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Problem Description
A sliding-block puzzle is a kind of single-player puzzle. Instances of this domain can be very
different, and may require different algorithms from different fields. No efficient method of solving
arbitrary instances is known. In the specialization project, the domain of sliding-block puzzles was
investigated, and a program was developed that can solve many instances of such puzzles. This
program offers a multitude of parameters that can be set by the user. Some puzzles require
specific settings in order to be solved by the program.

This master thesis project will study how the domain of sliding-block puzzles can benefit from
using meta-level reasoning, and how these techniques can be of benefit in solving such puzzles.
Based on the study, one or more methods within meta-level reasoning will be chosen, and the
existing program from the specialization project will be enhanced using these methods. This
includes enhancing the underlying solver program from the specialization project. Finally, the
enhanced program will be tested. An evaluation will be performed based on a comparison of the
results from the enhanced and the original program.
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Abstract

In this thesis, we develop a meta-reasoning system based on CBR which solves
sliding-block puzzles. The meta-reasoning system is built on top of a search-based
sliding-block puzzle solving program which was developed as part of the special-
ization project at NTNU. As part of the thesis work, we study existing literature
on automatic puzzle solving methods and state space search, as well as the use of
reasoning and meta-level reasoning applied to puzzles and games. The literature
study forms the theoretical foundation for the development of the meta-reasoning
system. The meta-reasoning system is further enhanced by adding a meta-control
cycle which uses randomized search to generate new cases to apply to puzzles.
In addition, we explore several ways of improving the underlying solver program
by trying to solve hard puzzles by using the solution for easier variants, and by
developing a more memory-efficient way of representing puzzle configurations.

We evaluate the results of our system, and shows that it offers a slight improvement
compared to solving the puzzles with a set of general cases, as well as showing vast
improvement for a few isolated test cases, but the performance is slightly behind
the hand-tuned parameters we found in the specialization project.

We conclude our work by identifying parts of our system where improvement can
be done, as well as suggesting other promising areas for further research.
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Chapter 1

Introduction

1.1 Goal

The goal of this thesis is to develop a method for solving sliding-block puzzles using
meta-reasoning. This will be achieved by studying existing literature in order to
find out how to apply meta-reasoning to our domain.

We will analyze the methods, and find one or two variants which we will implement
on top of an existing sliding-block puzzle solver. Then we will run experiments and
evaluate the performance of the methods.

In addition, we will also attempt to enhance the methods used in the existing
solver program. We are interested in algorithmic enhancements which enables us
to search more efficiently, as well as optimizations and prunings which leads to a
smaller search space size. Both kinds of improvements will be beneficial at the
meta-level, because a smaller portion of the resources is spent doing search.

1.1.1 Our previous work

This thesis is a continuation of the work done in the specialization project. The
result from this project was a sliding-block puzzle solving program using classical
search algorithms, as well as several enhancements. The user decides which algo-
rithm and options to select for a given puzzle. In this thesis, the meta-reasoning
program should automatically find good options for a given puzzle.

13



14 CHAPTER 1. INTRODUCTION

1.2 Background and motivation

Sliding-block puzzles is a challenging domain where little research has been done.
The domain of sliding-block puzzles is PSPACE-complete, and hence no efficient
algorithm is known which can solve arbitrary instances. Research from similar
domains has shown that it is possible to create programs able to solve most in-
stances. The current best results in this domain are still far behind results from
similar domains.

Previous authors [14] have claimed that breadth-first search is the best suited
algorithm for sliding-block puzzles. Hobbyists have used various heuristics and
domain-specific algorithms to solve harder instances. In our specialization project
(see section 1.2.1), we used several algorithms (breadth-first search, A* and IDA*
(which are described in detail in chapter 2), as well as adding several ways of
pruning the search space.

Since the domain of sliding-block puzzles is PSPACE-complete, there is reason to
believe that other problem domains within the fields of AI and computer science
could benefit from significant progress in solving sliding-block puzzles.

It must be mentioned that the author of this thesis has a strong background in
algorithms, which can be reflected in some parts of the thesis.

Also, we (I) think sliding-block puzzles are hard and fun, both as a recreational
game and as a scientific problem.

1.2.1 Specialization project

This thesis is a continuation of the author’s specialization project at NTNU, which
was conducted during Autumn 2009.

The goal of the specialization project was to study existing techniques for solving
sliding-block puzzles, develop new ideas for solving such puzzles and incorporate
these ideas into a program that solves instances of such puzzles.

A literature study was conducted where we investigated how others have tried to
solve sliding-block puzzles, as well as studying problems exhibiting similar proper-
ties, like Sokoban, the 15-puzzle and Rubik’s cube.

Then, we analyzed our problem domain, in order to find its search space properties
and similarities to the other problem domain we studied. Based on the results of the
analysis, we came up with a set of suggested algorithms, algorithmic improvements
and ways to prune the search space.

The program we developed used the following search algorithms, improvements
and options:

• Choose between three algorithms: BFS, A*, IDA* (described in more detail
in chapter 2)
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• For A* and IDA*, choose between three heuristic functions.

• For IDA*, manually set the initial pathlimit (the maximal permitted search
distance during the first iteration of the search).

• Deleting inferior states and resuming search when memory is exhausted.

• Prune positions where the spaces are far apart (space value pruning).

• Prune positions containing blocks not packed in a corner.

• Disallow movement of certain blocks in a puzzle.

• Only allow master block moves that decrease its distance to the goal.

• Solve a puzzle with the aid of user-supplied subgoals.

In addition, the program supports two ways of calculating an upper bound of the
search space of a puzzle:

• Combinatorial bound (or permutation bound). Given a puzzle, each block
(including spaces) can be seen as elements in a permutation, where similar
elements are allowed. The multinomial coefficient of this multiset is an upper
bound of the search space for this puzzle. This bound is easily calculated for
every puzzle.

• Packing bound. Given a puzzle, count the number of ways it is possible to
pack the blocks in the puzzle area. This bound is not feasible to calculate for
larger puzzles having search spaces of 1020 and higher.

These enhancements are described in further detail in section 3.2.1.

A test suite of 26 puzzles was constructed. We ran our program on each puzzle
in the test suite with different settings, in order to measure the efficiency of each
algorithm and improvement.

We managed to solve 15 of the 26 puzzles. Our results showed that A* performed
slightly better than BFS on our domain. In addition, finding the correct parameters
for the A* heuristics was important for solving some puzzles. The search work
needed could differ by several orders of magnitude for different parameters on the
same puzzle.

1.3 Literature study

In this section, we describe how the literature study was conducted in this thesis.
More specifically, we will mention what goals we had for the literature study and
we will describe the process we used for finding relevant literature, and outline the
plan we used for analyzing each paper.

The literature was grouped in the following categories:
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• Meta-level reasoning - everything which has to do with reasoning about the
reasoning process

• Reasoning - classical reasoning methods and their use in games

• Search - the algorithms that search the state space

• Optimization - optimizing and tweaking of performance

1.3.1 Goal of the literature study

The goal of the literature study was to find literature which would help us in
reaching the goals for this thesis.

1.3.2 Method

The following methods were used to find relevant literature.

As the main tool, scholar.google.com was used to find papers, where we searched
for relevant terms like meta-level reasoning, search, planning, sliding-block puzzles
and similar puzzles like Sokoban, 15-puzzle and Atomix. In addition, our special-
ization project report [32] was included as relevant literature.

We also checked references for the papers we found, and we searched for papers
having our newly found papers as references (citations).

In addition to using scholar.google.com, we searched for relevant conferences.
We also checked the homepages of some authors, if we discovered that they have
written several relevant papers or if their area of research was relevant to us. In one
case, we emailed the author in order to get a paper that wasn’t available online.

When a paper was found, it was placed in one of the categories mentioned above.
At the very least we read the abstract in order to find out the topic of the paper,
as well as maintaining a separate file containing comments about each paper.

For each of the categories, we then collectively analyzed all the useful papers to-
gether, discussed the various approaches and compared them to each other (see
chapter 5).

1.4 Structure of this thesis

Chapter 2 is an introduction to common search algorithms (both uninformed and
informed) and reasoning methods. Knowledge of these is a prerequisite for under-
standing the rest of the thesis.



1.5. CREDITS 17

In chapter 3 we define our problem domain, both at the search level and at the
meta-level. We also look at some common puzzles that appear in our domain as
subdomains.

In chapter 4, we look at how sliding-block puzzles have been solved before. We
also look at how similar puzzles like Sokoban and 15-puzzle have been solved, both
with search algorithms and methods using knowledge.

Chapters 2-4 can be considered a part of the literature study, while chapter 5
contains discussion and decisions we make based on the literature study.

Chapters 6-7 describes our implementation.

Chapters 8 and 9 contain results and evaluation.

Chapter 10 contains a conclusion and a summary.

Chapter 11 identifies areas where further research can be done.

1.5 Credits

All the pictures of sliding-block puzzles and configurations are screen-captured from
the Bricks computer game [5]. These pictures mainly appear in chapter 3, but also
they also appear in chapters 5, 7, 8 and 9.

Figure 3.4 is taken from the Wikipedia article about the 15-puzzle [10].

Figure 3.5 is taken from a website where Rush Hour can be played online [28].

Figure 4.1 is taken from the Wikipedia article about Sokoban [31].

Figure 4.2 is taken from Knuth [20].

Figure 4.3 is taken from the website of Atomix 2.13.4 for GNOME [3].
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Chapter 2

Classical algorithms

In this chapter we will briefly introduce the classical algorithms used for single-
agent problems, as well as reasoning methods. This chapter is mainly here to
familiarize the reader with these algorithms, since many of them will be referred
to many times later in this thesis.

2.1 Uninformed search algorithms

This section will introduce classical uninformed algorithms for traversing a search
space.

2.1.1 Random walk

The Random walk algorithm works as follows: For each move, move to a randomly
chosen neighbouring state. States are chosen with uniform probability.

Even though this algorithm might sound trivial and silly, it can be useful in cases
where there is a high number of solution states in the search space, we don’t care
about an optimal solution sequence, or if we have little domain knowledge.

Junghanns [17] suggests using the following improved algorithm: Each time a new
state is visited, push all its unvisited neighbouring states into a set of open states.
Then, select and visit a random state from the set of open states, removing the
state from this set in the process.
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2.1.2 Depth-first search

Depth-first search (DFS) is a graph traversal algorithm that expands all the nodes
in an entire subtree before examining any of the sibling nodes.

The algorithm works as follows: As long as there exists a node with unvisited
children, visit the first child node. When there are no such nodes, backtrack to the
parent node.

If the graph has cycles, the basic algorithm will enter an infinite loop (recursion).
Also, if the graph isn’t a tree, some nodes can be visited multiple times. To avoid
this, we modify the algorithm to not visit any node more than once.

Standard DFS only uses memory proportional to the current search depth. How-
ever, when the graph is not a tree it is favourable to also keep track of the visited
nodes. We are not guaranteed to find a solution node in the shortest amount of
steps using DFS.

2.1.3 Breadth-first search

Breadth-first search (BFS) is a graph traversal algorithm that visits all sibling
nodes before visiting any child nodes. All nodes n steps away from the starting
node are visited before any node that are n + 1 steps away.

BFS will find a solution node in the graph if one exists. Also, the shortest path to
the solution will be found.

The main disadvantage with BFS is the memory usage - a queue containing all the
nodes to be visited needs to be maintained.

2.1.4 Bidirectional search

In bidirectional search, search is performed simultaneously from the start node and
the goal node(s). A solution is found when the two search trees meet in the middle.

Bidirectional search is often used in combination with BFS. Consider a graph with
branching factor b and distance from start to goal d. Using BFS, a solution can be
found using O(bd) work. Using bidirectional search, a solution can be found after
doing two searches, each with O(bd/2) work.

Some disadvantages with bidirectional search includes extra logic needed in order
to determine when the two search trees meet. In some graphs, there can be several
goal nodes, which can cause the second search tree to become much larger than
the first one, reducing the advantage. In some cases it can be difficult to define the
backward action needed to traverse the graph from the goal node.
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2.1.5 Iterative deepening

This is not an algorithm in itself, but an enhancement which can be applied to
non-breadth-first algorithms. It is typically used in combination with A* (see
section 2.2.1) and DFS.

Iterative deepening works as follows: A series of searches are performed (using A*,
DFS or other algorithms), with the constraint that the search is not allowed to
search past a certain depth limit l. If a search is completed and no solution is
found, the depth limit l is increased and a new search is performed. As long as the
depth limit l is increased by the least edge cost in the graph, iterative deepening
will find an optimal solution.

For a well-behaved search tree where the branching factor is equal everywhere, the
last iteration will dominate all the others in search effort. If the solution is at depth
d, the runtime is O(bd) which is the same as BFS, but with less memory usage.

2.2 Informed search algorithms

This section will introduce classical informed algorithms for traversing a search
space. More specifically, we will introduce a class of search algorithms called best-
first search algorithms. These algorithms are equipped with a heuristic function
which estimates the distance from any state to the goal. Using this heuristic func-
tion, these algorithms attempt to pick states more likely to have a short distance
to a solved state.

First, we will introduce some common terminology for the informed algorithms:

• Heuristic function: A function h which, given a state, returns the estimated
distance to goal.

• Admissible: A heuristic function is admissible if it never overestimates the
distance to the goal. That is, for every state x, h(x) ≤ h∗(x) where h∗ is the
function returning the optimal distance to the goal.

• Monotone: A monotone (or consistent) heuristic is one that approaches the
goal in an incremental way, without taking a step back. More formally, for
each state x, with parent state p and cost c(p, x) for moving from state p to
x, the following inequality always holds:

h(x) ≤ h(p) + c(p, x)

2.2.1 A*

A* is a best-first search algorithm which use a heuristic function to guide the
search. Whenever a node is chosen for expansion, the node x with the lowest f -
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value is chosen, where f(x) = g(x) + h(x). g(x) is the actual cost of moving from
the start position to node x, and h(x) is the estimated distance from x to goal.

If the heuristic h is admissible, A* will find the optimal solution if a solution exists.

The main disadvantage of A* is its memory usage. A priority queue needs to be
maintained, containing all the unexplored neighbours to nodes we have visited so
far. Also, a set containing all the nodes already seen must also be maintained.

2.2.2 IDA*

IDA* is a variant of A*, where iterative deepening is applied in order to reduce the
memory usage of the A* algorithm.

IDA* works as follows: A series of A* searches are performed with the additional
constraint that no node x with f(x) > p is expanded, where p is the pathlimit for
the current search. If no solution is found during this search, the pathlimit p is
raised and a new search is performed.

If IDA* is given an admissible heuristic h and a solution exists, IDA* will find the
optimal solution. If the search tree has approximately the same branching factor
everywhere, IDA* will use asymptotically the same time as A* to find a solution,
as the time of the last iteration will dominate the sum of all previous iterations.
In addition, the memory usage is less than A*, since IDA* doesn’t need to push
nodes with f -values exceeding the pathlimit to the open set.

2.3 Domain-independent enhancements

This section describes some common algorithmic enhancements to the search algo-
rithms mentioned above.

2.3.1 Pattern databases

In a pattern database, a subdomain of the full problem domain is considered, and
the exact distance from any node to a solution is stored. The subdomain is typically
chosen so that it is feasible to store the distance from all nodes. The construction
of a database is usually done in advance, before solving instances of the problem
in question.

A typical application of a pattern database is to improve the lower bound of the
heuristic function. For any given position, it is converted to the subdomain and is
looked up in the pattern database. The distance from this position to goal is used
as the estimated distance to goal.
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2.3.2 Macro moves

A macro move is a kind of super-action - performing several actions in a row as
one atomic action. This has the effect of reducing the size of the search space when
the macro moves replace the individual actions they consist of.

Macro moves are mainly useful when there exist sequences of actions where the we
are not interested in the intermediate positions resulting from this sequence.

Macro moves should be carefully defined if one is interested in preserving optimality.

2.3.3 Transposition tables

Transposition tables are used to avoid re-evaluating nodes in graph search algo-
rithms, and they work by caching the result from the evaluation of the node,
making it available for later retrieval. The need for transposition tables typically
arise when the search graph contain cycles or multiple paths to a specific node.

Transposition tables are commonly used in search in two-player games, but can
also be used in conjunction with algorithms like IDA*.

A disadvantage of using transposition tables is the memory usage. To help remedy
this, one could implement a replacement scheme. When the transposition table
becomes too large, entries can be dropped. It could be the entry that is least
recently used, least frequently used, the entry corresponding to the node farthest
away from a goal state (as measured by a heuristic function) or some other criteria.

2.3.4 Endgame databases

An endgame database is a pre-calculated database containing the evaluation of
every node that are up to a certain distance from a goal node.

For single-agent problems, the endgame database typically contains all nodes up
to a distance d from a goal position. For each such node, the exact distance to a
goal node is stored.

For two-player games, the endgame database typically contains the result of the
game for each node in the database, and might also hold the number of moves to
either the end of the game, or to a position where it is trivial to determine the
game result.

2.4 Methods based on expert knowledge

In this section will briefly describe problem solving methods based on expert knowl-
edge. Luger [27] is used as a reference for these, except case-based reasoning where
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we have used Aamodt, Plaza [1] as a reference.

2.4.1 Rule-based reasoning

Historically, rule-based systems have commonly been called expert systems in lit-
erature. The knowledge base in rule-based systems are encoded as a rule base
containing several if...then... rules.

An inference engine is given the premises of a problem instance (the user input),
from which it will try to deduce further facts, according to the rules. A working
memory is used, which initially only holds the premises, but later on it will also
contain additional information derived from the premises by the inference engine.
The inference engine performs a recognise-act cycle, which involves going through
the rules multiple times using the information in the working memory. When a
rule is found such that the premises of the rule is matched by the information in
the working memory, the information in the then portion of the rule is added to
the working memory. When no more matches can be made, the inference engine is
done and the working memory will, hopefully, contain some kind of conclusion.

Rule-base reasoning is one of the oldest techniques for representing domain knowl-
edge in such a system, and is still widely used.

2.4.2 Case-based reasoning

Case-based reasoning (CBR) is a way of solving new problems by remembering
a previously solved similar problem and reusing information and knowledge from
the stored solution. CBR systems typically have a case base of previously solved
problem instances along with their solutions. When a new problem needs to be
solved, a similar past case is found, and reused to solve the new problem.

The general CBR cycle may be described by the following four processes:

• Retrieve: Find the case or cases most similar to the problem we want to
solve. In this stage, our new problem is analyzed and a set of problem descrip-
tors, features are found. Then, a search is performed through the database
of previously solved problems to find the best match(es).

• Reuse: Use a retrieved case to solve the new problem. This can be done by
just copying the case as applying it to the solution as-is, or adapting it to
better fit the problem.

• Revise: Apply the case to the new problem, and determine whether it solves
the problem. If the problem is successfully solved, we can use the solution to
solve future problems by retaining the case. If the problem is not solved, the
solution can be repaired using domain-specific knowledge.
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• Retain: Keep the solution to this problem, and make use of the knowledge
for solving future problems. This is the learning phase of CBR. The case
base is updated according to the result of applying the previously retrieved
case to our new problem. If the problem was solved, the case base is updated
with the information that the problem can be solved with this case. If the
problem was not solved, the case base can be updated with information about
the failure, in order to prevent similar failures in the future.

2.4.3 Model-based reasoning

Model-based reasoning is based on a deeper understanding of the problem do-
main. By seeking deeper understanding, one hopes to improve upon systems based
on making decisions based on observations. For example, when attempting to
find a medical diagnosis, one can make a diagnosis on observable symptoms like
headaches, nausea and fever. This is the approach used by traditional reasoning
system based on heuristics. Such heuristics do not give us any deeper and causal
understanding of the human body. A model-based system would in this case use
a model of the human body, and would try to detect the presence of infecting
agents, note the resulting inflammation of cell linings, the presence of inter-cranial
pressures and infer the causal connection to the symptoms of headache, elevated
temperatures and nausea.

Modelling of electronic circuits is an early application of model-based reasoning.
For such domains, the physical model is simulated in software.

An advantage with model-based reasoning is that the resulting system is typically
robust and thorough. However, such a system is still a model, and could be wrong
or not detailed enough. Also, the knowledge acquisition for a model-based system
can be demanding and the resulting system can be large.

2.4.4 Hybrid design

It is possible to combine two or more of the reasoning approaches mentioned above.
The strengths of one system can compensate for the weaknesses of another. For
example, by combining rule-based and model-based systems, one can use the model-
based approach when given a problem that cannot be solved by the heuristic rules
of the rule-based system.

2.5 Meta-level reasoning

In artificial intelligence, reasoning has traditionally been viewed as a decision cycle
within an action-perception loop. The loop consists of an intelligent agent at the
object level performing actions in an environment (the ground level). The cycle
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consists of the agent performing actions and receiving stimuli from the environment
based on the actions. New actions are then performed, and the cycle goes on.

Cox and Raja [6] define Meta-level reasoning (or metareasoning, as they call it)
as the process of reasoning about this decision cycle. The action-perception cycle
along with an additional meta-level is shown in figure 2.1.

Figure 2.1: Meta-level reasoning

Using meta-level control, we can spend extra computational effort to decide how
much and what kind of reasoning to do. Some kind of balance must be struck
between the amount of computations at the meta-level and the object level.

In order to gather sufficient information to make efficient meta-level decisions,
introspective monitoring is necessary. This can involve gathering of performance
data for the different kinds of decision algorithms at the object level, building up
a performance profile for each option.



Chapter 3

Sliding-block puzzles defined

3.1 Definition of the problem domain

Figure 3.1: The sliding-block puzzle Forget-me-not

A sliding-block puzzle consists of several blocks within a closed frame where each
block is a collection of unit squares which move together. The goal of such a puzzle
is to reach a certain configuration. Typically, the goal specifies the destination
location for a special block called the master block.

Figure 3.1 shows a typical sliding-block puzzle. The objective of this puzzle is to
move the blue block to the center of the bottom row.

We will support the following kinds of blocks in this thesis:

• Normal block: The default block type. Two blocks of the same size and
shape are considered to be indistinguishable.

• Unique block: Same as the normal block, but it is distinguishable from
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normal blocks of the same size and shape. This block type is commonly used
for the master block.

• Disjoint block: It behaves like a normal block, but a block of this type
has disjoint unit squares. This is a new addition to our program from our
specialization project [32].

• Slider: A block with additional movement restrictions: A block can be de-
fined to be able to move only horizontally or only vertically. These blocks are
typically of size 1×n or n× 1. This is another new addition to our program.

The domain consists of positions in a search space. We can define two different
actions in our search space:

• Step: A step is defined as moving one block one unit step either up, down,
left or right. See figure 3.2 a).

• Move: A move is one or more consecutive steps using the same block. See
figure 3.2 b).

Figure 3.2: Different ways to define an action

Using moves and steps have their own set of advantages and disadvantages.

Advantages with moves:

• Shorter solution sequences and smaller diameter of search space

• Resting block pruning is expected to be more efficient

• Space value pruning is expected to be more efficient

Advantages with steps:

• Lower branching factor

• Easier to design a heuristic function

The solver program from the specialization project only supports steps.
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Figure 3.3: Puzzles containing the new block types. The left figure shows a dis-
connected block, which consists of four purple 1×1 cells. The right figure contains
two slider blocks, indicated by a yellow vertical line in its interior.

As mentioned above, two block types are added to the program from the special-
ization project: disjoint blocks and sliders. The rationale for this addition is to be
able to include more puzzles in our test suite, as well as increasing its diversity.
The addition of sliders allow us to include puzzles from Rush Hour, as well (see
section 3.1.2).

Figure 3.3 a) shows a puzzle containing a disjoint block. The four purple 1 × 1
cells belong to the same block and move together. Figure 3.3 b) shows a puzzle
containing two vertical sliders. The sliders are the two blocks with a yellow vertical
line.

3.1.1 15-puzzle, (n×m− 1)-puzzle

This puzzle takes place in a grid of size n×m. There are n×m−1 numbered tiles.
The objective is to rearrange the numbered tiles so that they appear in increasing
order. This puzzle is a special case of our domain, where all the blocks are of size
1× 1 and distinguishable from each other.

The most well-known variant is the 15-puzzle, which was invented by Noyes Chap-
man, and popularized by Sam Loyd in 1880 [30]. In recent AI research [22, 23],
the 24-puzzle (grid size 5 × 5) has been used as a problem domain because of the
increased challenge compared to the 15-puzzle.

Figure 3.4 shows a solved configuration of the 15-puzzle.
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Figure 3.4: The 15-puzzle in a solved state.

3.1.2 Rush Hour

Rush Hour is a sliding-block puzzle manufactured by ThinkFun. The board size is
6×6, and all the blocks have sizes 2×1 or 3×1 (oriented horizontally or vertically).
Each block can move either horizontally or vertically, in the direction they extend.
The blocks represent cars and trucks, and the objective is to move a specific car
out of the board via a gap in the wall.

Rush Hour is a special case of our problem domain, where all the blocks are sliders.

Figure 3.5: A Rush Hour puzzle.
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Figure 3.5 shows a Rush Hour puzzle.

3.2 Definition of our meta-level domain

Cox, Raja [6] describe a model divided in a ground level, object level and meta-level
(see figure 3.6). We described this model in section 2.5). This section describes
one possible way to fit our problem into their model.

Figure 3.6: Meta-level reasoning

The ground level consists of the physical puzzle (or a human-playable computer
implementation) and its rules. The object level consists of a representation of the
puzzle in a computer, a set of actions (steps), a state space of all positions, and
algorithms to examine the state space in order to try to find a solution to the
puzzle.

The meta-level consists of controlling the object level. At this level, we control the
strategies that the object level uses. By monitoring the object level, the agent at
the meta-level gathers information such that it can make informed decisions about
controlling the object level. The meta-level domain can be called the parameter
space.

With Introspective monitoring, the meta-reasoner can gather information about the
computational requirements and the performance of the various algorithms (BFS,
A*, IDA*) with different parameters.

Using meta-level control, the meta-reasoner can decide whether to carry on with
the current plan, or to cancel it and attempt to solve the problem with another
strategy. A strategy in our domain is the set of parameters that the underlying
solver is invoked with. (A list of the parameters is given in section 1.2.1. Parameters
include, among other things, the choice of a search algorithm.) In our domain, this
is analogous to determining whether the current search will be successful, cancelling
it if it has exceeded its given allotment of resources (in time and memory) or
determining if the puzzle is unsolvable with the current set of parameters. A change
of strategy can involve either selecting another search algorithm, changing any of
the other parameters, or even giving up (when we have exceeded our computing
resources).
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In our specialization project [32], we didn’t have any automated reasoning at the
meta-level. The user supplied the program’s parameters. They were chosen by
manually analyzing the starting position of a puzzle, using insights gained from
playing the puzzle in a computer implementation, and by experimentation.

It is desirable that an automated meta-reasoner will have these possibilities:

• Starting a search with a given set of parameters.

• Monitoring the object level, both during the search and receiving a result
after the search is finished. Store the information gathered from monitoring.

• Cancelling a search in progress.

• Based on the accumulated knowledge, come up with new strategies which
will hopefully have a higher chance of success.

Our problem at this level is to select parameters such that a given instance will
be solved, preferably with as little search work as possible. Experiences from the
specialization project showed that this problem was very hard. There were a couple
of puzzles which, according to our (not necessarily correct) judgment as experienced
sliding-block puzzle solvers, doesn’t look harder than a couple we did solve, but
we weren’t able to find parameters to enable these puzzles to be solvable within
reasonable time by our program.

3.2.1 Properties of the meta-level domain (parameter space)

Our solver program has a multitude of options and parameters allowing the user
or the meta-reasoner to change the parameters to fit any given puzzle. From the
parameters we can create a multi-dimensional space, with one dimension for each
option. Here follows a list of the parameters:

• Selection of search algorithm: BFS, A*, IDA*.

• Heuristic (A* and IDA* only): admissible or weighted non-admissible, the
last heuristic has additional parameters for total weight, distance-to-goal
weight and weight of average location of spaces (all weights are real values).

• Space value pruning threshold (integer value, or turned off (which is equiva-
lent to a space value of ∞)).

• Resting blocks pruning: In the presence of hanging blocks, don’t allow moves
of resting blocks (three settings: off, relaxed, strict).

These parameters alter the search space of a puzzle. For instance, each puzzle has
a threshold t such that it is solvable if and only if the chosen space value is s ≥ t.

The subset of parameters making a puzzle solvable varies heavily from puzzle to
puzzle. For trivial puzzles, pretty much any settings of the parameters will let us
solve them, except when we use settings which render the puzzle unsolvable, for
instance by setting a too low space value cutoff. Finding a set of parameters that
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solves a given puzzle can be a very difficult task. A given option has an effect on
the search space which can be hard to analyse. Also, experimenting with different
parameters can be very time consuming, as a solver run can take several hours. In
the specialization project, we managed to solve a puzzle with a set of parameters
which was particularly tricky to find. An off-by-one change in the space value cutoff
parameter would cause the puzzle to not be solved.

In-detail description of parameters

This section describes the parameters, prunings and heuristics in detail.

Heuristics

• Heuristic h0: Manhattan distance between master block and goal. This
heuristic is admissible.

• Heuristic h1: A slight improvement over the Manhattan distance heuristic.
It tries to estimate the number of steps needed in order to move the master
block one step. This estimate is based on the size of the master block and
the number of spaces. This heuristic is not admissible.

• Heuristic h2: Overestimating heuristic, taking into account distance between
master block and goal, collective distance between spaces and master block,
and space value. This heuristic is not admissible.

Space value pruning

Let (x1, y1), (x2, y2), . . . , (xn, yn) be the coordinates of the spaces in a given posi-
tion. The space value of this position is then∑

1≤i<j≤n

(|xi − xj |+ |yi − yj |),

that is, the sum of Manhattan distances of all pairs of spaces. The purpose of this
optimization is the idea that positions where the spaces are scattered far apart are
less useful and will not be part of a solution. In our program, we can set a cutoff t
such that all positions with a space value higher than t will never be visited in the
search. They are removed from the search space, and hence we reduce the search
space size, making the problem slightly more tractable (hopefully). The hard part
is finding a good cutoff t such that the search space size is reduced significantly (by
several orders of magnitude) while still allowing the puzzle to be solvable. Setting
t too low results in the puzzle being unsolvable. In addition to reducing the search
space size, a lower cutoff value t can increase the solution length, and in some cases
increase the search work needed to find a solution.

Consider the two positions shown in figure 3.7. Each positions comes from the
same puzzle. Each space is numbered from 1 to 4. Table 3.1 show the pairwise
Manhattan distances.
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Figure 3.7: Space value example

Table 3.1: Pairwise distances for space value calculation.
Position a) Position b)

i \ j 1 2 3 4 i \ j 1 2 3 4
1 - 1 1 2 1 - 1 8 7
2 - - 2 1 2 - - 8 6
3 - - - 1 3 - - - 4
4 - - - - 4 - - - -
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The space value is the sum of all pairwise distances, so the space values of the
positions shown in figure 3.7 are 8 for position a) and 34 for position b).

The space value can be seen a numeric manifestation of the mobility of a position.
A lower value means that the spaces are grouped more together (or that the blocks
in the position are packed without gaps), which in turn means that larger blocks
can move, and a block is more likely to be able to move several steps in a row. See
figure 3.7, where position a) is superior to position b).

The ability to remove positions with a high space value from the search space means
that a solver program can find a solution with less search work.

Resting block pruning

The idea is that when moving a block, it will be moved all the way to a sensible
location, and will be left adjacent to other blocks (or the frame) such that at least
two of its sides (one vertical and horizontal size) rests against other blocks (or the
frame). By removing positions from the search space where blocks we move are left
hanging in "mid-air", we hope to achieve significant savings in search space size.
This optimization works best with moves, rather than steps. When using steps we
naturally need to investigate all positions on a block’s path to its desired location.
When using steps, we simply need to avoid moving other blocks as long as there
is a block which is "hanging". When using moves, we simply don’t put positions
into the queue where the current moving block hangs in mid-air.

Figure 3.8: Resting block pruning
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Figure 3.8 shows several examples of resting and hanging blocks. Blocks 2, 4 and 5
are resting. Block 2 can’t move to the left and up, block 4 can only move down and
block 5 cannot move at all. Hence, these blocks have two orthogonal directions
where they rest against other blocks. Blocks 1 and 3 are hanging. Block 3 can
move in all directions, except down. Block 1 rests against the frame to its left and
a block to its right. However, these directions are not orthogonal, and hence the
block hangs in mid-air.

3.2.2 Puzzle features

This section will mention some features that are possible to extract either by ana-
lyzing the initial position of a puzzle statically, or which can be obtained via search
(which can help in subsequent searches).

We can divide the features into quantitative features and qualitative features.
Quantitative features are purely numeric in nature, while qualitative features at-
tempt to capture some higher-level concepts.

Quantitative features:

• Estimate of search space size. The easy (non-tight) estimate is the combina-
torial bound, the harder one (not always applicable) is the packing bound.
If this number is low enough, we can perform a full search (BFS) and always
obtain the shortest solution. Low search space size implies easy to solve, but
not necessarily the other way around, as the solution position can be close to
the starting position in the search space graph.

• Branching factor. The exact number can’t be determined without doing a
full search, but it can be estimated by performing a partial search. A high
branching factor is bad news for a search algorithm, as it limits the search
depth we can explore completely.

• Number of spaces. Immediately determinable from the starting position. A
high number of spaces makes it easier to move the blocks around. It also
creates many possible moves, contributing to the combinatorial explosion for
a search algorithm.

• Block shape niceness. The number of rectangular blocks divided by the total
number of blocks. A low number of rectangular blocks can be indicative of
a harder puzzle where it is more difficult to move the blocks around and to
keep them packed at all times.

• Average block size. Large blocks are harder to move around, and can con-
tribute to the difficulty of solving a puzzle.

• Puzzle size. The number of non-wall squares in the puzzle. A large puzzle
has a higher potential of being difficult.

Qualitative features:
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Figure 3.9: Some puzzles requiring different solving strategies. In puzzles a) and
b), the objective is to move the master block to the center of the bottom row. In
puzzle c), the objective is to move the master block to the upper right corner.

• Ease of movement: Takes the block sizes and shapes into account. Small,
rectangular blocks make movement easy. Large, irregularly shaped blocks
make movement hard. (A high branching factor doesn’t necessarily imply
easy movement. For instance, puzzles a) and b) in figure 3.9 have a low
branching factor, but only 1 × 1 and 1 × 2 blocks, hence it’s easy to move
blocks around. Puzzle c) in figure 3.9 has a high branching factor, but the
combination of blocks shaped like arbitrary polyominoes, the need to pack
near-perfectly and the need to rearrange blocks multiple times make move-
ment very hard. If it is easy to move blocks around, A* is a good candidate
algorithm. Depending of the speed in which it is possible to move the master
block (in moves needed per unit it is moved), adjust the heuristic weight.

• Type of instance: Is it a packing problem? Do we need to pack the rest of the
blocks in the puzzle in some way before we can make a path for the master
block? Then we first need to determine how the blocks should be packed and
devise a plan to achieve this packing. It is a puzzle where we can do nothing
but search? These puzzles are characterized by very little space, very small
branching factor and long solution sequences. BFS is a good choice for those.

3.3 Our test suite

In order to facilitate testing and evaluation of our algorithm, we have chosen nu-
merous puzzles that will be our test suite. These puzzles are taken from various
computer implementation of sliding-block puzzles, most of them from Bricks.

The puzzles were mainly chosen based on the expected difficulty level. The difficulty
level of the chosen puzzles were similar to or slightly harder than the hardest puzzles
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solved in the specialization project.

In addition, some very easy puzzles containing the newly supported block types
(disconnected blocks and sliders) were included, to confirm that our implementation
was correct. We also constructed some puzzles for testing some of the extreme
settings of our parameters.

In total, 46 puzzles were chosen, which includes the 26 puzzles used in the special-
ization project.



Chapter 4

How puzzles have been solved

In this chapter we will describe how sliding-block puzzles and similar single-player
puzzles have been attempted solved. We will only briefly mention solving attempts
that were already described in our specialization project [32], while describing in
more detail the attempts found in the literature study of this thesis. At the end of
this chapter, we will also mention some games-playing programs (not necessarily
single-player puzzles) using reasoning.

4.1 Sliding-block puzzles

In this section we will all attempts at solving sliding-block puzzles that are known
to us. None of the following approaches have used other methods than standard
search algorithms like BFS, A* and IDA*.

In our specialization project [32], we developed a program supporting three algo-
rithms (BFS, A*, IDA*) and a wide range of heuristics and options. A list of the
options in the program can be found in section 1.2.1. Our program was able to
solve 15 puzzles from a test suite of 26 puzzles.

The JimSlide program by Leonard [25] used BFS to solve sliding-block puzzles.
Their program supports swapping positions to disk, hence it is capable of fully
examining search spaces which cannot be held in main memory alone. No results
of their program are given, but from the description of the program we believe it is
able to solve the same puzzles as the program from our specialization project using
BFS with none of the extra options turned on.
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4.1.1 (n×m− 1)-puzzle

Culberson and Schaeffer [8] used IDA* with pattern databases (to improve the lower
bound heuristics), transposition tables (to avoid re-examining previously visited
state) and endgame databases (store all states at most 25 moves away from the
goal state). They achieve a 1707-fold reduction in search space size compared to
IDA* with the Manhattan distance heuristic.

Korf, et al [22, 23, 24] have used multiple approaches for solving such puzzles:

• They managed to solve 10 random instances of the 24-puzzle (5×5), by using
IDA* with 4 different heuristics combined into an admissible heuristic, as well
as finite-state machine pruning to avoid duplicate states.

• They used parallel BFS to perform a complete search of the search space of
the 15-puzzle, proving that no instance needs more than 80 moves.

• By using disjoint pattern databases, they achieve a 2000-fold reduction in
solving time for 15-puzzles, as well as managing to solve 50 random instances
of the 24-puzzle.

All of the solving attempts for (nm− 1)-puzzles mentioned here were found during
our specialization project.

4.1.2 Rush Hour

The JimSlide program mentioned in section 4.1 can also solve Rush Hour puzzles,
since they are essentially sliding-block puzzles where every block is a slider (that
is, restricted to either horizontal or vertical movement). Since standard Rush Hour
puzzles are always of size 6× 6, all instances should be easily solvable using BFS.

When generalised to an arbitrarily large board, the problem of deciding if a Rush
Hour puzzle has a solution is PSPACE-complete [11].

The program from our specialization project [32] doesn’t support sliders, and can-
not solve Rush Hour puzzles.

4.2 Sokoban

Sokoban is a puzzle game where the player pushes boxes in a maze. The purpose is
to push all boxes to designated goal locations. Only one box can be pushed at the
same time, and boxes cannot be pulled. Figure 4.1 shows an example of a Sokoban
puzzle.

The program Rolling Stone by Junghanns and Schaeffer [18] was able to solve
57 problems from a standard test suite of 90 problems from the computer game
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Figure 4.1: A screenshot of the original DOS version of Sokoban.

XSokoban1. They used IDA* with a multitude of enhancements (transposition
tables, deadlock tables, macro moves, pattern search and relevance cuts.) Their
effort was studied in our specialization project[32], and will not be mentioned in
detail here.

The remainder of this section will list other attempts at solving Sokoban which we
found during the literature study of this thesis.

4.2.1 Takakashi’s unpublished effort

Takakashi [33] has released a Sokoban solving program on his website. According
to the website, the program is able to solve 86 of the 90 problems from XSokoban,
which is significantly better than any of the documented efforts at solving Sokoban.
The program does not try to find optimal solutions. However, details about the
algorithms are not given, except for a high level description which says that they
use "Best-first search with Means-ends analysis as the basic search algorithm." The
source code is not released as they mention that "the research is under continua-
tion." A move is defined as multiple pushes of the same box in a row.

4.2.2 Lishout, Gribomont: Multi-agent approach

Lishout, Gribomont [26] used a multi-agent approach. They consider each box in
the maze to be an agent whose aim is to reach one of the goal squares. The global
goal us to find a solution where every agent reaches his objective. In this approach,
the man is just a puppet which can be used by the agents when needed.

1http://www.cs.cornell.edu/andru/xsokoban.html
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They define a special subclass of Sokoban positions which consists of the positions
where it is possible to push the boxes directly to their goal positions one by one.
This subclass is also sometimes referred to as the Lishout subclass. To be more
precise, a position in this subclass must satisfy the following conditions:

• It must be possible to determine in advance the order in which the goal
squares will be filled.

• It must be possible to move at least one box to the first selected goal square
without having to move other boxes.

• For each box which satisfies the previous condition, the position obtained by
removing that box and replacing the selected goal square by a wall must also
be in the subclass.

Their program Talking stone used a rather naïve algorithm: Try all moves until a
position is reached which belongs in the subclass defined above. They chose to use
pure iterative deepening depth first search instead of IDA* because of the difficulty
of designing a good heuristic function, and because it was expected that the moves
needed to reach a position in the subclass were not expected to reduce the global
box-goal distance. The program does not try to find optimal solutions.

They managed to solve 9 of the 90 problems from XSokoban. One problem was
trivially solved (no search effort) because the starting position was already in the
desired subclass.

4.2.3 Takes: reversed solving

Takes [34] used a different approach for solving Sokoban: They searched backwards
from the goal position, where the man is pulling boxes instead of pushing them.
This has the advantage of avoiding deadlock positions2 altogether, and hence there
is no need to detect deadlocks, which was a necessary feature in the Rolling Stone
program mentioned above. Instead of deadlocks, it is possible, however, that the
man can trap himself in a corner, surrounded by blocks.

They used a standard brute force search algorithm which has two main options:
Condition X and condition Y . Condition X specifies when to stop moving a box.
Options include after each step, until a box is at a final position, and until a box is
k steps away from a final position. Condition Y specifies which box to pull next.
Options include every box and every unplaced box. One specific set of conditions
is especially well suited to solve puzzles from the Lishout subclass defined in the
section 4.2.2. This approach does not try to find optimal solutions.

They managed to solve two puzzles of the 90 puzzles from XSokoban. In addition,
they solved several puzzles from the easier Microban.

2A deadlock is a position from which it is impossible to reach a solution. This includes positions
where a box is stuck in a corner, or there exists a group of 2× 2 boxes.
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Table 4.1: Truth table for the majority (median) function.
x1 x2 x3 f
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

4.2.4 Binary decision diagrams

A binary decision diagram (BDD) is a data structure used to represent a boolean
function. A BDD can be seen as a rooted, directed acyclic graph which consists of
decision nodes and terminal nodes representing true and false. Figure 4.2 shows a
BDD for the majority or median function shown as a truth table in table 4.1. This
function returns true if at least two of its three inputs are true.

Figure 4.2: BDD for the majority (median) function. ⊥ represents the false ter-
minal node, > represents the true terminal node. The dotted lines represents false
edges, and the solid lines represent true edges.

There are different kinds of BDD’s, the most common ones are:

• OBDD: Ordered BDD, the order of the variables is the same for every
path through the graph.

• ROBDD: Reduced ordered BDD, given an ordering of the variables, the
number of nodes in the diagram is minimized. ROBDD’s form a canonical
representation of boolean functions. Two functions are equal if and only if
they have the same ROBDD [35].
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Throughout this thesis we will use the term BDD to denote a reduced ordered
binary decision diagram.

BDD’s have some nice properties, for instance basic operations like intersection and
union between BDD’s can be implemented efficiently (in polynomial time in the
size of the BDD), and for many practical instances the BDD for a given function
is quite small [35].

Knuth [20] is an extensive reference on BDD’s which also lists several uses in
combinatorics.

Wesselink, Zantema [35] describe in detail how to encode Sokoban positions as
boolean functions:

Each of the n non-wall squares numbered from 0 to n−1 is given a boolean variable
bi. bi is true if and only if there is a stone on position i. The contents of wall squares
never change, so these aren’t included in the encoding. In addition, the man can be
located at any of these n squares. m = dlog ne boolean variables sj are introduced
to describe the bit pattern of the number corresponding to the square the man is
located. In total, n + dlog ne boolean variables are needed to describe an arbitrary
position of a Sokoban problem.

To describe transitions from one position to another, a transition function T (x, x′)
is defined, where x and x′ represent a vector of boolean variables (b0, b1, . . . ,
bn−1, s0, s1, . . . , sm−1). T (x, x′) is true is x′ is a position which can be reached from
x in one move.

The main idea here is to encode a subspace of the search space into one BDD.
The transition function is possible to implement entirely using BDD’s. Hence, it
is possible to perform a state space search using only BDD’s.

Wesselink, Zantema [35] used BDD’s to solve puzzles from Sokoban using the rep-
resentation described above. Using a reachability algorithm which resembles BFS
combined with deadlock elimination (disallowing boxes on positions where they
would be stuck), they managed to solve 4 of the 90 XSokoban puzzles. The most
interesting result is the memory usage: Puzzle 6 has a state space of 3.8 · 1010

reachable states, and they managed to solve the puzzle using a maximal BDD size
of 2.1 · 106. Similar savings were reported on the other solved puzzles.

Edelkamp, Reffel [9] combined the ideas of BDD’s and A* to create a new algorithm
which they call BDDA*. They represented all states with the same f -value in one
BDD. Using deadlock elimination and simple heuristics, they managed to solve
one puzzle from the 90 XSokoban puzzles. Compared to BFS (which was also
implemented using BDD’s), their BDDA* algorithm needed only half the maximum
number of states in the open list, but BDDA* ran much slower than BFS.
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4.3 Atomix

Atomix is a puzzle game where atoms are moved around in a maze. All atoms
have unit size. Atoms move one at a time, and atoms move in a straight line until
their movement is hindered by a wall or another atom. The objective is to move
the atoms in a certain configuration relative to each other, so that they together
constitute a molecule. Figure 4.3 shows a screenshot from the computer game
Atomix 2.13.4 for Linux.

Figure 4.3: Level 18 from a computer implementation of Atomix. The main window
is the game playing area, and the small window to the right shows the objective -
the molecule to be assembled.

Atomix can be considered a generalization of (nm− 1)-puzzles. Every instance of
(nm − 1)-puzzles is also an Atomix instance within a frame of size n ×m, where
each numbered tile is an atom, and the resulting molecule consists of all atoms in
"numerical" order.

Holzer and Schwoon [13] showed that Atomix is PSPACE-complete. They also
provided a puzzle (based on an n-bit counter) with an exponentially long optimal
solution.

Hüffner [16] used two different algorithms for solving Atomix puzzles: A* without
priority queue and Partial IDA*. Both approaches are explained below.

If the heuristic function h(x) is admissible and monotone, A* can be implemented
without a priority queue. They show that a state with the optimal f -value can be
found in amortized time O(branching factor), compared to O(log |S|) (S is the set
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of open nodes) which is the time needed to find the optimal f -value when the open
set is implemented as a priority queue.

The variant of A* without a priority queue was implemented with two tables, a
state table and a hash table. The state table will contain both the open and closed
set. The states are appended to the state table as they are expanded, and each
state has a bit indicating whether it is open or closed. States are never deleted
from this table. The hash table contains pointers to the state table, and a linear
displacement scheme is used to resolve hash collisions. To find an optimal open
state, a linear scan is performed in the state table, starting from the first open
node.

Their implementation of A* without priority queue was several times faster than
a naïve implementation in C++ using STL priority_queue and set.

Partial IDA* is a way of reducing the memory usage of IDA* with transposition
tables. They used bitstate hashing : Instead of storing the complete state, only a
single bit corresponding to the hash value is set. However, hash collisions can occur,
and this scheme doesn’t handle collisions. Hence, there is a possibility that states
on optimal paths can be pruned and therefore Partial IDA* loses admissibility. To
decrease the probability of a hash collision, two bits were set and checked for each
state (two arrays, one bit in each, using different hash functions, thus doubling
memory usage). All solutions found with Partial IDA* were optimal.

With both algorithms, they used a heuristic function which they characterize as
"rather uninformed". They manage to solve most of the puzzles from the Atomix
computer game, with Partial IDA* being the better performing algorithm.

They also investigated backward search (from a goal state to the start state). They
proved that the average number of children for states was the same for backward
and forward search. This result was confirmed by experiments, as forward and
backward search performed similarly.

4.4 Attempts at solving games with reasoning

There are many examples in existing literature describing how to solve two-player
games using knowledge. For instance, research in chess-playing programs began
at a very early stage. Usually minimax search is used (often in combination with
enhancements as alpha-beta pruning. Since searching all the way to positions where
the game is concluded, an evaluation function is used on the nodes where we decide
to cut off searching.

Typically, domain-specific knowledge is employed in the evaluation function, and
in form of opening books and endgame databases.

In this section, we will only look at examples where knowledge and reasoning is
used in other ways than in the evaluation function of a minimax search.
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4.4.1 Go

Houeland [15] used case-based reasoning in the move selection portion of his Go-
playing program. For finding similar board positions, influence maps are compared,
rather than the actual board positions. The influence map is an estimate of the
areas of the board each player control. He used the UCT algorithm (a Monte Carlo
tree search algorithm) for choosing which nodes to examine in the move tree. In
addition, a CBR component is used for storing board positions from professional
games, along with the move performed in the professional game. When the current
board position is similar to a position in the case base, the recommended move for
this position is given a bonus in the scoring used by the UCT algorithm.

However, while the program is able to identify strategically interesting areas of the
board to play on, it is not able to find the actual strong tactical moves. Also, the
program can overlook tactical threats in the beginning of the game if the opponent
performs premature attacks.

4.4.2 Othello

Russell and Wefald [29] used meta-reasoning to play Othello. They used an algo-
rithm called MGSS*, which they describe as "some kind of lookahead search using
minimax backup." They use real utility instead of "quasi-utility" as the value of
a step. They use meta-reasoning to find the computational action which has the
highest utility.

Their program using the MGSS* algorithm manages to beat an Othello program
using alpha-beta search, even though both programs use the same evaluation func-
tion. However, they show that reasoning over just one single step is untenable in
general.

4.4.3 Connect-Four

Allis [2] used nine game-specific strategic rules to make an optimal game-playing
program for the Connect-Four. These rules are similar to the rules an expert human
player would use. Their approach can be seen as rule-based ; if the board is of a
certain type, a certain move should be done.
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Chapter 5

Considering algorithms

This chapter contains the ideas we have for solving sliding-block puzzles, both at
the object level (sections 5.1 and 5.2) and the meta-level (section 5.3), as well as
the underlying data structures at all levels. Some of the ideas are our own, but
most have a basis in existing literature.

5.1 Search

In this section, we will come up with ideas for improving the solver program from
our specialization project. Some of the ideas are from the literature and applied to
our domain, while some ideas are our own.

5.1.1 Search algorithms

In section 4.3 we described how Hüffner, et al [16] attempted to solve Atomix.
They used A* with a priority queue and a non-admissible variant of IDA* (which
they call Partial IDA*) which requires less memory. We will discuss how suitable
those algorithms are for the search level of our domain.

A* without priority queue

In our program we can choose between three heuristics, and only one of our heuris-
tics (the trivial one based on Manhattan distance) fulfills the requirements for using
this algorithm: the heuristic must be admissible and monotone.

Unfortunately, this heuristic is very weak, and A* using this heuristic barely beats
the performance of standard BFS and does not contribute to solving puzzles which
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BFS cannot solve. In order for the heuristic to be able to guide our search efficiently,
the h-value needs to be heavily weighted (w > 10 works well).

The asymptotic runtime of this algorithm is O(log(branching factor)). Depending
on the branching factor of the puzzle to be solved, the asymptotic runtime can be
slower than standard A*.

We will not add this variant of A* to our program, because it only works with the
weakest of our heuristics, and will therefore be of little use in our program.

5.1.2 Partial IDA*

IDA* did not perform very well on our domain. The main reasons are the difficulty
of finding a good pathlimit (because of our weak heuristic function), and puzzles
with long solution sequences having search spaces exhibiting exponential growth
early in the search tree, followed by a reduction in the branching factor which
breaks the advantage of iterative deepening; the last iteration is not necessarily the
largest.

The improvement in partial IDA* over regular IDA* does not directly address the
problems we encountered. The main benefit of partial IDA* is saving memory
by not storing previously visited positions directly, but by using bitstate hashing
instead: mapping positions to single bits (which also loses detection of hash colli-
sion). While we will be able to search slightly further with the memory savings,
the fundamental problem of a weak heuristic will hinder this benefit. Therefore,
we will not add partial IDA* to our program.

5.1.3 Enhancing A* with bitstate hashing

This idea is inspired by partial IDA* mentioned above. Our current implementation
of A* uses a set to keeping track of the closed set (positions that are already
evaluated).

If this set is implemented using bitstate hashing, we will end up with an algorithm
similar to partial IDA*. It is natural to call it partial A*. The savings in memory
usage will be similar to IDA*. Likewise, we also get the disadvantages: the loss of
ability to detect hash collisions. In the worst case, we can lose the actual solution.

It still remains to create hash functions that keep the probability of hash collisions
low.

Because of the possibility that hash collisions can cause a solution to be lost, and the
difficulty involved in designing a good hash function, we choose to not implement
A* with bitstate hashing.
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5.1.4 Solving an easier version

This idea is an original idea of ours, and has no basis in the literature study.

The idea is to first solve an easier version of the puzzle, and use the solution to aid
in finding a solution to the original puzzle, using a plan with subgoals.

A puzzle can be made easier in several ways:

• Remove some blocks.

• Break down larger blocks into smaller blocks.

• Merge small blocks.

For the first two ways, the search space size can increase by a significant amount.
The intention is to increase the mobility of the blocks. Also, the solution to the easy
puzzle might not be transferrable to the real puzzle. Reaching the next subgoal
can in some instances be unfeasible using our algorithms.

Earlier experiments show that the solution to the easy version can be very far from
the solution for the real puzzle, in this case the solution lengths differ by factors
up to 50 [32].

The last way (merge two blocks) might sound counterintuitive, but it has the effect
of reducing the search space size. If this reduction is significant, it can make the
puzzle feasible to solve, as long as the change does not render the puzzle impossible
to solve. It is trivial to transfer the solution of the easy version to the real puzzle,
as the merged blocks always move together. This way is expected to work well on
huge puzzles containing many small blocks.

This is an interesting way of solving hard puzzles, and we will pick one of these
methods and conduct an experiment to determine how well this idea works.

5.1.5 MGSS*

This algorithm (as implemented by Russell and Wefald [29]) works "greedily" by
looking ahead one step at a time. Performing meta-reasoning on utility values
based on looking one step ahead is clearly not feasible for our domain. Hence, we
choose to not implement this algorithm.

5.2 Data structures

5.2.1 Binary decision diagram

In this section, we will outline a way to apply BDD’s to solving sliding-block puzzles
using BFS with no other improvements, using steps. Later in the section, we will
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discuss some problems which can arise when attempting to use other algorithms,
using moves and using pruning.

First of all, we need to represent puzzles as functions of multiple binary variables.
We will use the puzzle in figure 5.1 as an example throughout this section.

Figure 5.1: The sliding-block puzzle Forget-me-not

We choose to describe a puzzle using boolean variables in the following way. For
each cell in the puzzle (20 in total for our example), we specify which block this
cell holds. This can be an identifier referring to the upper left cell of a specific
block type, an available cell, or an occupied cell (occupied by a non-upper left part
of a block). In addition, two distinguishable blocks of the same size will require
different ID’s (for example if one of them is a master block).

The puzzle in figure 3.1 has the following parts:

ID Block
0 space
1 occupied
2 1× 1
3 2× 1
4 1× 2
5 2× 2

Let n be the number of bits needed to encode the block ID. Let x and y be the
size of the grid in the x and y axis, respectively. Then, for each cell, we need
n = dlog2 6e = 3 variables to distinguish between the subblocks in the table above.

Let bi,j,k be the boolean variable representing the position (i, j) in the grid, and k
be the k-th bit in the ID encoding.

The variables b0,0,0, b0,0,1, . . . , b0,0,n−1, b0,1,0, . . . , bx−1,y−1,n−1 will then fully de-
scribe a position for any given puzzle. We will use b when we mean a fully described
position.
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For example, the position in figure 5.1 can be represented by the formula

¬b0,0,0 ∧ ¬b0,0,1∧b0,0,2∧
b1,0,0 ∧ ¬b1,0,1∧b1,0,2∧
b2,0,0 ∧ ¬b2,0,1∧¬b2,0,2∧
¬b3,0,0 ∧ ¬b3,0,1∧b3,0,2∧

...
¬b2,4,0 ∧ ¬b2,4,1∧¬b2,4,2∧
¬b3,4,0 ∧ b3,4,1∧¬b3,4,2.

A step can be described by the transition relation T : Bx+y+n×Bx+y+n 7→ B (where
B is a boolean true, false), given by T (b0,0,0, b0,0,1, . . . , bx−1,y−1,n−1, b

′
0,0,0, b

′
0,0,1,

b′x−1,y−1,n−1) which is true if and only if b′ is a neighbouring position of b. That
is, b′ can be reached from b by moving one block one step in any direction.

The relation T is a disjunction of all possible ways to move a block one step. For
example, the formula

(¬b0,0,0 ∧ b0,0,1∧¬b0,0,2∧
¬b1,0,0 ∧ ¬b1,0,1∧¬b1,0,2)∧

(¬b′0,0,0 ∧ ¬b′0,0,1∧¬b′0,0,2∧
¬b′1,0,0 ∧ b′1,0,1∧¬b′1,0,2)∧

(b2,0,0 ↔ b′2,0,0)∧(b2,0,1 ↔ b′2,0,1)∧
. . .∧(b3,4,2 ↔ b′3,4,2)

describes a movement of a 1 × 1 block at the upper left one step to the right. In
this formula, b denotes the position before movement, and b′ the position after
movement.

To perform a search for a goal position, we can start with the starting position b
and repeatedly apply the transition relation T until we reach a goal position, or if
we find no more positions.

An algorithm which accomplishes this (and is similar to BFS) is given as follows:
[35]

ReachAlgorithm(I, F, T )
i← 0
R−1 ← ∅
R0 ← I
while (Ri ∩ F = ∅ ∧Ri 6= Ri−1) do

Ri+1 ← Ri ∪ {y|∃x, x ∈ Ri ∧ T (x, y)}
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i← i + 1
end while
return (Ri ∩ F 6= 0, {Rj}j=0,1,...,i)

Here, I is the set of initial positions, F is the set of goal positions and T is the
transition relation. Ri is the set of all positions that are reachable in up to i steps.
The set

{y|∃x, x ∈ Ri ∧ T (x, y)}

contains all positions y such that there is some position x in Ri having y as a
neighbouring position. That is, the set contains all neighbouring positions of Ri.

For our domain, this algorithm can be changed slightly: We can redefine Ri so
that it only holds positions that are reachable in exactly i steps. Then, we can
exploit that we only need to keep the two last iterations in the BFS. Ri+1 can be
calculated as

Ri+1 ← {y|∃x, x ∈ Ri ∧ T (x, y)} ∩Ri ∩Ri−1.

After this operation, we can delete the set Ri−1.

However, using BDD’s to solve for optimal moves instead of steps is far more
difficult. In this case, one needs multiple transition relations Ti, one for each block,
and they need to be applied repeatedly within each iteration until a block cannot
be moved further during one iteration. To avoid the case of moving two different
blocks of the same type during the same iteration, we need a way to distinguish the
blocks from each other. Unfortunately, each block (even similar ones) would need
different ID’s, increasing the number of required variables. Also, in order to avoid
storing essentially similar positions (positions where similar blocks are swapped),
we need another boolean function to convert a position, such that essentially similar
positions are converted to the same canonical representation.

Space value pruning can be implemented in the following way: After determining
the set Ri+1, execute the statement Ri+1 ← Ri+1 ∩ S where S is the set of all
positions having space value ≤ s for some cutoff s. This set can be precalculated
before the search starts, as S is unchanged during the search, and across different
instances (shufflings) of the same puzzle. This set consists of up to

(
xy
k

)
disjunctions

of formulas for positions of all the spaces in the puzzle, where k is the number of
spaces in the puzzle and x, y are the dimensions of the interior of the puzzle. Even
though the set might be feasible to store using BDD’s, building the set requires
exponential time, which is infeasible for large puzzles with many spaces.

Implementing other heuristics and prunings using BDD’s is an open problem.

We choose to not implement the above BDD approach as a part of the thesis. This
choice is done on the basis of the following: The implementation is expected to be
rather complex and involving, even with the use of a BDD library, as care must be
taken to get all the details correct. In addition, the BDD approach is incompatible
with most of our improvements. We described above how to implement a BFS
algorithm without enhancements using BDD’s. With BDD, we would not be able
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to use improvements like A* with our non-admissible heuristic, and pruning based
on resting blocks. Although we described a way above to implement space value
pruning, it involves the disjunction of an exponential number of formulas in the
size of the puzzle, and is therefore infeasible for larger puzzles. The prunings
are essential for solving the harder and larger puzzles, as the results from the
specialization project showed.

5.3 Reasoning

The problem we want to solve at the meta-level is the following.

The first step: Given an instance of a sliding-block puzzle, return a set of parame-
ters such that our solver program is likely to find a solution using these parameters.
Then, based on the results from running the solver program, determine new sets
of parameters to use for further runs of the solver program. The last step will be
repeated multiple times and is called the meta-control cycle.

In this section we will discuss various reasoning methods, and discuss out how well
they will be able to solve the above problem. The goal of this section is to choose
one or more methods to implement and test.

Some aspects of this problem include:

• Analyzing the starting position of the puzzle and make an intermediate rep-
resentation which forms a better basis for reasoning.

• From this basis, find a set of parameters which will allow us to solve a given
puzzle.

• Finding a good balance of resource usage between searching and reasoning
about the search.

• Determine whether to follow through with the current strategy, make changes,
or to cancel.

• Monitor the resource usage and progress of the underlying algorithm, man-
age the information gathered from the monitoring and making use of this
knowledge.

Luger [27] (p.281) mentions some guidelines which can be followed to determine
whether a problem is appropriate to solve using knowledge from human experts.

(1) The need for the solution justifies the cost and effort of building an
expert system.

(2) Human expertise is not available in all situations where it is needed.

(3) The problem may be solved using symbolic reasoning.
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(4) The problem domain is well structured and does not require common
sense reasoning.

(5) The problem may not be solved using traditional computing meth-
ods.

(6) Cooperative and articulate experts exist, meaning that the knowledge
in an expert system comes from human experts in the field and that they are
willing and able to share knowledge.

(7) The problem is of proper size and scope.

The availability of human experts is a requirement. In this thesis, we have access
to the author, who is a decent Bricks player and can be considered a human expert.

Point (1) is irrelevant to us, we have already chosen the problem we want to solve.
Regarding point (2), our main goal is to be able to solve puzzles without human
expertise, but we retain the option to let a human expert aid the computer in
solving the puzzles to a certain degree.

The problem of finding the correct parameters to arbitrary instances with symbolic
reasoning (point 3) is difficult. We expect to be able to solve it for instances of
easy and medium difficulty (the easier an instance is, the larger the set of working
parameter sets is), but we don’t expect to solve it for very hard instances. Some
instances are beyond our reach no matter which parameters we set, because of
lacking capabilities in our solver program.

About point (4): The problem domain can be considered very well structured,
as the object level is a single-agent search problem with perfect information. In
addition, the interface to the solver program invoked at the meta-level is also well-
defined and specified. For a human to excel at solving puzzles, he needs extensive
domain knowledge and experience in solving easier puzzles, or puzzles from similar
domains. The person needs to come up with several plans, consider which ones are
most likely to work, and execute the plan. Such knowledge is probably too narrow
to be considered within the realm of common sense reasoning [7], which typically
involves well-known facts that an ordinary person is expected to know.

About point (5), since our domain is PSPACE-complete, arbitrary instances are
not practically solvable using traditional computing methods. However, we are
focusing on instances that are solvable by humans (although these instances can
be extremely hard for humans). By using domain-specific knowledge, we believe it
is possible for a computer to solve every puzzle that a human can solve. Results
from other PSPACE-complete domains such as Sokoban [33] suggest that one can
solve a large portion of instances from computer games.

Point (6) is no obstacle for us, as our available domain expert is willing to share
his knowledge.

Regarding point (7), we believe the problem is of proper size and scope. There
exist many problem instances that are possible to solve using reasoning, but some
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of them can be difficult.

In order to reason about the initial position, we need to somehow extract informa-
tion from this position which forms a basis for deciding how to control the object
level.

The problem of reasoning on the initial position of a puzzle and the limit of how
human expertise can be used, makes this a very challenging problem for reasoning
methods.

5.3.1 Rule-based systems

It’s very hard to do reasoning on the starting position of an arbitrary instance.
Therefore, we should preprocess the starting position and identify features, so that
we can do reasoning on the features instead.

We recall that a rule-based system contains rules like these:

If
mobility is high, and
estimated search space size ≥ 1011, and
number of spaces ≤ 4
then
use algorithm A* with heuristic = 3 and weight = 20.

One potential problem with this approach, is that there can be a lot of rules, unless
we augment the rules and add expressions. For example:

If
mobility is high, and
estimated search space size ≥ 1011

then
use algorithm A* with heuristic 3 and weight = 80

num_spaces .

There are two hard problems with this approach:

• Given a puzzle, find its features. This problem is common for several reason-
ing approaches that need to reason on the features of a puzzle.

• Making a mapping from the feature space to the parameter space, such that
the parameters will allow us to solve as many instances as possible. Once we
have this mapping, creating the actual rules should be straightforward.

This is a promising approach, given that we manage to make such a mapping.

5.3.2 Model-based reasoning

In model-based reasoning, one attempts to get a deeper understanding by simu-
lating the problem domain in greater detail, in contrast to trying to infer from
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symptoms and behaviour that can be observed directly. For example, in the do-
main of finding a medical diagnosis, one could try to detect the causes of a disease
(presence of infecting agents) instead of basing a diagnosis on observable phenom-
ena as headache, nausea or high fever [27]. Model-based reasoning typically tries
to model some aspect of the physical world.

Our domain is a domain with perfect information, and is a problem rooted in
combinatorics rather than the real world. Luger [27] only mentions difficult problem
domains rooted in the real world where some kind of modelling need to be done.
Our domain is unusual in this sense, as we use deterministic algorithms on a domain
with perfect information. Model-based reasoning seems to be a bad fit for our
domain, so we choose to not go with this approach.

5.3.3 CBR

We recall that case-based reasoning (CBR) is a way of reasoning based on the reuse
of past cases containing solutions. When given a problem, a typical CBR system
searches through its case base and retrieves the case which is most similar to the
problem given. Then, the solution to the retrieved case is adapted to the current
problem, and then applied. If we managed to solve the new problem, a new case
can be added to the case base, consisting of the new problem and its solution.

In order to solve our problem with CBR, we need to define a case. If we let the
case consist of the problem instance itself, and retrieve past cases based on how
similar the puzzles look, we are going to get some bad results. It’s easy to construct
puzzles which differ in only one cell (for instance, replacing a space by one 1 × 1
block where the original puzzle is trivially solvable, while the modified puzzle is
unsolvable. One such example is shown in figure 5.2. The puzzle to the left is easy
to solve, while the puzzle to the right is impossible to solve, despite the minimal
change of one added 1× 1 block.

Therefore, a case must contain additional attributes that are easily compared to
other cases. Such attributes are called features, and a collection of features be-
longing to one case is called a feature vector. A feature vector contains features
containing values, like mobility=high and packing_problem=true.

The problem of finding features given a puzzle is the same as for rule-based systems
discussed in section 5.3.1. The performance of a CBR approach depends on the
quality of the feature identification. With a good way of identifying features, we
believe that CBR can be a good method for our problem domain.

5.3.4 Other methods

We have decided to not consider other methods, including machine learning, sub-
symbolic methods and Bayesian belief networks.
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Figure 5.2: a) shows an easy puzzle, while the similar-looking puzzle in b) is un-
solvable. The objective is to move the master block to the center of the bottom
row.

Even though evolutionary algorithms have been used on problems with ill-behaving
search spaces like our parameter space (for instance, the evolution of circuit designs
[12], pages 62-85), it is infeasible for our domain because of the computational cost
needed for evaluating the fitness of each individual in the evolutionary algorithm.

5.4 Other issues regarding metareasoning

In a case-based or rule-based approach, after analyzing a problem instance one
will usually end up with a specific set of parameters to apply at the object level
(search). Results from the specialization project [32] show that small changes in
parameters can result in an instance not being solved. It is likely that the meta-
reasoning algorithm will sometimes find parameters that are slightly wrong with
regard to solving the puzzle. It is therefore a good idea for the meta-reasoner to
execute the search at the object level with slightly different parameters.

In this section, we will discuss ideas on how to explore similar parameters.

• If the meta-reasoner finds several sets of parameters for a given instance, and
the sets of parameters are sufficiently different, we will try all these parameter
sets at the object level. This can be all matches q such that d(p0, q) < r for
some r (where p0 is our best match), or simply the k best matches.

• For each parameter set we try (and within a reasonable usage of resources),
try out different parameters on a "breadth-first" basis.

A little comment on why two sets of parameters should be sufficiently different.
The idea is that if two sets of parameters are "close" (d(p, q) < r1 for some small
r1), the following search in the parameter space from one set of parameters will
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eventually discover the other set, resulting on overlapping work. (Other approaches
are possible though, like doing BFS with several starting nodes.)

All runs at the object level will run for a limited amount of time with a limited
amount of resources, for instance by not allowing to examine more than q positions
for some sensible value of q (somewhere around 107 − 109).

One way to implement the BFS search on parameters is the following.

Let the initial set of parameters P = (p1, p2, p3, . . . , pn) be defined as the starting
point in our "breadth-first" search. Then, let one reasonable change in one param-
eter have a unit cost. The scale of such a change will vary between parameters.
For instance, changing the space value by 1 (in either direction) has unit cost. A
parameter such as the maximal size of the queue before we drop all bad positions
(which is in the order of the total memory size we wish to use, divided by a constant
proportional to the memory usage of one position) will naturally change by much
more, likely in the order of 105 or more.

For each problem we wish to solve, we can then let the program run for as long as
we desire (given our resources).

We can guide this search to a limited degree. For instance, if the meta-reasoner
determines that a certain parameters definitely should have some value, we will not
allow the parameter search to explore "forbidden" parameter settings.

We can also do other approaches than search: We can define some kind of metric
(a distance measure function) on our parameter space. For two parameter sets p
and q, let d(p, q) be the "distance" between the parameter sets. Let the distance
be defined somewhat similar to the BFS case above.

We can use rejection sampling to find sets of parameters to try. Randomly generate
a parameter q, and only do further processing (search) if d(q, p0) ≤ r for some radius
r which could increase with time (here, p0 is the initial set of parameters as found
by the meta-reasoner).

The approach we have described in this section can, in conjunction with CBR, be
used to achieve a form of learning. For instance, we could experience a situation
where we want to solve a specific puzzle. The meta-reasoner suggests a set of
parameters which doesn’t solve the puzzle, but the BFS-search/rejection sampling
method manages to find good parameters.

We will implement an approach similar to the rejection sampling approach men-
tioned above. We will do a randomized proximity search and accept sets of param-
eters (denote it p) if they are not identical to any of the parameters already tried,
and if there exists a previously tested set of parameters q such that the distance
d(p, q) is less than some chosen radius r1.
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5.5 What we will implement

Here is a quick summary of what we will implement in our system.

We will implement a meta-reasoning system that tries to find a set of parameters
to solve a given puzzle. The system will be based on CBR. The system will first
try to find the best cases from a case base. If none of the cases manage to solve the
puzzle, the meta-reasoner will search for parameters as described in section 5.4.

In addition, we will enhance the underlying solver with the following features:

• Any needed functionality for interfacing with the meta-reasoner: Communi-
cation and feature extraction from a given puzzle.

• An option to output the solution if the puzzle is solved.

• Optimized memory usage (permutation rank). This is one of the improve-
ments from the future work section of the specialization project.

In order to make the parameter space more well-behaving and nice, we decided
that the meta-reasoner will not use all the options available in the solver program.
Here are the options we will not use:

• The IDA* algorithm: The results from the specialization project showed
that this algorithm was dominated by the A* algorithm for all our test cases.

• Never move the master block away from the goal: The results from
the specialization project showed that many puzzles became unsolvable when
this option was turned on. In addition, the existence of this parameter was
not sufficient to solve new puzzles. Also, we wish to keep just one parameter
that can make puzzles unsolvable (space value pruning), to make it easier to
reason over why the solver couldn’t solve a puzzle.

• Subgoals: This option is not specified via parameters to the solver program,
but is done by adding multiple goals (waypoints) in the puzzle input file.
Finding subgoals is a hard problem on its own, and it would take considerable
time to choose suitable subgoals for the hard puzzles, or to automate this task.

• Delete inferior states when memory is exhausted, and resume search:
In order to be able to run all tests in time, we will enforce a limit on the num-
ber of positions the search is allowed to before the meta-reasoner resumes
control. Hence, searches will be aborted before memory is exhausted and
this option serves no purpose.

• Disallow movement of certain blocks: This option is not specified via
parameters to the solver program, but is done by changing the puzzle input
file. Reasoning about which blocks to lock in place is a hard problem in its
own right, and thus we will not include this option in this thesis.
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5.5.1 CBR features

We have chosen to only include quantitative features as part of the CBR system,
and to drop qualitative features. The reason is that qualitative features are very
complex to extract from a puzzle.

We believe that a reasoning system using only qualitative features can perform well,
as long as there are sufficiently many features and that their values vary somewhat
independently of each other.

We have decided to include the following features:

• Estimated (upper bound) of the search space size

• Estimated branching factor

• Block shape niceness

• Average block size

• Number of spaces

• Puzzle size (total number of cells in the puzzle area)

It was decided to let each feature contain a value range [a, b] where a and b are
floating-point values. The reason for this is to take into account the uncertainty of
some of the values.



Chapter 6

System design

In this chapter, we will present the high-level design and description of our resulting
system.

6.1 System overview

The system consists of two separate programs: The meta-reasoning program and
the solver program. The solver program takes a puzzle description as input, and
different parameters can be set to control the search for a solution. The programs
are separate executable files, and are written in C++.

Figure 6.1 shows a screenshot of the meta-reasoning program in action.

6.2 Solver

The solver was written in the specialization project. The following additions were
done in this thesis:

• Added a means for the solver program to communicate with the meta-reasoning
program.

• Support for new block types: disconnected block and slider.

• Added a new, more memory efficient way of representing a game position
(permutation rank).

• Added an option to display the solution sequence of a solved puzzle.

• Added an option for analyzing a puzzle and gather quantitative features.
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Figure 6.1: Screenshot of the meta-reasoning program
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6.3 Meta-reasoner

The meta-reasoner is a stand-alone program that launches the solver. The program
uses CBR to find suitable parameters to run the solver program with. The meta-
reasoner was written in its entirety as part of this thesis.

When the meta-reasoner is called, the puzzle is analyzed and quantitative features
are extracted. This is done via a call to the solver program.

After the features are extracted, the case base is searched for previously solved
puzzles with similar features. The similarity between the puzzle to be solved and
every puzzle in the case base is calculated, and then sorted in increasing order.

Next, the solver is called with the parameters from the most similar case. If this
set of parameters manages to solve the puzzle, we are done. If not, the second best
case is applied. Cases from the sorted list of cases are applied until we have tried
the three most similar ones, or until the next case has a similarity value more than
three1 times of the similarity of the best case. For each run, the solver has a limit
on the number of positions examined. If this limit is exceeded, the solver cancels
the search and returns the control to the meta-reasoner.

Calling the solver has three outcomes: Either the puzzle is solved, we exceeded
the limit of positions to examine, or a solution was not found with the current
parameters. The last result can only happen if the space value cutoff is too low.
When this happens, the meta-reasoner will remember this, and future space value
cutoffs will always be selected to be higher than the highest known cutoff which
leads to no solution being found.

At this stage, we have tried to apply all the good cases to the puzzle. From
now, a randomized search is performed in the parameter space. A random set of
parameters is generated, and a search is performed using these parameters only if:

• The set of parameters must not be too close to any set of parameters that
have been used for a previous search.

• There must exist a previously used set of parameters which is not too far
away from the newly generated set of parameters.

To determine if two sets of parameters are "close" or not, we have designed a
function which returns the distance between two sets of parameters. It is explained
in detail in section 7.2.2 in the next chapter.

During the randomized search, the same limit for the number of positions examined
applies to the solver. The randomizes search continues until 25 attempts to solve
the puzzle has been made.

After 25 attempts without finding a solution, a final attempt to solve the puzzle
is done, without a limit on the number of positions to examine. The parameters
chosen for the final attempt are taken from the best run out of the previous 25,

1The number 3 was chosen arbitrarily.
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where best is defined as the shortest distance from the master block to the goal. If
several runs had the same shortest distance to the goal, the parameters from the
run where this distance was reached in the fewest number of positions examined is
chosen.

6.3.1 CBR

The CBR component of the program has a case base containing previously solved
puzzles. A case consists of the following features:

• Estimate (upper bound) of the search space size

• Branching factor

• Block shape niceness - the number of rectangular blocks divided by the total
number of blocks

• Average block size

• Number of spaces

• Puzzle size (total number of cells in the puzzle area)

In addition, each case stores the parameters used for solving the puzzle. We have
chosen to have numerical values only associated with each feature, represented as
a range of floating point numbers (lower and upper bound). The reason for having
a range is to account for uncertainty in the values.

The case base itself will consist of the 15 puzzles that was solved during the spe-
cialization project, along with the parameter sets that solve them. For each puzzle
that we managed to solve with multiple parameter sets, we chose the parameter set
that solves the puzzle with the least search effort, measured in number of positions
examined before a solution is found.

Here is a brief summary of what happens during the 4 CBR phases:

Retrieve

When the meta-reasoner is given a new puzzle to solve, the case base is searched
for the cases that are most similar to the given puzzle. The three most similar
cases are always retrieved, in increasing order of similarity. Further cases are also
retrieved, if their similarity is less than three times the similarity of the best case.

Reuse

For each case that is retrieved, the solution for this case is applied to the current
puzzle to solve. The solver is run, which results in either finding a solution, showing
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that no solution exists with the settings used, or we exceed the limit of how many
positions can examine. This limit is set to 5 million positions.

Revise

If the case wasn’t solved, the meta-control cycle begins. Run the second, third,
· · · , n-th best case. Run the cases again, and slightly alter one/some of the pa-
rameters. After 25 attempts to run the solver, a final run will be performed with
the best parameters found so far. This run is not subject to any limitations of
number of positions examined. In the first 25 runs, the solver exits when it exceeds
a certain number of examined positions.

Retain

Solutions found by the meta-reasoner are not retained. We wish to ensure that
each test case gets equal conditions. Otherwise, the last cases run could have a
higher chance of being solved, since they get the benefit of a larger case base.
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Chapter 7

Implementation

In this chapter, we will present more in-depth details about the implementation
of our system. Our system consists of two main components, the solver and the
meta-reasoner, that are two separate executable files.

7.1 Solver

Several additions were made to the solver program, which was originally pro-
grammed during the specialization project. These additions will be explained in
detail in this section.

7.1.1 Communication between the meta-reasoner and the
solver

When the meta-reasoning program calls the solver, the result needs to be passed
back to the meta-reasoner.

When the meta-reasoner invokes the solver, command line parameters are used to
specify what the solver should do. This includes parameters controlling the search
algorithms. In addition, when the solver is invoked from the meta-reasoner, the
number of positions the solver is allowed to perform is set. The solver will return
when this limit is exceeded.

The results from the solver are passed back to the meta-reasoner via temporary
text files. A text file is written to disk just prior to exiting the solver, and the file
is read by the meta-reasoner as soon as it resumes control.

The following information is passed from the meta-reasoner to the solver via command-
line parameters:
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• Parameters controlling the search (choice of algorithm, heuristic function and
other options).

• Choice of trying to solve the puzzles or gather features to be used by the
CBR component.

The following information is passed from the solver to the meta-reasoner via text
files:

• The result of the search (solved, no solution found, no result), including
additional information: Best distance from master block to goal found and
the lowest number of positions examined this happened, number of steps
needed to solve the puzzle (if it was solved), and the number of positions
examined.

• Information about whether the solver exited gracefully, or if it crashed or was
cancelled by the user.

• The features extracted from the puzzle.

Below is an example of the text file generated from the solver after extracting
features from a puzzle.

search_space_size 25955.000000 25955.000000
search_space_size_type 0.000000 0.000000
branching_factor 3.232364 3.232364
regular_shapes 1.000000 1.000000
block_size 1.800000 1.800000
num_of_spaces 2.000000 2.000000
puzzle_size 20.000000 20.000000

7.1.2 Display of solution sequence

The solver is now able to output the solution to a puzzle. This functionality is
activated via a command line option to the solver.

This was implemented in the following way: For each position examined, it is
linked to its parent position. This is done using a map data structure, where pairs
of positions are stored. Each pair contains a position and its parent position. The
map container from C++ STL was used to implement this functionality.

When a puzzle is solved, the final position is looked up in the data structure in
order to find the second last position. This procedure is repeated until we reach
a position with no parent. This is the starting position. The solution sequence is
the positions found using the procedure above, in reverse order.

The disadvantage with this method is that in addition to keeping a queue of posi-
tions to examine, and a set of positions previously examined, a map linking posi-
tions to parent positions need to be maintained. This roughly doubles the memory
usage of the solver. If there is a puzzle which was barely solvable without this
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option, it is likely that the solver would run out of memory with this option on
before finding a solution.

7.1.3 New block types

In order to add the two block types (disconnected blocks and sliders), the input
format was changed. In the old format, each subcell of a block was assumed to be
connected, and BFS was used to find all the connected cells of one block. In the
new format, there is a separate section which describes the shape of each block and
specifies movement restriction. Figure 7.1 shows a puzzle, along with its definition
file in both formats. The @ character denotes the master block.

Figure 7.1: a) shows a puzzle, b) shows how it is defined in the old format, and c)
shows how it is defined in the new format.

Figure 7.2 shows two puzzles, one with disconnected blocks, and one with sliders.
Figure 7.3 shows how they are defined in the new input format.

Consider the puzzle defined in figure 7.3 b). The puzzle definition consists of
several sections. Each section is separated by a line containing the character !.
The first section is a header defining the block shapes. The second section defines
the starting position of the puzzle. Successive sections define goal positions. The
header where the blocks are defined are given by the following section:
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Figure 7.2: The puzzle to the left contains a disconnected block, and the puzzle to
the right contains two vertical sliders.

@ 1,0 0,1 1,1
a
b 0,1
v | 0,1

Each line defines a different kind of block. Each block has a cell at (0,0), in addition
to the coordinates specified. The first line defines a block with identifier @ with
cells at (0,0), (1,0), (0,1) and (1,1), a 2× 2 block. The second line defines a 1× 1
block, the third line defines a 1× 2 block (a cell at (0,1) in addition to (0,0)) and
the fourth line defines a 1 × 2 block which is a vertical slider. The | character,
which immediately follows the identifier, defines the block as a vertical slider. It is
possible to define a horizontal slider by using =. A block cannot be a vertical and
a horizontal slider at the same time. The master block (@) must be the first block
defined.

The second section defines the starting position:

######
#a@@a#
#a@@a#
#vbbv#
#vbbv#
#a a#
######
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Figure 7.3: The puzzle to the left contains a disconnected block, and the puzzle to
the right contains two vertical sliders.
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For each block in the puzzle (see figure 7.2 a)), there is at least one corresponding
block in the puzzle definition. All cells of a block are filled in with the block’s
identifier. For example, the master block (@) is a 2 × 2 block, which is defined by
having four @ characters near the top of the position arranged in a 2× 2 square.

In subsequent sections, not all the blocks in the puzzle need to be specified. Often,
only the master block is specified. Let the sections following the starting position
be denoted p1, p2, . . . , pn. The solver will start from the starting position, and try
to reach position p1. When this is accomplished, the solver will start a new search,
with the position that reached p1 as a new starting position. The goal of this search
is to reach position p2. The solver proceeds like this, until position pn is reached or
the solver fails to reach any of the positions. We call the positions p1, p2, . . . , pn−1

subgoals, and pn the goal, the final goal position of the puzzle. However, for our
main testing, only one goal is specified.

Both the old and new formats are supported by the solver. The first line of the
new format will always contain the ! character alone, while in the old format, the
first line will contain the first line of the puzzle’s starting position. This line will
never contain the ! character. By checking the first line, the solver can determine
which format is used.

7.1.4 Storing positions more efficiently with permutation
rank

In addition to encoding each position with Huffman coding (described in detail
in our specialization project report [32]), we added another representation: the
lexicographic permutation rank. A position can be seen as a permuted sequence of
the blocks that occur in the puzzle. For instance, the puzzle defined in figure 7.3 a)
contains one master block (@), six 1× 1 blocks (a), two 1× 2 blocks (b), two 1× 2
sliders (v) and two blank cells (space, shown as _). When we scan the starting
position from top to bottom, and for each row, from left to right and put new
blocks in a list as we encounter them, we get the list a@aaavbbva__a. Let this
list be the string of the position. The position can be reconstructed by traversing
the string and putting each block at the topmost (leftmost) not yet occupied cell
in the new board (this procedure is described in section 2.6.1 in [32]). For each
possible position, there is a permutation of the list such that the position can be
reconstructed.

Consider an arbitrary puzzle. Let n be the number of different block types (in-
cluding space). For the example above, n = 5. Let a1, · · · , an denote the amount
of each block present in the puzzle. Then, there are a total of(

a1 + a2 + . . . + an

a1, a2, . . . , an

)
=

(a1 + a2 + . . . + an)!
a1!a2! . . . an!

ways to rearrange the puzzle’s string.
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Consider the list of every permutation of the string from a puzzle. Sort all permu-
tations in lexicographic order. Given an arbitrary position of a puzzle, its string
can be found in the sorted list of all strings. Given that the sorted list is 0-indexed,
the rank of the string in this list is the permutation rank of the position. The rank
is an integer between 0 and

(
a1+a2+...+an

a1,a2,...,an

)
− 1.

We chose to only implement permutation rank for 64-bits unsigned integers. The
reason is that preliminary tests showed that calculating the permutation rank was
about 30% slower than calculating the Huffman code for a position. The time
needed for calculating a multi-word permutation rank would be proportional to
the number of words needed to hold the number.

The permutation rank of a string is calculated using the following recursion: Count
the number of permutations having a letter with a lower value than the first letter
in the string. This is done by looping through each letter with a lower value,
removing it temporarily, giving a new multiset of letters. Then, the multinomial
coefficient corresponding to the remaining set of letters is evaluated, and added to
the partial result. Finally, remove the first letter and repeat the entire procedure
for the rest of the string, until the string is empty.

In order to make the calculation of the multinomial coefficient(
a1 + a2 + . . . + an

a1, a2, . . . , an

)
=

(a1 + a2 + . . . + an)!
a1!a2! . . . an!

.

faster and to avoid overflow in intermediate calculations, the identity [19](
a1 + a2 + . . . + an

a1, a2, . . . , an

)
=

(
a1 + a2

a1

)(
a1 + a2 + a3

a1 + a2

)
· · ·

(
a1 + a2 + . . . + an

a1 + a2 + . . . + an−1

)
was used, along with a precalculated table of binomial coefficients.

The unrank operation (given a permutation rank, return the position string) is
basically the algorithm above in reverse. For each character position, find the
letter with the lowest value such that the number of permutations having a first
letter lower than the letter under consideration is smaller than or equal to the given
permutation rank. Remove this letter from the set of remaining letters and repeat
the procedure.

The reason for implementing permutation rank was to reduce the memory require-
ments for the program, so that we could examine more positions in a search before
running out of memory, increasing the chance of solving more puzzles.

7.1.5 Feature extraction

Feature extraction is invoked by calling the solver with a special command, along
with a file name specifying the puzzle from which to extract features. The solver
analyzes the puzzle, writes the features to a temporary text file and returns program
control to the meta-reasoner.
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The average block size, number of spaces, puzzle size and block shape niceness
(number of rectangular blocks divided by the total number of blocks) are calculated
immediately from the starting position of the puzzle. In order to find the branching
factor, a BFS is performed from the starting position. The BFS is cancelled when
the examined positions exceed 1 megabyte in storage, or when the entire search
space has been examined. The estimated branching factor is the average number
of neighbours over all positions examined.

The estimate of the search space size is calculated in one of three ways:

• The exact size is returned if the BFS manages to search the entire search
space.

• If it is possible to find the packing bound using less than 1 million recursive
calls in the packing bound calculation algorithm, this bound is returned.

• Otherwise, the combinatorial bound is returned.

The type of search space size (exact, packing bound, combinatorial bound) is re-
turned in a field of its own and receives a value based on the following table:
Exact size 0
Packing bound 10
Combinatorial bound 20

The values 0, 10 and 20 were chosen arbitrarily, but the interval between them
was chosen to be equal by design. Formula 7.1 (which is used in the similarity
calculation, see section 7.2.2) was in turn designed so that the search space size
gets an appropriate weight in the similarity function.

The packing bound is the number of ways it is possible to pack the blocks in
the puzzle frame. The combinatorial bound is the number of permutations of the
multiset consisting of all the block’s puzzles and 1 × 1 spaces. The calculation of
these upper bounds were part of the specialization project, and are described in
the report [32].

7.2 Meta-reasoner

The meta-reasoner is a separate program which interacts with the solver. When
we want to solve a puzzle, we call the meta-reasoner with two parameters: The file
name of the case base, and the file name of the puzzle to be solved. The format
of the case base is specified in section 7.2.1. There are no additional options apart
from the two file names.

Since the case base is small, no advanced data structures are used to store it in
memory. The case base is stored in a C++ STL vector. Given a puzzle to solve,
a simple loop through all the cases is used for finding the most similar case.



7.2. META-REASONER 77

During the last stage of the meta-reasoner (the proximity search), a STL vector is
used to hold the list of previously visited parameter sets. For each newly generated
position in the search, a linear search is performed through the entire list to check if
the generated position isn’t visited before, and that it is close enough to a position
in the list.

7.2.1 Case base

The case base is stored in a text file. The text file is divided into two parts:
The definition of the fields, and the cases. Each case consists of two sections, the
features and the solution.

The text file contains the following sections:

• Field definition

• Case 1’s features

• Case 1’s solution attributes

• Case 2’s features

• Case 2’s solution attributes

• . . .

• Case n’s features

• Case n’s solution attributes

Each section is followed by the character !. A line containing !! marks the end of
the case base.

The field definition section looks like this:

search_space_size
search_space_size_type
branching_factor
regular_shapes
block_size
num_of_spaces
puzzle_size

Features and solution attributes share the same format. They are of the form
string range_lower range_upper, which means that the field has a numerical
range. An uninitialized field is represented by any range where range_lower >
range_upper. We use the values range_lower=10100 and range_upper=−10100

in the program. There is also a special comment field, which is ignored by the parser
that reads the case base into memory.

Here is an example case:
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comment puzzle 04 american pie
search_space_size 110000000000000000 110000000000000000
search_space_size_type 20 20
branching_factor 9.73991 9.73991
regular_shapes 0.96 0.96
block_size 2 2
num_of_spaces 6 6
puzzle_size 56 56
!
algorithm 2 2
heuristic_weight 30 30
spacevalue 45 45
restingblock 2 2
!

7.2.2 Measuring similarity

Let a1, . . . , an be the features of a case a. We use Manhattan distance to measure
the similarity between two cases a and b:

sa,b =
N∑

i=1

|ai − bi|.

The features are not scaled, with one exception. The search space size and the
search space size type are scaled non-linearly before the similarity is calculated.
Let x be the search space size, and let y be the search space size type. a1 is derived
from x and y using the following formula:

a1 =
lnx(√

2
)y . (7.1)

The reasoning for the above formula is the following: The search space size is a
value that grows exponentially in the number of blocks of a puzzle. Therefore, we
take the logarithm of the value before calculating the similarity. In addition, the
search space size is calculated in three different ways. The tightness of the bound x
is decreasing when y decreases. The denominator of the fraction above was chosen
arbitrarily, and was not changed since the formula gave acceptable values.



Chapter 8

Experimental results

This chapter contains the results of testing our implementation against our test
suite. A discussion of these results will be presented in chapter 9.

8.1 How the tests were run

We did multiple tests, as described below.

For each puzzle, we ran the meta-reasoner, and let it run until it either solved
the puzzle, until it terminated because it ran out of memory (or entered the stage
where it started using virtual memory, slowing down the program by a factor of
100 and more, at which point we cancelled the program). We then recorded the
result. The result includes whether the puzzle was solved, search effort (number of
positions examined), solution length (if the puzzle was solved), closest distance to
goal (if the puzzle wasn’t solved). Two sets of results were stored, the best result
achieved while being limited to examining 5 million nodes, and the best result
achieved without this restriction.

For each puzzle where we had the puzzle and its solution in case base, we ran the
meta-reasoner twice: Once with the particular case in the case base, and once with
the case removed.

For each puzzle, we ran the solver with 4 pre-defined settings not tailored to any
puzzle. All searches were limited to examining 5 million positions for the test where
we compared the results from using these settings to the results from running the
meta-reasoner.

In addition, additional tests were run to test specific components of our system:

• Test memory usage/speed of permutation rank, compared to Huffman code.
Also, report on which puzzles the permutation rank was actually used.

79
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• Solve an easier version of the puzzle.

The following machines were used for testing:

• tesla at the HPC-lab at NTNU: Intel i7 3.2 GHz (4 cores), 12 GB RAM
running Linux Ubuntu 64-bit.

• hpc05 at the HPC-lab at NTNU: Intel Q9550 2.83 GHz (4 cores), 2 GB RAM
running Linux Ubuntu 64-bit.

• Multicom Xishan (laptop): Intel i7 1.6 Ghz (4 cores), 4 GB RAM running
Windows 7 64-bit.

• Komplett-PC: AMD64-X2 3800+ 2.01 GHz (2 cores), 2 GB RAM running
Windows XP 32-bit.

To give an indication of the relative speed of the machines, we ran a benchmark.
The table below shows the time needed for solving puzzle 11 using BFS. Solving
the puzzle requires 260 steps with 2635906 positions examined.

Machine Time needed to
solve puzzle 11

tesla 43 seconds
hpc05 64 seconds

Multicom 131 seconds
Komplett 283 seconds

8.2 Test suite and case base

The test suite consisted of 46 puzzles, of which 26 were used in the specialization
project. The case base contained 17 puzzles with accompanying solutions. 15 of
the entries in the case base were solutions found during the specialization project.
For most the these puzzles, we found multiple solutions during the specialization
project. For each puzzle, we chose the solution requiring the least search effort for
the case base. The two last cases in the case base are two 100 × 100 puzzles, one
with only a master block, and one filled with 1× 1 blocks leaving only one space.

Our puzzles are simply numbered from 01 to 46, and the case base contains the
puzzles 01, 02, 04, 05, 06, 08, 11, 12, 13, 16, 17, 18, 24, 25, 26, 28 and 29.

Some additional tests were run, where the limit (5 million positions) were equal
for all tests. These tests included running the meta-reasoner on all puzzles (dis-
regarding the 26th run without a limit), and testing all puzzles with 4 generally
good parameter sets (not tailored for any specific puzzle):

• BFS.

• Aggressive BFS (with strict resting block pruning and space value cutoff 2·s2,
where s is the number of spaces in the puzzle.
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• A* with weight 5 and Manhattan distance heuristic (h0).

• Aggressive A* with weight 10, the h2 heuristic with parameters (6,4 · s2,2)
where s is the number of spaces in the puzzle.

In addition, the results from the tests above will be compared against the results
from the specialization project, where the results were found after extensive pa-
rameter tweaking. This comparison will only be done for the 26 puzzles which were
part of the specialization project.

8.3 Raw results

In this section we present the results from running the meta-reasoner on all puzzles,
as well as comparing them to the results from solving the puzzles with the solver
using a couple of standard settings.

Table 8.1 shows which puzzles we solved across all the tests and parameter settings
we used. The table also marks whether the puzzle was part of the case base. The
puzzles solved in the specialization project and not in this thesis, are not marked
as solved.

8.3.1 Results from running the meta-reasoner

This section contains results from running the meta-reasoner on all puzzles, without
any limit on positions examined. Table 8.2 shows the results for every puzzle which
has an entry in the case base; for each puzzle it is shown whether it was solved, and
how many times the meta-reasoner launched the solver. We ran the meta-reasoner
on each of these puzzles twice; once with the complete case base, and once where
we removed the puzzle we were trying to solve. The meta-reasoner gave up if it
couldn’t find a solution after running the solver 26 times.

The results from running the meta-reasoner on the other puzzles is shown in ta-
ble 8.3. The table shows whether the puzzle was solved, and how many times the
meta-reasoner launched the solver.

Puzzle 46 deserves special mention. During testing, there was a bug in the feature
extraction routine which caused it to crash on puzzle 46. This caused the meta-
reasoner to use the features of the puzzle analysed in a previous run of the system.
We managed to solve puzzle 46, but using the wrong data. After correcting the
bug, our system could not solve puzzle 46.
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Table 8.1: Overview of which puzzles we solved.
Puzzle Case base Solved Puzzle Case base Solved

01 ! ! 24 ! !

02 ! ! 25 ! !

03 26 ! !

04 ! ! 27
05 ! ! 28 ! !

06 ! ! 29 ! !

07 30 !

08 ! ! 31
09 32 !
10 33
11 ! ! 34
12 ! ! 35 !

13 ! ! 36
14 37
15 38 !

16 ! ! 39 !

17 ! 40 !

18 ! 41 !
19 42
20 43 !

21 44 !

22 45 !

23 46 !
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Table 8.2: Results from running the meta-reasoner on the puzzles in the case base.
Puzzle in case base Puzzle not in case base

Puzzle Solved Number of times Solved Number of times
solver was run solver was run

01 ! 1 ! 1
02 ! 1 ! 1
04 ! 1 26
05 ! 1 ! 1
06 ! 2 ! 1
08 ! 1 ! 1
11 ! 1 ! 1
12 ! 1 ! 5
13 ! 18 ! 26
16 ! 1 ! 20
17 26 26
18 26 26
24 ! 1 ! 2
25 ! 1 ! 1
26 ! 26 ! 26
28 ! 1 ! 1
29 ! 1 ! 2
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Table 8.3: Results from running the meta-reasoner on puzzles not in the case base.
Puzzle Solved Number of times

solver was run
03 26
07 26
09 26
10 26
14 26
15 26
19 26
20 26
21 26
22 26
23 26
27 26
30 ! 1
31 26
32 ! 2
33 26
34 26
35 ! 26
36 26
37 26
38 ! 1
39 ! 1
40 ! 3
41 ! 2
42 26
43 ! 1
44 ! 1
45 ! 3
46 ! 26
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8.3.2 Comparing the meta-reasoner against a few preselected
parameter settings

In this section we present the raw results from solving the same same puzzles with
three different methods: The meta-reasoner, the solver using 4 preselected param-
eter settings and the hand-tweaked parameters from the specialization project. We
only have hand-tweaked results for puzzle 01-06 and 09-28.

Table 8.4 shows the results from running the meta-reasoner and running the solver
with the 4 preselected parameter settings. In every run, the search was limited to
examining 5 million positions. For solved puzzles, the result is shown as a pair x/y
where x is the number of steps needed to solve the puzzle, and y is the number of
positions examined. If a puzzle was solved multiple times with the same method,
the result that examined the fewest positions is shown. If a puzzle is not solved, a
number in parenthesis is shown, indicating the fraction of the distance to the goal
the master block managed to move.

Figure 8.1 shows a chart comparing the three methods for all the puzzles they
managed to solve. Since the hand-tweaked parameters are included, this figure
only contains the solved puzzles among 01-06 and 09-28, the specialization project
test suite. The puzzles are sorted by increasing search effort to better compare
the methods as a whole. Figure 8.2 shows a similar chart comparing the meta-
reasoner and the general settings. From figure 8.1 we see that the hand-tweaked
settings manage to solve the puzzles with slightly less search effort than the two
other methods. From the same chart, we also see that the general settings solve
two less puzzles than the meta-reasoner and the hand-tweaked settings. Figure 8.1
compares the meta-reasoner and the general settings with more puzzles. The meta-
reasoner manages to solve two more puzzles, but with slightly more search effort,
especially for the easier puzzles.

Figure 8.3 shows a chart comparing the three methods for all the puzzles they
didn’t manage to solve. The progress is measured by 1− dm

d , where dm is the lowest
Manhattan distance of the master block to the goal encountered in the puzzle, and
d is the Manhattan distance of the master block to the goal at the initial position
of the puzzle. A value of 0 means that the master block was never moved at all.
We see from the chart that with the hand-tweaked parameters, the master block is
moved a shorter distance towards the goal compared to the meta-reasoner and the
general settings. In figure 8.4 we can see that with the meta-reasoner, the master
block is moved slightly farther towards the goal compared to the general settings.

8.3.3 Memory usage of permutation rank

We have measured the savings in memory usage and difference in speed of using
permutation rank, compared to using Huffman coding to encode positions.

We solved four puzzles with both position representations. The results are shown
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Table 8.4: Detailed results of running all methods on all puzzles. The solver was
limited to examining 5 million positions for each attempt.

Puzzle Tweak General Meta-reasoner
01 27 / 321 31 / 180 27 / 1047
02 116 / 23688 174 / 12881 116 / 24030
03 (0.00) (0.33) (0.33)
04 186 / 3246310 (0.70) (0.70)
05 83 / 35885 139 / 374571 87 / 31286
06 85 / 1731647 (0.57) 94 / 2551339
07 - (0.13) (0.25)
08 - 194 / 194 194 / 8689
09 (0.00) (0.10) (0.00)
10 (0.64) (0.64) (0.45)
11 260 / 2605176 281 / 2436570 936 / 1257520
12 159 / 599941 258 / 266717 159 / 613845
13 (0.73) (0.73) 817 / 4561291
14 (0.00) (0.00) (0.00)
15 (0.00) (0.09) (0.09)
16 264 / 52376 352 / 307004 325 / 832917
17 (0.29) (0.29) (0.29)
18 (0.25) (0.88) (0.81)
19 (0.11) (0.22) (0.22)
20 (0.05) (0.05) (0.05)
21 (0.00) (0.00) (0.00)
22 (0.10) (0.10) (0.10)
23 (0.60) (0.40) (0.60)
24 251 / 53396 282 / 657406 216 / 939832
25 228 / 63329 255 / 119759 193 / 81927
26 (0.67) (0.83) (0.66)
27 (0.25) (0.25) (0.38)
28 888 / 138678 1168 / 104096 1196 / 96070
29 - 773 / 1540 773 / 1540
30 - 110 / 2139 71 / 3921
31 - (0.40) (0.40)
32 - 123 / 2737064 63 / 3060180
33 - (0.67) (0.78)
34 - (0.00) (0.00)
35 - (0.25) (0.58)
36 - (0.38) (0.38)
37 - (0.27) (0.45)
38 - 81 / 2225 41 / 21748
39 - 246 / 2123637 343 / 1044016
40 - 135 / 524732 136 / 45780
41 - 402 / 2745675 902 / 1794829
42 - (0.67) (0.67)
43 - 413 / 1114124 214 / 1451724
44 - 248 / 33247 232 / 108451
45 - 58 / 37353 448 / 263365
46 - (0.00) (0.00)
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Figure 8.1: Positions examined for solved puzzles, all three methods

Figure 8.2: Positions examined for solved puzzles, two methods and all puzzles
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Figure 8.3: Progress for unsolved puzzles, all three methods

Figure 8.4: Progress for unsolved puzzles, two methods and all puzzles
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Table 8.5: Runtimes of permutation rank and Huffman coding.
Time Time Speed

Puzzle Huffman (s) Permutation (s) difference
06 64 93 1.453
11 45 63 1.400
13 176 229 1.301
26 461 598 1.297

in table 8.5. From the table, we see that solving a puzzle using permutation rank is
a factor of 1.3-1.45 slower than using Huffman coding. For the puzzles that require
more time to be solved (puzzle 13 and 26), we see that the difference is closer to a
factor of 1.3.

Table 8.6 shows how many bytes we need to store a position with permutation rank
and Huffman coding, as well as the multiplicative difference. Puzzles requiring
more than 8 bytes for the permutation rank are not included, since our program
supports a maximal permutation rank of 64 bits (8 bytes). Hence, we could use
permutation rank for 25 of our 46 puzzles. The required actual storage in bits is
lower, but we chose to show the requirement in bytes instead of bits, because we
store each position in arrays of bytes and hence we cannot make use of the unused
bits for each position stored. In average, using permutation rank uses 1.239 times
less memory than using Huffman coding.

However, C++ STL (at least the implementation we used) seems to align our data
structures at 8-byte boundaries. So if a position needs 8 bytes when represented
by its permutation rank, and 4 bytes when encoded with Huffman coding, we are
not actually achieving any savings in memory. The only case where we achieve
savings, is when the Huffman code representation needs 9 or more bytes and the
permutation rank needs 8 or fewer bytes. From the 25 puzzles in table 8.6, this is
the case for puzzles 13, 17, 31, 42 and 45, or 20% of our puzzles.

We made a small program which measured the memory usage of allocating n vec-
tors, each containing a vector of k characters (bytes). We ran this test for different
values of k near borders of alignment (3, 4, 8, 9, 16, 17, 24, 25, 32) in order to
determine to which memory boundaries STL aligns its structures. We also ran the
test for different values of n (29, 210, 211) to determine how much memory each
structure occupies. From this test, we can conclude that our STL implementa-
tion aligns the start of vector<char> structures to 8 byte boundaries. Also, it
shows that there is a large overhead in memory usage when using STL. For each
vector<char>, the actual memory usage seems to be close to dk+7

8 e · 8 + 22± 2.

Table 8.7 shows how many bytes STL need to store a vector<char> of size k for
several values of k.

We can then find out the savings in memory usage for the solver itself. As long
as we choose a puzzle where the Huffman code representation requires at least 9



90 CHAPTER 8. EXPERIMENTAL RESULTS

Table 8.6: Number of bytes needed for permutation rank and Huffman coding.
Bytes Bytes Permutation

needed for needed for Difference rank
Puzzle Huffman Permutation ratio used?

01 3 2 1.500
02 3 3 1.000
05 7 5 1.400
06 8 7 1.143
11 5 4 1.250
12 8 7 1.143
13 9 7 1.286 !
16 8 7 1.143
17 10 8 1.250 !
23 8 7 1.143
24 7 6 1.167
26 7 6 1.167
28 5 4 1.250
30 6 5 1.200
31 9 7 1.286 !
32 7 6 1.167
33 7 6 1.167
38 4 3 1.333
39 6 5 1.200
40 7 6 1.167
41 7 5 1.400
42 9 7 1.286 !
43 8 6 1.333
44 5 4 1.250
45 9 6 1.333 !
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Table 8.7: Number of bytes actually needed by STL
Bytes to Actual memory usage
be stored in bytes

1-8 28
9-16 40
17-24 44
25-32 56

bytes, and the permutation rank requires at most 8 bytes, we save 12 bytes per
position, or a ratio of 1.429. We have not measured the memory savings when using
other STL structures like map, set or queue. The savings might be smaller, since
these structures are slightly more advanced and need more internal class variables
in order to perform their more advanced functions.

8.3.4 Solving an easier version of the puzzle

We tried to find a puzzle that we haven’t solved yet, and make an easier version of
it. We made two easier variants, one where we removed one 1 × 2 block, and one
where we removed two 1 × 1 blocks. See figure 8.5. We solved both of the easier
variants using the meta-reasoner. The number of steps and search effort for solving
both variants are shown in table 8.8.

Figure 8.5: In a), the original puzzle 23 is shown. In b) one 1 × 2 block has been
removed, and in c) two 1×1 blocks have been removed. The goal of the puzzle is to
move the blue master block to the upper right. In addition, the two cells enclosed
by the master block and the wall must not be occupied by any other blocks.

We then used the solutions to the easier versions as subgoals for solving the full
variants, where each subgoal consisted of requiring all blocks to be at the same
location as in the particular subgoal. The re-added blocks were permitted to be in
any open space of the subgoal.

Since each subgoal required all blocks to be specified, we did not expect most of
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Table 8.8: Results from solving the easier variants of puzzle 23
Variant Puzzle Steps Positions

examined
1 1× 2 removed 239 67799057
2 two 1× 1 removed 250 49516543

Table 8.9: Results from solving the full version of puzzle 23 using the two easier
variants.

Variant Description Subgoal Total number Progress
reached of subgoals (fraction)

1 1× 2 removed 46 239 0.192
2 two 1× 1 removed 130 250 0.520

our heuristics to work well, since they only take the master block into account.
Therefore we ran the solver with plain BFS for the full puzzle. Plain BFS allows
us to search deeper (examine more positions) than the other options.

We did not manage to solve the full puzzle with either of the solutions of the easy
variants. In the first variant, we reached subgoal 46 of 239. In the second variant,
we reached subgoal 130 of 250. We have summarised this progress in table 8.9.

Figures 8.6 and 8.7 show the number of steps needed for reaching subgoal i for
variant 1 and variant 2, starting from subgoal i − 1, for every subgoal i that we
reached. The number of steps is sorted in the charts. While the majority of
subgoals could be reached in one or two steps, one subgoal in variant 2 required 77
steps, and three subgoals in variant 1 required 93, 101 and 102 steps.

Figures 8.8 and 8.9 show the number of positions needed to be examined before
reaching subgoal i, for variant 1 and variant 2. The majority of subgoals could
be reached while examining less than 100 positions, but the two most expensive
subgoals required 33.5 million and 43.9 million positions.

8.4 Problems encountered during testing

When running the tests, our test machines frequently ran out of memory. For the
hardest tests (puzzles requiring over 10 million positions to be examined before
finding a solution), only the Tesla machine (12 GB RAM) was useful. The reason
is the excessive memory requirements of the solver program, which caused the
program to quickly run out of available memory on the weaker machines (ranging
from 2 to 4 GB). The efficiency of the program was drastically reduced when
memory was exhausted and started using virtual memory. In addition, on our 32-
bit operating systems, the program was aborted by the memory manager in STL
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Figure 8.6: Puzzle 23 variant 1, subgoals ordered by number of steps needed to
reach the subgoal starting from the previous subgoal.

Figure 8.7: Puzzle 23 variant 2, subgoals ordered by number of steps needed to
reach the subgoal starting from the previous subgoal.
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Figure 8.8: Puzzle 23 variant 1, subgoals ordered by search effort needed to reach
the subgoal starting from the previous subgoal.

Figure 8.9: Puzzle 23 variant 2, subgoals ordered by search effort needed to reach
the subgoal starting from the previous subgoal.
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after using around 1.5 GB RAM, which seems to be the effective memory limit for
programs running in 32-bit versions of Windows XP and Windows 7.

We had a bug in the meta-reasoner which was discovered quite late in the testing,
and close to the thesis deadline. The bug caused the permutation rank to never
be used by the solver. This caused the solver to require more memory for 5 of the
puzzles. For 3 of these 5 puzzles this was of no consequence, as we managed to
solve them anyway. We ran the meta-reasoner again for the two remaining puzzles.
With permutation rank, the program was able to search deeper before exhausting
the memory. However, this was not sufficient for solving the two puzzles.

Another bug was discovered just one day before the deadline of the master thesis.
The bug happens on only one puzzle, puzzle 46. The routine that gathers features
from the puzzle crashes because one of the blocks cannot fit inside a 64-bit bitmask
used in the routine for calculating the packing bound. The crash causes the results
of the feature extraction to not be written to disk. The meta-reasoner then proceeds
to solve the puzzle, using a file from a previous run of the meta-reasoner. Puzzle
46 was one of the puzzles we considered to be difficult (we did not manage to solve
it using the general parameters), and we managed to solve it using data from the
wrong puzzle. The bug was fixed by adding one line to the code, which exited the
routine gracefully. The reason why the bug went undiscovered for so long, was that
our program generates a lot of output, and the error message went by unnoticed.
We were not able to determine the puzzle the features belonged to.



96 CHAPTER 8. EXPERIMENTAL RESULTS



Chapter 9

Discussion

In this chapter we present our discussion and analysis of the implementation and
the results from running the program. We will analyse each subcomponent of the
CBR system, and each improvement in the underlying solver program, and give an
explanation of the test results.

We will discuss each of the multiple tests we have performed.

9.1 Solver

In the solver program, we added the option of displaying the entire solution when
a puzzle was solved, support for two new block types (sliders and disconnected
blocks) and permutation rank, a slightly more memory-efficient way of representing
positions. Also, a helper function for the meta-reasoner system was added into the
solver, which analyses a given puzzle, extracts features and communicates them to
the meta-reasoner.

The option of displaying the solution to a puzzle gave us a new way of attacking
unsolved puzzles. Given a hard puzzle, we could modify it, solve the modified
version and use its solution as a plan to solve the original puzzle. We will analyse
whether this idea was successful.

9.1.1 Use the solution of an easier version to solve the full
puzzle

We tested on puzzle 23, which we haven’t managed to solve so far. Figure 8.5 in
the previous chapter shows the puzzle, as well as the two easier versions we made.
In version 1 we removed one 1 × 2 block, and in version 2 we removed two 1 × 1
blocks. As reported in section 8.3.4, we didn’t manage to solve the full puzzle using
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the solution for the two easier versions. Progress towards the goal was 19.2% for
version 1 and 52% for version 2.

We experienced some small problems while running these tests. When the solver is
given a puzzle containing multiple subgoals, the standard option is to not erase the
set of visited positions after completing a subgoal. However, it turned out that the
progress towards the final goal isn’t necessary linear. For several of the subgoals,
we could read the subgoals in fewer steps if we allowed the search to visit positions
which were visited during the search for previous subgoals. We therefore changed
the options in the solver so that the set of visited positions was deleted each time
a subgoal was reached.

The results from trying to solve the full puzzle using the solution from the first
version made us realise a flaw in our idea: Some positions are not possible to reach.
The 47th subgoal, the one we failed to reach, is shown in figure 9.1. This subgoal
specifies the position of every block in the puzzle, except one 1 × 2 block which
is allowed to be put anywhere permissible. However, the block cannot be placed
anywhere; there is no 1 × 2 subrectangle of free space. Hence, the full puzzle was
impossible to solve using this set of subgoals.

Figure 9.1: A subgoal which is impossible to reach, since the removed 1× 2 block
can’t be reinserted into this position.

We created a second easier version of the full puzzle (figure 8.5 c)). This time,
there existed no situation like the above where we couldn’t reinsert the blocks.
This search failed to reach the 131st subgoal. Figure 9.2 shows the 128th and the
131st subgoal (a) and b), respectively). (The 129th and 130th subgoal have the
2 × 2 block in intermediate positions.) Since the full puzzle has two additional
1 × 1 blocks, they need to exchange places with the upward-moving 2 × 2 block.
Our program didn’t manage this transition after searching to depth 124 (from the
130th subgoal), having examined 741 million positions. Moving a 2× 2 block three
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steps in one direction require 6 spaces, which the full puzzle doesn’t have, so an
undetermined number of intermediate steps are needed.

Figure 9.2: An example of a very hard transition. We didn’t manage to reach
position b) starting from position a) when two 1× 1 blocks were added.

In order to have greater success with this approach, care should be taken when
designing modified versions of the original puzzle to avoid unsolvable subgoals (like
version 1 above) and very hard subgoals (version 2). In general, it is desirable
to avoid to be able to move certain key blocks a longer distance in the modified
version than in the full puzzle. The hard subgoal from version 2 could be prevented
by removing fewer blocks (removing only one 1 × 1 block), this would disallow
movement of the 2 × 2 block by 3 steps, or other potential hard transitions like
moving the 3 × 2 block up two steps. Solving the original puzzle with one 1 × 1
would probably be much harder than solving the two versions mentioned above.
Finding the correct amount of blocks to remove is a difficult tradeoff between the
hardness of solving the modified puzzle and the usefulness applying its solution to
the full puzzle.

Another problem with this approach is the increased memory requirements of the
solver when trying to solve the modified version of a puzzle. In order to be able
to input the solution, we must store the parent position for each position we visit.
This roughly doubles the memory requirements, and renders some of the harder
otherwise solvable puzzles infeasible to solve. Solving versions 1 and 2 took around
30 minutes without displaying the solution, but around 8 hours with the option
turned on.
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9.1.2 Permutation rank

This improvement was only effective for 5 of 46 the puzzles. 21 of 46 puzzles
were immediately excluded because they would need a permutation rank of larger
than 64 bits, which we chose to not implement. Hence, we had 25 eligible puzzles
where permutation rank could be used. For 20 of these, permutation rank didn’t
yield any savings, because of the way STL allocates memory in blocks of 8 bytes. If
permutation rank reduced the memory requirements per positions from 7 to 5 bytes,
no savings were achieved because each position occupied a multiple of 8 bytes. If we
have allocated memory in 1-byte blocks, 24 of the 25 puzzles would achieve savings
in memory usage, and the average savings for representing a position in memory
would be a factor of 1.239. Only puzzle 2 has the same memory requirement for
both permutation rank and Huffman coding - 3 bytes for each position.

Because of the way memory allocation worked, and the fact that it only lead to
memory savings for 5 out of 46 puzzles, this improvement was of little value for us
in the thesis. 3 of these 5 puzzles were solvable without this improvement. The
two remaining puzzles could still not be solved with this improvement.

See section 11.3.6 for suggestions on how to make this optimisation effective.

9.1.3 New block types

Support for disconnected blocks and sliders were added mainly in order to add
some more puzzles of the desired difficulty level into the test suite. We wanted
a few more puzzles which we estimated to be just a bit harder than the hardest
puzzles we solved in the specialization project.

To test this new addition, we added some puzzles ranging in difficulty from trivial
to intermediate (puzzles 30, 32, 38, 40). As we expected, we solved all of them.

Harder puzzles were added (31, 33, 34, 46). These proved to be a challenge, and
in the end we solved one of them. Puzzle 46 (which contains sliders) was solved
by the meta-reasoner and it was solved in the 26th run of the solver, with the
same parameters as the most similar case (A* with the aggressive h2 heuristic,
and resting block pruning, which helped reduce the search space size). However,
because of a bug, this puzzle was solved using data from another puzzle. See
section 8.4 for more details. We were not able to solve the puzzle again after fixing
the bug.

Disconnected blocks was problematic for the space value pruning method. In order
to move a disconnected block, spaces have to be spread in front of each disconnected
component of the block. This is not achieveable if a too low space value cutoff is
chosen. Hence, this block type effectively nullifies this particular improvement.

Sliders work better together with our solver program and its enhancements. The
presence of sliders cause restrictions on the number of possible moves in a position,
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which in turn causes the branching factor to be reduced. Puzzles with many sliders
also typically need more steps to be solved.

9.2 Meta-reasoner

During a typical attempt to solve a hard puzzle, the meta-reasoner will launch the
solver program multiple times. Since it could take 10 hours or even more for just
one run of the solver to run out of memory, we limited the number of examined
position to 5 million, and the number of solver runs to 26 (of which only the last
is allowed to examine an unbounded number of positions). Each solver run then
took up to half an hour. This reason for this decision was to ensure that we would
be able to run all the tests in time.

Even though we didn’t have time to perform tests using higher limits, we believe
that both limits, 26 runs and 5 million positions, held back the performance of our
system. We will go into further details of the impact of the limits in the following
sections.

9.2.1 Meta-control cycle

The meta-control cycle consists of three phases:

• Reusing cases from the case base.

• Doing a randomized proximity search for finding new parameters to try.

• A final attempt at running the solver using the most promising parameter
set, without the limit of 5 million expanded positions.

The solver program is launched a total of 25 times during phase 1 and 2. For the
26th and final run, the parameter set which managed to move the master block
closest to the goal, is chosen.

Almost all of the puzzles that we solved, was solved using a solution from the case
base. This either happened in phase one or in phase three. The reason for why
some of the puzzles was solved in phase three instead of phase one, was that the
solution required more than 5 million positions to be examined. We would have
been able to solve more puzzles in phase 1 if the 5 million limit was raised.

Only puzzles 13 and 16 were solved in phase 2, and this did not happen consistently
because of the random nature of phase 2. (Puzzle 13 was also solved in phase 3 in
another run, and puzzle 16 was solved in phase 1 when the case base contained the
case with its solution.) This shows that the randomized search was able to come
up with better parameters than the case base, even though it happened rarely. It
is likely that more puzzles would be solved in phase 2 with a higher limit than 26
on the number of runs.
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The meta-control cycle maintained a lower bound for legal space value cutoffs.
Whenever the solved returned after not being able to find a solution, this could
only be caused by a too low space value cutoff (by design, no other options could
cause a solvable puzzle to be unsolvable). The lower bound started with a value of
1, and if a puzzle could not be solved using space value n, the lower bound was set
to n+1. This lower bound was not stored between different runs of the meta-solver.
This lower bound was necessary in order to avoid wasted runs with the solver, but
26 runs were far too few to be able to establish a close lower bound, and during
the course of running the meta-reasoner we rarely ended up calling the solver with
good values for the space value cutoff, except when retrieving them from cases.

For the 26th and final run of the solver, the most promising case of the 25 previously
tried ones are taken. However, when we ran the meta-reasoner on puzzle 17 with
its correct solution in the case base, it mistakenly picked another case to use for
the final run. The chosen case managed to move the master block 5 squares away
from the goal with less search work than the known good case, which got the
master block within the same distance. However, the chosen case did not have
the needed space value cutoff, so the puzzle could not be solved. On the other
hand, many puzzles were solved in the 26th run, including several where it was
not easy to find good parameters. We did not manage to solve puzzle 46 with the
general parameters we prepared, but the meta-reasoner managed to solve it (due to
a bug described in section 9.3, it was solved based on a feature vector from another
puzzle). From this, we can conclude that the way the meta-reasoner selects the
case to use for the 26th run worked satisfactory in most cases, even it it did not
pick the correct case for one difficult puzzle.

9.2.2 Matching of cases

In section 8.3.1 we presented the results from running the meta-reasoner on every
puzzle in the case base, both with and without the puzzle itself in the case base.
The main results are repeated in table 9.1 for convenience.

The main difference is that we lost puzzle 4 when we took out the case, and several
puzzles needed more work (in number of calls to the solver) before they were solved.
Most notably, puzzle 16 went from 1 to 20 calls to the solver, and puzzle 13 went
from 18 to 26.

Surprisingly, puzzle 6 went from 2 to 1 call when we took out the case. As the case
base consisted of the best solutions we found by hand during the specialization
project. This means that the case with the second best similarity was a better
match for puzzle 6, since this case managed to solve the puzzle with fewer exam-
ined positions. The case chosen was the solution to puzzle 16 and used a more
aggressive heuristic, taking the positions of spaces relative to the master block into
consideration.

The meta-reasoner was not able to solve puzzles 17 and 18. For puzzle 17, the meta-
reasoner couldn’t solve the puzzle using the correct case within 5 million examined



9.2. META-REASONER 103

Table 9.1: Results from running the meta-reasoner on the puzzles in the case base.
Puzzle in case base Puzzle not in case base

Puzzle Solved Number of times Solved Number of times
solver was run solver was run

01 ! 1 ! 1
02 ! 1 ! 1
04 ! 1 26
05 ! 1 ! 1
06 ! 2 ! 1
08 ! 1 ! 1
11 ! 1 ! 1
12 ! 1 ! 5
13 ! 18 ! 26
16 ! 1 ! 20
17 26 26
18 26 26
24 ! 1 ! 2
25 ! 1 ! 1
26 ! 26 ! 26
28 ! 1 ! 1
29 ! 1 ! 2
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positions. The program eventually found another case which was considered to
be better, this case was used for the 26th run without a limit. This case did not
turn out to be better than the correct case, it missed the correct space value cutoff
which was vital for solving this problem. We solved puzzle 18 in the specialization
project, but we used one of the options (manually locking specific blocks) which
we decided to exclude in this thesis.

The meta-reasoner was able to find a much better solution to puzzle 13 than the one
found manually in the specialization project. It managed to solve the puzzle using
4.56 million nodes, compared to the old result of 609 million nodes. The old solution
used BFS, but the meta-reasoner managed to find good parameters for A* during
its second stage, the randomized parameter search. The good parameters we found
are very similar to a set of parameters tried in the specialization project which
didn’t solve the puzzle. The only significant difference between the parameter sets
is that we used resting block pruning in the specialization project for this puzzle,
and this optimization might have pruned away the solution path.

9.2.3 Finding similarity between cases

The similarity function was designed early, and it was never tweaked afterwards,
because the system as a whole gave acceptable results. Except from the two very
hard puzzles in the case base, we managed to solve all of them except one when we
removed the puzzle we were trying to solve from the case base. This is an indication
that in the absence of the correct solution from the case base, the system managed
to find a similar case which worked. Since multiple cases were always reused, our
similarity function didn’t need to be perfect.

Figure 9.3: Puzzle 02/44 (a)) and puzzle 13 (b))
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However, it is easy to design cases that trip up our similarity function. For instance,
our puzzle 44 is identical to puzzle 02 (see figure 9.3 a)), except that each block
is twice the size. According to our similarity measure, puzzle 13 (figure 9.3 b))
is the best match, and several puzzles are more similar to puzzle 44 than the
correct match, puzzle 02. Puzzle 44 got matched up with a puzzle of similar size
and similarly sized blocks instead of the much smaller, identical puzzle. Puzzle
13 is much harder to solve than puzzle 44, as it requires 4.5 million positions to
be examined to solve it (in addition to needing a hard-to-find set of parameters),
compared to puzzle 44 which needs 33247 positions to be examined. Our similarity
function was not designed for puzzles scaled in this way.

9.2.4 Randomized proximity search

The randomized proximity search was performed during phase 2 in the meta-control
cycle. Its goal was to find eligible parameters to pass on to the solver, parameters
that haven’t been tried before that are similar to parameters already tried.

As mentioned in section 9.2.1, the contribution of this search to the result of the
meta-reasoner was limited. Out of 72 attempts to solve puzzles with the meta-
reasoner, two of these attempts were successful because of this search method.
This is, however, more a result of the few iterations the search was allowed for
perform, rather than a weakness in the search algorithm. Of the 25 calls to the
solver in phase 1 and 2, around 20 of them use parameters from the randomized
search. We believe the search could have found more good parameters if it was
allowed to run for more iterations. In order to allow this, we would need a much
larger time frame for testing.

9.3 Other issues

We had one major bug in the code which changed the outcome of the tests. Our
program managed to solve puzzle 46, despite a bug which made the feature extrac-
tion portion of the program to crash, forcing the meta-reasoner to use the features
from the previous puzzle.
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Chapter 10

Summary and conclusion

In this thesis, the goal was to construct a system which solves sliding-block puzzles
using meta-reasoning, and it should be based on the search-based solver program
from the specialization project. The meta-reasoner should automatically find good
parameters to call the solver with, with the purpose of solving a given puzzle. In
the specialization project, the parameters had to be found manually.

After studying relevant literature, we decided to go for a CBR approach, where each
case consists of the features describing a puzzle and a set of parameters that solve
the puzzle. We enhanced this approach by adding a meta-control cycle where mul-
tiple cases would be retrieved from the case base. After applying all the promising
cases on the problem to solve, a randomized proximity search would start generat-
ing new parameters, close, but not identical to the parameters already tried. For
each such set of parameters, the solver would run with a limit on the allowed search
work. After the meta-control cycle has run for a specified number of iterations,
the set of parameters which managed to move the master block closest to its goal
would be run again, this time with no limit on the allowed search work.

We enhanced the solver program with three new features. We added the ability to
store and display each step of the puzzle’s solution. A new memory-efficient way of
representing puzzle configurations was added, based on its permutation rank when
the configuration was seen as a permutation of a multiset. Two new block types,
sliders and disconnected blocks were added, so that we could add more interesting
puzzles to our test suite.

The resulting system was able to find parameters that solves the puzzles with
slightly less search work than a set of general parameters which were not adapted
to any specific puzzle. In addition, the system was able to solve one new puzzle
(which unfortunately was the result of a bug, causing the system to reason from
the wrong data) compared to the same set of parameters. We also compared the
results against the parameters found manually in the specialization project. These
parameters were adapted to each puzzle. The meta-reasoner was not able to fully
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match these results, except in one exceptional case where the meta-reasoner reduced
the search work by a factor of 133. This result was due to the randomized proximity
search in the meta-control cycle. Compared to the manually found parameters,
the meta-reasoner couldn’t solve one puzzle that required a very specific set of
parameters. The meta-reasoner made better progress on the unsolved puzzles than
the manually found parameters. If we took out the solution from the case base for
the puzzle we tested, the meta-reasoner solved one less puzzle, and needed more
search work in general to solve the other puzzles.

The memory-efficient representation (permutation rank) was not as efficient as it
could have been, because of the way C++ STL allocates memory. There was
significant overhead because each variable was aligned to 8-byte boundaries.

The new functionality of storing the solution sequence for a solved puzzle was used
in another test. We tried to solve a hard puzzle by using the solution of a slightly
easier version of the same puzzle where some blocks were removed. The plan was
to solve the hard puzzle by reaching intermediate positions. Each step in the
solution of the easier version of the puzzle corresponded to one such intermediate
position, where the removed blocks from the full puzzle could be placed in any free
position. Our first attempt failed on an early intermediate position because one of
the intermediate positions was illegal; the removed blocks didn’t fit in the shape of
the free space. The second attempt failed around halfways because it couldn’t find
the path between a particularly hard transition between two intermediate positions.

The domain of sliding-block puzzles is a very challenging domain, both for heuris-
tic search methods and reasoning methods. Research on other domains such as
Sokoban has reached a more advanced stage, where most of the puzzles designed
for people are now possible to solve with computer programs. We believe that
our domain can reach such a stage as well where most puzzles can be solved by
computer programs.

There are still many interesting ideas to explore in this domain, these are explained
in more detail in chapter 11.



Chapter 11

Future work

In this section we will identify areas where our system can be improved. Some
of the improvements are suggested based on weaknesses identified in our system.
Other suggestions are based on areas we haven’t researched yet and areas that were
out of scope for this thesis.

11.1 System architecture

The current code base consists of 3000 lines divided into two programs (solver
and meta-reasoner). After one year of development, the solver code is now rather
messy and it is hard to maintain. During this thesis, we had at one serious bug
which affected the results of the system. This is described in detail in sections 9.1.3
and 9.3. The program is quite slow, since it was designed to support many features
rather than optimized for raw speed. We suggest redesigning and rewriting the
solved program, and split into multiple executable files, one for each main algorithm
(BFS, A*) and one for each memory representation (Huffman coding, permutation
rank). This would make it much easier to optimize the program for speed.

11.2 Meta-reasoning program

In our meta-reasoning program, we had many arbitrary constants and limits, for
instance the 5 million limit for the number of examined positions. Because of the
time it takes to run tests, we did not have time to change and tweak these limits
as much as we had hoped to.
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11.2.1 Case matching and similarity

Our similarity function can be improved. Currently, it overemphasizes the impor-
tance of the puzzle size, this was pointed out in section 9.2.3. With a more accurate
similarity function, we would increase our chances of finding a better match for the
input case, increasing our chances of solving the puzzle.

11.2.2 Other AI methods

Quite early in the project, we decided to restrict ourselves to looking at reasoning
methods. It remains to investigate how useful other AI methods could be, like
decision tree learning, neural networks and machine learning.

11.3 Solver program

Our solver program is very slow, and can be optimised to run faster. In addition,
there are several areas of improvement that we haven’t investigated.

11.3.1 Pattern databases

Pattern databases have been used with great success in similar domains like the
nm− 1-puzzle[8]. The benefit of the domain of nm− 1-puzzles is that the puzzles
are built from only 1× 1 blocks. While our domain can contain arbitrarily shaped
blocks, and hence it looks harder to apply pattern databases to our domain, it
remains to research whether this approach is useful.

11.3.2 Macro moves

Macro moves could be a valuable addition for making the solution sequences shorter
and reducing the search space size by identifying commonly occurring block-moving
situations and transition. Because of the variety of block shapes, it is likely that
we have to define new macro moves for each puzzle we consider. It remains to be
investigated whether this approach is useful for our domain.

11.3.3 Moves

In section 3.1 we defined two different actions for taking us from one state to
another, moves and steps. Moves have some desirable properties when used in
combination with some of our improvements. Moves would be a useful addition to
the program.
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11.3.4 BDD

It remains to investigate the memory usage of BDD, and compare the memory usage
and efficiency of a BDD implementation to an implementation where positions are
stored in a traditional way. With BDD, the memory usage of representing Sokoban
positions were greatly reduced, and similar savings could be achieved in other
domains.

11.3.5 Optimizations for speed

As previously mentioned, our solver program is slow, and there exists a specialized
BFS program [25] which is 5.2 times faster than our program. Making our program
faster would be of enormous benefit, since we then could raise the limits of solver
runs and positions examined in the meta-reasoner, and increase our chances to
solve more puzzles.

11.3.6 Optimizations for reduced memory usage

In section 8.3.3, we showed that there is a large overhead in memory usage for
storing positions, because of memory alignment to 8-byte boundaries and to store
the size field of each vector holding the characters that represent a position. This
overhead varies with the size of the puzzle, but for smaller puzzles this overhead is
larger than 100%. In addition, the memory alignment nullified the more efficient
permutation rank representation for the majority of the puzzles. This overhead
can be reduced in several ways:

• Custom allocators in C++ STL. It remains to investigate this approach in
detail, but it is likely that this approach won’t reduce the entire overhead
without redesigning our data structures.

• Manage the memory ourselves. We can allocate a large buffer, and manage
this chunk of memory by ourselves. In this way, we can align positions to every
byte (or even every bit) and remove all the overhead. The implementation
complexity is higher than custom allocators, especially for data structures
like priority queues and sets, which are used for our A* algorithm.

11.4 Other areas of improvement

11.4.1 Parallelism

Korf[24] used a parallel BFS algorithm for solving random instances of the 24-
puzzle. A similar approach could be used to speed up our BFS algorithm, in order
to be able to search even deeper within reasonable time.
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Also, parallelism can be implemented in a more simple manner, by identifying
areas in our program where several independent operations are performed serially.
For instance, the most costly portion of the solver, the loop which identifies child
positions for a given position, could benefit from running these in parallel. We
suggest looking closer at the pthreads library for doing light weight parallelism
like this.

11.4.2 External storage

On large puzzles, our solver program quickly runs out of memory, which either
results in termination of the program, or the program starts using virtual memory.
The efficiency of the program is reduced dramatically when it starts using virtual
memory, we measured a slowdown by a factor of around 100.

We could reduce the slowdown factor significantly by designing our own scheme
for using disk as secondary storage, instead of letting the operating system decide
the portion of memory to store on disk. The BFS algorithm which uses sequential
traversal of queues, can be implemented efficiently using disk storage. The chal-
lenge lies in keeping track of the set previously visited positions, which is typically
accessed in a more random manner.

It remains to investigate efficient ways for implementing A* with disk usage.

11.4.3 GPU

GPUs (graphical processing units) with their massive parallelism have been used
with success in recent years in highly calculation-intensive tasks. Can our domain
benefit by utilizing the additional computing power a GPU offers?

11.5 Open problems

We conclude this chapter by posing some unsolved problems we have identified.

Currently, the permutation rank is our most memory efficient way of representing
individual positions. Does it exist a more efficient representation which can be
calculated efficiently for every position in every puzzle of reasonable size?

Is it possible to apply all our algorithms, enhancements heuristics and prunings
from the solver to the BDD structure?

Is it possible to get a better estimate (upper bound) of the state space size for
huge puzzles where it is infeasible to count the number of ways to pack the blocks?
The multinomial coefficient evaluated by considering the blocks in the puzzle as a
permutation (combinatorial bound) leads to a rather loose upper bound.
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