
Animering av eksplosjoner i sanntid

Lars Andreas Ek
Rune Vistnes

Norges teknisk-naturvitenskapelige universitet
Institutt for datateknikk og informasjonsvitenskap

Master i datateknikk
Oppgaven levert:
Hovedveileder:
Biveileder(e):

Juli 2007
Torbjørn Hallgren, IDI
Odd Erik Gundersen, IDI

Oppgavetekst
Oppgaven går ut på å oppnå visuelt tilfredsstillende tredimensjonale eksplosjoner i sanntid (mer
30 bilder i sekundet) ved fysisk basert simulering og visualisering. Eksplosjonen skal også kunne
inkluderes i et virtuelt miljø og bli påvirket av omgivelsene på en realistisk måte.

Oppgaven gitt: 22. januar 2007
Hovedveileder: Torbjørn Hallgren, IDI

Abstract

Explosions play an important role in many games. Yet, as explosions are
sudden and highly turbulent, animating visually pleasing and dynamic real-
time explosions is a very complex task. We present a method for animating
explosions completely on the graphics processing unit (GPU). The simula-
tion allows for arbitrary internal boundaries and is governed by a combus-
tion process, a Stable Fluids solver, which includes thermal expansion, and
turbulence modeling. The simulation results are visualized by two parti-
cle systems comprised of textured and animated particles. The results are
physically based, non-repeating, and dynamic explosions that performs in
real-time with high visual quality.

ii

Preface

This is a master’s thesis for the Master of Science in Technology (Computer
Science) program at the Department of Computer and Information Science
(IDI). The thesis was written by Lars Andreas Ek and Rune Vistnes during
our 10th and final semester at the Norwegian University of Technology and
Science (NTNU).

During the course of the project we have written a paper, which will be
submitted to Afrigraph 2007. The paper is appended at the end of the
thesis.

We would like to direct a big thanks to our supervisor Odd Erik Gunder-
sen, who has motivated us, given us valuable guidance and feedback, and
encouraged us to submit papers about our results and findings.

Trondheim July 23, 2007.

Lars Andreas Ek Rune Vistnes

iv

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives and requirements 2

1.3 Approach . 2

1.4 Structure . 3

1.5 Summary . 4

2 Background 7

2.1 Physics of explosions . 7

2.1.1 The combustion process 8

2.1.2 Classification of explosions 9

2.1.3 Gas and dust explosions 9

2.2 Fluid dynamics . 13

2.2.1 The Navier-Stokes Equations 13

2.2.2 Simplifying assumptions 14

2.2.3 Computational fluid dynamics 16

2.2.4 The Stable Fluids method 16

2.3 General-purpose Computation using Graphics Hardware . . . 22

2.3.1 The pipeline . 22

2.3.2 Towards general-purpose computation 27

2.3.3 Mapping to the GPU 28

vi CONTENTS

2.3.4 Limitations and difficulties 28

2.4 Summary . 29

3 Related Work 31

3.1 Simulation of explosions . 31

3.1.1 Computational fluid simulation 32

3.1.2 Simulation of explosions 33

3.1.3 Combustion . 35

3.1.4 Volumetric extrusion 36

3.1.5 Vorticity and turbulence 37

3.1.6 Arbitrary boundary conditions 39

3.2 Visualization of explosions . 41

3.2.1 Particle systems . 41

3.2.2 Volume rendering . 43

3.3 Approach comparison . 43

3.4 Summary . 44

4 Simulating Explosions 45

4.1 Overview . 45

4.1.1 Computational domain 46

4.1.2 Simulation overview 46

4.2 Simulation details . 50

4.2.1 Velocity fields . 50

4.2.2 Density fields . 51

4.2.3 Forces . 52

4.2.4 Combustion . 56

4.2.5 Thermal expansion . 56

4.3 Boundary conditions . 57

CONTENTS vii

4.3.1 Divergence operations 58

4.3.2 Other operations . 59

4.4 Complete algorithm . 59

4.5 Sampling from simulation results 60

4.5.1 2D and 3D sampling 60

4.5.2 Volumetric extrusion 61

4.6 Summary . 62

5 Visualizing Explosions 65

5.1 Overview . 65

5.2 Particle movement . 66

5.2.1 Turbulence . 67

5.2.2 Creating turbulence velocity 69

5.3 Particle Rendering . 72

5.3.1 Black-Body Radiation 72

5.3.2 Fire color calculation 73

5.3.3 Smoke color calculation 74

5.3.4 Rendering animated texture splats 75

5.4 The complete algorithm . 76

5.5 Summary . 77

6 Implementation 79

6.1 Overview . 79

6.2 GPU Computational Framework 80

6.2.1 Class overview . 80

6.3 Fluid solver . 83

6.3.1 Textures . 84

6.3.2 Class overview . 85

viii CONTENTS

6.3.3 Boundary conditions 88

6.4 Explosion simulation . 89

6.4.1 Textures . 89

6.4.2 Class overview . 89

6.5 Explosion visualization . 91

6.5.1 Textures . 91

6.5.2 Class overview . 92

6.6 Stand-alone applications . 94

6.6.1 Kolmogorov turbulence generator 94

6.6.2 Animated texture generator 95

6.7 Summary . 95

7 Results 97

7.1 Overview . 97

7.2 The effect of varying the grid sizes 98

7.2.1 Performance related to grid sizes 98

7.2.2 Visual results . 102

7.3 Effects of varying particle properties 107

7.3.1 Varying particle count and sizes 107

7.3.2 The effect of the movement factor 110

7.3.3 The effect of animating the particles 110

7.4 Turbulence modelling results 111

7.4.1 Vortex particles . 111

7.4.2 Kolmogorov turbulence 112

7.5 Internal boundaries . 112

7.6 The effect of thermal expansions 115

7.7 Comparison with other approaches 115

CONTENTS ix

7.8 Summary . 118

8 Evaluation 121

8.1 Discussion . 121

8.1.1 General visual quality 121

8.1.2 General performance 122

8.1.3 Turbulence . 123

8.1.4 Particle visualization 123

8.1.5 Thermal expansion . 124

8.2 Requirement evaluation . 125

8.3 Contributions . 127

8.4 Conclusion . 128

8.5 Future work . 129

Bibliography 131

x CONTENTS

List of Figures

1.1 Screen captures of an explosion simulated using the Stable
Fluids method. 4

2.1 The rolling motion of an explosion 8

2.2 Rigged gasoline explosion [Wik] 9

2.3 Course of events when a gas or vaporizing liquid is released . 10

2.4 Staged coal-dust explosion in the Bruceton Experimental Mine
[FOA03]. 11

2.5 Explosion pentagon . 12

2.6 Laminar (left) and turbulent (right) flame propagation 13

2.7 Advection (The figure is inspired by a figure in [Har04]). . . . 20

2.8 A conceptual overview of the graphics pipeline 23

2.9 The functional stages of the geometry stage 24

2.10 Transform from the object to the world coordinate system . . 24

2.11 Transform from the world to the view coordinate system . . . 25

2.12 Clipping . 25

2.13 The functional stages of the rasterization stage 26

2.14 A rasterized triangle. 26

3.1 Simulation of hot smoke [FM97] 32

3.2 Four time steps from a suspended particle explosion [FOA03] 33

3.3 Two different large scale explosions [RNGF03] 34

xii LIST OF FIGURES

3.4 Six time steps from a particle based explosive flame [TOT+03] 35

3.5 Torus shaped pressure template used to simulate an explosion
[KW05] . 35

3.6 Simulation of smoke using Stam’s method combined with vor-
ticity confinement [FSJ01] . 37

3.7 Comparison of smoke simulation with (bottom) and without
(top) BFECC [DL03] . 38

3.8 Simulation of smoke using the Vortex Particle method on top
of the Stable Fluid solver. 39

3.9 3D smoke simulated using internal boundaries [LLW04]. . . . 39

3.10 3D smoke simulated using moving internal boundaries [LLW04]. 40

3.11 A comparison of different approaches for animation of explo-
sions. 44

4.1 A 2D computational domain [SR06]. 46

4.2 A cross-section of a 3D computational domain [SR06]. 47

4.3 Conceptual simulation overview 48

4.4 The processes and their relationship to each other. 48

4.5 Three interior cells showing the positions of the relevant vari-
ables for finite differences derivate calculation. 57

4.6 Two interior cells and a boundary cell showing the positions of
the relevant variables for finite differences derivate calculation. 58

4.7 Shows how ux(c) is chosen as −ux(c). 59

4.8 Two slices define a 3D volume through volumetric extrusion. 61

4.9 Top view of cylindrical interpolation (xz-plane). 62

5.1 Outline of the visualization step 66

5.2 Three positions, A, B, and C, and their corresponding values,
A’, B’, and C’ inside the turbulence field 68

5.3 Fire (left) and smoke (right) texture splats that are used as
animation bases . 75

LIST OF FIGURES xiii

5.4 Three frames of turbulence (left) combined with a texture
splat (middle) produces three frames of the animated texture
(right) . 76

6.1 Module overview . 80

6.2 Overview of the most important classes and methods in the
GPU computational framework 81

7.1 2D Simulation performance 99

7.2 3D Simulation performance 100

7.3 Three explosions at varying distances 102

7.4 Screen captures of explosions simulated using small grids . . . 103

7.5 Screen captures of an explosions simulated at a 2D grid of
128x64 . 104

7.6 Screen captures of explosions simulated using large grids . . . 105

7.7 Screen captures of a 3D explosion simulated using a small
sized grid . 105

7.8 Screen captures of a 3D explosion simulated using a medium
sized grid . 106

7.9 Screen captures of a 3D explosion simulated using a large
sized grid . 106

7.10 Visual comparison of explosions simulated in 2D and 3D . . . 108

7.11 Visual comparison of explosions that are visualized using dif-
ferent amounts of particles . 109

7.12 The effect of the movement factor 110

7.13 Various explosions created using vortex particles 112

7.14 Explosion visualized with Kolmogorov turbulence 113

7.15 An explosion inside an immobile arch. 113

7.16 An explosion near a wall. 114

7.17 An explosion under a flat obstacle. 114

7.18 The effect of thermal expansion 116

xiv LIST OF FIGURES

7.19 Approach comparison . 117

7.20 3D simulation with internal boundary from [FOA03] 118

List of Tables

6.1 Overview of textures . 84

6.2 Overview of textures . 85

6.3 Overview of textures . 92

7.1 Hardware specifications and setup. 98

7.2 Frame rates for 2D slice explosion simulation. 99

7.3 Frame rates for full 3D explosion simulation without visual-
ization. 100

7.4 Frame rates and pixel shader invocations (in millions) for 2D
simulations that is visualized by 2x10 000 particles. 101

7.5 Frame rates and pixel shader invocation (in millions) for the
full 3D explosion simulation, visualized by 2x10 000 particles. 101

7.6 Frames rates for various particle counts, both before and after
adjusting their size for visual quality. 109

7.7 Parameter values for the vortex particle method used to cre-
ate the pictures of figure 7.13. 111

xvi LIST OF TABLES

Chapter1
Introduction

In this chapter the motivation behind the thesis is explained, as well as
the goals it seeks to accomplish. Next, the approach we will take to fulfill
them is presented. The chapter is concluded with the structure of the thesis,
followed by a short summary.

1.1 Motivation

Explosions are not regular events in most humans’ lives. However, thanks
to the entertainment industry, most of us have a firm conviction of what
they look like and how they behave. They tend to occur in entertainment
media more often than not, and with the increasing demand for realistic
visual quality, research has been made on explosions along with numerous
other natural phenomena.

Explosions have been artificially recreated by the movie industry for quite
some time. Simulations based on the underlying physical processes of ex-
plosions have produced realistic and visually convincing results.

The downside of using such methods is their computational expense. Explo-
sions are very complex and involve highly turbulent motion that is difficult
to simulate. This is not the biggest of problems within the movie industry.
They do not have any real-time requirements, and thus have the luxury of
performing these time consuming simulations. For computer games, how-
ever, computation complexity poses a problem. This is also reflected by the
fact that explosions in most games are created using simple approximations
instead of physical simulations.

The approximation methods that many games utilize often produce explo-
sions of great visual quality, but they generally lack ability to adapt to the
scene in a physically plausible fashion. Our view is that physically based
simulations have great potential towards producing more realistic and inter-
esting explosions.

2 CHAPTER 1. INTRODUCTION

In recent years, the programmability and computational power of graph-
ics processing units (GPUs) have increased, making them useful for general
purpose computation such as fluid simulations. Thus, it is interesting to
investigate how GPUs can be used for physically based simulation of explo-
sions that is suitable for real-time environments.

1.2 Objectives and requirements

Our main goal is to use a physically based simulation to visualize 3D ex-
plosions in real-time. Our focus will be on reproducing the fire ball that is
often seen when explosions occur. We will also focus on letting the simula-
tion be affected by scene geometry. More specifically, we seek to accomplish
the following requirements, which eventually will be used to evaluate our
results:

R1: A physically based simulation of explosions should be performed.

R2: The overall motion of the explosion should be convincing.

R3: It should be possible to place the explosion in a virtual scene.

R4: The simulation should be affected by obstacles within the scene.

R5: The visualization should be convincing, thus have realistic shape, color,
and turbulence.

R6: All of the above should be performed in real-time. We require a mini-
mum of 30 frames per second, since this is usually enough to convince
the human eye.

As mentioned, one of the major advantages of real-time physically based
simulation of explosions, compared to simple approximations or precalcu-
lated physically based ones, is their ability to adapt to changes in the scene.
For example, a moving car that explodes under a bridge will appear differ-
ently than if the car explodes in the open. If one ignores this fact, game
developers could just as well generate explosions in advance and replay the
simulation in-game, hence it is an important requirement that the explosion
can be affected by obstacles within the scene.

1.3 Approach

In order to achieve the requirements of real-time simulation and visualization
of explosions, we will take the following steps:

1.4. STRUCTURE 3

• First, we will look at the physical properties of explosions, and how
they may be simulated.

• Then, we will look at a variety of existing work on both offline and
real-time attempts of simulating explosions, as well a related effects
such as fire and smoke.

• We will develop a physically based method for simulation of explosions
that can be visualized in a 3D environment. Doing so, we will attempt
to combine the best methods and ideas from previous approaches.

• We will then implement the suggested method. In order to fulfill the
real-time requirements we will utilize the computational power of mod-
ern GPUs, both for the simulation and the visualization.

• Next, we will test the implementation and evaluate the results.

• Finally, we will discuss the results and limitations of the method, and
suggest areas for further work.

This thesis is a natural extension of the project [EV06] we carried out during
the fall of 2006 in the course “TDT4715 Algorithm Construction, Science of
Computing and Graphics, Specialization” at NTNU. The project compared
two different methods for fluid simulation and their usefulness for physically
based simulation of explosions; the Stable Fluids method [Sta99], and the
Lattice Boltzmann method [WLMK04]. We concluded that the Stable Flu-
ids method were the most suitable, mainly because of numerical instability
problems with the Lattice Boltzmann method. Thus, we will use the Stable
Fluids method in this thesis. Both methods were implemented in 2D using
the CPU. Screen captures of the results from the Stable Fluids method are
shown in figure 1.1.

1.4 Structure

This thesis contains the following eight chapters:

1 Introduction

Contains the motivation behind the thesis, presents our objectives and re-
quirements, and the approach we intend to take to fulfill them.

2 Background

Provides the necessary theoretical background and serves as a foundation
for the rest of the thesis.

4 CHAPTER 1. INTRODUCTION

Figure 1.1: Screen captures of three different time steps of the explosions
simulation based on the Stable Fluids method.

3 Related Work

Presents existing work within related areas of simulation and visualization
of explosions.

4 Simulating Explosions

Presents our suggested method for simulation of explosions.

5 Visualizing Explosions

Presents our suggested method for visualizing the simulation results.

6 Implementation

Explains the implementation, and how we utilize the programmability of
modern GPUs.

7 Results

Presents and discusses the results provided by the implementation.

8 Evaluation

Discusses, evaluates, and concludes the thesis, presents our main contribu-
tions and gives suggestions for future work.

1.5 Summary

Explosions are commonplace in games, but are often created using simple
approximations. Such approaches generally lack the ability to be affected
by scene geometry. A physically based method for simulating explosions
has, in our opinion, huge potential towards producing more realistic results.
Methods for physically based simulation of explosions exist, but they are
generally not suited for real-time simulation. We will look at existing work

1.5. SUMMARY 5

and develop a method for real-time physically based animation of explosions.
The method will be implemented and tested. A set of requirements is defined
to be able to evaluate the results.

6 CHAPTER 1. INTRODUCTION

Chapter2
Background

In order to fully understand the rest of this thesis, an introduction to some
of the areas and techniques that are used is required. First of all, to be
able to simulate explosions, it is important to have an understanding of the
physics behind them. Also, since the simulation is going to be based on fluid
dynamics, an introduction to this field in addition to how fluid dynamics can
implemented computationally is given. The computational power of modern
GPUs is going to be utilized to meet the real-time requirements, and thus,
and introduction to general-purpose computation on the GPU will be given
as well.

The rest of the chapter will present each of these areas in turn. First, the
physics of explosions is described. This description will focus mainly on gas
and dust explosions since these often are the most visible types of explosion.
Next, an overview of fluid dynamics and computational fluid dynamics will
given. Both these sections are based on our previous work [EV06], but have
been rewritten and adapted to better fit the domain of this thesis. Finally,
an introduction to general-purpose computation on the GPU is given.

2.1 Physics of explosions

An explosion can generally be described as a rapid increase of pressure
caused by a sudden increase in volume and release of energy. The pres-
sure creates an outward-going blast wave that propagates through the sur-
rounding medium, and causes nearby objects to accelerate outward, de-
form, or shatter. This blast wave is generally considered the primary ef-
fect of an explosion. However, an explosion can cause secondary effects as
well. In addition to a violent release of thermal energy, noticeable visual
effects include flashes of light, fire balls, whirls of dust, and flying debris
[Mic92, YOH00, FOA03].

8 CHAPTER 2. BACKGROUND

2.1.1 The combustion process

The rapid increase of pressure is in most cases caused by a chemical reaction
between a combustible substance, A, and an oxidizer, B. This chemical
reaction, often referred to as combustion, creates one or more combustion
products, M , in addition to heat, Q, as shown by equation 2.1 [Khi62].

A + B = M + Q (2.1)

The rate of this chemical reaction will vary depending on the properties of
the substances. Also, initial conditions such as the current pressure and
temperature will have an affect on the reaction rate. A higher reaction rate
will typically cause the pressure wave to move at greater speeds than ones
caused by slower reactions. Also, because the chemical reaction generates
heat the reaction products will often have increased volume and pressure rel-
ative to the initial substances. This phenomenon, called thermal expansion,
will cause an additional increase in the speed of the pressure wave.

The hot combustion products and the burning gas will rise upward due to
buoyancy and cause a pressure drop. Because of the introduced pressure
difference, colder gases usually flow in from areas underneath of higher pres-
sure, resulting in the rolling motion often seen in explosions, as shown in
figure 2.1. Here, the red arrows represents hot air, whereas the blue arrows
represents colder air. The rolling motion of a real explosion can be seen in
figure 2.2.

Figure 2.1: The rolling motion of an explosion

2.1. PHYSICS OF EXPLOSIONS 9

2.1.2 Classification of explosions

Explosions are categorized based on the speed of the resulting pressure wave
relative to the speed of sound. Explosions whose pressure wave moves with
a speed below the speed of sound (subsonic) are categorized as deflagrations,
whereas explosions where the speed of the pressure wave is above the speed
of sound (supersonic) are categorized as detonations. The main difference
between the two types of explosions is the way they propagate outward
while igniting unignited combustibles. Deflagrative combustion typically
propagate by transferring thermal energy to nearby combustibles, causing
them to ignite. A chain reaction of ignition and expansion takes place,
provoking the formation of the pressure wave. Detonations, on the other
hand, propagate simply by compressing the combustibles so that they heat
up to their ignition point. Because of their powerful nature, detonations are
usually the most devastating form of explosions. [Khi62, Mic92]

Figure 2.2: Rigged gasoline explosion [Wik]

2.1.3 Gas and dust explosions

Many accidental explosions are gas and dust explosions. They are commonly
deflagrative but may also accelerate to reach detonative velocities. The
mechanisms of generation, up-keeping, and migration of dust and gas clouds
differ substantially [Eck06].

10 CHAPTER 2. BACKGROUND

2.1.3.1 The generation of gas explosions

Gas explosions can occur when a gas or vaporizing liquid is released and
ignited after the formation of a fuel-oxidiser cloud. If the gas is ignited
before such a cloud has been formed, the gas will burn and not explode.
Figure 2.3 shows these possible events. The leftmost box represents the
release of a gas or a vaporizing liquid, from which there can be three different
outcomes. The combustible may not be ignited at all, ignited immediately
and result in fire, or form an explosive fuel-oxidizer cloud. This cloud is only
explosive if the concentration of fuel lies between a lower and upper explosive
limit. If the concentration is below the lower explosive limit, there is not
enough fuel to sustain the combustion. If the concentration exceeds the
explosive limit, there is not enough oxygen (or another oxidizer) to begin
the reaction. Gaseous clouds sustain themselves and spread by random
molecular movement and may easily migrate through very narrow passages.

Figure 2.3: Course of events when a gas or vaporizing liquid is released

2.1.3.2 The generation of dust explosions

Dust explosions, on the other hand, can occur when small particles of a
highly flammable substance, such as coal, aluminum, or gunpowder are dis-
persed in air and ignited [Cas00]. The particles are generally larger than
gas molecules, and their movement is more affected by inertial forces, such
as gravity, rather than random molecular motion. Dust clouds consisting
of such particles are often sustained by interaction with moving objects,
mechanical vibrations, or air-flow [Eck06].

When heat is applied near such dust clouds, the particles will vaporize, mix
with the air, and become flammable. As soon as the concentration of gas
exceeds the lower explosive limit, and if enough heat is present, the gas will
ignite. The flame front will propagate through the mixture, causing nearby
dust particles to vaporize and ignite as well [Cas00]. The applied heat that

2.1. PHYSICS OF EXPLOSIONS 11

caused the particles to vaporize will usually ignite the resulting gas before
the concentration exceeds the upper explosive limit, and thus dust clouds
are in practice mostly affected only by a lower explosive limit. An example
of a coal dust explosion is shown in 2.4.

Figure 2.4: Staged coal-dust explosion in the Bruceton Experimental Mine
[FOA03].

2.1.3.3 The conditions for gas and dust explosions

Explosive gas and dust clouds both exhibit similar ignition and combustion
properties [Eck06], and they both adhere to the explosion pentagon. This
pentagon, shown in figure 2.5, contains the five required conditions that
have to be met if an explosion is to happen. If any of the conditions are
not met, the explosion will not occur. First of all, both fuel and an oxidizer
have to be present. These have to be mixed and dispersed or suspended in
the air before the resulting mixture is heated to its ignition point. Finally,
the explosive cloud have to be confined. This condition is often satisfied by
mechanical boundaries, though an explosive cloud can also be self-contained.
The latter is the case when the explosive reaction builds up in the mixture
faster than it can be released in its edges [Cas00].

2.1.3.4 Heat sources

One of the conditions for an explosion is heat, and the required heat for a
mixture to reach its ignition point differs from mixture to mixture. Vari-

12 CHAPTER 2. BACKGROUND

Figure 2.5: Explosion pentagon

ous heat sources can be used, and examples include open flames, cigarettes,
thermal energy from controlled explosions (i.e. the mining industry), me-
chanical induced sparks, or electrostatic discharges between objects. The
cloud may also self-ignite if its temperature is high enough [RE06].

2.1.3.5 The relation between temperature and pressure

The combustion products of gas and dust explosions are typically gases, so
the process may be simplified to follow the ideal gas law:

PV = nRT (2.2)

where P is the pressure, V is the volume, n is the number of moles, R is
the universal gas constant, and T is the temperature. A typical accidental
explosion occur in air, which contains about 70 % Nitrogen. Nitrogen will
not be a part of the chemical reaction. Hence, there are usually small changes
in the number of moles. From these assumptions and the use of equation
2.2, a rapid reaction in a closed system (constant volume) results in:

Pmax

P0
=

Tb

T0
(2.3)

where Pmax is the maximum explosion pressure, P0 is the initial pressure, Tb

is the absolute temperature of the burned gas and T0 is the absolute initial
temperature [Cas00]. The faster the reaction rate, the explosion is more
likely to follow equation 2.3, since less thermal energy will leave the system.

2.2. FLUID DYNAMICS 13

2.1.3.6 The effect of turbulence on the reaction velocity

Also common to gas and dust explosions is the effect of turbulence on re-
action velocity. Turbulence is a irregular random fluctuation in the flow, as
opposed to non-turbulent or laminar flow [Mic92] and it greatly increases
the surface between hot burning gas and the unignited gas. The increased
area causes turbulent flames to reach velocities much greater than those of
laminar flames, because more gas may be ignited simultaneously. The left-
most illustration of figure 2.6 shows a laminar boundary between an area
of burning gas and unignited gas, while the rightmost illustration shows a
turbulent boundary. Clearly, the rightmost has a greater surface.

Figure 2.6: Laminar (left) and turbulent (right) flame propagation

2.2 Fluid dynamics

The study of fluids in motion, generally known as fluid dynamics, can be
used to physically model many natural phenomena, including smoke, fire,
and explosions. The use of fluid dynamics to model such phenomena require
a few basic assumptions however. First, it has to be assumed that the mass
is conserved. That is, the rate of mass passing from inside to outside of a
surface must be the same as the rate of mass passing from outside to inside.
Note that the rate of mass passing can be zero. Also, the total momentum,
that is, the sum of the products of the mass and velocity of objects, has to
be conserved.

2.2.1 The Navier-Stokes Equations

The conservation laws of mass and momentum are used to derive a set
of equations known as the Navier-Stokes equations, which can be used to

14 CHAPTER 2. BACKGROUND

describe the motion of fluid. The detailed steps resulting in these equation
are outside the scope of this thesis, and we refer the reader to [GDN97]
and [Cra04] for further details. Instead, the Navier-Stokes equations for
compressible viscous flow are presented along with possible assumptions for
simplifying them.

The Navier-Stokes equations for the conservation of momentum are are:

δ (ρu)

δt
+ (u · ∇) (ρu) + (ρu) (∇ · u) + ∇p =

(µ + λ)∇ (∇ · u) + µ∇2u + ρf (2.4)

δρ

δt
+ ∇ · (ρu) = 0 (2.5)

Here, equation 2.4 is the momentum equation that describes how the mo-
mentum changes over time, while equation 2.5 gives a restriction that ensures
the conservation of mass. In these equation u is the velocity, ρ the density,
and p is pressure. µ and λ are scalar values specific to the fluid, while f

represents external forces.

In addition to boundary and initial conditions, to solve these equations we
need a function relating pressure and density:

p = f (ρ)

Also, as a further complication, the µ and λ scalars are generally not con-
stants, and usually vary based on the density and temperature of the fluid:

µ = µ (T, ρ)

λ = λ (T, ρ)

2.2.2 Simplifying assumptions

Equations 2.4 and 2.5 are complex. However, when modeling fluids for a
specific case, knowledge of the context can be used to justify assumptions
that will simplify these equation. Two cases where such simplifications can
be made are when modeling incompressible fluids instead of compressible
ones, and when the fluid is inviscous instead of viscous.

2.2. FLUID DYNAMICS 15

2.2.2.1 Incompressible fluid

A common simplification is to assume that the fluid is incompressible. A
fluid is incompressible as apposed to compressible whenever density varia-
tions are so small they can be neglected. In other words, constant density
is assumed. Applying this assumption to equations 2.4 and 2.5 results in
equations 2.6 and 2.7 respectively:

ρ
δu

δt
+ ρ (u · ∇)u + ∇p = µ∇2u + ρf (2.6)

∇ · u = 0 (2.7)

The mass conservation restriction simplifies to ensuring zero divergence
(equation 2.7) and is subsequently used to simplify the momentum equa-
tion. As can be seen, there is no longer a need for the scalar value λ, or the
relation between the pressure, p, and the density, ρ.

The incompressible version of the momentum equation, equation 2.6, can
be more easily interpreted if divided by ρ and presented with the velocity
differential on the left side and all the other terms moved to the eight side
of the equal sign. Note that a viscosity factor v is introduces instead of µ

ρ
:

δu

δt
= − (u · ∇)u− 1

ρ
∇p + v∇2u + f (2.8)

The first term in equation 2.8, − (u · ∇)u, is called the advection term
and describes how the momentum of the fluid is carried along by itself.
The second term, −1

ρ
∇p, represents the fluid’s tendency to remove pressure

differences, causing motion from areas of high pressure to areas of lower
pressure. The third term, v∇2u, models the viscosity of the fluid. Viscosity
causes velocity to spread, and can be thought of as the fluid’s resistance to
motion. For instance, syrup has a high resistance to motion, while air has
not. Finally, the last term, f , represents the effect of external forces on the
fluid.

Even though the incompressible version of the Navier-Stokes equations is
less complex than the compressible one, it can only be used in cases where
the assumption of incompressibility can be justified. Liquids may often be
modeled as incompressible, as they tend to be difficult to compress. Gases,
on the other hand, should generally be modeled as compressible. However,
there are circumstances where an incompressible model can be used instead.
A rule of thumb is to use a compressible model if the fluid velocities exceed a
Mach number of 0.3 [KKS99], and an incompressible model otherwise. Such

16 CHAPTER 2. BACKGROUND

a relation between velocity and constant density is rather intuitive, because
a slowly moving fluid has the time to eliminate density differences before
they become relevant.

2.2.2.2 Inviscous fluid

Another useful simplification is to assume that the effect of the viscosity can
be neglected. By setting the viscosity factor, v, to zero, the viscosity term
of equation 2.8, v∇2u, will be ignored.

As with the incompressibility assumption, fluids can only be treated as in-
viscous in cases where such an assumption can be justified. Typically, an
inviscious model can be used for fluids with low viscosity, since the viscosity
have a limited affect on the motion of such fluids. For instance, the viscosity
in syrup is too high to be ignored, while gases has a lower viscosity and can
thus often be modeled with an inviscous model.

Even though an inviscous model may not always be suitable, and an viscous
model have to be used instead, it can often be assumed that the viscosity
factor, v, does not vary with density and temperature.

2.2.3 Computational fluid dynamics

Computational Fluid Dynamics (CFD) is the use of numerical methods to
analyze and solve problems in fluid dynamics. Computers and specialized al-
gorithms are used and operate in a spatial domain that is usually discretized
into a grid of small cells. Each cell represents the state of a small part of the
fluid, such as the density, the velocity, and the temperature. These values
are then updated in discrete timesteps.

The Navier-Stokes equations are used as the fundamental basis in CFD
calculations. Many different algorithms exists, and common to many of them
is that they only approximate the solutions instead of accurately solving
them. It is also common to assume that the fluid is either incompressible or
inviscous, or both, as previously described. However, many of the algorithms
suffer from stability issues, especially with larger timesteps.

2.2.4 The Stable Fluids method

One approach that approximates the incompressible viscous Navier-Stokes
equations is the one presented by Stam in [Sta99]. This method is uncon-
ditionally stable, and have thus become popular and heavily adopted, es-

2.2. FLUID DYNAMICS 17

pecially in real-time simulations, which often require larger timesteps than
the ones possible with more unstable models. The mathematics behind the
method is briefly explained here, and the reader is referred to [Sta99] and
[Har04] for more thorough explanations.

2.2.4.1 Mathematical background

As already mentioned, Stam’s approach makes use of the incompressible
viscous Navier-Stokes equations 2.8 and 2.7. These equations are repeated
for the ease of readability:

δu

δt
= − (u · ∇)u− 1

ρ
∇p + v∇2u + f (2.8)

∇ · u = 0 (2.7)

Normally, in order to solve the equations as is, an explicit pressure field needs
to be available. This pressure field is used when evaluating the pressure
term, −1

ρ
∇p. However, this pressure term can be removed by the use of a

projection operator, P, introduced by Stam on both sides of equation 2.8,
as shown in equation 2.9:

P
(

δu

δt

)

= P
(

− (u · ∇)u− 1

ρ
∇p + v∇2u + f

)

(2.9)

The projection operator is defined to remove the divergence from any vector
it is applied to by projecting the vector onto it’s divergence free compo-
nent. Mathematically, this can be explained by the use Helmholtz-Hodge
Decomposition [CM93] that states that any vector field, w, can be uniquely
decomposed into the form:

w = v + ∇q (2.10)

where v is a divergence free vector field and q is a scalar field. ∇q is thus
the divergence of w, and applying the P -operator to w will result in v:

P (w) = w − wdivergence = (v + ∇q) −∇q = v

Since the velocity is defined to be divergence free, equation 2.9 can be sim-
plified to:

18 CHAPTER 2. BACKGROUND

δu

δt
= P

(

− (u · ∇)u− 1

ρ
∇p + v∇2u + f

)

(2.11)

Next, to see what happens to the pressure term when the projection operator
is applied to it, imagine that equation 2.10 is multiplied by the ∇-operator.
Since v is divergence free, ∇ · v = 0, this will result in equation 2.12 1

∇ · w = ∇2q (2.12)

Here, w is a vector field, and ∇q is it’s divergence. This equation is often
referred to as the Poisson-pressure equation. Now, if w is set to be the
gradient of p, ∇p, then clearly p equals q, shown as follows:

∇ · (∇p) = ∇2q → ∇2p = ∇2q → p = q

Since ∇q is the divergence of w, ∇p is the divergence of ∇p, and thus, the
result of applying the P-operator on the pressure term is zero:

P

(

1

ρ
∇p

)

=
1

ρ
P (∇p) =

1

ρ
(∇p −∇p) = 0

Thus, equation 2.11 can be simplified to equation 2.13.

δu

δt
= P

(

− (u · ∇)u + v∇2u + f
)

(2.13)

2.2.4.2 Simulating velocities

Equation 2.13 shows the steps of the Stable Fluids algorithm. First the
advection, viscocity, and force terms are calculated and summarized. The
resulting velocity field is divergent, and is made divergence free by the P-
operator.

In practice, the three terms are not calculated and summarized as in equation
2.13. Instead, each term is accounted for on it’s own, each producing a new
velocity field with the velocity field from the prior step is input. This can be
described by the use of an introduced S-operator, whose result is equivalent
to the calculation of equation 2.13 over one time step:

1

∇ · w = ∇ · (v + ∇q) = ∇ · v + ∇ · (∇q) = ∇
2
q

2.2. FLUID DYNAMICS 19

S (u) = P ◦ A ◦ V ◦ F (u) (2.14)

Here, P is the projection operator, A the advection step, V the viscosity
step, and F the force step. The four steps are applied from right to left.
First, the forces are added, followed by the viscosity step, the advection step,
and finally the P -operator.

Adding external forces

The first, and also the easiest step, is to add external forces. These forces
typically come from buoyance, gravity, and wind. The forces are assumed to
remain constant during each time step ∆t, thus they can simply be added
as shown by equation 2.15.

unew (x) = u (x) + ∆tf (x) (2.15)

Here, f is a vector field of forces, u is the current velocity field, and unew is
the resulting velocity field that is used as input to the viscosity step.

Viscosity

The next step is the viscosity step. Note that if the fluid is assumed to be
inviscous, this step can be skipped. Instead of using explicit finite difference
derivation, which is unstable for large time steps [FM97], Stam proposed to
use an implicit integration scheme, as shown by equation 2.16:

(

I− v∆t∇2
)

unew (x) = u (x) (2.16)

Here, u is the velocity field from the force step, unew is the resulting velocity
field that is used as input to the advection step, v is the viscosity factor, and
I is the identity matrix. The equation yields a system of linear equations,
which can be solved by an iterative linear equation solver, such as the Jacobi
or Gauss Seidel method.

Advection

The third step is the advection step. As with the viscosity step, an explicit
integration with finite difference derivation can be used. However, because
of the potential stability, Stam proposed a stable method where he regarded
each cell as a particle and used the velocity at the particle’s current position
to locate where it must have been at the previous time step. The new
velocity is then set to the velocity at the position at the previous time step.
Since this position can be located in between cells, the value is calculated by
bilinearly interpolating the velocity value from the four most nearby cells.
This can be expressed mathematically by equation 2.17:

20 CHAPTER 2. BACKGROUND

unew (x) = u (x − ∆tu (x)) (2.17)

where u is the velocity field from the viscosity step and unew is the resulting
velocity field that is used as input to the projection step.

Figure 2.7 shows how a particle at u(x, t) is traced back in time over a time
step ∆t to find its previous position. It also shows the four cells whose values
are interpolated to find the new velocity.

Figure 2.7: Advection (The figure is inspired by a figure in [Har04]).

Projection

The final step is the projection step. Since the velocity field have been made
divergent by the three prior steps, the projection operator is applied in this
step to remove the divergence. To do so, equation 2.12 is used, repeated
here for the ease of readability:

∇ · w = ∇2q (2.12)

w is set to be the divergent velocity field, and the equation is solved for
q, whose gradient is then subtracted from the velocity field, resulting in
a divergence free velocity field. As with the viscous diffusion equation, the
Poisson equation can also be solved by the use of an iterative linear equation
solver.

2.2. FLUID DYNAMICS 21

2.2.4.3 Simulating densities

In addition to showing how to solve the momentum equation, Stam proposed
how to introduce densities, such as the temperature, to the simulation. The
densities will be carried along by the velocity while being affected by molec-
ular diffusion. Stam also let the densities dissipate at a constant rate and
included a “force term” to allow densities to be added to the simulation.
Equation 2.18 shows the evolving of the densities from one time step to the
next:

δd

δt
= − (u · ∇) d + κd∇2d − αdd + Sd (2.18)

where d is the density, u is the velocity field, κd is the diffusion rate, αd is
the dissipation rate, and Sd is the source term. The terms in equation 2.18
are very similar to the ones in equation 2.13 and may in fact be solved using
the same methods.

Sources

The source term may be considered as a constant force affecting the density
during each time step, hence it may be treated exactly as the force term in
equation 2.13. Similarly, the dissipation is also considered to be constant,
and the two may be combined in equation 2.19:

dnew = d + ∆t (Sd − αdd) (2.19)

Here, d is the old density field and dnew is the new density field, which is
used as input to the advection step.

Diffusion

The diffusion term is solved implicitly as with the viscosity step as shown
by equation 2.20.

(

1 − κd∆t∇2
)

dnew (x) = d (x) (2.20)

Advection

The advection term is solved using the exactly same method as for the
velocity field, except the density is carried along, not the velocity itself.

22 CHAPTER 2. BACKGROUND

2.3 General-purpose Computation using Graphics

Hardware

Graphics hardware, generally in form of a graphics processing unit (GPU),
have in the later years been used for various computer graphics tasks such as
games. These tasks typically have high demands in performance and visual
quality, and in order to meet these demands, the architecture on which GPUs
are built has been highly specialized during years of evolving and tuning.

One of the main contributors to the high performance of GPUs is the highly
parallel nature of the data used in most computer graphic tasks. Paral-
lelism is introduced into GPUs by enabling it to perform computations on
several streams of data simultaneously. GPUs are also optimized for vector
operations, resulting in an even greater performance increase.

An increased flexibility has also been introduced in order to give the users
of the GPU better control of the tasks they want to perform. This increased
flexibility has enabled the use of GPUs in applications outside the scope of
which the GPUs were originally designed for. These applications typically
have to be adopted into computer graphics terms. Even though this adoption
is often challenging, and sometimes impossible due to the nature of the
problem and the limitations of graphics hardware, the potential benefits in
utilizing graphics hardware instead of the CPU for general-purpose problems
may be substantial.

2.3.1 The pipeline

To allow high computation rates through parallel execution, most of the
graphics hardware today organize their computation in a similar fashion,
known as the graphics pipeline. Conceptually, as seen in figure 2.8, this
pipeline is divided into three functional stages: the application stage, the
geometry stage, and the rasterization stage [AMH02]. First, the application
issues drawing commands and outputs 3D primitives representing the scene.
Next, these 3D primitives are transformed into 2D primitives within the
geometry stage by projecting them into the screen field-of-view. Finally, the
rasterization stage fragments the 2D triangles into pixels and computes a
color for each pixel.

As shown in figure 2.8, a conceptual stage may contain substages and thus
be a pipeline in itself. These substages may also be partly parallelized, as
shown in the rasterizer stage. As opposed to the three conceptual stages,
these substages can be thought of as either functional stages or pipeline
stages. A functional stage has a certain task to perform, but does not specify

2.3. GENERAL-PURPOSE COMPUTATION USING

GRAPHICS HARDWARE 23

Figure 2.8: A conceptual overview of the graphics pipeline

the way it is executed in the pipeline. A pipeline stage, on the other hand, is
the actual implementation of the pipeline. For example, the geometry stage
may be divided into five functional stages, but it is the implementation of
the graphics system that determines its division into pipeline stages. A given
implementation may combine two functional stages into two pipeline stages,
while it divides another, more time-consuming, functional stage into several
pipeline stages, or even parallelizes it. [AMH02]

The following sections will describe each of the three conceptual stages in
more detail. The focus will be on the functional substages only, and not the
actual pipeline stages.

2.3.1.1 The application stage

The application stage is the first stage in the graphics pipeline, and differs
from the other stages by the fact that it is normally performed on the CPU
instead of the GPU. Using a graphics framework such as OpenGL or Di-
rect3D, the application sends the geometry that is to be rendered along to
the next stage in the pipeline. This geometry consists of several 3D primi-
tives, such as points, lines, and triangles. The primitives are defined by one
or more vertices, and these vertices are given various attributes, such as a
position, color, normal, or a texture coordinate. These attributes are used
by later stages when positioning and coloring the primitives.

Examples of other common processes often implemented in this stage include
collision detection, input handling, and artificial intelligence. These stages
are hard or impossible to implement efficiently in later stages. Also, since
the performance of the next stages in the pipeline depends on the number
of primitives being processed, various techniques are used in the application
stage to minimize the amount of primitives sent to the geometry stage. Since
often only parts of a scene are visible at a given time, this typically includes
techniques to detect the primitives that is guaranteed to be culled in the
geometry stage, and not send these to the geometry stage in the first place.

24 CHAPTER 2. BACKGROUND

2.3.1.2 The geometry stage

The geometry stage is the first step performed on the GPU. It takes the 3D
vertices from the application stage as input, and it’s main objective is to
transform these 3D primitives into 2D primitives that will be passed on to
the rasterization stage.

Figure 2.9: The functional stages of the geometry stage

In order to perform this transformation, the vertices are sent through sev-
eral minor stages, as shown in figure 2.9. These are the vertex processor,
the primitive assembly, clipping and culling, and viewport transformation.
First, the vertices are processed by the vertex processor. Normally, when en-
tering the geometry stage, the vertex positions are all declared in the object
coordinate system. The vertices are then transformed into the world coor-
dinate system by translation, scaling, and rotation. Figure 2.10 shows an
example where two primitives defined in their own object coordinate system
are transformed into a common world coordinate system.

Figure 2.10: Transform from the object to the world coordinate system

Next, the vertices are transformed into the view coordinate system based
on the projection and position of the viewport being used in the scene. The
viewport is defined using a camera that are also positioned in the world
coordinate system. Figure 2.11 shows how the primitives from figure 2.10
are transformed to the viewport defined by the camera.

The vertex processor can also calculate vertex lighting based on the position
and intensity of the light sources, the eye position, the vertex normal, and
the vertex color.

2.3. GENERAL-PURPOSE COMPUTATION USING

GRAPHICS HARDWARE 25

Figure 2.11: Transform from the world to the view coordinate system

The next stage in the geometry stage is the primitive assembly stage, where
the vertices are assembled back into triangles using the information sent
from the application stage. These triangles are then checked against the
viewing frustrum defined by the camera. Primitives that are totally outside
the view volume are discarded, whereas primitives that are totally inside the
view volume are passed on as is. Primitives that only partially inside the
view volume require clipping. Here, the vertices that are located outside the
view volume are replaced with vertices that are located at the intersection
between the primitive and the view volume. Figure 2.12 shows each of
these three possible scenarios. Here, the red triangle is discarded, the blue
triangle is passed on as is, while the red triangle is clipped, resulting in two
new vertices.

Figure 2.12: Clipping

In addition to the primitives that are totally outside the view volume, prim-
itives that are facing away from the camera will be discarded as well, re-
gardless of their position relative to the view volume.

Finally, in the viewport transformation stage, the vertices are transformed
into the screen space domain. Here, the vertices are still located in the 3-

26 CHAPTER 2. BACKGROUND

dimensional space. The final 2D position of the vertices on the screen is
calculated, and sent along with the depth information to the rasterization
stage.

2.3.1.3 The rasterization stage

The final conceptual step is the rasterization stage, where the transformed
2D primitives are converted into colored screen pixels. The rasterization
stage consists of several minor stages, as seen in figure 2.13. These are the
rasterizer, the pixel processor, the raster operation, and the frame buffer.

Figure 2.13: The functional stages of the rasterization stage

The main function of the rasterizer is to determine what pixels every 2D
primitive consist of. Figure 2.14 shows an example of which pixels the ras-
terizer would determine the given triangle would consist of. It also inter-
polates the vertex attributes into these pixels. Every pixel is then passed
along to the pixel processor that, by using these interpolated values along
with other information such as the location of the pixels in the frame buffer,
is able to determine the final color of every pixel. The colors of the pixels
in a primitive are often based on texture lookups. The interpolated texture
coordinate associated with the vertices that represent the given primitive
are used to decide which texture value to be used for the given pixel.

Figure 2.14: A rasterized triangle.

Since triangles often overlap, more than one pixel can be located in the same
position in the frame buffer. These pixels are combined during the raster
operation by the use of alpha, depth, and stencil tests before a final color is
written to the frame buffer.

2.3. GENERAL-PURPOSE COMPUTATION USING

GRAPHICS HARDWARE 27

2.3.2 Towards general-purpose computation

Initially, every stage in the graphics pipeline were fixed, and the rather
limited functionality at each stage were hardwired. The architecture was
specialized for real-time computer graphics, and the included functionality
was well suited for the intended field of usage. However, offline rendering
systems such as Pixar’s RenderMan demonstrated the benefits of increased
flexibility. Using user-defined shader programs on each primitive, they were
able to achieve impressive visual results that would otherwise be hard or
impossible to achieve using a fixed-function pipeline.

Results such as these have motivated designers of graphics hardware to
transform the fixed-function pipeline into a more flexible and programmable
pipeline. Initially, two of the stages in the pipeline were programmable; the
vertex processor and the pixel processor. With the introduction of DirectX
10 hardware, the primitive assembly stage became partially programmable,
too, allowing dynamic generation of new primitives directly on the GPU.

The introduced programmability was first available through the use of as-
sembly instructions. However, programs written in assembly are hard to
write, read, and debug, hence it didn’t take long before higher level shader
languages appeared. Examples of such shader languages are OpenGL Shad-
ing Language (GLSL) and Microsoft’s High Level Shading Language (HLSL).
These languages typically offer a C-like syntax, making programs easier to
develop. Programs written using these languages are compiled down to
assembly instructions before being sent to the GPU, thus they should be
comparable in speed to programs written in assembly from scratch.

This programmability along with the high speed and low cost of recent
graphics hardware has become a vital step for general-purpose computa-
tion on the GPU. Even though still only intended to be used for computer
graphics tasks, the programming model that was introduced is, even though
unusual, general enough to be used for a large class of non-graphics problems.
Also, each new generation of GPUs has increased functionality and gener-
ality, enabling the use of the GPU for an even larger class of non-graphics
problems. Still, not every problem is suitable to solve using the GPU. The
high speeds offered by graphics hardware are possible due to data parallelism
and a highly specialized architecture. Non-graphics problem domains have
to be fitted into this highly limited domain in order to take advantage of the
potential speed-ups offered by graphics hardware. However, even though
often challenging, the potential benefits in utilizing graphics hardware for
general-purpose problems may be substantial.

28 CHAPTER 2. BACKGROUND

2.3.3 Mapping to the GPU

A typical program that more often than not can be moved from the CPU
to the GPU, is the one where most of the calculation is performed on one
or more arrays of data. On the GPU, the analogy to arrays are textures.
Textures can contain up to four color channels, and thus, if more that one
array of data are to be used, these can be packed into the various color
channels of a texture. This way, increased parallelism can be achieved since
computations can be performed on all the four color channels at once.

When doing calculations on an array on the CPU, the same operation is
usually performed on larger parts of or maybe even on the whole array.
Loops are used to iterate over the elements in the array, and the operation
is then performed on the given element in each iteration. On the GPU, these
operations are represented by pixel shader programs. In order to invoke these
pixel shader programs, instead of using loops, a stream of pixels has to be
generated. Typically, this is done by drawing a quad parallel to the viewport,
and with the viewport sized to fit the desired output array. The rasterizer
then generates the pixels that are covered by the quad, and since the size of
the viewport matches the size of the array, the number of pixels generated
is equal the number of elements in the array. Also, the vertices that defines
the quad are given a set of texture coordinates, which are interpolated into
every pixel by the rasterizer. These texture coordinates are sent as input
to the pixel shader programs, and they can be used to the fetch the value
at the position in the texture that corresponds to the position of the pixel
relative to the quad.

2.3.4 Limitations and difficulties

As already mentioned, there are several limitations and difficulties involved
when programming on the GPU, and non-graphical problems in particular.
Such problems can often not be solved intuitively on the GPU, and have to
be translated into the graphics domain before it can be solved. This often
require a deep understanding of both the graphics domain and the problem
domain.

Another limitation is that it is only possible to read from and write to a
texture and not the entire memory in general. Also, even though it is possible
to read from an arbitrarty texture location, the position in the texture to
which a calculated value is to be written is already determined before a call
to an instance of a pixel shader program is made. Thus, in order to write
to specific positions in a texture, the graphics pipeline have to be set up
properly so that the rasterized pixels corresponds to the desired positions in

2.4. SUMMARY 29

the texture. The pixel shader programs that are executed on each rasterized
pixel will then be used to calculate new values at the corresponding pixels
in the texture.

Textures are also limited by the fact that it is not possible to read from and
write to the same texture at the same time. Instead, a temporary texture
has to be written to instead, and then the two textures are swapped once
the rendering operation is complete.

Yet another limitation is the lack of 64 bit double precision floating point
numbers. Since some large-scale problems often require the extra precision
offered by these numbers, this limitation hampers or prevents the use of the
GPU for these problems.

2.4 Summary

An explosion can be described as a process that causes a sudden increase
of pressure. The primary effect of this process is an outward-going pressure
wave. Secondary and more visible effects occur as well, and include flashes of
light, fire balls, whirls of dust, and flying debris. Explosions are categorized
based on the velocity of the pressure wave. If the pressure wave has subsonic
velocities, the explosion is considered a deflagration, whereas a detonation
causes a pressure wave with supersonic velocities. Two types of explosions
that often are highly visible are gas and dust explosions.

The motion of hot gases may be described by a set of equations known as
the Navier-Stokes equations, and can thus be modeled by the use of fluid
dynamics. Since the compressible versions of the Navier-Stokes equations
are too time-consuming to solve in real-time, several simplifying assumptions
are made. Two such simplifications can be made by assuming that the fluid
is incompressible and inviscous.

Graphics hardware have a highly specialized architecture designed to meet
the performance and visual quality requirements of various computer graph-
ics tasks. The high speed is made possible by the organization of the compu-
tations into a graphics pipeline. Also, graphics hardware have in the more
recent years become fully programmable. This increased programmability
have not only made general-purpose computations possible, but also very
attractive due to the high performance delivered by graphics hardware.

30 CHAPTER 2. BACKGROUND

Chapter3
Related Work

This chapter presents previous work that is related to our goal of simulating
and visualizing explosions in real-time. The presentation is divided in two.
First, work related to the simulation of explosions is presented, followed by
a presentation of work related to the visualization of explosions. Instead of
focusing on the visualization of explosions alone, various ways that volumet-
ric effects in general can be visualized will be described instead. Examples
include using particle systems as well as ray casting.

The rest of this chapter presents the previous work related to both simulation
and visualization of explosions. Next, the various approaches are compared,
before a short summary concludes the chapter.

3.1 Simulation of explosions

Before presenting previous work on simulation of explosions, previous work
on computational fluid simulation will be presented first. There are two rea-
sons for this. First, as we want to base our simulation on the field of compu-
tational fluid dynamics, an introduction to related work in this field is just as
important as related work on explosion simulations. Second, fluid dynamics
has been used in most of the explosion simulations presented section 3.1.2.
Hence, in order to fully understand these approaches, an understanding of
the approaches to computational fluid dynamics is important.

Previous work on simulation of explosions are presented next. Only ap-
proaches that focus on the visual effects of the explosion rather than on the
pressure wave will be included, since we are not interested in modeling the
pressure wave anyways.

The presentation continues by describing various ways combustion has been
modeled. Combustion is not only limited to explosions, but is also present
in other phenomena such as fire, and thus, the presentation will present a
more general overview of work related to combustion modeling.

32 CHAPTER 3. RELATED WORK

Two other aspects that are important to investigate are volumetric extru-
sion, and vorticity and turbulence modeling. Volumetric extrusion is used to
approximate 3d simulations by performing the simulation in 2d and then use
interpolation to move the density and velocity values into the 3d domain.
Vorticity and turbulence modeling on the other hand is used to enhance the
existing vorticity, and also to introduce additional turbulence.

Finally, methods that include arbitrary boundary conditions to fluid simu-
lations are discussed.

3.1.1 Computational fluid simulation

[FM97] popularized the field of computational fluid dynamics in the graphics
community with a model for simulating the motion of a hot, turbulent gas
in a full 3D environment. The flow of the gas was described by the inclusion
of the incompressible Navier-Stokes equations. The non-linear and differen-
tial nature of these equations has historically made them difficult to solve,
and in this work an explicit integration scheme were used to solve them.
The stability of this integration scheme required very small time steps, and
thus put a strong limitation on the usefulness of the model in a real-time
simulation. An example how they simulated hot smoke using their method
is shown in figure 3.1.

Figure 3.1: Simulation of hot smoke [FM97]

This limitation was later removed by Stam’s work in [Sta99] where he pre-

3.1. SIMULATION OF EXPLOSIONS 33

sented his unconditionally stable method. Here, the solutions to the incom-
pressible Navier-Stokes equations are approximated instead of being solved
explicitly. The advection term of the incompressible Navier-Stokes equation
is solved using a semi-laplacian step. Instead of moving the grid values for-
ward along the current velocity field, new grid values are found by moving
backwards in time along the velocity field to find where the value in a cell
would have come from. The diffusion term is solved implicitly using an
iterative linear equation solver, whereas the force term is explicitly added.
The resulting vector field is divergent, and it is made non-divergent by sub-
tracting the gradient of a pressure field. This pressure field is calculated
using an iterative linear equation solver, similar to the one used to solve the
diffusion term. One of the drawbacks of Stam’s method is the introduction
of numerical dissipation, causing unnatural damping and the loss of vortic-
ity. Also, the linear equation solvers often requires several iterations to give
satisfactory results.

3.1.2 Simulation of explosions

[FOA03] animated visually pleasing suspended particle explosions. Instead
of modeling the blast wave, they modeled the motion of air and hot gases
around an explosion. This was done by solving the incompressible Navier-
Stokes equations in coherence with a system of fuel and soot particles. The
particles were advected based on the underlying velocity field, and combus-
tion of the particles affected the temperature and momentum. The Stable
Fluids method [Sta99] was used to solve the incompressible Navier-Stokes
equations. Also, they approximated compressibility by letting the diver-
gence be zero except where mass was added or the fluid was expanded by
heat. Figure 3.2 shows various time steps from an explosion simulated using
their technique.

Figure 3.2: Four time steps from a suspended particle explosion [FOA03]

[RNGF03] simulated highly detailed large scale explosions using a few two-
dimensional high resolution physically based flow fields. Fields existed for

34 CHAPTER 3. RELATED WORK

both the velocity, density, and temperature of the fluid, and they were calcu-
lated by the use of the Stable Fluids method [Sta99]. These two-dimensional
fields were moved into the tree-dimensional domain by the use of volumet-
ric extrusion. They also used non-interacting particles whose motion were
affected by the flow field. The velocity, density, and temperature of each
particle were defined by interpolating between the two-dimensional fields.
Because of the simplifications that were made, very large grid sizes could be
used, and thus large scale simulations could be performed, such as the one
shown in figure 3.3.

Figure 3.3: Two different large scale explosions [RNGF03]

[TOT+03] used a discrete Lagrangian fluid model in coherence with flame
and air particles. The various physical quantities used in the simulation,
such as the buoyancy and the pressure gradient, are calculated based on the
interaction between the particles. Figure 3.4.

[KW05] used non-physical pressure and velocity templates to affect a Navier-
Stokes based fluid simulation. The pressure template are used to adjust the
pressure field, whereas the velocity template are used to adjust the velocity
field. Using these templates, custom fluid flow can be designed as desired.
Explosion effects are created by inserting a very high temperature at the
desired explosion center. Buoyancy affects the velocity field, which is used
to transport the heat. Torus shaped pressure templates are used to create
the rolling motion of the explosion, as shown in figure 3.5.

3.1. SIMULATION OF EXPLOSIONS 35

Figure 3.4: Six time steps from a particle based explosive flame [TOT+03]

Figure 3.5: Torus shaped pressure template used to simulate an explosion
[KW05]

3.1.3 Combustion

There exist several approaches that simulate phenomena that include com-
bustion. However, many of these approaches do not model the combustion
explicitly. [RNGF03] models detonations and assume that the combustion
has completed at the beginning of the simulation. [KW05] simply uses col-
ored dye that is carried along the fluid velocity to imitate the appearance of
burning gas.

An explicit model is used by [MK02] to simulates fire. The computation is
represented by a grid structure, and the combustion process is simulated in
each of the grid cells. If the temperature in a cell is high enough, both the
fuel gas, exhaust gas, and temperature are updated based on a combustion
parameter. This combustion parameter is computed based on the amount of
fuel and oxygen inside the grid cell. The increased temperature will diffuse
to the neighbouring cells causing the combustion process to begin in these
cells as well. The combustion can be adjusted by varying several parameters.
These parameters include the burning rate, which is the percentage of the

36 CHAPTER 3. RELATED WORK

fuel gas that can be burned in a second, the output heat from the reaction,
and the stoichiometric mixture. The stoichiometric controls the amount
of oxygen that is required for the combustion of one unit of fuel. If the
present amount of air is insufficient, it will limit the combustion. [GRS06]
used the combustion model of [MK02], but without the oxygen requirement.
Thus, they assume that there will always be enough oxygen to sustain the
combustion process.

[FOA03] uses a similar, explicit model to simulate the combustion of small
fuel particles. The particles ignite when their temperatures rise above a
certain threshold. Once ignited, they burn at a constant rate and are re-
moved from the simulation when their mass reaches zero. The burning fuel
particles introduce heat and soot at rates proportional to the burning rate.
Heat is added directly to the underlying fluid simulation, while soot is accu-
mulated in a variable associated with the fuel particle. When enough soot
is accumulated a soot particle is introduced to the simulation, and the soot
variable is reset. As [GRS06], [FOA03] also assumes that there is always
enough oxygen to sustain the combustion process.

3.1.4 Volumetric extrusion

A full 3D fluid simulation has high computational and memory requirements,
and these requirements often put limitations on the possible simulation grid
sizes that can be used in such a simulation. Often, smaller grid sizes than de-
sired have to be used. A way around this problem is by the use of volumetric
extrusion. [RNGF03] proposed a way to derive a 3D velocity field by com-
bining two or more 2D velocity fields. The 2D fields were treated as slices in
the 3D space, and the values in between the 2D fields were calculated using
interpolation. The 2D fields were obtained from a 2D simulation, and thus,
both the simulation time and the memory requirements were drastically re-
duced. Using this technique, highly detailed large scale phenomena, such as
nuclear explosions, could be modeled using only low to medium amounts of
memory.

Volumetric extrusion was also used by [KW05] when simulating volumet-
ric effects such as smoke, fire, and explosions. They placed independently
simulated 2D fields in a cylindrical form in the 3D domain, and used cylin-
drical interpolation to retrieve the values from the 3D domain. Using this
technique in combination a fluid simulation all performed on the GPU, they
were able to perform semi-3D fluid simulations in real-time.

3.1. SIMULATION OF EXPLOSIONS 37

3.1.5 Vorticity and turbulence

As already mentioned, [Sta99]’s method has a few drawbacks, one of which is
the introduction of numerical dissipation. A way to make up for some of the
numerical dissipation in Stam’s simulation was introduced by [FSJ01]. They
used a technique called vorticity confinement earlier introduced by [SU94] to
locate and enhance existing vorticity. This way, the loss of vorticity due to
numerical dissipation were less noticeable. The added vorticity gave great
improvements compared to using Stam’s fluid solver alone. Figure 3.6 shows
an example from the simulation of rising smoke. Here, the clearly defined
vortices are preserved to a large degree by the use of vorticity confinement.

Figure 3.6: Simulation of smoke using Stam’s method combined with vor-
ticity confinement [FSJ01]

Another technique that can be used to reduce the numerical dissipation is
Back and Forth Error Compensation and Correction (BFECC). BFECC was
introduced by [DL03] as a level set computation method, and was applied
by [KLLR05] to the velocity and density advection steps in Stam’s method.
The idea behind the technique is simple. If the advection operator used
in Stam’s method was correct, advecting forward and then backward would
result in the same value as the original one. However, the advection operator
introduces an error. This error is calculated and compensated for in a final
forward advection step. The technique is easy to implement on top of the

38 CHAPTER 3. RELATED WORK

semi-Lagrangian integration already used, and produces impressive results,
as can be seen in figure 3.7.

Figure 3.7: Comparison of smoke simulation with (bottom) and without
(top) BFECC [DL03]

Even though vorticity confinement can enhance existing vorticity, it is not
able to introduce new vorticity to the fluid. [SRF05] actually stated that
vorticity confinement alone can be insufficient for highly turbulent effects,
such as rough water or explosions. Instead, they proposed a hybrid method
between the standard semi-laplacian methods, such as the one by Stam, and
the Lagrangian vortex particle methods. Their method includes an Eulerian
grid of velocities in addition to a set of vortex particles whose motion were
affected by the velocity field. Each vortex particle has a certain vorticity that
can be used to affect the velocity field in several ways, and thus introducing
additional turbulence to the fluid. Figure 3.8 shows the evolution of smoke
enhanced with vortex particles.

Another way to introduce additional turbulence is by the use of a Kol-
mogorov spectrum. As mentioned earlier, instead of performing a full 3D
simulation, [RNGF03] performed a few 2D simulations and interpolated be-
tween the resulting 2D fields to approximate a simulation in the 3D space.
The velocities from the 2D fields were combined with an additional veloc-
ity field derived from a Kolmogorov spectrum to introduce additional low
level detail. Two or more such Kolmogorov velocity fields were used, each
assigned to different points in time and interpolated between. This way, the
turbulent field into which the particle motion were transitioned into var-

3.1. SIMULATION OF EXPLOSIONS 39

Figure 3.8: Simulation of smoke using the Vortex Particle method on top of
the Stable Fluid solver.

ied over time. An example showing an explosion where such a Kolmogorov
velocity field is used can be found in figure 3.3.

3.1.6 Arbitrary boundary conditions

Most real-time simulation that include fluids only consider the boundaries
at the edges of the simulation domain. This reduces the complexity of the
code that needs to be executed per cell in the simulation domain. However,
allowing for arbitrary boundary conditions opens for numerous interesting
effects.

Figure 3.9: 3D smoke simulated using internal boundaries [LLW04].

[WLL04] combine the Stable Fluids solver with a more flexible way of treat-
ing arbitrary boundary conditions. This is used to simulate the motion of a

40 CHAPTER 3. RELATED WORK

2D fluid that flows around obstacles. In [LLW04], they extend their work to
3D. The GPUs they had at their disposal did not allow branch operation,
a fact their solution is influenced by. To avoid branch operations1 in pixel
shaders they encoded offset and modification data in textures and created
pixel shader code that used this data to perform the complete algorithm on
the GPU. Figure 3.9 shows an example from their results.

Figure 3.10: 3D smoke simulated using moving internal boundaries [LLW04].

A more recent approach can be found in a sample from NVidia [NVi07].
As current GPUs support branch operations natively, a far more intuitive
solution can be implemented. They use textures to represent whether or not
a cell is occupied by an obstacle and at what speed the obstacle is moving.
This information is sampled by a simple texture fetch and branching is used
to decide if the cell should be handled as a boundary cell or not. Figure 3.10
shows an example of their results.

1In this section, branch operations refer to if-tests.

3.2. VISUALIZATION OF EXPLOSIONS 41

3.2 Visualization of explosions

The techniques used to visualize explosions basically use the data that re-
sults from the explosion simulation. These data include the velocities, the
exhaust gas, and the temperature. Simulation of other volumetric effects,
such as fire and smoke, often use the same kind of data, and thus the various
visualization techniques should be able to visualize a range of different vol-
umetric effects. For that reason, this overview will not discuss related work
to the visualization of explosions alone, but also include techniques used to
visualize other related volumetric effects as well.

There are mainly two approaches that are used in real-time visualization
of volumetric effects; particle systems, and volume rendering. Other ap-
proaches that may produce more visually pleasing results exist, but they are
often too computationally expensive to be used for real-time visualization.
For that reason, they are often referred to as offline approaches.

In the remainder of this section, the mentioned approaches will be presented.
Techniques that use particle systems will be presented first, followed by an
overview of techniques based on volume rendering.

3.2.1 Particle systems

Particle systems offer a relatively easy way to visualize volumetric effects.
They have been used for several decades, and one of the earliest work can
be found in [Ree83]. In more recent years, particle systems have been used
both for real-time visualization, such as in [WLMK02], [KSW04], [Lat04],
and [KW05], and for offline visualization, as in [FOA03].

3.2.1.1 Simulation of particle systems

The particles in a particle system can either be specific to and injected in the
visualization step, as in [KW05], or be an active part of the simulation itself,
as in [FOA03]. When the particles are visualization specific and separate
from the simulation, the particles are often advected by a velocity field,
which is typically calculated in the simulation step prior to the visualization
step. The velocities can be a discretized 3D velocity field, as in [WLMK02],
or one or more discretized 2D velocity fields, as in [KW05]. Since the velocity
fields are discretized, the velocity vectors used to move the particles have
to be calculated by interpolating the velocity fields based on the position
of the particle relative to the velocity field. When a 3D velocity field is
used, the velocity vectors can be calculated using tri-linear interpolation as

42 CHAPTER 3. RELATED WORK

in [WLMK02], whereas when 2D velocity fields are used, the velocity vectors
can be calculated using volumetric extrusion as in [KW05].

3.2.1.2 Visualization of particle systems

When the particles are rendered, they can be rendered as points, as in
[FOA03], or as larger point sprites, as in [WLMK02] and [KW05]. When
using larger point sprites, visually pleasing results can be achieved by us-
ing less particles, resulting in better performance. Large point sprites will
however reduce some of the fine-scale detail that may be more visible when
small points are used. A way to introduce additional fine-scale detail even
when larger point sprites are use is to use render the sprites using textures
splats, as in [WLMK02].

The colors of the particles can vary based on various quantities, such as
the density or the temperature. This technique is among others used by
[WLMK02]. First, they decide whether a particle is to be rendered as fire
or as smoke based on the temperature at the particle’s position. If the
temperature is above a certain threshold, the particle is rendered as fire,
and the color is calculated using a black-body radiation model based on the
given temperature. Otherwise, the particle is rendered as smoke using a
different color range.

When the particles are rendered on top of each other, the colors are blended
to create smooth transitions between the particles. However, rendering the
particles in an arbitrary order may cause visual artifacts. These visual ar-
tifacts can be removed if the particles are sorted back-to-front before they
are rendered. This technique is used both by [WLMK02] and [KSW04].

3.2.1.3 Implementing particle systems on the GPU

With the introduction of modern graphics hardware, a particle system can
be implemented in parts or fully on the GPU, as done both by [KSW04]
and [Lat04]. Here, the positions and velocities of the particles are stored in
separate textures, where the various color channels are used to store the x-,
y-, and z-coordinates. Since a texture can not be used both for input and
output, a pair of textures are used for each of the quantities, where one of
the textures is used for input and the other texture is used for output. The
role of the textures are switched every frame, so that the output texture in
one frame is used as input in the next frame, and vica versa.

The movement of the particles is performed in two steps. First, the velocities
are updated based on some local or global forces, before the positions are

3.3. APPROACH COMPARISON 43

updated based on the velocities. In [Lat04], only parts of the simulation is
performed on the GPU, as the particle spawning and removing is performed
on the CPU.

The particles can be rendered as points, triangles, or quads, as in [Lat04].
Here, a static vertex buffer is drawn, and the vertex positions are updated
based on the particles’ positions. These position are located in a texture,
and are fetched using vertex-texture-fetch functionality. Also, to avoid visual
artifacts, both [KSW04] and [Lat04] sort the particles the particles before
they are rendered.

3.2.2 Volume rendering

One way to do volume rendering was shown by [IMDN05]. In their work,
they place a texture at the center of each voxel of the voxelized data from
the simulation. These textures are then rendered using the GPU. The color
of the textures are calculated using a black-body radiation model based on
the temperature.

Another similar technique is to replace every voxel with a semi-transparent
polygon. The density of the exhaust gas and the fuel gas decide the level of
transparency in the voxel. Also, the amount of fuel combustion at the voxel
decides the intensity of the red fire color, whereas the amount of exhaust
gas at the voxel decides the intensity of the smoke.

Ray marching is another technique used to do volume rendering, and is very
suitable for use on the GPU. This technique is used by [KW03]. They cast
rays through the volume, and map one pixel shader program to each ray.
For each ray, they perform a number of steps through the volume. At each
step, a scalar value is sampled from the volume, and this value is either used
directly or in combination with a color lookup table to find another color
value that is blended with the already accumulated color value. By casting
rays uniformly through the entire volume and calculating the color values
in this matter, the entire volume will be rendered.

3.3 Approach comparison

Figure 3.11 shows a table that compares different methods for animation
of explosions in light of different aspects. An approach receives a mark if
the it fulfills the given aspect. Real-time performance is defined as when
the animation runs at at least 30 frames per second. As can be seen, only
[KW05] performs in real-time.

44 CHAPTER 3. RELATED WORK

Figure 3.11: A comparison of different approaches for animation of explo-
sions.

3.4 Summary

Approaches for real-time and offline simulation of explosions, as well as re-
lated phenomena, have been presented. Most approaches use fluid dynamics
to guide the simulation, and Stam’s Stable Fluids solver is probably the most
popular method for real-time fluids. The Stable Fluids method suffers from
numerical dissipation, which can be remedied by the vorticity confinement
method. Fluid simulation are often affected by buoyancy and gravity to in-
clude the relevant external forces. Fire and explosion simulations may also
include explicit combustion models to enhance the realism of the result.

Additional turbulence may be added by either the vortex particle method or
by using Kolmogorov turbulence. To reduce the computational load of 3D
simulations, 2D slice simulations may be performed instead. A 3D volume
may then be obtained from these using volumetric extrusion.

Relevant methods for visualization of volumetric data may be roughly cat-
egorized into either particle based methods or volume rendering. Particle
based methods generally use a set of discrete particles that move in the
simulation domain. They can be rendered directly as points, but are often
rendered as textured quads or as spherical particles by more complex meth-
ods. Volume rendering, on the other hand, seeks to visualize the data more
directly by sampling several points in the data per pixel that is rendered.

Chapter4
Simulating Explosions

This chapter gives the details of the suggested method for simulating real-
time explosions, whereas the next chapter explains how the simulation is
visualized. The simulation method is similar to the fire simulation from
[GRS06], in which it combines a combustion model with the Stable Flu-
ids solver [Sta99] and vorticity confinement [FSJ01]. To model the thermal
expansion that occurs during combustion, the fluid solver is modified as
suggested by [FOA03]. Additional turbulence is introduced by the vortex
particle method [SRF05]. In order to restrict the computational require-
ments when simulating rotational, symmetric explosions, volumetric extru-
sion [RNGF03] is utilized1.

The chapter is organized as follows: First, an overview of the simulation is
given. Next, the details of the simulation fields and the various equations
governing them are presented. Then, boundary conditions are discussed,
followed by a presentation of the complete simulation algorithm. Finally,
methods for sampling from the simulation results are explained.

4.1 Overview

The explosion simulation models the combustion of fuel that produces ex-
haust gas and temperature changes in a computational domain. The fuel,
exhaust gas, and temperature values are scalars that reside in separate fields,
but they are collectively referred to as the “density fields”, or simply “den-
sities”. Exhaust gas and temperature affect a velocity field by gravitational
and buoyant forces, and the velocity field is in turn used to move the con-
tents of the density fields. The velocity field contains vectors that describe
the direction and speed of the fluid, the air in which the explosion occurs.
The various fields are discretized into grid or voxel cells representing a sim-
ulation domain in either 2D or 3D, respectively. The fields are governed by
a set of differential equations, which are solved on a cell by cell basis.

1Volumetric extrusion is also used by [KW05, GRS06]

46 CHAPTER 4. SIMULATING EXPLOSIONS

4.1.1 Computational domain

When the simulation is performed in 2D, the computation is represented
by a grid structure, as shown by figure 4.1. Each cell, shown as squares,
will contain corresponding density and velocity field values defined in cell
centers. Such a representation is known as a collocated grid, as opposed
to staggered grids. When using a staggered grid representation, vertical
velocity is defined at horizontal cell borders, horizontal velocity is defined
at vertical cell borders, while density values are still defined at cell centers.
The implementation when using collocated grids are more straighforward
[Sta99].

Figure 4.1: A 2D computational domain [SR06].

When the simulation is performed in 3D, a voxel representation is used. A
cross-section of such a 3D domain is shown in figure 4.2. Similarly to the 2D
representation, voxels in the 3D representation have corresponding density
and velocity field values defined in voxel centers. 2D grid cells and 3D voxels
are collectively referred to as grid cells, or simply cells from now on.

When solving differential equations, one often needs to look at neighboring
cells. Cells at the boundary of the simulation domain does not have neigh-
boring cells in every direction, thus certain considerations need to be made
for these cells. Figures 4.1 and 4.2 make distinction between two kinds of
cells; interior cells and boundary cells. All the equations in the simulation
can be calculated for the interior cell, while the boundary cells are subject
to boundary conditions. The boundary conditions vary based on the kind of
numerical operation that is performed and are explained in detail in section
4.3.

4.1.2 Simulation overview

Figure 4.3 shows a conceptual overview of the simulation method. The simu-
lation state that is updated and kept from one time step to the next is shown

4.1. OVERVIEW 47

Figure 4.2: A cross-section of a 3D computational domain [SR06].

in the frame marked simulation state. The state consists of fields, shown as
boxes, and a table of vortex particles. The three density fields, fuel, exhaust,
and temperature, are situated to show their coherence. The main processes,
shown as circles, are categorized into either explosion specific or fluid solver
processes. The simulation also contains fields that hold intermediate results.
These are not shown in the figure, but are rather explained subsequently in
appropriate sections. An arrow from a state object to a process expresses
that the state object data is read by the process, while an arrow going from
a process to a state object means that the state is updated as a result of the
process.

The actual order of process execution is dictated by both the fluid solver
itself and the fact that the output of some processes is input data to oth-
ers. Several valid orders exist. In fact, some may even be performed in
parallel. Figure 4.4 shows how the processes from figure 4.3 relate to each
other. The advection process in figure 4.3 occurs twice in the actual method
and is therefore shown more detailed by the velocity advection and density
advection processes in figure 4.4. An arrow going from a process to another
means that the first process needs to be completed in order for the second
to start. The vertical lines illustrate how processes may be grouped for par-
allel execution. Also, figure 4.4 shows two respective groups of four and two
processes. This is to illustrate the processes’ logical coherence, and the fact
that they all produce results that another process depends on.

The order in which the processes are presented below is chosen to ease the
explanation:

48 CHAPTER 4. SIMULATING EXPLOSIONS

Figure 4.3: Conceptual simulation overview

Figure 4.4: The processes and their relationship to each other.

4.1. OVERVIEW 49

First, the Vortex particle movement process moves a set of vortex particles
based on the underlying velocity field. The vortex particles themselves are
used later to create rotational motion in the simulation. The method is
explained in detail in section 4.2.3.3.

Secondly, forces that affect the velocity of the fluid are calculated and added
to the velocity:

• Gravity pulls dense exhaust gas towards the ground.

• Buoyancy due to high temperature causes the fluid to rise.

• Vorticity confinement locates rotational motion in the fluid and en-
hances it.

• Vortex particle forces create additional rotational motion.

Third, changes to the density field are performed:

• Combustion models burning fuel, creating exhaust gas and heat.

• Dissipation models dissipation of fuel, exhaust gas, and temperature
field, making the explosion calm down after a while.

Fourth, the fluid solver evolves the velocity field:

• Advection moves the velocity field based on the velocity itself, often
referred to as self-advection.

• Projection ensures that the velocity field has the desired divergence,
which involves an intermediate field that models the thermal expan-
sion.2

Finally, the fluid solver moves the density and incorporate the effect diffu-
sion:

• Diffusion models the fuel, exhaust gas, and temperature’s tendency to
spread.

• Advection moves the contents of the density fields based on the velocity.

2Note that to keep figure 4.3 as simple as possible, the thermal expansion field is not
shown.

50 CHAPTER 4. SIMULATING EXPLOSIONS

4.2 Simulation details

This section provides the details behind the processes just explained. Note
that several of the aspects covered in following sections expect knowledge of
the Stable Fluids solver that were presented in 2.2.3.

The section is organized as follows. First, the equations governing the ve-
locity and density fields are presented. Next, the various forces that affect
the fluid motion is explained. Then, the combustion model is presented,
followed by an explanation of thermal expansion is calculated.

4.2.1 Velocity fields

The fluid velocity field is governed by the Navier Stokes equations for in-
compressible inviscous flow:

δu

δt
= −(u · ∇)u − 1

ρ
∇p + f (4.1)

Equation 4.1 states that the change of the velocity u consists of the three
terms on the right hand side of the equation. The first term represents
the advection that move the fluid velocity along by itself. The second term
models the effect of pressure, causing fluid to flow from areas of high pressure
to areas of low pressure. The third term provides a way to include external
forces to the fluid. The force term is actually a combination of forces, whose
details are covered in section 4.2.3.

When assuming the fluid is incompressible, mass conservation laws require
that the velocity divergence is zero. However, during combustion the tem-
perature of the fluid will increase and cause thermal expansion. This effect
is approximated as in [FOA03] and we allow for:

∇ · u = φ (4.2)

where φ is proportional to temperature changes.3 Thus, divergence will still
be zero in areas where the temperature is constant, but the divergence in
areas where the temperature rises will be positive. Combustion will cause
the temperature to rise quickly and lead to high velocities away from the
cells involved, which imitate the violent motion of explosions.

3Note that the proportionality constant must be positive. If not, the thermal expansion
model would result in an implosion, not an explosion.

4.2. SIMULATION DETAILS 51

The pressure term of equation 4.1 is not modeled explicitly, but accounted
for by the projection process of the fluid solver to ensure that equation 4.2
holds. Because the usual ∇ · u = 0 condition of incompressible fluid has
been replaced with equation 4.2, certain changes to the projection step need
be taken. Instead of solving

∇ ·w = ∇2q (4.3)

a slightly modified poisson equation is solved instead:

∇ · w − φ = ∇2q (4.4)

In practice, the values of the symbols on the left side of equation 4.4 can
be calculated before letting the fluid solver find q. Thus, the extension of
the fluid solver to include thermal expansion does not involve substantial
additional computations.

The density ρ of equation 4.1 is assumed to be constant. One could in-
clude varying density in the simulation to model expansion as performed
in [KLLR05], at the expense of a slightly more complex poisson equation
to solve. Since the method from [FOA03] produces the desired results, the
method from [KLLR05] has not been an area of focus.

Like several others [FOA03, RNGF03, GRS06] the viscosity term of the
Navier Stokes equations is omitted, as it will have negligible effect on the
final result . Viscosity models the flow resistance of a fluid and is important
when modeling fluids like syrup or oil, but can be ignored when dealing with
gases.

4.2.2 Density fields

As [Sta99] proposed, the velocity field can be used to move densities that
reside in the fluid. He also proposed diffusing these densities to model fluid’s
tendency to spread. In this model, fuel, exhaust gas, and temperature values
represent these densities. Similarly to [Sta99, GRS06], density evolution over
time is governed by the following equation:

δd

δt
= −(u · ∇)d + κd∇2d − αdd + Cd (4.5)

where d represent either the fuel g, the exhaust gas e, or the temperature T .
Thus, equation 4.5 yields three differential equations; one for each density

52 CHAPTER 4. SIMULATING EXPLOSIONS

quantity.

The first term of equation 4.5 is the advection term, where the densities are
moved along the velocity field u. The second term is the diffusion term,
where each density is diffused using their respective diffusion constants κg,
κe, or κT . The third term models the dissipation of the densities, enabling
the densities to slowly fade away at their respective dissipation rates αg, αe,
or αT . Intuitively, exhaust gas may drift for a while, but will eventually
disperse. The temperature is dissipated to model the radiance and conduc-
tion of hot gas. The fuel dissipation constant is kept low, or even ignored
because the fuel will combust during the first few moments of simulation.
The final term is the combustion term, which include the results provided
by the combustion model (explained in section 4.2.4).

4.2.3 Forces

The differential equation for the evolution of velocity is general in which it
may be applied to a wide variety of phenomena. To simulate the motion
of an individual effect, like explosions, one has to apply external forces to
equation 4.1 that describe the phenomenon. The external force term, f , of
the equation is a combination of several others as shown in the following
equation:

f = fgravity + fbuoyancy + fvorticity + fparticles (4.6)

where fgravity and fbuoyancy are forces that pull the fluid towards the ground
and make it rise, respectively. fvorticity is a vorticity confinement force used
to enhance existing rotational motion in the fluid, while fparticles is a force in-
cluded to introduce additional turbulent motion to the fluid. The individual
forces are explained in detail in the sections below.

4.2.3.1 Gravity and buoyancy

An important visual quality of explosions is their rising buoyant plume.
This is modeled by including a thermal buoyancy force proportional to the
temperature in the cells, as shown by the following equation:

fbuoyancy = fbT

0
1
0

 (4.7)

4.2. SIMULATION DETAILS 53

where T is the temperature of a cell and fb is a positive constant used to
control the strength of the buoyancy force.

The exhaust gases are assumed to be more dense than air, thus is pulled
towards the ground by gravitational forces. Fuel gas, on the other hand, is
assumed to be equally dense as the air and is ignored in gravity calculations.
The following equation shows how the gravity force is calculated:

fgravity = fge

0
−1
0

 (4.8)

where e is the exhaust gas level and fb is a positive constant used to control
the strength of the gravity force.

Buoyancy and gravity have previously been modeled similarly by several
other methods, both for simulating explosions [FOA03, RNGF03] and re-
lated phenomena [FM97, MK02, IMDN05].

4.2.3.2 Vorticity confinement

When using the Stable Fluids solver, some of the small-scale rotational mo-
tion of the fluid is lost, an effect known as numerical dissipation, and results
in a less turbulent fluid. To counterbalance this, the vorticity confinement
method [FSJ01], also used by [RNGF03, FOA03, GRS06], is utilized to en-
hance existing rotational movement, or vortices, in the fluid. First, the
existing vorticity ω of the velocity field u is found using the following equa-
tion:

ω = ∇× u (4.9)

The vorticity ω is a vector whose magnitude describe the amount of ro-
tational motion. Its direction describe the axis of which the fluid rotates
around in a right-handed fashion. Next, a normalized vector N pointing
toward areas of greater magnitude of vorticity is calculated:

N =
∇ |ω|
|∇ |ω|| (4.10)

To be able to enhance existing vorticity, a force term whose direction is
tangential to the circular motion is needed. Such a vector can be found to
be the cross-product of ω and N:

54 CHAPTER 4. SIMULATING EXPLOSIONS

fvorticity = εh(N × ω) (4.11)

where h is the distance between adjacent cell centers and ε is a positive
scalar used to control the strength of the vorticity confinement strength.

4.2.3.3 Vortex particles

Vorticity confinement does only enhance existing rotational motion in the
fluid, thus it will not be able to introduce turbulence to the simulation.
[SRF05] proposed a vortex particle method where particles add rotational
motion to their surroundings, while they flow through the fluid, guided by
the velocity field. The vortex particle method is utilized to introduce turbu-
lence to the simulation domain through the force fparticles of equation 4.6.4

Since vorticity is defined as the curl of the velocity (ω = ∇ × u), one can
take the curl of equation 4.1 to yield a differential equation that describe
how the vorticity of the velocity field evolves:

δω

δt
= −(u · ∇)ω + (ω · ∇)u + ∇× f (4.12)

The changes of vorticity during a small time step δt is dictated by the
terms of the right side of the equation. The curl of the advection term of
equation 4.1 yields the two first terms; the first is the vorticity advection
term, describing the movement of vortices in the fluid; the second is a vortex
stretching term that describes changes to the vortex vector itself, in the form
of both direction and magnitude. Note that the pressure gradient term of
equation 4.1 vanishes, because the curl of a gradient field is to zero5. [SRF05]
argue that the third term of equation 4.12 can be omitted because the forces
are already applied to the fluid through equation 4.1.

Equation 4.12 is not solved numerically like equation 4.1. Instead, a number
of vortex particles are defined with respective positions and vorticity vectors
ω. They are passively advected by the fluid velocity at particle positions as
shown by the following equation:

xnew
p = xp + u(xp)δt (4.13)

4In contrast, turbulence can also be included to the visualization without affecting the
simulation itself. This technique is also used, and is explained in chapter 5.

5This is a mathematical fact and can be shown simply by calculating ∇×∇p, where
p is a scalar field.

4.2. SIMULATION DETAILS 55

This accounts for the advection term of equation 4.12. The vortex stretching
term, on the other hand, has an effect on the particles’ vorticity vector.
The vorticity vectors are updated each simulation step using the following
formula:

ωnew = ωold + (ωold · ∇)u (4.14)

where finite difference derivation is used on the velocity field to evaluate the
vortex stretching term.

[SRF05] also informs that the vortex particle magnitude could increase ex-
ponentially when the vortex stretching term has positive eigenvalues based
on the fluid velocity gradient. To avoid this, the magnitude is clamped, only
allowing it to decrease.

Note that when the simulation is performed in 2D it is assumed that only
the z-component of ω is non-zero. Also, δux

δz
and

δuy

δz
evaluate to zero. Thus,

the only non-zero value of the vortex stretching term is the z-component,
which evaluates to ω itself. This leads to the exponential increase that
[SRF05] mentioned, but as long the magnitude is clamped the complete
vortex stretching term can be omitted.6

Each particle emits vorticity to its surrounding fluid. A distribution kernel
ξ(x − xp) is used to define the amount of vorticity that is induced by a
particle at xp to a arbitrary position x. The vorticity induced is:

ω̃p(x) = ξ(x− xp)ωp (4.15)

By choosing a kernel that is rotational symmetric and strictly decreasing a
normalized vector Np =

x−xp

|x−xp|
, which correspond to the N of the vorticity

confinement method, can be computed. Similarly, the force induced by a
single vortex particle is:

fp = Np × ω̃p (4.16)

The contributions of forces from all the vortex particles are summed up to
find the final vorticity force fparticles at each cell in the simulation domain.

6Note that we have only implemented the vortex particle method in 2D.

56 CHAPTER 4. SIMULATING EXPLOSIONS

4.2.4 Combustion

A central aspect of effects like explosions and fire is combustion. The com-
bustion model from [MK02], slightly modified by [GRS06], is used to simu-
late burning fuel, generating exhaust gas and thermal energy.

The combustion will only occur if the temperature T is above the lower igni-
tion limit Tthreshold, which correspond the the explosion physics described in
section 2.1. The model assumes that there will always will be enough oxy-
gen available to react with the fuel; an assumption not generally valid, but
certainly valid for some types of explosions such as dust explosions [FOA03].

The model calculates a combustion parameter, which is used in the subse-
quent calculation:

C =

{

rbg if T > Tthreshold

0 elsewhere

where r is the burning rate used to describe the percentage of fuel that
can be consumed in a second, b is a stoichiometric mixture constant that
describe the amount of oxygen that reacts with one unit of fuel, and g is the
amount of available fuel. Equations 4.17, 4.18, and 4.19 use C to describe
the respective changes to fuel, exhaust gas, and temperature:

Cg = −C

b
(4.17)

Ce = C(1 +
1

b
) (4.18)

CT = T0C (4.19)

The stoichiometric mixture constant b can be adjusted to alter the amount
of exhaust gas that is generated by the combustion. Equation 4.19 uses a
heat generation constant T0. It is, in combination with b, responsible for the
amount of heat generated by the combustion.

Cg, Ce, and CT are used in their respective versions of equation 4.5.

4.2.5 Thermal expansion

An important aspect of modeling explosions is to include the thermal ex-
pansion that occurs during the combustion. A thermal expansion value, φ,
is calculated for each cell based on the change of temperature that is caused
by combustion and dissipation:

4.3. BOUNDARY CONDITIONS 57

φ = τ(−αT T + CT) (4.20)

A positive constant, τ , controls the amount of expansion. The first term of
the parenthesis, αT T , is the temperature dissipation, which was explained
in section 4.2.2. The second term, CT , is the temperature change caused
by the combustion process. Equation 4.20 is applied to each cell of the
computational domain, resulting in a scalar field that represents the amount
of expansion. The field is subsequently used to affect the divergence of the
cells, as explained in section 4.2.1.

As can be seen from equation 4.20, the expansion, φ, may be negative when
the dissipation term is larger than the combustion term. This is physically
correct because the volume of gases that cool down decreases, as the reverse
process of expansion caused by heat.

4.3 Boundary conditions

In general, boundary conditions are necessary when dealing with differential
equations. In particular, when simulating differential equations on a grid
structure finite differentiation needs the values of a cell’s neighbors. This
poses a minor problem not only on the bounds of the simulation domain,
but also if internal boundaries are included in the simulation. Different
considerations need to be taken in the steps of the fluid solver based on which
step that is performed and based on the kind of boundary condition that is
chosen. The chosen model does not allow fluids to flow across boundaries
at any time. This assumption may seem strange when simulating explosion
in an outdoor environment, but is not a problem as long as the explosion is
kept away from the bounds of the simulation domain.

Figure 4.5: Three interior cells showing the positions of the relevant variables
for finite differences derivate calculation.

Figure 4.5 shows three interior cells and the positions of the variables that
are used to calculated the finite difference derivative in b. First the values

58 CHAPTER 4. SIMULATING EXPLOSIONS

at g1 = a+b
2 and g2 = b+c

2 are found by averaging their neighbors. Then, the
derivate d (in this example with respect to x) is found using the following
equation:

d =
(g2 − g1)

h
=

c − b

2h
(4.21)

where h is the size of the grid cells. Note that the figure and the equations
only show the case at the right side of a simulation domain. The same
principles apply to all bounds.

Figure 4.6: Two interior cells and a boundary cell showing the positions of
the relevant variables for finite differences derivate calculation.

When one (or more) of the neighboring cells are boundary cells, as shown in
figure 4.6, the values outside the boundary need to be decided (in the exam-
ple figure this is variable c). In practice, the methods that used for choosing
the values of the boundary cells fall into two categories; the first category
contain divergence calculations, the other comprise all other operations.

4.3.1 Divergence operations

The projection step of the fluid solver calculates the divergence of the veloc-
ity field as a measure of velocity towards the cell minus velocity away from
the cell. The calculation, div(u) = ∇ · u, is performed by finite difference
derivation as explained above. Since no fluid is allowed to flow across the
bounds of the simulation domain, the perpendicular velocity at the borders
must be zero. Exemplified by figure 4.7, this means that ux(c) = −ux(b)
must be chosen to ensure that ux(g2) evaluates to zero. This applies to
the respective perpendicular components of all boundaries; Use the negative
value of the cell itself in place of the cell outside the boundary.

4.4. COMPLETE ALGORITHM 59

Figure 4.7: Shows how ux(c) is chosen as −ux(c).

4.3.2 Other operations

All other operations in the fluid solver that require boundary conditions are
performed on scalar fields. The operations are; gradient operations, implicit
diffusion operations, and poisson solver operations with Neumann boundary
conditions. Common to all these is that they require the derivative at the
boundaries to be zero. This can be ensured by letting c = b, again using
figure 4.6 as an example.

4.4 Complete algorithm

The equation and methods that are presented in this chapter are coupled
with the Stable Fluids solver to create the complete explosion simulation.
The simulation is performed each time step and each of the equations are
applied to each cell of the computational domain. The algorithm is as fol-
lows:

1. Vortex particle movement - Move the vortex particles using equation
4.13.

2. Velocity force calculation - Calculate the external forces and add them
to the velocity field.

(a) Buoyancy using equation 4.7.

(b) Gravity using equation 4.8.

(c) Vorticity confinement using equation 4.11.

(d) Vortex particle force by summing the induced forces from all par-
ticles using equation 4.16.

3. Density change calculation - Calculate and add the changes to the
density fields.

60 CHAPTER 4. SIMULATING EXPLOSIONS

(a) Combustion using equations 4.17, 4.18, and 4.19.

(b) Dissipation using the density fields and the dissipation part of
equation 4.5.

4. Thermal expansion calculation - Calculate a thermal expansion field
using equation 4.20.

5. Velocity fluid solver step - Self-advect and project the velocity field.

(a) Advection using the velocity field and the Stable Fluids solver to
solve the advection part of equation 4.1.

(b) Projection using the modified projection step of the Stable Fluids
solver with the thermal expansion field from step 4.

6. Density fluid solver step - Advect and diffuse the fuel, exhaust gas,
and temperature fields.

(a) Advection using the Stable Fluids solver and the newly calculated
velocity field from step 5 to solve the advection part of equation
4.5.

(b) Diffusion using the density fields and the Stable Fluids solver to
solve the diffusion part of equation 4.5.

4.5 Sampling from simulation results

As mentioned earlier in section 4.1.1, the computational domain is dis-
cretized into a grid of voxel cells, where values are defined at cell centers.
Thus, when sampling from arbitrary positions, it is advantageous to com-
bine the values of the closest cells. In 2D and 3D respectively, bilinear and
trilinear interpolation are used to calculate smooth transitions between the
cells. In addition, volumetric extrusion is used to implicitly define a 3D
domain from a 2D domain.

4.5.1 2D and 3D sampling

To sample from an arbitrary position in a 2D simulation domain, bilinear
interpolation is used. The four closest cells based on the sample position
are used to produce a weighted average. Similarly, trilinear interpolation is
used in 3D, where the values of the eight closest cells are used.

The use of interpolation results in an approximation of a continuous simu-
lation domain. This is especially important during visualization to reduce
visual artifacts caused by fact that the simulation is discretized.

4.5. SAMPLING FROM SIMULATION RESULTS 61

4.5.2 Volumetric extrusion

The computational expense of performing a full 3D simulation is quite high.
Therefore, the volumetric extrusion method from [RNGF03] is utilized to
enable one or more 2D simulations to implicitly define a 3D domain. The
volumetric extrusion itself is rather computationally inexpensive. Thus, per-
forming a few 2D simulations instead of a full 3D simulation frees computa-
tional power that can be used to increase the detail of the simulation domain.
Figure 4.8 shows an example of how two 2D slices can be used to define a
3D domain that is rotationally symmetric around the vertical axis.

Figure 4.8: Two slices define a 3D volume through volumetric extrusion.

The values at points in the extruded 3D domain are computed through two
interpolation steps; cylindrical interpolation is used between the two closest
slices, while bilinear interpolation is used within the slices. Equation 4.22
and figure 4.9 show how to compute the sample value S(x) at a position
x. The figure illustrates two slices that are oriented perpendicular to each
other, as seen along the vertical axis. In the equation, α is the angle between
the two slices, and A and B are corresponding positions in the two slices.
S(A) and S(B) are computed using ordinary bilinear interpolation within
the slices, while the cylindrical interpolation is defined by the interpolation
factor α·numslices

π
. The interpolation factor range from 0 to 1, thus a large

angle α results in the dominance of S(A) in S(P), and vice versa.

S(P) =
α · numslices

π
S(A) + (1 − α · numslices

π
)S(B) (4.22)

When constructing a 3D scalar field based on volumetric extrusion, the
method just described can be used directly. However, when constructing

62 CHAPTER 4. SIMULATING EXPLOSIONS

Figure 4.9: Top view of cylindrical interpolation (xz-plane).

a 3D velocity field based on 2D velocity slices, certain considerations must
be made. The y-component can be sampled as described, but this is not
the case for the xz-components. When using cylindrical interpolation, the
x-component does not longer describe velocity in the x-direction, but rather
the magnitude of velocity away from (or towards) the rotational axis. Also,
the sign of x must be adjusted so it describes the velocity with respect to
the rotational axis, which is where the slices intersect.

Let x̃p be the scalar value of the x-component at p after both adjusting
the sign and performing interpolation as described by equation 4.22. The
direction of the the xz-component is then determined by Pxz/|Pxz|. The
final velocity vector is found in the following equation:

up = x̃p

Pxz

|Pxz|
+ yp (4.23)

where yp is the y-component in vector form, sampled as explained above.

4.6 Summary

A method for simulation of explosions has been described. It models the
evolution of fuel, exhaust gas, and temperature field, as well as an underlying
velocity field. The fields are governed by a set of differential equations, which
are solved using Stam’s Stable Fluids solver. Vorticity confinement is used
to enhance rotational motion in the fluid, while the vortex particle method
is utilized to introduce turbulence into the simulation.

A combustion model accounts for the burning of fuel, increasing the exhaust
gas levels and temperature. To account for the thermal expansion that
occurs during combustion, the Stable Fluids solver is modified to allow non-

4.6. SUMMARY 63

zero divergence. Dense exhaust gas and temperature results in gravitational
and buoyant forces respectively, which are used to affect the velocity field.
In turn, the velocity field is used to move the contents of the fuel, exhaust
gas, and temperature fields.

The simulation can either be performed in full 3D or by using volumetric
extrusion to define a 3D domain through one or more 2D simulations.

64 CHAPTER 4. SIMULATING EXPLOSIONS

Chapter5
Visualizing Explosions

Several method for visualizing volumetric effects exists. Based on the real-
time requirement, two main choices emerge: particle rendering and volume
rendering. Particles can be rendered using texture splats to introduce small-
scale detail. These details are difficult to obtain using volume rendering, es-
pecially without increasing the size of the simulation domain. Furthermore,
the use of particle systems enables turbulence modeling to be utilized in the
visualization step to reduce symmetry. This option is not easily accessible
when using volume rendering. Finally, work performed by [SR06] on visual-
ization of fire concluded that volume rendering currently fall short on both
performance and visual quality, when compared to particle systems. All of
the above led us to the decision of using particles to visualize the explosions.

The rest of the chapter begins with a brief overview of the visualization
algorithm. Then, the details on how the particles are moved and how they
are rendered are given. Finally, a complete step-by-step algorithm is given
to summarize the visualization method.

5.1 Overview

The simulation results are visualized using two separate particle systems; one
for fire and one for smoke. The particle systems consist of a fixed number
of particles that move through the simulation domain guided by the fluid
velocity from the simulation step and an independant turbulence model.
All particles follow the same rules for movement, but we have included an
additional level of control, which we call the movement factor.

Mainly, fire particles are visible when the temperature of exhaust gas exceeds
a certain threshold, while smoke is visible first when the exhaust gas cools
down. However, the threshold used in the actual visibility calculations is not
strict, allowing a smooth transition from fire to smoke. The fire particles
are rendered first, followed by smoke being blended on top.

The visualization algorithm is outlined in figure 5.1. Initially, particles are

66 CHAPTER 5. VISUALIZING EXPLOSIONS

created at individual positions. Then, following each simulation step, four
visualization processes are performed. First, the particles are moved (pro-
cess 1). Note that this step uses data from both the velocity field from the
simulation step, as well as turbulence velocity from a turbulence vector field.
Second, the new particle positions are saved, replacing the old particle po-
sitions (process 2). Finally, the fire particles are drawn to the screen, before
the smoke particles are blended on top (processes 3 and 4). Both rendering
processes use the density field from the simulation step to calculate parti-
cle colors and visibility. The particles are rendered as screen-aligned quads,
textured with an animated texture to create a more dynamic appearance.

Figure 5.1: Outline of the visualization step

5.2 Particle movement

Every particle, i, is positioned in space at xi and updated after each simu-
lation step. The particles are considered massless, and move with the fluid
velocity sampled from the simulation result and velocity from a turbulence
model. The following equation shows how to calculate the new position,
xnew

i :

5.2. PARTICLE MOVEMENT 67

xnew
i = xi + ∆t · (uxi

+ vxi
) · ωi (5.1)

where ∆t is the time step, ui and vi are the fluid velocity from the simulation
step and the turbulence velocity, respectively. The fluid velocity is sampled
as described in section 4.5, while the turbulence velocity is explained below.

The explosion simulation generates high velocities, especially during the first
few moments of the simulation. If all particles were to be moved directly by
this velocity, they would all be relocated to the other region of the explosion
during the first few time steps. To avoid this, we introduce a movement
factor, ωi, which is assigned to each particle and create diversity in how
far they move. ωi can be thought of as a particle’s inertia, but bear in
mind that it has no actual physical meaning. Particles with a small ωi

have the tendency to dance around at the outer regions of the simulation,
representing the turbulent and characteristic rolling motion of explosions.
Particles with larger ωi tend to slowly follow the velocity field, visualizing the
rising buoyant plume. By choosing an appropriate distribution for randomly
selecting the ωi values for the particles, the amount of simulation detail
the visualization algorithm is able to visualize can be maximized. Other
approaches for moving particles exist such as the more physically correct
method used in [FOA03] or Euler steps as used in [GRS06].

5.2.1 Turbulence

Explosions generate large amounts of turbulence, but such seemingly random
fluctuations are not easily retrieved by solving the Navier Stokes equations
alone. Consequently, scientific simulations often use turbulence modeling
in addition to fluid simulations [Dav97]. The simulation step uses vortex
particles to add additional rotational motion to the fluid. However, the
cylindrical extrusion used when sampling from the 2D slice simulation causes
symmetry regardless of simulation step turbulence. In addition to using
vortex particles, which directly affect the fluid velocity in the simulation
domain, a turbulence model is used in the visualization step. The motion
of the particles is affected independently of the simulation velocity, namely
by finding a value for vi of equation 5.1. This way, not only turbulence is
added, but symmetries introduced by the 2D slice sampling may be broken
up.

The turbulence model is used to construct three dimensional velocity fields
containing small-scale eddies (swirlings in the fluid). These velocity fields
are periodic and may consequently be tiled in space and time. Thus, one
turbulence field of three spatial dimensions is enough to define turbulence

68 CHAPTER 5. VISUALIZING EXPLOSIONS

anywhere in space. For a brief introduction to how these turbulence fields
are generated, see section 5.2.2.

To be able to adjust the frequency of small-scale variation, the turbulence
field, which is defined in the range [0,1], is scaled in each spatial direction by
the scalars lx, ly, and lz. Then, to let turbulence be defined all over space
the turbulence field is set to repeat itself every lx, ly, lz , also for each spatial
direction. However, to find the turbulence velocity at a position in space,
the coordinates need to be transformed to the range [0,1]. Any position x

in space can be mapped to this range using the following equation:

pi = xi

li
− bxi

li
c, i ∈ {x, y, z} (5.2)

Note that x may also contain negative components. The lower left rectangle
of figure 5.2 represents a 2D turbulence field. The figure shows how three
positions outside are mapped to their corresponding values inside the tur-
bulence field. Note that the figure does not illustrate the scaling of values
to the [0,1] range. Having found positions in the desired range, trilinear
interpolation is used to find velocities in between grid velocity values.

Figure 5.2: Three positions, A, B, and C, and their corresponding values,
A’, B’, and C’ inside the turbulence field

To allow turbulence to vary in the time domain, two turbulence velocity
fields are generated, each of them still representing turbulence velocity all
over space. The velocity fields are placed at separate points in time and
linear interpolation is used to find velocities at intermediate times. The first
field is defined at time t = 0 while the second is defined at the end of a
period of length tp. To find an interpolation parameter, k ∈ [0, 1], we use
the following equation:

5.2. PARTICLE MOVEMENT 69

k(t) =

t
tp

−
⌊

t
tp

⌋

for even
⌊

t
tp

⌋

1 − (t
tp

−
⌊

t
tp

⌋

) for odd
⌊

t
tp

⌋ (5.3)

where t is the total simulation time. k will alternate smoothly between 0 and
1 as the value of t rises. The complete algorithm for sampling turbulence
velocity given arbitrary values x and t is as follows:

• Find a position p from x and 5.2.

• Find velocities v1 and v2 by sampling from the two velocity field using
trilinear interpolation at p.

• Find k from the time, t, and equation 5.3.

• Find v by linearly interpolate between v1 and v2 using equation 5.4.

v = v1(1 − k) + v2k (5.4)

The final turbulence value, v, sampled from a position xi, is used as vxi
in

equation 5.1.

5.2.2 Creating turbulence velocity

We adopt the method proposed in [SF93] to generate a velocity field defined
by an energy spectrum. Their method is general in the way that any valid
energy spectrum, E(k, ω), may be used, where k is the length of a spatial
frequency vector k. Numerous energy spectrums can be found in the tur-
bulence literature, describing various phenomena. An energy spectrum that
has been successfully applied to the computer graphics domain is the Kol-
mogorov spectrum. By applying some simplifying assumptions of the fluid,
one is able to describe how energy of turbulent motion propagates to higher
frequencies (i.e smaller eddies). The equation for the Kolmogorov energy
spectrum is shown in equation 5.5 and expresses the amount of energy at
spatial frequencies k when energy is introduced at a frequency kinertial and
propagated at the constant rate ε. k is the length of the vector k.

EK(k) =

{

0 if k < kinertial

1.5ε
2
3 k− 5

3 otherwise
(5.5)

70 CHAPTER 5. VISUALIZING EXPLOSIONS

Note that equation 5.5 is not dependant on a temporal frequency, ω, thus
representing steady-state turbulence. To allow the energy spectrum to vary
with time, [SF93] modeled temporal frequency dependence by multiplying
the spectrum with a temporal spread function that guarantees the conserva-
tion of kinetic energy. The spread function they used was a Gaussian with
a standard deviation proportional to k:

Gk(ω) =
1√

2πkσ
e−

ω2

2k2σ2 (5.6)

The result is the following equation for the energy at spatio-temporal fre-
quencies k and ω:

E(k, ω) = EK(k)Ek(ω)

[SF93] makes certain assumptions and performs an analysis of the cross-
correlation of the velocity components (of the expected result), and its rep-
resentation in the frequency domain that is beyond the scope of this thesis.
Instead, we present the remaining equations needed to explain the turbu-
lence field algorithm below. Cross-spectral density function are on the form

Φij(k, ω) = E(k,ω)
4πk4 (k2δij − kikj), i, j ∈ {1, 2, 3} (5.7)

where δij is the Kronecker delta1. Also needed is the equations for a set of
convolution kernels. Convolution in the spatio-temporal mirrors to multipli-
cation in the frequency domain, simplifying these convolutions (ĥ12 = ĥ13 =
ĥ23 = 0):

ĥ11 =
√

Φ11

ĥ21 = Φ21

ĥ11
, ĥ22 =

√

Φ22 − ĥ2
21

ĥ31 = Φ31

ĥ11
, ĥ32 = Φ32−ĥ31ĥ21

ĥ22
, ĥ33 =

√

Φ33 − ĥ2
31 − ĥ2

32

Note that all ĥij are functions of k and ω and that Φ is function 5.7, though
the parameters are omitted for clarity in the equations above.

1The Kronecker delta is defined as follows:

δij =

{

1 if i = j

0 if i 6= j

5.2. PARTICLE MOVEMENT 71

As stated previously, we only intend to create velocity fields of three spatial
dimensions, thus we always set the temporal frequency, ω, to zero. This
fact simplifies the algorithm proposed by [SF93], as well as equation 5.6.
However, the general idea remains. It is to fill the frequency domain with
random complex numbers and apply the convolution terms ĥij , followed by
an inverse Fourier transform. To further simplify the algorithm, though not
necessary, the number of samples in each spatial direction is assumed to be
N . To ensure that the resulting velocity field is real valued, the following
symmetry must be satisfied: ûi,j,k = û∗

N−i,N−j,N−k, where the indices are
taken modulo N and ∗ is the complex conjugate operator. In the special
case where the indices on both sides are equal, the imaginary parts of û is
set to zero.

The algorithm for filling in the values is based on the symmetry condition, in
the way that it is only necessary to calculate half the values in each spatial
direction and derived the remaining ones:

for i, j, k in {0, 1, 2, . . . , N/2} do
compute ûi,j,k, ûi,j,N−k, ûi,N−j,k, and ûi,N−j,N−k

ûN−i,N−j,N−k = û∗
i,j,k

ûN−i,N−j,k = û∗
i,j,N−k

ûN−i,j,N−k = û∗
i,N−j,k

ûN−i,j,k = û∗
i,N−j,N−k

end

for i, j, k in {0, N/2} do
set imaginary part of ûi,j,k to zero

end

To compute the elements of ûi,j,k, generate a random complex variables
Xm = rme2πiθm , (m ∈ {1, 2, 3}), where rm and θm are real valued random
numbers with Gaussian and uniformly distribution, respectively. Finally,
calculate the three spatial components of ûi,j,k:

û1 = ĥ11((i, j, k), 0)X1

û2 = ĥ21((i, j, k), 0)X1 + ĥ22((i, j, k), 0)X2

û3 = ĥ31((i, j, k), 0)X1 + ĥ32((i, j, k), 0)X2 + ĥ33((i, j, k), 0)X3

(5.8)

It is advantageous to precalculate the velocity fields and save them for use
in the real-time application, as the generation process takes some time.

72 CHAPTER 5. VISUALIZING EXPLOSIONS

5.3 Particle Rendering

After the movement step, the particles are rendered as screen-aligned quads.
The particles’ positions are transformed from their local coordinate system
to perspective camera coordinates by multiplying each position by a world-
view-projection matrix. Next, the a quad is extruded from each particle’s
position aligning it to the view plane. The size of the quads are based on
predefined constant, but the perspective projection particles look smaller as
they are located further away from the camera. Furthermore, the appearance
of hot burning gas is highly turbulent and rather small particles tend to look
the most realistic. Smoke on the other hand, appears to be smoother and
less turbulent, thus could be visualized with larger particles that blend into
each other.

The color and visibility calculation of the two kinds of particles are different,
but parts of both are based on black-body radiation. Black-body radiation
is explained first, followed by fire and smoke color calculation.

5.3.1 Black-Body Radiation

The color of emitted light from hot gas is approximated by a black-body
radiation model. Black bodies absorb all light that falls onto them, thus
they are considered sources of purely thermal radiation. Planck’s equation
for the intensities of radiation based on the object’s temperature in Kelvin,
T , and wave lengths of the radiance, λ, is shown in 5.9.

E(λ, T) =
2hc2

λ5(e
hc

λkT − 1)
(5.9)

where h, c, and k are the Planck constant, speed of light, and Boltzmann
constant, respectively. Colors on computer monitors consist of intensities
of red, green, and blue, thus the wave lengths of these colors can be used
with equation 5.9 to find color intensities Ered, Egreen, Eblue as a function of
temperature.

The resulting intensity values have a very high range, not suitable for ordi-
nary computer monitors, which uses intensity values in the range [0, 1]. To
map color intensities onto the desired range, the exponential mapping from
[Mat97] is used:

I = 1 − e
−E

Eaverage (5.10)

5.3. PARTICLE RENDERING 73

where E is the original intensity of either red, green, or blue, and Eaverage is
a constant that controls the average intensity. The result is new intensities,
I, that fall into the range [0, 1〉.

The calculation of color intensities for both red, green, and blue for fluid
temperature is a process that is too expensive to be computed each frame,
nor is it necessary. The calculation results would remain the same during
the complete simulation, either way, so precalculating these values is the
most sensibly action. Color values for various temperatures in a predefined
temperature range are stored in a lookup table for easy retrieval.

5.3.2 Fire color calculation

The color of the fire particles are based on black-body radiation, as explained
above, while the intensity of the color is specified by the amount of exhaust
gas. Thresholds for the temperature and exhaust gas levels where fire is
fully visible are predefined. Equation 5.11 shows how to calculate the color
of a particle positioned at xi:

Cfire = B(Txi
) · Step(0, Tα, Txi

) · Step(0, Eα, Exi
) (5.11)

where B is the lookup function into the precalculated black-body radiation
table, while Tα and Eα is the threshold levels described above. These are
not used as strict thresholds, however, but are used to define where the color
intensity starts to decrease.

Step(low, high, x) =

0 if x < low
1 if x > high

−2(x−low
high−low

)3 + 3(x−low
high−low

)2 else
(5.12)

Step is a smooth stepping function, shown by equation 5.12, that returns
zero if x is below low, one if it is above high, and a smoothly interpolated
value in the range [0,1] in-between. It ensures smooth visual transitions
between areas of fire and smoke.

Cnew
dst = Csrc + Cdst · (1 − Csrc) (5.13)

Next, the fire particles are drawn to the screen blended with each other and
possible existing content using the blending function described in equation
5.13. Cnew

dst is the new color of the screen, Csrc is the color of the particle

74 CHAPTER 5. VISUALIZING EXPLOSIONS

being drawn, and Cdst is the old color of the screen. An advantage of this
type of blending is its invariance of particle draw order [SR06], hence there is
no need for expensive sorting algorithms. Note that the intensity calculation
of the fire color is embedded in equation 5.11 because of the blending function
used. Colors with low intensity will not affect the result as much as color
with higher intensities.

5.3.3 Smoke color calculation

The smoke color and intensity are used separately. The intensity is used as
the final color’s α-value (opacity) instead of adjusting the color directly as
with the fire color calculation. This is to allow dark, dense smoke to conceal
what is behind it. The actual color is the sum of a predefined Grey color
and a small portion, ε, of a color sampled from the black-body radiation
table, as shown in the following equation:

Csmoke = Grey + ε · B(Txi
) (5.14)

The smoke color’s α-value is calculated by equation 5.15. The assumption
that led to that equation is that what we perceive as smoke is actually
exhaust gas that has cooled down.

Asmoke =k·
(1 − Step(0, Tmax, Txi

))·
Step(Emin, Emax, Exi

)·
Step(tstart, tfull, tsim)

(5.15)

The second factor of equation 5.15 makes sure that smoke is not visible where
ever the temperature, Txi

, is below a certain threshold, Tmax, but smoothly
interpolated to zero as the temperature decreases. Similarly, the third factor
ensures that smoke is not visible if the exhaust gas level is below Emin. Also,
we adjust the maximum exhaust level, Tmax, where higher levels no longer
affect the smoke density. The constant, k is used to control the overall
density of the smoke. Note that the assumption that smoke is exhaust
gas that has cooled down is not fully complied with yet. The simulation
does not provide enough information to facilitate such a condition, nor is
it necessary. We have found that a simple approximation based on the
cumulative simulation time tsim is sufficient, and fade the smoke in after a
short predefined period of time. The final factor of the equation takes care
of this by the use of the Step function. The smoke starts to fade in at tstart

and is fully visible at tfull.

5.3. PARTICLE RENDERING 75

Finally, the particles are blended on top of each other and the already drawn
fire using the following blend function [Hol03]:

Cnew
dst = Asrc · Csrc + (1 − Asrc) · Cdst (5.16)

where Asmoke is used as Csrc to control the opacity. Particles being rendered
last affect the final appearance of the explosion more than ones being drawn
previously. Hence, this blending function depends on the draw order of the
particles to be correct, and the particles should optimally be sorted based on
their distance to the camera and rendered in a back-to-front order. We omit
such sorting because it is a time consuming operation and would counteract
the real-time requirement. Furthermore, as discussed more thoroughly in
chapter 7, the visual results do not seem to suffer substantially either.

5.3.4 Rendering animated texture splats

As previously stated, the particles are rendered as screen-aligned quads. To
create more low level detail and to reduce the number of particles needed,
they are textured. The textures are not static like in [WLMK02, Hol03], but
are rather animated introducing additional variation to the explosion (such
as the smoke from [Mic06]). The animations used are generated based on a
static texture splat and animations generated by the Kolmogorov turbulence
algorithm explained in section 5.2.2. The static texture splats used are
shown in figure 5.3. The left splat is used for the generation of fire, while
the one to the right is used for smoke texture animation.

Figure 5.3: Fire (left) and smoke (right) texture splats that are used as
animation bases

To create the animations used for the texture splats, the 3D Kolmogorov
velocity field is used to generate sequences of frames that subsequently are
blended with the static texture splats. Each frame in the turbulence se-
quence is based on the lengths of the velocities in each slice of the 3D tur-
bulence field. Because the 3D Kolmogorov velocity field is tileable in space,

76 CHAPTER 5. VISUALIZING EXPLOSIONS

the produced animation can be looped seamlessly. This process is performed
in a stand-alone application, which is explained in more detail in chapter 6.

Figure 5.4: Three frames of turbulence (left) combined with a texture splat
(middle) produces three frames of the animated texture (right)

Figure 5.4 shows how three frames from the turbulence field are combined
with a texture splat to produce frames for a smoke particle animation. Notice
how small scale variations are introduced in the rightmost pictures. A small
disadvantage of using this technique, is that the animations appear as waves
moving in a fixed direction. If all particles have the same orientation, an joint
wave-like motion will appear over the entire explosion. We solve this minor
problem by giving each particle a random, but fixed orientation. This way
each particle’s wave-like motion blends into the other’s removing unwanted
joint motion.

5.4 The complete algorithm

The following algorithm shows the complete steps taken for moving and
rendering the particles:

1. Move all fire and smoke particles based on equation 5.1 and store the
new positions.

• Find ui from the velocity field from the simulation step, based
on the particle’s position.

5.5. SUMMARY 77

• Find vi from the turbulence velocity field, using the algorithm
described in section 5.2.1.

2. Transform the particle positions from their local coordinate system to
view coordinates based on the position of the camera.

3. Render fire particles to the screen based on their view coordinate po-
sition.

• Calculate the particle’s color using equation 5.11 based on the
density sampled from the simulation results.

• Increase the animation frame number, based on a fixed animation
speed.

• Orient the particle based on its random orientation.

• Use the blending function described by equation 5.13.

4. Render smoke particles to the screen based on their view coordinate
position.

• Calculate the particle’s color using equation 5.14 based on the
density sampled from the simulation results.

• Increase the animation frame number, based on a fixed animation
speed.

• Orient the particle based on its random orientation.

• Use the blending function described by equation 5.16.

5.5 Summary

We have presented a two-component particle systems for visualizing the re-
sult of the explosion simulation. All particles are moved by the velocity
sampled from the simulation, combined with independent turbulence veloc-
ity from a Kolmogorov turbulence field.

The particles are rendered as screen-aligned quads, textured with a tur-
bulence animation based on the Kolmogorov spectrum. Fire and smoke
particles use different color and visibility calculations. The fire is rendered
first, followed by smoke being blended on top.

78 CHAPTER 5. VISUALIZING EXPLOSIONS

Chapter6
Implementation

This chapter describes how the simulation and visualization of explosions
using the GPU are implemented. The implementation is based on the sim-
ulation algorithm presented in section 4.4 and the visualization algorithm
presented in section 5.4. Also, the simulation makes use of an implementa-
tion of the fluid solver presented in section 2.2.4. Additionally, two stand-
alone applications are implemented. The purpose of the first application is
to create the Kolmogorov turbulence texture as explained in 5.2.2. The sec-
ond application creates an animated texture based on a texture splat and a
Kolmogorov turbulence texture. This texture is used to render the particles
as explained in 5.3.4.

The rest of the chapter is organized as follows: First, an overview of the
implementation is given, where the different modules into which the imple-
mentation is divided and their connections are described. Next, each of the
modules will be described in more details, starting with a simple framework
for performing general-purpose computation on the GPU. The implementa-
tion of the fluid solver is described next, before the implementations of the
explosion simulation and visualization are presented. Finally, each of the
two stand-alone applications is described.

6.1 Overview

The implementation is divided into modules, and figure 6.1 gives an overview
of these modules. The first module is the GPU Computational Framework.
This module contains functionality whose purpose is to ease the task of per-
forming general-purpose computation on the GPU, and it is used by all the
other modules. Next, the Fluid Solver module contains an implementation
of a general-purpose fluid solver. This fluid solver is used in the Explosion
Simulator module. Finally, the Explosion Visualizer module visualizes the
results from the Explosion Simulator by the use of two particle systems; one
for visualizing the fire, and one for visualizing the smoke.

80 CHAPTER 6. IMPLEMENTATION

Figure 6.1: Module overview

6.2 GPU Computational Framework

As described in section 2.3, the GPU can be used to perform general-purpose
computations. This includes executing shader programs, and performing
computations on textures. This may be a cumbersome task, and the purpose
of this framework is to make this functionality easier available to the user.

6.2.1 Class overview

Figure 6.2 shows a selection of the most important classes in the framework
along with an overview of the most important methods of each class. The
functionality and suggested usage of each class is described next.

6.2.1.1 TechniqueOperation

The framework support shader programs written in the Hlsl language, which
is one of the available high-level shader languages. The various shader pro-
grams are written in effect files, and each file may contain one or more
techniques. Each technique can contain a vertex shader, a geometry shader,
and a pixel shader, and these shaders programs are typically performed by
invoking a technique. Invoking a technique often require some amount of
code, and the purpose of the TechniqueOperation class is to ease this task.

Before the TechniqueOperation class can be used, an instance has to be
created by passing a few required parameters to the constructor. These
parameters include the effect file in which the technique is located, the name
of the technique itself, and a reference to a texture store. This texture store

6.2. GPU COMPUTATIONAL FRAMEWORK 81

Figure 6.2: Overview of the most important classes and methods in the GPU
computational framework

is used by the AddSetShaderResourceTaskmethod, which will be explained
shortly. Once an instance of the class exists, the technique can be invoked
by calling the Execute method.

Textures are often used when performing general-purpose computation on
the GPU. They are maintained by a texture store, and they are represented
by identifiers. In an effect file, a texture is referenced as a shader resource,
and one often wants to explicitly set a shader resource to a texture every
time a shader program is invoked. This is done by the use of the AddSet-

ShaderResourceTask method. This method takes as parameters the name
of the shader resource that will be set to the given texture, as well as the
identifier of the texture itself.

6.2.1.2 TextureStore

The TextureStore class is an abstract class used to maintain the textures
that are used in the computations. A texture store can contain either two-

82 CHAPTER 6. IMPLEMENTATION

dimensional or three-dimensional textures, and either the TextureStore2d

or the TextureStore3D subclass is used depending on what kind of texture
is needed. Also, a texture store can only contain similar sized textures.
This size is passed to the constructor when an instance of the texture store
is created.

Once a texture store instance is available, textures can be added by the use
of the AddTexture method, which returns the identifier of the newly created
texture. This identifier can then be passed to the GetTexture method to
retrieve a reference to the actual texture.

When textures are to be used for output, they are set as render targets.
This can be done by the use of the SetAsRenderTarget method to which
the identifier of the output texture is passed as parameter. Sometimes it
is desirable to use a texture both as input and output at the same time.
This can be achieved by using a temporary texture as the render target, the
given texture as input, and then swap the identifiers of the temporary and
the given texture after the render operation is done. This process is made
easier by the use of the SetAsRenderTarget method. In addition to the
texture identifier, a boolean have to sent as parameter as well, specifying if
the given texture is going to be used as input as well. If so, a temporary
texture is used as render target instead. Then, after the render operation is
complete, the identifiers are swapped simply by calling the Swap method.

Finally, the ManualSwap method can be used to swap any two given textures
by passing the identifiers of the textures as parameters.

6.2.1.3 HlslTextureOperation

The HlslTextureOperation class is an abstract class that is used to perform
operations on a texture. The shader programs that are to be used are
represented by instances of the TechniqueOperation class. One technique
operation is used for the interior cells of the texture, and one technique
operation is used for the boundary cells1. Both operations are optional.
This way, the user can decide whether to perform calculations on the interior
cells, the boundary cells, or both.

The technique operations are passed as parameters to the constructor when
an instance of the class is to be created, along with the size of the output
texture. The desired output texture is set by the use of the SetAsRender-

Target method in the respective texture store. If the output texture is used
as input as well, the swapping functionality in the texture store is utilized
automatically. Once a texture is set as render target, the texture operation

1The difference between boundary cells and interior cells is explained in 4.1.1

6.3. FLUID SOLVER 83

is performed by the use of the Execute method.

6.2.1.4 HlslTextureOperation2d

The HlslTextureOperation2d class is a specialization of the HlslTexture-
Operation, and is supposed to be used for operations on two-dimensional
textures. When the Execute method is invoked, the viewport is set to match
the size of the output texture, and a single quad is drawn. The resulting
pixels correspond to the pixels in the output texture, and new values are
calculated by the execution of pixel shader programs represented by the
interior and boundary technique operations.

6.2.1.5 HlslTextureOperation3d

Operations on three-dimensional textures are performed by the use of the
HlslTextureOperation3d class. Here, when the Execute method is in-
voked, the viewport is set to match the width and height of the texture,
and a quad is drawn for every depth value. The resulting pixels from each
quad corresponds to a slice in the three-dimensional output texture, and
the targeting slice is selected by setting the render target array index to the
corresponding depth value. Finally, the pixel shader programs represented
by the interior and boundary technique operations are executed to calculate
the new texture values.

6.3 Fluid solver

The general fluid solver that is implemented is based on the Stable Fluids
method that was described in section 2.2.4. It is implemented using shader
programs on the GPU, and makes use of the GPU computational frame-
work. It is divided up into two different parts. The first part contains the
velocity specific part of the fluid solver, as explained in section 2.2.4.2. The
second part implements the density specific part that was described in sec-
tion 2.2.4.3. Both these implementations will be described in further details
in the following sections. First, however, the various textures that are used
in the fluid solver will be described.

84 CHAPTER 6. IMPLEMENTATION

6.3.1 Textures

The calculations that are performed in the fluid solver are performed on
velocity and density fields. To be able to perform the calculations on the
GPU, these fields first have to discretized and represented as textures. Since
a texture can contain up to four color channels, up to four density fields can
be packed into and represented by a single texture. Similarly, both two- and
three-dimensional velocity fields can be represented by a single texture by
packing the various components of the velocity field into the various channels
of the texture. Packing several fields into a texture in this fashion greatly
decreases the number of necessary textures, and thus also the number of
rendering passes.

Most of the textures that are used by the fluid solver has to be supplied by
the user. An overview of these texture and the contents of each channels
is shown in table 6.1. Also, a few textures are used internally by the fluid
solver in the calculation of the intermediate steps. These textures are shown
in table 6.2.

Texture Red channel Green channel Blue channel Alpha channel

Velocity The x-component. The y-component. The z-component
(3d only).

VelocityForces The x-component. The y-component. The z-component
(3d only).

Density The amount of
density a.

The amount of
density b.

The amount of
density c.

The amount of
density d.

DensityChanges The amount of
density a change.

The amount of
density b change.

The amount of
density c change.

The amount of
density d change.

DivergenceForces The amount of di-
vergence force.

Obstacles Whether or not
there is an obsta-
cle.

Table 6.1: Overview of textures

In table 6.1, the Velocity texture contains the vector components of the
velocity field, the VelocityForces texture contains the vector components of
the velocity force field, the Density texture contains the density amounts of
up to four density fields, the DensityChanges texture contains the amounts
of change of up to four density fields, and the DivergenceForces texture
contains the amount of force that is to be applied on the divergence. Finally,
the Obstacles texture specifies whether or not there is an obstacle at a given
position.

In table 6.2, the Divergence texture contains the divergence amounts of
a divergence field, the Pressure texture contains the pressure amounts of a
pressure fields, and the DiffusedDensity texture contains the density amount
of a density field during the diffusion step.

The usage of and calculations performed on each texture will be described

6.3. FLUID SOLVER 85

Texture Red channel Green channel Blue channel Alpha channel

Divergence The amount of di-
vergence.

Pressure The amount of
pressure.

DiffusedDensity The amount of den-
sity a after diffu-
sion.

The amount of den-
sity b after diffu-
sion.

The amount of den-
sity c after diffu-
sion.

The amount of den-
sity d after diffu-
sion.

Table 6.2: Overview of textures

in the following sections.

6.3.2 Class overview

The implementation of the fluid solver module is divided into a density
specific and a velocity specific part. The classes DensityOperation2d and
DensityOperation3d implements the density specific operations for two-
and three-dimensional fluid flow respectively, whereas the classes Veloci-

tyOperation2d and VelocityOperation3d implements the operations that
are performed on the velocity values.

6.3.2.1 VelocityOperation2d and VelocityOperation3d

The two VelocityOperation classes implement the velocity part of the Sta-
ble Fluids method, partly based on the algorithm that was described in
section 2.2.4.2. Both advection, projection, and adding of external force is
implemented, though the viscosity part is omitted for reasons explained in
section 4.2.1.

External forces

External forces are added in the AddVelocityForces shader program. This
shader program takes two textures as parameters: a texture containing all
the forces, and a texture containing all the velocities to which the forces are
to be added. For every pixel being processed, a force f is fetched from the
force texture. The force is multiplied with a timestep ∆t before it is added
the the current velocity value u from the velocity texture. Both the force
and velocity value is fetched from the position that corresponds to the pixel
being processed. The entire calculation that is performed on every pixel is
shown in equation 6.1.

u′ = u + f∆t (6.1)

Advection

The advection part is implemented in the Advection shader program. Two

86 CHAPTER 6. IMPLEMENTATION

textures are taken as parameters: a velocity texture containing the velocity
field, and a texture containing the field that is to be advected by the velocity
field. For velocity advection, the velocity field is self-advecting, and thus the
same texture should be used for both parameters.

As explained in section 2.2.4.2, the new values that result from the advection
step are set to the values at the positions the values would have ended up
at if they had been advected backwards in time. Also, since these positions
can be located in between cells, the new values have to be calculated by
bi-linearly interpolating between the values from the four most nearby cells.

In practice this is done by first fetching the velocity value u from the veloc-
ity texture. This velocity value is multiplied by a timestep ∆t before it is
subtracted from the current position x. This resulting position x′ is the po-
sition at which the value would have ended up if it was advected backwards.
The calculation is shown in equation 6.2.

x′ = x− u∆t (6.2)

Now, the new value is found by fetching the value at this position. Bilinear
interpolation between the values from the four most nearby values is done
automatically by the GPU by the use of linear texture sampling.

Texture fetches at the resulting position x′ can lead to texture fetches outside
the boundary of the texture and these fetches thus have to be clamped to
the texture boundary. This is done automatically by the GPU by correctly
setting the sampler state.

Projection

The purpose of the projection part is to remove any divergence that may
have occurred in the other steps of the algorithm, as described in section
2.2.4.2. This involves calculating the pressure field that corresponds the the
velocity field and then subtract its gradient from the velocity field.

This behavior is implemented in the CalculateDivergence, CalculatePres-
sure, and SubtractDivergence shader programs. First, the CalculateDi-
vergence shader program is used to compute the divergence of the velocity
field, which is stored in a temporary divergence texture. To support thermal
expansion, a divergence force texture can be used, allowing this temporary
divergence texture to be modified before the pressure is calculated.

Next, the temporary divergence texture is used by the CalculatePressure

shader program when it computes the pressure field. Computing this pres-
sure field requires solving the Poisson equation shown in equation 2.12. The
equation is discretized into a set of linear equations that are solved using a

6.3. FLUID SOLVER 87

Jacobi solver. The Jacobi solver needs several iterations to find a sufficient
solution. The calculation that is done in each Jacobi iteration step is shown
in equation 6.3. Here, bi is the divergence of the corresponding velocity from
the temporary divergence texture, α is set to 1, while β is set to number of
neighbours (4 for the 2d simulation and 6 for the 3d simulation).

xn
i =

∑

j∈neighbours(xi)

(

xn−1
j

)

− α · bi

β
(6.3)

Finally, once the pressure field is calculated and stored in a temporary pres-
sure texture, it’s gradient is calculated and subtracted from the velocity field
in the SubtractDivergence shader program.

6.3.2.2 DensityOperation2d and DensityOperation3d

The density part of the Stable Fluids method, as described in section 2.2.4.3,
is implemented in the two DensityOperation classes. This includes both
the sources and dissipation, diffusion, and advection part of the algorithm.

Sources and dissipation

Sources are added and the densities are dissipated in the AddDensitySources
shader program. This shader program takes two textures as parameters: a
texture containing four densities, and a texture containing the sources that
are to be added. First, a vector containing four source values s is fetched
from the source texture. Then, to make dissipation of the densities possible,
a vector of four density values d is fetched from the density texture, and
multiplied with a vector of four dissipation constants αd. If no dissipation
is desired, the dissipation constant is set to zero. The resulting vector is
then subtracted from the source vector, and the result is then multiplied
with a time step ∆t before it is added to the density value vector d. The
calculation is summarized in equation 6.4.

d′ = d + (s− αdd)∆t (6.4)

Diffusion

The diffusion part is implemented in the Diffusion shader program. This
shader program takes one texture as parameter, namely a density texture
representing up to four density fields.

Diffusion is solved implicitly using equation 2.20. This equation results in a
set of linear equations that are solved using a Jacobi solver, similar to the

88 CHAPTER 6. IMPLEMENTATION

projection step. The calculation that is done in each Jacobi step uses the
same equation, namely equation 6.3. Here, xn

i is a cell from the resulting
density field from the n’th iteration, bi is a cell from the old density field as
it was before first iteration of the Jacobi solver, while α and β are calculated
using equations 6.5 and 6.6 respectively.

α =
1

κ∆t
(6.5)

β = n + α (6.6)

Here, κ is the diffusion constant, ∆t is the timestep, and n is set to the
number of neighbours (4 for the 2d simulation and 6 for the 3d simulation).

Advection

Advection of density values is similar to advection of velocity values, and is
in fact implemented using the same shader program, namely the Advection
shader program. The only difference is which parameters are used. The
first texture parameter still represents the velocity field, whereas the second
texture parameter now represents up to four density fields that are to be
advected by the velocity field. Invoking the shader program with these
parameters results in the densities being advected instead of the velocities,
as in the velocity part.

6.3.3 Boundary conditions

Two different approaches for handling boundary conditions have been im-
plemented. In the 2D slice implementation only boundaries along the edges
of the simulation domain are allowed. A border of cells along the edges are
treated separately from the internal cells. As long as these border cells are
handled in the proper way, all internal cells may use the same pixel shader
that simply samples from its neighboring cells when it needs to.

In the full 3D implementation, the boundaries are handled in a more general
fashion. Similarly to [NVi07], a 3D texture is initialized with values that
represent whether a certain cell is a boundary cell or not. This allows the
user to specify arbitrary internal boundary conditions. The complexity of
the pixel shader code is greatly increased, as it needs to account for the fact
that each single cell may be a boundary cell.

More specifically, the pixel shader code first checks whether or not its tar-
get cell is a boundary cell and chooses the correct branch. Then, for each
relevant neighbor it checks whether those cells are boundary cells or not as

6.4. EXPLOSION SIMULATION 89

well. Each of these checks may yield a new branch operation that treats the
boundary condition correctly.

The actual numerical operations that are performed for these boundary cases
are explained in section 4.3.

6.4 Explosion simulation

The explosion simulation is implemented based on the algorithm described
in section 4.4. The implementation makes use of the fluid solver described
in section 6.3, and the main objective is to calculate the various textures
that the fluid solver takes as input.

6.4.1 Textures

The textures that the fluid solver operates on and expects as input is shown
in table 6.1. All these textures are created at the beginning of the explosion
simulation, and they are passed along to the fluid solver once every frame.
The densities that are used in the explosion simulation are the exhaust gas,
the fuel gas, and the temperature. These are stored as densities a, b, and c
respectively.

Only three of the textures are updated every frame in the simulator. These
are the VelocityForces, the DensityChanges, and the DivergenceForces tex-
tures. The Velocity and Density textures are updated by the fluid solver
based on these three textures. The Density texture is also modified directly
at the start of the simulation to include the initial fuel and spark, as will
be explained in section 6.4.2.1. Also, the Obstacles texture is modified at
the beginning of the simulation if internal boundaries are to be included. A
white color is rendered to obstacle cells, whereas a black color represents a
non-obstacle cell.

6.4.2 Class overview

The explosion simulation in two and three dimension is implemented in the
ExplosionSimulator2d and ExplosionSimulator3d classes respectively.
The VelocityOperation and DensityOperation classes from the fluid solver
are used to model the actual flow of the explosion. Also, the velocity forces,
density changes, and divergence forces that are required by the fluid solver
is implemented in the CalculateVelocityForcesOperation, Calculat-

eDensityChangesOperation, and CalculateThermalExpansionOperation

90 CHAPTER 6. IMPLEMENTATION

classes respectively. All of these classes exist in two versions; one for the 2d
simulation and one for the 3d simulation.

6.4.2.1 ExplosionSimulator2d and ExplosionSimulator3d

The two ExplosionSimulator classes implement the explosion simulation
algorithm that was presented in section 4.4. Since the initial fuel and spark
are necessary for the whole simulation to take place, these initial conditions
are established first by rendering them into the density texture. This is done
by the RenderFuel and RenderSpark shader programs respectively. Next,
step 1 and 2 of the algorithm is implemented in the two CalculateVel-

ocityForcesOperation classes, step 3 is implemented in the two Calcu-

lateDensityChangesOperation classes, and step 4 is implemented in the
two CalculateThermalExpansionOperation classes. These classes will be
described in more detail in the following sections.

Once both the velocity force texture, the density change texture, and the
divergence force texture have been computed, they are sent as input to the
fluid solver along with the velocity and density textures. The fluid solver
then updates both the velocity and density textures.

6.4.2.2 CalculateVelocityForcesOperation2d and CalculateVeloc-

ityForcesOperation3d

The two CalculateVelocityForcesOperation classes make use of the Cal-
culateVelocityForces shader program to calculate the velocity forces that
result from buoyancy, gravity, and vorticity confinement. The buoyancy and
gravity forces are calculated according to the equations 4.7 and 4.8 respec-
tively, whereas the vorticity confinement is calculated based on equation
4.11.

The forces resulting from the vortex particles are added to the velocity
forces texture in the CalculateVortexParticleForces shader program.
The force induced from each vortex particle is calculated using equation 4.16.
The actual movement of the vortex particles is performed in the MoveVor-

texParticles shader program, and the new positions are calculated using
equation 4.13.

6.5. EXPLOSION VISUALIZATION 91

6.4.2.3 CalculateDensityChangesOperation2d and CalculateDen-

sityChangesOperation3d

The changes to the density fields are a result of combustion and dissi-
pation. These density changes are calculated in the CalculateDensity-

Changes shader program. This shader program takes the density texture as
input, and writes the result to the density changes texture.

The density changes due to combustion affects both the fuel, exhaust gas,
and temperature, and the changes to each of these are calculated using
equations 4.17, 4.18, and 4.19 respectively. The changes due to dissipation
is calculated using the dissipation part of equation 4.5.

6.4.2.4 CalculateThermalExpansionOperation2d and CalculateTh-

ermalExpansionOperation3d

Thermal expansion will be used as divergence forces in the velocity fluid
solver step. The calculation makes use of equation 4.20, and is implemented
in the CalculateThermalExpansion shader program. The results are writ-
ten to the divergence force texture.

6.5 Explosion visualization

The visualization of the explosion is implemented based on the algorithm
described in section 5.4. Particles are used to visualize the explosion, and
the movement and appearance of the particles are based on the velocity and
density fields from the explosion simulation. In addition to the actual ex-
plosion, if any internal boundaries are used, they are rendered as well. Also,
since the generation of the 3D Kolmogorov turbulence fields and the ani-
mated textures are computationally demanding and can be pre-generated,
stand-alone applications have been implemented to aid in this task.

6.5.1 Textures

The explosion visualizer uses several textures, and an overview of the tex-
tures that are used is given in table 6.3. Here, the Velocity, Density, and
Obstacles textures are passed along from the explosion simulator, and con-
tains the velocity field, the density field, and the obstacles, respectively. The
ColorLookUpTexture texture contains a range of 256 precalculated color val-
ues that are used to calculate the color of a particle. The FireParticleTex-
ture and SmokeParticleTexture textures contains pre-generated animated

92 CHAPTER 6. IMPLEMENTATION

textures used to render the fire and smoke particles respectively. Finally,
the TurbulenceTexture1 and TurbulenceTexture2 contains the two 3D
Kolmogorov turbulence fields that are used to add additional turbulence.

Texture Description

Velocity The vector components of the velocity field.
Density The amounts of exhaust gas, fuel gas, and temperature.
Obstacles The internal boundaries that are used, if any.
ColorLookUpTexture A range of 256 color values based on black-body radiation.
FireParticleTexture The animated fire particle.
SmokeParticleTexture The animated smoke particle.
TurbulenceTexture1 The first 3D Kolmogorov turbulence texture.
TurbulenceTexture2 The second 3D Kolmogorov turbulence texture.

Table 6.3: Overview of textures

6.5.2 Class overview

The visualization is divided into an explosion and an obstacle part. The
ParticleVisualizer class implements a particle system used to visualize
the actual explosion, whereas the ObstacleVisualizer class is used to vi-
sualize the internal boundaries that are used in the simulation. Also, the
BlackbodyRadiationManager class is used to compute the color values that
the ColorLookUpTexture texture will consist of.

Each of these three classes will be described next.

6.5.2.1 ParticleVisualizer

The ParticleVisualizer class implements a particle system that is used
to visualize the explosion based on the algorithm described in section 5.4.
Instead of handling both fire and smoke particles at the same time, two
instances of the class has to be created instead, where one instance handles
the fire particles and the other instance handles the smoke particles. The
type of the particle system is given as parameter to the constructor along
with references to the necessary textures from the simulation step.

Before the simulation starts, the particles are placed randomly in positions
close to the location of the initial spark. The maximum distance from the
initial spark as well as the number of particles can be adjusted by setting
the appropriate parameters.

The movement of the particles, as specified in step 1 in the algorithm, is im-
plemented in the AdvanceParticles shader program. This shader program
uses the velocity and the turbulence textures to calculate the new position
based on equation 5.1. Since both the fire and the smoke particles are moved

6.5. EXPLOSION VISUALIZATION 93

based on the same equation, the same shader program is used to move both
types of particles.

The rendering of the fire and smoke particles, as specified in step 3 of the
algorithm, is implemented in the RenderFireParticles and the Render-

SmokeParticles shader programs respectively. The location and random
orientation of the particles are sent to the GPU, and a geometry shader is
used to create view-aligned quads oriented based on the particles’ random
orientations. The color of the fire and smoke particles are calculated based
on equations 5.11 and 5.14 respectively, and drawn to the screen using the
blending functions 5.13 and 5.16 respectively. These blending functions are
implemented by setting the blend states appropriately. Different animated
textures are used to render the two types of particles, and the animation
frame is chosen based on the elapsed time.

6.5.2.2 ObstacleVisualizer

The ObstacleVisualizer class visualizes the internal boundaries used in
the simulation step. Boxes are rendered at every obstacle cell, and the
boxes are textured using procedurally calculated texture coordinates.

The functionality is implemented in the RenderObstacleTechnique shader
program. A single vertex is created at each grid position, and the vertices
are transformed to fit in the particle domain. The Obstacles texture is
used to decide whether or not a given cell in the grid is an obstacle cell,
and a geometry shader that is called for each vertex is used to render a box
at every obstacle cell. Vertices that are not located at obstacle cells are
culled. The boxes are given texture coordinates based on the position of the
box in the grid. For example, the leftmost box in the x-direction is given a
texture coordinate equal to 0, the rightmost box is given a texture coordinate
equal to 1, and the boxes in between are given texture coordinates linearly
interpolated between these values. The same calculation is done in both the
x-, y-, and z-direction.

6.5.2.3 BlackbodyRadiationManager

The BlackbodyRadiationManager class calculates a range of 256 color val-
ues based on a black-body radiation model. The calculation of these values
is described in section 5.3.1. The class consists of two methods that can
be used to retrieve these values. The GetColor method takes an index as
parameter, and returns the color value located at the given position in the
range. This index can be any integer between 0 and 255. The GetColors

94 CHAPTER 6. IMPLEMENTATION

method takes no parameters, and simply returns an array containing all the
color values in the range.

6.6 Stand-alone applications

Some of the results that the explosion animation application needs can be
computed in advance. Two stand-alone applications have been created to
facilitate this: An application to generate Kolmogorov turbulence fields; and
an application to create the animations that are used to render the particles.

6.6.1 Kolmogorov turbulence generator

The generation of the 3D Kolmogorov turbulence fields, which are used dur-
ing particle movement in the visualization step, is quite computationally
expensive. However, since the fields do not change during the explosion
animation, there is no need to calculate them in the actual explosion appli-
cation. Thus, a stand-alone application has been implemented to create the
turbulence fields.

The equations and algorithm that were described in section 5.2.2 are used
to create the Kolmogorov turbulence field. These equations are rather com-
plex and difficult to get a intuitive comprehension of. They are therefore
implemented in a straigh forward and naive fashion, making the transition
from equations to code as easy as possible.

Most of the difficulties are encapsulated in a class called KolmogorovFre-

quencyCalculator. When instantiated, the constants ε, kinertial, and σ that
were introduced in section 5.2.2 need to be supplied. The class has a single
public method, calculateU, that creates three complex numbers based on
the supplied constants, as well as the temporal position, i, j, k, and l.2 This
corresponds to the calculations of equation 5.8.

The algorithm that is explained in 5.2.2 uses calculateU to fill a 3D grid
of complex temporal vectors.3 Next, the grid is transformed into the spatial
domain by using an inverse Fourier transform. We use the FFTW library
[FJ97] to perform this transition. Finally, the results are saved to a 3D
texture, which can be loaded into the explosion animation application using
the DirectX API.

2The variable l is always set to zero, because we are only interested in a single 3D field
each time the application runs.

3For instance a 128x128x128 3D grid with 3 complex numbers in each cell.

6.7. SUMMARY 95

6.6.2 Animated texture generator

As explained in section 5.3.4, animated textures are used to render the
particles. These animated textures are created by blending a static texture
splat with each frame in a 3D Kolmogorov velocity field. The resulting
animated texture is static and can thus be precalculated. A stand-alone
application has been implemented to create such animated textures.

The application is implemented in the AnimatedTextureGenerator class,
and the class consists of two methods; the Generate method, and the Nor-

malize method. The Generate method takes the path of a static texture
splat and a 3D Kolmogorov velocity field as parameters. The textures at
the specified paths are loaded and stored in two arrays. Each color value
in the static texture splat is multiplied with the velocity value at the corre-
sponding position in the xy-plane in the velocity field. This is repeated for
every velocity field slice in the z-direction. The resulting values represents
the animated texture values, and they are stored in a 3D texture, which is
then returned by the method.

The animated texture that is created by the Generate method is not nor-
malized. That is, the various color values does probably not use the entire
brightness scale available. In a normalized texture, the brightest color is
represented by an all white color instead of a tone of gray. This ensures
that a texture is not too dark. For this reason, the Normalize method can
be used to normalize the resulting animated texture. The method takes an
animated texture as parameter, and locates the brightest color value located
in the texture. Next, every color value is first divided by this color and then
multiplied by the white color value. For example, if the brightest color value
in the texture is 192 and the white color value is 255, a color value of 64
would result in a new color value equal to 85.4

6.7 Summary

This chapter has presented an overview of our implementation of the sim-
ulation and visualization of explosions. The implementation is divided into
modules, where each module implements a given set of the necessary func-
tionality. The core module is the GPU computational framework, which
provide functionality to make general-purpose programming on the GPU
easier. The simulation of the explosion is implemented in it’s own module,
and makes use of a general fluid solver to calculate the evolution of the ve-
locities and densities that are used in the simulation. Finally, the result of

4The new color value is calculated as follows: 64
192

· 255 = 85

96 CHAPTER 6. IMPLEMENTATION

the simulation is visualized by the visualization module.

A couple of stand-alone applications have been developed as well. The Kol-
mogorov turbulence field that is used to add additional turbulence to the
explosion is too computationally demanding to be calculated in real-time,
but since it can be computed in advance, a stand-alone application has been
developed to create such a field. Also, the animated textures that are used
to render the particles can also be computed in advance, and a stand-alone
application has been developed to create these textures as well.

Chapter7
Results

This chapter presents the results from the implementation of the method
that were proposed in the earlier chapters. The actual discussion of these
results may be found in chapter 8. Image captures of the produced explosions
are shown, but the videos that accompany this thesis generally illustrate the
results a lot better. Note that not all the explosion video clips are shown
using their actual frame rate.1

7.1 Overview

The simulation and visualization can be evaluated to investigate the effects
of the numerous parameters and methods that are used. We have selected
a set of evalution topics that we find most interesting to investigate. The
chapter is structured as follows:

First, the effect of varying the simulation grid size is tested, in terms of both
performance and visual results. Intuitively, increasing the grid sizes should
result in improved visual quality at the expense of slower frame rates. We
wish to investigate whether this is true. To further investigate what part of
the animation algorithm that is the bottleneck, the performance is evaluated
with and without performing the visualization step.

Second, various tests are performed at the visualization itself. Since the
explosion is visualized using particles, it is interesting to see how the particle
count affect both performance and visual quality. Also, as the particles are
visualized using screen-aligned quads, it is of interest to consider the effect of
varying the quad size. Intuitively, if the number of particles are decreased,
their sizes must be increased to provide a sufficient visualization. Also, the
effect of the movement factor, which were introduced in chapter 5, is tested.
Finally, the effect of using animations to texture the particles is evaluated.

Third, the effect of the vortex particle and the Kolmogorov turbulence meth-
ods are evaluated. The vortex particle method is tested by varying the pa-

1This is explained further in a readme file in the accompanying media folder.

98 CHAPTER 7. RESULTS

rameters that are used to configure it. The effect of Kolmogorov turbulence
method is shown by adjusting its strength.

Fourth, the effect of the thermal expansion is evaluated. We wish to see
what can be achieved by adjusting its strength.

Finally, results from full 3D simulation including internal boundaries are
presented, followed by a comparison between the results from our approach
and the results of existing methods.

Table 7.1 shows the specifications of the computer that were used when
producing the results. All the hardware are available through ordinary com-
puter retail stores, and are likely to resemble equipment of game enthusiasts.

CPU Pentium 4, 3.0 GHz

RAM 2048 MB

GPU Gainward GeForce 8800 GTX

GPU Memory 768 MB

GPU Core Clock 575 MHz

GPU Stream Processors 128

Operating system Microsoft Windows Vista Enterprise

Graphics drivers NVIDIA ForceWare 158.24

Table 7.1: Hardware specifications and setup.

7.2 The effect of varying the grid sizes

Tests of 2D simulations with volumetric extrusion and full 3D simulation
have been performed. This section provides performance and visual results
from these tests.

7.2.1 Performance related to grid sizes

As explained in chapter 6, the full 3D simulation considers arbitrary internal
boundaries. This involves a large amount of additional code per simulation
cell when compared to the 2D simulations. Thus, the results from the 2D
and 3D simulations are not directly comparable in terms of performance.

7.2. THE EFFECT OF VARYING THE GRID SIZES 99

7.2.1.1 Simulation without visualization

Table 7.2 shows the performance results of the 2D simulation, without visu-
alization. The left column shows the various grid sizes that were used and
the right column shows frames per second (fps).

Grid size Simulation only

16x32 767 fps

32x64 771 fps

64x128 768 fps

128x256 592 fps

256x512 184 fps

512x1024 50 fps

1024x2048 13 fps

Table 7.2: Frame rates for 2D slice explosion simulation.

As seen from the table, the simulation performance of the three smallest
grid sizes are, in practice, identical. Despite that there is a factor 16 increase
of grid cell count from the 16x32 simulation to the 64x128 simulations, the
simulation still performs at around 700 frames per second. The performance
is obviously not bound by the number of cells at these grid sizes. However,
when the grid sizes continue to increase, the simulation performance drops
linearly, decreasing at the same rate as the number of grid cells increases.
Figure 7.1 illustrates this by using logarithmic scales on both axes.

Figure 7.1: 2D Simulation performance without visualization. The vertical
axis shows frames per second, while the horizontal axis shows the total
amount of simulation grid cells.

100 CHAPTER 7. RESULTS

Table 7.3 shows the performance of the full 3D simulation. As expected, it
is more computationally demanding than the 2D simulation, even for equal
cell counts. For instance, the 2D 64x128 and the 3D 16x32x16 has both
8192 simulation grid cells, but the 2D simulations performs at 768 frames
per second, whereas the 3D simulation performs at mere 209.

Grid size Simulation only

16x32x16 209 fps

32x64x32 52 fps

64x128x64 13 fps

128x256x128 1.7 fps

Table 7.3: Frame rates for full 3D explosion simulation without visualization.

As observed for the 2D simulation, one could expect the 3D simulation
performance to decrease linearly with the same rate as the number of cells
increase. For instance, when increasing the cell count by a factor 8 from
16x32x16 to 32x64x32, a corresponding performance drop of a factor 8 seems
logical. However, only a performance drop of a factor 4 is observed, except
for the 7.64 performance drop when increasing the grid from 64x128x64 to
128x256x128. Figure 7.2 illustrates how the frame rates decrease as the
simulation cells count increases.

Figure 7.2: 3D Simulation performance without visualization. The vertical
axis shows frames per second, while the horizontal axis shows the total
amount of simulation grid cells.

7.2.1.2 Simulation and visualization

Table 7.4 shows the performance results of the 2D simulation when including
the visualization of 10 000 fire particles and 10 000 smoke particles. The

7.2. THE EFFECT OF VARYING THE GRID SIZES 101

rightmost column shows the total number of times the pixel shader code
for rendering the particles were executed each frame. The number of pixel
shader are relevant for the visualization performance because it represent the
vast majority of work that is performed by the GPU. All the test cases were
rendered from the same camera position and angle to ensure as identical test
conditions as possible.

Grid size Simulation and visualization Pixel shader invocations

16x32 371 fps 10.8 M

32x64 295 fps 14.4 M

64x128 347 fps 9.7 M

128x256 267 fps 9.2 M

256x512 132 fps 10.8 M

512x1024 38 fps 11.2 M

1024x2048 10 fps 11.2 M

Table 7.4: Frame rates and pixel shader invocations (in millions) for 2D
simulations that is visualized by 2x10 000 particles.

One could expect the three smallest grids to perform at equal frame rates as
they did without the visualization. However, as table 7.4 shows this is not
the case. Especially, the 32x64 simulation performed at lower frame rates
than both 16x32 and 64x128. Also, we can observe that the number of pixel
shader invocations for the 32x64 simulation is well above the average.

Grid size Simulation and visualization Pixel shader invocations

16x32x16 111 fps 19.7 M

32x64x32 32 fps 14.2 M

64x128x64 9 fps 16.6 M

128x256x128 1.4 fps 16.4 M

Table 7.5: Frame rates and pixel shader invocation (in millions) for the full
3D explosion simulation, visualized by 2x10 000 particles.

Table 7.5 shows the frame rates and number of pixel shader invocations
per frame of the full 3D simulation when including the visualization. Is is
obvious that the 2D explosion outperforms the 3D explosion, but again, the
implementations are not directly comparable in terms of performance.

To further investigate the performance impact of the visualization step, the
2D explosions have been rendered at different distances. Figure 7.3 shows
three screen captures from a test case. The leftmost screen capture shows
a 2D simulation rendered with a camera far from the explosion, which per-

102 CHAPTER 7. RESULTS

formed at 373 frames per second. The rightmost screen capture is taken
while rendering the explosion up close, which performed at 49 frames per
second. The middle screen capture performs at 239 frames per second.
Clearly, the performance drops dramatically when close-ups of the explo-
sions are rendered, which is also observed by the number of pixel shader
invocations. The pixel shader invocations for the far, middle, and close-up
rendering were 5.0, 10.1, and 87.9 millions, respectively.

Figure 7.3: A 2D simulation at three distances. Far view (left) @ 373 fps,
middle view @ 239 fps, near view @49 fps. (2x10 000 particles)

7.2.2 Visual results

The visual results that is produced vary based on the grid size. The various
parameters that control the simulation must be adjusted from one grid size
to another to produce desirable results, but it is difficult to achieve similar
results in all the grid sizes.

7.2.2.1 2D Simulation

Figure 7.4 shows four selected screen captures from two 2D simulations. The
top four pictures are from the smallest grid size of 16x32, while the bottom
four are from a 32x64 grid. Both have rather dark orange colors and large
amounts of smoke early in the simulation, representing dense exhaust gas
with low temperatures. The 32x64 explosion reaches higher intensity fire
color than its counterpart, but neither seem able to reach high tempera-
tures. Surely, the simulation parameters may be adjusted to generate high
temperatures, but this results in explosions that are not able to calm down
before occupying the entire simulation domain. The motion of the explosions
is fast and chaotic, but with limited rolling characteristics. We experience
that simulations at these grid sizes change significantly, even when very

7.2. THE EFFECT OF VARYING THE GRID SIZES 103

small adjustments of the simulation parameters are made. This making the
simulations difficult to customize.

Figure 7.4: Four selected screen captures of the evolution of 2D simulations
on a 16x32 grid (top) and a 32x64 grid (bottom).

Medium sized grids, such as 64x128, 128x256, and 256x512 are less chaotic
and easier to control than their smaller grid counterparts. The motion is
less turbulent, but the shape and overall motion of the explosions are more
believable. Compared to the smaller grids, the temperature reaches higher
levels before cooling down, as indicated by the brighter colors. Figure 7.5
shows an example of an explosion simulated in a 128x256 grid.

The largest grid sizes that have been tested are 512x1024 and 1024x2048.
Simulations produced using these grid sizes are slow, have small amounts of
turbulence, and do not have the rolling motion of explosions. In fact, the
results resemble laminar buoyant plumes more than highly turbulent explo-
sions. As with the medium sized grids, the colors show that the temperature
reaches high levels before cooling down. Figure 7.6 shows screen captures
from explosions simulated in large grids. The top four images are from a
512x1024 simulation, while the bottom four is from a 1024x2048 simulation.
As seen from the pictures, the results from the 1024x2048 simulation seem
more laminar that the results from the 512x1024 simulation.

104 CHAPTER 7. RESULTS

Figure 7.5: Six selected screen captures of the evolution of a simulation on
a 128x256 grid.

7.2.2.2 3D Simulation

Due to the computational requirements of full 3D simulation, we were not
able to perform tests with such a variety of grid resolutions as with the 2D
simulations, thus only three different grid sizes are discussed. In our expe-
rience, achieving desirable results from the 3D simulation is more difficult
than for the 2D simulations, thus requires more time to adjust the simulation
parameters.

The smallest grid that were tested had the dimensions 16x32x16. Results
using this grid size is shown by figure 7.7. Simulations at this grid size have
similar problems as the small grid 2D simulation, but they are not that se-
vere: The 3D simulations performed at small grids are difficult to adjust and
small changes of simulation parameters result in significant changes. Also,
explosions at small 3D grids also have problems reaching high temperatures
before they should calm down. Their motion is turbulent, but has limited
rolling characteristics.

As for 2D explosions, 3D simulations in medium sized grids are easier to
control than the smallest grids. A medium grid of size 32x64x32 are used
to create the results shown in figure 7.8. The simulation produces turbulent

7.2. THE EFFECT OF VARYING THE GRID SIZES 105

Figure 7.6: Selected screen captures of 2D simulations on a 512x1024 grid
(top) and a 1024x2048 grid (bottom).

Figure 7.7: Screen captures from a 3D simulation using a 16x32x16 grid.

106 CHAPTER 7. RESULTS

Figure 7.8: Screen captures from a 3D simulation using a 32x64x32 grid.

motion with appealing rolling motion. The rapid expansion that should oc-
cur at the beginning of the simulation is not very eminent, however. Instead,
the highest velocities during the simulation is after a few seconds when the
fire ball moves upwards due to buoyancy. 2

Figure 7.9: Screen captures from a 3D simulation using a 64x128x64 grid.

The largest grid that were used to simulate explosions in full 3D was 64x128x64.
Examples of the produced results are shown in figure 7.9. The simulation
looks laminar at first, but appealing turbulence and rolling motion can be
observed after a short while. As presented in section 7.2.1.2, simulations
using 64x128x64 grids perform at around 10 frames per second. Combined
with the fact that the 3D explosions are rather difficult to adjust, produc-

2Can be observed in the video file called 3D GridSize.wmv

7.3. EFFECTS OF VARYING PARTICLE PROPERTIES 107

ing great visual results may be cumbersome. For instance, the shape of the
smoke in the end of the explosion shown in figure 7.9 is not very believable.
By spending more time adjusting the simulation parameters, we suspect that
better results than the ones shown in figure 7.9 can be produced.

7.2.2.3 2D simulation compared to 3D

Because the 2D simulation are more computationally efficient than their 3D
counterparts, it is interesting to evaluate whether 2D simulations can be
used to create sufficient visual results. Since the 3D simulations are the only
ones able to include internal boundaries, the 2D simulations are only a valid
option when there are no interfering obstacles near the explosions.

Figure 7.10 shows a 2D explosion simulated using a 64x128 grid side-by-side
with a 3D explosion simulated using a 64x128x64 grid. Generally, we think
they are rather similar. There are some visual differences that is caused by
varying temperature and exhaust gas levels, but such differences can also
be seen when comparing 2D explosions with unequal simulation parame-
ters. However, the results from 2D and 3D explosions differ in two main
ways: The 3D simulations generate more complex and rolling motion, while
the 2D explosions are generally easier to adjust by altering the simulation
parameters.

7.3 Effects of varying particle properties

The particle systems that are used to visualize the explosion have several
properties that can be adjusted. The following sections test the effect of
varying them, using a 2D simulation with grid size 64x128.

7.3.1 Varying particle count and sizes

Section 7.2.1.2 showed the frame rates’ dependency on the number of pixel
shader invocations that is used to renderer the particles. Thus, it is of
interest to look at the effect of varying both the particle count and their
sizes. Clearly, a certain amount of particles are needed to avoid being able
to see through the explosions. Thus, if the number of particle are reduced,
their sizes may have to be enlarged to ensure visual quality.

To investigate further, various particle counts have been used. First, frames
per seconds were recorded by the various particle count, without adjusting
their sizes. Next, frames per seconds were recorded after adjusting the par-

108 CHAPTER 7. RESULTS

Figure 7.10: Screen captures of simulations simulated in 2D (left) and 3D
(right).

7.3. EFFECTS OF VARYING PARTICLE PROPERTIES 109

ticle sizes to maximize the visual quality. A visualization using 2 x 10 000
particles (10 000 fire and 10 000 smoke particles) is used as a basis for com-
parison, as such a configuration seems to work well in most cases. The base
case runs at 316 frames per second.

Particle count Fps without

size adjustment

Fps with

size adjustment

2 x 2 500 371 fps 331 fps

2 x 5 000 353 fps 328 fps

2 x 20 000 223 fps 297 fps

Table 7.6: Frames rates for various particle counts, both before and after
adjusting their size for visual quality.

The frame rates recorded from using various particle counts are summarized
in table 7.6. As expected, the frame rates increase when reducing the particle
counts from 2 x 10 000 to 2 x 5 000 or 2 x 2 500, and decreases when using
2 x 20 000. However, when the particle sizes are adjusted the differences are
not that obvious. Note that the particle sizes are decreased for the 2 x 20 000
case, while increased for the two other test cases.

Figure 7.11: Shows an explosions visualized using 2 x 10 000 particles (left),
2 x 2 500 particles without size adjustment, and 2 x 2 500 particles with size
adjustment.

Figure 7.11 illustrates the actions that were taken to test the effect of ad-
justing the number of particles and their sizes. The leftmost picture is the
base case of 2 x 10 000 particles, the middle shows the same simulation step,
but visualized using 2 x 2 500 particles without size adjustment. The right-
most picture shows the result after adjust the particle sizes of the middle
picture. The middle picture clearly illustrates that the visualization suffers
from reducing the particles without adjust their sizes also. The rightmost

110 CHAPTER 7. RESULTS

picture shows that reasonable results can be produced by increasing their
size, but the leftmost picture of 2 x 10 000 particles has in our opinion the
best visual quality.

7.3.2 The effect of the movement factor

Chapter 5 introduced a movement factor that is used to create variety in
how and where the particles move. To illustrate the movement factor’s
effect, a single simulation has been visualized by two differently configured
particle systems. First, the movement factors are chosen randomly from a
defined distribution. Second, the movement factors are uniformly set to 1.0,
which represent how the particles would move without using the movement
factor method. The left and right pictures of figure 7.12 shows the respective
results from the visualizations using randomly chosen and uniformly chosen
movement factors. Clearly, the particles of the leftmost picture visualize the
explosion in a more suitable way than the particles of the rightmost picture.
No performance loss has been observed by utilizing the movement factor
method.

Figure 7.12: A simulation visualized using varying movement factors (left)
and uniform movement factors of 1.0 (right).

7.3.3 The effect of animating the particles

Chapter 5 also proposed to texture the particles with animations created
from Kolmogorov turbulence fields. Contrary to our expectations, this does

7.4. TURBULENCE MODELLING RESULTS 111

not seem to have a noticeable effect on the final results. Only if the camera is
very close to stationary smoke, we can observe a small increase of small-scale
movement.

However, the use of animations results in a small decrease in frame rates.
Tests performed using a 2D grid of 128x256 performed at 208 frames per
second when using animation, while performing at 214 otherwise.

7.4 Turbulence modelling results

Two methods for introducing turbulence to the explosions were proposed in
chapters 4 and 5. The following two sections present their effect on the final
results.

7.4.1 Vortex particles

The vortex particle method is used to introduce rotational motion to the
velocity field. Several tests have been performed to illustrate the effects
of varying the number of vortex particles, their radii, and strengths. One
parameter at a time is raised to a high, but reasonable level, while the others
are kept rather low. Table 7.7 shows how the parameters were adjusted
during the tests. The results are shown in figure 7.13.

Picture position Particle count Max radius Max strength

Left 4000 4 grid cells 1x

Middle 400 6 grid cells 1x

Right 400 4 grid cells 2.5x

Table 7.7: Parameter values for the vortex particle method used to create
the pictures of figure 7.13.

The motion that are generated by the vortex particle method is turbulent,
but creates rather strange and un-natural shaped explosions, as can be seen
from figure 7.13. Furthermore, the particle parameters that were adjusted
do not seem to have their own distinct effect on the result. The pictures in
the figure do not differ enough to be able to couple their appearance to the
parameters. No performance loss has been observed by the use of vortex
particles.

112 CHAPTER 7. RESULTS

Figure 7.13: Simulations using the vortex particle method with different pa-
rameters. From left to right: Large particle count, large radii, and powerful
strengths.

7.4.2 Kolmogorov turbulence

The second method that were implemented to include turbulence was the
Kolmogorov turbulence method. A turbulence velocity field was used in
addition to the velocity field from the simulation to move the particles of
the visualization step. The results that were created with Kolmogorov tur-
bulence were far more predictable and controllable than those created with
the vortex particle method.

Figure 7.14 illustrates the effect of using Kolmogorov turbulence when vi-
sualizing an explosion. The leftmost picture shows the explosion visualized
without Kolmogorov turbulence, while the middle and rightmost figures are
visualized using medium and high levels of Kolmogorov turbulence, respec-
tively. The largest differences between the picture created without turbu-
lence and the two others in figure 7.14 is the levels of smoke. However, some
increase in turbulence can be observed. Note that the effect of Kolmogorov
turbulence is far more visible in motion than in the still pictures.

No performance loss were observed using the Kolmogorov turbulence method.

7.5 Internal boundaries

The full 3D simulation that has been implemented has the option of includ-
ing internal boundaries. To demonstrate what can be achieved with these
kinds of simulations, three examples are given. All three examples were

7.5. INTERNAL BOUNDARIES 113

Figure 7.14: An explosions visualized with no (left), medium (middle), and
high (right) levels of Kolmogorov turbulence.

rendered with 2 x 20 000 particles at 31 frames per second.

Figure 7.15 shows an explosions that occurs inside an immobile arch. The
geometry of the arch causes the explosion to burst outwards in the horizontal
directions before rising due to heat. Figure 7.16 shows an explosion near the
ground, next to a wall. Note how the explosion is blocked by the wall. Figure
7.17 shows an explosion that occurs below a flat horizontal obstacle. The
explosion is forced to move around the obstacle, which causes interesting
motion of the fluid.

Figure 7.15: Six frames showing the evolution of full 3D simulation of an
explosion inside an immobile arch (31 fps).

114 CHAPTER 7. RESULTS

Figure 7.16: Five frames showing the evolution of a full 3D simulation of an
explosion near a wall (31 fps).

Figure 7.17: Five frames showing a full 3D simulation of an explosion under
a flat obstacle (31 fps).

7.6. THE EFFECT OF THERMAL EXPANSIONS 115

7.6 The effect of thermal expansions

To model the thermal expansions that occurs during combustion is central to
the simulation. Tests performed with various amounts of expansion is shown
in figure 7.18. Each horizontal pair of pictures in the figure represent two
different time steps from a simulation. The topmost pair shows an explosion
without the use of thermal expansion. Note how small the explosion is.
The middle pair shows an explosion using a medium amount of expansion,
resulting in a significantly larger explosion. The bottommost pair of pictures
shows a simulation using a large amount of expansion. The pictures show
that this explosion expands even further. Also interesting is the small, dark
area within the final explosion. It indicates that there too few particles
present in the center of the explosion to visualize it properly.

When performing 3D simulations with internal boundaries, the thermal ex-
pansion is used extensively to force the fluid around the boundaries near the
point of impact (i.e. figure 7.15). An important observation made through
adjusting such simulations is that the thermal expansion can only be used
to a certain degree. When the thermal expansion strength reaches a certain
value, increasing it further does not seem to generate more powerful explo-
sions. Instead, some of the momentum of the fluid seems to disappear in an
unnatural fashion. Increasing the accuracy (number of jacobi iterations) of
the projection step does not seem to solve this issue.

Also, interesting is how the thermal expansion affect the density fields. Dur-
ing the first few moments, the thermal expansion seems to increase the
amount of density cells with large values. Is it quite obvious that the total
sum of density values when using thermal expansion is far greater than it is
when the combustion model operates on its own.

7.7 Comparison with other approaches

This section contains a comparison, in term of visual quality and perfor-
mance, between our approach and other methods for animating physically
based explosions. [KW05] is the only such method we know of that per-
forms in real-time. Therefore, a few offline approaches are included in the
comparison as well. Still images and video captures3 are used to compare

3Videos for the various approaches can be found at the following locations (as of 20.
June 2007):

• [FOA03]: http://www.cs.berkeley.edu/b-cam/Papers/Feldman-2003-ASP/

• [KW05]: http://wwwcg.in.tum.de/Research/Publications/VolEffects/

We were not able to find video footage of the explosion from [RNGF03].

116 CHAPTER 7. RESULTS

Figure 7.18: Two time steps from three explosions simulated using none (1a,
1b), medium (2a, 2b), and large amounts (3a, 3b) of thermal expansion.

7.7. COMPARISON WITH OTHER APPROACHES 117

the visual results. To guide the visual comparison, the following criteria is
used: color and texture, and shape and motion.

The colors of the explosions created by [KW05] are visually pleasing. How-
ever, do not seem to visualize a dynamic range of temperature as well as
the resulats from our method, because their colors are mostly orange or red.
Our colors, on the other hand, are somewhat over-saturated in some of the
results, and appear less colorful. Different from their method, our method
models smoke that can even remain after the fire ball has disappeared. We
have not seen results from [KW05] that show a complete explosion from
start to end, so we do not know how their explosions look like when calming
down. The texture of our explosions seem slightly more detailed than of the
ones of [KW05]. Contrary to their results, we experience some visual arti-
facts, especially near the edges of the explosions, that is caused by particles
being rendered alone4. The left picture of figure 7.19 shows show a result of
our approach, the middle picture is from [KW05], and the rightmost picture
is from [RNGF03].

Figure 7.19: Visual comparison of our approach (left), [KW05] (middle),
and [RNGF03] (right).

The colors and texture of our method fall short when compared to of-
fline methods such as [RNGF03] and [FOA03], since they use more detailed
and time consuming methods for visualization. Especially the results from
[RNGF03] are very convincing compared to ours, mainly because of the great
detail of the smoke and realistic brightness caused by heat.

The motion and shape of our explosions compare favorable to the one of
[KW05], especially during the first few moments. Our explosion has a rapid
expansion followed by a rising fire ball, whereas the explosion created by
[KW05] moves rather slowly during the entire simulation5.

The motion and shape of our explosion are not realistic when compared

4See for example the top view footage from the 3D Arch video that is attached
5This becomes very clear when viewing their video footage

118 CHAPTER 7. RESULTS

to [FOA03] or [RNGF03]. Especially the video footage of explosions from
[FOA03] shows more realistic rolling motion, which is also further enhanced
by internal boundaries. Figure 7.20 shows different time steps from a sim-
ulation performed by [FOA03] that has similarities to our results in figure
7.15. It is clear from the pictures that our results are inferior to those of
[FOA03].

Figure 7.20: Visual results from [FOA03] with similar internal boundaries
as our results presented in figure 7.15.

[KW05] used two 2D simulation combined with volumetric extrusion to cre-
ate explosions. When performing these simulations on 128x128 grids and
rendering the results with 16384 particles, they achieved a frame rate of
190. Our simulation of 128x256 (whose cell count correspond to two 128x128
simulation) performs at 278 frames per second when using the same amount
of particles. However, [KW05] used a NVidia GeForce 6800 GT, which is
inferior to the graphics hardware we used. Comparing performance with the
two offline methods is not of interest.

7.8 Summary

We have presented both visual results from our approach for animating
explosions. The observations that have been made can be summarized as
follows. They are numbered to enable us to refer to them from the discussion
in chapter 8.

Res1: The three smallest grid sizes of the 2D simulation, with no visualiza-
tion, practically performed at equal frame rates (see table 7.2).

Res2: The visualization step is generally the bottleneck of the explosion an-
imation. Tests show that the visualization performance coheres with
the number of pixel shader programs that need to be invoked.

Res3: The frame rates of the 3D simulation, with no visualization, did not
decrease as much as we expected when increasing the grid sizes (see
table 7.3).

7.8. SUMMARY 119

Res4: The most visually pleasing explosions are obtained by simulations in
medium sized grids. In our experience, the simulation in these grids
are also easier to adjust than in grids of both smaller and larger sizes.

Res5: It is easier to create pleasing visual results by adjust the simulation
parameters for the 2D simulation than for the 3D simulation.

Res6: A comparison between 2D slice simulations and the far more compu-
tationally expensive full 3D simulation show that the 2D simulations
may suffice for explosions that do not need to be affected by internal
boundaries.

Res7: Reducing the number of particles in the visualization step can improve
performance. However, when adjusting their sizes to avoid loosing
visual quality we observe that no substantial performance gains occur.

Res8: The use of the movement factor is demonstrated to improve the particle
system’s ability to render the explosion.

Res9: The use of animated textures on the particles were found to have little
or no effect on the final results.

Res10: The vortex particle method produces turbulent motion in the velocity,
but the results are rather strange. The use of Kolmogorov turbulence
create far more predictable results.

Res11: The thermal expansion is shown to be very important for the simula-
tion, but its strength can only be raised to a certain degree.

Res12: The thermal expansion increases the total amount of density.

120 CHAPTER 7. RESULTS

Chapter8
Evaluation

This chapter contain a discussion of the performance and visual results that
were presented in chapter 7. Next, an evaluation of the results is performed
based on the requirements that were set in section 1.2. Then, our main con-
tributions are summarized. Finally, the thesis is concluded and suggestions
for further work are proposed.

8.1 Discussion

The previous chapter presented both solid test results and observations that
were made by ourselves while working with the explosion animation. This
section contains a discussion of the results that we find most interesting.
The visual results are discussed in light of how easy they are to achieve, as
well as brief discussion of when the 2D or 3D simulation could be put to
use, respectively. Also, the performance results are discussed, because they
were not quite as we had expected. Furthermore, we discuss the effect of
the vortex particles and Kolmogorov turbulence. A few points are made
regarding the visualization step, before discussing some of issues that were
observed with the thermal expansion.

8.1.1 General visual quality

When working with physically based explosions, the values of several param-
eters, such as combustion and force strength parameters, need to be chosen.
Adjusting these can be a very cumbersome task. Achieving good visual re-
sults with both the smallest and largest 2D grids are difficult. Simulations
using the smallest grids are very sudden and hard to control. It is difficult
to adjust the simulation parameters such that the explosion reaches high
temperatures and violent motion and then calm down again. The simula-
tion domain is probably too small. Achieving violent and turbulent motion
when using the largest simulation domains are also difficult. The motion is
slow and almost laminar. The best results are created using medium sized

122 CHAPTER 8. EVALUATION

grids, where the simulation produces violent and turbulent motion can also
be controlled (Res4).

Also, in our experience, the 2D simulation are far easier to work with than
the ones in 3D (Res5). A contributing factor to this may be that the 3D
simulations obviously have more degrees of freedom than the 2D simula-
tions. But also, the 3D grid that we used to most were 32x64x32 and is
actually rather small. We had problems adjusting the parameters for the
corresponding 2D grid of 32x64 as well.

Despite problems with adjusting parameters, the 3D simulation can support
a much wider range of effects. Internal boundaries, wind, simulation do-
main advection [SR06] can, among others, be included. It is not trivial how
these could be well incorporated in a 2D simulation when using cylindrical
volumetric extrusion. On the other hand, such effects are not always neces-
sary. The results showed that 2D simulations provide good visual results for
cylindrical symmetric explosions and at much better frame rates than full
3D simulation (Res6). Thus, they may often be a good alternative to full
3D simulations.

8.1.2 General performance

The results (Res1) show that the simulations using the three smallest 2D
grids perform at practically the same frame rates when not being visualized.
Intuitively, we would assume that simulations using 16x32 would be faster
than simulations using the 64x128, which has a factor 16 more cells. It is
difficult to draw any conclusions of why these results occur, because there
are so many different possibly bottlenecks at the GPU. Nevertheless, we
suspect the performance to be bound by the number of times the GPU
needs to empty its processor pipelines. We have not investigated this any
further.

When including the visualization, we saw that it was more time consuming
than the simulation (Res2). This became especially clear when viewing the
explosion up close. We also saw differences in performance results when us-
ing the three smallest grids. The performance corresponded somewhat to the
number of pixel shader invocations that were performed by the visualization,
but this was not the case when comparing the performances of the 16x32
grid and th 64x128 grid. Again, it is difficult to conclude anything without
further investigations, but we suspect the visualization of small simulation
result grids to perform better due to cache locality.

Furthermore, we expected the performance of the 3D simulation (without
visualization) to decrease by a factor 8 when increasing the total cell count

8.1. DISCUSSION 123

by 8 (Res3). Surprisingly, the performance drop was not that significant,
except between the two largest 3D grids. Once more, conclusions cannot be
drawn without further investigations. However, the fluid solver shader code
that is performed per pixel in the 3D simulation fields reads more values from
its surrounding than the corresponding 2D code and there are performed
more texture fetches at the same locations in total. Thus, we suspect that
the lower performance loss than expected may be caused by good cache
locality. The fact that there is a factor 8 performance loss between the two
largest 3D simulation grids suggest that this is bound by a different, and
currently unknown, bottleneck than the smaller 3D grids.

8.1.3 Turbulence

Two methods for including turbulence to the explosion animation have been
evaluated. Vortex particles are used directly in the simulation, whereas
Kolmogorov turbulence is used to displace the particles of the visualization
step. The use of Kolmogorov turbulence was successful in which id intro-
duced predictable, small-scale turbulence. The results when using vortex
particles were not that positive.

As Res10 states, explosions created using vortex particles look unnatural.
The underlying velocity field that is used to move the vortex particles has
very high values, especially during the first few simulation steps. A possible
explanation of why the method creates unnatural results when used in our
method may be that they are moved too far by these velocities. Thus, the
particles may introduce rotational motion to areas where such motion is
unlikely. Also, the fact that the method is used with the 2D simulation, and
not 3D, may contribute to the strange results when the 2D slice is extruded
to 3D.

Furthermore, when implemented in 2D, the vortex stretching term1 that
alter the vortices is omitted, thus some of the interesting effects that evolving
rotational motion could introduce is not included. We expect the method
to be more suitable if used in the full 3D simulation.

8.1.4 Particle visualization

The explosions are visualized using particle system. The use of particles have
certain advantages, such as texturing that imitates small-scale variations in
the fluid and their ability to be affected by visualization step turbulence
(Kolmogorov turbulence). However, both Res11 and Res8 show that dis-

1See section 4.2.3.3 for an explanation of the vortex stretching term.

124 CHAPTER 8. EVALUATION

advantages with using particle systems as well. First, since the particles are
moved high velocities, quite a few of them will move to areas outside the
explosion and will not be visible. Nevertheless, valuable time is still spent
rendering them. Second, one is not guaranteed that the entire simulation
is in fact visualized. There might be areas of interest where no particles
are positioned. We introduced a movement factor to improve the particles’
ability to cover such areas, but a large number of particles is still required
to produce good visual quality.

To increase the small-scale variations of the visualization, we proposed using
Kolmogorov turbulence to create animated textures to use when rendering
the particles. Despite that animated textures have been shown effective by
others [Mic06], the results (Res9) show that there were little or no effect of
the animations, compared to using non-animated textures. We suspect the
animation to have such limited effect because the explosions are visualized
by thousands of particles being blended on top of each other. In comparison
[Mic06] only used a few hundred. We believe that the method we proposed
for generation of these animations can prove useful in other contexts, where
fewer, and perhaps larger particles are blended together.

Tests were run to find out whether the number of particles in the visualiza-
tion step could be reduced to improve performance. The results showed that
this was only partially true (Res7). When decreasing the particle count,
their sizes must be increased not to loose too much visual quality. Increas-
ing particle sizes leads to additional pixel shader invocations, which is most
likely the bottleneck of the visualization. In total, the performance gains
were small.

8.1.5 Thermal expansion

An interesting observation (Res11) were made regarding limitations to how
thermal expansion is used in our method. Increasing the strength of the
expansion is only useful to a certain degree. We believe this behaviour has to
do with the velocity advection step of the fluid solver. As explained in earlier
chapters, the advection step uses the current velocity to trace backwards to
find new values. Then, if the velocities of the expanding circle (sphere in
3D) are high enough, the advection would trace beyond the centre of the
explosion to find new velocity values. These new velocities would then be
pointing in the opposite direction of what is correct, and perhaps counteract
the outward-going motion.

Also worth noticing is that the use of thermal expansion has a tendency to
introduce more density to the simulation (Res12). The density advection
step is the most probable cause, because when using velocities to trace back

8.2. REQUIREMENT EVALUATION 125

to find the new values, there in no guarantee that multiple cells get their
new values from the same dense cells.

8.2 Requirement evaluation

This section contains a discussion to what degree we have fulfilled the re-
quirements that were listed in chapter 1.

R1: A physically based simulation of explosions should be per-

formed.

In order to perform a physically based simulation of explosions we have de-
veloped the model that were proposed in chapter 4. A combustion process
is used to model burning fuel, which produces exhaust products and heat.
Buoyancy and gravity is modeled to affect the motion of the fluid in which
the explosions occur. The motion of this fluid is governed by the Navier
Stokes equations for incompressible flow, while the violent expansion of ex-
plosions are modeled using the thermal expansion method. We do not model
the shock wave of explosions or the explosions’ affect on its surroundings.
Even though certain simplifications of the underlying physics are made to
meet the real-time requirements, we consider requirement R1 to be fulfilled.

R2: The overall motion of the explosion should be convincing.

By using the thermal expansion method, the simulation creates a rapidly
expanding fire ball during the first few moments. Subsequently, the burning
gas rises due to buoyancy. Some of the desired rolling motion are observed.
However, we are not able to exaggerate neither the thermal expansion or
the rolling motion as much as we would like. Also, the motion can not
be mistaken as a real explosion. Thus, we consider requirement R2 to be
partially fulfilled.

R3: It should be possible to place the explosion in a virtual scene.

We have not focused on creating realistic scenes where explosions are likely
to happen. Instead, we have visualized the boundaries that affect the ex-
plosions and placed the explosions correspondingly, showing that they may

126 CHAPTER 8. EVALUATION

be placed within a virtual scene. However, the explosion do not affect their
surroundings. Thus, we consider requirement R3 to be partially fulfilled.

R4: The simulation should be affected by obstacles within the

scene.

As shown by the figures in section 7.5, obstacles can be placed within a
scene and affect how the explosions behave. The results are pleasing, but the
simulations are rather difficult to configure using the explosion parameters.
We consider requirement R4 to be fulfilled.

R5: The visualization should be convincing, thus have realistic

shape, color, and turbulence.

The shapes of the produced explosions are closely related to the motion
that were required in R2, thus the shapes suffer from some of the same
limitations that the motion does. We think the shape of the explosions are
visually pleasing, but similarly to the motion, we miss the ability of creating
“mushroom-shaped” explosion, where the rolling motion is exaggerated.

The colors of hot exhaust gas is approximated by the black-body radiation
model, while the color of the smoke is mostly grey. Even though the colors
may be a bit over saturated at times, we feel the method approximates the
appearance of explosions rather good.

Of the two implemented turbulence methods is the Kolmogorov turbulence
method the best at producing realistic turbulence. We feel the turbulence
is rather convincing.

Despite pleasing results, the visual quality of the produced explosions are
far from being able to fool the human eye into believing they are real. Thus,
we consider requirement R5 to be partially fulfilled.

R6: All of the above should be performed in real-time. We re-

quire a minimum of 30 frames per second, because this is usually

enough to convince the human eye.

Section 7.2.1.2 shows that frame rates well above 30 can be achieved, even
at rather large simulation grids. In fact, the best visual results using the
2D slice simulation are achieved at the medium sizes grids. By using the

8.3. CONTRIBUTIONS 127

computational power of modern GPUs, we are able to fulfill requirement
R6.

8.3 Contributions

The method that have been proposed includes ideas and methods from pre-
vious approaches combined in new ways, some also modified to run on the
GPU. Our main contributions to animating explosions in real-time can be
summarized as follows:

• A physically based method for simulation of explosions, largely based
on the fire simulation from [GRS06], has been proposed. It is imple-
mented on the GPU, performing in real-time. To our knowledge, no
such real-time simulation of explosions has been performed in the past.

• In contrast to [GRS06], we have included the method proposed by
[FOA03] to approximate the thermal expansion that occurs during
combustion. This is central to our method for simulation realistic
explosions.

• The explosion simulation has been combined with the vortex particle
method proposed by [SRF05] and implemented in 2D on the GPU.

• The explosion simulation has been combined with a method for in-
ternal boundaries, used by [NVi07], in a full 3D implementation. It
shows that the explosion may adapt to scene geometry.

• The simulation is visualized using two separate particle systems for fire
and smoke, which are rendered as textured, screen-aligned quads. The
particles textures are animated, which differ from the visualization of
[GRS06] where the particles textures are still images.

• A novel approach for creating animations for the textured particles
is proposed. The lengths of velocity vectors from a 3D Kolmogorov
turbulence field are combined with a static texture splat to produce
animations that can be repeated seamlessly, as explained in section
5.3.4.

• Turbulence based on the Kolmogorov energy spectrum, as proposed
by [RNGF03], is combined with the visualization phase to generate a
more chaotic appearance and to reduce the symmetry caused by the
volumetric extrusion. It has, to the best of our knowledge, never been
used in real-time animation of explosions.

128 CHAPTER 8. EVALUATION

We have written a paper that describes the proposed method and the results
that are achieved. The paper will be submitted to Afrigraph 2007.

8.4 Conclusion

We have proposed an approach for real-time animation of explosions. A
fluid solver [Sta99] with vorticity confinement [FSJ01], combined with an
combustion model, is used to simulate the complex behaviour of burning
fuel and its gaseous exhaust products. By coupling this with the thermal
expansion approximation from [FOA03], we are able to efficiently simulate
deflagrative explosions. The simulation is implemented on the GPU both
in full 3D with internal boundaries and in 2D. When performed in 2D,
volumetric extrusion is used to implicitly define a 3D volume.

The results from the simulation are visualized using separate fire and smoke
particles systems. The particles flow through the simulation domain guided
by a velocity field. Additionally, their movement is controlled by an indi-
vidual particle movement factor, used to create variety in how and where
they move. Black-body radiation is used to calculate the color of emitted
light. The particles are rendered using textured screen-aligned quads. These
textures are animations that are based on Kolmogorov turbulence.

Two methods for introducing turbulence to the animation are included: The
vortex particle method is used explicitly in the simulation, introducing rota-
tional motion to the fluid, while turbulence based on a Kolmogorov energy
spectrum is used to introduce turbulence to the visualization step, indepen-
dently of the simulation.

We have either fulfilled or partially fulfilled the requirements that were listed
in the beginning of the thesis. Although the produced explosions can not be
confused with real explosions, we feel that both the appearance and motion
are visually pleasing. We have shown that the physically based approach is
suitable for dynamic simulation of explosion in real-time, which may prove
as a useful addition to game environments.

The main reason that our explosion animation performs at such high frame
rates is the parallelism and computational power of modern programmable
GPUs. The continuous development of such graphics hardware will definitely
enable game developers to include increasingly realistic simulation in their
productions. We feel certain that physically based animation of explosions
that are realistically included in games will be commonplace in few years.

8.5. FUTURE WORK 129

8.5 Future work

The proposed method for animation of explosions can be improved in several
ways. These are our suggestions towards further work:

• The method proposed by [FOA03] use fire and smoke particles as an
active part of the simulation and does not model fuel and exhaust
gas in scalar fields. They do, however, need a temperature field. As
only four field values are needed (three velocity components and one
temperature value), we suggest using a single texture on the GPU
to hold these. This way the diffusion of temperature and projection
of velocity can be performed simultaneously in a single pixel shader,
and perhaps halving the computational load used to solve the linear
equations.

• Particle systems as they are utilized in this thesis has several disad-
vantages. To ensure that enough particles are positioned where we
would want them, a vast amount must be placed in the domain. This
is a rather brute force and naive solution. A better option would be
to create new particles on the fly, based on where they are needed.
We suggest using geometry shaders on the GPU to dynamically cre-
ate particles where combustion occurs, perhaps inspired by idea from
[FOA03] and [Mic05].

• It could be looked into whether the use of the Back and Forth Error
Compensation and Correction (BFECC) used by [KLLR05] could be
used to reduce the numerical dissipation associated with the advection
step of the Stable Fluids solver. It has, to our knowledge, not been
applied to explosion simulations, thus it is interesting to investigate
its effect. A publicly available GPU implementation of the BFECC
method can be found in [NVi07].

• The explicit early-Z culling method proposed by [STM06] can be in-
cluded in the fluid solver algorithm to either reduce the simulation
time or to increase the accuracy of the projection step.

• The vortex particle method, which is only used in 2D in this thesis,
could be implemented in 3D. We suggest using the shader model 4.0
functionality (i.e. Direct3D 10) to extrude points into cubes that are
rendered with blending into an existing 3D velocity texture.

• As we have currently only implemented internal boundaries in the
full 3D simulation, it could be investigated how they can be included
into the volumetric extrusion method in a sensible way. Furthermore,
simple 2D simulations (without volumetric extrusion) are useful when

130 CHAPTER 8. EVALUATION

the simulated explosions are far away from the camera. Thus, internal
boundaries could be included in these 2D simulations to enable scene
geometry to affect the simulation.

• We have not focused effort into volume rendering in this thesis, but it
is still interesting to investigate if it can compete with particle based
methods. We suggest looking into how ray casting, combined with
physically based methods for calculating emission, absorption, and
scattering of light, can be used to produce realistic results (perhaps
inspired by approaches like [NFJ02] or [USKS06]).

• The internal boundaries of our current implementation are static dur-
ing the simulation. In a production environment it is probably prefer-
able to create the boundaries on the fly based on scene geometry near
the explosion event. We suggest rendering scene geometry to an ob-
stacle texture as performed by [NVi07], who also includes the speed of
moving boundaries.

• In the current implementation, smoke particles are not rendered in
back-to-front order. This causes visual artifacts, especially when the
camera is moving closely past the explosion. We suggest sorting the
particles on the GPU based their distance to the camera. Sorting
algorithms suitable for GPUs has been proposed by [KSW04, Lat04].
Note that the sorting algorithm can be spread out over several frames,
thus reducing the extra computational load per frame.

• To realistically include explosions in games, it generally not sufficient
to let scene geometry affect the simulation as performed in this the-
sis. Obviously, the explosion itself needs to affect the scene as well.
Methods for simulating shock wave forces could be investigated, and
perhaps coupled with a physics engine like [AGE07] to apply these
forces to movable objects within the scene. Approaches for simulat-
ing forces caused by explosions are presented by [YOH00, MMA99,
MBA01, NF99] and can provide background for a suitable approach.

• If a game developer wants to use several explosions at the same time
at large distances, using multiple instances of the current implemen-
tation would not be preferable due to the computational load. Thus,
it could be investigated whether level-of-detail algorithms, such as the
one proposed by [TG07], could be used to speed up the animation
when explosions are placed far away from the camera.

• The simulations require numerous parameters to be adjusted. This can
be difficult and is a well-known disadvantage of physically based ap-
proaches [LF02]. To ease the adjustment, we suggest removing many
of the parameters by inserting real data from known substances. For

8.5. FUTURE WORK 131

instance, if an explosion occurs because kerosene is ignited, many pa-
rameters can be automatically inserted based on actual scientific data.

• As discussed earlier, the thermal expansion can only be increased to a
certain degree. We also discussed a possible explanation that involve
what happens when the advection operation uses high velocities. In-
stead of performing one advection operation with a large time step
each frame, we suggest using several advection steps with smaller time
steps. This way, velocities will not be traced that far back in time.
Furthermore, we expect multiple advection steps to improve accuracy
of the fluid solver because piece-wise linear steps possibly approximate
the non-linear Navier Stokes equations better than a single large linear
step. Finally, we do not expect this to have a large impact on perfor-
mance. Using two, or maybe even four, advection steps instead of one
are still computationally cheap when compared to solving the systems
of linear equations.

132 CHAPTER 8. EVALUATION

Bibliography

[AGE07] Ageia PhysX, 2007. http://www.ageia.com/, [Online; accessed
12-June-2007].

[AMH02] Thomas Akenine-Muller and Eric Haines. Real-Time Rendering.
A. K. Peters, 2002. ISBN 1568811829.

[Cas00] Kenneth L. Cashdollar. Overview of dust explosibility charac-
teristics. Journal of Loss Prevention in the Process Industries,
13:183–199, 2000.

[CM93] Alexandre J. Chorin and Jerrold E. Marsden. A Mathematical
Introduction to Fluid Mechanics. Springer-Verlag, New York
NY, 1993.

[Cra04] M. S. Cramer. Foundation of fluid mechanics, 2002–
2004. http://www.navier-stokes.net/ [Online; accessed 02-
April-2007].

[Dav97] Lars Davidson. An introduction to turbulence models. Tech-
nical report, Dept. of Thermo and Fluid Dynamics, Chalmers
University of Technology, Göteborg, Sweden, 1997.

[DL03] Todd F. Dupont and Yingjie Liu. Back and forth error com-
pensation and correction methods for removing errors induced
by uneven gradients of the level set function. J. Comput. Phys.,
190(1):311–324, 2003.

[Eck06] Rolf K. Eckhoff. Differences and similarities of gas and dust ex-
plosions: A critical evaluation of the european ’atex’ directives
in relation to dusts. Journal of Loss Prevention in the Process
Industries, 19:553–560, 2006.

[EV06] Lars Andreas Ek and Rune Vistnes. Towards a framework for
physically based simulation of explosions in real-time. Master’s
thesis, Norwegian University of Technology and Science, 2006.

134 BIBLIOGRAPHY

[FJ97] M. Frigo and S. G. Johnson. The fastest fourier transform
in the west. Technical report, Cambridge, MA, USA, 1997.
http://www.fftw.org/.

[FM97] Nick Foster and Dimitris Metaxas. Modeling the motion of
a hot, turbulent gas. In SIGGRAPH ’97: Proceedings of the
24th annual conference on Computer graphics and interactive
techniques, pages 181–188, New York, NY, USA, 1997. ACM
Press/Addison-Wesley Publishing Co.

[FOA03] Bryan E. Feldman, James F. O’Brien, and Okan Arikan. Ani-
mating suspended particle explosions. In Proceedings of ACM
SIGGRAPH 2003, pages 708–715, August 2003.

[FSJ01] Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen. Visual
simulation of smoke. In Eugene Fiume, editor, SIGGRAPH
2001, Computer Graphics Proceedings, pages 15–22. ACM Press
/ ACM SIGGRAPH, 2001.

[GDN97] Michael Griebel, Thomas Dornseifer, and Tilman Neunhoeffer.
Numerical Simulation in Fluid Dynamics: A Practical Introduc-
tion. SIAM: Society for Industrial and Applied Mathematics,
1997.

[GRS06] Odd Erik Gundersen, Samuel Rødal, and Geir Storli. Physically
based simulation and visualization of fire in real-time using the
gpu. In Eurographics UK Chapter Proceedings: Theory and
Practice of Computer Graphics 2006, pages 13–22, Aire-la-Ville,
Switzerland, 2006. Eurographics Association.

[Har04] Mark J. Harris. Fast fluid dynamics simulation on the gpu.
In Randima Fernando, editor, GPU Gems: Programming Tech-
niques, Tips, and Tricks for Real-Time Graphics, pages 637–
665. Addison-Wesley Professional, 2004.

[Hol03] Thorsten Holtkamper. Real-time gaseous phenomena: a phe-
nomenological approach to interactive smoke and steam. In
AFRIGRAPH ’03: Proceedings of the 2nd international confer-
ence on Computer graphics, virtual Reality, visualisation and
interaction in Africa, pages 25–30, New York, NY, USA, 2003.
ACM Press.

[IMDN05] T. Ishikawa, R. Miyazaki, Y. Dobashi, and T. Nishita. Visual
simulation of spreading fire. In NICOGRAPH International ’05,
pages 43–48, 2005.

[Khi62] L. N. Khitrin. The Physics of Combustion and Explosion.
Jerusalem : Israel Program for Scientific Translations, 1962.

BIBLIOGRAPHY 135

[KKS99] D. K. Kaushik, D. E. Keyes, and B. F. Smith. Nks methods for
compressible and incompressible flows on unstructured grids. In
Proceedings of the 11th Intl. Conf. on Domain Decomposition
Methods, pages 513–520, 1999.

[KLLR05] B. Kim, Y. Liu, I. Llamas, and J. Rossignac. Flowfixer: Using
bfecc for fluid simulation. In Eurographics Workshop on Natural
Phenomena, 2005.

[KSW04] Peter Kipfer, Mark Segal, and Rüdiger Westermann. Uberflow:
a gpu-based particle engine. In HWWS ’04: Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS conference on Graphics
hardware, pages 115–122, New York, NY, USA, 2004. ACM
Press.

[KW03] Jens Krueger and Ruediger Westermann. Acceleration tech-
niques for gpu-based volume rendering. In Proceedings IEEE
Visualization 2003, 2003.

[KW05] Jens Krüger and Rüdiger Westermann. GPU simulation and
rendering of volumetric effects for computer games and virtual
environments. Computer Graphics Forum, 24(3), 2005.

[Lat04] Lutz Latta. Building a million particle system. In Game De-
velopers Conference 2004 and Graphics Hardware 2004, 2004.
http://www.2ld.de/gdc2004/.

[LF02] Arnauld Lamorlette and Nick Foster. Structural modeling of
flames for a production environment. In SIGGRAPH ’02: Pro-
ceedings of the 29th annual conference on Computer graphics
and interactive techniques, pages 729–735, New York, NY, USA,
2002. ACM Press.

[LLW04] Youquan Liu, Xuehui Liu, and Enhua Wu. Real-time 3d fluid
simulation on gpu with complex obstacles. In Pacific Conference
on Computer Graphics and Applications, pages 247–256, 2004.

[Mat97] Kresimir Matkovic. Tone Mapping Techniques and Color Image
Difference in Global Illumination. PhD thesis, Institute of Com-
puter Graphics and Algorithms, Vienna University of Technol-
ogy, Favoritenstrasse 9-11/186, A-1040 Vienna, Austria, 1997.

[MBA01] C. Martins, J. Buchanan, and John Amanatides. Visually be-
lievable explosions in real time. In The Fourteenth Conference
on Computer Animation. Proceedings, Vol., Iss., 2001, pages
237–259, 2001.

136 BIBLIOGRAPHY

[Mic92] Christian Michelsen. Gas Explosion Hand-
book. Gas Safety Programme, 1990-1992.
http://www.gexcon.com/index.php?src=handbook/
GEXHBcontents.htm, [Online; accessed 12-June-2007].

[Mic05] Microsoft. ParticlesGS, 2005. DirectX SDK (December 2005)
Sample.

[Mic06] Microsoft. SoftParticles, 2006. DirectX SDK (June 2006) Sam-
ple.

[MK02] Zeki Melek and John Keyser. Interactive simulation of fire.
Technical report, Texas A&M University, 2002.

[MMA99] Oleg Mazarak, Claude Martins, and John Amanatides. Animat-
ing exploding objects. In Proceedings of the 1999 conference on
Graphics interface ’99, pages 211–218, San Francisco, CA, USA,
1999. Morgan Kaufmann Publishers Inc.

[NF99] Michael Neff and Eugene Fiume. A visual model for blast waves
and fracture. In Proceedings of the 1999 conference on Graphics
interface ’99, pages 193–202, San Francisco, CA, USA, 1999.
Morgan Kaufmann Publishers Inc.

[NFJ02] Duc Quang Nguyen, Ronald Fedkiw, and Henrik Wann Jensen.
Physically based modeling and animation of fire. In SIGGRAPH
’02: Proceedings of the 29th annual conference on Computer
graphics and interactive techniques, pages 721–728, New York,
NY, USA, 2002. ACM Press.

[NVi07] NVidia DirectX 10 Smoke Sample, 2007.
http://developer.download.nvidia.com/SDK
/10/direct3d/samples.html [Online; accessed 24-May-2007].

[RE06] Erlend Randeberg and Rolf K. Eckhoff. Initiation of dust ex-
plosions by electric spark discharges triggered by the explosive
dust cloud itself. Journal of Loss Prevention in the Process
Industries, 19:154–160, 2006.

[Ree83] W. T. Reeves. Particle systems - a technique for modeling a
class of fuzzy objects. ACM Trans. Graph., 2(2):91–108, 1983.

[RNGF03] Nick Rasmussen, Duc Quang Nguyen, Willi Geiger, and Ronald
Fedkiw. Smoke simulation for large scale phenomena. In SIG-
GRAPH ’03: ACM SIGGRAPH 2003 Papers, pages 703–707,
New York, NY, USA, 2003. ACM Press.

BIBLIOGRAPHY 137

[SF93] Jos Stam and Eugene Fiume. Turbulent wind fields for gaseous
phenomena. In SIGGRAPH ’93: Proceedings of the 20th annual
conference on Computer graphics and interactive techniques,
pages 369–376, New York, NY, USA, 1993. ACM Press.

[SR06] Geir Storli and Samuel Rødal. Physically based simulation and
visualization of fire using the gpu. Master’s thesis, Norwegian
University of Technology and Science, 2006.

[SRF05] Andrew Selle, Nick Rasmussen, and Ronald Fedkiw. A vortex
particle method for smoke, water and explosions. ACM Trans.
Graph., 24(3):910–914, 2005.

[Sta99] Jos Stam. Stable fluids. In SIGGRAPH ’99: Proceedings of the
26th annual conference on Computer graphics and interactive
techniques, pages 121–128, New York, NY, USA, 1999. ACM
Press/Addison-Wesley Publishing Co.

[STM06] Pedro V. Sander, Natalya Tatarchuk, and Jason L. Mitchell.
Early-z culling for efficient gpu-based fluid simulation. In Wolf-
gang Engel, editor, ShaderX5: Advanced Rendering Techniques,
chapter TBD, page TBD. Charles River Media, Cambridge,
MA, 2006.

[SU94] J. Steinhoff and D. Underhill. Modification of the Euler equa-
tions for “vorticity confinement”: Application to the computa-
tion of interacting vortex rings. Physics of Fluids, 6:2738–2744,
August 1994.

[TG07] L. Tangvald and O. E. Gundersen. Level of detail for physically
based fire. Theory and Practice of Computer Graphics, 2007.

[TOT+03] Daiki Takeshita, Shin Ota, Machiko Tamura, Tadahiro Fuji-
moto, Kazunobu Muraoka, and Norishige Chiba. Particle-based
visual simulation of explosive flames. In PG ’03: Proceedings of
the 11th Pacific Conference on Computer Graphics and Applica-
tions, page 482, Washington, DC, USA, 2003. IEEE Computer
Society.

[USKS06] Tamás Umenhoffer, Laszlo Szirmay-Kalos, and Gabor Szijártó.
Spherical billboards and their application to rendering explo-
sions. In GI ’06: Proceedings of the 2006 conference on Graphics
interface, pages 57–63, Toronto, Ont., Canada, Canada, 2006.
Canadian Information Processing Society.

[Wik] Wikipedia. Gasoline explosion.
http://en.wikipedia.org/wiki/Explosion, [Online; accessed
12-June-2007].

138 BIBLIOGRAPHY

[WLL04] Enhua Wu, Youquan Liu, and Xuehui Liu. An improved study
of real-time fluid simulation on gpu. Journal of Visualization
and Computer Animation, 15(3-4):139–146, 2004.

[WLMK02] Xiaoming Wei, Wei Li, Klaus Mueller, and Arie Kaufman. Sim-
ulating fire with texture splats. In VIS ’02: Proceedings of the
conference on Visualization ’02, pages 227–235, Washington,
DC, USA, 2002. IEEE Computer Society.

[WLMK04] Xiaoming Wei, Wei Li, Klaus Mueller, and Arie E. Kaufman.
The lattice-boltzmann method for simulating gaseous phenom-
ena. IEEE Transactions on Visualization and Computer Graph-
ics, 10(2):164–176, 2004.

[YOH00] Gary D. Yngve, James F. O’Brien, and Jessica K. Hodgins. An-
imating explosions. In Proceedings of ACM SIGGRAPH 2000,
pages 29–36, August 2000.

Animating Physically Based Explosions in Real-time

ABSTRACT
We present a method for real-time animation of explosions
that runs completely on the GPU. The simulation allows
for arbitrary internal boundaries and is governed by a com-
bustion process, a Stable Fluid solver, which includes ther-
mal expansion, and turbulence modeling. The simulation
results are visualised by two particle systems rendered us-
ing animated textures. The results are physically based,
non-repeating, and dynamic real-time explosions with high
visual quality.

Categories and Subject Descriptors
I.3.5 [Computer Graphics]: Computational Geometry and
Object Modelling - Physically based modelling; I.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism - An-
imation; I.6.8 [Simulation and modelling]: Types of Sim-
ulation - Animation

Keywords
Animation, Explosions, Particle systems, Real-time, Fluid
Dynamics, GPU, Physically Based Animation, Natural Phe-
nomena

1. INTRODUCTION
Thankfully, explosions are not as common in our daily

lives as in computer games. In many computer games, how-
ever, they play an important role. As explosions are sudden
and highly turbulent, animating visually believable and dy-
namic real-time explosions is a very complex task. An ex-
plosion is a rapid expansion that generates a pressure wave.
This pressure wave is the main effect of an explosion. Side
effects can, but do not have to, include thermal expansion,
a light flash, a sudden and loud noise, a fire ball, refraction
of light, smoke, flying debris, and whirls of dust. A fully
realistic animation that gives life to an explosion would sim-
ulate most of these effects. However, when we use the term

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AFRIGRAPH 2007 Grahamstown, South Africa
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

animation we, in fact, mean a visual simulation of a defla-
gration, which is a low speed explosion that propagate by
transferring thermal energy to nearby combustibles. Thus,
we seek to imitate the visual appearance of a high speed
combustion like for instance a gasoline explosion. We do
not model the pressure wave or the effects of the explosion
on the environment.

Figure 1: Full 3D explosion with obstacle interaction
at 49 fps (grid size is 32x64x32). The explosion is
detonated beneath a horizontal pole.

Explosions, as fire and smoke, can be simulated using com-
putational fluid dynamics (CFD). However, as solving fluid
dynamics systems are computationally demanding, there was
no way to include them in real-time applications before Stam
presented the well-known Stable Fluids method in 1999.
This seminal paper led to several interactive and real-time
techniques for animating fire and smoke. A well-known
problem with the Stable Fluids approach is numerical dis-
sipation. The effect of this numerical dissipation is not se-
vere for effects like fire and smoke that can be kept alive by
sources or external forces. For explosions that are sudden,
however, numerical dissipation is more problematic as it will
force the explosion to both vanish and loose its brightness

Figure 2: Five frames showing the evolution of a full 3D simulation of an explosion near a wall (31 fps).

faster than it should. This problem with using the Stable
Fluids method for simulating explosions was noted by [26].

Three dimensional CFD systems used for animation evolve
fluids often contained in a limited and discretized volume.
The fluid contained in the volume needs to be visualised. A
common technique for visualising fluid dynamics based ex-
plosions is ray-tracing the volume containing a large amount
of massless particles that represent the smoke and fire parts
of the explosions. This technique is still far from performing
in real-time. The real-time techniques found in the literature
for animating explosions are ad hoc solutions, which to a cer-
tain degree are either visually convincing or dynamic, in the
sense of affecting the environment. Such ad hoc techniques
include pre-calulated explosions rendered on billboards, par-
ticle systems with ad hoc heuristics [18, 25], and procedural
texturing [21]. Pre-calculated explosions and solutions using
procedural texturing may look nice, but they do not interact
with the scene. In contrary, the ad hoc heuristics of many
particle systems results in explosions that are not visually
convincing, but capable of interacting with objects in the
scene.

Our assumption is that animated natural phenomena look
more convincing when based on the laws of nature. For-
tunately, obstacle interaction follows as a consequence of
basing the animation on the laws of nature. This leads
us to take a physically based approach to animating explo-
sions. In our framework, explosions are simulated using fluid
dynamics together with thermal expansion and turbulence
modelling. GPU implementations of stable fluid solvers are
presented in [9] and [5]. Visualising the simulated explo-
sion realistically in real-time, however, is harder. As men-
tioned above, realistic-looking animations of explosions are
best produced using ray-tracing.

Another challenge with animating real-time explosions is
small-scale detail. Small-scale detail depend on the grid size
of the discretized simulation domain of the fluid simulation.
Because of the real-time demands of our framework, the fluid
simulation has to be done on a simulation domain with a
small amount of grid cells. The small amount of grid cells,
in addition to the numerical dissipation of the fluid solver
used, cause small-scale detail of the explosion to disappear.

We visualise explosions using particle systems. The idea
of using a particle system for visualising explosions is not
a new one itself, as it was an explosion in the movie The

Wrath of Kahn that lead to the development of particle sys-
tems [18] in the first place. In contrast to this and other
ad hoc methods utilising particle systems for rendering ex-
plosions, we use a physically based fluid simulation to guide
the particles. As particle systems performs well for real-time
visualisation and can be fully implemented on the GPU [7],
they suits our real-time requirement. To rectify the prob-
lem with small-scale detail, the particles are visualised using
animated textures. Additional turbulence is added using a
pre-computed Kolmogorov turbulence field to modify the ve-
locity of the particles [17]. The rotational motion already
inherent in the simulation is strengthened using vorticity
confinement [1], and new rotational motion is added using
vortex particles [20].

Contributions: Our main contribution is to animate ex-
plosions using a physically based method in real-time. As
the offline method presented in [2], the fluid is modelled
with thermal expansion, however we also simulate the com-
bustion process as done in [12]. The simulation allows for
arbitrary internal boundaries, which enables dynamic scene
interaction [16], and is visualised by two particle systems.
Kolmogorov turbulence is utilised to add turbulence to the
trajectory of the particles [17] and to animate the texture
used for rendering them [has this been done before?]. We
have reached our goal of visualising physically based, non-
repeating, and dynamic real-time explosions with high visual
quality.

The paper is structured as follows. After the introduc-
tion, related work is presented. Then, an overview of the
framework is given followed by a description of the methods
used for simulating and visualising explosions. We then the
present the complete algorithm and implementation details,
and finally the results are discussed and we summarise and
give some prospects of possible future work.

2. RELATED WORK
Methods developed in the field of CFD model the fluid

motion accurately as they are used to model fire develop-
ment in buildings [10] and decisions about fire safety rely
on them. However, these methods scale badly as the run-
ning time depends on both the temporal and the spatial
resolution of the model [4]. For methods used in computer
graphics, it is enough to produce a visual convincing approx-
imation and not a visually accurate model. Therefore, the

Figure 3: Five frames showing a full 3D simulation of an explosion under a flat obstacle (31 fps).

methods need not solve the fluid systems acccurately. How-
ever, when used for animation, a lot of images are needed. In
motion pictures, 24 pictures are shown each second, and for
real-time applications this number is even greater. Thus, it
is important to minimise the production time for generating
an image for both application areas.

In [4] and [3] a model for simulating fluids using the the
incompressible Navier-Stokes equations on a voxel grid. The
equations where solved through an explicit integration scheme
whose stability required small time steps that put limitations
on the usefulness of the model in real-time and interactive
simulations. This limitation was removed in the uncondi-
tionally stable method presented by Stam [22]. Methods for
remedying the problematic numerical dissipation have been
presented and include vorticity confinement [1] and vortex
particles [20]. The most promising method, however, seem
to be Back and Forth Error Compensation and Correction
[6].

A physically based method for animating explosions is pre-
sented in [26]. The presented method accounts for conser-
vation of mass and energy in addition to conservation of
momentum, which is modelled through the incompressible
Navier-Stokes equation. The pressure is modelled explicitly
and the system is capable of interacting with solids. Sec-
ondary effects include the bending of light from the blast
wave. A better suited physically based simulation that use
the compressible Navier-Stokes equations is presented in [2].
The focus is on modelling the flame and they do not ex-
plicitly model the pressure wave, which makes the method
computationally cheaper. However, the method lacks inter-
action with solids. The colour of the flame is generated us-
ing Planck’s law for blackbody radiation. The Stable Fluid
approach is used to solve the incompressible Navier-Stokes
equations for animating smoke, water and explosions in [20].
Their main contribution, however, is introducing additional
vorticity using vortex particles to add detail where they
exist. The method treat obstacles in three dimensions in
contrary to earlier two-dimensional methods, which did not
treat obstacles. A completely different method is presented
in [24]. They use a discrete Lagrangian fluid model in co-
herence with flame and air particles. The various physical
quantities used in the simulation, such as the buoyancy and
the pressure gradient, are calculated based on the interac-

tion between the particles.
While not a real-time technique when introduced, parti-

cle systems [18] are used for modelling dynamic explosions
in most modern computer games. Real-time frame rates are
achieved by using non-physical pressure and velocity tem-
plates to affect a Navier-Stokes based fluid simulation in [8].
Templates are used to adjust the pressure and velocity fields
respectively. Using these templates it is possible to model
small-scale features, and custom fluid flow can be designed
as desired. Particle systems are used to render the fluids.
The pressure templates need to be specified by an animator
on beforehand. Thus, this method is not suitable for sim-
ulating explosions in games where you want the explosions
to change dynamically according to the environment. An-
other non-physics method [25] use large and few spherical
billboards to visualise explosions in real-time. To include
the variety needed, they use real-world video clips of fire as
perturbation of rendered opacity.

Other related work include [14] and [11] that model the ef-
fects of the pressure waves of explosions on the environment
and physical based fire rendering methods like [12], [15], [8],
and [19].

3. FRAMEWORK OVERVIEW
The explosion rendering process is divided into two parts.

First, the explosion is simulated, and then the simulation is
visualised. Simulation is the most computationally demand-
ing process because it solves a fluid system. The explosion
is simulated by evolving the three density fields, which are
the fuel gas field, the exhaust gas field, and the tempera-
ture field, in co-evolution with the velocity field. These four
fields are governed by the Navier-Stokes equations together
with thermal expansion and the combustion process, which
converts fuel gas to exhaust gas and heat when the tempera-
ture exceeds a certain threshold. Buoyancy due to heat then
causes the hot exhaust gas to rise, while gravity pulls dense
exhaust towards the ground. Vorticity confinement and vor-
tex particles (for the 2D simulation) are used to compensate
for numerical dissipation caused by the fluid solver.

After simulation, the state of the fluid system is visu-
alised using two particle systems of animated, textured par-
ticles. Fire particles and smoke particles flow through the
simulation domain guided by the velocity field and precom-

puted Kolmogorov turbulence. The particle’s texture colour
is computed using a black-body radiation model.

We use a voxel data structure to represent the simula-
tion domain and will refer to each unit as a cell. Each cell
contains corresponding field values. When discretizing the
fields into cells, the field values are defined in the centre of
the cells and assumed to be uniform inside each one, as de-
scribed in [22]. There are two different kinds of cells in the
simulation domain; interior cells and boundary cells.

The boundary conditions of the three density fields and
the velocity field are treated differently. The boundaries of
the density fields are assumed to be closed. Thus, when sam-
pling densities outside the domain, we use the value of the
closest interior cell. The boundaries of the velocity field are
treated to avoid flow across them. The velocity component
perpendicular to the boundary is set to the negated value
of the closest interior cell. See [4] for a good treatment of
boundary conditions.

4. SIMULATING EXPLOSIONS
The fluid system is solved using a stable fluid solver as

described in [22]. Vortex particles [20], vorticity confinement
[1], thermal expansion [2], and combustion [12] are added to
the fluid simulation.

4.1 Velocity field
The velocity field u is governed by the Navier-Stokes equa-

tions for incompressible flow with zero viscosity, also known
as the Euler equations:

∂u

∂t
= − (u · ∇)u−∇p + F (1)

The first term on the right-hand side of equation 1 is the
self-advection of the velocity causing velocity to move along
itself. The second term, −∇p, is the pressure gradient caus-
ing velocity to move from areas of high pressure to areas of
low pressure. The last term on the right hand side of equa-
tion 1 is the external force acting on the velocity field. The
external force actually consists of several separate forces as
shown in equation 2:

F = fvortexparticles + fvorticity + fgravity + fbuoyancy, (2)

where fvortexparticles is the result of summing the induced
forces from all vortex particles, fvorticity is the vorticity con-
finement force, fgravity is proportional to the exhaust gas
level, and fbuoyancy, which is proportional to the tempera-
ture.

When assuming the fluid is incompressible, mass conserva-
tion laws require that the velocity divergence is zero. How-
ever, during combustion the temperature of the fluid will
increase and cause thermal expansion. We allow for:

∇ · u = φ (3)

We let φ be proportional to temperature changes with a
positive proportionality constant. Thus, divergence in ar-
eas where temperature is constant will still be zero. Cells
where the temperature is rising, however, will have a positiv
divergence. The combustion will cause the temperature to
rise quickly and lead to high velocities away from the cells
involved, which imitate the violent motion of explosions.

4.2 Explosion density fields
The three separate scalar fields specifying the amount of

fuel gas, exhaust gas, and heat distributed throughout the
simulation domain are collectively referred to as the explo-
sion density fields. These three scalar fields are evolved by
the same equation:

∂d

∂t
= −u · ∇d + κd∇2d− αdd + Cd (4)

The parameter d is a scalar quantity that represents either
the amount of fuel gas, exhaust gas, or temperature in a cell
in the simulation domain; denoted by g, a or T respectively.
Equation 4 describes the evolution of a scalar field over time
in the simulation domain as the velocity field u affects the
scalar field.

The first term on the right-hand side in equation 4 gov-
erns the advection of the scalar quantity d by the velocity
field u, while the second term governs the diffusion of the
scalar quantity d. κd is the diffusion constant controlling the
amount of diffusion associated with each of the density fields.
Furthermore, the third term governs the dissipation of the
scalar quantity d where αd denotes the dissipation rate. The
dissipation rate ensures that fuel gas, exhaust gas, and tem-
perature will decrease over time. Cd is a combustion term
that controls the effect of the combustion process on a spe-
cific density field cell. Fuel gas is combusted if the present
temperature is above a certain limit. Combustion leads to
a decrease of fuel gas and an increase of both exhaust gas
and temperature. Predefined constants control the rate of
change.

5. VISUALISING EXPLOSIONS
The simulation results are visualised by the use of two

particle systems; one for fire and one for smoke. The par-
ticles move based on the velocity from the simulation step
and a turbulence field calculated by the use of a Kolmogorov
spectrum. Fire particles are visible where exhaust gas tem-
perature is above a chosen temperature threshold while the
smoke particles are visible where exhaust gas temperature
is below the same threshold.

5.1 Particle movement
The particles are considered massless and their positions

are updated based on the velocity field from the simulation
step and the Kolmogorov turbulence velocity explained be-
low. The following equation shows how to calculate the new
position of the particle, xnew

i , from the old position, xi:

xnew
i = xi + δt(uxi + vxi)wi, (5)

where δt is the time step, (uxi and vxi are the fluid veloc-
ity from the simulation step and the Kolmogorov turbulence
velocity, respectively. The explosion generates high veloci-
ties, especially early in the simulation. To avoid that all the
particles relocate to the outer region of the explosion during
the first few moments, we introduced the denomination-less
scalar wi to create diversity in how they move. wi can be
thought of as the particle’s weight or intertia, but it has no
actual physical meaning.

To add more detailed movement and to avoid visual arte-
fact caused by symmetries in the simulation or sampling, we
adopt the use of a Kolmogorov spectrum to model turbu-
lence [17]. The process explained in [23] allows the creation

Figure 4: 2D grid slice simulations using the vortex particle method with different parameters. From left to
right: Large particle count, large radii, and powerful strengths. No performance loss were observed when
adding vortex particles.

of 3D velocity fields that contain small-scale turbulence. The
Kolmogorov spectrum, accompanied with random numbers,
is used to describe small-scale turbulence in the frequency
domain. Next, an inverse Fourier transform is performed to
transfer the frequency information to a useful representation
in space-time domain.

The generated Kolmogorov turbulence velocity fields are
periodic and may be tiled all over space. Moreover, as [17]
suggested, two velocity fields are assigned to different point
in time, alternating back and forth. Linear interpolation
based on a time variable is used to find a velocity field at a
certain point in time, and the turbulence of a given spatial
position is sampled from this velocity field and added to vi

of equation 5.

5.2 Particle colour
As previously stated, we use two particle systems; one for

fire and one for smoke. First, the fire particles are rendered,
and then the smoke is blended on top. Calculation of par-
ticle colours are based on the assumption that areas of hot
exhaust gas is fire and areas of cool exhaust gas is smoke.
The colour for a fire particles at xi is found using

Cfire = B(Txi) · Step(0, Eα, Txi) · Step(0, Tα, Exi) (6)

where B is a lookup function into a precalculated black-
body radiation table, while Txi and Exi are the temperature
and exhaust level at the particle’s position. Eα and Tα are
constants selected to define the levels of exhaust gas and
temperature where fire are visualised. Step is a function
defined as follows:

Step(l, u, x) =

8<:
0 if x < l
1 if x > u

−2(x−l
u−l

)3 + (3 x−l
u−l

)2 else
(7)

The parameters l and u define the lower and upper section
for a smooth interpolation for a resulting value in [0,1].

Fire particles are blended on top of eachother using equa-
tion 8

Cdst = Csrc + Cdst · (1− Csrc) (8)

where Csrc is the new colour and Cdst is the colour all-
ready in the render target. Using this blending operation,
the result is invariant of the order, hence there is not need
to render the particles in a back-to-front order.

Smoke particle colours are found by adding a small amount
of colour from the black-body radiation based to a prede-
fined grey colour:

Csmoke = Grey + ε ·B(Txi) (9)

The constant ε controls how much of the colour from the
black-body lookup table is used.

Next we calculate the density of the smoke and apply it
to the alpha channel of its colour:

Asmoke = k ·(1−Step(0, Tmax, Txi)) ·Step(Emin, Emax, Exi)
(10)

This formula ensures that smoke is not rendered where
temperature is above Tmax. Also, it ensures smoke is not
rendered when exhaust level is below Emin, which is used
to set a lower limit of when smoke is visible. Emax defines
where exhaust levels admit the smoke to be rendered at full
intensity. Smoke particles are rendered using alpha blending
using

Cdst = Asrc · Csrc + (1−Asrc) · Cdst (11)

Ideally, the smoke particles should be rendered in a back-
to-front order while considering their position relative to
the existing fire so that smoke behind saturated areas of
fire is not rendered. However, sorting the particles is time-
consuming, and thus counteract our real-time requirement.

We have found that good enough visual results are prodused
without these considerations except when the explosion is
very close to a fast moving camera.

5.3 Rendering the particles
The particles are rendered using textured, animated bill-

boards. To create the texture animation, we use results
from the Kolomogorov turbulence generator. Once again,
it provides us with a 3D velocity field. We use the lengths
of the vector to create a 3D scalar field scaled to the range
[0,1]. Each slice in the xy-plane is interpreted as an im-
age, i.e a 128x128x128 scalar field becomes an animation
of size 128x128 with 128 images. As previously stated, the
Kolmogorov generated turbulence is repeatable, so is the
animation. The animation is blended with a guiding tex-
ture splat, which is different for smoke and fire. Figure 5
shows the guiding texture splat used for creating the fire
particle and the first frame of the resulting animation. To
increase the diversity of particle appearance each particle is
also given a random orientation. The size of the particles is
adjusted to the best possible visual results while achieving
high frame rates.

Figure 5: Fire texture splat with (left) and without
(right) turbulence animation.

The colour of the fragments drawn to the screen is the mul-
tiple of the calculated particle colour and the intensity level
from the texture, resulting in a visual resulting resembling
small-scale turbulence. Each particle will start its animation
at a random frame and change frames at a fixed animation
rate.

6. THE ALGORITHM
Both the simulation and visualisation are performed each

frame. The explosion simulation evolves the density fields
and velocity field based on the combustion process and the
stable fluid solver, which incorporate thermal expansion.
Each step of the simulation is performed for all the cells
in the domain. The complete algoritm is shown below:

Simulation

1. Compute velocity forces and add them to the velocity
field.

2. Compute changes of density and add them to their
corresponding field values.

3. Compute the thermal expansion scalar field.

4. Self-advect and project the velocity field based on equa-
tions 1 and 3 using the stable fluids solver, with ther-
mal expansion from step 3 as φ.

5. Advect the denisties, applying the newly calculated ve-
locity from step 4, and diffuse the three explosion den-
sity fields based on equation 4 using the Stable Fluids
solver.

Visualisation

1. Move all fire and smoke particles based on equation 5
using the velocity field from the simulation step, the
precomputed Kolmogorov turbulence velocity, and the
particle’s movement factor.

2. Render fire particles to the screen based on its posi-
tion. Use equation 6 to find the colour and blend using
equation 8.

3. Render smoke particles to the screen based on its po-
sition. Use equation 9 and 10 to find the colour and
blend using equation 11.

7. IMPLEMENTATION DETAILS
To implement the fire simulation and particle simulation

on the GPU, we use Direct3D 10. Textures are used to store
both the main velocity and fire density fields while vertex
buffers are used to hold particle data (positions, movement
factor, and a random number). Computations on textures
are performed using HLSL fragment shaders and some parts
of the simulation uses multiple simultaneous render targets.

We implement two versions of the algorithm: One per-
forms a two slices of a 2D simulation and combines them
using volumetric extrusion [17]; the the other is a full 3D
simulation with arbitrary internal boundaries inspired by
[16]. The latter uses 3D textures to hold simulation data,
rendered to using Direct3D 10 functionality.

Sampling from the computational domain using the par-
ticle positions requires two different approaches when the
computational domain is represented as respectively a full
3D voxel volume or two 2D grid slices. When sampling from
the full 3D voxel volume, simple trilinear interpolation can
be used. Sampling from the 2D grid slices is more compli-
cated though. Cylindrical interpolation [17] is used between
the two slices and then bilinear interpolation is used within
the two slices.

Particle movement is performed on the GPU before the
updated data is streamed out to a second vertex buffer with-
out being rendered. We alternate between these two buffers
to avoid using the CPU or rendering particle data to tex-
tures. Next, particles are rendered as view aligned quads,
which are generated by a geometry shader based on the par-
ticles position after a modelview projection transformation.

Initially particles are given a random position inside a
sphere, which surrounds the starting point of the explosion.
Each particle is also given a movement factor selected ran-
domly from a predefined distribution. To ensure that the
first few simulation steps are not saturated with smoke, we
fade the smoke into the scene after a short while.

8. RESULTS AND ANALYSIS
In this section, the performance of our algorithm is evalu-

ated and it is compared to other approaches for visualising
explosions. Finally, the limitations of the algorithm are dis-
cussed.

Figure 6: Six selected screen captures of the evolution of a simulation on a 128x256 grid (149 fps).

8.1 Performance and visual results
The performance of the 2D slice simulation is not directly

comparable to the 3D simulation because of the latter’s abil-
ity to include arbitrary internal boundary conditions, which
require a substancial amount of additional shader code. All
the tests were run on a 3 GHz Intel Pentium 4 CPU with
2048 MB RAM and a NVIDIA GeForce 8800 GTX with 768
MB RAM. The performance of the 2D slice simulation with
and without a visualisation of 10000 fire particles and 13000
smoke particles is shown in table 1.

Grid size Simulation only With visualisation

64x128 768 fps 170 fps

128x256 592 fps 149 fps

256x512 184 fps 95 fps

512x1024 50 fps 31 fps

1024x2048 13 fps 11 fps

Table 1: Frame rates for 2D grid slice explosion sim-
ulation, both with and without a particle system
with a total of 23000 particles.

Table 2 shows the performance of the full 3D simulation
including internal obstacles, also here visualised with 10000
fire particles and 13000 smoke particles.

As expected with the 2D simulation, with the exception
of the smallest grid size where the bottleneck no longer is
the pixel shader, the performance of the simulation frame
rates are proportional to the grid sizes. This is not the
case for the 3D simulation. Performance when using 3D-
textures as render targets have a bottleneck other than the
pixel shaders.

Obviously, the 2D simulation outperforms the one in 3D
when it comes to frame rates, but the differences of the visual
results are not that clear. As shown by figure ??, a grid size
of 64x128 is sufficient for achieving visually pleasing results.
However, the full 3D obstacles simulation has advantages
such as being able to simulate non-symmetrical explosions
and interaction with obstacles.

We have experienced with particle counts and sizes. When
decreasing the number of particles, the sizes must be in-
creased accordingly to avoid poor visual results. The num-
ber of particles itself does not affect performance noticeable,
but the total number of pixel shader invocations does. In
fact, having 23000 small sized particles performs better than,
13000 particles whose sizes also have been increased.

Grid size Simulation only With visualisation

16x32x16 209 fps 111 fps

32x64x32 52 fps 32 fps

64x128x64 13 fps 9 fps

128x256x128 1.7 fps 1.4 fps

Table 2: Frame rates for full 3D explosion simula-
tion, both with and without a particle system with
a total of 23000 particles.

When using large simulation domains, the well-known rolling
motion of explosions is not as obvious as when using smaller
simulation domains.

Vorticity confinement enhance small-scale rotation, and
when using large simulation domains, the small-scale ro-
tation does not enhance the large-scale rolling motion. In
smaller simulation domains the vorticity that vorticity con-
finement enhance is not longer small, but an important part
of the overall velocity. Thus, the effect of vorticity con-
finement on the large scale rolling motion decrease with in-
creased simulation domain resolution.

8.2 Comparison with other approaches
There are not much other research towards real-time ex-

plosions. We compare our results to four others; two off-line
methods are used as reference, a fluid guided ad hoc method
[8], and the spherical billboard method of [25].

Both offline methods [26] and [2] produce very good vi-
sual results. The visual results of our method does not have
the high amount of detailed small-scale variations as we use
textures as an imitation, nor is the well known large-scale
rolling motions as evident. In contrary to Animating Ex-
plosions our method models smoke creation as a part of the
combustion process.

Compared to other real-time explosions such as the ones
produced by [8], both the motion and appearance of our
method look better. Additionally, [8]’s method requires an
animator to create pressure templates that guide the simula-
tion. They do not have internal boundaries or a combustion
model, hence our method should be easier to include dy-
namically in a scene. Finally, the method used by [25] to
produce explosion generate appealing pictures, but does not
have a physically based simulation, hence may be difficult
to include in arbitrary scenes too.

8.3 Limitations
Our method for animating explosions has several limita-

tions. The computationally cheap 2D slice simulation is lim-
ited to symmetric explosions. Internal boundaries could be
included, but again the usefullness is restricted to bound-
aries that are symmetrical. However, in many situations a
complete 3D rendering is overkill. For instance, there is no
practical difference in visual quality between a 2D or a 3D
rendering when viewed at a distance.

Visualising an explosion through a particle system has
its limitations. Foremost, the parts of the explosion where
there are no particles will not be visible. A large amount of
particles is needed to visualise the explosion. Still, there is
no way to ensure that the complete simulation is visualised
as the velocity field moves the particles away from the areas
of the explosion with the highest velocity. Also, all particles

are rendered; even those outside of where the explosion is
defined by the simulation.

Finally, visual artefacts are introduced when particles are
near the scene geometry. Soft particle techniques [13] may
be used to solve this problem, however they come with an
additional computational costs.

9. SUMMARY AND FURTHER WORK
We have presented a method for animating explosions

completely on the GPU. The simulation allows for arbitrary
internal boundaries and is governed by a combustion pro-
cess, a Stable Fluid solver, which includes thermal expan-
sion, and turbulence modeling. The simulation results are
visualised by two particle systems comprised of textured and
animated particles.

A natural extension of this work is to make the arbi-
trary boundaries dynamic, so that explosions could be deto-
nated dynamically in the scene as in [16]. Now the, bound-
aries must be hard coded on beforehand. Another extension
would be to research how to better visualise the explosion us-
ing particle systems. Now, we need many particles in order
to ensure that there are enough particles where the explosion
exists. However, it would be more sensible to add particles
where the explosion is located at the current moment, as
the explosion (soot and temperature) changes location with
time. Finally, we would like to implement back and forth
error compensation and correction [6] as we believe that it
would work well for explosions.

10. REFERENCES
[1] R. Fedkiw, J. Stam, and H. W. Jensen. Visual

simulation of smoke. In E. Fiume, editor, SIGGRAPH
2001, Computer Graphics Proceedings, pages 15–22.
ACM Press / ACM SIGGRAPH, 2001.

[2] B. E. Feldman, J. F. O’Brien, and O. Arikan.
Animating suspended particle explosions. In
Proceedings of ACM SIGGRAPH 2003, pages
708–715, Aug. 2003.

[3] N. Foster and D. Metaxas. Realistic animation of
liquids. Graph. Models Image Process., 58(5):471–483,
1996.

[4] N. Foster and D. Metaxas. Modeling the motion of a
hot, turbulent gas. In SIGGRAPH ’97: Proceedings of
the 24th annual conference on Computer graphics and
interactive techniques, pages 181–188, New York, NY,
USA, 1997. ACM Press/Addison-Wesley Publishing
Co.

[5] M. J. Harris. Fast fluid dynamics simulation on the
gpu. In R. Fernando, editor, GPU Gems:
Programming Techniques, Tips, and Tricks for
Real-Time Graphics, pages 637–665. Addison-Wesley
Professional, 2004.

[6] B. Kim, Y. Liu, I. Llamas, and J. Rossignac.
Flowfixer: Using bfecc for fluid simulation, 2005.

[7] P. Kipfer, M. Segal, and R. Westermann. Uberflow: a
gpu-based particle engine. In HWWS ’04: Proceedings
of the ACM SIGGRAPH/EUROGRAPHICS
conference on Graphics hardware, pages 115–122, New
York, NY, USA, 2004. ACM Press.

[8] J. Krüger and R. Westermann. Gpu simulation and
rendering of volumetric effects for computer games

Figure 7: Six frames showing the evolution of full 3D simulation of an explosion inside an immobile arch (31
fps).

and virtual environments. Computer Graphics Forum,
24(3), 2005.

[9] Y. Liu, X. Liu, and E. Wu. Real-time 3d fluid
simulation on gpu with complex obstacles. In Pacific
Conference on Computer Graphics and Applications,
pages 247–256, 2004.

[10] S. m. Olenick and D. J. Carpenter. An updated
international survey of computer models for fire and
smoke. Journal of Fire Protection Engineering, 13(2),
2003.

[11] O. Mazarak, C. Martins, and J. Amanatides.
Animating exploding objects. In Proceedings of the
1999 conference on Graphics interface ’99, pages
211–218, San Francisco, CA, USA, 1999. Morgan
Kaufmann Publishers Inc.

[12] Z. Melek and J. Keyser. Interactive simulation of fire.
Technical report, Texas A&M University, 2002.

[13] Microsoft. SoftParticles, 2006.
http://msdn2.microsoft.com/en-
us/library/bb172449.aspx.

[14] M. Neff and E. Fiume. A visual model for blast waves
and fracture. In Graphics Interface, pages 211–218,
1999.

[15] D. Q. Nguyen, R. Fedkiw, and H. Jensen. Physically
based modeling and animation of fire. In SIGGRAPH
’02: Proceedings of the 29th annual conference on
Computer graphics and interactive techniques, pages
721–728, New York, NY, USA, 2002. ACM Press.

[16] Nvidia directx 10 smoke sample, 2007.
http://developer.download.nvidia.com/SDK/10/
direct3d/samples.html.

[17] N. Rasmussen, D. Q. Nguyen, W. Geiger, and
R. Fedkiw. Smoke simulation for large scale
phenomena. In SIGGRAPH ’03: ACM SIGGRAPH
2003 Papers, pages 703–707, New York, NY, USA,
2003. ACM Press.

[18] W. T. Reeves. Particle systems - a technique for
modeling a class of fuzzy objects. ACM Trans. Graph.,
2(2):91–108, 1983.

[19] S. Rødal, G. Storli, and O. E. Gundersen. Physically
based simulation and visualization of fire in real-time
using the gpu. In Eurographics UK Chapter
Proceedings: Theory and Practice of Computer
Graphics 2006, pages 13–22, Aire-la-Ville,
Switzerland, 2006. Eurographics Association.

[20] A. Selle, N. Rasmussen, and R. Fedkiw. A vortex
particle method for smoke, water and explosions.
ACM Trans. Graph., 24(3):910–914, 2005.

[21] J. Spitzer. Real-time procedural effects, 2003.
[Accessed online 26.10.2006].

[22] J. Stam. Stable fluids. In SIGGRAPH ’99:
Proceedings of the 26th annual conference on
Computer graphics and interactive techniques, pages
121–128, New York, NY, USA, 1999. ACM
Press/Addison-Wesley Publishing Co.

[23] J. Stam and E. Fiume. Turbulent wind fields for

gaseous phenomena. In SIGGRAPH ’93: Proceedings
of the 20th annual conference on Computer graphics
and interactive techniques, pages 369–376, New York,
NY, USA, 1993. ACM Press.

[24] D. Takeshita, S. Ota, M. Tamura, T. Fujimoto,
K. Muraoka, and N. Chiba. Particle-based visual
simulation of explosive flames. In PG ’03: Proceedings
of the 11th Pacific Conference on Computer Graphics
and Applications, page 482, Washington, DC, USA,
2003. IEEE Computer Society.

[25] T. Umenhoffer, L. Szirmay-Kalos, and G. Szijártó.
Spherical billboards and their application to rendering
explosions. In GI ’06: Proceedings of the 2006
conference on Graphics interface, pages 57–63,
Toronto, Ont., Canada, Canada, 2006. Canadian
Information Processing Society.

[26] G. D. Yngve, J. F. O’Brien, and J. K. Hodgins.
Animating explosions. In Proceedings of ACM
SIGGRAPH 2000, pages 29–36, Aug. 2000.

