116
C.1.20 querygenerator.h . 118
C.1.21 querygenerator.cpp . 120
C.1.22 queryhandler.h . 122
C.1.23 queryhandler.cpp . 123
C.1.24 queryqueue.h . 124
C.1.25 queue.h . 125
C.1.26 resultbuffer.h . 126
C.1.27 resultbuffer.cpp . 127
C.1.28 simendian.h . 127
C.1.29 spinlock.h . 128
C.1.30 spinlock.cpp . 129
C.1.31 task.h . 130
C.1.32 thread.h . 130
C.1.33 thread.cpp . 131
C.1.34 threadpool.h . 133
C.1.35 threadpool.cpp . 133
C.1.36 types.h . 134
C.1.37 vsimconfig.h . 135
C.1.38 vsimconfig.cpp . 136
C.1.39 vsim.h . 138
C.1.40 vsim.cpp . 139
C.1.41 vsimprofiler.h . 142
C.1.42 vsimprofiler.cpp . 143
C.1.43 vsimreport.h . 143
C.1.44 vsimreport.cpp . 144
C.1.45 vsimseeder.h . 148
C.1.46 vsimseeder.cpp . 149
C.1.47 vsimstat.h . 150
C.1.48 vsimstat.cpp . 151
C.1.49 vsimstore.h . 155
C.1.50 vsimstore.cpp . 155
C.1.51 vsimtime.h . 157
C.1.52 vsimtime.cpp . 158
C.1.53 printreport.cpp . 160

C.2 Scripts . 160

CONTENTS v

C.2.1 Simreport Python interface for sample files 160

vi CONTENTS

List of Figures

2.1 A generalized search engine architecture 6
2.2 An inverted index (inspired from [FLQZ06]) 7
2.3 An overview of Vespa [VES10] . 8
2.4 Attributes stored in memory. Each attribute is represented with a

vector with entries for all doc ids . 10
2.5 Data flow in Vespa . 11
2.6 An overview of a Vespa search node 12
2.7 Two threads try to access the same data. a) The shared L2 cache

contains result data. b) Thread running on core 1 loads data into
its L1 cache. c) Thread running on core 2 loads the same data into
its L1 cache. d) Thread on core 1 increases reference count and
invalidates cache line in the L1 cache of core 2. Eventually, the
second core has to reload the cache line from the level-2 cache to get
the correct copy. 15

2.8 Alignment (to the left) and padding (to the right) of data 17
2.9 Comparing OProfile and Valgrind(from [Lil09]) 22
2.10 The speedup of an application with different portions of parallelism

according to Amdahl’s law [Dan09] 23

3.1 A sequence diagram of query dispatching 28
3.2 A sequence diagram of query evaluation 29
3.3 An example of a query tree from the following query: ("Foo" OR

"Bar" OR "Baz") AND ("Car" AND "Boat") 29
3.4 The mapping of the doc id range to partitions for a) The original

design, where each CPU cache will contain data from the whole
document range. b) The alternative design, where the range is split
into partitions that potentially map to a CPU cache 31

3.5 A theoretical comparison showing the "hockey stick" shape 32
3.6 A sequence diagram of query evaluation in the alternative design . . 34

4.1 An overview of Vsim design . 43
4.2 The classes involved in thread execution 45
4.3 Classes dealing with a query . 46
4.4 The Queue template interface and the classes implementing it 48

viii LIST OF FIGURES

4.5 Pipelined merge. Fetcher 4 copies its results to partition buffer 4,
and inserts its id into the queue. The query handler picks id 2 from
the queue, and merges the results from partition buffer 2 (contained
within the hit collectors inside the ResultBuffer class) into the
result buffer . 49

4.6 Classes involved in query evaluation within the fetcher 51
4.7 The HitCollector algorithm implementation used in Vsim 51
4.8 Autopartitioning of a system with four partitions and four slots per

partition initially. The left side shows the partitions and their range.
The right side show the distribution of hits as experienced by the
simulator itself. 53

4.9 Parallel merge: each partition is merged into a temporary buffer,
which is again merged with other temporary buffer until only one
buffer remains . 54

5.1 An overview of the Xeon E5530 cache hierarchy 58

6.1 Speedup as a function of the number of connections 65
6.2 Scalability as a function of the number of partitions 66
6.3 Fraction of the total query evaluation time spent in various stages

of query evaluation . 67
6.4 Fraction of the total query evaluation time spent in various stages

of query evaluation, lower 10% . 67
6.5 Speedup calculated using Amdahl’s law 68
6.6 Latency as a function of the number of clients 70
6.7 Latency as a function of the number of clients using QRS log files

from Yahoo! News . 71
6.8 Latency as a function of the number of clients using QRS log files

from Yahoo! Image Search . 72
6.9 L1 cache miss ratio as a function of the number of documents 73
6.10 L2 cache miss ratio as a function of the number of documents 75
6.11 L3 cache miss ratio as a function of the number of documents 75
6.12 Average memory access time as a function of the number of documents 76
6.13 Autopartitioning using the normal distribution as input 78
6.14 Autopartitioning using the binomial and geometric distributions as

input . 78
6.15 The impact of the number of slots for the geometric distribution . . 79

LIST OF FIGURES ix

A.1 Alternative algorithm for collecting hits using radix sort and mer-
ging: a) Buffers start out empty. b) The current buffer is filled up
with the newest hits. c) When the buffer is full, the hits are sorted.
d) The buffer pointers are incremented, and the previous operand
is now the current buffer. New hits are added to the new current
buffer. e) The current buffer fills up. f) The current buffer is now
sorted before g) being merged together with the operand into the
result buffer. h) The buffer pointers are again incremented, and the
new current buffer is used for collecting new hits. 92

A.2 Another algorithm for collecting hits using radix sort on a large
buffer: a) The initial buffer is twice the size of the result buffer. b)
Hits are added to the buffer until c) The buffer is full, and sorted.
Only half of the buffer is kept. d) New hits are added to the second
half of the buffer until it is full and step c is repeated. 92

A.3 The layout of attributes in the first version of Vsim 94

x LIST OF FIGURES

List of Tables

2.1 The QRS log format [VES10] . 11
2.2 Library calls used to set processor affinity in Linux 24

5.1 Hardware components of the target platform 57
5.2 Performance counters used . 59
5.3 Cache parameters of the Nehalem architecture 59
5.4 Cache read latencies from [MHSM09] 59

6.1 Vsim default parameters . 64
6.2 Vsim parameters and values for evaluating scalability 64
6.3 Vsim parameters and values for checking behavior during low load . 69
6.4 Vsim parameters and values for checking cache behavior 72
6.5 Vsim parameters and values for evaluating autopartitioning 77

B.1 Performance counters used . 95

xii LIST OF TABLES

List of abbreviations

AMD Advanced Micro Devices

API Application Programming Interface

CPU Central Processing Unit

CMP Chip Multi Processor

HTTP Hyper Text Transfer Protocol L

OS operating system

POSIX Portable Operating System Interface for Unix

QRS Query Result Server

QPI Quick Path Interconnect

TLP Thread Level Parallelism

TLD Top Level Dispatch

YTN Yahoo! Technologies Norway AS

FS Full System

QPI QuickPath Interconnect

SE System-call Emulation

ISA Instruction Set Architecture

IDI Department of Computer and Information Science

PID Process Identifier

SLA Service Level Agreement

TLB Translation Lookaside Buffer

xiv LIST OF TABLES

Chapter 1

Introduction

It is almost 10 years ago since IBM introduced the POWER4, one of the first mul-
ticore processors [SKT+05]. The later years have seen the introduction of multicore
processors in commodity server and desktop systems, where dual and quad core
Chip Multi Processors have become standard hardware components. With the re-
cent introduction of the 8 core Xeon processor and the 80 core tiled-based processor
from Intel [Neh09,Pol], as well as the 100 cores on chip packed by Tilera [TIL10]
(sometimes referred to as manycore processors), software designers must design
their applications with focus on Thread Level Parallelism. This report investig-
ates an alternative design of a search engine in order to better utilize multicore
processors.

Search engines need to scale in data size and query traffic volume dimensions. This
is not an easy task because of the increasing data volume, but also because of
changing trends as to which data is interesting. Key aspects of a successful search
engine today is its ability to provide quick indexing as well as search latencies.
Quick indexing latencies relates to real time search, which aims at making content
available for search within a few seconds after the content is initially pushed into
the search engine, even with thousands of such updates per second.

Processors with 100 cores are built for parallel workloads such as network pro-
cessing, video processing as well as web and database applications, which are sim-
ilar to that of search engines. Making sure that the search engine is ready to handle
such processors is important in order to handle an increasing traffic volume, and
to reduce the number of search nodes in a search cluster.

This study would not be possible without the cooperation of Yahoo! Technolo-
gies Norway AS (YTN). YTN is a small engineering team located in Trondheim
working on the Vertical search platform at Yahoo!. The team has its origins in
FAST Search and Transfer, which developed a much used web search engine at
http://www.alltheweb.com .

2 CHAPTER 1. INTRODUCTION

1.1 Assignment interpretation

Redesigning the existing search core completely is a complex task, and the effects of
a new design are not known. Spending a lot of time on an alternative design can be
wasteful if one is not certain that the new design will be an improvement over the
old design. Moreover, measuring the effects of such a redesign is a complex affair
as there are many active components that may interfere with the measurement
tools. By implementing a search core simulator that supports both designs using
a realistic workload, the alternative design can be evaluated using simulator data
and other measurement tools.

The assignment can be split into the following tasks:

T1 Design an alternative search engine threading model. This requires know-
ledge of the current search engine design and threading model. As the new
threading model should be tuned for multicore processors, several factors of
multicore architectures must be taken into consideration such as the target
architecture’s organization (how the cores are structured), and cache para-
meters (how many levels, access times, coherence schemes, etc). Further, the
specific parts of the query evaluation that may benefit from parallelisation
must be identified in cooperation with the experienced software engineers at
Yahoo! Technologies Norway.

T2 Design and implement a search core simulator capable of running the work-
load of the current search core threading model as well as the alternative
design. This task involves designing and implementing the software for a
search engine simulator. The design employs techniques and principles to
fully utilize multicore processors discussed in Chapter 2 and is the largest
task in terms of the work required.

T3 Compare the new model with the current threading model in the search core
simulator and evaluate whether or not the alternative threading model is
useful or not. This task is important because it gives guidelines for a real
implementation. Ideally, the simulator should be compared to the original
search engine. The approach taken in this thesis is to discuss the design with
employees at Yahoo! and present intermediate results in order to gradually
increase the confidence in the simulator. The most important result of this
task is a comparison of both designs in the search engine simulator that will
give valuable experience when implementing an alternative design in the real
search engine. The biggest challenge in this assignment is to understand the
current search engine design and to write the simulator with that design in
mind.

1.2. MAIN CONTRIBUTIONS 3

1.2 Main contributions

The main contributions of this report can be summarized as follows:

C1 A study of techniques and challenges facing application developers interested
in fully utilizing multicore processors.

C2 A study of the Vespa search core and its threading model. The parts of the
search core eligible for parallelisation are identified.

C3 A search core simulator capable of simulating parts of the Vespa search core.
The simulator can be extended to support other parts of query evaluation for
other projects.

C4 An algorithm for dynamically adjust partition boundaries.

C5 A comparison of the original and an alternative threading model using parallel
query evaluation.

C6 An analysis of the behavior of parallel query evaluation in terms of scalability,
its impact on the processor cache and its behavior during various workloads.

The first two contributions are useful for other employees at YTN, as it further
documents the design of Vespa, and describes how parallel query evaluation can
be implemented in Vespa. The third contribution is useful for further projects
involving the Vespa search core, as it can be modified to evaluate experimental
algorithms. The fourth contribution comes as a result of the alternative design,
and can be usable in other applications. The fifth and sixth contribution answer the
main research question in this assignment: how does the parallel query evaluation
perform and is it worth implementing it in the real search engine?

1.3 Report outline

The rest of the report is laid out as follows: The first part of the report intro-
duces the theoretical basis for the work performed in the second part of the study.
Chapter 2 gives an overview of search engines, both in general and the search en-
gine used in this study, a presentation of typical cache coherence schemes in today’s
CPUs, a discussion on possible tools that can be used to measure application im-
pact on the hardware, and an overview of principles and techniques important for
developing software on multicore processors. Chapter 3 provides an in-depth ex-
planation of the core of the search engine used in this study, together with a design
proposal for parallel query evaluation. Chapter 4 describes the search engine sim-
ulator developed in this study. Chapter 5 presents relevant metrics for evaluating
the performance and the impact on the hardware. Chapter 6 presents experiments
performed on the search engine simulator and compares the alternative design to
the original design.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background and state of the
art

Understanding the software architecture of the search engine as well as the hard-
ware on which it is running is necessary in order to suggest any improvements to the
software. Furthermore, as this study involves developing a search engine simulator,
techniques for efficiently using multicore processors must be studied, and strategies
and tools for evaluating its performance must be decided. This chapter consists
of the following parts: Section 2.1 describes the basic structure of a typical search
engine while Section 2.2 describes Vespa, the search engine used in this study.
Section 2.3 describes multiprocessor cache coherence and techniques for making
the software reduce the coherence traffic. Section 2.4 describes what tools can be
used for measuring the impact on the processor cache hierarchy, while Section 2.5
gives an introduction to profiling tools used in this study. Section 2.6 discusses two
well known laws in the parallel computing domain. Section 2.7 describes software
libraries that are commonly used in applications that take advantage of multicore
processors.

2.1 Search engines

Search engines play an important role in the modern Internet. The popularity
comes from the need to make information easily and quickly available. Search
engines are continuously enhanced to handle the ever growing amounts of data.
A search engine operates on queries, which are automatically generated strings
containing terms. Today, these queries are usually generated from a set of user
actions such as clicking on an image or a hypertext link. The queries are analyzed
by the search engine to find all relevant documents. In the end, the documents best
matching these terms will be returned to the user.

6 CHAPTER 2. BACKGROUND AND STATE OF THE ART

documents

Indexer

documents

Crawler/fetcher

"Source of truth"

request data

Front-end

query result

Index Search

Figure 2.1: A generalized search engine architecture

Search engines are a relatively new field within the software industry, and new
ways of calculating the relevancy of documents as well as scaling information re-
trieval on thousands of machines are developed to keep up with the vast amount
of information as well as accuracy requirements from the user. Search engines can
usually be described in three parts: information retrieval, indexing and searching.
Figure 2.1 shows how these components interact with each other. Following is a
quick description of these components. Risvik covers the different components in
more detail [Ris04].

2.1.1 Retrieval

A web search engine will usually retrieve information by crawling1 information
from web pages. Another way is to fetch information from a "source of truth". The
"source of truth" is the origin of a document that should be made searchable. The
crawler/fetcher then feed or push the document to the search engine indexer. This
method is typically used in search engines configured to search in a specific type of
documents, such as e-mail or images, like Vespa.

2.1.2 Indexing

As search should be fast, the information needs to be categorized or indexed. One
common way to organize information is to use an inverted index (shown in Fig-
ure 2.2). This type of index stores a mapping between a term and documents in
which that term occurs in posting lists entries. Given a term, the position of all
the documents matching this can easily be found by traversing the posting lists.

1crawling is a form of processing information and following any outgoing hypertext links

2.2. VESPA 7

Term

Term

Term

Location Data

Dictionary Posting Lists

Location Data

Location Data

Location Data Location Data Location Data

Posting entry

Figure 2.2: An inverted index (inspired from [FLQZ06])

2.1.3 Searching

Query evaluation and fetching the relevant documents are the main functionalities
of the search engine. The engine must also parse the query, search the index for
documents, and calculate a rank or score for each document. The rank describes
how relevant the search engine thinks a particular document is. The most relevant
documents are then returned.

2.2 Vespa

This section gives an overview of Vespa. All subsections except Section 2.2.2, 2.2.6,
2.2.7 and Figure 2.4, 2.5, 2.6 are copied and modified from earlier project work in
course TDT4592 - "Computer Design and Architecture, Specialization Project"
[Lil09].

The search engine used as a case study in this project is the Vespa search engine
developed by YTN. Vespa is a scalable search engine, intended to be used by
verticals (a service or application) within Yahoo! to provide search functionality.
Vespa is able to handle data of various types and size. Figure 2.3 depicts the
components within Vespa and how they interact.

Examples of applications using Vespa are Delicious [DEL10], Mail [YMA10] and
Flickr [FLI10]. Delicious provides online bookmarking, browsing and tagging2 of
bookmarks. Delicious use Vespa to search for bookmarks and bookmarks with
a specific tag, etc. Yahoo! Mail is the worlds largest e-mail service, and Vespa
provides their users with the ability to search for information in their e-mails.

2A tag is similar to a keyword

8 CHAPTER 2. BACKGROUND AND STATE OF THE ART

Figure 2.3: An overview of Vespa [VES10]

A complete Vespa application setup is called a deployment. The term node is used
to describe a physical server in a Vespa deployment. Further, a collection of Vespa
nodes is called a cluster, and a collection of nodes running Vespa search services is
called a search cluster. Vespa is a collection of services, both the search core and
supporting services. The services in Vespa may be configured to run on the same
node, on completely separate nodes, or on a node together with only some of the
other services. The configuration service takes care of managing all services on all
nodes in a deployment. The configuration can be altered and re-deployed on the
configuration service node, which will push it to all other nodes.

The administration services provide logging, configuration management, monitor-
ing, and controls the other services in Vespa. The configuration service contains
service specifications, which include node names and their assigned services. Also
specified in the configuration is the search definition, which describes the content
to be processed and served by Vespa as a document. Documents are fed into Vespa
in a specific format matching that of the search definition. Each document is given
a unique document identifier, commonly referred to as the doc id. During the feed
operation, the content can be preprocessed by a document processor. Document
processors can transform docs, filter docs and forward docs to their destination.

The services involved with indexing and query processing are the indexer, the QRS,
the Top Level Dispatch (TLD), and the search service. The indexer usually runs
on the same node as the search service, while the QRS and TLD services run on
separate nodes. Multiple search nodes running the indexer and search service may
be specified in order to scale with the number of documents in an index and to get
lower search latencies. A collection of search nodes form a search cluster, which is

2.2. VESPA 9

controlled by the TLD. Multiple search clusters may be specified, which duplicates
data, but provides reliability and load balancing.

2.2.1 Indexing

After pre-processing, the document is sent to the search cluster, which indexes
the document and makes it available for search. There are currently three types
of different indexing modes, with different characteristics: batch, incremental and
realtime.

Batch mode builds the whole index from scratch. One of the drawbacks with batch
indexing is that it is not possible to add new documents without re-adding all
documents currently in the index, but also that it typically requires two nodes:
one for indexing and one for search, since this mode does not allow for the index
to be searched while it is being built.

Incremental mode allows adding documents without having to re-add existing doc-
uments. Incremental mode treats each update as a new increment to the index.
As documents are fed, a small index is created from these documents. This index
is then later merged with the original index.

Realtime mode aims to make documents available as early as possible after indexing.
Realtime indexing uses timing constraints set by the application in order to provide
reliable indexing times.

2.2.2 Disk index and attributes

The index is stored on hard disk drives (together with the data), as the index size
is usually much larger than what can be stored in memory. However, a high num-
ber of I/O operations to the disks will significantly increase the search latencies.
Therefore, Vespa also supports keeping parts of a document in memory, called at-
tributes, to provide lower search latencies and the ability to use aggregate functions
(such as max or min) on query results. Attributes may be of fixed or variable size.
The doc id, a few keywords or the creation date of a document are usually used as
attributes. In case the query asks for the newest documents, having the creation
date as an attribute can lower the query latency to find the correct documents
significantly.

Figure 2.4 shows how the attributes are stored in memory. A vector is allocated for
each attribute type, which contains an entry for each document. The doc id may
be used as an array index to find the attribute value of that particular document.

10 CHAPTER 2. BACKGROUND AND STATE OF THE ART

attribute 1

id 1 id 2 id 3 id 4 id 5 id 1 id 2 id 3 id 4 id 5 id 1 id 2 id 3 id 4 id 5

attribute 2 attribute 3

Figure 2.4: Attributes stored in memory. Each attribute is represented with a
vector with entries for all doc ids

10.0.0.1 - - [24/ Jan /2008:05:29:04 -0800] "GET /? query = yahoo
HTTP /1.1" 200 270 "" " Mozilla /5.0 (Windows ; U; Windows NT 5.1;
en -US; rv :1.7.12) Gecko /20050915 Firefox /1.0.7" 2.792 1 0 1

Listing 2.1: QRS log file entry

2.2.3 Query Result Server

The initial query is sent to the QRS using Hyper Text Transfer Protocol (HTTP).
The QRS parses the incoming queries and forwards them to the TLD of each
search cluster, via internal protocols. The results from the TLDs are blended3 and
presented to the user, as shown in Figure 2.5. The QRS stores requests in a log
file, using the format shown in Table 2.1. Some of the fields are left empty for
future use. All fields are separated by a white space character. Listing 2.1 gives an
example of a QRS log entry.

2.2.4 Top Level Dispatch

Risvik and Michelsen defines two dimensions where a search engine must scale
[RM02]. The first dimension is the data size, where a search engine must be able
to deal with an increasing data volume. Vespa scales in this dimension by using
multiple search nodes, forming a search cluster. The second dimension is the traffic
volume. Vespa handles this dimension by forming multiple search clusters, each
controlled by a TLD. The TLD receives queries from the QRS and dispatches them
to all search nodes. The results returned from the nodes are merged and returned
to the QRS.

3blending is a form of merging and duplication removal

2.2. VESPA 11

Front-end
http query

results xml

TLD

Search cluster Search cluster

S
e
a
r
c
h

n
o
d
e

S
e
a
r
c
h

n
o
d
e

S
e
a
r
c
h

n
o
d
e

S
e
a
r
c
h

n
o
d
e

TLD

re
su

lt
da

ta

se
ar

ch
 q

ue
ry

result data
search query

QRS

S
e
a
r
c
h

n
o
d
e

S
e
a
r
c
h

n
o
d
e

S
e
a
r
c
h

n
o
d
e

S
e
a
r
c
h

n
o
d
e

Figure 2.5: Data flow in Vespa

Table 2.1: The QRS log format [VES10]

Log Field Explanation
SourceIP IP address of client
- Nothing
- Nothing
Date Timestamp (localtime) when query was executed with off-

set from GMT
"HTTPRequest" HTTP request string
HTTPReturnCode HTTP return code for the query
ByteCount Number of bytes sent to the client
"Referrer" HTTP referrer string
"UserAgent" Client user agent
ProcessingTime Time used to process the query in seconds. Including

query parsing, back end execution. Does by design not
include query reception from client and result set transfer
time to client

TotalHitCount The total number of hits for the result set
0 Reserved for later expansion - always 0
HitCount Number of hits in the query result page. Note that the

number of aggregation groups (if there are any) is included
in this number.

12 CHAPTER 2. BACKGROUND AND STATE OF THE ART

Search core

Vespa search node

Queue

QueryHandler

Dispatcher

result query

Figure 2.6: An overview of a Vespa search node

2.2.5 The Vespa search node

The performance of each search node is critical for the overall performance of Vespa,
and is the Vespa component of focus in this study. The search service in a search
node consists of a dispatcher and the search core. The number of search cores
running on search node depends on the number of slots4 the indexing mode uses.
Realtime mode uses four slots in sizes from small to the complete index, which
requires four search core instances. This allows new documents to be merged with
the smallest slot quickly, and later be merged down with larger slots. Incremental
mode uses only one slot, which in turn requires only one search core running on
each node.

The search core is responsible for finding all documents in its index matching a
query and thereafter compute a relevancy score for each hit using the method
specified in the query. Results are then aggregated and sorted, and a subset of the
results is returned.

In a search cluster with more than one search node, each search node handles only
a piece of the global index structure. This way, a search query can be performed in
parallel on multiple search nodes, thereby lowering response times for large data
volumes as the number of nodes in the cluster is increased.

Figure 2.6 shows how the components of a search node work. The dispatcher
receives queries from the TLD and forwards them to the search core. The search
process puts the query in a queue, and the query is assigned to an available query
handler, which also reports back the results.

If realtime mode is used, the results will have to be merged at the dispatcher
4a slot is an internal term used for an index that can be merged with other indices

2.3. MULTICORE PROCESSORS AND CACHE COHERENCY 13

before being returned to the TLD. The dispatcher uses a two-phase protocol when
communicating with the search core instances. In the first phase, the hits from the
different search cores are merged. In the second phase, the document summaries
for each hit is fetched.

The search core caches frequent results in memory and uses other optimization
techniques (discussed in Section 2.3.3) to reduce the latency of frequent hits and
the number of disk accesses. The search core has undergone much development and
refactoring over the course of the last 10 years, and has for a long time handled
multiple queries by using threading [Bal10]. Therefore, the search core is already
tuned for multicore by handling each query in a new thread. There is a big interest
in improving performance by using multicore processors more efficiently. A detailed
explanation of the search core design and the threading model is given in Chapter 3.

A typical search node running Vespa is a server with one or more Intel Xeon
multicore CPUs, with a minimum of 8 GB of RAM and two or more disks (usually
striped5).

2.2.6 Vespamalloc

Vespa uses a scalable memory allocated developed at YTN instead of the allocator
coming with the GNU C library. Vespamalloc is designed to be fast and scalable,
and ignores any extra memory usage necessary to achieve this goal. For instance,
all internal data structures are pre-allocated by heavy use of C++ templates. This
means that the allocator parameters are specified at compile time, instead of run
time, which sacrifices flexibility to achieve higher speeds [VES10].

2.2.7 Radix sort

Radix sort is a sorting algorithm much used within Vespa, because of its ability
to quickly sort an array of fixed-width numbers even if the array contains many of
them. Radix sort has a time complexity of O(kN), where k is the number of keys
(for a 64 bit integer, the value of k is 8), and N is the number of entries in the
array. Knuth gives a detailed analysis of the radix sort algorithm [Knu68].

2.3 Multicore processors and cache coherency

With multicore processors it is even more important to understand the processor
architecture on which the application is running compared to single core processors,
because the memory buses on such processors are vulnerable to contention. With
multiple cores using the same memory resources, having a high hit ratio in the

5Striped organization is sometimes referred to as RAID-0 organization [PGK87]

14 CHAPTER 2. BACKGROUND AND STATE OF THE ART

different cache levels is necessary for scalability on multicore architectures. The
cache parameters of the architecture used by the application should be collected in
order to optimally structure the data.

2.3.1 Cache coherence

To understand the cache bottleneck of multicore systems, one has to look at the
cache coherence mechanisms and protocols used in a modern processor. In a typical
Chip Multi Processor (CMP), each core has its own level-1 cache, but the second
or third level is shared with other cores, which requires a mechanism to make
sure each cache is aware of other caches containing the same data. A common
mechanism found in today’s CMPs is snooping [HP07]. Snooping works by keeping
the state of each cache line distributed between all caches and having each cache
snoop (or listen) on the system bus. On a cache miss, a request is broadcast on
the system bus, and if any other cache does have this cache line, it will respond.
Clearly, the broadcast of cache misses can cause a lot of traffic on the system bus,
and applications should strive to minimize this traffic. Usually, a cache coherence
protocol like MESI, which defines a set of states and rules for transitions between
them, is used to maintain coherence. This means a cache line can be in a modified,
exclusive, shared or invalid state.

The importance of "playing nice" with the cache coherence mechanism and protocol
is illustrated in Figure 2.7 with a dual core processor having one level-1 cache
per core and a shared level-2 cache. The data structure is an entry into a cache
containing a doc id, a reference count for the entry and the some data for that
document.

By keeping as little shared data as possible between threads in the search core,
the cache coherence traffic can be minimized. However, it is not always possible
to share no data at all when thread communication is based on a shared memory
model. For instance, the search core uses a result cache for the most frequent query
results. Although the data in such a cache is not modified, the meta data used
to keep reference counts etc. may be updated frequently. If several threads work
on the same data set in the cache, the coherence traffic may increase significantly,
affecting performance.

2.3.2 Cache affinity

Because of the limited bandwidth of the processor memory systems today, it is
important to reuse as much of the data in the cache as possible. Suppose a thread
running on a processor core makes good use of the cache and sustains a high hit
rate. If this thread is moved to another core, the contents of the cache may not
be the data that the thread is using, and the thread will suffer many cache misses
until the cache gets filled up again. The relationship between thread data and

2.3. MULTICORE PROCESSORS AND CACHE COHERENCY 15

0x00

0x01

0x02

0x00

0x01

0x02

0x00

0x01

0x02

1337

Data layout:

1 <p>hello</p>

document id refcount query result data

0x00

0x01

0x02

0x00

0x01

0x02

0x00

0x01

0x02

1337 1 <p>hello</p>

Core 1 L1 cache Core 1 L1 cache

Common L2 cache

0x00

0x01

0x02

0x00

0x01

0x02

0x00

0x01

0x02

1337 1 <p>hello</p>

0x00

0x01

0x02

0x00

0x01

0x02

0x00

0x01

0x02

1337 1 <p>hello</p>

1337 1 <p>hello</p>

1337 1 <p>hello</p>1337 1 <p>hello</p>

1337 2 <p>hello</p>

refcount updated on writeback

Figure 2.7: Two threads try to access the same data. a) The shared L2 cache
contains result data. b) Thread running on core 1 loads data into its L1 cache.
c) Thread running on core 2 loads the same data into its L1 cache. d) Thread on
core 1 increases reference count and invalidates cache line in the L1 cache of core
2. Eventually, the second core has to reload the cache line from the level-2 cache
to get the correct copy.

16 CHAPTER 2. BACKGROUND AND STATE OF THE ART

cache placement is usually referred to as cache affinity or thread affinity.

The overhead of reloading data into another cache on another core is called thread
migration. Teng et. al. analyzed the cost of migrating threads across cores, both
on-chip and off-chip, and lists several important factors of thread migration. The
most important factor is the migration frequency. If there is a low number of
migrations, there is no big impact on the performance. Furthermore, there are
different types of migration, where a migration between separate physical chips
are more costly then a migration to another core on the same physical chip. The
working set size also matters a great deal, as applications with a small or very large
working set do not get a notable performance impact.

Today’s operating systems do take cache affinity into account when deciding on
which core to schedule threads, but it is not always possible to use a busy core.
The ability for an application to decide on which core a thread should run can
decrease the number of thread migrations. Foong et. al. investigates the use of
thread affinity to potentially increase the throughput of network processing, and a
throughput gain of up to 25% is achieved by forcing threads to run on a specific
core. Although network processing is a different workload from that of a search
engine, the use of tools and libraries for setting affinity is explained, and contributes
a valuable experience of using such tools.

2.3.3 Software techniques for improving multicore perform-
ance

In software design, there are several techniques that the designer may use to im-
prove performance on multicore processors. There are many books on this subject,
and for the C++ programming language, Bulka et. al provides an in-depth study of
how the designer can employ these techniques both generally and in C++ [BM99].
Although written before the multicore era, the techniques discussed for multipro-
cessor systems are still highly relevant for multicore processors. Maurice et. al.
provides an in-depth explanation of synchronization primitives, as well as data
structures that performs well on multicore processors [HS08]. Following is a de-
scription of some of these techniques and how they are applied in this study. Tech-
niques not directly related to Vespa or the simulator written in this study, can be
found in Section A.3.

Minimize synchronization overhead

For shared memory systems, using shared data structures protected by locks are a
common way for applications to ensure data consistency. However, as the number
of threads trying to access the same data increases, the locks will experience con-
tention. A simple way of achieving better scalability is to use finer grained locking
by performing lock decomposition. However, there is ultimately an end to how well

2.3. MULTICORE PROCESSORS AND CACHE COHERENCY 17

0x00

0x01

0x02

0x03

0x00

0x01

0x02

0x03

1337

1338

1339

1337 1338

1339

1340

0x00

0x01

0x02

0x03

0x00

0x01

0x02

0x03

1337 1337

1338

1339

1338

1339

1340

pad

pad

pad

pad

alignment padding

Figure 2.8: Alignment (to the left) and padding (to the right) of data

an application can scale using this method. Most CPUs come with atomic instruc-
tions, which are mostly used to build locks. These primitives can also be used
to implement atomic types, which can replace locks in some situations. Further,
more advanced data structures such as lock-less queues can be built using atomic
instructions.

Vespa and the simulator created in this study both tries to minimize synchroniza-
tion overhead by making each component as self contained as possible. Instead of
using a global lock to protect the result cache, a lock per entry in the cache can be
used to allow concurrent access to other entries.

Eliminate data sharing

The best way to reduce conflicts is to share as little data as possible between
threads. Instead of sharing data, each thread may keep a local copy of the data.
This approach leads to a higher memory usage, as the same data is stored at mul-
tiple addresses, and is not applicable for large data volumes on machines without
huge amounts of memory. From the software design point of view, this is major
design decision, as the data model of applications may have to be design with cache
coherence in mind.

In Vespa, each query is executed within its own thread, and does not share any
data structures related to the query evaluation with other threads. As mentioned
above, though, the result cache and other caches needs to be locked, which can
become a problem if the number of threads using the same cache is large. In the
simulator developed in this study, even less data is shared, as each thread operates
in a completely separate memory range than other threads.

18 CHAPTER 2. BACKGROUND AND STATE OF THE ART

Alignment and padding of data structures

Careful design of the data structures used in a program can save the application
from extra cache misses and extra delay when accessing main memory. Figure 2.8
a illustrates the importance of keeping data aligned. If a thread reads misaligned
data, the data occupies two cache lines, when it could have occupied only one.
Figure 2.8 b illustrates the use of padding. By using padding, all first accesses to
the data structures will cause only 1 cache miss instead of 2.

It is worth mentioning that newer CPU architectures such as Nehalem supports
unaligned access, making these optimizations less important. By using the GCC
compiler specific operations such as __aligned(), one can align static data struc-
tures to cache line boundaries if desired. For systems supporting POSIX,
posix_memalign() provides a way to dynamically allocate aligned memory. The
POSIX alignment functions are used in the simulator to make sure that attribute
data is aligned. In Vespa, a set of wrappers are used to make sure that I/O re-
quests are aligned. Moreover, data structures are carefully planned to make sure
that 64-bit boundaries are ensured.

Cache line utilization

If data is not packed or if only parts of the data in a data structure is used during
each access, one can observe poor cache line utilization. By packing data better,
fewer cache lines are needed to access the data, and more data can be placed in the
cache. However, this must be seen in combination with padding, as crossing cache
line boundaries can have bad effects when data is shared [AB10b]. A previous
study revealed that, in some parts of the code, Vespa does not properly utilize
each cache line [Lil09]. It is, however, not always possible to pack data optimally.
A heap data structure, used in Vespa, will not get proper cache line utilization,
because of a random access pattern when using it and inserting new entries.

2.4 Measuring effects on the cache hierarchy

There are several ways to measure effects on the processor cache hierarchy. One
way would be to run it in a CPU simulator. Another is to measure the application
on the target platform hardware by using the performance counters of the CPU.

2.4.1 CPU simulators

CPU simulators are often used by hardware architects to measure the effects of
modifications to a hardware design. However, it may also be used to measure
the impact of the software on the hardware. As these simulators are written as

2.4. MEASURING EFFECTS ON THE CACHE HIERARCHY 19

software, any signal or component may be inspected for relevant statistics. Most
simulators also allow the user to specify parameters such as cache size, cache or-
ganization, the number of processor cores, the interconnect and so on. As this
study tries to improve parallel query evaluation on multicore CPUs, being able to
adjust the number of processor cores is an important property of a CPU simulator.
Lande evaluates a set of CPU simulators for the Computer Architecture Group at
Department of Computer and Information Science (IDI) [Lan06].

The Simics simulator

According to Lande, the Simics [SIM10] simulator system can simulate many differ-
ent CPU architectures6. Simics aims to run complete and realistic workloads and
is a full system simulator, which means that it runs a complete operating system
on top such as Windows or Linux. However, it is not free of cost, and requires
setting up appropriate model libraries to make sure the simulator behaves as the
target platform.

The M5 simulator

Another simulator evaluated by Lande is the M5 simulator. According to [M5S10],
M5 is a "modular platform for computer system architecture research, encom-
passing system-level architecture as well as processor microarchitecture.". The M5
simulator can run in two different modes. A Full System (FS) mode, which behaves
like an ordinary computer system or Simics, and in System-call Emulation (SE)
mode, which emulates some of the system calls of the Linux operating system. In
FS mode, only the Alpha architecture model supports more than one CPU core.
Unfortunately, the Alpha architecture is different from the Vespa target architec-
ture.

In SE mode, there are no theoretical limit on the number of processor cores,
and the CPU architecture can be configured easily with different Instruction Set
Architecture (ISA)s. However, as there are no actively developed threading library,
thread scheduler and other important operating system mechanisms available in SE
mode, a lot of time would have to be spent on creating these facilities. And more
importantly, having them behave as a real system can be difficult.

2.4.2 Performance counters

Most modern processors provide one or more counters that can be configured by
the software to count events. An example of an event is a retired instruction,
or a cache miss in the level-1 cache. The counter can be configured to set an
interrupt signal once the counter has increased beyond a certain value (overflowed).

6UltraSPARC, Alpha, x86, x86-64, PowerPC, Itanium, MIPS and ARM

20 CHAPTER 2. BACKGROUND AND STATE OF THE ART

Performance counters are used as a building block in advanced profiling tools. The
Nehalem architecture has four counters which may be configured to sample over
100 different events [Int10]. Clearly, using these counters requires careful study
of their meaning and how to derive relevant numbers for a particular application.
The Intel optimization reference manual [Int09] and Drepper [Dre07] discuss how
some counters may be combined to give cache hit and miss rates.

2.4.3 Comparing against the target platform

The main arguments against using a CPU simulator in this study are that they
may significantly divert from the target platform of the real world application, and
that they do not offer big enough advantages in terms of simplicity and accuracy
compared to CPU performance counters and cache simulators on the target system.

The performance counters of modern CPUs can measure cache effects on all cache
levels, and profiling tools can create in-depth profiles of where an application spends
most of its time. In this study, performance counters are used for application
profiling, because it allows the application to run on the target platform.

2.5 Software profiling tools

A useful and systematic way to analyze an application is to gather various statistics,
such as CPU time or cache miss count, in order to analyze application perform-
ance. From these statistics one can generate a profile of the application. With a
profile, one can get insights into the application behavior and possibly compare
it to another profile for an earlier version of the application. However, as ap-
plication complexity grows, gathering and interpreting statistics gets increasingly
harder. Fortunately, there are so called profiling tools that help in this task, both
commercial and open source.

2.5.1 Profiling tools using performance counters

The OProfile tool (available for Linux platforms) is an open source tool bundled
with most Linux distributions today [OPR02]. Each time the operating system
is interrupted by an overflowed performance counter, an OProfile kernel module
records the program address of each thread in the operating system together with
the event type [Lev03]. After the sampling is finished, one can combine the program
address and symbols of the running program to find where the event occurred.
It is important to note that OProfile is a statistical profiling tool, which means
that a sampled event may not have occurred at the exact program address, and
that confidence of the correct address is achieved through gathering many samples

2.5. SOFTWARE PROFILING TOOLS 21

[Lev04]. This property is common for all tools using performance counters as a
basis.

Zaparanuks et. al. [ZJH09] provides a detailed study of hardware performance
counters and of the accuracy of these counters when profiling small segments of
code. The measurement error for counters when running user mode instructions
is very low. However, for kernel mode instructions, the error is larger. This is
because more registers are available in kernel mode, which all requires to to be
stored somewhere before accessing the counters, and because interrupt handlers
may cause events that can be attributed to the currently running thread. As the
application in this study will be running in user mode, it is expected that the
measurements are reliable. Further, by using long and multiple benchmark runs
together with statistical analysis, the confidence in the measurements is increased.

The Acumem ThreadSpotter tool from Acumem [AB10a] takes the profiling a step
further. By doing post analysis of the sampled data, this tool can generate sugges-
tions as to what the application designer can do to use the hardware more efficiently.
ThreadSpotter was used on Vespa in an earlier project study [Lil09], and was able
to detect low cache line utilization in some parts of the code. However, the issues
detected were not fixed, because fixing them usually meant sacrificing flexibility
and good programming practice. An advantage of ThreadSpotter is that it does a
lot of the calculation of the various performance counters for you, which does save
the performance analyst some time as opposed to OProfile. It was however unable
to identify fundamental software design inefficiencies in any greater details than
OProfile. This and the fact that OProfile is a free, open source tool made OProfile
the sample based profiler of choice in this study.

The VTune profiling tool from Intel is a widely used commercial tool capable of pro-
ducing profiles on cache usage and thread interaction in multithreaded applications.
Much like Acumem ThreadSpotter, VTune is able to give advice on how to restruc-
ture the program code to better utilize the hardware. In addition, VTune generates
call graphs and is integrated with common development environments [VTU10].
VTune has not been used, since OProfile covers the same functionalities necessary
for this study.

2.5.2 Valgrind

Valgrind is a collection of tools such as callgrind used to debug and analyze pro-
grams. The callgrind tool is a callgraph generator, capable of profiling an ap-
plication in more details and greater accuracy than OProfile. Valgrind runs the
application within its own control, by translating program instructions at run-time
into its internal instruction representation that may be transformed in the way
the user specifies, and then converted back to instructions to be run on the pro-
cessor [VAL09]. As callgrind is able to get a very accurate profile of an application,
it can be used to verify that the OProfile results are somewhat correct.

22 CHAPTER 2. BACKGROUND AND STATE OF THE ART

Valgrind

Application

Operating system

Application

Operating systemOprofile
(kernel module)

Oprofile
(daemon)

Figure 2.9: Comparing OProfile and Valgrind(from [Lil09])

2.5.3 What kind of profiling tool to use?

The big advantage of sampling based tools such as OProfile is the low performance
impact on the profiled application. According to initial test measurements done in
this study, application performance is decreased by only 1-18% when using OProfile,
depending on the parameters given. For comparison, an application running in
Valgrind may run 4-5 times slower [VAL00]. Figure 2.9 shows the difference in
how OProfile and Valgrind operates. The overhead clearly comes from the extra
processing done per instruction. OProfile on the other hand, does not directly
intervene in the application execution. In this study, OProfile is the main profiler
for cache, but Valgrind is used during the development of a search core simulator.

2.6 Amdahl’s and Gustafson’s law

One of the most famous laws in the parallel computing domain is undoubtedly
Amdahl’s law, as a result of Amdahl’s considerations outlined in [Amd67]. The
law states that the speedup of an application with some parts running in parallel
is inherently limited by the serial fraction of the execution time. This means that
although the fraction running in parallel achieves perfect scaling (that the time
spent is halved when the number of parallel jobs are doubled) but that fraction
does not constitute 100% of the run time when run in serial, the speedup will in
the end be limited by the serial fraction of the application. The speedup achieved
according to Amdahl’s law, Samdahl, can be defined as follows [Nat91]:

Samdahl = 1
s + (1−s)

N

Where s is the serial fraction of the execution time. For instance, if the serial
fraction is 10% of the execution time and the other fraction is parallelized using 8
processors, the maximum theoretical speedup achieved according to Amdahl’s law

2.6. AMDAHL’S AND GUSTAFSON’S LAW 23

20.00

18.00

16.00

14.00

12.00

10.00

8.00

6.00

4.00

2.00

0.00

S
p
e
e
d
u
p

1 2 4 8 1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

Number of Processors

Amdahl’s Law

Parallel Portion
 50%
 75%
 90%
 95%

Figure 2.10: The speedup of an application with different portions of parallelism
according to Amdahl’s law [Dan09]

is
1

0.1 + (1−0.1)
8

= 4.7

Figure 2.10 shows the plots of speedups for different portions of parallelism. There
has been much debate around the implication of Amdahl’s law, as it displays a
very pessimistic view of parallel computing. It is therefore important to take into
account that Amdahl’s law can be seen as solving a problem of the same size while
increasing the number of processors. Another law describing a case where the
problem size increases together with the number of processors is often referred
to as Gustafson’s law after an article by John L. Gustafson [Gus88], where the
assumptions of Amdahl’s law did not seem to be valid in practice. Gustafson and
others working at Sandia proposed an alternative formulation of speedup:

Sgustafson = N + (1−N)s′

where N is the number of processors and s′ is the serial fraction when running on
N processors. Using this formula, the speedup of the previous example (given that
the serial fraction when running on 8 processors are the same) becomes:

8 + (1− 8) ∗ 0.1 = 7.3

This assumes that the problem size increased with the same factor as the number
of processors. However, both laws are actually proved equal, only having different

24 CHAPTER 2. BACKGROUND AND STATE OF THE ART

Table 2.2: Library calls used to set processor affinity in Linux

API call Description
CPU_ZERO(set) Clear all CPUs from set
CPU_SET(cpu, set) Enable CPU cpu in the CPU set set
sched_setaffinity(pid, set) Set affinity of pid to set
sched_setaffinity(pid, set) Store affinity of pid in set

parameters, according to Shi [Shi96]. This means eventually that both laws may
be used to describe speedup, as seen in Chapter 3.

2.7 Software libraries

Several libraries that helps the programmer in writing scalable parallel programs
are available. These libraries usually employ techniques discussed in Section 2.3.3,
are optimized for each particular architecture, portable, and saves the programmer
the time of creating his or her own version.

2.7.1 POSIX Threading library

The Portable Operating System Interface for Unix (POSIX) threading library
(called pthreads), implements thread creation and scheduling on UNIX systems
as well as a set of synchronization primitives. Using multiple threads within an
application allows tasks to run in parallel and share data. The synchronization
primitives offered by POSIX can be used to ensure data consistency in case the
data is read and written in different threads.

Pthreads provides synchronization mechanisms like spin locks, mutexes, conditional
variables and barriers. Spin locks are the quickest synchronization mechanism
available, as a thread will busy wait when acquiring the lock. However, if the lock
will be held over a longer period of time, a mutex may be a better choice, because
it allows the operating system to put the thread to sleep and allow another thread
to run. Condition variables are often used by producers to notify consumers that a
queue is no longer empty and by consumers to notify producers that the queue is
no longer full. Barriers allows many threads to be synchronized by incrementing a
counter up to a specified value. When the counter has reached the specified value,
all threads are allowed to continue execution. A thorough analysis of the different
primitives in the light of multicore systems can be found in [HS08].

2.7. SOFTWARE LIBRARIES 25

2.7.2 Affinity APIs

Linux provides an Application Programming Interface (API) for an application
thread to set the affinity of a process or individual threads via the GNU C Library.
This API is not yet standardized, which means that is not yet portable, although
portable libraries exists [oB09]. The function calls in Table 2.2 show a simplifica-
tion of the most crucial library calls needed to set the affinity. The CPU_-macros
operate on a set data structure where CPU identifiers can be added or removed.
The sched_-functions are system calls that interact with the internal data struc-
tures of the Linux kernel, setting or retrieving the currently active CPU set for a
thread or process, identified with a Process Identifier (PID).

26 CHAPTER 2. BACKGROUND AND STATE OF THE ART

Chapter 3

Vespa search core design

The Vespa search core is in charge of evaluating queries and returning relevant
documents from the index. To implement parallel evaluation on queries, the exist-
ing design is analyzed to see which parts of the query evaluation that may benefit
from the increased parallelism. Section 3.1 discusses a previous attempt at paral-
lel query evaluation. Section 3.2 describes query evaluation in the original search
core design, while Section 3.3 discuss what parts of the query evaluation that can
be parallelized. Section 3.4 describes an alternative search core design based on
parallel query evaluation, while Section 3.6 discusses the implications of such a
design.

3.1 Query evaluation strategies

Bonacic et. al. present strategies for taking advantage of CMPs in search engines
on a Sun Niagara T1 CPU [BGM+07]. Two different strategies for query evaluation
are proposed: a synchronous approach, where each query is evaluated in its own
thread, using the same code to evaluate different queries. This approach is simple,
and requires little modification to the serial version of the query evaluation, but
may cause contention for resources, as threads operate on a large data set while
using the same cache. Strategies to minimize this cost involve running queries that
matches the same terms on the same core. The synchronous approach is used in
the Vespa search core, and is explained in detail in Section 3.2.

Another approach, similar to the parallel query evaluation approach presented in
this study, is the asynchronous approach, where query evaluation itself is paral-
lelized. This approach splits the inverted index into one partition per CPU core,
which is traversed in parallel. This approach potentially benefits from local CPU
core caches, and can be advantageous during low loads, where some cores may stay
idle in the synchronous approach.

28 CHAPTER 3. VESPA SEARCH CORE DESIGN

EngineAdapter ThreadPool QueryHandlerQueryQueueQueueChecker

enqueue()

wakeUp()

checkQueue()
runThread()

new
QueryHandler()

search()

doSearch()

Figure 3.1: A sequence diagram of query dispatching

The synchronous approach gives a high throughput as the number of threads in-
creases. The conclusion from [BGM+07] is that the asynchronous approach gives
little gain because the amount of data to be processes is too small, causing a large
overhead of dispatching and merging.

Why explore the asynchronous approach of parallel query evaluation then? First,
the study does not go into detail of the workload used when evaluating the per-
formance of the two strategies. Moreover, the Niagara architecture used in their
experiments is different from the Nehalem architecture used in the current Vespa
search nodes. Furthermore, study does not give an analysis of the impact on the
different cache levels, or any analysis of the serial and parallel fraction of the query
evaluation. Future processors may lack much of the cache coherence mechanisms
that we take for granted today. The synchronous approach will then loose any
benefits it has from sharing data among threads. Finding the reason for any limit-
ations of parallel query evaluation is important in order to suggest improvements
and to provide rationale for any future redesigns of the search core.

3.2 Query evaluation in the Vespa search core

The search core handles incoming queries and performs matching (finding doc-
uments that matches the query terms), ranking (calculating how relevant each
document is), and fetching (retrieving the documents from disk). An overview of
how the search core handles an incoming query is shown with a simplified sequence
diagram in Figure 3.1. The search core operates with a thread pool of pre con-
figured size. Each new query is evaluated by a query handler, which runs within its
own thread. Each new query generates a query handler, which is placed on a query
queue. A specialized queue checker thread checks this queue for new entries. When
a query handler is dequeued from the query queue, the query handler is started.

The query handler itself is the start point of query evaluation, which includes
running a query processor to perform matching and perform ranking. A simplified

3.2. QUERY EVALUATION IN THE VESPA SEARCH CORE 29

buildQueryTree()

QueryHandler

doSearch()

QueryProcessor

new
QueryProcessor()

QueryTree

execute()

prepareTree()

HitCollector

seek()
addHit()

seek()

seek()

addHit()

addHit()

Figure 3.2: A sequence diagram of query evaluation

AND

AND OR

Car Boat Foo Bar Baz

Figure 3.3: An example of a query tree from the following query: ("Foo" OR "Bar"
OR "Baz") AND ("Car" AND "Boat")

sequence diagram of the query evaluation is shown in Figure 3.2. A query processor
is used to find documents matching a query by generating a query tree. An example
tree is shown in Figure 3.3. A query tree is tree representation of the terms and
the operators used in a query. The leaf nodes of such a tree is the terms or phrases
in the query, while the intermediate nodes are operators that describe how these
are combined. An inverted index is used to locate the doc ids of the documents
matching the terms.

The ranking phase uses a hit collector, which works as follows: For each matching
doc id, a rank score is calculated from the attributes of a document, and a hit,
consisting of a doc id and the rank, is inserted into an array. When the number
of hits in the array reaches the maximum limit, it is transformed into a min-heap,
putting the lowest ranking hit at the top. Subsequent hits are now checked against
the lowest ranking hit in the heap. If the rank score of the new hit is higher,

30 CHAPTER 3. VESPA SEARCH CORE DESIGN

it is swapped with the lowest ranking hit. See the description of the search core
simulator in Section 4.5.8 for a detailed description of how hit calculation works.

As this design is similar to the synchronous approach taken in [BGM+07], it scales
with the increasing number of queries, as each new query is handled by a separate
thread. The design is simple, as there is little overhead in dispatching a query to
a thread. A higher query load can be handled by adding more processors.

3.3 Parts eligible for parallelisation

The time, T , spent on query evaluation can be split into Tm, the time spent on
query parsing and matching, and Tf , the time spent on fetching documents and
calculating the rank. The total query evaluation time T is composed of these two:

T = Tm + Tf

The first part of query evaluation is not easily parallelizeable. Parsing a query
is quick, and generating a query tree in parallel would involve a lot of locking
of the tree data structure, which is not believed to give any notable gain. Most
importantly, the time Tm is believed to be only a small fraction of T [Bal10].

The second part of query evaluation involves calculating the rank of documents,
and constitutes the largest fraction of the query evaluation time. Furthermore,
this part can easily be parallelized by splitting the doc id range into partitions and
handling the documents within each partition in a separate thread.

It is important to note that the ranking only involves the attributes residing in
memory, and not on disk. This means that no disk I/O is required during the
first phase of ranking, which probably would have become a bottle neck of parallel
query evaluation. Therefore, the alternative design assumes that only the attributes
residing in memory is used to calculate the rank of a document.

3.4 Alternative query evaluation design

Splitting the doc id range into partitions makes it possible to perform ranking in
parallel. These partitions may be variable in size depending on the number of
matches occurring within each partition over time. For each partition range, a
fetcher calculates a rank and stores a hit using a hit collector. As soon as the hits
within a partition is collected, they are sorted and merged with the hits from other
partitions. Using only 1 partition corresponds to the original design.

Figure 3.4 shows how the doc id range is mapped in the original design as well as the
alternative design. Ideally, the fetchers in charge of the same partition will run on
the same core and share little data with the other cores. In practice, however, the

3.4. ALTERNATIVE QUERY EVALUATION DESIGN 31

0 N

Documents

0 NN/2

Partition 1 Partition 2

CPU 1 Cache CPU 2 Cache

0 N

Documents

CPU 1 Cache CPU 2 Cache

Figure 3.4: The mapping of the doc id
range to partitions for a) The original
design, where each CPU cache will con-
tain data from the whole document range.
b) The alternative design, where the
range is split into partitions that poten-
tially map to a CPU cache

time spent fetching documents in a partition will not be equal across the fetchers.
Allowing threads to migrate to other cores is necessary to avoid under-utilizing
CPU cores. However, today’s operating system thread schedulers takes the CPU
topology (the layout of cores and on which physical chip they reside) into account.
which should prevent unnecessary thread migration.

3.4.1 Cache effects

A possible effect of partitioning the data is a higher hit rate in the per core on-chip
caches. Since the number of hits within each partition decreases as the num-
ber of partitions increase, the probability of having to reuse data in the cache
is higher. Moreover, as each core operates on separate data, the impact on the
cache-coherence protocols should be reduced. However, the benefits could vary,
depending on the cache hierarchy. If the cores share a common cache, the there
will be little advantage when using the last level cache, because the threads operate
on separate data sets.

Assume a quad core processor, where each core has its own L1 cache of 32kB, and
the four cores share an L2 cache of 1MB. Further assume an index containing 2
million documents and that each query requires 1000 documents to be evaluated on
average, while the 100 best ranked hits should be returned for each query. Given
that a document contains 120 bytes of attributes to evaluate its rank, and that a hit
is stored as a tuple consisting of the doc id and a rank of 8 bytes each, each query
requires 120 × 1000 bytes to be imported into the cache, while the heap requires
16× 100 bytes.

First, consider the original search core design running four queries at the same time.
The L1 cache can fit the attributes of 273 documents. This gives a probability of

273
2000000 = 0.00014 for finding the attributes in the cache, since the whole document
range is searched. The heap requires only 1600 bytes, which easily fits in the L1
cache. Since the heap is used frequently, it can be assumed to be contained within

32 CHAPTER 3. VESPA SEARCH CORE DESIGN

Figure 3.5: A theoretical comparison showing the "hockey stick" shape

the L1 cache at all times. A shared L2 cache is advantageous for this design. Since
all queries operate on the same data range, attributes used to calculate the rank of
a document may be reused by another query. The L2 cache can fit the attributes
of 8738 documents, which gives a probability of 8738

2000000 = 0.0044 of finding the
attributes of a document in the L2 cache. All these rates are fairly low, which
indicates that the cache hit rate is not very high.

If one considers the alternative design, each query is assumed to be evaluated in
parallel using four fetchers, each running on a separate core. The documents are
assumed to be uniformly distributed among the partitions. Each partition covers
500000 documents. The probability of finding a document in the L1 cache is now

273
500000 = 0.00055, which is 4 times the probability of the original design. Unfortu-
nately, the shared L2 cache is not used to its full potential in this design. The cache
is assumed to be split into 4 pieces, one for each fetcher. Thus, the attributes from
2184 documents may reside in the cache, giving the same probability of finding the
attributes as in the original design.

Thus, the alternative design should perform better on architectures when the caches
are not shared between processor cores. Newer processor architectures, such as the
Tilera TileGX [TIL10], uses different cache coherence schemes, and sharing as little
data as possible may be even more advantageous in the future.

3.4. ALTERNATIVE QUERY EVALUATION DESIGN 33

3.4.2 Latency effects

Another result of the new design may be lower latencies during low load. The
original design of using one large partition could let processors stay idle when
there is not enough queries to handle during low load periods. Figure 3.5 shows
the typical graph of the search latency when increasing the system load [VES10],
showing a behavior typically observed by performance analysts at YTN in the
original search core design. The latency improves a little as the load increases,
because the cache hit rates increase. However, when the system is saturated, the
latency increases exponentially in terms of the load. In terms of clients, the latency
will increase linearly with the query queue length.

A plot of the hypothetical behavior of the alternate design is also shown. Using
more than one partition to perform parts of the query evaluation in parallel should
decrease search latency for each query during low load. During high load, the
query latency should go up to the same level as if there were only one partition,
but would have a lower break point due to dispatch and merge overhead. The
overhead of dispatching and merging query results for each partition may lower
the total system throughput. This design should get an increased hit rate in the
processor caches, which can make up for some of the dispatch and merge overhead.

3.4.3 Parallel query evaluation in the Vespa search core

Figure 3.6 shows the sequence of operations in the alternative design, if implemen-
ted in the Vespa search core. The process of building the query tree is the same,
as it constitutes only a small fraction of the time. The query tree is evaluated in
parallel (Internally, specialized iterators are used, that takes the doc id range you
want to traverse as arguments). A query handle containing a reference to the query
tree is put on a set of partition queues (one for each partition).

Each partition queue is handled by a set of fetchers. Each fetcher listens on its
partition queue for incoming queries. Having dequeued the query tree, each fetcher
will traverse it, and rank all documents matched within that particular partition.
When a fetcher is finished, it notifies the query processor (which runs within the
context of the query handler). The query processor will immediately start to merge
the results with the results from other fetchers.

Separating the time spent on query execution separate steps helps to better anti-
cipate the impact of parallel query execution:

Tf = Td + (max
0<i<k

Ti) + Tm

Td is the dispatch overhead (the time spent on putting the query on all the partition
queues). Tm is the merge overhead (the time spent merging the results from all
partitions). Ti is the time spent on evaluating the query for partition i, and k is

34 CHAPTER 3. VESPA SEARCH CORE DESIGN

b
u

ild
Q

u
e
ry

Tre
e
()

Q
u

e
ry

H
a
n

d
le

r

d
o
S

e
a
rch

()

Q
u

e
ry

P
ro

ce
sso

r

n
e
w

Q

u
e
ry

P
ro

ce
sso

r()

Q
u

e
ry

Tre
e

e
xe

cu
te

()

Pa
rtitio

n
Q

u
e
u

e
Pa

rtitio
n

Fe
tch

e
r

H
itC

o
lle

cto
r

se
e
k()

p
re

p
a
re

Tre
e
()

e
n

q
u

e
u

e
Pa

rtitio
n

()

d
e
q

u
e
u

e
()

a
d

d
H

it()

se
e
k()

se
e
k() a

d
d

H
it()

a
d

d
H

it()
n

o
tify

()

w
a
itFo

rA
llPa

rtitio
n

s()

Figure
3.6:

A
sequence

diagram
ofquery

evaluation
in

the
alternative

design

3.5. USING AMDAHL’S AND GUSTAFSON’S LAW 35

the number of partitions. For any query, the critical path goes through the slowest
fetcher. The fraction of query evaluation performed in serial is then Td+Tm

Tf
.

3.5 Using Amdahl’s and Gustafson’s law

Both Amdahl’s and Gustafson’s law can be used to evaluate the performance of
search core design. First, however, one must define a problem size.

The problem size can be defined as the number of hits per query, which is usually a
fraction of the number of documents. When the number of hits double, the amount
of work per partition doubles. If the number of partitions increases with the same
factors as the number of hits, the time spent evaluating the query should be the
same given enough processors. This definition of the problem size applies to both
designs. The number of attributes used for ranking per document is an alternative
definition of the problem size. If the number of attributes involved in the rank
calculation for each hit doubles, so will the time spent evaluating the query.

Amdahl’s law may be used to predict the speedup if the problem size is kept
constant when the number of partitions increase. But if the number of hits per
query increases with the same factor as the number of partitions, Gustafson’s law
should be more accurate.

To compare the alternative design with the original design, the speedups of each
design should be calculated. But a problem arises when one wants to compare them.
Whereas the original design is easily able to use all cores all the time, parallel query
evaluation raises an interesting issue when the fetchers complete at different times.
If that happens, one or more fetchers may stay idle because the partition queues
are empty, waiting for the next query to arrive. To handle this case, the number
of query handlers should be increased as well to provide a sufficiently high load for
the fetchers. Thus, the designs are not mutually exclusive: the number of query
handlers should be tuned together with the number of partitions to find the optimal
configuration.

3.6 Implications of parallel query evaluation

Splitting the document range into more than one partition has an important con-
sequence: The most relevant documents may be unevenly distributed across the
partitions, which means that one partition could get more hits than the others,
causing the query evaluation time to become worse as the fetcher for that partition
performs more work than the fetchers for the other partitions. In the real world,
Vespa deployments such as Yahoo! News may get an uneven distribution in its
index, as newer articles added to the index may not be evenly distributed. And for
a news site, popular topics such as recent events are more likely to be search for

36 CHAPTER 3. VESPA SEARCH CORE DESIGN

than 30 year old news. This means in turn that some partitions will experience a
higher load than the others.

To solve this problem, the partitions should be able to grow or shrink according to
their fraction of the total hits. Algorithm 1 describes a simplified version of the

numpart← number of partitions
numhitsnumpart ← number of hits experienced per partition
numdocsnumpart ← number of documents per partition
for i = 1 to numpart do
if numhitsi < idealhit then

requesti ← idealhit− numhitsi

for j = numpart to i do
availablej ← min (numdocsj , requesti)
numdocsj−1 ← numdocsj−1 + availablej

numdocsj ← numdocsj − availablej

j ← j − 1
end for

end if
if numhitsi > idealhits then

leftoveri ← numhitsi − idealhit
for j = i to numpart do

availablej ← min (numdocsj , leftoveri)
numdocsj+1 ← numdocsj+1 + availablej

numdocsj ← numdocsj − availablej

j ← j − 1
end for

end if
end for

Algorithm 1: A simple autopartition algorithm for adjusting the number of
docs available to a partition using the hit statistics

autopartitioning algorithm where the partition range is adjusted according to the
number of hits. An implementation of this algorithm for growing and shrinking
the size of partitions is presented in Section 4.5.9.

Chapter 4

Vsim - Vespa search core
simulator

The Vespa search core simulator (hereby called Vsim) can ease the task of evaluating
an alternative search core design suggested in Chapter 3. A new design can thus
be accepted or rejected in a shorter time. By using Vsim, one can easily measure
factors such as cache effects and dispatch/merge overhead, because the effects of
surrounding applications and parts of the search core are not there to interfere
with the measurement tools. In the event that the positive effects described in
Chapter 3 do not occur, or unforeseen negative effects do occur, Vsim can indicate
what needs to be changed in order for it to work better. In the future, Vsim may
be used to experiment with alternative algorithms and data structures.

Section 4.1 describes some libraries used when developing Vsim. Section 4.2 lists the
requirements for Vsim, while Section 4.3 discusses the development methodology.
Section 4.5 describes the software design of Vsim in detail. Section 4.8 discusses
how well Vsim models the search core.

4.1 Considerations regarding language and tools

Vsim is written in C++ in order to mimic the memory footprint of Vespa. A
language such as Java or Python may be quicker in terms of development speed,
but the familiarity with C++ and the fact that the Vespa search core is written in
C++ made it the logical choice. Vsim is designed to run on Linux 64-bit platforms,
as this is the target platform for Vespa. Unfortunately, some not yet standardized
library calls prevents it to run on any POSIX compliant platform. Further, the
implementation of atomic instructions requires the target processor to support the
64 bit ISA from Intel/AMD. Atomic instructions for other target platforms may

38 CHAPTER 4. VSIM - VESPA SEARCH CORE SIMULATOR

be implemented if needed.

4.1.1 Boost

Boost is a collection of peer-reviewed C++ libraries which are not yet part of the
official C++ standard. However, a large number of boost libraries are going to
be included in the next C++ standard, C++0X. Boost can be considered as a
test bed for new C++ standard libraries. Boost is used in both commercial and
non-commercial software, and is in fact used in some parts of Vespa.

The reason boost is used in some parts of this project is that it provides easy to use
and fast implementations of libraries that are not yet standardized in C++. The
boost libraries provide more sophisticated and native C++ math libraries, with
a greater variety of tuning. Further, some libraries, such as smart pointers, can
ease programming tasks such as memory handling. In Vsim, there are three boost
libraries in use: boost::random, boost::math and boost::smart_ptr.

boost::random provides pseudo-random number generators with different proper-
ties such as speed and degree of "randomness". Each of these generators may be
further used together with a distribution mapping, which can be used to generate
numbers from a probability distribution such as the normal distribution. In Vsim,
boost::random is used together with the uniform distribution to generate random
document identifiers.

boost::math provides many convenience classes in fields such as trigonometry,
complex number theory and statistics. In Vsim, different probability distribution
implementations in boost::math are used to generate skewed workloads.

boost::smart_ptr are objects which store pointers to dynamically allocated ob-
jects and handles deallocation as soon as the object is no longer referenced. These
objects can save the programmer from a lot of work, and bugs, as one does not have
to worry about memory deallocation in detail. It is however, as always, important
to consider the implications when such data structures are shared between threads,
as there is a cost of using atomic operations in the smart pointer implementations.

4.2 Simulator requirements

Vsim is designed with the following requirements in mind:

• Support two configurations:

– The original threading model (using one thread to evaluate one query).
– The alternative threading model using parallel query evaluation.

4.3. DEVELOPMENT METHODOLOGY 39

• Be able to timestamp different parts of query evaluation in order to measure
where a query spends most of its time.

• Be able to use a QRS log file as input.

• Be able to generate unbalanced workload across the partitions using different
statistical distributions.

• Store the configuration and the result in a sample file on disk.

• Be able to process the sample file for further processing in scripts.

• Be able to be profiled by OProfile or Valgrind.

Vsim should try to give the same workload as the rank phase of the Vespa search
core. Furthermore, supporting parallel query evaluation is the main requirement,
and the reason for creating Vsim in the first place. Measuring the time of query
evaluation is important both in order to improve the simulator during development
and for doing performance analysis after wards. Moreover, QRS logs can provide
a more varying and more realistic number of hits per query than a static number.
According to Table 2.1 in Chapter 2, the TotalHitCount field in the log entry counts
the number of hits found in a query. This field can be used as input to the simulator
when generating queries.

As mentioned in Section 3.6, the documents matching a query may not necessarily
be uniformly distributed. This means that, once multiple partitions are used, one
partition may get more hits compared to another. For testing purposes, Vsim needs
to support generating such workloads.

Moreover, post-processing of output is needed in order to analyze Vsim. By storing
the results from Vsim in a predefined format on disk, scripts written in other
programming languages can be developed to parse and transform the simulator
data. OProfile and Valgrind are useful tools (see Section 2.5), and being able to
use these with Vsim makes it possible to analyze impact on the cache hierarchy.

4.3 Development methodology

Vsim was developed in an iterative fashion, where new ideas and improved imple-
mentations appeared after analyzing the results from Vsim, Valgrind and OProfile.
Most of the time of this study has been spent designing and implementing Vsim as
well as evaluating and testing different implementations.

40 CHAPTER 4. VSIM - VESPA SEARCH CORE SIMULATOR

4.4 User interface

The user interface of Vsim is a simple command line interface. Vsim supports
different command line options to control its behavior. All parameters listed below
have a default value. Vsim has one non optional parameter, which is a number
that tells how long the simulation should run, in seconds. In addition to the
command line parameters, several compile time options may be given as parameters
to the Makefile. To compile Vsim with OProfile support, the WITH_OPROFILE knob
may be set to "yes". To compile Vsim with the autopartitioning algorithm, the
WITH_AUTOPART knob should be set to "yes". To enable affinity, the WITH_AFFINITY
knob should be set to "yes". To use affinity, the number of CPU cores in the system
should also be specified by setting the NUMCPU knob to the number of processor
cores in the system. Following is a description of the run time Vsim command line
parameters.

-a <number of attributes> As mentioned in Section 2.2.2, each document
has in-memory attributes. This parameters controls the number of attributes to
generate for each document. A large number will increase memory usage for each
document.

-c <number of connections> This parameter can be used to configure Vsim
in a similar way to Vespa. The number of query handlers will be the same as
this parameter, thereby controlling the maximum number of clients handled at the
same time.

-d <number of documents> This parameter describes the number of docu-
ments available in Vsim, i.e. how many documents there should be created attrib-
utes for. A large number of documents will increase memory usage, and can be
used to create large data volumes, thereby decreasing locality.

-h <number of best hits to collect> If a query matches a large number of
document, a huge amount of memory must be used to store all of them. Instead, a
finite buffer containing only the best hits is used. This parameter controls the size
of this buffer, which again controls the number of hits that should be returned for
each query.

-i <probability distribution> One of the requirements is that Vsim should be
able to generate unbalanced loads, where some documents are more relevant than
others. This parameters takes the name of the probability distribution to be used
to calculate which parts of the document range should be most relevant to each
query. Valid distributions are binomial, gauss, poisson and geometric.

4.4. USER INTERFACE 41

-l <number of slots per partition> This parameter specifies the granularity
of the probability distribution specified with the -i parameter. Each slot is a range
of doc ids together with a probability of a query to find matching documents within
that slot. A partition initially contains a number of these slots, but they may be
moved to another partition during simulation if the autopartitioning mechanism is
enabled.

-n <number of hits per query> This parameter controls the number of hits
generated for each query. A high number requires more processing power and can
be used to increase the problem size. The hits are distributed to the slots according
to the probability distribution selected with the -i parameter. This parameter is
ignored if the -q parameter is specified.

-o <filename> This parameter specifies where to save a simulation configur-
ation and the result data. The data is stored in a binary format, and multiple
simulation runs may be stored in the same file.

-p <number of partitions> This parameter controls how many partitions to
create. A partition may be searched independently of the others, and more than one
will evaluate a query in parallel. A high number of partitions increases parallelism
for each query, but also increases the overhead of dispatching and merging.

-q <filename> This parameter specifies a QRS log file, which is used to calcu-
late the number of hits for each query. If the end of the QRS log file is reached
before the simulator is finished, Vsim continues at the beginning of the file. The
file format is a bit simpler than the standard QRS log format: each line contains
the number of hits to collect for each query. This reduces the parsing speed.

-r <first attribute-last attribute> Sometimes, only a few of the attributes
in a document is used for rank calculation. This parameter describes a range or
a set of attributes to be used for ranking. For instance, given that the number of
attributes is set to 8, a valid input for this parameter is -r 3-6, which will use the
attributes 3, 4 and 5 (not inclusive 6) to calculate the rank of each document.

-s <number of rounds> This parameter determines how many times the ex-
periment will be run, using the same configuration parameters for each run. Before
each run, all attribute values are seeded with different values, to give each document
a different rank.

42 CHAPTER 4. VSIM - VESPA SEARCH CORE SIMULATOR

partitions : 2
handlers : 1
#hits: 8000
clients : 1
heapsize : 1000
numdocs : 100000
num attributes : 8
attributes used: 3 4 5
slots /part: 1
distribution : binomial
queries : 9845
simtime : 10
cputime : 18

Results :
Queries /sec Weighted_Q /s time_queue time_execution time_fetcher

984 546 10 980 920

time_partitionqueue time_handler % handler
20 40 4.1

Per partition stats :
0 H: 39380000 P: 12 F: 853
1 H: 39380000 P: 27 F: 913

Listing 4.1: Example output from Vsim

-t <number of clients> This parameter is used to set the number of clients to
run. Each client is run within its own thread, and generates queries for the search
engine to evaluate.

4.4.1 Vsim output

Listing 4.1 shows an example output from Vsim. The first part of the output
describes the configuration of Vsim, as well as the simulation time in seconds and
the actual CPU time spent, in seconds.

The second part give a set of post-calculated metrics such as the number of queries
executed per second, and the time spent on query evaluation (in microseconds).
The output also includes statistics for each partition such as the number of hits
received or the average time spent waiting in a partition queue or the time spent
in the fetcher.

The output is stored in a binary format, which may be read by scripts or other
applications wishing do display the data in another fashion, or do further calcula-
tions.

4.5. SOFTWARE DESIGN 43

Queue

Handler

Partition queue

Handler.....

Partition queue

..... Fetcher Fetcher Fetcher Fetcher

..... Client Client

Query generation

Query evaluation

Document store

Figure 4.1: An overview of Vsim design

4.5 Software design

This section describes Vsim in detail. As the only relevant part of parallel query
evaluation happens within the query processor (as discussed in Section 3.2), Vsim
only needs to support the ranking phase, and not the query parsing and matching
phase. Each query contains the number of hits, which determines how many doc
ids to generate and rank. The number of hits may either be specified statically
(this way all queries will cause the same amount of hits), or according to a QRS
log file. The number of hits are distributed according to a statistical distribution.

The rest of this section gives an overview of the software design, followed by a
thorough description of the different components of Vsim.

4.5.1 Vsim overview

Figure 4.1 shows an overview of Vsim program structure. Vsim can be divided into
two logical parts, query generation and query evaluation. The query generation
part consists of a number of clients set by the -t parameter, that generate queries
which are put on a global input queue. The client waits until the query is finished
before generating a new.

The query evaluation part consist of evaluating the queries that are put in the
input queue. A set of query handlers listens on this queue for incoming queries.
The number of query handlers equals the argument given with the -c parameter.
The query is dequeued from the queue by one of the query handlers. The query
is then put on a set of partition queues (one for each partition specified with the

44 CHAPTER 4. VSIM - VESPA SEARCH CORE SIMULATOR

-p parameter). Each partition queue has a number of fetchers listening to it for
incoming queries. The number of fetchers listening to each partition queue equals
the number of query handlers.

A fetcher dequeues a query from its designated partition queue, and generates doc
ids (the amount of doc ids to generate for each slot within a partition is specified in
the query), calculates the rank for each of them using the document store, and uses
a hit collector, to collect the top ranking hits. When a fetcher is finished, it notifies
the query handler. The query handler immediately starts to merge the hits from
each partition into a result buffer. The result buffer will contain the top ranking
hits from all partitions when the results from all partitions are merged. When the
merging is finished, the client is notified, and the process starts over again with the
next query.

4.5.2 Partitions, slots and hit distributions

In Vsim, a partition is a logical segmentation of the doc id range. A partition is
further divided into a number of slots. A partition may contain one or more slots.
This means that a slot may either span the whole partition, or only a fraction of
the partition. The number of slots per partition is specified with the -l parameter.
The number of slots for each partition is fixed at start up, but a slot may be moved
to another partition if the autopartitioning algorithm chooses to do so.

The partition ranges and their slots are generated at start up. Each partition
contains an array of slots, while each slot contains the first and last doc id within
its range together with a probability. This probability is used to specify how many
hits this slot is likely to get of the total hits. A probability distribution is used to
generate the probability for each slot, which may be any of the standard binominal,
geometric, poisson or gauss.

4.5.3 General framework code

Some parts of Vsim consists of abstractions on top of operating system interfaces
to get advantages of object oriented software design. Moreover, some of these
abstractions are similar to those used in Vespa.

Thread abstractions and interfaces

Figure 4.2 shows the classes involved in thread dispatching and execution. The
ThreadPool class is used to start and dispatch multiple threads using a thread pool,
without worrying about details of starting and running threads using the POSIX
thread library. Typically, only one instance of this class exists. The Thread class
is a wrapper on top of POSIX threads data structures, and encapsulates knowledge

4.5. SOFTWARE DESIGN 45

Task
+run(): void
+shutdown(): void
+getPreferredCPU(set:cpu_set_t): bool

ThreadPool
+runThread(in task:Task): int

Thread
+trampoline()
+dispatch(task:Task): bool
+run()
+join()

*

QueryHandler FetcherQueryGenerator

Figure 4.2: The classes involved in thread execution

about these data structures.

A ThreadPool contains an array of Thread objects. Each Thread may be set to
run a Task, which is similar to how the Vespa search core manages threads.

The Task interface specifies the methods run() and shutdown() which are used
to control task execution. An interesting interface method is getPreferredCPU(),
which a Task implementation may use to control affinity. A class wishing to be
dispatched and run by the ThreadPool class should implement the Task interface.

If a ThreadPool is asked to dispatch a task, but does not have any available threads
to run the task, the caller must check the return value in order to see if the task
was actually dispatched or not.

Synchronization primitives

The Mutex, Cond, Barrier and SpinLock classes implements abstractions of POSIX
synchronization primitives with the same semantics. The most notable difference
is the conditional variable, Cond, which inherits the Mutex class, thereby carrying
an implicit lock used for the conditional variable. This is different from the POSIX
conditional variable, which is explicitly associated with a lock when used.

4.5.4 Query generators and query data

QueryGenerator

A client in Vsim is represented by the QueryGenerator class. A QueryGenerator
implements the Task interface, and runs within its own thread. Moreover, there are
two subclasses of QueryGenerator. The StaticQueryGenerator class statically
specifies how many hits a query is supposed to give, specified with the -n parameter.
The QRSLogQueryGenerator uses the hit counts in a QRS log file to specify the

46 CHAPTER 4. VSIM - VESPA SEARCH CORE SIMULATOR

Fetcher QueryHandler

Query
+notify(partid:partid_t,numhits:unsigned long)
+merge()
+reportStats(stat:VSimStat)
+getCollector(partid:partid_t): HitCollector
+getRange(partid:partid_t): const PartitionRange
+getHits(slot:const Slot): docid_t

ResultBuffer
+getHandle(partid:partid_t): HitCollector
+mergeHits(partid:partid_t)

MergeQueue
+dequeue(stop:bool): docid_t
+enqueue(id:partid_t)

Figure 4.3: Classes dealing with a query

number of hits for each query.

All query generators use the same query queue as input, and enqueues the queries
they generate in this queue. The query generator sleeps until it is notified of a
query’s completion.

Query

Figure 4.3 shows the Query class and related classes. The query contains all in-
formation related to the evaluation of a query, such as the number of hits that
should be generated for each slot, and a result buffer.

After the query is evaluated, the result buffer contains all the highest ranked hits.
A merge queue is used to keep track of fetchers that are finished and have their
results ready for merging, and in which order they may be merged.

A query also contains various time stamps gathered during evaluation, and re-
ports these to the simulator statistics module on completion. For each query, the
following is recorded:

Tq - The time spent waiting in the query queue.

Tpi - The time spent waiting in partition queue i

Tfi - The time spent on ranking in fetcher i

Texec - The time spent on query evaluation from when its dequeued from the query
queue until completion

From these numbers, one can easily get the time spent within the query handler

4.5. SOFTWARE DESIGN 47

that is not overlapping with the fetchers:

Tqh = Texec − (max
0<i<#partitions

Tpi + Tfi)

It is important to use the partition queue and the fetcher with the largest wait and
evaluation time combined, because the total evaluation time of a query depends
on the slowest fetcher. The serial fraction of time spent in the handler can then be
specified:

Fqh = Tqh

Texec

This fraction is the serial fraction of query evaluation, which enables further reas-
oning on the potential speedup of the design given a set of parameters. It may also
be used to compare the actual speedup to the predicted speedups of Amdahl’s and
Gustafson’s law.

4.5.5 Document storage and ranking

Documents in Vsim are only contained in memory, which corresponds to attrib-
utes in Vespa. A simple abstraction is used to contain attributes and to provide
operations such calculating the rank of a document.

VSimStore

The VSimStore class manages the document store. The number of doc ids in the
store is determined by the -d parameter. The attributes are stored as an array
for each type, where each entry contains a random integer value determined when
running the seed() method.

The store provides another method, getRank(), to calculate the rank of a docu-
ment. The rank of a document is determined by adding the values of the attributes
of a particular document. The attributes used in this calculation is specified with
the -r parameter. Although this is a very naive way of calculating the rank, is is
run more than one time (the number of rounds is specified with a compile time
constant) so that the ranking phase burns more CPU cycles. This way, a workload
similar to that of the Vespa search core can be achieved. The Vespa search core
performs this calculation in a more complex fashion because it supports features
such as using variable length strings as attributes. In the final version of Vsim, the
ranking is run 20 times, as it gives a realistic query evaluation time on the target
architecture. This also enables QRS log files to be used without pre processing,
as the hit counts does not have to be adjusted to get enough work to do for the
fetchers.

48 CHAPTER 4. VSIM - VESPA SEARCH CORE SIMULATOR

PartitionQueue
+dequeue(stop:bool): Query
+enqueue(q:Query)

QueryQueue
+dequeue(stop:bool): Query
+enqueue(q:Query)

MergeQueue
+dequeue(stop:bool): partid_t
+enqueue(id:partid_t)

Queue

+shutdown()
+waitUntilEmpty()

T:Query

Figure 4.4: The Queue template interface and the classes implementing it

VSimSeeder

The VSimSeeder implements the aforementioned Task interface, and is in charge of
generating random attribute values between each simulation run. Multiple seeder
threads can be run, each pinned to its own CPU core. The number of seeder
threads to run is set to the number of processors by default, in order to make sure
that the operating system allocates memory at different physical locations in the
system. Storing attributes in this fashion ensures that one gets the memory layout
as in Figure 2.4.

4.5.6 Queue generalizations

There are three types of queues: query queues, partition queues and merge queues.
All of these use the same template class as base, Queue, which implements methods
for interrupting any listeners and for waiting until the queue is empty. Figure 4.4
shows how the classes are related.

QueryQueue

Only one instance of the query queue exists, as it acts as a global input queue
used by all clients. The queue implements methods for enqueueing and dequeueing
queries. The length of this queue is set to the number of query handlers. If the
queue is full, the caller is blocked until an element is removed.

PartitionQueue

The PartitionQueue class is almost identical to the query queue, but it does not
have a maximum length. One partition queue is created for each partition, and it
may be used by one or more fetchers.

4.5. SOFTWARE DESIGN 49

MergeQueue

3
1

Partition buffers (ResultBuffer)

1 2 3 42

4

ResultBuffer

enqueue()

Thread 1

Thread 5

Thread 2

Fetcher 2

Thread 3

Fetcher 3

Thread 4

Fetcher 4

QueryHandler

dequeue()

mergeHits()

Fetcher 1

Figure 4.5: Pipelined merge. Fetcher 4 copies its results to partition buffer 4, and
inserts its id into the queue. The query handler picks id 2 from the queue, and
merges the results from partition buffer 2 (contained within the hit collectors inside
the ResultBuffer class) into the result buffer

MergeQueue

The merge queue object is used to serialize the merging of the query results. Fig-
ure 4.5 describes the merge process logically. Each fetcher enqueues its partition
number and wakes up any objects listing on the queue (which in this case, is the
query handler). As soon as the query handler is woken up, it dequeues the partition
id. The partition id is used as an index into an array containing the hit collectors
for all partitions. When the appropriate hit collector is picked, the internal buffer
of that hit collector is merged into the result buffer. When the results from all
partitions have been processed, the merging is finished.

4.5.7 Vsim threading model

After a query has been generated and put on the input queue, the query is processed
by several other classes in vsim. Each of these classes run within their own threads,
and uses queues to communicate.

50 CHAPTER 4. VSIM - VESPA SEARCH CORE SIMULATOR

QueryHandler

The QueryHandler class controls the whole query evaluation process. The query
handler implements the interfaceTask interface, and runs in its own thread. The
query handler contains references to all of the partition queues in the system, on
which it places a query as soon as it is dequeued from the query queue. Having
enqueued the query in the partition queues, the query handler starts to merge
any available results. Since the results are not available until the fetchers have
evaluated the query, the query handler sleeps until it is notified.

Fetcher

The Fetcher class implements the Task interface, and performs the query evalu-
ation within a partition. Having dequeued a query from its designated partition
queue, the fetcher iterates through all slots within a partition. For each slot, the
amount of hits encountered is specified within the query. The fetcher then gener-
ates that many doc ids. For each doc id generated, the rank of that document is
retrieved from the document store. The doc id and its rank is then given to the
hit collector, which decides if the hit is relevant enough.

When the fetcher has iterated over all slots, the contents of the hit collector is
sorted. Then, the query handler is notified, so that the results may be merged into
the result buffer.

4.5.8 Collecting hits and storing the result

Figure 4.6 shows the classes involved when a query is evaluated within the fetcher.
The hit collector is used to store the best ranking hits for one partition, while the
result buffer is used to store the overall best ranked hits. The hit vector is used as
the container for hits.

HitCollector

The HitCollector class is responsible for collecting the best ranked hits. The hits
are stored in a buffer of which size is specified with the -h parameter. The hit
collector provides methods for adding hits to the internal buffer.

Figure 4.7 shows how the implementation works. In a, new hits are added to the
buffer until its full. In b, when the internal buffer is full, it is transformed into
a min-heap in order to quickly throw away low ranking hits while having a low
memory usage. In c, for each hit encountered after the buffer is full, the rank of
that hit is compared to the lowest ranking hit in the heap. If the hit rank is higher,
it replaces the hit and is floated down the heap to maintain the heap property. In

4.5. SOFTWARE DESIGN 51

Query
+notify(partid:partid_t,numhits:unsigned long)
+merge()
+reportStats(stat:VSimStat)
+getCollector(partid:partid_t): HitCollector
+getRange(partid:partid_t): const PartitionRange
+getHits(slot:const Slot): docid_t

HitCollector
+addHit(id:docid_t,rank:rank_t)
+sortBuffer()
+reset()
+size(): unsigned long
+getResultBuffer(): const HitVector
-considerForHit(id:docid_t,rank:rank_t)

ResultBuffer
+getHandle(partid:partid_t): HitCollector
+mergeHits(partid:partid_t)

HitVector
+add(hit:const Hit)
+sort()
+merge(v1:const HitVector,v2:const HitVector)

Fetcher
VSimStore

+getRank(id:docid_t): rank_t
+seed(s:unsigned long)

Figure 4.6: Classes involved in query evaluation within the fetcher

25 72 7

25 72 527 3

25 72 5273

45 25 72 527

4525 72527

4525 725234

45 34 2572 52

Figure 4.7: The HitCollector algorithm implementation used in Vsim

52 CHAPTER 4. VSIM - VESPA SEARCH CORE SIMULATOR

d, the hit collection is finished, and the results are sorted.

HitVector

The HitVector class is used to represent the internal buffer in the hit collector and
the result buffer. The class is implemented as a wrapper on top of a pre-allocated
array. It keeps an internal pointer to the first unused element in the internal array,
where new hits are inserted. It also provides a method to reset this pointer without
having to deallocate any elements in the array. This makes the hit vector reusable
without any overhead.

ResultBuffer

The ResultBuffer class contains a buffer with the most relevant hits after a query
has been evaluated by all fetchers. The size of this buffer is determined by the -h
parameter. The result buffer implements a method for merging a hit vector into
one of the result buffer. This method is used by the query handler when merging
the results from each partition. The merging is performed using two buffers of the
same size. For each merge, one of the buffers together with the internal buffer of
a hit collector is used as operands to the merge algorithm. The result is stored in
the second buffer. The second buffer is then used as an operand during the next
merge. After merging the results from all partitions, the final result is contained
within one of these buffers (marked with a pointer).

The ResultBuffer also contains the hit collectors that are used by each fetcher.
Before the fetcher starts to iterate through the slots in its partition, it retrieves a
handle to one of these hit collectors via the query.

4.5.9 Autopartitioning

The VSimStat class provides adjustment of partition boundaries with the
updatePartitionScheme() method. This kind of runtime autopartitioning can
be used when experiencing skewed distribution of the doc ids, as explained in
Section 3.6. This feature may be necessary if the Vespa search core is to support
parallel query evaluation, because an unbalanced load will decrease the effectiveness
of this scheme without it. In Vsim, the autopartitioning algorithm operates on slots
as the basic unit, as it is otherwise hard to generate a workload and measure the
results appropriately. Figure 4.8 shows how the autopartitioning algorithm is used
in Vsim with a few modifications. In a, the first partition is evaluated. Clearly, the
number of hits experienced by the first partition is much larger than that of the
other partitions. As the ideal ratio of #hits

#totalhits = 4
16 , and the first partition got

7
16 of the hits, 3

16 of the slots are removed and pushed back, which will expand the
last partition with the same number of slots.

4.5. SOFTWARE DESIGN 53

Partitions Hit statistics

P1 P2 P3 P4

P1 P2 P3 P4

P1 P2 P3 P4

P1 P2 P3 P4

P1 P2 P3 P4

P1 P2 P3 P4

P1 P2 P3 P4

P1 P2 P3 P4

0 164 91

0 164 81

0 165 91

0 164 8 12

Figure 4.8: Autopartitioning of a system with four partitions and four slots per
partition initially. The left side shows the partitions and their range. The right
side show the distribution of hits as experienced by the simulator itself.

In b, the second partition has 1
16 slots too many, and one of them will be removed

and pushed through to the back.

In c, the third partition has only gets 3
16 of the hits, which means that it should

get an additional slot. The slot is taken from the last partition, and the resulting
partition range after running the algorithm is shown in d.

4.5.10 Simulation setup and configuration management

The initialization part of Vsim parses all arguments provided by the user into a
VSimConfig object, which contains all configuration parameters in Vsim.

Next, all initial data structures such as the QueryQueue, QueryGenerators, ThreadPool,
VSimStore, PartitionQueues and all QueryHandler and Fetcher objects are al-
located and initialized. After all threads are started, the main thread sleeps until
the simulation is finished and tells all other threads to shut down.

54 CHAPTER 4. VSIM - VESPA SEARCH CORE SIMULATOR

4.5.11 Collecting statistics and generating a simulation re-
port

The VSimStat class is used to collect interesting numbers regarding a query, and
generates various statistics which are stored in the VSimReport class. The VSimReport
class is able to write and read a sample file which includes configuration data for
the simulation as well as the results.

4.6 Alternative designs and ideas

During development of Vsim, many ideas were tried out. Some of them were
successful and exists in the current version, and some of them failed and were
dropped. This section describes some of these alternative design choices.

4.6.1 Parallel merge

1 2 3 4

Result buffer

Partition buffers57 33 22 2 44 42 9 8 17 15 14 13

57 33 22 Intermediate buffers

23 15 11 3

23 44 42 17 15

57 44 42 33

Figure 4.9: Parallel merge: each partition is merged into a temporary buffer, which
is again merged with other temporary buffer until only one buffer remains

Merging the results in pipeline is a simple and effective way of merging the results.
However, an even more effective scheme is a parallel merge scheme. Figure 4.9
shows how four partitions can be merged.

Unfortunately, implementing parallel merge in Vsim complicated the design, and
since the overhead of the QueryHandler using 8 cores was only around 2%, very
little gain would be achieved, and the cost would be increased complexity.

4.7. INITIAL FLAWS 55

4.6.2 Experimenting with alternative HitCollector imple-
mentations

As mentioned in Section 4.5.8, a min-heap is used to efficiently store and compare
the best hits with new hits. However, a heap is not necessarily the best choice when
the results should be sorted on finish. Different algorithms for collecting hits have
been suggested and implemented during the course of this study. These algorithms
are not directly related to the study and not described here. A full description of
the algorithms can be found in Appendix A.1.1.

4.7 Initial flaws

Initially, Vsim contained a few flaws based on unrealistic assumptions or bad per-
formance. Appendix A.2 describes these flaws for future reference.

4.8 Accuracy of Vsim model

Vsim is not guaranteed to behave exactly like the Vespa search core. One way to
verify that Vsim is correct would be to compare it directly against Vespa. But, since
one of the reasons for writing Vsim is that it is hard to measure the performance of
the Vespa search core in detail, it is also hard to compare Vsim and Vespa. However,
during Vsim development, discussions with people at Yahoo! with experience with
development of the Vespa search core helps ensure that the design is somewhat
similar. It is more important that Vsim is able to compare the two threading model
designs, than Vsim being identical to Vespa, and it is more important that Vsim
provides a somewhat correct workload of these threading models, than running
the exact same algorithms as the Vespa search core. Although in some cases,
approximating the algorithms may be necessary to get the same workload, such as
the data structures and sorting used in the hit collector.

56 CHAPTER 4. VSIM - VESPA SEARCH CORE SIMULATOR

Chapter 5

Evaluation methodology

A set of metrics and tools as well as knowledge about the target platform is re-
quired in order to evaluate Vsim. Section 5.1 describes the target platform for
the experiments, while Section 5.2 explains which performance counters to use for
measuring the effects on the cache hierarchy. Section 5.4 describes the metrics used
to evaluate Vsim.

5.1 Target platform

The target platform for the experiments uses state of the art hardware for Vespa
search nodes. Table 5.1 shows the hardware components of such a node. The
primary interest in this study is the interaction between the CPU and the memory
hierarchy.

Table 5.1: Hardware components of the target platform

Component Description
CPU 2 x Xeon E5530 2.40GHz 5860MHz FSB (HT missing, 8

cores, 8/16 threads) - Gainestown D0, 64-bit, quad-core,
45nm, L3: 8MB

RAM 47.3 GB
Hard drive RAID-0 == 2 x 300GB 10K SAS/6 2.5" Seagate Savvio

10K.3 16MB
Operating system Red Hat Enterprise Linux 4 U8, Linux 2.6.30.9 x86_64,

64-bit

58 CHAPTER 5. EVALUATION METHODOLOGY

L3 (8 MB)

fL1 (32 kB)

L2 (256 kB)

fL1 (32 kB)

L2 (256 kB)

fL1 (32 kB)

L2 (256 kB)

fL1 (32 kB)

L2 (256 kB)

Figure 5.1: An overview of the Xeon E5530 cache hierarchy

5.1.1 Intel Xeon E5530

The CPUs used for benchmarking are based on the Nehalem architecture [neh10],
more specifically the Xeon E5530 model. It is important to understand the cache
hierarchy in order to decide what experiments to perform as well as for evaluating
the results. Figure 5.1 shows the E5530 cache hierarchy. Each core contains a 64kB
cache split into a 32kB data cache (shown in figure) and a 32kB instruction cache.
Each core has its own L2 cache of 256kB, containing both data and instructions.
The last level cache (L3 8MB) is shared by all four cores. The L3 cache is an
inclusive cache, meaning that all entries in each cores L2 cache is contained in the
L3 cache as well. This reduces traffic between the L2 caches, as each core only
needs to look in the L3 cache to know if it is contained within other core’s caches
or not.

The CPU also supports hyperthreading, making it possible to run two threads of
execution of the same core. It is disabled for these experiments, as it makes it
harder to evaluate the performance when two threads are using the same cache.
By passing the maxcpus=8 parameter to the Linux kernel at boot up, the hyper-
threading capability of each core is disabled.

5.2 Performance counters

Although Vsim is able to output statistics related to its own execution, the effects on
processor architecture are measured from outside. Performance counters are used
to get insight into cache behavior. The counters used for the target architecture,
Nehalem, are shown in Table 5.2 using a simplified naming scheme. For the real
mapping of these simple names to the real counter names, see Appendix B.1.

Each performance counter is used in combination with an argument mask to spe-
cify which data it should collect. The counters alone do not give any interesting
numbers, but they can be combined to find the cache miss ratio at each cache level.

5.2. PERFORMANCE COUNTERS 59

Table 5.2: Performance counters used

Name Description
L1 MISSES The number of L1 cache read misses
L1 LOADS The number of L1 cache reads
L2 MISSES The number of loads that cache
L2 LOADS The number of L2 cache references
L3 MISSES The number of loads that missed the L3 cache
CYCLES The number of cycles when CPU is not idle. Used for tuning

Table 5.3: Cache parameters of the Nehalem architecture

Level Capacity Access latency (cycles) Access latency Xeon
E5530 (nanoseconds)

L1 Data 32kB 4 1.7
L2 256kB 10 4.2
L3 8MB 35-40+ 14.6 - 16.7+

The miss ratio of a cache can be found by dividing the number of misses by the
number of loads for that cache level. For instance, the following formula gives the
L1 miss ratio: L1 MISSES

L1 LOADS .

For the hit and miss ratios on the different cache levels to be of any use, the
parameters of the particular test architecture must be fetched. Table 5.3 shows the
cache parameters for the Nehalem architecture [Int09]. The L2 latencies seen from
software can vary depending on access pattern and other factors. The L3 latencies
depends on the frequency of the core requesting the cache line compared to that
of the uncore1. For the Vsim target architecture, the latency, L, can be calculated
using the number of cycles, C, to access the different cache levels, and using the
clock frequency, F :

L = C

F

which is used to calculate the access latencies in nanoseconds. These numbers are
used in Chapter 7 to compare the different search core designs.

To not blindly rely on numbers from Intel, cache latency numbers from outside
Intel are used to validate them. Molka et. al. from TU-Dresden analyze the

1uncore referes to everything that is not on core

Table 5.4: Cache read latencies from [MHSM09]

Source Exclusive cache lines Modified cache lines Shared cache lines RAML1 L2 L3 L1 L2 L3 L1 L2 L3
Local 1.3 (4) 3.4 (10) 13.0 (38) 1.3 (4) 3.4 (10) 13.0 (38) 1.3 (4) 3.4 (10) 13.0 (38) 65.1Core1 (on die) 22.2 (65) 28.3 (83) 25.5 (75) 13.0 (38)

Core4 (QPI) 64.4 (186) 102 - 109 58.0 (170) 106.0

60 CHAPTER 5. EVALUATION METHODOLOGY

memory performance and cache coherency effects of the Nehalem microarchitecture
[MHSM09], using two Xeon X5570 CPUs. The Xeon X5570 is similar to the E5530
model used in this study. The main difference between these models seems to be
the clock frequency (2.933 GHz vs. 2.40 GHz) and QuickPath Interconnect (QPI)
bandwidth (6.4 GT/s vs. 5.86 GT/s2). The numbers from Molka are shown in
Table 5.4. The latencies satisfied by local cache is almost the same as given by
Intel. However, the latencies when accessing non-local data are worse, so the worst
case numbers are used when calculating the average memory latency. Memory is
assumed to have an average latency of 100 ns.

5.3 OProfile

OProfile is used to collect the performance counter values used to get the cache
miss ratios. OProfile is controlled by two commands: opcontrol and opreport.
opcontrol controls an OProfile server process, which interacts with the OProfile
kernel module and collects the values of the different performance counters. The
opreport command is used to generate profiles using sampled data and program
symbol tables. This can be used to get the time spent in different functions.
Listing 5.2 shows the output from opreport after profiling the application shown
in Listing 5.1. The program itself is meaningless, and is only made to show how
OProfile works. The foo function does all the work in the test application, while
the main function generates very few samples. The amount of samples for each
program symbol varies, depending on how long the application is run, as well as
how often the functions are used. More interesting for the user, is the relative time
spent in each function, shown in a percentage of total samples.

int foo(int val)
{

int ret = 0;
for (int i = 0; i < val; i++)

ret += i * val;
return (ret);

}

void main(void)
{

int other = 0;
for (int i = 0; i < 100000; i++) {

int res = foo (10000) ;
other += res / (i + 1);
int a = other * i;

}
}

Listing 5.1: Example application for OProfile

2GT/s = Giga Transfers/second

5.4. BASIC METRICS USED TO EVALUATE VSIM 61

CPU: Core 2, speed 1600 MHz (estimated)
Counted CPU_CLK_UNHALTED events (Clock cycles when not halted) with a

unit mask of 0x00 (Unhalted core cycles) count 100000
samples % symbol name
90414 99.9558 foo
40 0.0442 main

Listing 5.2: Example OProfile output

5.4 Basic metrics used to evaluate Vsim

The experiments performed in this study are used to see the effects of parallel
query evaluation. There are several key metrics that can be used to evaluate the
Vsim workload. Some of them are given by Vsim itself, while others are provided
via profiling tools.

5.4.1 Throughput

Throughput describes how many elements that is processed per time unit. In
Vsim, the throughput can be determined from the number of queries processed per
second. The throughput can also be described as number of queries processed per
CPU second, which remove the time spent while waiting for threads to run.

5.4.2 Latency

The time spent in evaluating the query is useful to see the maximum throughput
achievable while keeping the latency low. The throughput and latency are related,
but can behave differently when going past the load that the system is designed to
handle. The latency includes all time spent from the moment the query is added
to the query queue, until it is evaluated.

5.4.3 Speedup and efficiency

The efficiency, E, shows how well the CPU resources are being used, and is de-
pendent on several other variables such as the speedup S and the latency L or the
throughput T . The speedup can be calculated in two ways. Either as a function
of the throughput:

S = Tn

T1

62 CHAPTER 5. EVALUATION METHODOLOGY

where Tn is the throughput when running with n number of concurrently executing
queries (or threads), or as a function of the latency:

S = L1

Ln

where Ln is the latency when running with n partitions (or threads).

The reason for using two speedup metrics is simple: When increasing the number
of concurrently evaluated queries, the latency remains fairly identical while the
throughput increases. When increasing the number of partitions, the latency goes
down while the throughput goes up. Thus, for the second case, the speedup should
be equal when using both formulas.

The efficiency, E, is defined as:
E = S

n

where n is the number of threads. The efficiency shows how good the speedup
is compared to ideal speedup. A value below 1 means that the speedup is not
ideal, and that the application fails to fully utilize the processing power. A value
above 1 is the consequence of a phenomenon called super linear speedup. The
reason for super linear speedup is that the baseline configuration is not optimal.
One common problem reason for super linear speedup is the cache. Some times,
elements in the cache are reused between multiple concurrent threads, and results
in each thread running faster than it would if it would run alone on the processor.
Grama and Kumar gives further details on scalability of parallel programs [RR07],
and proposes several other metrics for evaluating parallel programs.

For the experiments in this report, the speedup is used instead of the efficiency.
The reason is that the speedup gives a more intuitive way of comparing the designs
to the speedup predicted by Amdahl’s and Gustafson’s law.

5.4.4 Average memory access time

The average memory access time indicates the expected memory latency over time.
To calculate it, the access ratios together with the access times for each level in
the memory hierarchy are used. Hennessy and Patterson describes the following
formula to calculate the average memory access time [HP07]:

Average memory access time = Hit timeL1 + Miss ratioL1

×(Hit timeL2 + Miss ratioL2

×(Hit timeL3 + Miss ratioL3

×Miss penaltyL3))

All the variables in this equation are provided by the performance counters and
values found in Section 5.2.

Chapter 6

Experiments

To decide if parallel query evaluation is worth the effort or not, a few experiments
are run on Vsim and analyzed. Section 6.1 lists the default parameters used in the
experiments. Section 6.2 presents the scalability of Vsim and parallel query evalu-
ation. Moreover, the theories of potential performance improvements are discussed
in Chapter 3 are evaluated in Section 6.3 and 6.4. The autopartitioning algorithm
presented in Section 4.5.9 is evaluated in Section 6.5, using various probability dis-
tributions as input to Vsim. Each section contains a description of experiments,
followed by an analysis and a discussion of the results. Section 6.6 concludes the
experiments with a general discussion and conclusion.

6.1 Vsim parameters

Not all of the parameters in Vsim are adjusted for the experiments presented in this
chapter. Table 6.1 shows a list of default parameters and their abbreviations used
when displaying experiment parameters. The parameters are set to be as realistic
as possible compared to settings used in a typical Vespa search node. Vsim will use
these parameters unless otherwise specified in each experiment. Most experiments
are run 10 times for 60 seconds each, while the scalability experiments are run 20
times for 60 seconds each. The numbers presented are the average of all runs. In
some cases, the standard deviations are shown in the graphs.

6.2 Scalability

Vsim needs to be scalable in terms of the number of clients running on the system.
Table 6.2 show the experiments and their parameters. All experiments run with

64 CHAPTER 6. EXPERIMENTS

Table 6.1: Vsim default parameters

Parameter Value Abbreviation
Attributes 32 -
Max number of connec-
tions

1 CONN

Documents 40,000,000 DOC
Heap size 1000 -
Hit distribution binomial DIST
slots per partition 1 SLT
Hits per query 10000 HITS
Number of partitions 1 PART
Attribute indices used to
calculate the rank

0, 31, 4, 13, 5, 27, 18, 29 -

Number of clients the same as the max
number of connections

CL

Table 6.2: Vsim parameters and values for evaluating scalability

Experiment CONN CL PART HITS DOCS
1 1 - 12 24 1 CONN× 2000 CONN× 3000000
2 1 24 1 - 12 PART× 2000 PART× 3000000
3 1 24 1 - 10 10000 30000000

the same number of clients in order to give an equal load. The first experiment
tests the speedup as a function of the number of connections running at the same
time. It is important that Vsim scales with the number of connections in order
to be a realistic model of the Vespa search core. The second experiment tests the
speedup as a function of the number of partitions. This tests how the alternative
threading model using parallel query evaluation scales. Both experiments uses a
scaled problem size, by increasing the number of documents as well as the number
of hits per query together with the number of connections/number of partitions.
These experiments are run with affinity disabled and enabled in order to compare
the scheduler impact. In contrast to the first two, the third experiment investigates
the scalability when using the same problem size.

6.2.1 Scalability of query handlers

Figure 6.1 shows the speedup as a function of the maximum number of connections
from the first experiment with affinity disabled and enabled. The predictions of
Gustafson’s law are also shown.

Super linear speedup is achieved when affinity is disabled. When the number of
connections goes past the number of processor cores, the speedup flattens. The
super linear speedup comes from the inefficiencies of the 1 connection case, which

6.2. SCALABILITY 65

Figure 6.1: Speedup as a function of the number of connections

is used as the baseline when calculating the speedup. Such inefficiencies can be
attributed to an increased L3 cache reuse, because multiple threads use the same
cache. The inefficiencies can also be caused by bad scheduler decisions, if threads
are not optimally scheduled in the baseline configuration.

When the experiment is run with affinity enabled, the fetcher for each connection is
pinned to a specific processor core ("connection number" mod "# processor cores").
With affinity, the speedup curve closely follows the Gustafson’s curve up to the
number of processor cores in the system. The curve flattens out when the number
of connections goes past 8. This curve confirms that the super linear speedups can
be attributed to bad scheduling decisions in the baseline configuration.

6.2.2 Scalability of parallel query evaluation

The second experiment measures the performance when varying the number of
partitions. The goal is to evaluate the scalability of parallel query evaluation.
Figure 6.2 shows the speedup as a function of the number of partitions with affinity
disabled and enabled. The predictions by Gustafsons’s law when using the serial
fraction for 1 partition as a basis are also shown.

Without affinity, the speedup follows the linear curve up to 5 partitions. At 6 and
7 partitions, there are minor deviations from the linear speedup. At 8 partitions,
however, the speedup increases to 10. As fetchers do not share data at all, there

66 CHAPTER 6. EXPERIMENTS

Figure 6.2: Scalability as a function of the number of partitions

should be no additional gain from cache reuse. Therefore, the behavior most likely
comes from scheduler inefficiencies when using fewer partitions. The experiment
with affinity enabled supports this explanation. When affinity is enabled, the
speedup is bounded by the linear curve, as the scheduler takes no part in deciding
where a thread should run.

When the number of partitions is larger than the number of cores, the speedup goes
down, because p − 8 fetchers will have to wait for other fetchers to finish before
running, which could result in a doubling of the worst case query evaluation time.
Gustafson’s law predicts the speedup somewhat accurately up to 8 cores.

Serial fraction of fixed problem sizes, and Amdahl’s law

Results from the third experiment, are shown in Figure 6.3. Each query gives
10000 hits, spread uniformly across all partitions. Since the problem size is fixed,
the amount of work performed in parallel remains the same. The serial fraction
(spent in the query handler) increases as a function of the number of partitions.
Once the number of partitions exceed the number of processor cores, the fraction
jumps up to above 30%. The reason is that the time spent on the merge within
the query handler not only increases because of more partitions to merge, but also
because it has to wait for these partitions to finish before merging.

Figure 6.4 shows the same figure zoomed in to the lower 10% fraction. The time

6.2. SCALABILITY 67

Figure 6.3: Fraction of the total query evaluation time spent in various stages of
query evaluation

Figure 6.4: Fraction of the total query evaluation time spent in various stages of
query evaluation, lower 10%

68 CHAPTER 6. EXPERIMENTS

Figure 6.5: Speedup calculated using Amdahl’s law

spent in the fetchers constitutes the largest fraction of query evaluation time. As
the number of partitions increases, the fractions of the time spent in the partition
queues as well as the query handler increases.

Figure 6.5 shows the speedup predicted by Amdahl’s law and Gustafson’s law as a
function of the number of processor cores. The predictions are calculated using the
baseline serial fraction of the 1 partition configuration. Amdahl’s law does not seem
very pessimistic in this case, as the speedup is reasonable even past 64 partitions.
The predictions from Gustafson’s law follows the linear curve and cannot be seen
in the plot, because of the low serial fraction.

In Vsim, the amount of data that needs to be processed in the serial part increases
linearly with the number of partitions because of the pipelined merge scheme. To
increase scalability, the number of documents returned for each partition can be
reduced. If the N hits are required in total, only k×N

P documents is returned
per partition, where P is the number of partitions and k is a factor that can be
adjusted to get the desired constraint. If k = P , the memory requirements will
double when the number of partitions are doubled, which is the current behavior.
If k = 1, the data size is kept constant even though the number of partitions is
increased. The problem with this approach, is that the guarantee of returning the
best hits are sacrificed. To improve the scalability without sacrificing precision,
one can use parallel merge. Parallel merge would increase the serial fraction with
log N instead of N . As mentioned in Section 4.6.1, the implementation of such
a scheme is complex. The parallel merge scheme can be implemented when it

6.3. PERFORMANCE OF PARALLEL QUERY EVALUATION 69

Table 6.3: Vsim parameters and values for checking behavior during low load

Experiment DOCS CONN HITS PART CL QRS log source
1 20000000 16 16000 1 - 12 1 - 20 -
2 20000000 16 - 1 - 12 1 - 20 Yahoo! News

Search
3 20000000 16 - 1 - 12 1 - 20 Yahoo! Image

Search

becomes necessary.

6.3 Performance of parallel query evaluation

In Chapter 3, a hypothesis was stated saying that using more than one partition
would lower the query latencies during lower load periods. Ideally, query laten-
cies should behave similar to the "hockey stick" shown in Figure 3.5 in Chapter 3.
Table 6.3 shows the experiments and their parameters. The maximum number
of connections is set to 16, while the load is varied by changing the number of
clients. The number of partitions is varied between 1 and 12 to get an idea how
the latency varies for different configurations. The first experiment uses a static
query generator for generating hits. The second and third experiment uses the qrs
log file query generator. The second experiment uses QRS log files from Yahoo!
News Search, while the third uses QRS log files from Yahoo! Image search. An im-
portant observation when evaluating these experiments is to see where the latency
cross-over for the different configurations is. This cross-over indicates where one
configuration becomes better or worse than the other.

6.3.1 Using the same number of hits per query

Figure 6.6 shows the results from the first experiment. For 1 partition, the latency
behaves as expected. As the number of clients increases, the latency decreases a
little until the number of clients is equal or greater to the number of processor
cores. After that point, the latency goes up linearly with the queue size.

The cross-over between the configuration with one partition and configurations
with multiple partitions moves to the right as the number of partitions increases.
Moreover, the latencies for a configuration with multiple partitions are lower at
the left side of the cross-over. For eight partitions, the crossover happens between
8 and 9 clients, from where the latencies become roughly the same. There is one
exception to the cross-over pattern, which happens for the two partition config-
uration. Possible reasons are how the threads are placed by the scheduler. Since
fetchers operate on the same data range, there is no guarantee that the operating

70 CHAPTER 6. EXPERIMENTS

Figure 6.6: Latency as a function of the number of clients

system will put them to run on separate cores, since it takes affinity into account as
well. As seen in the scalability experiments, the scheduler can make non-optimal
decisions. However, going further into detail of the operating system scheduler
workings is outside the scope of this study.

There is another unexpected behavior happening for the 2, 4 and 6 partition con-
figurations, where the latency curve is simply bent. When the number of clients are
lower than the number of processor cores, the latencies go up quickly. A possible
explanation is that may compete with other fetchers for the same processor cores.
As the number of clients exceed the number of cores, the latency becomes the same
across all configurations.

For 8 partitions, the curve is close to linear. The latency is low from 1 to 8
partitions, and the cross point happens when stepping up from 8 to 9 clients. The
curve then follows the 1 partition curve linearly, but at a higher offset due to the
extra overhead. These numbers show that for low loads, the query latency benefits
from using more than one partition. Further, the latency does not increase faster
for 8 partitions than 1 partition, as they are both bounded by the number of query
handlers running on the 8 processor cores. Setting the number of partitions to a
higher value than the number of cores does not result in lower, nor higher, search
latencies because of the limited number of cores.

6.3. PERFORMANCE OF PARALLEL QUERY EVALUATION 71

Figure 6.7: Latency as a function of the number of clients using QRS log files from
Yahoo! News

6.3.2 Using QRS logs from Yahoo! News

Figure 6.7 shows the results from the second experiment where QRS log files from
Yahoo! News are used as input. Characteristics of the input queries are that they
generate few hits on average. This is a disadvantage for parallel query evaluation.
The pattern is almost opposite to that of the first experiment. If the number of par-
titions is increased, the latency curve gets steeper. This most likely comes from the
overhead of dispatch and merge, which gets to big compared to the savings of per-
forming the ranking in parallel. The only exception, however, is the configuration
with 2 partitions, which seems to be the ideal configuration for this workload.

6.3.3 Using QRS logs from Yahoo! Image Search

Figure 6.8 shows the results from same experiment as the previous one when using
QRS log files from Yahoo! Image Search as input instead. In contrast to the
log files from Yahoo! News, these log files generates a higher average number of
hits per query, which becomes an advantage for parallel query evaluation. All
configurations supporting more than one partition gives a lower search latency all
over. For configurations from 6 to 12 partitions, there is almost no difference in
performance.

From both QRS log based experiments, it is clear that the performance of parallel

72 CHAPTER 6. EXPERIMENTS

Figure 6.8: Latency as a function of the number of clients using QRS log files from
Yahoo! Image Search

query evaluation depends on the workload. When the amount of work per query is
low, evaluating each query in parallel quickly becomes a disadvantage as the number
of clients increases. It is therefore necessary to make the number of partitions a
configuration parameter that can be tuned for different workloads.

6.4 Behavior of the cache hierarchy

Another hypothesis of the new design, is that it should achieve a higher hit ratio
in the per core caches. To check this, OProfile is used to gather statistics from

Table 6.4: Vsim parameters and values for checking cache behavior

Experiment CONN CL PART DOCS HITS Using
thread
affin-
ity

1 1 1 1 2n, n = 12...25 DOCS× 0.002 NO
2 8 8 1 2n, n = 12...25 DOCS× 0.002 NO
3 1 1 8 2n, n = 12...25 DOCS× 0.002 NO
4 1 1 8 2n, n = 12...25 DOCS× 0.002 YES

6.4. BEHAVIOR OF THE CACHE HIERARCHY 73

Figure 6.9: L1 cache miss ratio as a function of the number of documents

the performance counters. The average memory access time metric (discussed in
Chapter 5) is used to compare the overall memory performance. Table 6.4 lists
the parameters used for these experiments. The first experiment uses only one
partition and one connection. The second experiment uses only one partition, but
runs 8 connections at the same time. The third experiment evaluates the query in
parallel using only one connection at a time in order to reduce interference. The
fourth experiment is the same as the third, but with affinity enabled. This means
that each fetcher is pinned to a specific core ("fetcher number" modulo # processor
cores). For all experiments, the number of documents is increased in power of
two’s, and the number of hits per query is set to a fixed fraction of the number
of documents. The fraction is derived from a realistic number, where an index of
4000000 documents may experience 8000 hits on a query. All graphs are presented
with a logarithmic x axis.

6.4.1 L1 cache miss ratio

Figure 6.9 shows the miss ratio in the L1 cache as a function of the number of doc-
uments. The graph shows the miss ratios for all four experiments. The predictions
were, that by splitting the documents into smaller ranges, the miss ratio would
be lower because the threads for each partition would run on a separate processor
core. This should in turn reduce cache interference.

As predicted, parallel query evaluation experiences a lower miss ratio in the L1

74 CHAPTER 6. EXPERIMENTS

cache. The miss ratio increases monotonically as the number of documents in-
creases. There is, however a notable bump between 214 and 215 number of docu-
ments. To investigate this behavior, consider the parameters of the L1 data cache.
The L1 data cache size is at 32kB with a block size of 64 bytes. This means that
the L1 cache can hold a maximum of 512 cache lines, or 4096 attributes in the
optimal case, without taking associativity into account. Given that the data access
is random, and that 8 attributes are read for each document, this means 8 cache
lines have to be fetched for each hit in the worst case. The number of hits per
query is 33 and 66 at the bump points, which corresponds to 264 and 528 cache
lines. Whether or not this is the cause of the bump is hard to tell. According
to OProfile, the number of L1 cache references do not increase more than 0.3%,
while the number of misses increases by 41 %. Other factors, such as Translation
Lookaside Buffer (TLB) misses may be involved. Another factor could be that the
number of page tables required may have increased and caused indirections for the
operating system when multi level page directories are used. Further investigation
into this matter is outside the scope of this thesis, but interesting for future study.

The curves for the 8 partition configurations are similar to the curves for the 1
partition configurations, but at a lower vertical offset. The difference between
these configurations decreases a little as the number of documents increases. This
is likely due to the low probability of finding an attribute in the L1 cache.

6.4.2 L2 cache miss ratio

Figure 6.10 shows the miss ratios for the L2 cache. The curves have the same form
in all cases, but the curves for 8 partition configurations are at a higher offset on the
x axis. This offset is in the order of 4 - 8 times the document size. For instance, at
220 documents, the miss ratio for the 1 partition configurations is around 45%. At
223, the miss ratio for the 8 partition configurations is around 46%. The document
range covered per partition at 223 documents for the 8 partition configurations is
the same as the range covered at 220 documents in the 1 partition configurations.
As with the L1 miss ratios, there appears to be no difference in the miss ratios
experienced whether only one or eight query handlers are used, as each core has
its own L2 cache.

There is an overall lower miss ratio for 8 partition configurations, for the same
reasons as the lower miss ratio in the L1 cache. For 8 partitions, the L2 cache
gets a lower miss ratio within the range of the experiment. The the gap between 1
partition and 8 partitions closes for large document sizes. This is only natural, as
the cache looses its effectiveness in the same way as the L1 cache when the data
volume becomes huge.

6.4. BEHAVIOR OF THE CACHE HIERARCHY 75

Figure 6.10: L2 cache miss ratio as a function of the number of documents

Figure 6.11: L3 cache miss ratio as a function of the number of documents

76 CHAPTER 6. EXPERIMENTS

Figure 6.12: Average memory access time as a function of the number of documents

6.4.3 L3 cache miss ratio

Figure 6.11 shows the miss ratios for the L3 cache. The simplest case using only
one partition and one query handler performs as expected, as the L3 will act as a
regular cache. The miss ratio decreases as a larger portion of the cache gets used.
In the range between 216 and 219 documents, the L3 cache can no longer contain all
the documents. The L3 cache has space for 8MB of attributes. At 216 documents,
4MB of attribute data can be accessed in total. This means that everything fits in
the L3 cache. However, the attribute data size doubles at 217, and the documents
can only fit in the L3 cache in the best case. Moreover, at 218 documents, only half
the attributes may fit in the cache. From 219 documents and out, the miss ratio
decreases slowly as it reuses entries in the cache.

As with the L2 cache, there is an offset as to when the cache fills up when comparing
8 to 1 partition. For 8 partitions, however, the reuse effect is not as big when using
1 partition. As stated earlier, the L3 cache is shared by four cores. When using
8 partitions, the fetchers are not able to share their data with other fetchers in
this cache. This results in a miss ratio of 80% in the worst case. The miss ratio
decreases as the number of documents approaches 225 though, indicating cache
reuse.

6.5. THE IMPACT OF SLOTS AND AUTOPARTITIONING 77

Table 6.5: Vsim parameters and values for evaluating autopartitioning

Experiment PART SLT DIST
1 2, 4, 8 1000 binomial, geometric, gauss
2 2, 4, 8 1, 10, 100, 1000 geometric

6.4.4 Average memory access time

As previously explained, and as argued by Hennessy and Patterson [HP07], the miss
ratios at the individual cache levels can be misleading, and the average memory
access time should be calculated to get an overall impression of the performance.
Figure 6.12 shows the average memory access times for memory requests using
the miss ratios shown above. Using 8 partitions gives an overall lower access time
than with one partition, even though using one partition with many query handlers
should increase L3 cache reuse.

From these experiments, it can be concluded that parallel query evaluation uses
the per core caches more efficiently. Parallel query evaluation does not, however,
use the shared L3 cache as efficiently as the original design.

6.5 The impact of slots and autopartitioning

The autopartitioning algorithm presented in Section 4.5.9 is believed to improve
throughput and latency when using a skewed hit distribution. Table 6.5 lists the
parameters for the experiments related to autopartitioning. The first experiment
uses different hit distributions, to see how Vsim performs with and without the
autopartitioning algorithm. Figure 6.13 shows how the number of slots per par-
tition is distributed after running the autopartitioning algorithm with the normal
distribution as input (a coarse plot of the input distribution is shown in blue). The
slots are distributed as an inverse to the input, which is expected. If a partition
gets few hits, it will acquire slots from the other partitions. The middle partitions,
partition 4 and 5 contains only a small fraction of the slots, because they get a lot
of hits.

Figure 6.14 shows how autopartitioning performs in terms of latency, for the bino-
mial and geometric probability distributions when using 2, 4 or 8 partitions. As
expected, the latency is almost the same for autopartitioning on and off when using
the binomial distribution. The small differences are of no statistical significance.
For the geometric distribution, the latency decreases significantly when enabling
the autopartitioning algorithm. The largest gain is at 8 partitions, where there is
a speedup of over 4 when using autopartitioning. The autopartitioning algorithm
is clearly necessary when having a skewed hit distribution. The algorithm can also
be tuned by varying the number of slots/slot size, as well as the increments for
each iteration of the algorithm.

78 CHAPTER 6. EXPERIMENTS

Figure 6.13: Autopartitioning using the normal distribution as input

Figure 6.14: Autopartitioning using the binomial and geometric distributions as
input

6.6. DISCUSSION 79

Figure 6.15: The impact of the number of slots for the geometric distribution

The second experiment varies the number of slots and the number of partitions.
The goal of this experiment is to see the impact of using more than one slot per
partition. Figure 6.15 shows the results when testing four different slot sizes of 1,
10, 100 and 1000 with the geometric distribution as input. The biggest reduction
in latency comes from increasing the number of slots per partition to 10. Going
any further does not seem to have a big effect on the latency. The larger number
of slots should, however, be able to deal with fine grained "fluctuations" in the
hit distribution, which are not specified in the distributions used in Vsim. To
investigate the impact of slots even more, one can change the parameters used to
generate the input distribution in the source code itself. This is, however, outside
the scope of evaluating parallel query evaluation.

6.6 Discussion

The alternative design gets a linear speedup as the number of cores increase, which
is the same as the original search core design. Inefficiencies in the speedup baselines
are the primary reason for super linear speedup in the scalability experiments. It
is, however, reason to believe that parallel query evaluation will not be able to scale
perfectly due to several factors. The memory requirements for the heaps increase
linearly with the number of partitions. This, in turn, increases the computation
required in the merge phase, which increases the serial overhead. One way to over-
come this limitation, is to decrease the number of hits collected per partition while

80 CHAPTER 6. EXPERIMENTS

increasing the number of partitions. Another way to overcome such a limitation
would be to perform the merge in parallel.

The primary benefit of parallel query evaluation is a lower latency when the number
of clients are fewer than the number of processor cores in the system. However,
this performance depends greatly on the workload, as the results of running the
simulation with QRS logs show. With data from Yahoo! News, the amount of
work in the fetchers is so low that it gives a negative latency effect when increasing
the number of partitions beyond 2. When using data from Yahoo! Image search,
however, the work required per query is greater. This results in a gain when
using parallel query evaluation, even when the number of partitions is larger than
the number of processor cores in the system. There is, however, nothing against
combining the best of both worlds. Since the alternative design can be configured
as the original design (using only 1 partition), there will be an "escape route"
in case parallel query evaluation performs worse than expected. Another way to
improve the workload independence would be to dynamically change the number
of partitions as the load changes.

Even though splitting the document range into partitions increases the locality for
the per core L1 and L2 caches, the shared L3 cache does not give any extra benefit
other than being yet another cache level for the partitioned scheme. In contrast,
the original search core design gets a higher miss ratio in the L1 and L2 caches,
but regains some of the loss by taking advantage of the shared L3 cache. The
average memory latency helps putting everything into perspective, and shows that
the alternative search core design gets an overall lower latency. But, it is still not
enough to nullify the overhead of dispatching and merging and improve throughput
performance during high loads. Further, it is hard to tell how the design will
continue to scale on manycore processors due to the potential scalability problems
discussed above. But, as the shared cache play no important role in parallel query
evaluation, it is reason to believe that it could scale well on manycore processors
from the perspective of the cache hierarchy.

The reasons as to why the asynchronous approach performs badly in [BGM+07]
becomes clearer when taking the results from the cache hierarchy experiments into
account: The Niagara T1 processor used in their study contains a small L1 cache
of 8kB, and an L2 cache of 3MB shared between all 32 threads [KAO05]. Most
likely, the scheme proposed in this study would not be able to use the shared L2
cache efficiently because of the shared L2 cache. The original search core design,
however, would be able to take advantage of the shared L2 by reusing data from
the other threads. Conversely, their asynchronous strategy would perhaps perform
different, if there were less or no shared cache in their system.

The need for an autopartitioning algorithm is a good example of the increased
complexity of an alternative design, as it is not necessary if the data is contained
within only one partition. However, the need for such an algorithm can be ques-
tioned when looking at a large scale Vespa deployment, where the index is parti-
tioned across hundreds of search nodes without any sort of run-time partitioning

6.6. DISCUSSION 81

algorithm. Rather than re-balancing, the data is hashed to a random node. Ideally,
one could to the same hashing of documents as in a search cluster within each search
node, to make sure the load gets evenly distributed.

Another negative effect of parallel query evaluation is the increase in complexity
within the ranking phase itself. Since the original design puts the thread handling
"outside" of the query evaluation, the evaluation of a query can be treated as a se-
quential program independent of other queries. If algorithms needs to be rewritten,
the threading will be the same. By introducing more parallelism in the search core,
data structures may have to be altered, and the overhead related to dispatching
and merging of results can outweigh the advantages, depending on the load and
the CPU architecture. However, if properly isolated, this change is arguably not
very intrusive as there are ideally no shared data structures across the partitions.

Thus, the gain of parallel query evaluation must be weighted against the increased
complexity and the uncertainty of its scalability on manycore systems. However,
the risk of implementing the alternative design is minimal, as it can be configured
to behave as the original design, if implemented properly. This allows different
users of Vespa to configure the number of partitions to their needs. If parallel
query evaluation is implemented, each deployment of Vespa should consider their
workload and configure the number of partitions thereafter.

82 CHAPTER 6. EXPERIMENTS

Chapter 7

Conclusion and further work

7.1 Conclusion

The main goal of this study is to design and implement an alternative threading
model for the Vespa search engine that would evaluate queries in parallel. The first
part of the study examined the Vertical search platform (Vespa) developed at YTN.
Studying the architecture of Vespa was necessary to understand the implications
of any new design choices to the search core and for developing the search engine
simulator, Vsim.

Today’s multicore processors use cache coherence schemes that fail to scale with a
large number of processors cores. Studying the behavior of cache coherence pro-
tocols and techniques for playing nice with the cache helped understand design
choices in Vespa, as well as making design choices in Vsim. Moreover, learning dif-
ferent tools for measuring application performance helped during the development
phase of Vsim, but also when evaluating Vsim and parallel query evaluation. Clas-
sic laws in the field of parallelism and scalability such as Amdahl’s and Gustafson’s
law are used when evaluating the alternative search core design, and have given
useful insights into scalability past eight cores.

The primary development effort in this study, Vsim, makes it possible to validate
any further work on parallel query evaluation. The results obtained in Chapter 6
show that parallel query evaluation scales with the data size, provides lower search
latencies than the original design during low query loads, performs on par with the
original design during high query loads, and does indeed experience a higher cache
hit rate in the per core processor caches. As discussed in Chapter 3, a similar
approach to parallel query evaluation was tried with unexpectedly poor results
[BGM+07]. This study presents different results, where parallel query evaluation
may actually be advantageous for low loads. Unfortunately, their study does not
go into details about the reasons for these performance issues.

84 CHAPTER 7. CONCLUSION AND FURTHER WORK

The last level cache on today’s CMPs ensures that the original design works well,
but with the introduction of multicore chips with a large number of cores, the
architectures will most probably have to change. An important advantage of the
alternative design is that it can be configured as the original design. This brings the
best of both worlds together, and reduces the risk of implementing the alternative
design in the real search core.

7.2 Further work

Following is a list of further work and directions to take from here.

• An implementation of parallel query evaluation in Vespa is a logical next step
from this study. Currently, the Vespa search core is under heavy refactoring
to support quicker indexing latencies. The new search core design is simpler,
which means that supporting parallel query evaluation can be done in dif-
ferent ways than proposed in this study. This study only investigates any
potential benefit of parallel query evaluation. An important part of further
work would be to adopt parallel query evaluation to the new search core.

• The basis of the work performed in this study is the Vsim simulator. Another
way to evaluate parallel query evaluation would be to instrument the search
core itself to get detailed performance numbers. Further, profiling support
could be built into the search core in order to easily evaluate performance
when code is changed. This requires much development effort, but it is prob-
ably worth it in the long term, especially with the rapid change of computer
hardware.

• As this study evaluates parallel query evaluation on an 8 core system. As
hardware with more cores becomes available, evaluating Vsim on such sys-
tems would give an even better indication of the usefulness of parallel query
evaluation. Moreover, seeing how the design behaves on different cache ar-
chitectures could help choosing what hardware would be appropriate to use
with Vespa.

• In order to test a design on manycore processors, the simulators discussed
in Chapter 2 could be improved to support such processors. Implementing
support for shared memory multithreaded programs in the M5 simulator
would help evaluate Vsim on manycore processors with minimal cost.

• The hit collector algorithms proposed in Section A.1.1 are alternatives that
could improve search performance. Although few experiments testing these
implementations were performed, they are not considered relevant for the
research questions in this study, and as such, the results are not discussed.

• The autopartitioning algorithm that is proposed in Appendix 3.6 is imple-
mented in Vsim and evaluated in this study. There are, however, other

7.2. FURTHER WORK 85

areas of Vespa that could benefit from this algorithm. At the search cluster
level, the index is split across many search nodes to meet a Service Level
Agreement (SLA). If the distribution of the documents are skewed, the same
algorithm may be used to balance the index between the search nodes in a
cluster.

86 CHAPTER 7. CONCLUSION AND FURTHER WORK

References

[AB10a] Acumem AB. Acumem - Multicore Performance. http://www.acumem.
com/, 2010. [Online; accessed February-2010].

[AB10b] Acumem AB. Acumem ThreadSpotter User manual, 2010. [Online;
accessed February-2010].

[Amd67] Gene M. Amdahl. Validity of the single processor approach to achieving
large scale computing capabilities. In AFIPS ’67 (Spring): Proceedings
of the April 18-20, 1967, spring joint computer conference, pages 483–
485, New York, NY, USA, 1967. ACM.

[Bal10] Henning Baldersheim. Personal communication, February 2010.

[BGM+07] C. Bonacic, C. Garcia, M. Marin, M. Prieto, F. Tirado, and C. Vicente.
Improving search engines performance on multithreading processors.
Technical report, Depto. Arquitectura de Computadores y Automática
a Universidad Complutense de Madrid, 2007.

[BM99] Dov Bulka and David Mayhew. Efficient C++: Performance Program-
ming Techniques. Addison-Wesley, first edition, 1999.

[Dan09] Daniel. Amdahl’s law visualized. http://en.wikipedia.org/wiki/
File:AmdahlsLaw.svg, 2009. [Online; accessed February-2010].

[DEL10] Delicious - Social bookmarking. http://delicious.com/, 2003-2010.
[Online; accessed January-2010].

[Dre07] Ulrich Drepper. What Every Programmer Should Know About
Memory. Technical report, Red Hat Inc., November 2007.

[FLI10] Flickr - Photo sharing. http://www.flickr.com/, 2004-2010. [Online;
accessed January-2010].

[FLQZ06] Marcus Fontoura, Ronny Lempel, Runping Qi, and Jason Zien. Inver-
ted Index Support for Numeric Search. Internet Mathematics, 3(2),
2006.

http://www.acumem.com/
http://www.acumem.com/
http://en.wikipedia.org/wiki/File:AmdahlsLaw.svg
http://en.wikipedia.org/wiki/File:AmdahlsLaw.svg
http://delicious.com/
http://www.flickr.com/

88 REFERENCES

[Gus88] John L. Gustafson. Reevaluating amdahl’s law. Commun. ACM,
31(5):532–533, 1988.

[HP07] John L. Hennessy and David A. Patterson. Computer Architecture: A
Quantitative Approach. Morgan Kaufmann Publishers, fourth edition,
2007.

[HS08] Maurice Herily and Nir Shavit. The Art of Multiprocessor Program-
ming. Morgan Kaufmann, first edition, 2008.

[Int09] Intel, editor. Intel 64 and IA-32 Architectures Optimization Reference
Manual. Intel, 1997-2009. [Online; accessed April-2010].

[Int10] Intel, editor. Intel 64 and IA-32 Architectures Software Developer’s
Manual, volume 3B: System programming guide, part 2. Intel, 2007-
2010. [Online; accessed April-2010].

[KAO05] Poonacha Kongetira, Kathirgamar Aingaran, and Kunle Olukotun.
Niagara: A 32-way multithreaded sparc processor. IEEE Micro,
25(2):21–29, 2005.

[Knu68] Donald Ervin Knuth. The art of computer programming / Donald E.
Knuth. Addison-Wiley, Reading, Mass., :, 1968.

[Lan06] A. J. Lande. Evaluering av chip multiprosessor simulatorer. Master
Thesis, NTNU, Juli 2006.

[Lev03] John Levon. Oprofile Internals. http://oprofile.sourceforge.net/
doc/internals/index.html, 2003. [Online; accessed January-2010].

[Lev04] John Levon. Oprofile Manual. http://oprofile.sourceforge.net/
doc/index.html, 2004. [Online; accessed January-2010].

[Lil09] Ulf Lilleengen. Impact of multicore architectures on search engines.
Technical report, NTNU, 2009.

[M5S10] M5 Simulator. http://m5sim.org/wiki/index.php/Main_Page,
2010. [Online; accessed January-2010].

[MHSM09] D. Molka, D. Hackenberg, R. Schone, and M.S. Muller. Memory per-
formance and cache coherency effects on an intel nehalem multipro-
cessor system. In Parallel Architectures and Compilation Techniques,
2009. PACT ’09. 18th International Conference on, pages 261 –270,
sept. 2009.

[Nat91] Lasse Natvig. Evaluation Parallel Algorithms - Theoretical and prac-
tical aspects. PhD thesis, The Norwegian Institute of Technology, 1991.

[Neh09] Intel Previews Intel Xeon ’Nehalem-EX’ Processor. http://www.
intel.com/pressroom/archive/releases/2009/20090526comp.
htm, May 2009. [Online; accessed June-2010].

http://oprofile.sourceforge.net/doc/internals/index.html
http://oprofile.sourceforge.net/doc/internals/index.html
http://oprofile.sourceforge.net/doc/index.html
http://oprofile.sourceforge.net/doc/index.html
http://m5sim.org/wiki/index.php/Main_Page
http://www.intel.com/pressroom/archive/releases/2009/20090526comp.htm
http://www.intel.com/pressroom/archive/releases/2009/20090526comp.htm
http://www.intel.com/pressroom/archive/releases/2009/20090526comp.htm

REFERENCES 89

[neh10] Intel Nehalem microarchitecture overview. http://www.intel.com/
technology/architecture-silicon/next-gen/index.htm, 2010.
[Online; accessed May-2010].

[oB09] University of Bordeux. Portable Hardware Locality (hwloc). http:
//www.open-mpi.org/projects/hwloc/doc/v1.0.1/, 2009. [Online;
accessed June-2010].

[OPR02] Oprofile - A system profiler for Linux. http://oprofile.
sourceforge.net/, 2002. [Online; accessed January-2010].

[PGK87] David A. Patterson, Garth A. Gibson, and Randy H. Katz. A Case
for Redundant Arrays of Inexpensive Disks (RAID). Technical report,
Berkeley, CA, USA, 1987.

[Pol] Teraflops research chip. http://techresearch.intel.com/
articles/Tera-Scale/1449.htm. [Online; accessed June-2010].

[Ris04] Knut Magne Risvik. Scaling Internet Search Engines: Methods and
Analysis. PhD thesis, NTNU, May 2004.

[RM02] Knut Magne Risvik and Rolf Michelsen. Search engines and web dy-
namics. Computer Networks, 39(3):289 – 302, 2002.

[RR07] Sanguthevar Rajasekaran and John Reif, editors. Handbook of Parallel
Computing. Chapman and Hall Publishers, 2007.

[Shi96] Yuan Shi. Reevaluating Amdahl’s law and Gustafson’s law. November
1996. [Online; accessed May-2010].

[SIM10] SIMICS. http://www.virtutech.com/, 2010. [Online; accessed
January-2010].

[SKT+05] B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J. Eickemeyer, and
J. B. Joyner. Power5 system microarchitecture. IBM J. Res. Dev.,
49(4/5):505–521, 2005.

[TIL10] Tilera corporation. http://www.tilera.com/products/TILE-Gx.
php, 2004-2010. [Online; accessed May-2010].

[VAL00] Valgrind Instrumentation Framework. http://www.valgrind.org,
2000. [Online; accessed March-2010].

[VAL09] Valgrind User Manual. http://valgrind.org/docs/manual/manual.
html, 2009. [Online; accessed March-2010].

[VES10] Vespa documentation. http://vespa.corp.yahoo.com/
documentation/, 2005-2010. [Internal company documentation.
Online; accessed January-2010].

http://www.intel.com/technology/architecture-silicon/next-gen/index.htm
http://www.intel.com/technology/architecture-silicon/next-gen/index.htm
http://www.open-mpi.org/projects/hwloc/doc/v1.0.1/
http://www.open-mpi.org/projects/hwloc/doc/v1.0.1/
http://oprofile.sourceforge.net/
http://oprofile.sourceforge.net/
http://techresearch.intel.com/articles/Tera-Scale/1449.htm
http://techresearch.intel.com/articles/Tera-Scale/1449.htm
http://www.virtutech.com/
http://www.tilera.com/products/TILE-Gx.php
http://www.tilera.com/products/TILE-Gx.php
http://www.valgrind.org
http://valgrind.org/docs/manual/manual.html
http://valgrind.org/docs/manual/manual.html
http://vespa.corp.yahoo.com/documentation/
http://vespa.corp.yahoo.com/documentation/

90 REFERENCES

[VTU10] Intel VTune. http://software.intel.com/en-us/intel-vtune/,
2010. [Online; accessed February-2010].

[YMA10] Yahoo! Mail. http://www.ymail.com/, 1997-2010. [Online; accessed
January-2010].

[ZJH09] D. Zaparanuks, M. Jovic, and M. Hauswirth. Accuracy of perform-
ance counter measurements. Technical report, Faculty of Informatics,
University of Lugano, 2009.

http://software.intel.com/en-us/intel-vtune/
http://www.ymail.com/

Appendix A

Additional notes

A.1 Vsim alternative designs and ideas

A.1.1 Alternative HitCollector implementations

Figure A.1 describes a different hit collector implementation based on radix sort
and merging. The heap based hit collector is changed to keep three buffers for
collecting hits. A buffer may have three roles, either as a collection buffer, where
new hits are collected, or as a operand buffer, which contains a sorted array of
the best hits encountered so far, or as a result buffer to where the collection and
operand buffers should be merged.

Henning [Bal10] suggested to try approach, based on radix sort of a buffer with a
size of twice the size specified with the -h parameter. This buffer is then split in
half, where the first half is used to store the heap size number of hits, while the
other half is used to store new hits that are collected. Figure A.2 illustrates this
scheme. After the first half of the buffer fills up, it is sorted. The last element of
the first half is now the lowest ranking element collected. All new hits collected are
compared against this element. If the rank of the new hit is larger than the lowest
ranking element in the first half of the buffer, the new hit is added to the second
half of the buffer. When the second half of the buffer is full, heap size elements of
the whole buffer is sorted, and the second half is set to be empty. The buffer now
contains the best hits so far, and new hits are collected in the second half. When
all hits are collected, the algorithm is complete.

Experiments involving the alternative HitCollector implementations are outside
the scope of this study, and is therefore only included as a reference for further
work.

92 APPENDIX A. ADDITIONAL NOTES

Result

Current

Operand

45 4 22 34

72 52 25
Result

Current

Operand

45 34 2572 52

Result

Current

Operand

45 4 22 34

72 52 25

11

Current

Operand

Result

25 72 52

72 52 25

Current

Operand

Result

Current

Operand

Result

Result

Current

Operand

45 42234

72 52 25 7 3

11

7 3

7 3

7 3

7 3

Result

Current

Operand

45 34 2572 52

41

Figure A.1: Alternative algorithm for collecting hits using radix sort and merging:
a) Buffers start out empty. b) The current buffer is filled up with the newest hits. c)
When the buffer is full, the hits are sorted. d) The buffer pointers are incremented,
and the previous operand is now the current buffer. New hits are added to the
new current buffer. e) The current buffer fills up. f) The current buffer is now
sorted before g) being merged together with the operand into the result buffer. h)
The buffer pointers are again incremented, and the new current buffer is used for
collecting new hits.

Figure A.2: Another algorithm
for collecting hits using radix
sort on a large buffer: a) The
initial buffer is twice the size
of the result buffer. b) Hits
are added to the buffer until c)
The buffer is full, and sorted.
Only half of the buffer is kept.
d) New hits are added to the
second half of the buffer until it
is full and step c is repeated.

heapsize 2 x heapsize0

45 4 22 34 11 25 72 5212 13

45 34 2572 52

45 34 2572 52 41

A.2. INITIAL FLAWS IN VSIM 93

A.1.2 Allocating a QueryHandler and Fetchers for each Query

The first version of Vsim allocated a new QueryHandler for each new Query object
and used the QueryQueue for enqueueing and dispatching QueryHandlers, much
like the Vespa search core. Each QueryQueue had a QueueChecker, which ran as
a separate thread which checked the QueryQueue for new entries and dispatched
them. This approach seamed to work, but it made it hard to control how many
QueryHandler threads that was executing at the same time. An important note
in this scheme is that since each new Query results in the allocation of a new
QueryHandler and each new QueryHandler allocates a Fetcher for each partition.
This means that the memory allocator needs to be scalable when multiple threads
are allocating memory at the same time.

The biggest problem with this approach is that by allocating a new handler for
each Query object, the control of the simulation is lost in the sense that one does
not know how to limit the number of QueryHandlers to the number given by the
-c parameter without keeping track of how many handlers are dispatched and com-
pleted. One can keep track by counting the number of dispatched QueryHandlers
and demanding that all of them reports their exit to the VSimStat object, but this
resulted in extra locking overhead in the VSimStat object.

The designed was changed into the current "queue based" design, because it allows
detailed monitoring of each query and how long time it spends in all stages of query
evaluation.

A.2 Initial flaws in Vsim

A.2.1 Performing result sorting instead of merging in the
QueryHandler

In the first version of Vsim, the results for each Fetcher were not sorted, but
concatenated onto a result buffer. This decreased the time spent in each Fetcher
sorting, but resulted in a large fraction of the time being spent in the QueryHandler,
because the QueryHandler had to sort the results from all partitions. As the
number of partitions increased, the fraction of time spent in the QueryHandler
increased even more.

The solution was to move the sorting process within each Fetcher and perform only
a merge step in the QueryHandler. This is intuitive: the first version has a O(kN)
complexity for the QueryHandler while the second version has a O(N) complexity,
where N equals the number of hits encountered in total by all partitions, and k
equals the number of digits for each number in the sort (in Vsim, k = 8).

94 APPENDIX A. ADDITIONAL NOTES

Doc 1

A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3

Doc 2 Doc 3 Doc 4 Doc 5

Figure A.3: The layout of attributes in the first version of Vsim

A.2.2 Initial implementation of the VSimStore

The initial implementation of the VSimStore class used a different memory layout
than the current implementation, shown in Figure A.3. This memory layout of
the initial implementation is not the same as in Vespa, as all attributes of each
document are stored together in an array, which is clearly different from that in
Figure 2.4. The layout made the access pattern very predictable, as a cache line
may contain many if not all attributes of a document if they are small enough.

A.3 Techniques to promote effective cache reuse

Bypass cache

Each intermediate level in the memory hierarchy eventually causes extra delays
for memory requests that do not hit the cache at all. If the software is aware of
such data not being reused, it is possible to bypass the cache with special instruc-
tions [Dre07]. Such instruction can be useful for streaming workloads, such as live
video or music, which do not want to re-use any data in the cache.

Prefetching

Although the hardware prefetcher may easily detect patterns and fetch the appro-
priate cache lines before they are used, the software has most knowledge of what
data should be prefetched. By accessing data before it is used, the software is able
to get quick access to the data when it will actually be used. Implementing soft-
ware prefetching may be done by using helper threads [Dre07], which are threads
instructed to access data in order to bring it into the cache. For this to work, the
one has to make sure the helper thread runs on the same core as the processing
thread, and care must be taken to stop the helper thread from negatively affecting
performance of the worker thread.

Appendix B

Clarifications

B.1 Performance counter mappings

Table B.1 shows the mapping of performance counter names, their mask used to
get the actual counter, and the short name used in Section 5.2.

Table B.1: Performance counters used

Name Mask Short name
L1D_CACHE_LD.I_STATE 0x01 L1 MISSES
L1D_CACHE_LD.MESI 0x0f L1 LOADS
L2_DATA_RQSTS.I_STATE 0x01 L2 MISSES
L2_DATA_RQSTS.MESI 0xff L2 LOADS
MEM_LOAD_RETIRED.LLC_MISS L3 MISSES 0x10
CPU_CLK_UNHALTED No mask CYCLES

96 APPENDIX B. CLARIFICATIONS

Appendix C

Code

C.1 Vsim source code

Here follows the source code of vsim. All source files are included, except some
detailed files regarding the radix sort implementation used in Vespa. The source
code for atomic instructions is also from Vespa, and not included.

C.1.1 barrier.h

ifndef _VSIM_BARRIER_H_
define _VSIM_BARRIER_H_
include <pthread .h>

namespace vsim {

/**
* A wrapper for POSIX barriers .
*/

class Barrier {
public :

Barrier (unsigned);
virtual ~ Barrier ();
void wait(void);

protected :
pthread_barrier_t _barrier ;

};

} // end vsim
endif

C.1.2 barrier.cpp

98 APPENDIX C. CODE

include " barrier .h"

namespace vsim {

Barrier :: Barrier (unsigned count)
{

pthread_barrier_init (& _barrier , NULL , count);
}

Barrier ::~ Barrier ()
{

pthread_barrier_destroy (& _barrier);
}

void
Barrier :: wait(void)
{

pthread_barrier_wait (& _barrier);
}

} // end vsim

C.1.3 cond.h

ifndef _VSIM_COND_H_
define _VSIM_COND_H_
include <pthread .h>
include " mutex .h"

namespace vsim {
/**

* A wrapper for POSIX conditional variables , which carries an
implicit mutex .

*/
class Cond : public Mutex
{
public :

Cond ();
~Cond ();
void wait(void);
void timedWait (unsigned long);
void notify (void);
void notifyAll (void);

private :
pthread_cond_t _cond ;

};

} // end vsim
endif

C.1.4 cond.cpp

include <pthread .h>
include <time.h>
include "cond.h"

C.1. VSIM SOURCE CODE 99

namespace vsim {

Cond :: Cond () : Mutex ()
{

pthread_cond_init (& _cond , NULL);
}

Cond ::~ Cond ()
{

pthread_cond_destroy (& _cond);
}

void
Cond :: wait(void)
{

pthread_cond_wait (& _cond , & _lock);
}

void
Cond :: timedWait (unsigned long seconds)
{

struct timespec tv;
tv. tv_sec = seconds ;
tv. tv_nsec = 0;
pthread_cond_timedwait (& _cond , &_lock , &tv);

}

void
Cond :: notify (void)
{

pthread_cond_signal (& _cond);
}

void
Cond :: notifyAll (void)
{

pthread_cond_broadcast (& _cond);
}

} // end vsim

C.1.5 fetcher.h

ifndef _VSIM_FETCHER_H_
define _VSIM_FETCHER_H_
include <boost / shared_ptr .hpp >
include <boost / random / linear_congruential .hpp >
include <boost / random / uniform_int .hpp >
include <boost / random / variate_generator .hpp >
include "task.h"
include " query .h"
include " vsimstore .h"
include "cond.h"
include " barrier .h"
include " partitionqueue .h"

100 APPENDIX C. CODE

namespace vsim {

typedef boost :: minstd_rand base_generator_type ;

/**
* The Fetcher class is in charge of generating document ids according

to the
* number of hits given and retrieve the document ids and their rank

from the
* document store . Finally , the query is notified when the fetcher is

finished .
*/

class Fetcher : public Task {
public :

typedef boost :: shared_ptr <Fetcher > SP;
/**

* Construct a Fetcher , initialize the range in which valid
document ids can be

* constructed .
*/

Fetcher (const VSimStore &, PartitionQueue &, partid_t , unsigned
long , unsigned int , docid_t);

virtual ~ Fetcher ();

/**
* Generate docids to be fetched from the document store . Retrieve

these
* documents and merge them with documents from the other threads .
*/

void run(void);

/**
* Shutdown Fetcher . Signal the PartitionQueue to wake up all

other fetchers
* and exit.
*/

void shutdown (void);

/**
* Return our affinity preference .
*/

bool getPreferredCPU (cpu_set_t &);

private :
const VSimStore &_ds;
PartitionQueue & _queue ;
partid_t _id;
unsigned int _handlerid ;
base_generator_type _generator ;
boost :: uniform_int <> _dist ;
boost :: variate_generator < base_generator_type &, boost :: uniform_int

<> > _vgen ;
Barrier _done ;

};

} // end vsim

C.1. VSIM SOURCE CODE 101

endif

C.1.6 fetcher.cpp

include <iostream >
include <sys/time.h>
include "task.h"
include " fetcher .h"
include " queryhandler .h"
include "misc.h"

namespace vsim {

Fetcher :: Fetcher (const VSimStore &ds , PartitionQueue &queue ,
docid_t id , unsigned long seed , unsigned int hid , docid_t maxdocid

) :
_ds(ds),
_queue (queue),
_id(id),
_handlerid (hid),
_generator (seed),
_dist (0, maxdocid - 1) ,
_vgen (_generator , _dist),
_done (2)

{
}

Fetcher ::~ Fetcher ()
{
}

void
Fetcher :: run(void)
{

bool stop = false ;
while (1) {

Query :: SP qsp = _queue . dequeue (stop);
if (stop)

break ;
HitCollector &hits(qsp -> getCollector (_id));
unsigned long totalhits = 0;

const PartitionRange & slots (qsp -> getRange (_id));
// Generate a hit for each slot we have in our partition
for (docid_t s = 0; s < slots .size (); s++) {

const Slot &slot(slots [s]);
unsigned long numhits = qsp -> getHits (slot);
totalhits += numhits ;
for (unsigned long i = 0; i < numhits ; i++) {

docid_t doc = (_vgen () % (slot. second - slot. first)) +
slot. first ;

hits. addHit (doc , _ds. getRank (doc));
}

}
hits. sortBuffer ();

102 APPENDIX C. CODE

qsp -> notify (_id , totalhits);
}
_done .wait ();

}

void
Fetcher :: shutdown (void)
{

_queue . shutdown ();
_done .wait ();

}

bool
Fetcher :: getPreferredCPU (cpu_set_t &set)
{
ifdef AFFINITY

CPU_ZERO (& set);
CPU_SET (_id % NUMCPU , &set);
return (true);

else
return false ;

endif
}

} // end vsim

C.1.7 hitcollector.h

ifndef _VSIM_HITCOLLECTOR_H_
define _VSIM_HITCOLLECTOR_H_
include <vector >
include <stdint .h>
include " hitvector .h"
include " types .h"

namespace vsim {

enum HitState { COLLECTHIT , REPLACEHIT };

/**
* The HitCollector class can be instructed to store hits in a fashion

similar
* to the same class in Vespa .
*/

class HitCollector
{
public :

/**
* Create a HitCollector with a internal buffer of the size of the

argument .
*/

HitCollector (docid_t);

/**
* Add a new hit to the hitcollector heap using id and rank from

document .

C.1. VSIM SOURCE CODE 103

*/
void addHit (docid_t , rank_t);

inline unsigned long size(void) const { return _hitvector .size ();
}

inline const HitVector & getResultBuffer (void) const { return
_hitvector ; }

/**
* Reset everything to the initial state .
*/

void reset (void);

/**
* Sort the internal buffer .
*/

void sortBuffer (void);

/**
* Organize after rank and document id.
*/

class ScoreComparator {
public :

ScoreComparator () {}
bool operator () (const Hit & lhs , const Hit & rhs) const {

if (lhs. second == rhs. second) {
return lhs. first < rhs. first ;

}
return lhs. second >= rhs. second ; // oparator for min -heap

}
};
void printHits (void) const ;

private :
/**

* Exchange hit on the heap if the provided hit is higher ranked
than the

* lowest ranked in the heap.
*/

void considerForHit (docid_t , rank_t);

HitVector _hitvector ;
docid_t _maxhits ;
HitState _state ;

};

} // end vsim

endif

C.1.8 hitcollector.cpp

include <algorithm >
include <iostream >
include " hitcollector .h"
include " hitvector .h"

104 APPENDIX C. CODE

namespace vsim {

HitCollector :: HitCollector (docid_t maxhits) :
_hitvector (maxhits),
_maxhits (maxhits),
_state (COLLECTHIT)

{
}

void
HitCollector :: considerForHit (docid_t docId , rank_t rank)
{

if (_hitvector . empty ()) return ;

if (rank > _hitvector [0]. second) {
std :: pop_heap (_hitvector . begin () , _hitvector .end () ,

ScoreComparator ());
_hitvector .back (). first = docId ;
_hitvector .back (). second = rank;
std :: push_heap (_hitvector . begin () , _hitvector .end () ,

ScoreComparator ());
}

}

void
HitCollector :: addHit (docid_t docid , rank_t rank)
{

switch (_state) {
case COLLECTHIT :

// Add new hits until we reach the limit
if (_hitvector .size () < _maxhits) {

_hitvector .add(Hit(docid , rank));
} else {

_state = REPLACEHIT ;
std :: make_heap (_hitvector . begin () , _hitvector .end () ,

ScoreComparator ());
considerForHit (docid , rank);

}
break ;

case REPLACEHIT :
considerForHit (docid , rank);
break ;

}
}

void
HitCollector :: sortBuffer (void)
{

_hitvector .sort ();
}

void
HitCollector :: printHits (void) const
{

std :: cout << "Hits: \n";
for (unsigned int i = 0; i < _hitvector .size (); i++) {

C.1. VSIM SOURCE CODE 105

std :: cout << "\t" << _hitvector [i]. first << " " << _hitvector [
i]. second << std :: endl;

}
}

} // end vsim

C.1.9 hitvector.h

ifndef _VSIM_HITVECTOR_H_
define _VSIM_HITVECTOR_H_
include <vector >
include <functional >
include " types .h"

namespace vsim {
/**

* The HitVector class implements an array interface towards a
preallocated

* buffer of known size , which may quickly be erased and reused .
*/

class HitVector {
public :

/**
* Construct a HitVector with an internal buffer of size maxlen .
*/

HitVector (docid_t maxlen) :
_buffer (maxlen),
_len (0) ,
_best (0)

{ }
const Hit & operator [] (unsigned long a) const { return _buffer [a];

}
/**

* Add a new hit to the buffer .
*/

inline void add(const Hit &h) { _buffer [_len ++] = h; }

/**
* Sort the array according to the comparators defined in this

class .
*/

void sort(void);

/**
* Merge two vectors provided as arguments into this vector

starting at the
* current offset pointer .
*/

void merge (const HitVector &, const HitVector &);

/**
* Used to compared values for radix sort.
*/

class ValueCompare : public std :: binary_function <Hit , Hit , bool > {
public :

106 APPENDIX C. CODE

bool operator () (const Hit &lhs , const Hit &rhs) const {
return (lhs. second > rhs. second);

}
};

/**
* Used to retrieve sort value
*/

class ValueRadix {
public :

uint64_t operator () (const Hit & h) const {
return (uint64_t)(~h. second);

}
};

/**
* Various methods defined to be able to be used as an STL

container .
*/

inline Hit &back(void) { return (_buffer [_len - 1]); }
inline std :: vector <Hit >:: iterator begin (void) { return (_buffer .

begin ()); }
inline std :: vector <Hit >:: iterator end(void) { return (_buffer .

begin () + _len); }
inline unsigned long size(void) const { return (_len); }
inline bool empty (void) { return (_len == 0); }
inline void reset (void) { _len = 0; }
void printHits (void) const ;

private :
std :: vector <Hit > _buffer ;
docid_t _maxlen ;
docid_t _len;
docid_t _best ;

};

} // end vsim
endif

C.1.10 hitvector.cpp

include <iostream >
include " hitvector .h"
include " searchlib / common /sort.h"

namespace vsim {

void
HitVector :: sort(void)
{

search :: ShiftBasedRadixSorter <Hit , ValueRadix , ValueCompare , 56 >::
radix_sort (ValueRadix () , ValueCompare () , & _buffer [0] , _len);

}

void
HitVector :: merge (const HitVector &op1 , const HitVector &op2)

C.1. VSIM SOURCE CODE 107

{
docid_t i_op1 = 0;
docid_t i_op2 = 0;

while (i_op1 < op1.size () &&
i_op2 < op2.size () &&
_len < _buffer .size ()) {

const Hit &h1(op1[i_op1]);
const Hit &h2(op2[i_op2]);
// If left operand is smaller than right
if (h1. second > h2. second) {

add(h1);
i_op1 ++;

} else if (h1. second < h2. second) {
add(h2);
i_op2 ++;

} else {
add(h1);
i_op1 ++;
if (_len < _buffer .size ()) {

add(h2);
i_op2 ++;

}
}

}
if (_len < _buffer .size ()) {

// According to the condition above , only one of these while
loops will

// get executed
while (i_op1 < op1.size () &&

_len < _buffer .size ()) {
add(op1[i_op1 ++]);

}
while (i_op2 < op2.size () &&

_len < _buffer .size ()) {
add(op2[i_op2 ++]);

}
}

}

void
HitVector :: printHits (void) const
{

for (unsigned int i = 0; i < _len; i++) {
std :: cout << "\t" << _buffer [i]. first << " " << _buffer [i].

second << std :: endl;
}

}

} // end vsim

C.1.11 main.cpp

include <iostream >
include <cstring >

108 APPENDIX C. CODE

include "vsim.h"
include " vsimconfig .h"
include " vsimreport .h"
include " types .h"

void
usage (const char *prog)
{

std :: cerr << " Usage : " << prog << " [OPTION]... simlength " << std
:: endl;

std :: cerr << " OPTION may be one of these :" << std :: endl;

struct option {
const char *name;
const char * description ;

};
struct option options [] = {

{"a", "The number of attributes per document "},
{"c", " Maximum number of queryhandlers "},
{"d", " Maximum document id"},
{"h", " Maximum number of hits returned per query {heap size)"

},
{"i", "The probability distribution to apply to the slots (

binomial , poisson , geometric or gauss)"},
{"l", "The number of slots to initially allocate per partition

"},
{"n", "A static number of hits used per query (unless using

QRS log files)"},
{"o", " Sample file to store simulation data"},
{"p", " Number of partitions "},
{"q", " Prefix of QRS log files used to generate hit counts "},
{"r", "A comma - separated list of attribute vector indices (or

a range of indices) used for rank calculation "},
{"s", "The number of rounds to run the simulation "},
{"t", " Number of clients to spawn "},
{NULL , NULL}

};

unsigned int i = 0;
while (options [i]. name != NULL && options [i]. description != NULL)

{
std :: cerr << "\t-" << options [i]. name << "\t\t" << options [i].

description << std :: endl;
i++;

}
}

int
main(int argc , char ** argv)
{

int opt;
bool set_attr_range = false ;
vsim :: docid_t numpart , numslots , maxdocid , hitheapsize , numhits ,

maxdocid_tmp ;
unsigned long numattr , maxconn , clients , numrounds ;

C.1. VSIM SOURCE CODE 109

std :: string attrrange , qrlog , samplefile , distribution ;
vsim :: AttributeIndexVector aiv;

// Default values
numpart = numslots = maxconn = 1;
clients = 1;
maxdocid = hitheapsize = numhits = maxdocid_tmp = 1000;
numattr = numrounds = 1;
aiv. push_back (0);

while ((opt = getopt (argc , argv , "a:c:d:h:i:l:m:n:o:p:q:r:s:t:"))
!= -1) {
switch (opt) {
case ’a’:

numattr = strtol (optarg , NULL , 10);
break ;

case ’c’:
maxconn = strtol (optarg , NULL , 10);
break ;

case ’d’:
maxdocid_tmp = strtol (optarg , NULL , 10);
break ;

case ’h’:
hitheapsize = strtol (optarg , NULL , 10);
break ;

case ’i’:
distribution = std :: string (optarg);
break ;

case ’l’:
numslots = strtol (optarg , NULL , 10);
break ;

case ’n’:
numhits = strtol (optarg , NULL , 10);
break ;

case ’o’:
samplefile = std :: string (optarg);
break ;

case ’p’:
numpart = strtol (optarg , NULL , 10);
break ;

case ’q’:
qrlog = std :: string (optarg);
break ;

case ’r’:
attrrange = std :: string (optarg);
set_attr_range = true;
break ;

case ’s’:
numrounds = strtol (optarg , NULL , 10);
break ;

case ’t’:
clients = strtol (optarg , NULL , 10);
break ;

default :
usage (argv [0]);
exit (-1);
break ;

110 APPENDIX C. CODE

}
}
if (optind >= argc) {

std :: cerr << " Expected argument after options " << std :: endl;
usage (argv [0]);
exit (-1);

}

unsigned long simtime = 0;
simtime = strtol (argv[optind], NULL , 10);

if (set_attr_range) {
aiv. clear ();
// Trim whitespace
for (std :: string :: iterator it = attrrange . begin ();

it != attrrange .end ();
it ++) {

if ((* it) == ’ ’ || (* it) == ’\t’)
attrrange . erase (it);

}
size_t first = 0;
size_t last = std :: string :: npos;
do {

last = attrrange .find(’,’, first);
std :: string attr(attrrange . substr (first , (last - first)));
// Find the ’-’ delimiter ;
size_t delimpos = attr.find(’-’);
if (delimpos != std :: string :: npos) {

std :: string tmp(attr. substr (0, delimpos));
unsigned long startattr = strtol (tmp. c_str () , NULL ,

10);
tmp = attr. substr (delimpos + 1, (attr. length () -

delimpos));
unsigned long lastattr = strtol (tmp. c_str () , NULL , 10)

;
if (startattr >= 0 && lastattr <= numattr) {

for (unsigned int i = startattr ; i < lastattr ; i
++) {
aiv. push_back (i);

}
}

} else {
unsigned long attrnum = strtol (attr. c_str () , NULL , 10)

;
if (attrnum >= 0 && attrnum < numattr)

aiv. push_back (attrnum);
}

first = last + 1;
} while (last != std :: string :: npos);

}
maxdocid = ROUND (maxdocid_tmp , numpart);

vsim :: VSimConfig cfg(numpart , numslots , maxconn , clients , maxdocid
, numhits ,

C.1. VSIM SOURCE CODE 111

hitheapsize , numattr , aiv , vsim :: slotDistTextToEnum (
distribution),

simtime , numrounds , qrlog);
vsim :: VSim sim(cfg);
sim.run(samplefile);
return 0;

}

C.1.12 mergequeue.h

ifndef _VSIM_MERGEQUEUE_H_
define _VSIM_MERGEQUEUE_H_
include " queue .h"
include " types .h"

namespace vsim {

/**
* A merge queue is a queue of partition ids that are ready for

merging into the
* result buffer .
*/

class MergeQueue : public Queue <partid_t >
{
public :

/**
* Enqueue a partition identifier ready for merging
*/

void enqueue (partid_t id) {
_qlock .lock ();
_queue . push_back (id);
_qlock . notify ();
_qlock . unlock ();

}
/**

* Dequeue a partition identifier ready for merging . If the queue
is empty ,

* block the caller until it is not empty .
*/

partid_t dequeue (void) {
_qlock .lock ();
while (_queue .size () == 0) {

_qlock .wait ();
}
partid_t ret = _queue . front ();
_queue . pop_front ();
_qlock . unlock ();
return ret;

}
};

} // end vsim

endif

112 APPENDIX C. CODE

C.1.13 misc.h

ifndef _VSIM_MISC_H_
define _VSIM_MISC_H_
include " types .h"

namespace vsim {

define ROUND (var , size) (((var) + ((size) - 1)) & ~((size) - 1))
define MIN(a, b) ((a) < (b) ? (a) : (b))
SlotDistribution slotDistTextToEnum (const std :: string &);
std :: string slotDistEnumToText (SlotDistribution);

} // end vsim

endif

C.1.14 misc.cpp

include <string >
include "misc.h"

namespace vsim {

SlotDistribution
slotDistTextToEnum (const std :: string & distname)
{

if (distname . compare (" poisson ") == 0)
return (POISSON);

if (distname . compare (" gauss ") == 0)
return (GAUSS);

if (distname . compare (" geometric ") == 0)
return (GEOMETRIC);

return (BINOMIAL);
}

std :: string
slotDistEnumToText (SlotDistribution dist)
{

if (dist == POISSON)
return (" poisson ");

if (dist == GAUSS)
return (" gauss ");

if (dist == GEOMETRIC)
return (" geometric ");

return (" binomial ");
}

} // end vsim

C.1.15 mutex.h

ifndef _VSIM_MUTEX_H_
define _VSIM_MUTEX_H_
include <pthread .h>

C.1. VSIM SOURCE CODE 113

namespace vsim {
/**

* The Mutex class is a wrapper around the POSIX mutex synchronization
* primitive .
*/

class Mutex {
public :

Mutex ();
virtual ~ Mutex ();
void lock(void);
void unlock (void);

protected :
pthread_mutex_t _lock ;

};

} // end vsim

endif

C.1.16 mutex.cpp

include <pthread .h>
include " mutex .h"

namespace vsim {

Mutex :: Mutex ()
{

pthread_mutex_init (& _lock , NULL);
}

Mutex ::~ Mutex ()
{

pthread_mutex_destroy (& _lock);
}

void
Mutex :: lock(void)
{

pthread_mutex_lock (& _lock);
}

void
Mutex :: unlock (void)
{

pthread_mutex_unlock (& _lock);
}

} // end vsim

C.1.17 partitionqueue.h

ifndef _VSIM_PARTITIONQUEUE_H_
define _VSIM_PARTITIONQUEUE_H_

114 APPENDIX C. CODE

include " queue .h"
include " types .h"

namespace vsim {

/**
* A partition queue implements a queue of queries as well as the

possibility of
* timestamping insertion and removal from the queue .
*/

class PartitionQueue : public Queue < Query ::SP >
{
public :

PartitionQueue (partid_t id) : _id(id) {}

/**
* Enqueue a query into the partition queue , and record its

insertion point
* for the particular partition .
*/

void enqueue (const Query :: SP &qsp) {
_qlock .lock ();
_queue . push_back (qsp);
qsp -> insertPartitionQueue (_id);
_qlock . notify ();
_qlock . unlock ();

}

/**
* Dequeue a query from the partition queue , and record it removal

point for
* the partition .
*/

Query :: SP dequeue (bool &stop) {
_qlock .lock ();
while (_queue .size () == 0) {

if (_shutdown) {
stop = true;
_qlock . unlock ();
return Query :: SP ();

}
_qlock .wait ();

}
Query :: SP ret = _queue . front ();
_queue . pop_front ();
ret -> removePartitionQueue (_id);
_qlock . notifyAll ();
_qlock . unlock ();
return ret;

}
private :

partid_t _id;
};

} // end vsim

endif

C.1. VSIM SOURCE CODE 115

C.1.18 query.h

ifndef _VSIM_QUERY_H_
define _VSIM_QUERY_H_
include <boost / shared_ptr .hpp >
include " types .h"
include " resultbuffer .h"
include "misc.h"
include " vsimstat .h"
include " vsimtime .h"
include " barrier .h"
include " mergequeue .h"

namespace vsim {

class QueryHandler ;

/**
* A query contains the information needed to generate document id

hits and
* buffers to store the hits.
*/

class Query
{
public :

typedef boost :: shared_ptr <Query > SP;

Query (const PartitionSpecSP &, docid_t , partid_t , docid_t , docid_t
);

/**
* Get the number of hits calculated from the slots probability

and the
* number of hits the query should get.
*/

docid_t getHits (const Slot &);

/**
* Get the specific partition range for the partition given as

argument .
*/

const PartitionRange & getRange (partid_t);

inline HitCollector & getCollector (partid_t part) { return _result .
getHandle (part); }

/**
* Notify that a partition is finished collecting hits and ready

for
* merging .
*/

void notify (partid_t , unsigned long);

/**
* Perform the merge of the results from each partition . Use the

merge queue
* to serialize merging .
*/

116 APPENDIX C. CODE

void merge (void);

/**
* For the client , to wait until a query is done.
*/

void wait(void);

/**
* Report all statistics collected for this query to the VSimStat

object .
*/

void reportStats (VSimStat &);

/**
* Methods used to record time stamps for query events .
*/

void insertQueryQueue (void) { _insertQueryQueue . recordTime (); }
void insertPartitionQueue (partid_t partid) { _insertPartitionQueue

[partid]. recordTime (); }
void removePartitionQueue (partid_t partid) { _removePartitionQueue

[partid]. recordTime (); }
void stopFetcher (partid_t partid) { _stopFetcher [partid].

recordTime (); }
void removeQueryQueue (void) { _removeQueryQueue . recordTime (); }
void stopHandler (void) { _stopHandler . recordTime (); }

private :
PartitionSpecSP _spec ;
docid_t _maxdocid ;
partid_t _numpart ;
docid_t _numhits ;
ResultBuffer _result ;
HitStat _hs;
MergeQueue _done ;
Barrier _finished ;

// Statistics kept for us
VSimTime _insertQueryQueue ;
std :: vector <VSimTime > _insertPartitionQueue ;
std :: vector <VSimTime > _removePartitionQueue ;
std :: vector <VSimTime > _stopFetcher ;
VSimTime _removeQueryQueue ;
VSimTime _stopHandler ;

};

} // end vsim

endif

C.1.19 query.cpp

include <iostream >
include <algorithm >
include " atomic .h"
include " query .h"
include " types .h"

C.1. VSIM SOURCE CODE 117

include "misc.h"
include " vsimtime .h"
include " hitcollector .h"

namespace vsim {

Query :: Query (const PartitionSpecSP &ps , docid_t maxdocid , partid_t
numpart , docid_t heapsize , docid_t numhits) :
_spec (ps),
_maxdocid (maxdocid),
_numpart (numpart),
_numhits (numhits),
_result (heapsize , numpart),
_hs(numpart , 0) ,
_finished (2) ,
_insertPartitionQueue (numpart),
_removePartitionQueue (numpart),
_stopFetcher (numpart)

{
}

docid_t
Query :: getHits (const Slot &slot)
{

return (docid_t)((double) _numhits * slot.prob);
}

const PartitionRange &
Query :: getRange (partid_t partid)
{

return (* _spec)[partid];
}

void
Query :: notify (partid_t partid , unsigned long numhits)
{

_hs[partid] = numhits ;
stopFetcher (partid);
_done . enqueue (partid);

}

void
Query :: merge (void)
{

for (partid_t nummerged = 0; nummerged < _numpart ; nummerged ++) {
partid_t part = _done . dequeue ();
_result . mergeHits (part);

}
_finished .wait ();

}

void
Query :: wait(void)
{

_finished .wait ();
}

118 APPENDIX C. CODE

void
Query :: reportStats (VSimStat &st)
{

std :: vector <uint64_t > fetchertimes (_numpart);
std :: vector <uint64_t > partqueuetimes (_numpart);
uint64_t maxfetchertime = 0;
for (partid_t i = 0; i < _numpart ; i++) {

fetchertimes [i] = _removePartitionQueue [i]. getDiffMicroSeconds
(_stopFetcher [i]);

if (fetchertimes [i] > maxfetchertime)
maxfetchertime = fetchertimes [i];

partqueuetimes [i] = _insertPartitionQueue [i].
getDiffMicroSeconds (_removePartitionQueue [i]);

}
unsigned long handlertime = _removeQueryQueue . getDiffMicroSeconds (

_stopHandler);
unsigned long queryqueuetime = _insertQueryQueue .

getDiffMicroSeconds (_removeQueryQueue);
st. report (fetchertimes , partqueuetimes , maxfetchertime ,

queryqueuetime , handlertime);
st. reportHits (_hs);

}

} // end vsim

C.1.20 querygenerator.h

ifndef _VSIM_QUERYGENERATOR_H_
define _VSIM_QUERYGENERATOR_H_
include <boost / shared_ptr .hpp >
include <boost / random / linear_congruential .hpp >
include <boost / random / uniform_int .hpp >
include <boost / random / normal_distribution .hpp >
include <boost / random / exponential_distribution .hpp >
include <boost / random / variate_generator .hpp >
include <fstream >
include <string >
include " vsimtime .h"
include " query .h"
include " types .h"
include "task.h"
include " queryqueue .h"

namespace vsim {

/**
* A Query Generator interface , capable of generating queries for use

by the
* Vespa simulator .
*/

class QueryGenerator : public Task
{
public :

typedef boost :: shared_ptr < QueryGenerator > SP;
QueryGenerator (QueryQueue &, const PartitionSpecSP &, docid_t ,

unsigned long);

C.1. VSIM SOURCE CODE 119

virtual ~ QueryGenerator ();
Query :: SP createQuery (docid_t);
void setPartitionSpec (const PartitionSpecSP &);
void wait(void);

void run(void);
void shutdown (void);
bool getPreferredCPU (cpu_set_t &);

/**
* Method that should be used by users of query generators , which

must be
* implemented by sub - classes .
*/

virtual Query :: SP genQuery (void) = 0;

private :
QueryQueue & _queue ;
Mutex _lock ;
Barrier _done ;
bool _shutdown ;

protected :
PartitionSpecSP _spec ;
docid_t _maxdocid ;
unsigned long _heapsize ;

};

/**
* The static query generator generates a fixed number of hits for

each
* partition , and is mostly used to verify the models in the ideal

cases .
*/

class StaticQueryGenerator : public QueryGenerator
{
public :

StaticQueryGenerator (QueryQueue &, const PartitionSpecSP &,
docid_t ,
unsigned long , docid_t);

Query :: SP genQuery (void);
private :

unsigned long _numhits ;
};

/**
* The query log query generator is used when generating queries from

a query
* log file given as input .
*/

class QRSLogQueryGenerator : public QueryGenerator
{
public :

120 APPENDIX C. CODE

QRSLogQueryGenerator (QueryQueue &, const PartitionSpecSP &,
docid_t ,
unsigned long , const std :: string &);

~ QRSLogQueryGenerator ();
Query :: SP genQuery (void);

private :
FILE * _input ;
static const unsigned int buflen = 128;
char _buffer [buflen];

};

} // end vsim

endif

C.1.21 querygenerator.cpp

include <iostream >
include <fstream >
include <cstdlib >
include " query .h"
include " querygenerator .h"

namespace vsim {

QueryGenerator :: QueryGenerator (QueryQueue &queue , const
PartitionSpecSP &spec ,
docid_t maxdocid , unsigned long heapsize) :
_queue (queue),
_done (2) ,
_shutdown (false),
_spec (spec),
_maxdocid (maxdocid),
_heapsize (heapsize)

{}

QueryGenerator ::~ QueryGenerator ()
{}

void
QueryGenerator :: setPartitionSpec (const PartitionSpecSP &spec)
{

_spec = spec;
}

void
QueryGenerator :: run(void)
{

_lock .lock ();
while (! _shutdown) {

_lock . unlock ();
Query :: SP qsp(genQuery ());
_queue . enqueue (qsp);
qsp ->wait ();
_lock .lock ();

}

C.1. VSIM SOURCE CODE 121

_lock . unlock ();
_done .wait ();

}

void
QueryGenerator :: shutdown (void)
{

_lock .lock ();
_shutdown = true;
_lock . unlock ();

}

void
QueryGenerator :: wait(void)
{

_done .wait ();
}

bool
QueryGenerator :: getPreferredCPU (cpu_set_t &set)
{

return false ;
}

Query :: SP
QueryGenerator :: createQuery (docid_t numhits)
{

return (Query :: SP(new Query (_spec , _maxdocid , (* _spec).size () ,
_heapsize , numhits)));

}

StaticQueryGenerator :: StaticQueryGenerator (QueryQueue &queue , const
PartitionSpecSP &spec ,
docid_t maxdocid , unsigned long heapsize , docid_t numhits) :
QueryGenerator (queue , spec , maxdocid , heapsize),
_numhits (numhits)

{
}

Query :: SP
StaticQueryGenerator :: genQuery (void)
{

return (createQuery (_numhits));
}

QRSLogQueryGenerator :: QRSLogQueryGenerator (QueryQueue &queue ,
const PartitionSpecSP &spec , docid_t maxdocid , unsigned long

heapsize ,
const std :: string & qrlog) :

QueryGenerator (queue , spec , maxdocid , heapsize)
{

_input = fopen (qrlog . c_str () , "r");
}

QRSLogQueryGenerator ::~ QRSLogQueryGenerator ()
{

122 APPENDIX C. CODE

fclose (_input);
}

Query :: SP
QRSLogQueryGenerator :: genQuery (void)
{

unsigned long numhits = 0;
do {

if (fgets (_buffer , buflen , _input) == NULL) {
rewind (_input);

}
numhits = strtol (_buffer , NULL , 10);

} while (numhits == 0);

define MAXHITS 1000000
if (numhits > MAXHITS)

numhits = MAXHITS ;
return (createQuery (numhits));

}

} // end vsim

C.1.22 queryhandler.h

ifndef _VSIM_QUERYHANDLER_H_
define _VSIM_QUERYHANDLER_H_
include <boost / shared_ptr .hpp >
include <sched .h>
include <stdint .h>
include "task.h"
include " query .h"
include " fetcher .h"
include "misc.h"
include " vsimstat .h"
include " barrier .h"
include " queryqueue .h"
include " partitionqueue .h"

namespace vsim {

/**
* A queryhandler is responsible for synchronizing document ranking

and sorting
* of the result .
*/

class QueryHandler : public Task
{
public :

QueryHandler (std :: vector < PartitionQueue > &, VSimStat &, QueryQueue
&);

~ QueryHandler ();

/**
* Shutdown QueryHandler . Wake up all handlers waiting on the same
* queue and exit.
*/

C.1. VSIM SOURCE CODE 123

void shutdown (void);

/**
* The main loop of a QueryHandler thread . Listens on the query

queue for
* new queries and dispatches these queries to all fetchers .

Immediately
* starts merging of completed results .
*/

void run(void);

/**
* The QueryHandler should be able to run on any CPU.
*/

bool getPreferredCPU (cpu_set_t &set) { return false ; }

private :
std :: vector < PartitionQueue > & _partitions ;
QueryQueue & _queue ;
VSimStat &_st;
Barrier _done ;

};

} // end vsim

endif

C.1.23 queryhandler.cpp

include <iostream >

include " atomic .h"
include " queryhandler .h"
include "misc.h"
include " types .h"

namespace vsim {

QueryHandler :: QueryHandler (std :: vector < PartitionQueue > & partitions ,
VSimStat &st , QueryQueue & queue) :
_partitions (partitions),
_queue (queue),
_st(st),
_done (2)

{
}

QueryHandler ::~ QueryHandler () { }

void
QueryHandler :: run(void)
{

bool stop = false ;
while (1) {

Query :: SP qsp = _queue . dequeue (stop);
if (stop) {

124 APPENDIX C. CODE

break ;
}
for (partid_t i = 0; i < _partitions .size (); i++) {

_partitions [i]. enqueue (qsp);
}
qsp -> merge ();
qsp -> stopHandler ();
qsp -> reportStats (_st);

}
_done .wait ();

}

void QueryHandler :: shutdown (void)
{

_queue . shutdown ();
_done .wait ();

}

} // end vsim

C.1.24 queryqueue.h

ifndef _VSIM_QUERYQUEUE_H_
define _VSIM_QUERYQUEUE_H_
include " queue .h"
include " query .h"

namespace vsim {

/**
* A QueryQueue implements a queue of queries with the ability to

timestamp
* insertion and removal from the queue . Only one instance of this

queue should
* exist .
*/

class QueryQueue : public Queue < Query ::SP >
{
public :

QueryQueue (unsigned int maxsize) : Queue < Query ::SP >(maxsize) {}

/**
* Enqueue a query and record the time of insertion . If the queue

is full ,
* block the caller until it is not.
*/

void enqueue (const Query :: SP &qsp) {
_qlock .lock ();
while (_queue .size () >= _maxsize) {

_qlock .wait ();
}
_queue . push_back (qsp);
qsp -> insertQueryQueue ();
_qlock . notify ();
_qlock . unlock ();

}

C.1. VSIM SOURCE CODE 125

/**
* Dequeue the next query from the queue . If the queue is empty ,

block the
* caller until it is not.
*/

Query :: SP dequeue (bool &stop) {
_qlock .lock ();
while (_queue .size () == 0) {

if (_shutdown) {
stop = true;
_qlock . unlock ();
return Query :: SP ();

}
_qlock .wait ();

}
Query :: SP ret = _queue . front ();
_queue . pop_front ();
ret -> removeQueryQueue ();
_qlock . notifyAll ();
_qlock . unlock ();
return ret;

}
};

} // end vsim

endif

C.1.25 queue.h

ifndef _VSIM_QUEUE_H_
define _VSIM_QUEUE_H_
include <deque >
include "cond.h"

namespace vsim {

/**
* The Queue template supports a queue of various size and implements
* wait and notification mechanism on shutdown .
*/

template <typename T>
class Queue {
public :

Queue (unsigned int maxsize) : _maxsize (maxsize), _shutdown (false)
{}

Queue () : _maxsize (0) , _shutdown (false) {}
virtual ~ Queue () {}
/**

* Block the caller until all elements in the queue are dequeued .
*/

void waitUntilEmpty (void) {
_qlock .lock ();
while (_queue .size () > 0) {

_qlock .wait ();

126 APPENDIX C. CODE

}
_qlock . unlock ();

}

/**
* Notify all listeners that the queue will be destroyed .
*/

void shutdown (void) {
_qlock .lock ();
_shutdown = true;
_qlock . notifyAll ();
_qlock . unlock ();

}
protected :

std :: deque <T> _queue ;
Cond _qlock ;
unsigned int _maxsize ;
bool _shutdown ;

};

} // end vsim

endif

C.1.26 resultbuffer.h

ifndef _VSIM_RESULTBUFFER_H_
define _VSIM_RESULTBUFFER_H_
include <vector >
include <boost / shared_ptr .hpp >
include <stdint .h>
include " hitcollector .h"
include " types .h"

namespace vsim {

/**
* A ResultBuffer contains result buffers for all partitions , and a

result
* partition to which the buffers of all partitions may be merged .
*/

class ResultBuffer
{
public :

ResultBuffer (docid_t numhits , partid_t numpart) :
_collectors (numpart , numhits),
_result (2, numhits),
_resultptr (0)

{ }

inline HitCollector & getHandle (partid_t partid) { return
_collectors [partid]; }

/**
* Merge the hits from partition with identifier specified as

argument .
*/

C.1. VSIM SOURCE CODE 127

void mergeHits (partid_t);
void printHits (void) const ;

private :
std :: vector < HitCollector > _collectors ;
std :: vector <HitVector > _result ;
unsigned int _resultptr ;

};

} // end vsim

endif

C.1.27 resultbuffer.cpp

include <iostream >
include " resultbuffer .h"
include " hitvector .h"

namespace vsim {

void
ResultBuffer :: mergeHits (partid_t part)
{

HitVector &op(_result [_resultptr]);
HitVector &res(_result [((_resultptr + 1) % 2)]);

res. merge (op , _collectors [part]. getResultBuffer ());
op. reset ();
_resultptr = ((_resultptr + 1) % 2);

}

void
ResultBuffer :: printHits (void) const
{

std :: cout << " Complete hits: \n";
const HitVector & result (_result [_resultptr]);
result . printHits ();

}

} // end vsim

C.1.28 simendian.h

/* -
* Copyright (c) 2002 Thomas Moestl <tmm@FreeBSD .org >
* All rights reserved .
*
* Redistribution and use in source and binary forms , with or without
* modification , are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice , this list of conditions and the following disclaimer .
* 2. Redistributions in binary form must reproduce the above

copyright

128 APPENDIX C. CODE

* notice , this list of conditions and the following disclaimer in
the

* documentation and/or other materials provided with the
distribution .

*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ‘‘AS IS ’’

AND
* ANY EXPRESS OR IMPLIED WARRANTIES , INCLUDING , BUT NOT LIMITED TO ,

THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE
* ARE DISCLAIMED . IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE

LIABLE
* FOR ANY DIRECT , INDIRECT , INCIDENTAL , SPECIAL , EXEMPLARY , OR

CONSEQUENTIAL
* DAMAGES (INCLUDING , BUT NOT LIMITED TO , PROCUREMENT OF SUBSTITUTE

GOODS
* OR SERVICES ; LOSS OF USE , DATA , OR PROFITS ; OR BUSINESS

INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY , WHETHER IN CONTRACT ,

STRICT
* LIABILITY , OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN

ANY WAY
* OUT OF THE USE OF THIS SOFTWARE , EVEN IF ADVISED OF THE POSSIBILITY

OF
* SUCH DAMAGE .
*
* $FreeBSD$
*/

ifndef _SYS_ENDIAN_H_
define _SYS_ENDIAN_H_

include <stdint .h>
include <ctype .h>

define byteswap64 (x) (((x) >> 56) | (((x) >> 40) & 0 xff00) | (((x)
>> 24) & 0 xff0000) | (((x) >> 8) & 0 xff000000) | (((x) << 8) & ((
uint64_t)0xff << 32)) | (((x) << 24) & ((uint64_t)0xff << 40)) |
(((x) << 40) & ((uint64_t)0xff << 48)) | (((x) << 56)));

/*
* Host to big endian , host to little endian , big endian to host , and

little
* endian to host byte order functions as detailed in byteorder (9).
*/

#if __BYTE_ORDER == __LITTLE_ENDIAN
define vsimhtobe64 (x) byteswap64 ((x))
define vsimbe64toh (x) byteswap64 ((x))
else /* _BYTE_ORDER != _LITTLE_ENDIAN */
define vsimhtobe64 (x) ((uint64_t)(x))
define vsimbe64toh (x) ((uint64_t)(x))
endif /* _BYTE_ORDER == _LITTLE_ENDIAN */
endif /* _SYS_ENDIAN_H_ */

C.1.29 spinlock.h

C.1. VSIM SOURCE CODE 129

ifndef _VSIM_SPINLOCK_H_
define _VSIM_SPINLOCK_H_
include <pthread .h>

namespace vsim {

/**
* A SpinLock is a wrapper around POSIX spinlocks . Synchronization

primitive
* that can be used if locks should be hold for a short period .
*/

class SpinLock {
public :

SpinLock ();
virtual ~ SpinLock ();
void lock(void);
void unlock (void);

protected :
pthread_spinlock_t _lock ;

};

} // end vsim

endif

C.1.30 spinlock.cpp

include <pthread .h>
include " spinlock .h"

namespace vsim {

SpinLock :: SpinLock ()
{

pthread_spin_init (& _lock , 0);
}

SpinLock ::~ SpinLock ()
{

pthread_spin_destroy (& _lock);
}

void
SpinLock :: lock(void)
{

pthread_spin_lock (& _lock);
}

void
SpinLock :: unlock (void)
{

pthread_spin_unlock (& _lock);
}

} // end vsim

130 APPENDIX C. CODE

C.1.31 task.h

ifndef _VSIM_TASK_H_
define _VSIM_TASK_H_
include <boost / shared_ptr .hpp >
include " query .h"

namespace vsim {

/**
* The Task class is an interface towards a runnable entity in the

Vespa
* simulator . A class implementing this interface may be scheduled by

the
* threadpool class .
*/

class Task {
public :

typedef boost :: shared_ptr <Task > SP;
virtual ~Task () {}

virtual void run(void) = 0;
virtual void shutdown (void) = 0;
virtual bool getPreferredCPU (cpu_set_t &) = 0;

};

} // end vsim

endif

C.1.32 thread.h

ifndef _VSIM_THREAD_H_
define _VSIM_THREAD_H_
include <pthread .h>
include "task.h"
include "cond.h"

namespace vsim {

class ThreadPool ;

/**
* A Thread is the internal wrappers around POSIX threads used by the

threadpool
* to dispatch the runnable entities implementing the Task interface .
*/

class Thread {
public :

typedef boost :: shared_ptr <Thread > SP;

Thread ();
~ Thread ();
void join(void);

/**

C.1. VSIM SOURCE CODE 131

* Dispatch a task to this thread . If the thread is busy with
another task and

* the task not started , return false .
*/

bool dispatch (Task :: SP);
void run(void);
static void * trampoline (void *);
friend class ThreadPool ;

private :
pthread_t _handle ;
Cond _dispatched ;
bool _finished ;
bool _busy ;
bool _started ;
pid_t _tid;
cpu_set_t _set;
Task :: SP _task ;

};

} // end vsim

endif

C.1.33 thread.cpp

include <iostream >
include <errno .h>
include <string .h>
include " thread .h"
include " threadpool .h"
include "task.h"

namespace vsim {

Thread :: Thread () :
_finished (false),
_busy (false),
_started (false)

{
}

Thread ::~ Thread ()
{
}

void
Thread :: join(void)
{

_dispatched .lock ();
_finished = true;
_dispatched . notify ();
_dispatched . unlock ();
if (_started)

pthread_join (_handle , NULL);
}

132 APPENDIX C. CODE

bool
Thread :: dispatch (Task :: SP t)
{

_dispatched .lock ();
if (_busy) {

_dispatched . unlock ();
return (false);

}
// First time this thread was picked
if (! _started) {

_started = true;
pthread_create (& _handle , NULL , Thread :: trampoline , this);

}
_task = t;
_busy = true;
_dispatched . notify ();
_dispatched . unlock ();
return (true);

}

void
Thread :: run(void)
{

_tid = (pid_t) syscall (186) ; // gettid x86 -64
if (sched_getaffinity (_tid , sizeof (_set), &_set) != 0) {

std :: cout << " Error getting initial affinity of thread " <<
_tid << ": "
<< strerror (errno) << std :: endl;

}
_dispatched .lock ();
while (! _finished) {

while (! _busy) {
if (_finished) {

break ;
}
_dispatched .wait ();

}
_dispatched . unlock ();
if (_finished)

break ;
cpu_set_t tset;
if (_task -> getPreferredCPU (tset)) {

// Set preferred affinity of the running task
if (sched_setaffinity (_tid , sizeof (tset), &tset) != 0)

std :: cout << " Error setting affinity of thread " <<
_tid << std :: endl;

} else {
// Reset affinity settings of this thread
if (sched_setaffinity (_tid , sizeof (_set), &_set) != 0)

std :: cout << " Error setting affinity of thread " <<
_tid << std :: endl;

}
_task ->run ();
_dispatched .lock ();
_busy = false ;
_task . reset ();

}

C.1. VSIM SOURCE CODE 133

}

void *
Thread :: trampoline (void *arg)
{

Thread *t = (Thread *) arg;
t->run ();
return (NULL);

}

} // end vsim

C.1.34 threadpool.h

ifndef _VSIM_THREADPOOL_H_
define _VSIM_THREADPOOL_H_
include <vector >
include "task.h"
include " thread .h"

namespace vsim {

/**
* A ThreadPool implements a set of threads that may be assigned a

task and
* run.
*/

class ThreadPool {
public :

ThreadPool (unsigned int);
~ ThreadPool ();
int runThread (Task :: SP);

private :
std :: vector < Thread ::SP > _pool ;
unsigned int _poolsize ;

};

} // end vsim

endif

C.1.35 threadpool.cpp

include <iostream >
include <vector >
include <pthread .h>
include " threadpool .h"
include " thread .h"
include "task.h"

namespace vsim {

ThreadPool :: ThreadPool (unsigned int size) : _poolsize (size)
{

for (unsigned int i = 0; i < _poolsize ; i++) {

134 APPENDIX C. CODE

Thread *t = new Thread ();
_pool . push_back (Thread :: SP(t));

}
}

ThreadPool ::~ ThreadPool ()
{

for (unsigned int i = 0; i < _poolsize ; i++) {
Thread &t = (* _pool .at(i));
t.join ();

}
}

int
ThreadPool :: runThread (Task :: SP task)
{

while (1) {
for (std :: vector < Thread ::SP >:: iterator iter = _pool . begin

();
iter != _pool .end (); ++ iter) {

if ((* iter)->dispatch (task)) {
return 0;

}
}

}
std :: cout << " Found no thread to dispatch !\n";
return -1;

}

} // end vsim

C.1.36 types.h

ifndef _VSIM_TYPES_H_
define _VSIM_TYPES_H_
include <boost / shared_ptr .hpp >
include <vector >
include <list >
include <stdint .h>

namespace vsim {

typedef unsigned long docid_t ;
typedef unsigned long partid_t ;
typedef uint64_t rank_t ;
typedef std :: vector <docid_t > DocidVector ;
typedef std :: list <docid_t > DocidList ;
enum VSimMode { TIMEMODE , QUERYMODE };
enum SlotDistribution { BINOMIAL , GAUSS , POISSON , GEOMETRIC };
class Slot {
public :

Slot(docid_t f, docid_t s, double p) : first (f), second (s), prob(p
) {}

docid_t first ;
docid_t second ;
double prob;

C.1. VSIM SOURCE CODE 135

};
typedef std :: vector <Slot > PartitionRange ;
typedef std :: vector < PartitionRange > PartitionSpec ;
typedef boost :: shared_ptr < PartitionSpec > PartitionSpecSP ;

typedef std :: pair <docid_t , unsigned long > Hit;
typedef docid_t PartitionHit ;
typedef std :: vector < PartitionHit > HitStat ;

typedef unsigned long attr_t ;
typedef attr_t * attrptr_t ;
typedef std :: vector <attrptr_t > AttributeVector ;
typedef std :: vector < unsigned long > AttributeIndexVector ;

} // end vsim

endif

C.1.37 vsimconfig.h

ifndef _VSIM_VSIMCONFIG_H_
define _VSIM_VSIMCONFIG_H_
include <string >
include " types .h"

namespace vsim {

/**
* The VSimConfig class handles configuration for the simulator run

time. It can
* be used to inspect the configuration status from the system .
*/

class VSimConfig
{
public :

VSimConfig (docid_t numpart = 1,
docid_t numslots = 1,
unsigned long maxconn = 1,
unsigned long clients = 1,
docid_t maxdocid = 10000 ,
docid_t numhits = 1000 ,
docid_t hitheapsize = 100 ,
unsigned long numattr = 0,
AttributeIndexVector attrrange = AttributeIndexVector

(0) ,
SlotDistribution slotdist = BINOMIAL ,
unsigned long simtime = 10,
unsigned long numrounds = 1,
const std :: string & qrlog = "") :

_numpart (numpart),
_numslots (numslots),
_maxconn (maxconn),
_clients (clients),
_maxdocid (maxdocid),
_numhits (numhits),
_hitheapsize (hitheapsize),

136 APPENDIX C. CODE

_numattr (numattr),
_attrindices (attrrange),
_slotdist (slotdist),
_simtime (simtime),
_numrounds (numrounds),
_qrlog (qrlog)

{
}

docid_t getNumPartitions (void) const { return _numpart ; }
docid_t getNumSlots (void) const { return _numslots ; }
unsigned int getMaxConnections (void) const { return _maxconn ; }
unsigned long getNumClients (void) const { return _clients ; }
docid_t getMaxDocId (void) const { return _maxdocid ; }
docid_t getNumHits (void) const { return _numhits ; }
docid_t getHitHeapSize (void) const { return _hitheapsize ; }
SlotDistribution getSlotDistribution (void) const { return

_slotdist ; }
const std :: string & getQRSLogFile (void) const { return _qrlog ; }
PartitionSpecSP createPartitionSpec (void);
void exportConfig (const std :: string &);
unsigned long getSimTime (void) const { return _simtime ; }
unsigned long getNumberOfRounds (void) const { return _numrounds ; }
unsigned int getNumAttributes (void) const { return _numattr ; }
const AttributeIndexVector & getAttributeIndices (void) const {

return _attrindices ; }

private :
docid_t _numpart ;
docid_t _numslots ;
unsigned int _maxconn ;
unsigned long _clients ;
docid_t _maxdocid ;
docid_t _numhits ;
docid_t _hitheapsize ;
unsigned int _numattr ;
AttributeIndexVector _attrindices ;
SlotDistribution _slotdist ;
unsigned long _simtime ;
unsigned long _numrounds ;
std :: string _qrlog ;

};

} // end vsim

endif

C.1.38 vsimconfig.cpp

include <iostream >
include <unistd .h>
include " vsimconfig .h"
include " vsimstore .h"
include " querygenerator .h"
include "misc.h"

C.1. VSIM SOURCE CODE 137

include <boost /math/ distributions / normal .hpp >
include <boost /math/ distributions / poisson .hpp >
include <boost /math/ distributions / negative_binomial .hpp >

namespace vsim {

using boost :: math :: pdf;
using boost :: math :: cdf;

define calcProb (s, start , end) (cdf ((s), (end)) - cdf ((s), (start)))

PartitionSpecSP
VSimConfig :: createPartitionSpec (void)
{

PartitionSpecSP ps(new PartitionSpec);

docid_t maxdocid = getMaxDocId ();
partid_t numpart = getNumPartitions ();
docid_t numslots = getNumSlots ();
docid_t num_per_part = (maxdocid / numpart);
docid_t num_per_slot = (num_per_part / numslots);

double totalprob = 0.0;
partid_t i = 0;
while (maxdocid > 0) {

docid_t start = i * num_per_part ;
docid_t range = (num_per_part >= maxdocid) ? maxdocid :

num_per_part ;
if (i == (numpart - 1))

range = maxdocid ;
PartitionRange pr;
docid_t slotid = range ;
docid_t slotnum = 0;
while (slotid > 0) {

docid_t slotstart = (slotnum * num_per_slot) + start ;
docid_t slotrange = (num_per_slot >= slotid) ? slotid :

num_per_slot ;
if (slotnum == (numslots - 1))

slotrange = slotid ;
docid_t slotend = slotstart + slotrange ;
// TODO: Support different
double prob = 0.0;
switch (_slotdist) {
default : // Fallthrough , default is BINOMIAL
case BINOMIAL :

prob = (double) slotrange /(double) getMaxDocId ();
break ;

case GAUSS :
{

boost :: math :: normal gauss (getMaxDocId () / 2,
getMaxDocId () / 4);

prob = calcProb (gauss , slotstart , slotend);
}
break ;

case POISSON :
{

138 APPENDIX C. CODE

boost :: math :: poisson poisdist (getMaxDocId () / 2);
prob = calcProb (poisdist , slotstart , slotend);

}
break ;

case GEOMETRIC :
{

// First parameter gives average for geometric ,
and second

// gives steepness of the curve
boost :: math :: negative_binomial negbinom (1, 0.99) ;
prob = calcProb (negbinom , ((double) slotstart / (

double) getMaxDocId ()), ((double) slotend / (
double) getMaxDocId ()));

}
}
totalprob += prob;
pr. push_back (Slot(slotstart , slotend , prob));
slotid -= slotrange ;
slotnum ++;

}
(* ps). push_back (pr);
maxdocid -= range ;
i++;

}
// Spread the rest of the probabilities on the rest of the slots

according
// to the ration compared to totalprob !
double remaining = 1.0 - totalprob ;
double newtotal = 0.0;
for (docid_t i = 0; i < (* ps).size (); i++) {

for (docid_t j = 0; j < (* ps)[i]. size (); j++) {
double prob = (* ps)[i][j]. prob;
double ratio = prob / totalprob ;
(* ps)[i][j]. prob += (remaining * ratio);
newtotal += (* ps)[i][j]. prob;

}
}
return (ps);

}

} // end vsim

C.1.39 vsim.h

ifndef _VSIM_VSIM_H_
define _VSIM_VSIM_H_
include <string >
include " vsimreport .h"
include " vsimstat .h"
include " vsimconfig .h"
include " vsimstore .h"
include " querygenerator .h"

namespace vsim {

/**

C.1. VSIM SOURCE CODE 139

* The VSim class implements the simulator run -time. The class may
generate a

* report of the simulator run.
*/

class VSim {
public :

VSim(VSimConfig &vcfg) : _vcfg (vcfg) { }
~VSim () { }

/**
* Dispatch a set of threads (equal to the number of partitions)

to seed the
* data storage in order to get memory optimally allocated to each

CPUs DRAM
* controller .
*/

void seed(VSimStore &);
QueryGenerator :: SP createQueryGenerator (QueryQueue &,

const PartitionSpecSP &, unsigned int);

void run(const std :: string &);
VSimReport doRun (VSimStore &);

private :
VSimConfig & _vcfg ;

};

} // end vsim

endif

C.1.40 vsim.cpp

include <iostream >
include <time.h>

include "vsim.h"
include " vsimstat .h"
include " query .h"
include " querygenerator .h"
include " queryhandler .h"
include " fetcher .h"
include " threadpool .h"
include " vsimstore .h"
include " vsimconfig .h"
include " vsimprofiler .h"
include " vsimseeder .h"

namespace vsim {

void
VSim :: run(const std :: string & samplefile)
{

VSimStore ds(_vcfg);
VSimProfiler :: stop ();
for (unsigned int i = 0; i < _vcfg . getNumberOfRounds (); i++) {

seed(ds);

140 APPENDIX C. CODE

ds. memlock ();
VSimProfiler :: start ();
VSimReport report = doRun (ds);
VSimProfiler :: stop ();
ds. memunlock ();
report . printReport ();
// Output samples
if (samplefile .size () > 0) {

report . exportReport (samplefile . c_str ());
}
sleep (1);

}
}

void
VSim :: seed(VSimStore &ds)
{

std :: vector < VSimSeeder ::SP > seeders ;
PartitionSpecSP ps = _vcfg . createPartitionSpec ();
ThreadPool tp(ps ->size () + 1);

for (partid_t i = 0; i < (* ps).size (); i++) {
PartitionRange &pr ((* ps)[i]);
docid_t start = pr [0]. first ;
docid_t end = pr[pr.size () - 1]. second ;
VSimSeeder :: SP vssp(new VSimSeeder (ds , start , end , i));
seeders . push_back (vssp);
tp. runThread (vssp);

}
for (partid_t i = 0; i < seeders .size (); i++) {

seeders [i]-> shutdown ();
}

}

QueryGenerator :: SP
VSim :: createQueryGenerator (QueryQueue &queue , const PartitionSpecSP &

spec ,
unsigned int id)

{
std :: string qrlog (_vcfg . getQRSLogFile ());
if (qrlog .size () > 0) {

char buf [128];
if (id < 10)

snprintf (buf , 128 , "0%u", id);
else

snprintf (buf , 128 , "%u", id);
qrlog += buf;
std :: cout << qrlog << std :: endl;
return (QueryGenerator :: SP(new QRSLogQueryGenerator (queue ,

spec ,
_vcfg . getMaxDocId () , _vcfg . getHitHeapSize () , qrlog)));

}
return (QueryGenerator :: SP(new StaticQueryGenerator (queue , spec ,

_vcfg . getMaxDocId () , _vcfg . getHitHeapSize () , _vcfg . getNumHits
())));

}

C.1. VSIM SOURCE CODE 141

VSimReport
VSim :: doRun (VSimStore &ds)
{

VSimStat st(_vcfg);
PartitionSpecSP ps = _vcfg . createPartitionSpec ();
ThreadPool tp (300) ;

std :: cout << " Setting up simulation \n";
std :: vector < PartitionQueue > partitions ;
std :: vector < Fetcher ::SP > fetchers ;
std :: vector < QueryGenerator ::SP > clients ;
QueryQueue qq(_vcfg . getMaxConnections ());
std :: vector < QueryHandler ::SP > handlers ;

// Create partitions
for (partid_t i = 0; i < _vcfg . getNumPartitions (); i++) {

partitions . push_back (PartitionQueue (i));
}

// Create clients
for (unsigned int i = 0; i < _vcfg . getNumClients (); i++) {

QueryGenerator :: SP qgsp(createQueryGenerator (qq , ps , i));
clients . push_back (qgsp);

}

// The number of fetchers per partition depends on the number of
partitions .

unsigned int fetchers_per_part = _vcfg . getMaxConnections ();
for (partid_t i = 0; i < partitions .size (); i++) {

for (unsigned int j = 0; j < fetchers_per_part ; j++) {
VSimTime vst;
vst. recordTime ();
Fetcher :: SP fsp(new Fetcher (ds , partitions [i], i,

(vst. getTimeNanoSeconds () + j + i), j, _vcfg .
getMaxDocId ()));

tp. runThread (fsp);
fetchers . push_back (fsp);

}
}

// Create query queue and queryhandlers
for (unsigned int i = 0; i < _vcfg . getMaxConnections (); i++) {

QueryHandler :: SP qhsp(new QueryHandler (partitions , st , qq));
tp. runThread (qhsp);
handlers . push_back (qhsp);

}

std :: cout << "Let threads settle down\n";
sleep (2);
std :: cout << " Starting simulation \n";
st. startSimulation ();

ifdef AUTOPARTITIONING
define PARTCHECKNUM 100

unsigned int partcheck = PARTCHECKNUM ;
endif

142 APPENDIX C. CODE

// Start all clients
for (unsigned int i = 0; i < clients .size (); i++) {

tp. runThread (clients [i]);
}
st. sleepUntilFinished ();

ifdef AUTOPARTITIONING
if (partitions .size () > 1) {

partcheck --;
if (partcheck <= 0) {

ps = st. updatePartitionSpec (ps);
partcheck = PARTCHECKNUM ;

}
}

endif
std :: cout << " Stopping simulation \n";
for (unsigned int i = 0; i < clients .size (); i++) {

clients [i]-> shutdown ();
}
for (unsigned int i = 0; i < clients .size (); i++) {

clients [i]->wait ();
}
qq. waitUntilEmpty ();
qq. waitUntilEmpty ();
qq. shutdown ();
for (unsigned int i = 0; i < handlers .size (); i++) {

handlers [i]-> shutdown ();
}
for (partid_t i = 0; i < partitions .size (); i++) {

partitions [i]. waitUntilEmpty ();
partitions [i]. shutdown ();

}
for (partid_t i = 0; i < fetchers .size (); i++) {

fetchers [i]-> shutdown ();
}
st. stopSimulation ();
std :: cout << " Simulation finished \n";
return st. generateReport (* ps);

}

} // end vsim

C.1.41 vsimprofiler.h

ifndef _VSIMPROFILER_H_
define _VSIMPROFILER_H_

namespace vsim {

/**
* The VSimProfiler class is a simple interface towards oprofile by

wrapping
* system () commands .
*/

class VSimProfiler {
public :

static void start (void);

C.1. VSIM SOURCE CODE 143

static void stop(void);
};

} // end vsim

endif

C.1.42 vsimprofiler.cpp

include <cstdlib >
include <iostream >
include " vsimprofiler .h"

namespace vsim {

void
VSimProfiler :: start (void)
{
ifdef OPROFILE

if (system (" opcontrol --start ") == -1)
std :: cout << " Error starting OProfile " << std :: endl;

endif
}

void
VSimProfiler :: stop(void)
{
ifdef OPROFILE

if (system (" opcontrol --stop") == -1)
std :: cout << " Error stopping OProfile " << std :: endl;

endif
}

} // namespace vsim

C.1.43 vsimreport.h

ifndef _VSIM_VSIMREPORT_H_
define _VSIM_VSIMREPORT_H_
include <vector >
include <string >
include <fstream >
include <stdint .h>
include " types .h"

namespace vsim {

/**
* The report class describes a simulation run. The report may be
* exported to file , or imported from a file.
*/

class VSimReport
{
public :

void exportReport (const char *);

144 APPENDIX C. CODE

void importReport (const char *);
int importReportData (std :: ifstream &);
void printReport (void);
static SlotDistribution distIntToName (uint64_t);
static uint64_t distNameToInt (SlotDistribution);

uint64_t numpart ; // Number of partitions
uint64_t numhandlers ; // Number of query handlers
uint64_t numhits ; // Number of hits per query (if

not using qrlog)
uint64_t numclients ; // Number of clients
uint64_t heapsize ; // Number of hits returned
uint64_t numdocs ; // Number of documents stored
uint64_t numattr ; // Number of attributes per

document
uint64_t numslots ; // Number of slots per partition
uint64_t distribution ; // Which probability distribution

used
uint64_t numqueries ; // Number of queries finished
uint64_t simtime ; // Simulation time , in seconds
uint64_t cputime ; // CPU time , in seconds
uint64_t qps; // Queries per simulation second
uint64_t qps_weighted ; // Queries per CPU second
uint64_t time_queue ; // Time spent in query queue
uint64_t time_exec ; // Time spent on query execution
uint64_t time_fetcher ; // Time spent in fetcher
uint64_t time_partitionqueue ; // Time spent in partition queue
uint64_t time_handler ; // Time spent in query handler
double fraction_handler ; // Fraction of execution time

spent in handler
HitStat hitstats ; // Per partition hit counts
std :: vector <uint64_t > partitionqueuetimes ; // Per partition queue

times
std :: vector <uint64_t > fetchertimes ; // Per partition

fetcher execution times
uint64_t numindices ; // Number of attribute

indices
AttributeIndexVector attributeindices ; // Attributes used for

calculating rank
std :: vector <uint64_t > partitionscheme ; // Number of slots per

partition at the end
};

std :: vector < VSimReport > importReportBatch (const char *);

} // end vsim

endif

C.1.44 vsimreport.cpp

include <string >
include <iostream >
include <fstream >
include <iomanip >
include <cstring >

C.1. VSIM SOURCE CODE 145

include " vsimreport .h"
include " simendian .h"
include "misc.h"

namespace vsim {

define WRITE64 (fd , var) do { \
uint64_t tmp = vsimhtobe64 ((var)); \
(fd). write ((char *)&tmp , sizeof (tmp)); \

} while (0)

void
VSimReport :: exportReport (const char * outfile)
{

std :: ofstream fd(outfile , std :: ios :: app | std :: ios :: binary);

// Write configuration options first
WRITE64 (fd , numpart);
WRITE64 (fd , numhandlers);
WRITE64 (fd , numhits);
WRITE64 (fd , numclients);
WRITE64 (fd , heapsize);
WRITE64 (fd , numdocs);
WRITE64 (fd , numattr);
WRITE64 (fd , numslots);
WRITE64 (fd , distribution);
WRITE64 (fd , numqueries);
WRITE64 (fd , simtime);
WRITE64 (fd , cputime);
WRITE64 (fd , qps);
WRITE64 (fd , qps_weighted);
WRITE64 (fd , time_queue);
WRITE64 (fd , time_exec);
WRITE64 (fd , time_fetcher);
WRITE64 (fd , time_partitionqueue);
WRITE64 (fd , time_handler);
fd. write ((char *)& fraction_handler , sizeof (fraction_handler));
for (docid_t i = 0; i < numpart ; i++) {

uint64_t val = hitstats [i];
WRITE64 (fd , val);
WRITE64 (fd , partitionqueuetimes [i]);
WRITE64 (fd , fetchertimes [i]);

}
WRITE64 (fd , numindices);
for (unsigned long i = 0; i < attributeindices .size (); i++) {

uint64_t val = attributeindices [i];
WRITE64 (fd , val);

}
for (unsigned long i = 0; i < partitionscheme .size (); i++) {

uint64_t val = partitionscheme [i];
WRITE64 (fd , val);

}
fd. close ();

}

define READ64 (fd , var) do { \
uint64_t tmp = 0; \

146 APPENDIX C. CODE

(fd).read ((char *)&tmp , sizeof (tmp)); \
if ((fd).eof ()) \

return -1; \
(var) = vsimbe64toh (tmp); \

} while (0)

int
VSimReport :: importReportData (std :: ifstream &fd)
{

READ64 (fd , numpart);
READ64 (fd , numhandlers);
READ64 (fd , numhits);
READ64 (fd , numclients);
READ64 (fd , heapsize);
READ64 (fd , numdocs);
READ64 (fd , numattr);
READ64 (fd , numslots);
READ64 (fd , distribution);
READ64 (fd , numqueries);
READ64 (fd , simtime);
READ64 (fd , cputime);
READ64 (fd , qps);
READ64 (fd , qps_weighted);
READ64 (fd , time_queue);
READ64 (fd , time_exec);
READ64 (fd , time_fetcher);
READ64 (fd , time_partitionqueue);
READ64 (fd , time_handler);
fd.read ((char *)& fraction_handler , sizeof (fraction_handler));
for (docid_t i = 0; i < numpart ; i++) {

uint64_t hit;
READ64 (fd , hit);
uint64_t pqt;
READ64 (fd , pqt);
uint64_t ft;
READ64 (fd , ft);
hitstats . push_back (hit);
partitionqueuetimes . push_back (pqt);
fetchertimes . push_back (ft);

}
READ64 (fd , numindices);
for (unsigned long i = 0; i < numindices ; i++) {

uint64_t val = 0;
READ64 (fd , val);
attributeindices . push_back (val);

}
for (docid_t i = 0; i < numpart ; i++) {

uint64_t val;
READ64 (fd , val);
partitionscheme . push_back (val);

}
return 0;

}

void
VSimReport :: importReport (const char * infile)
{

C.1. VSIM SOURCE CODE 147

std :: ifstream fd(infile , std :: ios :: in | std :: ios :: binary);
importReportData (fd);
fd. close ();

}

std :: vector < VSimReport >
importReportBatch (const char * infile)
{

std :: vector < VSimReport > reports ;
std :: ifstream fd(infile , std :: ios :: in | std :: ios :: binary);
while (! fd.eof ()) {

VSimReport report ;
if (report . importReportData (fd) != 0)

break ;
reports . push_back (report);

}
fd. close ();
return (reports);

}

SlotDistribution
VSimReport :: distIntToName (uint64_t val)
{

return ((SlotDistribution)val);
}

uint64_t
VSimReport :: distNameToInt (SlotDistribution sd)
{

return ((uint64_t)sd);
}

void
VSimReport :: printReport (void)
{

std :: cout << " Configuration :\t\t" << std :: endl;
std :: cout << "# partitions :\t\t" << numpart << std :: endl;
std :: cout << "# handlers :\t\t" << numhandlers << std :: endl;
std :: cout << "#hits :\t\t\t" << numhits << std :: endl;
std :: cout << "# clients :\t\t" << numclients << std :: endl;
std :: cout << " heapsize :\t\t" << heapsize << std :: endl;
std :: cout << " numdocs :\t\t" << numdocs << std :: endl;
std :: cout << "num attributes :\t\t" << numattr << std :: endl;
std :: cout << " attributes used :\t";
for (unsigned int i = 0; i < attributeindices .size (); i++) {

std :: cout << attributeindices [i] << " ";
}
std :: cout << std :: endl;
std :: cout << "# slots /part :\t\t" << numslots << std :: endl;
std :: cout << " distribution :\t\t" << slotDistEnumToText (

distIntToName (distribution)) << std :: endl;
std :: cout << "# queries :\t\t" << numqueries << std :: endl;
std :: cout << " simtime :\t\t" << simtime << std :: endl;
std :: cout << " cputime :\t\t" << cputime << std :: endl;
std :: cout << std :: endl;

const unsigned int NUMCOLUMNS = 8;

148 APPENDIX C. CODE

std :: cout << " Results :" << std :: endl;
const char menu[NUMCOLUMNS][128] = { " Queries /sec", " Weighted_Q /s"

, " time_queue ", " time_execution ", " time_fetcher ", "
time_partitionqueue ", " time_handler ", "\% handler " };

std :: vector <int > widths (NUMCOLUMNS);
for (unsigned int i = 0; i < NUMCOLUMNS ; i++) {

widths [i] = strlen (menu[i]);
if (i > 0)

widths [i]++;
std :: cout << std :: setw(widths [i]) << menu[i];

}
std :: cout << std :: endl;
std :: cout << std :: setw(widths [0]) << qps;
std :: cout << std :: setw(widths [1]) << qps_weighted ;
std :: cout << std :: setw(widths [2]) << time_queue ;
std :: cout << std :: setw(widths [3]) << time_exec ;
std :: cout << std :: setw(widths [4]) << time_fetcher ;
std :: cout << std :: setw(widths [5]) << time_partitionqueue ;
std :: cout << std :: setw(widths [6]) << time_handler ;
std :: cout << std :: setw(widths [7]) << std :: setprecision (2) <<

fraction_handler ;
std :: cout << std :: endl;
std :: cout << std :: endl;
std :: cout << "Per partition stats : " << std :: endl;
for (docid_t i = 0; i < numpart ; i++) {

std :: cout << i << " H: " << hitstats [i] << " P: " <<
partitionqueuetimes [i] << " F: " << fetchertimes [i] << std
:: endl;

}
}

} // end vsim

C.1.45 vsimseeder.h

ifndef _VSIMSEEDER_H_
define _VSIMSEEDER_H_

include " types .h"
include " vsimstore .h"
include "task.h"
include " barrier .h"

namespace vsim {

/**
* The VSimSeeder task seeds a range of the document store attributes

in order
* to place data close to a local DRAM controller .
*/

class VSimSeeder : public Task {
public :

typedef boost :: shared_ptr < VSimSeeder > SP;
VSimSeeder (VSimStore &, docid_t , docid_t , int);
void run(void);
void shutdown (void);

C.1. VSIM SOURCE CODE 149

bool getPreferredCPU (cpu_set_t &);

private :
VSimStore & _store ;
docid_t _start ;
docid_t _end;
int _whichCPU ;
Barrier _done ;

};

} // end vsim

endif

C.1.46 vsimseeder.cpp

include <sys/time.h>
include <time.h>
include "task.h"
include " vsimstore .h"
include " vsimseeder .h"

namespace vsim {

VSimSeeder :: VSimSeeder (VSimStore &store , docid_t start , docid_t end ,
int which)
: _store (store),

_start (start),
_end(end),
_whichCPU (which),
_done (2)

{ }

void
VSimSeeder :: run(void)
{

_store . seedRange (time (0) , _start , _end);
_done .wait ();

}

void
VSimSeeder :: shutdown (void)
{

_done .wait ();
}

bool
VSimSeeder :: getPreferredCPU (cpu_set_t &set)
{

CPU_ZERO (& set);
CPU_SET ((_whichCPU % NUMCPU), &set);
return (true);

}

} // end vsim

150 APPENDIX C. CODE

C.1.47 vsimstat.h

ifndef _VSIM_VSIMSTAT_H_
define _VSIM_VSIMSTAT_H_
include <sys/time.h>
include <sys/ resource .h>
include <stdint .h>
include " vsimconfig .h"
include " vsimreport .h"
include " vsimtime .h"
include " mutex .h"
include "cond.h"
include " types .h"
include "misc.h"

namespace vsim {

/**
* The VSimStat class keeps statistics . The statistics object can be

used by the
* internal query classes to report relevant information . These

results can be
* used to create a report which can be stored to disk.
*
* The class may also generate a new partition specification from the

hit
* statistics of each partition in order to handle dynamic workloads .
*/

class VSimStat
{
public :

VSimStat (VSimConfig &);
void report (std :: vector <uint64_t > &, std :: vector <uint64_t > &,

uint64_t , uint64_t , uint64_t);
void startSimulation (void);
void stopSimulation (void);
void sleepUntilFinished (void);
void reportHits (HitStat);
VSimReport generateReport (const PartitionSpec &);
PartitionSpecSP updatePartitionSpec (const PartitionSpecSP &);

private :
VSimConfig & _vcfg ;
Mutex _hslock ;
HitStat _hs;
HitStat _parths ;
uint64_t _numfinished ;
std :: vector <uint64_t > _fetchertimes ;
std :: vector <uint64_t > _partitionqueuetimes ;
uint64_t _totalmaxfetchertime ;
uint64_t _totalqueryqueuetime ;
uint64_t _totalhandlertime ;
VSimTime _startSim ;
VSimTime _stopSim ;
struct rusage _rusage_start ;
struct rusage _rusage_end ;

};

C.1. VSIM SOURCE CODE 151

} // end vsim

endif

C.1.48 vsimstat.cpp

include <iostream >
include <iomanip >
include <inttypes .h>
include <assert .h>
include <numeric >
include <cstring >

include " types .h"
include " atomic .h"
include " vsimstat .h"
include " vsimconfig .h"
include "misc.h"

namespace vsim {

using namespace vespalib ;

VSimStat :: VSimStat (VSimConfig &vcfg) :
_vcfg (vcfg),
_hs(vcfg. getNumPartitions () , 0) ,
_parths (vcfg. getNumPartitions () , 0) ,
_numfinished (0) ,
_fetchertimes (vcfg. getNumPartitions () , 0) ,
_partitionqueuetimes (vcfg. getNumPartitions () , 0) ,
_totalmaxfetchertime (0) ,
_totalqueryqueuetime (0) ,
_totalhandlertime (0)

{ }

void
VSimStat :: report (std :: vector <uint64_t > & fetchertimes , std :: vector <

uint64_t > & partitionqueuetimes , uint64_t maxfetchertime , uint64_t
queuetime , uint64_t handlertime)

{
Atomic :: postInc (& _numfinished);
for (partid_t i = 0; i < fetchertimes .size (); i++) {

Atomic :: add (& _fetchertimes [i], fetchertimes [i]);
Atomic :: add (& _partitionqueuetimes [i], partitionqueuetimes [i]);

}
Atomic :: add (& _totalmaxfetchertime , maxfetchertime);
Atomic :: add (& _totalqueryqueuetime , queuetime);
Atomic :: add (& _totalhandlertime , handlertime);

}

void
VSimStat :: reportHits (HitStat hs)
{

if (hs.size () != _hs.size ()) {

152 APPENDIX C. CODE

std :: cout << " Cannot merge stats of different size , ours: " <<
_hs.size () << " real: " << hs.size () << std :: endl;

return ;
}
for (unsigned int i = 0; i < _hs.size (); i++) {

_hs[i] += hs[i];
}
_hslock .lock ();
for (unsigned int i = 0; i < _parths .size (); i++) {

_parths [i] += hs[i];
}
_hslock . unlock ();

}

include <cstdlib >

/**
* Update partition spec based on hit statistics .
*/

PartitionSpecSP
VSimStat :: updatePartitionSpec (const PartitionSpecSP &ps)
{

_hslock .lock ();
HitStat hs(_parths);
_hslock . unlock ();

assert ((* ps).size () == hs.size ());

docid_t totalhit = 0;
for (unsigned int i = 0; i < hs.size (); i++) {

hs[i]++;
totalhit += hs[i];

}

docid_t numslots = _vcfg . getNumSlots ();
docid_t idealhit = totalhit / hs.size ();
docid_t slothit = idealhit / numslots ;
std :: vector <docid_t > numslots_per (hs.size () , numslots);
PartitionSpecSP newspec (new PartitionSpec (* ps));

for (unsigned int i = 0; i < hs.size (); i++) {
// We need more slots , take one from our neighbour
if (hs[i] < idealhit) {

docid_t remainder = idealhit - hs[i];
docid_t remainder_slots = remainder / slothit ;
for (unsigned int j = hs.size () - 1; j > i &&

remainder_slots > 0; j--) {
PartitionRange &mine ((* newspec)[j]);
docid_t available_slots = MIN(mine.size () ,

remainder_slots);
// Move these backwards
PartitionRange &prev ((* newspec)[j - 1]);
prev. insert (prev.end () , mine. begin () , (mine. begin () +

available_slots));
mine. erase (mine. begin () , (mine. begin () +

available_slots));
numslots_per [j] -= available_slots ;

C.1. VSIM SOURCE CODE 153

numslots_per [j - 1] += available_slots ;
}

} else if (hs[i] > idealhit) {
docid_t remainder = hs[i] - idealhit ;
docid_t remainder_slots = remainder / slothit ;
for (unsigned int j = i; j < hs.size () - 1; j++) {

PartitionRange &mine ((* newspec)[j]);
PartitionRange &next ((* newspec)[j + 1]);
docid_t available_slots = MIN(remainder_slots , mine.

size ());
// Move these forward
next. insert (next. begin () , (mine.end () - available_slots

), mine.end ());
mine. erase ((mine.end () - available_slots), mine.end ());

numslots_per [j] -= available_slots ;
numslots_per [j + 1] += available_slots ;

}
}
hs[i] = idealhit ;

}
_hslock .lock ();
_parths = hs;
_hslock . unlock ();
return (newspec);

}

void
VSimStat :: sleepUntilFinished (void)
{

VSimTime now;
now. recordTime ();
unsigned long diff = (now. getTimeSeconds () - _startSim .

getTimeSeconds ());
std :: cout << " Sleeping for " << (_vcfg . getSimTime () - diff) << "

seconds \n";
sleep (_vcfg . getSimTime () - diff);

}

void
VSimStat :: startSimulation (void)
{

_startSim . recordTime ();
getrusage (RUSAGE_SELF , & _rusage_start);

}

void
VSimStat :: stopSimulation (void)
{

_stopSim . recordTime ();
getrusage (RUSAGE_SELF , & _rusage_end);

}

VSimReport
VSimStat :: generateReport (const PartitionSpec &spec)
{

154 APPENDIX C. CODE

uint64_t totalfetchertime = 0;
uint64_t totalpartqueuetime = 0;
for (unsigned long i = 0; i < _fetchertimes .size (); i++) {

totalpartqueuetime += _partitionqueuetimes [i];
totalfetchertime += _fetchertimes [i];

}
totalpartqueuetime /= _partitionqueuetimes .size ();
totalfetchertime /= _fetchertimes .size ();

VSimTime usertime_start (_rusage_start . ru_utime);
VSimTime usertime_end (_rusage_end . ru_utime);
VSimTime systime_start (_rusage_start . ru_stime);
VSimTime systime_end (_rusage_end . ru_stime);

VSimReport report ;
report . numpart = _fetchertimes .size ();
report . numhandlers = _vcfg . getMaxConnections ();
report . numhits = _vcfg . getNumHits ();
report . numclients = _vcfg . getNumClients ();
report . heapsize = _vcfg . getHitHeapSize ();
report . numdocs = _vcfg . getMaxDocId ();
report . numattr = _vcfg . getNumAttributes ();
report . numslots = _vcfg . getNumSlots ();
report . distribution = VSimReport :: distNameToInt (_vcfg .

getSlotDistribution ());
report . numqueries = _numfinished ;
report . simtime = _startSim . getDiffMilliSeconds (_stopSim) / 1000;
report . cputime = (usertime_start . getDiffMilliSeconds (usertime_end)

+ systime_start . getDiffMilliSeconds (systime_end)) / 1000;
report .qps = (_numfinished / report . simtime);
report . qps_weighted = (_numfinished / report . cputime);
report . time_queue = (_totalqueryqueuetime / _numfinished);
report . time_exec = (_totalhandlertime / _numfinished);
report . time_fetcher = (_totalmaxfetchertime / _numfinished);
report . time_partitionqueue = (totalpartqueuetime / _numfinished);
report . time_handler = report . time_exec - report . time_fetcher -

report . time_partitionqueue ;
report . fraction_handler = (double) 100.0 * (double) report .

time_handler / (double) report . time_exec ;
report . hitstats = _hs;
for (docid_t i = 0; i < report . hitstats .size (); i++) {

report . partitionqueuetimes . push_back (_partitionqueuetimes [i] /
_numfinished);

report . fetchertimes . push_back (_fetchertimes [i] / _numfinished)
;

}
report . attributeindices = _vcfg . getAttributeIndices ();
report . numindices = report . attributeindices .size ();
for (docid_t i = 0; i < spec.size (); i++) {

const PartitionRange &pr(spec[i]);
report . partitionscheme . push_back (pr.size ());

}
return (report);

}

} // end vsim

C.1. VSIM SOURCE CODE 155

C.1.49 vsimstore.h

ifndef _VSIM_VSIMSTORE_H_
define _VSIM_VSIMSTORE_H_
include <vector >
include " vsimconfig .h"
include " types .h"

namespace vsim {

/**
* A VSimStore contains a set of attributes belonging to documents .

The
* attribute arrays containing attribute data are initialized and

accessed
* through this class when asking for the rank of a document .
*/

class VSimStore
{
public :

VSimStore (const VSimConfig &);
~ VSimStore ();

/**
* Make sure that the attributes are not swapped to disk.
*/

void memlock (void);
void memunlock (void);

/**
* Generate the attribute values .
*/

void seed(unsigned long);
void seedRange (unsigned long , docid_t , docid_t);

/**
* Calculate the rank of a document .
*/

rank_t getRank (docid_t) const ;

static const unsigned long MAXRANK = 1000000;
private :

docid_t _maxdocid ;
AttributeIndexVector _attrindex ;
AttributeVector _attributes ;

};

} // end vsim
endif

C.1.50 vsimstore.cpp

include <iostream >
include <algorithm >
include <sys/mman.h>
include <boost / random / linear_congruential .hpp >

156 APPENDIX C. CODE

include <boost / random / uniform_int .hpp >
include <boost / random / variate_generator .hpp >
include " vsimconfig .h"
include " vsimstore .h"

define CACHE_LINE_SIZE 64

namespace vsim {

typedef boost :: minstd_rand base_generator_type ;

VSimStore :: VSimStore (const VSimConfig &vcfg) :
_maxdocid (vcfg. getMaxDocId ()),
_attrindex (vcfg. getAttributeIndices ())

{
// Create memory area for all attributes
for (unsigned int i = 0; i < vcfg. getNumAttributes (); i++) {

attrptr_t astore = 0;
if (posix_memalign ((void **)&astore , CACHE_LINE_SIZE , (

_maxdocid * sizeof (attr_t))) != 0) {
std :: cout << " Error allocating aligned memory for

attributes " << std :: endl;
exit (-1);

}
_attributes . push_back (astore);

}
}

void
VSimStore :: memlock (void)
{

for (unsigned int i = 0; i < _attributes .size (); i++) {
attrptr_t astore = _attributes [i];
mlock (astore , (_maxdocid * sizeof (attr_t)));

}
}

void
VSimStore :: memunlock (void)
{

for (unsigned int i = 0; i < _attributes .size (); i++) {
attrptr_t astore = _attributes [i];
munlock (astore , (_maxdocid * sizeof (attr_t)));

}
}

void
VSimStore :: seed(unsigned long s)
{

seedRange (s, 0, _maxdocid);
}

void
VSimStore :: seedRange (unsigned long s, docid_t start , docid_t end)
{

base_generator_type generator (s);
boost :: uniform_int <attr_t > dist (1, MAXRANK);

C.1. VSIM SOURCE CODE 157

boost :: variate_generator < base_generator_type &, boost :: uniform_int <
attr_t > > vgen(generator , dist);

for (docid_t i = start ; i < end; i++) {
for (unsigned int j = 0; j < _attributes .size (); j++) {

attrptr_t astore = _attributes [j];
astore [i] = vgen ();

}
}

}

VSimStore ::~ VSimStore ()
{

// Create memory area for all attributes
for (unsigned int i = 0; i < _attributes .size (); i++) {

attr_t * astore = _attributes [i];
free(astore);

}
}

rank_t
VSimStore :: getRank (docid_t docid) const
{

const unsigned int numrounds = 20;
rank_t rank = 0;

// Busy loop tuned to blow some cycles here
for (unsigned int i = 0; i < numrounds ; i++) {

for (unsigned long a = 0; a < _attrindex .size (); a++) {
attrptr_t astore = _attributes [_attrindex [a]];
rank += astore [docid] + i;

}
}
return (rank);

}

} // end vsim

C.1.51 vsimtime.h

ifndef _VSIM_VSIMTIME_H_
define _VSIM_VSIMTIME_H_
include <time.h>

namespace vsim {

/**
* The VSimTime class is a wrapper around the POSIX time keeping

classes and
* provides methods for aquiring the current time as well calculating

time
* difference .
*/

class VSimTime {
public :

158 APPENDIX C. CODE

VSimTime ();
VSimTime (struct timeval &);
void recordTime (void);

static const unsigned long NANO_PER_MILLI = 1000000;
static const unsigned long MILLI_PER_SECOND = 1000;
static const unsigned long NANO_PER_MICRO = 1000;
static const unsigned long MICRO_PER_SECOND = 1000000;
unsigned long getTimeSeconds (void);
unsigned long getTimeMilliSeconds (void);
unsigned long getTimeNanoSeconds (void);

unsigned long getDiffMilliSeconds (VSimTime &);
unsigned long getDiffMicroSeconds (VSimTime &);

private :
struct timespec _value ;

};

} // end vsim

endif

C.1.52 vsimtime.cpp

include <time.h>
include <sys/time.h>
include " vsimtime .h"

namespace vsim {

VSimTime :: VSimTime ()
{ }

VSimTime :: VSimTime (struct timeval &val)
{

_value . tv_sec = val. tv_sec ;
_value . tv_nsec = (val. tv_usec * 1000) ;

}

void
VSimTime :: recordTime (void)
{

clock_gettime (CLOCK_MONOTONIC , & _value);
}

unsigned long
VSimTime :: getTimeSeconds (void)
{

return (_value . tv_sec);
}

unsigned long
VSimTime :: getTimeMilliSeconds (void)
{

return (_value . tv_sec * 1000) ;
}

C.1. VSIM SOURCE CODE 159

unsigned long
VSimTime :: getTimeNanoSeconds (void)
{

return (_value . tv_nsec);
}

unsigned long
VSimTime :: getDiffMilliSeconds (VSimTime &t2)
{

unsigned long t2sec = t2. getTimeSeconds ();
unsigned long t2nsec = t2. getTimeNanoSeconds ();
unsigned long t1sec = _value . tv_sec ;
unsigned long t1nsec = _value . tv_nsec ;

unsigned long millidiff = 0;
if (t2sec > t1sec) {

millidiff = (t2sec - t1sec) * MILLI_PER_SECOND ;
if (t2nsec > t1nsec) {

millidiff += ((t2nsec - t1nsec) / NANO_PER_MILLI);
} else {

millidiff -= ((t1nsec - t2nsec) / NANO_PER_MILLI);
}

} else if (t2sec < t1sec) {
millidiff = (t1sec - t2sec) * MILLI_PER_SECOND ;
if (t2nsec > t1nsec) {

millidiff -= ((t2nsec - t1nsec) / NANO_PER_MILLI);
} else {

millidiff += ((t1nsec - t2nsec) / NANO_PER_MILLI);
}

} else {
if (t2nsec > t1nsec) {

millidiff = ((t2nsec - t1nsec) / NANO_PER_MILLI);
} else {

millidiff = ((t1nsec - t2nsec) / NANO_PER_MILLI);
}

}
return (millidiff);

}

unsigned long
VSimTime :: getDiffMicroSeconds (VSimTime &t2)
{

unsigned long t2sec = t2. getTimeSeconds ();
unsigned long t2nsec = t2. getTimeNanoSeconds ();
unsigned long t1sec = _value . tv_sec ;
unsigned long t1nsec = _value . tv_nsec ;

unsigned long microdiff = 0;
if (t2sec > t1sec) {

microdiff = (t2sec - t1sec) * MICRO_PER_SECOND ;
if (t2nsec > t1nsec) {

microdiff += ((t2nsec - t1nsec) / NANO_PER_MICRO);
} else {

microdiff -= ((t1nsec - t2nsec) / NANO_PER_MICRO);
}

} else if (t2sec < t1sec) {

160 APPENDIX C. CODE

microdiff = (t1sec - t2sec) * MICRO_PER_SECOND ;
if (t2nsec > t1nsec) {

microdiff -= ((t2nsec - t1nsec) / NANO_PER_MICRO);
} else {

microdiff += ((t1nsec - t2nsec) / NANO_PER_MICRO);
}

} else {
if (t2nsec > t1nsec) {

microdiff = ((t2nsec - t1nsec) / NANO_PER_MICRO);
} else {

microdiff = ((t1nsec - t2nsec) / NANO_PER_MICRO);
}

}
return (microdiff);

}

} // end vsim

C.1.53 printreport.cpp

include <iostream >
include <stdlib .h>
include " vsimreport .h"

using namespace vsim;

int
main(int argc , char ** argv)
{

std :: vector < VSimReport > reports ;
if (argc < 2) {

std :: cout << " Usage : " << argv [0] << " samplefile " << std ::
endl;

exit(EXIT_FAILURE);
}
reports = importReportBatch (argv [1]);
for (unsigned int i = 20; i < reports .size (); i++) {

reports [i]. exportReport ("test.bin");
}
return 0;

}

C.2 Scripts

C.2.1 Simreport Python interface for sample files

#!/ usr/bin/env python
import struct
import stat
import os
import sys
import math

C.2. SCRIPTS 161

The simreport module is able to read simulator output reports
generated by

Vsim and provides an object oriented interface towards the reports .
Moreover ,

it contains support for generating mean values of multiple runs
together with

standard deviations of these values . The script may also be run
standalone

with a filename to the sample file as argument .
def ReadInt (handle):

return struct . unpack_from (’>Q’, handle .read (8))[0]

def ReadDouble (handle):
return struct . unpack_from (’d’, handle .read (8))[0]

class SimReport :
def __init__ (self , reportNum , filename =None):

self. numpart = 0
self. numhandlers = 0
self. numhits = 0
self. numclients = 0
self. heapsize = 0
self. numdocs = 0
self. numattr = 0
self. numslots = 0
self. distribution = 0
self. numqueries = 0
self. simtime = 0
self. cputime = 0
self.qps = [0]
self. qps_mean = 0
self. qps_stddev = 0
self. qps_weighted = 0
self. time_queue = 0
self. time_exec = 0
self. time_fetcher = 0
self. time_partitionqueue = 0
self. time_handler = 0
self. fraction_handler = 0.0
self. hitstat = []
self. partitionqueuetime = []
self. fetchertimes = []
self. numindices = 0
self. attributeindices = []
self. partitionscheme = []

self. reportnum = reportNum
if filename == None:

return
handle = open(filename , mode=’rb ’)
self. importData (handle)
handle . close ()

def importData (self , handle):
self. numpart = ReadInt (handle)
self. numhandlers = ReadInt (handle)
self. numhits = ReadInt (handle)

162 APPENDIX C. CODE

self. numclients = ReadInt (handle)
self. heapsize = ReadInt (handle)
self. numdocs = ReadInt (handle)
self. numattr = ReadInt (handle)
self. numslots = ReadInt (handle)
self. distribution = ReadInt (handle)
self. numqueries = ReadInt (handle)
self. simtime = ReadInt (handle)
self. cputime = ReadInt (handle)
self.qps [0] = ReadInt (handle)
self. qps_weighted = ReadInt (handle)
self. time_queue = ReadInt (handle)
self. time_exec = ReadInt (handle)
self. time_fetcher = ReadInt (handle)
self. time_partitionqueue = ReadInt (handle)
self. time_handler = ReadInt (handle)
self. fraction_handler = ReadDouble (handle)
self. hitstat = []
self. partitionqueuetime = []
self. fetchertimes = []
self. attributeindices = []
self. partitionscheme = []
for i in range (self. numpart):

self. hitstat . append (ReadInt (handle))
self. partitionqueuetime . append (ReadInt (handle))
self. fetchertimes . append (ReadInt (handle))

self. numindices = ReadInt (handle)
for i in range (self. numindices):

self. attributeindices . append (ReadInt (handle))
for i in range (self. numpart):

self. partitionscheme . append (ReadInt (handle))

def equalConfig (self , report):
return (self. numpart == report . numpart and self. numhandlers ==

report . numhandlers and self. numhits == report . numhits and
self. numclients == report . numclients and self. heapsize ==
report . heapsize and self. numdocs == report . numdocs and

self. numattr == report . numattr and self. numslots == report
. numslots and self. distribution == report . distribution and

self. numindices == report . numindices)

def add(self , report):
self.qps. extend (report .qps)
self. qps_weighted += report . qps_weighted
self. time_queue += report . time_queue
self. time_exec += report . time_exec
self. time_fetcher += report . time_fetcher
self. time_partitionqueue += report . time_partitionqueue
self. time_handler += report . time_handler
self. fraction_handler += report . fraction_handler
for i in range (min(self.numpart , report . numpart)):

self. hitstat [i] += report . hitstat [i]
self. partitionqueuetime [i] += report . partitionqueuetime [i]
self. fetchertimes [i] += report . fetchertimes [i]
self. partitionscheme [i] += report . partitionscheme [i]

def printreport (self):

C.2. SCRIPTS 163

print self. numhandlers , self.numpart , self.numhits , self.
qps_mean , self. qps_stddev , self. time_queue , self.time_exec
, self. time_fetcher , self. time_partitionqueue

def average (self , howmany):
self. qps_mean = sum(self.qps) / howmany
for num in self.qps:

self. qps_stddev += math.pow(num - self.qps_mean , 2)
self. qps_stddev = math.sqrt(self. qps_stddev)
self. qps_weighted /= howmany
self. time_queue /= howmany
self. time_exec /= howmany
self. time_fetcher /= howmany
self. time_partitionqueue /= howmany
self. time_handler /= howmany
self. fraction_handler /= howmany
for i in range (self. numpart):

self. hitstat [i] /= howmany
self. partitionqueuetime [i] /= howmany
self. fetchertimes [i] /= howmany
self. partitionscheme [i] /= howmany

def importReportBatch (filename):
s = os.stat(filename)
size = s[stat. ST_SIZE]
handle = open(filename , ’rb ’)
reports = []
i = 0
while handle .tell () < size:

report = SimReport (i)
report . importData (handle)
reports . append (report)
i += 1

handle . close ()
return reports

def averageReports (reportlist):
avglist = []
numavg = []
for report in reportlist :

found = False
for i in range (len(avglist)):

if report . equalConfig (avglist [i]):
avglist [i]. add(report)
numavg [i] += 1
found = True
break

if not found :
avglist . append (report)
numavg . append (1)

for i in range (len(avglist)):
avglist [i]. average (numavg [i])

return avglist

def importAvgReports (filename):
return (averageReports (importReportBatch (filename)))

164 APPENDIX C. CODE

if (len(sys.argv) > 1):
reports = importReportBatch (sys.argv [1])
for report in reports :

report . printreport ()

	Title Page
	Problem Description
	Introduction
	Assignment interpretation
	Main contributions
	Report outline

	Background and state of the art
	Search engines
	Retrieval
	Indexing
	Searching

	Vespa
	Indexing
	Disk index and attributes
	Query Result Server
	Top Level Dispatch
	The Vespa search node
	Vespamalloc
	Radix sort

	Multicore processors and cache coherency
	Cache coherence
	Cache affinity
	Software techniques for improving multicore performance

	Measuring effects on the cache hierarchy
	CPU simulators
	Performance counters
	Comparing against the target platform

	Software profiling tools
	Profiling tools using performance counters
	Valgrind
	What kind of profiling tool to use?

	Amdahl's and Gustafson's law
	Software libraries
	POSIX Threading library
	Affinity APIs

	Vespa search core design
	Query evaluation strategies
	Query evaluation in the Vespa search core
	Parts eligible for parallelisation
	Alternative query evaluation design
	Cache effects
	Latency effects
	Parallel query evaluation in the Vespa search core

	Using Amdahl's and Gustafson's law
	Implications of parallel query evaluation

	Vsim - Vespa search core simulator
	Considerations regarding language and tools
	Boost

	Simulator requirements
	Development methodology
	User interface
	Vsim output

	Software design
	Vsim overview
	Partitions, slots and hit distributions
	General framework code
	Query generators and query data
	Document storage and ranking
	Queue generalizations
	Vsim threading model
	Collecting hits and storing the result
	Autopartitioning
	Simulation setup and configuration management
	Collecting statistics and generating a simulation report

	Alternative designs and ideas
	Parallel merge
	Experimenting with alternative HitCollector implementations

	Initial flaws
	Accuracy of Vsim model

	Evaluation methodology
	Target platform
	Intel Xeon E5530

	Performance counters
	OProfile
	Basic metrics used to evaluate Vsim
	Throughput
	Latency
	Speedup and efficiency
	Average memory access time

	Experiments
	Vsim parameters
	Scalability
	Scalability of query handlers
	Scalability of parallel query evaluation

	Performance of parallel query evaluation
	Using the same number of hits per query
	Using QRS logs from Yahoo! News
	Using QRS logs from Yahoo! Image Search

	Behavior of the cache hierarchy
	L1 cache miss ratio
	L2 cache miss ratio
	L3 cache miss ratio
	Average memory access time

	The impact of slots and autopartitioning
	Discussion

	Conclusion and further work
	Conclusion
	Further work

	Additional notes
	Vsim alternative designs and ideas
	Alternative HitCollector implementations
	Allocating a QueryHandler and Fetchers for each Query

	Initial flaws in Vsim
	Performing result sorting instead of merging in the QueryHandler
	Initial implementation of the VSimStore

	Techniques to promote effective cache reuse

	Clarifications
	Performance counter mappings

	Code
	Vsim source code
	barrier.h
	barrier.cpp
	cond.h
	cond.cpp
	fetcher.h
	fetcher.cpp
	hitcollector.h
	hitcollector.cpp
	hitvector.h
	hitvector.cpp
	main.cpp
	mergequeue.h
	misc.h
	misc.cpp
	mutex.h
	mutex.cpp
	partitionqueue.h
	query.h
	query.cpp
	querygenerator.h
	querygenerator.cpp
	queryhandler.h
	queryhandler.cpp
	queryqueue.h
	queue.h
	resultbuffer.h
	resultbuffer.cpp
	simendian.h
	spinlock.h
	spinlock.cpp
	task.h
	thread.h
	thread.cpp
	threadpool.h
	threadpool.cpp
	types.h
	vsimconfig.h
	vsimconfig.cpp
	vsim.h
	vsim.cpp
	vsimprofiler.h
	vsimprofiler.cpp
	vsimreport.h
	vsimreport.cpp
	vsimseeder.h
	vsimseeder.cpp
	vsimstat.h
	vsimstat.cpp
	vsimstore.h
	vsimstore.cpp
	vsimtime.h
	vsimtime.cpp
	printreport.cpp

	Scripts
	Simreport Python interface for sample files

