
June 2010
Babak Farshchian, IDI

Master in Information Systems
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Managing spaces in context-aware
ubiquitous systems

Waqas Hussain Siddiqui

Problem Description
Context awareness is an important aspect of ubiquitous computing and in order for a system to
adapt to user needs or to provide relevant information at right time and place, information about
context is required. Due to the advancement in technology, vast amount of information can be
gathered from different heterogeneous systems and sensors taking part in ubiquitous scenario.
But due to their heterogeneous nature and huge amount of available information it is necessary to
extract only useful information which should cover required aspects of context and this information
must be in common and predefined format so that semantic meaning can easily be added. The aim
of this work is to design and implement architecture for UbiCollab Space Manager which helps
UbiCollab user to create and manage spaces, capture and associate contextual information with
spaces.

Assignment given: 15. January 2010
Supervisor: Babak Farshchian, IDI

Abstract
In our everyday tasks context plays an important role, we act based on the information we have or
based on what we can see, hear or feel about surrounding. Using this information about context we use
to adapt ourselves and our behavior for example in class room we usually whisper when we want to
communicate with other class fellow, but in cafeteria we talk normally.

Due to the advancements in technology and mobile computing, we are now able to carry computers and
smart phones with us, almost everywhere and use them as an alternative to desktop computers.
Ubiquitous computing goes step further and refers to the world where computation is being weaved
into every day object. In typical ubiquitous computing scenario many invisible computers interact with
each other to help user in getting his task done. The ability of being carried easily, i.e. mobility and their
presence almost everywhere make it necessary for computer systems, taking part in ubiquitous
computing environment, context-aware. If computers can sense the environment they are being used
in, they can help user in providing only relevant information, information at correct place and time and
such systems can also adapt their behavior according to their surroundings. For example, if would be
nice if our mobile phone automatically set to silent profile, whenever we are in class room or in a
meeting room.

Ubicollab is a platform for supporting collaboration and is a result of research work done in the areas of
mobility and ubiquitous computing. Mobility and ubiquity being the inherent properties of UbiCollab,
requires it to be aware of context just like another ubiquitous system. It will help UbiCollab applications
to adapt their behavior as per surrounding and will enhance the experience of collaboration by using the
resources nearby.

I researched in the area of context-aware ubiquitous computing and used the results of my research to
design and implement a solution for making UbiCollab context-aware. The proposed solution answers
research problem related with context itself and different aspect of context. Context definition for
UbiCollab has already been defined in work previously done; my solution addresses how to represent
this contextual information in simple and effective manner, how to gather location information using
different and heterogeneous sensors in understandable and standard format.

The outcome of this work comprises of proposed context model, design and implementation of Space
Manager for working with spaces, design and usage of flexible data store for storing space information
and design and implementation of Location Service Manager for gathering location information using
different location sensing technologies.

Keywords: Ubiquitous computing, context-aware computing, context-awareness, context model,
location awareness, sensor

Preface
This report was written as a master thesis in Spring 2010, which account towards the final work for the

degree of Master of Science in Information System taken at Department of Computer Science,

Norwegian University of Science and Technology.

This report contains the contribution I made for UbiCollab platform. In this report the solution I

proposed and implemented for making UbiCollab context-aware is presented. My work is based on the

previous work done about context and spaces in UbiCollab. This report contains the design and

implementation details of UbiCollab Space Manager for managing spaces and design and

implementation details of Location Service Manager for getting and using location information as

location aspect of context.

I wish to thank my supervisor Babak Farshchian for all the support during the course of this thesis and

the valuable feedbacks throughout my thesis.

Thursday, June 10, 2010

Waqas Hussain Siddiqui

Table of Contents
Chapter 1 Introduction ... 10

1.1 Motivation and Contribution .. 11

1.1.1 Motivation .. 11

1.1.2 Contribution ... 11

1.1.3 Objectives ... 12

1.2 Research Method .. 12

1.3 Report Outline... 14

Chapter 2 Problem Elaboration .. 15

2.1 Problem Definition .. 15

2.1.1 Context Model ... 15

2.1.2 Location Detection ... 15

2.2 Relation with UbiCollab .. 15

2.3 Scenario Analysis ... 16

2.3.1 Scenario .. 16

2.4 Requirement Specification .. 17

2.4.1 General Requirements ... 17

2.4.2 Specific Requirements – Space Manager ... 18

Chapter 3 Background .. 20

3.1. UbiCollab context and background .. 20

3.1.1 Ubiquitous Computing ... 20

3.1.2 Context-aware computing ... 20

3.2. Preliminary Study ... 20

3.2.1 UbiCollab .. 20

3.3 Related Work .. 24

3.3.1 W4 .. 24

3.3.2 Place lab ... 25

3.3.3 Other related work .. 27

Chapter 4 Proposed Solution .. 28

4.1 Solution Overview ... 28

4.2 Context Model .. 28

4.2 Space Manager.. 29

4.3 Location Service Manager ... 31

4.4 Space Database ... 33

4.4 GUI Mockups ... 34

4.5 Overall system structure ... 41

Chapter 5 Implementation .. 42

5.1 Tools and Technologies ... 42

5.1.1 Java Mobile Edition .. 42

5.1.2 OSGi .. 42

5.1.3 eRCP / eSWT... 43

5.1.4 HyperSQL Database.. 43

5.1.5 Eclipse .. 44

5.2 Location Service Manager ... 44

5.2.1 Components of Location Service Manager .. 44

5.2.2 Wi-Fi Sensor Plug-in ... 50

5.2.3 Any resource can work as location sensor ... 53

5.3 Space Manager.. 62

5.3.1 Space .. 62

5.3.2 Space Queries .. 64

5.3.3 Space Database Helper .. 73

Chapter 6 Evaluation ... 75

6.1 Evaluation based on Scenario ... 75

6.1.1 Scenario .. 75

6.1.2 Scenario Walkthrough.. 76

6.1.2 Evaluation using application .. 84

6.2 Requirement Satisfaction Status ... 86

6.2.1 Requirement Satisfaction Status of Functional Requirement ... 86

6.2.1 Requirement Satisfaction Status of Non-Functional Requirement ... 87

Chapter 7 Conclusion and Future work .. 89

7.1 Contributions .. 89

7.2 Conclusions ... 90

7.3 Future work ... 90

References .. 91

Appendix A. Acronyms .. 93

Appendix B. Java Packages .. 94

B.1 Space Manager ... 94

B.2 Location Service Manager ... 94

B.3 Space Database ... 95

B.4 Wi-Fi Location Sensor Plug-in ... 95

Appendix C. Sample Space XML files .. 96

Appendix D. Space database SQL Script ... 97

Table: Space .. 97

Table: Sensor ... 97

Table: SensorReading .. 97

Table: CurrentSpace .. 97

List of Figures

Figure 1-1 UbiCollab .. 10

Figure 3-1 Human Grid .. 21

Figure 3-2 Architecture of UbiNode .. 22

Figure 3-3 Spaces .. 24

Figure 3-4 Architecture of W4 .. 25

Figure 3-5 Place Lab Architecture ... 26

Figure 4-1 UbiCollab user in two different Spaces.. 29

Figure 4-2 Overview of Location module .. 32

Figure 4-3 ER diagram of Space database ... 33

Figure 4-4 Use Case 1 GUI Mockups ... 35

Figure 4-5 Use Case 2 GUI Mockups ... 37

Figure 4-6 Use Case 3 GUI Mockups ... 39

Figure 4-7 Use Case 4 GUI Mockups ... 40

Figure 4-8 Overall system architecture ... 41

Figure 5-1 Location Sensor interfaces and sample classes ... 45

Figure 5-2 Interface and class for standardizing sensor reading ... 47

Figure 5-3 Overall Architecture of Wi-Fi Sensor Plug-in ... 51

Figure 5-4 UML class diagram of Wi-Fi Sensor Plug-in ... 52

Figure 5-5 Sequence diagram of Wi-Fi Sensor Plug-in Read method ... 53

Figure 5-6 UML Class diagram of Space class ... 63

Figure 5-7 ISpaceManager interface ... 65

Figure 5-8 Sequence Diagram of Space Manager’s CreateNewSpace .. 66

Figure 5-9 Sequence Diagram of Space Manager's SetSpace method ... 68

Figure 5-10 Sequence Diagram of Space Manager's overloaded SetSpace method 68

Figure 5-11 Sequence Diagram of Space Manager's GetSpace method... 69

Figure 5-12 Sequence Diagram of GetSpace method exposes by Space Manager 70

Figure 5-13 Sequence Diagram of GetCurrentSpace .. 71

Figure 5-14 Sequence Diagram of Space Manager's DownloadSpace method .. 72

Figure 5-15 UML class diagram of DBHelper class .. 73

Figure 6-1 User starts UbiCollab on his UbiNode ... 76

Figure 6-2 Space Manager GUI ... 77

Figure 6-3 User starts create new space screen ... 78

Figure 6-4 User inputs details about new space ... 79

Figure 6-5 Creating Sub Space within Space ... 79

Figure 6-6 Positioning User successfully ... 80

Figure 6-7 Space Manager to find and set current space ... 81

Figure 6-8 Download Space interface of Space Manager ... 82

Figure 6-9 User to download space from www using URI to space ... 82

Figure 6-10 Space Manager downloads space, displays to user and save to space database 83

Figure 6-11 Starting SpaceTwitt Application... 84

Figure 6-12 SpaceTwitt application started .. 85

Figure 6-13 SpaceTwitt interacting with Space Manager via API ... 86

Figure 6-14 Twitter status updated with name of current space ... 86

List of Code Listings

Listing 5-1 Sample Proxy Service Class for Printer .. 54

Listing 5-2 Extended Service Proxy Class for Printer ... 56

Listing 5-3 Printer Location Sensor Plug-in Activator.. 57

Listing 5-4 Using Printer location sensor plug-in using PrinterServiceProxy class 58

Listing 5-5 Generic code for using Printer location sensor plug-in ... 59

Listing 5-6 Sample Proxy Service Class for Thermometer ... 59

Listing 5-7 Extended Proxy Service Class for Thermometer ... 60

Listing 5-8 Temperature Location Sensor Plug-in Activator ... 61

Listing 5-9 Generic code for using Thermometer location sensor plug-in ... 62

Listing 5-10 XML representing Space .. 64

List of Tables

Table 2-1 Non functional General Requirements ... 18

Table 2-2 Specific Functional Requirements - Space Manager ... 18

Table 2-3 Specific Non functional Requirements - Space Manager .. 19

Table 4-1 Structure of Space in UbiCollab .. 30

Table 4-2 Difference between Non-observable and Observable Sensors .. 32

Table 4-3 Database table representing Space .. 33

Table 4-4 Database table representing Sensor ... 34

Table 4-5 Database table representing Sensor Readings ... 34

Table 5-1 Wi-Fi access point information ... 51

Table 6-1 Satisfaction status of functional requirements ... 87

Table 6-2 Satisfaction status of non-functional requirements ... 88

Page 10 of 97|Chapter 1. Introduction

Chapter 1 Introduction
Gone are the days when computers were isolated and used for very specific tasks. Now a day a lot of

research is being done in the field of computing that deals with the idea to weave computation into

everyday objects and activities and make computers invisible to the user. This is known as ubiquitous

computing and refers to post-desktop model, making many computers available throughout the physical

environment while keeping them invisible to the user.

Presence of computer systems or objects taking part in ubiquitous computing environment, every where

possible makes them necessary to be aware of the surrounding they are in so that they can provide

relevant information to the user and in the format user can understand. This makes context-awareness

an important aspect of ubiquitous computing. By context-awareness we mean the ability of a system to

sense and react based on the environment it is in [7]. Using this ability not only system can adapt its

behavior according to the environment but can also provide the relevant information in the timely

manner and in an understandable format. Context in ubiquitous computing generally refers to the

information surrounding a system such as the place where it is located, who else is in the surrounding

and what are the available resources in proximity.

UbiCollab is a platform for supporting collaboration that captures the commonality of collaborative

applications. This platform is based on the research done in the areas of user mobility and ubiquitous

computing. Figure 1-1 depicts a brief overview of UbiCollab as a cross section of research areas.

Figure 1-1 UbiCollab

Being a ubiquitous collaborative platform, UbiCollab treats mobility and ubiquity as inherent properties

of social interaction [1]. These inherent properties require UbiCollab to be context-aware so that user

can benefits from the mobile nature by using it anywhere at any time and can be able to integrate

external resources within the surrounding without any prior knowledge or configuration.

Page 11 of 97|Chapter 1. Introduction

1.1 Motivation and Contribution

1.1.1 Motivation

The motivation of this work is to perform research in the area of ubiquitous computing that deals with

the context-awareness and to propose a solution for UbiCollab Space Manager that will help in providing

the relevant information in an understandable format at the right place.

Context-awareness has gained a lot of attention in ubiquitous computing and has become a primary

concern when making applications for ubiquitous computing. By using contextual information systems

can adapt their behavior according to environment and can also takes decisions on the behalf of user.

But before moving toward context-awareness and behavior adaptation proper definition of context

must be specified otherwise system will end up in gathering a lot of useless information from

surrounding. After which the context-model is required to structure gathered context information in

some concrete format so that it can be used by any interested application.

Up till now most of the research on context-awareness is focused on single user system which either

supports very minimum or no collaboration. Research done in the area of Computer Supported

Cooperative Work (CSCW) has shown that context plays an important role in cooperation. Therefore, by

researching in the area of making UbiCollab context aware, we can help both research communities.

1.1.2 Contribution

In this project we will be extending the UbiCollab by proposing the architecture of Space Manager, a

context model for context-data representation and the architecture for extracting high-level information

from the low-level sensor readings. This work of ours will lay the foundation for Space Manager and

handling context-awareness and location awareness in UbiCollab.

Below are the contributions that will be made during the course of this project:

1. Research: Context-model for context data representation

2. Research: Algorithm for extracting information from low-level location sensors and transforming

them into common and understandable format – Location Service Manager

3. Implementation: Developing Space Manager module for creating and managing spaces

4. Implementation: Creating GUI for Space Manager using the previously developed GUI

framework for UbiCollab

5. Implementation: Generic database interface for storing and retrieving space information

6. Implementation: Wi-Fi Sensor Plug-in

Page 12 of 97|Chapter 1. Introduction

7. Implementation: Fingerprinting algorithm for Wi-Fi based location detection

8. Implementation: SpaceTwitt Application

1.1.3 Objectives

The notion “computer everywhere” of ubiquitous computing makes up a scenario in which user comes

in contact with many heterogeneous devices and these devices also interact with each other to fulfill the

need of user. Providing the context related information is the key to ubiquitous computing but this

information should also be in a standard and understandable format. UbiCollab being a platform for

supporting collaboration and assumes that collaboration can happen anywhere, makes it necessary for

UbiCollab to sense the location user is in and provide the information that is only relevant. This is where

location awareness aspect of context-awareness comes in as location is one of the key aspects that

comprises context.

Earlier research on context-awareness has shown that location can be sensed using different sensors

such as wireless sensors, GPS sensors and RFID tags, but none of them alone fulfill the requirement of

our UbiCollab project that assumes user can use UbiCollab anywhere and at any time. Therefore, the

first research objective is to come out with a context-model that can represent the context in a

comprehensive way and must cover basic aspect of context that is who, what and where.

 Second research objectives of this project is to lays the ground by doing for an architecture that

provides a standard way of transforming low-level sensor data into high-level meaningful data which

then can be used to extract data relevant to particular context.

1.2 Research Method
The research methods we employed throughout the course of this project are: design-science, and

literature review.

 Design Science Model

Author in [8] argues that Information System research involves two complementary but distinct

paradigms, behavioral sciences and design sciences. Behavioral science has its roots in natural

science research method and seeks to develop and justify theories that explain or predict

organization and human phenomena i.e. to investigate the non-technical aspects of information

systems. In contrast, design science is a problem solving paradigm which involves the creation,

analysis and evaluation of design artifact to gain domain knowledge and propose a solution.

In [8], author also specified seven guidelines that should be taken care of for effective design

science research. According to Guideline 1 “design science research must produce a viable

artifact in the form of a construct, a model, a method or an instantiation”. In computer science

artifact can be algorithms, proof of concept applications or prototype (this list is not exhaustive).

In my case the artifact is architecture for Space Manager Subsystem. Guideline 2 suggests that

“the objective of design science research is to develop technology based solutions to important

Page 13 of 97|Chapter 1. Introduction

and relevant business problems.” Since in this project my main focus is extending state-of-art

collaborative platform for mobile system by using ubiquitous computing, location services and

mobile computing, this use of technology relates to guideline 2. Scenarios will be used

throughout the course of this project to define problem, sketch functional and non functional

requirements and later they will help in evaluating the proposed solution. Also fully functional

prototype will be created as the outcome of this project; this final prototype would be refined

continuously throughout the course of project by discussing it with supervisor and any other

stakeholder. This iterative process of refining artifact is according to Guideline 6 that says “The

search for an effective artifact requires utilizing available means to reach desired ends while

satisfying laws in the problem environment”. The evaluation strategy described before conforms

to the Guideline 3 which states that “The utility, quality, and efficacy of design artifact must be

rigorously demonstrated via well executed evaluation method”.

 Literature Review

Briony J Oates in [9] states that literature review falls into two parts, exploring the literature for

selecting research topic and once a topic is chosen. For my project, literature review is very

necessary and it will actually derive my research work. Because I will be going to extend the

functionalities of an already built system, my proposed solution should follow the current

architecture and should not result in removing any functionality system current poses. One of

the objectives Briony J Oates mentioned in [9] is “Show that researcher is aware of existing work

in the chosen topic area”, White paper on UbiCollab and other architectural papers written on

UbiCollab would be a good start, not only making me familiar with the UbiCollab platform but

will also help me exploring my first research question. Once the key issues regarding context-

awareness that are troubling UbiCollab developer/users/researchers are identified, I will extend

my literature review to other papers and publications relevant to the topic of location, space

and location based services. Within last few years, a lot of work has done in detecting the user’s

location, although almost all of them are focused to only single user system, but their research

has produced some good methods of detecting location. Reviewing literature on this topic will

help me in exploring the second research question I have on my list. As the third question is very

specific to UbiCollab platform, and I might have gotten to some place by exploring previous two

questions, reviewing technical documentation or manual, focusing on the tools and technologies

being used by UbiCollab platform will help me exploring my third question.

 Usability Testing and Evaluation

In [10] author describes usability testing as an evaluation method which deals with evaluating

effectiveness, ease of use and satisfaction. “Usability testing is an approach that emphasis the

property of being useful and it is conducted in controlled environment”. As I have already

mentioned in previous section that scenarios will be used throughout the course of this project

to articulate the problem and to evaluate the proposed solution prototype. This evaluation will

take place in the room reserved for people working on the UbiCollab project because it has all

the resources required for testing and creating sample environment, in [10] author has also

states that “usability testing in a laboratory is most suitable for testing software upgrades,

Page 14 of 97|Chapter 1. Introduction

prototypes and working systems”; a sample scenario will be used to confirm the functionalities

with requirements, that solution provides and to evaluate if the prototype is

behaving/performing as expected.

1.3 Report Outline
Given below is the brief overview of remaining chapters:

 Chapter 2 – Problem Elaboration

This chapter describes the research problem and concepts related to it in greater detail. It

highlights problems related with context awareness and how they are related with UbiCollab.

This chapter also includes the sample scenario that is used to elicit functional and non-functional

requirements at the end of same chapter.

 Chapter 3 – Background

This chapter covers through study of current existing UbiCollab system and core concepts

related to it. Work done previously in the same research area is also presented in this chapter.

 Chapter 4 – Proposed Solution

This chapter is dedicated toward solution we proposed for the research problem described in

Chapter 2. It describes everything that constitutes our solution in greater detail; intended

graphical user interface for Space Manager is also presented in this chapter. Overall architecture

of proposed system and where everything lies in UbiCollab is presented at the end of this

chapter.

 Chapter 5 – Implementation

Implementation chapter takes into account how the solution proposed in Chapter 4 is actually

implemented. It describes the inner functionality of every important component in detail using

combination of UML class and sequence diagrams.

 Chapter 6 – Evaluation

This chapter describes how the implemented solution is evaluated. Evaluation is done in two

different ways and both of the ways with relevant screen shots are discussed in details. This

chapter also includes the satisfaction status for requirements.

 Chapter 7 – Conclusion and Future work

This chapter concludes report by discussing the project outcome, summarizing the contribution

made and suggesting the ideas for future work. This chapter marks an end to this report.

Page 15 of 97|Chapter 2. Problem Elaboration

Chapter 2 Problem Elaboration
This chapter tries to give a deeper understanding of the problem. First it describes the problem in

general and continues to relate it with UbiCollab. Then the scenario is described that will be used to

elaborate the intended functionalities and elicit functional and non-functional requirement.

2.1 Problem Definition
Context awareness is an important aspect of ubiquitous computing and in order for a system to adapt to

user need or to provide relevant information at right time and place, information about context is

required. It is usual for ubiquitous computing scenario to have many heterogeneous devices interacting

together to fulfill user requirements. This advancement in technologies makes it possible to gather vast

amount of information about the devices and surrounding, this information from different devices

taking part in ubiquitous system comprises the context. But heterogeneous nature of these objects

makes the use of this gathered information almost impossible and there exists a huge gap between raw

information gathered from devices and high-level contextual information. Therefore, it is necessary to

extract only useful information from the whole lot of information gathered, also this extracted

information must be in some proper and predefined format so that semantic meaning can easily be

added; Otherwise it will make using and sharing this information really difficult.

2.1.1 Context Model

In ubiquitous computing scenario information about the surrounding and facts can be gathered very

easily with the help of different objects taking part in the scenario. But in order to use this information

and to add semantic meaning to it, this information first should be transformed to some common

format, with common format we mean format should have a predefined structure, making it possible to

be used by any object that can understand the structure and should contain enough information about

the context.

2.1.2 Location Detection

Location plays an important role in both context-aware and collaborative systems. It enables systems to

sense and react based on the environment they are in. Today there are many different locations sensing

technologies available such as Low frequency RF, Infrared, Global Positioning System (GPS) or Ultrasonic

[15] but no single technology works in every environment, some works indoors and some only works

outdoors. Also they give information about location in different formats. Therefore, in order to use this

information as an aspect of context, it is necessary to fuse the raw data we get from difference sensors

into some standard format.

2.2 Relation with UbiCollab
As UbiCollab promises to provide collaboration opportunity anywhere possible, it makes it necessary for

UbiCollab to be aware of the context it is being used in. This has already been realized during previous

work on UbiCollab and in UbiCollab Architecture White Paper [1] it is mentioned that “Physical spaces

and location plays a central role in UbiCollab and are used as resources for collaboration”. Therefore

UbiCollab must keep track of user’s location and the other resources in the surrounding that are of

interest to the user. It should be capable of gathering location information from different location

Page 16 of 97|Chapter 2. Problem Elaboration

sensing technologies and should not rely on any single one because of its peer-to-peer and collaboration

anywhere nature, then transforming that information to the simple and standard yet expressive

contextual information.

2.3 Scenario Analysis
In this section we will present a scenario that will be used throughout this project as a guideline. This

scenario will help us in elaborating the intended functionalities of presented system and how it benefits

the UbiCollab user. This scenario will also be used to draw functional and non-functional requirements

from it. The scenario is divided into sections in order to highlight the different situations in which

UbiCollab user can benefit from the proposed subsystem.

2.3.1 Scenario

Markus works as a VP IT services in the IT department of one of the leading bank. Teams that he

manages are geographically distributed within the different departments of bank; therefore a platform

that provides collaboration irrespective of geographical position is required. As a company policy they

are using UbiCollab as a collaboration platform to fulfill this requirement.

Creating a new space:

Markus uses UbiCollab not only to collaborate with his subordinates and colleagues but also to remain in

contact with distant friends and family members. However, he doesn’t want to be disturbed by his family

or friends, whenever he is in his office, only, collaboration from the people within the workplace is

allowed. Using the create new space interface of Space Manager, Markus creates a space in UbiCollab

giving it a name ‘Markus’ Office’ and associates it with the physical location of his office. This physical

location-to-space mapping is done through location sensor plug-in available in his office, Wi-Fi in this

case.

Proactive approach based on context:

Now whenever he enters in his office, he runs an UbiCollab application which basically sets instant

messenger profile based on the space information. This application calls Space Manager for current

space using the API Space Manager exposes, as a result Space Manager automatically senses the

location as ‘Markus’ Office’, sets this space as current space and returns it to the application. In turn

application changes his status to ‘Not available or Busy’ to friends and family and ‘Available’ to

colleagues.

Being a head of IT services, giving presentations at different locations in different departments is his

routine job. It is usual for him to visit the same meeting room he was before in, so instead of discovering

resources available in the room using UbiCollab Resource Discovery Manager every time and then

configuring them for usage, he has created separate spaces using Space Manager for most common

room. Now whenever he visits any meeting room which as an associated space, UbiCollab automatically

detects the current space, by using information about current space he can browse through the list of

available resources using Resource Discovery Manager.

Page 17 of 97|Chapter 2. Problem Elaboration

Space within space

For creating new space Markus starts create new space interface of Space Manager, while preparing the

create new space interface, Space Manager also loads all the spaces Markus owns and display them in

form of selectable list. Using this interface he creates a new space by providing the name ‘Markus’ Room

– Home’, other details and selects ‘Home’ as a parent space.

Last section of the scenario describes a situation which can be a very challenging too. Spaces can exist

within subspaces like rooms in an office building or floors in a multistory house. System must provide a

way to create and manage subspaces without affecting the main space. The key challenges here are,

drawing the boundary lines for subspace and differentiating it from main space.

2.4 Requirement Specification
The aim of this section is to provide a better understanding of the specific requirements of the solution

presented in this project. These requirements are drawn from the functionalities of Space Manager as

provided in UbiCollab Architecture White Paper [1] and from the scenario described in the previous

section. Each requirement follows a common template which consists of ID, brief description and

priority.

Each specification ID also is a form of template which tells about what kind of specification requirement

it is e.g. functional or non functional, is requirement is specifics to some component or general and the

sequence number. For example NFR-G1 and FR-SM1 represents non-functional general requirement 1

and functional requirement 1 related to Space Manager, respectively.

NFR stands for Non-functional requirement

FR stands for Function requirement

G stands for General

SM stands for Space Manager

LSM stands for Location Service Manager

2.4.1 General Requirements

ID Brief Description Priority

NFR-G 1

The system must run on mobile and handheld devices which

is in our case s UbiNode and must integrate with UbiCollab

platform.

H

NFR-G2
The system must conform to the technical constraints put by

UbiCollab.
H

Page 18 of 97|Chapter 2. Problem Elaboration

NFR-G4
The system must provide an API for other components of

UbiCollab.
H

NFR-G5 System must at least run on a CDC Java Virtual Machine. H

NFR-G6
System’s components should run on different OSGi

Implementations.
M

Table 2-1 Non functional General Requirements

2.4.2 Specific Requirements – Space Manager

ID Brief Description Priority

FR-SM 1
User must be able to create new spaces and modify existing

spaces.
H

FR-SM 2
Space manager must provide a way to associate context

related information with the space.
H

FR-SM 3
Space manager must also allow user to associate location

information with the space.
H

FR-SM 4
User must be able to identify current space automatically,

where possible.
H

FR-SM 5 User must be able to set any space as current space. H

FR-SM 6 User must be able to browse all the spaces he has created. H

FR-SM 7
Space Manager must provide a way to share spaces and also

provide a way to download spaces.
M

FR-SM 8 User must be able to create sub spaces within spaces. L

FR-SM 9
Space Manager must be able to deal with different type of

location information
M

Table 2-2 Specific Functional Requirements - Space Manager

ID Brief Description Priority

Page 19 of 97|Chapter 2. Problem Elaboration

NFR-SM 1
Space Manager must at least provide the graphical user

interface for basic operations.
H

NFR-SM 2
Space Manager must expose API interface for applications

and other components of UbiCollab.
H

NFR-SM 3
Space Manager must provide space information in XML

format with predefined structure
H

NFR-SM 4
Information captured as a part of space must conforms to

the proposed context model
H

Table 2-3 Specific Non functional Requirements - Space Manager

Page 20 of 97|Chapter 3. Background

Chapter 3 Background

3.1. UbiCollab context and background

3.1.1 Ubiquitous Computing

Ubiquitous computing is relatively a new field of research that was first articulated by Mark Weise and

his colleagues in 1988 at the Computer Science Lab at Xerox PARC. The main idea behind ubiquitous

computing is to weave computation into everyday objects and activities and make computers invisible

to the user. To some ubiquitous computing is considered to be as Third Wave of computing, following

“many people per computer” and “one person per computer” as First Wave and Second Wave of

computing, respectively.

3.1.2 Context-aware computing

Context-awareness refers to the idea of such systems that are aware of their surrounding and can adapt

their behavior depending on the changes in environment. This term is originated from ubiquitous

computing [5]. Now a day mobile phone is no more a device for receiving and making calls only, it

employs new technology, greater power and far more functionalities – actually a mobile computer

system. Gone are the days when interaction between user and computer was only happen in static

context such as home or office. Also the advent of wearable smart devices gives user the ability to

access different computational resources through wireless network.

This advancement in technology and increase in mobility makes it important for applications running on

mobile system to sense the environment they are in and to adapt to ever changing environment. These

context-aware applications adapt themselves according to the location of use, information about other

people in proximity and accessible devices or resources [7].

Following three are important aspects of context: location of use, information about other user in

surrounding and the nearby resources [7]. In the context aspects mentioned location is the most

common and important aspect but in this thesis we will focus on the system that not only captures the

location information but keep track of other information as well.

3.2. Preliminary Study
The purpose of this section is to get information about the system and get an understanding of system’s

current situation. We start this section by briefly describing what UbiCollab is and its core concepts that

are relevant to this project.

3.2.1 UbiCollab

UbiCollab, which stands for Ubiquitous Collaboration, is a platform for supporting collaboration on the

internet. It is a service platform for provision of basic services for supporting collaboration among

people. UbiCollab make extensive use of earlier CSCW research, and extends this research with insights

from ubiquitous computing and wireless services. UbiCollab assumes that collaboration can happen in

any place, not restricting users to one virtual or physical shared space. It assumes that users involved in

collaborations will not necessarily be collocated, and will need access to various virtual and physical

Page 21 of 97|Chapter 3. Background

resources. UbiCollab collects and uses context about a group of people (e.g. their location) and

promotes the usage of physical artifacts in collaboration wherever necessary [3].

UbiCollab provides a platform that captures the commonalty of collaborative applications and provides

generic mechanism for applications to be built without extensive coding. UbiCollab tries to be domain-

independent and providing only the basic functionality, is therefore following an open innovation

approach where third party applications play an equally central role as the platform itself. Integration

with physical environment where collaboration happens is a key aspect of UbiCollab [1].

UbiCollab architecture follows the Service-Oriented Architecture (SOA) approach. UC is implemented as

a collection of independent components in form of dynamically deployable services that can be

deployed and used independently on a mobile device. Each UC component is being developed to cover a

very specific area of responsibility in UC. Components can be mixed and used together in different

configurations (compositions) decided by the application using them. Only those components that are

needed by a specific user (and his/her applications) will be deployed on his/her mobile device [1].

3.2.1.1 Human Grid

UbiCollab is based on the notion of human grid. A human grid is a collection of people and their

artifacts/resources connected together using UC platform technology. Interactions in a human grid are

supported using resources, artifacts, services, etc. imported into the grid by its participants. UC assists

its users in building a human grid and supports communications among them, and they can be

distributed geographically.

Figure 3-1 Human Grid

Figure 2.1 shows the concept of Human grid with Collaboration Instance in middle providing the context

for collaboration. Spaces represent physical spaces (such as meeting rooms, offices, streets, homes)

where UC user resides. Spaces contain physical resources and artifacts or digital services in the

immediate surroundings of the users. These physical artifacts and services are tools or resources for

interacting with the collaboration instance and other users in the grid.

Page 22 of 97|Chapter 3. Background

Human grid is adaptive and reconfigurable in that it will change its configuration in order to best

context, services and artifacts that users have available in any given space. It may change its

configuration and deployment configuration in order to assists users in a lot of different scenarios, from

work-collaborative related to health care assistance, as the user moves from a space to another [1].

3.2.1.2 UbiNode

Each user in UC is represented and assisted by a mobile device called a UbiNode as shown in figure 2.2.

UbiNode is a network-enabled device that acts as a personal server, running a subset of the main UC

components and some of user's application designed for it. This means that each user has his/her own

instance of a Resource Discovery Manager, Service Domain Manager, Space Manager, CI Manager etc.

running locally on his/her UbiNode. UbiNode is organized in a "platform space" where core components

reside and a "user space" where each user can store and run his/her application which communicates

with external devices. All the components allow interaction with other applications exposing Web

Service interfaces. Complete independence among UC components allows us to outsource all

composition tasks to the applications and guarantees a high level of modularity in the architecture of a

UbiNode, in accordance with the Service-Oriented Architecture (SOA) approach [2].

Figure 3-2 Architecture of UbiNode

3.2.1.3 Context in UbiCollab

In [5] author defines the context as:

“Context is any information that can be used to characterize the situation of an entity. An entity is a

person, place or object that is considered relevant to the interaction between a user and an application,

including the user and applications themselves.”

And context-awareness as:

Page 23 of 97|Chapter 3. Background

“A system is context-aware if it uses a context to provide relevant information and/or services to the

user, where relevancy depends on the user’s task.”

As described in previous sections, UbiCollab is a platform for supporting collaboration over internet and

based on the notion of human grid. The resources being used for collaboration and participants of

human grid constitute the context in UbiCollab. Resources can be anything from spaces and physical

locations to artifacts.

3.2.1.4 Physical Locations and Spaces

In order to define what the space is, consider an example of lawnmower, which is purely a physical

device that resides and being used in the real world. This physical device exists only in a single space and

its relationship is only with the physical world it resides in. Not only its location is unique to that space

but its influences and effects are only through the physical space within which it resides [6].

In contrast ubiquitous systems can inhibit more than one space and at the same time they can consider

their presence in both physical and virtual space. Surfing the web, using FTP to access remote files or

exploring the file system are some example of virtual space and system having some computation

power can do all these things simultaneously, while also being located somewhere in physical world. On

the other hand physical space can be considered as an area with some fixed physical location, containing

users and devices that somehow are related with other and with the space and can be the subjects

influencing the space and devices and users within the space [6].

In the context of UbiCollab space represents an area of interest to the user that contains resources and

users containing UbiNode, these resources can be used for collaboration by the users of UbiCollab.

Although like any other context-aware platform supporting collaboration, in UbiCollab physical location

plays a central role and is used as a resource for collaboration. But UbiCollab space may or may not be

associated with some physical location. In the earlier case either the geometric coordinates of physical

location or any other information that can be used to differentiate among different physical locations

are stored.

A space can be an office, home etc. When space is used as a resource for collaboration (e.g. shared with

participants in meeting), it is called a Collaboration Space [1].

Page 24 of 97|Chapter 3. Background

Figure 3-3 Spaces

Figure 3-3 depicts more than the idea of spaces described above, as shown in figure user has defined

two spaces “Home” and “Office” where space home is the representation of home’s physical location

and similarly office space is the representation of his office’s physical location. As a resource for

collaboration these two spaces are used in three Collaboration Instances that the user owns or

participates in.

3.3 Related Work
In this section we will briefly go through the related work previously done in the same research field.

Although no previous work discussed here provides the complete solution to our problem but not only

provide the inspiration for our contribution to this research field but also lays the ground for our

proposed solution.

3.3.1 W4

Their work has the same objective as ours: A model for representing contextual information that is

simple but expressive and extracting useable information from low-level context data [11]. W4

proposes a model for representing context-model and few algorithms for extracting high-level

information from low-level information, enriching them with semantic meaning. Figure 3-4 depicts the

general architecture of W4 that comprises of 3 layers: service layer, W4 context layer and data

production Layer. Objects in data production layer generate W4 tuples, W4 context layer separates

services in service layer from the raw context data and service layer creates context-aware services [11].

Page 25 of 97|Chapter 3. Background

Figure 3-4 Architecture of W4

The context-model presented is the inspiration to work of ours in this project as the proposed

contextual model is simple yet expressive. It represents context in the form of four Ws i.e. Who, What,

Where and When. Each field in this tuple represents different aspect of context information, who

represents the subject, what describes the activity being performed by the subject, where tells the

location in which the action is being performed and when deals with the date and time of the action.

3.3.2 Place lab

Place lab is an open source initiative to help building location-aware applications. It falls into the

category of fusion architecture that deals with refining raw sensor data into high-level information [16].

It is based on mediator/observer design pattern and follows layered event streaming fusion architecture

[16], the Place Lab architecture is shown in Figure 3-5. Motive behind Place lab project is to provide a

very generic, modular and cross platform toolkit that helps in making location-ware applications. While

supporting modularity Place lab makes it sure to provide data from different sensor in common but

distinguishable format so that no essential detail can be lost. By providing the support for sensing both

indoor and outdoor environments using 802.11 access point information and Global Positioning System

Page 26 of 97|Chapter 3. Background

(GPS) and Global System for Mobile Communications (GSM) respectively, Place lab is able to cover wide

area [17].

Figure 3-5 Place Lab Architecture

Figure 3-5 shows the architecture of Place lab, where main components are shown using boxes [16].

Spotter here represents the components responsible for abstracting away environment sensing

hardware, Place lab comes with implementation of four standard spotters 802.11, GSM, Bluetooth and

GPS. Tracker is the component responsible for position estimation; it gets spotter data in form of

standard format and uses persistent data from Mapper, we will describe Mapper next, to calculate

single position. Static databases that are used to store location information are called Mappers, they

store location coordinate as well as the radius of coverage area. In order to use these components, Place

lab provides classes with the name same as of component and each exposes generic methods to support

operation they perform.

Although, the architecture of Place Lab makes it very good candidate to be used as a toolkit for enabling

location-awareness, but in the context of UbiCollab using Place Lab as it is, is not feasible at all as it

provides much more functionality than required. Our only requirement is to sense the environment and

cover as wide as possible; we don’t need any components like Mapper or Tracker. Therefore, instead of

using Place Lab, we have proposed our own fusion system which is heavily based on the idea of Place

Lab. The Location Service Manager that we are going to propose and implement has the same motives

as of Place Lab and uses Place Lab as practical guideline.

Page 27 of 97|Chapter 3. Background

3.3.3 Other related work

Context Models:

Context-toolkit [18] is a java based toolkit which aims toward providing help in developing context-

aware applications. This toolkit provides widgets, aggregators and interpreters to abstract away context-

sensing mechanism, aggregating contextual information about places and users and interpreting low-

level contextual information into higher level information, respectively [19].

Context Fabric [20] is very similar to Context-toolkit with an exception that it focuses more on modeling

and storing context data. Context Fabric also specifies Context Specification Language (CSL) similar to

structured query language (SQL) to provide programming abstraction over context data. Their aim of

representing context information in a format that any application can use and a flexible data store to

store this information is similar to ours, their context model represents context using entities (people,

place, thing), attributes (entity property), relationship among entities and aggregates. But because of no

standard structure and complexity between contexts makes it difficult to browse, extract and use

context information.

Location Detection:

The Active Badge Location System [21] is used to provide information about where people are, it uses a

especially designed small size hardware, called badge that transmit infra-red signal every second.

Receiver is being placed in the area which is being observed and when ever any person wearing badge

moves between observed areas, respective signal receivers updates the location of that particular

person in central system. Very specific to infrared signals, need special hardware, receivers need to be

installed throughout the area are some major drawbacks.

Radar [22] is an indoor tracking system for location people inside of the building. The main advantage of

Radar is it works on pre laid network of wireless location area network (WLAN). The main disadvantage

of Radar, in the context of our work, is that it requires an offline calibration phase during the installation

of system. This requirements kills the basic idea of peer-to-peer system as system in advance need to

know about different 802.11 access point and their signal strength in order to use Radar.

Page 28 of 97|Chapter 4. Proposes Solution

Chapter 4 Proposed Solution
This chapter is dedicated towards the contribution we made and provides the description of our

proposed solution for UbiCollab Space Manager.

For creating and managing spaces architecture for Space Manager has been presented and UI interface

based on UbiCollab eWorkbench has also been provided for easy use of Space Manager. Space Manager

also provides the API for other components of UbiCollab. A context model to represent contextual

information has also been proposed, we have tried to keep this context model as simple and expressive

as possible. For dealing with the location awareness aspect of context-awareness architecture for

location sensing technologies has also been presented, whose main goal is to convert low-level sensor

reading into common and understandable high-level data that can be used by Space Manager to add

location information to the context.

4.1 Solution Overview
The purpose of the system presented here is to give users of UbiCollab the ability to create and manage

spaces. Since every space also represents the current context user is in, it must also provide a way to

associate contextual information with every space. Just like any other ubiquitous system, in UbiCollab

context information can be gathered from multitude of resources taking part in UbiCollab. In order to

avoid excessive and unnecessary information, we have presented a context model which is very simple

yet expressive; this context model works as a blueprint for the information that every space must

capture.

Next section will describe our proposed context model in more detail; we will continue this chapter by

describing Space Manager, Location Service Manager, Space database and GUI respectively. We will

wind up this chapter by combining all of the proposed solutions in overall system structure section that

will also relate our work with the current UbiCollab system.

4.2 Context Model
The context model we are going to present here is inspired from the work presented in [11]. The main

idea behind this model is to represent world’s facts in simple and expressive way and they must be

structured in a standard way to be used easily. In ubiquitous computing the main aspect of context are:

who is the user, what he is doing, where he is and what the resources around him.

Our context model takes care of these aspects by using a very simple three field structure: Who, What

and Where.

Who: This field of context model represents the subject of the fact; in our subject it is the user of

UbiNode.

What: This field represents the performed activity such as “work” or “relax”. In our case this information

is provided by user himself.

Page 29 of 97|Chapter 4. Proposes Solution

Where: This field relates the location to the fact; in our project location information is gathered through

different location sensors.

4.2 Space Manager

4.2.1 Introduction

Space Manager is based on the idea presented in previous works done on UbiCollab; see [1]. The idea is

to benefits the UbiCollab users and applications to use and provide information that is only relevant to

the current context and this current context is being identified by the current space user is in. This

makes the context and space interchangeable in the context of UbiCollab. Therefore, our proposed

structure of space must take into account not only the information that are relevant to space but also

the information that represents the fact that happen inside the space.

4.2.2 Space

Figure 4-1 depicts the two different but typical spaces in the context of UbiCollab. One is marked as

Home and other is marked as Office. Although both of them are geographical collocated and are totally

different from each other but they both contains resources that user can use to perform some activities

or to use them as the resources for collaboration.

Figure 4-1 UbiCollab user in two different Spaces

User’s presence in either space tells more than the current location of user, it tells about the fact like

who is the user, what he is doing, where he is and what are the available resources around him. Simply

the current context user is in.

To capture all these important details for determining the context we have proposed the structure of

UbiCollab space similar to the context model described in previous section. Table 4-1 Structure of Space

in UbiCollab shows the different fields UbiCollab space contains, their relation with the context model

and their explanation.

Page 30 of 97|Chapter 4. Proposes Solution

Space field Explanation Context model field

Space ID
A unique identifier to make distinction among multiple
spaces.

N/A

Name

Name of space, this field can also serve as the purpose
of space. For example space marked with “Ubiquitous
Lab” says that user is in lab working on ubiquitous
computing.

What

Owner
Field contains information about the user who owns this
space.

Who

Location
Information

Information about the physical location that this space
represents in form of location sensor readings. More
information about location sensors is given in next
section.

Where

Description Description about the space. N/A

Parent Space
ID

A unique identifier of space that contains this space. N/A

Date Created Date and time when the space was created by the user. N/A

Date Last
Used

Date and time when the space was last set as current
space.

N/A

Date Set Date and time when the space is set as current. When

Table 4-1 Structure of Space in UbiCollab

The structure of space defined above tells almost everything about the space but you would have

noticed that it doesn’t tell anything about the resource available within space. This is because it’s the

responsibility of Resource Discovery Manager of UbiCollab to keep track of resources available within

particular space. When discovering the new resource Resource Manager can query Space Manager to

get information about current space of user.

4.2.3 Space Manager API

In this section we will describe the basic functionalities that Space Manager will provide to deal with the

spaces and the API it exposes for other components of UbiCollab. All of the API methods that described

here are implemented as a part of our project work and described in greater detail in the next chapter.

Page 31 of 97|Chapter 4. Proposes Solution

CreateSpace: This method is used to create new space with the details provided as arguments.

On successful creation of new space the unique identifier is returned.

SetSpace: This method is used to set a particular space as a current space. This can either be

done manually by the user or Space Manager can automatically do this on the behalf of user.

GetSpace: Get Space method returns the Space in an xml format. Either the unique id of space

or the location information can be provided to find the space and return.

GetCurrentSpace: This method returns space that was set as current space in an xml format.

DownloadSpace: Download method downloads and saved the method in space database from

the provided URL as an argument. The URL must be to the valid XML definition of Space.

4.3 Location Service Manager
Location awareness is an importance aspect of context aware computing and also plays an important

role in the context of our work. Each space in UbiCollab can be associated to some physical location;

therefore Space Manager must provide a way to detect the location user is in. Today there are vast

numbers of location sensing technologies are available but the problem is that different technologies

give location information in different format. Also some of them provide information without any user

interaction such as Wi-Fi or GPS sensors and for some of them user’s interaction is required such as RFID

tags.

To deal with such a situation we have proposed a solution that transforms the information gathered

from different location sensors into to common and understandable format. This solution of ours also

provides a way for other UbiCollab resources to be used as positioning reference without any extensive

coding, they just have to implement an interface and provide some basic information. This basic

information can be anything that can be used to distinguish among different contexts.

Figure 4-2 shows the overview of our proposed architecture for fusing location information from

different location sensors into common format.

Page 32 of 97|Chapter 4. Proposes Solution

Figure 4-2 Overview of Location module

The reason behind the idea of keeping location module separate to Space Manager is ensure the loose

coupling between the location sensors and Space Manager so that Space Manager can still work if there

is not sensor plug-in is present on one hand and on the other hand any resource can work as a

positioning reference without having any information about Space Manager.

Type of Location Sensors

Based on such a nature of locations sensors that some requires interaction and some don’t, we have

divided sensors in two different types: Non-observable sensors and Observable sensors.

Table 4-2 below shows the difference between types of sensors and also lists some examples.

Non-observable Sensor Observable Sensors

1. They require user’s interaction to get
location information

1. They can provide location information with
or without any interaction from the user

2. They can’t be monitored periodically
2. Their readings can be taken on periodic
basis

3. Example: RFID tags 3. Example: Wi-Fi, GPS

Table 4-2 Difference between Non-observable and Observable Sensors

Every location sensor will be considered as a non-observable sensor unless and until it implements the

interface for observable sensors, which is just a extension of location sensor interface providing a little

more information about the readings sensor provides about the location.

Making this separation between location sensors makes it possible for Space Manager to take certain

decision on the behalf of user automatically by sensing the location where possible.

Page 33 of 97|Chapter 4. Proposes Solution

4.4 Space Database
In order to save and use spaces, they need to be stored either in some file or in database. Besides saving

information about space we will also be saving location information that we get from different location

sensors, therefore making it necessary that the data structure for storing this information must be very

generic. SQL database seems to be the natural choice for achieving this. Also, for extracting stored

information of this kind SQL queries will play an important role and will make things easier. Figure 4-3

shows the ER diagram of space database.

Figure 4-3 ER diagram of Space database

Space table represents the space user has created using Space Manager and this table stores all

information about space except, information about location associated with it. Information about

location is saved in form of information about location sensor and their readings and is stored in table

Sensor and their readings are saved in a separate table called SensorReading. Location Service Manager

converts the information that it gets from location sensor into standard format before inserting them

into Sensor and SensorReading table. CurrentSpace table stores the information about current space

and it will have only one record at a time.

The table below shows the sample data in the database tables described above.

ID Name Owner Description ParentSpaceId IsShareable DateCreated IsDownloaded

001 My
Home

Alex This space
is my home

-1 False 03/04/2010
12:23:00
PM

False

002 Gym Alex My GYM -1 True 05/04/2010
08:00:01
PM

False

Table 4-3 Database table representing Space

Page 34 of 97|Chapter 4. Proposes Solution

SensorId SensorType UniqueIdentifier HumanReadableName

001 Wi-Fi 01:1e:e5:64:f1:15 Linksys

002 Wi-Fi 01:0b:85:89:b9:fd Ntnu

003 Wi-Fi 01:0b:85:89:b9:ff ntnuguest

004 GPS GPSSensor01 N/A

Table 4-4 Database table representing Sensor

ReadingId SensorId SpaceId Reading Coordinate

001 001 1 -36 NULL

002 002 1 -62 NULL

003 003 1 -62 NULL

004 004 2 NULL 49.951220, 2.197266

Table 4-5 Database table representing Sensor Readings

Sensor and SensorReading tables are generic in nature and can store information gathered from

different kind of location sensors in same format. Every location sensor will be added only once to the

database and if in case it is found again during creating a new space or updating an existing space, only

the new record in the readings table will be added.

4.4 GUI Mockups
This section will present mockups of intended graphical user interface (GUI) of Space Manager. It should

be noted that they are mockups and do not represent the look of final GUI but they are made to

illustrate what kind of functionalities the various GUI screen will offer.

 Use Case 1: Starting Space Manager

Goal: User wants to start Space Manager

Steps to follow:

1. User starts UbiCollab on his UbiNode

2. User taps on Settings option

3. Now user taps on Space Manager to start the Space Manager interface

Page 35 of 97|Chapter 4. Proposes Solution

Figure 4-4 Use Case 1 GUI Mockups

 Use Case 2: Create New Space

Page 36 of 97|Chapter 4. Proposes Solution

Goal: User wants to create a new space

Steps to follow:

1. User starts Space Manager Interface as illustrated in use case 1

2. User taps on create new space option

3. User fills in the required information about the new space he is creating

7. User taps on create button to create a new space saving the information to space

database

Optional steps:

 To associate location information to the space

4. User taps on Position Me button

5. Space Manager tries to get readings from available location sensors

5a. Space Manager saves the location sensor reading and displays the successful positioning

message

5b. Space Manager doesn’t find any location sensor that can be read automatically. It then

asks user to help in positioning by either reading the RFID tag or by punching a number

to the resource that he wants to use as location reference.

6. User taps continue to return to screen 3

Page 37 of 97|Chapter 4. Proposes Solution

Figure 4-5 Use Case 2 GUI Mockups

 Use Case 3: Set Space

Page 38 of 97|Chapter 4. Proposes Solution

Goal: User wants to create a new space

Steps to follow:

1. User starts Space Manager Interface as illustrated in first scenario

2. User taps on set current space

3. Space Manager tries to get readings from available location sensors to find matching

space

4a. Space Manager founds the space and set it as current space automatically and displays

the confirmation message to the user

4b. Space Manager founds more than one space associated with the sensed location and

displays them as a choice for user to set the most appropriate one

4c. Space Manager unable to find any space automatically therefore displays all the spaces

user have in his space database as choice for user to set the current space he wants to

4d. Space Manager unable to find

Page 39 of 97|Chapter 4. Proposes Solution

Figure 4-6 Use Case 3 GUI Mockups

 Use Case 4: Download Space

Goal: User wants to download already created space to his UbiNode

Steps to follow:

1. User starts Space Manager Interface as illustrated in use case 1

2. User taps on Download space

3. Download space interface with three options to choose

Option 1

4a. User taps on Enter URL

User enters the URL to xml file that contains the space information and tap on

download

Option 2

4b. User taps on via Bluetooth

User receives space xml file via Bluetooth from another user

Option 3

Page 40 of 97|Chapter 4. Proposes Solution

4c. User taps on Read RFID tag

User reads an RFID tag with the help of tag reader and downloads the space xml from

the associated URL

Figure 4-7 Use Case 4 GUI Mockups

Page 41 of 97|Chapter 4. Proposes Solution

4.5 Overall system structure
Figure 4-8 shows where everything that we have discussed in previous section of this chapter fits in.

Figure 4-8 Overall system architecture

Page 42 of 97|Chapter 5. Implementation

Chapter 5 Implementation
This chapter deals with the implementation done as a part of this project work. Although the main aim

of this project is to propose and implement the architecture for Space Manager but we will start this

chapter by getting into the details of Location Service Manager’s implementation. Location sensing is an

optional but an important aspect of Space Manager and in order to describe the implementation of

Space Manager it is first necessary to get introduced with Location Service Manager that provides ways

to sense the location using different location sensing technologies.

Therefore, we will start this chapter by going through in details about the tools and technologies that we

have used during the course of implementation, then continue this chapter by describing the detailed

architecture of Location Service Manager, different interfaces and classes it implements,

implementation details of Wi-Fi Sensor Plug-in using Location Service Manager and how any new or

existing component of UbiCollab can be used as a positioning reference. Then we will end this chapter

by describing the implementation of Space Manager and how it fulfills all the user requirements that

were described in requirements section 3.4 of chapter 3.

5.1 Tools and Technologies
In this section of implementation chapter we will describe in more detail about the tools and

technologies that are used during the course of this project. UbiCollab being an open source platform

makes it necessary in a way to use open source tools and technologies only.

5.1.1 Java Mobile Edition

Java mobile edition is a subset of Java Platform from Sun, providing the limited set of runtime and API

for creating applications for small devices such as mobile phones and PDA. Although Java ME run on

Java virtual machine like the other Java editions but its works totally different way as compare to other

Java editions. In order to support wide number of devices, Java ME consists of configurations, profiles

and options packages.

There are two configurations for Java ME that are listed below:

 CLDC stands for Connected Limited Device Configuration, this configuration is to support

less powerful device with limited set of functionalities.

 CDC stands for Connected Device Configuration and is to support more powerful devices

such as Smart Phones and PDAs.

5.1.2 OSGi

In order to support modularization in system development, simple Java language is not enough. Due to

the flat classpath structure of coding in Java and the absence of dependency management fails it to fit

properly to the requirement of Service-Oriented Architecture (SOA).

OSGi solves this problem by providing the framework for modular development in Java. “It defines a way

to create true modules and a way for those modules to interact at runtime.” [12] OSGi creates modules

Page 43 of 97|Chapter 5. Implementation

known as bundles, which are jar files with some additional manifest. This module system is dynamic in

nature and bundles can be installed, updated and uninstalled without taking down the entire

application. These modules are decoupled through service interface. This service interface wired

bundles in a dynamic way.

Currently there are different implementations of OSGi, such as Equinox, Knopflesfish, Felix and

Concierge.

The current version of UbiCollab is using the Equinox implementation of OSGi and is also the most

widely deployed OSGi framework today [12].

5.1.3 eRCP / eSWT

eRCP stands for Embedded Rich Client Platform for building and deploying rich client applications on

embedded device such as mobile phones. This is an extension to Eclipse Rich Client Platform (RCP). eRCP

enables the same application model used on desktop machine to used on mobile devices [13]. eRCP is a

set of components that are a subset of RCP components, applications that are developed for mobile

phones using eRCP will automatically run on desktop platform.

eRCP consist of components [13]:

 Core runtime

 eSWT

 eJFace

 eWorkbench

 eUpdate

eSWT stands for Embedded Standard Widget Toolkit, is a technology to build native looking Graphical

User Interface (GUI) for variety of mobile phones. It comes as a part of eRCP framework.

In previous work on UbiCollab [2], this toolkit is evaluated to be the best choice for creating native

looking GUI.

5.1.4 HyperSQL Database

HyperSQL database or HSQLDB is an open source relational database engine written in Java. HSQLDB is

very suitable for applications targeting resource limited devices such as UbiCollab, because it supports

in-memory tables which results in fast data access and also gives more predictable performance. It also

has JDBC driver and supports almost full ANSI-92 SQL [23].

Also, HSQLDB is being in many open source project as data storage such as Place Lab1, OpenOffice.org

Base2 and others

1
 Place Lab: http://www.placelab.org

2
 OpenOffice.org Base: http://www.openoffice.org/product/base.html

http://www.placelab.org/
http://www.openoffice.org/product/base.html

Page 44 of 97|Chapter 5. Implementation

5.1.5 Eclipse

Eclipse is free and open source development environment and is widely being used among open source

software developers. It provides integrated development environment (IDE) which can be used to

develop variety of applications ranging from console applications to fully fledged desktop applications

and web applications to web services. Eclipse is not limited to develop only applications written in Java

but by downloading different plug-ins software in other languages can also be written.

5.2 Location Service Manager
Today there are many different kinds of technologies available that helps in sensing the location user is

in, some of them work outdoors and some of them work indoors. In the context of UbiCollab we cannot

restrict ours self to any particular kind of location sensing technology because user can use his UbiNode

anywhere and can create different spaces outdoors and indoors. To solve this problem of heterogeneity

and to support almost any location sensing technology we proposes Location Service Manager, which

provides interfaces and classes to abstract away the hardware differences and to transform low-level

location sensor information into high-level, readable and standard format.

Coming sections describe implementation of Location Service Manager in greater detail and also provide

how-to-use guideline for the developers.

5.2.1 Components of Location Service Manager

In this section we will describe the components of Location Service Manager in greater detail, which are

Sensors, Sensor Reading and Coordinate.

5.2.1.1 Sensor

In the context of our project, sensor or location sensor (we will use location sensor instead of sensor to

avoid any ambiguity) is a device with the ability to sense physical location and returns location

information in readable format. Some of them represent location in form of geographical or logical

coordinates and the location information they provide is sufficient enough to represent any physical

location such as Global Positioning System (GPS) sensor, some of them provide a way to tag locations

and then differentiate locations based on the tag value such as RFID tag readers and some of them are

such kind of sensors that don’t return anything about location but the information they return can be

used to calculate their position and this position can then be used to represent the physical location,

devices that emits radio signal lies in this category and strength of signal measurement to triangulate

position technique is used to calculate the location.

Since there are many different kind of location sensors are available, they work in different ways and

provides location information in different formats. The basic idea here is to provide a common and

standard interface for the hardware components that are used for sensing locations. Our work provides

couple of interface definitions that helps in abstracting away how sensor works and provides location

information.

Page 45 of 97|Chapter 5. Implementation

To fully utilize the nature difference of location sensors we have divided them in different classes. Figure

5-1 shows the UML class diagram of those interfaces and classes.

Figure 5-1 Location Sensor interfaces and sample classes

Figure 5-1 above shows the location sensor interfaces and classes in hierarchical manner, ISensor

interface being on the top of hierarchy provide the generic definition of location sensor and it works as a

base interface. This interface also exposes the generic methods that every location sensor must

implements in order to be used as a location sensor. IObserveableSensor interface extends the base

interface ISensor to provide the generic definition for all such kind of location sensors that can be read

with or without user’s interaction. For example Wi-Fi or GPS location sensors that can be read without

user interaction, as a part of our work we have implemented Wi-Fi location sensor whose

implementation will be described later in this chapter.

RFID Sensor represents the concrete class that implements ISensor interface and provides a way to use

RFID tags as a location reference. Wi-Fi Sensor and GPS Sensor classes implement IObservableSensor

interface make it possible to use Wi-Fi access point signals and GPS coordinates for sensing location

respectively.

Given below are the details about each interface and class defined above.

Page 46 of 97|Chapter 5. Implementation

ISensor

Interface for abstracting away the hardware differences of location sensors. This interface also

provides API for querying information about location sensor itself and information about

location it senses.

Members

public static final String Sensor_Type

Character string that represents the type of location sensor.

Methods

public String GetType()

Gets the type of location sensor. The return value must be one of them WiFi, GPS, RFID,

Bluetooth or PositionCoordinate.

public ISensorReading[] Read()

Gets the actual sensor reading. Every location sensor must use this method to returns the

location information in form of collection of ISensorReading.

IObservableSensor

Extends ISensor interface. Interface for those location sensors that can be read with or

without user interaction.

Methods

public String GetType()

Gets the type of location sensor. The return value must be one of them WiFi, GPS, RFID,

Bluetooth or PositionCoordinate.

public ISensorReading[] Read()

Gets the actual sensor reading. Every location sensor must use this method to returns the

location information in form of collection of ISensorReading.

public Date TimeStamp()

Get the date and time when location sensor reading is being taken.

5.2.1.2 Sensor Reading

Sensor reading can be defined as location information that any sensor returns, it can be GPS

coordinates, RFID tag value or signal strength value. After abstracting away the location sensing

Page 47 of 97|Chapter 5. Implementation

hardware using sensor interfaces and classes, the next step is to provide an interface for standardizing

the location information that different location sensors return. Without converting the information that

different location sensors return to a common format makes it a requirement to write separate piece of

code for different type of location information, killing the basic idea of code reusability of Location

Service Manager and as minimum coding as possible of UbiCollab. To transform the location information

into common format a UML class diagram of interface and a class that has been implemented are shown

in Figure 5-2

Figure 5-2 Interface and class for standardizing sensor reading

ISensorReading interface provides basic and abstract definition of sensor reading that every location

sensor must implement for the reading that it gives. Abstract methods exposed by this interface provide

a way to use sensor reading.

Page 48 of 97|Chapter 5. Implementation

SensorReading is a concrete class that implements ISensorReading interface and is used to convert the

object that implements ISensorReading interface to more concrete form. By converting it to more

concrete form it makes it possible to be treated as a normal object.

Given below are the details about the ISensorReading interface and SensorReading class members and

methods.

ISensorReading

Provide a way to convert location information from different sensor reading to standard format.

Methods

public String getHumanReadableName()

Gets the character string that represents the human readable name of location sensor.

public String getUniqueID()

Gets the unique identifier that distinguish location sensor from other location sensors.

public int getSignalStrength()

Gets the actual sensor reading for such location sensors that works on radio signals.

public String getSensorType()

Gets the type of location sensor in character string format. The value returns must be one of

them WiFi, GPS, RFID, Bluetooth or PositionCoordinate.

public Coordinate getCoordinates()

Gets the object of Coordinate class. Every sensor that returns location information in form of

coordinate system must instantiate the object of Coordinate class using the coordinate

information it has. For all other location sensors this method returns null.

SensorReading

Provide a concrete class for defining the location sensor reading. It is used to convert the object

of ISensorReading interface to more concrete form.

Constructor

public SensorReading(String UniqueId, String Name, int Signal,

Coordinate Cord, String SensorType)

Initialize a new instance of SensorReading class by using the information about sensor

reading specified as arguments.

Methods

Page 49 of 97|Chapter 5. Implementation

public String getHumanReadableName()

Gets the character string that represents the human readable name of location sensor.

public String getUniqueID()

Gets the unique identifier that distinguish location sensor from other location sensors.

public int getSignalStrength()

Gets the actual sensor reading for such location sensors that works on radio signals.

public String getSensorType()

Gets the type of location sensor in character string format. The value returns must be one of

them WiFi, GPS, RFID, Bluetooth or PositionCoordinate.

public Coordinate getCoordinates()

Gets the object of Coordinate class. Every sensor that returns location information in form of

coordinate system must instantiate the object of Coordinate class using the coordinate

information it has. For all other location sensors this method returns null.

5.2.1.3 Coordinate

 Coordinate class is a concrete class that provides the definition for a class that represents 2D

coordinates. Any location sensor that provides location information inform of coordinate such as GPS

Sensor must returns the object of Coordinate class.

Given below are the details about method of Coordinate class.

Coordinate

Represents a point in a two dimensional coordinate system.

Constructors

public Coordinate()

Initializes a new instance of Coordinate class by using the default values.

public Coordinate(double X, double Y)

Initializes a new instance of Coordinate class by using the values of X and Y coordinates

specified as arguments.

Methods

public double getX()

Gets the value of X coordinate.

public double getY()

Gets the value of Y coordinate.

Page 50 of 97|Chapter 5. Implementation

public String toString()

Gets both X and Y coordinate in X,Y format.

5.2.2 Wi-Fi Sensor Plug-in

As a part of our project work we have also implemented Wi-Fi Sensor Plug-in that is based on the

interfaces and classes provided by Location Service Manager and were described in detail in previous

section.

The aim of this work is to proof the concept presented as Location Service Manager and also to show

how the interfaces and methods can be used.

In order to get details about all the Wi-Fi access points that are visible to an UbiNode, we need to access

system level information. On Windows Mobile currently there is no API available for Java to access this

information easily and JNI is the only way to wrap the system level method and make them accessible

inside Java code.

 Instead of reinventing the wheel and write code from scratch, we have downloaded the spotter.dll, that

is written in C++, and its java wrapper from Place lab project’s website, the downloaded code is released

as an open source and available for download from the Place lab CVS repository3. The original spotter.dll

was supposed to work when there is no more than 32 access points are available, since we don’t require

such a restriction we have modified the spotter.dll and now it can work for virtually any number of

access points.

Figure 5-3 below shows the overall architecture of Wi-Fi sensor plug-in. Spotter.dll contains all the

native code which query for all visible access points and gather information such as name of network

(SSID), MAC address of access point (BSSID) and signal strength (RSSI). WiFiSpotter is a Java wrapper for

Spotter.dll and is responsible for converting all the information that Spotter.dll returns to the java data

structure.

3
 Place Lab CVS repository: http://www.placelab.org/toolkit/doc/cvsdeveloper.php

http://www.placelab.org/toolkit/doc/cvsdeveloper.php

Page 51 of 97|Chapter 5. Implementation

Figure 5-3 Overall Architecture of Wi-Fi Sensor Plug-in

First of all, in order to use Wi-Fi access point information as location information we need to relate it

with the standard format of location information that we have defined in previous chapter. Table below

relates the Wi-Fi access point specific information to the location sensor information and shows how the

specific information of location sensor can be converted to common format that can then be used inside

Space Manager.

Wi-Fi access point information Description

BSSID

Stands for Basic Service Set Identifier and represents MAC
address of access point. No two access point can have similar
MAC addresses.
This field is equivalent to the Unique ID of location sensor.

SSID

Stands for Service Set Identifier and represents the name of
wireless local area network.
This field is equivalent to the Human Readable field of
location sensor.

RSSI

Stands for Received Signal Strength Identification and
represents the power of radio signal.
This field is equivalent to the Received Signal Strength of
location Sensor.

Table 5-1 Wi-Fi access point information

WifiReading class captures all this information about every single Wi-Fi access point our Wi-Fi Sensor

Plug-in sees. This class not only implements all the required methods of ISensorReading interface but

also exposes some Wi-Fi Sensor specific methods such as methods for reading MAC address, network

name and signal strength. Figure 5-4 shows the UML class diagram of WifiReading along with the other

classes of Wi-Fi Sensor Plug-in.

Page 52 of 97|Chapter 5. Implementation

Figure 5-4 UML class diagram of Wi-Fi Sensor Plug-in

WifiReader is a class of type IObservableSensor which contains an object of WiFiSpotter class and

exposes the methods that every class of type IObservableSensor must do. Read is the main method that

is being called from any UbiCollab component who wants to get information about current visible access

points. Whenever the Read method of WifiReader is invoked, it calls the GetCurrentReadings which in

turn calls the getMeasurementIMpl method of WiFiSpotter and returns the collection of all WiFiReading

it sees. Figure 5-5 shows the sequence diagram of Read method.

Page 53 of 97|Chapter 5. Implementation

Figure 5-5 Sequence diagram of Wi-Fi Sensor Plug-in Read method

getMeasurementImpl method of WiFiSpotter class returns information about all visible access point in

form of WifiReading collection to GetCurrentFingurePrint method of WifiReader. For Wi-Fi figure print

we need readings from at most three access points, GetCurrentFingurePrint method filter out first three

readings according to the signal strength and sort them in ascending order with respect to the signal

strength using WifiReadingComparator class. This collection of WifiReading is then returned to Read

method and subsequently to the caller.

5.2.3 Any resource can work as location sensor

Another benefit of our proposed Location Service Manager is that any resource that can be used in

UbiCollab can also be used as a location sensor without any extensive coding or effort. Implementing

the ISensor and ISensorReading interfaces by the service proxies of those resources is the only

requirement. To make this clearer, we will take two examples into account: an example of printer and of

thermometer.

5.2.3.1 Printer as location sensor

Suppose there is a printer in the lab that can be used from UbiCollab either by punching the number or

by reading the associated tag. Beside printing user wants to use it more than as a printing device; he

Page 54 of 97|Chapter 5. Implementation

wants UbiCollab to determine the space he has created for the lab when he uses printer, in other term

he wants to use printer as positioning reference.

It can be done using Location Service Manager if printer somehow knows the x and y coordinates of the

place or room it is situated in. For the sake of simplicity, here we assume that the time when user

installs the proxy service for printer by either punching the number or reading the tag associated to

printer, it also calculates the x and y coordinate of printer and saves it in place where it can be accessed

using proxy service class. Let say we have GetX and GetY methods exposed by proxy service for the

printer. The code in Listing 5-1 shows a sample service proxy class.

01.

02.

03.

04.

05.

06.

07.

08.

09.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

public class PrinterServiceProxy {

 //proxy service member....

 private String printerName;

 //......

 ...

 private int x;

 private int y;

 //Overloaded constructor

 public PrinterServiceProxy(int X, int Y){

 this.x = X;

 this.y = Y;

 }

 public int GetX(){

 return this.x;

 }

 public int GetY(){

 return this.y;

 }

 //proxy service methods...

 //......

 ...

}

Listing 5-1 Sample Proxy Service Class for Printer

Now as we can access the coordinate information associated to printer, we can use it as a positioning

reference by using printer as a location sensor and this can then be used inside Space Manager to

associate printer’s coordinate to the user created space. Code in Listing 5-2 shows how easily and

effortlessly it can be done.

01.

02.

03.

04.

05.

06.

07.

08.

09.

public class PrinterServiceProxy implements ISensor {

 //service proxy specific member....

 private String printerName;

 //......

 ...

 private int x;

 private int y;

Page 55 of 97|Chapter 5. Implementation

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

 //Overloaded constructor

 public PrinterServiceProxy(int X, int Y){

 this.x = X;

 this.y = Y;

 }

 public int GetX(){

 return this.x;

 }

 public int GetY(){

 return this.y;

 }

 public String GetType() {

 return SensorType.PositionCoordinate;

 }

 public ISensorReading[] Read() {

 class PrinterCoordinateReading implements ISensorReading {

 @Override

 public Coordinate getCoordinates() {

 return new Coordinate(GetX(), GetY());

 }

 @Override

 public String getHumanReadableName() {

 return printerName;

 }

 @Override

 public String getSensorType() {

 return SensorType.PositionCoordinate;

 }

 @Override

 public int getSignalStrength() {

 return 0;

 }

 @Override

 public String getUniqueID() {

 return printerName;

 }

 }

 PrinterCoordinateReading[] reading =

 new PrinterCoordinateReading[1];

 reading[0] = new PrinterCoordinateReading();

 return reading;

 }

 //service proxy methods...

 //......

 ...

Page 56 of 97|Chapter 5. Implementation

67. }

Listing 5-2 Extended Service Proxy Class for Printer

Code give in Listing 5-2 shows how service proxy of printer can be extended to treat printer as a location

sensor by implementing ISensor and ISensorReading interfaces.

Since printer working as location sensor returns location information in form of two dimensional

coordinates, the value returned by GetType method of ISensor interface and getSensorType method of

ISensorReading interface must be SensorType.PositionCoordinate so that Space Manager knows how to

treat the information retrieved from such location sensors.

Read is the method that returns the location sensor reading and is of main interest for the Space

Manager, it returns the collection of objects of type ISensorReading. In our case x and y coordinate

comprises the reading of location sensor, so we need to wrap this information in ISensorReading

interface. For location sensors that represent location information in form of two dimensional

coordinate, Location Service Manager has implemented a class called Coordinate and is a part of every

ISensorReading object. Since service proxy of printer already stores the x and y coordinate, we just have

to override the getCoordinate method of ISensorReading by instantiating a new Coordinate object, fill it

with x and y coordinate of printer’s location and then use it as a return value, line number 32 to 34 of

code Listing 5-2 shows how to do this. Line number 29 to 55 shows how to create a class on fly that

conforms to ISensorReading and wraps the specific location information in standard format.

The next step is to register this extended service proxy class as a location sensor plug-in which is just

another name of registering it as an OSGi service, so that it can be used by Space Manager or any other

component of UbiCollab. Listing 5-3 shows the code for interacting with OSGi framework.

01.

02.

03.

04.

05.

06.

07.

08.

09.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

public class Activator implements BundleActivator {

 public void start(BundleContext context) throws Exception {

 ISensor PrinterSensor = new PrinterServiceProxy();

 Properties props = new Properties();

 props.put(ISensor.Sensor_Type,

 SensorType.PositionCoordinate);

 context.registerService(ISensor.class.getName(),

 PrinterSensor, props);

 System.out.println("" +

 "Printer location sensor plugin has started");

 }

 public void stop(BundleContext context) throws Exception {

 String filter = "(&(sensorType="

 + SensorType.PositionCoordinate + "))";

 ServiceReference[] refs =

 context.getServiceReferences(

 ISensor.class.getName(), filter);

 if(refs != null){

Page 57 of 97|Chapter 5. Implementation

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

 for(int i=0; i<refs.length; i++){

 PrinterServiceProxy printerSensor =

 (PrinterServiceProxy) context.getService(

 refs[i]);

 if(PrinterServiceProxy != null){

 context.ungetService(refs[i]);

 }

 }

 }

 }

}

Listing 5-3 Printer Location Sensor Plug-in Activator

Line number 9 of code given in Listing 5-3 shows the actual code that registers PrinterSensor as a service

by calling registerService method, which takes three arguments: the name of interface under which the

service is to be registered, also the same name will be used to find this service. In our case it should

always be the name of ISensor interface, this makes consumers of Location Service Manager to find this

location sensor plug-in without worrying about the type of location sensor, they only need to have

information about ISensor interface. Second argument is the actual service object and this object must

implements the same interface whose name was passed as a first argument. Here we passed an object

of PrinterServiceProxy class which was instantiated on line number 3. Third argument is to associate

additional metadata with the service we are registering. Since there can be more than one location

sensor plug-in available and require to treat them accordingly, it would be good to associate some

additional details to tell clients about each location sensor plug-in. Here we passed the object of

Properties class, which is a part of Java framework, with only one property entry “type of location

sensor” with value SensorType.PositionCoordinate. When Space Manager will retrieve this location

sensor plug-in, the value of sensor type property will help in telling how to treat the location

information this location sensor gives.

In the code Listing 5-3 stop method shows how to make Printer location sensor unavailable by calling

ungetService method and passing an instance of ServiceReference class which contains the service

reference of Printer location sensor plug-in. The code from line number 17 till 22 also demonstrates how

to use the additional metadata information attached with registered service.

Extended printer proxy service has been registered as location sensor plug-in, now the next logical step

is to show how this location sensor plug-in can be used to retrieve to location information. This can be

done in two ways, one when we already know about the location sensor we are going to use, which

rarely be the case because it will create dependency on the consumer to import the java package

PrinterServiceProxy class is part of. Second, we don’t have any specific information the implementation

of location sensor plug-in and who is providing the location information, all we know is the type of

location sensor i.e. SensorType.PositionCoordinate and how it represents location. Listing 5-4 shows the

code when we have information about the PrinterServiceProxy class and shows the code when we don’t

know anything about PrinterServiceProxy class, it also shows how generic our approach is.

01.

02.

public void ReadPrinterCoordinates() {

 String filter = "(&(sensorType="

Page 58 of 97|Chapter 5. Implementation

03.

04.

05.

06.

07.

08.

09.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

 + SensorType.PositionCoordinate + "))";

 ServiceReference[] refs =

 context.getServiceReferences(ISensor.class.getName(),

 filter);

 if(refs != null){

 for(int i=0; i<refs.length; i++){

 PrinterServiceProxy printerSensor =

 (PrinterServiceProxy) context.getService(

 refs[i]);

 ISensorReading[] reading = printerSensor.Read();

 if(reading.length > 0){

 //Since we know that this sensor is

 //of type SensorType.PositionCoordinate

 //it returns location information in form

 //of two dimensional coordinates

 double x = 0;

 double y = 0;

 Coordinate c = reading[0].getCoordinates();

 x = c.getX();

 y = c.getY();

 }

 }

 }

}

Listing 5-4 Using Printer location sensor plug-in using PrinterServiceProxy class

01.

02.

03.

04.

05.

06.

07.

08.

09.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

public void ReadPrinterCoordinates() {

 String filter = "(&(sensorType="

 + SensorType.PositionCoordinate + "))";

 ServiceReference[] refs =

 context.getServiceReferences(ISensor.class.getName(),

 filter);

 if(refs != null){

 for(int i=0; i<refs.length; i++){

 ISensor unkownCoordinateSensor =

 (ISensor) context.getService(refs[i]);

 ISensorReading[] reading =

unkownCoordinateSensor.Read();

 if(reading.length > 0){

 //Although we don’t know anything about this sensor

 //except it’s type i.e. SensorType.PositionCoordinate

 //Which means it returns location information in form

 //of two dimensional coordinates

 double x = 0;

 double y = 0;

Page 59 of 97|Chapter 5. Implementation

25.

26.

27.

28.

29.

30.

 Coordinate c = reading[0].getCoordinates();

 x = c.getX();

 y = c.getY();

 }

 }

}

Listing 5-5 Generic code for using Printer location sensor plug-in

Code given in Listing 5-5 shows the generic behavior of Location Service Manager, we can use any

location sensor plug-in without worrying about how the location sensor plug-in was implemented. The

only thing which we as a consumer of location sensor are interested in is the information about location

and how it is being represented i.e. in form or radio signal strengths, geographical positioning

coordinate or simple two dimensional coordinate. We can either apply filter on sensorType property of

registered location sensor plug-ins while retrieving available location sensor from OSGi service

repository or we can check the type of location sensor by either using GetType of ISensor interface or

getSensorType method of ISensorReading interface. Listing 5-5 shows how to retrieve all such location

sensors that represent location information in form or two dimensional coordinate and how to read the

actual sensor information using the Read method.

5.2.3.2 Thermometer as location sensor

In previous section we demonstrated how printer can also work as location sensor if it knows the x and y

coordinates. In this section we will we will take an example of thermometer that we want to use as a

location sensor and would like to identify different spaces with different temperature readings. For

example if the thermometer reading reads 20° C then the space user is in is My Room. In order to

achieve this goal, the proxy service installed for thermometer must implement ISensor interface and

thermometer reading that it returns must be of form ISensorReading, just like the way we did in

previous section for PrinterServiceProxy class. The code shown in Listing 5-6 shows the sample code for

Thermometer service proxy class, which is later then extended to be able to register as location sensor

plug-in in code presented in Listing 5-7.

01.

02.

03.

04.

05.

06.

07.

08.

09.

10.

11.

12.

13.

14.

public class ThermometerServiceProxy {

 //proxy service specific member....

 private int temperature;

 private String thermometerId;

 //......

 ...

 //proxy service methods...

 public int ReadTemperature(){

 return temperature;

 }

 //......

 ...

}

Listing 5-6 Sample Proxy Service Class for Thermometer

01. public class ThermometerServiceProxy implements IObservableSensor {

Page 60 of 97|Chapter 5. Implementation

02.

03.

04.

05.

06.

07.

08.

09.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

 //proxy service specific member....

 private int temperature;

 private String thermometerId;

 //......

 ...

 //proxy service methods...

 public int ReadTemperature(){

 return temperature;

 }

 //......

 ...

 public ISensorReading[] Read(){

 class TemperatureReading implements ISensorReading{

 public String getHumanReadableName() {

 return null;

 }

 public String getSensorType() {

 return "Thermometer";

 }

 public int getSignalStrength() {

 return ReadTemperature();

 }

 public String getUniqueID() {

 return thermometerId;

 }

 public Coordinate getCoordinates() {

 return null;

 }

 }

 TemperatureReading[] readings = new TemperatureReading[0];

 readings[0] = new TemperatureReading();

 return readings;

 }

 public String GetType() {

 return "Thermometer";

 }

 public Date TimeStamp() {

 return new Date();

 }

}

Listing 5-7 Extended Proxy Service Class for Thermometer

Listing 5-7 shows how Thermometer proxy service can easily be extended to be used as location sensor,

the only need is to implement Read, GetType and TimeStamp methods of ISensor. The same code also

Page 61 of 97|Chapter 5. Implementation

demonstrates the usage of ISensorReading interface and how to wrap temperature reading in standard

format.

getSignalStrength is the method that returns the location sensor reading for any sensor and in our case

it returns current temperature that thermometer reads, getSignalStrength does nothing other than

calling ReadTemperature method which is the method exposed by proxy service for thermometer. The

other thing you would have noticed that we used IObservableSensor interface instead of ISensor, this is

because we assumed that thermometer’s reading can be read without any interaction from the user and

IObservableSensor is just an extension of ISensor for such kind of sensors that can be read with or

without user’s interaction.

After wrapping thermometer proxy service in ISensor interface and it’s reading in ISensorReading the

next and final step is to register it as an OSGi service so that Space Manager can access it and treat it as

location sensor plug-in. Code given in Error! Reference source not found. shows the code snippet for

egistering and unregistering thermometer service proxy as location sensor plug-in.

01.

02.

03.

04.

05.

06.

07.

08.

09.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

public class Activator implements BundleActivator {

 public void start(BundleContext context) throws Exception {

 IObservableSensor thermometerSensor = new

 ThermometerServiceProxy();

 Properties props = new Properties();

 props.put(ISensor.Sensor_Type, "Thermometer");

 context.registerService(ISensor.class.getName(),

 thermometerSensor, props);

 System.out.println("" +

 "Thermomemter location sensor plugin has

started");

 }

 public void stop(BundleContext context) throws Exception {

 String filter = "(&(sensorType=Thermometer))";

 ServiceReference[] refs =

 context.getServiceReferences(ISensor.class.getName(),

 filter);

 if(refs != null){

 for(int i=0; i<refs.length; i++){

 ThermometerServiceProxy temperatureReader =

 (Thermometer) context.getService(refs[i]);

 if(temperatureReader != null){

 context.ungetService(refs[i]);

 }

 }

 }

 }

}

Listing 5-8 Temperature Location Sensor Plug-in Activator

Page 62 of 97|Chapter 5. Implementation

Now the thermometer service proxy has been registered as location sensor plug-in, user can use it as a

reference to location from Space Manager. The code given in Listing 5-9 below shows how this

thermometer location sensor plug-in can be retrieved and used.

01.

02.

03.

04.

05.

06.

07.

08.

09.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

public void ReadTemperature() {

 String filter = "(&(sensorType=Thermometer))";

 ServiceReference[] refs =

 context.getServiceReferences(ISensor.class.getName(),

 filter);

 if(refs != null){

 for(int i=0; i<refs.length; i++){

 IObservableSensor temperatureReader =

 (IObservableSensor)

context.getService(refs[i]);

 ISensorReading[] reading =

temperatureReader.Read();

 if(reading.length > 0){

 int currentTemperature =

reading[0].getSignalStrength();

 }

 }

 }

 }

Listing 5-9 Generic code for using Thermometer location sensor plug-in

5.3 Space Manager
Space Manager is the major concern of this project work, everything about Location Service Manager we

have discussed so far is to help Space Manager in positioning user, so that information about physical

location can be associated to the space. In this section, we will describe implementation of Space

Manager in greater detail and show how it fulfills the user requirements related to spaces.

In section 4.2.3 we presented the API that Space Manager will provide to handle space related queries,

each API method represents the intrinsic operation required for using spaces such as create new space,

set current space or get space.

5.3.1 Space

Before going into the details of these methods, it is important to show how each Space get represented

in Space Manager. Figure 5-6 below shows class diagram representing Space. Every member field of

Space class represents the relevant field of Space structure defined in previous chapter. Methods with

get prefix return the value of member fields e.g. getName method returns the value of Name field,

which actually represents the name of space. Similarly methods prefixed with set assign the value to

Page 63 of 97|Chapter 5. Implementation

respective field such as setParentSpaceId assigns the value passed as an argument to field ParentSpaceId

field.

Figure 5-6 UML Class diagram of Space class

Within Space Manager, instance of Space class is used to represent each individual space and to perform

space functions, for outside world space is represented as an XML format shown in Listing 5-10.

01.

02.

03.

04.

05.

06.

07.

08.

<?xml version="1.0" encoding="utf-8" ?>

<Space>

 <Id>Space Id</Id>

 <Name>Name of Space</Name>

 <Description>Description</Description>

 <ParentSpaceId>Parent Space Id</ParentSpaceId>

 <Sensors>

 <Sensor>

Page 64 of 97|Chapter 5. Implementation

09.

10.

11.

12.

13.

14.

15.

 <UniqueId>Sensor Id</UniqueId>

 <Name>Sensor Name</Name>

 <Reading>Sensor Reading</Reading>

 <SensorType>Sensor Type</SensorType>

 </Sensor>

 </Sensors>

</Space>

Listing 5-10 XML representing Space

All the XML tags are self explanatory:

 Id tags contains unique identifier of space

 Name of space is placed in Name tag

 Text describing space goes inside Description tag

 ParentSpaceId tag contains the unique identifier of parent space, it contains -1 if space

doesn’t have any parent space (which may also means that this space itself a parent space).

 Sensors tag contains list of all location sensor along with their reading associated with the

space.

Some benefits of using XML for representing Space are it easy to use and understand XML document,

any Java application is capable of processing XML, XML is platform independent and it perfect choice for

transmitting data over network. Therefore, any component of UbiCollab can use Space information, as

each Space in UbiCollab represents different context of usage, this XML in turns provide information

about context in form of Space XML. Also XML makes it easier for sharing and downloading spaces as

Space XML file can easily be downloaded over HTTP or can be beamed to other UbiNode.

5.3.2 Space Queries

Space Manager provides set of basic methods to perform “space queries” which are: create new space,

identity current space, set any space as current space, get space from space database and download

space. Figure 5-7 shows UML class diagram of ISpaceManager interface, which exposes relevant

methods for space queries.

Page 65 of 97|Chapter 5. Implementation

Figure 5-7 ISpaceManager interface

You would have noticed that for some space query such as for setting current space, there is more than

one method available, which means that this space query can be performed in more than one ways. In

the coming up sections we describe each of these space queries in more detail.

5.3.2.1 Create new Space

Before using spaces it is necessary and natural to create a space first. As we have already described in

previous chapters that space in UbiCollab is more than representing some place or area, spaces not only

provides the contextual information about the area they are associated with but can also be used as

resource for collaboration.

Therefore, it is quite apparent that to create new space is more than inserting a record in a Space

database; it must also capture all aspects necessary to represent context i.e. contextual information.

Space Manager exposes CreateNewSpace method and it is quite clear from method’s name that it create

new space. This method takes space name, description about space, purpose of space, unique identifier

of parent space if any and collection of sensor readings for associating location information, if available.

Sequence diagram given in Figure 5-8 Sequence Diagram of Space Manager’s CreateNewSpace shows

how CreateNewSpace method works when called from GUI interface provided by Space Manager and

presented in 4.4 GUI Mockups. GUI interface for create new space provides different controls to user for

entering information about space such space name etc, also user can find his current position by using

the Position Me button provided as a part of subjected user interface. Although, all the arguments this

method takes are quite straight forward but getting location information from available location sensor

plug-ins is bit tricky.

When user makes a request to position him, system searches for all available location sensor plug-ins

which are of kind IObservableSensor, the reason behind this is to do as much work automatically as

possible. If system is able to find such a location sensor plug-in, it then requests plug-in to return the

location information and saves it. This information about location is then passed to CreateNewSpace

method along with other required details.

CreateNewSpace method first calls the ExecuteUpdate method of database helper class to insert space

information into the space database, this call ExecuteUpdate method returns the unique identifier

assigned to this newly created space. The next step is about inserting location information in space

database, if caller has provided collection of location sensor readings, then for each individual reading it

Space Manager first check if sensor this belongs to already exists, get the unique identifier of sensor

otherwise add sensor information to database and then returns the unique identifier of sensor. Then

insert sensor reading along with the unique identifier of space and sensor to space database. Finally

return the unique identifier of newly created space to the caller.

Page 66 of 97|Chapter 5. Implementation

Figure 5-8 Sequence Diagram of Space Manager’s CreateNewSpace

Page 67 of 97|Chapter 5. Implementation

5.3.2.2 Set Space as Current Space

In order to set current space, Space Manager provides two methods, SetSpace which doesn’t take any

argument and other which takes unique identifier of space as argument. SetSpace which doesn’t take

any argument is for setting current space automatically using the collection of ISensorReading. When

caller invokes this method, Space Manager first look for all available sensor plug-ins of kind

IObservableSensor, if found Space Manager requests sensor plug-in for readings and then calls

GetSpace(ISesorReading) method, which in turn query space database to find matching space with

respect to the sensor reading. GetSpace method is described in more detail in section 5.3.2.3 Get Space

below. Figure 5-9 shows sequence diagram of setting current space automatically.

Page 68 of 97|Chapter 5. Implementation

Figure 5-9 Sequence Diagram of Space Manager's SetSpace method

The other overloaded SetSpace is used for setting current space manually; it takes unique identifier of

space as an argument. Figure 5-10 shows setting space manually using the GUI provided by Space

Manager, first client requests all the spaces he owns, which are actually saved in the space database.

Space Manager shows all user owned spaces in selectable list format using which user can select any

space he wants and set as current space. Space Manager then request database helper class to update

CurrentSpace table.

Any other component of UbiCollab can set space manually by invoking SetSpace method with the unique

identifier of space as an argument.

Figure 5-10 Sequence Diagram of Space Manager's overloaded SetSpace method

Page 69 of 97|Chapter 5. Implementation

5.3.2.3 Get Space

Space database contains all the spaces user owns, in order to work user owned spaces Space Manager

exposes overloaded GetSpace method. From Space database, spaces can be retrieved using two

different ways, either by using unique identifier of space, in this case space identifier must be known

and only that specific space will be returned, or through sensor readings. In later case all spaces that

match sensor reading will be returned, for example there is a space called ‘Home’ which contains a sub

space ‘Kitchen’, if sensor reading matches of those saved for space ‘Kitchen’, then both ‘Home’ and

‘Kitchen’ will be returned in form of collection of space.; ‘Kitchen’ being on the top of collection. Figure

5-11 shows the sequence diagram of GetSpace when collection of ISensorReading is passed as

argument.

Figure 5-11 Sequence Diagram of Space Manager's GetSpace method

This same method is being called when user wants to set current space automatically and was described

in greater details in 5.3.2.2 Set Space as Current Space.

Page 70 of 97|Chapter 5. Implementation

Other overloaded version of GetSpace method is quite straight forward, it takes space identifier of space

that user want to retrieved from database query database and returns space details encapsulating them

as an instance of Space class. Figure 5-12 shows the sequence diagram of GetSpace method which takes

space identifier as an argument.

Figure 5-12 Sequence Diagram of GetSpace method exposes by Space Manager

Page 71 of 97|Chapter 5. Implementation

5.3.2.4 Get Current Space

As the name of this section suggests, here we will discuss about the method Space Method exposes to

get current space. In chapter sections 5.3.2.2 Set Space as Current Space and 5.3.2.3 Get Space we

described how Space Manager gets users owned spaces from Space database and how any space can be

set as current space either manually or automatically. Once any space is marked as current space, its

reference is saved in CurrentSpace [33] table of Space database. When GetCurrentSpace is being called,

Space Manager requests database helper to retrieve the unique identifier of current space, if there is

any. Otherwise Space Manager calls its own method SetSpace to detect current space based sensor

reading, where possible. If found, Space Manager saves the unique identifier of space to CurrentSpace

table; finally Space Manager returns space details in form of Space class instance. Figure 5-13 below

shows above described functionality in form of UML sequence diagram.

Figure 5-13 Sequence Diagram of GetCurrentSpace

Page 72 of 97|Chapter 5. Implementation

5.3.2.4 Download Space

UbiCollab users can easily share spaces in form of structured XML file shown in Listing 5-10. Space

Manager exposes DownloadSpace method which takes URI (Uniform Resource Identifier) to the space

xml file, when caller calls DownloadSpace method, Space Manager verify URI before downloading into

the UbiNode. Next Space Manager checks if downloaded file is actually an XML file with known

structure. Then Space Manager goes through each space field and then calls CreateNewSpace method

[65] to save space into Space database. Figure x shows sequence diagram of DownloadSpace method

when being called using the GUI provided by Space Manager and presented in 4.4 GUI Mockups.

Figure 5-14 Sequence Diagram of Space Manager's DownloadSpace method

Page 73 of 97|Chapter 5. Implementation

As space has been downloaded and saved to user’s Space database, user can use this space as other

spaces he created by himself. If downloaded space also contains information about location in form of

location sensor readings, Space Manager can also identify if user comes to this space using sensor

readings. Appendix shows two different example of space xml file, one that contains information about

space including location information and other that represents space which doesn’t have any location

information associated with it.

5.3.3 Space Database Helper

This section briefly describes implementation of Space Database Helper package which comprises of

database helper class to interact with space database, this database helper class exposes some methods

that can be used to query database. Figure 5-15 shows the UML class diagram of DBHelper class.

Figure 5-15 UML class diagram of DBHelper class

Space Manager uses an object of DBHelper class in order to query space database, DBHelper class

provides two different constructors, a default constructor and an overloaded one. While creating a new

instance of DBHelper class overloaded constructor can be used to connect to database whose

connection string and credentials are being passed as argument, otherwise DBHelper uses predefined

settings to connect with default database.

After instantiating an object of BDHelper class, Open method should be called before calling any method

that results in database interaction. Open method tries to connect with the database either to default of

specified one, returns an object of Connection class which is a part of Java framework, throws exception

otherwise. This instance of Connection class is then used every time any interaction with database

happens.

Page 74 of 97|Chapter 5. Implementation

Close method on the other hand call the close method of Connection class which results in releasing all

resources being used by database connection.

ExecuteScalar method takes SQL query in form of character string as an argument and returns the result

of SQL statement as an output. As name suggest this method only returns single value and in our case it

returns the value of first column of first row of result set returned by SQL query.

ExecuteResultSet on the other hand returns an object of ResultSet class which is a part of Java

Framework, which contains all the rows that is returned by the SQL statement passed as an argument.

ExecuteUpdate method is use to perform INSERT, UPDATE and DELETE SQL queries. This method returns

the number of rows affected by the SQL query this is passed as an argument.

Page 75 of 97|Chapter 6. Evaluation

Chapter 6 Evaluation
This chapter is dedicated towards the evaluation of work done as a part of this project. The

implemented solution is evaluated using the scenario described in 2.3.1 Scenario and using the

SpaceTwitt application we built as a part of, which updates Twitter4 status with the name of space user

is in.

We start this chapter by going through scenario evaluation and then continue toward evaluation using

application, we end this chapter with satisfaction status of requirements that were presented in 2.4

Requirement Specification.

6.1 Evaluation based on Scenario

6.1.1 Scenario

Markus uses UbiCollab not only to collaborate with his subordinates and colleagues but also to remain in

contact with distant friends and family members. However, he doesn’t want to be disturbed by his family

or friends, whenever he is in his office, only, collaboration from the people within the workplace is

allowed. Using the create new space interface of Space Manager, Markus creates a space in UbiCollab

giving it a name ‘Markus’ Office’ and associates it with the physical location of his office. This physical

location-to-space mapping is done through location sensor plug-in available in his office, Wi-Fi in this

case.

Now whenever he enters in his office, he runs an UbiCollab application which basically sets instant

messenger profile based on the space information. This application calls Space Manager for current

space using the API Space Manager exposes, as a result Space Manager automatically senses the

location as ‘Markus’ Office’, sets this space as current space and returns it to the application. In turn

application changes his status to ‘Not available or Busy’ to friends and family and ‘Available’ to

colleagues.

Being a head of IT services, giving presentations at different locations in different departments is his

routine job. It is usual for him to visit the same meeting room he was before in, so instead of discovering

resources available in the room using UbiCollab Resource Discovery Manager every time and then

configuring them for usage, he has created separate spaces using Space Manager for most common

room. Now whenever he visits any meeting room which as an associated space, UbiCollab automatically

detects the current space, by using information about current space he can browse through the list of

available resources using Resource Discovery Manager.

For creating new space Markus starts create new space interface of Space Manager, while preparing the

create new space interface, Space Manager also loads all the spaces Markus owns and display them in

form of selectable list. Using this interface he creates a new space by providing the name ‘Markus’ Room

– Home’, other details and selects ‘Home’ as a parent space.

4
 Twitter: http://www.twitter.com

http://www.twitter.com/

Page 76 of 97|Chapter 6. Evaluation

6.1.2 Scenario Walkthrough

Before starting this scenario walkthrough, there are some assumptions to make:

 User already has UbiCollab installed on his UbiNode with all latest packages.

 Wi-Fi location sensor plug-in is already downloaded and installed on UbiNode.

Markus is the name of our UbiCollab user and this name will be used throughout this section when we

our intention is to show end user action.

1. Markus starts UbiCollab on his UbiNode as shown in Figure 6-1.

2. Then from the list he taps on Space Manage, although this screen shows Space Manager only but in

real it will show all core components that can be used to make changes in setting of UbiCollab; such as

Space Manager, Service Discovery Manager. As soon as user taps Space Manager, screen with available

Space Manager options comes up as shown in Figure 6-2.

Figure 6-1 User starts UbiCollab on his UbiNode

Page 77 of 97|Chapter 6. Evaluation

Figure 6-2 Space Manager GUI

3. As Markus wants to create a new space, he taps on Create new space option which brings up a screen

shown in Figure 6-3.

4. Now Markus enters details such as name of space, description or purpose as shown in Figure 6-4.

Figure 6-5 shows how Markus can make this new space he is creating as a sub space of another, by

selecting the parent space from the list of all space he owned.

Page 78 of 97|Chapter 6. Evaluation

Figure 6-3 User starts create new space screen

Page 79 of 97|Chapter 6. Evaluation

Figure 6-4 User inputs details about new space

Figure 6-5 Creating Sub Space within Space

5. In order to add location information Markus taps on Position Me button which is shown in Figure 6-4,

Space Manager tried to position Markus automatically by using any available location sensor plug-in. As

Wi-Fi location sensor plug-in has already been installed, Space Manager associated location information

gathered from plug-in with the new space and displays a confirmation message. See Figure 6-6 below.

Page 80 of 97|Chapter 6. Evaluation

Figure 6-6 Positioning User successfully

6. Markus taps on continue to return back to Figure 6-4, where he taps create button to create a new

space and save it in space database.

7. As new space with name lab 303 has been created, Space Manager is now able to detect this space

with the help of Wi-Fi location sensor plug-in and if Markus installs any new resource to his UbiNode,

Resource Discovery Manager can query Space Manager to get information about current space and can

associated that resource with the current space. This way whenever Markus comes to this space again,

he can find all the resources available within the space. Figure 6-7 demonstrates what happens when

Markus taps on Set current space option.

Page 81 of 97|Chapter 6. Evaluation

Figure 6-7 Space Manager to find and set current space

8. In this case Space Manager has already detected the current space correctly as lab 303, if it would not

be the case, Space Manager displays list of all available space Markus owns and giving an option to set

any space as current space manually.

9. Using Space Manager Markus can share the space with his friends or family members; he can either

beam or provide WWW URI to space xml to share spaces he owned with other users or he can either

receive space via beam or download from URI. Download Space interface provides an easy way to

download space from WWW by providing the URI to space xml file, Figure 6-8 and Figure 6-9 show

Download Space interface and Markus entering URI to download space, respectively.

10. Space Manager downloads space xml file from provided URI, parse xml, displays space information

to user and saves in space database as shown in Figure 6-10.

Page 82 of 97|Chapter 6. Evaluation

Figure 6-8 Download Space interface of Space Manager

Figure 6-9 User to download space from www using URI to space

Page 83 of 97|Chapter 6. Evaluation

Figure 6-10 Space Manager downloads space, displays to user and save to space database

Page 84 of 97|Chapter 6. Evaluation

6.1.2 Evaluation using application

This section is dedicated towards evaluating our work with the perspective of an application that queries

Space Manager.

As a part of our work we have developed an application called ‘SpaceTwitt’ which queries Space

Manager API for current space of user and if found updates user’s twitter space, for this application we

have used an open source API called Twitter API ME5 to in order to interact with twitter. This application

also shows how applications can user space information and can adapt them according to the context

use.

1. User starts UbiCollab on his UbiNode and switch to Applications.

Figure 6-11 Starting SpaceTwitt Application

2. User taps on SpaceTwitt option, which results in displaying following screen, shown Figure 6-12.

3. Now user taps on Set Space which results in querying Space Manager for current space user is in.

Figure 6-13 and Figure 6-14 shows how Space Manager correctly finds the current space and returns to

application. Our SpaceTwitt application on other hand displays the name of space and also updates the

twitter space of user.

5
 Twitter API ME: http://kenai.com/projects/twitterapime/pages/Home

http://kenai.com/projects/twitterapime/pages/Home

Page 85 of 97|Chapter 6. Evaluation

Figure 6-12 SpaceTwitt application started

Page 86 of 97|Chapter 6. Evaluation

Figure 6-13 SpaceTwitt interacting with Space Manager via API

Figure 6-14 Twitter status updated with name of current space

6.2 Requirement Satisfaction Status

This section briefly discusses the status of satisfaction of both functional and non-functional

requirements.

6.2.1 Requirement Satisfaction Status of Functional Requirement

Requirement ID Status Comments

FR-SM 1 Partially Satisfied
User can create new spaces but part for modifying

existing spaces is not yet implemented.

FR-SM 2 Fully satisfied
While creating new space user can input all relevant

information.

FR-SM 3 Fully satisfied

With the help of Location Service Manager, Space

Manager can associate location information while

creating a new space.

Page 87 of 97|Chapter 6. Evaluation

FR-SM 4 Fully satisfied
Space Manager is able to identify current space based on

sensor readings.

FR-SM 5 Fully satisfied
Space Manager provides both way automatic and

manual for setting any space as current space.

FR-SM 6 Fully satisfied User can browse all the space he owns

FR-SM 7 Partially Satisfied
Right now it is only limited to download spaces using

space xml via world wide web.

FR-SM 8 Partially Satisfied

Although users can create sub spaces with space but still

some research is needed to be done in identifying and

distinguishing them.

FR-SM 9 Fully satisfied

With the help of Location Service Manager, Space

Manager can deal with location information given in

different formats.

Table 6-1 Satisfaction status of functional requirements

6.2.1 Requirement Satisfaction Status of Non-Functional Requirement

Requirement ID Status Comments

NFR-G 1 Fully Satisfied

Solution implemented during the course of this project

targets resource limited devices and runs on Java mobile

edition.

NFR-G2, NFR-G3,

NFR-G4
Fully satisfied

Implemented solutions conform to all technical

constraints put by UbiCollab. Space Manager and

Location Service Manager both run on UbiNode and

don’t require any changes in current platform.

NFR-G5, NFR-G6 Fully satisfied
Implemented solutions run on CDC Java Virtual Machine

running OSGi framework.

NFR-SM 1, NFR-

SM 2
Fully satisfied

Beside API for other components for internal interaction

Space Manager also provide graphical user interface for

easy user interaction.

NFR-SM 3, NFR- Fully satisfied

Page 88 of 97|Chapter 6. Evaluation

SM 4

NFR-LSM 1, NFR-

SM 2, NFR-LSM 3,

NFR-LSM 4

Fully satisfied

Location Service Manager provides set of interfaces and

classes that helps in abstracting away hard differences,

converting low-level sensor data into high-level

information and standardizing this information with

sensor information also to treat information according.

NFR-LSM 5 Partially Satisfied

User can install and uninstall any location sensor plug-in,

right now only manually. Naïve user can’t perform this

action now as it requires dealing with console and

commands.

Table 6-2 Satisfaction status of non-functional requirements

Page 89 of 97|Chapter 7. Conclusion and Future work

Chapter 7 Conclusion and Future work
This chapter is dedicated towards concluding this project report by presenting the contributions that

have been made and some suggestions for the possible future work.

7.1 Contributions
The main focus of this project work is in the domain context-aware ubiquitous computing that what

constitute context in ubiquitous environment, how contextual environment can be gathered and used;

and then using the outcomes of this research on existing UbiCollab system to extend its functionalities.

Below are the contributions that will be made during the course of this project:

1. Research: Context-model for context data representation. Context-awareness has become a

very important aspect of ubiquitous computing and a lot of research is going on in the domain of

making ubiquitous system able to adapt them according to environment. But defining what

information constitute context and how to represent contextual information is still a research

problem. In this work of our we have tried to answer these research questions by using the

definition of context from earlier work on UbiCollab and proposing simple yet effective model to

represent contextual information.

2. Research: Algorithm for extracting information from low-level location sensors and transforming

them into common and understandable format. Location-awareness is an important aspect of

context awareness; thanks to the advancements in technologies nowadays there are many

different sensors available that can be used to sense the location. But due to heterogeneous

nature of these sensors it’s difficult to use them and there is a huge gap lies in converting low-

level sensor data into high-level location information. By proposing and implementing Location

Service Manager for this project we tried to bridge this gap.

3. Implementation: Developing Space Manager module for creating and managing spaces

4. Implementation: Creating GUI for Space Manager using the previously developed GUI

framework for UbiCollab

5. Implementation: Generic database interface for storing and retrieving space information.

Context information that system collects either from user input or location sensors need to

stored in some flexible data store which also makes sure not to lose any key information during

structuring data according the format of data store. By doing research in this area and taking

help from previously done work we proposed a database which has a very generic structure,

very flexible and reliable that no important information will be lost during saving or retrieving

contextual information.

Page 90 of 97|Chapter 7. Conclusion and Future work

6. Implementation: Wi-Fi Sensor Plug-in

7. Implementation: Fingerprinting algorithm for Wi-Fi based location detection

7.2 Conclusions
Being any other ubiquitous platform UbiCollab also needs to be aware of the context it is being used in

and if possible posses the ability to adapt itself according to environment. Beside resources for

collaboration concept of spaces in UbiCollab also represents the context of use. Moreover information

about space can be used to identify different context. Our solution here was to user space and context

information interchangeably which also means that all relevant information should be collected when

creating a space. Out proposed Space Manager proved be successful in collecting this information

providing users the ability to input only specific but important information easily. On the other hand

Location Service Manager facilitates Space Manager to collect location information without worrying

about sensing hardware. Although Location Service Manager needs some more testing but still it is

currently able to support any kind of sensing hardware, the only need is to write sensor plug-in

according to the guidelines Location Service Manager provides. Not limited to Space Manager, Location

Service Manager can later be extended to be used as a standalone user tracking system.

7.3 Future work
This section is dedicated towards ideas for possible future work.

Behavior Adaptation: After being able to create and manage spaces and capture context information,

one of the possible usages is behavior adaptation. Applications in UbiCollab can change their setting

and/or behavior according the information about current space user is in. Applications can also be

extended in a way to take decisions on the behalf of user, if contextual information is being used with

the information about user’s acts which he usually do in particular context; this can be done by maintain

some kind of where about diary.

Privileges in Services and Resource Discovery: By tagging services and resources with the space they are

in we can make them context aware. Although this way we can find the available resources in proximity

but there still remains an issue of privacy. What if user has downloaded space information from another

user who has access to all the resources and there some resource which can only be used by users with

certain credentials?

Page 91 of 97|References

References
[1]. Farshchian, B.A. & Divitini, M., “UbiCollab Architecture White Paper”, 2007

[2]. Mora, S., 2009. "A mobile extensible architecture for implementing ubiquitous discovery gestures

based on object tagging". Master's Thesis, NTNU

[3]. Farshchian, B. A. & Divitini, M., 2005. “UbiCollab: Improving collaboration with location services”.

Conference Paper. In IEEE International conference on pervasive services (ICPS), IEEE, Santorini,

Greece, p.417 – 420

[4]. Weiser, M., 1999. “The computer for twenty-first century”. In ACM SIGMOBILE Computing and

Communication Review, ACM, Vol. 3, Issue 3 (Ed. Victor Bahl), pp. 3 – 11

[5]. Abowd, D.G., Dey, A.K., Brown, P.J., Davies, N., Smith, M. & Steggles, P., 1999. “Toward a better

understanding of context and context-awareness”. In Proceedings of the 1st international

symposium on Handheld and Ubiquitous Computing, Springer-Verlag, pp. 304 – 307

[6]. Dix, A., Rodden, T., Davies, N., Trevor, J., Friday, A. & Palfreyman, K, 2000. “Exploiting space and

location as a design framework for interactive mobile systems”. In ACM Transactions on Computer-

Human Interaction (TOCHI), ACM, pp. 285 – 321

[7]. Schilit, B., Adams, N. & Want, R., 1994. "Context-aware computing applications". Conference Paper.

In IEEE Workshop on Mobile Computing Systems and Applications, Santa Cruz, CA, USA, pp.85 – 90

[8]. Hevner, A., March, R., Park, J. & Ram, S., 2004. “Design Science in Information System Research”,

2004. In Management Information Systems Quarterly, Vol. 28, No.1 (Ed. Ron Weber), pp. 75 – 105

[9]. Oates, J., 2006. “Researching Information Systems and Computing”. London: SAGE Publications Ltd.

[10]. Rogers, Y., Sharp, H. & Preece, J., 2002. “Interaction Design: Beyond Human-Computer

Interaction”, Wiley

[11]. Castelli, G., Mamei, M., Rosi, A. & Zambonelli, F., 2009. “Extracting High-Level Information from

Location Data: W4 Diary Example”. In Mobile Networks and Applications, Vol. 14, Issue 1, Kluwer

Academic Publishers, pp. 107 – 119

[12]. Bartlett, N., 2009. “OSGi In Practice”. Open Book. Creative Commons. Retrieved from:

http://s3.amazonaws.com/neilbartlett.name/osgibook_preview_20090110.pdf on Oct, 15th 2009.

[13]. “Eclipse RCP website”. http://www.eclipse.org/ercp/

[14]. “Place Lab CVS Repository”. http://www.placelab.org/toolkit/doc/cvsdeveloper.php

[15]. Helal, S., Winkler, B., Lee, C., Kaddourah, Y., Ran, L., Giraldo, C. & Mann, W., 2003. “Enabling

Location-Aware Pervasive Computing Applications for the Edlerly”. In PERCOM Proceedings of the

http://s3.amazonaws.com/neilbartlett.name/osgibook_preview_20090110.pdf
http://www.eclipse.org/ercp/
http://www.placelab.org/toolkit/doc/cvsdeveloper.php

Page 92 of 97|References

First IEEE International Conference on Pervasive Computing and Communications, IEEE Computer

Society, pp. 531

[16]. Sohn, T., Griswold, W.G., Scott, J., LaMarca, A., Chawathe, Y., Smith, I. & Chen, M.Y., 2006.

“Experiences with place lab: an open source toolkit for location-aware computing”. In Proceedings

of the 28th international conference on Software engineering, Shanghai, China, ACM, pp. 462 – 471

[17]. Hightower, J., LaMarca, A. & Smith, I.E., 2006. “Practical Lessons from Place Lab”. In Pervasive

Computing, IEEE, Vol. 5, Issue 3, IEEE Computer Society, pp. 32 – 39

[18]. Dey, A.K., Abowd, G.D. & Salber, D., 2001. “A conceptual framework and a toolkit for supporting

the rapid prototyping of context-aware applications”. In Human-Computer Interaction, vol. 16, Issue

2, L. Erlbaum Associates Inc., Hillsdale, NJ, USA, pp. 97 – 166

[19]. Salber, D., Dey, A.K. & Abowd, G.D., 1999. “The context toolkit: aiding the development of

context-enabled applications”. In Conference on Human Factors in Computing Systems Proceedings

of the SIGCHI conference on Human factors in computing systems: the CHI is the limit, Pittsburgh,

Pennsylvania, United States, pp. 434 – 441

[20]. Hong, J.I., 2002. “The context fabric: an infrastructure for context-aware computing”. In

Conference on Human Factors in Computing Systems: CHI '02 extended abstracts on Human factors

in computing systems, Minneapolis, Minnesota, USA, ACM, pp. 554 – 555

[21]. Want, R., Hopper, A., Falcão, V. & Gibbons, J., 1992. “The active badge location system”. In ACM

Transactions on Information Systems (TOIS),Vol. 10, Issue 1, ACM, pp. 91 – 102

[22]. Bahl, P. & Padmanabhan, V.N., 2000. “RADAR: an in-building RF-based user location and tracking

system”. In INFOCOM 2000, Proceedings of Nineteenth Annual Joint Conference of the IEEE

Computer and Communications Societies, IEEE, Vol. 2, pp. 775 – 784

[23]. “HSQLDB website”. http://www.hsqldb.org

http://www.hsqldb.org/

 Page 93 of 97|Appendix A. Acronyms

Appendix A. Acronyms

Acronym Name

ANSI American National Standards Institute

API Application Programming Interface

BSSID Basic Service Set Identifier

CSCW Computer Supported Cooperative Work

CSL Context Specification Language

FR Functional Requirement

G General

GPS Global Position System

GSM Global System for Mobile Communications

GUI Graphical User Interface

IDE Integrated Development Environment

NFR Non-functional Requirement

RCP Rich Client Platform

SM Space Manager

SOA Service-Oriented Architecture

SQL Structured Query Language

SSID Service Set Identifier

UML Unified Modeling Language

URI Uniform Resource Identifier

WWW World Wide Web

 Page 94 of 97| Appendix B. Java Packages

Appendix B. Java Packages
This appendix lists all the packages, interfaces and classes each packages contain, that are developed

during the course of this project.

B.1 Space Manager

B.2 Location Service Manager

 Page 95 of 97| Appendix B. Java Packages

B.3 Space Database

B.4 Wi-Fi Location Sensor Plug-in

 Page 96 of 97| Appendix C. Sample Space XML files

Appendix C. Sample Space XML files

Sample Space XML file with location information

01.

02.

03.

04.

05.

06.

07.

08.

09.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

<?xml version="1.0" encoding="utf-8" ?>

<Space>

 <Id>001</Id>

 <Name>Vicki's Room</Name>

 <Description>G202</Description>

 <ParentSpaceId>-1</ParentSpaceId>

 <Sensors>

 <Sensor>

 <UniqueId>00:1e:e5:64:f1:15</UniqueId>

 <Name>linksys</Name>

 <Reading>-36</Reading>

 <SensorType>WiFi</SensorType>

 </Sensor>

 <Sensor>

 <UniqueId>00:0b:85:89:b9:fd</UniqueId>

 <Name>eduroam</Name>

 <Reading>-62</Reading>

 <SensorType>WiFi</SensorType>

 </Sensor>

 <Sensor>

 <UniqueId>00:0b:85:89:b9:ff</UniqueId>

 <Name>ntnu</Name>

 <Reading>-62</Reading>

 <SensorType>WiFi</SensorType>

 </Sensor>

 </Sensors>

</Space>

Sample Space XML file without location information

01.

02.

03.

04.

05.

06.

07.

08.

<?xml version="1.0" encoding="utf-8" ?>

<Space>

 <Id>001</Id>

 <Name>Vicki's Room</Name>

 <Description>G202</Description>

 <ParentSpaceId>-1</ParentSpaceId>

 <Sensors />

</Space>

 Page 97 of 97| Appendix D. Space database SQL Script

Appendix D. Space database SQL Script

Table: Space
CREATE TABLE Space(

 Id int,

 Name varchar(20),

 Owner varchar(20),

 Description varchar(500),

 IsShareable bit,

 DateCreated TIMESTAMP

);

Table: Sensor
CREATE TABLE Sensor(

 SensorId int,

 SensorType varchar(20),

 UniqueIdentifier varchar(20),

 HumanReadableName varchar(20)

);

Table: SensorReading
CREATE TABLE SensorReading(

 ReadingId int,

 SpaceId int,

 SensorId int,

 Reading int,

 Coordinate varchar(500)

);

Table: CurrentSpace
CREATE TABLE CurrentSpace(

 SpaceId int,

 UpdatedDate TIMESTAMP

);

	Title Page
	Problem Description
	Abstract
	Preface
	Introduction
	1.1 Motivation and Contribution
	1.1.1 Motivation
	1.1.2 Contribution
	1.1.3 Objectives

	1.2 Research Method
	1.3 Report Outline

	Problem Elaboration
	2.1 Problem Definition
	2.1.1 Context Model
	2.1.2 Location Detection

	2.2 Relation with UbiCollab
	2.3 Scenario Analysis
	2.3.1 Scenario

	2.4 Requirement Specification
	2.4.1 General Requirements
	2.4.2 Specific Requirements – Space Manager

	Background
	3.1. UbiCollab context and background
	3.1.1 Ubiquitous Computing
	3.1.2 Context-aware computing

	3.2. Preliminary Study
	3.2.1 UbiCollab
	3.2.1.1 Human Grid
	3.2.1.2 UbiNode
	3.2.1.3 Context in UbiCollab
	3.2.1.4 Physical Locations and Spaces

	3.3 Related Work
	3.3.1 W4
	3.3.2 Place lab
	3.3.3 Other related work
	Context Models:
	Location Detection:

	Proposed Solution
	4.1 Solution Overview
	4.2 Context Model
	4.2 Space Manager
	4.2.1 Introduction
	4.2.2 Space
	4.2.3 Space Manager API

	4.3 Location Service Manager
	4.4 Space Database
	4.4 GUI Mockups
	4.5 Overall system structure

	Implementation
	5.1 Tools and Technologies
	5.1.1 Java Mobile Edition
	5.1.2 OSGi
	5.1.3 eRCP / eSWT
	5.1.4 HyperSQL Database
	5.1.5 Eclipse

	5.2 Location Service Manager
	5.2.1 Components of Location Service Manager
	5.2.1.1 Sensor
	5.2.1.2 Sensor Reading
	5.2.1.3 Coordinate

	5.2.2 Wi-Fi Sensor Plug-in
	5.2.3 Any resource can work as location sensor
	5.2.3.1 Printer as location sensor
	5.2.3.2 Thermometer as location sensor

	5.3 Space Manager
	5.3.1 Space
	5.3.2 Space Queries
	5.3.2.1 Create new Space
	5.3.2.2 Set Space as Current Space
	5.3.2.3 Get Space
	5.3.2.4 Get Current Space
	/
	5.3.2.4 Download Space

	5.3.3 Space Database Helper

	Evaluation
	6.1 Evaluation based on Scenario
	6.1.1 Scenario
	6.1.2 Scenario Walkthrough
	6.1.2 Evaluation using application

	6.2 Requirement Satisfaction Status
	6.2.1 Requirement Satisfaction Status of Functional Requirement
	6.2.1 Requirement Satisfaction Status of Non-Functional Requirement

	Conclusion and Future work
	7.1 Contributions
	7.2 Conclusions
	7.3 Future work

	References
	Appendix A. Acronyms
	Appendix B. Java Packages
	B.1 Space Manager
	B.2 Location Service Manager
	B.3 Space Database
	B.4 Wi-Fi Location Sensor Plug-in

	Appendix C. Sample Space XML files
	Appendix D. Space database SQL Script
	Table: Space
	Table: Sensor
	Table: SensorReading
	Table: CurrentSpace

