
June 2010
Keith Downing, IDI

Master of Science in Computer Science
Submission date:
Supervisor: 

Norwegian University of Science and Technology
Department of Computer and Information Science

Adaptive Robotics
A behavior-based system for control of mobile robots

Maria Johansen





Problem Description
Robots are commonplace in society; they perform all sorts of jobs. However, most are hard-wired
to perform a few fixed tasks and have little or no ability to adapt to changing or unforseen
circumstances. Artificial Intelligence (AI) enters the picture when robots must be capable of
autonomous behavior in unpredictable environments. In this project, the student must utilize AI
machine-learning techniques to produce a robot with adaptive capabilities. Possible techniques
include reinforcement learning (RL), artificial neural networks (ANNs), evolutionary algorithms
(EAs), or combinations of these, such as evolving neural networks. A few e-puck robots are
available in our laboratory, and these should be sufficient for building adaptive robots. Students
who desire more advanced equipment will have to arrange for it themselves.

Assignment given: 18. January 2010
Supervisor: Keith Downing, IDI





Abstract

This report will explore behavior-based robotics and relevant AI techniques.
A system for autonomous control of mobile robots inspired by behavior-based
robotics, in particular Rodney Brooks’ subsumption architecture, have been
implemented, adapted for use in a multiagent environment. The system is
modular and flexible, allowing for easy addition and removal of system parts.
A weight-based command fusion approach is taken to action selection, making
it possible to satisfy multiple behaviors simultaneously.
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1 Introduction

This report presents my master’s thesis on behavior-based robotics. The assign-
ment was given by professor Keith Downing, at the Department of Computer and
Information Science, NTNU.
In today’s society, robots and autonomous systems are everywhere. In factories,
robots are used for assembly line work and manufacturing, freeing human opera-
tors from tedious manual labor. In Copenhagen, some local trains are completely
autonomous, no personnel on board the train is needed. Robots are used as tour
guides1, and in homes robots take over more and more of the common household
tasks such as lawn mowing and floor cleaning.
There are multiple definitions of both intelligence, and intelligence applied to robots.
Arkin defines an intelligent robot as a machine able to extract information from
its environment and use knowledge about its world to move safely in a meaningful
and purposive manner (Arkin 1998). An unmanned train does not need advanced
cognitive skills, but neither can it mindlessly follow some pre-programmed route.
As a minimum it needs sensors detecting obstacles in its track, nobody would want
a homicidal train running loose, killing stray cats and dogs and children. It should
also be able to distinguish between the aforementioned and harmless objects such as
plastic bags2. So there has always been a natural link between artificial intelligence
and robotics. Robots that are to navigate in a dynamic environment will need some
way to observe its surroundings and gather information from it, and it will need to
act based on that information. Manual programming and hard-coding of actions can
solve quite a few problems, but it is impossible to predict all kinds of unexpected
situations that can occur.
The field of artificial intelligence is closely related to studies in biology and psy-
chology. As the views on biological intelligence change, new ideas find its way into
artificial intelligence research. The progress in computer science and cybernetics
have also played a part, today’s robots have capabilities and computational powers
never dreamed about some decades ago. One of the first mobile robots with camera
vision, the “Stanford Cart”, needed breaks of 10-15 minutes for every meter it moved

1In the National Museum of American History, http://www.cs.cmu.edu/˜minerva/
2The latter was not yet the case when I last traveled with the Copenhagen train, a few years ago

when it was still in its test-phase.
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1.1. REPORT STRUCTURE INTRODUCTION

in order to process image data (Moravec 1980).
Earlier attempts to accomplish robot intelligence have been heavily based on world
models and symbolic representations, and emphasis has been on high-level planning
and pure logic reasoning. The limitations of this top-down approach, together with
new discoveries regarding the parallel nature of the human brain3, led to the evo-
lution of reactive, and later behavior-based robot control systems. Instead of the
centralized and serial planning module included in deliberative systems, control in
a behavior-based system is distributed, with close connections between sensing and
acting.
Behavior-based robot control systems have been used for a wide range of applica-
tions, from the commercial vacuum cleaner Romba4 to soccer playing robots (Laue
& Röfer 2004). Other systems are of a more academic nature, created in order to
demonstrate some functionality. Examples are the robot Toto (Mataric & Brooks
1990), implemented using a subsumption style architecture and able to navigate
using landmarks, and Mataric’s Nerd Herd (Arkin 1998, pages 170-172), a group of
robots demonstrating emergent social capabilities such as flocking and group forag-
ing.
The motivation behind the project has been to explore various existing robot control
approaches, and based on these implement a system for autonomous control of an
e-puck robot. The system presented in this report is inspired by behavior-based
robotics, it is modular and functionality can easily be added and removed. The
system is adapted for use in a multiagent system, and have built-in support for
e-puck to e-puck communication. The intention is to use this system as a basis for
further research and development.

1.1 Report structure

Chapter 2 contains background information on robotics, and also various relevant
subjects in the field of artificial intelligence, especially neural networks. Chapter 3
introduces the systems created for this project, while some experiences from running
the behavior control system are given in chapter 4. Chapters 5 and 6 evaluates and
concludes the report. The appendices gives a short tutorial to using and modifying
the different systems, together with the necessary setup files for recreating the neural
networks described in the report.

3My guess is that the advances in parallel computing that took place in the 80’s also played a
role in moving away from serial implementations.

4http://store.irobot.com/corp
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2 Background

This chapter will explore various topics related to robotics and artificial intelligence.
It starts out exploring various ways in which to obtain autonomous control of a robot,
and then looks at the artificial intelligence techniques relevant to robotics. A special
emphasis is on artificial neural networks.

2.1 Robot control systems

Just as humans have a central nervous system controlling the body, robots need a
controller system to coordinate sensory input and actuator commands.
Traditionally, the controller architectures were designed by combining the three
primary processes SENSE, PLAN and ACT. Sensor input is gathered by the SENSE
module, and then forwarded further into the system. PLAN combines sensor input
and world knowledge into the next task for the robot to perform. The ACT process
interprets this task into output actions (such as moving the wheels of the robot).
There are basically four main approaches to using AI to design a robot control
architecture; deliberative, reactive, hybrid deliberative/reactive and behavior-based
(Murphy 2000). The next sections will give a short overview of each of them.

2.1.1 Deliberative systems

SENSE PLAN ACT

Figure 2.1: Model of the hierarchical paradigm in AI robotics.

The deliberative, or hierarchical, approach to AI robotics was dominant in the early
days of AI. As the name implies, the hierarchical robot controller functions as a serial
unit. In order to produce output, the robot has to sense its surroundings (gather
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2.1. ROBOT CONTROL SYSTEMS BACKGROUND

sensor input), plan its next step by analyzing the input, and then act according to
the calculated plan. In most deliberate system, the planner does its work on a model
of the robot’s environment. Sensor input is added to this model in each time step,
thus making the model more and more accurate (that is, given that world remains
stationary).
One problem with this approach is that it proves difficult in a dynamic environment.
Compared to reacting, planning is slow. And while the robot uses processing time
while calculating its next move, the environment it operates in may have changed so
that its world model no longer is an accurate representation. In addition to this, the
more complex the environment, the more processing power and memory is needed
to accurately model the world and calculate the next step.
Shakey1, probably the first robot with artificial intelligence, used a hierarchical
controlling system. It used camera vision and bump sensors for navigation, and was
able to perform tasks such as moving blocks from one location to another.

2.1.2 Reactive systems

SENSE ACT

Figure 2.2: Model of the reactive paradigm in AI robotics.

The above-mentioned problems with the hierarchical approach, combined with new
knowledge in the field of biology and cognitive science, led to the development of
reactive systems. The time-consuming planning stage of the hierarchical controller
was cut out, and sensor input became directly coupled to acting. Thus systems
created in this fashion are better suited for dynamic environments, they act upon
close-to-real-time sensor values, instead of preprocessed sensor input and world mod-
els.
The controller may process several sense-act pairs in parallel resulting in outputting
a combination of several actions, unlike a hierarchical controller that is only able to
process one operation at a time.
This is analogous to how reflexes work in humans, when encountering for instance
extreme heat, “sensor input” is immediately translated into action by the spinal
cord, instead of forwarding the signals to the brain for processing.

1Created at Stanford Research Institute in the late 1960’s, http://www.ai.sri.com/shakey
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BACKGROUND 2.1. ROBOT CONTROL SYSTEMS

When encountering problems that cannot be translated to simple sense-act oper-
ations, for instance problems that require memory, pure reactive systems reach a
dead-end.
But even without memory, researchers have been able to create pure reactive systems
that are fairly complex. Many relatively “simple” animals have a mainly reactive
nervous system, and researchers have been able to simulate insect-like behavior using
a reactive system (see for instance Arkin (1998)).

2.1.3 Hybrid deliberative/reactive systems

SENSE ACT

PLAN

Figure 2.3: Model of the hybrid paradigm in AI robotics.

As a result of the limitations of the reactive approach, a hybrid between the hierar-
chical and reactive paradigms was born in the early 1990’s, and is frequently used
in industrial robots today.
The planning unit in a hybrid approach is responsible for decomposing complex tasks
into subtasks, that can be translated into actions. The sensing input is handled in
both hierarchical and reactive style. Input that can easily be translated into an
action is executed in the style of the reactive paradigm. Input that needs further
processing is sent to the planning unit.
Input that is treated as reflexes may also sent to the planner, to be incorporated in
the robot’s world model, or its “memory”.

2.1.4 Behavior-based systems

Behavior-based robotics has much in common with the reactive approach from sec-
tion 2.1.2. Both are based on having a set of tasks (actions/behaviors) running in
parallel, with no centralized control. There appears to be a fairly diffuse bound-
ary between reactive and behavior-based systems, in some literature behavior-based
robotics is treated as a subgroup of reactive systems(Murphy 2000), while others
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2.1. ROBOT CONTROL SYSTEMS BACKGROUND

describe it more as a further development of the reactive paradigm (Mataric &
Michaud 2008, page 896).
However, what is agreed upon is that pure reactive systems are strictly limited to a
sense-act type organization, there is no memory and hence the system has no ability
to learn and develop itself. Behaviors in behavior-based systems can be as simple
as a sense-act pair, but they may also be more complex and incorporate such things
as learning and reasoning, making behavior-based robotics more powerful.
Examples of behaviors are “avoid obstacles” or “locate food”. In a behavior-based
system, all behaviors ought be able to function independently of each other. A con-
sequence of this is the possibility of developing and adding behaviors incrementally,
making it easier to test and debug an otherwise complex system. Behaviors are usu-
ally manually created, but some algorithms for automatic design also exist. Jenkins
& Mataric (2002) describes a method for creating basis behaviors for control of a
humanoid robot.
A behavior-based system should be situated and embodied. That is, it should deal
with the environment in a direct way, and not through abstractions or models. All
behaviors should have direct access to sensor output and actuators.
One of the main researchers in this area, Rodney Brooks, has this to say on the use
of models in behavior-based architectures (Brooks 1990):

Our experience with this approach is that once this commitment [to the
physical world] is made, the need for traditional symbolic representations
soon fades entirely. The key observation is that the world is its own best
model. It is always exactly up to date. It always contains every detail
there is to be known. The trick is to sense it appropriately and often
enough.

However, absolute compliance with this statement involves a risk of reducing the
flexibility and usefulness of a system. An example is DAMN, a behavior-based
control system that is studied in greater detail in section 2.1.5.
With multiple behaviors running simultaneously, some form of control system is
necessary. Usually, the controller employs some form of behavior arbitration or
command fusion, or a combination of both. Systems with an arbitration-style action
selection will select the most appropriate behavior in each time step, allowing this
behavior full control of the robot. On the other hand, command fusion controllers
take into consideration the result of all behaviors, and attempts to merge them into
one set of actuator commands.
In the next sections a couple of behavior-based architectures will be presented.
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BACKGROUND 2.1. ROBOT CONTROL SYSTEMS

2.1.5 Behavior-based robot architectures

Some of the architectures described below are described as reactive, others as hybrid-
architectures. The different methodologies are merely a way of grouping systems,
there are no definite boundaries between them.
What all the systems described over the next pages have in common is that they all
in some way or another incorporates the ideas of behavior-based robotics.

The subsumption architecture

The subsumption architecture was conceived by Rodney Brooks in the 1980’s (Brooks
1985), and is one of the most well-known behavior-based robot architectures.
Behaviors in a subsumption system are organized in a layered structure, or levels of
competence as they were named. The lower levels represent basic survival functions,
whereas the higher levels consist of more “intellectual” tasks, such as route planning.
When running, the robot should execute all competence levels in parallel, with no
level being in control of the others. However, levels are able to stimulate or inhibit
the levels below them (see figure 2.4).

Figure 2.4: Illustration showing levels of competence in the subsumption architec-
ture. Courtesy of Brooks (1985).

One of the important aspects with this structure is that one layer is only dependent
on the functionality of its lower levels, and not the other way around. This makes
it possible to develop the robot in incremental stages, first implementing basic func-
tionality (moving around, obstacle avoidance and so on). Higher level behaviors are
then added, without any need for modifying the existing lower levels.

7



2.1. ROBOT CONTROL SYSTEMS BACKGROUND

Coordination of behaviors in the subsumption architecture is priority based, by using
the layers’ abilities to suppress and inhibit lower layers. In practice, this approach
may prove difficult in many-layered systems. The complexity of the action selection
increases drastically with the number of layers, and the layers also tend to interfere
with each others’ goals.
In Brooks’ original version, all competence levels were implemented as augmented fi-
nite state machines (AFSM’s), with each level running on a separate processing unit.
As a demonstration of his architecture, Brooks created the robot Allen, implemented
as a mobile robot connected by cable to a Lisp-machine doing all calculations.
Another system implemented using the subsumption architecture is Cog (Brooks
et al. 1999)2, a humanoid robot developed at MIT. It has a sensory system built to
resemble that of a human, and a body consisting of two functioning arms, a head and
a torso (but no legs). In the beginning, Cog resembles something like a human baby.
It has basic abilities like being able to move body parts and gather sensory input,
but not with the level of control seen in an adult. By interacting with humans, it is
able to learn and develop new skills. The intention is to use the robot to study and
test theories of human and artificial intelligence.

DAMN

DAMN, or Distributed Architecture for Mobile Navigation, is a behavior-based ar-
chitecture primarily made for robot navigation (Rosenblatt 1995). The DAMN
architecture use a command fusion system for its behavior coordination, allowing
for simultaneously satisfying more than one behavior.

Figure 2.5: Overview of the DAMN architecture. Courtesy of Rosenblatt (1995).

2http://www.ai.mit.edu/projects/humanoid-robotics-group/cog/cog.html
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BACKGROUND 2.1. ROBOT CONTROL SYSTEMS

During execution, all behaviors will generate a vote for all possible navigation com-
mands. The controller will take the weighted sum of all votes, and from this deduce
which command is the best.
Where appropriate, DAMN behaviors will make use of internal world representa-
tions. Even though opposing Brooks’ philosophies from section 2.1.4, this relieves
the robot’s sensors from some of their responsibility, they need not at all times have
a full overview of the environment.

Schemas and AuRA

Figure 2.6: High level schematic of AuRA. Courtesy of Arkin & Balch (1997).

Schema theory first originated in psychology and neurology at the beginning of the
20th century, as a method of decomposing human behavior into functional modules,
describing the interaction of perception and action.
Arbib was one of the first to combine schema theory and robotics, and the idea was
further developed by, amongst others, Arkin in his Autonomous Robot Architecture
(AuRA) (Arkin 1998). In a robotics context, Arkin (1989) describes schemas as basic
units of behavior specification. Complex behaviors can be created by the combination
of multiple schemas.
Two general groups of schemas are defined; perceptual and motor schemas. Motor
schemas produce output actions, while perceptual schemas are connected to the
robot’s sensors, gathering input that can be used by the motor schemas.
Instead of organizing behaviors in a static structure, AuRA use a dynamic network of
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2.1. ROBOT CONTROL SYSTEMS BACKGROUND

schemas based on the current goals of the system. As new perceptual data becomes
available, the structure of the network changes.
Rather than a “winner takes it all” type behavior arbitration, a fusion method
is used. Each behavior contributes to the output action, the magnitude of the
contribution is determined by the current schema network. In AuRA, behavior
output is represented as vectors, generating potential fields as described in section
2.1.5.

Activation networks

Based on the Society of the Mind theory of Minsky (Minsky 1986) and Brooks’ sub-
sumption, Maes describes activation networks as a society of interacting, mindless
agents, each having their own competence (Maes 1989).
The idea is that in a system with multiple goals, the competence modules are to
cooperate locally so that the system as a whole should select “good enough” actions.
That is, actions that are not necessarily at all times optimal, but are still acceptable.
This is done by having the modules inhibit and activate each other, much like in the
subsumption architecture, only that the links in an activation network are dynamic.
In order to be activated, a competence module must fulfill a set of conditions:

1. A set of preconditions must be fulfilled, allowing the module to execute. A
put-down-box module could for instance have the precondition is-carrying-box.

2. Its activation level must be greater than a threshold.
3. Its activation level must be greater than any other module fulfilling 1) and 2).

Activation levels are calculated based on the weighted inhibition and activation from
other modules. Action selection in an activation network is of the “winner takes it
all” type, but the activation requirements will often favor actions that contribute to
fulfilling multiple goals.

Potential fields

A potential field can be seen as an array of vectors. Hence, behavior output in a
potential field type architecture is represented as vector fields. Action selection is
done by combining all available vector fields, summing each vector.
Originally conceived as a method for achieving real-time obstacle avoidance in mobile
robots (Khatib 1985), potential fields have later been used in combination with
behavior-based schema systems (Arkin 1998, pages 141-165), and also for soccer
playing robots (Laue & Röfer 2004).
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(a) Combined potential fields (b) Robot trajectory from start, via obstacle
(blue) to goal (pink).

Figure 2.7: The potential field generated by an environment with an obstacle (repul-
sive force) and a goal (attractive force). Courtesy of Goodrich (2000).

Obstacles will generate a repulsive field, while the desired locations are attractive.
The combination of two such fields is seen in figure 2.7. A robot controlled by a
potential field architecture would at all times move in the direction of the vector at
its current position. If it was to have the knowledge of the environment shown in
figure 2.7(a), its trajectory could be as in 2.7(b).

2.2 Multi-agent robotic systems

A multi-agent system consists of more than one and up to thousands of robots
operating in one environment. The individual agents are usually autonomous, and
can perform a number of tasks such as soccer playing (Andre & Teller 1999) and
garbage collecting (Arkin & Balch 1998). The systems differ in other areas as well,
such as the composition of the group and the communication model used (and some
systems have no communication at all). To easier classify the various systems, a
taxonomy have been developed in amongst others Dudek et al. (1996).
Depending on the task to be performed, using more than one robot has a number
of advantages. One is fault tolerance, if one in a 100 robots fail, there are still many
left who can keep working. Some tasks will be performed faster by a group of agents
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2.3. ARTIFICIAL NEURAL NETWORKS BACKGROUND

than one, such as searching for objects (the more “eyes” the higher the chances of
locating the object). Other tasks may be decomposed to be solved part by part by a
team of robots. The main disadvantages are the risk of robots interfering with each
other, and also the need of coordination, the complexity of which increases with the
size of the group.

2.3 Artificial Neural Networks

Artificial neural networks (ANNs) are mathematical models based on biological neu-
ral networks. An ANN can be seen as a directed graph, cyclic or acyclic. The global
behavior and abilities of the network are determined by the topology of the net-
work, the strength of each individual connection (synaptic weights) and the node
activation functions.

layer 0 layer 1 layer 2

Figure 2.8: Illustration showing a feedforward ANN with one hidden layer. The
nodes in the input layer have a linear activation function, while the
hidden and output layers have step activation functions. All layers are
fully connected with its next upstream layer.

The most general neural network topology is the case where every node is connected
to every node (fully connected neural network). All other network topologies can
be represented as special cases of this topology, by setting some of the weights to
0. Due to the number of connections required, this type of network is difficult and
time consuming to train, and is rarely used.
Instead, the nodes are often organized in layers, where nodes in a layer share certain
connection properties.
The most common type of layered network used today is the feedforward network,
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where only connections from layer i to j are allowed, if i < j. By definition inter-
layer connections are not allowed, and feedforward networks are always acyclic.
Some neural network training methods, such as the backpropagation algorithm,
work only on feedforward networks.
A neural network node has an input value (membrane potential in its biological
counterpart), defined as the weighted sum of the output of the nodes connected to
it, and an output value (activation level). The activation level is found by feeding the
membrane potential into the activation function of the node. Figure 2.9 describes a
few common activation functions.
A run through the network consists of feeding data into the first layer (the input
layer), and then propagating it through the network through node to node connec-
tions.

-1

 0

 1

(a) Unit step function,
with a threshold θ =
0.5

-1

 0

 1

(b) Linear, f(x) = x

-1

 0

 1

(c) Sigmoid, using the
logistic function 1

1+e−x

-1

 0

 1

(d) Sigmoid, using the
function tanh(x)

Figure 2.9: Some common neuron activation functions

First, it is necessary to calculate the weighted sum of all of inputs x to the node:

xj =
N∑
k=1

wkjok (2.1)

where N is the total number of input links to j, wkj is the weight from node k to j
and ok is the output of node k.
The output value is then:

oj = f(xj) (2.2)

where f() is the activation function of node j (see figure 2.9).
When summing over all j, equations 2.1 and 2.2 can be summarized by:

O = f(WTX) (2.3)

13
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In order to have the ANN learn a certain behavior, it is necessary to train it. This
usually implies modifying weights in the network with a factor ∆w:

wkj = wkj + ∆wkj (2.4)

where wkj is the weight from node k to j. There are several ways of calculating ∆w,
depending on the type of network and learning method used.
The differences between the different combinations of neural network building blocks
are described in the next sections, by looking at a few common neural network
architectures and their applications.

2.3.1 Perceptron network

The perceptron network is one of the simplest feedforward neural networks, it has
low computational demands and it is able to learn quickly. It consists of two fully
connected layers. The input layer passes values through to the output layer, where
calculations are done (Rosenblatt 1958). The nodes in the output layer usually has
a step activation function (see figure 2.9), resulting in a binary output pattern.
During training, pairs of input and desired output patterns are used. The input
pattern is fed into the network, and its output is compared with the desired result.
If they match, then nothing is done. If this is not the case, the weights of the
connections between input and output layers are adjusted according to the delta
rule:

∆wkj = η(dj − oj)ok (2.5)

where η is the learning rate, dj is the desired output of node j, oj is the actual
output, and ok is the output of input node k.
If the patterns to be learned are linearly separable, the delta rule will eventually
train the network so that it recognizes all of them. If, however, they are not linearly
separable, the perceptron network will fail.
For instance, it is impossible having a perceptron network function as an XOR. Say
one has a network of binary nodes, two in the input layer and one output node. The
four possible input patterns that can be fed into the network are [0 1], [1 0], [1 1]
and [0 0]. It is possible to train the network so that it responds with a 1 to [0 1]
and [1 0]. But since there are no third two-dimensional combination that is linearly
separable with both [0 1] and [1 0], the network will then respond with a 1 to all
patterns presented to it, thus becoming rather useless. There is no way we can train
it so that it also outputs a 0 to patterns [1 1] and [0 0].

14
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2.3.2 Multilayer perceptron network

The multilayer perceptron is a modification to the perceptron network, with support
for multiple layers. This is done by altering the way the network learns. The delta
rule described above is not applicable to networks with multiple layers, since the
desired output pattern is only known for the output layer, and not for the middle
layers. Instead, multilayer perceptron networks make use of the backpropagation
algorithm for learning (Rumelhart et al. 1986).
During training, the network is presented with pairs of input and desired output
patterns, as described in section 2.3.1. For each pair, feed the input pattern through
the network, calculating the output of each node according to equation 2.2, in the
direction input → output layer. Then, calculate the error coefficient for each node
in each layer, starting at the output layer:

δoutputj = f ′(
N∑
k=1

wkjok)(dj − oj) (2.6)

δhidden nj = f ′(
N∑
k=1

wkjok)
M∑
k′=1

δk′wjk′ (2.7)

Where N is the number of input links and M is the number of output links in node j.
δk′ is the error coefficient of node k′ (in the upstream layer), and wjk′ is the weight
from node j to node k′.
After calculating all error coefficients, the ∆w’s are found by:

∆wkj = ηδjok (2.8)

The above steps should be repeated until the correct output pattern is derived (or
until the error is sufficiently small).
The multilayer perceptron is able to solve problems that are non-linearly separable.
It has also been proven that a three layer perceptron network can approximate any
mathematical function, given that the middle layer is sufficiently large (Cybenko
1989). The disadvantage is the number of calculations needed to learn a set of
patterns. Each run through the network is more calculation-heavy than a classical
perceptron network, and in addition to this, the multilayer perceptron needs more
iterations due to slower learning.

2.3.3 Hopfield Network

Hopfield networks are a type of neural networks with autoassociative properties.
The network is able to store patterns, and is able to retrieve the correct pattern
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from its memory when presented with noisy or corrupted input patterns.
Hopfield networks are single layered, and nodes are fully connected (however, the
weight on the connection from a node to itself is set to 0). The network was first
introduced by John Hopfield (Hopfield 1982).
When training a Hopfield network to memorize a set of N patterns, the weights are
determined by:

wij =

α
∑N
n=1 dnidnj, if i 6= j

0, if i = j
(2.9)

where dni are the ith part of training pattern n, and α is a scaling factor. The
diagonal in the weight matrix (where i = j) is 0, since nodes in the Hopfield network
are not connected to themselves.
During pattern retrieval, noisy patterns x are fed into the network, and output is
calculated according to equations 2.1 and 2.2. This process should be repeated until
there is no significant change to o.
In order to guarantee convergence, nodes must be updated asynchronously.
In (Hopfield 1982), it is shown that the storage capacity of the Hopfield network is
0.15n, where n is the number of nodes. But for the patterns also to be retrieved
without error, the storage capacity must be reduced to n

4 lnn (Amit 1992).

2.3.4 Maxnet and Self-organizing maps

The maxnet is a fully connected single layer network. A maxnet node has negative
synaptic weights on all outgoing connections, except from the connection to itself,
which is positive. The result is that the node with the highest initial value will
remain high, while all other nodes will converge to 0.
Self-organizing maps, also known as Kohonen Maps, share the competitive behavior
from maxnet networks. In each round, a winner node is selected. This node will
excite itself and the nodes within a given radius in its neighborhood, the rest are
inhibited. Usually, the radius starts out rather large, and gradually decreases for
each round.
If the network is correctly tuned, the nodes will gradually order themselves to match
the input pattern. Figure 2.10 shows a Kohonen network solving the traveling
salesman problem.
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(a) Initial setup (b) After 999 iterations

Figure 2.10: Kohonen network working on the travelling salesman problem of se-
lected cities in Western Sahara. The full data set can be found on
http://www.tsp.gatech.edu/world/countries.html

2.4 Machine learning

The ability to reason and improve itself over time are important aspects in an
artificial intelligence system. This section will describe some important categories
of learning techniques used in machine learning.

2.4.1 Supervised learning

Supervised learning methods make use of a detailed knowledge of the correct way
to solve a problem. The system is presented with an input data set, together with
the desired output. After the processing of each input, the system is evaluated and
compared to the desired result. This feedback is used to tune the system, so that it
will (preferably) perform the task better the next time.
Supervised learning methods are only applicable in situations where detailed knowl-
edge of both the input and the desired output of the system is known, and is therefore
not applicable to all situations. In a robotics context, supervised learning could be
used to teach obstacle avoidance by sending a set of sensor data into the system,
and have it accommodate itself to the desired motor commands.
The learning methods described in section 2.3.1 and 2.3.2 are examples of supervised
learning.

17

http://www.tsp.gatech.edu/world/countries.html


2.4. MACHINE LEARNING BACKGROUND

2.4.2 Reinforcement learning

This type of learning can be described as learning by trial and error. After a sequence
of actions, such as a run through a maze, the system is evaluated and feedback is
given. The feedback is then used to improve the system.
Unlike supervised learning, the system is not constantly watched and evaluated,
which allow for a more autonomous behavior. It is not necessarily so important how
a task is done, as long as the result is satisfactory. Because of this, reinforcement
learning is especially useful in robotics.
In Maes & Brooks (1990), reinforcement learning methods were used to teach the
robot Ghengis to walk. The robot had 6 legs, and was controlled by a behavior-
based architecture. Reinforcement learning was used to fine-tune positive and neg-
ative feedback in the system, determining the order in which behaviors were to be
activated.
The difficult part when making use of reinforcement learning is the design of the
evaluating system, the critic. The performance of the system must be translated
into something measurable, and one has to make sure that reward and punishment
are given in a way that will lead to the system developing in a positive direction
(Kaelbling et al. 1996).

2.4.3 Unsupervised learning

Unlike the two above described groups of learning methods, unsupervised learning
has no teacher to guide the system in the right direction. Instead, the system is
presented with a set of input data, and is to classify the data based on similarities.
Unsupervised learning is usually faster than supervised learning methods such as
the backpropagation algorithm (see 2.3.2), and is therefore applicable to real-time
systems.
Unsupervised learning is frequently used in neural networks, such as the Kohonen
and Hopfield networks described in sections 2.3.4 and 2.3.3. In a robotics context,
unsupervised learning can be used to cluster sensor input. In Nehmzow (1999), the
robot FourtyTwo was able to recognize and move towards boxes by using unsuper-
vised learning and Kohonen networks.

Hebbian learning

Hebbian learning is a commonly used form of unsupervised learning, based on the
theories of the American psychologist Donald Hebb on neural network learning. The
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essence is that if neuron A often contributes to activation of neuron B, the synaptic
weight from A to B should be strengthened.
In its original form, known as Hebb’s Rule, this can be written as:

∆wkj = ηokoj (2.10)

where ok is the output of node k and η is the learning rate. A problem with equation
2.10 is the potential for infinite weight growth (or decrease) and network saturation.
One way to prevent this from happening is to introduce a non-linear forgetting
factor, as done in the Oja rule:

∆wkj = η(okoj − |wkj|o2
j) (2.11)

By using wkj as a part of the forgetting term, the synaptic weights’ abilities to
increase to infinity is removed, while still preserving the “fire together, wire together”
philosophy of Hebb’s Rule.
The Hopfield networks from section 2.3.3 are examples in which Hebbian learning
is used, mainly equation 2.10 with some minor modifications.

2.4.4 Imitation learning

As the name implies, the main focus of this technique is to have the system learn
by observation. In robotics, imitation learning can be utilized by having one robot
perform the task that is to be learned, being controlled by a human operator, while
another robot observes. Another way to do this is to record sensor values and
actuator commands and later use these for learning in other robots.
Depending on the approach and type of task to be learned, imitation learning can
belong to either three of the categories described above.

2.5 Emergence and self-organization

Self organization is the appearance of structure or pattern without any external or
centralized forces imposing it (Heylighen 1999).
In nature, there are several examples of self-organizing systems, spontaneous magne-
tization is one of them. The magnetic field emerging from a material is determined
by looking at its sum of particle spins. Spontaneous magnetization occurs when the
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material is cooled down to a threshold temperature3. Below this temperature, the
particle spins will align themselves in a certain direction.
Some general characteristics of self-organizing systems include robustness and fault-
tolerance. All parts of the system contribute equally to the global state, no one
is more important than the others. So even though a few parts break down, the
system will continue to function, adapting to the changes. In the example above,
a particle spin can escape from its stable position, but the other spins will quickly
force it to realign itself.
When global properties of a system arise out of the local interactions in a system
it is called emergence. Emergence and self-organization are often closely coupled;
self-organizing systems often have emergent properties, such as the magnetic field
in the example above.
Emergent properties often arise in behavior-based (and reactive) control systems.
In Maris & te Boekhorst (1996), a group of simple robots are programmed to do
obstacle avoidance in an environment filled with boxes. The robots are equipped
with left and right IR sensors and bumper sensors (which are only activated after
crashing into objects). The robots will then avoid obstacles detected by the side
sensors, but crash into obstacles located directly in front of it. The pressure from
one box is not high enough to activate the bumper sensors, resulting in the box
being pushed until it hits another obstacle, such as another box. After a while, the
boxes will be arranged in clusters, as can be seen in figure 2.11.

Figure 2.11: Clustering of boxes by DidaBots. Courtesy of the Artificial Intelligence
Lab, University of Zurich.

3Also known as the Curie temperature, a material-specific constant. For iron, the Curie temper-
ature is 768o C
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3 Design and methodology

This chapter will describe the system created and give a short introduction to the
e-puck robot and its sensors and actuators.
During development, emphasis has been on creating a flexible system, where func-
tionality can easily be added. The system is object oriented, and all code has been
written in the Python programming language1.
An introduction to using the system with Webots can be found in appendix B, and
the structure of the code repository is described in appendix C.

Epuck_Webots

E-puck 
robot

BehaviorController

Behavior

AvoidObstacles

Wander

GotoLight

GoHome

inherits from
sensor data,
actuator commands

actuator commands

sensor data

actuator commands

Broadcast

DifferentialWheels

inherits from

Webots

Figure 3.1: Overview of the system, indicating the most important flows of data.

1http://www.python.org/

21

http://www.python.org/
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3.1 E-puck robot

Figure 3.2: The e-puck robot

The e-puck2 robots used in this project have several sensors and actuators used to
interact with their surroundings:

• Eight infrared (IR) proximity sensors, distributed around the body. See figure
3.3.
• A color camera, with a 640x480 resolution. Due to hardware limitations, only

a 40 × 40 part of the picture can be acquired at a time. When using color
images, a frame rate of 4 fps is possible. For gray-scale images, the frame rate
is doubled.
• Three microphones. See figure 3.4.
• 3D accelerometer.
• Two wheels, with the ability of forward and backward motion.

2http://www.e-puck.org/
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• A high-intensity red LED, located directly above the camera, that can be used
for tracking purposes.
• Red LEDs, distributed around the body, to be used for interaction (with user

or other robots).
• A speaker.

In addition to this, the robot has a standard RS232 (serial) interface, infrared re-
ceiver and a bluetooth controller used for communication between robot and com-
puter. The bluetooth link can also be used for robot-robot communication. In this
project however, only computer-robot communication has been used.

Figure 3.3: Diagram of the e-puck, with 8 IR proximity sensors. Courtesy of http:
//www.e-puck.org/

The e-pucks are able to run any kind of customized software (within the limits of
its hardware), but for this project the e-pucks have been running with the SerCom3

software. This software enables the user to acquire sensor input, control motor
3Downloadable from http://www.e-puck.org
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Figure 3.4: Diagram of the e-puck, showing the location of the three microphones.
Courtesy of http://www.e-puck.org/

speeds and more via a bluetooth/serial connection to a computer. For a full list of
supported commands, see appendix D.
Low-level communication between the computer and e-puck is handled by the We-
bots simulator, enabling the user to easily switch between running the software on
simulated and real e-pucks.

3.2 Physical environment

When running the system using physical e-puck robots, they have been operating
on a 124× 152 cm table, with a 10 cm high edge (to avoid the e-pucks from falling
down). Both the edges and the table surface are painted in a light gray shade (the
surface is painted slightly darker than the edges).
Additionally, colored boxes are spread around the table. Red boxes are used as an
indication of ”home“, while the others are being used as obstacles. All materials are
made out of wood.
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For light detection, an ordinary desktop lamp has been used.

Figure 3.5: The table on which the e-pucks have been running. The collection of red
boxes on the left side is the “home”.

3.3 Webots

Webots4 is a robot simulator with a built-in software implementation of the e-puck
robot and also some other popular commercial robots such as the Khepera and Aibo.
Webots also has the capability of controlling physical robots, so that with just a few
mouse clicks it is possible to switch between simulated and physical robots.
In the previous version of this project e-puck-computer communication was han-
dled by a “homemade” solution using the serial communication library in Python.
Although this solution to a degree supported simulation through Breve5, Webots
makes it much easier to switch between simulated and physical e-pucks. This is
the main reason Webots have been used for low-level e-puck communication in this
version.

4Webots: http://www.cyberbotics.com
5The Breve simulation environment: http://www.spiderland.org/
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Figure 3.6: The simulated e-puck environment in Webots with four e-puck robots.
The red box is “home”, while the white one represents “light”.

The simulation environment created in Webots (see figure 3.6) is very similar to the
physical environment described in section 3.2, but for practical reasons the width of
the boxes is larger.
The e-puck robots in Webots do not have exactly the same properties as the physical
robots. Not all physical sensors and actuators have been implemented, for instance
microphones and the speaker are only available as experimental features. In addition
to this, the simulated e-pucks have been given a compass and a signal emitter
and receiver, making it possible to experiment with localization and cooperation
when using more than one e-puck simultaneously. Webots supports simulated radio,
infrared and serial transmissions, and for this project radio signals have been used.
These improvements are in no way essential to the system, and most of the behaviors
described in section 3.7 will run on both simulated and physical e-pucks.
The practical issues with using Webots will not be further discussed here, but ap-
pendix B.2 gives a short introduction to using Webots with e-puck robots.
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3.4 ANN Generator

In order to be able to easily create and test out different neural network configu-
rations, an ANN generator has been created. The generator takes in all necessary
information as parameters, and from this creates an ANN object. Currently, the learn-
ing rate, execution order of the layers, number of training rounds and the maximum
number of rounds to execute each layer before breaking must be set by the user. It
is also necessary to supply the generator with information on all links and layers in
the network (number of nodes, arc topology, learning functions and similar).
The easiest way of providing this information is through a text file which can be
parsed into a form recognizable by the ANN generator. The syntax currently sup-
ported by the parser is best explained by looking at some setup files, appendix E
provides a few examples.
The ANN class has native support for unsupervised learning, which learning function
to be used can be specified for each link in the setup file. When invoking the ANN
object’s train() method, the training patterns are run through the network one by
one, and learning is activated for all plastic links.
Supervised learning is not built into the ANN class, but can be done by passing the
ANN object as a parameter to the supervised learning functions. Currently, delta
and backpropagation learning is supported.
It is possible to save and load the ANN object to/from a text file, making it possible
to store well-performing networks for later use without having to re-train them. One
can also add new links at run-time, either with randomly initialized weights, or with
a user defined weight distribution from a text file. Saving the weight configurations
to a text file is also supported.
Appendix B.4 gives a short introduction to using the ANN generator.

3.5 The behavior control system

The behavior control system is responsible for coordination and execution of be-
haviors on the e-puck. It consists of a behavior controller, and several pre-defined
behaviors. Each behavior attempts to reach their own goal, and the job of the con-
troller is to determine which action to take based on the input from the behaviors.
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3.6 The behavior controller

The behavior controller implemented in this project uses a type of command fusion
loosely inspired by DAMN (see 2.1.5). The controller receives input from the be-
haviors, in the form of suggested moves. A suggested move is simply a weighted list
of eight directions, the directions are numbered as shown in figure 3.7.

0

1

2

3

4

5

6

7

Figure 3.7: There are eight possible directions for the e-puck’s next move. 0 is
defined as no change from current direction, while 4 is a 180o turn.

Each time the controller is executed, the suggested moves are summed into one
list, and the direction with the highest sum is chosen. This ensures that input
from all behaviors are taken into consideration, and the direction that suits the
most behaviors will be selected. The scaling factor of a list determines its priority.
For instance obstacle avoidance outputs large negative numbers in directions with
obstacles, while random wandering have a scaling factor of < 1 and will thus output
small numbers.
In most situations, it is preferable to have as small changes in the direction as
possible. Therefore, the weighted list

[0.5,0.25,0,-0.25,-0.5,-0.25,0,0.25]

is appended to the list of moves. The weights are so small that the forward direction
will not be chosen in situations where there are reasons not to keep moving forwards,
while still large enough to prevent situations where the robot wanders aimlessly back
and forth.
Not all behaviors will be executed in each time step, section 3.7 will talk about this
in greater detail.
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It is possible to run the behavior controller in both parallel and sequential mode6.
Externally, there should not be any major differences between the two, besides the
time between execution of behaviors. The threaded version uses time (in seconds)
to determine how often a behavior should run, while the sequential version uses an
internal counter.

3.7 Behaviors

Each behavior is able to execute on the robot without being dependent on any other
behavior. Just like the behavior controller, behaviors can be run either in parallel,
by using threads, or sequentially.
Externally, a behavior should communicate only with the e-puck and the behavior
controller. Behaviors are able to communicate with each other, but only via the
controller. Sensor data from the e-puck is collected by each behavior as needed.
Behavior output (typically suggested moves) is usually sent to the behavior controller
and not directly to the e-puck. There are some exceptions, but these will be discussed
below.
At creation, a behavior should be assigned a sleep-time and a scaling factor. The
scaling factor is used for adjusting the weighted list of suggested moves so that high
priority tasks such as obstacle avoidance will always produce higher weights than
for instance random wandering.
The sleep-time is used to determine how often a behavior should execute. Setting
a sleep-time is necessary for two reasons. The most important one is that there
is a limit on how much the e-puck is able to accomplish in each time step. Some
behaviors, especially those in need of camera data, take several seconds to finish on
a physical e-puck (and somewhat less time on a simulated e-puck). And there is no
real need for the e-puck to use the camera vision in each time step. If no red blocks
were visible half a second ago, there probably won’t be any around until the e-puck
has been able to move a distance away.
The second reason is related to thread starvation. With all threads continuously
competing for execution time, chances are that a few behavior threads will be run

6Due to the Global Interpreter Lock (GIL) in Python, the so-called parallel version is actually
not very parallel. The main difference is that the threaded version executes the behaviors
in an “intertwined” fashion, whereas the sequential version executes them one by one. For
low-priority behaviors with a long execution-time, the threaded version will allow the higher
priority behaviors to run more frequently. It ought to be possible to circumvent the GIL by
using C-extensions in Python, but so far I have not needed “real” parallelism in the system.
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Behavior

sensor data, 
actuator commands

ANN

actuator commands
preprocessed 
sensor data

Figure 3.8: Close-up look at a behavior from figure 3.1, controlled by an ANN. Typ-
ically, the behavior does some form of preprocessing of the data in order
to transform it to a list structure recognizable by the ANN. Then, the
ANN calculates an appropriate actuator command based on the input,
which is passed on to the behavior controller.

consequentially, while others will almost never be allowed to run7.
The internal structure of a behavior is irrelevant to the system, as long as the
above-mentioned requirements are met. One possible internal organization is using
an ANN, as in figure 3.8. This approach has been used for obstacle avoidance in
this project. Other behaviors, such as random wandering, is fairly simple, and have
no need for an external controller.
The next few sections will take a look at the behaviors created to date.

3.7.1 Obstacle avoidance

The e-puck robot is fairly lightweight, and has a plastic ring around its body pro-
tecting it from impact damage. Still, crashing into obstacles is generally not a
sought-after behavior. Therefore obstacle avoidance has been implemented as the
most basic behavior. The sleep-time is set to 0.1 seconds, and the scaling factor is

7Thread handling is the responsibility of the operating system (OS) scheduler. Theoretically, it is
possible to adjust the default priority of the threads (on the OS level). But Python threads must
obtain the GIL before being allowed to run, and the GIL takes no notice of OS thread priorities.
Additionally, the GIL seems to run the threads in “bulks” (5 times obstacle avoidance, then five
times random wandering and so on), for no apparent reason. So adjusting thread priorities does
not really have much effect in reality. Having the threads sleep in-between execution reduces
the competition for obtaining the GIL and results in a much smoother-running system.

30



DESIGN AND METHODOLOGY 3.7. BEHAVIORS

Figure 3.9: The ANN used for obstacle avoidance. All layers are fully connected
with the next downstream layer, but for simplicity reasons only the links
originating from the first node in each layer are drawn.

8, minimizing the risk of other behaviors overriding obstacle avoidance if there are
obstacles present.
This behavior is governed by the three layer feedforward network seen in figure 3.9,
which takes input from the e-puck proximity sensors. The network is created with
the ANN generator (section 3.4), and both the setup file for the generator and the
training data is included in appendix E.
The network has eight input nodes, one for each IR sensor, 10 hidden nodes and 8
output nodes. The output nodes represent the eight directions seen in figure 3.7.
Each layer is fully connected with the nodes in the next downstream layer. The
output is typically zeros in directions with no obstacles, and large negative numbers
where there are obstacles.

3.7.2 Searching for light and homing behaviors

The homing and searching for light behaviors have been designed to be executed
successively, only one is able to be active at a time. Upon reaching a success state
the active behavior will pause itself, and activate the other.
Both behaviors capture images from the e-puck, process them, and transforms them
into an array structure representing regions in the image (see figure 3.10). One
complete run of the behavior consists of 4 or 8 images captured while the e-puck
rotates around its own axis in 22.5 or 45 degree steps.
Splitting the image into regions is useful mainly for two reasons. First, it allows the
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Figure 3.10: A test image taken from the camera of a physical e-puck, the green lines
showing how the image is split into 4 regions, disregarding information
in the upper and lower part of the image. The image has been scaled
up from 40× 40 pixels. Region height and width are user-specified.

e-puck to see where in its field of vision an object is located. Secondly, not all areas
of the image contains useful information. In general, the lower part of the image
will never be filled with any objects (other that the floor) unless the e-puck is very
close to the object. And then the image will typically be very dark/black due to the
lack of light between the object and the camera, hence it is not possible to gather
much knowledge from it.

Light

An ordinary desktop lamp (see figure 3.5) represents light in the physical world,
while in the simulation a white box has been used.
The camera of the physical e-puck will to a certain degree automatically set the
white balance of the image, the result is that white surfaces will often look slightly
grayish in pictures. So the only part of the images with a large concentration of
white (and near-white) pixels are light sources. By counting the number of pixels
the e-puck is able to determine the direction and distance to the light source.
In the simulated world, white surfaces are still looking white in pictures. So for this
behavior to work as intended in the simulation, all white surfaces except the one
representing the light must be removed.
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Homing

A form of homing behavior has been implemented by defining home as “where the
red boxes are”, which is localized by making use of camera vision. For this behavior
to function properly, all red objects not a part of the home-area must be removed
from the table.
There are several methods that can be used for detecting red objects, the perfor-
mance of a few of them will be discussed in section 4.5.
The method that has proven to be most appropriate for the homing task is to use
the ratio between the red and green components of a pixel.

3.7.3 Signal localization

This behavior exists in two versions, one using sound and another using the signal
emitter on the simulated e-puck.

Localization in the physical world

The version where sound is used makes use of the the three microphones on the
e-puck (figure 3.4) for determining the direction to a sound source. In order to
accomplish this, the sound localization behavior makes use of an ANN with maxnet
functionality (see chapter 2.3.4), created by the ANN generator.
The network has two hidden layers, in addition to an input and output layer. The
input layer has three nodes, one for each microphone, and two output nodes, repre-
senting the left and right e-puck wheel.
The input layer has a positive linear activation function, and simply passes the input
on to the next layer. The first hidden layer is where the main functionality of the
network is. Each node has a strong positive connection to itself, and a weak negative
connection to the two other nodes. After a number of iterations, the node with the
highest input will “win”, while the value of other two nodes will go towards zero.
This result is sent to the next layer, which filters the values through a step activation
function. The filter and output layers are fully connected, and has manually set
weights. A [1] on the node representing the left microphone translates to direction
6, and the opposite for the right microphone. If only the node representing the
back-microphone is non-zero, the output is [0, 0], or direction 0. This is because of
the amplitude differences described in section 4.1.
The setup file and weight data used to create the network can be found in appendix
E.
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Localization in the simulation world

The simulated e-puck does not have functioning speaker and microphones8, so in
order to also be able to perform signal localization in the simulated world a radio
signal emitter and receiver have been added to the e-puck. Two separate layers are
used, Broadcast and GotoSound. Broadcast simply broadcasts a data packet each
time it is run, while GotoSound reads and processes received packages. It is possible
for a robot to have both layers active, but it will only be able to receive signals from
other robots, not from itself.
Signals are transmitted as discrete data packages and are stored in a FIFO9 type
queue structure by the receiver, as shown in figure 3.11. The Webots API guarantees
atomic transmission of packages, and that they will be received in the order in which
they were send by the emitter, but no promises are made with regard to scheduling.
So a packet may be received at different time steps by two receivers, but always in
the correct order.

Figure 3.11: Illustration of how data packets are received and processed by a
signal receiver. Courtesy of the Webots Reference Manual avail-
able at http://www.cyberbotics.com/cdrom/common/doc/webots/
reference/reference.html.

The signal receiver has a built-in localization feature, returning the direction of the
signal relative to the coordinate system of the receiver. The direction is given as a
vector normalized to length 1.0, with the z-axis pointing in the backward direction
of the receiver, and the x-axis to the right10. As in the global coordinate system, the

8Sound functionality is implemented as an experimental feature, and I at least have not been able
to make it work properly.

9FIFO - First In, First Out
10The Webots reference guide states that the opposite is correct, that the z-axis points in the

forward direction and the x-axis to the left, but in my simulation world this is not the case.
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y-axis defines height and is of no relevance for this simulation world. So an emitter
located approximately in front of the receiver would result in a vector similar to[
−0.098 0.0002 −0.995

]
.

The vector is then used to determine the direction in which the e-puck must move
to travel to the broadcasting robot.

3.7.4 Random wandering

Random wandering is there to enable the e-puck to change its direction when no
interesting sensor input is received. The logic within the behavior is fairly simple,
a random integer between 0 and 7 is drawn, representing one of the directions from
figure 3.7. Wandering only makes sense when no other behavior gives any interesting
output, so this behavior should have a scaling factor below 1. Experimentation shows
that 0.1 is an appropriate value.

3.8 Implementation details

As mentioned in the chapter introduction, the system(s) created in this project are
modular, object oriented and fairly independent of each other. The behavior control
system can control any type of robot, not just e-pucks, with little or no modifications
needed (and of course software taking care of low level communication will be needed
for the other robot if Webots can not be used).
Modifying the framework is also relatively easy. To add a new behavior controller
or behavior, subclasses must be added to respectively BehaviorController and
Behavior. Subclasses should as a minimum implement their own version of run
(). Some behavior controllers will also need their own initialize ().
Adding functionality to the e-puck and neural network generator frameworks is also
done for the most part by subclassing (or simply by adding new class functions).
For an overview of the code structure, see appendix C.
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4 Results

This chapter will explore the capabilities of the behavior control system when ex-
posed to different situations. It will start by looking at the e-puck and its sensors,
and then continue on to adding behaviors to the system, one by one.
Unless otherwise is stated, all results concerning physical robots in this chapter have
been obtained using the e-puck “Minch” connected to a computer via bluetooth.

4.1 E-puck sensor measurements

4.1.1 Physical e-puck

As described in section 3.1, the e-puck has several sensors and actuators. Each sensor
has its own “personality”, and this chapter will look at how the e-puck responds to
different situations.
Figure 4.2 shows the response of all eight IR sensors to a light gray object. As can
be seen from the figure, there are some differences as to how well the eight sensors
respond to objects. Sensors 1 and 6 are located somewhat closer to the edge of the
e-puck body than the other sensors (approximately 1 mm from the edge, versus 2
mm for the rest of the sensors), but it does not appear that this has any major
impact on the results. There are no other visible physical differences between the
sensors that can explain their output.
At distances greater than approximately 7 cm, noise becomes too much of a problem
and the proximity sensors no longer give any useful output.
There may also be some problems related to the amount of IR radiation reflected
from different objects. Some types of objects will absorb more IR than others.
Assuming the IR radiation measured by the proximity sensors has a wave-length
located just outside the visible light spectrum, it is logical to assume that dark
objects will absorb more IR radiation than white objects.
The amount of reflected IR is also dependent on which material the object is made
of.
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Figure 4.1: Diagram showing the values of the eight proximity sensors, as a function
of radial distance from the e-puck body, when detecting a light gray
object. Measurements are done at distances 1, 2, 3, and 7 cm from the
e-puck body.

Figure 4.2 shows the differences between light gray, white, red and blue objects. The
graph shows some minor differences in measured IR radiation from the objects, but
as long as the sensors are used for proximity detection and not distance measure-
ments this should not cause much problems. As expected, the sensors detect overall
more reflected IR waves from the white object than from the other ones.
The three microphones on the e-puck (see figure 3.4) can be used to find the di-
rection of a sound source. However, there appears to be some timing issues with
the amplitude measurements of the microphones. When using sound sources that
emit sound with a lot of amplitude and frequency variations, such as mobile phone
ring tones or music, localization becomes difficult. Also, the microphones respond
differently to different sound frequencies, as can be seen in figure 4.3. As to why
this happens, I am not sure. One explanation is that either the speakers used1 or
the computer’s sound card2 is not able to accurately create and emit all sound fre-
quencies with the same amplitude. Another theory is that the e-puck microphones

1A set of MidiLand MLi-150 stereo computer speakers.
2Integrated Intel HDA card on a Dell Latitude D420 laptop.
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Figure 4.2: Diagram showing the values of one of the proximity sensors (sensor 5),
when detecting a red, blue, white and light gray object. Measurements
are done at distances 1, 2, 3, and 7 cm from the e-puck body. The white
object is a sheet of paper, while the three others are made of wood.

are more sensitive to certain frequencies that others. However, no further testing
with other equipment has been done.
Experiments indicated that the lower sound frequencies had a shorter range, and
they were also more easily distorted by obstacles and walls. However, even though
high frequency sounds yield better results, they are rather painful to listen to. A
uniform sine wave with a frequency of 7-900Hz seems to be a fair compromise be-
tween the painfulness of the sound and how well the e-puck is able to detect its
direction.
Also, the back microphone generally reports higher amplitudes than the two side
microphones. This should be taken into consideration when comparing the three
values.
As mentioned in chapter 3.1, the e-puck camera is only able to acquire images of size
40× 40 pixels at a time. The image position can be moved around in the 640× 480
pixel area covered by the camera, but for this project only the default image position
has been used, at the camera’s center. The horizontal viewing distance of the e-
puck is approximately 6 cm for an object located 20 cm from the e-puck body, and

38



RESULTS 4.1. E-PUCK SENSOR MEASUREMENTS

 0

 50

 100

 150

 200

 250

 300

 350

 0  500  1000  1500  2000

M
ic

ro
ph

on
e 

ou
tp

ut

Frequency (Hz)

Right
Left

Back

Figure 4.3: Diagram showing the microphone responses to sine waves with variable
frequencies. The speaker is located approximately 15 cm from the right
microphone.

3-3.5 cm for an object 10 cm from the e-puck. This results in a viewing angle of
approximately 17o − 20o.
Another observation is that the behavior of the e-puck is somewhat dependent on
the battery level. The IR sensor values are especially sensitive to this, the more
discharged the battery is, the more noisy the IR measurements are. The measured
values do tend to be overall lower than they are when the battery is fully charged.
The same goes for the camera, image data seems to be lost (replaced by noise) more
frequently when the battery charge is low.
Also, the e-puck sometimes refuses to respond to motor commands when the battery
level is low.
The microphones does not seem to suffer from this, the noise level is fairly low,
and independent of battery level. The software created for this project tries to
accommodate for this by repeatedly probing the sensors when data is lost, and to
output warnings to the user.
But still, the conclusion is to always (when possible) use the e-puck with a fully
charged battery, and to never trust any results obtained with a low battery level.
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4.1.2 Simulated e-puck

The simulated e-puck is a fairly good approximation of the physical e-puck, and
functions in more or less the same way.
As can be seen from figure 4.4, the proximity sensors of the simulated e-puck does
not appear to have the differences in response seen in the physical e-puck (see figure
4.1). This is as expected, there would have been no reasons for implementing this
kind of inaccurateness from the physical world in software.
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Figure 4.4: Diagram showing the values of the eight proximity sensors on the simu-
lated e-puck, as a function of radial distance from the e-puck body, when
detecting a light gray object. Measurements are done at distances 1, 2,
3, and 7 cm from the e-puck body.

Figure 4.4 does however show some small variations in sensor response, but this is
most likely due to inaccuracies related to the measuring method used, aligning the
e-puck so that the obstacle is directly in front of the sensor is more difficult in the
simulated than in the physical world.
The overall level of the sensor response and level of noise appears to be of the same
order of magnitude in both simulated and physical e-pucks.
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RESULTS
4.2. SPECIFIC ISSUES REGARDING WEBOTS AND THE PHYSICAL

E-PUCK

4.2 Specific issues regarding Webots and the physical
e-puck

In the previous version of this system, computer to e-puck communication was being
handled by the pucker framework3, using Python’s serial communication module.
Commands were simply sent and received from the e-puck with as little delay as
possible, and for the most part the delay was negligible (given that the battery
voltage is not too low, or that other factors such as distance degrades the bluetooth
connection).
In this new version, Webots is used for both simulation and running physical e-
pucks, and the communication process has become more complicated. Apparently,
user commands (or data) is only transferred to and from the e-puck 1-2 times per
second, sometimes even less frequently4. For some reason, the camera images are
updated almost in real-time, so the problem is not the bluetooth connection.
This result in a rather “clumsy-looking” e-puck, bumping into objects before moving
away from them, and sometimes rotating in a larger angle than intended because
the stop-signal is received too late.

4.3 Obstacle avoidance

One of the most vital behaviors in the behavior control system (see section 3.5) is
obstacle avoidance. Without this behavior running, the e-puck will take no notice
of obstacles.
As described in section 3.7.1, the obstacle avoidance behavior primarily consists of
a feedforward neural network gathering data from the e-puck’s IR sensors.
Section 4.1 describes some problems regarding noise from the IR sensors, in addition
to the sensors’ different response to the color of the obstacles. It has therefore been
necessary to threshold the sensor values, in order to minimize the risk of errors.
With the default speed values (half that of the maximum speed) the robot is able to
move approximately 2 cm in 0.3 seconds, which is the average time in between each
execution of the obstacle avoidance behavior. Looking at figure 4.1, the threshold
should be at least 400 in order to detect obstacles within a 2 cm range. In practice,
a threshold of 300 has proven to be appropriate.
Based on observations from running the system with obstacle avoidance, no special

3Created in 2009 by Keith Downing, Kjeld Massali and Dag Henrik Fjær.
4Tested by constantly probing the proximity sensors
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considerations have been needed to compensate for the variations in sensor response
with the physical e-puck seen in figure 4.1.

(a) Corner (b) Narrow gap be-
tween obstacles

(c) Corner

Figure 4.5: Two different situations in which the e-puck proximity sensors are often
tricked.

Some situations in which the proximity sensors are often “tricked” can be seen in
figure 4.5. When the e-puck is located in a corner, such as in figure 4.5(a), the IR
sensor readings will generally be slightly increased, compared to a similar situation
with a rectangular obstacle. The most likely explanation is IR reflection, IR waves
from front obstacle are reflected onto the left obstacle, before reaching the e-puck,
resulting in an increased response on all affected sensors. This effect is the same in
both the physical and simulated world.
Occasionally, all sensor values except those from the two back sensors are above the
threshold, resulting in the e-puck turning 180 degrees when attempting to escape
the corner.
In the physical world, the increase depends on the material and color of the obstacles,
but in most situations this is not significant with regard to the e-puck’s behavior
in the vicinity of obstacles. In the simulated world IR response appears to be
independent of material and color.
This “fear of corners” may cause some problems when traversing maze-like environ-
ments with turning corridors. The e-puck has a tendency to, instead of following
the hallway, turn 180 degrees and return in the direction in which it originally came.
Another problem arises in situations such as figure 4.5(c). When the e-puck moves
directly towards the outer corner of an obstacle, the proximity sensors often are not
able to detect an obstacle until after it has crashed into it. This especially a problem
in the physical world with gray colored obstacles, something which can be explained
by figure 4.2. In the simulated world, the obstacle usually produces sensor values
directly above the threshold value (around 400 - 500) when the distance between
e-puck and the obstacle is at its minimum.
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In figure 4.5(b) there is a narrow gap between the two obstacles, and this might lead
to similar situations as above, no obstacles are detected on the front sensors until it
is too late to avoid bumping into them.
When training the ANN for obstacle avoidance, nine training patterns have been
used (see table E.2). One pattern for each sensor, and one for situations where all
values are below the threshold of 300. Training the network with the backpropaga-
tion algorithm takes some time, so even though it is possible to re-train the network
for each run of the system, the recommended method is to load a pre-trained net-
work.

4.4 Wandering

With only the obstacle avoidance behavior running on the e-puck, the robot will
move in a straight line until coming across obstacles.
In an environment with many obstacles, the addition of random wandering will not
have much effect on the robot. But in situations where the robot may go for longer
periods without any proximity sensor input, random wandering will help the e-puck
change its direction more often and explore new areas of the playing field.
If the sleeping time of the wandering behavior is set too low, the e-puck will con-
tinuously zig-zag and swirl around, not being travel very far from the starting point
over a reasonable amount of time. And if the sleeping time is too long, the behavior
will essentially have no effect. The most effective value of the sleeping time depends
on the speed of the robot, and the size of the playing area,
When running the e-puck on a table similar to that in figure 3.5 and 3.6, a sleeping
time of 5 seconds is appropriate, allowing the e-puck to travel 20 to 30 cm before
changing direction.

4.5 Searching for light and homing

Up till now, the e-puck has only moved around in a random pattern, dodging any
obstacles on its way. Homing and light searching behaviors add a goal-orientedness
to the system, having it search for locations on the table by using the integrated
camera.
One problem with these two behaviors is that the total running time is approximately
1 second (somewhat longer on the physical e-puck, how much longer depends on the
bluetooth connection). During that one second, the e-puck will have moved a dis-
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tance away, and other behaviors may have altered its orientation, causing problems
when trying to keep track of the location of interesting areas on the playing field.
The solution to this has been to completely stop the wheels of the e-puck and pause
all other behaviors during execution.

(a) Webots camera (b) Physical e-puck camera

Figure 4.6: Sample images from both the physical e-puck and the simulated e-puck
in Webots. The red boxes are of approximately the same color in both
worlds. The images have been scaled up in size.

Camera images from the physical and simulated e-puck differ both in quality and
color representation. Figure 4.6 shows sample images from the physical and simu-
lated world, and as can be seen from the figure objects have more distinct boundaries
and the colors are sharper in the simulated world. In general, the images from the
simulated robot are easier to use in a vision system as they are less affected by noise
and not so sensitive to shadows.

Search for light

Figure 4.7 shows the result of thresholding a picture of the lamp using an intensity
mask, labeling all pixels with an intensity greater than a given value5. In order to
detect a sufficiently high concentration of white, the e-puck will have to be fairly
close to the light source, approximately 10 cm, depending on the angle of impact
and the ambient light conditions in the room.
In situations where other strong light sources are present, such as the sun shining
through the windows in the physical world, the e-puck may detect this and indicate
that it has found the light source (which is not directly wrong, as it has found a
light source).

5Intensity is defined as I =
√
red2 + green2 + blue2
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(a) Original image, closeup of a
desk lamp

(b) Thresholding using pixel in-
tensity, I ≥ 400.

(c) White box from the simulation
world

(d) Thresholding using pixel inten-
sity, I ≥ 400.

Figure 4.7: Diagram showing the result of intensity thresholding. All images have
been scaled up from their original sizes.

In the simulation world, a white box is used to represent light6. As can be seen from
figure 4.7 the intensity thresholding is much more straightforward in the image from
the simulated world, only the pixels that are supposed to be white are white in the
image, hence no risk of erroneous tagging.

Homing

There are several methods available for locating red objects in an image, two of
them are demonstrated in figure 4.8. Max simply iterates over the image, marking

6To avoid messing up the lightning conditions on the table. Directing a sufficiently powerful lamp
so that the e-puck camera can have eye contact with it affects the rest of the table much more
in the simulated world than in the physical one.
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all pixels where the red component is the most dominant. For pure red objects,
this method works very well, as can be seen in figure 4.8(b). It also works for
some other shades of red, such as the red boxes covered by shadow in figure 4.8(d).
However, in situations where non-red objects have a slightly red tint, the max-
method fails miserably. An example of this is in figure 4.8(h), where almost the
entire area of the gray floor has been marked as red. Adding constraints upon the
minimal difference between the red and green/blue components will to a certain
degree prevent situations like this, but then there is a risk of also excluding shades
of red with a grayish tint.
Therefore, it has been necessary to instead look at other methods. As can be seen
from figure 4.8, a method using the ratio between red and green pixel components
outperforms max in all test-images.
The r:g-ratio threshold determines the definition of “redness” in an image. A lower
threshold would increase the number of false positives, while increasing it reduces
the number of shades of red that will be labeled, as can be seen in figure 4.9. There
is no such thing as a correct threshold value, it depends on both the situation
and the camera used, but by experimentation a ratio of 1.3 has proved to be the
most efficient in this project. As can be seen from figure 4.8, there are still some
erroneously labeled pixels, especially in figure 4.8(i), but this is easily fixed by adding
a lower bound in the pixel count method.
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(a) Original image, red box. (b) Thresholding using
max. Some gray pixels are
erroneously labeled as red.

(c) Thresholding using the
r:g-ratio of each pixel, rg ≥
1.3.

(d) Original image, red
boxes covered by shadow.

(e) Thresholding using
max.

(f) Thresholding using the
r:g-ratio of each pixel, rg ≥
1.3.

(g) Original image, a green
box (no pixels should be
marked as red).

(h) Thresholding using
max. Almost all gray pixels
are marked red.

(i) Thresholding using the
r:g-ratio of each pixel, rg ≥
1.3. A few gray pixels are
marked red.

Figure 4.8: Diagram showing the result of two different methods of measuring the
amount of red in an image. Max marks the pixels where red is the
dominant color (higher value than green and blue) while r:g ratio looks
at the ratio between the red and green pixel components. All images
have been scaled up from 40× 40 pixels.
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(a) Original im-
age, red box cov-
ered by shadow

(b) rg ≥ 1.1 (c) rg ≥ 1.3 (d) rg ≥ 1.6

Figure 4.9: The result thresholding with different values for the threshold ratio be-
tween red and green. Experimentation has shown that a value of 1.3
gives the best result. A smaller ratio tends to label too few pixels. All
images have been scaled up from 40× 40 pixels.
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4.6 Signal localization

4.6.1 Using sound

The intention was to implement e-puck - e-puck communication by using sound (the
SerCom-firmware has support for 5 predefined sounds). Unfortunately, the embed-
ded microphones on the e-pucks have some difficulties localizing the sound emitted
from the speaker of another e-puck. The microphone timing problems mentioned in
section 4.1 manifest themselves. Also, the amplitude of the speakers is fairly low,
reducing the radius in which localization is possible.
So instead an external speaker has been used for testing, emitting sine waves with a
frequency of 700 Hz. In an area with few obstacles, the localization works fairly well
when the e-puck is located no more than approximately 30 cm from the speaker.

Speaker

Figure 4.10: E-puck confused by a wall between itself and the speaker.

Since no success state is defined for this behavior, the e-puck will simply move
towards the sound, then continue to wander around in the vicinity of the speaker.
In an area with many obstacles, the e-puck has more difficulties locating the speaker.
First, obstacle avoidance has a higher priority than sound localization. In situations
where the e-puck must continuously dodge obstacles, sound localization may never
be allowed to control the e-puck. Also, it appears that the obstacles themselves tend
to distort the sound (echoes or similar), in situations where the e-puck is located
in areas with obstacles, output from the microphones sometimes indicate a wrong
speaker location.
Situations like the one in figure 4.10 prove to be difficult for the e-puck. Sound
localization will want e-puck to move straight forwards, while obstacle avoidance
will move it either to the left or to the right. The result is that the e-puck will not
be able to make any progress, obstacle avoidance will all the time move it away from
the obstacle, while sound localization moves the e-puck towards it.
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4.6.2 Localization using simulated radio signals

Localization in the simulated world suffers from none of the problems with distortion
and echoes mentioned in the previous section. As mentioned in 3.7.3, a simulated
radio signal emitter and receiver are used for localization, and the signal is not
attenuated by neither obstacles nor the distance from the emitter7.
As described in chapter 3.7.3, radio signals are sent as data packages. The packages
are received automatically by the receiver, and stored in a FIFO queue until removed.
If the rate of package sending is greater than the rate in which they are read and
removed from the queue, packages will accumulate in the queue, and the longer the
simulation is run, the more outdated the packages will be.
In itself this is not a great problem, in most cases it is not crucial to at all times
have updated location data, a delay of a few seconds will still give accurate enough
data. However, the localization information linked to a package uses the position
(and orientation) of the e-puck at the time the package was received. So if the e-
puck has moved at all in the interval between receiving and reading a package the
localization data will be completely useless8. For instance a rotation of 90o will
result in all localization data being offset by 90o).
A solution to this problem is to occasionally empty the receiver queue. It is also
wise to make sure the sleeping time of the broadcasting layer is less than or equal
to that of the receiving layer, to avoid unnecessary emptying of the queue.
A video can be found in the code repository that demonstrates what happens when
the queue is not emptied9. In the video, three e-pucks attempt to follow an alpha e-
puck broadcasting its position, but packages are accumulating in the receiver queue
and the e-pucks are never able to locate the leader. A more successful demonstrating
of signal localization will be discussed in section 4.8.1.

4.7 Threaded vs. non-threaded behavior control

As mentioned in section 3.5, the behavior controller can be run both with and
without the use of threads.
The threaded implementation uses time (in seconds) as a measurement of how often
a behavior is to be executed. To avoid the unnecessary complexity of implementing
a timer in the behavior controller, an iteration counter is used instead.

7It is possible to limit the range of the signals, but this has not been done when performing the
experiments described in this report.

8It took a fair amount of trial and error before this discovery was made
9Filename: flocking-queue.mpeg
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In the current system, a scaling factor of 20 is used to translate time into iteration
steps. The result is that the sequential program may execute each behavior more or
less frequently over a given time period than the threaded implementation, depend-
ing on the performance of the computer used10, and on how many behaviors that
are active.
On a more (or less) powerful system, the scaling factor may need some adjustment.

4.8 Running the system

The following sections will describe a few runs of the systems with different settings
and active behaviors. Videos illustrating the examples can be found in the code
repository.

4.8.1 Alpha e-puck with flock

Figure 4.11 shows the result of a flock of three e-pucks following a leader. The sim-
ulation world is similar to that described in chapter 3.3, but all unnecessary objects
have been removed. The e-puck leader is broadcasting its position approximately
every second, while the rest of the e-pucks follow. The only other active behavior is
obstacle avoidance.
As can be seen from the figure and the attached video11, the e-pucks start out moving
in random directions, before the first signal is received and they start localizing the
leader.
One thing to be noticed is that in areas where e-pucks cluster together, or in the
vicinity of walls (or other objects), the e-pucks may wander off instead of following
the leader for a short period of time. This is because signals are only received on
average once every second, in the time between other behaviors (in this example
obstacle avoidance) are in full control of the e-pucks. Signal updates once per
second have proven to be a fair compromise between too much “free wandering”
and constant small directional adjustments.

10A Dell Latitude D420 laptop with an Intel Core Duo 1.2Ghz CPU, running Ubuntu Linux have
been used for the experiments in this report.

11Filename: flocking.mpeg
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(a) Initial configuration

(b) Approximately 5 seconds after simulation start

(c) Approximately 30 seconds after simulation start

Figure 4.11: Step by step illustration of 3 e-pucks following one alpha e-puck.
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4.8.2 Locating boxes

This example shows an e-puck with all behaviors active, with the exception of signal
broadcasting and localization. Videos are available in the code repository12.
Figure 4.12 describes step by step how the e-puck locates the white box. In 4.12(b)
the e-puck have noticed a small area of white, and will start moving towards it,
while in 4.12(c) the number of white pixels in the image is above the threshold, and
a success state is reached.
In the attached videos, it is shown how the e-puck localizes first the white box and
then the red one. As can be seen from the videos, every time one of the camera
vision behaviors is run, the e-puck rotates around its own axis. Eight snapshots
are made with 45o intervals (or fewer, if an interesting area is discovered). The
“wandering off” described in section 4.8.1 is also visible here, especially noticeable
when the e-puck is moving directly towards either the red or white box and then
suddenly start to move in another direction. What happens is that even though
behaviors such as random wandering have a very low priority, in some time steps
higher priority behaviors are not run, thus the e-puck is allowed to diverge from its
path for a few time steps.

12Filename: boxes.mpeg and boxes-4epuck.mpeg
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(a) Initial configuration

(b) Moving towards white area

(c) Have found the white box

Figure 4.12: Step by step illustration of the e-puck moving towards the white box.
Images from the e-puck camera are shown in the upper left corner.
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4.8.3 Locating red box with help from flock

This example will look at how the e-pucks may help each other locate the boxes by
using signal localization.

Figure 4.13: Initial configuration of e-pucks in the simulation world.

The arrangement of boxes in the previous example made the exploration relatively
easy for the e-pucks. Not many obstacles were present between the white and red
box, and the e-puck robots found both boxes relatively easy. Therefore the playing
field has been rearranged in this example, and the e-pucks have been placed so that
only one has direct visible contact with the red box at the start of the simulation as
shown in figure 4.13. In order to more easily demonstrate what happens, all e-pucks
will stop moving when they have located the red box.
Two videos are provided13, one with broadcasting active and one without. In the
case without broadcasting, three of the e-pucks are able to find the red box relatively
easily, and only the e-puck in the lower left corner of the playing field (closest to the
white box) does not manage to locate the box in the duration of the simulation.
In this case the e-puck only explored the lower left quadrant of the table. If it was to
notice the red box it had to move over to the right side, past the green box. But this
is above all a question of good or bad luck. In situations where the e-puck has no
sensor input on which to base its decisions, it has to rely on the randomness of the
13Filenames: cooperate.mpeg and no-cooperate.mpeg
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wandering-behavior. In some runs randomness takes care of the problem relatively
fast, while in others the e-puck spends a long time wandering before locating the
box.
In the example with broadcasting, the e-pucks start broadcasting after they have
found the box. The start of the simulation is very similar to the one described
above, three of the robots find the box relatively fast, while the last one are still
in the lower left quadrant. But shortly after the first of the e-pucks have begun
broadcasting, it receives the signal and is able to direct itself toward the box.
One small issue with the two above examples is that the last e-puck to find the box
has some problems with the camera sometimes not being able to see the red box
because of the e-pucks clustered in front of it.
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The previous chapter has shown the results of exposing the e-puck to various situa-
tions. This chapter will summarize these results, starting with an evaluation of the
system as a whole.
The following evaluation criteria have been composed from Arkin (1998) (page 128)
and Murphy (2000). The complete list with comments are presented in appendix A.

1. Parallel implementation: One of the main principles in reactive and behavior-
based robotics is parallel execution of behaviors. The system implemented in
this report is in theory completely parallel. All behaviors, together with the
behavior controller are designed to be run in separate threads. What prevents
parallelism in practice is limitations in the Python interpreter. As mentioned
in section 3.7, Python prevents real parallelism. Also, the hardware that the
system is to run on must be able to execute the required number of threads
concurrently. As it is now, the system is sufficiently parallel, behaviors are
executed in a close-to parallel fashion, and more than one1 e-puck can run
simultaneously.

2. Hardware targetability: The system is designed to run on any kind of
hardware, provided it has an UNIX-type operating system. In theory, it ought
to also run on Windows systems, but this has not been tested. Due to the
hardware limitations of the e-puck robots, it has been necessary to run the
system on a separate computer, but if the robots had been powerful enough,
there are no reasons to believe the system should not be able to run on the
robot.

3. Niche targetability: The system supports the creation of customized be-
haviors for performing given tasks.

4. Portability: Since no attachment is made to specific types of hardware, the
system should be able to run on most types of “off the shelf” hardware. New
functionality is easily added by creating new behaviors.

5. Robustness: The system is to a certain degree fault-tolerant. If some of the
eight IR sensors were to stop functioning, the robot would still be able to do

1Up to 4-5 e-pucks simultaneously on the Dell Latitude D420 laptop used during development.
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obstacle avoidance. In most situations, an obstacle is detected on more than
one sensor, thus the effect of loosing one sensor would not be catastrophic. One
major problem with the physical e-puck is that most sensors (and actuators)
are affected by a low battery level, causing data to get lost in the transmission
between e-puck and computer, and an increase in sensor noise levels. No
measures have been taken to deal with the increase in noise, but in the case
of lost data the system will keep asking until input is received. If, for some
reason sensor data is lost temporarily the e-puck will get “back on track” once
new data is received.

6. Modularity: The system is highly modular. Behavioral reuse is possible, and
the system can with small modifications be run on other types of robots.

7. Timeliness in development: The behavior control system is object oriented,
and sub-classing will make sure new behaviors inherits the basic properties
needed. Also, Python code is generally fairly easy to understand (at least
compared to lower level languages such as C).

8. Run-time flexibility: Currently, the system is not very flexible once exe-
cution has started. At run-time, it is possible to adjust the behaviors, for
instance by a startup script.

9. Performance: The behavior controller and most of the behaviors are able to
operate in (close to) real time. Running more than 4-5 e-pucks simultaneously
may however cause some lag in the system.

The next sections will look at particular aspects of the system.

Action selection

The previous version of the system used priority based action selection, with static
and manually set priorities. Each behavior would output a motor command that
best suited the goals of that behavior, and the behavior controller chose the motor
command with the highest priority.
In situations where there is little internal competition between behaviors this ap-
proach works OK, but problems arise in situations such as the one in figure 5.1,
where the behaviors need to cooperate in order to reach an optimal decision. In
this case, the IR sensors would show an obstacle directly in front of the e-puck,
while the camera shows a large concentration of red behind the blue wall. The old
system would have moved either to the left or right (direction 6 or 2 from figure
3.7), ignoring the red area, since obstacle avoidance has a higher priority.
The solution presented in this report is also priority based, but takes into considera-
tion the output of more than one behavior. As described in section 3.5, this is done
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Figure 5.1: The e-puck is in a situation where both the obstacle avoidance priority
and homing must cooperate in order to reach an optimal decision. The
camera image from the e-puck can be seen in the upper left corner.

by having each behavior output a weighted list of possible moves. The priority of
each behavior is used to scale the list; In a situation where behaviors disagree the
highest priority behavior will give “its” directions a higher weight, thus increasing
the chances of those directions to be chosen.
In the situation shown in figure 5.1, the output of obstacle avoidance would be like
this:

[
−10 0 0 0 0 0 0 −10

]
signaling that all directions except 0 and 7 is

OK. The output of homing would be
[
1 1 0 0 0 0 0 0

]
. Combining these two

result in the behavior controller would result in direction 1 to be chosen, leading the
e-puck directly towards the red box.

Memory

The system has little concept of memory. A type of short term memory2 is imple-
mented by storing the chosen directions for the past 10 time steps. A similar feature
exists on a behavioral level, making it possible for a behavior to store its suggested
moves and use them in the decision-making process in later time steps.
Currently, the short term memory only exists as a feature, it is not used for any
practical purposes. One possible utilization of memory is to measure progress. Se-
quences of directions such as

2Implemented as a circular buffer of arbitrary length.
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0, 6, 6, 6, 2

can be reduced to

0 4

In other words, for the past five time steps the robot has moved one step forwards
and changed its orientation 180o, the rest of the time has been spent moving around
in a circle.
In areas with a high density of obstacles or walls, such as in a labyrinth, the e-puck
has a tendency to confuse itself and act like described above. In this situation it
could have been useful to not only use the short term memory to determine if the
e-puck was stuck in a dead end, but also to enable the e-puck to backtrack and
escape.
Another use for short term memory is to create a type of volatile world model,
representing the world as it has been perceived for the past 10 (or any other number
of) time steps.
Such a model will never be 100% accurate. In the physical world, the wheels of the
e-puck will spin when crashing into obstacles (and obstacles may also be slightly
displaced from their original location), and the recorded wheel movements will no
longer represent actual movements done by the e-puck. Another problem when act-
ing in the physical world is the timing issues mentioned in chapter 4.2, the recorded
movement may be a 45o turn, while the actual rotation may be 60o or more.
The same problems also exist in the simulation world, but to a lesser extent.

Acting in a group

The system can be run on several e-pucks simultaneously, and they can communicate
by either using radio signals (in the simulated environment) or sound. This makes
it possible to experiment with various cooperative or competitive behaviors, such as
flocking or helping each other locate colored boxes.
A problem in the current system is that the e-pucks are not able to separate between
obstacles and other e-pucks, from the viewpoint of the IR sensors, an obstacle is an
obstacle. As seen in section 4.8.3 this caused some difficulties when all e-pucks were
clustered in front of the red box. Similar problems arise in a flock with a high density
of e-pucks. Even though there are no imminent risk of collisions, obstacle avoidance
will be activated and attempt to separate the e-pucks.
If the system was able to discover other e-pucks, for instance by combining radio
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signals and camera vision, this could significantly improve the “social skills” of the
e-pucks.
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6 Conclusion

In this report, I have looked at different ways to autonomously control a robot.
Pure deliberative and reactive systems have been discussed, in addition to hybrid
and behavior-based approaches. Some artificial intelligence techniques useful in the
design of a behavior-based controller were also examined.
Inspired by the ideas of behavior-based robotics, and in particular Brooks’ subsump-
tion architecture, I have implemented a basic system for behavior-based control of
an e-puck robot. The system has been designed so that behaviors can be easily
added and removed. It is also fairly easy to add new behavior controllers, without
any need for modifications in other parts of the system.
Currently, the system has behaviors for obstacle avoidance, light detection, homing,
signal and sound localization and random wandering. The system has a behavior
controller, responsible for coordinating the output of all behaviors into robot move-
ments. Action selection is inspired by ideas from DAMN (see 2.1.5), the output
of each behavior is a weighted list of possible moves according to the goals of that
behavior, and the move which get the most votes (highest sum) will be selected
in each time step. This approach ensures that the goals of as many behaviors as
possible will be taken into consideration.
One lesson learned during the year I have worked with the system is that seemingly
simple ideas prove to be troublesome to implement, and often does not work quite
as intended. During the first six months of the project, I worked solely with the
physical e-pucks (without Webots), and it took some time before I got to know the
e-pucks and all their oddities. If they suddenly refused to move (or moved in the
wrong direction) it was just as likely that the battery was not properly charged,
than that my implementation had any errors (not to say that my code was never to
be blamed...).
Webots and the simulated robots are not quite as eccentric as their physical coun-
terparts, but they too have their quirks. The problem with the receiver queue
accumulating packages discussed in chapter 4.6.2 was not a problem until testing
broadcasting combined with other behaviors, thus it was more difficult to discover
the cause. And, not unexpectedly, delving into the experimental features of Webots
may cause strange behavior in the system.
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Additionally, Webots have a multitude of features and many of them are still un-
documented and can be a bit tricky to discover. In that respect the Webots user
group at Yahoo is very useful, the people there have valuable knowledge of the more
secretive sides of Webots.
That being said, there have also been times when things just worked, magically. In
the pre-Webots version of the system, one problem was that camera images took 1-2
seconds to transfer from the e-puck, slowing down the system a considerable degree.
In the current version that let Webots take care of low-level communication details,
the transmission delay is reduced down to a fraction of a second, causing much less
problems.

6.1 Future work

During my work in the past year, much time has been spent developing the various
behaviors and experimenting with different types of behavior controllers. The cur-
rent behavior controller have been much improved compared to the previous version,
and is able to combine output from multiple behaviors when making decisions.
One thing that would have been interesting is to incorporate ideas of sequences of
actions into the controller, such as navigate around the blue box then move towards
the red one, as opposed to the current system which is only able to plan one time step
at a time. This could have opened up new opportunities for e-puck cooperation, for
instance when navigating in a maze-like environment with the aid of other e-pucks.
Knowing that the goal is somewhere to the left, it could have moved forwards until
a left turn was possible, instead of like in the current system where it would attempt
to move left right away and become confused when obstacle avoidance interferes and
prevents it from bumping into the wall.
Another subject to further explore is the various social interactions possible in a
group of more than one e-puck. So far I have looked at various scenarios for the
e-pucks helping each other and “follow the leader”-type tasks, but none where the
e-pucks actually cooperated to carry out a task.
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A Evaluation criteria for a
behavior-based system

Evaluation criteria are composed from (Arkin 1998, page 128) and Murphy (2000):
1. Support for parallelism: Behavior-based systems are inherently parallel,

how does the architecture provide for this?
2. Hardware targetability: How well the architecture runs on a physical robot.
3. Niche targetability: How well the system performs for the intended appli-

cation.
4. Portability: Could the system be used for other applications or run on other

hardware?
5. Robustness: How does the system handle failing components?
6. Timeliness in development: Does the system provide tools and develop-

ment environments for implementation, or is it more a philosophical constuct?
7. Run-time flexibility: How well can the system be adjusted or reconfigured

during execution?
8. Performance effectiveness
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B Usage

B.1 System requirements

The programs have been tested on Ubuntu Linux, but ought to also run on most
other flavors of Linux. It will probably work OK on Mac OS X, and might even
work on Windows (the threaded version of BehaviorController will probably not
work as intended on Windows though).
The programs have only been tested using Python 2.6, but will probably also work
with 2.5 and 2.7. The software will not work with Python 3.0 without modifications
to the code.
The following Python packages should be installed for the program to function
correctly:
• Numerical Python (numpy)
• Python Imaging Library (PIL)
• PySerial

Other non-essential packages, such as picle may also be needed for the system
to run without any complaining. For instance, the picle-module is only used for
saving and loading a Python object to a text-file, and is not needed if these features
are not used. Commenting out the appropriate import-statements should solve this
problem.
In addition to Python, the Webots simulator must be downloaded and installed. A
free 30 days trial version can be downloaded from http://www.cyberbotics.com/.

B.2 Introduction to using Webots with e-pucks

1. First, create a new project. Four new folders will be created in your project
folder where project-specific files will be stored: controllers, plugins, protos
and worlds.

2. To modify the simulation world you can either use the graphical interface
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in Webots, or you can modify the world-file directly. Creating a world from
scratch is rather tedious, so I recommend starting with a world file from one of
the examples bundled with Webots, or take a look at the Webots-e-puck.wbt
file in the code repository.

3. Add an e-puck robot controller (Wizard → New robot controller). The
controller-file will be stored in the controllers folder. Take a look at the
e-puck Webots.py file in the code repository for some examples on how to
program a controller in Python.

4. If you want to add features to your e-puck, you have to modify the e-puck.proto
file. Copy from [Webots install folder]/projects/default/protos/robots/e-puck.proto
and save it in your project proto folder. It is important that you do not re-
name the file, it must be called e-puck.proto. The proto-file can also be
useful if you need to know the name of an object, for instance the proxim-
ity sensors. (when enabling features in your controller, you have to use the
hard-coded name from the proto-file).

For a more in-depth introduction, take a look at the Webots reference manual1.
The Webots-users group at Yahoo2 is a great place to get help should you run into
difficulties.
Unfortunately there is not an overwhelming amount of information around related
to creating robot controllers in Python, but the Python API in the Webots reference
manual has some code examples. With a trial-and-error approach it is also fairly
easy to translate C++ code samples from the documentation into Python.
The following code creates an e-puck object using files from the code repository, and
prints out the proximity sensor values while moving forwards:

from e-puck˙Webots import *

e = e-puck˙Webots()
e.set˙wheel˙speeds(1,1)

while True:
print e.get˙proximities
e.step(self.timestep)

1Available at http://www.cyberbotics.com/cdrom/common/doc/Webots/reference/
reference.html.

2http://tech.groups.yahoo.com/group/Webots-users/
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B.3 Physical e-puck communication

This section describes how to connect to the e-puck robot. The following procedures
are written for Ubuntu Linux, but ought to work on most systems (with some
modifications).

How to pair with an e-puck

1. Make sure your system has a functioning bluetooth controller, and that the
e-puck has been flashed with a firmware supporting bluetooth communication
(for instance SerCom3. You also have to install the bluez-utils package.

2. Find the mac address of your e-puck, using the command hcitool scan.

3. Using the mac address from the previous step, bind it to a system device with
sudo rfcomm bind rfcomm0 [mac]. The device can afterwards be found in
/dev/rfcomm0. (it is not necessary to name the device rfcomm0, any name
could be used).

4. To check if the e-puck is connected, and that the communication channel
is open (clean), use the command rfcomm -a. If output indicates that the
channel is closed, or you get no output at all, the previous steps must be
repeated. rfcomm release rfcomm0 might also be useful.

Of course, a graphical bluetooth connection manager can also be used, just make
sure you have control over which device (Unix) or COM-port (Windows) the e-puck
is bound to (you will need this later, when connecting to the e-puck in Python).

Communicating with the physical e-puck in Webots

1. Make sure the e-puck is connected to the computer, and that your Webots-
project works as expected with simulated e-pucks.

2. Start Webots, and load the e-puck project files. Double-click on the e-puck(s)
you want to use, and chose the correct device path or COM-port in the drop-
down list.

3. Close the e-puck window and run the project as you normally do with simulated
e-pucks.

3SerCom is downloadable from http://www.e-puck.org
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B.4 ANN Generator

First, a setup file describing the neural network must be created. The setup file
contain all necessary information needed to create the network, such as the number
of nodes in each layer, their activation functions, whether the layer is active during
training and/or testing and so on. The links are specified in the same manner,
detailing the link topology, prelayer, postlayer and initial weight settings.
Examples of the syntax used in the setup files can be found in appendix E.
This example creates a single layer (+ input) perceptron network from the setup file
”settings.ann” (see E):

import ann

network=ann.create˙ann(”settings.ann”)

trainingdata1=([0,0,0,0,0,0,1,1],[0,1])
testdata1=[0,0,0,0,0,0,0,1]

ann.delta˙learning(network, ([trainingdata1])
ann.test([testdata1])

print ann

The network is trained to output 01 to 00000001 using delta learning. Other train-
ingcases can be added the same way (as long as they are all linearly separable).
Unsupervised learning is done by executing the built-in train() method, with the
training data as argument. Also, an unsupervised learning function must be specified
for each plastic link in the setup file.

B.5 The Behavior Control System

The controller can be run either with or without threads, specified by the threaded
option in the configuration file, and with an arbitrary number of active behaviors.
The following example creates a behavior controller and two behaviors (obstacle
avoidance and random wandering). It is assumed that the neural network governing
obstacle avoidance has been created and trained beforehand:

from e-puck˙Webots import *
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B.6. MAIN FILE USAGE

e-puck˙controller = e-puck˙Webots()
initialize˙behaviors(”behaviors.conf”, e-puck˙controller)

The configuration file behaviors.conf looks as following:
##########
##Usage :
##Al l l i n e s s t a r t i n g with ’# ’ i s ignored .
##Al l other l i n e s should be on the form ’ ob j e c t va r i ab l e 1=value1

va r i ab l e 2=value2 . . . ’
##########

#Setup o f behavior c o n t r o l l e r :#

Global : threaded=False

l ay e r Wander ann=None
l ay e r AvoidObstacles ann=” obs avo idance . ann”

B.6 Main file

The file named [controllername].py located in the controller/controllername
folder in the Webots project area is where Webots expect to find initialization data
for the controller. The controller/e-puck/e-puck.py file in the code repository
contains a working e-puck controller making use of the behavior control system.
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C Code structure

Table C.1 gives an overview of the purpose and functionality of the different Python
files in the code repository, downloadable from http://folk.ntnu.no/majo/masteroppgave.
All files are located in controller/e-puck folder (e-puck is the main e-puck con-
troller). Additional controllers created are interactive e-puck, enabling the user
to control the e-puck by using the keyboard and alpha e-puck which broadcast its
location to all other e-pucks.
Additionally, some configuration files for neural networks and behavior controllers
are provided.

Table C.1: Overview of the functionality of the files in the code repository.
Name Description
ann activation functions.py Various activation functions used to

calculate activation levels for ANN-
nodes.

ann supervised learning.py Supervised learning functions operat-
ing on an ANN-object

ann unsupervised learning.py Unsupervised learning functions, used
by the train() method in the ANN
class.

ann.py Main class for generating an ANN.
utilities.py Various generic utility functions.
e-puck.py Main file, setting up and initializing all

necessary objects.
e-puck Webots.py E-puck controller class file.
image.py Various methods for modifying PIL im-

ages.
behavior layers.py Main class for the behavior controller

and behavior classes.
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D List of e-puck commands
supported by SerCom

The following is a list of commands supported by the e-puch with the current version1

of the SerCom software through a bluetooth/serial interface.

”A” Accelerometer
”B,#” Body led 0=off 1=on 2=inverse
”C” Selector position
”D,#,#” Set motor speed left,right
”E” Get motor speed left,right
”F,#” Front led 0=off 1=on 2=inverse
”G” IR receiver
”H” Help
”I” Get camera parameter
”J,#,#,#,#” Set camera parameter mode,width,heigth,zoom(1,4 or 8)
”K” Calibrate proximity sensors
”L,#,#” Led number,0=off 1=on 2=inverse
”N” Proximity
”O” Light sensors
”P,#,#” Set motor position left,right
”Q” Get motor position left,right
”R” Reset e-puck
”S” Stop e-puck and turn off leds
”T,#” Play sound 1-5 else stop sound
”U” Get microphone amplitude
”V” Version of SerCom

1Version 2.0.0, from January 2008
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E ANN setup files

8-node perceptron network trained for obstacle avoidance

The network has 8 input nodes, and 2 output nodes fully connected to each other.
The input is assumed to be the eight IR sensors, while the output is motor commands
to the right and left wheel of the e-puck.

Training data

The network has been trained using delta learning, with training data according to
table E.1.

Table E.1: Obstacle avoidance training data. 300 is an appropriate threshold value
between negligible and actual obstacles.

Active IR sensor Input Desired output
Front right [300,0,0,0,0,0,0,0] [-1,0]
Right [0,300,0,0,0,0,0,0] [-1,0]
Middle right [0,0,300,0,0,0,0,0] [-1,0]
Front left [0,0,0,0,0,0,0,300] [0,-1]
Left [0,0,0,0,0,0,300,0] [0,-1]
Middle left [0,0,0,0,0,300,0,0] [0,-1]
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ANN SETUP FILES

obs avoidance delta.ann

##########
##Usage :
##Al l l i n e s s t a r t i n g with ’# ’ i s ignored .
##Al l other l i n e s should be on the form ’ va r i ab l e=value ’
##########
#Perceptron network#

Global : ex e c o rde r =[0 ,1 ]
Global : maxrounds=10
Global : l e a r n i n g r a t e =0.2
Global : t r a in ing rounds=1

##Layers
#input
l ay e r neurons=8 layername=0 act iva t i onFunct i on=Step thre sho ld=100

t a c t i v e=True tqu i e s c en t=False r a c t i v e=True rqu i e s c en t=False

#output
l ay e r neurons=2 layername=1 act iva t i onFunct i on=Var iab leStep thr e sho ld

=[−0.999 ,−1 ,1] t a c t i v e=True tqu i e s c en t=False r a c t i v e=True
rqu i e s c en t=False

##Links
l i n k p r e l ay e r=0 po s t l ay e r=1 topology=’ f u l l ’ maxweight=0.0 minweight=0.0

3 layer feedforward network trained for obstacle avoidance

The network has 8 input nodes, 10 hidden nodes in the middle layer and 8 output
nodes. The input nodes is assumed to represent the values of the IR sensors of the
e-puck, while the output is a weighted list of directions as shown in figure 3.7.

Training data

The network has been trained using backpropagation learning, with training data
according to table E.2.
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ANN SETUP FILES

Table E.2: Obstacle avoidance training data. 300 is an appropriate threshold value
between negligible and actual obstacles.

Active IR sensor Input Desired output
Front right [300,0,0,0,0,0,0,0] [-1,-1,0,0,0,0,0,-1]
Right [0,300,0,0,0,0,0,0] [-1,-1,-1,0,0,0,0,0]
Middle right [0,0,300,0,0,0,0,0] [0,-1,-1,-1,0,0,0,0]
Front left [0,0,0,0,0,0,0,300] [-1,0,0,0,0,0,-1,-1]
Left [0,0,0,0,0,0,300,0] [0,0,0,0,0,-1,-1,-1]
Middle left [0,0,0,0,0,300,0,0] [0,0,0,0,-1,-1,-1,0]
Back left [0,0,0,300,0,0,0,0] [0,0,-1,-1,0,0,0,0]
Back right [0,0,0,0,300,0,0,0 [0,0,0,0,-1,-1,0,0]
None [30,30,30,30,30,30,30,30] [0,0,0,0,0,0,0,0]
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ANN SETUP FILES

obs avoidance backprop.ann

##########
##Usage :
##Al l l i n e s s t a r t i n g with ’# ’ i s ignored .
##Al l other l i n e s should be on the form ’ va r i ab l e=value ’
##########
#3 lay e r f e ed forward network , 8 input and 8 output nodes#

Global : ex e c o rde r =[0 ,1 ,2 ]
Global : maxrounds=3000
Global : l e a r n i n g r a t e =0.2
Global : t r a in ing rounds =3000

##Layers
#input
l ay e r neurons=8 layername=0 act iva t i onFunct i on=Step thre sho ld=300

t a c t i v e=True tqu i e s c en t=False r a c t i v e=True rqu i e s c en t=False

#hidden
l ay e r neurons=10 layername=1 act iva t i onFunct i on=Tanh thre sho ld=1

t a c t i v e=True tqu i e s c en t=False r a c t i v e=True rqu i e s c en t=False

#output
l ay e r neurons=8 layername=2 act iva t i onFunct i on=Tanh thre sho ld=0 t a c t i v e

=True tqu i e s c en t=False r a c t i v e=True rqu i e s c en t=False

##Links
l i n k p r e l ay e r=0 po s t l ay e r=1 topology=’ f u l l ’ maxweight=−0.5 minweight

=0.5 p l a s t i c=True
l i n k p r e l ay e r=1 po s t l ay e r=2 topology=’ f u l l ’ maxweight=−0.5 minweight

=0.5 p l a s t i c=True

Three layer network with maxnet-functionality for sound
localization

Manual weights

The weights between layers 2 and 3 (output layer) have been set manually. Weight
matrix:

0 1 0
1 0 0
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ANN SETUP FILES

goto sound.ann

##########
##Usage :
##Al l l i n e s s t a r t i n g with ’# ’ i s ignored .
##Al l other l i n e s should be on the form ’ va r i ab l e=value ’
##########
#Maxnet#

Global : ex e c o rde r =[0 ,1 , 2 , 3 ]
Global : maxrounds=100
Global : l e a r n i n g r a t e =0.2
Global : t r a in ing rounds=1

##Layers
#input
l ay e r neurons=3 layername=0 act iva t i onFunct i on=Pos i t i v eL in ea r th r e sho ld

=100 t a c t i v e=True tqu i e s c en t=False r a c t i v e=True rqu i e s c en t=False

#maxnet
l ay e r neurons=3 layername=1 act iva t i onFunct i on=Pos i t i v eL in ea r th r e sho ld

=0 t a c t i v e=True tqu i e s c en t=True r a c t i v e=True rqu i e s c en t=True

#f i l t e r
l a y e r neurons=3 layername=2 act iva t i onFunct i on=Step thre sho ld =0.001

t a c t i v e=True tqu i e s c en t=False r a c t i v e=True rqu i e s c en t=False

#output
l ay e r neurons=2 layername=3 act iva t i onFunct i on=Linear th r e sho ld =0.0

t a c t i v e=True tqu i e s c en t=False r a c t i v e=True rqu i e s c en t=False

##Links
l i n k p r e l ay e r=0 po s t l ay e r=1 topology=’1−1 ’ maxweight=0.0001 minweight

=0.0001

l i n k p r e l ay e r=1 po s t l ay e r=1 topology=’ t r i a n gu l a r ’ maxweight=−0.3
minweight=−0.3

l i n k p r e l ay e r=1 po s t l ay e r=1 topology=’1−1 ’ maxweight=1.0 minweight=1.0

l i n k p r e l ay e r=1 po s t l ay e r=2 topology=’1−1 ’ maxweight=1.0 minweight=1.0

l i n k p r e l ay e r=2 po s t l ay e r=3 topology=’ f u l l ’ maxweight=0.0 minweight=0.0
w e i g h t s f r om f i l e=’maxnet−sound−weights . txt ’
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