
Distribuert database for
posisjonslagring

Eirik Alderslyst Nygaard

Norges teknisk-naturvitenskapelige universitet
Institutt for datateknikk og informasjonsvitenskap

Master i datateknikk
Oppgaven levert:
Hovedveileder:

Juni 2010
Svein-Olaf Hvasshovd, IDI

Oppgavetekst
Denne oppgaven vil gå ut på å designe et system for å holde oversikt over
plasseringen til person ut fra lokasjonsdata som GPS eller mobilmaster. Det
vil være behov for å designe en database som håndterer store mengder
oppdateringer av lokasjonsinformasjonen til hver enkelt bruker samt å sende ut
denne dataen til de som abonnerer på plasseringen til den oppdaterte brukeren.

Systemet som skal lages må være redundant så noder kan kræsje uten at det fører
til nedetid i systemet. Noen muligheter vil da være en hot standby for alle
noder, eller at nabonoder kan dele på brukerene som var på noden som gikk ned.

Brukerene vil sende kontinuerlige oppdateringer med hvor de har forflyttet seg
til systemet, og disse må håndteres fortløpende. Det er derfor nødvendig å se
på hvordan systemet skal håndtere at det kommer flere oppdateringsforespørsler
enn det kan takle, og passe på at det alltid er ressurser nok tilgjengelig for
å sende ut oppdateringene til de som ønsker denne.

For å håndtere dette vil den distribuerte databasen være geografisk spredt for
at de som sender oppdateringer alltid vil være i nærheten til en server for å
minke latensen mellom de, og det kan være fordelaktig at en bruker å migrere
mellom servere ut fra hvor i verden de er for øyeblikket. For at en server skal
kunne sende ut oppdatert informasjon til de som vil vite hvor en person er må
det være en mekanisme i nettverket for å effektivt sende ut denne informasjonen
til riktige mottakere.

Oppgaven gitt: 15. januar 2010
Hovedveileder: Svein-Olaf Hvasshovd, IDI

Abstract

Social interaction is a integral part of today’s society. And people would often
like to know where their friends are. In this thesis a system will be described that
can receive location updates from people and relay them to any interested party.

The system is distributed to make sure it will scale up and handle a huge
amount of users. And geographically spread out and a user will always connect
to the closest set of server so that the latency during communication is kept to a
minimum. As well as keeping the latency low this also allows temporary failures
in in global communication without denying the user the ability to send updates.

All communication which will be over longer distances are done by the servers
which will most likely have better bandwidth and connection to the rest of the
world.

Finally all users will belong to one geographical zone which is responsible for
knowing where the user is and having the most recent subscriber information.

Contents

1 Introduction 1

2 Background 3
2.1 Key value stores . 3

2.1.1 Redundancy . 3
2.1.2 Consistency . 4

2.2 GSM . 4
2.2.1 Cells . 5
2.2.2 Handover . 5

3 State of the art 7
3.1 Google Latitude . 7
3.2 mBuddy . 7
3.3 Delivery services . 8

4 Architecture 9
4.1 Zone . 9

4.1.1 Home zone . 11
4.1.2 Redundancy . 11

4.2 Consistency . 11
4.3 Migration between zones . 12

4.3.1 Special cases . 12
4.4 Database layout . 14
4.5 User id . 15
4.6 User lookup . 16
4.7 Subscribing for user updates . 16
4.8 Update notification . 16
4.9 Geographical location . 16
4.10 Home zone selection . 17
4.11 Network protocol . 17
4.12 Server discovery . 17
4.13 Server overload . 17
4.14 Use cases . 18

4.14.1 New user . 18

i

4.14.2 Subscribe to updates from a single user 18
4.14.3 User update with only local subscribers 18
4.14.4 User update with foreign subscribers 19
4.14.5 User update in foreign zone 19
4.14.6 Home zone server downtime 19
4.14.7 Waiting for user updates . 19
4.14.8 Migrating from a home zone 20
4.14.9 Migrating to a home zone . 20
4.14.10 Back and forth migration . 20
4.14.11 Entire zone downtime . 20

5 Discussion 21
5.1 Multiple zones . 21

5.1.1 Zone failure . 21
5.2 Mapping location to zone . 22
5.3 Database layout . 22
5.4 User id . 23
5.5 Home zone . 23
5.6 Subscription . 24
5.7 Network protocol . 24

5.7.1 Transmission Control Protocol 24
5.7.2 User Datagram Protocol . 25
5.7.3 Stream Control Transmission Protocol 25
5.7.4 Comparison . 25

5.8 Full mesh communication . 26
5.9 Server overload . 26

6 Implementation 27
6.1 Storage . 27
6.2 Protocol . 27

6.2.1 Commands . 28
6.2.2 Parsing . 29

6.3 Request queue . 30
6.4 Threading model . 30
6.5 Network communication . 31

7 Future work 33
7.1 Find nearby friends . 33
7.2 Authorization and authenticating . 33
7.3 Outlier detection and correction . 33
7.4 Keep historic data . 34

8 Conclusion 35

ii

List of Figures

4.1 Zones overview . 10
4.2 User migrating from zone A to zone B and then back to zone A . . . 13
4.3 User migrating continuously between zone A and zone B 14

6.1 Update user command example . 28
6.2 Fetch command example . 28
6.3 Subscribe command example . 28
6.4 Subscribers command example . 29
6.5 Poll command example . 29
6.6 New user command example . 29

iii

List of Tables

4.1 User location database layout for home zone 15
4.2 User location database layout for visiting zone 15
4.3 Subscriber database layout . 15
4.4 Subscriber of visitor database layout 16
4.5 Current zone . 16

Chapter 1

Introduction

This thesis describes a system for storing and distributing the location of a huge
amount of individuals or items (from now on known as users). The system wait for
updates from the objects that move around, and in real time push this information
to the interested parties, as well as store it.

To maintain as high uptime as possible, and remain scalable, the system is
split into several servers which communicate. To handle server downtime there
exist servers that are clones of each other, and internally keep them self up to
date. Linear scaling must be supports to allow new users to be created without
degrading the quality of the rest of the system, by doubling the hardware capacity
the number of simultaneously handled users should also double.

Since every user can continuously update the server with their location, a server
might end up getting too much traffic. Handling server overload is therefor an
important aspect to keep the system running smoothly.

To minimize the latency for update requests, a geographical dispersion of the
nodes in the system is needed. With a short geographical distance the latency
will be lower than if the server was located far away. By physically placing server
different places, areas with a dense user base can have servers that cover a smaller
area, while servers can cover a greater area if the user base is rather sparse.

This system can be in several ways, either for people to keep track of where
theirs friends are, for researchers to keep track of wild animals, or the postal service
or other delivery businesses.

A person might want to find out where a friend is that he is supposed to meet,
or find a friend nearby which he could do something with. Having location tracking
can also be used to ind other people you don’t already know with similar interests
if the system is connected with a database which contains interests.

Using it for locating people will also allow people with access to the data to
match that and other available person data to find possible friends of yours, or the
other way around, by matching your interests and location find other people you
share interests with in your area.

A system which always know where someone is located can be a privacy prob-
lem. People does not always want the world to know where they are. Or there

1

might be some people you would not want to know where you are.
Farmers can use such a system to always have an up to date knowledge of where

their animals are. By matching this data up against the trackers wild animals is
marked with, one could avoid attacks by herding their animals to safer places, or
sending out a watchman when the two animal groups are know to frequent in the
same area.

A distributed design can leverage recent advances in key-value database in the
later years. Specially their algorithms for keeping multiple nodes in sync and load
balancing.

The system itself is described in chapter 4. The architecture defines interaction
between servers and clients, as well as communication between two servers or zones.
In chapter 5 other possible solutions to the architecture is talked about, and why
the architecture was chosen.

The test implementation of a server which handles clients are then described in
chapter 6, this also contains the protocol used to communicate. And the conclusion
sums up the entire system in chapter 8.

2

Chapter 2

Background

2.1 Key value stores

Key value stores are a generalized database for storing and retrieving data based
on a given key. The key value stores are designed to scale up to massive amounts
of data[1], and normally includes built in data replication support to keep the same
data stored on several servers. Handling a huge amount of read, writes and keep
data always available requires a network of servers which can all answer database
requests.

To allow for massive amounts of information to be stored, the data is spread
out across several servers. One of the solutions for selecting which server get which
data is to use consistent hashing[2]. Using consistent hashing servers can be added
and removed without the need to relocate data.

Both keys and values can be seen as an object consisting of several other objects,
or as a single element. An element can be integer, decimal number or strings.
Storing data is usually called a put operation, and retrieving is done by a get

operation.
Key value stores are used by companies like Facebook1 and Amazon2 to handle

their massive amount of users3. When there are many database servers in a setup
one must assume one will always fail, and the key value stores are designed for
the failure case. No data should become unavailable if a server goes down, and it
should still be possible to store new data. Even if the used key would normally end
up on the failed server.

2.1.1 Redundancy

To achieve durability of the stored data it must be replicated to several servers in
the key value store network. The replication also increases the availability because

1http://www.facebook.com
2http://www.amazon.com
3Facebook had 400 million active users in May 2010[3], and half of them used the web page

each day

3

even if the server that originally got the store request it will be possible to retrieve
the object from another server.

When a server receives a new key value pair, it will be stored and which other
servers that in addition will get a copy is decided based on the key and to which
other servers the original server is connected.

Replication causes some trouble when it comes to consistency of the data which
is explained in subsection 2.1.2, but the negative impact is not problematic enough
to change from a loosely connected set of servers which work together to form a
redundant and high-availability database.

2.1.2 Consistency

Updating a nested structure like an object can result in inconsistent reads when
in the middle of writing a new object. Transactions is a normal way to deal
with this, but are not always available in common key value stores[4]. These
databases rely on atomic operations, and requires that the programmer make sure
that inconsistencies does not occur.

Another problem with consistency in key value stores is the fetch-store cycle for
updating. Since a series of operations are not guaranteed to be atomic two clients
could first fetch an object. Then after the old version has been retrieved by both
they update separate parts of the object and write the changes back. One way to
handle this is for the database server to attach a serial number to every object it
sends to a client, and when the client sends an update back to the server the serial
must match the serial for the object. If the serials does not match the update is
denied. This ensures that the object was not updated by someone else in between
the fetch and update requests from the client.

When data is replicated to several servers, and an update to a object can be
done to any one of those servers the client can not handle a conflict when doing
the update. The time it takes the object to be updated on several server to achieve
redundancy allows two clients to update the same object on different servers at the
same time without knowing of the other persons update. Or when a server becomes
unavailable without being able to send out the updated object to the other servers.
Instead of resolving the conflict when doing the update, the conflict can be handled
when the client reads the object.

2.2 GSM

GSM[5] is a global mobile communication system which allows people to commu-
nicate with speech in real time without being connected by any wires. There were
some problems when different countries developed their own systems. But a stan-
dardization effort helped consolidate all into one connected network. Cell towers
are used to communicate with the wireless devices, and relays the signal so it ends
up at the correct endpoint.

4

2.2.1 Cells

GSM networks are cells of overlapping cell towers. These cell towers are responsible
for the wireless communication within their area, and relaying the data it receives
to the correct next step. An overlap exists between the different cells to allow
devices to travel between the cells without losing connectivity.

The cell towers are planned with enough range so the overlap is enough to allow
handovers to be performed properly, but small enough to minimize the interference
between the towers.

2.2.2 Handover

The handover protocol is a way to allow a device to travel between two cells without
losing open connections. A handover can also be initiated if the channel a device
is communicating on is overloaded and the device needs to switch to a different
channel.

Handovers are considered when the signal strength drops below a given thresh-
old. This could happen for two reasons. Either the device has left the current cell,
or it does not supply enough power to the sender. A power increase may be tried
before a handover is initiated.

5

Chapter 3

State of the art

For location tracking there are several services that are in use today. Google has a
system closest to the system described in this paper, but no technical information
is available for it except for the API used to communicate with it. Several mobile
phone service providers allows you to track your friends using their GSM location
if they allow you to follow them. Telenor is said to have done research for a
location system, but no information for this is publicly available. Most package
delivery services allows you to see where your package is currently located, but it
has several short comings.

Even with these system available not much information is available to look at
how the systems operate.

3.1 Google Latitude

Latitude from Google is a social location network. You can tell your friends where
you are. It has integration with Google Maps, and allows you to find friends located
in close proximity to yourself. It also records your location history for plotting on
a map, and allows you to see where you were at a given time.

The user is self responsible for sending out location information to Latitude. It
can either be done by adding an application to your smart-phone which automati-
cally sends updates, or by using the Latitude API.

The API gives you access to your location history, your location and the abil-
ity to update you current location. This allows users to write new applications
which can use location information, and not be locked into the application Google
publishes for the service.

3.2 mBuddy

This system uses the GSM network to get the position of a cell phone. Most people
always carry around their cell phone, and can therefor be tracked continuously. The
major problem with using the GSM[6] network is that it is not very accurate. The

7

accuracy depends on how many cell phone towers the cell phone is connected to,
and how far apart they are. In places where cell phone towers are located close to
each other (like in a big city), you will be able to tell where a person is within a few
hundred meters[7, Support]. However when people are out hiking in the mountains
or forests the data collected will only be able to pinpoint a person within several
kilometers. The accuracy of the location also depends on the base station you
are connected to. Normally you would be connected to the closest base station
which would give good accuracy, but if that base station is overloaded you might
be transferred to one further away which would decrease the accuracy.

3.3 Delivery services

Several delivery services support package tracking. The Norwegian postal service,
FedEx, and DHL are a few examples. These tracking systems does however not
operate in real time. Instead they rely on packages to be registered at each location
they arrive.

This results in packages that does not get updated at each location, either
because it did not get properly scanned, or it was sent through to the next location
without passing a scanner.

These delays in location updates can be annoying. The delivery company might
end up not knowing where a package is for a time which leads to harder shipping
planning.

8

Chapter 4

Architecture

This system will support storing the latest geographical position of users, and
allow others to subscribe to users and be notified when their location is updated.
The architecture will be fully redundant and downtime for a set of nodes will not
influence the availability of the rest of the system.

The database will consist of several zones, where each zone is responsible for a
geographical area. A user will always communicate with the zone that covers the
area he is located within. Each user will also be associated with a home zone which
has control over that user.

Migration of a user will handle the case where a user travels from one geograph-
ical zone to another. Control has to be transferred from the current zone to the
next and subscribers to the user’s location has to be transmitted.

Figure 4.1 shows a set of three zones and how they communicate. The network
is a full mesh where every zone will communicate directly with the other zones
when that is required.

Each zone contains four tables of data, users, subscribers, visitors and visitors
subscribers. These are all described in section 4.4. User and subscribers are tables
with data for the users which has the zone as their home zone, and visitors and
visitors subscribers are a merged table with data from the home zones for the users
that have temporarily migrated to this zone.

4.1 Zone

A zone contains a list of all the users which are located within the geographic area
the zone is responsible for. Information about all the subscribers to a user is also
stored in the zone the user is located. This way updated can be sent out directly
without looking up subscribers.

Each zone has its own unique identifier to separate them from each other.

Consider history data, how do we want to do that and where should it be stored,
transferred to the home zone when a migration occurs?

9

Zone A

Zone B

Zone C

Subscribers

Users

Visitors

VisitorsSubscribers

Subscribers Users

Visitors

VisitorsSubscribers

Subscribers

Users

Visitors

VisitorsSubscribers

Figure 4.1: Zones overview

10

4.1.1 Home zone

Each home zone is responsible for keeping control of the users related to the zone.
The home zone can allow or deny the migration of a user, and will always hold
the most recent subscriber information. The home zone will be chosen by the user
itself depending on where he is when signing up, and where his home location is.

4.1.2 Redundancy

Only the home zone data will be duplicated for redundancy. The subscribers of
user and the user location databases for visiting user can always be recreated on
demand from the data in the home zone. Keeping several copies of the data allows
a server to crash without degrading the quality of a zone. If the data does not have
several copies a crash of one server will result in data loss, but when it is copied to
several servers data will still be available even if a server crashes.

Data from visiting users are only stored on the current active server within
a zone to avoid duplicating data more than is needed. Since the data is already
stored with redundancy it can be retrieved again if it is lost on the zone the user
is visiting. This avoids keeping all the servers within a zone synchronized when it
handles visiting users.

When a zone gets a location update from a user it does not have the information
for, it will send a migration request to the home zone of that user and the migration
protocol will take over and handle the missing data as if the user just came from
another zone.

Each zone is responsible for always keeping at least one up and running server.
The servers within one zone should therefor not all be kept at the same location
or use the same network connection.

4.2 Consistency

To guarantee that the latest update by a user is the one retrieved when asking for
that user’s location. The location is first requested from the zone the user has as
his home zone. If the user is located within his home zone the location will be sent
back, if not the zone the user is located within is sent as the response.

The requester can then request the user’s location from that zone instead. If
during that time the user has migrated to a new zone the process has to be started
from the beginning.

Consistency is also a problem within the same zone, not only when communi-
cating across zones. To make sure the latest location information is always sent
out from a zone, the system assumes that each server in a zone will always be able
to communicate with each other when they are online.

11

4.3 Migration between zones

Zone migration is supervised by the home zone of the migrating user. There are
three different kinds of migrations. The first is when migrating from a user’s home
zone, the second when the user is migrating to his home zone, and the third when
the user migrates between two zones where neither is his home zone.

Migrating from a home zone requires the home zone to send all the subscriber
information for that user as well as the last location the user reported in. The zone
the user migrated to is then stored at the home zone to make sure that requests to
that user can be redirected to the correct zone without first having to do a search
for that user.

Migrating back to a user’s home zone requires less data being sent. The only
data that need to be exchanged between the active zone and the home zone is the
latest location update from the user. The zone the user migrates away from will
then remove all the data relating to the migrating user, and the home zone for the
user will set the new current zone for the user to be itself.

The home zone is always responsible when a user is migrating. So when migrat-
ing between two foreign zones is still controlled by the user’s home zone. The zone
the user migrates from will send the user’s latest location to the home zone, which
will pass it on to the zone the user is migrating too, together with the subscriber
list for the user. And finally the current zone table will be updated with the zone
the user migrated to.

A migration is not explicitly request by a user. Instead the zones will automat-
ically handle migration when a user sends a request to a zone that is not currently
his active zone.

If a migration is already ongoing, or there are temporary problems between
zones a migration can be temporary denied. If that happens the user must continue
to communicate with the previous zone until the migration is successful.

In case of the required data is not able to be transferred, the migration will be
denied and the client must retry the migration at a later time.

4.3.1 Special cases

There are corner cases when it comes to user migration between zones, which can
result in problems when the home zone thinks that the user is in one zone, when
he actually is in another. These cases are only a problem for a short time until a
full migration has taken place, but it might result in losing some data and must be
handled properly.

Back and forth

When a user is only in a zone for a short time and then goes back to the zone he
came from, as illustrated in Figure 4.2. The home zone will not be fully synchro-
nized with the current state the user is in.

This is handled by never allowing a user to migrate between zones while a
migration is active. The home zone for a user will always know if a migration

12

Zone AZone B

User X

Figure 4.2: User migrating from zone A to zone B and then back to zone A

has started, and which steps are left before it is finished. Until all those steps are
completed a new migration will always be denied, and the user must go back to
the previous zone and send requests there instead.

Zig zag

When the user alternates between two zones continuously for an extended period
of time, as illustrated in Figure 4.3, the home zone will “always” be out of sync.

Always changing between zones will result in too much wasted bandwidth, and
unnecessary communication. When traveling along a border between two zones
and constantly trying to migrate back and forth an exponential increase in the
delay between each allowed migration is added. The first time it migrates it just
have to wait for a full migration is done before it is allowed to migrate back, but the
second time an extra delay is added. And if the user tries to migrate again before
the delay has passed the time before the next allowed migration will be increased
even more.

Entire zone downtime

A collapse of an entire zone can be detected by connecting to all servers in that
zone and not being able to communicate with any of them. A user is not allowed
to migrate if his home zone is down. Nor will it be possible to subscribe to a user
which does not have a working home zone.

Any user with a home zone that is currently down will only be able to send new
updates if they were located in another zone when their home zone went down. If
a user was only visiting a zone that went down he can chose to migrate to one of
the neighboring zones and use that for as long as the zone is down.

13

Zone B Zone A

User X

Figure 4.3: User migrating continuously between zone A and zone B

An entire zone should not go down if the servers in the zone is configured
with proper redundancy. But some times multiple communication paths are not
available, or several servers fail at the same time because of power outage or natural
disasters.

4.4 Database layout

The database layouts are different for users located in their home zone and for
those visiting a zone. This separation is there because the data is handled different
ways. The user data for a visiting user will be added and removed much more
frequently than the data for home zone user data, which will only be updated.

The table layout for the user data stored at the user’s home zone is described
in Table 4.1. User id is the primary key and denotes the unique user identificator
across the entire system. The current location for the user is stored in Physical
location, and the time of the last update is in Last updated. User id has the
format described in section 4.5 and contains the home zone information for when
that is required. Physical location and Last updated is only updated if the
user is located in his home zone, or when the user location is requested from the
user’s current zone.

To efficiently send out updates to all the subscribers which want the location
of a user, a list of subscribers is stored as seen in Table 4.3, the User id and
Subscriber id combined is the primary key, since these identificators also contain
zone information contacting the correct zone does not require any more lookups
and requests can be relayed quickly.

14

User id Physical location Last updated

Table 4.1: User location database layout for home zone

User id Physical location Last updated

Table 4.2: User location database layout for visiting zone

When a user is visiting a zone a tuple with the information in Table 4.2 will be
created or updated when new location information from the user is pushed to the
system. In this table the User id is the primary key for the data, while Physical
location is the actual location information and Last updated is the time of the
latest location update.

To be able to send send out location updates to subscribers the subscriber table
from the home zone is duplicated to avoid fetching it from the home zone each time,
and to be able to relay the information directly without going back to the home
zone.

The user which is visiting another zone will also have a record created in their
home zone storing which zone they are currently in. This entry is shown in Ta-
ble 4.5. The home zone must always know in which zone its users are located to be
able to handle migration requests and send updates to the user without searching
for the zone the user is currently in.

4.5 User id

The user id consists of the home zone server id and a serial number which is unique
within the server where it was generated on. When the user id contains the home
zone server id no discovery protocol is required to detect which zone a user belongs
to. The format of the user id is serverid-userid.

Having a user id with two parts allows each server to hand out new unique user
ids without synchronizing with the other server in the network. A user defined alias
is not supported because. This is because it would have to be globally unique, and
therefor require a synchronization between all the zones in the network, or a special
centralized server to handle creation of them. against a centralized entity. A per
server alias could possibly be allowed on the form serverid-alias, since it then
would still contain the information to go directly to the correct server and it would
not require any more work than checking for a unique user id to verify that there
are not duplicate aliases.

User id Subscriber id

Table 4.3: Subscriber database layout

15

User id Subscriber id

Table 4.4: Subscriber of visitor database layout

User id Visiting zone id

Table 4.5: Current zone

4.6 User lookup

Because a user id consists of both the home zone id and a unique serial, finding a
user is done by parsing the zone id from the user id. And connect to that zone to
verify that the user is valid.

4.7 Subscribing for user updates

A subscribe request is sent directly to the home zone of the user the subscriber
wants to get updated information about. The subscriber is stored in the subscriber
list and will from that point be notified of updates.

If a user that is being subscribed to is currently not located in his home zone
the home zone is responsible for sending out the new subscriber data to the active
zone for that user. The information is relayed instantly from the home zone to the
active zone to make sure the change takes effect as soon as possible to minimize
the delay between subscribing to a user and getting the first update.

4.8 Update notification

An update notification is a message sent out to all subscribers of a user that has
updated his location. The notification contains which user did the update, the
location of the user and the timestamp for the update.

Updates are required to be sent out in real time when new location information
is pushed by a user. The subscriber list for the user is grouped by zone and updates
are sent out in batch to each zone. Batch notifications are required to cut down
on the bandwidth between zones.

4.9 Geographical location

The location is transmitted in the NAD83[8] format, with high precision floating
point numbers it supports a very high accuracy on the pinpointing. This allows
tracking even small packages located in small spaces if that is required.

Any device that gives the current location can be used as location source. Either
a cellphone with GPS, rfid which is tracked at specific gates, or using the GSM

16

network. For packages that are mostly stationary rfid and update requests that are
only sent when a package is actually moving. But cars or other objects that are
not transported within something else should have their own should not depend on
other devices to send their updates for them.

4.10 Home zone selection

New users are required to select which zone should be designated their home zone.
To select a home zone the user will have a list of the servers and their geographical
location. Then they can calculate the server closest to their current location, and
chose that as their home zone.

4.11 Network protocol

To communicate either between nodes in the network, or client and servers TCP
will be used. TCP is statefull which, but it does guarantee that the datastream
arrives in the correct order.

The datastream is a series of message. Messages are test strings ended by a
newline, and they are completely self contained. This allows a connection to remain
stateless. So if a connection is dropped, there are no extra steps required when
reconnecting.

The reason for keeping the communication in pure text is so there is no need to
convert between byte formats which may differ between different hardware. This
systems has to support a range of different devices and byte representations will
be different on them.

4.12 Server discovery

The clients must always know which servers belong to which zone, how many
zones are available and which area they cover. Because the clients are responsible
for connecting against the closest zone and staying connected to a working server
within that zone.

Clients will be distributed with an initial server list, which can be used for the
initial connection to a zone. Since the zones are already interconnected they know
what servers are online and which zones are present. Which allows the user to
request an updated zones and server list when it first connects.

4.13 Server overload

A server could get too much data to process if too many clients try to send requests
at the same time. The clients should detect that the server uses more time than
usual to respond and therefor possible connect to a different server within the zone
for the next requests.

17

The server is also allowed to disconnect clients when too many are connected
to make sure there are not too many connections or too many requests being sent.

4.14 Use cases

Here we will describe a few common scenarios. How they will propagate information
through the system, and how the zones will interact with the clients.

4.14.1 New user

The first action a new user will do is locate his home zone, so he can generate a
user on the correct server. The user id that it receives will be stored on the client
so it can identify itself later on. The new user is during registration stored on
the server. Initially storing the user without any location information is done to
allow for other users to subscribe to the user’s updates even before the for location
information is pushed from the client.

After registration the user pushes its first location information to the server,
which is stored in the users table described in section 4.4.

4.14.2 Subscribe to updates from a single user

To send a subscribe request a user first connects to the home zone of the user he
wants to subscribe to. The request is then sent to that server, which adds a new
entry in the subscriber table.

If the user that is be subscribed to is not currently located in his home zone a
new request is sent from the home zone server to the zone the user is located in
with the new subscriber information.

4.14.3 User update with only local subscribers

A user with subscribers sends a location update to his current zone. The location
is stored in the server database and distributed to the other backup server on the
same zone.

The list of subscribers is collected and all the subscribers also have current zone
as their active zone. The list of subscribers is then matched up against which users
are polling for updates on the zone. Each of those subscribers is sent the new
location.

Subscribers may also be located at another zone than their home zone, and the
table which contains the current zone for each user must also be consulted. A list
of users not located in the home zone will be created and grouped by the zone they
are located at. And a request is sent to each of the represented servers with the
update information.

18

4.14.4 User update with foreign subscribers

The location update is sent from the user and handled in the same way as if there
were only local users. Except that the subscriber list is grouped by which zone
each subscriber belongs to.

When the subscriber list is retrieved and grouped the server sends a request to
each of the server represented by the subscribers. They will receive a list of all the
users which are subscribing for the update, and the new location information.

The list received by each server is then compared to the users that are waiting
for updates and a request is sent to each of them with the new location and which
user is belongs to.

4.14.5 User update in foreign zone

A user that is not in his home zone when sending a update request will be auto-
matically migrated to the zone he is in if that has not already been done. The
steps taken for the migration are shown in subsection 4.14.8.

If the migration is not disallowed the location is stored on the current zone, and
the information will be sent out to the subscribers as described in subsection 4.14.3
and subsection 4.14.4, except that the visiting subscribers table is used instead
of the subscribers table.

On the other hand of the migration request is denied the information is passed
on to the server currently responsible for the user that sent the update request. And
that server will then restart the process of storing and sending out the information
to any possible subscribers.

4.14.6 Home zone server downtime

Either during interaction, or when connecting to the home zone the server might
fail or be unavailable. If that happens the user retries the request against one of
the hot spare servers in the server list for that zone. The users should stop sending
a request if updated location information is available. Instead a new request should
be constructed with the new information.

4.14.7 Waiting for user updates

For a user to receive the latest location updates from the users he subscribes to,
he must connect to his closest zone and send a poll request. This will trigger a
migration request if the server he connected to is not currently responsible for him.
If this request is denied he must connect to the zone that is responsible for him
until the migration can be done successfully.

When the user is connected to his responsible zone and the poll request was suc-
cessful he will automatically receive all new location information that he subscribes
to.

19

4.14.8 Migrating from a home zone

As a user goes from their home zone to a neighboring zone the data belonging
to the user will be duplicated, the zone the users has moved into will contain the
master copy of the user’s location after the first update request is sent to the new
zone the user arrived in.

A migration can either be started by a update request, or when a user polls for
updated locations from the users he subscribes to.

When a migration is started the new zone contacts the users home zone to take
responsibility for the user, this results in the home zone sending over all the users
that subscribe to the migrating user and the user’s current location. The home
zone will locally mark which zone the user now is located within, and the current
time of the migration.

4.14.9 Migrating to a home zone

Migrating back to a user’s home zone is less work than going from the home zone
to another. The home zone already has the latest subscriber information. The only
information that must be sent from the current zone to the home zone is the user’s
location. After that is done the current zone can allow the home zone to take over
and delete all subscriber and location information about the migrating user.

4.14.10 Back and forth migration

A user migrates from one zone to another, and suddenly turns around and goes
back to the previous zone. This actions triggers two migrations right after each
other. After the first zone crossing a migration is triggered, but because the second
migration is initiated too soon after the previous migration it is denied.

The user then has to reconnect with the previous zone and keep sending requests
to it until a migration is allowed to the new zone.

4.14.11 Entire zone downtime

An entire zone goes down, and all the connected users are therefor disconnected.
A few of these users are only visiting the zone, the rest of the connected users has
the zone as their home zone.

The visiting users search through the server list for the closest operational zone
and connect to that one instead. This sets of a migration for the visiting users
which will be able to continue working correctly.

All the users which had the zone that went down as their home zone must wait
until the zone comes back up. If they were to connect to a new zone their migration
would fail because the new zone would not be able to fetch the required information
from their home zone.

Any user with the failed zone as their home zone that were located away from
it will be able to function properly within the zone they are currently connected
to. Trying to migrate will fail for the same reason as above.

20

Chapter 5

Discussion

5.1 Multiple zones

Having multiple zones where each is responsible for their geographical area was
decided on for several reasons. It keeps communication local and avoids sending
data over long distances. Close geographical location also keep network failure
problems to a minimum, even if a zone is not reachable by the rest of the world
clients within that zone can continue to operate as if nothing happened.

Splitting the world in several zones requires separate server centers for each
zone, which results in maintenance overhead. But because this system requires
high uptime, having redundant servers in different location is crucial, and the
maintenance overhead is there anyway.

5.1.1 Zone failure

When a zone fails it is not possible to communicate it from the other zones. This
will result in some users not being able to migrate and some need to change zone
before they can continue to send update requests.

A temporary zone failure is unlikely when there are redundant servers with
fail over capabilities. And in case of massive network failure within that zone the
devices would not be able to communicate with the rest of the system anyway. The
major problem with zone downtime is that it denies users with the failing zone as its
home zone to migrate between two other zones. But in case of temporary failures
continue to us a zone you have exited is not a huge problem for a short amount of
time.

The other problem is that the zone will no longer be able to relay update
requests to polling users outside the zone. But the users which is most interested
in the updates is probably within the same zone. And either update requests from
the users does not reach the servers because of server failure, and there is nothing
to relay. Or it is just the external network connection that is the problem and the
users within the zone is able to continue to work as if there were no problem.

21

5.2 Mapping location to zone

There are multiple ways to chose which zone to connect to depending on location
and connectivity. Choosing to have a list of zones, servers and geographical loca-
tions to decide what zone and server to connect to was decided as the best solution
when looking at simplicity, connection quality and physical distance to the servers.

The clients could auto detect which server to connect to depending on latency
between the client and server, or number of jumps between them. But this adds
quite complexity to which server should be selected, as well as failing when there
are temporary network failures which routes packets around the problematic router
which could result in high latency for short time periods. Specially when select a
users home zone this could be bad since the home zone selection can not be changed
at a later time.

Anycast is a way for IP packets to be routed to the closest server which belongs
to that IP address. It could be used to automatically choosing close servers, but
the client would not be aware of which servers it connects to, and if a server goes
down it would instead connect to a server in a different zone than intended and
the client would therefor not be able to fallback to a reserve server in the correct
zone.

Sending a server list with each client allows first for all for bootstrapping the
connection to the location database, and it can be periodically updated to always
have the latest server information.

A server list also makes sure the client is using the zone it is closest to geograph-
ically, which will probably also be the zone which it will have the best connectivity
against.

5.3 Database layout

The database tables were kept separate to hold the least amount of information in
each of them. The current zone could be a part of the location information for a
user, but retrieving that information is not necessary in most cases, and the update
frequency of the two pieces of information is very different. Location is updated
often, while the current zone is rarely updated.

Splitting up the data in visitors and users with that home zone is not necessary,
but is done because of the different characteristics of the data. For the users
with the zone as their home zone the data must be properly stored on permanent
storage. The subscriber list for visiting users on the other hand does not require
any permanent storage since it can be retrieved from the visiting user’s home zone.

Storing a list of subscribers is chosen instead of storing a list of the users a
subscriber subscribes to. If a list of user someone subscribes to had been stored
at each subscribers home zone a traversal of the entire user base would need to be
performed for each update. With a list of subscribers connected with the user they
subscribe to all the information is available on the zone the user sends his update
to, and which users should receive the update is easily collected.

Storing the current zone of a user in his home zone is an optimization done

22

because the user needs to be located both when someone sends in an location
update the user has subscribed to, or if a new subscriber is added to that user.
The user could in these cases be looked up by doing a search across the other zones,
but it is faster if the home zone always knows where each of its users are located.

5.4 User id

A unique identificator for each user is needed to tell users apart across the network.
Because of the decentralized nature of the system a part of the user id must be
created on a zone without talking to the other zones in the system. Both because
of the global lock that would incur on the user creation process and that two zones
might temporarily not be able to talk to each other.

By splitting the user id up and having two parts of it, where one represents
the home zone of the user, and the other is a unique id for a user within that
zone. The user id is guaranteed to be both unique across the entire system, and
no communication across zones are required.

Having a user supplied identificator is the norm on services today. And it gives
a personal feel for user, but is not with any practical importance. Users are already
connected by email or other communication media, and sending a user id with two
numbers is no different than receiving a handle or nickname which denotes the
same thing. Having an alias is therefor not supported in the system described.

To avoid sending back and forth the user supplied identificator between the
servers and zones, the identificator could be resolved internally to a unique number
which then could be used efficiently.

A third option for identificators is to have a user supplied identificator for
the zone unique part, and still prefix it with the zone identificator. This would
allow the user to have some relation to his user id, and still not require cross zone
communication when creating a new user. But to avoid the extra check and avoid
variable length for user ids the encoding with two numbers is the best for the in
this database.

5.5 Home zone

The home zone is the centralized part of the system, and every user has a zones
he belongs to. This makes each user dependent on one zone, which can be prob-
lematic if the zone is unavailable. Another possibility to keep the system entirely
decentralized is to always have the current zone for the user be responsible for him.

The problem with not having one home zone for each user is that a discovery
mechanism must be used to find each user. Using a distributed hash table dis-
tributed across all the servers would allow for mapping from user to zone, but a
server that has nothing to do with a user might end up holding information about
his location.

Using a home zone the migration protocol is not as complicated as it will be
without a master. With one master which is responsible for all migrations for that

23

one user, the zone has all the current information for the user and it will always
know where he is located and between which two zones he wants to migrate.

Having a home zone simplifies the entire design of the system by having a master
for each user that exist, and adds locality to the communications.

5.6 Subscription

The list of users that will receive updates from the users that update their location
is both stored at the updating user’s home zone and the current zone for the user
that sent the location update. The home zone holds the authoritative subscriber
list to make sure the data is stored on multiple servers and allow updates when a
user is not in his home zone.

Instead of always going to the home zone of a user to subscribe to him, new
subscribers could go to the home zone only to find out which zone a user is currently
in. And then go there to subscribe to location updates. The problem with that
solution is that a subscriber potentially must contact several servers to subscribe
to updates. Because only a home zone holds redundant copies of a users data
subscribers could also be lost if a server died before it could replicate the updates
over to a user’s home zone.

When a home zone is responsible for keeping the current zones of users updated
with the latest subscriber lists the data will be stored and durable when a subscriber
receives a successful reply after subscribing, and a server death will only delay the
updates lists to reach the current zones.

First storing new subscribers on the home zone and then sending out updates
to the current zones adds a small delay even if everything works. This could lead
to some updates that are sent after the subscriber subscribes to a user not reaching
the subscriber. This delay is acceptable to ensure that all new subscribers are
stored properly and will not vanish if a server dies.

5.7 Network protocol

There are several network protocols that work on top of IP that could be used to
communicate between entities on a network. They all have their strong and weak
points, but TCP ended up being the best fit for this system.

5.7.1 Transmission Control Protocol

Transmission Control Protocol[9] is a connection oriented communication protocol.
In order to communicate using it the two endpoints must for create a connection
between each other. TCP depends on the client-server model where one part waits
for a connection request, while the other initiates the connection. The protocol is
also responsible for making sure each packet arrive at the other end, and that the
network packets are assembled in the correct order to make sure the data stream
is the same on both sides.

24

The connection oriented design of TCP adds extra data overhead, and connec-
tions will end up stalling if there is a lossy link since the lost packets must be resent
and sent to the receiving application before the later packets can be used.

5.7.2 User Datagram Protocol

User Datagram Protocol[10] does not support permanent connections, but packets
are still sent to and from different ports which can be used to separate different
endpoints. Each packet is independent of the other packets sent to and from the
same pair of ports. This means that one packet might appear on the endpoint before
one sent prior the the arriving one, but packets are not guaranteed to appear at
all, which can be problematic if you need all data to received.

The connectionless design of UDP allows for smaller overhead when sending
packets, but to guaranty that the required packets do arrive an acknowledge pro-
tocol must be implemented, which complicates the application could, but could
result in a more efficient protocol since it does not have to support all the corner
cases general purpose connection oriented protocols support.

5.7.3 Stream Control Transmission Protocol

Stream Control Transmission Protocol[11] is as TCP connection oriented. But
it supports multiple streams within one connection, where each stream does not
interfere with the others. A packet sent in stream X does not have to arrive before
a packet sent in stream Y even if it was sent prior the packet in stream Y.

Data sent from an application to SCTP is handled as messages, two different
messages will never be represented in the the same SCTP packet. This allows
the receiving application to get messages out of order, but always get the entire
message assembled in the correct order.

5.7.4 Comparison

The communication protocol used between the servers and clients are message
based, which would work very well with the way SCTP is design, SCTP also per-
form better than TCP in some cases[12]. But SCTP is not properly supported
on all devices yet which TCP and UDP are. Nor have the implementations been
tested in the same way as the two older protocols.

UDP has little overhead, but requires the application to handle much reassembly
of packets which has been split up, and reorder packets which does not arrive in
the correct order.

For the database communication TCP is the used protocol. It reassembles byte
streams in the correct order for the application, and makes sure all the packets
arrive at the end point. TCP is also a thoroughly tested on all platforms connected
to the internet.

25

5.8 Full mesh communication

Having a full mesh where each zone potentially connects to every other zone may
result in many connects when the number of zones grow. But since zone are spit
up based on geography most friends of a user will be located within the same zone
as the user they subscribe to.

To avoid connecting multiple times between two zones each zone could designate
one server which should communicate with one zone and relay all information to
that zone through the designated server. Relaying can also help across zones. So a
group of zones decide that one of the zones should be responsible for communicating
with another zone farther away.

5.9 Server overload

Handling and overloaded server can be done either by a way to communicate with
the users that they need to send updates with greater pause between each update, or
add a artificial delay before acknowledging their update and by doing that delaying
their next update.

Another way is to allow the client itself to determine when a server is overloaded.
This solution was used because it can be tied in with the detection the client must
do to determine if a server is currently unavailable.

Letting the server disconnect clients as well is an extra step taken to make sure
a server is not getting too much requests before the clients notice that the server
is actually overloaded.

26

Chapter 6

Implementation

A server has been implemented using C to test communication between server
and client, and to implement a communication protocol. To avoid implement-
ing a backend from scratch, a embeddable key value database was used called
BerkeleyDB(BDB)[13]. BDB supports storing arbitrary binary data which allows
us to send it structures directly from C without encoding it in any way.

The server was implemented as a threaded application where there is a thread
running which accepts connections and network requests. These requests are then
parsed and added to a request queue. This request queue has several consumers
which takes the oldest request and handles it.

6.1 Storage

Using BDB for disk storage removes the burden of storing the data efficiently and
gives a simple API for storing and retrieving the data. BDB makes it possible to
add new indexes to the database if it is required to look up locations based on
other information than the user id.

The user location is a structure which is stored sent directly to BDB. This is
problematic if the database must be moved between servers or if the architecture
is changed. Because floating point numbers is not always represented in the same
way, or if a computer architecture requires another alignment of the data the data
would not be the same any more. Separate exporters can easily be written if a
database must be transferred, and having a binary format avoids the overhead of
converting the data.

6.2 Protocol

A text protocol is used for communication between network programs. A binary
protocol was avoided to avoid problems with different encodings of numbers and
endianess. And text is easy to debug and find errors in the request sent.

27

Client: update user "1-5" [-10.1035 9.1249]

Server: #[13.1925 -15.4324]

SUCCESS

Figure 6.1: Update user command example

Client: fetch "1-3"

Server: #[13.1925 -15.4324]

SUCCESS

Figure 6.2: Fetch command example

6.2.1 Commands

All commands sent will return a reply. If the command succeeds the string SUCCESS

will be sent back, in case of a failure FAILED will be returned.
To make parsing easier keywords are separated from input strings, and location

has it’s own format. Keywords are ordinary words, like: keyword, they can be
both upper and lower case. Input strings are strings that are not know during
compilation of the program like user names. They are written in quotes("user id")
to allow the parser to separate them from keywords. Locations are written inside
of square brackets which contains two floating point numbers([5.1024 -10.3532]).

Update user

Updating a user’s location is done by sending update user to the server. Two
arguments are required, the first is the user id of the user that has a new location,
and the second is the new location. An example is given in Figure 6.1.

Fetch

The fetch command returns the latest known location for the user given as an
argument. An example is given in Figure 6.2.

Subscribe

Sending subscribe to the server will subscribe the user id given as the first argu-
ment to all updates from the user id given as the second argument. An example is
given in Figure 6.3.

Client: subscribe "1-4" "1-5"

Server: SUCCESS

Figure 6.3: Subscribe command example

28

Client: subscribers "1-4"

Server: "1-2"

"1-6"

"1-8"

SUCCESS

Figure 6.4: Subscribers command example

Client: poll "1-5"

Server: SUCCESS

[time passes]

Server: newlocation "1-5" [56.5116 -10.1503]

Figure 6.5: Poll command example

Subscribers

The subscribers command returns all the subscribers for the user given as an
argument. Each subscriber is returned on its own line. Example given in Figure 6.4

Poll

Sending poll to the server tells the server that you are logged on and awaiting
updated location from the users you are subscribed to. Poll takes one argument
which is your user id. A usage example is given in Figure 6.5.

New user

The newuser command creates a new user and sends back the user id for the new
user. An example is given in Figure 6.6.

6.2.2 Parsing

The protocol is parsed using Bison[14] and Flex[15]. These are a set of efficient
tokenizer and parser generator which allows the protocol parsing to be easily ex-
tended in the future. They can also generate reentrant code which allows the server
to parse multiple requests in different threads at the same time.

Client: newuser

Server: "1-10"

SUCCESS

Figure 6.6: New user command example

29

6.3 Request queue

The request queue is represented as a linked list where new requests are added to
the end of the list, and the consumers consume it from the head. The queue is
designed to take any type of work and hand it over to a worker thread. Each added
element to the queue has a function and some data. The function is called by the
worker thread with the data as the function argument. This allows the program
to spread the work load across several CPUs and cores.

Having a queue with waiting requests and actions helps to figure out the load on
that server. Keeping an eye on the queue the server can know if some clients should
be redirected to another server or if the server can take on even more requests.

If the request queue is empty the consumer threads will use the threading library
to wait for new requests to be added. This blocks the consumer threads until there
are new data to handle so it does not spin and use CPU without doing anything
useful. When new data is added the adder will issue a signal to one or more threads
telling them that there is new data available.

6.4 Threading model

The threading model chosen for the server software to let the software scale up and
support several CPUs and cores. Every action that requires work is queued up and
handled by one of the worker queues.

This does adds some complexity to the code. Everything must be thread safe,
and all the sockets that are used must be properly locked before they are read from
or sent to. If they are not data might end up mixed with each other.

There are also other ways to take advantage of several cores. The program could
make a new copy of itself for each new connection. But this will end up using more
memory, and communication between the different copies of the program requires
more complexity. Or a one thread per connection could be used, but that will
spawn more threads than necessary since the clients spend a lot of time idle, and
the context switching between threads would add an extra cost.

Because of the heavy use of threads and concurrency in the server there is quite
a bit of locking done to deny concurrent access to the same object. Specially the
request queue has a lock around itself which only allow one thread to work on it at
the same time. This denies a consumer access to one side of the queue while the
network thread is pushing a new request on the queue. Which can result in heavy
lock contention. But the work done on the queue is much less than the work done
by the threads before and after they work on the queue. And this should balance
the queue access out with a few threads, but if there end up being many threads
some sort of lock free queue should be tested to see if that ends up being more
efficient.

30

6.5 Network communication

When a new connection is established the server stores the new client in a hash
table and adds the socket to the list of sockets which should be checked for activity.
The client information contains a lock which is used to serialize access to that client
socket. When the client lock is held the server can send data to the client, but all
received data must pass through the network thread with is responsible to reading.

31

Chapter 7

Future work

7.1 Find nearby friends

A huge improvement of the system would be to locate users located near your
current position. By having a simple way to locate the people nearest to your
current position you could figure out which friends are nearby, or finding new
people with similar interests as your own to meet.

7.2 Authorization and authenticating

For the system to usable by a large audience some security measurements must be
put in. A user must be able to authenticate, and updates to that user must only
be allowed if the authentication succeeds.

A user should also be able to allow or deny subscriber requests. Either before
any updates are sent to the subscriber, to allow for complete control over who gets
to see his updates. Or after subscribers has been added to deny specific people
access to his updates.

Encryption for the communication channels is also an important aspect to look
at if the data sent if somehow confidential, or the users them self want to limit the
number of people that can read their location even more.

7.3 Outlier detection and correction

Devices that finds your current location is not always reliable, measurements might
be off a little, or very much. This should be detected and warned about, or update
requests that are obviously wrong could be denied.

This could be achieved by finding the velocity of the user, and if it is above
some threshold the update could be denied. Or by using a Kalman filter[16] to find
more probable values for a given update based on the other updates from the same
user.

33

7.4 Keep historic data

A huge improvement to the described system would be to include historic data,
and give users the ability to traverse the history and get positions from a given
time frame. This would allow for plotting of user movement from last year, or last
week. As well as going back and figuring out where someone was at a given time.

34

Chapter 8

Conclusion

A system allowing users to continuously send in their current location which can
be retrieved by friends or family. Other users has the possibility to subscribe for
updates, and when they are connected to the network they will receive updates in
real time when the users they are subscribed to updates their location.

The described system is able to scale up and handle massive amounts of con-
current users. Using a geographically disperse setup allows the system to continue
to work even when there are connection problems or an accident which take down
one or more servers.

A linear scaling for the system is accomplished by either splitting up one over-
loaded zone into two or more, or by adding more servers to a zone. This allows
for continuous operation without having to invest in more hardware than there are
new users.

Independent zones are important to keep the system available. The only com-
munication between zones are when they are on behalf of the users. By keeping the
cross zone communication to a minimum a zone can be unavailable for the rest of
the system without it degrading the system as a whole. The only affected parties
are the users which is not able to migrate or receive all the location updates.

Latency has been used as the primary constraint for how this distributed sys-
tem should be designed. This gave the advantage of both closer distance between
the communication end points and the system avoid relying on a global working
network connection. To avoid too much data being sent for the client all informa-
tion sent that should be distributed to several zones are relayed by the zones them
self, which ends up cutting the bandwidth needs for the client.

Looking at the different possibilities for how the user should select which server
to connect to it is shown that having a set of server for each geographical location
is the best solution when working with a location system. Having a home zone
which is responsible for the user ends up being the best way to have control over
the user movements and have an authoritative copy of all the user data.

35

Bibliography

[1] G. DeCandia et al., Dynamo: amazon’s highly available key-value store, in
IN PROC. SOSP, pp. 205–220, 2007.

[2] D. Karger et al., Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the world wide web, in In Proc. 29th ACM
Symposium on Theory of Computing (STOC, pp. 654–663, 1997.

[3] Facebook user statistics, http://www.facebook.com/press/info.php?

statistics, 2010.

[4] M. Paksula, Persisting objects in redis key-value database.

[5] J. Scourias, Overview of the global system for mobile communications, 1995.

[6] M. Mouly, The Gsm System for Mobile Communications (Pearson/Prentice
Hall, Upper Saddle River, 1992).

[7] mbuddy logg inn, http://www.mbuddy.no, 2010.

[8] D. E. Ericksen, Nad83: What is it and why you should care, 1994.

[9] J. Postel, Transmission Control Protocol, RFC 793 (Standard), 1981, Updated
by RFCs 1122, 3168.

[10] J. Postel, User Datagram Protocol, RFC 768 (Standard), 1980.

[11] R. Stewart et al., Stream Control Transmission Protocol, RFC 2960 (Proposed
Standard), 2000, Obsoleted by RFC 4960, updated by RFC 3309.

[12] N. G. Rajesh Rajamani, Sumit Kumar, Sctp versus tcp: Comparing the
performance of transport protocols for web traffic, 2002.

[13] Berkeleydb, http://www.oracle.com/database/berkeley-db/index.html.

[14] Bison - gnu parser generator, http://www.gnu.org/software/bison/.

[15] flex: The fast lexical analyzer, http://flex.sourceforge.net/.

[16] G. Welch and G. Bishop, An introduction to the kalman filter, 1995.

37

http://www.facebook.com/press/info.php?statistics
http://www.facebook.com/press/info.php?statistics
http://www.mbuddy.no
http://www.oracle.com/database/berkeley-db/index.html
http://www.gnu.org/software/bison/
http://flex.sourceforge.net/

	Tittelside
	Oppgavetekst
	Introduction
	Background
	Key value stores
	Redundancy
	Consistency

	GSM
	Cells
	Handover

	State of the art
	Google Latitude
	mBuddy
	Delivery services

	Architecture
	Zone
	Home zone
	Redundancy

	Consistency
	Migration between zones
	Special cases

	Database layout
	User id
	User lookup
	Subscribing for user updates
	Update notification
	Geographical location
	Home zone selection
	Network protocol
	Server discovery
	Server overload
	Use cases
	New user
	Subscribe to updates from a single user
	User update with only local subscribers
	User update with foreign subscribers
	User update in foreign zone
	Home zone server downtime
	Waiting for user updates
	Migrating from a home zone
	Migrating to a home zone
	Back and forth migration
	Entire zone downtime

	Discussion
	Multiple zones
	Zone failure

	Mapping location to zone
	Database layout
	User id
	Home zone
	Subscription
	Network protocol
	Transmission Control Protocol
	User Datagram Protocol
	Stream Control Transmission Protocol
	Comparison

	Full mesh communication
	Server overload

	Implementation
	Storage
	Protocol
	Commands
	Parsing

	Request queue
	Threading model
	Network communication

	Future work
	Find nearby friends
	Authorization and authenticating
	Outlier detection and correction
	Keep historic data

	Conclusion

