
June 2010
Keith Downing, IDI

Master of Science in Computer Science
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Dynamic Scheduling for Autonomous
Robotics

Kai Olav Ellefsen

Problem Description
The goal of this thesis is to implement a dynamic scheduling system for an autonomous robot that
performs a foraging task in a complex, unstable environment. The work will improve the
scheduling system implemented as the author's specialization project with the ability to
reschedule intelligently when an opposing robot makes changes to the playing environment. The
implemented system will be used in the 2010 Eurobot competition, and as there will be a need to
reschedule several times during a match, the rescheduling algorithm will have to be very time
efficient.

Assignment given: 22. January 2010
Supervisor: Keith Downing, IDI

Abstract

This project report describes a hybrid genetic algorithm that works as a
schedule generator for a complex robotic harvesting task. The task is set to
a dynamic environment with a robotic opponent, making responsiveness of
the planning algorithm particularly important.

To solve this task, many previous scheduling algorithms were studied. Ge-
netic algorithms have successfully been used in many dynamic scheduling
tasks, due to their ability to incrementally adapt and optimize solutions when
changes are made to the environment. Many of the previous approaches also
used a separate heuristic to quickly adapt solutions to the new environment,
making the algorithm more responsive. In addition, the study of previous
work revealed the importance of population diversity when making a respon-
sive genetic algorithm.

Implementation was based on a genetic algorithm made as the author’s fifth
year specialization project for solving a static version of the same task. This
algorithm was hybridized with a powerful local search technique that proved
essential in generating good solutions for the complex harvesting task. When
extending the algorithm to also work in a dynamically changing environment,
several adaptations and extensions needed to be made, to make it more
responsive. The extensions and adaptations included a fast-response heuristic
for immediate adaptation to environmental changes, a decrease in genotype
size to speed up local searches and a contingency planning module intending
to solve problems before they arise.

Experiments proved that the implemented dynamic planner successfully adapted
its plans to a changing environment, clearly showing improvements compared
to running a static plan. Further experiments also proved that the dynamic
planner was able to deal with erroneous time estimates in its simulator mod-
ule in a good way.

Experiments on contingency planning gave no clear results, but indicated
that using computational resources for planning ahead may be a good choice,
if the contingencies to plan for are carefully selected. As no unequivocal
results were obtained, further studies of combining genetic algorithms and
contingency planning may be an interesting task for future efforts.

i

Preface

This report was written as the author’s master’s thesis at the Department of
Computer and Information Science at the Norwegian University of Science
and Technology (NTNU).

The project is part of NTNU’s 2010 contribution to the annual Eurobot com-
petition. The Eurobot competition gathers teams from all over the world to
engage in a robotics challenge. The author became part of the Eurobot-team
in the spring of 2009, when building NTNU’s 2009 Eurobot-contribution as
part of the multidisciplinary subject “Experts in Teamwork” (EiT). Three of
the students from the EiT-group, including this author, wanted to continue
their participation in the Eurobot-team, enabling transfer of experience to
next year’s participants. The Eurobot-team is a multidisciplinary team, cur-
rently made up of five fifth year master students, ten fourth year EiT-students
and a mechanic apprentice.

The author would like to thank supervisor Keith L. Downing for guidance
during the work with this project and for, together with associate professor
Sverre Hendseth at the Department of Engineering Cybernetics, enabling this
project to be a cooperative effort across departmental boundaries at NTNU.

Thanks also go out to all the members of the Eurobot-team for support
and good cooperation, to the team’s sponsor, KONGSBERG, for financial
support, and to last year’s team leaders, Christian W. Kjølseth and Øystein
Wergeland for sharing their experience and giving this year’s team a head
start.

Trondheim, June 17, 2010
Kai Olav Ellefsen

ii

Contents

Abstract i

Preface ii

Contents iii

List of Figures viii

List of Tables ix

List of Abbreviations x

1 Introduction 1
1.1 Background and Motivation 1

1.1.1 The Eurobot competition 1
1.1.2 The team . 1
1.1.3 This year’s task . 2

1.2 Problem Definition . 5
1.2.1 Team vision and mission 5
1.2.2 Project goal . 6

1.3 The Problem Area . 7
1.4 The Robot Design . 7

2 Background 10
2.1 Genetic Algorithms . 10

2.1.1 What are they? . 11
2.1.2 Why were they chosen as the solution technique? . . . 12
2.1.3 What are the alternatives? 12

2.2 Changing Environments . 12

iii

2.2.1 Terminology . 13
2.2.2 Dealing with a changing environment 14
2.2.3 Maintaining diversity 16

2.3 Related Problems . 17
2.3.1 The traveling salesman problem 17
2.3.2 The orienteering problem 20
2.3.3 The vehicle routing problem 22

2.4 Previous Work . 23
2.4.1 Solving the TSP with evolutionary algorithms 24
2.4.2 Production scheduling with a hybrid genetic algorithm 26
2.4.3 Capacitated vehicle routing with a cellular genetic al-

gorithm . 28
2.4.4 Solving the generalized orienteering problem with a ge-

netic algorithm . 30
2.4.5 Solving the orienteering problem using a genetic algo-

rithm with an adaptive penalty function 31
2.4.6 Solving the vehicle routing problem with a genetic al-

gorithm . 32
2.4.7 Solving a dynamic TSP with an evolutionary algorithm 34
2.4.8 Dynamic vehicle routing 36

2.5 Discussion . 39

3 Methodology 41
3.1 The Static GA . 41

3.1.1 Representation . 43
3.1.2 Selecting individuals 43
3.1.3 Mating . 45
3.1.4 Local optimization . 45
3.1.5 Elitism . 47

3.2 The Simulator . 48
3.2.1 Driving . 48
3.2.2 Picking up and delivering objects 50
3.2.3 Fitness evaluation . 50

3.3 Solution Diversity . 51
3.3.1 Generating diverse elites 52
3.3.2 Initial results . 53
3.3.3 Diversity boost . 55

3.4 Heuristic plan modification . 56
3.4.1 The implemented heuristic 56

3.5 Changing the Phenotype . 57
3.5.1 What about the genotype? 61

iv

3.6 The Opposing Robot . 61
3.6.1 Long-term avoidance 62

3.7 Stability . 65
3.7.1 Penalizing late deliveries 65

3.8 Contingency Planning . 67
3.8.1 Contingency based on the opposing robot 69
3.8.2 Contingency based on planning horizon 70

3.9 Changes to the Simulator . 70
3.9.1 Avoiding the narrow spot 71
3.9.2 Decreasing the genotype size 74
3.9.3 Dynamic simulations 74

3.10 Real-Time Match Plotting . 75
3.11 The Other Robot Modules . 75

3.11.1 The driving system . 76
3.11.2 The human interface 77
3.11.3 Computer vision . 78
3.11.4 The picking- and delivery system 78

4 Results and Discussion 79
4.1 Results From the Static GA 79
4.2 Experiments on the Dynamic GA 81

4.2.1 Plotting a full simulated match 83
4.2.2 Contingency planning 85
4.2.3 Simulator inaccuracies 85
4.2.4 Efficiency of the GA 86

4.3 Results . 86
4.3.1 Plotting a full simulated match 86
4.3.2 Contingency planning 88
4.3.3 Simulator inaccuracies 92
4.3.4 Efficiency of the GA 96

5 Conclusion 99
5.1 Goal Achievement . 99
5.2 Research Value . 101

5.2.1 Static scheduling problems 101
5.2.2 Dynamic scheduling problems 102

5.3 Further Work . 103

A Plots of a Full Simulated Match 108

v

B Experiences From the Competition 111
B.1 Results From the Competition 111
B.2 What Went Wrong? . 111

vi

List of Figures

1.1 A possible configuration of the playing table 3
1.2 The robot . 8

2.1 GA solutions in a changing environment 15
2.2 The delete operator creating an efficient tour 35
2.3 The delete operator creating an inefficient tour 35

3.1 The implemented genetic algorithm 42
3.2 2-opt . 47
3.3 1-interchange . 47
3.4 View of the game table showing the hill 49
3.5 Diversity of solutions to the same problem 54
3.6 Inserting point C in existing plan 58
3.7 Deleting point C from existing plan 59
3.8 Phenotypes for two identical genotypes 60
3.9 Variables involved in penalty calculation when driving close to

the enemy . 64
3.10 Smoothing the fitness landscape 66
3.11 Contingency planning based on enemy position 69
3.12 Contingency planning based on planning horizon 71
3.13 Game setup with a narrow spot 72
3.14 Navigating around the narrow spot 73
3.15 Avoiding the narrow spots . 73
3.16 The robot modules . 76
3.17 Translating the strategy into waypoints 77

4.1 Fitness plots for the GA run with and without local optimization 82
4.2 Fitness plots for 90-second matches with different types of

contingency planning . 89

vii

4.2 Fitness plots for 90-second matches with different types of
contingency planning (cont.) 90

4.3 Fitness plots for matches with an inaccurate simulator 94
4.3 Fitness plots for matches with an inaccurate simulator (cont.) 95
4.4 Time to complete a GA generation throughout a match 98

A.1 Screenshots from a full simulated match 108
A.1 Screenshots from a full simulated match (cont.) 109
A.1 Screenshots from a full simulated match (cont.) 110

viii

List of Tables

3.1 Steps in the large local search 46

4.1 The GA parameters . 80
4.2 The simulator parameters . 80
4.3 The dynamic GA parameters 83
4.4 The dynamic simulator parameters 84
4.5 The combinations tested . 86

ix

List of Abbreviations

CVRP Capacitated Vehicle Routing Problem

DTSP Dynamic Traveling Salesman Problem

DVRP Dynamic Vehicle Routing Problem

EO Extremal Optimization

ER Edge Recombination Crossover

GA Genetic Algorithm

GOP Generalized Orienteering Problem

ILP Integer Logic Programming

OP Orienteering Problem

OX Order Crossover

PMX Partially-Mapped Crossover

TDVRP Time Dependent Vehicle Routing Problem

TSP Traveling Salesman Problem

VRP Vehicle Routing Problem

x

Chapter 1
Introduction

1.1 Background and Motivation

1.1.1 The Eurobot competition

This project is part of NTNU’s contribution to the Eurobot competition in
May 2010. The competition is an annual event gathering teams from all
over the world to compete in a robotics challenge. The competition has
existed since 1998, and it aims to “favour the public interest in robotics and
encourage hands-on practice of science by young people”[21]. In 2010, the
event takes place in the city of Rapperswil-Jona in Switzerland from May
26th to May 30th.

1.1.2 The team

NTNU has participated in the Eurobot competition since 2000. For some
years, the contribution from NTNU has consisted of many fourth-grade stu-
dents building and programming parts of the robot through the subject Ex-
perts in Teamwork (EiT), while fifth-grade students studying Engineering
Cybernetics have implemented the main strategy of the robot, as well as
building some of the more advanced parts of the robot as part of their fifth
grade project and master’s thesis. Normally, some of the students from EiT
have continued to work on the project in the fifth grade, enabling transfer of

1

2 CHAPTER 1. INTRODUCTION

experience to next year’s team. Also, the teams have tried to reuse parts of
previous robots that have proven to work successfully.

This year, we are a team of five students working on the robot as part of our
master’s thesis, and additional ten students from EiT are helping us build
the robot’s system for gathering and delivering objects. Three of us (Bård,
Kai Hugo and I) also worked on the project as part of EiT last year. For the
reader to understand where the work presented in this report fits into the
work on the robot, a brief presentation of what the other team members will
focus on in their master’s theses is given below.

Bård Jonas Wigestrand studies Product Development, and will work on
upgrading the robot’s current translation system, in order to increase
the robot’s speed, give more accurate positioning data and enable the
robot to drive up a slope. He will also work as the leader of the team.

Kristin Holst Haaland studies Engineering Cybernetics, and will work on
implementing a motor regulator for the robot’s translation system.

Ole Lillevik studies Engineering Cybernetics, and will work on implement-
ing a laser module that enables the robot to more accurately determine
its own and the opposing robot’s position.

Kai Hugo Hustoft Endresen studies Computer Science, and will work on
implementing a stereoscopic vision module. This will allow the robot
to more accurately determine the distance to objects on the playing
table, and notice when they are removed by the opponent.

1.1.3 This year’s task

The task this year is titled “Feed the world”, and is thoroughly described in
the official Eurobot rules [21]. The setup of the playing table is shown in
Figure 1.1.

The tournament goes through several qualification rounds for all teams, and
the sixteen teams that have gathered the most points during qualification
move on to the final rounds, where the losing robot in each match is out of
the tournament.

In each match, two robots compete for gathering the most weight within
90 seconds. The objects to gather are the red, white and orange objects in

1.1. BACKGROUND AND MOTIVATION 3

Figure 1.1: A possible configuration of the playing table

Figure 1.1. The weight varies between the different object types, and so does
the difficulty associated with retrieving the objects. Gathered elements have
to be placed in the robot’s goal container to score points, the score being
equal to the weight of the object gathered. The robot starts at either the
blue or yellow field, and its goal container is the container placed at the
diagonally opposite corner of the table.

The orange objects are juggling balls representing oranges, weighing 300 g.
These have diameters of 10 cm and are placed on cylinders of different heights
called “trees”, that are placed on top of a hill. Obviously, these are difficult
to obtain, as the robot both has to drive up the hill, and collect objects from
trees to get them. The advantage, however, is that they are all located close
to each other, and that they are the heaviest objects on the table.

The white objects are cylinders representing ears of corn, that are stuck in
the ground. To obtain them, the robot has to pull them upwards or push
them to make them fall. The ears of corn weigh 250 g, are 15 cm high and
have a diameter of 5 cm. These are more accessible than the oranges, as they
are simply spread around the flat area of the playing table, but the fact that
they are stuck in the ground could make picking them up time consuming.

4 CHAPTER 1. INTRODUCTION

The red objects are juggling balls representing tomatoes. These balls weigh
150 g, have a diameter of 10 cm, and are placed on the ground. The tomatoes
are probably the easiest elements to pick up, but they are also the lightest
objects, meaning they give the fewest points.

The black objects are fake ears of corn. These cannot be picked – instead
the robot needs to avoid them, to prevent a collision. Figure 1.1 actually
only displays a sample configuration of the fake ears of corn. There are 36
different configurations of these elements, and one of these configurations
is randomly chosen as the game begins. Each configuration has seven fake
elements, and ears of corn are always in the same place, but real and fake
ears may swap places, compared with the setup in Figure 1.1.

Note that the playing table is always entirely symmetrical, so a solution for
a given starting position, can easily be translated to a solution for the other
starting position.

The number of points scored by a robot during a match, is determined in
the following way:

• Each robot gets one point for each gram collected and placed in the
scoring container.

• The winning robot gets 200 additional points.

• The losing robot gets 50 additional points, unless it is disqualified.

• In case of a draw, each robot gets 100 additional points.

• Robots can lose points due to penalties given for reasons like colliding
with the other robot or intentionally blocking its path.

It is obvious that finding the path giving the robot as many points as pos-
sible will depend greatly on the robot’s design. For instance, if the robot is
designed to pick oranges super-fast, picking many oranges would be a good
strategy. However, if it is designed to be an excellent tomato-picker, then
picking only tomatoes may yield a better result. If the robot is quite good at
picking all three types of elements, the final solution will depend on factors
like the robot’s speed, the time taken to pick each type of element and the
number of elements the robot can carry at once.

Unfortunately, the robot’s design will not be completely determined until a
short time before the competition, as this is when the EiT-groups working

1.2. PROBLEM DEFINITION 5

on the robot finish their project. Therefore, the system generating strategies
has to be parameterized. It should be able to take parameters such as the
robot’s translation speed, capacity and pick-up speed, and find a good route
based on these input values. Shortly before the competition, the team can
measure these parameters, enter them into the system, and good strategies
based on the robot’s actual functioning can be generated.

As soon as the opponent starts interacting with the playing table, changes
may have to be made to the robot’s plan. For instance, it may have to avoid
an area to prevent a collision, or one of the objects it had planned to pick up
may end up being picked by the opponent. This calls for dynamic replanning,
taking place during the match. Last autumn, as the author’s specialization
project, a static planning system for generating plans before the match was
made. The focus of this master’s thesis will be to extend this system to
enable it to modify these plans in light of changing circumstances.

1.2 Problem Definition

1.2.1 Team vision and mission

This project is part of a team effort, and as a team, we have chosen the
following vision for our work:

To learn interdisciplinary technology development through a chal-
lenging and motivating project, and to spread interest in technol-
ogy – particularly among young people.

A more precise description of what our work will be, is presented in our
mission statement:

We will, through our multi-disciplinary skills develop and improve
NTNU’s Eurobot-contribution, so that we can achieve a good posi-
tion in the competition in 2010. We will develop well-functioning
modules that are to be assembled into a robust, efficient and pre-
cise robot.

6 CHAPTER 1. INTRODUCTION

In light of this statement, the project presented in this report mainly con-
sists in making one of the robot modules, namely the strategy module. The
goal of the project is stated more precisely in the next section. In addition
to developing the robot, the whole team has participated in displaying and
demonstrating the robot being constructed at various events, fulfilling the
second part of our vision to “spread interest in technology”. For more infor-
mation about this, see our homepage at http://www.eurobot-ntnu.no/.

1.2.2 Project goal

The goal of this project is to implement an algorithm that is able
to use the previously made strategies for the Eurobot-competition
and adapt them to the actual state of the match, in particular to
avoid a collision with the opponent and to generate new, efficient
plans as the opponent makes changes to the playing table. Previ-
ous path optimization and scheduling problems solved by genetic
algorithms and other techniques will be thoroughly researched, in
order to determine how to design and implement the algorithm.

The algorithm should also fulfill the following requirements:

• The algorithm should be fast enough to be able to efficiently handle
rapid changes to the robot’s playing environment.

• As the robot is not yet built when the planning system is being im-
plemented, the algorithm has to base its calculations on parameters
that can easily be changed when the robot is ready. These parameters
should at least include the robot’s translation speed, capacity for carry-
ing objects, the time taken to pick up the various types of objects, the
time taken to deliver objects and the time it takes to navigate around
fake ears of corn and drive up and down the hill.

• The algorithm should be able to show a simple match simulation, to en-
able testing before the actual robot is finished. This simulation should
be in real-time, showing the robot, the opponent, the playing elements
and the robot’s plan as it adapts to the changing environment.

1.3. THE PROBLEM AREA 7

1.3 The Problem Area

The problem presented in the previous section, is clearly within the domain
of optimization. For given robot parameters and a state of the playing area,
there is one or more paths that will yield the optimal amount of weight
gathered. As the amount of points the robot might visit around the table is
so big, enumerating all possible paths is unfeasible. The number of pickable
playing elements at the beginning of a match is 37, and the number of possible
ways to visit all these elements is 37!, which is higher than 1043.

Luckily, the problem does not require an optimal solution. It requires a good
one, but not necessarily the optimal one. The probability that the opponent
interferes with the robot’s plan is quite big, so most likely, changes will have
to be made to the generated plan throughout the match, anyway. In addition,
a good (but not optimal) plan will still score many points, so a balance needs
to be found between the time taken to generate a solution and the quality of
the generated solution.

Whereas the task of finding good solutions before the match lies in the do-
main of static optimization, recalculating and adapting the plan to changing
circumstances lies in the domain of dynamic optimization. The latter is
harder, due to the strict time constraints faced in a changing environment.

A study of static and dynamic optimization techniques used to solve problems
similar to this, both optimally and heuristically, is presented in Chapter 2.

1.4 The Robot Design

The building of the robot was completed shortly before the competition, after
quite a few redesigns and modifications had to be made late in the building
process.

At the top of the robot, a rotating laser module communicating wirelessly
with three receptor beacons placed around the playing area, and one on top of
the opposing robot, ensures that the robot can always determine its own and
its opponent’s position accurately. Below this module, the computer running
the robot’s AI, computer vision and navigation system is located. Attached
to the computer are two cameras, using stereoscopic vision to determine the
positions of playing elements in front of the robot.

8 CHAPTER 1. INTRODUCTION

Figure 1.2: The robot

1.4. THE ROBOT DESIGN 9

Below the computer, the picking- and delivery system of the robot is found.
It begins with a “fork” that allows the robot to pick, deliver and carry three
oranges gathered from either side of the hill. Below these, are a slot where
both tomatoes and corns enter into the robot. Tomatoes are squeezed against
the floor, and as they enter, against wheels on the inside of the robot, lifting
them from the ground and into a storage area. Corns are tipped as the robot
drives over them, and enter into the robot, but keep rolling against the table
until they are delivered.

Delivering objects is done by a servo lowering the orange fork, and six servos
pushing the corns out of the robot’s center. In addition, a motor reverses the
rotational direction of the tomato-picking wheels, pushing the tomatoes out
from the robot’s storage area.

The drive wheels of the robot are placed close to its rear end. This is a change
from previous years, when these wheels were located around the middle of the
robot, and it was made to enable the robot to enter and exit the slope without
bumping into the table. This has the unfortunate side effect of making the
robot’s rotational radius larger, making it more difficult to navigate on the
playing table. Outside the drive wheels, are odometry wheels that count the
distance traveled to update the robot’s position and orientation estimates.

Chapter 2
Background

As mentioned, the problem at hand consists of finding the most efficient way
of gathering different objects and delivering them to a goal area. This task
has some similarities with the traveling salesman problem (TSP), so this was
where the search for good solution techniques began. As the background
studies proceeded, the orienteering problem (OP) and the vehicle routing
problem (VRP) were found to be even more similar to the Eurobot task.
Therefore the background studies were focused on approaches to solving these
problems, in particular by means of genetic algorithms.

However, the problem of finding good paths becomes more complicated when
the opposing robot makes changes to the playing table. Therefore, ap-
proaches to dealing with changing environments were studied, in particular
approaches that could utilize the solutions already generated for the initial
playing environment.

2.1 Genetic Algorithms

This section gives a brief introduction to genetic algorithms and why they
have been chosen as the solution method in this project. For a more thorough
introduction to GAs, the reader is referred to [9].

10

2.1. GENETIC ALGORITHMS 11

2.1.1 What are they?

Genetic algorithms are a way of traversing a solution landscape in a more
intelligent manner than random search. When a genetic algorithm searches
for a solution, it uses previous solutions it has generated, and puts more
effort into modifying the best of them, to hopefully make them even better.
In addition, the process contains enough randomness at its early stages to
get a good overview of the entire solution landscape.

Genetic algorithms are a subclass of evolutionary algorithms. They model
the process of natural evolution by maintaining a set of possible solutions,
represented as genotypes in individuals, and letting the best individuals re-
produce to form a new generation of solutions. To know what individuals
are the best, all solutions have to be tested on the problem, and assigned a
fitness value describing how well they did. Individuals with a high fitness are
given a better chance of growing up, and reproducing to form new solutions.

The way adults are selected from the child population, and the way individu-
als are selected for reproduction, may vary. Sometimes individuals are simply
selected with a probability proportionate to their fitness, other times more
complicated scaling methods are utilized before selecting, typically to make
the selection process more random and exploratory in the early generations,
and to make for a more focused search towards the end of the algorithm’s
run.

Reproduction typically involves crossover and mutation. Crossover is the
process of taking two individuals and mixing their genotypes (their solution
representations) in some way, for instance by splitting them in the middle
and taking half of each to be their child’s genotype. Mutation is some way
of changing the new child’s genotype, and it can range from simple random
swaps, to more complicated local searches optimizing the new solution.

Before the evolution can begin, an initial population needs to be formed.
This can be done in several ways, from simply making random individuals
to using some heuristic for making good initial guesses. Of course, heuristics
may constrain the GA and lead it towards local optima, but they will also
enable the algorithm to find good solutions faster, and may be necessary in
complex tasks.

In addition to implementing the concepts described above, a lot of time goes
into tuning parameters when solving a problem with a GA. Some of the most

12 CHAPTER 2. BACKGROUND

important parameters to tune are the number of generations, the population
size, the mutation probability and the selection mechanisms.

2.1.2 Why were they chosen as the solution technique?

The robot’s task is easily represented as finding the optimal permutation of
integers, where integers represent the various playing objects and the delivery
area. One way to find this permutation would be to test all possibilities.
But this would be enormously time consuming, as discussed in Section 1.3.
Indeed, some more intelligent approach is called for.

A GA will make it possible to test a lot of possible solutions, while not
wasting too much time on the bad ones. The algorithm gives no guarantee
of finding the best solution, but it probably finds a relatively good one, if
implemented correctly. Previous literature shows many examples of similar
problems solved successfully by GAs, and some of these implementations are
summarized in Section 2.4.

In addition, genetic algorithms are very good at adapting to changing en-
vironments. This will be important as the opposing robot may change the
playing environment during the competition. Dealing with changing envi-
ronments is discussed further in Section 2.2.

2.1.3 What are the alternatives?

This problem is from the domain of optimization, and a lot of similar prob-
lems have been documented and solved in this domain. The TSP is probably
the first problem class that comes to mind, but even more similar problems
have been extensively researched. These problems and common ways of solv-
ing them are described in Section 2.3.

2.2 Changing Environments

The fact that the opposing robot is able to make changes to the state of the
playing table, complicates this problem. Therefore, an effort was made to
determine what would be the best way of dealing with this kind of change.

2.2. CHANGING ENVIRONMENTS 13

Techniques for handling environments that vary over time are presented in
this section. But first, a few words on the terminology used for describing
environments.

2.2.1 Terminology

[25] classifies environments along six dimensions. They are briefly presented
here, along with the Eurobot-problem’s classification.

Fully observable vs. partially observable

As the robot at no time has a full view of the playing area, this environment
is clearly partially observable.

Deterministic vs. stochastic

Because of both the other agent’s actions, and inaccuracies in the robot’s
own actuators and sensors, the next state of the playing environment will
never be certain. Therefore, this environment is classified as a stochastic.

Episodic vs. sequential

An episodic environment is an environment where the current action made
by the agent will not affect future decisions. This is clearly not the case here:
If the robot for instance decides to pick up an object, it will have to deliver
it in the future to score points. Hence, the environment is sequential.

Static vs. dynamic

A dynamic environment is one that can change while the agent is deliberating.
This environment is dynamic, both because of the other agent’s actions, and
because the match has a 90 second time limit, meaning that the agent’s
maximum score will get lower as it deliberates its next action.

14 CHAPTER 2. BACKGROUND

Discrete vs. continuous

This environment is continuous, as both time and the agent’s position span
a range of continuous values.

Single agent vs. multi agent

The environment is obviously multi agent, and more specifically, a competitive
multi agent environment.

The two most interesting dimensions in the current task, and the two dimen-
sions that will be the most challenging to handle, are the deterministic vs.
stochastic and static vs. dynamic dimensions. Because the environment
is both stochastic and dynamic, there will most likely be a need for the robot
to adjust its plan during the match, and this adjustment must happen fast,
to avoid losing points.

2.2.2 Dealing with a changing environment

According to [18] classical, mathematically founded planning methods, like
dynamic and linear programming, do not adapt well to changing environ-
ments. The reason why, is that they only compute a single solution, and will
have to start from scratch if any of the conditions the solution was made
under change. On the other hand, planning methods like genetic algorithms,
that search for solutions instead of calculating them, are better at dealing
with change, because the optimal solution under the new environmental con-
ditions is likely to be close to the previously calculated optimal solution.
Therefore, starting a search from this previous solution will generate a new
optimal solution much faster than if the algorithm is started from scratch,
as long as the environmental changes are not too severe.

[18] mentions another reason why genetic algorithms are good at adapting
to environmental changes: They maintain a whole population of solutions
instead of just the optimal one. For this reason, large environmental changes
that make the optimal solution infeasible, may still be handled by other
solutions in the population. And even if none of these solutions can be used
directly in the new environment, this diversity of solutions means that there

2.2. CHANGING ENVIRONMENTS 15

(a) (b)

Figure 2.1: GA solutions in a changing environment

will be many promising starting points when searching for a good solution
after the environmental change.

Figure 2.1 shows how this works. The figures show the phenotypes of various
solutions plotted according to their fitness values. Phenotypes are plotted
along the x-axis, with similar phenotypes as neighbors. Fitness is plotted
on the y-axis. The stars represent the population of individuals managed by
the genetic algorithm. Figure 2.1a shows the situation after the algorithm
has been run in a stable environment for a while. The solutions have found
the peaks in the fitness landscape, and some technique has been employed to
maintain solution diversity, to avoid all individuals converging towards the
highest peak in the middle.

Now consider a sudden change in the environment that changes the fitness
landscape into that of Figure 2.1b. The environmental change did not change
the profile of the solution landscape completely (the three peaks are still
there), but it was severe enough to move the optimal solution to the third
peak, far away from its original position. Now, due to the fact that the genetic
algorithm maintains several solutions, it will be able to find the new global
and local peaks of the fitness landscape by using its previous population as
starting points, as indicated by the arrows.

16 CHAPTER 2. BACKGROUND

2.2.3 Maintaining diversity

A genetic algorithm typically converges to a single solution, or a group of
very similar solutions when run for a long time in the same environment.
This is good if we do not expect the environment to change, but if we do
expect changes, diversity is essential, as illustrated by Figure 2.1. Without
it, the new global optimum would be very hard to discover. [18] suggests the
techniques of niching and crowding to deal with this challenge.

Niching means that all solutions that occupy the same region of the search
space share a total fitness value. This means that as more solutions are
generated within the same region, each individual gets a smaller fitness value.
Thus, the poorest individuals are forced to another region, where there are
fewer other individuals.

Crowding is a different method for ensuring diversity, in which old solutions
that are similar to new ones are simply replaced by the new solutions. This
prevents too many similar solutions from building up in the population.

[18] also mentions some drawbacks associated with the two techniques. Firstly,
employing them can result in a quite big computational expense as all solu-
tions have to be compared to one another, which may be a resource demand-
ing operation. Secondly, the choice of how solutions should be compared will
most likely not be straightforward. For instance, how should it be deter-
mined if two TSP-solutions are similar? Based on the visiting order of the
cities, or perhaps on the number of identical edges in the solution?

[11] surveys the use of evolutionary optimization techniques in uncertain
environments, including environments where the fitness function and, hence,
the optimal solution changes over time. The survey classifies four groups of
approaches to addressing the problem of solution diversity.

Generating diversity after a change: In this approach, the evolution-
ary algorithm is run as normal until a change is detected. As soon as
this happens, some action is taken to increase diversity in the popula-
tion. Hypermutation is one such action, which drastically increases the
mutation rate in the first generations after the environmental change,
resulting in a rapid increase in diversity.

Maintaining diversity throughout the run: This approach includes nich-
ing, crowding and other techniques that keep the population from con-
verging at any time. The random immigrants approach inserts random

2.3. RELATED PROBLEMS 17

individuals into the population in each generation, making sure con-
vergence towards a single solution is avoided.

Memory-based approaches: These approaches extend the process of evo-
lution with a memory of previous solutions. Such techniques are useful
when the environment cycles between different states, meaning the op-
tima repeatedly return to previous locations in the fitness landscape.

Multipopulation approaches: These approaches divide the population
into several smaller subpopulations, that each inhabit their own region
of the search space. This allows the algorithm to track several promising
regions of the search space, and ensures a diverse population. Examples
of this approach are the “forking GA” [4] and the Shifting Balance GA
[19].

2.3 Related Problems

To find previous work on the type of algorithm that was to be implemented, it
was necessary to find similar problems that have been successfully solved by
genetic algorithms. Below are descriptions of the three most relevant similar
problems, and typical solution techniques. Although none of these match the
task in this project exactly, ideas and solution techniques previously used for
solving them may be applicable also in this project.

This section focuses on the static versions of the problems, which were useful
for designing the pre-match planner of the robot, but which will also be
relevant for the dynamic planner, because the dynamic planning problem can
easily be modeled as a series of static planning problems over time. There
may, however, be a more efficient way to approach the problem of dynamic
planning, and some approaches to solving the dynamic TSP and the dynamic
VRP by use of genetic algorithms are presented in sections 2.4.7 and 2.4.8.

2.3.1 The traveling salesman problem

Definition

In [3] the TSP is defined in its most general form as the problem of selecting
an ordering of the numbers from 1 to n (this ordering is called a “tour”) which

18 CHAPTER 2. BACKGROUND

minimizes the cost of the tour. The cost is given by an n-dimensional square
matrix that defines the penalty for having any two numbers be neighbors in
the tour. Total cost is obtained by summing up all penalties for the tour.

Normally, the integers from 1 to n are considered to be cities, and the ordering
is a way to visit all the cities. The cost matrix then represents the distance
between all pairs of cities, and the task is to find the tour that minimizes the
total distance traveled. The problem is NP-Complete, as proved in [20].

Common solutions

[14] gives an overview of common solution techniques for the TSP. The prob-
lem can either be solved exactly or approximately, depending on the size of
the problem instance and the resources available.

Exact solution techniques often represent the TSP as an Integer Linear Pro-
gramming (ILP) problem. In this representation, the function to be opti-
mized is linear and subject to equality and inequality constraints that are
also linear. In the TSP, the linear function to be optimized, is the sum of
the costs of traversing the arcs in the solution. Minimizing this sum means
finding the shortest path through all nodes. The additional linear constraints
ensure that the tour considered is a valid TSP-tour.

For finding the exact solution, branch-and-bound algorithms are commonly
used. The idea is to find better and better bounds for the cost of an optimal
solution, and then focusing the search for solutions to those that lie within
these limits. To be able to do so, the solutions are structured in a tree, and
tree nodes that fall outside the bounds are not expanded further. An initial
lower bound on the solution cost, can for instance be obtained by relaxing
some of the constraints given in the ILP.

As the TSP is NP-hard, a lot of work has been done on finding approximate
solutions for the problem. These fall into two categories: Those with a guar-
anteed worst-case performance, and those with a good empirical performance.
A method for finding an approximate solution is calculating the minimum
spanning tree of the problem, and traversing all the edges of this tree in a
structured fashion. For a symmetrical TSP (TSP on an undirected graph),
this solution is guaranteed to come within two times the optimal solution
length. The method has a runtime of O(n2).

There are many heuristics that have been shown to have good empirical

2.3. RELATED PROBLEMS 19

performance in solving the TSP. These include:

• The nearest-neighbor algorithm: At each step, simply add the nearest
neighbor of the current node to the tour. Complexity O(n2).

• Insertion algorithms, starting with a two-node tour, and iteratively
inserting the best node, based on some criterion, like the one yielding
the least increase in tour length, or the one closest to the current tour.
Complexity varies between O(n2) and O(n ∗ logn) depending on the
insertion criterion.

• The patching algorithm for asymmetrical TSPs: This algorithm first
constructs a TSP allowing for subtours (loops not covering all nodes) to
form, and then patches the subtours together in the way that minimizes
the cost of merging (that is, the difference in cost between the unmerged
and the merged tour).

In addition to the algorithms mentioned, that generate TSP solutions from
scratch, there are also many algorithms for improving TSP solutions. The
most important ones are described below.

The r-opt method considers an initial tour and removes r of the edges before
reconnecting them in all possible ways between the nodes they previously
connected. If any improvement is made, the improved tour is used as the
starting point of a new round of r-opt. If no improvement is made in a round,
the algorithm stops. Normally, an r-value of 2 or 3 is selected.

Simulated annealing is a method based on material annealing, the method
of heating up a material until its particles are randomly distributed, and
then gradually cooling it down until it reaches a stable state. In solving an
optimization problem, this means starting with a high temperature factor,
T, and iteratively reducing it as the algorithm progresses. Like the r-opt
method, simulated annealing considers a neighborhood of the given solution
and tries to find a better solution in this neighborhood. Unlike the r-opt
method, also worse solutions are considered for becoming the new solution.
This helps avoiding local minima. The probability of adopting a worse solu-
tion increases with the value of the T-parameter. This way, a high degree of
exploration is obtained initially, and the search is more focused during the
final stages.

The method of tabu search also considers the neighborhood of the current
solution. Like simulated annealing, it allows for the solution to deteriorate.

20 CHAPTER 2. BACKGROUND

In each step, the lowest costing neighbor of the current solution is chosen,
unless this neighbor is on the tabu list. This is a list containing all previously
tried solutions, and the use of such a list allows the algorithm to avoid loops
in the solution process. The method runs until all neighbors are on the tabu
list, or for a predefined number of iterations.

Relevance

As a lot of work has been done in representing and solving TSPs by using
genetic algorithms, and many successful applications have been reported,
this project could benefit from using some of the best representations and
operators from this area. Section 2.4.1 gives an overview of the most common
approaches to solving the TSP with a GA, and Section 2.4.7 presents a GA
solution to the dynamic TSP.

However, this problem is more complex than a TSP: The robot needs not only
to visit the objects on the playing table, but also pick them up and deliver
them, probably needing to deliver more than once, because of capacity issues.
In addition, there are different weights, and hence different scores for picking
up the different objects, and the robot will have to prioritize, as it will not
be able to pick up all objects on the table in a round.

To implement capacity constraints, different scores for different objects and
the need for prioritizing, it is necessary to look towards two other optimiza-
tion problems, known as the orienteering problem and the vehicle routing
problem.

2.3.2 The orienteering problem

Definition

The orienteering problem (OP) is a generalization of the TSP that relaxes the
requirement of visiting all nodes. As explained in [26], in an OP the cities
and traveling costs are defined as usual, but in addition a starting point
and an endpoint for the tour is specified, as well as a parameter specifying
the maximum allowed traveling distance for the problem instance. It is also
common that all cities have an associated score representing the utility of
visiting this city.

2.3. RELATED PROBLEMS 21

A TSP is the special case of the OP where the distance available is enough
to cover even the worst tour, and all cities have the same scores. As the OP
has a limited distance budget, a solution to the problem needs not include
all available cities. Instead, the optimal solution will be the one that collects
the highest score, and at the same time stays within the distance budget.
This problem is NP-hard.

Common solutions

As this problem has many similarities to the TSP, many of the heuristics
mentioned for solving the TSP, can also be used for the OP, with certain
modifications. As for the TSP, both exact approaches and heuristics are
employed. [5] reviews some common solution techniques for the OP. Ex-
act solution methods for the OP are often based on the branch-and-bound
method described in Section 2.3.1.

A common way of finding a good solution, that is not necessarily optimal, is
to first enumerate several promising tours, then optimizing the tours with a
good heuristic (for instance 2-opt, a variant of the r-opt heuristic described
in Section 2.3.1, can be used), and finally selecting the best tours for further
improvement through some local optimization procedure.

Enumerating promising tours can be done in many ways. Typically a tour
is built by rating the potential nodes to add by some desirability measure
(often based on the score of the point and the distance to the point), and
then picking one of the best rated nodes. Always picking the best node can
be useful when only generating one candidate tour, but some randomization
among the best nodes is needed when generating many potential tours.

The local search used for final optimization of the solution, is often based on
swapping some nodes in the solution, deleting nodes or inserting new nodes.
For instance, [13] uses three strategies for improving a path: “one in - zero
out”, “one in - one out” and “one in - two out”, referring to the amount of
nodes to delete or insert. The best result obtained by one of these strategies
is saved and improved further by cluster exchange, replacing a cluster of
nodes with another one.

22 CHAPTER 2. BACKGROUND

Relevance

While not as commonly studied as the TSP, also the orienteering problem has
been solved successfully with genetic algorithms. Studying such applications,
provided good examples of possible representations and operators for the GA
implemented in this project, as the OP is so similar to the robot’s task.

Just like the OP, the Eurobot task has objects with different scores and a
limited time budget to collect as many points as possible. Although the OP
is constrained by a distance, rather than a time limit, the conversion between
the two types is straightforward: Just measure the time used by the robot
for traversing distances, picking up objects etc., and end it’s run when the
time exceeds the specified limit.

The main difference between the OP and the Eurobot task, is that the OP
does not have the concept of a capacity and, thus, does not capture the fact
that the robot needs to visit the goal area regularly to make room for more
objects. This constraint, however, is captured by the class of problems known
as vehicle routing problems.

2.3.3 The vehicle routing problem

Definition

The vehicle routing problem, also a generalization of the TSP, is according
to [22] defined on a graph with nodes and edges, where one node plays the
special role as the depot. There are m vehicles with a certain capacity for
carrying objects from the depot to the other nodes, representing customers.
There are costs associated with traveling between nodes and with unloading
goods. The optimal solution is the set of routes that minimizes travel- and
delivery time, while staying within the vehicle’s capacity limits. This problem
is also NP-hard.

Common solutions

[15] reviews some of the methods used for solving the VRP, both exactly and
approximately. Exact methods are classified into three categories: Direct tree
methods, dynamic programming and integer linear programming. All these

2.4. PREVIOUS WORK 23

methods typically include relaxing the problem constraints to find bounds
on the solution costs, and then using a branch-and-bound method to find the
optimal solution.

Like the OP, VRP-solutions are often based on solutions to the TSP, with
some degree of modification. For instance, always inserting the nearest neigh-
bor of a node also makes sense in this problem, but one must be sure to only
construct valid tours (i.e. not overloading the vehicle).

There are also specialized algorithms for finding good solutions to the VRP.
For instance, a variant of tabu search can be used. Another possible heuris-
tic was proposed by Clarke and Wright in 1964. Their algorithm starts with
n vehicle routes containing only the depot and one other node, and itera-
tively merges routes, based on the largest saving in traveling distance. The
complexity of this algorithm is O(n2 ∗ logn).

Relevance

For VRPs, tabu search metaheuristics have yielded the best results, easily
outperforming standard genetic algorithms. However, in [22] Christian Prins
demonstrated that a hybrid GA, where mutation is replaced by a local search
procedure, is able to compete with these powerful heuristics.

The VRP also has a lot in common with the problem faced in this project:
The depot corresponds to the goal-area where objects are dropped, and there
is a single vehicle trying to minimize the time spent traveling from the depot
to the various points around the playing table, without exceeding its capac-
ity. The main difference here, is that the VRP is concerned with finding a
solution visiting all points in the problem definition, while the time limit of
the Eurobot contest means that priorities will have to be made, so the most
valuable points are visited first.

2.4 Previous Work

This section presents some of the previous work that has been done in solving
path optimization and scheduling problems with the help of evolutionary al-
gorithms. Implemented systems will briefly be described, along with thoughts
on how the experiences from them can benefit this project.

24 CHAPTER 2. BACKGROUND

The first sections describe systems designed for static planning problems.
They provide useful ideas and solutions for both the static pre-match planner
and the dynamic in-match planner, as both essentially perform the same task,
but with different time constraints. The last sections describe systems for
dynamic planning problems, and will provide a further insight into important
considerations when facing a problem that changes over time.

2.4.1 Solving the TSP with evolutionary algorithms

[16] presents a review of previously documented attempts to solve the TSP
with evolutionary algorithms. Below follows a summary of the most impor-
tant ideas from the work reviewed.

Representations

The representation of a TSP tour can take several different forms. A simple
binary or integer path representation can represent a permutation of the
cities to visit, with one number representing each city and a tour consisting
of visiting all the cities in the specified order. For instance, the genotype (4,
3, 2, 1) would represent a tour beginning at node 4, and ending at node 1.

An alternative approach is the adjacency representation. Here, integers once
again represent nodes, but the position of the integer determines what node
leads to that integer’s node. For instance, if the number 8 is at the third spot
in the genotype, this would mean that there is a path from node 3 to node
8 in the tour. Unlike the path representation, this one may result in illegal
tours even if all integers are only used once. During a regular crossover, both
this and the path representation can give invalid tours, due to duplicates.

The third representation reviewed is the ordinal representation. This repre-
sentation maintains an ordered list of nodes from 1 to n, and each spot in the
genotype explains what position in the ordered list the next node in the tour
should be selected from. Every time a node is selected in the list, this node
is removed, causing the list to shrink. So, the item at a specific position will
vary during the construction of the tour. For instance, the genotype (1, 1,
1, 1) will always select (and remove) the first element from the ordered list,
giving the tour (1, 2, 3, 4). The reason this representation is sometimes ap-
plied, is that it allows normal crossover to be used without risking generation
of illegal tours.

2.4. PREVIOUS WORK 25

Crossover

The simplest kind of crossover selects a random crossover point in the parent
genotypes, and recombines them at this point to generate the child genotype.
This kind of crossover will work fine with the ordinal representation, but
will potentially insert duplicate nodes in tours when using the other two
representations. It can still be used, but further actions are needed to remove
these duplicates, replacing them with the cities that are not part of the new
genotype.

For the adjacency representation, a specialized crossover operator is the alter-
nating edge crossover. This alternates with selecting edges from each parent,
starting at one parent and then adding the appropriate edge from the second
parent. For instance, if the edge (1,4) is selected from the first parent, the
edge starting at node 4 is added from the second parent. If an insertion
produces a cycle, a random node is inserted instead.

The most natural and most used representation is the path representation,
and many crossover methods have been suggested for it. One common
crossover technique is the partially-mapped crossover (PMX). This opera-
tor maps a portion of one parent genotype onto the other parent genotype,
and exchanges any duplicate nodes. For instance, if the parent genotypes are
(1, 2, 3, 4, 5) and (4, 2, 1 ,5, 3),the three center integers could be mapped
from parent 2 to parent 1, generating the genotype (1, 2, 1, 5, 5). This
generates two duplicates outside the mapping area, so they are exchanged
with their corresponding integers inside the mapping area, in this case 3
and 4, generating the final genotype (3, 2, 1, 5, 4). This kind of crossover
preserves some ordering information from the parents, while still generating
novel combinations.

Another popular crossover technique for the path representation is order
crossover (OX). This operator also starts by mapping one portion of a parent
onto the other parent, but after the mapping point nodes are simply inserted
in the order they appear in the other parent, skipping the nodes inserted in
the mapping. For instance, if the parent genotypes were (1, 2, 3, 4, 5) and (4,
1, 5, 2, 3) and the mapping happens in the second and third integer, the result
after mapping parent 2 into parent 1 would be (-, 1, 5, -, -). Then, integers
from parent 1 would be inserted from the fourth position as they appear,
wrapping around when reaching the end of the genotype, but skipping 1 and
5. The result would be (3, 1, 5, 4, 2). A theoretical analysis has proven this
to be more suitable for the TSP than the PMX operator.

26 CHAPTER 2. BACKGROUND

The final crossover operator presented here, edge recombination crossover
(ER). This operator tries to preserve the edges in the parent solutions, as they
carry information important to the success of an individual. The operator
makes sure only edges from parents are present in children, except for the
last edge from the final to the initial city, which may be new. The operator
works by maintaining an edge map, which for each city shows what cities it
is connected to in any of the parents. This edge map is used when generating
child genotypes, by always linking a city to one of its connected cities in the
edge map. When multiple cities are available, the one which has the fewest
entries in its own edge map is selected, so that no city “runs out” of neighbors
until the final edge is to be inserted. [16] indicates that this operator is better
for the TSP than the other operators presented.

Mutation

[16] also reviews many mutation operators that have been used for the path
representation of the TSP. Displacement mutation removes a sub-tour from
the solution, and inserts it in a random place. Exchange mutation swaps two
randomly selected cities in a tour. Insertion mutation removes a city from
the tour, and inserts it in a random place. Simple inversion mutation selects
two cut points in the genotype, and reverses the order of nodes between these
points.

An alternative to these kind of mutation operators, is employing some local
search, which makes some intelligent mutation to the genotype, optimizing
it. This should be done with care, of course, to avoid getting stuck at local
optima. One possible solution is to randomly mutate with some probability
p, and employ local searches with probability (1-p).

2.4.2 Production scheduling with a hybrid genetic al-
gorithm

[6] looks at a specific class of production scheduling problems in manufac-
turing. The problems are characterized by having a set of orders, and not
enough capacity to process all the orders. The task therefore becomes to:

1. Select the orders that should be processed.

2.4. PREVIOUS WORK 27

2. Determine the sequence these orders should be processed in, based on
constraints in the problem definition.

The system

The proposed system uses a genetic algorithm combined with extremal opti-
mization (EO) to solve the production scheduling problem. The GA ensures
that the algorithm doesn’t get stuck at a local optimum, while EO works as
a fine-grained local search and is used to improve single solutions efficiently.

Extremal optimization plays the role as the mutation-operator in this al-
gorithm. The EO takes a sub-optimal solution and iteratively replaces the
most undesirable components of this solution with other randomly selected
components. In this algorithm, a solution component is the execution of a
single order, and the desirability of the order is measured by the transition
cost incurred by handling that order at its current position. This cost equals
the transition from the previous order to the current order, and from the
current order to the next order. Thus, the EO replaces the least efficiently
placed order.

The representation of solutions employed in this algorithm is a simple or-
dering of task IDs, sequencing the production tasks that have been chosen.
Initialization of the first solutions is done partly at random, partly by a
heuristic algorithm, and partly by using the nearest neighbor search method,
which iteratively picks the order with the lowest transition cost, from a ran-
dom starting order.

Mating selection is implemented as rank based selection, in which the prob-
ability of selecting an individual does not depend on its actual fitness, but
on its ranking compared to other solutions’ fitnesses. The algorithm also
employs a technique for ensuring that the individuals involved in mating
are sufficiently different, in order to maintain genetic diversity. The ac-
tual crossover is handled by variants of order crossover (OX) and partially
matched crossover (PMX) that enable parents containing different subsets of
tasks to mate without generating illegal solutions.

28 CHAPTER 2. BACKGROUND

Usefulness

The task solved here resembles the Eurobot task in many ways, in particular
in the way there is a need to select a subset of tasks and sequence this subset
in a good way, relating to transition costs. The impact of extremal optimiza-
tion has given up to 30% reduction in cost of the optimal solution, and also
a much more rapid convergence, in terms of generations, indicating that hy-
bridizing the genetic algorithm is reasonable for these complex optimization
problems.

2.4.3 Capacitated vehicle routing with a cellular ge-
netic algorithm

The capacitated vehicle routing problem (CVRP) is a special case of the ve-
hicle routing problem described in Chapter 2.3.3, where all vehicles involved
have the same capacity. [2] and [1] (both describing the same system) pro-
pose a cellular GA for solving this problem, with the additional constraint
that all routes have a specified time limit.

The system

The genetic algorithm used for solving the CVRP is cellular, which means
its population is structured in a certain topology, only allowing neighboring
individuals to interact in the mating process. The topology in this case is a
grid. In addition, the GA is hybridized with a local search method used to
optimize individuals.

Solutions to the CVRP are represented as permutations of integers, some
integers representing the customers to be visited, and the rest working as
delimiters, indicating that one delivery round is done, and the next one
should be initiated. This way, the number of total routes, is controlled by
determining the range of integers. For instance, numbers 1 to 5 could be
customers, while 6 is a delimiter, and the tour (1, 2, 3, 6, 4, 5) would consist
of the two sub-tours (1, 2, 3) and (4, 5).

The population is structured in a 2D-grid, each individual having five neigh-
bors: The ones directly next to it in the grid, and itself. All individuals

2.4. PREVIOUS WORK 29

are iteratively selected for mating, the other mate being chosen through bi-
nary tournament selection among the neighbors, meaning that two randomly
selected neighbors compete for the open mating spot.

Crossover is edge recombination crossover, and mutation is a combination
of insertion (moving a gene), swap (swapping two genes) and inversion (in-
verting a sequence of genes). Mutation can happen within a single route, or
involving several routes. After mutation, the algorithm attempts to optimize
the individuals through two optimization methods: 2-opt and 1-interchange.
The best individual (among the original mutated one and the results from
the two optimization algorithms) is selected, and inserted into the next gen-
eration if it is better than the parent at the current place in the grid.

2-opt is a special case of the r-opt algorithm described in Section 2.3.1, and
works by randomly breaking two non-adjacent edges, splitting the solution
in two halves, and then recombining the halves by inserting edges between
them in the opposite way from how they were previously connected. For
instance, if the previous edges were (1,2) and (3,4), the new edges are (1,3)
and (2,4). The effect of this is to reverse the sequence of nodes between the
breakpoints.

1-interchange optimization exchanges single customers between two routes
in every way possible, trying to find a better route organization.

The fitness of an individual decreases with the total time delivery takes, and
with penalties incurred for spending too much time, or carrying more than
the vehicle’s capacity on a single route.

The algorithm was tested on several large instances of CVRP, and was able
to improve the best known solution to nine of them, and coming very close
(within 3%) to the best known solutions of the rest.

Usefulness

As previously mentioned, the Eurobot problem has many similarities with
the VRP, so solution techniques from this algorithm are also relevant for the
Eurobot task. The fact that all vehicles share the same capacity, makes it
even more similar than the general VRP. A particularly interesting feature
of this system, is the route delimiters employed in the solution representa-
tion, which give the GA freedom to experiment with generating new routes,
combining routes and so on.

30 CHAPTER 2. BACKGROUND

2.4.4 Solving the generalized orienteering problem with
a genetic algorithm

[27] used a genetic algorithm to solve the generalized orienteering problem
(GOP). GOP is a generalization of the OP, where the points to be visited
have several scores, with respect to various attributes, and where the overall
objective function is a nonlinear combination of these attribute scores. As a
motivating example, the article mentions taking a trip in China, where places
to visit can be ranged by their beauty, historic relevance and several other
attributes. The traveler wishes to maximize all scores, but this is probably
not possible, so he faces an optimization problem with multiple goals.

The system

The solutions to the problem are represented as permutations of integers,
representing the possible cities to visit. Producing the initial population is
done by starting at the first city, and then adding the closest city with a
probability of 0.4, and the second and third closest with probabilities of 0.3.
Doing this 50 times, and saving the tours in both forward and backward
order, generates 100 individuals. To get the tours to stay within the time
limit given, the algorithm finally removes as few as possible consecutive cities
from the end of the tours. Finally, the 51 best tours are chosen to serve as
the initial population.

Crossover is based on queen-bee selection and uses edge recombination crossover.
Queen-bee selection means that the current best path (the queen) gets to par-
ticipate in all the matings, and the other mate is chosen by proportionate
fitness selection. The edge recombination crossover used here, is a variant in
which the node to be added is not the one with the fewest neighbors in the
edge table, but the one closest to the current node. This ensures the best
edges are transferred to the next generation, at the cost of more edges being
broken, compared to normal ER crossover.

Mutation is implemented as the 2-opt procedure explained in Section 2.4.3.
If a tour is selected for mutation, 2-opt is run on all pairs of nodes, so the
best possible mutated sequence is found.

After mutation and crossover, the tour may have become longer than the
distance constraint, so the feasibility of all tours has to be checked, and cities
may have to be removed from the end of the tour. During crossover and

2.4. PREVIOUS WORK 31

mutation, more individuals than required are generated, and intermediate
individuals (for instance the individuals that are done with crossover but not
with mutation) are also saved, so to generate the next generation, a selection
has to be made. This selection is done by always keeping the very best path
(this is known as elitism), and selecting others by proportional fitness among
the remaining individuals.

Usefulness

The Eurobot task has only one type of score for each point: The weight of the
object there. So, the fact that this is a generalized version of the OP is not
really useful. However, many of the ideas here are quite interesting. Ideas like
queen-bee selection and elitism are efficient in preserving information about
the best-so-far solutions throughout generations. This is often necessary in
these complex problems, as small changes to good solutions may decrease
their fitness severely.

Another interesting idea presented, is the idea of letting the GA produce too
long tours, and then simply adjusting them to the distance constraint later.
This gives the GA more freedom to experiment and combine good solutions,
even though they may result in invalid tours.

2.4.5 Solving the orienteering problem using a genetic
algorithm with an adaptive penalty function

[26] looks at another way of solving the OP with a GA. Quite a few interesting
ideas are presented, among others an adaptive penalty function, allowing
infeasible solutions to survive, in hope that they can produce useful offspring.

The system

This algorithm uses the same solution representation as most of the other
algorithms considered here: A permutation of integers. Initial solutions are
randomly generated, but it is made sure that they follow the distance con-
straint of the OP. Crossover is handled by injection, to facilitate genotypes
of different lengths. Injection means that a sub list from the first parent is
inserted at an injection point in the second parent to generate a child. Any

32 CHAPTER 2. BACKGROUND

duplicate points injected are deleted from the child. Finally, the child is
fitted to the size of the first parent.

Mutation is enriched by a local search, and this proved to significantly im-
prove the performance of the GA. The four local search methods employed
are add, omit, replace and swap of integers. Each of the four operators is
tried ten times at random places on the offspring that is to be mutated,
saving the best offspring created.

The most interesting idea of the article is the adaptive penalty function, which
allows also infeasible tours (i.e. tours longer than the distance constraint)
to survive. This function decreases the fitness of solutions according to their
distance from feasibility. This way, solutions with high scores, but that are
a little too long, may survive and perhaps produce offspring within the fea-
sibility limit.

Usefulness

The problem considered here has a lot of similarities with the Eurobot task,
the most noteworthy difference being the robot’s need to deliver objects to
the scoring area several times during a run. So, the ideas here may prove
valuable in this project – in particular the adaptive penalty function seems
interesting.

2.4.6 Solving the vehicle routing problem with a ge-
netic algorithm

[22] presents an evolutionary algorithm for solving the VRP that is able to
compete with the powerful tabu search (TS) algorithms in terms of solution
costs.

The system

The system represents a solution as a permutation of the n customer nodes.
Unlike the VRP-solver presented in Section 2.4.3, this system has no trip
delimiters. Instead, a procedure finds the optimal places to split the tour,
based on capacity constraints, after the tour has been generated.

2.4. PREVIOUS WORK 33

The individuals of the population are kept in an array sorted by the cost
of the solution. To avoid premature convergence, the algorithm has a limit
of how similar two individuals are allowed to be. To avoid having to check
genotypes in detail, this limit is based on cost: the costs of two solutions
cannot be closer than a given constant.

Three initial solutions are generated by three different heuristics known to
be efficient. The rest of the initial population is initialized as a random
permutation of customers, making sure to avoid similar costs. For crossover,
the order crossover operator is used.

Instead of random mutation, the algorithm uses local search, with a fixed
probability of mutating offspring. The local search considers all pairs of
nodes in the problem and tries to optimize the tour by nine different simple
swapping rules changing the position of one or both nodes in the genotype.
Among these rules are the 2-opt and 1-interchange moves described in Section
2.4.3. The local search has a runtime of O(n2), where n is the genotype size.

Parent selection is done by the binary tournament method. Two tourna-
ments yield the two parents. The OX-crossover generates two children, and
a random child is selected for entering the population. Selecting a random
child instead of the best child gave a better average GA performance. To
make room for the child, a mediocre chromosome (drawn above the median)
is removed from the population. In each iteration of the GA, only one child
is inserted into the population. The algorithm is run for a given number of
iterations, until convergence, or until reaching a predefined optimal cost.

Usefulness

The fact that this algorithm was able to show results comparable to TS, the
most powerful heuristic for the VRP, is promising. A potential problem is
the previously mentioned difference between the Eurobot task and the VRP.
This algorithm is quite fine-tuned to a particular problem type and particular
parameters, and shows degradation of the average solution if parameters are
changed. Specifically, strong degradation occurs if the population is allowed
to have clones, or if the local search is replaced by simple move or swap of
nodes.

34 CHAPTER 2. BACKGROUND

2.4.7 Solving a dynamic TSP with an evolutionary al-
gorithm

[28] proposes an evolutionary algorithm for solving the dynamic TSP (DTSP).
This problem, which was first defined in [23], is harder than a regular TSP
because the cities involved and the costs of traveling between them vary over
time. The DTSP is far less researched than its static counterpart, and [28]
claims DTSP research is currently in an initial phase, with many questions
waiting to be answered. Like a regular TSP, the DTSP is NP-hard.

The systems

In the DTSP, cities may be added or deleted from the problem over time,
and the distances between cities may vary over time. The goal of a DTSP
solver will typically be to minimize the total traveling cost at each time step.

[28] handles the problem by using an evolutionary algorithm known to be
efficient for solving the static TSP, and extending it with three dynamic
operators. The EA, known as the Inver-Over EA then drives the solution
process forward, and the dynamic operators enable it to respond rapidly to
the changing environment.

The three dynamic operators are employed every time the TSP problem
changes. The operators are:

Insert: This operator is employed whenever a new city is added to the
TSP. It adds the new city, C, to an already generated tour by finding
the city closest to C, and placing C directly before or after this city in
the tour, whichever yields shortest tour. The operator’s complexity is
O(n).

Delete: This operator is called when a city disappears from the TSP def-
inition. It simply removes the disappearing city from the previously
generated tour, resulting in its neighboring cities becoming linked to-
gether in the new tour. The operator’s complexity is O(1).

Change: The change operator is called whenever the location of a city
changes. It consists in first calling delete and then the insert-operator
on the city that moved. This is likely to result in a more efficient tour
than if the city remained at its previous position in the tour after it

2.4. PREVIOUS WORK 35

Figure 2.2: The delete operator creating an efficient tour

Figure 2.3: The delete operator creating an inefficient tour

was relocated in the problem definition. The time complexity of this
operator is O(n) +O(1) = O(n).

Even though these operators are likely to produce good tours, they do not
guarantee that cities are inserted in the best possible positions. Therefore,
the EA is needed for further optimizing the generated tours. Figure 2.2 shows
how the delete operator can be efficient in some cases, while Figure 2.3 proves
it may produce clearly sub-optimal tours in others.

A similar approach to solving the DTSP was taken in [17]. Here, the authors
propose a GA hybridized with the 2-opt or 3-opt local search techniques
described in Section 2.3.1. They claim this combination yields an algorithm
that both shows rapid response and provides high quality solutions. This
approach utilizes more complex heuristics (2-opt and 3-opt have complexities
O(n2) and O(n3), respectively), meaning it will be more time consuming
but at the same time have a better chance of adjusting to the changing
circumstances without running several generations of the GA.

36 CHAPTER 2. BACKGROUND

Usefulness

This method for generating good tours in a changing environment is very
promising as a possible solution technique for dynamic in-match planning.
The three operators employed in [28] are also very relevant for the Eurobot
problem, as both insertion, removal and changing locations of playing ele-
ments is likely to occur (insertion occurs if the opponent first picks an element
up and later drops it). The fact that the method is based on an EA for solv-
ing a static TSP problem is also promising, as it indicates that using the same
EA for solving the static pre-match planning problem and the dynamic in-
match planning problem may prove to be an efficient solution, if the dynamic
planning is extended with some good heuristics.

The results on testing the algorithm in [28] on a 100-city dynamic TSP
instance are good: Even when all 100 cities change their locations randomly
(according to a Gaussian distribution) between every 0.5 and 2 seconds, the
average error is only 7%, compared with an extensive 40.000 generation GA
used to generate a close to optimal solution, at each timestep. The algorithm
was run on a P4 1.4GHz with 256 MB RAM. The good response under large
environmental changes makes this a feasible approach for the heavily time-
constrained dynamic planning in the Eurobot matches.

Unfortunately, the test results do not present the standard deviation used
in the Gaussian distribution governing the random movements of the cities.
This makes it hard to say how big the changes to the TSP problem actually
were at each time step. In addition, there were no experiments explicitly
deleting and inserting cities into the TSP, as the change operator includes
both a delete and an insert. For these reasons, the actual performance of
this approach on the Eurobot problem is difficult to estimate. Still, the idea
of extending an EA with change-handling heuristics seems like an efficient
way of dealing with the dynamic planning problem, due to its ability to both
quickly respond to changes and later optimize this response incrementally in
the EA.

2.4.8 Dynamic vehicle routing

A dynamic VRP is a VRP where constraints may change during execution of
the planned route. Compared to regular VRPs, very little has been published
about the dynamic variant. A search in Google scholar returns 12.100 results

2.4. PREVIOUS WORK 37

for the phrase “vehicle routing problem”, but only 616 for “dynamic vehicle
routing problem”. [23] was one of the first papers to address this problem.
It describes 12 points that need to be given particular attention in dynamic
VRPs. The most relevant ones for the Eurobot problem are:

The time dimension: Unlike TSPs and many static VRPs, where dis-
tance is what we wish to minimize, in dynamic problems time is the
essential factor. This implies that we need to keep track of how the
problem and the execution of the plan evolves over time.

Future information may be unknown: In static problems, the entire
problem definition is usually given beforehand. However, in a dynamic
problem, much may be unknown as execution begins, so some reasoning
about unknown future events may be needed.

Near term events are more important: This is an implication of the
previous point: As events are increasingly uncertain longer into the
future, focus should be on events occurring in the close future.

Resequencing may be warranted: Changing conditions may render al-
ready planned tours sub-optimal – so some replanning should occur
whenever something changes.

Faster computation time: Real-time planning usually has harder time
constraints than static planning. This often implies the use of some
fast heuristic for modifying plans.

Like the static VRP, the DVRP is NP-hard.

Evolutionary approaches

While far from as commonly researched as the static version, some interesting
GA solutions to the dynamic VRP have been reported. A few these solutions
are briefly summarized here.

[24] considers the single-vehicle pickup and delivery problem with time win-
dows and capacity constraints. This problem is quite similar to the Eurobot
task, the most notable differences being the time windows that restrict when
each pickup and delivery in the VRP should be made, and the fact that there
is no total time constraint in the VRP. The problem is solved using a hybrid

38 CHAPTER 2. BACKGROUND

genetic algorithm, as the authors expected this to make it possible to generate
sub-optimal solutions on demand, and improve these solutions incrementally
using the GA whenever more time is available. The algorithm feeds the cur-
rent state of task execution to a dynamic programming module, which works
out solutions to the current problem. The dynamic programming module
is time limited, so it will not be able to finish solving the problem; rather
unfinished solutions are passed on to the GA to serve as its initial popu-
lation. Experiments performed show that the average solution cost is lower
when hybridizing the GA with the dynamic programming module than when
running only the GA.

[12] proposes a GA for the time-dependent VRP (TDVRP). This is a quite
complex problem with several vehicles, both delivery and pick-up demands
and soft time windows, penalizing vehicles for being too early or too late. In
addition, plan adjustments may occur during plan execution due to changing
circumstances. A regular GA is employed with crossover and mutation oper-
ators specifically tailored to the route representation adopted in the GA. In
addition, a special genetic operator called vehicle merging is implemented,
which tries to merge two vehicle routes into one to reduce costs. Experimen-
tal results are good – on mid sized problems (30 demand nodes, 30 timesteps)
the algorithm is able to come within 7% of the optimal solution on average,
and with substantial time savings compared to the time needed to obtain an
exact solution.

[10] considers a DVRP pick-up problem, where some customers are known
before planning begins, and some may arrive over time. The DVRP is here
viewed as a series of static VRPs to be solved at each timestep. In each time
step, the algorithm begins with an event scheduler that generates a static
vehicle routing problem based on the current status of all vehicles and cus-
tomer demands. Then, for each static VRP, an ordinary genetic algorithm is
executed. The algorithm was tested on publicly available VRP benchmark
data, with between 50 and 199 customers. The GA was allowed to process
each timestep for a maximum of 30 seconds. The results obtained were com-
pared with an ant colony system algorithm and a tabu search algorithm,
both previously designed for solving the DVRP, and the GA performed fa-
vorably: Against the ant colony system the GA was able to generate better
average solutions for all 21 benchmark data sets, and against the tabu search
algorithm the GA generated better averages in 19 of the 21 data sets.

2.5. DISCUSSION 39

2.5 Discussion

Reviewing previous work in the domain of optimization provided a lot of
different ideas to work on when approaching the Eurobot task. For the
static planning implemented as the author’s last year specialization project,
a genetic algorithm was chosen as the solution method. The GA was chosen,
because it is new and interesting solution technique that is beginning to show
results comparable with those of the tabu search, one of the most used and
powerful heuristics for the type of optimization problems discussed here.

An advantage of using GAs, is that they allow the designer to extract parts
of the algorithm (like crossover operators, selection mechanisms etc.) from
different previous solutions, combining them in the way that suits the prob-
lem best, as long as a proper solution representation and fitness function is
chosen.

In reviewing previous evolutionary approaches to both static and dynamic
optimization, some common features have become evident:

• Representing tours as simple sequences of integers.

• Using crossover mechanisms known from solving the TSP, like order
crossover, partially matched crossover and edge recombination.

• The use of local search methods and heuristics, both for making good
initial solutions, as an alternative to randommutation and for providing
rapid responses to environmental changes.

• The use of elitism, to avoid losing the best solution.

When extending the task to also include dynamic planning responding to
environmental changes, it was necessary to gain an insight into dynamic op-
timization problems. As a GA was already implemented for solving the static
planning problem, special attention was given to GAs as dynamic optimiz-
ers. Studying GA solutions to the dynamic vehicle routing problem and the
dynamic traveling salesman problem has indicated that regular GAs may be
used for solving dynamic optimization problems, and that hybridizing them
with good heuristics may give the algorithm the extra responsiveness it needs
to deal with a changing environment. Other experiences with evolutionary
approaches to dynamic planning indicate that maintaining a diverse solution
is important for being able to respond to environmental changes. Therefore,

40 CHAPTER 2. BACKGROUND

special care should be taken to avoid convergence towards a single solution
in dynamic planning problems.

Chapter 3
Methodology

A genetic algorithm hybridized with a powerful local search technique was
implemented as the author’s specialization project, and it proved to gener-
ate good static solutions to the Eurobot task. It was decided to use this
algorithm as the basis for the dynamic problem solver needed for plan ad-
justments throughout entire Eurobot matches. However, several extensions
and adjustments had to be made to move from working on a static problem
to solving a task in a rapidly changing environment.

Sections 3.1 and 3.2 describe the previously implemented system, and the
rest of this chapter describes how the system was extended and adjusted to
cope with the dynamic task.

3.1 The Static GA

The GA implemented as part of the author’s specialization project solved the
task of finding near optimal plans for any of the 36 table setups, given certain
data about the robot, like its capacity for carrying objects, its speed and how
fast it can pick the various objects. Figure 3.1 shows the evolutionary loop.

The algorithm has all the typical characteristics of a genetic algorithm: Start-
ing from a randomly initiated population, several individuals compete for the
right to become adults and mate, based on their fitness value, to form the
next generation of individuals. Mechanisms for both adult selection and

41

42 CHAPTER 3. METHODOLOGY

Figure 3.1: The implemented genetic algorithm

3.1. THE STATIC GA 43

mating selection were implemented, meaning there is competition both for
growing up and for regenerating, being able to form the next generation.

Mutation as well as a local optimization method was implemented for modi-
fying individual solutions. Finally, elitism was implemented, to avoid losing
good solutions.

3.1.1 Representation

Solutions to the GA were represented as permutations of integers, each in-
teger representing a playing object or the goal area. The entire permutation
thus becomes the robot’s strategy for the match. As not all points will be
visited in the 90 seconds of the match, solutions are implicitly cropped during
fitness evaluation, by disregarding actions taken after the 90 seconds.

The size of solutions range from 37 integers and up, depending on how many
delivery actions the user has allowed for a single match. Typically, three
deliveries were allowed, yielding a genotype size of 40, striking a balance
between giving the GA a lot of freedom, and limiting its search space.

No distinction was made between genotypes and phenotypes in the algorithm
– both were simply the same permutation of integers.

3.1.2 Selecting individuals

To select individuals for the next generation of the GA, a selection protocol
and a selection mechanism is needed.

The selection protocol determines which children will compete for spots in
the next adult population. Three types of selection protocols were imple-
mented, allowing the selection pressure of the GA to be adjusted: In full
generational replacement, there is no selection pressure. All adult spots are
simply replaced by the new children. In generational mixing, there is more
pressure, as both adults and children compete for these spots. Finally, in
over-production, m children are created to compete for the n adult spots, so
the selection pressure can be determined by the user by tuning m and n.

The selection mechanism determines how the competition among the indi-
viduals is performed. Thus, it is also an important factor in adjusting the

44 CHAPTER 3. METHODOLOGY

selection pressure. Two selection mechanisms were implemented: Boltzmann
selection, which was used during adult selection, and tournament selection,
which was used during mating selection.

Boltzmann selection

Boltzmann selection is based on the simulated annealing technique described
in Section 2.3.1. This selection mechanism scales the fitness of all individuals
according to the factor T , called the Boltzmann temperature. By adjusting
this factor throughout the evolution, it is possible to move from an initially
relatively random exploration process, to a more focused exploration towards
the end making the best solutions even better. The scaling equation for
fitness values in Boltzmann selection is [8]:

ExpV al(i, g) = ef(i)/T

〈ef(i)/T 〉g
(3.1)

In the above equation, g is the current generation, T is the Boltzmann tem-
perature, f(i) is the fitness of individual i, and the brackets mean the average
value of the function during generation g. ExpV al(i, g) is the expected num-
ber of times individual i will reproduce in generation g, which of course de-
pends on the individual’s fitness value compared to the average fitness value
in the current generation. Obviously, scaling the temperature will enable
control of this scaling factor, and in turn, scale the selection pressure.

Once fitness values have been scaled, comes the actual selection, and this
is done according to roulette wheel selection, which simulates assigning all
individuals to a roulette wheel, giving them space on the wheel according to
their percentage of overall fitness. Then the wheel is “spun”, and a random
individual wins, and is removed from the wheel and into the next adult
population. This gives all individuals a chance of winning proportionate to
their scaled fitness value.

Tournament selection

Tournament selection was used for selecting individuals for the mating pro-
cess. No adults were allowed to mate with themselves, so for each child in
the next generation, two different adults needed to be selected.

3.1. THE STATIC GA 45

This selection mechanism was run once for each individual that was to be
selected, and all individuals took part in each tournament, meaning that one
individual could be picked several times. All tournaments begin with picking
k (a user-specified integer) individuals at random from the population. These
individuals are this tournament’s contestants. With a probability of p, the
tournament factor, a random individual among the contestants is chosen as
the winner. With a probability of (1 − p), the contestant with the highest
fitness value is the winner.

Thus, by adjusting k and p, the user can tune the selection pressure in this
mechanism.

3.1.3 Mating

After selecting adults for mating, comes the actual mating process. Some of
the offspring created are the result of crossover, in other words mixing the
genetic material from two adults, while others are the result of copying the
exact genotype of one parent. The probability of these events is controlled by
a factor set by the user, to allow experimentation on how much differentiation
is healthy for the solutions. Too little, and premature convergence may be
the result. Too much, and there is a risk of never converging at all.

The crossover mechanism is edge recombination crossover (ER), a common
crossover mechanism for TSP-solving GAs, that was also used in two of
the systems reviewed in Section 2.4 for solving the OP and the VRP. The
crossover mechanism is described in Section 2.4.1.

3.1.4 Local optimization

Local optimization took the place of the mutation operator in the GA. Re-
sults from the specialization project showed great improvement over random
mutations when applying a local search technique. Much of the work re-
viewed in Section 2.4 has also benefited from hybridizing genetic algorithms
with local search techniques when solving complex scheduling problems.

The local search technique that was implemented, is based on the large local
search employed by Christian Prins in [22]. It was used as part of a genetic
algorithm outperforming the powerful tabu search heuristics on many clas-
sical VRP instances. The local search considers all O(n2) pairs of integers

46 CHAPTER 3. METHODOLOGY

Table 3.1: Steps in the large local search
M1 Insert u after v
M2 Insert (u,x) after v
M3 Insert (x,u) after v
M4 Swap u and v
M5 Swap (u,x) and v
M6 Swap (u,x) and (v,y)
M7 If u and v are in the same tour, replace (u,x) and (v,y) by (u,v) and (x,y)
M8 If u and v are not in the same tour, replace (u,x) and (v,y) by (u,v) and (x,y)
M9 If u and v are not in the same tour, replace (u,x) and (v,y) by (u,y) and (x,v)

in the genotype, and tests nine different rules for each pair, looking for an
improvement to the current fitness value. If an improvement is found by one
of the rules, the solution is updated, and the next pair of nodes is considered.

As opposed to the VRP that the search technique was developed for, not all
steps in the solution genotype of the implemented GA get carried out, as
there is a time limit. Therefore, the efficiency of the search was increased, by
stopping it from considering pairs of nodes where both nodes are outside the
region of nodes visited within the 90 seconds of the match. Interchanging
these nodes will not change the robot’s behavior in the match, and hence,
has no effect on the fitness value. On the other hand, considering pairs of
nodes where only one is outside the 90 seconds of the match, is reasonable,
as this will allow for adding nodes to (or removing nodes from) the robot’s
strategy for the match.

The nine rules used, shown in Table 3.1 are the same as in [22]. In the rules, u
and v are the nodes in the current pair, while x and y are the nodes following
u and v, respectively, in the current solution.

Even though these rules appear to be precisely the same rules that Prins used,
there is a subtle difference, due to the difference in solution representation.
In Prins’ solutions, the genotypes did not encode route delimiters. Delimiting
routes was done by a separate splitting procedure. In the GA implemented
here, however, delimiting routes is done by specific integers in the genotype.
This means that the local search has the opportunity to try out different
delivery strategies, and not just change the order of visiting the pickup points.
Note, however, that rules M7 - M9 were not allowed to fire if any of u, v,
x or y were the delivery point, as these rules were specifically designed for
handling exchanges within and between tours.

3.1. THE STATIC GA 47

2-opt and 1-interchange are two heuristics commonly employed for path op-
timization problems, and were used in several of the systems described in
Chapter 2. These heuristics are also part of the large local search, and are
covered by rules M1, M4 and M7. Briefly explained, 2-opt has the task of
reversing the order of visiting nodes between u and v, while 1-interchange
tries to exchange nodes between different tours. Figures 3.2 and 3.3 illustrate
how these actions can optimize tours.

Figure 3.2: 2-opt

3.1.5 Elitism

Figure 3.3: 1-interchange

During the background studies for the special-
ization project, a common feature of many of
the studied scheduling algorithms was the use
of elitism. Elitism means storing the best solu-
tion(s) obtained so far in a GA to avoid losing
them in subsequent generations. This is im-
portant in complex scheduling tasks, because
a small perturbation to a good genotype can
destroy the solution. In this task, this can
for instance happen if the delivery is removed,
meaning no points are scored.

In the implemented GA, the number of elites
can be specified before the algorithm is initi-
ated. Figure 3.1 illustrates how elites take a
“shortcut” past adult selection, going straight
to parent selection. The worst elite is replaced
as soon as a better solution is found.

48 CHAPTER 3. METHODOLOGY

3.2 The Simulator

For evaluating the fitness of any given solution, a simulator was implemented,
that simulated an entire 90-second Eurobot match, and assigned a fitness to
the solution based on the amount of weight it was able to deliver. Because
the robot had not yet been designed at the time of implementing the sim-
ulator, it based its calculations on adjustable parameters representing the
robot’s speed, capacity and other physical attributes. Once the robot is
ready, these parameters can be measured, and more accurate simulations
can be performed.

3.2.1 Driving

Much of the time during a Eurobot match will be spent driving between
objects. Therefore, it is important to have good estimates of the time trans-
lations will take. Vector mathematics was used to find the distance D and
rotation r of any translation. Together with the number of accelerations, a,
these factors gave the time spent on a regular translation from point u to
point v:

Time(u, v) = r
Vr

+ (a ∗ Pa) + D
Vt

(3.2)

Here, Vr is the rotational velocity of the robot, Pa is the acceleration penalty
(the approximate time spent on a single acceleration and retardation), and
Vt is the translational velocity of the robot. The velocities and acceleration
penalty will be based on measuring the properties of the actual robot.

Obstacles

On the Eurobot playing table, there are always 7 black columns inserted in
random configurations as obstacles. This has implications for fitness eval-
uation, because a translation crossing an obstacle is likely to be more time
consuming than one that is not. To check if the robot’s path intersects an
obstacle vector mathematics was once again utilized to find the smallest dis-
tance between the current translation and all obstacles on the table. If any

3.2. THE SIMULATOR 49

Figure 3.4: View of the game table showing the hill

such distance is smaller than the robot’s radius plus the obstacle’s radius, an
intersection has been found.

Penalizing intersections is simply done by adding a penalty for each obstacle
that intersects the current tour to Equation 3.2. What penalty to use will
be based on the average time the robot uses to drive around an obstacle.

The hill

At the top of the playing area, is a hill only accessible from the sides (see
Figure 3.4). Using Equation 3.2 directly on translations onto or down from
the hill, will severely under-estimate the translation time, both because any
path to the top of the hill will have to drive via the upper corner of the
playing table, and because driving up or down the hill is likely to be slower
than driving on the flat table.

To determine if any translation involves the hill, it’s coordinates are checked.
If the hill is involved, the translation is reformulated as a regular translation
to (of from) the bottom of the hill followed by a hill penalty. The time spent

50 CHAPTER 3. METHODOLOGY

on the regular part of the translation is calculated by Equation 3.2, and the
hill penalty is added to this time. The hill penalty is the time the robot uses
to align itself with the hill, and then drive up or down from it. If either up
or down goes faster than the other, the hill penalty will simply represent the
average of the two. This works, because the robot always has to drive down
once it has gone up the hill.

A special case involved translations from one side of the hill to the other,
which had to be penalized by adding two hill penalties, as well as the time
taken to drive from one side of the table to the other.

3.2.2 Picking up and delivering objects

Calculating the time taken to pick up and deliver objects, is based on param-
eters defining the time taken to pick up each type of object and for making
a delivery of all objects. These parameters can be measured as soon as the
picking- and delivery systems of the robot are ready. In addition, capacities
were defined, that represent the number of each type of object the robot can
carry. Once such a capacity is exceeded additional pickups in the plan have
no effect until the robot has made a delivery.

3.2.3 Fitness evaluation

The fitness can be represented as the total weight delivered in the 90 seconds
of the eurobot match. However, it was found that scaling the fitness helped
steer the GA towards better solutions. The formula for calculating the fitness
of a solution in the static GA was:

fitness(i) =
n∑
k=1

wk∗(fed)k
+(fef∗trem)+(fco∗objs)+(fprox∗(400−goalDist))

(3.3)

The first part of the equation calculates a weighted sum of all n delivered
objects. fed is the early delivery factor, set to a number between 0 and 1.
This ensures that objects delivered early in the match are weighted more
than late deliveries. This is done because unforeseen events may stop the
robot from executing the final parts of its plan.

3.3. SOLUTION DIVERSITY 51

The second part of the fitness calculation is a reward for finishing early. fef
is the early finish factor, and trem is the time remaining until the round is
done after the last delivery of the robot. The reason why it makes sense to
reward the robot for finishing early, is that giving the GA a preference for
such solutions, may allow it to keep promising solutions that in the future
will be able to complete another round of gathering and delivering objects.
It is important, however, not to assign a too high value to fef , as this will
encourage the robot to be “lazy”, delivering once early in the round and then
never again.

The third part of the equation gives a bonus for picking up objects that
the robot does not have time to deliver before the match is over. fco is the
carrying objects factor, and objs is the number of objects the robot is carrying
when the match ends. This behavior is rewarded, because it may steer the
GA towards solutions where more pickups are made after the final delivery,
and these pickups may prove useful later in the evolutionary process, if the
GA is able to find a plan where these objects are actually delivered.

The last part of the fitness calculation gives a bonus for finishing close to the
delivery area. fprox is the goal proximity factor, and goalDist is the robot’s
distance from the delivery area at the end of the match. This is also used to
steer the evolution towards promising solutions. Solutions finishing close to
the delivery area are preferable, because they have a good chance of adding
another delivery to the robot’s plan.

All the different factors can be specified before running the GA, and can
therefore be experimented with to see what combination yields the best re-
sults. Notice how these factors together give rewards to tours that show
promising trends, in other words tours that do not necessarily perform very
well, but may become very good if some modifications are made. This way
of steering the evolution towards promising solutions by modifying fitness
values has certain similarities with the adaptive penalty function presented
in [26], which was discussed in Section 2.4.5.

3.3 Solution Diversity

As discussed in Section 2.2.3, avoiding a too high degree of convergence in the
GA is essential in changing environments. Maintaining a diverse population
of individuals is therefore very important before and during the dynamic

52 CHAPTER 3. METHODOLOGY

planning.

3.3.1 Generating diverse elites

When starting the dynamic planner in a Eurobot match, the initial plans
will be the same as the best plans obtained during pre-match static runs of
the algorithm. These best plans are very likely to be the same as the elites
discovered during the evolution, unless, of course, some better solutions are
found in the very last generation. Nonetheless, several elites are certain to
make it to the pool of initial plans.

For this reason, it would be a good property of the elite population to show a
fair level of diversity, so the dynamic planning is not seeded with too similar
solutions. Starting the playing round with diverse solutions, can be thought
of as having “backup plans”, that can quickly take over if problems arise in
following the originally best plan.

Section 2.2.3 presented many different ways of ensuring diverse populations,
many of which had the problem that they were computationally expensive,
and that one somehow has to decide what it means for two solutions to be
“different enough”. For the Eurobot-task, with its various types of playing
elements, this last part becomes particularly challenging, as there are so many
options: Diversity measures would range from very coarse-grained measures,
where the overall strategy is considered (for instance, strategies that first
visit the hill to pick oranges, then pick corns and tomatoes on the way to the
delivery area can be said to be quite similar) to more fine-grained ones, like
counting the number of identical edges in the paths followed.

When deciding what level to compare solutions at, the computational expense
of comparisons and the amount of diversity needed to handle the changes that
are likely to occur were considered. The changes occurring in the match will
most likely be the opponent removing, or blocking the path to, many of
the elements of the original plan. Therefore, the diversity should be on an
element level – meaning that the overall strategy of all initial plans could be
the same. One way to measure diversity on this level, would be to compare
the number of identical playing elements or path edges in between plans. A
less computationally expensive method, however, is simply comparing the
fitness of plans. If they do not have the same fitness, they cannot contain
the same playing elements in the same order, and this ensures that backup
plans exist.

3.3. SOLUTION DIVERSITY 53

The good thing about this method is that it is computationally inexpensive
and straightforward to implement, as no interpretation of genotypes or phe-
notypes is required. The disadvantage is that the diversity obtained can be
very limited. Two paths with different fitness values can actually contain the
exact same playing elements, only visited in a slightly different order (due
to the fitness scaling parameters discussed in Section 3.2.3). For this task,
however, that is not a big problem, as confirmed by some initial experiments
described in the next section. Still, a technique similar to the random im-
migrants approach is used to give a boost in diversity at the beginning of
dynamic planning.

3.3.2 Initial results

Early in the development of the dynamic GA, it was considered if a more
powerful (and resource demanding) technique for diversifying the population
was needed, than simply diversifying based on fitness values. To determine
this, some informal experiments were run on the static planner, to get an
understanding of just how diverse the best results it created were. The
only constraint ensuring the diversity of the solutions was the fitness-based
constraint discussed above. The results showed a surprisingly high degree of
diversity, indicating that a more sophisticated way of avoiding convergence
will not be needed.

The experiments on the planner consisted in running it on all 36 game setups
and studying how similar the four best solutions to each setup looked. Figure
3.5 shows a typical example of how four such solutions may look. These four
solutions clearly share the same overall strategy: Two deliveries, and a single
hill visit. However, the actual points visited, and the order in which they
are visited varies quite a lot, indicating that the plans contain the diversity
necessary to deal with changes caused by the actions of the opposing robot.

Explaining the diversity

At first, the great solution diversity obtained only by demanding that no
two solutions share the exact same fitness may seem surprising. A further
analysis of how the genetic algorithm works, however, gives a certain insight
into how this happens. And interestingly, the local optimization, which one
would assume contributes to a large degree of convergence is also important

54 CHAPTER 3. METHODOLOGY

Figure 3.5: Diversity of solutions to the same problem

3.3. SOLUTION DIVERSITY 55

in diversifying the population.

As discussed above, a problem with the simple fitness-based diversity measure
can be that it generates almost identical paths, perhaps only ordering the
elements visited slightly differently. This will give non-identical fitness values,
because of the fitness scaling discussed in Section 3.2.3. This is where the
local search turns out to be very useful: If two solutions are almost identical,
the local search will make them identical (to the local optimum in their
neighborhood), meaning that one of them does not get to be part of the
population. Notice how this resembles the crowding technique discussed in
Section 2.2.3, where new solutions that are too similar to old ones, simply
replace them in the population.

In addition, the genotypic representation selected helps in generating diver-
sity. Because the last genes of the genotype do not affect the individual’s
fitness in any way (they are not part of the 90 second match), many differ-
ent, randomly created, permutations will typically exist for these genes. This
enables the edge recombination crossover to keep trying out new edges when
generating new children, instead of converging towards a fixed set.

3.3.3 Diversity boost

During the entire dynamic planning period, solution diversity needs to be
high. After the static plan optimization, a certain degree of convergence will
happen, regardless of the care taken to diversify elites. Therefore, not all
the best individuals obtained from static planning are used as seeds for the
dynamic planner, but rather, the n best are selected, and the rest of the
population for the dynamic planner are randomly initialized individuals.

This technique resembles the random immigrants approach to GAs, where
random individuals are inserted in each generation to avoid convergence.
Due to the short duration of dynamic planning, adding random individuals
each generation will not be necessary, as the diversity created in the match
initialization is likely to last for some generations, and because the method
for creating diverse elites based on fitness values will still be active during
the match.

56 CHAPTER 3. METHODOLOGY

3.4 Heuristic plan modification

It takes the GA some time to adjust its plan. How much time depends on
how far into the match we are (the shorter the time horizon for planning, the
shorter the time to finish a generation of the GA), but a generation takes
from about half a second to about fifteen seconds to finish. Therefore, the
planning system needs the ability to make good and fast adjustments to the
current plan without completing a generation of the GA. Because at any
time the changes made to the table are likely to be quite small, a local search
around the current solution may be sufficient in the short term whenever a
playing object is added, moved or removed from the table. A solution close
to the global optimum will later be generated by the GA when it has been
given sufficient time to deliberate.

3.4.1 The implemented heuristic

A simple heuristic, proposed by [28] for solving the dynamic TSP, was chosen
for implementation. Alternative heuristics were the 2-opt and 3-opt local
search techniques, which were used for solving the dynamic TSP in [17], or
even performing the entire local search presented in Section 3.1.4 whenever
changes are made. The choice fell on the simpler heuristic because it has
a short execution time, which is important because it serves as the robot’s
immediate response to changes. Its runtime is constant for objects removed
from the table, and O(n) for inserted and moved objects (where n is the
number of nodes in the robot’s plan). 2-opt and the large local search, on
the other hand have a complexity of O(n2), while 3-opt is of complexity
O(n3). Another reason for not using these more time consuming searches, is
that the large local search (and, hence, 2-opt) is already part of the GA, so
the result of this search will be compared with that of the quick heuristic as
soon as a GA generation is finished.

The implemented heuristic was presented in Section 2.4.7, but as it was in-
tended for a TSP, some changes had to be made to adjust it to the problem
faced in the Eurobot competition. The heuristic has three parts correspond-
ing to three typical events resulting from interference by the opposing robot.
The three parts are described below.

Insert: This happens whenever the opposing robot has removed an object
from the table, which it then re-inserts into the match, for instance by

3.5. CHANGING THE PHENOTYPE 57

dropping it, or when we think the opponent has removed an object (due
to our limited field of vision), but it turns out to still be there. Unlike
the TSP, the Eurobot problem has no demand of visiting all nodes, so
it must be determined if the object should actually be picked, and if
so, when to pick it. This is done by finding the object in the robot’s
plan closest to the inserted object, and then inserting the new object
before or after this closest point in the plan, whichever yields the best
fitness. Thereafter, the object is inserted outside the objects reached
in the 90 seconds, to see if not picking it yields a higher fitness than
actually picking it (for instance because picking it makes the robot miss
its final delivery). The three cases considered are illustrated in Figure
3.6.

Delete: The delete action is performed when we think an object has been
removed from the playing area. This action simply removes the object
from the current plan, and connects its neighboring objects. If the
object is not part of the plan, it is removed from the objects outside
the plan, so it is not considered for insertion into the plan any more.
The two cases are illustrated in Figure 3.7

Move: This happens when an object is moved from one spot on the playing
area to another, for instance because the opponent (or our own robot)
pushes it. When this happens, the delete heuristic is first called, and
then the insert heuristic is called. This means that the only difference
between removing and inserting an object, and simply moving it, is the
time elapsed between the delete and the insert. This makes sense, as it
will not always be known if the opponent picks up an object, or simply
pushes it out of the way, because the robot’s cameras may be pointed
in the opposite direction.

As demonstrated in Section 2.4.7, this heuristic is likely to generate good
tours, but can also sometimes generate sub-optimal tours. This problem
is alleviated by letting the GA replace the heuristic solution as soon as it
generates one that is better in the current environmental setting.

3.5 Changing the Phenotype

When moving from static to dynamic planning, an issue with the phenotypic
representation of solutions became apparent. Earlier, the phenotype and

58 CHAPTER 3. METHODOLOGY

(a) New point discovered (b) Insert before A

(c) Insert after A (d) Insert outside of plan

Figure 3.6: Inserting point C in existing plan

3.5. CHANGING THE PHENOTYPE 59

(a) Deleting a point outside of the plan

(b) Deleting a point in the plan

Figure 3.7: Deleting point C from existing plan

60 CHAPTER 3. METHODOLOGY

(a) Phenotype before change to point 2 (b) Phenotype after change to point 2

Figure 3.8: Phenotypes for two identical genotypes

the genotype were exactly the same: A permutation of integers representing
the order of visiting all points on the playing table. This is fine for static
planning, as the integers always map to the same point on the table. In the
dynamic planning scenario, however, playing objects may be moved around
on the table, meaning that one integer in the genotype can correspond to
different points on the table, as the match progresses.

To handle this changing mapping between genotypic indexes and table points,
it was decided to change the phenotype into a permutation of point objects,
and store the current position of each point object in a separate class. This
had the effect of simplifying the match simulation, as it could work directly
on points, with coordinates and associated playing objects, at the cost of
making the genotype - phenotype mapping a bit more complex.

To see why this mapping is useful for dealing with changes to the playing
table, and especially small changes, like the ones likely to occur when a robot
“bumps into” an object, consider Figure 3.8. Figure 3.8a shows the initial
situation: The genotype of this plan, is [1, 2, 3, 4], and the phenotype is the
visiting order of the points shown in the figure. In Figure 3.8b, a small change
has been made to the table setup: Point 2 has moved to the right. Now, when
developing the same genotype as before, the phenotype becomes the order of
points shown in the figure, because the genotype - phenotype mapping takes
this new table setup into consideration. This way, small changes are dealt
with without even changing the genotype. When bigger changes occur, they
are handled either by the fast-response heuristic, or by the GA itself, both
making appropriate changes to the genotype.

3.6. THE OPPOSING ROBOT 61

3.5.1 What about the genotype?

When considering this new phenotype representation, a new question arises:
What should happen when points are removed from or added to the table
setup? Two options are available: Handling these changes in the genotype,
or handling them in the genotype - phenotype mapping. In the first case, the
genotype would contain the same number of points as the phenotype, and
integers would be added to or removed from the genotype as points are added
to or removed from the table. In the second case, the genotype size always
remains the same, but the phenotype size changes as points are removed or
added: When, for instance, a point is removed from the table, this is simply
not added to the phenotype when its corresponding integer is met in the
genotype.

The choice fell on the first option, changing the genotype, for the sake of
performance. The number of elements in the genotype greatly affects the
runtime of the GA, due to the large local search around the current genotype,
and as several points are likely to disappear from the table during the match,
being able to remove these from the genotype makes the GA a lot faster
towards the end of a match.

3.6 The Opposing Robot

Another new factor that needs to be dealt with when working on dynamic
planning, is that of an opponent that moves around and makes changes to
the playing table. The actions of the opponent has four main implications
that will affect the strategy choices of our robot.

1. Objects can disappear from the playing table.

2. Objects can re-appear on the playing table.

3. Objects can move from one spot to another.

4. The opponent can block our path.

The first three groups of table changes are handled by the new genotype -
phenotype mapping, the fast-response heuristic and the actual GA, by giving

62 CHAPTER 3. METHODOLOGY

fitness values based on simulations updated with the current table setup.
The last type of event is very important because colliding with the opponent
gives penalty point subtraction in the Eurobot competition, and may even
lead to disqualification. Therefore, enemy avoidance works on two levels in
the planning system: Firstly, plans operating in a safe distance from the
enemy are preferred over those that do not, and secondly, if the two robots
should get too close to each other, anti-collision and avoidance is activated,
overriding the plan made by the GA.

3.6.1 Long-term avoidance

Long-term avoidance is concerned with generating plans that are not likely
to operate in the vicinity of the opponent. As the GA already does the main
part of planning, it was decided to also leave this task to the GA. To make
the GA able to make plans where enemy avoidance is considered, the game
simulator had to be extended with information on the enemy’s position, and
how the enemy’s presence is likely to affect the fitness of a solution. This
section describes how this was implemented.

Avoidance while driving

When driving between two points on the playing table, the expected time
taken to drive between these points is greatly affected by the enemy’s posi-
tion. In the worst case, if the enemy is blocking the path between the two
points, our robot may have to stop, and perhaps turn around, to avoid a
collision. How time consuming such an action will be, is of course dependent
on the physical properties of our robot and on how the opponent reacts to
our presence. The physical properties of our own robot will be known before
the competition, but the actions of the opponent will never be known, so
it will not be possible to calculate the time spent on an enemy encounter
with a 100% accuracy. Miscalculation of this will lead to a shorter or longer
time remaining than estimated, but the dynamic planning system will hope-
fully be able to quickly generate close to optimal plans with the new time
constraints.

It was decided to estimate the time spent on driving between two points as a
function of the shortest distance from the enemy and the number of seconds
between the last enemy observation and the beginning of the translation.

3.6. THE OPPOSING ROBOT 63

The function for calculating the driving time begins with the original driving
time as calculated by Equation 3.2, and adds a penalty for being close to the
enemy in the near future:

Penalty = (DrivingDistLimit−MinEnemyDist)∗fedp−fepd∗(ttrans−tobs)
(3.4)

The penalty can be positive or negative, but if it turns out to be negative, it is
discarded; the fastest traversal of a distance occurs when not considering the
enemy. The DrivingDistLimit is an adjustable parameter that specifies how
close the enemy can be without changing the expected driving time at all.
MinEnemyDist is the actual closest distance to the enemy’s last observed
position during the translation considered. If this distance is bigger than the
DrivingDistLimit, the first part of the equation will be negative, and as
the second part of the equation is always negative, no penalty is incurred.
fedp is the enemy driving penalty factor – in other words a factor scaling
the penalty given for driving close to the enemy. In summary, this first
part of the equation gives a penalty for a translation inversely proportionate
to the smallest distance to the enemy’s last observed position during the
translation, as long as this distance is lower than a certain threshold – if not,
no penalty is given. Figure 3.9 shows the variables DrivingDistLimit and
MinEnemyDist for a translation from A to B close to the enemy.

The second half of the equation decreases the penalty of an enemy encounter
based on how far into the future the translation is estimated to happen.
ttrans is the starting time of the considered translation, tobs is the time of the
last enemy observation (this is mostly within a second of the current match
time), and fepd, the enemy penalty decrease factor, is a factor scaling the
penalty reduction. The logic behind decreasing the penalty of future enemy
encounters, is simply that the enemy is likely to move around, so encounters
far into the future should not be penalized a lot. A separate parameter,
enemyLookAheadSeconds, sets an upper bound for how far into the future
translations should be penalized – so when working with translations very
far into the future, the enemy is not considered at all.

Avoidance while picking

Since picking objects close to the enemy entails a high degree of uncertainty
and danger, an additional penalty is added for making such pickups. This

64 CHAPTER 3. METHODOLOGY

Figure 3.9: Variables involved in penalty calculation when driving close to
the enemy

uncertainty has several reasons: The enemy may pick the object before us,
he may block access to the object, or he may push it away from its current
location. All these factors add to the time estimated to pick the object
up, and they cannot be considered as part of the driving penalty, as that
penalty can be thought of as the penalty for choosing an alternate route to
the object, and is not really concerned with what happens once the object
has been reached.

The equation for this penalty is

Penalty = (PickingDistLimit− PickingDist) ∗ fepp − fepd ∗ (tpickup − tobs)
(3.5)

This equation is the same as Equation 3.4, but with different factors for
scaling the penalty, so the pickup penalty can be scaled independently of
the driving penalty. PickingDistLimit is equivalent to DrivingDistLimit,
but can be set to a different value, if for instance a larger safety distance is
required for picking than for driving. PickingDist is the enemy’s distance
from the pickup position. fepp is the enemy pickup penalty factor, which
scales the penalty - distance relationship for picking.

3.7. STABILITY 65

The second part of the equation is the same as above, except the time of
translation has been exchanged with the time of the pickup. This part,
concerning time, uses the same time limit (enemyLookAheadSeconds) and
scaling factor (fepd) as the previous equation, because the expected change
in the enemy’s position over time will be the same in both cases.

For a single translation followed by a pickup, both penalties are calculated
and added to the expected elapsed time. This means that translations in the
close future that pass by an enemy that is also blocking the access to the
playing element, will be penalized the hardest. This makes sense, as plans
including such translations are very risky.

3.7 Stability

A good planning algorithm needs to find a balance between being able to
adapt to changes and being stable – in other words, not changing its mind
too often. Too rapid redecisions may occur in this case, because the plans
made are so highly optimized, that a small discrepancy between the estimated
time to perform a task and the actual time taken during the match may cause
the final delivery to happen after the 90 second limit. In this case, no points
are given for the last picked elements, and the robot has to make a new
plan including fewer elements, discarding the old one. Making new plans is
a good thing if circumstances demand changes, but if it happens too often,
the resulting plans may be poor, because the GA is given too little time to
optimize the active plan.

3.7.1 Penalizing late deliveries

This technique aims to make the difference in fitness value smaller for plans
making the last delivery and plans not making it. Figure 3.10 shows the idea:
The relationship between phenotypes and fitness values has a sudden steep
decrease for phenotypes not being able to make their final delivery within the
90 seconds. This is clearly realistic, as plans not delivering within 90 seconds
will not score points for the objects remaining within the robot at the end
of the match. However, there are a couple of reasons why a less realistic
but smoother phenotype-fitness mapping, like the one shown in Figure 3.10b
may be preferable.

66 CHAPTER 3. METHODOLOGY

(a) Fitness values without penalties (b) Fitness values with penalties

Figure 3.10: Smoothing the fitness landscape

Firstly, GAs in general perform better on smooth fitness landscapes, as they
are easier to search through. Sudden peaks will make it hard to search,
because similar solutions can have very different fitness values, making at-
tempts to reach optima in the landscape through local improvements difficult.
Secondly, smoothing the fitness landscape in this problem has the effect of
decreasing the utility of making over-optimized tours, delivering at the very
last moment. An experiment in the author’s final year project, showed that
most solutions generated by the static planner were of this kind, making
final deliveries between the 89th and 90th second. As the match simula-
tor is not 100 % accurate, and as unforeseen events may occur during the
match, these types of over-optimizations are likely to lead to tours that will
be discarded during the match. While it is good to discard infeasible tours,
over-optimization will lead to tours being discarded way too often, meaning
more resources will be spent on making new tours, than on further optimizing
the current solution.

Alternatively, when giving the GA a reason to finish its deliveries earlier,
as in Figure 3.10b, some degree of inaccuracies in the simulator, and some
unforeseen events may be dealt with without discarding the current plan,
thereby giving the GA more time to further optimize this plan.

The way this penalty was implemented, was by subtracting a given value
from the fitness of solutions making their last delivery after 85 seconds. The
value subtracted is inversely proportionate to the remaining time before the

3.8. CONTINGENCY PLANNING 67

full 90 seconds are exceeded. The penalty is calculated as:

Penalty = (tdelivery − 85.0) ∗ fldp (3.6)

tdelivery is the time of the final delivery, so the first part of the equation will
range from 0 to 5 (deliveries made after the 90 seconds are given no points
at all). fldp is the late delivery penalty factor, which was adjusted to give
penalties for over-optimizing tours, but still letting late deliveries happen,
if the benefits of an additional pickup outweigh the risk of making a late
delivery.

Notice how this somewhat resembles the adaptive penalty function introduced
in Section 2.4.5, which also resulted in less abrupt changes in the fitness
landscape for solutions around the feasibility limit. The difference is that the
adaptive penalty function reduced the fitness of solutions that were actually
infeasible, but still looked promising, to guide the evolutionary process. The
approach taken here, instead reduces the fitness of solutions that are feasible
but unsafe, and gives no fitness to infeasible deliveries. The reason for doing
this, is that giving positive scores for solutions delivering after the 90 seconds
may make solutions risky, leading to a higher frequency of plans not making
their final delivery.

3.8 Contingency Planning

Because all playing elements in this year’s Eurobot competition are common
to both competing robots, there is a high probability that the opposing robot
may pick up or block access to elements that are in our plan. When this
happens, the heuristic discussed in Section 3.4 will make a quick modification
to the plan, discarding the missing object. However, the new plan is not likely
to be optimal. Therefore, being able to quickly generate a new, close to
optimal solution through the GA in such cases will be beneficial. Preferably,
the solution would be ready even before the opponent picks or blocks the
object, and enabling this to happen, is the goal of contingency planning.

Planning for contingencies has been extensively researched in classical AI
systems. [7] argues that for robots controlling dynamic and unpredictable
processes, reactivity is an important ability. Reactivity in this context means
“the ability to act appropriately in a broad range of situations without delib-
eration” [7]. The author goes on to argue that such reactivity can be achieved

68 CHAPTER 3. METHODOLOGY

by planning for contingencies, but that limiting the range of expected con-
tingencies is also important, to reduce computational complexity. Therefore,
it is important to efficiently divide the processing capabilities of the robot
between reacting to events and planning for contingencies. A heuristic sug-
gested in the book, is focusing on events and actions in the near future in
the contingency planning.

Combinations of genetic algorithms and contingency planning, however, have
not been researched a lot, because GAs already generate a lot of solutions,
meaning contingency plans may already have been created. Additionally,
GAs focus on reacting to environmental changes as they occur, instead of
planning ahead for them. Even so, it was chosen to investigate a potential
combination of GAs and traditional contingency planning, for two main rea-
sons. Firstly, because the reactivity in the GA may not always be sufficient
in a Eurobot match, and secondly because some events to plan ahead for
were readily available, as there is a quite limited degree of environmental
change in this task.

The idea of performing contingency planning was born from the robot’s in-
creased processing capabilities this year. A new computer with a quad-core
processor was installed in this year’s Eurobot robot, meaning that while one
CPU core runs the regular GA, based on the playing table’s current con-
dition, another can perform contingency planning, making new plans based
on possible future events. If the future events that are planned for are care-
fully selected, “unpleasant surprises” may be handled very efficiently. The
choice of future events was based on their probability of occurring, and on
how severe their consequences would be for our strategy. Two kinds of fu-
ture events were considered, and they are discussed in the following sections.
They will both be tested, to see which type of contingency plan gives the
highest average solution fitness when competing against another robot.

Contingency planning was implemented by extending the GA to multi threaded
use, and starting two separate evolutionary threads, each working on slightly
different problems – one on the original problem, and the other on the same
problem, but missing one playing element. If the thread working on the
contingency plan in any generation provides a solution of a higher fitness
than the regular thread, their roles are switched: The contingency planner
becomes the main strategy generator and vice versa. However, the status of
an evolutionary thread is never changed within a single generation. This also
applies to the event that is planned for: It is only updated at the start of a
new generation, to make the entire generation work on the same problem.

3.8. CONTINGENCY PLANNING 69

Figure 3.11: Contingency planning based on enemy position

3.8.1 Contingency based on the opposing robot

The first kind of contingency plan, is based on identifying what object on the
table is most likely to disappear or be blocked, and make a plan without this
object. So, if this object can no longer be part of the robot’s plan, an alter-
native plan has already been made. The object considered to be most likely
to disappear is simply the object closest to the opposing robot. However,
only objects planned to visit in the relatively close future are considered, as
the enemy is likely to move around on the table. A simple limit of visiting
the hill or making a delivery was set as the horizon of contingency plan-
ning, as these processes are thought to be quite time consuming, and by the
time such a process is done, the enemy is likely to have moved. If no object
which has a planned visit in the close future is close enough to the enemy,
both evolutionary threads are used for regular planning until such an object
exists.

Figure 3.11 shows a plot of the playing table demonstrating how this works.
The plot shows the playing table from above, with our robot as a big blue
circle, and the enemy as a big red circle. The solid line shows our plan for
the entire match, picking objects and making two deliveries. The smaller
red circle indicates the object that the contingency plan would be based on
removing if a new evolutionary generation were to begin. Obviously, the
enemy is closer to another point in the plan, but as picking this object will
happen so far into the future, a contingency plan is rather made for the
object below the enemy to the right, which is also part of our plan, at an

70 CHAPTER 3. METHODOLOGY

earlier time.

3.8.2 Contingency based on planning horizon

The object that would cause the most disruptive change to our plan if re-
moved by the opponent, is the next object in our plan. If this object is
removed, having prepared a plan for such an occasion will be very valu-
able, as very short time is available for replanning our next move. However,
making a contingency plan for the next move will not always be reasonable,
due to the computing time of the GA. In particular, at the beginning of a
match, the contingency planner will often not be able to finish a generation of
planning before reaching the next object. Therefore, a contingency planner
deciding which object to plan for the removal of based on the time used on
a GA generation was implemented.

This way of planning always measures the time the evolutionary threads
used on finishing the previous generation, and uses this time together with
the match simulator as an indication of which object will be reached when
the contingency planner has finished its next generation. For instance, if the
last evolutionary thread took ten seconds to complete a generation, the first
object reached ten seconds from now will be the basis of the contingency
plan. This will be a pessimistic estimate, as the GA runs faster and faster
as the match progresses, due to playing elements being removed, and shorter
simulation time remaining. Towards the end of the match, the contingency
planner will mainly work on the next object in the robot’s plan, as GA
generations at this time take less than a second to complete.

Figure 3.12 shows this in action: Early in the match, the planning horizon
is long, and an action quite far into the future is selected for contingency
planning. Towards the end of the match, however, the object considered is
the next object to be reached.

3.9 Changes to the Simulator

Quite a few changes had to be made to the previously implemented simulator,
both to enable it to run in a dynamic environment (in other words, being
able to start in the middle of a match), and to make sure it accurately reflects
the constraints that the actual robot performs under. As the main focus of

3.9. CHANGES TO THE SIMULATOR 71

(a) Early in the match (b) Late in the match

Figure 3.12: Contingency planning based on planning horizon

this report is on the genetic algorithm itself, going into the details of all these
changes and adjustments is out of the scope of this chapter, but the most
interesting ones will be briefly discussed here.

3.9.1 Avoiding the narrow spot

As the size of the robot was being determined, the team discovered that half
of the playing table setups would have a “narrow spot”, which the robot
would be too wide to pass through. Figure 3.13 shows one such table setup.
The narrow spot is in the middle of the table, at the bottom. The distance
between the two lowest black corns and the wall is too small for the robot
to pass by. Firstly, this means that if the robot makes a plan where it is
supposed to follow the lower part of the table, it has to make a detour, going
via the upper part. Secondly, it means that the two tomatoes under these
black corns will not be pickable in their initial position.

When dealing with this problem, it was first assumed to be something to ad-
dress in the simulator. However, thanks to the new phenotype-representation,
discussed in Section 3.5, it was easier to address the issue in the genotype-
phenotype mapping. To indicate that the two lowest tomatoes were blocked
in certain table setups, the coordinates of all points in the genotype were
simply checked for these setups. If the point was right below one of the two
narrow spots, it was not inserted into the phenotype.

To penalize driving through the narrow spots, the genotype was checked
for paths crossing one or both spots, by examining positions of consecutive

72 CHAPTER 3. METHODOLOGY

Figure 3.13: Game setup with a narrow spot

genotype-items. If such a path is found, an additional viapoint is inserted
into the phenotype. So, when simulating a plan, the penalty for driving via
this point is taken into consideration. The viapoint is inserted in the row
above the two blocking corns, it’s horizontal position determined by which
tight spot is being passed: If only the left spot is passed, the viapoint is
placed right above the left narrow spot, if both are passed, the point is
placed horizontally in the middle of the table, and if only the right spot is
passed, it is placed above the right narrow spot. Figure 3.14 shows how this
works. The dotted arrows show the robot’s initial plan, driving through the
narrow spot, while the solid arrow shows how the developed phenotype will
look.

When the GA knows of the big penalty for driving along the bottom in half
the table setups, it will respond by avoiding this area altogether, if there
are enough points to be gathered in other places. Figure 3.15 shows two
examples of this behavior.

3.9. CHANGES TO THE SIMULATOR 73

Figure 3.14: Navigating around the narrow spot

Figure 3.15: Avoiding the narrow spots

74 CHAPTER 3. METHODOLOGY

3.9.2 Decreasing the genotype size

As the runtime of the local search has a complexity of O(n2), where n is
the genotype size, limiting the size of the genotype will be very important to
enable the robot to efficiently replan in a changing environment. Therefore,
all actions that need to be performed in a specific order should be eliminated
from the genotype.

As the robot design was completed, it was decided to have an orange capacity
of three, and to pick all these three oranges simultaneously with a “fork”
designed specifically for this purpose. Due to the positions of the oranges,
this design also meant that only three specific oranges could be reached on
each side of the hill, so once these three are picked, that side can be considered
as “empty”.

What this meant for the GA was that all oranges but one on each side of
the hill could be removed from the genotype, as the order of picking them is
insignificant. This allowed the genotype to decrease from 40 elements to 30,
yielding significantly faster local searches.

3.9.3 Dynamic simulations

When running the GA in a Eurobot match, it is clearly beneficial to only
simulate the rest of the match, instead of simulating from the beginning every
time. Simulating from the beginning will both yield less accurate estimates of
the current state than those received from the robot’s sensors, and it will be
more time consuming. Therefore, the simulator was extended to being able
to start from any given point in the match, and simulating the rest. Due to
the fact that more than one evolutionary thread will be using the simulator, a
separate class, CurrentState, was created for keeping the states of the match
and the robot, and data from this class are loaded into the simulator every
time it is run. The CurrentState class will be getting its data from the
various sensors of the robot during a Eurobot match. For simulated runs on
the computer, its data are generated from the simulated results of executing
the robot’s plan. This state is also used for dynamic plotting of the robot’s
position and the playing table’s configuration throughout the match when
simulating matches, as discussed in the next section.

3.10. REAL-TIME MATCH PLOTTING 75

3.10 Real-Time Match Plotting

One of the requirements stated in the project goal was being able to show
a real-time match simulation, complete with playing objects, robots and the
current plan. This was important, to enable testing of the planning system
without the actual robot.

As a simulator had already been implemented as part of the fitness calcula-
tion, it was decided to use data from this simulator when plotting the state
of a match. This way, what is plotted is a match going exactly as the fit-
ness evaluator expects it to, which is of course not very realistic. For this
reason, two ways of making the match less predictable were implemented: A
simulated enemy, and random errors to time estimates.

The simulated enemy is an enemy robot with the same specifications (speed,
capacity and so on) as our own, which runs a plan produced by the static
GA. This simulated enemy will interfere with our plan, as it picks up objects
and gets in our way. Whenever it interferes with our plan, the state of the
game will be different than what the fitness evaluator earlier anticipated,
so changes may have to be made to the active plan. Screen shots from a
complete match against a simulated enemy are presented in Appendix A,
and discussed in Section 4.3.1.

Random errors to time estimates were simulated by adding a uniformly dis-
tributed error within user-defined bounds (for instance, between -3 and +3
seconds) to every translation of a match. The error is only added when cal-
culating the state of the robot during the match, and not during the actual
fitness evaluation. This way, the match reaches a state that the fitness eval-
uator didn’t expect, forcing it to consider altering its plan. Experiments on
adding random errors to time estimates are presented in Section 4.3.3.

3.11 The Other Robot Modules

This section briefly describes the other modules of the robot, and how the
strategy module interacts with them. This intends to let the reader get a
better idea of where this work fits in to the 2010 Eurobot project at NTNU.
Figure 3.16 shows all the other robot modules that the strategy system needs
to interact with. These interactions are briefly explained below.

76 CHAPTER 3. METHODOLOGY

Figure 3.16: The robot modules

3.11.1 The driving system

The driving system regulates the speed of the robot’s engines to ensure it
gets to all the points it needs to visit. It is also responsible for aggregating
positioning estimates from both our own and the opponent’s robot. These
estimates are sent to the strategy system, as they are important for deter-
mining an optimal strategy for the rest of the match.

Communication with the driving system happens by sending waypoints that
the robot needs to visit, and stop commands if the robot needs to stop im-
mediately at its current position. As the strategy system only determines
what points to visit, and not how to get there, an additional waypoint gen-
erator was implemented, that translates the robot’s strategy into a series of
waypoints that allows the robot to safely navigate around the table without
colliding with walls or obstacles. As the main focus of this master’s thesis
is the strategy system, the waypoint system was kept quite simple, using ge-
ometrical equations for calculating safe ways to get around fake corns, pick
up objects and so on.

Figure 3.17 shows an example of how this works. Following a straight line
takes the robot dangerously close to fake corns, but the waypoints (the num-
bered circles) ensure that the robot avoids collisions. When the driving sys-
tem gets close enough to a waypoint, it sends a “waypoint reached” message
back to the strategy system.

In addition to sending waypoints to the driving system, sometimes the strat-

3.11. THE OTHER ROBOT MODULES 77

Figure 3.17: Translating the strategy into waypoints

egy system needs to send a stop command. This may happen for two reasons:
Firstly, after 90 seconds, the robot needs to stop driving, or it will receive
a penalty in the Eurobot competition. Secondly, if the opponent is a short
distance ahead of the robot, it needs to stop to prevent a collision, or it may
face penalty points or even disqualification from the competition. Collision
detection is done by checking if the opponent’s current position is close to
the path we are planning to take in the immediate future. If it is, a stop
message is sent to the driving system.

3.11.2 The human interface

The human interface of the robot is a box placed on top of it with a few
buttons and a starting cord. The buttons are used for telling the robot what
side of the table it is starting at. This information is received by the strategy
system before the match begins, and is of course important for determining
where the robot is starting and, hence, how it will navigate around on the
table.

A starting cord is a requirement in the Eurobot competition. When this cord
is pulled, a message is sent to the strategy system, which causes it to start
its main loop, and also to send initialization messages to all other systems.

78 CHAPTER 3. METHODOLOGY

3.11.3 Computer vision

The computer vision is responsible for updating the robot’s view of the play-
ing elements at all times, and for finding the initial configuration of the
black corns. Both pieces of information are essential for determining a good
strategy for the rest of the match.

As soon as the start cord of the robot is pulled, a request is sent to the
computer vision system to receive the initial corn configuration. When the
answer is received, the stored plan for this configuration is loaded, and way-
points for the first few steps are generated and sent to the driving system.

During the entire match, updated information about what playing elements
are present on the table, and where they are is sent from the computer vision
system to the strategy system. Whenever a significant change is made, the
internal game state in the strategy system is updated, and the heuristics
discussed in Section 3.4 are applied to the new state. Also, the always-
running GA uses this new state for all fitness calculations.

3.11.4 The picking- and delivery system

Whenever an object is to be picked, or whenever a delivery should be made,
the picking- and delivery system needs to be informed. The way this happens,
is that when the next waypoint is either a pickup- or delivery point, and a
waypoint reached message is received from the driving system, the strategy
system immediately sends the appropriate pickup or delivery message to the
picking- and delivery system. For pickups, this message depends on the
object present at the pickup location, whereas for deliveries the message will
depend on what elements the robot is currently carrying, to avoid wasting
time on performing unnecessary delivery actions.

In addition, initialization- and stop-messages are sent to this system, the lat-
ter important because robots with actuators moving after 90 seconds cannot
be qualified for the Eurobot-competition.

Acknowledgements of finished pickups or deliveries are sent back from this
system, to allow the strategy system to continue performing its plan.

Chapter 4
Results and Discussion

4.1 Results From the Static GA

The static GA that the work in this report is based on was thoroughly tested
as part of the author’s specialization project, to see if it could solve the task
faced in the Eurobot competition to a satisfying degree. The results from
these tests are summarized here.

The first experiment aimed to find out whether the GA was able to generate
good plans for all the 36 possible table setups in the competition. The
algorithm was therefore run with the parameters in Tables 4.1 and 4.2 on
all 36 setups, generating plots of its plans. The results were good – all the
plans looked reasonable, with few crossing lines, and focus on picking objects
giving many points and taking little time to pick. For a few of the setups,
however, manual inspection showed that at least slightly more optimal plans
existed. Furthermore, it was found that plans found for one table setup,
could also be very efficient on other setups, as some of them are quite similar.
These observations led to the second experiment: GA runs based on a seeded
population.

Whereas all plans generated in the first experiment had started from ran-
domly generated plans, the second experiment aimed to see if even better
plans could be generated when initiating all searches with some random in-
dividuals, and some seeded individuals, representing the best solutions gener-
ated in the first experiment. The results were good: The GA was able to find

79

80 CHAPTER 4. RESULTS AND DISCUSSION

Table 4.1: The GA parameters
Generations 25
Population size 16
Selection protocol Generational mixing
Initial Boltzmann temperature 10◦
Boltzmann-decrease per generation 0.36◦
Number of elites 3
Tournament contestants 4
Tournament factor 0.1
Crossover probability 0.5
Mutation probability 0
Large local search probability 0.4
Extra local searches 5
Max number of deliveries 3

Table 4.2: The simulator parameters
Early delivery factor (fed) 0.99
Early finish factor (fef) 0.01
Carrying objects factor (fco) 0.1
Goal proximity factor (fgp) 1

4000
Obstacle radius (robot radius + corn radius) 15 cm
Translation speed (Vt) 15 cm/sec
Rotation speed (Vr) 120◦/sec
Acceleration and breaking penalty (Pa) 1.5 sec
Obstacle penalty 1 sec
Hill penalty 5 sec
Ball (oranges + tomatoes) capacity 4
Corn capacity 4
Can pick oranges True
Can pick tomatoes True
Can pick corns True
Orange weight 0.3
Tomato weight 0.15
Corn weight 0.25
Orange penalty 1 sec
Tomato penalty 0.5 sec
Corn penalty 0.5 sec
Delivery time 2 sec

4.2. EXPERIMENTS ON THE DYNAMIC GA 81

better solutions than in the first experiment in eight of the 36 configurations,
and none of the configurations resulted in worse plans than before. Further
studies on the cases where the GA was not able to improve previous solutions
proved that this was often due to solutions being so highly optimized that
no improvement was possible. Many solutions made their final delivery be-
tween the 89th and the 90th second of the match. It was suggested that such
plans may be unsafe, and that work on dynamic replanning should attempt
to alleviate this problem. Work on this issue was discussed in Section 3.7.

The final experiment performed on the static GA sought to find out how
important the local optimization was to the success of the GA. To test this,
the hybridized GA was tested against a GA using regular mutation, that
evaluated the same amount of individuals per generation as the local search
did. A comparison of the two gave an indication as to how intelligently the
local optimizer searches for solutions. It was found that on average, the
hybridized GA tested 3850 individuals per generation. Therefore, the non-
hybridized GA was run with a population of 3850. This made it perform
very slowly, due to the task of performing selection and mating on this huge
population. The average results from running both algorithms 50 times are
given in Figure 4.1. They show that the hybridized GA is much better both at
finding and improving solutions to the Eurobot task than the non-hybridized
version, indicating that the task’s complexity is simply too large to leave it
up to a standard GA.

4.2 Experiments on the Dynamic GA

The experiments on the dynamic GA focused on investigating how well it
would do in an actual Eurobot-match. This included both testing its respon-
siveness and its behavior in changing and unpredictable environments. The
parameters used in these experiments are listed in tables 4.3 and 4.4. How
these parameters are used in the GA and the match simulator is explained
throughout Chapter 3.

All experiments were run on the author’s private laptop, except for a timing
experiment that was also run on the robot computer intended for use in the
Eurobot competition. Hardware specifications for the computers are given
below.

82 CHAPTER 4. RESULTS AND DISCUSSION

(a) With local optimization

(b) Without local optimization

Figure 4.1: Fitness plots for the GA run with and without local optimization

4.2. EXPERIMENTS ON THE DYNAMIC GA 83

The computer on the robot has the following specifications:

• Intel Mini-ITX Socket LGA775 board (Intel DG45FC)

• Intel CoreTM2 Quad Q9550s (4 cores @ 2.83 GHz, 12 MB L2 Cache)

• 4 GB RAM DDR2 (2 x 2 GB)

The author’s laptop (an Acer Aspire 6935G) has the following specifications:

• Intel CoreTM2 Duo P7450 (2 cores @ 2.13 GHz, 3 MB L2 Cache)

• 4 GB RAM DDR3

Table 4.3: The dynamic GA parameters
Population size 16
Selection protocol Generational mixing
Initial Boltzmann temperature 10◦
Boltzmann-decrease per generation 0.4◦
Number of elites 4
Tournament contestants 4
Tournament factor 0.1
Crossover probability 0.5
Mutation probability 0
Large local search probability 0.4
Max number of deliveries 3
Number of evolutionary threads 2

4.2.1 Plotting a full simulated match

This experiment consists in running a single simulated match against an
opponent that is executing a plan generated by the static GA, and plotting
the game state with five second time intervals. As this is a single match, and
a GA is a stochastic process, this experiment is not meant for drawing any
general conclusions about the performance of the dynamic algorithm, but
rather on highlighting some of the issues discussed in Chapter 3, by showing
how they come into play in a Eurobot match. The rest of the experiments
will focus on more comprehensive tests generating statistically valid results.

84 CHAPTER 4. RESULTS AND DISCUSSION

Table 4.4: The dynamic simulator parameters
Early delivery factor (fed) 0.999
Early finish factor (fef) 0.01
Carrying objects factor (fco) 0
Goal proximity factor (fgp) 0
Late delivery factor (fldp) 0.05
Obstacle radius (robot radius + corn radius) 22.5 cm
Translation speed (Vt) 25 cm/sec
Rotation speed (Vr) 180◦/sec
Acceleration and breaking penalty (Pa) 1 sec
Obstacle penalty 2 sec
Hill penalty 6 sec
Orange capacity 3
Tomato capacity 5
Corn capacity 3
Orange weight 0.3
Tomato weight 0.15
Corn weight 0.25
Orange picking time 3 sec
Tomato picking time 1 sec
Corn picking time 0 sec
Delivery time 3 sec
Safe enemy driving distance 50 cm
Safe enemy picking distance 50 cm
Enemy picking penalty factor (fepp) 0.02
Enemy driving penalty factor (fedp) 0.01
Enemy lookahead seconds 10.0
Enemy penalty decrease (per second) (fepd) 0.5

4.2. EXPERIMENTS ON THE DYNAMIC GA 85

4.2.2 Contingency planning

This experiment aims to compare the two kinds of contingency planning de-
scribed in Section 3.8 against each other and against no contingency planning
at all. To do this, 36 matches are simulated (one for each table setup) against
an enemy executing the best plan found by the static GA for that setup. Our
own robot adjusts its plan dynamically throughout the match, while the en-
emy simply keeps executing its pre-defined plan. The reason for not having
the enemy respond dynamically to environmental changes, is partly due to
the computational complexity of running two dynamic GAs on one machine,
and partly because to test contingency planning, it is not important that the
enemy performs optimally, but rather that it in various ways interferes with
our plan.

4.2.3 Simulator inaccuracies

When simulating Eurobot-matches, many simplifications are made. For in-
stance, acceleration is modeled simply as a constant penalty, and the robot’s
speed is regarded as constant. These simplifications are intentional – the
goal of the dynamic planner is to be flexible enough to handle discrepancies
between simulated matches and the reality. To test whether the dynamic
planner is flexible enough, erroneous time estimates in the fitness evalua-
tion were simulated by adding random errors to translations in the robot’s
plan during a simulated match against an opponent. However, during fitness
evaluation, these errors were not inserted, so the GA needed to continuously
adjust its plan when these errors occurred.

Only erroneous translation estimates were simulated, because the time taken
to pick up and deliver objects is likely to vary very little. The estimate
errors were simulated by adding a random error in the interval from -3 to 3
seconds to every translation. The dynamic algorithm’s capability of dealing
with these errors was compared with the performance of the static GA when
exposed to erroneous estimates, yielding the experimental setup shown in
Table 4.5

86 CHAPTER 4. RESULTS AND DISCUSSION

Table 4.5: The combinations tested
Plan type Random error
Static plan 0 sec
Static plan -3 to 3 sec
Dynamic plan 0 sec
Dynamic plan -3 to 3 sec

4.2.4 Efficiency of the GA

The project goal (see Section 1.2.2) stated that “The algorithm should be
fast enough to be able to efficiently handle rapid changes to the robot’s
playing environment”. Part of achieving this was implementing the heuristic
for rapidly responding to changes. But it is also desirable that the GA
itself performs very efficiently, so heuristically modified solutions are quickly
optimized. Therefore, experiments were made to test the runtime of a single
GA generation throughout a simulated match. This was done both on the
PC used for the main part of development and testing of the algorithm, and
on the robot’s PC which would actually be used in the competition. On each
PC, 36 simulated matches were performed, and average runtimes stored.

The reason for focusing on the time taken to complete a generation is simply
that it is a straightforward unit of measurement for a GA, and that due to the
local search embedded in the GA, each generation will typically bring a new
and quite well adapted individual. Of course, later generations will optimize
this individual further, so completing several GA generations between each
large environmental change will be preferable.

4.3 Results

4.3.1 Plotting a full simulated match

The result of taking screen shots of the game simulator every five seconds in
a match against a simulated enemy is given in Appendix A. The blue circle
shows our robot, continuously updating its plan, while the big red circle
shows the opposing robot, which runs a plan generated by the static GA
that is never updated. The little red circle shows what object the contingency
planner considers to be most likely to disappear next, based on the enemy’s

4.3. RESULTS 87

position, as discussed in Section 3.8.1. The solid black line shows our robot’s
plan for the future, as well as the part of the plan that has been completed.
The plan visits playing objects and makes two deliveries in the bottom right
corner. An additional line from the delivery area towards a far-away object
is plotted after the second delivery. This is the translation that the robot
initiates as the match is almost done, so this last action has no impact on
the fitness of a solution, and will most of the time be selected at random by
the GA. The bottom left of the plots shows how much weight the current
plan would deliver, if it was executed exactly as planned.

The first plot shows both robots starting in their separate corners and shows
our initial plan of delivering 3.75 kg. Plots up until Figure A.1i show the
opponent picking up several objects from our plan, decreasing the plan’s fit-
ness, resulting in small changes to the plan, by use of the “delete”-heuristic
presented in Section 3.4.1. The plots also show the little red circle repre-
senting the focus of our contingency plan moving around as the opponent
moves.

After about 45 seconds, a major plan modification happens, as the GA finds
a better solution than the one generated by the heuristic. This increases the
expected weight delivered after carrying out the entire plan from 2.8 to 3.05
kg. Later in the match, in Figure A.1l, the enemy is once again about to
interfere with our plan. This late in the match, the runtime of the GA is
only a few seconds, so the plan is quickly adapted as the enemy approaches.
This enables the robot to pick another plan, delivering the same weight, as
seen in Figure A.1m.

Simplifications

The match plots show some obvious simplifications in the match simulator.
These simplifications and their significance are discussed below.

Firstly, Figure A.1h shows the two robots driving through each other. Sec-
ondly, Figure A.1l shows our robot driving over a white corn without picking
it up. And, finally, Figure A.1e shows our robot driving through a black
corn. The reason why collisions were not handled more realistically in the
simulator, was simply that what is interesting to study, is how the robot’s
plan evolves as changes are made to the playing area, and not how the playing
area changes as the robot interacts with it. In other words, it is interesting to
see whether the robot makes plans avoiding the enemy and black corns, not

88 CHAPTER 4. RESULTS AND DISCUSSION

what happens if it actually collides with them. Anti-collision and obstacle-
avoidance are implemented in the waypoint generator discussed in Section
3.11.1, which is a process external to the GA, that is responsible for making
the GA-generated plan into commands sent to the robot’s driving module.

Another simplification in this simulation is that the robot has a complete
view of the playing table and all the playing objects. In a real Eurobot
match, however, the robot will only get updated information on the playing
objects in view of the robot’s cameras. What this implies will be that the
robot has shorter time to deliberate after observing the changed table state.
This problem, however, was greatly alleviated by the fact that the algorithm
runs much faster on the computer used during the competition, than the one
the system was made and tested on. Section 4.3.4 discusses the runtime of
the algorithm on the two computers further.

The plotting of oranges is also simplified. Even though the robot can only
pick three oranges, all six disappear once it has made its pickup. This was
done because there are only three specific oranges on each side that the robot
can pick, due to the way it was designed. Therefore, the GA will not be able
to gather any more points once it has visited one side of the hill, and the rest
of the oranges there can be discarded.

As mentioned, this section has mainly tried to give an insight into the typical
behavior of the GA and the game simulator during a match, and not provide
any statistical data analyzing the performance of the algorithm. Gathering
statistical data through running simulated matches with the GA on all 36
possible match setups will be the focus of the remainder of this chapter.

4.3.2 Contingency planning

This experiment tested the performance of the two types of contingency plan-
ning presented in Section 3.8 against each other and against a GA running
two evolutionary threads, but no contingency planning. Matches against a
simulated enemy, like the one presented in the previous section, were run for
all 36 possible match setups, and fitness values were gathered throughout the
match for each type of planning.

Fitness plots showing the average fitness values of the best solutions found
through 36 90-second matches for each type of planning are shown in Figure
4.2.

4.3. RESULTS 89

(a) No contingency planning

(b) Enemy-based contingency

Figure 4.2: Fitness plots for 90-second matches with different types of con-
tingency planning

90 CHAPTER 4. RESULTS AND DISCUSSION

(c) Horizon-based contingency

Figure 4.2: Fitness plots for 90-second matches with different types of con-
tingency planning (cont.)

4.3. RESULTS 91

Common features

The fitness plots clearly have more commonalities than differences. They all
begin with the same high fitness value, which then decreases steadily towards
a level of about 2.6 after 40-45 seconds. In this period, the opponent removes
more and more of the element our robot has planned to pick, and thus, the
fitness value decreases. The increase beginning halfway into the match comes
as a result of the planning module finally being able to find a new and better
plan to replace the old one. This trend was also confirmed by the match plot
in Appendix A.

The increase in fitness coming this late in the match may seem surprising
– after all, the GA uses about 15 seconds on its first generation, and then
shorter and shorter. Studying the match plot in Appendix A may help ex-
plain why. Notice that while the fitness increase does not happen until about
45 seconds into the match, the fitness of the old solution is not below the
fitness of the new solution until about 35 seconds. The fact that the enemy
most often visits his hill first, means that his interference with our solution
often comes quite a few seconds into the match, and may therefore explain
why the major plan adjustment comes as late as halfway through the match.

From 45 seconds to about 60 seconds comes a period of improving the plan, to
handle the environmental changes. After this, the plan’s fitness stays stable
until about 75-80 seconds where a decrease is seen. This decrease seems to
be the effect of unforeseen events in the very last moments of the match,
making the robot miss its final delivery in a few of the matches, leading to a
large decrease in fitness in these matches, and a slight decrease in fitness in
the average case.

The fitness of the contingency plans and the regular plans are, not surpris-
ingly, highly correlated. The contingency plan typically has a little bit lower
fitness than the regular plan, as it is normally working on a table with one
less point-giving element.

Differences

When it comes to the differences between the plots, it is hard to find any sig-
nificant results. The plots all have the same general form, and the small varia-
tions that do exist may simply stem from the stochastic nature of GAs. How-
ever, the horizon-based contingency planning does seem to perform slightly

92 CHAPTER 4. RESULTS AND DISCUSSION

better than the two other planning methods, yielding both a higher minimum
value and a higher maximum value in the second half of the match. While
it is hard to say whether or not this is an indication that horizon-based con-
tingency planning is better than enemy-based contingency planning and two
threads running regular evolutions, this does seem to imply that contingency
planning GAs are worth looking into for other dynamic planning systems.

One obvious advantage horizon-based contingency planning has over the
enemy-based one, is that it is independent of the type of enemy we are com-
peting against. It bases its choice of contingency-action only on the runtime
of the GA and the parameters simulating our own robot’s movements, while
the enemy-based version plans for the removal of the object closest to the
enemy. The latter will clearly work better against some enemies than others:
Against enemies staying a long time close to the same object while picking
it, this will work a lot better than against enemies driving and picking very
fast, leaving the contingency planner very little time to take their antici-
pated actions into consideration. The parameters governing the movements
and picking actions of the simulated enemy are the ones given in Table 4.4.
These describe a relatively fast robot, using little time to pick up objects (no
time for corn, one second for tomatoes). It is expected that enemy-based
contingency planning will perform better against slower enemies.

Evaluation

The fitness plots do not show any significant difference between GAs with
and without contingency planning, but the results from contingency planning
based on the robot’s planning horizon stand out as the best ones. Therefore,
a combination between GAs and contingency planning seems to be an idea
that should be explored further in dynamic planning systems.

4.3.3 Simulator inaccuracies

Throughout Chapter 3, simplifications made in the simulator have been high-
lighted. The reason why a lot of simplifications have been made is firstly,
because of the huge complexity of making an accurate Eurobot simulator, and
secondly, because the GA is intended to cope with inaccuracies in the simu-
lator dynamically. In other words, if something takes a bit longer or shorter
than expected, the plan should be adjusted to fit the new and updated time

4.3. RESULTS 93

frame. This way, the GA not only adapts its plans due to environmental
changes, but also due to inaccurate time estimates.

As pickups and deliveries are likely to have a quite stable and predictable
duration, the focus of these experiments have been on investigating how inac-
curacies in translation time affect the genetic algorithm. To do this, random
errors have been added to each translation in a simulated match, as sum-
marized in Table 4.5. The simulations used in fitness evaluation for the GA
were, of course, unaware of this error, and used the standard timing estimates
from Table 4.4. For each experimental setup, all 36 table setups were tested,
and the average results stored. Plots of these results are shown in Figure 4.3.
The planner ran two regular GA threads during these experiments.

Dynamic planning

The first two plots in Figure 4.3 show how the dynamic planner reacts to
wrong timing estimates. The first plot shows the case where timing estimates
are completely precise, meaning that the decrease in fitness experienced here
is completely due to the opponent’s influence on the plan.

The next plot shows the case where a random, uniformly distributed error
between -3 and 3 seconds has been added to each translation in the match.
Results here are surprisingly good: The fitness values are actually better
when a random error is inserted. This indicates that the GA is able to
use additional time to its advantage, and that it can efficiently replan when
something takes longer than expected.

Static planning

The static plan that was used on each game setup was generated by the
static GA, and was the same as the best plan used for initializing the dy-
namic planners. The plan was never modified during the match, except that
elements removed from the table were also removed from the plan, saving
the robot the time taken to visit these objects.

Figure 4.3c shows how the static plan performs in a match against a sim-
ulated opponent, but with completely precise timing estimates except for
the opponent’s influence. Its fitness values are lower than those for the cor-
responding dynamic planner throughout the match, and the plan ends up

94 CHAPTER 4. RESULTS AND DISCUSSION

(a) Dynamic planning, no inaccuracies

(b) Dynamic planning, 6 sec random error

Figure 4.3: Fitness plots for matches with an inaccurate simulator

4.3. RESULTS 95

(c) Static planning, no inaccuracies

(d) Static planning, 6 sec random error

Figure 4.3: Fitness plots for matches with an inaccurate simulator (cont.)

96 CHAPTER 4. RESULTS AND DISCUSSION

delivering about 0.2 kg less than the dynamically adjusted one.

Finally, figure 4.3d shows how the static plan does when translation times
are subject to a random error ranging from -3 to +3 seconds. The results
are worse in this case, and the final fitness value after 90 seconds shows that
the random error makes the plan deliver more than 0.3 kg less than the
dynamically adjusted one in the average case.

Evaluation

The fact that the static plan performs significantly worse than the dynami-
cally adjusted one both when timing estimates are precise and faulty, proves
that the hybridized GA approach combined with good plan-modifying heuris-
tics works for the changing environment found in the Eurobot competition.
That the dynamic planner is also able to use erroneous time estimates to its
advantage is also a very useful result, as this means that a completely accu-
rate match simulator is not needed, and the complexity of fitness evaluation
can be kept low.

It may seem surprising that the static plan performs as well as it does in a
dynamic and changing environment. After all, its final fitness isn’t that much
lower than the fitness of the dynamic plan. The reason why a lot of points
are still gathered when running a static plan, is that the robot is still able to
pick up all the objects it reaches before the opposing robot, and it is most of
the time also able to complete all its planned deliveries. The robot is able
to complete its deliveries despite delays incurred by enemy encounters and
wrong time estimates, because it saves a lot of time by not having to visit
the objects that the opponent has already picked. In other words, a good
robot will perform well with a good static plan, but can add extra weight to
its deliveries by dynamically adjusting its plan.

4.3.4 Efficiency of the GA

This experiment aimed to investigate whether the implemented GA is respon-
sive and efficient enough to handle the dynamic environment of a Eurobot
competition. To do so, simulated matches were run on both the computer
used for development and the main part of testing of the GA, and on the
computer used in the actual competition. The average times spent on each

4.3. RESULTS 97

generation in these 90-second matches are plotted in Figure 4.4. The x-axis
shows the generation number, and the y-axis the average time spent on that
generation.

There are two main reasons why the main part of testing and development
had to happen on a computer separate from the one used in the competition:
Firstly, the competition computer was bought a couple of months into the
project period, so development had to begin on a different computer, and
secondly, many of the other team members also needed to use this computer
for testing of their subsystems, so it was beneficial to be able to use a separate
computer as much as possible.

Results and evaluation

Figure 4.4 shows a quite big difference in runtime on the two computers that
the GA was tested on. This is partly due to hardware differences between
the two, and partly because the algorithm was compiled in a more optimized
manner on the competition computer. Both computers show a rapid decrease
in the time it takes to complete a generation as the match progresses. In fact,
only thirteen seconds into the match, the robot-computer takes less than a
second to complete a generation. As the robots start on opposite sides of the
playing table, and as they will often be interested in visiting the hill first,
this means that the responsiveness of the GA will be very good during the
part of the match where it is most needed.

The reason why the runtime of GA generations decreases so rapidly through-
out the match, is twofold: Firstly, objects are all the time removed from the
table, effectively decreasing the genotype size, and thus, decreasing the time
spent on the large local search (which has runtime O(n2), where n is the
genotype size). Secondly, the remaining time to plan for decreases as the
match progresses, as fitness evaluation is always based on a match running
from the current state of the game and up until the 90 seconds are done.

98 CHAPTER 4. RESULTS AND DISCUSSION

(a) The testing- and development computer

(b) The competition computer

Figure 4.4: Time to complete a GA generation throughout a match

Chapter 5
Conclusion

5.1 Goal Achievement

Looking back at the problem definition in Section 1.2.2, the main task was
implementing a system capable of adapting previously generated plans for the
Eurobot-competition throughout the match based on the opposing robot’s
influences. For this purpose, the genetic algorithm implemented for static
planning as the author’s specialization-project was adapted and extended to
be able to handle a dynamic environment.

Chapter 4 presented several experiments whose aim was to determine if this
goal had been reached. The first experiment, showing a full plot of a Eurobot
match indicated that the dynamic GA was successful in adapting an already
good plan to changing circumstances, and further experiments proved that
statistically, the robot performed better when adjusting its plan throughout
the match than when following a static plan. This improved performance was
partly caused by the robot being able to deal with environmental changes,
and partly by its ability to adjust to its own faulty time estimates in the
initial planning phase.

The problem-definition also had three specific sub-goals that further specified
the requirements for the envisioned system. The first sub-goal was the re-
quirement that the algorithm should be efficient enough to handle the rapid
changes of a Eurobot competition. To enable immediate responses to chang-
ing circumstances, the GA was extended with the ability to plan ahead for

99

100 CHAPTER 5. CONCLUSION

contingencies, and with a fast heuristic making simple changes to plans on
demand.

These extensions ensured changes were handled rapidly, but it was also desir-
able that the main evolutionary loop be as efficient as possible, so plans are
rapidly optimized. Making the evolutionary loop as efficient as possible was
done by boosting solution diversity, thereby giving the GA a higher degree of
responsiveness, and by decreasing the genotype size, allowing the local search
embedded in the GA to perform faster. Section 4.3.4 discusses the result of
running performance tests on the GA, finding that the GA’s performance is
very good, using less than a second to complete a generation of evolution on
the computer used in Eurobot matches, except for in the first 10-15 seconds
of a match, where it may use up to six seconds. Due to the local search
embedded in the GA, each generation typically brings a fairly well adapted
individual, meaning that one second per generation should be rapid enough
to respond in a good and efficient way to environmental changes.

The second sub-goal was having enough flexibility in the algorithm’s fit-
ness evaluation to allow it to easily be adjusted to the type of robot being
built. This was important because design and construction of the robot was
performed in the same time period as the planning system was being imple-
mented. For this purpose, the simulator used for fitness evaluation was made
highly parameterized, allowing important robot parameters to be specified
as soon as they were known. These parameters include the robot’s speed,
capacity for carrying the various types of objects and many more. The pa-
rameters that were used for experiments in this report are listed in Table
4.4.

Despite the parameterized design of the simulator, some changes had to
be made as soon as the robot was ready. For instance, it was found that
picking too many corns could block access to the tomato-picker. These types
of interactions between the various capacities of the robot had not been
considered when designing the simulator, so a few changes needed to be made.
However, all changes to the simulator caused by the robot’s designed were
found to be fairly straightforward to implement by making simple extensions
to the methods controlling simulated pickups, deliveries and so on.

The third subgoal stated the need for a real-time simulator and plotter for
testing the algorithm without having to run the robot. This was also impor-
tant because the robot was not expected to be ready until quite shortly before
the competition. Such a simulator and plotter was implemented, and screen
shots from a simulated match taken with 5 second intervals are presented in

5.2. RESEARCH VALUE 101

Appendix A. Although the physics of this simulator are quite simplified (see
Section 4.2.3), it has proved absolutely essential in testing and understanding
the GA’s responses to environmental changes.

5.2 Research Value

As discussed in the above section, the project had a practical value in making
a good planning algorithm. But what has been the theoretical value of the
project? And where does this work fit in among the previous work done in
this field?

First of all, the study of previous work presented in Chapter 2 has provided
a good insight into common ways of solving the type of path optimization
problems faced here, both with genetic algorithms and through other ap-
proaches. Solutions for both static and dynamic planning problems were
studied, and it was found that the same type of solution technique may be
employed in both cases, as a dynamic problem can be viewed as a series of
static problems with time constraints.

5.2.1 Static scheduling problems

The study of static scheduling problems performed as part of the author’s
specialization project, resulted in the discovery that the Eurobot task was
best viewed as a combination of two well known scheduling problems: The
orienteering problem (OP) and the vehicle routing problem (VRP). They
both encompass different parts of the Eurobot problem: The OP has the
flexibility of not having to visit all nodes, while the VRP shares the issue of
a capacity constraint with the Eurobot task.

Studying previous GA solutions to OPs and VRPs thus gave a valuable
insight into how the Eurobot task could be represented. The choice fell on
letting the GA handle both capacity constraints and the selection of a subset
of nodes to visit, by adding a time limit and a capacity limit to the fitness
evaluation, and by adding delivery nodes to the genotype that the GA could
distribute freely.

The background study also led to the realization that the GA would need to
be hybridized. All the previous systems that were studied were using a local

102 CHAPTER 5. CONCLUSION

search technique to guide the GA in a complex fitness landscape. The type
of local search selected for this task, was a technique developed by Christian
Prins [22], a resource demanding yet very powerful technique. Experiments
on the GA proved that it had no chance of finding good solutions without
hybridization.

5.2.2 Dynamic scheduling problems

Extending the system to also be able to handle a dynamically changing envi-
ronment was a challenging task. Optimization techniques for dynamic prob-
lems have been far less researched than static ones, and research into dynamic
solutions for the TSP and the VRP can be said to still be in an initial phase.

Studying the task of dynamic planning, it was soon apparent that classical,
mathematical planning methods would not be good solution techniques, as
they always need to recalculate solutions from scratch as the environment
changes. Search techniques like GAs, however, have the ability to continu-
ously adapt their solutions to a changing environment. Also, as a GA had
already been implemented for the task of static planning, adapting and ex-
tending this system seemed like a good choice for the dynamic planner.

A study of previous work using GAs in dynamic environments revealed some
issues that were given special attention when implementing the dynamic
planner. Firstly, the importance of solution diversity was argued to be more
important in dynamic problems, because a diverse population will give a
more responsive system. Different ways of boosting and maintaining diversity
were reviewed, but a study of solutions generated after static pre-match
planning indicated that they may already be diverse enough, with a simple
fitness-based diversity measure. It was discussed whether it may be the local
optimization that was causing this, by making similar solutions the same,
thus giving them the same fitness. Even though a certain degree of diversity
is generated by the static planner, an additional boost is given before dynamic
planning is initiated by adding random individuals to the initial population,
a technique somewhat resemblant of the random immigrants technique.

Studies of systems used for solving dynamic TSPs and VRPs with GAs
showed that they often employed a separate heuristic for generating rapid
responses to environmental changes. A combination of a GA and a good
heuristic can give the planner a combination of rapid response to a changing
environment, and the ability to generate better and better plans the longer it

5.3. FURTHER WORK 103

gets to deliberate. Different heuristics were considered for this task, and the
choice fell on a modified version of a simple and very efficient one that had
been used as part of a GA solving dynamic TSPs [28]. More complex and
time demanding heuristics were considered, but the choice fell on the sim-
ple one, as a complex heuristic was already embedded in the GA, meaning
that solutions from this heuristic will be ready as soon as a GA generation
finishes.

A final technique that was used to make the GA more responsive, was the
use of a separate contingency-planning GA, running alongside the regular
GA on a problem where one object has been removed. This type of com-
bination of GAs and contingency planning has to the author’s knowledge
never been researched before, probably because GAs are implicitly contin-
gency planners by maintaining a large population. The reason for making
the contingency planning explicit, was to enable a guaranteed, immediate
response to certain critical events, such as removal of the next object in the
robot’s plan. Experiments on the performance of the contingency planning
GA show no conclusive results, but indicate that this could be worth looking
into for other GAs doing dynamic planning.

All the approaches used to make the algorithm more responsive and faster
may seem ambiguous. For instance, both the contingency planner and the
heuristic aim to enable the system to give immediate responses to changes.
The idea is, however, that the approaches can complement each other by
working on different levels in resource usage and quality of the solution they
generate. In addition, the system can easily be run without contingency plan-
ning, enabling the planning algorithm to be adjusted to the computational
resources available.

5.3 Further Work

This section discusses what research questions raised in this report remain
unanswered. These questions could be good starting points for further re-
search into dynamic planning with GAs.

Firstly, the idea of using a genetic algorithm with a good heuristic for rapid
response turned out to be a good fit for a dynamic planning problem. As
previously mentioned, research into solving dynamic scheduling problems
with GAs is at an initial phase, and in the author’s opinion more work on

104 CHAPTER 5. CONCLUSION

this field should try to uncover the relationship between properties of the GA
and its responsiveness. For instance, how does the choice of diversity ensuring
techniques, crossover techniques etc. affect the GAs responsiveness? Also,
finding good and fast heuristics that provide the GA with good starting
points for further optimization whenever the environment changes would be
an interesting topic.

Also, the idea of explicitly running contingency planning parallel to the GA
needs more research. The results from experiments in this report are incon-
clusive, but do indicate that such an idea works well if carefully selecting the
type of contingency to plan for. Further experiments in this area should keep
exploring whether the computational effort to run contingency planning give
a better result than using the same resources on the GA.

References

[1] Enrique Alba and Bernabé Dorronsoro. Solving the vehicle routing prob-
lem by using cellular genetic algorithms. In Evolutionary Computation
in Combinatorial Optimization, pages 11–20. 2004.

[2] Enrique Alba and Bernabé Dorronsoro. Computing nine new best-so-far
solutions for capacitated VRP with a cellular genetic algorithm. Infor-
mation Processing Letters, 98(6):225–230, June 2006.

[3] M. Bellmore and G. L. Nemhauser. The traveling salesman problem:
A survey. Operations Research, 16(3):538–558, June 1968. ArticleType:
primary_article / Full publication date: May - Jun., 1968 / Copyright
c© 1968 INFORMS.

[4] J. Branke, T. Kaussler, l Schmidt, and H. Schmeck. A multi-population
approach to dynamic optimization problems. 2000.

[5] I-Ming Chao, Bruce L. Golden, and Edward A. Wasil. A fast and effec-
tive heuristic for the orienteering problem. European Journal of Opera-
tional Research, 88(3):475–489, February 1996.

[6] Yu-Wang Chen, Yong-Zai Lu, and Gen-Ke Yang. Hybrid evolutionary
algorithm with marriage of genetic algorithm and extremal optimiza-
tion for production scheduling. The International Journal of Advanced
Manufacturing Technology, 36(9):959–968, April 2008.

[7] Thomas L. Dean and Michael P. Wellman. Planning and control. Morgan
Kaufmann Publishers Inc., 1991.

[8] Keith L. Downing. Introduction to evolutionary algorithms. http:
//www.idi.ntnu.no/emner/it3708/lectures/evolalgs.pdf, 2009.

105

106 REFERENCES

[9] David Floreano and Claudio Mattiussi. Bio-Inspired Artificial Intelli-
gence. The MIT Press, 2008.

[10] Franklin Hanshar and Beatrice Ombuki-Berman. Dynamic vehicle rout-
ing using genetic algorithms. Applied Intelligence, 27(1):89–99, 2007.

[11] Yaochu Jin and J Branke. Evolutionary optimization in uncertain
environments-a survey. Evolutionary Computation, IEEE Transactions
on, 9(3):303–317, 2005.

[12] Soojung Jung and Ali Haghani. Genetic algorithm for the Time-
Dependent vehicle routing problem. Transportation Research Record:
Journal of the Transportation Research Board, 1771:164–171, January
2001.

[13] C. Peter Keller. Algorithms to solve the orienteering problem: A com-
parison. European Journal of Operational Research, 41(2):224–231, July
1989.

[14] Gilbert Laporte. The traveling salesman problem: An overview of exact
and approximate algorithms. European Journal of Operational Research,
59(2):231–247, June 1992.

[15] Gilbert Laporte. The vehicle routing problem: An overview of exact
and approximate algorithms. European Journal of Operational Research,
59(3):345–358, 1992.

[16] P. Larrañaga, C. M. H Kuĳpers, and R. H Murga. Tackling the travelling
salesman problem with evolutionary algorithms: Representations and
operators. 1994.

[17] Zhao Liu and Lishan Kang. A hybrid algorithm of n-OPT and GA to
solve dynamic TSP. In Grid and Cooperative Computing, pages 1030–
1033. 2004.

[18] Zbigniew Michalewicz and David B. Fogel. How to solve it: modern
heuristics. Springer-Verlag New York, Inc., 2000.

[19] F. Oppacher and M. Wineberg. The shifting balance genetic algorithm:
Improving the GA in a dynamic environment. In Proceedings of the
Genetic and Evolutionary Computation Conference, volume 1, pages
504–510, 1999.

[20] Christos H. Papadimitriou. The euclidean travelling salesman problem is
NP-complete. Theoretical Computer Science, 4(3):237–244, June 1977.

REFERENCES 107

[21] Planéte-Sciences. Eurobot 2010 - Feed the World. http:
//www.eurobot.org/commonfiles/docs/2010/E2010_rules_and_
drawing_EN.pdf, September 2010.

[22] Christian Prins. A simple and effective evolutionary algorithm for the ve-
hicle routing problem. Computers & Operations Research, 31(12):1985–
2002, October 2004.

[23] Harilaos N. Psaraftis. Dynamic vehicle routing problems. In Vehicle
Routing: Methods and Studies, pages 223–248. 1988.

[24] Wan rong Jih and Jane Yung jen Hsu. Dynamic vehicle routing using
hybrid genetic algorithms. Proceedings of the 1999 IEEE International
Conference on Robotics & Automation, pages 453–458, May 1999.

[25] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-
proach (Second Edition). Prentice Hall, 2003.

[26] M. F Tasgetiren. A genetic algorithm with an adaptive penalty function
for the orienteering problem. Journal of Economic and Social Research,
4(2):1–26, 2001.

[27] Xia Wang, Bruce L. Golden, and Edward A. Wasil. Using a genetic
algorithm to solve the generalized orienteering problem. In The Vehicle
Routing Problem: Latest Advances and New Challenges, pages 263–274.
2008.

[28] Aimin Zhou, Lishan Kang, and Zhenyu Yan. Solving dynamic TSP with
evolutionary approach in real time. In Evolutionary Computation, 2003.
CEC ’03. The 2003 Congress on, volume 2, pages 951–957 Vol.2, 2003.

Appendix A
Plots of a Full Simulated Match

(a) (b)

(c) (d)

Figure A.1: Screenshots from a full simulated match

108

109

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Figure A.1: Screenshots from a full simulated match (cont.)

110 APPENDIX A. PLOTS OF A FULL SIMULATED MATCH

(m) (n)

(o) (p)

(q) (r)

(s)

Figure A.1: Screenshots from a full simulated match (cont.)

Appendix B
Experiences From the Competition

This chapter sums up some of the experiences the Eurobot team made from
working as a large interdisciplinary team creating a single product, and from
taking part in the Eurobot competition. Hopefully, it may be of use to future
Eurobot teams.

B.1 Results From the Competition

The team was unable to qualify the robot for the Eurobot-competition. The
reason was that many of the systems (both hardware and software) on the
robot were not ready until shortly before, or even after, departure to Switzer-
land. This meant that a lot of integration and testing had to happen in
Switzerland, and there simply wasn’t enough time to make the robot work
properly.

B.2 What Went Wrong?

The reason why things were not ready in time, was partly due to bad planning
and coordination between the team members. Also, a few weeks before the
competition, a design flaw in the robot’s mechanical system was found, that
called for a major redesign of the robot in the very last weeks. This delayed
integration and testing of the various subsystems further.

111

112 APPENDIX B. EXPERIENCES FROM THE COMPETITION

This is the first year where a team of this size has participated in the Eurobot-
competition, and in hindsight it is obvious that the management and coordi-
nation of such a team requires an experienced team leader with a thorough
understanding and overview of everybody’s work. The task’s large complex-
ity could also be handled better by a more continuous integration process,
beginning as soon as each member had something ready. This way, basic
functionality of the robot can be ensured early in the project period, and
more advanced functionality can build upon this.

	Title Page
	Problem Description
	masteroppgave.pdf

