
Automatisert testing av dynamisk HTML

Kjersti Loe
Stine Lill Notto Olsen

Norges teknisk-naturvitenskapelige universitet
Institutt for datateknikk og informasjonsvitenskap

Master i datateknikk
Oppgaven levert:
Hovedveileder:

Juni 2006
Tor Stålhane, IDI

Oppgavetekst
Web-sider blir stadig mer dynamiske. Sider med enkel forretningslogikk i JavaScript og muligens
AJAX er vanlige. For eksempel velger man "Oslo" i dropdown 1, så skal "Trondheim" og "Bergen"
vises i dropdown 2.
Slike dynamiske web applikasjoner er vanskelig å teste automatisk. De blir derfor ofte testet
manuelt, og det er en dyr og tidkrevende prosess hvis det er en stor og kompleks web applikasjon.
Det finnes test-rammeverk for automatisert testing av dynamisk HTML, men disse krever en god
del teknisk forståelse for å kunne skrive tester.
Det medfører at det er utviklerne som må skrive testene fordi det er for vanskelig for de som
"eier" funksjonaliteten (kunden) å skrive testene selv. Kunden kan da heller ikke bruke
testverktøyet til f.eks å spesifisere funksjonalitet, samt lage tester for feil de selv finner.
Oppgaven består av følgende:

1. Utredning

- Hva er vanlige JavaScript / AJAX skript på nettsider i dag?

- Finnes det test-rammeverk som er skikket til å teste dette?

2. Utvikle konsepter for bruk i testing

- Hvordan skal tester representeres?

- Hvordan gjøre det lett og uttrykksfullt for en kunde å skrive tester?

3. Utvikle en egen open source editor for disse konseptene som legges ut på boss.bekk.no (BEKK
Open Source Software). Denne editoren bør ha muligheten til å eksportere til et testrammeverk
som kan eksekverer testene.
Det bør bygges på verktøyet "AutAT" (boss.bekk.no/autat) som brukes til mer tradisjonell testing
av webisder (f.eks sideflyt og utfylling av skjemaer).
Oppgaven gis i samarbeid med Bekk Consulting AS, Steria AS og Mesan AS, og passer fra en til tre
studenter. Rapporten bør skrives på engelsk.

Faglærer: Tor Stålhane (stalhane@idi.ntnu.no)

Medveileder(e): Christian Schwarz (BEKK), Trond M Øvstetun (Mesan).

Oppgaven gitt: 20. januar 2006
Hovedveileder: Tor Stålhane, IDI

Abstract

Today, customers often perform acceptance testing of dynamic web-applications
manually. This can be costly and time-consuming if the web-application is
complex or if testing has to be performed often. Agile development methods
are characterized by short development iterations, test-driven development
and regression testing. As these methods are becoming more popular, the
need for automated acceptance tests have increased. In these agile meth-
ods, it is the customers (the owners of the funcionality in the application)
who should create and maintain the acceptance tests. However, there is a
lack of tool support with a high abstraction level that can assist customers
(non-technical/business-side persons) to create these tests. The result is
that automated acceptance tests are usually created and maintained by de-
velopers. This results in that the customer cannot use tests to specify new
functionality.

The original AutAT was developed in a master thesis the spring of 2005 to
enable non-technical users to create automated acceptance tests for static
HTML, in a graphical user interface. The conclusion in their master thesis
indicates that AutAT has better usability, efficiency and quality, compared
to other state-of-the-art test frameworks. We have in this master thesis
continued the development of AutAT to support the creation of tests for dy-
namic web-applications created with Ajax- and JavaScript. The new version
of the AutAT tool has been thoroughly tested to assess its usability from
a customer’s perspective, as well as its usefulness in software development
projects. The assessment showed that the new version of AutAT can be used
by customers after proper training, but that the tool is most useful when
used in cooperation between developers and customers.

Keywords: AutAT, Automatic Acceptance Test, Web Application, Testing
Tool, Test Driven Development, Ajax, JavaScript.

Preface

This master thesis documents the work done by Stine Lill Notto Olsen and
Kjersti Loe, in the spring of 2006. The thesis is related to the Department
of Computer and Information Science (IDI) at the Norwegian University of
Science and Technology (NTNU), in addition to Bekk Consulting AS, Steria
AS and Mesan AS. The project is a study of an acceptance test tool (AutAT),
and focus on automated acceptance testing of dynamic web-pages.

We would like to thank our supervisors, Tor St̊alhane at IDI, Christian
Schwarz at Bekk consulting, Stein K̊are Skytteren at Steria and Trond Mar-
ius Øvstetun at Mesan, for their involvement and guidance during our work
this semester. We really appreciate their time, feedback and efforts helping
us.

We would also like to thank all participants involved in the tests and in-
terviews during the assessment of AutAT. Both the non-technical users and
developers familiar to Watir used their time to give us valuable feedback
on the tool. Special thanks to the representatives from the companies in
Trondheim and Oslo, for interesting conversations and useful information.
Therefore thanks to:

• Skule Johansen, Kantega

• Knut Bliks̊as, Fundator

• Odd Martin Solem, Abeo

• Trond Johansen, Proxycom

• Jan Thoresen, Bekk

Kjersti Loe Stine Lill Notto Olsen

Trondheim, June 16, 2006

CONTENTS System Development

Contents

1 Introduction 1

1.1 Background and Motivation 1

1.2 Problem Definition . 3

1.3 Project Context . 3

1.4 Project Outline . 3

2 Resesarch Agenda 5

2.1 Goals and Research Questions 5

2.2 Research Methods . 6

2.3 Project Process . 6

3 Prestudy: Testing 9

3.1 The V-model . 9

3.2 Regression Testing . 10

3.3 Test-Driven Development . 10

3.4 State-of-the-Practice of Testing 12

4 Technical Prestudy 14

4.1 AutAT . 14

4.1.1 The User Interface . 14

4.1.2 Architecture . 16

4.2 Dynamic Web Pages . 17

4.2.1 Dynamic HTML . 18

4.2.2 Alternatives to DHTML 18

4.3 JavaScript . 19

4.4 Asynchronous JavaScript and XML (AJAX) 20

4.4.1 Communication with the server 21

i

System Development CONTENTS

4.5 Challenges when Automating Tests for Dynamic Web-applications 22

4.6 Typical Scripts . 23

4.6.1 Instantly update the web-page based on written input 24

4.6.2 Validating form-input values 24

4.6.3 Allowing real-time applications 25

4.6.4 Lazily loading hierarchical content 26

4.6.5 Updating and sorting lists 26

4.6.6 Summary of Advantages 27

4.7 State-of-the-Art of Test Frameworks 27

4.7.1 Selenium . 27

4.7.2 Watir . 29

4.7.3 JsUnit and jWebUnit 30

4.7.4 FIT and FitNesse . 31

4.7.5 Summary of Existing Test Frameworks 32

5 Own Contribution 35

5.1 Functional Requirements Specification 35

5.2 Concepts Created to Fulfil The Requirements 36

5.2.1 Alt. 1:The Input-Output Element With Several Out-
puts on a Separate Page 36

5.2.2 Alt. 2: The Input-Output Element With a Table on a
Separate Page . 37

5.2.3 Alt. 3: The Dynamic Element 37

5.2.4 Alt. 4: The State Concept 38

5.2.5 Alt. 5: The ”Page-on-Page” Concept 39

5.2.6 Evaluating the Concepts 41

5.3 The Solution . 43

5.3.1 Example: AjaxTrans 43

5.3.2 How The Solution Support Typical Scripts 44

6 Design and Implementation 47

6.1 Design . 47

6.1.1 Domain Model . 47

6.2 Implementation . 48

6.2.1 AutAT Model . 48

6.2.2 AutAT Persistence . 49

ii

CONTENTS System Development

6.2.3 AutAT Exporter . 51

6.2.4 AutAT UI . 56

6.3 User Documentation . 56

6.3.1 Explanation of States 56

6.3.2 How to Create Tests in AutAT 57

6.3.3 How to run Watir test in AutAT 58

7 User Testing and Results 60

7.1 Testing with Non-Technical Users 60

7.1.1 Test process . 61

7.1.2 Results . 61

7.2 Testing on Developers Familiar with Watir 62

7.2.1 Test process . 62

7.2.2 Results . 63

7.3 Testing with Project Managers 64

7.3.1 Test process . 64

7.3.2 Results . 64

7.4 Threats to Validity . 67

8 Evaluation and Discussion 70

8.1 The New Version of AutAT 70

8.2 The usability of AutAT . 71

8.2.1 Usability for the non-technical subjects 71

8.2.2 Usability for developers 72

8.3 Is using AutAT designing the application? 72

8.4 The usefulness of AutAT for customers 74

8.5 The usefulness of AutAT for developers 75

8.6 Generalization and recommended use of AutAT 76

9 Conclusion 78

10 Further Work 80

A Companies 82

A.1 Questions . 82

A.2 Bekk . 83

A.3 Proxycom . 83

iii

System Development CONTENTS

A.4 Kantega . 84

A.5 Fundator . 86

A.6 Abeo . 87

B Documentation 88

C Non-Technincal Users 94

C.1 Introduksjon til testing . 94

C.2 Oppgave som skal utføres . 96

C.3 Spørsm̊al om AutAT . 96

D Developers and Project Managers 98

D.1 Introduksjon til AutAT . 98

D.2 Eksempel p̊a modellering av Google Suggest 99

D.3 Spørsm̊al brukervennlighet og bruk av AutAT stilt til utviklere: 99

D.4 Spørsm̊al om nytteverdien av AutAT stilt til prosjektledere: . 99

E Feedback 101

E.1 After the introduction to AutAT, was it easy to understand
the state concept in AutAT? 101

E.2 Is it easy to understand the connection between the states? . 101

E.3 What do you think about this way of creating test for the
action you wish to have on a web-page? 102

E.4 What do you think about AutAT? 102

E.5 What do you think about how AutAT looks? 102

E.6 What do you think about the editing possibilities in AutAT? 102

F XML-Schema for the Watir-Exporter 103

Bibliography 109

iv

LIST OF FIGURES System Development

List of Figures

2.1 The Project Process . 8

3.1 The V-Model [29] . 10

3.2 The Test-Driven Development Process [2] 11

4.1 The AutAT User Interface . 15

4.2 The main package structure of AutAT 16

4.3 The Domain Model [30] . 17

4.4 The four technologies of Ajax [5] 20

4.5 ”The synchronous interaction pattern of a traditional web ap-
plication (top) compared to the asynchronous pattern of an
Ajax application (bottom)” [12] 21

4.6 Classic web application model compared to the Ajax web ap-
plication model [12] . 22

4.7 Suggestions When Typing . 24

4.8 Translator . 25

4.9 Refreshing the List Without Refreshing the Page 27

4.10 Example of a Selenium test with waitForCondition (FIT) [13] 29

4.11 Example of a Selenium test with Pause statement (FIT) [18] 29

4.12 ”Wait for element” in Watir 30

4.13 Sleep-command in Watir . 30

4.14 JsUnit Example that is claimed not work for testing Ajax . . 31

5.1 Alt. 1: The Input-Output Element with several output-boxes 37

5.2 Alt. 2: The Input-Output Element with a table 38

5.3 Left: Alt. 3: The Dynamic Element, Right: The Form Ele-
ment in AutAT . 38

5.4 Example of the state-concept by modelling the Backbace PC
Shop web-site . 40

v

System Development LIST OF FIGURES

5.5 Page-On-Page Example . 41

5.6 Transitions possible in ”page-on-page”-concept 41

5.7 Example of the State-concept modelling the AjaxTrans web-site 43

5.8 ”UserActions”-Transtion . 44

5.9 Example of the State-concept modelling Free Chat 46

6.1 The new Domain Model . 48

6.2 The Main Classes in the New Version of AutAT 49

6.3 Method that writes a wait statement in a Watir script 53

6.4 Watir script that checks if Text is present 53

6.5 The ”fromPageUserAction”-method which exports an user’s
action to a Watir script test step 55

6.6 Actions possible on AutAT Elements 56

6.7 First state in Google Suggest modelled in AutAT 58

6.8 UserActions in Google Suggest modelled in AutAT 59

6.9 The Final Result of Google Suggest modelled in AutAT . . . 59

C.1 NTNU Case . 97

vi

LIST OF TABLES System Development

List of Tables

4.1 Summary of Typical Scripts 28

4.2 Summary of Frameworks . 34

5.1 Summary of concepts . 42

6.1 HTML-tags that can be used for creating contexts on web-
pages [19] . 54

7.1 Non-technical subjects . 60

vii

CHAPTER 1. INTRODUCTION System Development

Chapter 1

Introduction

The intention of AutAT is to enable technical and non-technical users to
create automated acceptance tests. AutAT can be used by customers of soft-
ware development projects to define required functionality, specify changes
and report bugs in the web-application. Automated tests can in addition
lead to advantages for customers. We therefore believe that if AutAT can
support testing common dynamic web-applications, it could be used in soft-
ware development projects, which would benefit both the customers and
developers.

1.1 Background and Motivation

When web-applications are tested, it often includes testing the correctness of
forms, links, textual content, etc., and is traditionally performed manually.
Testing a web-application manually, by i.e. clicking on links, submitting
forms, etc., can be time consuming and prone to human errors [18]. Tradi-
tionally, web-applications were developed with the waterfall model, in which
testing was performed once to prove an application’s correctness in the end of
the development process. Testing an application once involved a high risk in
case the software did not pass the final tests, or if the customers’ requirements
had changed during development. This risk was decreased when software in-
stead were developed in modules, since each module were then separately
tested, and later compound into an application and tested as a whole. Now,
the use of eXtreme Programming (XP) and other agile development methods
are becoming increasingly popular among software developers. Most of these
development methods can be characterized by short development iterations,
continuous integration and Test Driven Development (TDD) [27].

In TDD, tests are written before the application code [27]. These tests are
used continuously during development to check that new code works cor-
rectly, and that the old code has not been damaged by adding new. It is
therefore important that the tests are automated so they can run repeatedly
without much additional effort, and efficiently test large parts of the applica-

1

System Development CHAPTER 1. INTRODUCTION

tion. In difference, when testing an application manually, this is often done
to reveal errors on only the parts of the application with the largest possi-
bility of being affected by changes in the code, to reduce the effort used on
testing. Automated tests provide more thorough testing of web-applications
because they in addition to reveal errors, also increase the confidence in the
developed software.

When running automated tests continuous during agile development, it re-
quires that the tests are always up to date with the changes in the applica-
tion. The tests can therefore be used as documentation of the functionality
in the application. This is an advantage because changes in an application
results in that only the tests need to be updated. With manually performed
testing, both the written test specifications and the application documenta-
tions usually must be synchronized.

Customers are responsible for the final approval of an application. This is
done through acceptance testing, where the customer verifies that the ap-
plication meets their requirements. There exist tools and frameworks that
can help in the creation of acceptance tests. However, most of them require
several types of programming skills. Tools with better usability, especially
for non-programmers (such as customers), can help customers to create au-
tomated acceptance tests. Stein K̊are Skytteren and Trond Marius Øvstetun
created a tool called ”AutAT - Automatic Acceptance Testing of Web Ap-
plications” as a master thesis in the spring of 2005 [30]. AutAT is a tool for
designing tests in a way that is easy for customers to understand. The tool
allows users to specify web-pages in a GUI interface, and convert them into
test-scripts that can run on already existing test frameworks. They showed
that using AutAT would increase quality and efficiency when creating auto-
mated acceptance tests for web-applications, compared to ”state-of-the-art”
open source tools [30].

Customers can use AutAT to create automated acceptance test, which could
improve the specification phase in software development project. The ac-
ceptance tests created in AutAT could be used as a part of the requirement
specification since they specify the functionality requested by customers.
Customers could also report bugs they find and specify changes in the ap-
plication by creating test cases for respectively, the input resulting in the
exception and the requested functionality. The AutAT tests could also be
useful for customers to insure that their required functionality works cor-
rectly. These activites would increase the customers involvement in the de-
velopment projct and therefore decrease the possibility for misunderstand-
ings between customers and developers.

2

CHAPTER 1. INTRODUCTION System Development

1.2 Problem Definition

The current version of the AutAT tool, supports only the creation of test
scripts for static HTML (Hyper Text Markup Language) with a simple
request-reply architecture. However, most web-applications today include
some form of dynamic content. JavaScript is a commonly used web-technology,
and we believe that Ajax will become popular in the future. The aim of this
master thesis is therefore to develop a tool that can be used by customers
for creating and maintaining automated acceptance tests for testing appli-
cations containing Ajax- and JavaScripts.

An important part of this thesis is to explore new concepts for the graphical
user interface in AutAT. These concepts must enable a customer to simply
and expressively model dynamic content in web-applications. In addition to
the graphical changes in the AutAT tool, a new exporter must be created to
convert AutAT models with dynamic features into automated test scripts.
Another important part of this thesis is therefore to find a test framework
that supports testing Ajax- and JavaScript, and address the challenges with
making AutAT automatically create test-scripts for dynamic HTML.

1.3 Project Context

This project is an extension of the master thesis [30] carried out in coopera-
tion with the Software Engineering Group, which is a part of the Department
of Computer and Information Science at the Norwegian University of Sci-
ence and Technology (NTNU) in Trondheim. This thesis is related to BEKK
Consulting AS, Steria and Mesan.

1.4 Project Outline

The rest of this document is organized as follows:
Chapter 2 ”Research Agenda”, introduces the goal of this Master Thesis. It
describes the questions we need to ask and the process planned to achieve
this goal.

Chapter 3 ”Prestudy: Testing”, presents the field of testing to the reader
and describes common practice of testing in five companies in Norway.

Chapter 4 ”Technical Prestudy”, describes the background information for
the new version of the AutAT tool. It defines a dynamic web-page and ex-
plores dynamic web technologies. It also presents state-of-the-art of existing
testing frameworks.

Chapter 5 ”Own Contribution”, presents the requirements specification of
the new version of the AutAT tool. It also describes the different concepts

3

System Development CHAPTER 1. INTRODUCTION

that we evaluated before we decided on a solution.

Chapter 6 ”Design and Implementation”, presents the changes in the design
and implementation in the new version of the AutAT tool. In addition, a
user documentation of the AutAT tool is presented to show how tests can
be created.

Chapter 7 ”User Testing and Results ”, presents the tests we have performed
on different users. It describes how the tests were performed and the results
from these tests.

Chapter 8 ”Evaluation and Discussion”, presents the evaluation of the Au-
tAT tool, based on tests and interviews.

Chapter 9 ”Conclusion”, contains the conclusions drawn from evaluating the
AutAT tool.

Chapter 10 ”Further Work”, contains suggestions for further development
and research of the AutAT tool.

4

CHAPTER 2. RESESARCH AGENDA System Development

Chapter 2

Resesarch Agenda

This chapter presents the focus of our work, by describing the goal of this
master thesis and research questions. It also describes the research methods
during our work and an overall work plan for this thesis.

2.1 Goals and Research Questions

Researching state-of-the-practice of testing shows a demand for tools that
support customers when creating automated acceptance tests for dynamic
web-applications. To our knowledge there do not exist tools for this pur-
pose that can be used before the application is developed, and in addition
are based on a graphical user interface (GUI). GUI based applications are
usually easier to use and learn for customers, which often do not have a
technical background. The goal of this thesis is therefore:

to create a tool that can be used by customers in software development
projects and make acceptance testing of dynamic web-pages simple and more
efficient.

To create this tool, we had two options. We could either extend AutAT to
support dynamic web-applications, or create a new tool from scratch. Au-
tAT has been created after thorough research, and it has received positive
feedback from software developers after presentations, i.e. in XP-Meet Up
(January 2006). In addition, there were few restrictions on how we could
change the AutAT-editor and we saw several possibilities. We therefore de-
cided to continue on the development of AutAT.

When continuing the development of AutAT, it is important to understand
the process where it is meant to be used, and the needs of the intended users.
It is also important to investigate different concepts to find out how dynamic
web-applications can be modeled in a graphical user interface. This to be
sure that dynamic content can be modeled in the new version of AutAT. For

5

System Development CHAPTER 2. RESESARCH AGENDA

a tool to be taken into use, it is important that it has good usability and
is useful. The intention of AutAT is that it can be used by customers to
create and maintain acceptance tests [30]. However, AutAT can be used to
create both acceptance tests and system tests. We will therefore investigate
the usability and usefulness of the new version of AutAT, for customers as
well as developers.

The research questions to investigate in order to reach our main goal, are
therefore:

1. How is testing, and especially acceptance testing, of dynamic web-
pages performed in companies today?

2. How can we represent dynamic web-applications created with Ajax-
and JavaScripts, simple and expressive in AutAT?

3. Is AutAT useful for companies when developing web-applications?

4. How is the usability of AutAT? Where usability is defined as ”the
effectiveness, efficiency, and satisfaction with which specified users can
achieve specified goals in a particular environment”1.

2.2 Research Methods

A brainstorming was performed to create new concepts for how to make the
AutAT-editor best suitable for modelling tests for dynamic web-pages. Each
concept was then evaluated against common web-pages to investigate the
concepts restrictions and applicability.

A study of how testing is done in companies was preformed to understand
the process of where and by whom the tool is meant to be used.

A literature study was preformed in order to gain knowledge about how soft-
ware applications are tested. In addition, we have explored web-technologies
used on common dynamic web-pages, and challenges these technologies intro-
duce for automated tests. We have also studied typical dynamic functionality
in web-pages and different open-source test frameworks.

Design and implementation of a new version of AutAT, was preformed in
order to do more research on the usefulness and applicability of the tool.

Interviews and questionnaires was done in several companies in Trondheim
and Oslo to get feedback on the new concept.

2.3 Project Process

The Gantt diagram in figure 2.1, shows the overall process of the develop-
ment of our thesis. We started with a literature study of the initial version of

1http://www.sqatester.com/glossary/

6

CHAPTER 2. RESESARCH AGENDA System Development

AutAT, and dynamic web-technologies, especially JavaScript and Ajax. We
studied typical web-sites to find commonly used scripts that AutAT should
support to be applicable in web-application development processes. While
studying web-sites, we also had several brainstorming sessions to come up
with concepts for how to best model dynamic web-applications in AutAT.
These concepts where continuously evaluated during this process.

When we had decided upon a concept, we started on the design and imple-
mentation of the changes needed in AutAT. At the end of the implemen-
tation, when the main functionality had been implemented, we prepared
interviews to get feedback on the usefulness of the new version of AutAT.
We tested AutAT on several possible users, and interview them after the
test to get feedback. A report was written during the whole project process.

7

System Development CHAPTER 2. RESESARCH AGENDA

Figure 2.1: The Project Process
8

CHAPTER 3. PRESTUDY: TESTING System Development

Chapter 3

Prestudy: Testing

Testing is an important part of the software development process. Testing
is either done to detect errors, or to increase the confidence in the developed
software [35]. When the objective is to detect errors, a successful test is one
that exposes failures during the execution of a system. When the objective
is to increase confidence, a successful test is one that verifies that a software
system meets its intended specification.

Testing of a software system is performed at different levels, as is illustrated
in the section 3.1 with the V-model. Section 3.2 explains regression testing,
which is often used during development of web-application, and section 3.3
explains an evolutionary approach to development; the Test Driven Devel-
opment. Both are environments where AutAT is meant to be helpful. To
get an understanding of the process where AutAT is meant to be used, sec-
tion 3.4explores how testing is done in a selection of companies in Trondheim
and Oslo.

3.1 The V-model

To test an entire software system, tests on different levels are performed.
The V model [29], shown in figure 3.1, illustrates the hierarchy of tests usu-
ally performed in software development projects. The left part of the V
represents the documentation of an application, which are the Requirement
specification, the Functional specification, System design, the Unit design.
Code is written to fulfil the requirements in these specifications, as illus-
trated in the bottom of the V. The right part of the V represents the test
activities that are performed during development to ensure that an applica-
tion corresponding to its requirements.

Unit tests are used to test that all functions and methods in a module are
working as intended. When the modules have been tested, they are com-
bined and integration tests are used to test that they work together as a

9

System Development CHAPTER 3. PRESTUDY: TESTING

Figure 3.1: The V-Model [29]

group. The unit- and integration test complement the system test. Sys-
tem testing is done on a complete system to validate that it corresponds to
the system specification. A system test includes checking if all functional
and all non-functional requirements have been met. Unit-, integration- and
system tests are developer focused, while acceptance tests are customer fo-
cused. Acceptance testing checks that the system contains the functionality
requested by the customer, in the Requirement specification. Customers are
usually responsible for the acceptance tests since they are the only persons
qualified to make the judgment of approval. The purpose of the acceptance
tests is that after they are preformed, the customer knows which parts of
the Requirement specification the system satisfies.

3.2 Regression Testing

Regression testing, also referred to as verification testing, is the process of
validating that modified software, or added software, does not introduce
new errors into previously tested code [17]. It is a quality control measure
to ensure that unmodified code has not been affected by maintenance of
an error in the code, and that newly modified code still complies with the
software. For these reasons, regression testing are often used to test software
during development and maintenance [17]. Regression testing often requires
that tests are run frequently, so automated test can be an advantage.

3.3 Test-Driven Development

Test-Driven Development (TDD) has sprung from agile development meth-
ods, such as eXtreme Programming (XP) [27]. In TDD, tests are written

10

CHAPTER 3. PRESTUDY: TESTING System Development

before the application is developed. The development is done in short it-
erations, each with the creation of i.e. one unit-test and the corresponding
application code [2], see figure 3.2. Regression testing is used, and if all tests
run successfully, the code are refactored to ensure high quality code. Refac-
toring includes renaming variables and taking away redundant code. If the
refactoring leads to that a test fails, then the code must be corrected until
the test is passes. When all tests have passed, the developer can continue
with a new iteration of creating a test and the corresponding application
code. The tests usually specified in TDD are unit tests, integration tests
and acceptance tests [30].

Figure 3.2: The Test-Driven Development Process [2]

When writing tests with the intention of executing every single line of code,
as in TDD, full test coverage of the application code is achieved [2]. This is
difficult to achieve with traditional testing, so TDD therefore provides de-

11

System Development CHAPTER 3. PRESTUDY: TESTING

velopers with more confidence in that the software works as indented. TDD
also gives documentation of the source code. In example, the unit tests can
be a part of the technical documentation, because it shows how to use the
application and which conditions are needed for it to work as intended. Ac-
ceptance tests could be a part of the requirements specification, because they
define what the stakeholders in the project expect of the system. Unit- and
acceptance tests can, for some developers and business stakeholders, cover
the majority of documentation needed [2]. However, it is likely that these
tests are not sufficient documentation for many developers and stakeholders.

One of the practices in TDD, is that unit tests are automated [2]. Accep-
tance tests should in addition be automated, because of the advantage of
running them more frequent [27]. Developers often create one or more ac-
ceptance tests, to reflect the User Stories 1 written by customers [27]. This
way, customers can after each development iteration verify and approve the
developed software. The acceptance tests can also be run by the developers,
during the development, to validate that the required functionality is cre-
ated. These tests can in addition give an estimation of the general progress
of the development of the application [30].

3.4 State-of-the-Practice of Testing

To investigate state-of-the-practice in testing , we have interwieved project
managers from five companies in Trondheim and Oslo. The results can be
found in appendix A. We will here summarize the current practices of soft-
ware testing in web-applications project for all companies. The companies
used different development methods, in addition to that different develop-
ment methods were used on different projects in each company. Hence, they
had different methods for testing their software. Some companies used a cus-
tomized version of Test Driven Development (TDD), and others used TDD
on some of the tests. Many companies developed software in modules and
tested their code after it had been written. However, common for all the
project in all companies were that a software systems were tested with unit-,
integration-, regression-, system-, and acceptance tests.

Unit-, integration-, regression-, and system tests, were mainly written and
performed by developers in all companies. In the companies where devel-
opers also wrote acceptance tests, these were used in system testing during
development before it was delivered to the customer. In other companies,
customers used the system tests written by developers, when they performed
acceptance testing. A common opinion was that if customers had created au-
tomated acceptance tests before the development of an application started,
these tests could then be run as system tests for developers during develop-

1User Stories are written by customers to specify tasks they want to perform in the
developed software [27]

12

CHAPTER 3. PRESTUDY: TESTING System Development

ment. Current practices for customers were to perform acceptance testing
manually. This was often done by clicking through the web-site and follow-
ing tasks on a written test-specification document. The test-specification
document could be written by the software developers or by the customers,
based on the customers’ requirements. This document was usually written
after the software was developed and often based on the system tests and
system test data.

Common for all companies were that automated tests were often used with
unit-testing. Some companies had in addition, used (or tried to use) tools
to create automated tests for the functionality in the graphical user inter-
face (GUI) of web-applications. However, most of the companies did not
create automated tests for GUI, becuse they were time-consuming to keep
updated when changes occured. Proxycom had tried a capture-replay2 tool
called Rational Robot, which resulted in high maintenance costs of keeping
the tests updated. This because the tests needed to be updated every time
changes occurred in a web-page, such as moving elements to different loca-
tions, changing text, etc. Bekk used Selenium in a current project, which
is a scripting tool that access elements in the browser based on i.e. HTML-
ids, values, etc. Selenium-tests is therefore not affected by changes in the
location of elements and text in the browser. However, Selenium requires
the user know the syntax of how to write tests. In addition, the user need
to supply the HTML-id for i.e. buttons, as well as the actual value that are
displayed in the browser.

Automated tests were in general, not used in the companies’ projects. How-
ever, the project managers agreed on that automated tests were an advantage
since they can be run with little effort. It is therefore easier to perform re-
gression testing, as well as testing the whole web-application for faults after
parts of it are changed. They also agreed that it was better if customers
could create automated acceptance tests, because they are more likely fa-
miliar with users’ needs than developers. They also meant that the current
test-tools are difficult for customers to learn and use.

2Capture-replay tools are used to capture a users action in a web-application, which
are replayed when testing the application [11].

13

System Development CHAPTER 4. TECHNICAL PRESTUDY

Chapter 4

Technical Prestudy

This chapter explores the initial version of AutAT, which is the basis of
this master thesis. It then defines a dynamic web site and presents com-
mon dynamic web technologies. This to investigate if AutAT can support
several technologies, and hence, increase its usefulness. However, our fo-
cus is on Ajax- and JavaScripts, and therefore are these presented in more
detail. Typical Ajax- and JavaScripts is presented to enable the new ver-
sion of AutAT support commonly used scripts. In addition, this chapter
presents the challenges with testing dynamic web-applications with Ajax-
and JavaScripts, and presents state-of-the-art testing-frameworks.

4.1 AutAT

AutAT, described in [30], is an open-source project and is under continuous
development. The initial version of AutAT supports creating tests for static
HTML. The version presented here was downloaded on the 21st of January
2006 and is used as the basis for further development in this master thesis.
Skytteren and Øvstetun built AutAT as an Eclipse-plugin, which has the
advantage that it can be integrated in an Interactive Development Environ-
ment (IDE) used by many developers. It can also be created into an Eclipse
Rich Client Platform (RCP), which enables developers to customize the lay-
out and functionality in Eclipse to only include the AutAT plug-in. Thus,
Eclipse can simulate a stand-alone client of AutAT. Another reason for why
AutAT was built as a plug-in, was that it supports keyboard shortcuts and
drag-and-drop functionality.

4.1.1 The User Interface

From a user’s point of view, AutAT looks like a part of Eclipse, as shown
in figure 4.1. The figure shows the User Interface with an example of a test.
The User Interface structure in Eclipse is provided by a plug-in called Work-
bench, which is divided into the Navigator, the Outline, the Property Editor
and the Editor.

14

CHAPTER 4. TECHNICAL PRESTUDY System Development

Figure 4.1: The AutAT User Interface

The Navigator shows the active projects and the files belonging to this
project, sorted in a three structure. The Outline shows a document out-
line of the currently active editor. The Property Editor is available as an
alternative to editing text directly in the editor window, and assigning prop-
erty values to elements in the Editor. These views are not particular for
AutAT, but a part of Eclipse. The Editor is in difference, particularly cre-
ated for AutAT. It consists of a workarea on the right and a palette on the
left, as seen in the top-right corner on figure 4.1. The palette consists of a
set of elements that the user can drag into the workarea.

The user needs to define a starting point for a new test, which is the URL to
the web-page where a test should start. The user can add types of elements,
such as page, aspect, link, etc. to the test. Pages are shown with a blue
header and represents a panel where other web-elements can be added. An
aspect is modelled with a grey header and is similar to a page. However, an
aspect contains the elements that are joint on the pages it is connected to.
On the pages and aspects, the user can add page-elements, such as text, links
and forms. When adding text, the user writes the full text that will be tested
that exists in the web-page. When adding links the user writes the name of
the link. The user can add a form to a page, which is represented with a
yellow area on the page. The user can add form-elements such as buttons,
textfields, etc. to the form. To navigate between two pages in a test, the
user adds a connection between them. Depending of whether the new page

15

System Development CHAPTER 4. TECHNICAL PRESTUDY

Figure 4.2: The main package structure of AutAT

is a result of pressing a link or connection is a link- or a form-transition, the
user needs to provide information about the value of the link, or enter values
for the fields in the form.

4.1.2 Architecture

The architecture of Eclipse was a restriction on the overall architecture of
AutAT, because AutAT is a component within an Eclipse installation. In
addition, some of the user stories created for AutAT [30], are supported by
other plug-ins in Eclipse that AutAT has to relate to. For example, User
Story 10 (US10) specifies that ”several people must be able to work on the
same project with its user stories and tests” [30], which is fulfilled by us-
ing the Eclipse Team Plug-in. The main package structure of the AutAT
architecture is shown in figure 4.2, and consists of five high-level packages;
Persistence, Export, Model, Common and UI.

The Persistence package handles tests and starting-points in an project in
AutAT. The package is responsible for reading a test and its starting point
from files, converting them from XML to objects, and performing the reverse
operation. AutAT defines two file formats; the *.aat for files containing ac-
ceptance tests and the *.urls for names and URLs for defining the starting-
points. The Persistence package is implemented using the Builder pattern,
which divides the effort of creating a complex object between several objects,
each responsible for a smaller part of the total.

The Export package transforms AutAT-tests from its object representation
into a representation that is suitable for execution in a test framework.

The Model package contains the ”value-objects” that are needed to save a
test in AutAT. These objects are specified in a class model, which is similar

16

CHAPTER 4. TECHNICAL PRESTUDY System Development

Figure 4.3: The Domain Model [30]

to the domain model in figure 4.3. The central classes of the Model package
are the Test, URLStartPoint, Aspect, Page, Transistion, PageElement, Text,
Link and Form. The Model package is used by the Persistence package to
popluate objects with values, and by the UI package to present tests in the
AutAT-Editor.

The Common package contains classes, such as exceptions, interfaces, re-
sources and utils that are used by other packages.

The UI package is responsible for handling the Graphical User Interface
(GUI) in AutAT. It consists of four packages, which are the Eclipse Spe-
cialization package, the Actions package, the Wizards package and the GEF
package. The Eclipse Specialization package contains property pages for each
project, and preference pages for the AutAT-plugin. An action represents a
process, triggered by the UI, that must be performed i.e. to update the data
model if the user has changed a property. The Wizard package is included to
guide a user through performing specified tasks, such as the tasks necessary
to get started. The GEF package contains the graphical test editor, which is
used to create the workarea for the user and interactions the user can have
with AutAT.

4.2 Dynamic Web Pages

The initial version of AutAT, described in section 4.1, supports creating tests
for static web-sites. A web-site is a collection of web-pages that are related

17

System Development CHAPTER 4. TECHNICAL PRESTUDY

through semantically content and syntactical links [3]. Static web-pages are
fetched by simple request/response interactions with a server. There are
two main definitions of dynamic web-pages depending on if it is generated
on the server-side or client-side. Client-side dynamic pages are defined as
web-pages that can react to user’s input without sending requests to the
Web server [6], such as pages containing JavaScript, Ajax, Java Applets, etc.
Server side dynamic pages are defined as web-pages that are generated on the
server based on a user’s input, state of the database, etc [38]. This includes
web-pages created with PHP, ASP, JSP (Java Server Page), Microsoft .net
and CGI/Perl. We define a dynamic web-page as a page that can change
on the client-side without reloading the browser, as a result of user input,
date/time, server state, etc. We adopt the definition of web-application in
[3]: ”A Web application is a program that runs in whole or in part on one
or more Web servers and that can be run by users through a Web site”.

4.2.1 Dynamic HTML

The term often used on client-side dynamic web-sites are DHTML, Dynamic
HTML [36]. DHTML is a set of technologies that use the object model
(DOM), which provides developers with enhanced control of the elements on
a web-page. With DHTML, it is possible to manipulate any page element
at any time in a easy way with open and standards-based technologies. The
technologies usually used to create DHTML is a combinations of HTML 4.0,
Style Sheets and JavaScript. With HTML 4.0, all formatting can be moved
out of the HTML document and into a separate style sheet, the Cascading
Style Sheets (CSS) [36]. In HTML 4.0, the Document Object Model (DOM)
is HTML DOM. The HTML DOM ”defines a standard set of objects for
HTML, and a standard way to access and manipulate HTML objects” [36].
JavaScript allows writing code to control all HTML elements. More about
JavaScript is found in section 4.3 - JavaScript. With CSS, styles and layouts
are separated from the document’s structure and content.

4.2.2 Alternatives to DHTML

Macromedia has become popular with its Flash technology. Macromedia
Flash is a multimedia graphics program for use on the Web [36]. It uses
vector graphics to deliver content over the Web, which makes it suited for
Internet. Vector graphics are graphics that can be scaled to any size without
losing clarity or quality [36]. Flash is often used by designers and develop-
ers to create rich animations on the Web. These animations (or movies)
appear as a part of the Web page and include a high level of interactivity.
Flash have become popular because it has avoided the problem of browser
incompatibilities by using installed client-side code rather than relying on
scripts [20]. When Flash is downloaded, it has a TV-like appearance which
makes it appealing to people. Flash is currently in the lead when building
graphical interfaces that run in almost all clients, and its capabilities are still

18

CHAPTER 4. TECHNICAL PRESTUDY System Development

growing.

Java Applets is also in the web application market. Although almost gone
from most general Internet pages, applets are often used in the gaming world.
At sites such as ”Yahoo” and ”AOL games interactively”, thousands or hun-
dreds of people are playing games and that are powered by Java applets.
Applets are required for the rapid, near-real-time calculations that exists in
the games, which Flash scripting and DHTML are not fast and powerful
enough for. An Applet is written in Java and is a program that is included
in an HTML page. When using the Java technology, the browser can view
a page that contains the Applet, and the Applets code is transferred to the
clients and executed in the browser [23]. An alternative to Applets is Mi-
crosoft’s ActiveX technology [20] . However, it has failed on the web because
it has full access to the local machine, which gives downloaded code too much
potential for abusing the machine.

4.3 JavaScript

JavaScript is a cross-platform, object-oriented, interpreted, lightweight and
commonly used scripting lanuguage originally developed by Netscape [37] [34].
Microsoft later created JScript which is similar, but created to run on the
Microsoft platform [9]. ECMAScripts were then created as a JavaScript
standard [9]. We will use JavaScript as a collective term, for these different
versions of the JavaScript technology since they only contain minor differ-
ences.

JavaScript can be seen as a hybrid between a ”markup” language and a pro-
gramming language, where grammatical instructions are given to the com-
puter [39]. In difference to programming languages, scripting languages tend
to have simpler rules. JavaScript was designed to add interactivity to HTML
pages and to provide programmatic control over objects in its environment
on the World Wide Web [39] [37]. JavaScripts consist of lines of executable
computer code that can execute without preliminary compilation and can
be embedded directly into HTML pages [36]. JavaScripts can for example
be used for [34]:

• Menus for navigation

• Form validation

• Popup windows

• Password protection

• Math functions

• Special effects with document and background

19

System Development CHAPTER 4. TECHNICAL PRESTUDY

• Status-bare manipulation

• Messages

• Mouse-coursor effects

• Links

4.4 Asynchronous JavaScript and XML (AJAX)

In 2005, a new development technique that had the possibility of reducing
the gap between web-based and desktop applications, rose in the form of
AJAX [12]. AJAX stands for ”Asynchronous JavaScript and XML”, and is
a label for interfaces that have increased richness, responsiveness and inter-
activeness. AJAX is a new way of using already existing technologies [12],
such as:

JavaScript: Ajax applications, including the Ajax engine, is written in JavaScript [5].
The Ajax engine holds the Ajax application together. It is responsi-
ble for handling the user interaction, rendering the user interface by
manipulating the DOM, as well as communicating with the server [5].
For these reasons, JavaScript is the central part of Ajax.

Cascading Style Sheets (CSS): CSS provides the look and feel in Ajax ap-
plications. Visual styles for web pages can with CSS, be defined and
reused, and it holds the visual styling consistent. However, in an Ajax
applications the styling of the user interface can interactively be mod-
ified [5].

Document Object Model (DOM): The DOM holds a structured scripting of
web pages, and allows an Ajax application to modify the user interface
by redrawing parts of the page [5].

XMLHttpRequest object: The XMLHttpRequest object allows asynchronous
communication with the web server [5].

Figure 4.4: The four technologies of Ajax [5]

20

CHAPTER 4. TECHNICAL PRESTUDY System Development

Figure 4.4 shows a model of the technologies and how they used together.
CSS, DOM and JavaScript, have collectively been referred to as DHTML,
see section 4.2.1. Ajax uses the benefits of DHTML to create interactive
interfaces. However, where DHTML needed a full page reload from the
server, Ajax uses the asynchronous request to the server and extends the
functionality that is possible to perform on web-pages [5].

4.4.1 Communication with the server

In the traditional Web application model, communication is synchronous
and it requires a page reload when data is transferred to/from the server.
Page reloads result in that the user’s workflow is interrupted. This disadvan-
tage is avoided in Ajax, where the communication with the server is asyn-
chronous [12] [5] and hence, it prevents the browser from being blocked while
waiting on a response from the server. The user can continue interacting with
the interface in the browser, while the web-application is communicating with
the server. The synchronous and asynchronous communication-methods are
shown in figure 4.5.

Figure 4.5: ”The synchronous interaction pattern of a traditional web appli-
cation (top) compared to the asynchronous pattern of an Ajax application
(bottom)” [12]

In an Ajax application the Ajax engine is loaded into the browser during
the first page-load. The engine is activated by the user actions that con-
verted into a JavaScript call [12], instead of generating a HTTP request.
The engine also handles user responses that does not require a request to

21

System Development CHAPTER 4. TECHNICAL PRESTUDY

the server, such as simple navigation, editing data in memory and some data
validation [12]. The engine is responsible for the asynchronous communica-
tion with the server via the XMLHttpRequest object [5]. The XMLHttpRe-
quest object is explicity designed for fetching data in the background, and
is not visible to the user. It has originated from Microsoft-specific ActiveX
components, that was available as JavaScript-object in the Internet Explorer
browser. Other browsers have implemented native objects with similar func-
tionality [5]. The Ajax engine is also responsible for sending only relevant
data to the server and process server response to update only relevant page
elements. Figure 4.6 shows the comparison of the classic web application
and the Ajax Web application with the Ajax engine.

Figure 4.6: Classic web application model compared to the Ajax web appli-
cation model [12]

Areas where there are advantages of using Ajax Scripts:

• Instant feedback on user input inserted into forms

• Long-running queries

• Deep hierarchical tree navigation

• Rapid user-to-user communication

Section 4.6, will give examples and explain more about the advantages gained
from using Ajax.

4.5 Challenges when Automating Tests for Dynamic Web-applications

Automatically testing static HTML pages can be done by using i.e. crawlers;
programs that recursively test all links, misspelling and HTML errors. Dy-
namic Web-applications are becoming more complex, and automated testing

22

CHAPTER 4. TECHNICAL PRESTUDY System Development

has become a more difficult task. More complex web-applications results new
challenges when creating automated tests, such as the following [11]:

• Dynamic web-pages can change frequently while in use, i.e. depending
on server state, user input, etc.

• Dynamic web-applications can have a more complex interaction with
other components, such as browsers, operating systems, databases,
proxy servers, etc.

• Several users can be inexperienced, which adds a need to test unex-
pected behavoir of a web-application.

• Rapid changing technology, such Ajax.

Web-sites that contain Ajax and JavaScript, se section 4.3, introduces ad-
ditional challenges because scripts are evaluated after a page has finished
loading [39]. This means that functions defined in scripts are not auto-
matically executed when the page loads. They are stored until called by a
”users-actions” or input on the page [39]. Ajax in addition introduces new
challenges when creating automated tests of web applications since it does
not follow the traditional request/response architecture. The XMLHttpRe-
quest protocol allows updates of parts of a page’s content. When updating
parts of a web-page, there is no page reload/refresh. As a result it is dif-
ficult to know when a web page is ready for testing after a user’s action is
performed.

With dynamic web-sites becoming increasingly complex, thoroughly and fre-
quently testing is needed and requires more time and effort [11]. Automated
tests could allow this, if created before the application and be run during
development of the application [27]. However, in current automated testing
tools such as ”capture-replay” tools [11], tests cannot be created before the
web application is built. Capture-replay tools are created for capturing a set
of user actions while the user manually traverses the web-site. The captured
scenarios can then be automatically replayed for testing.

4.6 Typical Scripts

It is important that the concept we include to AutAT, can be used with
common dynamic web-pages that contains JavaScript and Ajax. JavaScript
is today commonly used and Ajax is an increasingly used technique. The
intention of finding typical scripts with JavaScript and Ajax, is to understand
how dynamic web-pages can be created and how users can interact with these
pages.

23

System Development CHAPTER 4. TECHNICAL PRESTUDY

Figure 4.7: Suggestions When Typing

4.6.1 Instantly update the web-page based on written input

Dropdown-list where the user can type a letter to select the first element that
starts with this letter, is a dynamic feature often used in web-pages. An ex-
ample can be seen when selecting a destination at the Norwegian Airlines1

web-page. Typing the letter ’T’ when the list of destinations is selected,
brings the user directly to ’Tallin’, which is the first city in the list that
starts with a ’T’. This functionality can be created with pure JavaScript.

Google Suggest2 and ObjectGraph Dictionary3 are examples of pages that
support suggestions to the user when he starts typing a word in a textfield.
The pages dynamically fill a dropdown-list with words that begin with the
inserted letters. An example of this, can be seen in figure 4.7, where the user
has inserted the word ”watir”. The difference with implementing this func-
tionality with Ajax rather than JavaScript, is that the alternatives for the
dropdown-list does not need to be downloaded together with the web-page
at the start of a session.

Yahoo Instant Search4 uses Ajax calls to provide the users with answers to a
search as they type. Ajax Translator5, as seen in figure 4.8, translates each
word the user types into another language. Common for these examples are
that there are too many alternative words to be uploaded together with the
web-page. Therefore, the Ajax engine ”silently” loads the information needed
into the web-page as a result of what the user types letters into a textfield.

4.6.2 Validating form-input values

Another example of instantly updating the content of a web-page based on
written input can be seen in form-validation. JavaScript allows checking
of input values before sent to the server. If a user has inserted incorrect
values, the page can respond with user feedback before anything is sent to
the server. JavaScript can be used to check if the inputs are the correct

1http://www.norwegian.no
2http://www.google.com/webhp?complete=1&hl=en
3http://www.objectgraph.com/dictionary/
4http://instant.search.yahoo.com/
5http://ajax.parish.ath.cx/translator/

24

CHAPTER 4. TECHNICAL PRESTUDY System Development

Figure 4.8: Translator

type, length, etc. An example, can be found in JavaScript Form Validator6.
When a user types in numbers in a form where letters should be inserted, a
popup window appears with a warning, after the user has clicked the submit-
button. JavaScript cannot validate against values stored at the server. With
Ajax the users can get immediate feedback about incorrect values checked
against values stored in the server. In example, it can be used when selecting
a new username, to check if the username is already taken by other users. An
example of this can be seen when creating a Gmail7 account. In Gmail, it is
possible for a user to write in a desired login name and check the availability
of that login name, before he writes in the rest of his personal information
on the page.

4.6.3 Allowing real-time applications

Chat and instant message (IM) implemented with Ajax are browser-based
applications, allows visitors on the same web-page to see and interact with
each other without needing to use client-side software. I.e., the instant mes-
sage application Meebo8, which lets a user log into his IM network, such as
msn, from any computer with a browser and a Internet connection. Another
example is php Free Chat9, which uses Ajax to ”silently” refresh and dispaly
the chat and nickname zone. In traditional chat and mail web-applications,
each message received would be sent to the client as a new page. The user
would therefore be forced to wait for a new page reload for every message
recieved from other users. In difference, chat and instant message applica-
tions implemented with Ajax, allow users to see its peers comments without
needing to reload the page. As a results the Ajax applications will appear
much like ordinary desktop instant message programs. These web-based

6http://www.softcomplex.com/products/tigra form validator/login form validation.html
7mail.google.com/
8http://www36.meebo.com/
9http://www.phpfreechat.net/demo.en.php

25

System Development CHAPTER 4. TECHNICAL PRESTUDY

chat applications are examples of adding content to a web-page that is not a
result of a user’s input, but involve real time data processing via JavaScript.

4.6.4 Lazily loading hierarchical content

The expand/minimize functionality can be seen i.e. at Start10 web-page and
the Backbase11 web-page, as well as in some demos found in the Backbase
web-page. The concept is that content on a web-page is i.e. hidden and
becomes visible when a user performs a mouseclick or a mouseover on a
particular element on the page. If the content was visible, then the result
of the mouseclick will be hiding the content. This concept can be created
with pure JavaScript or Ajax. The difference in implementation is that with
JavaScript, all the content in the web-page must be loaded into the browser
when the page loads. The loading of all content may result in the browser
loading unnecessary data into the page, i.e. content which the user does not
make visible. Especially with deep tree navigation, the unnecessary data can
significantly increase the loading time. This means that the user would have
wait a long time before he could start working with the page, which could
make him reluctant to use the page again. With Ajax, the desired content
can be ”silently” loaded into the page after i.e. a mouseclick. This means
that content will be loaded if the user needs it, in other word lazily loaded.
Ajax transfers only a small amount of data from the server, which gives it
a higher performance and saves server resources. The user can in addition
continuse working with the page, while he waits for Ajax to update the page
based on the request. This makes the end-users experience is continuous and
hence be more likely to use the page again.

4.6.5 Updating and sorting lists

Typical list operations are inserting, deleting and updating rows in a list,
which can be done by in a web-page without reloading the page when us-
ing Ajax. A typical examples can be seen on the SimplyHired12 and the
KAYAK13 web-page. The KAYAK web-page presents in a list the result of
a search for flights. A user can i.e. check and uncheck select-boxes on the
page, which will result in that the list is updated, as seen in figure 4.9. Each
change on the page inflicted by the user, results in that an updated request
is sent by the Ajax engine to the server in parallel to allowing the user to
continue working on the page. Lists can also be filtered and sorted i.e. by
date or name.

10http://www.start.com/3/
11http://www.backbase.com/
12http://www.simplyhired.com/
13http://www.kayak.com/

26

CHAPTER 4. TECHNICAL PRESTUDY System Development

Figure 4.9: Refreshing the List Without Refreshing the Page

4.6.6 Summary of Advantages

Table 4.1 gives a summary of common functionality implemented with by
Ajax and JavaScripts. The table shows the functionality, a short description
of the functionality and some example web-pages.

4.7 State-of-the-Art of Test Frameworks

The test frameworks presented in the state-of-the-art in the master the-
sis [30], can be divided into two categories; frameworks that emulates the
browser such as Canoo WebTest [1], and frameworks that run the browser
such as Selenium [25] etc. Test frameworks that emulates browsers, perform
testing by sending requests and verifying the responds [1], and can there-
fore not test client-side dynamic elements, such as functionality implemented
with Ajax- and JavaScripts [14]. Test frameworks that run the browser can
simulate a users behavior, and therefore activate Ajax- and JavaScript calls,
as well as verify the result in the browser [14]. We will therefore look at test
frameworks of this type, and investigate if each can be used for testing Ajax-
and JavaScript.

4.7.1 Selenium

Selenium is a framework for testing the functionality of web applications. It
is a open-source test framework and implemented fully in JavaScript. Se-
lenium tests run in web-browsers and supports browsers such as Internet
Explorer, Mozilla and Firefox [24]. Selenium supports two types of tests;
test-runner and driven [18]. The tests are run by a JavaScript engine, called
the BrowserBot [15], that is downloaded into the browser to the application
that will be tested.

Test-runner scripts are written in static HTML- files that contain tables with
commands and assertions which will be tested in the application [18]. The
HTML-files are loaded into the browser where the application is deployed
and executed by the BrowserBot engine.

27

System Development CHAPTER 4. TECHNICAL PRESTUDY

Functionality Description Examples

Instantly update the
web-page based on writ-
ten input

The user does not need
to wait until a form is
submitted before con-
tent on the web page
is changes based on the
user input.

Norwegian Airlines,
Google Suggest, Ob-
jectGraph Dictionary,
Yahoo Instant Search
and Ajax Translator

Validating form-input
values

Input the user types
into forms can before
submitted be validated
against values stored at
the server. It can also
be checked that it con-
tains the correct type of
input, such as i.e. inte-
ger or string.

Log-in at Gmail and
JavaScript Form Val-
idator

Allowing real-time ap-
plications

Information from the
server can be “silently”
loaded into the web-
page, allowing real-time
application such as chat
and instant messaging.

Meebo, Free Chat and
mailing-list in Gmail

Lazily loading hierar-
chical content

Content not visible
to the user when the
page are loaded, can
be fetched later when
needed by the user.

Start, Backbase, demos
in Backbase, i.e. Back-
base PC Shop

Updating and sorting
lists

Lists can be silently up-
dated, i.e. based on
user input into forms.
They can also be sorted
and filtered without the
need for reloading the
web-page

KAYAK and Simply-
Hired

Table 4.1: Summary of Typical Scripts

Driven test-scripts are written in any programming language supported by
Selenium (Java, Ruby, and Python) [18], and is therefore more complex than
test-runner scripts. However, they are more powerful and flexible, and can
be integrated with xUnit frameworks. In difference to test-runner scripts,
the driven scripts are executed outside the browser, in a separate process,
and drive the browser by communicating with the BrowserBot engine [18].

Selenium can be used to test JavaScript and Ajax [18]. To wait for an element
in a Selenium test, the ”waitForValue”- and ”waitForCondition”-statements

28

CHAPTER 4. TECHNICAL PRESTUDY System Development

Figure 4.10: Example of a Selenium test with waitForCondition (FIT) [13]

Figure 4.11: Example of a Selenium test with Pause statement (FIT) [18]

can be used [13]. These statements allows a user to write a condition in
JavaScript, and pause the test until the condition evaluates to true. An
example of this can be seen in figure 4.10. To make a Selenium-test wait
a given amount of time, a ”Pause”-statement can be used [18], as seen in
figure 4.11.

4.7.2 Watir

Watir (”Web Application Testing in Ruby”) is an open-source automated
testing tool which can be used when performing functional testing, auto-
mated acceptance testing or large-scale system testing on web-applications
in Internet Explorer [22] [16]. Tests are written in Ruby and the Ruby
scripting language is used to simulate possible user activities in a browser
window through Watir, which gives access to the Component Object Model
(COM) interface. The COM interface provides control of the Internet Ex-
plore browser and allows access to the objects in web-pages presented in the
browser (through access to the HTML DOM) [22] [16]. When directly ac-
cessing the HTML-objects through the DOM, it does not matter where the
element is located on the screen or whether the element is currently obscured
by another window. In addition, using the DOM allows Watir-based tests
to run in minimized browsers.

29

System Development CHAPTER 4. TECHNICAL PRESTUDY

Figure 4.12: ”Wait for element” in Watir

Figure 4.13: Sleep-command in Watir

Watir can be used for testing JavaScripts [16]. In Watir, there is no ”waitForCondition”-
or ”waitForValue”-statement as it is in Selenium. However, a similar func-
tionality can be created by checking that an element exists and wait (sleep)
a given time if it does not, and then check for the element again. This is
repeated until the element exists, as seen in the example in figure 4.12. The
example is also implemented with a timer, such that the test will continue if
the element never appears. The example in figure 4.13, shows how a sleep-
command is inserted to pause the test-execution for two seconds. Watir can
therefore be used for testing Ajax script.

4.7.3 JsUnit and jWebUnit

Both the JsUnit [31] and the jWebUnit [32] are a part of the xUnit fam-
ily [33], which is a unit test framwork. The xUnit family have unit test
frameworks for many languages, and all are open-source software. The basic
members of the xUnit family have many extensions, which targets specialized
domains. The JsUnit is targeted for JavaScript testing, while the jWebUnit
is targeted for testing web-applications.

30

CHAPTER 4. TECHNICAL PRESTUDY System Development

Figure 4.14: JsUnit Example that is claimed not work for testing Ajax

JsUnit is an extension to the xUnit testing framework, which is created for
testing client-side (in-browser) JavaScript [31]. A Test Page in JsUnit is any
HTML-page that includes the jsunit/app/jsUnitCore.js JavaScript file; this
file is the JsUnit engine [31]. Each Test Page have Test Functions that are
distinguished from other functions on the page by its name, which begins
with ”test”. The HTML-page is passed as an argument to a TestRunner
HTML page.

”jWebUnit is a Java framework that facilitates creation of acceptance tests
for web-applications” [32]. jWebUnit is a result of a refactoring of HttpUnit
and JUnit when creating acceptance tests. It includes a set of assertions
to verify the application’s correctness, which are navigation via links, form
entries and submission, and other typical business web application features.
Instead of using only JUnit and HttpUnit, the jWebUnit allows more rapid
test creation with its simple navigation methods [32].

Since JsUnit is created for testing client-side JavaScript. It can therefore be
assumed that it can be used for testing Ajax-scripts as well, because Ajax
scripts are activated by JavaScript calls. However, it is claimed that JsUnit
cannot test Ajax scripts because Ajax scripts can run in multiple threads [8],
in difference to JavaScript that only run in one thread. The asynchronous
XmlHttpRequest will therefore never finish until you completely finish from
the current thread, and it is therefore believed that the example in fig-
ure 4.14, does not work. jWebUnit has support for testing JavaScript, but it
is claimed that jWebUnit’s api is too incomplete to confirm that it can test
Ajax [21]. We will not investigate these issues further, but conclude there
are other more appropriate frameworks we can use, which are not claimed
to have such limitations.

4.7.4 FIT and FitNesse

FIT (Framework for Integrated Test) is a general framework [7] for accep-
tance testing. Tests are written in tables, in i.e. Microsoft Word, and the
tables are read in HTML-files. The first row in the table contains filenames
ending with ”eg”, which specifies a Fixture to use, and the rest of the table-
rows are actions performed with this Fixture. A Fixture can be a special
class or module that transforms input from the table to a form suitable for
running the program. The result from the program is transformed to a form

31

System Development CHAPTER 4. TECHNICAL PRESTUDY

that can be verified against the FIT test. A FIT runner can be used to
execute a Fixture, but the applications must then be written in the same
language as the FIT runner [7].

FitNesse is an extension of the original FIT framework and depends on
two subsystems: the FIT framework and a Wiki Clone [28]. FitNesse is a
framework for automating software tests. It provides an environment where
programmers and customers can define and execute acceptance tests inside
a web browser. The FIT framework have been described above, is integrated
with the wiki clone. Wiki is a web-based collaborative editor that lets users
edit the web pages it manages [28]. Wiki controls the layout of the pages and
the users only needs to fill in the content. The tests in FitNesse are written
as HTML-tables, the same as in the FIT framework. However, writing the
actual tests are simpler than in FIT because of the wiki framework [28].
Tests are run in the same way as in FIT, where a runner can only be exe-
cuted on applications written in the same language. In FitNesse, a TestSuite
page is at the top of a hierarchy consisting of Test Pages and possible new
TestSuites. To run tests, a user invokes a Test Page that will run all tests
on the page. When running a TestSuite page, all tests on that page, and the
tests on its sub-pages, will also be run.

HtmlFixture is a Fixture created to test web-pages [4], which can activate
JavaScripts, submit forms, ”click” links, etc, in a test. We have not been
able to find out if HtmlFixture can be used to test Ajax-scripts.

4.7.5 Summary of Existing Test Frameworks

The selection of existing test frameworks presented is some of today’s most
commonly used for testing web applications. They navigate their way through
applications by clicking on links and inserting values into forms. Table 4.2
summarizes their advantages and disadvantages. Common for all the test
frameworks, is that they can not be used for testing ActiveX plug-in com-
ponents, Java Applets, Macromedia Flash, or other plug-in applications [10].

After researching several testing frameworks, we have found that most test-
ing frameworks are created for synchronous communication and need to be
modified to work with Ajax. The problem with asynchronous communication
is that it is hard to know when the web application is finished requesting the
server, and hence, all elements are present in the browser. Research shows
that there are two solutions that solve the problem which arises when Ajax is
used in web-pages. These solutions are possible because testing frameworks
that runs a browser and simulates a users behavior, do no care about how
content is inserted into a page, as long as it is present when it is tested.

The first solution was to insert a sleep command can into the test-script.

32

CHAPTER 4. TECHNICAL PRESTUDY System Development

With this solution it is important that the time set for the test to sleep is
(most likely) long enough for the page update to be performed. Disadvan-
tages with this solution are that if the sleep command to short, then the test
will fail even if the web-page is correct. In addition, the test will probably
sleep an unnecessary amount of time; from when the element appears until
the test is finished sleeping. An advantage, however, is that the solution is
simple and easy to implement.

The second solution to enable test frameworks to test Ajax-scripts, is to
make the test wait until the needed element is present. An advantage with
this solution is that the test-script does not wait an unnecessary amount of
time. A disadvantage, however, is that writing the test-script is more com-
plex. A timer should also be added to prevent the test-script from waiting
forever if the element never appears on the web-page.

These solutions were commonly used in Watir- and Selenium scripts [13] [18].
How to enable Fit/FitNess, JWebUnit and JsUnit to test Ajax-scripts are
not as thoroughly discussed on the Internet. To test the concepts of AutAT,
we only need one testing framework to which we can convert AutAT tests.
We therefore not conclude that these frameworks can or cannot test Ajax-
scripts, but postpone further investigation of these frameworks until it is
needed in further development. We have selected to use Watir as the testing
framework to which we will convert AutAT-tests, because we knew several
persons that had used Watir to test Ajax- and JavaScript.

33

System Development CHAPTER 4. TECHNICAL PRESTUDY

Type Advantage Disadvantage

Selenium Can test application behavior
in different browser such as
Internet Explorer, Mozilla or
Firefox. It is versatile because
tests can be written both in
HTML tables and in a pro-
gramming language.

The driven tests can
be a big challenge with
some languages, such as
Java, because of poor
documentation. It is
hard to work with Se-
lenium in a distributed
setting.

FIT and FitNesse User can describe require-
ments in tables with text and
no programming is necessary.
Easy for the developer to map
the requirements to the busi-
ness logic and the execution of
the tests can be automated.

There is no capture
and replay possible in
the framework. It re-
quires the users to know
commands and Fixture
names.

JsUnit and jWe-
bUnit

Both are simple to use, be-
cause the validations of pres-
ence is done by using a sim-
ple commands. It is possi-
ble to validate input elements
in HTML forms in jWebUnit.
JsUnit has the ability of man-
aging multiple testing boxes
and distributing tests among
machines to run against mul-
tiple browsers.

Appropriate for pro-
grammers, not so much
for non-programmers.

Watir The tests are run from a
browser, and Watir-tests the
same way as people work with
browsers. It is possible to
use Ruby to interact with the
system directly, for example
accessing a database. With
Ruby, it is possible to create
unit test that can be used with
Watir.

It only works with In-
ternet Explorer, and
there is no possibility
to check the actions in
the application in other
browsers. It uses Ruby,
which developers have
to learn.

Table 4.2: Summary of Frameworks

34

CHAPTER 5. OWN CONTRIBUTION System Development

Chapter 5

Own Contribution

This chapter first presents the requirement specification for the new ver-
sion of AutAT. It then presents the ideas and concepts we were considering
when selecting a solution for how to enable a user to model dynamic web-
applications. This chapter also includes a detailed description of the chosen
solution.

5.1 Functional Requirements Specification

The following requirements specification presents the functional require-
ments for the new version of AutAT. This version is an extension of the
original AutAT found in the master thesis [30], and has therefore some of
same requirements.

FR.1 Register Project The user must be able to create a new project
which can contain several AutAT-tests.

FR.2 Create Test The user must be able to create AutAT-tests.

FR.3 Start Point The user must be able to define the URL to where a
test must start.

FR.4 Edit Test The user must be able to edit a test at a later session.

FR.5 Test Web-elements The user must be able to test that text, links,
form-elements, contexts and titles, are in a web-page.

FR.6 Define Actions The user must be able to define common actions
performed on a dynamic web-page.

35

System Development CHAPTER 5. OWN CONTRIBUTION

FR.7 Aspect The user must be able to create an aspect that can apply
to many tests.

FR.8 Model Dynamic Changes The user must be able to model that a
web-page dynamically changes as a result of user-input.

FR.9 Create Test-Script The system must be able to create test-scripts
that can test Ajax- and JavaScript, and run on a state-of-the-art test frame-
work.

5.2 Concepts Created to Fulfil The Requirements

It is important to find a new concept for AutAT that enables users to model
possible functionality in dynamic web-applications, containing Ajax- and
JavaScript. The main concept in Ajax can be seen as an ”event” that leads
to changes in the browser. An ”event” can i.e. be that a user; inserts text
into a textfield, clicks on elements, checks or unchecks a checkbox, etc. With
Ajax, an event in a dynamic web-page can also be a result of changes in the
state of the server, as seen in the chat applications in section 4.6. It was
therefore necessary to find out how to model the triggering of an ”event”,
and that parts of the browser changed as a result of the ”event”. We came up
with several alternatives that will be presented here. These were continually
evaluated to find the most suitable solution.

5.2.1 Alt. 1:The Input-Output Element With Several Outputs on a Sepa-
rate Page

The triggering of an ”event” and the resulting changes in a web-page, can
be seen as respectively, ”input” and ”output”. To model this input and
output, we created a dynamic element called the ”Input-Output” element,
which can be added to a ”static”-page (the traditional element representing
a web-page). The element contains an input- and output-area, as seen in
figure 5.1, where a user can insert page-elements, such as textfields and/or
links. The elements in the input-area represents the source of the event, to
which input-values can be specified. The elements in the output-area is the
default output elements (it can be empty), which will be visible when the ac-
tual web-page is loaded into the browser, and when unspecified input-values
are inserted.

The values inserted to the elements in the input-area and the resulting change
in the browser, are specified in a dynamic-workarea (a separate page from
where the main AutAT test is modelled). The dynamic-workarea is con-
nected to the Input-Output element with a ”+”-box on the arrow between
the two areas, seen in figure 5.1. In this workarea, it can be specified several
output-areas for different input-values. It will by default contain the input-

36

CHAPTER 5. OWN CONTRIBUTION System Development

Figure 5.1: Alt. 1: The Input-Output Element with several output-boxes

and output-area from the Input-Output element. In figure 5.1, the input-
area contains a textfield called ”UserName” and with a default output-area
containing the text ”Hello”. ”John” and ”Jane” represents two input-values
resulting in two different output-areas. The advantage of having a sepa-
rate ”dynamic”-workarea, is that the static-page is easy-to-follow when there
are several different output-areas, because it will only contain the Input-
Output element. A problem with this concept is when an output-area in
the dynamic-workarea includes elements which should be linked to a new
static-page in the normal-workarea, which is not possible.

5.2.2 Alt. 2: The Input-Output Element With a Table on a Separate Page

We created another concept based on the Input-Output element, but which
included a different dynamic-workspace. In this dynamic-workspace, a table
is used to represent different input- and output-values, as well as the type
of these values, see figure 5.2. The advantage with this solution is that it
gives a good overview of the different input- and output-value combinations.
The problem with this solution is that it is only possible to have one input-
value. In addition, the input-value can only result in one output-value. For
example, it is not possible to model that inserting text into a textfield and
clicking on a button, can result in an output. It can neither be modelled
that clicking on a button results in that a text appears in addition to a link.
This concept is therefore only sufficient when the input and outputs are of
a simple type such as text.

5.2.3 Alt. 3: The Dynamic Element

The Dynamic element uses the same concept of input- and output-areas, but
allows several output-areas to be included in the traditional page in AutAT.
The idea is taken from the form-element in AutAT, seen at the right hand
side of figure 5.3. The Dynamic element by default, consists of two subar-
eas; IN and STD OUT, which means input and standard output respectively.

37

System Development CHAPTER 5. OWN CONTRIBUTION

Figure 5.2: Alt. 2: The Input-Output Element with a table

The user can in addition add several OUT-areas representing different out-
puts as a result of different input-values.

The left hand side in figure 5.3 shows an example of the Dynamic-element
with one added OUT-area. In the ”IN”-area, the user can insert links, form-
elements and text. If the user adds a text into the IN-area, he must create
an event to that text, such as ”onMouseOver”or ”onClick”. These events can
also be used on form-elements and links, but this is not required since form-
elements and links have standard events attached to them, i.e. a button is
pressed. The IN-area only contains the elements in which input-values will
be inserted, so a problem with this concept is that it is difficult to find a clear
way of modelling the input-values. Another problem is that the Dynamic
element will become large and complex if there are added several OUT-areas.

Figure 5.3: Left: Alt. 3: The Dynamic Element, Right: The Form Element
in AutAT

5.2.4 Alt. 4: The State Concept

In the previous concepts, a page in the AutAT workarea (AutAT-page) rep-
resents a web-page that is loaded into a browser. This result in that dynamic
changes, which do not concern reloading a web-page, must be modelled into
the same AutAT-page. An AutAT-page can instead be seen as a state,
which can be defined as a snapshot of the content on a web-page at a certain
time. A state can change as a result of events, and they are independent
on whether a page is reloaded or only parts of the web page is dynamically
changed. This is an advantage for users that do not know the difference

38

CHAPTER 5. OWN CONTRIBUTION System Development

in functionality implemented with Ajax, JavaScript and static HTML, since
they do not need to decide when to model a new page.

Example: Backbase PC Shop
Figure 5.4 shows an example of how to model ”buying a computer” from
the ”Backbase PC Shop1” web-page. This example is not created to test the
whole page, which would require additional tests, but to present the State
concept. Figure 5.4 has a starting point, which is adopted from the initial
AutAT tool, that leads to the first state. Aspects are also adopted, which
is used for writing tests that are performed on several AutAT pages. The
starting point, ”Start Shopping”, leads to the first state; ”Select PC”. In this
state the web page consists of four DIV-boxes; ”inShop”, ”price”, ”inBag”,
where a DIV-box models that content is placed together somewhere on the
web-page. When DIV-boxes with equal ids are placed both in a state and in
an aspect, it means that the state contains the elements in the union of the
two DIV-boxes. The ”Select PC”state, therefore, contains the elements from
the union of the DIV-boxes in the ”Select PC” state and the two aspects;
”An aspect” and ”Price aspect”.

In difference to most web-shops, the shopping bag named ”inBag”, in the
example, already contains a PC when the user starts shopping. This PC is
represented by the ”GX60” DIV-box. This Div-box is moved from ”inShop”
DIV-box in the ”Select PC” state, into the ”inBag” DIV-box in the ”new PC
selected” state, and the states are connected with an ”event”-transition. An
event-transition is used to specify that an action is performed on a particular
element in the web-page. In this example, the element and the event-type is
specified as respectively ”add” and ”click”, as shown in the emphasize box in
figure 5.4. Therefore, clicking on the ”add” DIV-box that contains the text
”Add to bag”, will result in a transition from the ”Select PC” state to the
”new PC selected” state. The event-transition can also contain an input if
needed, such as when a value is inserted into a textfield.

5.2.5 Alt. 5: The ”Page-on-Page” Concept

The ”page-on-page” concept models a web-page as a ”dynamic”-page, which
can contain ”states” representing areas that can dynamically change, as seen
in figure 5.5. This means that if parts of a web-page is changed, this is mod-
elled as a new state inside a ”dynamic”-page. However, if a new web-page is
loaded into the browser, it is modelled as a new AutAT-page. An advantage
with this concept is that it can model that two browser-windows are open
simultaneously. This is useful when i.e. modelling pop-up windows, which
can appear in web-applications. A disadvantage is that a user has to know
when to, and when not to, model a new page. This means that he has to

1http://www.backbase.com/

39

System Development CHAPTER 5. OWN CONTRIBUTION

Figure 5.4: Example of the state-concept by modelling the Backbace PC
Shop web-site

have knowledge about Ajax and JavaScript, which is not common for non-
programmers.

Example: Backbase PC Shop
Figure 5.5 shows how to model ”buying a computer” on the ”Backbase PC
Shop2” web-page with the ”page on page” concept. The event-transition and
the DIV-box are the same as in section 5.2.4. In the example, the dynamic
page named ”A dynamic page” (the large box in the figure) consists of two
states; ”Select PC” and ”new PC selected”, and three DIV-boxes: ”inBag”,
”inShop” and ”checkOut”. The ”inShop” DIV-box is modelled in both the
dynamic page and the ”Select PC” state. The latter contains the ”GX60”
DIV-box, which represents the PC that is being bought. When the event
”add” occurs, the ”GX60” DIV-box is moved from the ”inShop” DIV-box
in the top state-, to the ”inBag” DIV-box in the bottom state of ”A dy-
namic page”. When the ”GX60” DIV-box is in the ”inBag” DIV-box, as it
is in the bottom state, a ”checkOut”-event will result in a new dynamic page.

It is possible to connect an event-transition from a dynamic page to another
dynamic page or a state inside a dynamic page, as seen in figure 5.6 as respec-
tively the links ’ab’ and ’df’. In this figure, the boxes ’A’ and ’B’ is dynamic
pages, and the boxes ’C’, ’D’, ’E’ and ’F’ are states inside these pages. If an
event-transition is connected from a dynamic page, such as transition ’ab’,
it means that the event can be activated independent of which state the
page is in. This is i.e. the case for menus that are visible for all web-pages

2http://www.backbase.com/

40

CHAPTER 5. OWN CONTRIBUTION System Development

in a web-site. If the event is connected to a dynamic page, and not to a
particular state in that page, then the states without any events connected
to them (if any) should be visible in the browser when the page is loaded.
For example in figure 5.6, if event-transition ’ab’ is triggered, the content
in box ’B’ and ’E’ will be visible in the browser. If the event-transition is
connected to a particular state, then it is only the content not in any states
and the content in that particular state, which is present. In example, trig-
gering event-transition ’df’ from state ’D’, will result in that the content of
box ’B’ and ’F’ is visible in the browser.

Figure 5.5: Page-On-Page Example

Figure 5.6: Transitions possible in ”page-on-page”-concept

5.2.6 Evaluating the Concepts

Table 5.1 presents a summary of the concepts with their advantages and
problems. Alternative two and three are both complex, and have problems
with modelling several outputs from one input. These concepts can therefore

41

System Development CHAPTER 5. OWN CONTRIBUTION

not be used to model tests in AutAT. Alternative 1; the ”Input-Output” ele-
ment with several outputs on a separate ”dynamic”-page, do not have these
problems. However, in this concept it is difficult to model connections from
a ”dynamic”-page to a ”static” AutAT-page. This must be possible if users
want to model i.e. that clicking on a button in the output-area, results in a
new ”static”-page. This concept can therefore not be used.

The problems with the previous concepts, are not present in the ”state”- and
”page-on-page”-concept. The page-on-page concept is difficult to use without
understanding Ajax- and JavaScript, which is not a problem for the state-
concept. The ”state”-concept is in addition, easy-to-follow because several
dynamic elements are not modelled into one page. States can be difficult
to understand for non-technical users, but we believe this will not be a sig-
nificant problem. For these reasons, we decided to use the state-concept to
extend AutAT to test dynamic web-pages.

Alt. Concept Advantages Problems

1 The Input-Output Ele-
ment with several out-
puts on a separate dy-
namic page

Normal ”static” view is
kept short when several
outputs are modelled.

Difficult to link from i.e.
a form in an output in
the ”dynamic” view, to
the next page in the
”static” view.

2 The Input-Output Ele-
ment with a table on a
separate dynamic page

Good overview of differ-
ent input-output value
combinations

Only one input type and
-value possible. Only
one output type and -
value for each input.

3 The Dynamic Element
with several outputs on
the same page

Can model that ele-
ments in an output-area
can lead to a new page.

Several outputs result
in a large AutAT-page
that is difficult to fol-
low. Unclear how to
represent the input val-
ues.

4 State-concept Dynamic behavior can
be modelled in a way
that is easy to fol-
low. Users do not de-
cide when a new page is
necessary.

Can be difficult to un-
derstand states for non-
technical users.

5 Page-on-page concept Can model that there
are two browsers-
windows open at the
same time.

Users have to know
when to model a new
state instead of a new
page.

Table 5.1: Summary of concepts

42

CHAPTER 5. OWN CONTRIBUTION System Development

Figure 5.7: Example of the State-concept modelling the AjaxTrans web-site

5.3 The Solution

The solution is based on the ”state”-concept, presented in section 5.2.4, but
contains some improvements. These improvements include;

• Changing the element name; ”DIV-box” to ”Context”.

• Changing the name of the transition from ”events” to ”UserActions”.

• Enable that several actions can be performed in one UserActions-
Transition, such as inserting different text and then clicking on a button
in one UserActions-transition.

5.3.1 Example: AjaxTrans

We will present the solution through an example of a test for the Ajax
translator, AjaxTrans3, see figure 5.7. An aspect containing two contexts
is connected to the first, second and third state. The two contexts are
“inputfield” and ”outputfield”, wich have the same properties as the DIV-box
previously described. The outputfield-context is also in the ”emptyInput”-
state, and contains the elements from the union of the context with the same
id.

3http://ajax.parish.ath.cx/translator/

43

System Development CHAPTER 5. OWN CONTRIBUTION

Figure 5.8: ”UserActions”-Transtion

The connection between the first and the second state is a UserActions-
transition, which contains a set of user actions that will be performed on
the page. When a UserActions-transition is created, a popup-window will
appear as seen in figure 5.8, where the user can specify (from top to bottom)
the actions that are performed on elements in the state where the transition
starts. In this example, the user can select between the elements in the
“emptyPage”-state, when creating the transition between the first and second
state. This is done in the ”Element”-column in the popup-window. Similarly,
an action on the chosen element can be specified in the ”Action”-column, and
input can be inserted if needed.

The results from performing the first UserActions-transition in the web-page,
is modelled in the Outputfield-context in the ”firstInput” state, where it is
written; “bonjour”. To add a second word into the translator, a user need
to create a third state; the ”secondInput”-state in the example. Then, a new
UserActions-transition must be created, which will be similar to figure 5.8.
However, it must be added ”friend” to the string “hello”, which will result in
the “secondInput”-state in the “Outputfield”-context, where the translation
is: “bonjour ami”.

5.3.2 How The Solution Support Typical Scripts

For AutAT to be taken into use, it is important that users can model com-
mon dynamic web-pages. Hence, we will discuss how the State-concept can
be used to test the common scripts presented in section 4.6.

The example in the previous section, shows how instantly updating a web-
page based on written input from the user, is modelled with states. The
test in the example, models that a sentence inserted by a user is translated,
which is in the browser done without reloading the web-page. Validating
form-input values, can be modelled similarly, because input inserted into a
form, can result in that warnings are written in the same web-page. Tests
in AutAT will look the same, independent of if the validation is performed

44

CHAPTER 5. OWN CONTRIBUTION System Development

at the server or in the client browser, as when selecting a ”username” in
Gmail and JavaScript FormValidator, see section 4.6. This shows that the
the users of AutAT only have to concern about the functionality in the web-
page, and not if it should be implemented with Ajax, JavaScript or static
HTML. Server validation can also be implemented with static HTML, but
this would require sending the same web-page back to the client with an
additional warning. For these reasons, the implementation decisions can be
done by developers. For the same reasons, AutAT can not be used to model
that a page lazily loads hierarchical content. It is an implementation deci-
sion if content is loaded lazily, or if hidden content is loaded at when the
web-page loads. However, the user can model that he content to be hidden
when a page loads into the browser, such as sub-menus that are hidden, and
later appears, on a web-page.

Content on a web-page can be changed based on user actions other than
inserting text seen in the previous example. Studying typical scripts showed
that common actions were clicking on a web-element, holding the mouse
over a web-element, and pressing a key. These action can be modelled with
the State-concept in the UserActions-transition. Another action used in the
typical scripts were drag-and-drop, however we chose to not support drag-
and-drop in action in this version of AutAT due to time-constraints. Other
actions not supported, are actions not possible to perform on web-elements
in web-pages, such as inserting text in a button.

Ajax allows web-applications where the client browser is dynamically up-
dated because of changes in the server state, seen i.e. in browser-based chat
applications such as Free Chat, and the mailing-list in Gmail. When the
server-state is changed, i.e. when a mail is received at a mail-server, there
is no particular page-element in the client application that is related to this
event. We suggest that the changes in the clients’ application can be mod-
elled in a ”ServerEvent”-transition between two states, as seen in figure 5.9
as an arrow with an attached text-box. A description of the event that oc-
curred on the server, can be written in the text-box. The figure shows an
example of how a web-based chat application can be tested.

An important question before adding support for server-state events, is if
modelling this feature in AutAT requires that the user has knowledge about
servers, or the communication between the servers and the client-application.
If this is the case, it can not be used by most customers. In addition, how to
create Watir tests for this feature, depends on how it is implemented. It can
be implemented with i.e. polling needed data from the client-application,
or sending data from the server when its state is changed. This makes it
complex to create Watir script to test this feature in AutAT. To reduce the
scope of this thesis, we will not explore this feature any further.

45

System Development CHAPTER 5. OWN CONTRIBUTION

Figure 5.9: Example of the State-concept modelling Free Chat

46

CHAPTER 6. DESIGN AND IMPLEMENTATION System Development

Chapter 6

Design and Implementation

This chapter describes how we have changed the design of the initial version
of AutAT, which was created by Skytteren and Øvstetun [30]. It also de-
scribes how these changes have been implemented. In addition, it presents
the new version of AutAT by showing how users can create tests.

6.1 Design

We will, as stated in 2.1, create an extension of AutAT. The design of AutAT
is therefore partly given by the initial design. We therefore only present the
changes to the design that were needed when developing new functionality.
To read more about the initial design, see section 4.1 or the master thesis
in [30]. The new version of AutAT fulfill the requirements FR.1 to FR.9,
specified in section 5.1.

6.1.1 Domain Model

When developing a software system, a domain model is used to describe and
model the problem domain. The problem domain for AutAT is to model
tests for dynamic web-application projects. The domain model is shown in
figure 6.1, where a project represents the web-application project that is
being developed for a customer. This development project has a set of re-
quirements, usually written as user stories in Test Driven Development. For
each user story, one or several tests are created. Each test has a starting
point representing the web-page where the test starts. Each test consists of
a set of states, each representing a ”snapshot” of the web-application. A test
can also contain aspects, which are similar to states. However, an aspect
is connected to several states and contains the page-elements common in
those states. A state can be connected to ”UserActionTransitions”, contain-
ing a set of ”UserActions”. A ”UserAction” represents an action performed
on an element on the web-page in that state. Executing the ”UserActions
in a ”UserActionsTransition”, leads to a new state. Each state and aspect
contains web-page elements, such as text, links, form elements, etc.

47

System Development CHAPTER 6. DESIGN AND IMPLEMENTATION

Figure 6.1: The new Domain Model

From a non-technical user’s perspective, a form is just a set of form-elements.
It is only in the HTML-code where a ”form” that contains form-elements, ex-
ists. We have therefore removed the ”form”-element from the domain model
of the initial version of AutAT, see section 4.1.

6.2 Implementation

We have kept the package structure and the architecture of AutAT as de-
scribed in 4.1, and in more detail in the master thesis written by Skytteren
and Øvstetun [30]. However, we have changed some of the classes and meth-
ods. This section presents how we have implemented these changes, con-
cerning the packages; AutAT Model, AutAT Exporter, AutAT Persistence
and AutAT UI.

6.2.1 AutAT Model

The Model package contains the ”data-value” objects. The changes we have
made to the domain model reflects the changes made in this package, such as
modelling states instead of pages, removing the form-element, and changing
the transition between states. Figure 6.2 shows a new class diagram.

State
We have not changed the name on the ”Page” class, but we have changed the
name in the graphical user interface of AutAT. The class is used by several
other classes, and therefore, changing the name would result in unnecessary

48

CHAPTER 6. DESIGN AND IMPLEMENTATION System Development

Figure 6.2: The Main Classes in the New Version of AutAT

problems. The content of the class is kept the same.

Form
We have removed the ”Form” object from this package. This for reasons
discussed previously in this chapter. To enable form elements to be put on
states and aspects, we changed their policy by adding ”PageElementCompo-
nentEditPolicy” to the ”FormElementEditPart” class.

Transition
We have removed the ’Connection” class and the ”FormInputConnection”
class, and replaced them with the ”UserActionsTransition” class. In addi-
tion, we implemented changes needed when showing and handling the ”User-
ActionTransition” in the graphical user interface.

6.2.2 AutAT Persistence

The AutAT Persistence package is, as stated in section 4.1, responsible for
reading tests and startpoints to and from XML files. The changes presented
in the previous section, resulted in the need for changing this package. The
main changes of the code in the AutAT Persistence package, has been to
enable saving the new ”UserActionTransition” to file. In addition, it must
be possible to save a form-input element without a form element related to it.

We have not changed the design of the Persistence package, but only its
methods. The main classes in the package are TestConverter, PageConverter,
AspectConverter TestElementConverter and TransitionConverter which are
responsible for converting tests, pages, test-elements and transitions to and
from XML, respectively. The changes we made in the graphical user-interface
of AutAT, resulted mainly in changes in PageConverter, TestElementCon-
verter and TransitionConverter.

49

System Development CHAPTER 6. DESIGN AND IMPLEMENTATION

The changes we have made in the AutAT Persistence class can be seen in
the changes to the XML schema of which attributes to save from a test.
Necessary changes in the code where made to save tests according to the
new schema. The XML schema for elements and transitions is respectively
shown in the listings 6.1 and 6.2. The complete schema can be found in
appendix F.

Listing 6.1: XML-Schema for the Watir exporter� �
1 % \caption {\label{fig:schema_elements} The schema for

saving a page element in
2 % AutAT}
3 <!--type for link element:linkType -->
4 <xs:complexType name=’linkType ’>
5 <xs:simpleContent >
6 <xs:extension base=’xs:string ’>
7 <xs:attribute name=’not’ type=’xs:boolean ’/>
8 </xs:extension >
9 </xs:simpleContent >

10 </xs:complexType >
11

12 <!--type for text element:textType -->
13 <xs:complexType name=’textType ’>
14 <xs:simpleContent >
15 <xs:extension base=’xs:string ’>
16 <xs:attribute name=’not’ type=’xs:boolean ’/>
17 </xs:extension >
18 </xs:simpleContent >
19 </xs:complexType >
20

21 <!--type for form types:formFieldType -->
22 <xs:complexType name=’formFieldType ’>
23 <xs:attribute name=’id’ type=’xs:string ’/>
24 <xs:attribute name=’name’ type=’xs:string ’/>
25 <xs:attribute name=’type’ type=’xs:string ’/>
26 </xs:complexType >
27

28

29 <!--type for a list of elements:elementsType -->
30 <xs:complexType name=’elementsType ’>
31 <xs:choice minOccurs=’0’ maxOccurs=’unbounded ’>
32 <xs:element name=’link’ type=’linkType ’/>
33 <xs:element name=’text’ type=’textType ’/>
34 <xs:element name=’formElement ’ type=’formElementType ’/>
35 </xs:choice >
36 </xs:complexType >� �

Listing 6.2: XML-Schema for the Watir exporter� �
1 % \caption {\label{fig:schema_userActions} The schema for

saving an
2 % ’’userActionTransition ’’ in AutAT}
3 <!--type for user actions values -->

50

CHAPTER 6. DESIGN AND IMPLEMENTATION System Development

4 <xs:complexType name=’userActionValue ’>
5 <xs:attribute name=’id’ type=’xs:string ’ use=’required ’/>
6 <xs:attribute name=’action ’ type=’xs:string ’ use=’

required ’/>
7 <xs:attribute name=’input’ type=’xs:string ’/>
8 </xs:complexType >
9

10 <!--type for userActions transition:

UserActionsTransitionType -->
11 <xs:complexType name=’userActionsTransitionType ’>
12 <xs:choice eminOccurs=’0’ maxOccurs=’unbounded ’>
13 <xs:element name=’userAction ’ type=’userActionValue ’/>
14 </xs:choice >
15 <xs:attribute name=’from’ type=’xs:string ’ use=’required ’

/>
16 <xs:attribute name=’to’ type=’xs:string ’ use=’required ’/>
17 </xs:complexType >� �

6.2.3 AutAT Exporter

Implementing AutAT to automatically build test-scripts to include Ajax-
based web-applications, introduce new challenges. The test-scripts created
by AutAT must be able to run independent of whether the web-application
is implemented with i.e. JavaScript, Ajax or with static-HTML. We there-
fore discuss the problems and possible solutions for how to implement the
Watir exporter in AutAT, and we present the in addition to the resulting
implementation.

There are two main solutions for how to write Watir-scripts for Ajax-based
web-applications, as presented in section 4.7; inserting a sleep-command, or
checking in a while-loop, if an element exists until it actually does exist.

Problems and Possible Solutions

There are two main solutions for how Watir-scripts for Ajax-based web-
applications can be written, see section 4.7.2; with ”sleep”- or ”waitForEle-
ment” commands. There are advantages and disadvantages with implement-
ing each solution in AutAT.

The easiest solution to implement is the ”sleep” solution, which only com-
prises of inserting a sleep command after all ”userActions”-transitions. A
disadvantage, however, is that the test will sleep even if all elements are
present, which will result in unnecessary slow test execution.

The ”waitForElement”-solution is a more complex solution to implement in
AutAT. The problem is that AutAT must have information about which
elements to wait for after a user-action is performed if all elements are not

51

System Development CHAPTER 6. DESIGN AND IMPLEMENTATION

present. Only elements requested with Ajax calls can appear after the web-
page has loaded, so waiting for other elements will suspend the test. But how
the elements in a web-page are requested, is most likely not known by the
person who uses AutAT to create the tests. A solution is to add a possibility
of defining, in a UserActions-transition, which elements that are requested
with Ajax. Such information can then be inserted by developers after a user
have created tests. This way, AutAT knows if an element should be present
immediately, or if it appears when the Ajax-call returns. The test script
could then contain ”waitForElement” instruction on the elements requested
with Ajax, which suspend the test execution until the element appears.

A better solution is to implement ”waitForElement”-statement with a max-
imum time limit, on all elements that are in an AutAT state, no matter if
it is implemented with Ajax or not. This way, if an element is implemented
with Ajax in the web-application, the test script execution will wait until
it appears. Waiting for an element that is implemented with traditional
request-reply architecture, will always reach the maximum limit of time, be-
cause such elements do not appear on the page after it is loaded. However,
the test will not suspend forever, and the total extra time it takes to wait for
missing elements is maximum the number of elements in the tests multiplied
with the maximum waiting time. A maximum limit of time to wait, is also
a good idea for elements implemented with Ajax in case i.e. the communi-
cation with the server is lost and that the element will not appear even if it
is supposed to.

Implementation of the Watir Exporter

The general exporter package was implemented in the first version of AutAT,
as described in section 15.3 [30]. This includes the DirectoryWalker class,
the TestStep class, the StepListBuilder, etc., which handles the traversing
of elements, modelled by the user, in the AutAT workarea. The changes
in the implementation of the exporter package, concerns writing the Au-
tAT elements, such as the UserActions element, Text element, etc., to a
Watir script-file. This mainly includes changes in PageElementConverter
and TransitionConverter, as presented below.

Wait-for-condition on traditional elements
Figure 6.3 shows the method that is used on all AutAT elements, such as
Textfield, Button, Checkbox, Context, etc., with the exception of Text. It
makes sure that if an element in a web-application is not present, the script
will wait at least two seconds before it concludes with that the element does
not exist.

Wait-for-condition on Text
The method in figure 6.3, contains the method ”exists”which does not work

52

CHAPTER 6. DESIGN AND IMPLEMENTATION System Development

Figure 6.3: Method that writes a wait statement in a Watir script

Figure 6.4: Watir script that checks if Text is present

on Text objects. The script for waiting on text to appear and therefore needs
to be written differently. Figure 6.4 shows an example of test script crated
with AutAT. The script tries to assert that the text is present several times,
with a limit of two seconds. This way, the web-application have time to load
the text into the web-page, if it is not present.

Wait-for-condition on Context
In AutAT, a ”simple context”, as well as an ”ordered context”, is used to
test that a set of elements are placed together on a web-page. In the ”simple
context”the elements can be in random order on the web-page. In an ordered
context, however, the elements must be placed in the same order as in the
AutAT test. How to create Watir test-scripts to test, that elements are
placed together on a web-page, depend on which HTML-tag that is used to
create the context. A context can in a web-page be created by several HTML-
tags such as table, span, tr, td, thead, div, and p. Table 6.1 explaines the
function of these tags. We decided that contexts in AutAT would be related
to Div-tags in HTML since the Div-tags were the most general. All the tags

53

System Development CHAPTER 6. DESIGN AND IMPLEMENTATION

supported the optional attributes, such as mouseOver, onClick, etc., that we
have selected AutAT to support.

Tag Function

Table ”Defines a table used for tabular data.”
Tr ”Table row. tr elements must appear within a table

element.”
Td ”Table data cell. If the cell contains a header rather

than data, th should be used instead. td must be used
inside a tr element.”

Span ”Used to group in-line HTML. span applies no mean-
ing and is commonly used solely to apply CSS.”

Div ”Division. Defines a block of HTML. Commonly used
to apply CSS to a chunk of a page.”

P ”Paragraph.”
Thead ”Table header. Along with tfoot and tbody, thead can

be used to group a series of rows. thead can be used
just once within a table element and should appear
before a tfoot and tbody element.”

Table 6.1: HTML-tags that can be used for creating contexts on web-
pages [19]

A Watir script can get references to elements in the browser, such as buttons,
textfields, text, contexts, etc., through the Internet Explorer web-page ob-
ject (using the DOM). References to elements inside a Div-tag, except text
strings, can similarly be found by querying the Div-tag object for elements it
contains. For testing that a specified text is present in a context, all the text
in the Div-tag in the web-page is first found, and then a method in Ruby is
used to check if the specified text is a substring of the text in the Div-tag.

Contexts in AutAT can be nested. This means that a context can be put
inside another context, which can be put inside a third context, etc. This
is however, difficult to test with Watir scripts today. Watir was originally
not created for testing nested elements [26]. A script can therefore test that
the elements are on a web-page, or in a Div-tag on the web-page, but it
cannot test that the Div-tags are inside other Div-tags. We believe that
this problem can be solved by using a new version of Watir that is claimed
to support xPath queries [10]. This version of AutAT, therefore, does not
support testing nested contexts.

Watir script for a UserActions element
When specifying the UserActions in AutAT, the elements upon which ac-
tions are preformed are selected from a drop-down menu consisting of the
elements in the start state. The Watir tests created from the UserActions-
transition is run after the testing of the start state (the state where the tran-
sition starts). Since wait-statements are executed on all elements not present

54

CHAPTER 6. DESIGN AND IMPLEMENTATION System Development

Figure 6.5: The ”fromPageUserAction”-method which exports an user’s
action to a Watir script test step

in the start state of every transition, it is sufficient to perform actions on
these elements and assume that they are present in the web-application. If
they are not, they will not appear later since the test script has already
waited for them to appear. Exceptions can happen if i.e. a Ajax-request
for an element is delayed after it is sent to the server, for more than the
maximum waiting time on an element. However, we believe that this will
most likely not occur often.

In the implementation of AutAT a UserActions-transition object consists
of a set of ”PageElementAction”-objects. A ”PageElementAction”-object
contains the element, action and input, which is used to model an action
on a web-page. A ”TransitionConverter”-class goes through each ”PageEle-
mentAction” in a ”UserActions”-transition, and builds a ”TestStep”-object
containing the Watir script code. Figure 6.5 contains the first part of the
”fromPageElementAction” which performes this task. The ”TestSteps” cre-
ated in this method are used to build a complete Watir script.

The challenge with writing ”UserActions”-transitions to a Watir script, is
to create Watir statements for each action possible on the AutAT-elements.
Figure 6.6, shows the actions that is supported by the different elements in

55

System Development CHAPTER 6. DESIGN AND IMPLEMENTATION

Figure 6.6: Actions possible on AutAT Elements

AutAT. A cell is colored black if the action is not possible to perform on such
element in a web-page. An ”X” shows that the functionality is implemented.
We have focused on modelling the most common user actions to limit the
scope of this thesis. However, several actions will be supported at a later
time, if assessment indicates that this version of AutAT is useful in software
development projects.

6.2.4 AutAT UI

The AutAT UI package, as explained in subsection 4.1, is responsible for
the Graphical User Interface (GUI) in the AutAt workarea. Changes were
done according to the graphical changes presented in 2.3. These changes
included, i.e., creating a new wizard so that the user can specify the user
actions in a ”UserActionTransition”.

6.3 User Documentation

The installation procedure for installing AutAT in Eclipse and how to create
an empty test in AutAT, are explained in appendix B. To model states in
AutAT, it is important that a user understands the state-concept, which is
therefore described. An example will also be shown of how to model a test
in AutAT.

6.3.1 Explanation of States

AutAT enables users to create tests for dynamic web-pages by using states.
A dynamic web-page is a page where some of its content can change, without
the white page flicker given by a ”refresh command”. Changes of the content
in a dynamic web-page, can be the result of actions performed by a user. An
action such as changing the position of a mouse so that it is over an item in
a top-menu can result in that a sub-menu appears. A state is a “snapshot”
of the content on a web-page at a give time. For the above example, this

56

CHAPTER 6. DESIGN AND IMPLEMENTATION System Development

means that one state of the web-application is where it contained only the
top-menu, and another state is where it also contained the sub-menu.

6.3.2 How to Create Tests in AutAT

To illustrate how a dynamic web-page can be modelled, we will present how
to create a test for the Google Suggest1 web-page. Google Suggest is a search
engine that shows suitable suggestions for the complete search word as the
user inserts letters into the search field. Before the test is created, it must
have a Start-Point. How to provide a Start-Point for the test can be found in
appendix B. When the Start-Point has been defined, an empty test appears
in the Editor-window of Eclipse. Is it now possible to start modelling the
example page with the needed elements, such as states, aspects, elements
and UserActions-transition. A test in AutAT can be created by following
the below steps.
The test in figure 6.9,

1. Drag a new state into the workarea to add it to the test, and call it
”Start”. Insert a name into the pop-up box that appears on the state.
When this is done, an arrow connecting the Start-Point and the first
state will appear.

2. Drag a ”title” to the state, click on it and insert the text ”Google
Suggest”. It will then test that the title is ”Google Suggest” in the
actual web-page.

3. Add a textfield with the text “q” and a button called “btnG” to the
state. These first steps will result a finished first state, as shown in
figure 6.7

4. Drag a new state into the workarea. If you want to test that the
elements in the first state are still present in the second, these can be
added in an ”aspect” instead of the first state, and connected to both
states.

5. Drag a new state into the workarea, and call it ”Suggestion”.

6. Drag a UserActions-transition into the test and click on both the start-
state and the end-state. A wizard will appear, and in the wizard do
the following steps:

(a) Click on the cell that contains the text ”select” in the row named
”element”, and select the element ”q” in the drop-down list.

(b) In the same row, select ”InsertText” in the action-column, and
write ”Ruby” in the input column, as shown in figure 6.8.

(c) To model several user inputs, press the button ”Add New User
Input”.

1http://www.google.com/webhp?complete=1&hl=en

57

System Development CHAPTER 6. DESIGN AND IMPLEMENTATION

Figure 6.7: First state in Google Suggest modelled in AutAT

(d) Press ”Finish” to complete the wizard.

7. Add a text into the ”Suggestion”-state and type ”Ruby on rails”. The
result of the test is shown in figure 6.9.

6.3.3 How to run Watir test in AutAT

To create a Watir test in AutAT, right-click when the mouse is over the name
of the test, and choose ”AutAT -> Create Watir Tests”. Then AutAT will
create a ”Ruby”-file with the Watir tests. The tests are run by right-clicking
on the Ruby-file and choosing ”Open with -> System Editor”with Ruby and
Watir installed on the computer.

58

CHAPTER 6. DESIGN AND IMPLEMENTATION System Development

Figure 6.8: UserActions in Google Suggest modelled in AutAT

Figure 6.9: The Final Result of Google Suggest modelled in AutAT

59

System Development CHAPTER 7. USER TESTING AND RESULTS

Chapter 7

User Testing and Results

If both customers and developers could use AutAT to create respectively
acceptance- and system tests, these tests could be used and modified by
both parties since they both tests the functionality of an application. We
will therefore evaluate the usability of AutAT for non-technical users, as well
as developers. In addition, we investigated if AutAT is useful for customers
and developers in software development projects.

7.1 Testing with Non-Technical Users

To test the usability of the new version of AutAT for non-technical users,
we tested the tool on eight persons with a non-technical background. These
persons, from now called subjects, had different age and occupation, as can
be seen in table 7.1.

Subject nb Age Occupation

Subject 1 23 Social Worker
Subject 2 23 Master Student in Chemistry
Subject 3 23 Master Student in Petroleum Engi-

neering
Subject 4 24 Master Student in Petroleum Engi-

neering
Subject 5 25 Master Student in Civil Engineering
Subject 6 26 HSEQ (Health, Safety, Environment

and Quality) Manger
Subject 7 48 Teacher
Subject 8 57 Bachelor of Economics

Table 7.1: Non-technical subjects

60

CHAPTER 7. USER TESTING AND RESULTS System Development

7.1.1 Test process

We created a fictitious software development case, for which we wanted the
subjects to create tests. The test sessions were performed by first giving the
subjects a written presentation of the case, which also explained acceptance
testing and how this can be done manually or with automated test scripts.
The presentation also contained an introduction to AutAT, and an example
of how to create an acceptance test for the Google Suggest1 web-page. The
presentation can be found in appendix C, which also includes the tasks given
to the subjects.

The subjects were allowed to ask questions about AutAT during the test
session. When they had created tests for the fictitious case, we asked them
about their opinions on the usability of the tool. The questions included
how easy they thought it was to understand the concepts in AutAT, and to
create the tests. We also asked question about what they liked and disliked
about the tool to capture their general opinions about AutAT.

7.1.2 Results

The results presented here is a summary of the comments given by the sub-
jects during the test session. The comments can be found in appendix E.

The subjects had trouble using AutAT after they had read the presentation
because they were not familiar to the technical terms ”state” and ”user ac-
tion”, and they therefore had difficulties understanding the concepts ”State”
and ”UserActions”-transition. A subject stated that the reason for his trou-
ble was that he did not have anything familiar to relate to the concepts.
Especially, the term ”state” was difficult, because it was not something tan-
gible, like a web-page that they could look at. The general opinion was
that AutAT would be easier to use if they could model web-pages instead
of states. However, the subjects said that they understood the concepts in
AutAT after we had guided them through an example.

For the majority of subjects, it was easier to understand UserActions-transitions
than ”States”. It was logical that the user of a web-application inserted some
input into a web-page, and that the page changed as a response. However,
it was not logical that changes on a web-page, as a result of actions per-
formed on the same web-page, should be modelled in a new state. When
the subjects were creating tests, a few added only one action into each
UserActions-transition, which resulted in several states and UserActions-
transitions. However, the general opinion was that UserActions-transition
was simple because it resembled actions they normally performed on web-

1http://www.google.com/webhp?complete=1&hl=en

61

System Development CHAPTER 7. USER TESTING AND RESULTS

pages.

In addition to the technical terms not familiar to the subjects, there were
terms they had not heard of, such as textfields, textarea, etc. The subjects
therefore asked several questions during the test session, which resulted in
that their work was not efficient. Their general opinion was that AutAT
would have been easier to use if a test could be related to an actual page i.e.
on a picture in the tool, which would show them how the AutAT elements
looked like in an actual web-page. The picture did not have to include a
whole web-page, only the functionality in the model. The subjects thought
that they would create tests more efficiently in cooperation with a person
that knows how to use AutAT. However, they would only need such cooper-
ation the first times they used AutAT, because it was easy to learn with its
tidy appearance and drag-and-drop feature. When they had learned how to
use it, they believed they could use it efficiently by themselves. A subject
thought that a user manual with step-by-step instructions explaining all el-
ements in AutAT would help him to create tests.

A subject stated that AutAT is better to use than drawing a web-page by
hand, because tests in AutAT were easy to manage and edit. AutAT allows
a user to easily add and delete elements, as well as modify an element’s
properties. However, the fact that changing an element’s properties could be
done directly in the Editor as well as in the Property Editor, was confusing
for some of the subjects. Some subjects therefore meant that it should
only be possible to change these in the Editor. Four of the five subjects
needed to modify the UserActions-transition they had created, and therefore
also missed the possibility of changing the UserActions-transition from the
Editor, which is not yet implemented.

7.2 Testing on Developers Familiar with Watir

AutAT will not be used by developers if it lacks important functionality or
if it is more efficient to write test manually, even if the AutAT tests can
be used and updated by customers. It is therefore important to investigate
if test-scripts can be created more efficiently with AutAT than manually.
This was done by testing AutAT on developers that have used Watir in
software development projects. Two of the developers had been responsible
for creating Watir-tests for a web-application in a project that lasted about
a year. The three other developers had also created tests with Watir in one
project, but these project lasted less than six months.

7.2.1 Test process

Eeach test session was performed by giving the developer a short presenta-
tion of AutAT. We then let the developer use the tool to create system-tests

62

CHAPTER 7. USER TESTING AND RESULTS System Development

similar to those he/she normally created in development projects. During
the test sessions, we were present to answer questions about AutAT. After
the developers had tested the tool, they gave their opinions about using Au-
tAT to create test scripts. We were interested in information about if they
thought AutAT limited what test scripts a user is able to write. In addition,
we wanted to know their opinion on the usefulness and usability of AutAT.

7.2.2 Results

These results are a summary of the main opinions from the test sessions with
the developers. The developers understood the concepts; State, UserActions-
Transition, etc., and they had no problems with using AutAT. The graphical
user interface (GUI) was easy to understand, and they thought the drag-and-
drop functionality made the tool efficient to use.

The general opinion from the developers was that AutAT could enable them
to create automated tests more efficient than writing scripts manually. How-
ever, before they could know this for certain, it must be tested on a real
project. An advantage with using AutAT was said to be that spelling errors
would not occur, which often happened when making scripts manually. In
addition, developers would only need one development environment for writ-
ing code, tests, integrating the application, etc., which can all be done on
the Eclipse platform. For these reasons, the developers meant that AutAT
could be useful for creating tests when developing web-applications.

A developer stated that it was easier to present tests in AutAT than Watir
scripts, to customers and other stakeholders since AutAT has a graphical
user interface which makes the tests visual, and therefore easier to under-
stand for non-technical users. One developer stated that it was a minority
of developers that knew how to create tests in Watir, and these developers
had to create all the tests scripts for an web-application. It would therefore
be an advantage if developers could create automated tests without needing
to learn the syntax for how to write tests in a test framework.

A developer wanted additional test information, such as the coverage of how
much of the code that have been tested. With coverage information, it would
be easy to see which lines of code that were executed after a test has been
run. The developer could then create better- or more tests to increase the
coverage of testing.

Two of the developers interviewed, worked in a project where they created
their own Watir-methods for custom-made HTML elements. Hence, they
could not have used AutAT in their project since AutAT requires that the
application is implemented according to the exporter. However, these devel-

63

System Development CHAPTER 7. USER TESTING AND RESULTS

opers believed that it was not common to use custom-made HTML-elements
in most projects.

7.3 Testing with Project Managers

We have interviewed project managers in five companies in Trondheim and
Oslo, to investigate if and how AutAT can be useful in software development
projects. The project managers have experience from several projects and
are hence familiar with projects’ needs.

7.3.1 Test process

In each interview we presented the general concepts of AutAT, and its in-
tentional use. The presentation included movies of AutAT showing how to
model tests of the Google Suggest web-page. We then asked questions about
the usefulness of AutAT in software development projects, and emphasized
that it was not restricted to the intended use. We wanted to know if Au-
tAT could be used in any of the companies’ projects, in addition to opinions
about how AutAT could be changed to become more useful. The presenta-
tion of AutAT, and the questions asked in the interviews, can be found in
appendix D. The example movies can be seen in the files that follow this
master thesis.

7.3.2 Results

The results presented here gives a summary of thoughts and opinions from
the interviews in companies, without relating them to any of the participat-
ing companies. AutAT can be used either by customers, developers or in
cooperation between both, and each use has different needs and hence, dif-
ferent usefulness of AutAT. We will therefore present the results from each
user’s point of view.

Used by customers

Several project managers meant that AutAT could be useful for customers
since it enabled them to create automated acceptance tests, which can be run
without much effort. With automated tests several parts of a web-application
would be more easily tested after changes and updates in the application,
than if testing was performed manually. These tests can in addition, be run
during development by the developers.

A developer meant that another advantage with using AutAT, was that an
AutAT-test modelled the workflow of applications. Modelling the workflow
of an application should be done by the customers since they are usually

64

CHAPTER 7. USER TESTING AND RESULTS System Development

more familiar to the workflow of the intended users, than the developers.
The project managers agreed on that the main advantage with AutAT was
that it increased customers involvement in the development process, because
it enable them to create automated acceptance tests.

Even if the project managers saw several advantages with AutAT when used
by customers, they had some concerns. This was mainly that it would be
too time-consuming for customers to use AutAT, especially to create tests
for large applications. It was however also stated that it was too time-
consuming for customers to create and maintain automated tests in gen-
eral. If customers used AutAT to create acceptance tests early in the de-
velopment process, it would often result in that changes and updates were
needed. Changes and updates often occur because customers’ requirements
usually change during the development process. Customers are often un-
certain about what they want, and what it is possible to create. If the
acceptance tests are created after the application is developed, the effort
of updating the tests is avoided. Another project manager therefore meant
that AutAT would be useful for customers to create automated acceptance
tests only after an application is developed. Another reason for this is be-
cause he meant that in addition to create automated AutAT-tests, the tests
also needed to be documented. This because often, and especially in large
projects, it is necessary to give the documentation to other organizations
involved in the project. It will then be necessary to update both the auto-
mated test and the test-document if an application was changed, which they
often did according to the developer.

A different opinion was that customers would not use AutAT because they
often preferred to perform the acceptance tests manually by going through
written test specification. This because it gives them an impression of how
easy it is to use the web-application, which the customer will not get when
using AutAT to create automated tests. This because in tests created with
AutAT, the elements that are tested are specified by i.e. id, and the location
and appearance of the elements are therefore insignificant.

For a web-application, a test in AutAT defines i.e. the actions a user is be
able to perform, the text a user will see, etc. For this reason, it was said that
the user decided the functionality on each web-page in the web-application,
and therefore decided parts of the design. Another project manager stated
that customers would try to decide the layout of the web-application when
using AutAT. Developers can design web-applications better than the cus-
tomers, and for that reason they claimed that AutAT should not be used by
customers.

65

System Development CHAPTER 7. USER TESTING AND RESULTS

Used by developers

The project managers that used automated system- and acceptance tests in
their projects, were unsure if AutAT would be useful for developers. This
because they they were not convinced that developers would save time on
creating test-scripts with AutAT, instead of writing the scripts manually.
Developers have a technical background, which makes it easier for them to
learn the syntax used in test frameworks. However, the five project man-
agers interviewed did not agree upon if automated tests in general, reduced
the time and effort used on testing. They were therefore unsure if AutAT
would be useful when used by developers alone.

Project managers that did not use automated system- and acceptance tests
in their projects, believed that AutAT would be useful for developers. This
because it enabled them to write automated test-scripts without learning
a new test-framework. Without automated tests, it was said that testing
was often performed on only the most necessary parts of the application to
limit the effort used on testing. Testing only the most necessary parts of the
application, was not a solution they preferred.

AutAT has not been tested on a real project. The project managers were
therefore critical to how much of the functionality in their web-applications
AutAT-tests could test. This especially concerned exceptions from the nor-
mal execution path, which is usually tested by the developers. It was stated
that it might be better to write test-specifications since exceptions from the
normal execution path are easier and faster to describe with words than in
AutAT.

Used in cooperation between customers and developers

The general feedback from the interviews was that AutAT would be most
useful when it is used in cooperation between developers and customers. This
would be the case even if AutAT was simple enough to use for customers to
model tests without help. It was said that the best result was accomplished
when developers and customers cooperate. A suggestion was that during the
specification phase, the developer and the customer could have a workshop
and agree upon a web-application to develop. This way, the customer would
not need a requirement specification. Instead, the customer and developer
could express the requirements by modelling tests in AutAT, showing the
workflow and the possible solutions.

Modelling a real test-specification

To investigate if AutAT can be used to test the functionality in common web-
applications in a company, we were given a medium-complex test-specification

66

CHAPTER 7. USER TESTING AND RESULTS System Development

document from a project manager. This test specification document con-
tained functionality for registering projects and checking that project in-
formation was presented correctly. Together with the project manager, we
went through the test specification document and created tests in AutAT.
This process can be seen as a proof that AutAT can create test scripts for
this company’s web-applications with medium complexity, which the project
manager meant was useful in their projects.

When creating tests for the test-specification document, there was some
missing functionality in AutAT to completely test the web-application. The
test specification included checking the order of elements in a list. In Au-
tAT, lists can be specified by putting elements a contexts, but to test that
the elements are presented in a given order requires that the elements are
specified in that order in the context. When tests are run repeatedly with
elements that are stored in a database, the test-data depends on the state
of the database for each test-iteration. In example, the test specification
document required that a list of projects was updated when a new project
was registered. When running such tests in AutAT, the tests must either be
updated or the state of the database must be kept constant for the AutAT-
test to correctly check the order of the elements in a list. This functionality
was also requested from other companies.

Another missing functionality, is the possibility of modelling ”if/else”-clauses.
In the given test specification document, if/else-clauses would be used to
model that if a project exists, check its data. If a project does not exist,
then create it. In addition, it was said in another interview that AutAT
lacked the possibility to insert descriptions in the transitions between states.
This was needed to be able to specify i.e. dependencies between states. It
was also said in an interview that AutAT supported only limited types of
input. I.e. AutAT does not support dates, which makes it impossible to
tests i.e. that a set of data can not be changes after a particular date.

7.4 Threats to Validity

We will look at the most important threats to validity, with basis in the book
of Wohlin et. al. [41].

Typical customer

In the interviews with non-technical persons, we wanted to interview persons
that could represent typical customers to evaluate the tool from a customer’s
point of view. However, the subjects we have chosen, does not necessarily
match the customers in experience and knowledge. This means that there
is a threat to validity of the generalization of these results. Most customers
do not have a technical background, but we cannot say that there is a stan-
dard background or gained knowledge for customers. None of the subjects

67

System Development CHAPTER 7. USER TESTING AND RESULTS

interviewed had technical knowledge, but to reduce the threat that they still
could not represent customers, we interviewed people of different age and
occupation, and hence different experiences. We believe that the scattering
of our subjects reduced this risk, but it is still a relevant threat for the eval-
uation of the test-results.

Developers and Project Managers

When we interviewed developers and project managers, we wanted results
that we could generalize to all companies that develop web-applications for
customers. We therefore interviewed developers and project managers from
several companies, which have mainly been working on different projects.
However, two of the developers were currently working on the same project,
which may have influenced their answers. In the interviews with project
managers, they gave answers based on what they though customers and de-
velopers meant about the usefulness of AutAT. The project managers we
interviewed have much experience from working with developers and cus-
tomers, and hence, they are familiar with their needs. We see these threats
as present, but believe they have minor impact on the test results.

Sample size

The sample size used in the interviews with non-technical users, developers,
and project managers, consist of respectively eight, five and five persons,
thus the sample size is small. People understand problems differently, and
answers are given based on their understanding of the problem. With a
small sample size, it is less likely that the persons interviewed have the same
understanding of the problem and that the answers express similar opinions.
However, we have tried to avoid this threat by giving all persons within each
group (customer, developer or project manager) the same introduction to
AutAT, and the same example of how to model the tests. They have in ad-
dition been allowed to questions if anything in AutAT or any tasks were hard
to understand. We believe that this limits the effect from misunderstandings
and short explanations, and therefore has this threat has been reduced to
only having minor effect on the test results.

Tasks and questions

The tasks given and questions asked in the interviews were decided by us.
These were specific towards the areas of AutAT that we wanted to evaluate.
It is therefore a threat that there were other opinions about AutAT which
were not revealed. We limited this threat by also asking for opinions about
AutAT not covered by the questions. If the tasks and questions had been
more general, the answers from the interviews would be difficult to compare
and analyze.

Another threat is that the persons interviewed want to be ”nice” and give
us the answers they believe we want to hear. To avoid this, we explained to

68

CHAPTER 7. USER TESTING AND RESULTS System Development

the persons interviewed that we were interested in their own opinions, and
that an honest review was important. We, however, believe that this is the
substantial threat to our results.

Summary of threats

We think that the majority of threats influencing our results have been
reduced to an acceptable level. The threat that subjects answer what they
think we want to hear is a considerable threat. We take all threats into
consideration when evaluating our results, but we mainly believe that only
the latter threat can significantly influence our results.

69

System Development CHAPTER 8. EVALUATION AND DISCUSSION

Chapter 8

Evaluation and Discussion

To assess if we have reached the main goal of our thesis, this chapter discuss
and evaluates the new version of AutAT based on the tests and the interviews
presented in chapter 7.

8.1 The New Version of AutAT

There are several differences between AutAT and other state-of-the-art test
tools. The most important is the graphical user interface (GUI) in AutAT,
which makes it easier for non-technical users to create tests, than with text
based tools. AutAT can be used for creating automated acceptance tests be-
fore the actual software is developed. To our knowledge, this is not possible
with other GUI based tools, such as capture-replay tools. Tests in capture-
replay tools are created by traversing a web-application, which requires that
the web-application is created. Tests in capture-replay tools need to be up-
dated after the GUI of an application has been changed. AutAT is not as
sensitive to changes as capture replay tools, because it reference elements in
the browser based on the elements’ name. This results in that elements can
be moved to another location in the browser, in addition to that the visible
text on elements can be changed.

Because AutAT is only a graphical layer on top of an existing test framework,
it is restricted by the functionality in the test framework. The new version
of AutAT can therefore only test what is supported by Watir. However,
AutAT is an open-source tool which can be customized to fulfill additional
needs. This can be done by adding several exporters, which i.e. support
testing custom-made HTML elements.

Today, Ajax is a relative new technique, and we therefore believe that it has
not been fully taken into use in software development projects. Customers
of development projects are usually not updated on new web-technologies,
since most do not have a technical background. AutAT does not support

70

CHAPTER 8. EVALUATION AND DISCUSSION System Development

testing dynamic changes on a web-application as a result of changes in the
server’s state, which is a feature enabled by Ajax, see section 5.3.2. We do not
know if this feature is used in web-applications and, in case, how important
it is for customers of software development projects to automatically test
this feature. This should be further researched when Ajax becomes more
widespread.

8.2 The usability of AutAT

The goal of our thesis was to create a tool that can be used by customers
and make acceptance testing simpler and more efficient. Research of how
testing is done in companies, shows that the acceptance tests sometimes are
created by developers. In addition, acceptance tests can be used in system
testing performed by the developers. We will therefore evaluate the usability
for non-technical users, as well as developers.

8.2.1 Usability for the non-technical subjects

The test-results indicate that AutAT was difficult to use for non-technical
users, mainly due to the technical terms on elements and trouble with under-
standing States. The subjects had trouble with relating elements in AutAT
to elements on a web-page. For example, they could not relate the term
textfield to the visual representation of a textfield in an actual web-page.
We believe that providing the users with a visual representation of the ele-
ments in AutAT, could solve this problem since most users are familiar with
web-pages. The persons we interviewed were Norwegian, and therefore not
native English-speaking, which also can affected their understanding of the
terms used in AutAT. This problem could be solved by providing a User
Manual that explained each term used in AutAT and mapped them to the
corresponding element in a web-page. We could in addition have more in-
formative pop-up messages for the elements in the palette in AutAT. For
example, the message ”Creates a new TextArea” could be changed to ”Used
for inserting a large amount of text in a form”.

States were difficult to understand for the subjects since they did not have
anything definite to relate to it. Our subjects were not familiar with other
software diagrams, such as State- and Activity diagrams [40] that are used
to describe the behavior of a software system. However, our subjects under-
stood States after a thorough explanation with examples. Subjects stated
that they would prefer modelling web-pages instead of States. Modelling
pages would result in that users must understand Ajax and JavaScript to
know if a page is reloaded or if it is only dynamically changed, without the
need for reloading the whole page. This is avoided with States, which is
crucial for non-technical users to enable them to use AutAT for modelling
dynamic behavior correctly.

71

System Development CHAPTER 8. EVALUATION AND DISCUSSION

The non-technical subjects interviewed, thought it was difficult to under-
stand AutAT in the beginning of the test session. However, all the subjects
were able to create test in AutAT during the test session. This shows that
AutAT is easy to learn, which were also confirmed by the majority of the
subjects.

A functionality that increased the usability of AutAT, was the ease of chang-
ing the modelled tests, even if the Property-Editor was confusing for some
of the subjects. We did not explain the Property-Editor to the subjects,
and they had therefore no qualifications to understand it. Users are able
to create tests in AutAT without using the Property-Editor because it is
used to specify additional properties to elements, than properties that can
be defined in the general Editor.

As a summary the test-results show that the subjects needed proper training
before they could use AutAT, but it was easy to learn. There are some
improvements that can be implemented to increase the usability for non-
technical users. However, the test-results indicates that AutAT can be used
by non-technical users.

8.2.2 Usability for developers

All the developers interviewed meant that the usability of AutAT was good.
This because they did not have problems with understanding the concepts
or creating tests. The names on the elements used in AutAT were familiar
to the developers, and the graphical user interface was well arranged. In
addition, the drag-and-drop feature enabled the developer to quickly add
elements to a test. For these reasons, developers could efficiently create tests
when using AutAT. These results indicates that the usability of AutAT for
the interviewed developers, is good.

8.3 Is using AutAT designing the application?

A project manager stated that a reason for why AutAT could not be used
by customers, was because a web-application was designed when creating
tests for it in AutAT. If this is the case, AutAT should not be used by cus-
tomers since developers have more knowledge about design. There are two
issues when discussing if using AutAT implies designing the web-application.
First, using AutAT can be seen as design since a user selects which elements
that the web-application will consist of. Second, when a user have added
i.e. a context to the AutAT-test, the application must be implemented with
Div-tags because the Watir exporter creates tests based on that assumption.

An argument for why using AutAT implies designing the application, was
that the user of AutAT decides the functionality on each web-page in the

72

CHAPTER 8. EVALUATION AND DISCUSSION System Development

web-application. However, it is only possible to model states and not web-
pages in AutAT. A State in AutAT is mapped to a state in the web-
application that is developed. When a user models states in AutAT, he
decides the functionality in the corresponding state in the web-application,
i.e. which actions that can be performed. It is the developers that decides
which web-page that will contain the State, as well as the UserActions-
transitions from that state.

If a user wants to test that a text in a web-application can be changed from
English to Norwegian, he must decide how to enable this action. This can
in example be done by pressing a button named ”Norwegian”, or having the
text ”Norwegian” with an ”onClick”-event attached to it. Both can be mod-
elled in AutAT. However, the user must decide which option he think is best
for his application, which can be seen as designing the application.

A project manager said that customers would try to decide the layout of the
web-application when using AutAT since the visual content on a web-page is
important for customers. It is not possible in AutAT to decide the location
of elements in the browser, nor how each web-page in the web-application
will appear. This can be confusing for customers. To solve this problem, it
was suggested that the concepts in AutAT where changed so that the user
associates a test in AutAT with the workflow of an application. We do not
know if this is a good suggestion. However, we believe that customers un-
derstand that they shall not create the layout of the application, after they
have learned how to use AutAT.

AutAT puts restrictions on how a web-application can be implemented. This
because an element in AutAT does not always map to an element in HTML.
For example, a texfield in AutAT can be implemented with a textfield-tag
in HTML. A context however, as discussed in 6.2.3, can be implemented
with several tags such as Div, thead, P, Span, etc. The Div-tag is the most
general tag and was therefore selected to be used to represent contexts in
AutAT, when writing the Watir exporter. This means that AutAT restricts
the developers to use Div-tags for implementing contexts if the tests shall
run without errors. The restriction can be avoided by adding more specified
elements to AutAT, such as tables and paragraphs. However, this will in-
crease the number of necessary design decisions for customers, when creating
tests in AutAT.

Another example where AutAT elements does not map to elements in HTML,
is when custom-made HTML-elements are created and used in a web-application.
This shows that AutAT puts restrictions on how a web-application can be
implemented, and therefore can be seen as designing the application code.
In example, if a customer had used AutAT to model an application, custom-
made elements could not be used to develop the application. In the test

73

System Development CHAPTER 8. EVALUATION AND DISCUSSION

session it was said that custom-made elements in HTML are not common.
AutAT is not meant to be used in all projects, and we therefore believe that
AutAT will be used even if it cannot create tests for custom-made HTML-
elements.

We have shown several arguments for why using AutAT can be seen as
designing web-applications. The most important reason is because the user
of AutAT must decide how a functionality should be implemented, i.e. with
a button or ”on-click”-event. However, the user cannot specify the layout
or where elements are placed in a web-page. We conclude that a user of
AutAT partly designs a web-page when using AutAT, but we still believe
that AutAT can be used by customers.

8.4 The usefulness of AutAT for customers

Test-results show that there are several advantages for customers when us-
ing AutAT. The main advantage is that it enables customers to create au-
tomated acceptance tests, which were seen as useful by all project managers
in the test session. However, the test-results also indicates that customers
will not take AutAT into use, because creating tests with AutAT is seen as
time-consuming for customers when it is performed early in the development
process. Customers’ requirements often change during development, which
results in updates and changes in the application, as well as the automated
tests. The results from the assessment show that it is not common to change
the elements in the graphical user interface (GUI) of a web-application, but
only their location and visible names in the browser. Such changes do not
require updating tests in AutAT. In addition, if changes are required, the
results from the usability testing shows that changing tests in AutAT is easy.
For these reasons, we do not believe that the effort used on updating AutAT-
tests are too significant for the tool to be taken into use.

The results from researching state-of-the-practice of testing, shows that cus-
tomers traditionally perform acceptance testing manually, by clicking on
links, buttons, etc., which gives them an impression of how easy the web-
application is to use. However, this impression is provided by using the
application once, if the graphical user interface has not been significantly
changed. Significantly changing the GUI of an web-application, is not per-
formed often according to the test-results. Automated acceptance tests can
not provide customers with information about how easy it is to use a web-
application, which was another reason for why the project managers thought
customers would not take AutAT into use. We do not mean that usability
testing should not be performed by customers. However, we believe that the
effort used on usability testing and creating automated tests in AutAT, is
less that the effort gained by using automated tests, especially when using
Test-Driven Development (TDD). This because when web-applications are

74

CHAPTER 8. EVALUATION AND DISCUSSION System Development

developed in several modules or iterations, which is the case in TDD, the
test-results show that a substantial amount of testing is needed.

Even if customers are critical to AutAT, most project managers believe that
customers will benefit from using AutAT since automated tests can be run
often (also during development) to make sure that the whole web-application
still works correctly after changes in the application code. Testing the whole
application instead of the most important parts, increases the confidence in
the application. However, most project managers did not believe that it
would be beneficial for customers to create automated acceptance tests for
the whole web-application. Their general opinion was that around 70/80
percent of the application could be tested with automated acceptance tests.
A higher percent would not be beneficial due to the costs of creating and
updating the tests.

Based on the test-results, we believe that it would be useful for customers
to use AutAT to create automated acceptance tests for web-applications.
However, we also believe that AutAT will not be taken into use by customers
in the near future. This because the test-results indicates that customers are
not convinced that they will benefit from using automated acceptance tests.

8.5 The usefulness of AutAT for developers

The test-results indicate that there are different opinions on the usefulness
of AutAT for developers, even if the usability of AutAT was good and al-
lowed developers to efficiently create automated tests. Developers that not
commonly used automated test frameworks, saw AutAT as an advantage be-
cause it enabled them to create automated tests without learning a new test
framework. AutAT-tests were also seen as easy to present to non-technical
persons. However, this would be more valuable if AutAT had provided ad-
ditional test information, such as test coverage of application code.

Companies that did not use automated system- and acceptance tests in their
projects, had in general a different opinion on the usefulness of AutAT than
companies that used such tests. Companies that commonly used automated
tests were sceptical to if test-scripts could be created more efficiently with
AutAT than by writing them manually, even if AutAT enabled them to
create test-scripts without spelling errors. Developers in these companies
already used a test framework to create automated system tests, which they
though was adequate. Companies that did not use automated system- and
acceptance tests in their projects, meant that AutAT would be useful for
developers. This because AutAT enabled them to create automated tests
without learning the syntax for how create tests in other test-frameworks.

The test-results show that AutAT could be used to test a medium-complex

75

System Development CHAPTER 8. EVALUATION AND DISCUSSION

test-specification document in a company that do not commonly use auto-
mated system- and acceptance tests in their projects. The tests that were
created, could not cover the whole application since AutAT lacks function-
ality for testing lists. However, the project manager still believed that au-
tomated tests created with AutAT would be valuable in their development
projects. This because common tests often contained inserting values into
forms, and checking that elements and text are represented correctly in the
browser, which is time-consuming to test manually. We therefore believe
that this test specification is similar to what is developed in common web-
application development projects. For this reason we think that AutAT can
be useful for developers in other companies that develop web-applications.

8.6 Generalization and recommended use of AutAT

We have evaluated the usability of AutAT as sufficient for non-technical
users. The subjects showed during the test session that they understood the
concept of State and UserActions-transition, by modelling tests in AutAT.
This shows that the results is not based on that the subjects were ”nice”,
which we identified as a threat in section 7.4. There is also a threat to
the generalization of our test-results that the subjects do not represent cus-
tomers of software development projects. However, the probability of that
the subjects have more technical knowledge about i.e. States, than typical
customers, is small. Evaluation shows that there are several reasons for why
AutAT is seen as useful for customers. Evaluation also shows that some
design decisions need to be taken when creating tests with AutAT, but that
the tool can still be used by customers. We believe that AutAT presents a
challenge for customers, and that they therefore will not take it into use. For
customers it can i.e. be a challenge to install AutAT in Eclipse. In addition,
it is a challenge for customers to become confident with using automated
tests. For these reasons, we believe that customers will most likely not take
AutAT into use.

For the interviewed developers, the usability of AutAT is evaluated as good.
In addition, there are several advantages with AutAT that can be useful for
developers. We do not believe that the threat identified as; developers pro-
viding positive answers to be ”nice”, will affect the generalization of the us-
ability and usefulness to most developers. However, it might have influenced
the answers concerning the usefulness of AutAT. We believe that AutAT
will not be taken into use by developers because there were uncertainties
about the disadvantages with AutAT, and because developers in general do
not have problems with learning how to create test scripts. Further tests of
AutAT can assess if the possible disadvantages will affect the usefulness of
AutAT for developers.

The results from testing indicates that it is an advantage to use AutAT

76

CHAPTER 8. EVALUATION AND DISCUSSION System Development

in cooperation between customers and developers. AutAT can then be used
during the Requirement specification phase, for example in a workshop where
the workflow and user-interactions for an application, can be modelled with
tests in AutAT. When this phase is finished, both the customer and devel-
opers have automated tests that they can use for testing the application
during development. In addition, the customers do not need to create a full
requirements specification in the process, because the AutAT-tests represent
the main functionality of the application.

An advantage when using AutAT-tests as a part of the Requirement spec-
ification document, is that the developers cannot skip reading any of the
Requirements. This because if Requirements are written as tests, it will re-
sult in that a test fails if the corresponding functionality is not implemented.
Another advantage when using AutAT, is that the tests can be used as docu-
mentation for the implemented functionality. Since automated tests are run
often and must run without errors, they must always be updated. Hence,
the documentation is always up-to-date.

The test results show that the best use of AutAT is when it is used in
cooperation between developers and customers. This makes the development
process more efficient for both developers and customers, by i.e. limiting the
effort used on creating and reading a large Requirement specification. This
process enables, in addition, the developer to advise the customer when it
comes to issues that concern design of the application. We believe that
customers are more likely to take AutAT into use if they could do this in
cooperation with a developer since the technical challenge of using a new
tool is decreased.

77

System Development CHAPTER 9. CONCLUSION

Chapter 9

Conclusion

We have in this thesis created an extension of AutAT, which makes a user
able to create automated acceptance tests for common dynamic web-applications.
Common dynamic web-applications do not include applications that are cre-
ated with i.e. custom-made HTML elements. Our goal was to create a tool
that was easy to use for non-technical users, and make acceptance testing
of dynamic web-pages simpler and more efficient. We performed tests with
non-technical users, to see if AutAT was easy to use. In addition, we per-
formed interviews in five companies in Trondheim and Oslo, to investigate if
AutAT could be used by customers in their development projects. We also
interviewed software developers familiar with Watir, to investigate if AutAT
enables developers to create Watir test scripts more efficiently.

In this new version of AutAT, dynamic functionality in web-applications is
modelled with states. We have shown that the State-concept can be used
to model common dynamic web-application implemented with Ajax- and
JavaScript. However, state-events are not supported, but we believe that
this will not affect the usefulness of AutAT. The State-concept allows users
to specify functionality without deciding if it must be implemented with
Ajax, JavaScript or static HTML. In addition, it allows a user to easily
model user-interactions with the web-application.

Test results show that the usability of AutAT is sufficient for customers to
use the tool with proper training. In addition, that there are advantages for
customers when using AutAT to model automated acceptance tests. How-
ever, customers can be skeptical to use automated tests and that they usually
do not have time to create them. Most customers also preferred to perform
acceptance tests manually since this gives them an impression of how easy
the application is to use. We therefore conclude that AutAT can be use-
ful for customers, but that they will not take it into use before automated
acceptance tests, and other tools to create automated acceptance tests, are
more commonly used among customers.

78

CHAPTER 9. CONCLUSION System Development

Developers have a technical background, and it is therefore easier for them
to write automated test-scripts manually. Tests results show that develop-
ers are concerned that AutAT lacks important functionality to be used for
testing their web-applications. In addition, they were not convinced that
test-scripts was created more efficiently in AutAT than written manually.
These issues need to be further researched before we can conclude whether
AutAT is useful for developers or not.

Based on the evaluation, we conclude that AutAT is most useful when used in
cooperation between developers and customers, in i.e. the specification phase
of a development project. The design and requirements of an application can
be decided in a workshop with developers and customers. In this process they
could use AutAT to model the requirements by modelling the workflow and
user-interactions with the application. When this process is finished, the
developers and customers would have automated acceptance tests that can
be used during development. After AutAT is used to model requirements in
cooperation with developers, it is more likely that customers use AutAT to
i.e. update tests to specify changes, model user actions that have resulted in
exceptions, etc. For these reasons we conclude that AutAT can contribute
to the development process of dynamic web-applications.

79

System Development CHAPTER 10. FURTHER WORK

Chapter 10

Further Work

The scope of this master thesis did not include testing AutAT in a real soft-
ware development project. The conclusion is thus based on testing AutAT
in a smaller context. To increase the credibility of our conclusions, AutAT
needs to be tested in a real project.

In the new version of AutAT, it is not possible to test contexts that are nested
since it is not supported in the Watir-exporter, see section 6.2. A new ver-
sion of Watir that supports xPath expressions is under development. When
that version is released, the exporter should be implemented to also support
testing nested contexts. An exporter could also be created to run tests in the
AutAT-console, which provides visual feedback showing if a test-step in the
test has failed or succeeded. This will make the usability of AutAT better
for non-technical users.

A visual presentation of how the elements in AutAT look in an actual web-
page can be added to increase the usability of AutAT for customers, see
section 8.2.1. This could be done i.e. by showing the visual presentation of
a web-element when a user selects the corresponding element in AutAT, or
the visual presentation of all web-elements in a State when it is marked by
the user, etc. Creating such a visual representation can be an improvement
of AutAT, which is possible further work.

As discussed in section 8.5, AutAT would have been more useful for devel-
opers if it provided feedback about test-coverage after the execution of the
AutAT tests. Useful information could be which lines of code that have been
executed during testing. Such information could be provided by i.e. inte-
grating AutAT with other development tools. We therefore recommend for
further work, to investigate the possibility for enabling AutAT to provide
test execution feedback.

As a result of the asynchronous communication used in Ajax, web-pages

80

CHAPTER 10. FURTHER WORK System Development

can dynamically change without user interaction, see section 8.1. This is not
supported in this version of AutAT. More research is necessary to understand
how this feature is used in web-applications. This to create a concept that
can model events not triggered by a user, without requiring that users need
technical knowledge about servers, or the communication between server and
client-application. In addition, it is necessary to study test frameworks that
can be used in an exporter, to create test-scripts for this feature.

81

System Development APPENDIX A. COMPANIES

Appendix A

Companies

We have interviewed project managers in five companies in Trondheim and
Oslo. The questions asked in the interviews are presented in section A.1,
and the answers and main opinions from the interviews are summarized for
each company.

A.1 Questions

These questions mainly concerns projects that uses Test-Driven Develop-
ment (TDD), and develops web-applications that can be tested with Watir.

These are the general questions asked about such a project in the company:

How is testing performed in the project?

Is TDD used in the project?
Why/Why not?

Do you user test-script to run automated tests in the project?

Do you use a tool for writing such automated tests?
Why/Why not?

How are acceptance tests performed by customers?

• Are automated test-script created i.e. in Watir, etc., used?

• When in the development process are acceptance tests created?

• Who writes the acceptance tests? The developers or the customsers?

82

APPENDIX A. COMPANIES System Development

A.2 Bekk

Bekk1 is a Norwegian consultant-company that delivers development- and
consulting-services within three areas: Technology, management and design.
Company Details:

Representative: Jan Thoresen

Location: Oslo

Employees: ca 130

In a common web-application project in Bekk, the project team tries to run
test-driven development (TDD) to the ability that they find is best. They
do not run it as “in theory”, because it is a distance between best in the-
ory and what is possible in practice. When using TDD, an ambition for
them is to write acceptance tests and acceptance criteria before starting
writing code and to write unit tests before writing the correlating code. A
web-project with TDD, usually have short development iterations. In Bekk
these iterations are based on user stories, proposed by developers based on
a requirements specification. For each iteration the customer decides which
user story(ies) should be implemented. Then acceptance tests are written to
cover the user story(ies), and when the system meats the acceptance criteria
the customer approves that iteration. Since a customer only approves some
of the functionality in the system in each iteration, regression testing is very
important. The developers are constantly adding user stories to the system,
and every part needs to function together as a whole system. Therefore is
regression testing performed after each new functionality is added.

Developers in Bekk run acceptance tests before delivering an iteration to the
customer. These acceptance tests are automatic and are written in a testing
tool called Selenium. It is a wish that the customer also should use Selenium
to write acceptance test, but it has not been time enough to teach them the
tool, yet. Therefore is new functionality after one iteration, demonstrated to
the customer. When the whole system has been implemented the customer
runs a formal acceptance test. This acceptance test is based on how a user
can work with the system, and is written in text in a word document. The
formal acceptance test is performed manually by the customer, which goes
through the written text and performs the tasks on the document.

A.3 Proxycom

Proxycom2 is a IT-consulting company that sells software- services and solu-
tions to private and public sector. They use several platforms, technologies,

1http://www.Bekk.no/
2http://www.proxycom.no/

83

System Development APPENDIX A. COMPANIES

and programming lanuages, such as Windows, Linux, IBM / CICS, Web,
PDA, SMS, ASP, J2EE, Microsoft .NET, C, C++, C#, VB, Java, Cobol,
Fortran, Prolog og Lisp. Most of their software development projects are
web-based.
Company Details:

Representative: Trond Johansen

Location: Trondheim

Employees: 10

Testing in a common project in Proxycom, includes unit testing of modules,
integration testing, system testing against the Requirement specification,
user evaluation, and acceptance/approval tests. They have been trying to
find a tool for creating automated system tests. This because automated
tests can be run and test the whole system “at night”, when no one is work-
ing on it. In addition, automated tests can easily be run to discover errors
in the whole system resulting from changes in a module.

Project teams in Proxycom had evaluated several tools. Among these was
Rational Robots evaluated as the best, and it was tested on a system de-
velopment project. The Rational Robot tool has a capture-replay function
which they used to create tests. The tool also enabled the user to program
test scripts, but this was not used. They thought, however, that it was not
efficient to use the capture-replay tool to create tests. They highlighted that
a disadvantage with the tool was that it was sensitive for changes in names
and changes in where elements were placed on a web-page. In addition, it
put a restriction on the test-data database to contain the same test-data
each time the test was run.

Johansen stated that the customer is responsible for the acceptance tests or
the approval tests as he called it. The customer however, sometimes used the
system tests and the test data used for running tests when the system was
developed. The customers of Proxycom usually performed testing manually
by going through the written test specifications.

A.4 Kantega

Kantega3 is a Norwegian IT-consulting company with competence within
system development, integration and management. Their employees de-
sign and develop software systems within banking and financial-, industrial-,
trade- and public sector.

Company Details:
3http://www.kantega.no/

84

APPENDIX A. COMPANIES System Development

Representative: Skule Johansen

Location: Oslo and Trondheim

Employees: 55

Software development projects in the Kantega, starts with a Requirements
specification, and Use Cases based on these requirements. To test the ap-
plication, the company performs unit tests, walk-throughs of code, system
tests, technical tests, regression tests and acceptance tests. These tests are
usually written after the source code is finished. However, test-cases can be
written in the start of projects, but they usually have to be changed because
of changes in the applications. Kantega does not use Test Driven Develop-
ment (TDD), because it is difficult to integrate into the company.

Developers in Kantega write system tests to test the systems normal work-
path as well as, exceptions from that path. The system tests are performed
by the developers since they concern testing the whole system, including the
exceptions that customers are not interested in. The acceptance tests are
performed with the customers, as well as with members of the project team.
The acceptance tests include functionality tests and non-functionality tests
of the system as a whole. Most of these tests are performed manually to
cover more of the application than if performed automatically. In addition,
in the acceptance tests session, the customer goes through the test reports
from other tests such as system tests.

Some acceptance tests that test the functionality of the system are automat-
ically performed. If the company uses automatically tests, there is also a
written description of the tests. This way, it is possible for others to ver-
ify and approve the tests. The company has tried different tools to write
automatically runned test, such as LoadRunner, QuickTestPro and Open
STA. LoadRunner was used to automate functionality tests. QuickTestPro
was used less often and it tested that web-pages appear as expected. Open
STA was easy to learn, and provided good test-results that gave information
about testdata-errors or system-errors. The project manager in Kantega
thinks that automatic tests offers better testing than when a person per-
form testing by clicking on in the browser. However, they are not used in
the company, because they require more maintenance and therefore become
more expensive than manually testing. An experience in the company is that
the interest in tools for writing automated tests lies with only one man. He
learns how to use the tool, but no one is there to acquire his knowledge.

85

System Development APPENDIX A. COMPANIES

A.5 Fundator

Fundator4 is a consulting company in Trondheim, that was formerly a part
of EDB Business Consulting in Trondheim. They deliver IT-solutions and
carries out consultant-services within the areas of system development and
system integration.

Company Details:

Representative: Knut Bliks̊as

Location: Trondheim

Employees: 19

Fundator does not use Test-Driven Development (TDD). Some tests can be
written before code, but this is never the main goal because of the lack of
knowledge early in a project. However, Knut Bliks̊as states that it is easier
to create tests early in a development project at the browser level, because
these can be drawn early in the process with the customer, in comparison
to i.e. unit tests. Regression testing is an important activity in the devel-
opment process in the company, because their experience is that results are
seldom correct the first time. If developers have automated regression tests,
i.e. acceptance tests, these could run continually during development and
verify that there were no errors in the GUI. The company uses tools for unit-
testing that builds and runs the tests both automatically and manually. The
tools often used for unit-testing are JUnit, NUnit and CPPUnit. Automat-
ically tests are not used for testing the GUI on web applications, since they
have not found a good enough tool to create such tests. Therefore, much
time spent is testing web-pages and functionality by clicking on web-pages.

Acceptance tests are not run automatically. A development team formulates
a test document based on the customer requirements, which contains steps
and expected results of the tests. The document is approved by the customer.
If the system is large, developers help the customer when executing the
acceptance tests. However, usually with most systems it is the customer
that executes the acceptance test. The customer often wants to test the
system by clicking on the pages, which gives him a feeling of how easy the
system is to use. For this reason, the acceptance tests are often performed
manually by the customer. In Fundator, automatically runned test are not
created because it takes to long to write them. However, they find that an
advantage with automated tests is they can be run often. The code is never
perfect and, hence, running more tests can result in finding more errors. In
addition, frequent changes in the GUI and functionality are reasons to run
automatically tests. It is not obvious that a system works after changing

4http://www.fundator.no/

86

APPENDIX A. COMPANIES System Development

the source code. Running an automated test is, therefore, more safe than
relying on that the code works.

A.6 Abeo

Abeo5 is specialized in deliveries within the areas of service-oriented archi-
tecture, identity-handling and trading-solutions.

Representative: Odd Martin Solem

Location: Trondheim and Oslo

Employees: ca 85

The company only uses Test Driven Development (TDD) in some of its
projects, depending on who is project leader, project architect and which
organization they work for. Solem uses TDD on the project where he cur-
rently is the project manager. However, TDD is only used on unit and
integration tests. The project has focus on running unit tests, integration
tests, system tests and smoke tests6 while they are developing. They use
NUnit to run unit tests on the source code. For system tests, they use a
tool called TargetProcess. Their goal is to run these tests without human
interaction. In this company, they believe that automated tests are more
useful for developers when verifying functionality than for customers.

In Abeo’s projects, the acceptance tests are often written after the system
is delivered. The tests are not written by the customers, but by the project-
team. It is desirable that customers could write the acceptance test, but it
is a far step before that is possible. Customers relate to what they see in
a GUI, but most test-tools does not have any relationship to a GUI. The
acceptance tests are performed by a customer and the company only offers
support for the tests. This organization is based on documents when testing,
therefore the acceptance tests are run manually.

5http://www.abeo.no/
6Smoke test are run to tests the system as a whole and its functionality, after it has

been deployed onto virtual servers.

87

System Development APPENDIX B. DOCUMENTATION

Appendix B

Documentation

This documentation is taken from the master thesis [30], and describes how
to install AutAT in Eclipse and how to create a start point of a test.

88

APPENDIX B. DOCUMENTATION System Development

89

System Development APPENDIX B. DOCUMENTATION

90

APPENDIX B. DOCUMENTATION System Development

91

System Development APPENDIX B. DOCUMENTATION

92

APPENDIX B. DOCUMENTATION System Development

93

System Development APPENDIX C. NON-TECHNINCAL USERS

Appendix C

Non-Technincal Users

This chapter will describe the information presented to non-technical user
under the testing session. The information is written in Norwegian, because
the tests were performed in Norwegian.

C.1 Introduksjon til testing

Som hovedoppgave har vi utvidet er verktøy, ved navn AutAT, brukt til au-
tomatisk akseptansetesting. Akseptansetesting blir presentert som et case
og deretter blir verktøyet presenter ved hjelp av et eksempel.

Case: NTNU

Det Norsk Teknisk Naturvitenskapelig Universitetet (NTNU) ønsker seg en
ny nettside da den gamle mangler litt funksjonalitet og er vanskelig å bruke.
De lager en kravspesifikasjon der det st̊ar blandt annet alt hva en bruker
skal kunne gjøre p̊a siden. Siden det finnes s̊a mange smarte it-studenter p̊a
NTNU, gir NTNU jobben med å lage siden til to it-studenter. It-studentene
er dermed utviklerne av siden, mens NTNU er kunden. Etter at it-studenen
har laget web-siden og testet at funksjonaliteten virker, blir siden levert til
kunden (NTNU). Det er n̊a kunden sitt ansvar å teste at en bruker faktisk
kan gjøre alt de definerte i kravspesifikasjonen at en bruker skulle kunne
gjøre p̊a web-siden. En slik test kalles en akseptanse test. Siden kunden er
den som er ansvarlig for akseptanse testen, er det viktig at kunden kan lage
testen.

Det er i hovedsak to m̊ater kunden kan teste siden p̊a:

1: Han kan skrive ned hva en bruker skal kunne se og gjøre p̊a siden til en-
hver tid. I tillegg spesifisere hvilke knapper, linker, felter, tekster, osv., som
m̊a være til stede og trykkes p̊a/fylles ut for å teste at brukeren faktisk skal
kunne gjøre det som er ment. Deretter kan kunden manuelt g̊a igjennom
siden og teste at den ser ut slik som de ønsker.

94

APPENDIX C. NON-TECHNINCAL USERS System Development

2: Kunden kan lage, ved å programmere, et test script som gjør akkurat de
samme handlingene som han ville ha gjort manuelt, og til enhver tid sjekke
at han ser det han skal se p̊a siden. Dette kalles en automatisk test og er
mye enklere dersom testen m̊a utføres flere ganger.

Ideen med AutAT er at at kunden skal kunne lage automatiske test script
ved hjelp av bokser og piler. Dermed trenger ikke kunden ha programmer-
ingskunnskap for å lage automatiske tester.

AutAT
AutAT er et verktøy som kan brukes til å modellere dynamiske internettsider,
og endringer i internettsidene som et resultat av brukerhandlinger. Innholdet
i en dynamisk internettside kan endres, uten at en bruker m̊a laste inn hele
siden p̊a nytt. Dermed n̊ar for eksempel en bruker skriver inn en bokstav
i et tekstfelt, kan en nedtrekksboks med forslag til nettsider dukke opp p̊a
siden uten at den lastes inn p̊a nytt. Andre brukerhandlinger som kan fære
til en dynamisk endring p̊a siden er: klikke p̊a en link, dra et bilde fra en
plass p̊a siden til en annen plass. P̊a grunn av dette dynamiske innholdet
p̊a en nettside som kan forandres uten at hele siden oppdateres, holder det
ikke å modellere nettsider. Isteden kan man snakke om ”tilstander”, hvor en
tilstand er et ”bilde” av en nettside i et bestemt tidspunkt.

Google Suggest er et eksempel p̊a en dynamisk side, som kan vises som et
eksempel p̊a hvordan en test kan modelleres i AutAT. For å vise AutAT og
eksempler i AutAT uten å m̊atte åpne programmet har vi laget film av tre
utførte eksempler i verktøyet. Disse filmene ligger p̊a en nettside1 for at de
skal være enkle å f̊a tilgang til.

N̊ar du skal lage en test i AutAT, m̊a et startpunkt for testen bestemmes.
Dette skrives inn idet testen lages. Eksempel 1: Eksempel p̊a hvordan bruk-
ergrensesnittet til AutAT ser ut, og hvordan et nytt AutAT prosjekt med en
test kan åpnes. I dette eksempelet, er startpunktet addressen til Google Sug-
gest siden. N̊ar startpunktet er gitt, åpnes en tom test i Editoren i Eclipse,
kun startpunktet synes. Den første tilstanden som legges til blir koblet til
startpunktet, uten at en bruker trenger å lage en kobling mellom disse.

Eksempel 2: Eksempel p̊a modellering av Google Suggest, hvor du starter
med å legge til en ny tilstand, med tittelen ”Google Suggest”. Deretter kan
du legge til et tekstfelt med teksten ”q” og en knapp som kalles ”btnG”. N̊ar
denne tilstanden er laget, kan en ny tilstand legges til i testen. Den neste
tilstanden legges til med tittelen, ”Google Suggest New”. I denne tilstanden
skal det ogs̊a være et tekstefelt med teksten ”q” og knappen ”btnG”. N̊ar

1http://www.idi.ntnu.no/ stinelil/

95

System Development APPENDIX C. NON-TECHNINCAL USERS

den andre tilstanden er lagt til kan forbindelsen mellom den første og den
andre tilstanden opprettes ved hjelp av en userActions. I en userActions, ele-
mentene fra første tilstanden kan bli valgt i en nedtrekksliste. N̊ar et element
er valgt, kan du legge til en ”action” og en ”input” til det elementet. Hvis du
ønsker å legge til flere elementer med ”input” i en userActions, er dette mulig
ved å trykke p̊a en ”Add New User Input”-knapp. Deretter kommer det opp
en ny nedtrekksliste under det første elementet i userActions-lista. I dette
eksempelet, velger du ”q” fra nedtrekkslista, og gir det verdiene ”inserText” i
”action” og ”Ruby” i ”input”. N̊ar input-verdiene i koblingen er valgt, g̊ar det
an å gjøre ferdig ”Google Suggest New”-tilstanden, ved å legge til teksten
”Ruby on rails”. Sluttresultatet og hvordan en test kjøres i AutAT, vises i
Eksempel 3. Vise andre noen eksempler p̊a dynamiske sider til testpersonen.

C.2 Oppgave som skal utføres

Oppgavene baserer seg p̊a NTNU-caset beskrevet ovenfor. Figur C.1 viser
hvilke skjermbilder som ønskes og hva som ønskes p̊a de, fra kunden. Skjerm-
bildene er nummerert for å vise rekkefølgen deres, gitt at en bruker gjør
handlinger p̊a siden. Oppgaven er å lage en test i AutAT som tester skjerm-
bildene. Det skal lages tilstandene til de forskjellige skjermbildene og user-
Actions mellom tilstandene. Oppgaven beskriver en mulig vei å g̊a for testen,
men det finnes ogs̊a andre veier. Det skal modellere minst en alternativ vei
til veien vist i figur C.1.

C.3 Spørsm̊al om AutAT

• Etter introduksjonen til AutAT, er det enkelt å forst̊a hva en tilstand
er i AutAT?

• Er det enkelt å forst̊a koblingen mellom tilstandene?

• Hva mener du om denne m̊aten å lage tester for de handlinger du ønsker
å kunne utføre p̊a en nettside? (Fordeler, ulemper, muligheter)

• Hva synes du om AutAT? (Fordeler, ulemper, muligheter)

• Hva synes du om hvordan AutAT ser ut (perspektivet)? (Fordeler,
ulemper, muligheter)

• Hva synes du om hvordan du kan gjøre endringer i testen i AutAT?
(Fordeler, ulemper, muligheter)

96

APPENDIX C. NON-TECHNINCAL USERS System Development

Figure C.1: NTNU Case

97

System DevelopmentAPPENDIX D. DEVELOPERS AND PROJECT MANAGERS

Appendix D

Developers and Project
Managers

This chapter will describe the information presented to project managers
and developers during the test and interviews. These test and interviews
were not a formal testing session, but more a conversation about AutAT.
For this reason, we have not any actual comments to present.

The information is written in Norwegian, because the tests were performed
in Norwegian.

D.1 Introduksjon til AutAT

AutAT er et GUI-basert verktøy som kan brukes til å modellere internettsider
og endringer i internettsider som et resultat fra modellerte bruker-input.
Ut fra denne modellen kan AutAT generere test-script til eksisterende test-
verktøy som f.eks. Watir. Watir-scripts skrives i “Ruby” for å automatisere
funksjonell testing av nettsider. AutAT kan ses p̊a som et gui-basert verktøy
som ligger som et lag p̊a toppen av eksisterende test-verktøy for å unng̊a at
brukeren m̊a ha programmeringskunnskap.

AutAT ble opprinnelig laget av Stein K̊are Skytteren og Trond øvstetun i
deres hovedoppgave v̊aren 2005, for å teste statiske nettsider. Vi har mod-
ifisert deres versjon av AutAT til å kunne modellere dynamiske nettsider
som inkluderer Ajax (Asynchronouse JavaScript and XML) og JavaScript.
Ajax er ikke en ny teknologi, men en ny m̊ate å bruke eksisterende teknologi
som XML, Cascading Style Sheet (CSS), Document Obejct Model (DOM)
og XMLHttpRequest object.

Ajax er en m̊ate å endre en nettside p̊a uten å laste inn hele siden p̊a nytt.
En Ajax-motor, laget i JavaScript, kommuniserer med serveren og henter
endringer p̊a siden samtidig som brukeren kan fortsette å kommunisere med

98

APPENDIX D. DEVELOPERS AND PROJECT MANAGERSSystem Development

nettsiden. N̊ar nettleseren mottar svaret fra serveren blir kun de nye ele-
mentene lastet inn i nettsiden. P̊a grunn av dette holder det ikke å modellere
nettsider. Isteden, kan man snakke om “tilstander”, hvor en tilstand er et
“snapshot” av en nettside i et bestemt tidspunkt. En brukerhandling som
fører til at en tilstand endres m̊a ogs̊a kunne modelleres.

For å vise AutAT og eksempler i AutAT uten å m̊atte åpne programmet har
vi laget film av tre utførte eksempler i verktøyet. Disse filmene ligger p̊a en
nettside1 for at de skal være enkle å f̊a tilgang til.

Eksempel 1: Eksempel p̊a hvordan brukergrensesnittet til AutAT ser ut, og
hvordan et nytt AutAT prosjekt med en test kan åpnes.

D.2 Eksempel p̊a modellering av Google Suggest

Google Suggest henter inn passende forslag til søkeord etterhvert som bruk-
eren fyller inn bokstaver i søkefeltet.

Eksempel 2: Eksempel p̊a modellering av Google Suggest.

P.S. Testen feiler p̊a å tittelen “Google” fordi den er lagt inn p̊a siden som
et bilde og ikke som tekst.

For å lage watir-tester høyreklikker man p̊a testen og velger “AutAT ->
Create Watir Tests”. Denne kjører ved å høyreklikke p̊a Ruby-fila og velge
“Open with -> System Editor” med Watir innstallert p̊a maskinen.

Eksempel 3: Eksempel p̊a hvordan man lager og kjører Watir tester.

D.3 Spørsm̊al brukervennlighet og bruk av AutAT stilt til utviklere:

• Er det enkelt å forst̊a hva en tilstand er i AutAT?

• Er det enkelt å forst̊a hva en “UserActions”-kobling er?

• Hva mener du om denne m̊aten å lage test-skript for nettsider? (Hva
er bra med denne m̊aten? Hva kunne vært bedre?)

• Ville du brukt AutAT? (Hvorfor/hvorfor ikke?)

D.4 Spørsm̊al om nytteverdien av AutAT stilt til prosjektledere:

• Hva mener du er bra med AutAT?

• Ser konseptene i AutAT ut som de setter tekniske/logiske begrensinger
i applikasjonen?

1http://www.idi.ntnu.no/ stinelil/

99

System DevelopmentAPPENDIX D. DEVELOPERS AND PROJECT MANAGERS

• Tror du at AutAT kunne bli brukt i ditt prosjekt? (Hvorfor/hvorfor
ikke?)

• Hvordan mener du at AutAT kan bli endret slik at det blir mer nyttig
verktøy?

• Tror du at AutAT kan brukes til å skrive akseptansetester som kan
brukes som en del av en kravspesifikasjon? (Hvorfor/hvorfor ikke?)

100

APPENDIX E. FEEDBACK System Development

Appendix E

Feedback

This chapter present the collected feedback during the testing session of
persons with non-technical background.

E.1 After the introduction to AutAT, was it easy to understand the
state concept in AutAT?

• It was difficult to learn by reading about the State concept.

• I needed the example, an explanation and ask questions, before I un-
derstood the state concept.

• It was not simple to understand the State-concept, because I mean
that you need an object to have a state.

• States were difficult, user actions were easier.

• The state term was not something tangible and hard to understand.

• I understood the State-concept after reading the introduction.

E.2 Is it easy to understand the connection between the states?

• I liked that it was possible to write the text in as input.

• It was hard to understand that a user could do several action in one
UserActions.

• The connection was easy to understand because it included actions I
perform on a real web-page.

• I understood the concept with the UserActions-transition fairly fast.

• Actions you can do on a web-page in a transition, easy.

• It was clever to be able to model several actions in one UserActions-
transition.

101

System Development APPENDIX E. FEEDBACK

E.3 What do you think about this way of creating test for the action
you wish to have on a web-page?

• I would have liked a clear picture of the of the web-page.

• I had a better view of functionality the resulting page.

• The test should be more related to an actual web-page in the tool.

• I missed word that I had heard before.

• I would not have used AutAT to create test for web-pages on my own.

E.4 What do you think about AutAT?

• Aspects were difficult to understand.

• It was easy to learn.

• I wanted to see the actual page, in addition to the test.

• It is not hard to use, even if I have only knowledge about using Word
and Excel.

• A test was easy to follow and it was easy to get an overview of the test.

E.5 What do you think about how AutAT looks?

• The palette was clear, and it was easy find what I was looking for.

• The information about the elements on the palette were inadequate,
for me to understand how to model tests in AutAT.

• I did not understand some of the words used in AutAT.

E.6 What do you think about the editing possibilities in AutAT?

• It was confusing to be able to edit at different places.

• What I missed to edit in the test, I could edit in the properties window.

• I created an UserActions-transition wrong, and I had to delete it and
create a new one to do changes.

• I would prefer to change the UserActions-transition directly in the
Editor.

• I did not use the Property Editor.

102

APPENDIX F. XML-SCHEMA FOR THE WATIR-EXPORTERSystem Development

Appendix F

XML-Schema for the
Watir-Exporter

Listing F.1: XML-Schema for the Watir exporter� �
1 <?xml version=’1.0’?>
2 <xs:schema xmlns:xs=’http: //www.w3.org /2001/ XMLSchema ’

targetNamespace=’http://autat.sourceforge.net’ xmlns=’
http://autat.sourceforge.net’ elementFormDefault=’
qualified ’>

3

4 <!--type for the mapping elements -->
5 <xs:complexType name=’mappingType ’>
6 <xs:attribute name=’id’ type=’xs:string ’ use=’required ’/>
7 <xs:attribute name=’name’ type=’xs:string ’ use=’required ’

/>
8 <xs:attribute name=’url’ type=’xs:string ’ use=’required ’/

>
9 </xs:complexType >

10

11 <!--type for the collection of mapping elements -->
12 <xs:element name=’urlMappings ’>
13 <xs:complexType >
14 <xs:sequence >
15 <xs:element name=’mapping ’ type=’mappingType ’ minOccurs=’

0’ maxOccurs=’unbounded ’/>
16 </xs:sequence >
17 </xs:complexType >
18 </xs:element >
19

20

21 <!--type for the startPoint -->
22 <xs:complexType name=’startPointType ’>
23 <xs:attribute name=’id’ type=’xs:string ’ use=’required ’/>
24 </xs:complexType >
25

26 <!--type for connectionPoint -->
27 <xs:complexType name=’connectionPointType ’>

103

System DevelopmentAPPENDIX F. XML-SCHEMA FOR THE WATIR-EXPORTER

28 <xs:sequence >
29 <xs:element name=’startPoint ’ type=’startPointType ’

minOccurs=’0’ maxOccurs=’1’/>
30 </xs:sequence >
31 </xs:complexType >
32

33 <!--type for link element:linkType -->
34 <xs:complexType name=’linkType ’>
35 <xs:simpleContent >
36 <xs:extension base=’xs:string ’>
37 <xs:attribute name=’not’ type=’xs:boolean ’/>
38 </xs:extension >
39 </xs:simpleContent >
40 </xs:complexType >
41

42 <!--type for text element:textType -->
43 <xs:complexType name=’textType ’>
44 <xs:simpleContent >
45 <xs:extension base=’xs:string ’>
46 <xs:attribute name=’not’ type=’xs:boolean ’/>
47 </xs:extension >
48 </xs:simpleContent >
49 </xs:complexType >
50

51 <!--type for form types:formFieldType -->
52 <xs:complexType name=’formFieldType ’>
53 <xs:attribute name=’id’ type=’xs:string ’/>
54 <xs:attribute name=’name’ type=’xs:string ’/>
55 <xs:attribute name=’type’ type=’xs:string ’/>
56 </xs:complexType >
57

58

59 <!--type for a list of elements:elementsType -->
60 <xs:complexType name=’elementsType ’>
61 <xs:choice minOccurs=’0’ maxOccurs=’unbounded ’>
62 <xs:element name=’link’ type=’linkType ’/>
63 <xs:element name=’text’ type=’textType ’/>
64 <xs:element name=’formElement ’ type=’formElementType ’/>
65 </xs:choice >
66 </xs:complexType >
67

68 <!--type for a single page:pageType -->
69 <xs:complexType name=’pageType ’>
70 <xs:sequence >
71 <xs:element name=’title’ type=’xs:string ’/>
72 <xs:element name=’elements ’ type=’elementsType ’/>
73 </xs:sequence >
74 <xs:attribute name=’id’ type=’xs:string ’ use=’required ’/>
75 <xs:attribute name=’xPos’ type=’xs:integer ’ use=’required

’/>
76 <xs:attribute name=’yPos’ type=’xs:integer ’ use=’required

’/>
77 </xs:complexType >

104

APPENDIX F. XML-SCHEMA FOR THE WATIR-EXPORTERSystem Development

78

79 <!--type for a list of pages:pagesType -->
80 <xs:complexType name=’pagesType ’>
81 <xs:sequence >
82 <xs:element name=’page’ type=’pageType ’ maxOccurs=’

unbounded ’/>
83 </xs:sequence >
84 </xs:complexType >
85

86 <!--type for a singleaspect:aspectType -->
87 <xs:complexType name=’aspectType ’>
88 <xs:sequence >
89 <xs:element name=’title’ type=’xs:string ’/>
90 <xs:element name=’elements ’ type=’elementsType ’/>
91 </xs:sequence >
92 <xs:attribute name=’id’ type=’xs:string ’ use=’required ’/>
93 <xs:attribute name=’xPos’ type=’xs:integer ’ use=’required

’/>
94 <xs:attribute name=’yPos’ type=’xs:integer ’ use=’required

’/>
95 </xs:complexType >
96

97 <!--type for a list of aspects:aspectsType -->
98 <xs:complexType name=’aspectsType ’>
99 <xs:sequence >

100 <xs:element name=’aspect ’ type=’aspectType ’ minOccurs=’0’
maxOccurs=’unbounded ’/>

101 </xs:sequence >
102 </xs:complexType >
103

104 <!--type for simpletransitions:simpleTransitionType -->
105 <xs:complexType name=’simpleTransitionType ’>
106 <xs:attribute name=’from’ type=’xs:string ’ use=’required ’

/>
107 <xs:attribute name=’to’ type=’xs:string ’ use=’required ’/>
108 </xs:complexType >
109

110 <!--type for user actions values -->
111 <xs:complexType name=’userActionValue ’>
112 <xs:attribute name=’id’ type=’xs:string ’ use=’required ’/>
113 <xs:attribute name=’action ’ type=’xs:string ’ use=’

required ’/>
114 <xs:attribute name=’input’ type=’xs:string ’/>
115 </xs:complexType >
116

117 <!--type for userActions transition:

UserActionsTransitionType -->
118 <xs:complexType name=’userActionsTransitionType ’>
119 <xs:choice eminOccurs=’0’ maxOccurs=’unbounded ’>
120 <xs:element name=’userAction ’ type=’userActionValue ’/>
121 </xs:choice >
122 <xs:attribute name=’from’ type=’xs:string ’ use=’required ’

/>

105

System DevelopmentAPPENDIX F. XML-SCHEMA FOR THE WATIR-EXPORTER

123 <xs:attribute name=’to’ type=’xs:string ’ use=’required ’/>
124 </xs:complexType >
125

126 <!--type for aspect transition:aspectTransitionType -->
127 <xs:complexType name=’aspectTransitionType ’>
128 <xs:attribute name=’from’ type=’xs:string ’ use=’required ’

/>
129 <xs:attribute name=’to’ type=’xs:string ’ use=’required ’/>
130 </xs:complexType >
131

132 <!--type for a list of transitions -->
133 <xs:complexType name=’transitionsType ’>
134 <xs:choice minOccurs=’0’ maxOccurs=’unbounded ’>
135 <xs:element name=’simpleTransition ’ type=’

simpleTransitionType ’/>
136 <xs:element name=’userActionsTransition ’ type=’

userActionsTransitionType ’/>
137 <xs:element name=’aspectTransition ’ type=’

aspectTransitionType ’/>
138 </xs:choice >
139 </xs:complexType >
140

141

142 <!--the test type ,base element in the test documents -->
143 <xs:element name=’test’>
144 <xs:complexType >
145 <xs:sequence >
146 <xs:element name=’description ’ type=’xs:string ’/>
147 <xs:element name=’connectionPoint ’ type=’

connectionPointType ’/>
148 <xs:element name=’pages’ type=’pagesType ’/>
149 <xs:element name=’aspects ’ type=’aspectsType ’/>
150 <xs:element name=’transitions ’ type=’transitionsType ’/>
151 </xs:sequence >
152

153 <xs:attribute name=’id’ type=’xs:string ’ use=’required ’/>
154 <xs:attribute name=’name’ type=’xs:string ’/>
155 </xs:complexType >
156 </xs:element >
157

158 </xs:schema >� �

106

BIBLIOGRAPHY System Development

Bibliography

[1] Canoo Engineering AG. Canoo webtes distribution site. http://
webtest.canoo.com. Visited:31.05.2006.

[2] Scott W. Ambler. Introduction to test drien development (tdd). http:
//www.agiledata.org/essays/tdd.html. Visited:19.04.2006.

[3] Anneliese A. Andrewa, Jeff Offoutt, and Roger T.Alexander. Testing
web applications by modeling with fsms. http://ise.gmu.edu/~ofut/
rsrch/papers/webtest.pdf.

[4] Joseph Bergin. Using htmlfixture. http://fitnesse.org/FitNesse.
FitNesse.HtmlFixture. Visited:04.06.2006.

[5] Dave Crane, Eric Pascarello, and Darren James. AJAX IN ACTION.
Manning Publications Co., 2006.

[6] Creotec. electronic business terms and definitions (glossary).
http://www.creotec.com/index.php?page=e-business_terms. Vis-
ited:11.06.2006.

[7] Cunningham and Cunningham. Fit: Framework for integrated test.
http://fit.c2.com/. Visited:28.04.2006.

[8] Darkforge. Jsunit and ajax don’t mix! http://books.slashdot.org/
article.pl?sid=06/03/01/1356241&from=rss. Visited:02.06.2006.

[9] DevGuru. Javascript. http://www.devguru.com/Technologies/
ecmascript/quickref/javascript_intro.html. Visited:09.06.2006.

[10] Ruby Forge. Support for xpath in watir. http://rubyforge.org/
cgi-bin/viewcvs.cgi/watir/doc/?root=wtr. 20.05.2006.

[11] Juliana Freire. Veriweb: Automatically testing dynamic web sites.
http://www2002.org/CDROM/alternate/654/. Visited:18.04.2006.

[12] Jesse James Garrett. Ajax: A new approach to web ap-
plications. http://www.adaptivepath.com/publications/essays/
archives/000385.php. Visited:14.02.2006.

107

http://webtest.canoo.com
http://webtest.canoo.com
http://www.agiledata.org/essays/tdd.html
http://www.agiledata.org/essays/tdd.html
http://ise.gmu.edu/~ofut/rsrch/papers/webtest.pdf
http://ise.gmu.edu/~ofut/rsrch/papers/webtest.pdf
http://fitnesse.org/FitNesse.FitNesse.HtmlFixture
http://fitnesse.org/FitNesse.FitNesse.HtmlFixture
http://www.creotec.com/index.php?page=e-business_terms
http://fit.c2.com/
http://books.slashdot.org/article.pl?sid=06/03/01/1356241&from=rss
http://books.slashdot.org/article.pl?sid=06/03/01/1356241&from=rss
http://www.devguru.com/Technologies/ecmascript/quickref/javascript_intro.html
http://www.devguru.com/Technologies/ecmascript/quickref/javascript_intro.html
http://rubyforge.org/cgi-bin/viewcvs.cgi/watir/doc/?root=wtr
http://rubyforge.org/cgi-bin/viewcvs.cgi/watir/doc/?root=wtr
http://www2002.org/CDROM/alternate/654/
http://www.adaptivepath.com/publications/essays/archives/000385.php
http://www.adaptivepath.com/publications/essays/archives/000385.php

System Development BIBLIOGRAPHY

[13] Grig Gheorghiu. Ajax testing with selenium using waitfor-
condition. http://agiletesting.blogspot.com/2006/03/
ajax-testing-with-selenium-using_21.html. Visited:31.05.2006.

[14] Grig Gheorghiu. Web app testing with python part 2: Sele-
nium and twisted. http://agiletesting.blogspot.com/2005/03/
web-app-testing-with-python-part-2.html. Visited:31.05.2006.

[15] Grig Gheorghiu. A look at selenium. BETTER SOFTWARE, October
2005.

[16] Unmesh Gundecha. Web application testing in ruby. www2002.org/
presentations/freire.pdf. Visited:18.04.2006.

[17] Mary Jean Harrold. Testing: a roadmap. In ICSE - Future of SE Track,
pages 61–72, 2000.

[18] Christian Hellsten. Automate acceptance tests with sele-
nium. http://www-128.ibm.com/developerworks/xml/library/
wa-selenium-ajax/index.html. Visited:31.05.2006.

[19] HTMLDog. Html tags. http://www.htmldog.com/reference/
htmltags/. Visited:23.05.2006.

[20] A. Russell Jones. Is dhtml dead? http://www.devx.com/DevX/
Article/16377, December 2001.

[21] Alexander Kellett. Automated website testing with java - httpunit
/ jwebunit. http://www.lunatech.com/archives/2005/11/30/
automated-website-testing-with-java-httpunit-jwebunit,
November 2005. Visited:12.06.2006.

[22] Jonathan Kohl and Paul Rogers. Watir works. http://www.kohl.ca/
articles/watir_works.pdf. Visited:18.04.2006.

[23] Sun Developers Network. Applets. http://java.sun.com/applets/.
Visited:07.03.2006.

[24] Ruby on Rails. Seleniumintegration. http://wiki.rubyonrails.com/
rails/pages/SeleniumIntegration. Visited:18.04.2006.

[25] Open. Selenium - functional testing framework for web applications.
http://www.openqa.org/selenium/index.html. Visited:31.05.2006.

[26] Bret Pettichord. element selection from pages/naive(?) watir ques-
tions. http://rubyforge.org/pipermail/wtr-general/2005-May/
001927.html. Visited:13.06.2006.

[27] Extreme Programming. Extreme programming: A gentle introduction.
http://www.extremeprogramming.org/. Visited:08.03.2006.

[28] Martin R. and Martin M. Fitnesse web site. http://www.fitnesse.
org. Visited:18.04.2006.

108

http://agiletesting.blogspot.com/2006/03/ajax-testing-with-selenium-using_21.html
http://agiletesting.blogspot.com/2006/03/ajax-testing-with-selenium-using_21.html
http://agiletesting.blogspot.com/2005/03/web-app-testing-with-python-part-2.html
http://agiletesting.blogspot.com/2005/03/web-app-testing-with-python-part-2.html
www2002.org/presentations/freire.pdf
www2002.org/presentations/freire.pdf
http://www-128.ibm.com/developerworks/xml/library/wa-selenium-ajax/index.html
http://www-128.ibm.com/developerworks/xml/library/wa-selenium-ajax/index.html
http://www.htmldog.com/reference/htmltags/
http://www.htmldog.com/reference/htmltags/
http://www.devx.com/DevX/Article/16377
http://www.devx.com/DevX/Article/16377
http://www.lunatech.com/archives/2005/11/30/automated-website-testing-with-java-httpunit-jwebunit
http://www.lunatech.com/archives/2005/11/30/automated-website-testing-with-java-httpunit-jwebunit
http://www.kohl.ca/articles/watir_works.pdf
http://www.kohl.ca/articles/watir_works.pdf
http://java.sun.com/applets/
http://wiki.rubyonrails.com/rails/pages/SeleniumIntegration
http://wiki.rubyonrails.com/rails/pages/SeleniumIntegration
http://www.openqa.org/selenium/index.html
http://rubyforge.org/pipermail/wtr-general/2005-May/001927.html
http://rubyforge.org/pipermail/wtr-general/2005-May/001927.html
http://www.extremeprogramming.org/
http://www.fitnesse.org
http://www.fitnesse.org

BIBLIOGRAPHY System Development

[29] Steve Skidmore. The v model. Professional Scheme Paper 2.1, pages
48–49, January 2006.

[30] Stein K̊are Skytteren and Trond Marius Øvstetun. Autat - an eclipse
plugin for automatic acceptance testing of web applications. Master’s
thesis, NTNU, 2005.

[31] SoruceForge. Jsunit. http://www.jsunit.net/. Visited:18.04.2006.

[32] SourceForge. What is jwebunit. http://jwebunit.sourceforge.net/.
Visited:18.04.2006.

[33] SourceForge.net. xunit - unit testing framework. http://sourceforge.
net/projects/xunit. Visited:13.06.2006.

[34] Ibma Supreme Tmunotein. Client-side and server-side
javascript. http://www.devarticles.com/c/a/JavaScript/
Client-side-and-Server-side-JavaScript/. Visited:13.02.2006.

[35] Hans Van Vliet. Software Engineering. John Wiley & Sons, Baffins
Lane, Chichester, second edition edition, 2002.

[36] W3schools. Full web building tutorials - all free. http://www.
w3schools.com/. Visited:13.03.2006.

[37] WebRef. Core javascript guide. http://www.webreference.com/
javascript/reference/core/index.html. Visited:13.02.2006.

[38] Webref. Dynamic web sites with xml, xslt and jsp. http://www.
webreference.com/xml/column37/. Visited:11.06.2006.

[39] Aaron Weiss and Scott J. Walter. The complete idiot’s guide to
javascript - online version. http://search.netscape.com/ns/
boomframe.jsp?query=javascipt&page=1&offset=0&result_url=
redir%3Fsrc%3Dwebsearch%26requestId%3Df52dd01dfa28a0b2%
26clickedItemRank%3D2%26userQuery%3Djavascipt%
26clickedItemURN%3Dhttp%253A%252F%252Fwww.help4web.net%
252Fwebmaster%252FJava%252FNewJS%252FJavaScriptIdiotsGuide%
252F%2521start_here.html%26invocationType%3D-%26fromPage%
3DNSCPTop%26amp%3BampTest%3D1&remove_url=http%3A%
2F%2Fwww.help4web.net%2Fwebmaster%2FJava%2FNewJS%
2FJavaScriptIdiotsGuide%2F%21start_here.html. Vis-
ited:14.02.2006.

[40] Martin Fowler with Kendall Scott. UML Distilled. Addison-Wesley,
second edition, October 2002.

[41] Claes Wohlin, Per Runeson, Martin H’́ost, Magnus C. Ohlsson, Bj́’orn
Regnell, and Anders Wesslén. Experimentation in Software Engingeer-
ing : An introduction. Kluwer Academic Publishers, 200.

109

http://jwebunit.sourceforge.net/
http://sourceforge.net/projects/xunit
http://sourceforge.net/projects/xunit
http://www.devarticles.com/c/a/JavaScript/Client-side-and-Server-side-JavaScript/
http://www.devarticles.com/c/a/JavaScript/Client-side-and-Server-side-JavaScript/
http://www.w3schools.com/
http://www.w3schools.com/
http://www.webreference.com/javascript/reference/core/index.html
http://www.webreference.com/javascript/reference/core/index.html
http://www.webreference.com/xml/column37/
http://www.webreference.com/xml/column37/
http://search.netscape.com/ns/boomframe.jsp?query=javascipt&page=1&offset=0&result_url=redir%3Fsrc%3Dwebsearch%26requestId%3Df52dd01dfa28a0b2%26clickedItemRank%3D2%26userQuery%3Djavascipt%26clickedItemURN%3Dhttp%253A%252F%252Fwww.help4web.net%252Fwebmaster%252FJava%252FNewJS%252FJavaScriptIdiotsGuide%252F%2521start_here.html%26invocationType%3D-%26fromPage%3DNSCPTop%26amp%3BampTest%3D1&remove_url=http%3A%2F%2Fwww.help4web.net%2Fwebmaster%2FJava%2FNewJS%2FJavaScriptIdiotsGuide%2F%21start_here.html
http://search.netscape.com/ns/boomframe.jsp?query=javascipt&page=1&offset=0&result_url=redir%3Fsrc%3Dwebsearch%26requestId%3Df52dd01dfa28a0b2%26clickedItemRank%3D2%26userQuery%3Djavascipt%26clickedItemURN%3Dhttp%253A%252F%252Fwww.help4web.net%252Fwebmaster%252FJava%252FNewJS%252FJavaScriptIdiotsGuide%252F%2521start_here.html%26invocationType%3D-%26fromPage%3DNSCPTop%26amp%3BampTest%3D1&remove_url=http%3A%2F%2Fwww.help4web.net%2Fwebmaster%2FJava%2FNewJS%2FJavaScriptIdiotsGuide%2F%21start_here.html
http://search.netscape.com/ns/boomframe.jsp?query=javascipt&page=1&offset=0&result_url=redir%3Fsrc%3Dwebsearch%26requestId%3Df52dd01dfa28a0b2%26clickedItemRank%3D2%26userQuery%3Djavascipt%26clickedItemURN%3Dhttp%253A%252F%252Fwww.help4web.net%252Fwebmaster%252FJava%252FNewJS%252FJavaScriptIdiotsGuide%252F%2521start_here.html%26invocationType%3D-%26fromPage%3DNSCPTop%26amp%3BampTest%3D1&remove_url=http%3A%2F%2Fwww.help4web.net%2Fwebmaster%2FJava%2FNewJS%2FJavaScriptIdiotsGuide%2F%21start_here.html
http://search.netscape.com/ns/boomframe.jsp?query=javascipt&page=1&offset=0&result_url=redir%3Fsrc%3Dwebsearch%26requestId%3Df52dd01dfa28a0b2%26clickedItemRank%3D2%26userQuery%3Djavascipt%26clickedItemURN%3Dhttp%253A%252F%252Fwww.help4web.net%252Fwebmaster%252FJava%252FNewJS%252FJavaScriptIdiotsGuide%252F%2521start_here.html%26invocationType%3D-%26fromPage%3DNSCPTop%26amp%3BampTest%3D1&remove_url=http%3A%2F%2Fwww.help4web.net%2Fwebmaster%2FJava%2FNewJS%2FJavaScriptIdiotsGuide%2F%21start_here.html
http://search.netscape.com/ns/boomframe.jsp?query=javascipt&page=1&offset=0&result_url=redir%3Fsrc%3Dwebsearch%26requestId%3Df52dd01dfa28a0b2%26clickedItemRank%3D2%26userQuery%3Djavascipt%26clickedItemURN%3Dhttp%253A%252F%252Fwww.help4web.net%252Fwebmaster%252FJava%252FNewJS%252FJavaScriptIdiotsGuide%252F%2521start_here.html%26invocationType%3D-%26fromPage%3DNSCPTop%26amp%3BampTest%3D1&remove_url=http%3A%2F%2Fwww.help4web.net%2Fwebmaster%2FJava%2FNewJS%2FJavaScriptIdiotsGuide%2F%21start_here.html
http://search.netscape.com/ns/boomframe.jsp?query=javascipt&page=1&offset=0&result_url=redir%3Fsrc%3Dwebsearch%26requestId%3Df52dd01dfa28a0b2%26clickedItemRank%3D2%26userQuery%3Djavascipt%26clickedItemURN%3Dhttp%253A%252F%252Fwww.help4web.net%252Fwebmaster%252FJava%252FNewJS%252FJavaScriptIdiotsGuide%252F%2521start_here.html%26invocationType%3D-%26fromPage%3DNSCPTop%26amp%3BampTest%3D1&remove_url=http%3A%2F%2Fwww.help4web.net%2Fwebmaster%2FJava%2FNewJS%2FJavaScriptIdiotsGuide%2F%21start_here.html
http://search.netscape.com/ns/boomframe.jsp?query=javascipt&page=1&offset=0&result_url=redir%3Fsrc%3Dwebsearch%26requestId%3Df52dd01dfa28a0b2%26clickedItemRank%3D2%26userQuery%3Djavascipt%26clickedItemURN%3Dhttp%253A%252F%252Fwww.help4web.net%252Fwebmaster%252FJava%252FNewJS%252FJavaScriptIdiotsGuide%252F%2521start_here.html%26invocationType%3D-%26fromPage%3DNSCPTop%26amp%3BampTest%3D1&remove_url=http%3A%2F%2Fwww.help4web.net%2Fwebmaster%2FJava%2FNewJS%2FJavaScriptIdiotsGuide%2F%21start_here.html
http://search.netscape.com/ns/boomframe.jsp?query=javascipt&page=1&offset=0&result_url=redir%3Fsrc%3Dwebsearch%26requestId%3Df52dd01dfa28a0b2%26clickedItemRank%3D2%26userQuery%3Djavascipt%26clickedItemURN%3Dhttp%253A%252F%252Fwww.help4web.net%252Fwebmaster%252FJava%252FNewJS%252FJavaScriptIdiotsGuide%252F%2521start_here.html%26invocationType%3D-%26fromPage%3DNSCPTop%26amp%3BampTest%3D1&remove_url=http%3A%2F%2Fwww.help4web.net%2Fwebmaster%2FJava%2FNewJS%2FJavaScriptIdiotsGuide%2F%21start_here.html
http://search.netscape.com/ns/boomframe.jsp?query=javascipt&page=1&offset=0&result_url=redir%3Fsrc%3Dwebsearch%26requestId%3Df52dd01dfa28a0b2%26clickedItemRank%3D2%26userQuery%3Djavascipt%26clickedItemURN%3Dhttp%253A%252F%252Fwww.help4web.net%252Fwebmaster%252FJava%252FNewJS%252FJavaScriptIdiotsGuide%252F%2521start_here.html%26invocationType%3D-%26fromPage%3DNSCPTop%26amp%3BampTest%3D1&remove_url=http%3A%2F%2Fwww.help4web.net%2Fwebmaster%2FJava%2FNewJS%2FJavaScriptIdiotsGuide%2F%21start_here.html
http://search.netscape.com/ns/boomframe.jsp?query=javascipt&page=1&offset=0&result_url=redir%3Fsrc%3Dwebsearch%26requestId%3Df52dd01dfa28a0b2%26clickedItemRank%3D2%26userQuery%3Djavascipt%26clickedItemURN%3Dhttp%253A%252F%252Fwww.help4web.net%252Fwebmaster%252FJava%252FNewJS%252FJavaScriptIdiotsGuide%252F%2521start_here.html%26invocationType%3D-%26fromPage%3DNSCPTop%26amp%3BampTest%3D1&remove_url=http%3A%2F%2Fwww.help4web.net%2Fwebmaster%2FJava%2FNewJS%2FJavaScriptIdiotsGuide%2F%21start_here.html

