
June 2010
Svein-Olaf Hvasshovd, IDI
Morten Knutsen, UNINETT AS
Arne Øslebø, UNINETT AS

Master of Science in Computer Science
Submission date:
Supervisor:
Co-supervisor: 

Norwegian University of Science and Technology
Department of Computer and Information Science

Distributed NetFlow Processing Using
the Map-Reduce Model

Jan Tore Morken





Problem Description
Examine how the map-reduce programming model can be applied to NetFlow processing in order
to efficiently analyze very large sets of NetFlow data. Implement a number of common NetFlow
data processing operations 1) using a map-reduce framework, and 2) using an optimal approach
without any framework constraints. Execute relevant benchmarks and compare the efficiency and
scalability of the implemented systems. Based on this, evaluate the viability of using general
frameworks for distributed NetFlow processing.

Assignment given: 15. January 2010
Supervisor: Svein-Olaf Hvasshovd, IDI





Abstract

In this Master’s thesis we study the viability of using the map-reduce model
and frameworks for NetFlow data processing. The map-reduce model is an
approach to distributed processing that simplifies implementation work, and it
can also help in adding fault tolerance to large processing jobs.

We design and implement two prototypes of a NetFlow processing tool. One
prototype is based on a design where we freely choose an approach that we
consider optimal with regard to performance. This prototype functions as a ref-
erence design. The other prototype is based on and makes use of the supporting
features of a map-reduce framework.

The performance of both prototypes is benchmarked, and we evaluate the
performance of the framework based prototype against the reference design.
Based on the benchmarks we analyse and comment the differences in perfor-
mance, and make a conclusion about the suitability of the map-reduce model
and frameworks for the problem at hand.
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Chapter 1

Introduction

1.1 Motivation

NetFlow data can provide important information about the traffic that passes
through a network. However, as the network load grows, the amount of col-
lected flow data also increases. The result is that NetFlow data collections
grow too large for conventional, single-threaded processing tools to process ef-
ficiently.

In previous research we have studied common NetFlow processing tech-
niques and found that the map-reduce model accommodates well for the kind
of processing operations we want to perform [1]. As map-reduce frameworks
eliminate much of the complexity of writing parallel, fault-tolerant data pro-
cessing programs, we wish to study how our processing operations can be im-
plemented in the map-reduce model and evaluate the efficiency of such imple-
mentations.

1.2 Requirements

This section describes the general requirements that form the basis for the eval-
uations done in this thesis.

1.2.1 Scalability

Ideally, a processing tool should be able to operate efficiently on any number of
CPU cores on any number of machines. If this is the case, the tool should also
scale to any volume of data given that enough hardware is available to store
and process it. We refer to this as scalability: The ability of the tool to continue
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to perform well as more data and more computers are added to the processing
chain.

The general goal is to eliminate both disks, CPUs and individual machines as
performance bottlenecks. Removing CPU as a bottleneck is particularly impor-
tant, as disk performance is still continuing to increase dramatically, especially
with the introduction of solid state drives (SSDs). The fact that multiple hard
drives can be combined in RAID setups for increased speed, without making
any modifications to software, also puts emphasis on CPU parallellism. The in-
troduction of solid state drives (SSDs) is also an indication that the performance
of storage devices will continue to evolve.

1.2.2 Query Response Time

Somewhat related to scalability, the query response time is the time it takes from
the moment the user submits a query to the system, until the system returns a
useful result to the user. It is worth keeping in mind that “useful results” in this
context may also include partial results that only include a subset of the data,
e.g. returning results in increments of higher precision.

Existing tools generally provide good response times, much thanks to their
simplicity. Earlier studies have shown, however, that general processing frame-
works tend to introduce a runtime overhead that makes doing ad hoc queries
impractical. This is much due to the extra overhead added by job scheduling.

1.2.3 Operations

Based on our previous research we have identified three operations that are es-
sential in a NetFlow processing tool. The first is filtering, which involves selec-
tively choosing what data to include in the processing and not. The second op-
eration is aggregation, which involves grouping and counting records that share
given attributes. Finally there is sorting, which involves reordering the output
data in an ascending or descending fashion based on one or more attributes.

1.3 Structure of Thesis

In Chapter 2 we introduce the NetFlow technology and the map-reduce model.
We also discuss various aspects concerning the efficiency of the map-reduce
model.

In Chapter 3 we describe the methodology we use throughout our research.
In Chapter 4 we present two processing tool designs. One describes a base-

line architecture that is independent of any map-reduce frameworks but is de-
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1.3. STRUCTURE OF THESIS

signed for high performance. The other design describes an architecture that
can be implemented using a general map-reduce framework.

In Chapter 5 we evaluate two existing map-reduce frameworks in order to
determine which is the most suitable one for our requirements.

In Chapter 6 we explain the details of how we have implemented both ar-
chitectures presented in Chapter 4.

In Chapter 7 the performance of our two implementations is evaluated and
compared in order to determine how well a map-reduce based system performs
compared to the baseline system.

Finally, in Chapter 8 we draw our conclusions about the viability of map-
reduce and general map-reduce frameworks as a basis for a NetFlow processing
tool.
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Chapter 2

Background

This chapter introduces the most important technologies we are working with
in the course of this project. Section 2.1 introduces the NetFlow technology, as
well as typical areas and methods where NetFlow is utilised. The map-reduce
programming model is explained in Section 2.2, along with a discussion of a
number of issues that affect the efficiency, scalability and error resiliency of
map-reduce implementations.

2.1 NetFlow and IPFIX

The NetFlow technology was originally introduced by Cisco Systems [2]. It
provides a mechanism for exporting summaries of traffic that is observed in
networking equipment such as routers and switches.

The Internet Engineering Task Force (IETF) has launched an effort to stan-
dardise the export of flow data [3]. Termed Internet Protocol Flow Information
Export (IPFIX), this new standard builds on – and is, in many respects, identical
to – Cisco’s NetFlow version 9 [4, 5].

2.1.1 Architecture

As the name of the technology implies, NetFlow revolves around flows. A flow
is defined as a set of packets within a time frame that share a certain set of
attributes. These attributes have been defined to be the following [6]:

• source IP address

• destination IP address

• source port number

5
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• destination port number

• IP protocol type

• IP type of service

• input interface

The first six attributes in the list above are simply IP packet header fields.
The last attribute – “input interface” – is the device interface number on which
the IP packet was observed.

Figure 2.1: NetFlow router cache

Figure 2.1 illustrates a typical approach to capturing NetFlow data from net-
work routers. The system that is capturing packets – such as a router, switch or
network probe – keeps a cache of current flows, named intra-router flow cache
in Figure 2.1. Each row listed in the cache represents a flow. Each flow has a
unique flow key, as well as counters for the total number of packets, bytes, as
well as the age of the flow.

When a packet is captured, a lookup is done in the cache to find an existing
flow with the same attributes. If no matching flow is found in the cache, a cache
entry is created to represent the flow. If one is found, the flow counters – such
as byte and packet counts – are incremented based on the current packet.

All flows in the cache have a limited life span, and will eventually expire
from the cache and be sent to the collector. There are a number of events that
can cause a flow to expire. An obvious case is when a TCP connection is closed.
Flows will also expire after a certain amount of idle time, and long-lasting flows
that are not idle may still be forced to expire after a given amount of time.

Collection of NetFlow data can be done in a number of ways. It is common
to capture and export flow data from routers or switches to a central collector,

6
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Figure 2.2: NetFlow export architecture

as shown in Figure 2.2. In networks with high traffic volumes, one may choose
to sample the traffic (i.e. only capture every N th packet) in order to reduce the
load on the CPU in the network equipment.

Figure 2.3: Network with traffic probe

As illustrated in Figure 2.3, another option is to attach monitoring probes to
the network in some manner. Such probes – often consisting of high-end server
systems with dedicated hardware for capturing traffic – are capable of process-
ing greater traffic volumes, eliminating the need for sampling and thus enabling
the collected traffic data to be more precise. This puts a correspondingly higher
load on all subsequent parts of the processing chain.

When flows have expired on the capture device, they are exported to a flow
collector. If the NetFlow protocol [6] is used, this is done by bundling a number
of flows in a UDP packet and sending this packet to a collector host. A collector
process on this host listens for such packets and stores incoming flows in some
format. The storage format is largely application specific, since usage patterns
can vary a lot.

7
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2.1.2 Data Storage

The collected flows must be sent to a collector process, and the collector process
stores the flow data in some format. The specifics of this format are determined
by the program. Some collectors [7, 8] will process and perform aggregation on
data as it is received, and will often store only aggregated data. This ensures
quick access to a predefined set of statistics, such as aggregated counters per
IP address, port numbers and such, but limits the user to that predefined set of
queries.

Other collectors [9, 10] will pass flows directly to storage without any pro-
cessing. In this case flow records are typically stored sequentially in plain files,
often in an unordered fashion.

Much due to the fact that so many different flow storage formats exist, the
IPFIX standard also includes a standardised file format for flow record storage
[11]. This format is simply a serialised stream of binary IPFIX messages written
to plain files. This maintains full flexibility with regard to how the data can be
used later, and allows the use of any IPFIX features in the stored data.

2.1.3 Use Cases and Existing Tools

The possible uses of flow data span a wide area. Among the most common
usage areas is collecting network link statistics for use in capacity planning or
accounting. For instance, one may wish to determine the total volume of data
each IP address or subnet in a customer network has transported to or from an
external network (e.g. the Internet). To do this you would typically start by
filtering the flow records to exclude any internal traffic, then aggregate records
by IP address and summarise byte and packet counts for each address.

Another possible use of flow data is anomaly detection [12, 13]. By studying
the change in flow data over time and looking at deviations in the data from
expected values, it is possible to detect anomalous traffic patterns in a network.
In the case of a worm outbreak, for instance, you may see a sudden increase in
traffic on a given port number or to/from IP addresses that are normally quiet.
In this case you may want to both aggregate on some field as well as well as
sort the resulting aggregates to extract the most active hosts or the busiest port
numbers.

As can be seen from the examples we have just mentioned, there are three
operations that are very commonly performed on flow data: filtering, aggrega-
tion and sorting. All these operations are commonly supported by even simple
flow processing tools such as Nfdump [9] and SiLK [10].
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2.2 The Map-Reduce Model

The map-reduce programming model was introduced by Google in 2004, in a
paper describing the architecture and some limited aspects of their non-public
implementation [14]. Since then, the map-reduce model has attracted a lot of
attention, and a number of publicly available implementations have appeared
[15, 16, 17].

One of the primary advantages of programming in the map-reduce model is
that the complexity of writing a concurrent program is abstracted away, and to
a certain degree eliminated. The programmer implements two functions: map
and reduce. The framework takes care of invoking these functions on the input
data and scheduling parallel execution of them across any number of computa-
tion nodes.

This simplification of a program into only two relatively simple functions
may come at a cost, however. Some computational tasks are simply not suit-
able for processing with map-reduce. One example is joining two large data
sets, as well as any problem that requires interdependent computations to be
performed.

2.2.1 Concept and Design

One of the aspects that make writing programs in the map-reduce model so
simple is the structure in which programs must be written. As previously
mentioned, all map-reduce jobs must be expressed as two functions: map and
reduce. It is not necessary to pay attention to issues like threading, synchroni-
sation, locking, and other aspects related to distributed or threaded execution.

The classic example used to illustrate how a map-reduce program can be
implemented, and how the map and reduce functions work, is a word counting
program. This program accepts a set of documents as input and emits an index
of words and the number of occurrences of each word.

function map(String key, String document) {
for word in split_words(document) {
emit_intermediate(word, "1");

}
}

function reduce(String word, Iterator values) {
int count = 0;
for v in values {
count += to_integer(v);

9
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}
emit(word, to_string(count));

}

Listing 2.1: Word count map-reduce program

Listing 2.1 shows the pseudocode of such a word counting program. As can
be seen, the map function accepts a key and a value as input, and emits a number
of intermediate key-value pairs as output. The reduce function accepts a key
and a list of values as input. In this particular case it simply calculates the sum
of the values in the input list and emits a final key-value pair for each input key.

Figure 2.4: The map-reduce model [14]

Figure 2.4 illustrates the execution and flow of a map-reduce job. After sub-
mitting a job – such as the word counting program described above – the first
step in a map-reduce process is to split the input data into suitably sized chunks
that can be used as input for each map worker. For each input record in the
chunk, the worker calls the map function, which emits an output record in the
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form of an intermediate key-value pair. These key-value pairs are then dis-
tributed to reduce workers based on their keys. All intermediate records that
share the same key, regardless of which map process they originate from, are
sent to the same reduce worker, and ultimately the same reduce function call.

2.2.2 Implementation Details

The map-reduce model only describes the general structure of a distributed
program. How a map-reduce job is executed depends on the framework im-
plementation. These aspects vary between systems.

Depending on what the desired error resiliency and performance is, a num-
ber of design choices can be made. One issue is whether to store map or reduce
outputs to disk before passing them down the execution chain. Depending both
on how I/O intensive a job is, as well as the hardware the job is running on, a
better choice may be to use a streaming-based approach, where intermediate
data is rarely written to and read from disk.

Out-of-Band Data

Out-of-band data is data that is emitted from the map and reduce functions
through an auxiliary channel, and is not part of the regular output data. This
data is passed back to the programmer in some manner and can for instance be
made available in the subsequent phases.

One use of out-of-band data is to collect statistics about the processed data.
Having information about the distribution of values is essential when perform-
ing a bucket sort, for instance. Bucket sorting is a common approach to sorting
in the map-reduce model.

Intermediate Disk Storage

After data has been read from disk and processed by the map function, one
must choose whether or not the intermediate key-value pairs should be stored
to disk. The same question arises for every map or reduce phase involved.

Storing intermediate data to disk ensures that the size of the map output is
not limited by the amount of memory in the cluster. Instead it is limited by the
amount of available disk space, which may be many orders of magnitude more
than the amount of available memory.

Also, the more frequently processed data is stored to disk, the more quickly
the system can recover from node failure where the contents of memory, but
not disk, are lost. If using a distributed, replicated file system, one may not
even have to wait for the failed node to return. At the same time, it is obvious
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that an additional overhead is associated with storing all data to disk before or
after it is transferred to the correct node for further processing.

If intermediate records are not stored to disk, there are two options:

• Keep map output data in main memory until the reduce phase begins.
While theoretically possible, this will likely not be possible in the general
case because of the constraints in memory size.

• Execute the map and reduce phases simultaneously, passing intermediate
records directly from the map function to the reduce function. We discuss
the implications of this in the upcoming section on reducer execution.

Incremental Processing

The concept of incremental processing in this context is similar to storing inter-
mediate records to disk. Instead of storing intermediate map output records,
however, we store the states of reducer processes, similar to checkpoints in file
systems and database management systems.

Such reducer states would consist of two primary parts: the current reducer
data and a set describing which parts of the original input data set are included
in the reducer data. If a reducer node fails, the framework may then be able to
resume processing from the point where the reducer last saved its state, without
reading data that has already been processed again.

Serial or Parallel Reducer Execution

At this point we are down to rather specific details, but seemingly small details
can often have a big effect on the performance and scalability of a system. One
such detail is how entries are read and processed by the reducer processes. This
is also related to whether intermediate records are stored to disk or not, as will
be explained shortly.

As described in Section 2.2.1, the programmer expresses the reduce opera-
tion as a function that takes an intermediate key and the associated values as

Figure 2.5: Serial execution of phases

12



2.2. THE MAP-REDUCE MODEL

parameters. This helps in keeping the complexity down, but there are some
issues that should be kept in mind. This approach means that there is one re-
duce function call per intermediate key. It is largely up to the framework and
the implementation language in which fashion these function calls should be
executed. We can divide the possible execution approaches into two general
strategies: parallel and serial.

Serial execution – illustrated in Figure 2.5 – is the most commonly used ap-
proach, being the method described in most papers and most often used by
general frameworks. For each reduce worker, the intermediate data is sorted
and grouped by keys before being passed to the reduce function. All interme-
diate records must be collected before sorting can begin, meaning that the map
phase has to complete before the reduce phase can begin (as discussed in Sec-
tion 2.2.2 on page 11).

Figure 2.6: Concurrent execution of phases

In the case of parallel execution – as shown in Figure 2.6 – the reduce worker
may execute multiple invocations of the reduce function simultaneously, for in-
stance by using threads or a more specialised solution. Another, possibly more
efficient approach is to change the structure of the reduce function to make it
accept key-value pairs in a similar fashion to the map function. No parallel
execution would be required, and the programmer could perform per-key cal-
culations or aggregation in any desired way.

The clear advantage of a parallel or semi-parallel approach is that there
would be no need to sort the intermediate data in advance. Instead a single
pass can be made through the data, and records passed to the reduce function
as they are encountered. This can work well in cases where the key space is
small compared to the number of reduce nodes.

Both approaches have their disadvantages. The parallel solution demon-
strates a larger demand for memory, as each reduce worker must maintain a
reduce state for all intermediate keys assigned to it. It also removes the possibil-
ity of passing out-of-band results from mappers to reducers (however reducer
to reducer is still possible, in the case of chained map-reduce jobs). The serial
approach is not as memory intensive, but is potentially very I/O intensive as
intermediate records must visit disk. Serial execution can also be slower than
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the parallel approach if the available compute resources allow efficient parallel
execution.

Choice of Programming Language

The choice of an implementation language for a map-reduce framework or
program is very much a matter of speed versus implementation. With the
introduction of frameworks for distributed processing, a general tendency is
to choose implementation languages that allow quick implementation. Rather
than spending more man hours on producing optimised program code, it can be
less expensive to simply add more hardware to achieve the same performance
gain.
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Chapter 3

Methodology

This chapter describes the methodology we use to evaluate possible solutions
to the problem at hand.

3.1 Overview

Our goal is to determine the viability of using map-reduce frameworks for flow
processing. To do this, we start by designing a baseline reference system called
Pagneda. Pagneda is designed to be as fast as possible. We also design a so-
lution that is based on the supporting features of map-reduce frameworks. By
doing this we can compare the framework based system against the reference
system with regard to performance and scalability.

Having finished the two designs, they should both be implemented. We
need to first determine what framework to use for the framework based de-
sign. Then we can implement both designs, followed by benchmarks to evalu-
ate them. We should test how well both systems scale and what their through-
put is, and then compare them to see how well the framework based design
performs compared to what we consider an optimal solution.

3.2 Design

In Chapters 1 and 2 we have introduced a set of requirements for a distributed
flow processing tool. Based on these requirements we must design and imple-
ment two architectures:

1. A baseline design that describes an optimised, stand-alone solution to the
problem. This design should not be restricted to the functionality of any
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map-reduce framework, but it should still abide by the basic principles of
the map-reduce model. As such this is a reference design that represents
a best case in terms of performance. It should provide a standard against
which we can measure and evaluate a design that is based on the founda-
tions of more general map-reduce frameworks.

Implementing a fully functional version of this design can take months. It
is not the intention to turn this design into a full-fledged implementation,
however. Instead, we must choose parts of this design that can be im-
plemented within our very limited time frame, but still provide a proper
reference point for a performance comparison of our two designs.

Accompanying the optimised design should be a theoretical estimation of
what performance can be expected.

2. A design that makes use of the supporting features provided by map-
reduce frameworks, and thus provides a tradeoff between performance
and implementation complexity. This includes defining the map and re-
duce functions as per the requirements that are common among frame-
works.

An implementation of the framework-oriented design should take require
little effort (in the range of days or weeks) to implement.

3.3 Framework Evaluation

In order to implement the framework-based design mentioned in Section 3.2,
we first need to determine exactly which existing framework we should base
our implementation on. Based on our requirements – both with regard to per-
formance, as well as of functional and practical nature – we should determine
by what criteria the frameworks should be evaluated. We must then identify
which frameworks are available and suitable for our needs, and proceed to
study and test these frameworks based on the criteria we have defined. Finally,
a decision must be made as to which framework we will base our implementa-
tion on.

3.4 Implementation

We proceed by implementing both designs. For the framework solution we use
whatever language and methodology that the framework dictates. The opti-
mised solution, however, is implemented in C for the sake of performance. Only
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basic functionality is added, but enough to evaluate it’s performance and create
a point of reference for evaluating the efficiency of the map-reduce framework.

3.5 Benchmarks

The next step is to benchmark both implementations. The goal is to compare the
performance of the framework implementation to that of the optimal solution.

The benchmarks are based on the requirements described in Section 1.2, and
measure how well the implementations scale as more data and nodes are added,
as well as what query response times can be achieved. The benchmarks are as
follows:

• Minimum response time
Execute a query that takes no or a minimal amount of data as input and
measure the time taken until a response is returned.

• Node/data scalability
Repeatedly execute a query on an increasing number of nodes, with each
node processing the same, fixed amount of data.

• Node scalability
Repeatedly execute a query on an increasing number of nodes, distribut-
ing a fixed total amount of data uniformly across all nodes.

• Data scalability
Repeatedly execute a query on a fixed number of nodes while varying the
amount of data processed by each node.

3.6 Analysis and Conclusion

Having finished the benchmarks we can study the results. We identify the areas
where the systems perform better or worse than expected, and attempt to find
the reasons for this.

Based on our analysis we should be able to make a number of educated
conclusions about the viability of map-reduce – both frameworks and the model
in general – for flow data processing.
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Chapter 4

Design

This chapter describes two possible ways the map-reduce model can be em-
ployed. In Section 4.1, we start by listing some assumptions that our designs
are based on. This is followed up by a description of the common data format
we will use for our implementations and benchmarks in Section 4.2. In Section
4.3 we describe a baseline design, which takes a basic but efficient approach to
the processing challenge. Then, in Section 4.4, we present a design based on
general map-reduce frameworks.

4.1 Assumptions

This section describes some assumptions we make about the input data and
user queries. These assumptions are based on the required operations, as well
as what operations and data formats existing tools use.

4.1.1 Input Data

Our designs are quite flexible with regard to how data is stored, but we gener-
ally assume that flow data is stored as plain files in a file system.

To formalise this, all the flow data stored on a node or on a storage device
– or any subset of the flow data that is read by a single entity (such as a map
process) – can be seen as block of N flow records. These files can be seen as m
chunks of arbitrary size, and Fchunks = {f1, ..., fm}would be a set describing the
size of each chunk.

In Section 4.2 we describe a simple data format that is very similar to the
simple formats used by tools such as Nfdump and SiLK, and that is compatible
with our assumptions.
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4.1.2 User Input

As previously explained, the user will typically express the wanted computa-
tion as a query consisting of one of more of the following:

• A filter expression defining what flow records should be included in the
processing.

• A set Q = {Q1, ..., Qm} of aggregation queries, each defining a set of flow
record fields to aggregate on.

• A sort condition to indicate how the end result should be sorted, such as
sorting by the total number of bytes.

• A limit statement to restrict the number of returned rows, typically to only
the most interesting ones.

4.2 Data Format

Both designs are based on a common, binary data format. The format is inten-
tionally simple. This keeps the overhead caused by parsing to a minimum, and
allows for a more rapid implementation.

Table 4.1 shows the simplified flow format. It is very similar to the one used
in NetFlow v7, as it has the same record length. It differs in that we store more
precise time stamps, and that we omit some routing information (the IP address
of the next hop and the prefix lengths of the source and destination networks).
Offsets and field lengths are provided in bytes, and we can see that the total
length for a single flow record is a constant 52 bytes. This format is all binary
and can easily and efficiently be read and parsed by a C program.

It is worth noting that this format does not accommodate for IPv6 records,
similar to how NetFlow versions that predate NetFlow v9 do not support IPv6.
The format used in a production system should be extended to support IPv6,
thus adding at least 2 × 12 = 24 bytes to each record. This brings the record
length up to 76 bytes.

Another aspect worth noting is that at offset 19, a padding byte is inserted.
This ensures memory alignment [18], so that accessing a single 4-byte field in
the structure will only require reading a single 4-byte word from memory. Put
shortly, an extra byte is wasted for a considerable increase in field access speed.
Many C compilers (such as GNU) will perform this optimisation automatically
[19]. By adding this padding ourselves, however, we achieve the same optimi-
sation, but can fully predict the offsets of all elements in the structure.
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Offset (B) Length (B) Field
0 4 Start time (UNIX timestamp)
4 4 Start time (microseconds)
8 4 End time (UNIX timestamp)
12 4 End time (microseconds)
16 1 IP protocol
17 1 IP type of service (ToS)
18 1 Flags
19 1 (padding)
20 4 Source IPv4 address
24 4 Destination IPv4 address
28 2 Source port
30 2 Destination port
32 4 Source AS number
36 4 Destination AS number
40 2 Inbound interface number
42 2 Outbound interface number
44 4 Number of packets
48 4 Number of bytes

Table 4.1: Simple flow format

4.2.1 Compression

If the available CPU resources allow it, compressing flow data may be advanta-
geous. This is particularly in two respects: saving hard drive space and increas-
ing the read performance. The disadvantage is the extra load decompression
puts on the CPU and memory.

There are a number of compression algorithms that are near ubiquitous on
UNIX systems today.

• The very commonly available GNU Gzip program [20] implements a vari-
ation of the LZ77 compression scheme called DEFLATE, known for being
a fast, general-purpose algorithm.

• The bzip2 program and algorithm [21] is also in common use. It demon-
strates better compression ratios than gzip, but decompression perfor-
mance is generally considerably worse.

• The LZMA algorithm [22] provides even better compression ratios than
bzip2. Compression is slower and more memory intensive than bzip2,
but decompression is more efficient.
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In this section we shed some light on the efficiency of compression of flow
data in the previously described data format. We do this by testing the perfor-
mance of compression and decompression, as well as studying what compres-
sion ratios we can achieve.

Performance Gain

Data compression can provide a gain in processing speed given one simple con-
dition: decompression must be faster than the read speed of the disk. That is,
the output data rate of the decompression program must be greater than the
input rate when the input rate is equal to the disk read speed.

Compression (MB/s) Decompression (MB/s)
gzip bzip2 lzma gzip bzip2 lzma

Fast (-1) 31.61 6.14 8.42 87.44 21.81 34.27
Medium (-5) 15.75 5.31 1.07 94.27 15.45 37.50

Best (-9) 1.95 5.02 0.78 97.79 12.49 42.54

Table 4.2: Compression and decompression performance

Table 4.2 shows the performance of the Gzip, bzip2 and LZMA algorithms,
in megabytes per second, when input data is stored in RAM. We use actual flow
data in the previously described format as benchmark data. The compression
values show how quickly the original file is read when using the given com-
pression level (fast, medium or best). For decompression we list the speeds at
which uncompressed data is output from the program.

From this table we observe that only Gzip is able to decompress data at a
speed which somewhat matches or exceeds the performance of modern, me-
chanical hard drives. LZMA demonstrates a speed that is less than half that of
Gzip, and bzip2 performs even worse.

It is also important to note the compression performance. The performance
of the compression algorithm must at least match the rate at which data is col-
lected.

Compression Ratio

A lower compression ratio means that less data has to be read from disk. If
decompression and processing is able to keep up, such as by performing them
in parallel, this may ultimately lead to a 1

r
times increase in processing speed, r

being the compression ratio.
Table 4.3 shows the compression ratios that the different algorithms can

demonstrate, again using flow data for our tests. All the Gzip variants give
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gzip bzip2 lzma
Fast (-1) 0.39 0.32 0.28
Medium (-5) 0.35 0.30 0.24
Best (-9) 0.33 0.29 0.19

Table 4.3: Compression ratios

less compression than even the fastest bzip2 variant, and all variants of bzip2
compress worse than any variant of LZMA.

4.3 Baseline Architecture

This section describes an architecture that is not constrained by the use of a
map-reduce framework, but rather acts as a stand-alone application. The struc-
ture of this architecture is still based on the fundamentals of the map-reduce
model, however, and maintains the same line of thought and simplicity. Other
than a passing data down a directed acyclic graph, there is no inter-process
communication or synchronisation between processes.

The architecture presented in this section functions as a baseline architecture.
This means that we consider this a reference design, against which we will mea-
sure and evaluate the performance of the framework-based design presented in
Section 4.4.

4.3.1 Structure

Figure 4.1 describes the general architecture of our baseline design. The general
flow of data is as follows:

1. Filter processes (green boxes) on storage nodes read, filter and locally ag-
gregate data from storage devices.

2. Using a list of all aggregation processes (yellow boxes), all filter processes
map aggregates with the same aggregation key to the same aggregation
processes.

3. Aggregation processes wait for and receive data from filter processes. Re-
ceived aggregates that share the same key are merged.

4. Filter processes signal that reading has finished and that all records have
been distributed.
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Figure 4.1: Baseline architecture

5. Each aggregation process sorts the local aggregates according to any sort
field(s) supplied by the user, and limits the results if a limit has been spec-
ified.

6. Aggregation processes signal completion and the results are made avail-
able for reading by a merge process, like the user or storage agent.

In the following sections we describe the filter and aggregation processes in
more detail.

Filtering and Local Aggregation

Filtering is the initial step in the processing chain. One or more filter processes
on each node reads flow records in chunks from a storage device locally on the
node on which it runs. For each record that is read, any user-supplied filter
expression is evaluated. If the expression evaluates to true, the record is aggre-
gated locally in the process, based on the user’s aggregation query or queries.

As mentioned, the input data is split into chunks. Given that there are m
chunks, Fchunks = {f1, ..., fm} is a set describing the number of flows in each
chunk fi. Records are filtered and aggregated for each chunk individually.
While the effectiveness depends on the size of input chunks, local aggregation
exploits the fact that even in a small chunk of flow data, many flows will share
aggregation keys. By performing this local aggregation, we reduce the amount
of data each filter process needs to send to the aggregation processes.
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Figure 4.2: Aggregation factor for destination IP addresses

We performed a practical study of the effect of aggregating flows on desti-
nation IP addresses, and show the results in Figure 4.2. We have found the des-
tination IP address to be the least commonly shared field between flows, and
so it represents a “worst case” in single-field aggregation queries. By varying
the number of time-continuous input flows from a single one to 20 million, we
found that the ratio C of flows with distinct addresses is subject to exponential
decay. We call this ratio the aggregation factor.

The aggregation factor will, of course, vary between aggregation queries.
There will also be a slight variation between chunks. Generally, with m being
the number of input chunks on a node, and n being the number of aggregation
queries, we can express the aggregation factors as C = {c1,1, ..., cm,n}. By using
the aggregation factor to our advantage, we can write the number of emitted

intermediate records as
m∑
i=0

n∑
j=0

fi × ci,j . It is clear that small values for ci,j would

be of great advantage.
From the graph in Figure 4.2 we see that we can get a considerable decrease

in the number of map output records even with small chunk sizes. By 2 million
flows, which corresponds to roughly 100 MB of data, most of the “work” has
already been done. We have only accumulated about 260,000 aggregates, pro-
ducing a ratio of about 0.13. We also continue to observe a slight decline in the
aggregate-flow ratio even beyond 20 million flows (about 1 GB of data), with
the ratio at least dropping to 0.077 in our tests.

It is worth noting that the same aggregate-flow ratio may not hold equally
well for IPv6 traffic, due to the extended address space and such features as
IPv6 Privacy Extensions [23].

The disadvantages of this approach are only slight. A few issues stand out:

• Many mappers will store different aggregates with the same key, leading
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to less efficient utilisation of memory in the cluster as a whole.

• Aggregates are sent from the mappers to the reducers in bursts, poten-
tially making the network connection between the nodes a bottleneck.

• Further processing of the aggregates is delayed for the time it takes a map-
per to process an entire chunk and start sending the resulting aggregates
to the reducer.

All of the aforementioned issues can somewhat be mitigated by adjusting
the chunk size. A smaller chunk size will cause less memory to be used by
the mapper, and the processing delays will be reduced. Traffic bursts will also
be slightly smaller, but there will be correspondingly more of them. A larger
chunk size, however, will reduce the total number of aggregates passed from
the mapper to the reducers, ultimately also reducing the total amount of data
transferred from the map processes to the reduce processes.

Global Aggregation and Sorting

As the filter processes finish processing chunks, the results are sent to aggrega-
tion processes. The aggregation process simply merges all incoming aggregates,
maintaining a hash table for near-constant time lookup of existing aggregates.

As soon as all aggregates have been transferred from the filter workers to the
aggregators, the aggregation workers can sort and limit the resulting aggregates
if the user has requested it.

Merging and Completion

If sorting was requested by the user, it is also necessary to properly merge the
results from all aggregation workers. As all the workers have already sorted
their individual results, it is trivial to merge them into a complete, sorted result
set. This is done by simultaneously reading the sorted results from all workers,
always retrieving the largest or smallest value depending on the sort order.

4.4 Framework Based Architecture

This section presents an approach to NetFlow processing in the map-reduce
model, adapted to fit the typical abstraction provided by map-reduce frame-
works such as Hadoop and Disco. We also discuss some problems with the
basic approach, and introduce some refinements to alleviate these issues.
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Figure 4.3: Basic map-reduce chain

Figure 4.3 gives an overview of a basic map-reduce chain that can provide
filtering, aggregation and sorting of records. The first and leftmost map-reduce
iteration is concerned with filtering and aggregation. The second and rightmost
iteration provides sorting of the aggregates.

In order to minimise I/O and network traffic, filtering should be done as
early in the execution chain as possible. It is therefore placed in the initial map-
per. The mapper reads records directly from the assigned input chunk. For each
record, the filter expression is evaluated, and the record is immediately skipped
if the expression evaluates to false.

After verifying that the record should be included, the mapper extracts the
aggregation key fields from the record based on the aggregation queries. For
each aggregation query Qi, an intermediate key-value pair is emitted. The key
part is the aggregation key, and the value part is whatever information from the
record that is needed to calculate the aggregate (such as the number of packets
and total number of bytes in the flow). In some cases, this simple filtering may
be all the user wants, so at this point the result set may already be returned to
the user without passing through subsequent reducers.

If the user has requested aggregation as part of the query, the intermedi-
ate key-value pairs are then passed on to reducers. All key-value pairs which
share the same key are sent to the same reducer. Upon reception, the reducer
aggregates records based on the key.

The greatest challenge lies in sorting the final result in an efficient manner.
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The general map-reduce model does not accommodate well for sorting, unless
you have advance knowledge of the distribution of values you are sorting on.
A general method which performs fairly well if the distribution is known – or
can at least be quite accurately estimated – is bucket sorting.

A bucket sort involves assigning non-overlapping value ranges to a number
of buckets (typically one bucket per node or CPU). Records are then distributed
to these buckets based on the value ranges, and each bucket is sorted individu-
ally. Due to there being no overlap in the value ranges of the buckets, the final
result can be obtained simply by concatenating all buckets.

The bucket sort can be implemented in the map-reduce model by execut-
ing a new map-reduce iteration on the data that is to be sorted. The output
from the first reduce phase is input into a second map. The map assigns ag-
gregate records to buckets by emitting key-value pairs where the key identifies
the bucket and the value represents the aggregate record. The reducers then
receive the buckets, sort them each individually, and finally emit the sorted list
of records.

4.4.1 Optimised Execution

The basic approach described in the previous section has a number of problems.

• Given F input flows and a setQ = {Q1, ..., Qi} of aggregation queries, the
mapper function will emit F × i intermediate records. This may lead to
consumption of more network bandwidth than is desirable, as described
in Section 4.3.1.

• The sorting method is very inefficient, as it involves redistributing aggre-
gates based on the sort key. In the worst case, all aggregates must be
transferred to another node.

Given a bit of flexibility in the map-reduce framework, these two issues can
be resolved by subjecting the input and output data to pre- and post-processing,
respectively.

Pre-Processing

Pre-processing will in practice do the same thing as the filter process in the
baseline architecture. Records are read from storage, filtered and then locally
aggregated. The local aggregates are then used as input for the map-reduce job,
mapping aggregates to reduce workers based on their keys, and redistributing
them. Thus, instead of passing F intermediate records down the processing
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chain, the map worker emits the same
m∑
i=0

n∑
j=0

fi×ci,j records as the baseline filter

process does, fi again being individual chunk sizes and ci,j being aggregation
factors for all chunks and aggregation queries.

Post-Processing

The introduction of a post-processing phase is meant as a replacement of the
initially suggested sorting method where aggregate records are redistributed
into buckets and sorted with an additional map-reduce iteration. Instead we
allow the aggregation reducers to sort their individual results before passing
them down the chain. When the results have been sorted, they can be on to a
post-processor that merges the final results.
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Map-Reduce Frameworks

This chapter introduces and compares a number of existing map-reduce frame-
works. We begin by describing the evaluation criteria in Section 5.1. Section
5.2 provides an evaluation of Apache Hadoop [16] and introduces some use-
ful features of that framework. In Section 5.3 we consider Disco [15], a more
lightweight but less feature-rich alternative to Hadoop. We make a conclusion
in Section 5.4, deciding which framework we will use for our benchmark im-
plementation.

5.1 Evaluation Criteria

The job of the framework is to accept jobs of some format, and schedule these
jobs to run on a cluster of nodes. When the job finishes, the result should be
returned to the caller. The framework may also be involved in tasks such as for-
matting the input and output data and managing an underlying storage plat-
form.

The implementations differ in many regards, ranging from programming
language to job format and data format. In order to determine which map-
reduce framework is likely to be the one most suitable for the job at hand, we
evaluate the frameworks based on a number of criteria.

Processing speed How efficient is the pipeline that records pass through?

Framework overhead Compared to executing a processing job on a single com-
puter, executing it on a cluster of machines is likely to add some overhead.

Feature completeness Rapid implementation of distributed jobs is at the core
of the map-reduce model. What features does the framework provide that
can relieve the programmer from writing too much code?
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Ease of use Is the documentation of good quality? How difficult is it to develop
and run jobs? While it is difficult to quantitatively measure documenta-
tion quality or ease of use, we provide a general assessment.

5.2 Apache Hadoop

Apache Hadoop is a Java-based framework with very extensive functionality.
Hadoop does not only provide a map-reduce implementation, but an entire
software suite for performing distributed computations. The following section
covers Hadoop with regard to features, ease of use and performance.

5.2.1 Features

As Hadoop is a large and complex system, an exhausting list of features would
be too long to present here. However, we can highlight the functionality which
is of relevance to us.

Hadoop Distributed File System

HDFS provides reliable storage of both input and output data for map-reduce
jobs. It automatically distributes data across any number of nodes, optionally
also adding replication. Data is represented as files, but files can be split into
blocks that are scattered across nodes. Map-reduce programs then process the
data block-wise, and given that the data format allows it, many nodes can op-
erate on the same file simultaneously.

Pig and Hive

Pig and Hive are frameworks that provide a non-programmatic interface to
some common operations on large data sets. Instead they provide interfaces
that expose the data sets in a standardised way. They accept queries from the
user, which are compiled into Hadoop jobs and executed on a cluster.

All Pig queries form a directed acyclic graph through which data flows. Each
node in this graph represents some operation on the data set. Pig allows the
user to construct these graphs in an incremental fashion through a fairly simple
query language called Pig Latin.

dump = LOAD <input> USING FlowStorage() AS (start_time, end_time, ...);
project = FOREACH dump GENERATE src_addr, packets, bytes;
ag = GROUP project ALL PARALLEL 2;
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s = FOREACH ag GENERATE group, SUM(project.packets), SUM(project.bytes);
DUMP s;

Listing 5.1: Example Pig Latin script

Listing 5.1 demonstrates how a query can be constructed using Pig Latin.
This query groups flow records by source IP address and calculates a sum of
the number of packets and bytes for each flow. Pig also supports filtering and
sorting of data, as well as limiting the result set to a specified number of records.

Hive provides a query language, HiveQL, that is similar to SQL and more
general than the Pig query language. All data sets processed by Hive are ex-
posed as tables. From these tables one can select, insert, perform joins and other
operations often associated with relational algebra. Listing 5.2 shows an exam-
ple Hive query that performs a similar query as the Pig Latin example in Listing
5.1.

SELECT flows.src_addr, SUM(flows.packets), SUM(flows.bytes)
FROM flows GROUP BY flows.src_addr;

Listing 5.2: Example HiveQL select query with aggregation

Similarly to Pig and SQL, Hive supports grouping of records and calculating
sums and record counts for the aggregated data, a feature we have utilised in
the example above. The listing above also illustrates the similarity between SQL
and HiveQL, and shows that HiveQL can be considerably less verbose than
Pig Latin. Although it is not shown in the example, Hive also allows filtering,
sorting and limiting of the result set.

5.2.2 Usage and Documentation

As previously mentioned, Hadoop is a complex system. Setting up a Hadoop
cluster can be a daunting task, as there is a large number of configuration op-
tions and settings to adjust. Writing jobs, and efficient ones at that, is also likely
to require the programmer to familiarise themselves with a very extensive API.

A strong point of Hadoop, however, is the very comprehensive documenta-
tion that is available online. Full Java API documentation is available, as well
as a range of tutorials, papers and articles that cover many of the possible uses
of Hadoop.

5.2.3 Performance

We have previously studied and evaluated the performance of Hadoop, as well
as the integrated Pig framework [1]. A number of relevant queries were adapted
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to the Pig framework and executed on an 8 CPU cluster.
Our findings with regard to the performance of Hadoop include:

• The minimum turnaround time for Hadoop jobs is more than 20 seconds.
The Pig framework adds an additional overhead of roughly 20 seconds,
meaning a submitted job will take a minimum of 40 seconds to complete,
regardless of the amount of data that is to be processed.

• All intermediate data goes to files. Hadoop does not support streaming
of data between nodes. While this adds error resiliency, it means that
throughput is limited to whatever the file system can accommodate for.

• The Pig framework does not do a very good job at performing query opti-
misation, leading to an unnecessarily high number of Hadoop jobs being
executed for some queries.

5.3 Disco

Disco was originally developed by Nokia Research. It has been developed using
a combination of Erlang and Python. Erlang is at the core, and is typically not
exposed to the user, while the development API is written in Python. When
compared to Hadoop, it stands out as a more lightweight but less feature rich
framework.

Figure 5.1: Disco architecture [24]

Figure 5.1 shows the general architecture of a Disco cluster.
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5.3.1 Features

Apart from the minimal set of features required to write and run map-reduce
jobs, the Disco framework does not provide a big selection of features.

The main map-reduce interface is exposed as a Python API. This means that
writing a map-reduce job can be as simple as writing a Python script imple-
menting two functions, and calling an API function with references to these
functions.

Disco also allows external programs written in any language to function as
map and reduce functions. CPU intensive tasks, for instance, can be written in
C.

The Disco Project has also introduced the Disco Distributed File System
(DDFS), a file system similar to Hadoop’s HDFS, and Discodex, a key-value
storage system. These systems are in their early infancy. At the time of writ-
ing they were only just published, giving us little opportunity to study them in
detail.

5.3.2 Usage and Documentation

As jobs are typically written in Python using a very compact API, Disco pro-
vides an excellent environment for rapid implementation of processing tasks.

Documentation is scarce, however, and does not cover much more than the
basics.

5.3.3 Performance

The performance profile of Disco is slightly different from that of Hadoop. The
following are the results of our analysis:

• Disco demonstrates an excellent minimal turnaround time of less than one
second, making it suitable for ad hoc queries.

• Similarly to Hadoop, Disco also stores all intermediate and output records
to disk.

• The performance of the record pipeline is severely limited. Each individ-
ual record is read, processed and written by Python code. For each record
there is a slight overhead, which causes Disco to perform poorly when
there is a large number of small records to process.
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5.4 Conclusion

Many of the features Hadoop provides can prove very useful in our problem
context. For instance, data must be distributed among nodes. HDFS can assist
in doing this, as well as add replication. On the other hand, the data format in
question is one that requires little effort to split, distribute and index “manu-
ally”. Also, if distribution is done manually, full control is kept as to how the
data is distributed (such as splitting by time intervals, flow fields, etc.).

Hadoop’s Hive and Pig tools both provide useful query languages that fit
our needs quite well. We have previously found, however, that the Pig frame-
work has performance issues that tend to cause prohibitively long query times.
We have not tested the performance of Hive, but a published benchmark shows
that it performs better than Pig in most cases, but in many situations also con-
siderably slower than writing map-reduce functions directly [25].

While feature-wise an excellent platform, Hadoop has generally proven to
be somewhat slow and heavy. It introduces a query time overhead that is very
impractical for ad hoc queries.

Disco’s low turnaround time for jobs, combined with the ability to embed
external programs, for instance written in C, makes it an attractive alternative
to Hadoop. We do not consider the lack of an integrated, distributed file sys-
tem a big issue. As previously explained, it is trivial to manually partition and
distribute the data. Since we are concentrating on UNIX-like environments, it
is also possible to make use of any POSIX-compatible distributed file system,
transparent to the map-reduce framework.

Disco has no equivalent of Hive or Pig, which means that a query language
would have to be implemented from scratch. This would take considerable
work, but a query language is not essential in testing the performance of the
framework. Therefore this is something we choose to put aside for now.

In conclusion, Disco seems to be the most viable option for a performance
evaluation. The low response time puts it quite far ahead of Hadoop with re-
gard to ad hoc queries. Also, the supporting features of Hadoop (HDFS, Pig,
Hive, etc.) are not critical for our needs, and may even get in the way of reliably
evaluating the map-reduce model itself.
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Implementation

In this chapter we provide some details on two different implementations of a
very basic processing tool. We begin by describing the internals of Pagneda, our
implementation of the previously described baseline architecture, in Section 6.1.
Then, in Section 6.2, we describe an implementation based on the Disco map-
reduce framework.

6.1 Pagneda

Pagneda is a simple implementation of certain parts of the baseline architec-
ture described in Section 4.3. It is implemented in pure C for the sake of per-
formance. We have chosen to limit our implementation to filtering and global
aggregation, and do not implement sorting or merging of results.

Pagneda has no error handling or resiliency, as it is meant to be run in a very
limited and controlled environment.

6.1.1 Structure

Pagneda implements the baseline system very much as described in Section 4.3.
It consists of two programs – filter and aggregate – which communicate via
TCP streams.

The filter program accepts a list of aggregation fields as parameters, and
reads input records from standard input. It maintains a hash table (via the
Judy C library [26]) that is used for performing local aggregation. For each
flow record that is read, the aggregation key is extracted and looked up in the
hash table. If an existing aggregate record is found, the byte, packet and flow
counters of that aggregate record are incremented based on the current flow
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record. If an aggregate is not found, a new one is allocated and initialised with
the values from the current flow record.

When no more records are available on standard input, the filter program
connects to all aggregation processes (instances of the aggregate program) via
TCP/IP. It then iterates through all the local aggregates. Each aggregate key is
hashed, and the modulo of the hash is used to determine which aggregation
process the aggregate record should be sent to. The aggregate record is then
sent to the correct process. Finally, after having transferred all aggregates, the
filter program exits.

After launching, the aggregate program initialises a hash table and pro-
ceeds to wait for incoming connections from filter processes. Aggregate records
are read from connecting processes and used to update a hash table of merged
aggregate records, similarly to how the filter program operates.

6.1.2 Execution

Execution of an aggregation job begins by launching the aggregate program on
a number of machines. It is possible to run more than one instance on a single
machine to utilise multiple CPUs. After launching, the aggregate processes will
listen on a given TCP port for incoming connections from filter processes.

When the aggregation processes are up and running, filter processes can
be started. They typically run on each node that has data stored, and can also
be executed in parallel to utilise multiple CPUs or disks.

Using the same aggregation logic as the filter program, the aggregate pro-
gram will keep a hash table of aggregates, and “merge” any aggregates from
different filters that have the same key.

6.2 Disco

This section describes how we have adapted the framework based design pre-
sented in Section 4.4 to be executed using the Disco framework. We presented
Disco in Section 5.3.

6.2.1 Architecture

A machine in a Disco cluster can be either a master or a node. There is typically
one Disco master in a cluster, possibly more for added redundancy. Tasks are
submitted to the master, and the master keeps track of what nodes are present
in the cluster and schedules jobs to run on available nodes.
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Any computation that should be executed in Disco is expressed as a job. A
job is submitted to the system as a Python script that describes the map and
reduce functions, where to read input data from, in what format and so on.

Patches to Disco

Disco is still somewhat experimental software. New versions are not subject to
extensive testing before being released, but they rather rely on the community
to report bugs and defects. Bugs do indeed exist, some of which would prove
to get in our way and needed fixing.

We created and applied a set of patches to version 0.2.4 of the Disco code [27]
to fix many of the bugs we came across. None of our patches made any changes
to the functionality of the system, but merely fixed programming errors that
prevented normal operation. As such we will not go into any more detail here,
but we rather refer to Appendix B for more details on what changes had to be
made to make Disco work as expected.

6.2.2 Job Format

Disco has support for using external programs as map and reduce functions.
It also allows the programmer to specify how data should be read from disk.
We have attempted to employ this by reusing some of the C code written for
Pagneda. By doing this we rest on Disco’s ability to schedule and execute jobs
across a cluster, transfer data and handle errors, but gain performance by pro-
cessing the data in C rather than Python.

We replace Disco’s default file reader – which simply treats each line in the
input file as an input record – with a wrapper around the filter program from
Pagneda. Thus the local aggregation is done efficiently, reducing the load on
the framework.

The filter outputs key-value pairs that function as intermediate records.
This makes the map function very plain and simple, but it must still be pro-
vided, in the form of a function that return the exact same record as was passed
to it.

The reduce function is a bit more specialised. It uses the programming in-
terface provided by Disco for writing external programs. We implement the
function as a C program that uses the same aggregation code as Pagneda, but
reads and outputs data in the format used by Disco’s external interface.
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6.2.3 Execution

The user executes a job by invoking the Python script. The script communi-
cates with the master to schedule the job for execution, and waits for results to
become available.
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Benchmarks

This chapter describes the benchmarks we have executed in order to evaluate
the performance of the implemented systems.

In Section 7.1 we start with describing the details of the hardware and soft-
ware environments in which we have executed the benchmarks. We proceed by
presenting the benchmarks and results for Pagneda in Section 7.2 and Disco in
Section 7.3. An analysis of the results and a conclusion follows in Section 7.4.

7.1 Benchmark Execution

In this section we describe the environment the benchmarks are executed in, as
well as the procedures and software used to execute the benchmarks.

7.1.1 Environment

All benchmarks were executed on a cluster of 15 server-grade machines of vary-
ing make, age and specifications. Table 7.1 lists all the nodes along with their
CPU and memory specifications.

All machines in the cluster were connected through gigabit Ethernet to a
single switch.

7.1.2 Software

All the machines in the cluster were installed from scratch with the current sta-
ble version of Debian GNU/Linux, 5.0 (Lenny). We used Disco version 0.2.4,
modified with patches as described in Section 6.2.1.
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Model CPU speed (GHz) Cores RAM (GB)
IBM xSeries 306m (Pentium D) 2.80 2 4
IBM xSeries 306m (Pentium D) 2.80 2 2
IBM xSeries 306m (Pentium 4) 3.20 2 2
IBM xSeries 335 (Xeon) 3.06 1 2
IBM xSeries 335 (Xeon) 3.06 1 1.5
IBM xSeries 335 (Xeon) 2.40 1 1.5
IBM xSeries 335 (Xeon) 2.40 2 2
IBM xSeries 335 (Xeon) 2.40 1 1
IBM xSeries 335 (Xeon) 2.40 2 3
IBM xSeries 335 (Xeon) 2.40 2 3
IBM xSeries 335 (Xeon) 3.06 2 4
IBM xSeries 335 (Xeon) 3.06 1 2
IBM xSeries 335 (Xeon) 3.06 1 2
Sun Fire X2200 (Opteron) 2.60 4 8
Sun Fire X2200 (Opteron) 2.60 4 8

Table 7.1: Cluster nodes

7.2 Pagneda

In order to get an idea of the baseline efficiency we have implemented a small
subset of the desired features in C. This implementation is functionality-wise
similar to the one used by Disco, but manually implements many of the func-
tions needed for distributed processing.

7.2.1 Procedure

We executed the Pagneda benchmarks using a set of shell scripts. The scripts
were executed on a master node, which did not function as a compute node and
did not hold any data. All it did was schedule jobs to run on the other 14 nodes.

One benchmark iteration has two main steps: execution and cleanup. The
cleanup step destroys the aggregation processes and deletes log files on the
computation nodes. The execution step is where the “real work” is done, and is
the only one that is measured. We use the GNU time program [28] to measure
the wallclock time taken until execution finishes.

The execution script – shown in Listing C.1 in Appendix C – begins by
launching an aggregate process on each compute node that waits for incoming
connections. It then launches a filter process on each compute node. Using
the job control features of the shell, the script waits for all filter processes to
finish, and exits as soon as the last one does. The processing time is then logged
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to a file by the time program.
To the extent possible, all tests were run a minimum of five times. Any

exceptions to this are explicitly noted. The presented results are based on the
average of all successful runs.

7.2.2 Results

In this section we present the results of four Pagneda benchmarks. We evaluate
the minimal response time of the system, as well as how well it scales when we
add more nodes, data or a combination of the two.

Minimal Response Time

Figure 7.1: Minimal turnaround time with Pagneda

Figure 7.1 shows the minimal response time when we process a single flow
record on each involved node. What this chart shows is basically the time a
shell script on the master node takes to launch aggregate and “no-op” filter
processes on all compute nodes via SSH and wait for all the filter processes to
finish. With only one node involved, the response time is 50 ms. By 14 nodes,
the response time was 201 ms.

While we do observe some slight variations in the response time, it is mono-
tonically increasing, mostly proportional to the number of nodes. On average
we observe a 10.8 ms increase in response time per additional node. This in-
crease can mostly be attributed to the lack of concurrency in the benchmark
scripts, as pointed out in Section 7.2.1.
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Node/Data Scalability

In order to examine the efficiency of Pagneda as more nodes are added to the
cluster, we executed an aggregation query on an increasing number of nodes
and distributed an identical 100 MB chunk of data to each node.

Figure 7.2: Pagneda processing times for 100 MB of data

Figure 7.2 shows the development in execution time for this benchmark. We
observe a slight increase in run time as nodes are added. With a single node
and 100 MB of data the run time is 1.43 seconds, and it is 1.71 seconds with 14
nodes and 1400 MB of data. This gives an average increase of 20 ms per added
node. As seen in the previous section on minimal turnaround time, about half
of this increase can be attributed to the benchmark scripts. The rest is likely due
to a slight overhead added by the increased network traffic.

The execution time is not monotonically increasing, however. We see a slight
drop in run time when going from 7 to 8 nodes, after seeing a slightly steeper
increase from 4 to 6 nodes. We attribute this to the variations in the cluster node
specifications.

Node Scalability

In this benchmark we also vary the number of nodes from 1 to 14, but we run
all tests on an aggregated total of 300 MB of data. In the case of one node there
is a single 300 MB file. In the case of two nodes we have a 150 MB chunk on
each node, and so on.

As can be seen from the chart in Figure 7.3, Pagneda displays an exponential
decay in execution time when distributing 300 MB of data across nodes. The
decrease in run time is slightly more dramatic for the first four nodes added.
From 1 to 2 nodes we see a 43% decrease. From 2 to 4 nodes the reduction
is as much as 53%. From 4 to 8 nodes the change is once again 43%. While
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Figure 7.3: Pagneda processing times for a total of 300 MB of data

doubling the number of nodes does not reduce processing time by exactly 50%,
the general trend is in that area. As with earlier tests we see slight variations,
again likely due to hardware variations as well as a slight overhead added by
additional nodes.

For seven nodes and upwards, the change gets smaller, with a 28% reduction
from 7 to 14 nodes. The reduced effect of adding more nodes is partly due to
the increased setup time. It is likely also because the time spent doing global
aggregation (as described in Section 4.3) becomes greater relative to the time
spent performing local aggregation. The aggregation factor of 14 small blocks
is likely considerably higher than for one large block, resulting in a greater total
number of aggregates across all nodes.

One thing worth noticing is the increase in run time at nine nodes, followed
by a drop at ten nodes. Unfortunately it has proven difficult to pinpoint the
exact reason for this.

Data Scalability

In this benchmark we keep the number of nodes constant at 14. Instead we add
data blocks in increments of 50 MB on each node. Based on this we run tests on
a total of 700 MB to 14 GB of data.

Figure 7.4 shows how Pagneda performs with an increasing data volume.
The development in execution time is quite clear and predictable, and the over-
all trend is linear scalability. Processing 250 MB of data per node takes 4.8 sec-
onds, 500 MB takes 9.5 seconds, and 1000 MB per node takes 19.5 seconds.
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Figure 7.4: Pagneda processing times for 0–1000 MB of data on 14 nodes

7.3 The Disco Framework

We subjected Disco to the same benchmarks that we ran Pagneda through. Like
in the previous section about Pagneda, we first introduce the procedure and
measurement techniques, and then proceed to present the results of our tests.

7.3.1 Procedure

The Disco benchmarks perform the same operations as the Pagneda bench-
marks. We also use the exact same input dataset, and put aside one machine
to act as a master. The differences lie in how the jobs are executed. Instead of
shell scripts, we use Python scripts that communicate with the Disco API. In-
stead of the workers communicating directly using simple TCP streams, Disco
uses temporary files and HTTP to transfer data.

All Disco jobs are submitted via the master node, using a script like the one
shown in Appendix C. We perform our benchmarks by repeatedly invoking the
Python scripts that describe the jobs and measuring the wall clock time elapsed
before the script finishes. Time measurement is once again done using the GNU
time program.

7.3.2 Results

This section presents the results of executing the same benchmarks on Disco
that we did for Pagneda.
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Figure 7.5: Minimal turnaround time with Disco

Minimal Response Time

Figure 7.5 shows the response time of the processing script when the only input
data on each node is a local file containing a single flow. This isolates the run
time to be the overhead added when the cluster is expanded with more nodes.
It also shows the impact scheduling and job control in Disco has on run time.
The response times are averages calculated from 200 runs.

With one computation node, the response time is about 350 ms, which is
about 7 times that of Pagneda. With the addition of more nodes we observe a
slight increase in response time, although not monotonic. The lack of mono-
tonicity is mainly caused by outliers in the benchmark results. Despite the lack
of monotonicity, however, the general trend is an increase in response time of
6.3 milliseconds for each added node, which is 4.5 ms less than our Pagneda
benchmark can demonstrate.

The lower increase in response time is likely due to Disco being more effi-
cient at exploiting concurrency when scheduling remote workers. Pagneda’s
steeper increase is likely an artifact of executing remote commands in a sequen-
tial fashion. Based on our benchmark results we can estimate that with more
than about 70 nodes in the cluster, we will most likely find Disco to be more
efficient at scheduling than our Pagneda setup.

Node/Data Scalability

Like with Pagneda, we put 100 MB of data on each node, and run an aggrega-
tion query with as many concurrent map and reduce processes as there were
nodes.

Figure 7.6 shows the effect on wall clock processing time (average calculated
from three runs) as more nodes are added to the processing. In essence this
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Figure 7.6: Disco processing times for 100 MB of data

reflects the time taken until the slowest reducer finishes.
It is difficult to extract any trends from this data, as the execution time fluc-

tuates as nodes are added. We assume that the fluctuations can be explained
by the diverse specifications of the cluster machines. Another factor that may
have a certain effect on the final processing time is the quality of the hash func-
tion used by Disco to distribute intermediate records among reducers. This,
however, has not been examined in detail.

Despite the fluctuations, the overall trend is that there is a slight increase
in execution time from 1 to 14 nodes. The increase is only in the area of 0.2
seconds, however, which is slightly lower than Pagneda.

Node Scalability

Figure 7.7: Disco processing times for a total of 300 MB of data

Figure 7.7 shows the development in run time as nodes are added. When
using one node, the processing time is 41 seconds. Going up to 14 nodes, the
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processing time drops to a little less than 7 seconds.
We can see a clear exponential decay in execution time. Doubling the num-

ber of nodes does not mean run time is cut in half, however. Going from one to
two nodes we see a 40% run time decrease. From two to four nodes the reduc-
tion is about 37%, and roughly 35% from 7 to 14. As such it is clear that the gain
from adding more nodes decreases as the cluster gets larger and chunks get
smaller. This can be due to many factors. As with Pagneda, smaller chunk sizes
involves more data being transferred between nodes. Also, more time is spent
doing “administrative” tasks between phases – like disk storage and network
transfers – relative to the time spent processing data.

Data Scalability

Figure 7.8: Disco processing times for 0–1000 MB of data on 14 nodes

Figure 7.8 shows that Disco scales linearly when the data volume is in-
creased, with the run time being very near proportional to the total amount
of data processed. Processing 250 MB per node takes 57.6 seconds. Processing
500 MB per node takes 115.2 seconds, and 1000 MB per node takes a total of
234.0 seconds.

This also clearly illustrates the throughput of the framework. 1000 MB in 234
seconds corresponds to 4.28 MB/s per node on average, or 59.8 MB/s across all
14 nodes. This is more than an order of magnitude slower than Pagneda’s 718
MB/s across all nodes.

7.4 Analysis and Conclusion

Our benchmarks have shown areas where Disco and Pagneda perform both
similarly and differently.
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We start by considering the response times of the two systems. Disco has
shown to have a response time in the area of 350 ms and upwards, which is quite
acceptable for ad hoc queries. The addition of about 6 ms for each involved
computation node also bodes well for Disco. Pagneda demonstrated a minimal
response time as low as about 50 ms, with a 10 ms increase per additional node,
which shows how low one can get with a specialised solution.

Disco has shown that it scales fairly well as more nodes are added. Pro-
cessing 1400 MB of data on 14 nodes takes a little – about 200 milliseconds –
longer than processing 100 MB on 1 node. In addition to this we have found
that run time increases linearly, proportional to the amount of data processed.
Both these findings show that Disco is very predictable with regard to run time.

We must also consider the throughput of our benchmarked systems. This is
where Pagneda has a clear lead on Disco. While Pagneda is able to process 14
GB of data on 14 nodes in about 20 seconds, Disco does the same in 234 seconds.

Disco appears to suffer from the fact that large parts of the processing chain
are written in Python. Python being an interpreted language, it is clear and ex-
pected that the speed of a Python based system will be lower than a correspond-
ing implementation in C. We see the effect of this very clearly. The overhead of
function calls in Python is large enough to cause issues when there are tens of
millions of them, as is not uncommon when processing flow data.

Another important difference between Disco and Pagneda is that Disco will
store all intermediate data to temporary files, which we also expect to have an
impact on the overall throughput.

To summarise, Disco is very efficient at scheduling jobs on the cluster. Where
it lacks, however, is in processing performance. While we have taken measures
to make processing as efficient as possible, by embedding C programs where
we could, we are still seeing that Disco’s worker code functions as a bottleneck.
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Conclusion and Future Work

In this chapter we draw a conclusion about the suitability of using the map-
reduce model and frameworks for NetFlow data processing, and also suggest
what future work can be done in this area based on the results we have found.

8.1 Conclusion

We have studied the applicability of the map-reduce model for NetFlow data
processing. Flow processing generally involves three different operations: fil-
tering, aggregation and sorting. The map-reduce model has been found to be an
excellent match for filtering and aggregation. Sorting can also be implemented
in the map-reduce model, but not optimally using the legacy map-reduce ar-
chitecture. This is because all operations must be expressed as map and reduce
functions, which do not work well with the most efficient sort algorithms, such
as a merge sort.

We have implemented two prototype processing tools. Pagneda was written
from scratch in C and functioned as a reference system. The other is based on
the Disco map-reduce framework, and allowed us to evaluate the performance
of a framework-based system in a real-world situation.

Through our benchmarks we have found that Disco can provide a response
time of less than half a second to simple queries. Adding more nodes to the
cluster, however, causes the response time to increase slightly due to additional
overhead.

Disco has proven to scale quite well. The effect of adding more data and/or
nodes is similar for the two prototypes. First, we see a minimal increase in
execution time when increasing the number of nodes and amount of data pro-
portionally. Second, the drop in run time is 35–40% when doubling the number
of nodes. Finally, run time increases linearly, proportional to the volume of data
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processed.
The greatest difference between the framework-based prototype and the ref-

erence system is the throughput. In our benchmarks, Disco demonstrated a
throughput of 4.28 MB/s per node, which is not up to par with what is expected
and required. The performance penalty of Disco being based on Python, com-
bined with the very large number of records that must be processed, shows that
Disco is not even close to keeping up with an optimised system that is based on
C.

To summarise, the prototype based on Disco displays scalability that is satis-
factory, but the throughput is too low for a Disco based solution to be practical
for real-world usage.

8.2 Future Work

There is clearly a need to work towards increasing throughput. Continued use
of Disco is not likely to provide the desired performance. Based on the work we
have done for this Master’s thesis, there are in particular two possible directions
that stand out.

It may be possible to employ a more efficient framework than the two we
have considered, Disco and Hadoop. A new framework that claims to be more
efficient than Hadoop, and is written in C++, is Sector [29]. This framework –
and others as well – can be evaluated using the same methods we have used.

Another option may be to continue developing Pagneda. Pagneda was de-
veloped with the intention of only being a prototype, but it has already shown
some potential, particularly with regard to performance. There are a number of
aspects that must be covered, however:

• The query engine must be generalised to allow the input of filter, sort and
limit expressions, as well as multiple aggregate queries.

• Sorting, limiting and merging, as well as arbitrary filter expressions, must
be implemented.

• Implement a proper master process that is responsible for scheduling jobs
efficiently.

• Implement support for reading standardised file formats.

We do not list features related to fault tolerance or incremental processing.
Depending on the nature of the queries and how controlled the execution envi-
ronment is, such features may not be critical.
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There is no doubt that continued development of Pagneda is likely to take a
lot of time. It would, however, give the advantage of ensuring fast and efficient
processing, while maintaining full control of the internal workings of the tool.
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Appendix A

Enclosed source code

Enclosed with this thesis is a ZIP file containing the C source code of Pagneda,
our baseline system implementation, as well as the source code for an optimised
aggregation reducer used in the Disco-based implementation.

• The source code of Pagneda can be found in the pagneda directory in the
attached ZIP file.

• The source code of the optimised reducer used by Disco can be found in
the disco directory of the attached ZIP file.

Both programs can be compiled using GNU Make, by running make in the
directory where the source code is located.
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Appendix B

Disco source code patches

These are patches against version 0.2.4 of Disco to make external processing
tools work.

--- disco-0.2.4.orig/pydisco/disco/node/external.py fcefbdd0
+++ disco-0.2.4/pydisco/disco/node/external.py 7c8d127f
@@ -1,5 +1,6 @@
-import os, os.path, time, struct, marshal
+import os, os.path, time, struct
from subprocess import Popen, PIPE
+from disco import util
from disco.netstring import decode_netstring_str
from disco.fileutils import write_files
from disco.util import msg
@@ -72,7 +73,7 @@

return

def prepare(ext_job, params, path):
- write_files(marshal.loads(ext_job), path)
+ write_files(util.unpack(ext_job), path)

open_ext(path + "/op", params)

def open_ext(fname, params):

Listing B.1: Switch from marshal.loads() to util.unpack()

--- disco-0.2.4.orig/pydisco/disco/node/worker.py 7c8d127f
+++ disco-0.2.4/pydisco/disco/node/worker.py 68709339
@@ -358,7 +358,7 @@

else:
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red_params = "0\n"

- path = Task.path("EXT_MAP")
+ path = Task.path("EXT_REDUCE")

external.prepare(job[’ext_reduce’], red_params, path)
fun_reduce.func_code = external.ext_reduce.func_code

else:

Listing B.2: Fix incorrect path for worker’s external reduce files
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Appendix C

Benchmark scripts

The source code listings in this appendix shows the scripts used to execute
benchmark. Listing C.1 shows a shell script used for the Pagneda benchmark.
We do not list the scripts for all four benchmarks, as the differences are minimal.
Similarly, Listing C.2 shows a script for benchmarking a Disco job.

#!/bin/sh

run() {
echo $1
for I in $( seq 1 $(( $NODES )) ); do

export MACHINE="10.0.0.$(( $I + 1 ))"
ssh $MACHINE "$1"

done
}

runbg() {
echo $1
for I in $( seq 1 $(( $NODES )) ); do

export MACHINE="10.0.0.$(( $I + 1 ))"
ssh $MACHINE "$1" &

done
}

export NODES=$1
export FIELDS="src_ip"

run "/home/jantore/master/src/stream/aggregate 9999 $FIELDS \
>aggregate.out 2>aggregate.err &"

runbg "/home/jantore/master/src/stream/filter -n $NODES $FIELDS \
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>filter.out 2>filter.err < /data/split/$NODES"

echo "Filters scheduled, waiting for jobs to complete"

wait

Listing C.1: Pagneda benchmark shell script

#!/usr/bin/python

import sys
import os
import disco.core
import disco.util
import disco.func
import subprocess

def flow_reader(fd, size, fname):
p = subprocess.Popen(

[ ’/home/jantore/master/src/stream/filter’, ’-c’, ’src_ip’],
stdin = fd, stdout = subprocess.PIPE, stderr = None
)

data = ""
while True:

read = p.stdout.read(13312)
if len(read) == 0:

break

data += read
end = len(data)
pos = 0
while pos <= end - 28:

yield data[pos + 24:pos + 28], data[pos:pos + 24]
pos += 28

data = data[pos:end]

d = disco.core.Disco(’http://netflow-test:8989/’);

if len(sys.argv) < 2:
sys.stderr.write("Missing number of blocks\n");
exit()
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blocks = int(sys.argv[1])
nodes = 14

job = d.new_job(
name = "flow%02i" % blocks,

input = [
"disco://netflow%02i/in/incremental/%02i" % (node, b)
for node in range(2, nodes + 2)
for b in range(0, blocks)

],
map = lambda e,a: [e],
map_reader = flow_reader,
reduce = disco.util.external([ "/home/jantore/aggregate.sh" ]),
nr_reduces = nodes,
scheduler = { ’force_local’ : True },
)

res = job.wait()

Listing C.2: Disco benchmark Python script
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