
Automatisk Akseptansetesting av
Webapplikasjoner med CubicTest

Erlend Halvorsen

Norges teknisk-naturvitenskapelige universitet
Institutt for datateknikk og informasjonsvitenskap

Master i informatikk
Oppgaven levert:
Hovedveileder:

Juni 2007
Tor Stålhane, IDI

Abstract

With the increasing number of web based applications being developed, and the com-
plexity of the web platform, there is a growing need for good testing tools for web
applications.

CubicTest is an Eclipse plug-in for acceptance testing web applications that is showing a
lot of promise, but while it is simpler and more efficient than many of it’s counterparts,
it is still lacking in a few areas, hindering a more widespread adoption.

This thesis has looked at what sets CubicTest apart from many of the more traditional
test frameworks, and tried to remedy some of it’s shortcomings. Four new features have
been added, and an empirical study has been performed, that shows an increase in both
user efficiency, error rate and utility.

Keywords: AutAT, CubicTest, Automatic Acceptance Test, Web Application, Test
Driven Development, Meta Programming

Preface

This master thesis documents the work done by Erlend Halvorsen from January 2006 to
June 2007. The thesis is related to the BUCS (BUsiness-Critical Software) project run by
the Department of Computer Science and Information Science (IDI) at the Norwegian
University of Science and Technology (NTNU). It is also related to Bekk Consulting
AS (BEKK) and the CubicTest project released under BEKK’s Open Source Software
(BOSS) program.

I would like to thank Professor Tor St̊alhane at IDI, NTNU, Stein K̊are Skytteren at
Comperio AS, and Christian Schwarz at Bekk Consulting AS for all their guidance and
feedback during my work on this thesis. I really appreciate the time and effort they have
contributed to this project.

I would also like to thank the students who participated in the experiment: Magnar
Wium, Anders Henriksen, Lars Marki Johannessen, Kenneth J. Wannebo, Per Einar
Kalnæs, Svein Wemund Eriksen, Jan Tore Morken, Henriette Austad, Ørjan Johansen,
Jens Sunde, Hovard Berg, Ole Markus With and Ane Solhaug Linnerud.

Trondheim, June 8th, 2007

..
Erlend S. Halvorsen

Table of Contents

Abstract iii

Preface v

Introduction 1

1 Motivation and Problem Definition 3

2 Project Context 5

3 Readers Guide 7

4 Research Questions and Method 9
4.1 The GQM Process . 9
4.2 Goal . 10
4.3 Questions . 11
4.4 Metrics . 12

4.4.1 M1 - Number of Errors in Tests . 12
4.4.2 M2 - Time Usage . 13
4.4.3 M3 - Perceived Ease of Use . 13
4.4.4 M4 - Perceived Ease of Learning 14
4.4.5 M5 - Comprehension of Tests . 14
4.4.6 M6 - Comprehension of CubicTest 15
4.4.7 M7 - CubicTest’s Utility . 15

Prestudy 17

5 Software Testing 19
5.1 The V-Model . 19
5.2 Unit Testing . 20

TABLE OF CONTENTS vii

5.3 Integration Testing . 20
5.4 System Testing . 21
5.5 Acceptance Testing . 21
5.6 Regression Testing . 21
5.7 Black Box vs. White Box Testing . 21
5.8 Test-Driven Development . 22

5.8.1 Unit Testing in TDD . 23
5.9 Testing Web Applications . 23

5.9.1 The Document Object Model . 23
5.9.2 Browser Incompatibilities . 24

5.10 Summary . 24

6 CubicTest 27
6.1 Background . 27
6.2 Purpose . 27
6.3 Composition . 28
6.4 Architecture . 29

7 Exploring CubicTest’s Competition 33
7.1 FIT . 33
7.2 Watir . 34
7.3 Selenium . 35

7.3.1 Selenese . 35
7.3.2 Selenium RC . 35
7.3.3 Selenium IDE . 37

7.4 Summary . 37

Own Contribution 39

8 Test Orchestration 41
8.1 Requirements . 41
8.2 Implementation . 41

9 Integrating Java 45
9.1 Requirements . 45
9.2 Implementation . 45
9.3 Example . 46

10 Visualising Tests 49

viii

10.1 Requirements . 49
10.2 Implementation . 49
10.3 Example . 50

11 Testing Existing Applications - Visual Recording of User Interaction 53
11.1 Requirements . 53
11.2 Implementation . 53

11.2.1 Architectural Overview . 54

12 Experiment Design 57
12.1 Introduction . 58
12.2 Exercises . 59
12.3 Questionnaire . 60

Evaluation 63

13 Threats to Validity 65

14 Measurements 67
14.1 M1 - Number of Errors in Tests . 67
14.2 M2 - Time Usage . 68
14.3 M3 - Perceived Ease of Use and M4 - Perceived Ease of Learning 69
14.4 M5 - Comprehension of Tests . 69
14.5 M6 - Comprehension of CubicTest . 69
14.6 M7 - CubicTest’s Utility . 70

15 Goal Attainment and Conclusion 75
15.1 Goal . 75
15.2 Questions . 75
15.3 Conclusion . 76

16 Future Work 79
16.1 Future Work on CubicTest . 79
16.2 Future Empirical Experiments . 80

Appendix 81

A Statistical Power 83

B User Documentation 85

TABLE OF CONTENTS ix

C Exercises & Questionnaire 87

D Questionnaire Responses 95
D.1 Subject #1 . 95
D.2 Subject #2 . 96
D.3 Subject #3 . 97
D.4 Subject #4 . 97
D.5 Subject #5 . 98
D.6 Subject #6 . 99
D.7 Subject #7 . 99
D.8 Subject #8 . 100
D.9 Subject #9 . 101
D.10 Subject #10 . 102
D.11 Subject #11 . 102
D.12 Subject #12 . 103
D.13 Subject #13 . 104

Bibliography 106

Part I

Introduction

This part will give an overview of the rest of this master thesis, as well as our motivation
for doing this research, the project’s context, and a description of the project’s research
questions and method.

Chapter 1

Motivation and Problem Definition

Functional testing has traditionally been an expensive, time consuming, manual task.
While some frameworks for automated testing exists, these have mostly been geared
towards technical people, usually requiring knowledge of computer programming. This
is unfortunate, considering that the people with the domain knowledge, and hence the
knowledge of how the application is supposed to work, for the most part do not possess
these skills.

The goal of the CubicTest project is to improve this situation, by making the test
definition process more accessible to personnel with limited technical know-how. This
thesis aims to explore further improvements to the CubicTest application, to make it
easier and more efficient to use.

Chapter 2

Project Context

This project is an extension of two former master thesis’ [14] and [13], and is carried out
as a master thesis at the Department of Computer and Information Science, Norwegian
University of Science and Technology (NTNU). The project is guided by professor Tor
St̊alhane, as well as Christian Schwarz (Bekk Consulting) and Stein K̊are Skytteren
(Comperio).

Chapter 3

Readers Guide

This thesis is divided into five parts:

Introduction gives a general introduction to the thesis, including motivation and
problem definition, and an overview of the project’s research questions and method.

The Prestudy explores the field of software testing in general, as well as topics
like acceptance testing of web applications, the background and composition of
CubicTest and some of the other tools available for acceptance testing web appli-
cations.

Own Contribution presents the additions made to CubicTest, both in terms
of motivation, requirements and implementation. The final chapter in this part
describes the empirical study of the new contributions.

Evaluation presents the results from the study, as well as any conclusions that
can be drawn, based upon the data, and finally presents some thoughts on future
work related to CubicTest.

The Appendix contains the data collected from the experiment, as well as ...

Chapter 4

Research Questions and Method

4.1 The GQM Process

GQM (Goal - Question - Metric) is a framework for developing research questions in
a structured manner. GQM was originally developed by V. Basili and D. Weiss, and
later expanded by D. Rombach [17]. There are many years of academic research and
practical experience behind the method, and it has been widely used in the domain
of software process improvement. Here GQM will be used to plan and structure the
project’s research and evaluating the final results.

The GQM process is defined in [17] as having four phases (see Figure 4.1):

The Planning phase, during which the overall planning of the project takes
place, including resource usage, scheduling, etc.

The Definition phase, in which the goals, questions, metrics and hypothesis are
defined and documented.

The Data Collection phase, during which the data are collected.

The Interpretation phase, during which the collected data is processed and
analysed with respect to the metrics defined, leading to a set of measurement
results providing answers to the defined questions, at which point goal attainment
can be evaluated.

The definition phase results in a GQM-tree (an example is given in Figure 4.2). The
GQM-Tree consists of tree levels:

Goals describe the overall goal of the GQM project and the purpose of the mea-
surements

Questions define the questions which need to be answered to accomplish each
goal

10

Planning

P
ro

je
c
t

P
la

n

Definition

Data collection

Goal

Question

Metric
Interpretation

Goal
Attainment

Answer

Measurement

Collected Data

Figure 4.1: The GQM process

Goal

Question Question

Metric Metric Metric Metric

Figure 4.2: An example of a GQM Tree

Metrics define what needs to be measured in order to answer each question

4.2 Goal

According to [16], GQM has a standard template for defining goals:

Analyze the object(s) of study
for the purpose of intention
with respect to focus
as seen from perspective point of view
in the context of environment

4.3 Questions 11

While one might have several goals defined for the same project, here we have selected
only one goal:

Analyse CubicTest
for the purpose of improving the product
with respect to quality, efficiency, user comprehension, utility and
usability for writing and analysing acceptance tests
as seen from the software developer’s point of view
in the context of web application development

4.3 Questions

The purpose of the questions is to enable us to evaluate whether or not each of the
defined goals has been reached. We have defined the following questions to evaluate our
goal:

Question 1 Quality

Does the use of the new features increase the quality of the tests produced,
compared to using CubicTes without the new features?

The quality of the system will be measured by the number of logical and syntactical
errors (metric M1) in the test file.

Question 2 Efficiency

Does the use of the new features increase the efficiency of the test creation
process, compared to using CubicTest without the new features?

The efficiency will be measured by measuring the time used to complete each task (metric
M2).

Question 3 Comprehension

Does the use of the new features improve the user’s comprehension of Cu-
bicTest, compared to using CubicTest without the new features?

Comprehension is the degree to which the user understands the purpose and usage of
the CubicTest software, as well as his understanding of specific test scripts, and will be
measured by M5 - Comprehension of Tests and M6 - Comprehension of CubicTest.

Question 4 Utility

Does the new features increase the utility of CubicTest both with respect to
the old version, and compared to other, similar tools?

12

According to [7], usability and utility are subcategories of the more general term “use-
fulness”. Utility is the question of whether or not the functionality of the application is
able to support the needs of users, while usability is the question of how satisfactorily
users can make use of that functionality. The utility of the application will be evaluated
in M7 - CubicTest’s Utility.

Question 5 Usability

Does the new features increase the usability of CubicTest, compared to the
old version?

How the user perceive the application’s usability will be measured by M3 - Perceived
Ease of Use. In addition, the user’s error rate, M1 - Number of Errors in Tests, will also
be considered.

Question 6 Learnability

Does the new features make CubicTest easier to learn, compared to the old
version?

How the users perceive the learning curve of the application will be measured by M4 -
Perceived Ease of Learning. In addition, M5 - Comprehension of Tests and M6 - Com-
prehension of CubicTest will be considered, as a better understanding of the application
would indicate that the application is easier to learn, given that each test subject is
exposed to the application for approximately the same length of time.

4.4 Metrics

The GQM-metrics are used to answer the questions in section 4.2. The metrics are listed
in sections 4.4.1 to 4.4.7.

4.4.1 M1 - Number of Errors in Tests

Definition

The quality of the system will be measured by the number of logical and
syntactical errors in the test file. The errors have been divided into 5 different
types, defined in chapter 12.

When to measure

After the testing session is completed

Procedure for measuring

The errors will be counted in the resulting test files. See chapter 12 for
further details.

4.4 Metrics 13

Expected value

This metric is difficult to predict, but we expect a couple of errors for each
task.

4.4.2 M2 - Time Usage

Definition

The time used to complete each exercise.

When to measure

During the user test session

Procedure for measuring

The observer will measure the time in minutes, using a regular time piece.

Expected value

Each task should take around 10 minutes to complete.

4.4.3 M3 - Perceived Ease of Use

Definition

This measures how the user perceives the ease of using the application, and
will be answered by the subject on a four point scale:
“I found CubicTest easy to use”
1 - Completely disagree
2 - Somewhat disagree
3 - Somewhat agree
4 - Completely agree

When to measure

After the user test session

Procedure for measuring

This will be answered by the test subject in a questionnaire after the test
session.

Expected value

CubicTest shouldn’t be perceived as a difficult tool to use, so we expect an
average somewhere between 3 and 4.

14

4.4.4 M4 - Perceived Ease of Learning

Definition

This measures how the user perceives the ease of learning the application,
and will be answered by the subject on a four point scale:
“I found CubicTest easy to learn”
1 - Completely disagree
2 - Somewhat disagree
3 - Somewhat agree
4 - Completely agree

When to measure

After the user test session

Procedure for measuring

This will be answered by the test subject in a questionnaire after the test
session (see Appendix C).

Expected value

CubicTest shouldn’t be perceived as a difficult tool to learn, so we expect an
average somewhere between 3 and 4.

4.4.5 M5 - Comprehension of Tests

Definition

The test subjects will describe the purpose of a specific test, to measure their
understanding of the test definitions. The answer will be rated on a three-
point scale:
0 - Completely wrong answer / no answer given
1 - Partially correct answer
2 - Correct answer

When to measure

This will be answered by letting each test subject explore the test during the
test session and write down their answer in the questionnaire (see Appendix
C).

Expected value

Given that the subjects will be given an introduction to CubicTest before
the experiment, an average value between 1 and 2 should be expected.

4.4 Metrics 15

4.4.6 M6 - Comprehension of CubicTest

Definition

A set of questions regarding the mechanics of CubicTest will be poised to the
test subjects to measure their understanding of the application. Each answer
will be rated on a three-point scale:
0 - Completely wrong answer / no answer given
1 - Partially correct answer
2 - Correct answer

When to measure

This will be answered by the test subject in a questionnaire after the test
session (see Appendix C).

Expected value

Given that the subjects will be given an introduction to CubicTest before
the experiment, an average value between 1 and 2 should be expected.

4.4.7 M7 - CubicTest’s Utility

Definition

An evaluation will be made of CubicTest’s utility after the new features
are implemented, comparing them to the old version of CubicTest and to
competing test frameworks.

When to measure

After the development is completed

Expected value

The new version of CubicTest is expected to be of considerably higher utility.

The experiment is described in detail in chapter 12, at the end of part III, and the results
are presented in part IV.

Part II

Prestudy

This part gives an overview of the field of software testing in general, as well as web
applications testing specifically. It also investigates some tools for acceptance testing
of web applications, including an in-depth look at the current sate of the CubicTest
application.

Chapter 5

Software Testing

5.1 The V-Model

One of the most widespread models for software testing is the V-Model. The V-Model
(see Figure 5.1) is based on the phases of traditional software development: Requirements
Specification, Functional Specification, System Design, Unit Design and Implementation,
and while it caters especially to the waterfall process, the levels of testing are relevant
to most development methodologies.

Any software product is developed to fulfil someone’s needs, hence software projects
should start with the gathering of requirements and the creation of a requirement speci-
fication, which documents all the requirements the customer has to the finished system.
The process continues by breaking the requirements further down, into functional spec-
ification, system design and unit design.

For each of these stages a set of tests are created to ensure that the remaining stages of the
development process produces a product that conforms to the provided documentation.
At the lowest level, unit tests validate the correctness of the individual programming
units, checking that the code does not contain logical errors. The individual units are
then tested in cohesion at the Integration level, checking that no unit introduces bugs
in other parts of the system, and that the individual parts implement their interfaces
correctly. The system is further tested to validate that they implement the features
as requested in the functional specification. At this point the system is usually stress
tested as well, to make sure it meets the its performance requirements. Finally, a set
of acceptance tests are performed to verify that the system actually delivers what the
customer requested. It should be noted though that software testing cannot prove the
correctness of the system. It can, however, show that it is improbable that the system is
incorrect.

20

Requirements
Specification

Functional
Specification

System Design

Unit Design

Code

Acceptance
Tests

System Tests

Integration Tests

Unit Tests

Acceptance Test Plan

System Test Plan

Integration Test Plan

Test Cases

Figure 5.1: The V-Model

5.2 Unit Testing

The basis of Unit Testing is writing tests for a program’s individual units. A unit is
considered to be the smallest possible part of a system that can be tested separately.
What constitutes a unit has been an object for debate, but usually methods or procedures
are considered the smallest possible testable component.

A Unit Test provides the programmer with a strict, written, executable contract that
the code must satisfy. Since the tests are executable, they can be run however often is
needed for virtually no extra cost.

5.3 Integration Testing

While Unit Testing tests each individual programming unit in isolation, the purpose of
Integration Testing is to verify that the individual parts of the system works correctly
together and meets the required performance and reliability levels. Integration Testing
focuses on verifying the individual units conformance to the interfaces they’re supposed
to implement, and that they accept, pass on and return data of the correct type or value
[8].

5.4 System Testing 21

5.4 System Testing

System Testing aims at testing the architecture as a whole. At this level, the aim is
no longer to assess the quality of individual components but to test the system as a
whole against the system specification. In addition to the functional requirements, non-
functional requirements like performance, robustness and documentation are tested. The
testing at this level relies completely on black-box testing, and use cases are often used
as a basis for the test definitions.

5.5 Acceptance Testing

The purpose of System Testing is to verify that the product is implemented according
to the system design. Acceptance Testing checks that the system actually delivers what
was requested - that all the requirements are met.

Ideally, the customer should do all the acceptance testing. After all, it’s the customer
who is going to use the system, it’s the customer that possess all the related domain
knowledge, and it’s the customer who knows what is required of the system for it to be
of value.

This isn’t necessarily as easy as it sounds. While the customers knows a lot about their
problem domain, they seldom have much experience with software development.

5.6 Regression Testing

Regression testing is a form of software testing used to uncover regression bugs. A
regression bug occurs whenever software functionality that used to work stops working.
This can happen due to modifications made to other parts of the system, either as
changes in the software, or changes in software- or hardware-configuration.

By making as much of the testing as possible executable, the regression testing can be
run as often as needed with virtually no increase in cost, thus helping developers to catch
bugs early and keep the cost of bug-fixing down.

5.7 Black Box vs. White Box Testing

According to [15], a white box approach to software testing means taking advantage of
detailed knowledge of the internal workings of the application. The tester has access
to the application’s source code, and can design the tests to take advantage of this

22

Add a
test

Make a
change

Run
tests

Test fails

Test passes

Run
tests

Test fails

Test Passes

Figure 5.2: The TDD Process

information, to, for instance, ensure that all the code is covered by the tests, or to
exercise specific parts of the program that is especially prone to errors.

The opposite to white-box testing is black box testing, in which the tester has little or no
knowledge of the inner workings of the application under test. With black box testing, the
tester focuses on the external factors of the software - the users and their expectations,
the configurations the software will run on, other software that the application will
interact with, and so on [3].

[3] also mentions grey box testing, in which you take advantage of some knowledge of
the application’s underlying technology, without necessarily having access to the source
code. This can be a powerful concept, especially in testing web applications, because
the Internet is built around loosely integrated components that connect via relatively
well-defined interfaces. It requires an understanding of the different parts of the web
platform to test web applications thoroughly.

5.8 Test-Driven Development

Test-Driven development is a software development technique that involves creating a
set of tests prior to developing functional code in small, rapid iterations. This forces
developers to think about how each piece of the software should function before starting
the implementation, and also ensures that completed code keeps working even in a
rapidly changing system.

Although TDD has been applied in some form by developers for a long time[10], it
has gained a lot of momentum in recent years, first and foremost from the increasing
adoption of agile methodologies. One of the corner stones of eXtreme Programming is
rapid feedback, and TDD provides this in scores by allowing the programmer not only
to test his own code immediately and with every change made, but also to test the entire
program before passing on new code to the rest of the development team, thus getting
immediate feedback on any erroneous change, ensuring that no modification made to the
system breaks existing code.

5.9 Testing Web Applications 23

5.8.1 Unit Testing in TDD

Traditionally, unit tests are written in the final stage of the development cycle, and is
often the most neglected part of the software development process [12], perhaps especially
when developers do the unit testing themselves, as adding new functionality often has
higher priority than ensuring quality. Hence, saying that Test-Driven Development is a
more time consuming process is somewhat like saying that actually writing the tests is
more time consuming than not writing them. If the work is supposed to be done anyway,
one might as well do it up front, and reap the benefits along the way.

In TDD, unit tests are placed in a test framework (e.g. JUnit), which helps minimise the
effort involved with testing. By using a test framework, a practically unlimited number
of tests can be executed at the click of a button, hence, more tests can be added without
incurring any additional expenses beyond the cost of their development. Compare this to
manual testing, where the cost of testing increases linearly with the length and number
of tests to be executed, resulting in only a limited number of tests being created. The
combination of a powerful test framework and a growing collection of unit tests provides
the developers with an executable blueprint that maximises the probability of the final
product being correct.

5.9 Testing Web Applications

The web is composed of several different technologies. On the client side we have html,
xhtml and xml for defining data structure, CSS (Cascading Style Sheets) for defining
presentation and JavaScript for defining behaviour and adding interactivity. Addition-
ally, each web browser has it’s own implementation of these languages, with slightly
different interpretations of the specifications. On the server side there is an even greater
number of languages, web servers and database implementations, and everything has to
play together for the web to work as an application platform.

This layering of the application makes it more difficult to test. Testing the presentation
layer usually requires the whole application to be deployed to an application server,
which in turn most likely needs a running database. This database also needs to be set
up with the correct data before each test is run, to ensure that the tests doesn’t influence
each other.

5.9.1 The Document Object Model

At the core of the web browser is the Document Object Model1 or DOM for short.
The DOM is an application programming interface (API) for accessing html and XML
documents, and defines the logical structure of the document and the way it’s accessed

1 http://www.w3.org/DOM/

24

Web Browser

Web Server

Web Application

Database

HTTP

HTML, JavaScript and CSS

Figure 5.3: The basic architecture of most web applications

and manipulated. Through the DOM, programmers can build documents, navigate their
structure and add, modify or delete elements and content [2].

5.9.2 Browser Incompatibilities

A lack of standards and specifications in the early days of the web, as well as fierce com-
petition in the browser market, led to a disparity in browser implementations, resulting
in a lot of incompatibilities between different browser vendors.

This is especially true for the JavaScript implementations of the DOM API. JavaScript
was originally released as a part of Netscape 2.0, in 1995, to add simple logic to web
forms. Microsoft soon followed with it’s own implementation called JScript, in 1996.
While the language implementations themselves were mostly identical, the environment
they were executed in, that is, the way they accessed the html document, was completely
different. The ECMA and the World Wide Web Consortium (W3C) has put a lot of effort
into standardising the technologies comprising the web platform, and today’s ecosystem
of browser implementations are much more compatible. Unfortunately though, there
still exists a lot of inconsistencies and incompatibilities [5] [1].

5.10 Summary

To ensure the quality of the software, it’s important to test it thoroughly, at several
levels of detail, ranging from the program’s individual units to acceptance testing of the

5.10 Summary 25

product’s functionality.

Because of their inherent complexity, acceptance testing web applications can be a chal-
lenge, and automating all the tests might not be feasible. Also, due to the browser
incompatibilities, acceptance testing of a web application should be done in an actual
web browser, and preferably in all the web browsers that are in use by the application’s
target demographic.

Chapter 6

CubicTest

6.1 Background

CubicTest was originally written by Stein K̊are Skytteren and Trond Marius Øvstetun
during the spring of 2005, as a part of their master thesis on Automatic Acceptance
Testing [14]. The goal of the application is to simplify the job of writing acceptance
tests and to make the process more accessible to non-technical users, first and foremost
by making the test definitions graphical and letting the user modify them through direct
manipulation.

During the spring of 2006 another thesis was written on the subject of CubicTest, by
master students Stine Lill Notto Olsen and Kjersti Loe, concentrating on the challenges
of testing dynamic web applications in CubicTest [13].

A study was also performed in the fall of 2006 by Jon Reinert Myhre and Elena Kalitina
on the usability and usefulness of CubicTest in eXtreme Programming development
teams [11].

6.2 Purpose

The purpose of CubicTest is to make it easier for the customer to write their own
acceptance tests. This is achieved by making the test definition an interactive, visual
process. Tests in CubicTest are composed of States, which represents states of the
application that the user want to test. Each state can contain any number of Page
Elements, which represent the elements the web page should contain in the current
state. To manipulate the state of the application, the user can create a User Interaction
transition from one state to another, defining the actions that has to be performed in
order to get to the next state.

28

When a test is complete, it can be exported from the internal CubicTest representation
to any system for testing web applications. The original AutAT application had support
for FIT, and later Canoo and jWebUnit. Currently, CubicTest is shipped with export
support for Watir, a framework for testing web applications in Internet Explorer written
in Ruby, and Selenium, a JavaScript based test runner that can run in almost any web
browser. This illustrates that adding support for new formats isn’t very difficult. There’s
also been talks of implementing an exporter to a human readable format, to allow tests
written in CubicTest to be executed manually.

6.3 Composition

The CubicTest interface consists of three different parts:

the editor, where the editing of the tests themselves takes place

the file tree, which allows access to the file system

the property panel, which allows for more detailed control of the different compo-
nents of the individual tests

The Editor

Everything in CubicTest revolves around the CubicTest Editor (see Figure 6.1). The
editor is divided into a palette, on the left, containing all the available controls, and a
canvas, to the right, for viewing and manipulating the tests. To define tests the user
drags the desired test controls from the palette and puts them together in the canvas to
model the interaction with the application.

The File Tree

The file tree allows access to the files contained in the project. Every project contains
a “tests” directory containing all the test files. Files produced by the different exporters
are stored under “generated”.

The Property Panel

The final part of the CubicTest interface is the Property Panel, seen at the bottom of
Figure 6.1. This is where the individual test components, like Page Elements and User
Interactions, are configured.

6.4 Architecture 29

6.4 Architecture

The application is implemented as a plug-in to Eclipse, an open source development
environment. It’s mostly written in Java, using the Graphical Editor Framework as a
basis for the graphical user interface. CubicTest is divided into six main packages:

Common contains utility and exception classes common to the entire CubicTest
plug-in.

Model contains the application model, which handles the internal representation
of the tests (see Figure 6.2).

Export is responsible for transforming the internal test representation to a format
suitable to be executed as a part of a build environment.

Persistence handles the storage and retrieval of tests from the file system.

Resources contains logic to handle test resources and track changes to the file
system.

UI takes care of everything related to the graphical user interface.

30

Figure 6.1: The CubicTest Editor

6.4 Architecture 31
A

p
p

li
c

a
ti

o
n

 S
ta

te
s

P
a

g
e

 E
le

m
e

n
ts

T
e

s
t

S
ta

te
s

T
ra

n
s

it
io

n
s

T
e

s
t

A
b

s
tr

a
c

tP
a

g
e

T
ra

n
s

it
io

n
N

o
d

e
T

ra
n

s
it

io
n

U
s

e
rI

n
te

ra
c

ti
o

n
P

a
g

e
E

le
m

e
n

t-
A

c
ti

o
n

*
1

P
a

g
e

C
o

m
m

o
n

1
*

P
a

g
e

E
le

m
e

n
t

*
1

C
o

n
n

e
c

ti
o

n
P

o
in

t

U
rl

S
ta

rt
P

o
in

t

T
it

le
Im

a
g

e
L

in
k

..
.

1

1

1

1

*

Figure 6.2: The CubicTest Application Model

Chapter 7

Exploring CubicTest’s Competition

Here wee will take a closer look at some other frameworks for acceptance testing web
applications. We will look at FIT, which has had a lot of success, and many other
frameworks either relies on FIT or use a FIT-like syntax. We will then look at Watir
and Selenium, both because they’re becoming increasingly popular, and because they
are, for the time being, the two frameworks that the CubicTest team has decided to
continue to support.

7.1 FIT

FIT (Framework for Integrated Test) 1 is a framework for integration testing created
by Ward Cunningham. While FIT isn’t usually used for functional testing, it’s core
concepts form the basis for many of the acceptance test frameworks available.

In FIT, tests are defined as simple tables written in html. This allows for viewing and
editing tests in a wide range of tools, including Word and Excel, which makes it an
excellent way to get customers, and non-technical people in general, involved in the test
definition process, as well as allowing them to track progress on development and status
on the tests.

One of the core concepts in FIT is the Fixture. A fixture is a special class that mediates
between the FIT framework and the application under test. Each table in a FIT test
document references a single fixture, and the fixture is responsible for using the test data
in the table against the AUT in a meaningful way.

An example of a FIT test is shown in Table 7.1. It uses the fixture WeeklyCompensation
and feeds it a set of test data: StandardHours, HolidayHours and Wage, as well as the
expected end result defined in the column Pay(). The code for the WeeklyCompensation

1 http://fit.c2.com/

34

fixture is reproduced in Listing 7.1, which uses one of the application’s domain objects,
WeeklyTimesheet, to do the calculation.

Payroll.Fixtures.WeeklyCompensation
StandardHours HolidayHours Wage Pay()
40 0 200 kr 8000
44 5 200 kr 11200
41 11 250 kr 15875

Table 7.1: Example FIT Table

Listing 7.1: The Java fixture referenced in Table 7.1.

1 public int StandardHours;
2 public int HolidayHours;
3 public Currency Wage;
4
5 public Currency Pay() {
6 WeeklyTimesheet timesheet = new WeeklyTimesheet(StandardHours ,

HolidayHours);
7 return timesheet.CalculatePay(Wage);
8 }
9 }

To run FIT tests you need a FIT runner written in the same language as your application.
However, this already exists for most of the popular programming languages, including
Java, C++, .Net, Ruby and Python.

7.2 Watir

Internet Explorer has a published interface, in the form of the Component Object Model
(COM) interface, that provides almost full control of the application and allows access
to the objects on the web pages presented by the browser [9]. Watir (Web Application
Testing in Ruby) is a test framework written in Ruby that can emulate user activity
in Internet Explorer by using the Ruby - COM bridge. Watir exposes an API to the
Internet Explorer browser that allows for controlling the browser from Ruby scripts.

Ruby is an open source, object-oriented scripting language, with support for most pro-
gramming related tasks, like accessing the file system, querying databases and commu-
nicating with other resources over a network. This allows both for flexibility in the way
test data is stored, as well as verifying results directly against various resources, like
databases and other back-end systems.

7.3 Selenium 35

7.3 Selenium

Selenium is a functional testing framework written mainly in JavaScript. One of Sele-
nium’s strong points is, like Watir, it’s ability to run tests directly in the web browser,
which brings the test environment much closer to the real use situation. Unlike Watir,
however, Selenium can be run in most modern browsers, including Firefox, Opera, Sa-
fari and Internet Explorer, making it possible to test the application on all it’s targeted
platforms.

7.3.1 Selenese

Tests in Selenium can either be written in a FIT-like language called Selenese, or using
the Selenium Remote Control from a range of programming languages, including Java,
.Net, Ruby, JavaScript and Python [6].

Selenium tests written in Selenese are, just like FIT tests, defined in html tables. Each
row has three columns: the first defines the command, and the remaining two are reserved
for arguments. The test in Table 7.2 shows a test of the Google search page. The test
first opens the root page of the domain (”/”), then proceeds to enter the text ”CubicTest”
in the search field (id=”q”), before it clicks on the search button (id=”btnG”) and waits
for a new page to load. Once the new page is loaded, the title is verified to be ”CubicTest
- Google-search”.

Test Google Search
open /
type q CubicTest
clickAndWait btnG
assertTitle CubicTest - Google-search

Table 7.2: Example Selenese Test testing the Google search page

Running tests written in Selenese is a matter of opening the TestRunner.html web page
in a web browser and starting the test runner. Due to security restrictions, the web
browsers disallow javascript to communicate across different domains, and thus the tests
have to reside on the same server as the application under test. Otherwise the Selenium
system wont be able to communicate with the application. It’s also possible to run tests
from a Firefox extension called Selenium IDE, which doesn’t impose this limitation.
This, however, limits you to only run your tests in Firefox.

7.3.2 Selenium RC

An alternative to writing tests in Selenese is using Selenium Remote Control. Selenium
RC lets you control a Selenium instance from most popular languages for web develop-

36

Java Program

Selenium HTTP Server

Selenium Core
(HTML and Javascript)

Browser

Firefox, Safari, Internet
Explorer, Opera, etc.

Configured with Proxy

HTTP Proxy

Launch and kill

Commands

Application
Under Test

HTTP

HTTP

Figure 7.1: The Selenium RC Architecture

ment, and in theory any programming language that can communicate over http could
be adopted to work with this solution.

Selenium RC works by creating a local web server that:

serves up the Selenium BrowserBot, a html/javascript application that is respon-
sible for driving the browser

acts as a proxy between the browser and the application under test,

works as a relay between the test code and the Selenium code running in the
browser (see Figure 7.1).

By proxying the traffic to the AUT, Selenium RC works around the security issues
mentioned earlier, thus allowing all the test code to reside outside the AUT web-server.
The Selenium RC server also relays commands from the test scripts to the browser.
Each command is issued as an HTTP request to Selenium RC, which stores it in a
temporary queue. At regular intervals, the RC server is polled by the BrowserBot for
new commands in the queue, which are then executed in the browser (see Figure 7.2).

7.4 Summary 37

Test Script Selenium RC
Server

Selenium Command

Selenium Client
(BrowserBot)

Poll command queue

New command

Figure 7.2: The Selenium RC command relay

7.3.3 Selenium IDE

There’s also a third option for creating Selenium test scripts. Selenium IDE (Integrated
Development Environment) (see Figure 7.3) is a Firefox Add-on2 that lets you record
your interaction with the browser directly to Selenese, and later also export the test
scripts to several different Selenium RC implementations, as well as edit and playback
stored tests. Allowing tests to be recorded directly from the browser lets the user focus
on the tests themselves and not on the specifics of the test definition language.

7.4 Summary

As we can see, all these frameworks allows for some way of writing tests in powerful
programming languages like Java and Ruby, among others. This both allows for highly
customised tests, and opens up the possibility of reusing test code. Selenium also allows
for recording tests from directly interacting with the application under test, which should
make test definition easier.

In the next part, we will look at four new features for CubicTest that should make the
application more useful and easier to use.

2 https://addons.mozilla.org/en-US/firefox/

38

Figure 7.3: The Selenium IDE

Part III

Own Contribution

Based on the findings in part II, four features has been selected and implemented, and
will be described in the following chapters. Then we will describe the experiment that
was performed to assess the value of the new additions to CubicTest.

Chapter 8

Test Orchestration

“The limits of language are the limits of one’s world”
Ludwig Wittgenstein

8.1 Requirements

One of the advantages of writing tests in a programming language like Java or Ruby is
the possibility to reuse code in multiple tests, often by creating a form of domain specific
language specifically tailored to the application under test. To enable code reuse, and
simplify maintenance, a solution for organising tests in hierarchies was needed. Letting
users nest their tests and extend existing ones would let them implement complex tasks
like ”Log in” or ”Add an Item to Shopping Cart”, and then reuse them later as discrete
operations.

8.2 Implementation

Due to the nature of the CubicTest-tests, which can have any number of forks, the
challenge of making tests extendable was two-fold: there was need for both a way to
reference one test from within another, and a way to specify what node of the referenced
test we wanted to extend. Thus the application model was extended with two new
classes, SubTest, for referencing the external test, and ExtensionPoint, to use as markers
for possible places to extend the referenced test (see figure 8.1). Additionaly, two new
graphical elements was added to represent the new object types in the CubicTest editor.

This proved to be a very powerful but complicated solution. Initial feedback suggested
that users had trouble understanding the flow of the nested tests. Thus, an additional,

42

Application StatesPage Elements

Test StatesTransitions

Test

AbstractPage

TransitionNodeTransition

UserInteraction
PageElement-

Action
* 1

Page Common

1*

PageElement * 1

ConnectionPoint

UrlStartPoint

Title Image Link
... 1

1

1

1

*

SubTest

*

ExtensionPoint

*

Figure 8.1: Two additions CubicTest’s application model

less complex implementation was developed, that enabled the creation of new tests that
used an Extension Point as a starting point for the test (see figure 8.3).

8.2 Implementation 43

A
 1

S
ta

te

A
 2

S
ta

te

A
1
 E

x
te

n
s
io

n
 P

o
in

t

S
ta

r
t

P
o

in
t

B
 1

S
ta

te

B
 2

S
ta

te

T
e
s
t

A
A

1
 E

x
te

n
s
io

n
 P

o
in

t

S
ta

r
t

P
o

in
t

+
=

B
 1

S
ta

te

B
 2

S
ta

te

A
 1

S
ta

te

A
 2

S
ta

te

S
ta

r
t

P
o

in
t

T
e

s
t
A

T
e

s
t

B
R

e
s
u

lt

Figure 8.2: Example: Test A contains an extension point on A1 (in yellow), Test B includes Test
A (in dark blue), and extends it from A1 with B2

44

A
 1

S
ta

te

A
 2

S
ta

te

A
1
 E

x
te

n
s
io

n
 P

o
in

t

S
ta

r
t P

o
in

t

C
 1

S
ta

te

C
 2

S
ta

te

S
ta

r
tP

o
in

t: T
e
s
t A

A
1
 E

x
te

n
s
io

n
 P

o
in

t

A
 1

S
ta

te

A
 2

S
ta

te

S
ta

r
t P

o
in

t

C
 1

S
ta

te

C
 2

S
ta

te

+
=

T
e

s
t A

T
e

s
t C

R
e

s
u

lt

Figure 8.3: Example: Test A contains an extension point on A1 (in yellow), Test C extends Test A
(in dark blue), and extends it from A1 with C1

Chapter 9

Integrating Java

“A different language is a different vision of life.”
Federico Fellini

Italian movie director

9.1 Requirements

From our own experience, one advantage of writing tests in a programming language
is the ability to test very special aspects of the application, like special rules for dates,
verifying your results against a database, etc. Creating predefined CubicTest controls
for every possible situation isn’t feasible, so to accommodate these needs a Custom Test
Step control was needed, to let the user write test steps in Java that could integrate
directly with the test runner.

9.2 Implementation

The application model was extended with a new class, CustomTestStep, and a corre-
sponding control in the CubicTest editor to represent custom test steps in the application
(see figure 9.1). A CustomTestStepLoader was also written, to allow us to load the java
classes dynamically.

The CustomTestStepLoader works by using Java’s URLClassLoader to load the compiled
.class files at runtime. The class is wrapped in a Proxy object before it’s returned, so
that the class instance itself can be swapped at any time if the source file is rebuilt. This
enables the user to see any changes made to the source code reflected instantly in the
CubicTest editor.

46

Application StatesPage Elements

Test StatesTransitions

Test

AbstractPage

TransitionNodeTransition

UserInteraction
PageElement-

Action
* 1

Page Common

1*

PageElement * 1

ConnectionPoint

UrlStartPoint

Title Image Link
... 1

1

1

1

*

SubTest

*

ExtensionPoint

*

CustomTestStep

*

Figure 9.1: Another addition CubicTest’s application model

9.3 Example

A user is creating an acceptance test for an online banking system, and wants to verify
that the due date the application suggests is today or some date in the future. From
figure 9.3 we see that the user first uses the ”Add Custom Test Step” command (1) and
drags the control onto the work area (2) and enters a name, in this case “Verify Due
Date”. At this point CubicTest creates the source code for the new test step and stores
it in the project’s src folder. As soon as the source file is compiled, a reference to the
new “Verify Due Date” control appears at the bottom of the palette in the ”Custom Test
Steps” section (3). The user can now edit the source of “Verify Due Date” by opening
the file from the file browser or double-clicking the ”Verify Due Date” state (2) in the
work area. Listing 9.1 is a simple example on what the source code for ”Verify Due Date”
might look like.

Listing 9.1: Custom Test Step Example
1 public class VerifyDueDate implements ICustomTestStep {
2
3 public void execute(Map <String ,String > config , IElementContext context ,

Document document) throws Exception {
4 Input element = (Input) document.getElements("//input[@id=’dueDate ’]").

get(0);
5 Date today = new Date();
6 DateFormat format = new SimpleDateFormat ();
7
8 try {
9 Date dueDate = format.parse(element.toString ());

10
11 if(dueDate.before(today)) {
12 throw new Exception("Due date is before today’s date");
13 }
14 } catch (ParseException e) {
15 throw new Exception("Invalid date format");

9.3 Example 47

execute(Document) : void
getDisplayText() : String

customTestClass : String
CustomTestStep

getDisplayText() : String
getDescription() : String
getName() : String
execute(Document) : String

ICustomTestStep

1

newInstance(String className) : ICustomTestStep
getClasses(File directory) : List<String>

classLoader : ClassLoader
CustomTestStepLoader

1

customTestStep

customTestStepLoader

Figure 9.2: The Custom Test Step classes

16 }
17
18 }
19
20 // Tooltip text
21 public String getDescription () {
22 return this.getName ();
23 }
24
25 // The text is displayed in the editor
26 public String getDisplayText () {
27 return this.getName ();
28 }
29
30 // The name of the control
31 public String getName () {
32 return "Verify Due Date";
33 }
34
35 public List <String > getArgumentNames () {
36 return null;
37 }
38 }

48

Figure 9.3: CustomTestStep Example Test

Chapter 10

Visualising Tests

“Every creator painfully experiences the chasm between his
inner vision and its ultimate expression.”

Isaac Bashevis Singer
American author

10.1 Requirements

It can be somewhat difficult, especially for non-technical users, to comprehend exactly
what the test they’re creating represents in terms of functionality. To help users with
the process of creating tests up front, and hence better support the use of CubicTest as a
part of the requirements specification process and as a driver for development, a way for
users to explore their tests interactively was suggested. Giving the users the possibility
to explore a prototype of their application will increase their understanding of the tests
they produce.

10.2 Implementation

Using test definitions as a model of application composition and behaviour, a new ex-
porter was implemented that produces a simple mock-up of the functionality defined in
the individual tests. Every State is converted to a separate web page, with each of their
Page Elements converted to their corresponding html elements, and each web page is
linked together with the pages they are connected to in the test (see Figure 10.2). In
addition, User Interactions are converted to a set of javascript rules that emulate the
way the real web pages are supposed to behave, so that the interaction itself can be

50

tested. Each transition is converted to a rule set that make up the required steps that
needs to be performed for a transition to be triggered.

10.3 Example

The following example shows a test of the login system of CubicShop (see Figure 10.1),
and the first web page from the corresponding html prototype (see Figure 10.2). Cubic-
Shop is an example application that’s been developed along side the CubicTest plug-in
to serve as a test bed for new features and as a demo application in documentation and
presentations.

The web page displays all the elements from the state ”Frontpage”, as well the ele-
ments defined in the Common. On the right hand side, all the outbound transitions
are displayed. In this case there’s only one, which takes you to the ”Logged in” state.
Performing the steps outlined in the transition will take the user to the next state. This
is accomplished by the javascript embedded in the webpage, reproduced in Listing 10.1.
Line 2 defines the rules for the user interaction, stating that the ’value’ property of
the first element should be the username ”skytsteink”, and that the value of the sec-
ond element is irrelevant, the click action itself is all that we’re interested in. Lines 5
and 10 defines the elements themselves, and connects the right actions on them to their
corresponding rules (rule 0 and rule 1 on line 2).

Listing 10.1: The javascript code for the user interaction
1 <script type=’text/javascript ’>
2 UserInteractions.actions [’1157551842439. html ’] = [[’value ’, ’skytsteink

’], [’value ’, null]];
3 </script >
4 [...]
5 <input type="textfield" value="Username" name="username"
6 id="username"
7 onKeyUp="UserInteractions.test (’1157551842439. html ’, 0, this);"
8 class="actionable" />
9 [...]

10 <input type="button" value="Log in" name="logIn"
11 id="logIn"
12 onClick="UserInteractions.test (’1157551842439. html ’, 1, this);"
13 class="actionable" />

10.3 Example 51

Figure 10.1: Test of the login form of the CubicShop application

Figure 10.2: The resulting html prototype of the test in figure 10.1

Chapter 11

Testing Existing Applications - Visual
Recording of User Interaction

“Automatic simply means that you can’t repair it yourself.”
Mary H. Waldrip

British author

11.1 Requirements

Recognising that not everyone wants to do acceptance testing as part of a test driven
development process, or even do TDD at all, we wanted to simplify the process of creating
tests “after the fact”. Allowing the user to create tests by interacting directly with the
running web-application would hopefully speed up the test creation process and reduce
the number of errors in the tests.

11.2 Implementation

To accomplish this, a way to integrate a web browser with the CubicTest Plug-in was
needed. There is a built-in web browser in the Java Swing framework, but the exposed
API turned out to be much too simplistic for our needs, since we needed a way to
communicate directly with the browser’s Document Object Model as well as catch any
events triggered by the user.

We finally settled on using Selenium Remote Control. Selenium RC is a part of the
Selenium test framework, written in JavaScript, and built to run directly in the browser,
while being controlled remotely from Java (see Section 7.3.2). Using Selenium RC as a

54

relay between the browser and the application would give us full access to the browser, as
well as allowing the record functionality to work across platforms and browser software.

11.2.1 Architectural Overview

To keep the CubicTest source tree lean, we decided to implement the recorder as a
separate Eclipse plug-in (see Figure 11.1). Sending commands to the browser was al-
ready implemented in Selenium RC, but to communicate back from the browser to the
recorder we decided to use JSON-RPC-Java1. JSON-RPC-Java is a Remote Procedure
Call implementation for exposing server side Java objects as JavaScript objects on the
client, using JSON2 as the message carrier. JSON, or JavaScript Object Notation, is a
subset of the JavaScript language made specifically for describing data structures. By
extending the Selenium RC server with JSON-RPC-Java, and exposing an instance of
JSONRecorder on the client side (see Figure 11.2), we could control the entire recording
process from the browser through an easy-to-use JavaScript object.

On the client side, we implemented a JavaScript library to handle the capturing of the
user’s interaction with the browser. By registering keyboard- and mouse-event listeners
on the root node (body element) of the web page we could capture all user input to the
web page. In the current implementation, only mouse clicks and text entry is handled,
and then only when triggered on objects that can be represented in the CubicTest model.

When a valid event is triggered on a recognised html element, the html element is se-
rialised to JSON on the client side and then fed via JSON-RPC to JSONRecorder’s
addAction method, together with the correct action identifier (CLICK, DBLCLICK or
ENTER TEXT). On the server side, JSONElementConverter is responsible for convert-
ing JSON strings to CubicTest PageElements, before the PageElement and a corre-
sponding UserInteraction is added to the data model of the CubicTest editor. We also
implemented a custom context menu on the browser side to allow adding various checks
without creating UserInteractions.

1 http://oss.metaparadigm.com/jsonrpc/
2 http://www.json.org/

11.2 Implementation 55

Selenium HTTP Server

CubicRecorder JSONRecorder

Browser

running the application
through BrowserBot

JSON RPC

Record data

CubicTest

Test definition

Figure 11.1: The CubicRecorder architecture

assertPresent(String) : boolean
assertNotPresent(String) : boolean
assertTextPresent(String) : boolean
addAction(String, String) : void
addAction(String, String, String) : void
setStateTitle(String) : void

serializer : JSONSerializer
JSONRecorder

setCursor(AbstractPage)
addPageElementToCurrentPage(PageElement)
addPageElement(PageElement)
addUserInput(UserInteraction)
setStateTitle(String)

IRecorder

<<Interface>>

1

recorder

createElementFromJson(String) : PageElement
createElementFromJson(JSONObject) : PageElement

pageElements : HashMap<String, PageElement>
JSONElementConverter

1

elementConverter

test : Test
cursor : AbstractPage
userInteractionsTransition : UserInteractionsTransition
commandStack : CommandStack
autoLayout : AutoLayout

CubicRecorder

display : Display
GUIAwareRecorder

1

recorder

Figure 11.2: The most important classes of the CubicRecorder Plug-in

Chapter 12

Experiment Design

“A thinker sees his own actions as experiments and
questions - as attempts to find out something. Success and

failure are for him answers above all.”
Friedrich Nietzsche

German philosopher

To collect data for the GQM measurement plan outlined in chapter 4, we held a set of
user testing sessions. Each user was first given an introduction to the software, followed
by a set of exercises and a questionnaire.

The study aimed to evaluate the following hypotheses:

H01: The html exporter has no effect on the number of errors produced
H02: The html exporter has no effect on the user’s understanding of the tests
H03: The html exporter has no effect on the user’s efficiency when creating
tests
H04: The recorder has no effect on the number of errors produced
H05: The recorder has no effect on the user’s efficiency when creating tests
H06: The new features (the html exporter and the recorder) has no effect on
the user’s understanding of CubicTest
H07: The new features (the html exporter and the recorder) has no effect on
the user’s preception of CubicTest’s usability
H08: The new features (the html exporter and the recorder) has no effect on
the user’s preception of CubicTest’s learnability

Each of these hypotheses will be tested against their counterparts:

H11: The html exporter has an effect on the number of errors produced,
either positive or negative
H12: The html exporter has an effect on the user’s understanding of the tests,

58

Figure 12.1: The subjects was shown a set of videos to introduce them to CubicTest

either positive or negative
H13: The html exporter has an effect on the user’s efficiency when creating
tests, either positive or negative
H14: The recorder has an effect on the number of errors produced, either
positive or negative
H15: The recorder has an effect on the user’s efficiency when creating tests,
either positive or negative
H16: The new features (the html exporter and the recorder) have an effect
on the user’s understanding of CubicTest, either positive or negative
H17: The new features (the html exporter and the recorder) have an effect
on the user’s preception of CubicTest’s usability, either positive or negative
H18: The new features (the html exporter and the recorder) have an effect on
the user’s preception of CubicTest’s learnability, either positive or negative

12.1 Introduction

Each participant was given a short introduction, explaining the basics of eXtreme Pro-
gramming and software testing in general, as well as acceptance testing. To ensure
everyone got approximately the same background information, a set of video tutorials
was created, covering the basic usage of CubicTest, as well as the usage of the new
plug-ins. The introduction and video tutorials took approximately 15 minutes.

12.2 Exercises 59

12.2 Exercises

Each test subject was randomly assigned to one of two groups. Group A was given a
version of CubicTest with the new plug-ins, while Group B used version of CubicTest
with the new features disabled. After the introduction, the subject worked through a
set of exercises, shown in Appendix C. Each exercise was designed with specific metrics
in mind:

Exercise A1 was given to answer Metric 1 - Number of errors in tests, with the the
subjects in Group A inspecting their test with the html Exporter (see chapter 10) and
making further adjustments to their test as they saw fit. After doing a pilot test with
the exercises defined here, the following error categories were defined:

Missing actions in User Interaction
Omitting required actions from a User Interaction (see chapter 6), like forgetting
to fill out a form field or checking a check box.

Missing Page Elements
Forgetting to include a Page Element integral to the User Story being tested, for
instance forgetting to include a Submit button on a form.

Missing User Interactions
Missing an entire User Interaction transition.

Missing States
Missing an entire State / Transition Node

Missing verification
Forgetting to verify that the action performed actually resulted in the desired
outcome, for instance a feedback message saying that some action was performed
successfully.

Wrong use of Page Elements
Using the wrong type of Page Element, for instance using a password field instead
of a regular text field, or vice versa.

Erroneous or incomplete actions
Creating wrong or partial actions, for instance selecting a click action instead of
”enter text”, or selecting ”enter text” without specifying the text to be entered.

Logical errors
Other errors that deal with the underlying logic of the test, for instance omitting
a whole step in some process, or misplacing a Page Element.

The purpose of Exercise A2 was to measure M5 - Comprehension of Tests, looking at
how inspecting an unknown test in the html exporter influences Group A’s understanding
of the test.

60

Exercise B was designed to study how using the recorder plug-in affects time usage
and error rate (Metrics M1 - Number of Errors in Tests and M2 - Time Usage).

The exercises were given as simple User Stories, and they were hence quite open-ended,
as defining each exercise in too much detail would leave little room for the participants to
make their own interpretation of the software and make their own decisions and mistakes.

Doing comparisons on the number of errors would be difficult with this set-up, as one
might argue that longer tests will open for more possibilities of making mistakes. There
are, however, several ways one can count errors:

Number of errors
This is probably the simplest form, but it raises some issues, for instance how
to count missing actions in User Interactions - is three missing actions one error
(faulty User Interaction) or three (missing actions)? Nor does it account for the
length of the test, so subjects creating longer tests will potentially create more
errors.

Number of errors divided by number of test elements
This resembles the faults / Lines of Code metric often used in studies dealing with
software quality. It has many of the same problems as Number of Errors, with the
exception that it does take the length of the tests into account.

Number of observed error types
Instead of counting individual errors, one can look at what types of errors are
present in the test. This both deals with the problem of deciding what exactly
constitutes one error, and isn’t greatly affected by the length of the test, but
doesn’t really represent the number of faults, only what types of errors the user
makes.

This experiment will use both Number of errors divided by number of test elements and
Number of observed error types as a basis for measuring error rate. The length of each
test is measured as follows, starting with the Start Node:

Each Transition Node (Start Node, Page, Common, etc.) counts as 1

Each transition counts as 1 + the number of actions it contains

Each Page Element counts as 1, including Contexts

The total length is then calculated by adding together the test’s length with the number
of missing elements.

12.3 Questionnaire

After the exercises, the subject filled in a questionnaire relating to several aspects of
the CubicTest software, designed to measure M6 - Comprehension of CubicTest, and

12.3 Questionnaire 61

their subjective opinion of the software’s usability and learning curve (metrics M3 and
M4), before participating in a short, informal interview about their experience with the
software, to allow for clarifications and to let the subjects ask any questions they might
have. Each test session took approximately one hour from start to finish.

Part IV

Evaluation

The user testing was conducted during week 13, using the usability lab at IDI. In total,
13 first and second year students participated. This part of the thesis will take a closer
look at the collected data and evaluate the results of the study. Then the individual
features and their effect will be discussed. Finally, some suggestions for future work
related to CubicTest will be presented.

Chapter 13

Threats to Validity

Here we will highlight some of the most important threats to the validity of the study.
The following list is based on a set of possible threats suggested by Wohlin et al. in [4]:

Low statistical power
An experiment’s statistical power expresses the experiment’s ability to reveal a
true pattern in the data. Lower statistical power leads to a higher risk of drawing
an erroneous conclusion, either by rejecting a valid hypothesis, or failing to reject
an invalid one. There are rather few testers in this experiment, and hence this is
an important threat to consider. Appendix A examines the statistical power of
the study, and concludes that we have to increase the β to around 30%, given our
sample size of 13 and the measured effect sizes.

Reliability of measures
The validity of an experiment is highly dependent on the reliability of the measures.
This in turn may be influenced by many factors, including poor question wording,
bad instrumentation or bad instrument layout. The basic principle is that when
you measure a phenomenon twice, the outcome shall be the same. Some of the
metrics defined in this experiment are based on subjective measures, and can as
such not be guaranteed to yield the same results if measured again. However, a
standardised introduction, and guidance to how one should do the exercises should
help mitigate this threat.

Maturation
This is the effect of the subjects reacting differently as time passes, for instance
becoming bored, or learning from interacting with the software. For the most
part, this should affect both groups equally. However, if the learning curve differs
between the two versions of CubicTest, this could be a problem.

Selection
How the subjects are selected may influence the outcome of the study. People who
volunteer to participate in a study, as is the case here, are often more motivated

66

to learn new things. Even though the test subjects was randomly assigned to the
two groups, and hence selection should affect each group equally, this does affect
the external validity of the experiment, that is, it might limit our ability to apply
the results to the general population. However, we are mostly concerned with the
effects of the different treatments, and, provided they have a moderate to large
effect, it should be possible to draw some general conclusions.

Fishing and experimenter expectancies
This threat deals with researchers’ and test subjects’ preconceptions about the
specific outcome of the study. The participants was not informed about the exact
focus of the study, and as such shouldn’t have too many opinions on the outcome.
They were also informed that the software is still a proof-of-concept, and of the
importance of giving accurate and honest responses. As for the researchers, this
threat can be somewhat mediated by defining the study in detail before conducting
the experiment.

Chapter 14

Measurements

In this chapter we will take a closer look at the data collected in the experiment. The
data is summarised in figures 14.2 and 14.3. All the data has been evaluated using
two-sided t-tests, with a significance level of 0.10.

14.1 M1 - Number of Errors in Tests

Looking at the data from the exercises, we see that, for exercise A1, which was conducted
with the HTML Exporter by group A, there is a significant difference (p < 0.1) for both
the occurrence of different error types, overall number of errors and errors / element.
We also see that the difference is quite large - about 60%, and the effect size ranges from
1 to around 1.3, which is considered to be moderate to large effect.

For exercise B, completed by group A by using the recorder, we see similar results, but
with even higher differences between the two groups.

This shows that Group A, using the new additions to CubicTest, created significantly
fewer errors than the control group. The data also suggests that Group A spent slightly
more time on exercise A. Although this is as expected, since they performed the addi-
tional task of inspecting their test in the HTML Exporter, this could have had some
impact on the error reduction. However, looking at the scatter plot of Time Usage vs.
Errors / Element Figure 14.1 and the results of a regression analysis (Table 14.1) we see
that there is no observable correlation, with R2 around 0.1.

This leads us to reject the hypotheses

H01: The html exporter has no effect on the number of errors produced
H04: The recorder has no effect on the number of errors produced

We will thus accept the alternative hypotheses

68

Multiple R 0.31614502
R2 0.09994767
Adjusted R2 0.01812473
Observations 13

Table 14.1: Regression analysis of Time Usage vs Errors / Element for exercise A1

Errors / element

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0 5 10 15 20

Errors / element

Figure 14.1: Scatter plot of Time Usage vs. Errors / Element for exercise A1

H11: The html exporter has a positive effect on the number of errors produced
H14: The recorder has a positive effect on the number of errors produced

14.2 M2 - Time Usage

The data shows no significant difference in time usage between the two groups for exercise
A1, and the effect size is only moderate, at around 0.6, leading us to keep the null
hypothesis

H03: The html exporter has no effect on the user’s efficiency when creating
tests

However, time usage for exercise B has a significant difference, with group A being, on
average, about 30% faster, and the effect size at 1.0 is considered to be moderate to
large, leading to the rejection of the hypothesis

H05: The recorder has no effect on the user’s efficiency when creating tests

and the acceptance of the alternate hypothesis

14.3 M3 - Perceived Ease of Use and M4 - Perceived Ease of Learning 69

H15: The recorder has a positive effect on the user’s efficiency when creating
tests

14.3 M3 - Perceived Ease of Use and M4 - Perceived Ease of
Learning

The new features does not seem to have a noticeable effect on the user’s perception
of the application’s ease-of-use or ease-of-learning, with both high p-values and only
moderate effect sizes. As the users in group A did become more efficient, and produced
fewer errors, it might be that the effect simply is too small to be noticed in such a small
experiment. Both groups also scored the application quite high, with no score below 3,
on a four point scale, leaving little room for improvement. A more fine grained scale
could perhaps have produced a more discernible effect.

In any case, we have to keep the following null hypothesis

H08: The new features (the html exporter and the recorder) have no effect
on the user’s preception of CubicTest’s learnability

14.4 M5 - Comprehension of Tests

This metric was measured through exercise A2, with the answers scored from 0 - Com-
pletely wrong to 2 - Correct (see page 14). The data shows no difference between the
performance of the two groups, and only a small to moderate effect size, leading us to
conclude that the HTML Exporter has little effect on the users’ comprehension tests,
and thus we keep the null hypothesis

H02: The html exporter has no effect on the user’s understanding of the tests

14.5 M6 - Comprehension of CubicTest

To measure the users’ understanding of key concepts in CubicTest, they were given
a questionnaire after the exercises were completed. The answers were rated from 0 -
Completely wrong to 2 - Correct (see page 15), and are shown in the last four columns
of figure 14.3.

With such high p-values and low effect sizes, the results cannot be considered significant,
and thus we have to keep the null hypothesis

H06: The new features (the html exporter and the recorder) have no effect
on the user’s understanding of CubicTest

70

14.6 M7 - CubicTest’s Utility

To keep the scope more manageable, the new test elements, Java Test Steps and Sub-
Tests, were excluded from the experiment.

The SubTest control, however, has been used with great success in tests for our demo
application, CubicShop, and has made it possible to rapidly create several, complex tests
that otherwise would be both time consuming to write and unwieldy to maintain. By
being able to reuse the same test procedures over and over, we have been able to cover an
increased number of test scenarios, almost without increasing the size of the test suite.
At the time of writing, the test suite contains, in total, 233 test controls distributed over
12 files (see Table 14.2). By calculating the length of each test including each subtest,
we get the total number of elements that would have been needed to recreate the same
test suite without subtests, in this case 394, or an increase of about 70%.

This is, however, anecdotal evidence, and the frequency by which subtests are used might
be exaggerated, since the main purpose of the test suite is to test CubicTest, and not
the demo application. To get a more accurate picture of the usefulness of this feature,
one would have to look at “real world” CubicTest-test suites. Unfortunately, at the time
of writing, this is not available.

The Java Test Step control relies on a test runner written in Java. Two such projects,
CubicUnit and Cubic Selenium Runner, are in the works, but not yet completed, making
it problematic to do a good assessment of the value of the new feature. Thus, this area
will have to be investigated further. The Cubic team does, however, consider custom
test steps to be an integral part of getting CubicTest more widely adopted, as being able
to write tests partly in Java will go a long way towards eliminating the need for writing
functional tests outside of CubicTest.

14.6 M7 - CubicTest’s Utility 71

Test
Name

Test Elements Extension
Points

Subtests Total
number of
Elements

Referenced
SubTests

contents 52 52
delete after
purchase

20 1 82 purchase af-
ter login

feedback 17 17
frontpage 32 5 32
login 13 1 13
purchase
cube

5 4 47 login, open
webshop,
buy box,
log out

purchase af-
ter login

15 1 3 62 purchase,
login, pur-
chase

purchase 17 1 17
search 11 1 43 frontpage
buy box 12 2 12
log out 10 1 10
open web-
shop

7 2 7

Total 211 13 9 394

Table 14.2: Statistics from the CubicShop test suite. Total number of Elements is calculated as
Test Elements + Total number of Elements for each subtest.

72

G
r
o

u
p

 A
:

N
e
w

 v
e
rs

io
n

G
r
o

u
p

 B
:

O
ld

 v
e
rs

io
n

E
x
e
r
c
is

e
 A

2

U
s
e
r

G
r
o

u
p

T
im

e
 u

s
a
g

e
E
r
r
o

r

ty
p

e
s

E
r
r
o

r
s

T
o

ta
l

L
e
n

g
th

E
r
r
o

r
s
 /

e
le

m
e
n

t

S
c
o

r
e

(
0

-2
)

T
im

e
 u

s
a
g

e
E
r
r
o

r

ty
p

e
s

E
r
r
o

r
s

T
o

ta
l

L
e
n

g
th

E
r
r
o

r
s
 /

E
le

m
e
n

t

1
A

1
1

1
3

1
8

0
,1

7
2

1
0

0
0

2
2

0
,0

0

3
A

1
2

2
7

3
0

0
,2

3
0

9
1

1
2
3

0
,0

4

5
A

1
5

1
2

1
4

0
,1

4
2

1
1

1
1

2
4

0
,0

4

7
A

3
0

0
1
6

0
,0

0
2

2
1

1
2
2

0
,0

5

9
A

1
0

2
2

2
1

0
,1

0
2

4
0

0
2
2

0
,0

0

1
1

A
1
9

0
0

2
7

0
,0

0
2

5
0

0
2
4

0
,0

0

1
3

A
1
1

1
1

2
0

0
,0

5
2

6
1

1
2
4

0
,0

4

2
B

1
5

2
6

2
1

0
,2

9
2

9
2

9
2
4

0
,3

8

4
B

9
0

0
1
7

0
,0

0
2

8
2

2
2
3

0
,0

9

6
B

1
0

3
8

2
0

0
,4

0
2

8
3

3
2
4

0
,1

3

8
B

8
3

5
1
8

0
,2

8
2

1
2

2
6

2
6

0
,2

3

1
0

B
3

5
8

1
4

0
,5

7
2

1
0

1
1

2
3

0
,0

4

1
2

B
8

2
3

1
4

0
,2

1
2

1
0

0
0

2
5

0
,0

0

p
-v

a
lu

e
:

0
,2

9
3

0
,0

5
6

0
,0

8
8

0
,2

0
6

0
,0

3
4

0
,3

7
7

0
,0

8
8

0
,0

3
2

0
,0

4
4

0
,0

7
8

0
,0

4
5

A
v
g

:
1
0
,3

1
1
,6

9
3
,4

6
1
9
,2

3
0
,1

9
1
,8

5
8
,0

0
1
,0

8
1
,9

2
2
3
,5

4
0
,0

8

A
v
g

. A
:

1
1
,5

7
1
,0

0
2
,1

4
1
9
,2

3
0
,1

0
1
,7

1
6
,7

1
0
,5

7
0
,5

7
2
3
,0

0
0
,0

2

A
v
g

. B
:

8
,8

3
2
,5

0
5
,0

0
1
7
,3

3
0
,2

9
2
,0

0
9
,5

0
1
,6

7
3
,5

0
2
4
,1

7
0
,1

4

D
iff. I

n
 %

:
3
1
%

-6
0
%

-5
7
%

1
1
%

-6
6
%

-1
4
%

-2
9
%

-6
6
%

-8
4
%

-5
%

-8
3
%

E
ffe

c
t s

iz
e
:

0
,6

2
-1

,1
6

-1
,0

3
0
,7

7
-1

,3
0

-0
,5

3
-1

,0
7

-1
,3

3
-1

,2
1

-1
,0

7
-1

,2
0

E
x
e
r
c
is

e
 A

1
E
x
e
r
c
is

e
 B

Figure 14.2: Summary of the data from the exercises

14.6 M7 - CubicTest’s Utility 73

G
r
o

u
p

 A
:

N
e
w

 v
e
rs

io
n

G
r
o

u
p

 B
:

O
ld

 v
e
rs

io
n

U
s
e
r

G
r
o

u
p

P
u

r
p

o
s
e
 o

f

C
u

b
ic

T
e
s
t

"
C

u
b

ic
T
e
s
t

is

e
a
s
y
 t

o
 u

s
e
"

"
C

u
b

ic
T
e
s
t

is

e
a
s
y
 t

o
 l

e
a
r
n

"

E
x
p

e
r
ie

n
c
e

w
it

h
 E

c
li

p
s
e

P
a
g

e
/

S
ta

te
C

o
m

m
o

n
C

o
n

te
x
t

U
s
e
r

I
n

te
r
a
c
ti

o
n

1
A

3
3

4
3

2
2

0
2

3
A

3
4

3
3

2
2

2
2

5
A

2
3

4
2

0
0

0
2

7
A

2
3

4
4

2
2

2
2

9
A

3
3

4
3

2
2

1
2

1
1

A
3

4
4

3
2

2
2

2

1
3

A
3

4
4

3
2

0
0

1

2
B

3
3

3
3

2
2

2
2

4
B

3
3

3
3

2
0

0
1

6
B

2
4

4
3

0
2

0
1

8
B

3
3

4
3

2
2

0
2

1
0

B
0

3
3

3
1

1
0

2

1
2

B
3

3
4

4
2

2
0

2

p
-v

a
lu

e
:

0
,4

5
9

0
,3

4
9

0
,1

9
3

0
,5

6
7

0
,6

3
7

0
,8

9
1

0
,2

2
0

0
,4

5
9

A
v
g

:
2
,5

4
3
,3

1
3
,6

9
3
,0

8
1
,6

2
1
,4

6
0
,6

9
1
,7

7

A
v
g

.
A

:
2
,7

1
3
,4

3
3
,8

6
3
,0

0
1
,7

1
1
,4

3
1
,0

0
1
,8

6

A
v
g

.
B

:
2
,3

3
3
,1

7
3
,5

0
3
,1

7
1
,5

0
1
,5

0
0
,3

3
1
,6

7

D
if

f.
 I

n
 %

:
1
6
%

8
%

1
0
%

-5
%

1
4
%

-5
%

2
0
0
%

1
1
%

E
ff

e
c
t

s
iz

e
:

0
,4

1
0
,5

5
0
,7

6
-0

,3
3

0
,2

7
-0

,0
8

0
,7

3
0
,4

2

C
o

m
p

r
e
h

e
n

s
io

n

Figure 14.3: Data from the questionnaire

Chapter 15

Goal Attainment and Conclusion

15.1 Goal

In chapter 4 we specified the following goal for this study:

Analyze CubicTest
for the purpose of improving the product
with respect to usability, utility, user comprehension, quality and ef-
ficiency for writing and analyzing acceptance tests
as seen from the software developer’s point of view
in the context of web application development

To evaluate the attainment of this goal, five questions were defined. We will now look
at each question, and the answers provided by our metrics.

15.2 Questions

Question 1 Quality

Does the use of the new features increase the quality of the tests produced,
compared to using CubicTest without the new features?

To measure this, we have metric M1 - Number of Errors in Tests. As we can see from
chapter 14, there’s an overall improvement in error rates both from using the HTML
Exporter and the Recorder.

Question 2 Efficiency

Does the use of the new features increase the efficiency of the test creation
process, compared to using CubicTest without the new features?

76

To answer this question we have metric M2 - Time Usage. Looking at the results in
chapter 14, we see that the Recorder does have a positive effect on time usage, with the
users of group A being on average about 30% faster than the control group.

Question 3 Comprehension

Does the use of the new features improve the user’s comprehension of Cu-
bicTest compared to using CubicTest without the new features?

This question is answered by metrics M5 - Comprehension of Tests and M6 - Compre-
hension of CubicTest. The data shows no difference between the two groups in this area,
and we must conclude that the new features do not improve the users’ comprehension
and understanding of the concepts in CubicTest.

Question 4 Utility

Does the new features increase the utility of CubicTest both with respect to
the old version, and compared to other, similar tools?

While M7 - CubicTest’s Utility lacks reliable, empirical data, it seems safe to conclude
that the new features has increased CubicTest’s utility and usefulness.

Question 5 Usability

Does the new features increase the usability of CubicTest compared to the
old version?

Looking at metric M3 - Perceived ease of Use, we see no noticeable improvement, all the
test subjects found the application’s usability to be more or less the same. However, M1 -
Number of Errors in Tests shows that Group A did create significantly fewer errors, which
does indicate an improvement in the usability or understandability of the application.

Question 6 Learnability

Does the new features make CubicTest easier to learn, compared to the old
version?

M4 - Perceived Ease of Learning shows no difference between the two groups. Neither
does the metrics for comprehension, M5 and M6. Thus we can only conclude that the
new features doesn’t influence the application’s learning curve.

15.3 Conclusion

This project set out to explore further improvements of CubicTest, to make it a more
valuable tool for acceptance testing. Four suggestions has been presented and imple-
mented, and two of them has been evaluated through an empirical experiment. The

15.3 Conclusion 77

results shows that the new features have increased CubicTest’s usability, utility, qual-
ity and efficiency, and all of them have been accepted into the CubicTest source code
repository, and will be included in the final 1.0 release later this year.

Chapter 16

Future Work

16.1 Future Work on CubicTest

While a lot of new functionality has been added to CubicTest over the last year, both
in relation to this project as well as additions made by the rest of the Cubic team, there
will always be room for further improvements:

“Record from here”
The new Recorder does make it easier to create new tests. However, by combining
the Recorder with the Selenium Runner, it should be possible to let the user
continue recording from an arbitrary point in the test, buy running the existing
steps up to the selected state, and then hand over control to the recorder.

Interactive creation of User Interactions
By combining the HTML Exporter with the Recorder, it should be possible to
create User Interactions by interacting with the html mock-up.

Test Refactoring
It should be possible to automate various refactoring tasks, like extracting part of
a test as a SubTest, or vice versa, merging two or more States, etc.

Embedding the Recorder
The Recorder, as it is implemented now, uses an external browser instance to run
the record session. It should be possible to use one of the Java web browser widgets
available to run the record session within Eclipse.

Connecting code and acceptance tests
It would be interesting to look at the possibility of connecting tests from CubicTest
with the actual code for the project, and keep track of test coverage, track code
changes, etc.

Supporting other platforms

80

The development of CubicTest has so far been entirely focused on testing web
applications. It should, however, also be possible to support testing of other kinds
of GUI platforms, for instance Java/Swing, Qt, or Adobe Flex.

16.2 Future Empirical Experiments

As CubicTest reaches the final 1.0 release later this year, we will hopefully start seeing
some projects adopting CubicTest to handle acceptance testing. If so, it would be very
interesting to take a closer look at how the teams use the tool and it’s various features,
as well as customer involvement and how the developers and customers collaborate on
acceptance testing.

Part V

Appendix

Appendix A

Statistical Power

Using the formula N = 4(Uα/2+Uβ)2

ES2 we can calculate the needed effect size, given the
number of test subjects (in this case 13) and the selected α and β values. Ideally, these
values should be as low as possible. If we choose α = 10% and β = 20%, we get

ES =
√

4(1.65+0.84)2

13
ES = 1.38

Looking at the results in figure 14.2 we see that the largest effect sizes are in the range
1.0 to 1.33, thus the statistical power is a little weak. We have to increase the β to 30%
to get the required effect size around the levels of our results:

ES =
√

4(1.65+0.52)2

13
ES = 1.20

Appendix B

User Documentation

A video introduction to using the new features can be found in the attachment, in the
folder documentation. To view it, open index.html in Firefox or Internet Explorer (Opera
is unfortunately not supported).

Figure B.1: Screenshot of the accompanying video tutorials

Appendix C

Exercises & Questionnaire

This is the exercises and questionnaire document used during the user testing (in nor-
wegian):

Spørreskjema – Brukertest av Cubic Test

Brukernr: _______

Linje: ________________

År: _____

88

1. A – SquirrelMail

US1 - Send Epost med kopi

Brukeren ønsker å sende en epost med kopi (CC)

Tidsforbruk (i min): _______

US2 - ??

Beskriv kort hva testen gjør:

2. B - CubicShop

US1 - Registrering

Brukeren ønsker å registrere seg som ny bruker, med fornavn, etternavn,

passord, og epost-adresse

Tidsforbruk (i min): _______

89

3. Hva er formålet med Cubic Test?

Under følger noen påstander. Kryss av på skalaen i hvilken grad du er enig/uenig i
påstanden.

4. ”Cubic Test er enkelt å bruke”

[] Helt enig
[] Delvis enig

[] Delvis uenig
[] Helt uenig

5. ”Cubic Test er lett å lære”

[] Helt enig
[] Delvis enig

[] Delvis uenig
[] Helt uenig

6. Hvor mye erfaring har du med Eclipse?

[] Har brukt det mye
[] Har brukt det en del

[] Har nesten aldri brukt det
[] Har ingen erfaring med Eclipse

90

7. Forklar følgende funksjoner i Cubic Test:

Page / State

Common

Context

User Interaction

91

8. Var det funksjoner eller konsepter i Cubic som du synes var spesielt vanskelig å
forstå?

92

Figure C.1: Screenshot of the test presented in exercise A2

93

Figure C.2: Correct solution to exercise A1

94

Figure C.3: Correct solution to exercise B

Appendix D

Questionnaire Responses

Below are the written responses to the exercises in the questionnaire presented in ap-
pendix C. All answers were given in norwegian. The rest of the answers are shown in
figures 14.2 and 14.3 on pages 72 - 73. The exercises answered in CubicTest can be found
in the accompanying attachment.

D.1 Subject #1

Linje: Datateknikk
År: 2

Exercise A2
- Åpner en mail-side
- Skriver inn søke teksten (Finn mail fra ntnu), og trykker søk
- Søket blir lagret i mappe, for raskt å kunne finne siden/ssidene senere

Exercise 3 - “Hva er form̊alet med CubicTest?”
Form̊alet er å gi kunden/brukeren mulighet for å teste funksjonalitet ved et system, før
noe kode er skrevet. Ved å bruke “CubicTest” kan kunden selv danne seg et bilde av hva
han ønsker seg.

Exercise 7 - “Forklar følgende funksjoner i CubicTest”

Page/State
Dette representerer en webside.

Common
Dette er en side brukt av hele systemet

96

Context
-

User Interaction
Denne pilen fører brukeren (ved klikk p̊a hyperlinken pilen er relatert til) til siden
pilen peker p̊a

Exercise 8 - “Var det funksjoner eller konsepter i Cubic som du synes var
spesielt vanskelig å forst̊a?”
-

D.2 Subject #2

Linje: Datateknikk
År: 2

Exercise A2
Søker etter mail fra ntnu, og lagrer søket

Exercise 3 - “Hva er form̊alet med CubicTest?”
Skal brukes til akseptansetesting. At kunden selv skal kunne lage tester som hanselv skal
bruke for å kunne verifisere at programmet innfrir kravene som er satt.

Exercise 7 - “Forklar følgende funksjoner i CubicTest”

Page/State
En webside eller en tilstand i programmet. En side kan ha flere tilstander.

Common
Brukes hvis man vil ha noen standardlinker som skal g̊a igjen p̊a flere sider.

Context
“Spesifiserer” en del av siden, eller lager grupperinger p̊a siden

User Interaction
Setter en hendelse p̊a en knapp. ved trykk kan man forandre tilstand

Exercise 8 - “Var det funksjoner eller konsepter i Cubic som du synes var
spesielt vanskelig å forst̊a?”
Add User Interaction, brukte add connection i stedet, visste ikke hva jeg skulle trykke p̊a
i tilstanden for å sette user-interaction.

D.3 Subject #3 97

D.3 Subject #3

Linje: MTIØT-DK
År: 2

Exercise A2
-

Exercise 3 - “Hva er form̊alet med CubicTest?”
Å la kunder (brukere) selv kunne designe sine krav (jf. user stories), samt tester til
disse. Er ment å være et verktøy for å teste (og utvikle krav?) til webapplikasjoner.

Exercise 7 - “Forklar følgende funksjoner i CubicTest”

Page/State
En tilstand i applikasjonen, f.eks “logg inn”

Common
Et element som forekommer flere ganger, f.eks. en meny.

Context
En spesifik del av en side. (F.eks. et skjema)

User Interaction
Hva brukeren gjør (for å komme fra en state til en annen).

Exercise 8 - “Var det funksjoner eller konsepter i Cubic som du synes var
spesielt vanskelig å forst̊a?”
Det meste var rimelig enkelt å sette seg inn i. Kanskje testene kunne forklart litt bedre
hva man skulle “asserte”

D.4 Subject #4

Linje: Datateknikk
År: 2

Exercise A2
Søker først etter eposter sendt fra ntnu. S̊a blir søket lagret som en smart folder.

Exercise 3 - “Hva er form̊alet med CubicTest?”
Å teste om en internettside fungerer riktig

Exercise 7 - “Forklar følgende funksjoner i CubicTest”

Page/State
Her kan man sette opp registrasjonsskjema, tekst, mail, osv.

98

Common
Tror ikke jeg prøvde dette under testen

Context
-

User Interaction
Her m̊a man oppfylle bestemte betingelseer for å komme til neste side, f.eks. pas-
sord, fylle ut skjema, trykke p̊a en knapp.

Exercise 8 - “Var det funksjoner eller konsepter i Cubic som du synes var
spesielt vanskelig å forst̊a?”
-

D.5 Subject #5

Linje: Datateknikk
År: 2

Exercise A2
Søker etter mail-adresse ved å søke p̊a navn, s̊a kommer det opp“forskjellige” lagringsknap-
per, og til sist blir det opprettet en ny folder “New Smart folder”, som du f̊ar bekreftet p̊a
slutten at er opprettet.

Exercise 3 - “Hva er form̊alet med CubicTest?”
For kunde / bruker å teste hva som skjer

Exercise 7 - “Forklar følgende funksjoner i CubicTest”

Page/State
En slags overskrift

Common
-

Context
-

User Interaction
Hva som skjer, om en knapp blir trykket p̊a eller om en check-box blir merket av

Exercise 8 - “Var det funksjoner eller konsepter i Cubic som du synes var
spesielt vanskelig å forst̊a?”
Fors̊avidt ikke, men det trengs nok mer tid en hva jeg fikk til å sette seg inn i det (hvertfall
for meg).

D.6 Subject #6 99

Kanskje “common” og “context” var vanskelig, etter som jeg ikke kunne svare p̊a hva det
var.

D.6 Subject #6

Linje: Informatikk
År: 1

Exercise A2
Søker etter ntnu og legger det man finner i en egen mappe

Exercise 3 - “Hva er form̊alet med CubicTest?”
Teste brukeren: G̊ar igjennom sjekk p̊a hva kunden forventer skal skje.

Exercise 7 - “Forklar følgende funksjoner i CubicTest”

Page/State
-

Common
G̊ar igjen for alle states / pages hvis man for eksempel ønsker en meny som skal
være felles til alt, s̊a kan den brukes.

Context
-

User Interaction
G̊ar igjennom hva som skal overføres til neste state

Exercise 8 - “Var det funksjoner eller konsepter i Cubic som du synes var
spesielt vanskelig å forst̊a?”
Ikke svært vanskelig, men vanskelig å lære seg noe og bruke det uten problemer den første
tiden. Tar litt tid å komme seg inn i akkurat hva som skjer mellom alle Page / state.

D.7 Subject #7

Linje: Datateknikk
År: 2

Exercise A2
Et søk kan lagres som en “smart folder”. Da vil søket vises som en “mappe” der alle
e-poster som passer med søket vises i den mappen.

Exercise 3 - “Hva er form̊alet med CubicTest?”
Å teste web-applikasjoner gjennom ulike metoder, som ved å legge opp siden i CubicTest

100

og deretter kjøre verifisering p̊a en eksisterende side, eller å la CubicTest ta opp inter-
aksjonssekvenser som s̊a vises som et tilstandsdiagram i CubicTest.

Exercise 7 - “Forklar følgende funksjoner i CubicTest”

Page/State
Representerer en tilstand ewb-applikasjonen er i, det vil si en side som vises for
brukeren.

Common
Et element som er felles for flere sider / tilstander, for eksempel en meny.

Context
En gruppering av elementer, for eksempel et nytt skjema.

User Interaction
En aktiv handling fra brueren, f.eks. å skrive inn tekst eller trykke p̊a en knapp.

Exercise 8 - “Var det funksjoner eller konsepter i Cubic som du synes var
spesielt vanskelig å forst̊a?”
I sidebyggingen var ikke funksjonen for å legge til brukerinteraksjon s̊a enkel å forst̊a etter
å ha brukt de andre elementene, som tekstfelt og knapper. Disse dras inn i diagrammet,
men brukerinteraksjonen dras fra tilstand til tilstand.

D.8 Subject #8

Linje: MTING
År: 2

Exercise A2
søker gjennom en mailbox
legger resultatet inni en folder som kan gies et nytt navn
Bekreftelse p̊a at folderen er opprettet

Exercise 3 - “Hva er form̊alet med CubicTest?”
Å gjøre det enkelt for programmereren å skjønne hva kunden ønsker, ved å la kunden
sette opp testen selv

Exercise 7 - “Forklar følgende funksjoner i CubicTest”

Page/State
En side, som brukeren ser

Common
Det som er felles for flere sider

D.9 Subject #9 101

Context
vet ikke

User Interaction
Hva som f̊ar brukeren fra den ene siden til den neste

Exercise 8 - “Var det funksjoner eller konsepter i Cubic som du synes var
spesielt vanskelig å forst̊a?”
Surra mellom connection og user interaction. Programmet hadde vært veldig enkelt om
man hadde hatt en hjelp-funksjon å ty til. Mye å huske n̊ar det bare er en intro å forholde
seg til.

D.9 Subject #9

Linje: MTDT
År: 2

Exercise A2
Lager en mappe hvor all epost fra NTNU (avsender) legges i mappen “Epost fra NTNU”

Exercise 3 - “Hva er form̊alet med CubicTest?”
Form̊alet er å teste webapplikasjoner. De som lager kravene til applikasjonen (kunden),
skal kunne lage tester selv, og det skal fungere å kjøre disse testene.

Exercise 7 - “Forklar følgende funksjoner i CubicTest”

Page/State
Tilstand som websiden er i. Kan være en tilstand per vindu, men og flere tilstander
i samme.

Common
Common er ting som flerre vinduer har til felles, for eksempel en meny. Da kan
man lage en common istedet for å lage disse feltene i hver eneste Page/State.

Context
Context er noe man fyller ut, som et skjema.

User Interaction
Knapper og linker man trykker p̊a, som tar en fra en tilstand til en annen.

Exercise 8 - “Var det funksjoner eller konsepter i Cubic som du synes var
spesielt vanskelig å forst̊a?”
Nei

102

D.10 Subject #10

Linje: MTDT
År: 2

Exercise A2
Program for å søke. Lagrer eposter i en ny katalog. Eposter som matcher søkeordet.

Exercise 3 - “Hva er form̊alet med CubicTest?”
Lage webapplikasjoner ved hjelp av et mer grafisk GUI. Gjøre det enklere å lage forms.

Exercise 7 - “Forklar følgende funksjoner i CubicTest”

Page/State
Skal forestille en webside. Lager en Page for hver side. Kan ogs̊a være et form
som det er flere av p̊a en side.

Common
En felles meny man kan linke til mange sider.

Context
-

User Interaction
Hva som skal skje n̊ar man gjør en handling

Exercise 8 - “Var det funksjoner eller konsepter i Cubic som du synes var
spesielt vanskelig å forst̊a?”
Nei, men var litt vanskelig å f̊a oversikt over funksjoner.

D.11 Subject #11

Linje: MTKOM
År: 2

Exercise A2
Den finner alle mail hvor avsender er “ntnu”. S̊a lagrer den disse i en “smart folder”
som de her kaller “Epost fra NTNU”. S̊a f̊ar man beskjed om at den er lagret.

Exercise 3 - “Hva er form̊alet med CubicTest?”
Form̊alet er at kunden kan med dette programmet vise “programmereren” hvilke funksjon-
aliteter han ønsker å ha.

Exercise 7 - “Forklar følgende funksjoner i CubicTest”

D.12 Subject #12 103

Page/State
Det her ser jeg p̊a som en side eller “frame”. Inholdet i denne viser hva som blir
vist p̊a siden.

Common
En meny f.eks. som g̊ar igjen p̊a flere Page / States.

Context
Begynnelse av en “form”, her kan brukeren av applikasjonen fylle inn egne verdier.

User Interaction
Hvordan man kommer seg fra en Page/State til en annen

Exercise 8 - “Var det funksjoner eller konsepter i Cubic som du synes var
spesielt vanskelig å forst̊a?”
Egentlig ikke, hadde jeg hatt veiledningen ved siden av meg tror jeg at jeg skulle klart det
meste.
“Record” funksjonen var genial!

D.12 Subject #12

Linje: Datateknikk
År: 2

Exercise A2
Brukeren utfører et søk og kan lagre søket som en mappe som gjør at dersom ny epost
kommer som matcher søket s̊a havner det i denne mappa ogs̊a. Her filtreres epost fra
ntnu i fra-feletet.

Exercise 3 - “Hva er form̊alet med CubicTest?”
Form̊alet er å la kunder enkelt skrive tester for det systemet de ønsker. Kunder kan sette
opp hva for elemetner de vil ha p̊a forskjellige sider og hvordan en bruker kommer seg
fra én side til en annen.

Exercise 7 - “Forklar følgende funksjoner i CubicTest”

Page/State
En enkelt nettside

Common
Element som g̊ar igjen over flere page/state

Context
Et element? La ikke merke til at ordet “context” dukket opp noe sted.

104

User Interaction
Hva bruker m̊a gjøre for å g̊a mellom sider/tilstander.

Exercise 8 - “Var det funksjoner eller konsepter i Cubic som du synes var
spesielt vanskelig å forst̊a?”
Ikke akkurat, men n̊ar en skulle endre en overgang s̊a m̊atte jeg lete for å finne den før
jeg til slutt oppdaga den var rett under “hovedbildet”.

D.13 Subject #13

Linje: MTING
År: 2

Exercise A2
Lagrer treff p̊a epost fra ntnu i en mappe.

Exercise 3 - “Hva er form̊alet med CubicTest?”
Gjøre det enklere for brukerne å lage tester

Exercise 7 - “Forklar følgende funksjoner i CubicTest”

Page/State
Er de forskjellige “sidene” f.eks. p̊a en side registrerer man seg, p̊a en annen f̊ar
man bekreftet registreringen.

Common
Litt usikker, men den kobles til alle Page/State

Context
Innholdet i en page/state

User Interaction
Kobler to Page / State sammen

Exercise 8 - “Var det funksjoner eller konsepter i Cubic som du synes var
spesielt vanskelig å forst̊a?”
Nei, egentlig ikke... Med litt mer tenking og utforking hadde jeg kanskje skjønt hvordan
alt fungerer sammen. Slik som Common -> state, osv.

Bibliography

[1] Quirksmode - dom compatibility. http://www.quirksmode.org/dom/
compatibility.html. Visited April 24th 2007.

[2] Document object model (dom) level 2 specification. http://www.w3.org/TR/
DOM-Level-2-Core/, 1999. Visited April 11th 2007.

[3] James Bach Cem Kaner and Bret Pettichord. Lessons Learned in Software Testing.
Wiley Computer Publishing, 2002.

[4] Martin Höst Magnus C. Ohlsson Björn Regnell Claes Wohlin, Per Runeson and An-
ders Wesslén. Experimentation in Software Engineering - An Introduction. Kluwer
Academic Publishers, 2000.

[5] David Flanagan. JavaScript - The Definitive Guide. 2002.

[6] Grig Gheorghiu. A look at selenium. Better Software, October:38–44, 2005.

[7] J Grudin. Utility and usability: Research issues and development contexts. Inter-
acting with Computers, 4:209–217, 1992.

[8] Raine Kauppinen. Testing framework-based software product lines, 2003.

[9] Jonathan Kohl and Paul Rogers. Watir works. Better Software, April:40–45, 2005.

[10] C. Larman and V.R. Basili. Iterative and incremental development: A brief history.
Computer, June:47–56, 2003.

[11] Jon Reinert Myhre and Elena Kalitina. Cubictest usability, 2006.

[12] Patrick O’Connor. Neglect testing at your own peril. IEEE Spectrum, July:18, 2001.

[13] Stine Lill Notto Olsen and Kjersti Loe. Automatisert testing av dynamisk html,
2006.

[14] Stein K̊are Skytteren and Trond Marius Øvstetun. Autat - automatic acceptance
testing of web applications, 2005.

[15] Steven Splaine and Stefan P. Jaskiel. The Web Testing Handbook. STQE Publishing,
2001.

106

[16] Tor St̊alhane. Spiq: Etablering av m̊aleplaner. SPIQ notat, June, 1998.

[17] Rini van Solingen and Egon Berghout. The Goal/Question/Metric Method: a practi-
cal guide for quality improvement of software development. McGraw-Hill Publishing
Company, 1999.

