
November 2006
Svein Johan Knapskog, ITEM
André Aarnes, Q2S

Master of Science in Computer Science
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Telematics

Geographical Location of Internet Hosts
using a Multi-Agent System

Øystein Espelid Thorvaldsen

Problem Description

The student will conduct an experimental study on the use of multi-agent systems in Internet
Investigations. Based on a prototype developed as part of a previous project, the student will
develop and test a prototype for geolocation of IP addresses using multi-agent technology.
Through practical experiments using the Uninett research infrastructure, the student will evaluate
the performance of the prototype and compare the results to other existing geolocation methods.
The student is encouraged to propose novel methods or improvements based on the experiments
performed. The project is given in cooperation with the High Tech Crime Division at the National
Criminal Investigation Service (Kripos).

Assignment given: 28. June 2006
Supervisor: Svein Johan Knapskog, ITEM

Geographical Location of Internet Hosts using a
Multi-Agent System

Øystein E. Thorvaldsen
Department of Computer and Information Science
Norwegian University of Science and Technology

November 15 2006

Abstract

This thesis focuses on a part of Internet forensics concerned with determining the
geographic location of Internet hosts, also known as geolocation. Several techni-
ques to geolocation exist. A classification of these techniques, and a comparative
analysis of their properties is conducted. Based on this analysis several novel
improvements to current techniques are suggested.

As part of an earlier designed Multi-Agent Framework for Internet Forensics (MAFIF),
an application implementing two active- measurement geolocation techniques is
designed, implemented and tested. Experiments with the application are performed
in the Uninett network, with the goal of identifying the impact of different network
properties on geolocation.

What most clearly set this thesis apart from earlier work, in addition to the use
of a multi-agent system, is the analysis of the impact of IPv6 on geolocation, and
the introduction of multi-party computation to geolocation. The extensive focus on
delay measurements, although not bringing anything new to the field of networking
in general, is also new to geolocation as far as we know.

Keywords: Internet forensics, multi-agent systems, geolocation.

3

Preface

This Master’s thesis is the result of the 10th semester of my master’s program at
the Department of Computer and Information Science at the Norwegian University
of Science and Technology.

The outline for the assignment was proposed by Espen André Fossen at the High
Tech Crime Division of the National Criminal Investigation Service (KRIPOS) and
André Årnes at the Center for Quantifiable Quality of Service in Communication
Systems (Q2S). As supervisor André Årnes helped flesh out and define the final
assignment.

I would like to thank André Årnes and supervising professor Svein Johan Knapskog
for valuable input and feedback. Additionally I would like to thank PhD student
Tord Ingolf Reistad for his help with the theory of multi-party computation, and
Jon Kåre Hellan and Morten Knutsen at Uninett for their quick and to the point
response to any problems regarding the Uninett network infrastructure used in
this project. Special thanks goes to Hans Christian Falkenberg at Fast Search &
Transfer for sharing his considerable knowledge of the Java programming language,
and for identifying many corner-cases in the implementation of algorithms used
and developed in this work.

Trondheim, November 15 2006

Øystein E. Thorvaldsen

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Background . 1
1.3 Purpose and Goals . 2
1.4 Limitations . 2
1.5 Document Organization . 3

2 Digital and Internet Forensics 5
2.1 Introduction . 5
2.2 Internet Forensics . 5
2.3 The Chain of Custody . 6

3 Geographical Location of Internet Hosts 7
3.1 Introduction to Geolocation . 7
3.2 Different Approaches to Geolocation 8

3.2.1 Using Public Information Sources 8
3.2.2 Measurement-based Approaches 11
3.2.3 Distance Maps . 12

3.3 Related Work . 12
3.4 Comparative Analysis . 14

3.4.1 Common Limitations . 14
3.4.2 Using Public Information Sources 17
3.4.3 Measurement Based . 22

3.5 Improvements to Current Techniques 25
3.5.1 Combining Information Sources and Measurements 26
3.5.2 Dynamic Regions and Super-Landmarks 26
3.5.3 Limited Knowledge of Landmark Locations 27

3.6 Delay Measurement . 30
3.6.1 Delay Components . 30
3.6.2 Ways to Measure Delay 31
3.6.3 Confidence in Delay Measurements 34
3.6.4 From Delay Measurements to Geographical Distance . . . 36

3.7 Internet Protocol v6 . 36

i

3.7.1 Address Space and Assignment 37
3.7.2 Mobile and Hierarchical Mobile IP 37

4 Geolocation in MAFIF 39
4.1 The Existing MAFIF Framework 39

4.1.1 Command and Work Flow 40
4.1.2 Agent UML (AUML) . 41

4.2 Geolocation Algorithms . 41
4.2.1 CBG . 42
4.2.2 GeoPing . 46

4.3 Delay Measurements . 46
4.3.1 Use of Native Ping Binary 46
4.3.2 Result Confidence . 47
4.3.3 Relation of the Measurement Parts 48

4.4 User-Interaction and Management 49
4.4.1 Graphical User Interface 50
4.4.2 Management and Properties Files 51

4.5 Geographical Functionality . 51
4.5.1 Requirements for GIS Toolkits 52
4.5.2 Comparison of GIS Toolkits 53
4.5.3 OpenMap GIS Functionality 54

4.6 Address Information Storage . 55
4.6.1 Data Model . 55
4.6.2 Agent Connections to Database 56
4.6.3 Database Software . 56

4.7 Limitations . 57

5 Experiments 59
5.1 Environment - The Uninett Network 59

5.1.1 Network Topology . 59
5.1.2 One-Way Delay Measurements 61

5.2 Test Setup . 64
5.3 Limitations . 64

5.3.1 Measurement Node Traffic Types 65
5.3.2 IPv6 . 65

5.4 Experiments and Results . 65
5.4.1 Varying Probe Parameters 65
5.4.2 IPv4 vs IPv6 . 69
5.4.3 Effect of Number and Placement of Landmarks 70
5.4.4 CBG Overestimation Factor 73
5.4.5 Moving Target . 73
5.4.6 Scalability . 77

6 Conclusions 79

7 Further Work 81
7.1 Large-scale Experiments . 81
7.2 Multi-Party Computation . 81
7.3 IPv6 . 82
7.4 Detection of Direction of Movement 82
7.5 Web Service Integration . 82

References 82

A Article 95

B Design Diagrams 107
B.1 (A)UML Diagrams . 108

B.1.1 AdminAgent . 108
B.1.2 SessionAgent . 109
B.1.3 WorkerAgent . 111
B.1.4 GWAgent . 113

B.2 Servlet UML Diagrams . 115
B.2.1 Servlet Core Classes . 115
B.2.2 Servlet Alpha Classes 116
B.2.3 Servlet Circle Classes 117

B.3 Database . 118
B.3.1 UML Class Diagram . 118
B.3.2 Database Tables . 119

C Source Code 121
C.1 AdminAgent Classes . 121

C.1.1 AdminReplyGWBehaviour 121
C.1.2 GWCase . 125

C.2 SessionAgent Classes . 127
C.2.1 InitiateTraceSessionBehaviour 127
C.2.2 TraceReduceBehaviour 135
C.2.3 DelayVector . 143

C.3 WorkerAgent Classes . 145
C.3.1 WorkerTraceStart . 145
C.3.2 WorkerTraceLandmarks 151
C.3.3 WorkerTraceCalculate 152
C.3.4 WorkerTraceTarget . 157
C.3.5 WorkerTraceFinal . 160
C.3.6 PingBehave . 164

C.4 GWAgent Classes . 166
C.4.1 GWAgent . 166
C.4.2 GWReceiveBehaviour 170
C.4.3 LaunchTraceBehave . 173

C.4.4 AdminSubscribeBehaviour 177
C.4.5 CommandPackage . 180

C.5 Ping Classes . 184
C.5.1 MinRTT . 184
C.5.2 ModeNode . 193
C.5.3 PingItem . 197
C.5.4 HostUnreachableException 199

C.6 Servlet Classes . 200
C.6.1 GetTrace . 200
C.6.2 GetMap . 202
C.6.3 GetMapImage . 208
C.6.4 TraceCache . 210
C.6.5 TraceCacheEntry . 215
C.6.6 MapDrawer . 216
C.6.7 IntersectionInfo . 230
C.6.8 Alpha . 232
C.6.9 OMAlphaCircle . 233
C.6.10 OMAlphaPoly . 235
C.6.11 Circle . 237
C.6.12 Intersection . 241
C.6.13 Intersector . 244

C.7 DB Classes . 253
C.7.1 DBCreator . 253
C.7.2 DBStop . 257
C.7.3 LandmarkReader . 258
C.7.4 Landmark . 261

C.8 Scripts used for Managing the System 265
C.8.1 Unidist . 265
C.8.2 Unirun . 265
C.8.3 Unistop . 266
C.8.4 Unikill . 266
C.8.5 Unicdb . 267

C.9 JADE properties files . 267
C.9.1 JADE-S main.conf . 267
C.9.2 jaas.conf . 269
C.9.3 policy.txt . 269
C.9.4 passwords.txt . 269

D Map Projections and Reference Systems 271
D.1 Map Projections . 271
D.2 Geographical Reference Systems 272

D.2.1 World Geodetic System (WGS) 272
D.2.2 Universal Transverse Mercator (UTM) 272

D.3 Great-circle Distance . 273

List of Figures

3.1 Excerpt of a RIPE IP whois reply 9
3.2 Excerpt of a Norid DNS whois reply 10
3.3 A BGP table entry . 11
3.4 Safety margin in CBG . 23
3.5 Selection by super-landmark . 27
3.6 CBG as grid coverage . 28
3.7 Limited Multi-Party Computation 29
3.8 Components of Network Delay 31
3.9 Congestion Regions . 35
3.10 MIP Triangle Routing . 38

4.1 MAFIF Design . 39
4.2 Sequence Diagram for a Trace 41
4.3 TraceBehaviour Logic . 42
4.4 Scatter plot of distance and delay 43
4.5 Sphere trigonometry . 45
4.6 Exact area of intersecting circles 45
4.7 Ping outputs . 47
4.8 Ping class relations . 48
4.9 JADE Gateway . 49
4.10 GUI program flow . 50
4.11 Servlet class relations . 51
4.12 Data model Landmarks table . 56

5.1 Uninett Network Topology . 60
5.2 Uninett measurement nodes . 61
5.3 Distance between measurement nodes 62
5.4 One-Way Delays . 63
5.5 One-Way RTT Correlation . 64
5.6 Comparison of minimum RTTs with varied probe parameters . . . 66
5.7 Comparison of minimum RTTs and C values 67
5.8 Comparison of minimum RTTs with downed link 68
5.9 Differences between IPv4 and IPv6 in CBG 70
5.10 Confidence region for trd-mp . 72

v

5.11 CBG confidence region for bo-mp 72
5.12 CBG underestimation . 74
5.13 CBG runs for moving target . 75

B.1 AUML diagram AdminAgent . 108
B.2 AUML diagram SessionAgent 109
B.3 AUML diagram SessionAgent’s Behaviours 110
B.4 AUML diagram WorkerAgent 111
B.5 AUML diagram WorkerAgent’s Behaviours 112
B.6 AUML diagram GWAgent . 113
B.7 AUML diagram GWAgent’s Behaviours 114
B.8 UML diagram servlet core . 115
B.9 UML diagram servlet alpha . 116
B.10 UML diagram servlet circles . 117
B.11 UML diagrams of Database classes 118

D.1 UTM Zone discrepancy . 273

List of Tables

3.1 Comparison of Geolocation Techniques 15

5.1 Differences in delay between IPv4 and IPv6 70
5.2 GeoPing results using all measurement nodes 71
5.3 GeoPing results using southern measurement nodes 71
5.4 CBG results. 72
5.5 Moving target GeoPing results 76
5.6 ∆(DV) variances for multiple GeoPing runs 78

vii

Chapter 1

Introduction

This thesis presents a multi-agent system for determining the geographical locat-
ion of Internet hosts. The system expands the multi-agent framework for Internet
forensics presented in our minor thesis [1]. As such the focus will be on the geo-
location functionality, and not on the underlying framework. A comprehensive
theoretical introduction to geolocation and related subjects is provided as a basis
for the implementation. This chapter presents the motivation and background for
our work, what we hope to accomplish and the limitations that specify this work.

1.1 Motivation

There is currently no international body of laws that govern acts of digital crime
where the crime scene spans multiple countries. The many national laws that more
or less cover digital crime are not harmonized. What constitutes a criminal act in
one country might not be illegal in another. This makes it important to be able
to determine the location(s) of any investigated actions, to aid law enforcement in
contacting the relevant authorities and to apply the correct body of laws. Actually
locating the area where the source(s) of a criminal act might be located physically
may also help law enforcement in seizing important evidence and detaining suspects.

1.2 Background

The High Tech Crime Division (HTCD) at the National Criminal Investigation
Service (Kripos) is responsible for digital forensics work. The HTCD perform its
own investigations but also acts as a national resource and knowledge center in
this matter. Part of this responsibility is to keep up to date on new technologies,
techniques, threats and trends in digital forensics. The pace of development in

1

the field is high, and keeping the equipment and personell at HTCD up to speed
requires a lot of resources. To address some of these challenges the HTCD has
over the last years co-operated with the department of telematics (ITEM) at NTNU
to promote research in the area of digital forensic science.

HTCD contributes assignments and external examiners for ITEM MSc. students
that specialize in information security. In return HTCD gets full access to the
resulting work, and can concentrate more internal resources on other pressing
matters. To date this cooperation has resulted in the following work in the field
of Internet forensics: [2, 3, 4, 1].

During this work the basics of digital forensic science theory, terminology and
practice have been established. As such delving into a broad description of the
field in this thesis would not serve any purpose. We have however included a short
introduction to digital and Internet forensics that should be comprehensive enough
to make the thesis self-contained in this aspect.

1.3 Purpose and Goals

Currently several techniques for performing geographical location of Internet hosts
exist, but none are very accurate. We compare some of these techniques, and try to
determine if better knowledge of the network topology and conditions improve the
quality of the results to a degree where the effort needed to acquire this knowledge
can be justified.

Particularly we look at the following:

• Differences between IPv4 and IPv6 relevant to geolocation.

• Correlation between one-way delay, round trip time and geographical distance.

• Challenges to and techniques for capturing as precise delay measurements
as possible.

• Comparison of current geolocation techniques, and possible improvements.

1.4 Limitations

Geographical location of Internet hosts has many purposes other than those of
Internet investigation, such as targeted advertising and language selection for web-
sites. We do not take these into account when discussing the different methods,
and no experiments are performed to assess the suitability of any techniques for
such purposes. More specific limitations regarding the design and implementation

2

of the geolocation functionality in the Internet forensics framework is described in
Section 4.7.

1.5 Document Organization

This chapter presented the motivation for our work, what we hope to accomplish
and the approach and limitations that specify it. The rest of the thesis is divided
into 6 chapters as follows:

• Chapter 2 gives a brief overview of the disciplines of digital and Internet
forensics, and how they relate to the rest of the work in this thesis.

• Chapter 3 gives an introduction to geographical location of Internet hosts,
discusses and evaluates previous work and puts forth suggestions for improve-
ments.

• Chapter 4 describes the design and implementation of geolocation function-
ality as an application in the existing multi-agent framework.

• Chapter 5 details the test environment, the different experiments and their
results.

• Chapter 6 summarizes the work and draws conclusions.

• Chapter 7 suggests areas for further work.

The use of plural references to self in this thesis is just a form of expression, and
does not indicate any involvement of external parties other than the normal process
of supervision.

3

4

Chapter 2

Digital and Internet Forensics

A brief introduction to the disciplines of Digital Forensics and Internet Forensics
is given here to provide a context for geographical location of Internet hosts.

2.1 Introduction

Digital forensics is a specialized part of forensics that deals with the securing
and handling of digital evidence. Internet forensics is a sub-discipline of digital
forensics that deals with the securing and handling of digital evidence on the
Internet. Digital forensics can be defined as:

The use of scientifically derived and proven methods toward the
preservation, collection, validation, identification, analysis, interpretation,
documentation and presentation of digital evidence derived from digital
sources for the purpose of facilitating or furthering the reconstruction
of events found to be criminal, or helping to anticipate unauthorized
actions shown to be disruptive to planned operations [5].

This definition requires us to also define the term "digital evidence". We will use
the definition of the International Organization on Computer Evidence:

Any information stored or transmitted in binary form that may be
relied upon in court [IOC06].

2.2 Internet Forensics

Internet forensics differs from digital forensics mostly in its narrower scope and
more problematic access to evidence. Unique to Internet forensics is that investi-
gators may have access to a crime scene without knowing its geographical locat-

5

ion(s). This means that determining the location(s) becomes an important part of
an investigation.

A more thorough discussion of the relations between digital and Internet forensics
is available in [1], where a terminology covering the most important concepts of
digital forensics is also presented. Different models and frameworks for conducting
investigations involving digital and Internet forensics are compared in [6].

2.3 The Chain of Custody

The chain of custody is one of the most important principle in all of forensics. The
principle can be summarized as: An identifiable person must at all times have the
physical custody of a piece of evidence. This means a qualified person like a police
officer will take charge of it, document its collection, and hand it in for storage
in a secure place. These transactions, and every succeeding transaction between
the collection of the evidence and its appearance in court, must be completely
documented in order to withstand challenges to the authenticity and integrity of the
evidence. Documentation should include the conditions under which the evidence
is gathered, the identity of all evidence handlers, duration of evidence custody,
security conditions while handling or storing the evidence, and the manner in which
it is transferred to subsequent custodians each time such a transfer occurs [ccW06].

When dealing with digital evidence this principle is extremely important, as tamper-
ing is much easier than with traditional evidence, and more likely to go unnoticed
[7]. There is no single way to enforce chain of custody in digital forensics, but
the use of techniques such as time-stamping and hashing algorithms are central to
all methods. Digital signatures would offer increased security but is currently not
widely used in this context.

With regard to geographical location of Internet hosts the principle makes the
following information important: When was a location determined, how was it
done, who participated and what information did they contribute, and finally who
ordered that an operation to determine the location should be carried out. In
addition to this the result must be secured sufficiently to protect against any mal-
icious or accidental alteration.

6

Chapter 3

Geographical Location of
Internet Hosts

In this chapter we introduce the problem of geographical location of Internet hosts
(geolocation). Different classes of techniques for doing this are identified, and we
describe related work and existing techniques within the context of these classes.
Delay measurement is at the core of several of these techniques, and we go into
depth describing the challenges of accurately measuring delay. The Internet is in
a slow transition to IPv6, we point out any effects the use of IPv6 might have
on geolocation compared to the current IPv4. We also compare the strengths and
weaknesses of the existing techniques and propose possible enhancements.

3.1 Introduction to Geolocation

There are many possible ways to determine the geographical location of an Internet
host, the simplest might be to just look up the alleged assignee and ask him or her.
However, we will consider only technical solutions, and as we will see later, the
information registered about the alleged assignee of any particular IP address or
DNS entry might not be that accurate and trustworthy anyway. Thus the question
becomes how to determine the location of a host with the least effort and the most
accurate result, in a way that can be automated.

Geolocation has many possible applications, we look primarily at its use as a
forensic tool. As such geolocation should be seen as an integral part of Internet
forensics, and its application should be incorporated into an overall investigation
model. We will not go into a discussion of digital forensic models and frameworks
here, as we focus on the technical aspects of geolocation. It is, however, important
to keep forensic principles such as the chain of custody in mind, and we will

7

take such considerations into account in our implementation and experiments in
Chapters 4 and 5.

Narrowing the scope to a forensic application leads to a different set of criteria
than if we were to consider geolocation for general purposes, such as location
dependent content or advertising. The massive scalability usually required on the
Internet for publicly available services will for instance not be necessary. Also cost
considerations, the need for special equipment and access to information can be
treated differently. Some of the techniques used for general purpose geolocation
can also be applied in a forensic context, the main problem in doing this is the
accuracy of the results, and not least whether they can be trusted. An assessment
of the suitability of different techniques is performed in Section 3.4.

3.2 Different Approaches to Geolocation

Two main classes of approaches to geolocation can be identified. Approaches
relying on publicly available information sources that does not at all actively query
the host in question, and approaches that try to infer the location of a host using
measurements. A third somewhat hybrid approach; using different sorts of pre-
calculated distance maps can also be identified. Combinations of these different
approaches are of course possible, and we consider this in Section 3.5.

3.2.1 Using Public Information Sources

Fossen goes into great detail about using public information sources for geolocation
in [2]. We therefore only briefly describe some of the different sources here.

IP whois

Originally defined in [RFC812] and later updated in [RFC954, RFC3912] the whois-
service provides a mechanism for finding contact and registration information for
Internet resources. The current service is structured by Top Level Domains (TLD)
or Country Code Top Level Domains (ccTLD).

Five Regional Internet Registries (RIRs) administer the allocation of IP addresses
on behalf of the Internet Assigned Numbers Authority (IANA). The registries’
databases typically contain IP addresses, Autonomous System numbers and organ-
izations or customers that are associated with these resources. The RIRs again
delegate the allocation of addresses in their regions to Internet Service Providers
and other organizations [who06], [RFC2050, RFC1918, RFC3330].

8

Information about a particular IP address can be obtained by querying one of
the RIRs. Only the American RIR (ARIN) has information about which RIR an
address is managed by. A first query should be directed at ARIN, which will either
contain a record for the address or a pointer to which RIR that does. Replies
to queries are in the Routing Policy Specification Language (RPSL)1 defined in
[RFC2622], an update also covering IPv6 is defined in [RFC4012]. Figure 3.1
shows part of a typical query result, listing country, city and even street address.

Information related to ’129.241.0.0 - 129.241.255.255 ’

inetnum: 129.241.0.0 - 129.241.255.255

netname: NTNU

descr: Hogskoleringen 1

descr: NO -7491 Trondheim

country: NO

irt: IRT -UNINETT -CERT

address: UNINETT CERT

address: Abels gate 5

address: N7465

address: Trondheim

address: Norway

source: RIPE

Figure 3.1: Excerpt of a reply from RIPE about IP address 129.241.190.190.

DNS whois

The whois service can also be used for querying Domain Name System (DNS)
records. DNS was introduced in [RFC882, RFC883]. A DNS record is in its
simplest form a mapping from a computer host name to an IP address. The map-
pings are all registered in the worldwide DNS. The DNS is a hierarchic system that
in its current revision divides the name space into TLDs and ccTLDs [RFC920,
RFC1034, RFC1035]. Due to this hierarchic structure there are no central regional
registries like the ones for IP addresses, queries are processed along the hierarchy.
Most TLDs and ccTLDs make whois databases with information about the reg-
istrants publicly available. Unfortunately there is no common format like RPSL
for these databases. With at least 14 TLDs and over 100 ccTLDs, the task of
automating DNS whois queries and interpreting the replies correctly involves a
lot of work. However, DNS records can contain additional information to that
available about the IP addresses they map to2 [dns06b]. Additionally [RFC1712,
RFC1876] propose adding geographical information to DNS records, although

1RPSL is rather complex, and the RIRs use different "dialects" making it necessary to tailor any
automated query program to the different RIRs.

2Several DNS records may map to the same IP address, but the registrant information may differ
between the records.

9

this has not been widely adopted. Figure 3.2 shows part of a query result from
the Norwegian ccTLD Norid for the domain ntnu.no. Again country, city, street
address and other contact information is listed.

Domain Name: ntnu.no

Organization Handle: NTU1O -NORID

Registrar Handle: REG2 -NORID

Additional information:

Created: 1999 -11 -15

Last updated: 2005 -08 -26

Organization Name: Norges Teknisk -Naturvitenskapelige

Universitet
Post Address: Høgskoleringen 1

Postal Code: N-7491

Postal Area: Trondheim

Country: Norway

Phone Number: +47 73 59 50 00

Figure 3.2: Excerpt of a reply from Norid about ntnu.no.

DNS names can also be used directly to infer geographical location. Many network
providers name their routers according to some internal geographical naming con-
vention. There is no standard convention, so this approach requires tuning for
every network operator. If the geographical location of the last hop router can
successfully be inferred it is reasonable, due to the structure of the Internet, to
assume that the host in question is within a limited distance from this router.

Routing Information

Both IP and DNS records may reveal where a host is supposed to be. Routing
information on the other hand might show where traffic destined for a particular
host actually travels. This is possible due to the Internet’s use of route publishing.
Route publishing is the dissemination of reachability information. That is, where
to send packets for them to reach their intended destination. The Border Gateway
Protocol (BGP) is the protocol used for this between Autonomous Systems on the
Internet [RFC4271]. An Autonomous System (AS) is defined in [RFC1930] as:

A connected group of one or more IP prefixes run by one or more
network operators which has a SINGLE and CLEARLY DEFINED
routing policy3.

3The classic definition of an Autonomous System is a set of routers under a single technical
administration with a single internal and single external routing policy. The updated definition takes
into account that only the externally presented picture of what networks are reachable through the
AS is important.

10

A unique AS number (ASN) is allocated to each AS by IANA for use in BGP
routing.

It is possible to query ASes for the network prefixes they route, and thus get an
estimation of the path travelled and the final destination of a particular traffic flow,
based on the geographic area covered by the ASes and the information registered
at the RIRs about them. An example is shown in Figure 3.3.

BGP routing table entry for 129.240.0.0/15 , version 24473688

Bestpath Modifiers: always -compare -med , deterministic -med

Paths: (2 available , best #1)

Advertised to update -groups:

1

224

193.10.68.1 (metric 11) from 193.10.68.1 (193.10.68.1)

Origin IGP , metric 0, localpref 131, valid , internal ,

best
Community: 2603:111

224

128.39.0.89 from 128.39.0.89 (128.39.0.89)

Origin IGP , metric 91, localpref 129, valid , external

Community: 2603:111

Figure 3.3: The BGP table entry for 129.241.0.0 at no-gw2.nordu.net, showing ASN
224 as the destination. No AS path is shown as no-gw2.nordu.net has a direct route
to ASN 224.

3.2.2 Measurement-based Approaches

As opposed to the approaches described above, measurement-based approaches
may produce network traffic to the target host, depending on how the measurements
are performed. There are two main types of measurement-based approaches; active
and passive.

Active Measurements

Active measurements probe the target host thus generating network traffic. The
type and amount of probing varies depending on the technique used. Common to
all the techniques is that one attempts to find the delays between the target host and
several probing machines, called landmarks, with known locations. This requires
that the target host actually replies to probe requests, for more on this see Section
3.6. The delay values gathered are then used to calculate the approximate locat-
ion of the host, either by doing an analysis of the generated delay pattern or by
translating the delay measurements into geographical distance. A description of
such techniques is given in Section 3.3.

11

Passive Measurements

Using special equipment, in the form of passive measurement cards, it is possible
to measure and analyse traffic without affecting the network traffic at all [8]. For
such techniques to be successful it is necessary that the target host itself generates
traffic that passes through the network where such equipment is installed. If such
techniques are to be generally useful an extensive network of passive measurement
equipment must be deployed. The European Union projects A Scalable Monitoring
Platform for the Internet (SCAMPI) and Large-Scale Monitoring of Broadband
Internet Infrastructure (LOBSTER) projects have deployed such equipment on
parts of the European backbone [sca06, lob06].

It is also possible to capture traffic generated by the target host at higher protocol
levels, and calculate delays based on this. Muir et al. suggests using HTTP-refresh
for estimating RTT to target hosts [9]. Techniques based on HTTP-refresh or
similar concepts are not strictly passive. Even though it is the target host that
initiates the traffic the host(s) trying to locate the target will generate subsequent
traffic to the target host.

In wireless networks the signal strength may be measured and triangulated. This is
outside the scope of this project.

3.2.3 Distance Maps

A distance map is a representation of perceived distances between hosts, irrespec-
tive of their geographical location, where the distances are measured as network
delay. Many schemes for creating distance maps for (parts of) the Internet has
been proposed, see Section 3.3. Depending on the techniques used to create and
maintain the map and respond to queries, the approach to some extent uses active
measurements. Typically active measurements between all or some hosts are needed
to create the initial map, while queries are answered from already assembled infor-
mation, making distance map based approaches more or less hybrids between using
existing information sources and performing measurements.

3.3 Related Work

Padmanabhan and Subramanian introduced GeoPing in [10]. This is to our know-
ledge the first measurement-based technique for geographical location of Internet
hosts. Manual use of traceroute, ping and several techniques for extracting and
compiling information from public information sources, such as DNS records and
IP whois, of course precede this work.

12

GeoPing works by building a map M of delay vectors. Each vector represents
the delay to a single host with known location from a set of probes N , also with
known locations. A delay vector DV for a target T with unknown location is
then constructed by measuring the delay from all probes in N to T . DV is then
compared to every vector in M to find the closest match. This is done by con-
sidering the vectors in M as an N -dimensional delay space, and calculating the
Euclidean distance between DV and every other vector. The "nearest" neighbor to
DV is returned as the location estimate of T .

The principle behind GeoPing has been refined in [11, 12] by Ziviani et al by intro-
ducing different similarity models for calculating which host exhibits the closest
matching delay pattern. In [13] a further refinement, placing probes according
to population density is suggested. The idea is to improve results with fewer
probes, and avoid overlapping measurements. Guye et al improve upon this idea
by introducing a two-tiered approach in [14]. An upper level handles long distance
measurements, and a lower level keeps measurements within restricted areas.

GeoPing-based techniques have an important shortcoming. The result of a location
attempt is a discrete set of possible locations, limited to the hosts participating in
the location process. Constraint-based geolocation (CBG) introduced by Guye et
al in [15] addresses this through the use of multilateration, and provides a location
with a continuous confidence region as its estimation result. The set-up is much
as in GeoPing, but delay measurements are converted into actual geographical
distances. For each landmark Li CBG calculates a best-line bi based on delay
measurements between Li and every other landmark Lj 6=i. The best-line represents
the least distorted relationship between the measured delay and the actual geo-
graphic distance for each landmark. bi is then subtracted from the delay measure-
ment between Li and T , for all i. The results are then converted into geographical
distance constraints used to multilaterate the location of T .

Fossen implemented a CBG-based system for western Europe in [6, 2], using
publicly available Looking Glass hosts as landmarks. He also discussed the use
of publicly available information sources.

Although providing a continuous confidence region, and to some extent mitigating
measurement distortion, the original CBG still did not give a very exact location
of the target host. Gueye et al improved upon their earlier work by estimating
the buffer delay part of the total delay used in their computations in GeoBud [16].
Delays adjusted for buffer delay results in smaller confidence regions, and thus less
error in location estimation. Compared to CBG the introduction of buffer delay
estimation in GeoBud improved results by about 27% for hosts located in Western
Europe and by about 37% for hosts in the United States, for the datasets used. This
higher accuracy come at the cost of geolocating routers along all relevant paths and
measuring their buffer delay.

Several schemes for a publicly available infrastructure for measuring network distance

13

between hosts have been proposed. Although these schemes do not seek to locate
hosts geographically, but rather construct a distance-based map of the Internet for
proximity-purposes, they do provide valuable information about the distribution
of Autonomous Systems, possible simplifications and how they influence the acc-
uracy of the results. The first such scheme was IDMaps [17] by Francis et al, later
improved upon in [18, 19, 20, 21]. More recent work has focused on distributing
the load, reducing network traffic and determining accuracy over time [22, 23, 24,
25, 26]. These schemes are primarily meant for selection of lowest latency servers
or peers in general applications, and are currently not accurate enough for forensic
needs.

As far as we can determine, no previous work exists that take into account the
impact of IPv6 on geolocation techniques. As in [14], we propose a tiered approach,
but do this in a more dynamic way, by not operating with two strictly separate tiers.
By using multi-agent technology we are able to invest more advanced behaviour
into our landmarks, distribute the load of computation and integrate geolocation
functionality into a general Internet forensics platform, such as that in Appendix
A. Also we believe our suggestions for how to use multi-party computation in
geolocation are novel.

3.4 Comparative Analysis

So far we have not discussed advantages and drawbacks to the different approaches
and techniques. Here we go into detail about accuracy, trustworthiness, required
effort, sources of error and possible circumventive acts for each of the techniques.
A summary is given in Table 3.1, where H indicates high, M medium and L low
scores. Note that for the two categories Detectability and Effort a high score is
not positive. The Geocluster and GeoBud techniques as well as inference based on
DNS names are evaluated independently to highlight their differences from related
techniques.

3.4.1 Common Limitations

Before going into detail about each technique some common limitations are im-
portant to keep in mind. In addition to the problem areas described below Mobile
IP may also affect the results. The possible impact of Mobile IP is discussed in
Section 3.7.

14

Acc
ura

cy

Dete
cta

bil
ity

Fres
hn

ess

Reli
ab

ilit
y

Effo
rt

whois IP M/L L M M L
whois DNS M/L L L L M/L
Routing Info M L H H M/L
DNS names M L M/H L/M M
GeoCluster M L M M/L M
IDMaps∗ L L L M/L M/H
GeoPing H/M H H H M
CBG H H H H M
GeoBud H+ H H H H

Table 3.1: Summary of Comparison of Geolocation Techniques. * Note that IDMaps
performs delay estimations not geolocation. See the analysis of IDMaps in Section 3.4.3.

Slow Links and Congestion

Slow links results in large delays, if the distribution of slow links in the network(s)
travelled by probe packets is not relatively uniform the results may be skewed.
Congestions can make links appear as slow, but may be detected using the technique
described in Section 3.6.3.

Topology-Hiding

The result of a tracing operation might be correct, without being of much value.
This is due to the use of different topology hiding techniques such as proxies,
Network Address Translation (NAT) and Virtual Private Networks (VPN). In most
cases the use of these techniques are legitimate, but they can also be used for
intentionally making a host difficult or impossible to trace.

Proxies A proxy server is a host that offers a network service to allow clients
to make indirect network connections to other network services [wik06b]. With
regard to geolocation the most important feature of a proxy is that the address of
the real source is hidden, it is the address of the proxy that is publicly visible.
Thus the address left behind by a target using a proxy will be the address of the
proxy. Tracing this address then will if successful give the location of the proxy.
If the proxy is local to a company, school or some other organization this might
not be a problem. At least not insofar as finding the geographical location of the
source. If on the other hand the proxy is open the location of the proxy itself
might be worthless. An open proxy can be defined as: "a proxy server which will
accept client connections from any IP address and make connections to any Internet

15

resource [wik06b]." Law enforcement may be able to seize the open proxy and get
the real source addresses from it. This becomes practically impossible if several
open proxies are chained to create a path of anonymity. Chaum introduced the
concept of a mix-network, a set of servers that serially encrypt or decrypt incoming
messages and outputs them in a random order, so that an outsider cannot correlate
input and output messages [27]. Several schemes inspired by this concept to hide
original source addresses have been proposed, and some are in use on the Internet.
A comprehensive list of publications is available in [ano06]. The best known and
most used is probably The Onion Routing (TOR) network [28].

Network Address Translation NAT, also known as network masquerading or
IP-masquerading involves re-writing the source and/or destination addresses of IP
packets as they pass through a router or firewall. The original purpose of NAT was
to enable multiple hosts on a private network to access the Internet using a single
public IP address [wik06a].

From the point of view of geolocation NAT works in about the same way as a
proxy, hiding the original source address. Some NAT-devices can be configured
to forward incoming request to hosts inside the NAT, and as such allow direct
connections, but the source address will still remain hidden.

Virtual Private Networks VPN is a set of techniques used to communicate
confidentially over a publicly accessible network by constructing a virtual network
on top of the publicly available infrastructure and protocols, for instance the Internet
[wik06c].

A client participating in a VPN configured so that all IP traffic passes through the
VPN tunnel seems to not exist to other hosts, only the entry point to the VPN is
visible. This entry point might be at a totally different location than the client
host(s).

Temporary Addresses

Traditionally many users connected to the Internet used dial up connections. This
gave the user a new IP address each time she connected. With broadband con-
nections becoming more common, the number of dial up users are falling, but
many broadband connections also routinely change the IP addresses of their clients.
Publicly available wireless hot-spots also provide their users with temporary add-
resses.4 Thus an address might be in use by someone else (possibly at a different
location) than the intended target at the time the trace is being performed.

4Wireless hot-spots may employ different technologies, not all hot-spots provide their users with
public IP addresses, thus also working as NAT-devices or proxies.

16

3.4.2 Using Public Information Sources

All use of public information sources have the drawback that the information is at
some point submitted by the registrant. The information might also be dated. The
greatest advantages to using public information sources are without doubt that no
traffic is generated to the target host, and that all that is needed is a simple query
and interpretation of the reply, no landmarks or calculations are necessary.

IP whois

Reliability It is quite costly to be assigned a range of IP addresses, and the
information about owners required by the RIRs is comprehensive. It is of course
possible to falsify this information, but as most IP range owners are major corp-
orations or the like it would probably not be in their interest to do so. Also, the RIRs
or their sub licensers are likely to actually use the provided information to contact
the alleged owners, leading to a greater possibility of detecting false or erroneous
information. The RIRs may also take down the address space for investigation if it
is unused or not set up correctly.

An IP whois record can be hijacked5. That is, the record can changed by an
unauthorized individual posing as the legal assignee. IP hijacking can be done
in several different ways, which we will not go into here. An introduction is given
in [hij06b]. The portion of the total address space being in a hijacked state at any
time is low. However, as most hijackings are the result of criminal intent (only
a small portion is due to mis-configuration), it is not improbable that addresses
from hijacked ranges will be overrepresented in law enforcement cases where geo-
location could be useful. A relatively up to date list of suspected and confirmed
hijacked address ranges is available at [hij06a].

Accuracy It is the assignee’s contact information that is required in the registrat-
ion, not where the owner chooses to actually deploy the addresses. This might
lead to erroneous assumptions about the location of hosts using the addresses.
Also, if the assignee is an organization with operations at different locations, or
the assigned range is large, parts of the range is likely to be deployed at locations
different from the one registered.

Freshness IP whois records may have a field specifying when the information
was last updated. This is not the case for the record in Figure 3.1. As two arbitrary
examples the update field for the range 18.0.0.0/8 assigned to Massachusetts Institute
of Technology was last updated September 26 1998, while the range 207.46.0.0/16

5Not to be confused with IP spoofing, the sending of IP packets with false header information.

17

assigned to Microsoft Corporation was updated December 9 2004. However, the
somewhat elaborate registration process necessary to be assigned an IP range leads
to changes in assignment being rather infrequent. As long as the registration infor-
mation has not been falsified it is reasonable to assume that it is also up to date.

Detectability The possibility of a target detecting that someone is querying RIRs
about its registration details is practically non-existent. If the target, hypothetically,
has the capability to run sufficiently extensive surveillance to detect such attempts
it would undoubtedly be within its capacity to out-smart any attempts to trace it at
all.

Effort There are two hurdles of any difficulty worth mentioning in this regard.
The first is that to automatically extract useful information from the reply to an
IP whois query one must take into account the different RPSL syntaxes used, and
build a database to match the extracted information against. The second is that the
different whois services may limit the number of connections from an address/host
in a given period of time, resulting in the need for a pool of addresses to use for
querying. Both these hurdles are very manageable, compared to the challenges
associated with the other approaches.

DNS whois

Reliability DNS records may, as IP range records, contain falsified information.
However, as registering a domain name is a much simpler process, and the number
of DNS registrants is much higher than for IP ranges it is much easier to supply
incorrect information. Also this information is less likely to be validated, as the
number of DNS records is much higher and their importance much lower compared
to IP range records.

Just as with IP range records it is possible to hijack DNS records. The effect
is different though. By modifying a DNS record one can redirect any requests
to another host. This is often used to redirect unsuspecting users to fake pages
created by attackers. This is not of interest to us. However an attacker might
change DNS records to confuse investigators by pointing them to hosts not involved
in the investigated actions. The IETF is in the process of developing standards
for solving different security problems related to DNS, but these are currently not
widely deployed or not finished [RFC4033] [dns06a].

Accuracy As with IP range records it is the registering organization/person’s
contact information that is required in the registration. The registrant is technically
free to point the DNS record to any host on the Internet, and is more likely to do so
than in the case of IP ranges.

18

Freshness DNS records have a field specifying when the information was last
updated, as can be seen in Figure 3.2. Domains change hands and are abandoned
regularly. It is not uncommon for the contact information listed in DNS records to
be outdated. To assume that the information is up to date the update field should
indicate that the information was changed relatively recently.

Detectability The possibility of a target detecting that someone is performing
queries about its registration details is higher than for IP ranges, due to the hierarchic
nature of the DNS. A request for information about a particular address will be
forwarded to the DNS server(s) responsible for the record, and this might be control-
led by the person in control of the targeted host. Still, to filter out such queries
from other DNS request requires knowledge of the tracing operation and persistent
monitoring.

Effort The problem of limited access does not apply to DNS queries to the same
extent as for IP whois. Different DNS servers may have different policies, and as
there are many more of them successive queries are more likely to be to different
servers. The problem of extracting the information from replies is on the other
hand more demanding, due to missing common formats and the large number of
servers. The formats are also likely to change more frequently than for IP range
records, resulting in a higher maintenance effort.

Routing Information

Reliability Routing information needs to be correct for the network to work at
all. ASes are generally run by large organizations which either depend on the
routing to work for their own operations, or they act as Internet Service Providers
and sell access to customers, who also need the routing to work.

Accuracy An AS can be very large. Many network providers are transnational
companies, and depending on their internal policies they may employ from one
to many ASes. As such an AS can cover a large geographical area. Also the
information registered about the assignee might be for some sort of central office,
and not the local branch of the organization.

Accuracy may be increased by combining AS lookups with inference based on
DNS-naming of routers, but this is a technique fraught with error sources.

Freshness Inter-AS routing is policy based, with deals between the different
ASes, and is as such rather stable. However, due to downed links or other network

19

problems temporary route changes may happen more rapidly. Thus the AS path
actually travelled may vary, but the final destination is the same.

Detectability The possibility of a target detecting that someone is querying ASes
about its registration details is practically non-existent. If the target, hypothetically,
has the capability to run surveillance extensive enough to monitor enough ASes to
detect such attempts it would no doubt be within its capacity to out-smart any
attempts to trace it at all.

Effort If one is interested in information about the ASes on the path to the final
destination successive queries might be necessary. The biggest problem is probably
one of access. Earlier BGP routing information was generally openly published.
Due to security concerns more and more ASes limit the availability of this infor-
mation. This is the case for Uninett which previously published BGP information
freely on its web site, but now only makes this available to selected partners.

DNS names

Note that to infer locations based on router names it is necessary to first establish
which routers are on the route to the host, and as such this technique can not be
used independently.

Reliability There is no guarantee that a router name is based on geographical
location. Even if this seems to be the case it might not be, and lead to false
conclusions.

Accuracy If the geographical location of the last hop router to the target can
successfully be inferred from its name it is reasonable to assume that the target
host is within a limited distance from this router. Depending on the network
density what constitutes a limited distance might vary considerably, and this must
be accounted for.

Freshness If a router name is based on its geographical location it is natural to
assume that it remains correct. We have no data to indicate to which extent routers
are moved without their names being changed, but it is possible that this occurs.

Detectability It is impossible to detect someone’s intent in reading router names.
Acquisition of the knowledge of which routers are on the route to the target host
may be detectable though, depending on how this is done.

20

Effort Using router names to infer locations requires a massive job of deducing
naming policies for different ASes.

GeoCluster

GeoCluster is a technique where routing information and the knowledge of the
geographical location of a few hosts is used to determine the location of hosts
within the same routes as the known hosts. Hosts within the same route form a
geographical cluster, with the geographic location determined by the known hosts
within that route.

Reliability How the location of the known hosts is gathered is crucial. In [10]
user-submitted information from several large web sites is used. As described
above, user submitted information can always be erroneous. This can be mitigated
by using a larger number of known hosts, with the assumption that a majority of
users supply correct information. Apart from this the reliability is as for using
Routing Information.

Accuracy The accuracy is as good or better than when using only Routing Infor-
mation. This depends on how many known hosts are used for each cluster. Routing
information might not give the area where the route is actually deployed, while
GeoCluster does, provided that the location of the known hosts is not erroneous.

Freshness The user-submitted information may be dated, and users might have
moved without updating their location information. This might lead to GeoCluster
determining the incorrect geographical location of a cluster. The routing infor-
mation used is of course subject to the same limitations as when using only Routing
Information.

Detectability The detectability is identical with that for Routing Information,
given that the location of the known hosts is gathered in a non-detectable fashion.

Effort The real effort with GeoCluster lies in obtaining and keeping the locations
of the known hosts current. This might not always be straightforward as personal
privacy may be a concern. Also the quality of this information needs to be verified,
possibly by developing algorithms for deciding what information to trust.

21

3.4.3 Measurement Based

All use of measurement based techniques have the drawback that at some point
traffic is generated to the target host, increasing the likelihood of detection. For
the tracing to work at all the target host must reply to this incoming traffic. Also a
comprehensive set of landmarks is necessary.

GeoPing

Reliability GeoPing relies on the target host answering probe queries, and uses
the delay values produced in its calculation. However, there is no guarantee that
these delay values correctly represent the delay along the path between a probing
landmark and the target. The target is free to delay its replies as it likes, thus
skewing any attempts to compare the delay vectors of different landmarks. Such
behaviour might be detected using techniques described in Section 3.6.3 but that
requires an inordinately large number of probes from each landmark.

Accuracy As described in Section 3.3 different similarity models for calculating
which landmark exhibits the closest matching delay pattern to the target affect
the accuracy. No matter how well a given similarity model performs, the acc-
uracy of GeoPing is limited by the set of landmarks employed. This remains true
even if landmarks are distributed according to demographic densities and the tiered
approach is used.

Detectability The higher accuracy one wants the more traffic one has to generate
to the target host. This increases the chances of detection, either by the target
host or by others monitoring the Internet for particular traffic patterns. Placing
landmarks according to population density may reduce the numbers of landmarks
necessary to achieve a given level of accuracy, and thus decrease the amount of
traffic generated. To achieve usable accuracy over a large geographical area without
flooding the target host a tiered approach seems essential. To reduce the amount of
simultaneous traffic to the target host during the trace operation, it is possible to let
the different landmarks perform their measurements at different times. Despite
these optimizations the chance of detection is significantly higher than for ap-
proaches using public information sources.

Freshness If all landmarks simultaneously perform their measurements the result
can be assumed to be as fresh as possible. If on the other hand one lets the dif-
ferent landmarks perform their measurements at different times, this will prolong

22

the entire operation, and more importantly the possibility of the landmarks enc-
ountering different network conditions increases. Compared to approaches based
on information sources the results are very fresh.

Using existing measurements between the landmarks are of course possible, this
would result in a shorter time to complete a trace operation, but the measurements
used would stretch over an even longer period of time than if doing the measure-
ments asynchronously from the different landmarks.

Effort For GeoPing to produce reliable and accurate results within a region an
extensive set of landmarks is necessary. This requires access to such a set of
landmarks. Knowledge of the networks these landmarks are connected by might
also help improve the results.

CBG

Reliability Due to CBG’s use of a bestline calculated from measurements between
all the landmarks it is less susceptible to manipulated delay values than GeoPing,
but this would still negatively affect the result.

Accuracy Theoretically CBG can provide the exact location of the target. In
practice a safety margin is necessary to not underestimate the distance from any
landmark. Underestimation leads to an incomplete intersection, and the calculation
fails, see Figure 3.4(b). Figure 3.4(a) shows how overestimating solves this, at the
cost of accuracy. Of course it is possible to miss even when overestimating, as
shown in Figure 3.4(c). In Section 5.4.4 we look into tuning the overestimation to
be as small as possible without incurring underestimation.

(a) Overestimated
distance constraints.

(b) Underestimated distance
constraints.

(c) Target mismatch.

Figure 3.4: The possible outcomes of varying the safety margin in CBG [15]. τ is
the target of the location attempt.

As with GeoPing the number and placement of the landmarks are vital to the degree
of accuracy attainable.

23

Detectability The effort is about the same as for GeoPing, except that for cal-
culating an as accurate bestline as possible more probes between the landmarks
would be necessary. This leads to a more easily detectable traffic pattern.

Freshness The freshness is exactly the same as for GeoPing.

Effort The effort is about the same as for GeoPing, but one also needs to know
the precise distance between all the landmarks, and not only their approximate
locations.

GeoBud

Reliability Reliability should be the same as for CBG. Decreasing the over-
estimation by a known size, the routers’ buffer delays, should not result in more
cases of underestimation.

Accuracy As noted in Section 3.3 GeoBud is capable of increasing the accuracy
with about 30% compared to CBG.

Freshness Apart from the time needed to measure buffer delays GeoBud has the
same freshness characteristics as CBG and GeoPing. As with the measurements
between landmarks, buffer delays could be measured in advance of actual tracing
operations, at the cost of the values being slightly dated.

Detectability To the target GeoBud is identical to CBG. The only difference is
that a large amount of additional traffic is generated to measure the buffer delay of
the routers used. If a pattern in this additional traffic could be identified detection
would be easier.

Effort The effort involved in measuring and keeping up to date the buffer delays
of routers in addition to the effort necessary for running CBG makes GeoBud very
expensive. With the number of routers involved it is questionable if the increased
accuracy would make up for the added effort.

IDMaps

IDMaps and similar techniques do not try to infer geographical location, but rather
network distance. These network distances could be used by measurement based
geolocation algorithms as input instead of performing direct delay measurements.

24

Reliability IDMaps suggest placing landmarks according to clusters of Address
Prefixes6 (AP) and measure distances between them. Since it is based on the
distance between clusters of APs its reliability is about the same as that of Routing
Information, but with regard to delay not location.

Accuracy The original IDMaps strives to attain an accuracy within a factor of 2
to direct delay measurements. The accuracy depends on the number of landmarks
used, but will never approach that of direct measurements while at the same time
being scalable. [19] achieves better accuracy than IDMaps, but still far from that
of direct delay measurements.

Detectability Determining distance in IDMaps does not involve target host(s)
directly, and it is a continual service supposed to be a part of the permanent infra-
structure of the Internet. Thus it is impossible for a target to know if the service is
used as part of a geolocation attempt.

Freshness An update frequency of days or at the best hours is suggested in [18].
Thus current network conditions will not be reflected. The maximum time between
updates for producing relatively accurate results is estimated to 7 days in [25].

Effort The requirement to have a network of landmarks, preferably such that
every AP cluster is in the vicinity of a landmark, results in a relatively large set
of landmarks. Also the resources required for storing the distances between AP
clusters should not be underestimated. In [18] the number of landmarks used leads
to every landmark needing to store a list of several hundred thousands entries.
Finally determining the clustering of APs is not trivial, while still feasible. Later
distance map techniques have much lower requirements, but depends on the co-
operation of the hosts one wants to know the distance to, and are thus out of the
question [22, 20].

3.5 Improvements to Current Techniques

As described in Section 3.4 all of the current techniques have some drawbacks.
Here we suggest improvements to mitigate some of the effects of these short-
comings.

6[18] defines an Address Prefix as "a consecutive address range of IP addresses within which all
hosts with assigned addresses are equidistant (with some tolerance) to the rest of the Internet".

25

3.5.1 Combining Information Sources and Measurements

By first querying available information sources, a limited region to perform active
measurements within can be defined. Fossen did this to some extent in [6] but
the concept can be extended to use multiple sources that are checked against each
other for correlation. This could increase confidence in the assumed region, or if
the sources disagree, result in rejection of the assumption that the suggested region
is correct. Better results could probably be obtained by weighting the information
sources according to their relative scores in the categories discussed in Section 3.4.

3.5.2 Dynamic Regions and Super-Landmarks

Guye et al suggests in [14] to use GeoPing with a tiered approach as described
in Section 3.3. We propose to do this in a more flexible way, by not operat-
ing with different static tiers, but by selecting landmarks dynamically. By using
information source queries as a heuristic to narrow the assumed area of possible
location a set of supposedly geographically close landmarks can be selected, as
described above. Also based on the assumption in [13] that a host is most likely
located in a densely populated area, a super-landmark can be selected. The criteria
for choosing a super-landmark would be that the landmark has a central locat-
ion within the assumed region, and/or is located in a densely populated area, or
between multiple such areas of the region. The purpose of this super-landmark
would be to confirm or invalidate the assumed area of location. The measured
delay from the super-landmark would be compared to a threshold value based on
the density of landmarks in the region and its size. By using a super-landmark for
validation of the assumed region the amount of traffic to the target host could be
significantly decreased, especially if the assumed region turned out to be incorrect.
Another possibility would be to narrow the region even further by selecting only
landmarks within twice the delay distance from the super-landmark to the target
host, see Figure 3.57. Employing this technique with CBG would most likely yield
better results than with GeoPing, as assumptions about correlation between delay
and geographical distance would be necessary and are already part of CBG.

Alternatively GeoPing or CBG could be run with input from an IDMaps-like service
to limit the region to perform active measurements within. This would limit the
traffic to the target host. If this would result in a more accurate assumed region
than the use of public information sources is dependent on the specific IDMap-like
technique used, and the numbers of landmarks employed for delay measurements
in this technique.

7Note that depending on the delay value and the size of the assumed region this might actually
increase the number of selected landmarks.

26

Figure 3.5: Selection of landmarks, shown as triangles, by the use of a super-
landmark, shown here as a star. The dots symbolize population centers. The innermost
circle is the delay from the super-landmark to the target, the outermost double this
value. Landmarks inside the outermost circle are used to geolocate the target (not
shown).

3.5.3 Limited Knowledge of Landmark Locations

Common to all measurement based techniques discussed so far is the assumption
that the location of all landmarks are known by all the other landmarks. In a widely
deployed system with many landmarks, maybe operated by different parties, this
might not be desirable. As the number of landmarks increases so does the probability
of one or more landmarks being compromised. If an adversary acquired the exact
location of all landmarks in the system its efficiency could be severely lessened.

Another aspect is that the different parties might not want to disclose the location
of their landmarks to other parties. Intuitively this might seem impossible, at least
when using CBG. However, a mathematical technique called multi-party comput-
ation (MPC) can in fact compute the final result, without the parties divulging
their locations to each other. MPC was introduced in [29] with later important
contributions in [30, 31, 32].

Multi-Party Computation

MPC is in essence distributed computation performed by multiple parties, where
the parties each hold information they do not want the other parties to know, but
that is needed in the computation. Each piece of secret information is split into
a number of shares, and one share distributed to each of the participating parties.
The splitting must be done so that a single share does not divulge the content of
the information. Each party performs the required calculation on the shares it has
received and distributes the result. Recombination of the computed results from all
parties constitutes the final result.

27

An important aspect of MPC is the lack of a trusted third party. Instead of placing
their trust in an external party, or some specific subset of other participating parties,
the parties trust that a majority of the participants are honest [33]. Thus for the
locations to be revealed when using MPC, a number of the participating landmarks
large enough to break this level of trust would need to cooperate in unveiling the
locations of the rest, and in doing so also revealing their own locations to each
other8. Also, it is possible to detect incorrect computation by dishonest parties.
Reistad has demonstrated that the theory of MPC can be used in a geolocation
context. Although [36] limits itself to simple triangulation of points, it shows that
there is no restriction in MPC that makes more advanced geolocation impossible.

Figure 3.6: CBG converted to use grid coverage for constraint representation.

CBG using MPC

Implementing CBG using MPC immediately presents a problem. The algorithm for
computing the confidence regionR requires knowledge of all landmark locations9.
See Section 4.2.1. To avoid this the geographical constraints can be expressed
as boolean coverage within a grid reference system, instead of as functions of
landmark location and distance. For each constraint the grid squares would be
assigned the value 1 if included in the constraint, and 0 otherwise. Figure 3.6 shows
the visual representation of a confidence region in the original CBG and converted
to use boolean grid coverage. To achieve this the three constraint circles in the
figure each have to be converted to boolean representation, split up and distributed
to the participating parties. The function performed by all parties is to take the

8It has been shown that even if the majority is dishonest it is possible to keep the private infor-
mation secret [34, 35]. This requires a gradual release of information by the parties, and leads to
more complex computation.

9The bestline used for constraint calculation at each landmark in CBG is not dependent on the
landmark knowing the locations of the other landmarks, only its own distance to them. This lessens
the secrecy of a landmark’s location somewhat, but does not defeat the secrecy achieved by MPC.

28

boolean intersections of all received pieces covering the same geographical areas.
The final result, shown in Figure 3.6 as the region covered in 1’s is the boolean
intersection of these distributed results.

Appendix D describes the Universal Transverse Mercator (UTM) grid reference
system. For accurately representing CBG constraints a reference system with a
more fine-grained grid than that of UTM is necessary. A NATO system called
Military Grid Reference System which is based on UTM provides a precision down
to 1 m, and could be used for this purpose [37].

Implementing GeoPing using CBG would require less adaption, at least as long
as the Euclidean distance is used for determining the nearest neighbor, as MPC
directly supports mathematical less than. However, as GeoPing uses the actual
location of the landmarks as location estimation, the purpose of using MPC could
be defeated by revealing the result.

Figure 3.7: A possible configuration of limited MPC. Measurement nodes A, B and C
form a trust cluster with H as the TTP. MPC is used between the information exchange
hubs inside the grey area.

A Limited MPC Configuration for Geolocation

A downside to using MPC is that the landmarks would need to exchange much
larger amounts of information than without it, possibly resulting in a more detect-
able traffic pattern. Also with current MPC algorithms the amount of comput-
ation necessary grows rapidly when the computational complexity increases [32].
Applying MPC in a limited fashion, by introducing a tier using trusted third parties
(TTP), may help to mitigate this. Figure 3.7 shows a possible configuration where
the use of MPC is limited in this way. The measurement nodes denoted by A,
B, C share an information exchange hub, H, and use it as their TTP, forming
a trust cluster. A, B and C do not share any information between themselves,
and trust H to not do so either. Further they trust H to not divulge any location

29

information about them to other parties. H achieves this by participating in MPC
with other hubs, representing other trust clusters. Keeping the locations and infor-
mation about the information exchange hubs secret is not important since they
do not actively participate in the measurements themselves10. Note that which
measurement nodes are connected to which information exchange hubs are not
dependent on geographical location or network topology but on trust. The number
of information exchange hubs can be varied to balance the need between trust and
performance. Fewer hubs would lessen the information exchange needed and thus
increase performance, but more trust would be placed in each hub. The use of hubs
has an additional advantage when using CBG. A hub combines any overlapping
constraints of the measurement nodes in its trust cluster to a single constraint before
participating in MPC. Thus identifying the location of the measurement nodes from
the constraint shares becomes even harder.

The above tiered approach could also be used without MPC, to introduce a layer
of some secrecy for the measurement nodes, but where all information exchange
hubs would have to trust each other.

Employing MPC or other techniques for keeping the locations of the landmarks
confidential would result in the techniques described in Sections 3.5.1 and 3.5.2
becoming less effective or outright impossible to implement.

3.6 Delay Measurement

Delay measurement is at the core of all of the active measurement techniques
described in Sections 3.3 and 3.4. The quality of the measured delays have a
significant impact on the results produced by the trace operations, especially in
CBG, where delays are converted into actual geographical distances. GeoPing is
not as much dependent on the correctness of measurements as on their consistency,
as delays are compared against each other and not converted into real distances.

3.6.1 Delay Components

The delay between two arbitrary hosts, A and B, in a best effort packet switched
network can be expressed as in Equation 3.1.

d = dt + dp + q + ε (3.1)

Transmission delay dt is the time between the first and last bit of the probe has left
A, and correspondingly arrived at B, see Figure 3.8. Propagation delay dp is the

10Tracking measurement nodes by snooping traffic to known information exchange hubs would be
possible.

30

physical minimum time necessary for the probe to travel from A to B. Queueing
delay q is the time spent in non-empty router and host queues. Random delay ε
is time wasted due to media access contention, router processing overhead, ARP11

resolution and other network disturbances. The combination of dt and dp is often
referred to as deterministic delay, as they are constant along a link, while q and ε
is known as stochastic or variable delay [38]. dt is almost always negligible, due
to small probe size and fast interfaces. Thus dp is what we really want to measure.
In practice this is impossible to do accurately, due to unknown and varying size of
q and ε12. Estimating the value of ε and whether or not the probe is delayed due to
queueing is therefore important [39, 40].

Figure 3.8: The different components that make up network delay.

3.6.2 Ways to Measure Delay

Network delay can be measured in several ways, with different feasibility and
certainty. Independently of the measurement technique, it is important to keep
in mind that the Internet is a best effort13 packet switched network14. This has
important implications for delay measurements, as packets do not travel along
a predefined circuit with given properties. The conceived properties of the path
vary depending on, amongst other factors, traffic load and routing policies. What
is perceived as the best path between two hosts may change at any time15, due

11Address Resolution Protocol. Used to find the MAC address from the IP address.
12In [RFC2330], Framework for IP Performance Metrics, the term "wire speed" is used for the

combination of dp and ε.
13This might be about to change, as recent debate over net neutrality seems inclined towards

service differentiation [net06].
14Strictly speaking the Internet is not a single network, but a network of networks. Internally some

of these networks may not employ packet switching, but traffic between the networks are packet
switched, regardless of their internal workings.

15In [41, 42] more than 87% of paths were found to be stable over hours, and less than 2%
experienced route changes more often than every 10 minutes. All examined paths remained stable
for at least 60 seconds. Note that these numbers are from some years back, and might no longer be
representative.

31

to downed links, congestion and changing routing policies, influencing the delay.
Also, the path from B to A is often not the reverse of the path from A to B, as
routing policies and other restrictions do not necessarily behave symmetrically
[43, 44].

Independent of how the delay is measured the IP version used in the network
may influence the results. An implication of the 128bit address in IPv6 is that
each IP-packet becomes larger, and this results in bigger overhead, that translates
into less efficient bandwidth usage, and higher latencies. Header compression
can partly mitigate this, but in turn requires processing time for compression and
decompression16. [45] reports on the differences for RTT in an academic research
network, and finds that IPv6/ICMPv6 RTTs generally are 0.4ms higher than IPv4/
ICMPv4 RTTs for all packet sizes. Also immature and less optimized IPv6 stacks
in routers may add additional extra delay in comparison to IPv4.

In Chapter 5 we compare IPv4 RTT and one-way delay, and IPv4 and IPv6 RTT in
the Uninett network.

Round Trip Time

Round Trip Time (RTT) is widely used due to its simplicity [46][RFC1305]. It
is actually a double delay, made up from the delay from A to B, and from B to
A. These two parts do not necessarily contribute equal shares to the total RTT, for
reasons discussed above.

The term probe used above is an abstraction for the actual packets traversing the
network path. What constitutes a probe depends on the protocol and technique
used. Tools like ping and traceroute17 send an ICMP_ECHO packet from host
A and waits for an ICMP_ECHO_REPLY packet from host B. The default size
of each of these packages is 64 bytes18 and together an ECHO and REPLY pair
constitute an ICMP probe.

Some Internet service providers and host operators filter, drop or down-prioritize
ICMP packages [47] [pin06]. This results in ICMP-based tools not being able to
reach all19 hosts, and reported delays may be larger than necessary. To get around
the limitations imposed on ICMP traffic some tools employ probes based on TCP
[]. These tools use a technique called TCP-ping, where host A tries to establish a
TCP-connection with host B by sending a TCP SYN packet. Host B replies with a
TCP SYN-ACK or RST packet.

16Techniques for header compression without incurring processing delays exist, but are not in
common use [45]

17Some implementations of traceroute use UDP.
18Without any extra options.
19It is difficult to give a good estimate of how large a proportion of Internet hosts are unreachable

by ICMP, [39] reports that more than 12% of about 20,000 probed hosts were unreachable.

32

The TCP-ping solution has its own drawbacks. TCP traffic must be directed not
only at a host, but at a specific port number. There is no universal TCP port number
that all hosts are required to listen on. A common way around this is to use port
80 (http) or some other commonly used port, that many hosts are assumed to listen
on. When receiving a TCP SYN packet most hosts do not reply right away, but try
to match or spawn a process to handle it, incurring extra delay. ICMP packets are
in contrast replied to immediately.

Most networks prioritize TCP-traffic, thus queueing delay is minimized. Addition-
ally TCP SYN packets are 40 bytes, resulting in a marginally lower transmission
delay than for ICMP packets. In practice the RTT measured using ICMP and TCP
probes are often almost identical, with a correlation above 0.99 for the over 100
sites measured in [39].

In our prototype application in Chapter 4 we use RTT, and take into account the
problems described above by implementing the techniques suggested in [39, 40].

One-Way Delay

With access to synchronized time at both host A and B it is possible to measure
one-way delay. This is done by time stamping a probe consisting of a TCP packet
when it is sent from A, and subtracting the value of this time stamp from the
current time when the probe arrives at B. Synchronized time is usually achieved
by using the Global Positioning System(GPS) as reference and synchronization
source. The requirements for measuring one-way delay makes it impossible to
use in many situations, but it is an interesting metric for checking how good an
estimation halved RTT is for measuring delay.

Recently Gurewitz et al. have come up with a novel approach for estimating
one-way delay not requiring synchronized time [38]. The approach consists of
identifying as many independent cyclic paths between hosts as possible, and perform-
ing one-way measurements in both directions along these paths. The paths need not
be symmetric. The theory is that along a cyclic path clock offsets are canceled out,
and the total one-way delays along all cyclic paths can then be used as constraints
for estimating the actual one-way delay, using an objective function. The results
achieved outperform halved RTT for the paths examined, but do not quite match
GPS assisted measurements. The technique is possible to implement in almost any
IP based network, as no non-standard protocols are used. Other alternatives to GPS
synchronized time are presented in [48, 49] but these require symmetric paths to
function accurately.

33

3.6.3 Confidence in Delay Measurements

Independent of the approach used to measure delay, we would like to be able to
say something about the confidence of the results, and if possible estimate the ε
part discussed in Section 3.6.1. The confidence of a delay measurement result can
be thought of as the probability of the delays observed being representative for an
uncongested path, that is a path where the queuing delay q in Equation 3.1 is zero.

Confidence Regions and Detecting Congestion

Congestion can substantially affect the results of delay measurements. Therefore
it is important to identify the occurrence of congestion(s) during measurement
runs. Zeitoun et al devised a way to determine confidence and ε for RTTs by
comparing the RTT values of probe pairs to detect congestion [39, 40]. A probe
pair is defined as RTTn and RTTn+1 where n is the probe’s sequence in the sample.
Three congestion regions are defined:

• Region C1: Both probes see empty queues and experience minimum RTT
plus ε.

• Region C3: Both probes always see a queue, and thus persistent congestion.

• Region C2: One of the probes experience queueing delay but the other does
not. This indicates a transient congestion.

To determine the congestion regions minimum RTT and ε are used. The minimum
RTT determines the bottom left corner of Region C1, see Figure 3.9. ε determines
the boundaries for C1, C2 and C3. On a congestion-free path most probes should
be within Region C1.

The mode20 RTT is very close to the minimum RTT in a normally distributed RTT
sample, and a large number of RTTs are within 10% of this mode [50]. This makes
it possible to calculate ε using the observed minimum RTT and the mode RTT. ε is
equal to the size of the window around the most frequent values of RTT, or double
the difference between the minimum and mode RTT.

A point pi in the phase plot represents a probe pair. The point pi = (RTTi, RTTi+1)
is part of C1 if RTTi ≤ (minRTT + ε) and RTTi+1 ≤ (minRTT + ε). It is part
of C2 if max(RTTi, RTTi+1) > (minRTT + ε) and min(RTTi, RTTi+1) ≤
(minRTT + ε). And finally it is part of C3 if RTTi > (minRTT + ε) and
RTTi+1 > (minRTT + ε).

20The most frequent values in a data sample is known as the mode of the sample [sta06].

34

Figure 3.9: A phase plot of a RTT sample showing the distribution among the three
congestion regions [40]. τ denotes the inter-probe delay.

Computing the Confidence

The confidence is expressed as C1 + C2 + C3 = 1. With N probe pairs the value
of C1 is computed as in Equation 3.2,

C1 =
1
N

N∑
pi,i=1

1
∆(RTTi)

× 1
∆(RTTi+1)

, where

∆(x) =

{
1 x = minRTT

dx−minRTT
ε e x > minRTT

(3.2)

C2 is computed as in Equation 3.3.

C2 =
1
N

K −
∑

piεC2

1
∆ (max (RTTi, RTTi+1))

 ,

where K is the number of probepairs in C2.

(3.3)

And C3 is computed as in Equation 3.4.

C3 =
1
N

M −
∑

piεC3

1
∆(max(RTTi, RTTi+1))

× 1
∆(RTTi+1)

 ,

where M is the number of probepairs in C3.

(3.4)

35

Equations 3.2 to 3.4 weigh the points such that the closer a point is to C1 the more
important it is to the final value. The ∆(x) function in Equation 3.2 is used to
calculate the distance in regions between minimum RTT and the given RTT in all
the equations.

The implementation by Wang et al uses TCP probes and is written in C. We have
re-implemented it in Java, using ICMP probes, see Section 4.3.3 and Appendix C.5.
In Chapter 5 we perform several tests measuring the C-values and ε to analyze the
performance of the Uninett network and the effect on geolocation of varying probe
parameters.

3.6.4 From Delay Measurements to Geographical Distance

The speed of light in optical fibers is approximately 1.962 x 108 m/s [51]. This is
the basis for conversion of delay measurements to geographical distance. However,
this conversion is not straightforward. At this speed, 1ms translates into 196.2
km, making accurate delay measurement paramount. But even if spot-on delay
measurements were possible there are other important sources of error. Cables
are not laid out as the crow flies, they meander through the landscape, following
roads, rail tracks, elevations and other topological properties. Thus cable distance
is always longer than actual distance, also known as great circle distance, see
Appendix D.3. In most cases, knowing the physical topology of more than small
parts of the Internet in detail is practically impossible, making the calculation of
the offset between geographical and cable distance an educated guess at best.

To complicate matters further [52, 53, 54] show that current BGP inter-AS routing
policies tend to exhibit path inflation, making the discrepancy between the path
travelled by packets and geographical distance even larger. Although the degree of
path inflation seems stable over time, it differs between long and short paths, and
between different size Internet Service Providers. Accurate numbers for how large
a portion of all paths exhibit inflation, and by how much are not agreed upon, due
to different data sets and methodologies. [53] suggests that as much as 80% of all
paths are inflated, and that 20% are inflated by at least 50%. On the other hand
[52] suggests that about 45% of all paths are inflated.

In Section 5.1.1 we look at the difference between minimum theoretical delay as a
function of great circle distance and actual measured minimum delay.

3.7 Internet Protocol v6

Internet Protocol v6 (IPv6) is the next generation Internet Protocol [RFC2460].
IPV6 is a conservative extension of IPv4, but differs from it in several aspects. We
will only touch upon differences relevant to geolocation.

36

3.7.1 Address Space and Assignment

IPv6 extends the address space from today’s 32 bit to 128 bit, resulting in an
immense increase in the number of unique addresses21. This in itself is not very
interesting from the point of view of geolocation. However, as a result of the
massive address space, IPv6 also calculates and distributes IP-addresses differently
from its predecessor. This has important implications for the traceability of add-
resses.

In IPv4 addresses are either statically assigned or distributed by DHCP22-servers.
In addition to these methods IPv6 introduces stateless auto-configuration [RFC2462],
where hosts generate their own addresses based on a combination of two logical
parts; a (sub-)network prefix and a locally generated host part. The host part is most
often derived from the globally unique MAC23 address, and offers an opportunity
to track user equipment, and so users, across time and address changes. This loss
of anonymity has been addressed in [RFC3041][55], by different schemes for host
part randomization. As a more extreme measure to preserve anonymity it has been
suggested to use a new IP address for every TCP connection [56].

Since IPv6 addresses are plentiful, it is reasonable to allocate addresses in larger24

blocks than for IPv4, which makes administration easier and avoids fragmentation
of the address space. This in turn leads to smaller routing tables, and more efficient
routing. A less fragmented address space might make techniques like IDMaps and
GeoCluster more accurate.

3.7.2 Mobile and Hierarchical Mobile IP

Mobile IP (MIP), an optional extension to IPv4 [RFC3344], is an integrated part of
IPv6 [RFC3775, RFC3776]. With mobility being an integral part of the protocol,
and more and more IP capable mobile devices an explosion in the number of mobile
nodes (MN) is expected. Also 3GPP2, one of the two consortiums publishing
competing third generation mobile phone standards, has decided to build their
standard on MIPv6.

The goal of MIP is to let a MN keep the same IP address wherever it is. MIPv4
uses two IP addresses per MN to achieve this; a home address and a care-of
address (CoA). The home address is static and used to identify the MN, while

21Unique addresses in IPv4: 4,294,967,296.
Unique addresses in IPv6: 340,282,366,920,938,463,463,374,607,431,768,211,456

22Dynamic Host Control Protocol. Defined in [RFC2131]
23Media Access Control. (Globally) unique equipment identifiers used in many communication

networks for identification at layer 2 in the OSI network stack.
24In current policies an end-user is allocated 64 bits of IPv6 address space, while organizations

are allocated 96 bits or more.

37

the CoA changes with each change of network attachment. To work MIPv4 req-
uires two additional network nodes; a Home Agent (HA) and Foreign Agent (FA).
Whenever the CoA changes this is registered in the HA. The task of the HA is to
relay incoming traffic to the current CoA. The FA is responsible for allocating an
IP address and related configuration information to the MN at its current location.
The MN may be configured to route return traffic through its HA or directly to any
Correspondent Node (CN). If the traffic is routed through the HA it is impossible
for outsiders to know the location of the MN, or its CoA without snooping the
packets sent between the HA and MN. Figure 3.10 shows the normal case where a
CN sends a request Req to the MN’s home address. This request is forwarded as
T rec by the HA to the MN by use of tunnelling. The reply Rep is sent directly
from the MN’s CoA to the CN.

Figure 3.10: Triangle routing in Mobile IP.

Due to the auto-configuration of host addresses described in Section 3.7.1 MIPv6
has no FAs. In MIPv6 it is also possible to avoid the triangle routing described
above, by the use of binding updates. Binding updates lets the CN in Figure
3.10 send subsequent requests directly to the MN’s CoA. This leads to increased
performance and is the default behaviour. For geolocation purposes this is an
advantage as the MN’s CoA is public. Note that this could still be negated by
the use of one-time CoAs as described in Section 3.7.1.

An extension of Mobile IPv6 known as Hierarchical Mobile IP (HMIP) [RFC4140]
has been proposed to lessen the number of updates from MNs to HAs. HMIP
partitions the Internet into different administrative domains, and allows MNs to
roam freely inside a domain without updating its HA. This is accomplished by the
use of a network node named Mobility Anchor Point (MAP). The MAP acts as a
local HA to the MN within the domain25 and assigns it a publicly visible Regional
care-of address (RCoA). The MN also has a Link care-of address (LCoA) that is
used between the MN and the MAP. The MN can choose to not divulge its LCoA
to CNs and its HA. If HMIP is used, and the MN does choose to hide its LCoA, it
is not possible to determine the location of the MN more accurately than that it is
inside the HMIP region.

25A domain might be partitioned further with more MAPs at different levels within the domain.

38

Chapter 4

Geolocation in MAFIF

In this chapter we give a short introduction to MAFIF, the Multi-Agent Framework
for Internet Forensics, we developed in [1] and related technologies. The main
part of the chapter is dedicated to describing the design and implementation of
geolocation functionality in this framework.

4.1 The Existing MAFIF Framework

MAFIF is based on JADE, a framework for developing multi-agent applications
in Java [57]. A condensed presentation of MAFIF and some results of the content
securing application built on it is available in the form of an article draft in Appendix
A. The full design and implementation of the framework is available in [1], which
also discusses the advantages and drawbacks of using multi-agent technology, as
well as security implications.

Figure 4.1: A High-Level Design of MAFIF, showing the different agents.

39

A high-level design of the framework, and its agents is shown in Figure 4.1. Dif-
ferent applications are developed as sets of agent behaviours. A behaviour is a
piece of functionality that an agent uses to execute a certain task. Some behaviours
make up the basic functionality of the different agents. Communication among the
agents is based on message passing, and the reception of messages and dispatching
to appropriate behaviours is handled by a Receive behaviour in each agent.

JADE defines an environment called a container. A platform consists of one or
more containers, running on one or more hosts. MAFIF provides five distinct
types of agents to handle different tasks. For each container there are single, non-
transient AdminAgents, LogAgents and TimeAgents, shown as lettered triangles in
Figure 4.1. Additionally transient SessionAgents and WorkerAgents are created as
part of the execution of applications. The non-transient agents handle application
independent tasks like time-keeping, logging and starting the execution of applicat-
ions. Depending on the application SessionAgents and WorkerAgents are created
with different behaviours.

All communication between agents on different containers is encrypted, and all
communication, whether intra- or inter-container, is signed.

4.1.1 Command and Work Flow

The AdminAgent acts as a coordinator, and upon receiving a request from an
operator for some investigation action creates a transient SessionAgent. Based on
the type of investigative action the SessionAgent takes the necessary preliminary
steps to decide upon the number and type of WorkerAgents it needs to create, how
to distribute them, and how to share the load among them. Upon creation the
WorkerAgents immediately start their assigned work. When all WorkerAgents of
a session have terminated, the SessionAgent informs its AdminAgent before it too
terminates.

The above program flow is an optimization with regard to the original MAFIF
framework, where a WorkerAgent upon creation would query its SessionAgent for
a work assignment. The SessionAgent would reply with a suitable assignment, and
first then would the WorkerAgent start on its real task. This resulted in two extra
messages being exchanged per WorkerAgent. Informal experiments show that this
greatly improves the speed of the content securing application, and probably the
scalability of MAFIF as well1.

Figure 4.2 shows an Agent UML sequence diagram for the execution of a geo-
location attempt, including most communication between the different agents. JADE
uses ontologies for defining the content of agent messages [58]. The ontology used
in MAFIF is defined by us, and is described in great detail in [1].

1The creation and distribution of work to WorkerAgents and the amount of messages exchanged
in this process is probably the part of MAFIF most likely to act as a bottleneck.

40

Figure 4.2: An AUML sequence diagram showing the stages of a geolocation
operation, the entities involved and their actions.

4.1.2 Agent UML (AUML)

The sequence diagram in Figure 4.2 is in a notation named AUML, an extension of
UML adapted for modelling agents. AUML was pioneered by Bauer in [59]. We
use a custom notation based on a combination of Bauer’s notation in [60] and that
of Huget in [61]. Our notation and the reasoning behind it is explained in [1]. In
short it is a compromise between power of expression and readability. The class
diagrams of agents and behaviours in Appendix B is in this notation.

4.2 Geolocation Algorithms

We have implemented CBG and GeoPing as a set of agent behaviours. The relation
among the different agents and their behaviours that constitute these two techniques
is shown in Figures 4.2 and 4.3. The preliminary steps of the two algorithms have
much in common, and to avoid code duplication we have merged these steps. This
also simplifies the logic and reduces the number of behaviours, although at the
cost of not having a distinct set of behaviours for each of the algorithms. The
functionality for performing delay measurements that form the basis of both the
algorithms are explained in Section 4.3.

41

Figure 4.3: All the different WorkerTrace behaviours are sub-behaviours
of a SequentialBehaviour such that they are executed in a linear sequence.
The WorkerTraceLandmarks behaviour extends ParallelBehaviour and utilizes a
ThreadedBehaviourFactory such that its PingBehave sub-behaviours are executed in
separate threads in parallel.

4.2.1 CBG

The bestline used by CBG, described in Section 3.3, is the line that captures the
least distorted relationship between geographic distance and network delay from
each landmark to all other landmarks. Figure 4.4 shows a scatter plot with the
bestline and baseline of a landmark. The baseline represents the theoretical lowest
delay at any point, its slope m = 1/100 defined by the propagation speed of light
in optical fibers, see Section 3.6.4. We investigate the relation between the lower
delay limit and actually observed delay in the Uninett network in Section 5.1.2.

y − dij − bi

gij
x− bi ≥ 0,∀j 6=i (4.1)

The bestline for each landmark can be defined as the line y = mix + bi that is
closest to, but below all points in the plot. Since negative delays are impossible,

42

Figure 4.4: A scatter plot showing the relation between delay and geographical
distance [15].

the line’s intercept must be non-negative. This can be expressed as in Equation
4.1, where dij is the delay from landmark Li to each Landmark Lj , with i 6= j and
where gij is the corresponding geographical distance. The slope mi is defined as
in Equation 4.2.

mi =
dij − bi

gij
(4.2)

To find the values for bi and mi from Equation 4.1 Equation 4.3 is used. We have
implemented this in the behaviour WorkerTraceCalculate by finding the point
with the lowest delay, and solving Equation 4.1 with bi and mi as unknowns for this
point and every other point with a larger dij . The bestline is defined as the lowest
mi > m with a corresponding bi ≥ 0. The source code of WorkerTraceCalculate
is available in Appendix C.3.3.

min
bi ≥ 0

mi ≥ m

∑
i6=j

y − dij − bi

gij
x− bi

 (4.3)

The geographical constraint ĝiτ from each landmark to the target τ is calculated by
Equation 4.4. This constraint actually represents a circle Ciτ with the landmark at
its center and ĝiτ as its radius. A single landmark has no notion of the direction to
the target, only of the overestimated distance to it.

ĝiτ =
diτ − bi

mi
(4.4)

The final step in CBG is to take the intersection of all the Ciτ ’s defined by the
geographical constraints and radii of the landmarks, and compute its area and

43

center. The region R intersected by all Ciτ is the confidence region of the target
τ ’s location. This intersection is defined as in Equation 4.5, where K is the total
number of landmarks.

R =
K⋂

i=1

Ciτ (4.5)

Performing Equation 4.5 requires one to find all points of intersection between the
Ciτ ’s and compute the area of the convex hull2 of these points. To determine the
convex hull of a set of points the points must be sorted into a list that only includes
the points representing the vertices of the convex hull in a correct winding order.
Fortunately all the intersection points between Ciτ ’s are vertices in the convex hull
in the case of CBG, as R is by definition convex [15].

In a xy-defined two-dimensional plane it is relatively simple to find all intersection
points. However, R is not defined in a two-dimensional plane but on the surface
of the Earth, which is spherical3. To correctly calculate the intersection points
defining R on a sphere we use functionality that is part of OpenMap, see Section
4.5.3. OpenMap returns the intersection points in correct order defining a convex
hull. Although OpenMap is capable of conversion of point coordinates between the
two-dimensional plane represented by the screen and the latitudes and longitudes
of the Earth it does not do area calculations. The area of R is computed using
Equation 4.6, which is a general formula for computing the area of a spherical
polygon of arbitrary shape with edges defined by great-circle arcs [62]. n is the
number of vertices in the polygon,

∑
αi is the sum of all the interior angles

between all the vertices and R is the radius of the sphere.

Ap = R2
[∑

αi − (n− 2)π
]

(4.6)

To determine the interior angles required in Equation 4.6 it is necessary to divide
the spherical polygon into a set of spherical triangles, see Figure 4.5(a). The
calculation of the interior angles is then done using Equation 4.7 for every corner
in every spherical triangle. Each of the edges a, b and c of the spherical triangles is
defined as the angle between the pair of points on the sphere defining the edge, see
Figure 4.5(b).

cos(a) = cos(b) cos(c) + sin(b) sin(c) cos(A) (4.7)

2A convex hull is the smallest possible convex polygon circumscribing all the points in a set P of
points.

3The Earth is not a perfect sphere, see Appendix D for more on this

44

(a) Splitting a polygon into
triangles

(b) Angles in a spherical
triangle

Figure 4.5: Triangles and angles of a polygon on a sphere.

Rmight contain edges more curved between any two vertices than the corresponding
great circle arc between the same vertices. Thus the result of Equation 4.6 will be
a slight underestimation, similar to that of Figure 4.6.

Figure 4.6: The difference between the area of a convex hull approximation, shown
as the dark grey area, and the real area of an intersection of circles, shown as the
combination of the dark and light gray areas combined.

To calculate the centroid of R we do an approximation by calculating the centroid
of the two-dimensional representation of R, and using OpenMap, convert the
resulting xy coordinates into latitude and longitude. The area of a planar convex
polygon is calculated using Equation 4.8, where xn, yn defines the nth vertex. The
coordinates of the polygon’s centroid is calculated using Equations 4.9 and 4.10.

AR =
1
2

N−1∑
n=0

xn xn+1

yn Yn+1
(4.8)

cx =
1

6A

N−1∑
n=0

(xn + xn+1)
xn xn+1

yn Yn+1
(4.9)

cy =
1

6A

N−1∑
n=0

(yn + yn+1)
xn xn+1

yn Yn+1
(4.10)

45

The final step of calculating the area of R and its centroid is not implemented
as part of the multi-agent framework, but as stand-alone classes included in the
GUI, since GIS functionality is required to correctly compute distances between
geographic locations.

Currently the intersection algorithm does not allow for discarding Ciτ ’s that lead
to an empty intersection at all. It should be possible to discard up to a certain
threshold of Ciτ ’s if the remaining Ciτ strongly agree on a common intersection.

4.2.2 GeoPing

The implementation of the GeoPing algorithm creates a delay vector DV ′ for the
target and one delay vector DV for each landmark. When all measurements are
done the nearest neighbor is found, as explained in Section 3.3. Currently only
Euclidean distance is implemented for finding the DV that most resembles DV ′.
Equation 4.11 shows how this is done.

∆(DV) =
√

(d1 − d′1)2 + ... + (dN − d′N)2 (4.11)

The best matching landmark is the one with the smallest ∆(DV). The geographical
location of the three best matching landmarks and their Euclidean values are returned
for display to the user.

4.3 Delay Measurements

As described in Section 3.6.4 it is crucial to get as correct delay measurements as
possible. Unfortunately we did not have access to passive measurement equipment,
so we are forced to use RTT as an approximation. We perform our RTT measure-
ments with ICMP-based ping.

4.3.1 Use of Native Ping Binary

To get as little overhead as possible the native ping utility of the underlying operat-
ing system is used. It is reasonable to assume that this utility is much more
optimized than any implementation we could come up with in the limited time
scope of this project. Additionally Java’s support for ICMP leaves much to be
desired, in fact third party libraries are necessary to get this functionality [jpc06,
roc06]. These libraries depend on a mechanism called raw sockets. Not all operat-
ing systems support raw sockets, and those that do usually requires administrative
privileges to access the functionality. Using ICMP directly from within Java is
therefore out of the question.

46

1 From 213.242.106.46 icmp_seq =1 Packet filtered

2 From 213.242.106.46 icmp_seq =2 Packet filtered

3 From 213.242.106.46 icmp_seq =3 Packet filtered

4 From 213.242.106.46 icmp_seq =5 Packet filtered

5 From 213.242.106.46 icmp_seq =7 Packet filtered

6 From 213.242.106.46 icmp_seq =8 Packet filtered

7
8 --- www.amazon.co.uk ping statistics ---

9 9 packets transmitted , 0 received , +6 errors , 100% packet loss , time 8031ms

(a) Filtered ping output from www.amazon.co.uk.

1 64 bytes from semper16.itea.ntnu.no (129.241.56.206): icmp_seq =1 ttl=62 time =0.357 ms

2 64 bytes from semper16.itea.ntnu.no (129.241.56.206): icmp_seq =2 ttl=62 time =0.366 ms

3 64 bytes from semper16.itea.ntnu.no (129.241.56.206): icmp_seq =3 ttl=62 time =0.257 ms

4
5 --- semper16.itea.ntnu.no ping statistics ---

6 3 packets transmitted , 3 received , 0% packet loss , time 2009ms

7 rtt min/avg/max/mdev = 0.257/0.326/0.366/0.053 ms

(b) Normal ping output from semper16.itea.ntnu.no.

Figure 4.7: Ping outputs.

Most operating systems provide a utility named ping to measure RTT between
hosts using ICMP. Java provides a mechanism for starting external programs and
receiving their output. Executing external programs and reading their output presents
some challenges, as any input parameters must be hard-coded to some extent. The
output must be parsed, and any change in output format may result in unexpected
results. Currently our ping-wrapper supports the iputils version of ping used in
most Linux distributions [ipu06].

Two sample outputs from ping can be seen in Figure 4.7. In Figure 4.7(b) no
filtering is employed, and all packets arrive successfully. As can be seen in Figure
4.7(a), ICMP filtering is employed on the path, and som packets are lost. In
this case the ones with ICMP sequence number 4 and 6 are missing, see lines
3-6. Variations where not all packets are filtered, all packets are dropped, or
some packets are lost even if filtering is not employed, are of course possible.
Our wrapper takes care of this by maintaining its own queue of ping items, and
automatically inserts any lost or filtered packets. If it is not possible to measure a
RTT to the host in question, within the number of pings specified, a
HostUnreachableExcpetion is thrown. The case in Figure 4.7(a) would result
in such an exception being thrown.

4.3.2 Result Confidence

Our wrapping of the native ping binary is quite flexible, and allows for specifying
the number of pings to send and the distance between them. This is used to
implement the confidence estimation techniques described in Section 3.6.3. Algo-
rithms for calculating the C1 confidence and ε values have been adapted from RTT-
Ometer in [40]. The number of probes needed to accurately measure C1 and ε with

47

reasonable confidence is too high for use in probing of targets, but is used to get as
accurate measurements between landmarks as possible.

4.3.3 Relation of the Measurement Parts

Figure 4.8 shows the relation of the different Java classes that are directly concerned
with RTT measurements. RTT measurements are performed by SessionAgents and
WorkerAgents as part of their behaviours for trace operations. (A)UML diagrams
are provided in Appendix B, source code in Appendix C.

Figure 4.8: Relations of the Java classes concerned with RTT measurements.

MinRTT, ModeNode and PingItem

MinRTT is the class wrapping the native ping binary. It also contains methods for
keeping track of its queue of PingItems. Some of its calculation methods use the
helper class ModeNode. This class calculates the statistical mode given an input
array of floating point numbers. MinRTT is responsible for calculating the different
C-values and ε

PingBehave and WorkerTraceTarget

PingBehave extends JADE’s OneShotBehaviour and is simply a way for an
Agent to use MinRTT with different parameters. WorkerTraceTarget extends

48

PingBehave. This is done so that it can update the Traced table with information
about the newly traced target and call WorkerTraceFinal before terminating.

WorkerTraceLandmarks

WorkerTraceLandmarks extends JADE’s ParallelBehaviour and is used by
WorkerAgents to execute several PingBehaves simultaneously. Before starting
measurements to all the landmarks it checks to see how old the most recent measure-
ments are. If they are found to be fresh enough the current values are used instead
of performing new measurements.

4.4 User-Interaction and Management

The MAFIF prototype described in Appendix A left user-interaction and manage-
ment largely as an open issue to be resolved later. There are several ways to
connect a JADE platform to external applications, from integrating JADE in Java
application servers like JBoss using JadeMX, to full-blown web service integration
gateways [jad06] [63, 64]. These approaches offer a lot of functionality we do not
need and also add a lot of complexity. JADE provides a simpler approach through
the jade.wrapper.gateway classes. By using the functionality of these classes in
a Java servlet access to the multi-agent system can be provided through an ordinary
web page. Figure 4.9 shows how the different parts of our system are connected
through the use of this gateway.

Figure 4.9: Information flow between the agent system and external parts. The
gateway agent, denoted by a G, acts as a single point of entry into and out of the
agent system.

49

4.4.1 Graphical User Interface

The provided GUI is very simple. It consists of a single web page, and input
fields for specifying the address to trace and options like the algorithm and probe
parameters to use. The information submitted by the user is read by a set of servlets
that communicates with the agent system using the jade.wrapper.
gateway classes. When the agent system has finished the trace operation the
servlets use GIS functionality to do the calculations described in Section 4.2.1
and create a visual representation of the trace result that is displayed to the user.
A simplified program flow can be seen in Figure 4.10. In step 1 the user requests
a trace operation through the web page, this is relayed to the gateway agent by
the servlets in step 2. The gateway agent contacts an AdminAgent in step 3, this
agent administers the execution of the trace operation internal to the multi-agent
system. This execution is not shown in the figure, but described in detail in Sect-
ions 4.1.1 and 4.2. In step 4 the trace results are returned from the AdminAgent to
the gateway agent, which in turn returns them to the servlets in step 5. The image
constructed by the servlets is finally shown on the web page to the user in step 6.

Figure 4.10: The sequence of events following a user-request to trace an address.

The set of servlets and the relations between them is shown in Figure 4.11. GetTrace
simply takes input from the user and forwards it to GetMap. GetMap takes as
input an IP-address and optionally a cache ID. If a cache ID is submitted the
image of an existing trace corresponding to the cache ID is retrieved in the form
of a TraceCacheEntry from TraceCache. If no cache ID is submitted a fresh
trace is performed if the address has not been traced within the last 24 hours. An
entirely new trace can be forced before the 24 hour limit. GetMap shows a simple
navigation menu to the user that makes it possible to pan and zoom the map image
showing the trace result. The new image generated as a result of panning and
zooming is generated by GetMapImage which takes as input an IP address and a
cache ID and shows the corresponding map image.

The class TraceCache is only used internally by GetMap and GetMapImage to
actually perform traces by interfacing with the multi-agent-system and query about
cached traces. For each request TraceCache deletes any TraceCacheEntry inst-

50

Figure 4.11: The relations between the servlet classes.

ances older than 24 hours and returns a new TraceCacheEntry to the requester.

4.4.2 Management and Properties Files

Management of the agent system is currently done through properties files and
scripting. JADE uses properties files for defining which services are to be part
of a platform, and to specify host addresses, usernames and passwords and other
configuration information. The JADE properties files and the management scripts
are available in Appendices C.9 and C.8 respectively. The following scripts are
provided:

• unidist for distribution of new versions

• unirun for starting the system

• unistop for stopping the system gracefully

• unikill for forcing the system to stop immediately

• unicdb for database creation

4.5 Geographical Functionality

As described in Section 3.6.4 conversion of delay measurements into geographical
information is a key component of geolocation. To facilitate this conversion, and
allow the trace data to be displayed in a meaningful way, we need functionality
that can take the geographical properties of the Earth into account. A more in-
depth discussion of the geographical properties of the Earth and mappings of it is
provided in Appendix D.

51

Systems with this functionality is commonly referred to as Geographical Infor-
mation Systems (GIS). There exist many toolkits and platforms for developing GIS.
We do not have time for a complete comparison of all the alternatives, a limited
comparison based on some key requirements is performed below. Developing this
functionality from scratch is not an option, as this would be too time-consuming.

4.5.1 Requirements for GIS Toolkits

Below we give a list of requirements for GIS toolkits. These requirements are
based both on the functionality needed in our application, and on non-functional
aspects related to the development process.

• Programming Language
Toolkits not employing Java will not be considered. Our existing framework
is based on Java and introducing extra complexity by adding a different
programming language is out of the question. By using the same language
throughout the entire application better integration is also possible.

• Standards Compliant
The Open Geospatial Consortium (OGC) [ope06a] publishes publicly avail-
able standards and specifications for geospatial and location based services.
The goal of OGC is "to make complex spatial information and services
accessible and useful with all kinds of applications".

Our limited comparison might lead us to choose a less than ideal platform,
and maintaining compliance with OGC standards will make a potential switch
of toolkit at a later time easier.

• Freely Available
The toolkit should be freely available, preferably as open source. This way
we do not need to worry about any license-restrictions if we decide to deploy
applications based on the framework on many hosts at a later time. Preferably
the source should also be available, as we may need to modify the toolkit’s
functionality.

• Maturity
The range of functionality needed in GIS applications is very broad. Toolkits
may focus on limited sets of functionality, thus providing unsatisfactory
functionality overall. We need a stable, well-tested, and actively maintained
toolkit with a broad and stable feature set.

• Ease of Development
Due to the timescale of this project the toolkit needs to be easy to start using.

• Support/documentation
Good support and documentation is absolutely necessary.

52

4.5.2 Comparison of GIS Toolkits

The toolkits below were evaluated for the purpose of geographical calculations and
visualization, based on the requirements in Section 4.5.1. A comprehensive list of
available toolkits (and other GIS software) not evaluated here is given in [ope06b].
Based on this evaluation OpenMap was chosen for implementing the needed GIS
functionality in our application.

Jump Topology Suite (JTS) and OpenJump

JTS is developed by Vivid Solutions, and is published under the LGPL [jts06b,
jts06a]. Its current version is 1.7, released January 19 this year. JTS in itself is
an API providing a spatial object model and fundamental geometric functions. It
implements the geometry model defined in the OGC Simple Features Specification
for SQL [65]. JTS is written entirely in Java. JTS formed the basis of a program
called JUMP Unified Mapping Platform (JUMP) developed by Vivid Solutions,
now taken over by the open source community and renamed OpenJump. The
documentation of OpenJump is rather scarce, and partially in German.

Landserf

LandSerf is developed by Jo Wood at the City University in London. It is not open
source, but it is freely available and has a documented API to allow programmers
to customize and enhance the software. Landserf is written in Java and the current
release is 2.2 [lan06].

Google Maps

Google maps [goo06a] is not really a toolkit, but provides geographical function-
ality. It is based on Google AJAXSLT [aja06] which is heavily dependent on
JavaScript and thus must be run in a web browser. AJAXSLT is provided under the
BSD license, but Google maps is only provided as a service, not as downloadable
software. Although free for the time being, Google reserves the right to add
advertisements in later versions, and registration of a so called API key is necessary
for every website using it. Google provides an API for integrating Google maps in
custom web applications.

Apart from technical limitations the biggest problem with Google maps is that
Google must be trusted to handle potentially sensitive data. This is simply not
acceptable in a forensic application. There are also other online map services, but
they have the same fundamental shortcomings as Google maps, and will therefore
not be considered here.

53

Google Earth

Google Earth is a stand-alone GIS application, and not really a toolkit. However,
Google has opened it up sufficiently to allow for some customization using the
Keyhole Markup Language (KML) [kml06a, kml06b].

As with Google Maps and its equivalents an external company must possibly be
trusted to handle potentially sensitive data. Google Earth continuously communicates
with Google’s servers, and being a closed source application it is not possible to
know what information is transmitted back to Google. Additionally it is only free
for personal use, anything else incurs an annual fee [goo06b].

GeoTools

Geotools [geo06] is OGC compliant and open source. It is written in Java and
currently is under active development. The newest version is 2.2.1, released on
October 12 this year. GeoTools is partially based on JTS, described above. GeoTools
fulfils some of our requirements, but it is lacking particularly with regard to useful
documentation. The user guide is currently not in any consistent state and some of
the Javadoc documentation is only available in French. We have had no success in
getting test code running on geotools, at the time4 of testing there seemed to be a
versioning conflict between libraries. This makes the learning-curve rather steep.

OpenMap

OpenMap is developed by BBN Technologies [ope06c]. It is based on Java and
published as open source. The current version is 4.6.3, released this February 1.
First made available to the public in 1998, OpenMap is a very mature toolkit, and is
still actively maintained. OpenMap fulfils all of the requirements of Section 4.5.1,
except that it is not OGC-compliant. Apart from this it is definitively the best all-
round toolkit we have found. The API and documentation provided by OpenMap
is clear and concise, and makes the toolkit easy to get started with.

4.5.3 OpenMap GIS Functionality

OpenMap uses projections of the Earth to perform its calculations and display
the map on screen. A particular projection contains functionality for converting
between screen coordinates and the latitudes and longitudes of the Earth for the
given projection. The package com.bbn.openmap.omgraphics contains classes
representing graphical objects that can be drawn on the map. The projections

4Version 2.2.0 was used for this as 2.2.1 had not been released yet.

54

correctly determine the representation of OMGraphics on the map. All OMGraphics
contain a representation of their shape in the current projection in the form of
ajava.awt.Shape. Using methods defined by java.awt.Areawhich implements
Shape it is possible to perform intersections and other operations between the
Shapes of OMGraphics while maintaining correct mappings between screen co-
ordinates and Earth coordinates. This functionality is used in Section 4.2.1 to
perform the necessary intersections between geographical constraints to acquire
the intersection points of the confidence region used for further calculations.

Unfortunately OpenMap does not support OMGraphics wrapping the polar regions.
Thus geographical constrains represented as OMGraphics from the two measure-
ment nodes located on Svalbard in Chapter 5 having radii large enough to extend
beyond the North pole is not supported in our application. OpenMap supports
exporting the current map as an image. This is used to acquire the trace images
used in the servlet GUI in Section 4.4.1.

4.6 Address Information Storage

As with user interaction and management the original MAFIF prototype left any-
thing else than flat file storage to be implemented later. The reason for this was
that any storage needs will necessarily be application specific. For the geolocation
functionality we need to store information about the landmarks and about traced
hosts. This information is not only stored for archival purposes, but actively used
when new tracing operations are performed. The natural choice for a robust,
durable and easily searchable storage solution is a database management system
(DBMS). We have chosen to use HSQLDB, see Section 4.6.3.

4.6.1 Data Model

The database consists of three independent tables; Landmarks, Traced and Misc.
The Landmarks table stores information about landmarks relative to the landmark
at which the instance of the database is located. such as geographical distance and
delay, as can be seen in Figure 4.12. The Traced table contains information about
hosts already traced from the landmark in question. The Misc table contains a
single record with information about the landmark’s location, how long since the
delays to other landmarks were calculated and the latest bestline value. The data in
the Misc table is stored in the database only for convenience. The data models for
the Traced and Misc tables are available in Appendix B.3.2.

The program DBCreator and its helper class LandmarkReader is used to create
and populate the database and tables at each host in the system, using the unicdb
script.

55

TABLE LANDMARKS (

NAME VARCHAR (32) NOT NULL ,

IPADR VARCHAR (39) NOT NULL ,

CHECKED TIMESTAMP ,

DISTANCE_KM DOUBLE NOT NULL ,

LATITUDE DOUBLE NOT NULL ,

LONGITUDE DOUBLE NOT NULL ,

MIN_RTT DOUBLE ,

AVG_RTT DOUBLE ,

C1 DOUBLE ,

EPSILON DOUBLE ,

HASH VARCHAR (64),

PRIMARY KEY(NAME ,IPADR)

)

Figure 4.12: The logical data model of the Landmarks table.

4.6.2 Agent Connections to Database

Since our framework is in its entirety Java-based Java DataBase Connectivity (JDBC)
is the natural choice for how the agents connect to the database [66]. Contrary to
probing, database-connectivity is not separated into particular Java classes. Behav-
iours needing database access contain a method connectDB() that returns a con-
nection to the database, this connection is then used for executing any queries
needed by the behaviour in question.

The database is set up to allow only local connections, but access is nonetheless
password protected. Currently the connection information is hard-coded into the
connectDB() methods.

4.6.3 Database Software

JDBC lets any Java program connect to underlying databases in a product neutral
way, as long as a JDBC driver for the database is available. Most databases
provide a JDBC driver, a list of available drivers and supported databases is given
in [jdb06]. So as long as the database supports JDBC we can focus on other
requirements. As described above there will be an instance of the database running
at every host participating in the system. Thus we need a lightweight and un-
obtrusive database, that can run on almost any host without modifications to the
hosts setup or the database software.

HSQLDB (HSQL) is a 100% Java based database [hsq06]. It is already used by
JADE for (optional) persistent storage of the Directory Facilitator catalogue [67].
The qualities of HSQL make it very well suited to our purpose. Its low memory
requirement, high performance and extensive SQL support coupled with it being a
mature and well-tested product already used in conjunction with JADE, makes it

56

an ideal choice. HSQL is not multi-threaded, but it is multi-threading-safe. This
is important as several agents may access the same information in the database
simultaneously.

4.7 Limitations

To provide for scalability, both with regard to the number of simultaneous trace
operations and the number of landmarks, several optimizations were planned, as
well as implementation of the improvements and heuristics described in Section
3.5. Regrettably this has not been possible to accomplish in the available timeframe.
The only optimization that has been implemented is the use of database lookups
to avoid unnecessary measurements. Most of the unimplemented improvements
would have been impossible to evaluate properly in the Uninett network, the test
environment used in Chapter 5, due to few landmarks and the limited geographical
extent of the network.

57

58

Chapter 5

Experiments

This chapter describes our test environment, experiments and results. All our
experiments were carried out in the Uninett research network.

5.1 Environment - The Uninett Network

The Uninett research network links Norwegian education and science institutions
and connects them to international research networks. As part of their infrastructure
Uninett has deployed 15 measurement nodes to collect information on network
performance. Our experiments were carried out using these measurement nodes,
both by using already collected information and by gathering our own through the
software described in Chapter 4.

5.1.1 Network Topology

The logical topology of the Uninett network, including link capacity, can be seen in
Figure 5.1. Uninett rents most of the links from commercial providers. All links are
optical, except for the connection between svalbard-mp and nyalesund-mp which
is a 155Mbps radio link. Although the different physical links are rented from dif-
ferent providers, at the IP layer the network is configured as a single Autonomous
System1. This is an important property, as there is virtually no path inflation in a
single AS [54]. Route changes are fully distributed in about 3 seconds, and there
is little to no route-flapping2.

1Uninett uses a combination of IS-IS and iBGP-meshing for internal routing. Some customers
use internal AS numbers and BGP-peering, but this does not affect our use of the network.

2Route-flapping describes the behaviour of a router that advertises and withdraws reachability
information, in quick sequence. It is caused by errors within the network, which might be in router
configuration(s), links, software or hardware.

59

Figure 5.1: Logical topology of the Uninett network.

The geographic placement of the measurement nodes can be seen in Figure 5.2.3

Figure 5.3 gives the great circle distance, and the theoretical lowest delay limit
between the measurement nodes. This limit is the same as the ideal baseline
described in CBG in 4.2.1. The actual cable distances between the measurement
nodes are of course not great circle distances, as discussed in 3.6.4. Also there is
some overhead in routers along the path. Thus the real lower limit is higher than
that given in Figure 5.3.

3The location markings in Figure 5.2 may have minor deviations from actual geographical loc-
ation due to conversion from UTM coordinates to longitude/latitude, and inaccuracies in the image
used for the landmass on the map. For more on this, see Appendix D.

60

Figure 5.2: Placement of the 15 measurement nodes in the Uninett network.

5.1.2 One-Way Delay Measurements

As mentioned in Section 3.6.2 the usual way of measuring delay is to measure the
RTT between two hosts, and not the actual one-way delay. The measurement nodes
are equipped with GSM-synchronized clocks and passive measurement cards as
part of the SCAMPI and LOBSTER projects [8], [lob06]. This makes it possible
to measure one-way delay.

Correlation Between Distance and RTT

Figure 5.3 shows the correlation between halved RTT and lower limit one-way
delay for the measurement nodes. On average the halved RTT is larger than lower
limit one-way delay by a factor of 2.77. The largest difference is between grimstad-

61

Figure 5.3: The lower limit one-way delay, halved RTT and great circle distance
between all measurement nodes.

mp and porsgrunn-mp where halved RTT is larger by a factor of 11.35. The
difference for narvik-mp - svalbard-mp is the smallest with a factor of 1.48. This
seems reasonable as the cable between Narvik and Svalbard runs mostly along the
ocean floor and thus probably is relatively close to the great circle path between the
two locations. Note that nyalesund-mp - svalbard-mp actually has a factor of 1, the
halved RTT is identical to the lower limit one-way delay. As mentioned in Section
5.1.1 the connection between svalbard-mp and nyalesund-mp is a radio link. The
lower limit one-way delays in Figure 5.3 are based on the speed of light in optical
fibers, and this is clearly not correct for a radio link.

The correlation between RTT and great-circle distance is interesting with regard to
how this is used in the CBG algorithm.

62

Actual One-Way Delay

To establish the actual one-way delay between some of the nodes in Figure 5.3 we
used data gathered by Uninett using the passive measurement cards of the nodes.
The data sets were gathered by sending 180,000 probes a day between October 1
and October 31. This gives an inter probe distance of 0.5 seconds. In analyzing the
data sets we ran into some interesting problems. We originally wanted to calculate
the one-way delay for the pairs Trondheim - Molde, Trondheim - Svalbard and
Trondheim - Tromsø. However, the measurements from the node in Trondheim
to the others consistently reported negative delay values. The relative fluctuations
in the measurements for all pairs Trondheim - nodei, nodei - Trondheim followed
each other closely, so there was reason to suspect that the time of trd-mp was
out of synchronization with the other nodes. It turned out that in fact only the
nodes bergen, bo, grimstad, molde, narvik and tromso are GPS synchronized, the
remaining use standard Network Time Protocol (NTP).

Due to the relative simplicity of the Uninett network topology the path from node
A to node B is generally the same as the path from B to A. Therefore the one-
way delays from A to B and from B to A should be very similar, and let us
detect synchronization issues as the one described above. However, as described
in Section 3.6.2, this is not the case for the Internet in general, and synchronization
issues thus may be difficult to detect. This serves to illustrate why using one-way
delay is difficult in practice. Unfortunately this also makes it difficult to give a
good answer to if halved RTTs is a good approximation to one-way delay, and if
the use of RTT in CBG and GeoBud leads to any loss of accuracy.

(a) Alleged one-way delays in both
directions between tromso-mp and svalbard-
mp, showing an unprecedented degree of
symmetry.

(b) True one-way delays in both directions
between tromso-mp and narvik-mp, showing
expected asymmetry.

Figure 5.4: Comparison of one-way delay measurements with and without GPS
synchronization.

Upon closer inspection the relative fluctuations between the two oppositely directed
one-way delays for many node pairs seemed too consistent. It turned out that

63

they actually were symmetrical. Figure 5.4(a) shows this for the delays captured
October 24 between tromso-mp and svalbard-mp. The explanation for this is that
the clocks of the nodes are not accurate enough without GPS synchronization at
both nodes to actually measure values as small as the one-way delays. Thus an
approximation of splitting RTT in half is used [RFC1305]. The alleged one-way
delay measurements performed by Uninett are for most node pairs thus in fact not
measuring one-way delays. True one-way delay between tromso-mp and narvik-
mp is shown in Figure 5.4(b).

Figure 5.5: Correlation between halved minimum RTT and average one-way delay.

This is very unfortunate as it makes the dataset for correlating halved RTT and one-
way delay very small. The correlation is shown for available node pairs in Figure
5.5. Note that we have used average one-way delay, as the datasets provided by
Uninett contain too much noise to reliably select a reasonable minimum value.
The average correlation is 96.3%. For this limited dataset at least it seems that
halved RTT is a good estimate of the one-way delay.

5.2 Test Setup

All tests were run using a computer at NTNU as the main container of the multi-
agent system. This computer did not participate in actual delay measurements4.
This computer ran Ubuntu Linux v 6.06, JADE 3.4 and Sun Java 1.5.0_09-b01. All
the measurement nodes ran Debian GNU/Linux 3.1, JADE 3.4, Sun Java 1.5.0_07-
b03 and HSQLDB 1.8.0. All computers were X86-based. Tomcat 5.5.17, running
on the NTNU computer, was used as the servlet container.

5.3 Limitations

Uninett is a production network, and we have little to no control of what other
traffic is present at any time. To compensate for this all our experiments were run

4The computer was used in exactly one round of delay measurements, as the third host in the
IPv6 vs IPv4 experiment.

64

several times, but there is no guarantee that we have experienced more than a subset
of possible network conditions, and their effect on the results. This is however also
the case when trying to the locate any host in a real forensic situation. The sections
below describe limitations particular to our use of Uninett as the environment four
our experiments.

5.3.1 Measurement Node Traffic Types

The measurement nodes are part of Uninett’s production infrastructure, and are
not really intended for anything else than doing a restricted set of traffic measure-
ments. Due to restrictions on the types of network traffic allowed to some of the
hosts the following measurement nodes were not able to take part in the multi-
agent system: alta-mp, rena-mp, notodden-mp, bo-mp and porsgrunn-mp. Thus
no measurements were performed from these hosts. They were, however, used as
measurement targets in all experiments.

5.3.2 IPv6

Most of the differences between IPv4 and IPv6 described in Section 3.7 that affect
the determination of geographical location are dependent on a relatively densely
populated IPv6 address space to have any effect. This is far from the case currently,
and it is therefore difficult to actually test the significance of these effects. The one
exception is the difference in delay measurements between IPv4 and IPv6.

Unfortunately only two of the measurement nodes, narvik-mp and trd-mp, support
IPv6 currently. As such use of CBG or GeoPing is pointless. However, we can
extrapolate any differences in delay measurement between IPv4 and IPv6 for these
two nodes, and come up with a factor to apply to all IPv4 measurements, thus
creating an artificial data set for comparing GeoPing and CBG between IPv4 and
IPv6.

5.4 Experiments and Results

Below the different experiments, what we hoped to prove through them and the
results are presented. Where appropriate reference results calculated on the basis
of Uninett data collected over a long period of time are used for comparison.

5.4.1 Varying Probe Parameters

For the measurement based approaches the accuracy of the delay measurements are
very decisive for the final results. The number of probes and the distance between

65

them affect the total time of a trace operation. The more probes the higher the
possibility of congestion for other hosts, and of detection by the target. Can we
vary the different probe parameters to affect the accuracy?

All combinations of the following values have been tested. Number of probes: 3,
5, 10 and 100. Distance between probes: 0.2, 0.5, 1 and 2 seconds. By using the
techniques described in Section 3.6.3 we analyze the different combinations.

Results

We have performed this experiment for all possible node pairs. The raw measure-
ment data is available on the CD accompanying this thesis. Figure 5.6 shows the
results for measurements from bergen-mp to all other nodes, the results from the
other nodes are very similar.

(a) RTT comparison with varied number of probes.

(b) Underestimated distance constraints.

Figure 5.6: RTT comparison with varied number of probes and inter-probe distance.

66

The results in Figure 5.6(a) indicate that there is nothing to gain by increasing the
number of probes. A very slight decrease in RTT values can be seen for the runs
with more probes, but this decrease is less than 0.2ms on average between runs with
3 and 100 probes. The biggest difference is less than 0.4ms. This gives a correlation
of 98.7% on average, and 97.5% for the worst case. Inter-probe distance, as shown
in Figure 5.6(a), neither has any impact. The slight increase in the measured RTT
to grimstad-mp for inter-probe delay 0.5 seconds must be attributed to coincidence.

During one of our test runs the link between Trondheim and Tromso was down due
to a severed optical fiber. In the period that the link was down all traffic along this
distance was routed through the much lower capacity links Trondheim-Mo/Nesna-
Bodø-Harstad-Tromsø and Trondheim-Narvik-Tromsø, see Figure 5.1. Uninett
reports that the combined load on these two links were 90% during this period.
Figure 5.7(a) compares the delays captured from tromso-mp to some of the other
measurement nodes under normal conditions and when the Tromsø-Trondheim link
was down. Figure 5.7(b) shows the corresponding values for C1, C2 and C3.

(a) Comparison of minimum RTT values. (b) Comparison of C values.

Figure 5.7: Comparison of minimum RTTs and C values from tromso-mp under
normal conditions and when the Tromso-Trondheim link was down. Grey bars are
values from when the link was down.

It is clear from Figure 5.7(a) that the downed link caused a partitioning of the
Uninett network with regard to delay values and congestion. Hosts to which probes
normally are routed along the Tromsø-Trondheim link show markedly increased
delays. The increased C2 and especially C3 values in Figure 5.7(b) indicate sub-
stantial amounts of congestion. This is also the case for the hosts not included in
the figures. We have chosen to show the data based on the runs with 100 probes,
since the large number of probes results in more accurate C-values.

In contrast to when the Uninett network was in a normal state the difference between
runs with different number of probes and inter-probe delay were larger when the
link was down, as seen in Figure 5.8(a). The correlation between runs with 3 probes

67

and 100 probes is now 94.6% on average and 90.2% in the worst case. Notice that
the nodes not having their routes changed by the downed link show more stable
values.

(a) Comparison of minimum RTT values between runs with different
number of probes.

(b) Comparison of minimum RTT values between runs with different
inter-probe delay.

Figure 5.8: Comparison of minimum RTTs between runs with different probe
parameters from tromso-mp when the Tromso-Trondheim link was down.

The picture is more complex with regard to inter-probe delay. There is no clear
consistency in which inter-probe delay gives the best results in Figure 5.8(b). Also
here the nodes not having their routes changes show stable values.

The larger differences between runs with different number of probes under difficult
network conditions are interesting. Although the correlation between 3 and 100

68

probes is still strong, the difference is now of a size that can affect the accuracy of
at least CBG if not GeoPing.

It is difficult to generalize these results to the entire Internet, but there at least seems
to be a diminishing return in increasing the number of probes beyond 10. The cost
of 90 more probes from every landmark to the target for an increased accuracy
equivalent to that of going from 3 to 10 probes is not a reasonable trade-off.

5.4.2 IPv4 vs IPv6

Theoretically there should be a somewhat higher delay when using IPv6, see Section
3.6.2. Is it possible to prove this difference in Uninett? We perform several delay
measurements between the same set of hosts equipped with dual networking stacks,
using respectively IPv4 and IPv6.

Results

Table 5.1 shows the differences between IPv4 and IPv6 for measurements between
the three hosts trd-mp.uninett.no, narvik-mp.hin.no and a computer connected to
the campus network at NTNU dubbed localhost5. ε is left out for the host pair
trd-mp - localhost since the technique used to estimate it is not accurate enough to
give correct data for such small RTTs.

The RTT is consistently higher for IPv6 than for IPv4, as predicted in Section
3.6.2. Notice the relatively big increase in difference between narvik-mp - trd-mp
and narvik-mp - localhost. This is probably due to the fact that packets to/from
localhost must pass through at least one more router than those to/from trd-mp.
The big difference between IPv4 and IPv6 for trd-mp - localhost support this
assumption.

ε seems to be slightly higher for IPv6 than for IPv4, but the difference is too small
to draw any definite conclusion with this small a data set.

According to Uninett some of their routers process IPv6 in software, this is probably
much of the reason for the higher RTTs when using IPv6. We tried running
measurements for this test when the Tromsø - Trondheim link was down, and got
consistently much higher packet loss and delays for IPv6 than for IPv4. The big
difference is probably caused by the fact that under high load the routers’ CPUs
are already highly utilized and software processing of IPv6 suffers.

To extrapolate the IPv4 vs IPv6 results for use in GeoPing and CBG we used the
average of the difference between trd-mp and narvik-mp in both directions. This

5IPv4 address: 129.241.209.196
IPv6 address 2001:700:300:11c0:20f:1fff:fe73:e2a8.

69

trondeim-mp narvik-mp localhost
trd-mp minRTT X 18.33 / 19.48 0.29 / 0.76

ε X 0.70 / 0.88 -
narvik-mp minRTT 18.33 / 19.55 X 18.47 / 20.05

ε 0.78 / 0.82 X 0.73 / 0.82
localhost minRTT 0.28 / 0.76 18.46 / 19.85 X

ε - 0.67 / 0.92 X

Table 5.1: Comparison of RTTs between the three hosts using IPv4 and IPv6.

resulted in a factor 1.06. We applied this factor to existing IPv4 runs of GeoPing
and CBG. For GeoPing the difference was too small to have any effect. A sample
result for CBG is shown in Figure 5.96.

Figure 5.9: The confidence region of an actual geolocation of stavanger-mp using
IPv4, shown inside the larger confidence region of an extrapolated IPv6 run.

The increase in the estimated confidence region between the two confidence regions
in is very small, and of little consequence for practical purposes. However, if the
observation above that the RTT value increases markedly for every router a probe
has to pass through, the difference compared to IPv4 should be larger for runs
where the probes encounter many routers. Using GeoBud to estimate the buffer
delays of the routers could probably mitigate this though.

5.4.3 Effect of Number and Placement of Landmarks

The number and especially placement of Landmarks is important to the accuracy
of both CBG and GeoPing. GeoPing needs evenly spaced landmarks as it uses
landmark locations as estimates of the location of the target. The constraint-
based technique used in CBG suffers greatly when the target is not surrounded
by landmarks. This was reported in [6] where the distance from the estimated
target location and the actual location of the target varied from 21.5 km for a host

6As the servlet developed in Chapter 4 does not support multiple traces on the same map image
Figure 5.9 was created using the stand-alone OpenMap application.

70

in central Europe to 562.4 km for a host in Umeå, Sweden. The confidence regions
varied correspondingly, from 13,993 km2 to 1,120,300 km2. The host in Sweden
was located to the north of most landmarks, and clearly demonstrated the reliance
of CBG on landmark placement to provide accurate results.

The measurement nodes constitute a relatively limited set of landmarks. None-
theless it is interesting to see if we can affect the accuracy of in particular CBG by
varying which landmarks are used.

Results

Table 5.2 gives results for GeoPing using all measurement nodes. All the estimated
locations are reasonable, with regard to the location of the target and the landmark
selected to be most similar. It is interesting that rena-mp is calculated to be the
landmark most resembling both oslo-mp and trd-mp. The reason for rena-mp being
most similar to trd-mp is probably that the three measurement nodes to the north of
trd-mp has lower RTTs to rena-mp than to molde-mp. In Table 5.3 where the three
northern measurement nodes are not used molde-mp is the most similar to trd-mp,
as expected.

Target Estimated Location ∆(DV)
narvik-mp tromso-mp 11.9227
trd-mp rena-mp 17.2234
bo-mp notodden-mp 1.3367
oslo-mp rena-mp 6.8543

Table 5.2: GeoPing results using all measurement nodes

Target Estimated Location ∆(DV)
trd-mp molde-mp 7.5934
bo-mp notodden-mp 0.9074
oslo-mp rena-mp 5.1863

Table 5.3: GeoPing results using measurement nodes south of and including trd-mp.

The results for CBG are given in Table 5.4. These results are not very accurate.
Due to the landmark locations and the number of landmarks this is to be expected.
The most interesting result is that the location of the landmarks seem to be much
more important than the total number of landmarks. Figure 5.10 shows this clearly.
If not for the Ciτ of narvik-mp from the north, the confidence region would have
been much larger. The multiple landmarks mostly to the south do not add much
accuracy beyond the first. Not only the placement of landmarks relative to the
target, but also the distance between target and landmarks, play an important part.

71

Figure 5.11 show this for a trace of bo-mp, where the inclusion of the Ciτ of oslo-
mp greatly decreases the confidence region.

Target Lat. Lon. Est. Lat Est. Lon ∆[km] R[km2]
trd-mp 63.4141 10.4059 63.6919 10.1508 33.41 41 214
notodden-mp 59.5712 9.2606 60.0288 10.3635 80.06 97 200
bo-mp 59.4238 9.0661 60.0482 10.2121 94.68 93 312
narvik-mp 68.4360 17.4416 69.3231 18.1763 103.04 38 404
oslo-mp 59.9437 10.7174 60.6223 9.0449 119.26 20 615

Table 5.4: CBG results.

Figure 5.10: The best of the geolocation results using CBG.

Figure 5.11: Confidence region and estimated location of bo-mp.

72

5.4.4 CBG Overestimation Factor

The CBG algorithm uses RTT as an estimate of the double of the one-way delay.
This fudge factor is used to ensure that underestimation will not occur, see Section
3.4.3. However, the value 2 and its approximation by using RTT, although very
practical, substantially worsens the accuracy of CBG. Is it possible to determine a
lower value to obtain more accurate results, while still avoiding underestimation?
We try to determine a lower bound on this value, for use in the Uninett network.
The result is not valid in any other network, but it might point to a lower value
than 2 that may be generally used to improve the accuracy of CBG, without costly
measures such as those proposed in GeoBud.

Results

This experiment did not yield the expected results at all. Underestimations occurred
frequently when using the standard factor of 2. Figure 5.12 gives two examples.
Note that inclusion of the Ciτ of oslo-mp in Figure 5.12(b) would not lead to an
empty R, but produce an incorrect estimation. The corresponding situation arises
in Figure 5.12(a).

The results indicate that, if anything, the factor should be increased for the Uninett
network. Figure 5.3 shows that the correlation between lower-limit one-way delay
and halved RTT is higher for host pairs exhibiting underestimation, than it is for
host pairs that do not. We do not have data from other networks to compare the
Uninett data to, but this might indicate that the Uninett network topology is more
optimal than that of other parts of the Internet, where CBG seldom underestimates
when using the default factor 2. The landmarks resulting in underestimation were
not used in the other experiments. As described in Section 4.2.1 an algorithm for
discarding the Ciτ s of landmarks that leads to an empty R should be implemented,
as it would make CBG much more robust.

5.4.5 Moving Target

As discussed in Section 3.7 more and more Internet hosts are mobile. Is it possible,
using existing techniques, to establish that a host has moved, and if so the direction
of its movement? How large a distance must any movement represent to be detect-
able? For this experiment a laptop computer will be the target of several trace
operations while being at different locations in Trondheim.

Unfortunately we do not have the time or resources to perform the moving target
experiment at an adequate set of locations. This will severely limit the possibilities
of establishing how large the distance between locations must be to be detected
as a probable move. Three locations were used Nardo, Munkvoll and Dragvoll.

73

(a) CBG run with trd-mp as the target T.

(b) CBG run with oslo-mp as the target T.

Figure 5.12: CBG runs with underestimations. Underestimated Ciτ s are indentified
by arrows and landmark names.

The network connections at all three locations were Asymmetric Digital Subscriber
Lines (ADSL). The Munkvoll and Dragvoll connections were delivered by Telenor,
while the Nardo connection was delivered by NextGenTel.

Results

The Munkvoll location proved to be unusable. CBG consistently returned constraints
of well above 40 000 km, more than the circumference of the Earth. GeoPing did

74

not fare any better, with ∆(DV) values varying between 0.3 and 264 000. Clearly
the network conditions made the use of these two techniques impossible.

(a) CBG run for location Dragvoll. Estimated location: 60.7999,
10.7715. R: 1 434 869 km2.

(b) CBG run for location Nardo. Estimated location: 63.9739,
10.4898. R: 927 349 km2.

Figure 5.13: CBG runs wit target located at Nardo and Dragvoll.

The CBG-results for the Nardo and Dragvoll locations are shown in Figure 5.13.
The results were relatively consistent over multiple runs, but without knowing the
locations of the target beforehand it is impossible to determine if the location of
the target actually changed. With confidence regions several times larger than the
total area of Norway the results cannot be called accurate. The location estimates
are off with about 292.3 km for Dragvoll and 61.8 km for Nardo. These values are
clearly too large to determine if a host moved a distance of a few km.

The GeoPing results are shown in Table 5.5. These results also were consistent,
without being useful for determining if the target’s location changed

75

Estimated Location min ∆(DV) max ∆(DV)
Dragvoll

molde-mp 31.1318 32.1125
porsgrunn-mp 32.3154 32.6606

Nardo
molde-mp 24.6418 30.0110

porsgrunn-mp 30.4451 34.6249

Table 5.5: Moving target GeoPing results

It is clear from these results that the larger delays incurred by non-optical-fiber
networks is relatively poorly handled by GeoPing and CBG.

76

5.4.6 Scalability

The scalability of the geolocation application in MAFIF is interesting if it is to
be used as a tool for law enforcement. Especially if a more refined version is to
be employed on a much larger number of host, the ability to run multiple trace
operations simultaneously will be important. The two most interesting metrics
to explore is the increase in time elapsed and if the accuracy of the results are
influenced.

We compare the time needed to complete 1, 5, 10 and 25 simultaneous trace
operations, and if the accuracy in the results change with any significance. The
results in Section 5.4.1 indicate that if we see any change in accuracy it is probably
not due to externally caused change in network conditions, but rather self-interference.
[40, 39] discuss the possibility of self-interference in delay measurements. That is,
a host can send probes with an inter-probe delay so low that it causes congestions
on the path it attempts to measure, and thus heavily influence its own measure-
ments. Although we have chosen the default inter-probe delay to be well above the
threshold of self-interference, with simultaneous trace operations probes are sent
more often, and self interference may occur.

GeoPing was used for this experiment, as our implementation of it puts a higher
load on the agent-system than the CBG implementation. When running simultan-
eous operations the CBG-bestline will be computed by the first instance only, all
successive instances use a cached version. The most calculation intensive part of
CBG is done outside the agent system, in the servlet, as explained in Sections 4.2.1
and 4.4.1. We are not interested in measuring the servlet scalability, but that of the
geolocation functionality in MAFIF. Additionally the servlet uses a single Swing-
thread for serving all requests, and is necessarily limited by this. GeoPing is also
more sensitive to varying delay measurements, as it may result in the selection of
entirely different landmarks as estimated locations. In CBG any small variations
will only impact the size of the confidence region.

Results

Table 5.6 shows the landmarks consistently returned by all instances when narvik-
mp was used as the target. Note that svalbard-mp did not perform measurements.
This is the reason that nyalesund-mp is not in the list of estimated locations. To all
other landmarks it appears to not be close to narvik-mp, while in the measurements
of nyaleund-mp svalbard-mp appears to be close. With more landmarks the high
values of a single landmark in Equation 4.11 would not have such a big impact.
The ∆(DV) values listed are the minimum and maximum of three runs. It is
quite possible that self-interference will make an impact with a higher number of
simultaneous instances.

77

Estimated location min∆(DV) max ∆(DV)
Nr of simultaneous instances: 1
tromso-mp 10.75 -
svalbard-mp 39.56 -
trd-mp 44.86 -
Nr of simultaneous instances: 5
tromso-mp 10.81 11.21
svalbard-mp 38.31 39.52
trd-mp 44.66 44.69
Nr of simultaneous instances: 10
tromso-mp 10.76 11.83
svalbard-mp 39.14 39.65
trd-mp 44.56 45.72
Nr of simultaneous instances: 25
tromso-mp 10.76 11.83
svalbard-mp 38.48 39.78
trd-mp 44.56 45.72

Table 5.6: Variances in ∆(DV) between different number of simultaneous instances.

Timing was done manually, and as such is not accurate more than to the second.
The average times to complete all instances were about 30 seconds, independent of
the number of instances. This is a marked improvement over the scalability results
in Appendix A. This is probably due to the workload of the geolocation function-
ality being less than that of the content securing application used in Appendix
A. Much of the elapsed time is spent idle waiting for probe packets to return.
The content securing application is dependent on disk I/O performance and also
spawns up to hundreds of agents. Also the optimization described in Section 4.1.1,
resulting in fewer messages exchanged between agents, probably influences the
result positively.

78

Chapter 6

Conclusions

We have successfully implemented geolocation functionality in MAFIF, showing
that MAFIF indeed can be used as a general framework for Internet forensics. The
limited scalability testing is promising, and shows a marked improvement over the
previous MAFIF version.

We have also analyzed current geolocation techniques, with respect to the im-
portant properties accuracy, effort, reliability and the possibility of detection by
the target. Several possible improvements to these techniques have been described,
although we have not had the possibility of testing the impact and practical feasibility
of all the improvements. The results of the experiments in Chapter 5 show that
improvements are needed. The current geolocation algorithms have shortcomings
that severely influence accuracy, especially when landmark placement is not optimal.
The proposal to use dynamic regions set forth in Section 3.5.2 is probably the single
improvement best suited to address this.

The experiments with varying probe parameters indicate that the Uninett network
is very stable, and as such may not be a representative environment to gather know-
ledge of delay properties and variations over time, with regard to the Internet
in general. However, a compromise must be made between having a relatively
controlled, and at the same time sufficiently complex test environment.

Further contributions include the analysis of the impact of IPv6, and the introduction
of multi-party computation to geolocation. The extensive focus on delay measure-
ments, although not bringing anything new to the field of networking in general, is
also new to geolocation as far as we know.

79

80

Chapter 7

Further Work

We have demonstrated that the framework for Internet Investigations we designed
and built in [1] is indeed extensible and scalable. However, it remains a prototype
and there is still much to be done with regard to utilizing multi-agent technology in
the context of Internet forensics, particularly with regard to geographical location
of Internet hosts. The sections below describe possible areas of further work.

7.1 Large-scale Experiments

Internet-wide experiments with a refined version of the geolocation application is
an obvious next step. This should include implementing support for other protocols
for probing than ICMP, and the optimizations and improvements described in Sect-
ions 3.5.1 and 3.5.2. Particularly determining the feasibility and effect of the
dynamic region scheme would be interesting. Implementing GeoBud and other
similarity models for GeoPing would allow for direct comparison with CBG and
the current Euclidean distance-GeoPing. Determining if a smaller overestimation
factor for CBG for general use is feasible, possibly at the cost of discarding some
measurements, would also be of interest.

7.2 Multi-Party Computation

In Section 3.5.3 we described how geolocation can be augmented by multi-party
computation. Adapting the GeoPing and CBG algorithms to use multi-party comput-
ation would open up new possibilities for cooperation by limiting the degree of trust
necessary, while doing away with the limitations in Reistad’s proof of concept.
The use of multi-party computation increases the necessary information exchange

81

between nodes. Assessing the scalability implications of this is important to determine
the viability of using multi-party computation in geolocation.

7.3 IPv6

The limited experiments of Chapter 5 on IPv4 vs IPv6 indicated that the differences
in the Uninett network were not particularly large. There may be more significant
differences in other parts of the Internet. Conducting more extensive experiments
to make clear the state of these differences would be useful. Also, mapping the
extent of HMIP usage, and its actual effect on geolocation would contribute im-
portant information on how to deal with increased host mobility.

The possibility of frequently changing and random addresses described in Section
3.7.1 may make current geolocation techniques practically obsolete if widely adopted.
Research into novel approaches to geolocation that can counter this would be
extremely useful, even if this scenario should not come to pass.

7.4 Detection of Direction of Movement

To be able to detect the mobility of a host is very interesting. The experiment
of Section 5.4.5 was not successful in doing so at all. This clearly indicates that
more accurate techniques than currently available are needed. Determining the
current location of a mobile host is not necessarily very useful, as the information
is potentially quickly outdated. If accuracy could be increased enough to allow
successive trace operations to establish a pattern of movement on the other hand,
future locations could be estimated with some probability.

7.5 Web Service Integration

Making the system accessible as a web service through the use of one of the web
service integration possibilities mentioned in Section 4.4 would allow for a more
flexible integration of MAFIF in existing systems. It could also make it possible
for MAFIF applications to make use of functionality from other web services.

82

References

[1] Øystein E. Thorvaldsen. Internet investigations: Tools and methods. a multi-
agent approach. Departement of Telematics, NTNU, May 2006.

[2] Espen André Fossen. Principles of Internet investigations: Basic
reconnaissance, geopositionsing and public information sources. Master’s
thesis, Norwegian University of Science and Technology, June 2005.

[3] Espen André Fossen. Automatic tracing of Internet addresses. Departement
of Telematics, NTNU, November 2004.

[4] Christian Larsen. Automatisk sikring av nettsted fra internett. Departement
of Telematics, NTNU, November 2004.

[5] Gary Palmer. A road map for digital forensic research. Technical report,
Digital Forensic Research Workshop, 2001.

[6] Espen André Fossen and André Årnes. Forensic geolocation of Internet add-
resses using network measurements. In The 10th Nordic Workshop on Secure
IT-systems (NORDSEC 2005), October 2005.

[7] Eoghan Casey. Error, uncertainty, and loss in digital evidence. International
Journal of Digital Evidence, 1, Issue 2, 2002.

[8] J. Coppens, E.P. Markatos, J. Novotny, M. Polychronakis, V. Smotlacha,
and S. Ubik. SCAMPI - a scaleable monitoring platform for the
Internet. In Proceedings of the 2nd International Workshop on Inter-Domain
Performance and Simulation (IPS 2004), March 2004.

[9] J. A. Muir and P. C. van Oorschot. Internet geolocation and evasion. Technical
Report TR 06-05, School of Computer Science, Carleton University, April
2006.

[10] Venkata N. Padmanabhan and Lakshminarayanan Subramanian. An
investigation of geographic mapping techniques for internet hosts. In
SIGCOMM ’01: Proceedings of the 2001 conference on Applications,
technologies, architectures, and protocols for computer communications,
pages 173–185, New York, NY, USA, 2001. ACM Press.

83

[11] Artur Ziviani, Serge Fdida, José Ferreira de Rezende, and Otto Carlos
Muniz Bandeira Duarte. Similarity models for Internet host location. In Proc.
of the IEEE International Conference on Networks - ICON’2003, pages 81–
86, Sydney, Australia, September 2003.

[12] Artur Ziviani, Serge Fdida, José Ferreira de Rezende, and Otto Carlos
Muniz Bandeira Duarte. Toward a measurement-based geographic locat-
ion service. In Proc. of the Passive and Active Measurement Workshop -
PAM’2004, Lecture Notes in Computer Science (LNCS) 3015, pages 43–52,
Antibes Juan-les-Pins, France, April 2004.

[13] Artur Ziviani, Serge Fdida, José Ferreira de Rezende, and Otto Carlos
Muniz Bandeira Duarte. Demographic placement for Internet host location.
In Proc. of the IEEE GLOBECOM’2003, volume 7, pages 3813–3817, San
Francisco, CA, USA, December 2003.

[14] Bamba Gueye, Artur Ziviani, Serge Fdida, José F. de Rezende, and Otto
Carlos M.B. Duarte. Two-tier geographic location of Internet hosts. Lecture
Notes in Computer Science, 3079:730–739, January 2004.

[15] Bamba Gueye, Artur Ziviani, Mark Crovella, and Serge Fdida. Constraint-
based geolocation of Internet hosts. In IMC ’04: Proceedings of the 4th ACM
SIGCOMM conference on Internet measurement, pages 288–293, 2004.

[16] Bamba Gueye, Steve Uhlig, Artur Ziviani, and Serge Fdida. Leveraging
buffering delay estimation for geolocation of Internet hosts. Lecture Notes
in Computer Science, 3976:319–330, January 2006.

[17] Paul Francis, Sugih Jamin, Vern Paxson, Lixia Zhang, Daniel F. Gryniewicz,
and Yixin Jin. An architecture for a global Internet host distance estimation
service. In IEEE INFOCOM 1999, pages 210–217, New York, NY, March
1999. IEEE.

[18] Paul Francis, Sugih Jamin, Cheng Jin, Yixin Jin, Danny Raz, Yuval Shavitt,
and Lixia Zhang. IDMaps: a global Internet host distance estimation service.
IEEE/ACM Trans. Netw., 9(5):525–540, 2001.

[19] T. S. Eugene Ng and Hui Zhang. Towards global network positioning. In
IMW ’01: Proceedings of the 1st ACM SIGCOMM Workshop on Internet
Measurement, pages 25–29, New York, NY, USA, 2001. ACM Press.

[20] T. S. E. Ng and Hui Zhang. Predicting Internet network distance with
coordinates-based approaches. In INFOCOM 2002. Twenty-First Annual
Joint Conference of the IEEE Computer and Communications Societies.
Proceedings. IEEE, volume 1, pages 170–179, 2002.

[21] Hyuk Lim, Jennifer C. Hou, and Chong-Ho Choi. Constructing Internet
coordinate system based on delay measurement. In IMC ’03: Proceedings

84

of the 3rd ACM SIGCOMM conference on Internet measurement, pages 129–
142, New York, NY, USA, 2003. ACM Press.

[22] M. Pias, J. Crowcroft, S. Wilbur, S. Bhatti, and T. Harris. Lighthouses for
scalable distributed location. In Proc of Second International Workshop on
Peer-to-Peer Systems (IPTPS ’03), Berkeley, CA, USA, February 2003.

[23] Liying Tang and Mark Crovella. Virtual landmarks for the Internet. In
IMC ’03: Proceedings of the 3rd ACM SIGCOMM conference on Internet
measurement, pages 143–152, New York, NY, USA, 2003. ACM Press.

[24] S. van Langen, X. Zhou, and P. Van Mieghem. On the estimation
of Internet distances using landmarks. In International Conference
on Next Generation Teletraffic and Wired/Wireless Advanced Networking
(NEW2AN’04), February 2004.

[25] X. Zhou and P. Van Mieghem. On the aging of landmark-based co-
ordinates. In IEEE joint conference of 10th Asia-Pacific Conference on
Communications (APCC2004) and 5th International Symposium on Multi-
Dimensional Mobile Communications (MDMC2004) (APCC/MDMC’04),
pages 347–350, Beijing, China, August 2004.

[26] Michal Szymaniak, Guillaume Pierre, and Maarten van Steen. Scalable
cooperative latency estimation. In ICPADS ’04: Proceedings of the Parallel
and Distributed Systems, Tenth International Conference on (ICPADS’04),
pages 367–376, Washington, DC, USA, July 2004. IEEE Computer Society.

[27] David Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 4(2), February 1981.

[28] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-
generation onion router. In Proceedings of the 13th USENIX Security
Symposium, August 2004.

[29] A. Yao. Protocols for secure computation. In Proceedings of 23rd IEEE
Symposium on the Foundations of Computer Science, pages 160–166. IEEE,
November 1982.

[30] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness
theorems for non-cryptographic fault-tolerant distributed computation. In
STOC ’88: Proceedings of the twentieth annual ACM symposium on Theory
of computing, pages 1–10, 1988.

[31] David Chaum, Claude Crépeau, and Ivan Damgard. Multiparty
unconditionally secure protocols. In STOC ’88: Proceedings of the twentieth
annual ACM symposium on Theory of computing, pages 11–19, 1988.

[32] Ivan Damgård, Matthias Fitzi, Eike Kiltz, Jesper Buus Nielsen, and Tomas
Toft. Unconditionally secure constant-rounds multi-party computation for

85

equality, comparison, bits and exponentiation. In Proceedings of the third
Theory of Cryptography Conference TCC 2006, pages 285–304, March 2006.

[33] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In
STOC ’87: Proceedings of the nineteenth annual ACM conference on Theory
of computing, pages 218–229, New York, NY, USA, 1987.

[34] D. Beaver and S. Goldwasser. Multiparty computation with faulty majority.
In 30th Annual Symposium on Foundations of Computer Science, pages 468–
473, November 1989.

[35] Juan A. Garay, Philip MacKenzie, and Ke Yang. Efficient and secure multi-
party computation with faulty majority and complete fairness. Cryptology
ePrint Archive, Report 2004/009, 2004.

[36] Tord Ingolf Reistad. Multi-party secure position determination. In Norsk
Informatikk Konferanse 2006, June 2006.

[37] Headquarters Department of the Army, Washington, USA. Field Manual Map
Reading and Land Navigation, no. 3-25.26 edition, July 2001.

[38] Omer Gurewitz, Israel Cidon, and Moshe Sidi. One-way delay estimation
using network-wide measurements. IEEE Transactions on Information
Theory, 52(6):2710–2724, 2006.

[39] Z. Wang, A. Zeitoun, and S. Jamin. Challenges and lessons learned in
measuring path RTT for proximity-based applications. In The Passive and
Active Measurement Workshop (PAM2003). The NLANR Measurement and
Network Analysis Group, April 2003.

[40] Amgad Zeitoun, Zhiheng Wang, and Sugih Jamin. RTTometer: Measuring
path minimum RTT with confidence. In IEEE Workshop on IP Operations
and Management (IPOM 2003), pages 127–134, October 2003.

[41] V. Paxson. End-to-end routing behaviour in the internet. In Proceedings of
ACM SIGCOMM’96, pages 25–38, August 1996.

[42] Y. Zhang, V. Paxson, and S. Shenker. The stationarity of internet path
properties: Routing, loss, and throughput. ACIRI Technical Report, 2000.

[43] Vern Paxson. End-to-end Internet packet dynamics. In SIGCOMM
’97: Proceedings of the ACM SIGCOMM ’97 conference on Applicat-
ions, technologies, architectures, and protocols for computer communication,
pages 139–152, 1997.

[44] Chuck Fraleigh, Sue Moon, B. Lyles, C. Cotton, M. Khan, D. Moll,
R. Rockell, T. Seely, and Christophe Diot. Packet-level traffic measurements
from the Sprint IP backbone. IEEE Network, 17(6):6–16, 2003.

86

[45] Tin Yu Wu, Han Chieh Chao, Tak Goa Tsuei, and Yu Feng Li. A measure-
ment study of network efficency for TWAREN IPv6 backbone. International
Journal of Network Management, 15:411–419, 2005.

[46] A. Zeitoun, C.-N. Chuah, S. Bhattacharyya, and C. Diot. An AS-level study
of Internet path delay characteristics. In Proceedings of IEEE Globecom,
Dallas, Texas, November 2004.

[47] Stefan Savage. Sting: A TCP-based network measurement tool. In USENIX
Symposium on Internet Technologies and Systems, 1999.

[48] Omer Gurewitz, Israel Cidon, and Moshe Sidi. Network time synchronization
using clock offset optimization. In ICNP ’03: Proceedings of the 11th IEEE
International Conference on Network Protocols, page 212, 2003.

[49] Darryl Veitch, Satish Babu, and Attila Pàsztor. Robust synchronization
of software clocks across the Internet. In IMC ’04: Proceedings of the 4th
ACM SIGCOMM conference on Internet measurement, pages 219–232, 2004.

[50] Anurag Acharya and Joel Saltz. A study of internet round-trip delay.
Technical Report CS-TR-3736, University of Maryland, 1996.

[51] John E. Midwinter. Optical Fibres for Transmission. John Wiley & Sons,
New York, 1979.

[52] Lixin Gao and Feng Wang. The extent of AS path inflation by routing
policies. In Global Telecommunications Conference (GLOBECOM ’02),
volume 3, pages 2180–2184. IEEE, November 2002.

[53] Hongsuda Tangmunarunkit, Ramesh Govindan, and Scott Shenker. Internet
path inflation due to policy routing. In Sonia Fahmy and Kihong Park, editors,
Proc. SPIE Scalability and Traffic Control in IP Networks, volume 4526,
pages 188–195. SPIE, July 2001.

[54] Neil Spring, Ratul Mahajan, and Thomas Anderson. Quantifying the causes
of path inflation. ACM SIGCOMM, August 2003.

[55] Alberto Escudero Pascual. Location privacy in IPv6 "tracking the binding
updates". In Proceedings of IMDS01, Lancaster, UK, September 2001.

[56] Tuomas Aura and Alf Zugenmaier. Privacy, control and Internet mobility.
Presented at 12th International Workshop, Cambridge, UK To appear in
Lecture Notes in Computer Science , Vol. 3957 September 2006, April 2004.

[57] Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa. Developing
multi-agent systems with a FIPA-compliant agent framework. Software:
Practice and Experience, 31(2), 2001.

[58] F. Bergenti, G. Caire, R. Pels, and C. van Aart. Creating and using ontologies
in agent communication. EXP in search of innovation, 2(3):10–21, 2002.

87

[59] B. Bauer. Extending UML for the specification of interaction protocols.
submission for the 6th call for Proposal of FIPA and revised version of FIPA
99, 1999.

[60] Bernhard Bauer. UML class diagrams revisited in the context of agent-based
systems. In AOSE ’01: Revised Papers and Invited Contributions from the
Second International Workshop on Agent-Oriented Software Engineering II,
pages 101–118, London, UK, 2002. Springer-Verlag.

[61] M.-P. Huget. Agent UML class diagrams revisited. In Bernhard Bauer, Klaus
Fischer, Jorg Muller, and Bernhard Rumpe, editors, Agent Technology and
Software Engineering (AgeS), October 2002.

[62] Michael Bevis and Greg Cambareri. Computing the area of a spherical
polygon of arbitrary shape. Mathematical Geology, 19(4):335–346, January
1987.

[63] Dominic Greenwood and Monique Calisti. An automatic bi-directional
service integration gateway. In Cybernetics and Man Conference. IEEE,
October 2004.

[64] Thang Xuan Nguyen and Ryszard Kowalczyk. Ws2jade: Integrating web
service with jade agents. Technical Report SUTICT-TR2005.03, Swinburne
University of Technology, July 2005.

[65] Keith Ryden. OpenGIS Implementation Specification for Geographic infor-
mation - Simple feature access - Part 2: SQL option. Open Geospatial
Consortium, 1.1.0 edition, November 2005.

[66] Sun Microsystems. JDBC 4.0 API Specification - Proposed Final Draft, July
2006.

[67] JADE Board. Jade Administrator’s Guide. TILAB S.p.A, 3.3 edition, January
2005.

88

RFC References

[RFC1034] P. Mockapetris. Domain names - concepts and facilities, November
1987.

[RFC1035] P. Mockapetris. Domain names - implementation and specification,
November 1987.

[RFC1305] David L. Mills. Network time protocol (version 3) specification,
implementation and analysis, March 1992.

[RFC1712] C. Farrell, M. Schulze, S. Pleitner, and D. Baldoni. DNS encoding of
geographical location, November 1994.

[RFC1876] C. Davis, P. Vixie, T. Goodwin, and I. Dickinson. A means for
expressing location information in the domain name system, January
1996.

[RFC1918] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, and E. Lear.
Address allocation for private internets, February 1996.

[RFC1930] J. Hawkinson and T. Bates. Guidelines for creation, selection, and
registration of an Autonomous System (AS), March 1996.

[RFC2050] K. Hubbard, M. Kosters, D. Conrad, D. Karrenberg, and J. Postel.
Internet registry IP allocation guidelines, November 1996.

[RFC2131] R. Droms. Dynamic host configuration protocol, March 1997.

[RFC2330] V. Paxson, G. Almes, J. Mahdavi, and M. Mathis. Framework for IP
performance metrics, May 1998.

[RFC2460] S. Deering and R. Hinden. Internet protocol, version 6 (IPv6)
specification, December 1998.

[RFC2462] S. Thomson and T. Narten. IPv6 stateless address autoconfiguration,
December 1998.

[RFC2622] C. Alaettinoglu, C. Villamizar, E. Gerich, D. Kessens, D. Meyer,
T. Bates, D. Karrenberg, and M. Terpstra. Routing policy specification
language (RPSL), June 1999.

89

[RFC3041] T. Narten and R. Draves. Privacy extensions for stateless address
autoconfiguration in IPv6, January 2001.

[RFC3330] IANA. Special-use IPv4 addresses, September 2002.

[RFC3344] C. Perkins. IP mobility support for IPv4, August 2002.

[RFC3775] D. Johnson, C. Perkins, and J. Arkko. Mobility support in IPv6, June
2004.

[RFC3776] J. Arkko, V. Devarapalli, and F. Dupont. Using IPsec to protect mobile
IPv6 signaling between mobile nodes and home agents, June 2004.

[RFC3912] L. Daigle. Whois protocol specification, September 2004.

[RFC4012] L. Blunk, J. Damas, F. Parent, and A. Robachevsky. Routing policy
specification language next generation (RPSLng), March 2005.

[RFC4033] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. DNS
security introduction and requirements, March 2005.

[RFC4140] H. Soliman, C. Castelluccia, K. El Malki, and L. Bellier. Hierarchical
mobile IPv6 mobility management (HMIPv6), August 2005.

[RFC4271] Y. Rekhter, T. Li, and S. Hares. A border gateway protocol 4 (BGP-4),
January 2006.

[RFC812] Ken Harrenstien and Vic White. Nicname/whois, March 1982.

[RFC882] P. Mockapetris. Domain names - concepts and facilities, November
1983.

[RFC883] P. Mockapetris. Domain names - implementation and specification,
November 1983.

[RFC920] J. Postel and J. Reynolds. Domain requirements, October 1984.

[RFC954] K. Harrenstien, M. Stahl, and E. Feinler. Nicname/whois, October
1985.

90

Floating References

[aja06] http://goog-ajaxslt.sourceforge.net/, October 2006.

[ano06] Free haven’s anonymity bibliography. http://freehaven.net/
anonbib/, November 2006.

[ccW06] Wikipedia article on chain of custody. http://en.wikipedia.org/
wiki/Chain_of_custody, September 2006.

[Dea06] Denis J. Dean. The universal transverse mercator (UTM) coordinate
system. http://www.warnercnr.colostate.edu/class_info/
nr502/lg3/datums_coordinates/utm.html part of the subject
NR502 Geodesy, Cartography and Map Reading at the Geospatial
Sciences program in the College of Natural Resources at Colorado State
University, September 2006.

[dns06a] Wikipedia article on DNSSEC. http://en.wikipedia.org/wiki/
DNS_Security_Extensions, October 2006.

[dns06b] Wikipedia article on the domain name system. http://en.
wikipedia.org/wiki/Domain_name_system, October 2006.

[Dut06] Steven Dutch. Converting UTM to latitude and longitude
(or vice versa). http://www.uwgb.edu/dutchs/UsefulData/
UTMFormulas.HTM, September 2006.

[geo06] GeoTools official homepage. http://geotools.codehaus.org/,
July 2006.

[goo06a] Google maps homepage. http://maps.google.com, September
2006.

[goo06b] Wikipedia article on Google Earth. http://en.wikipedia.org/
wiki/Google_Earth, September 2006.

[gre06] Wikipedia article on great circle distance. http://en.wikipedia.
org/wiki/Great-circle_distance, September 2006.

91

[hij06a] CompleteWhois list of hijacked IPs. http://www.completewhois.
com/hijacked/index.htm, October 2006.

[hij06b] CompleteWhois’s questions and answers on IP hijacking. http://www.
completewhois.com/hijacked/hijacked_qa.htm, October 2006.

[hsq06] HSQLDB official homepage. http://www.hsqldb.org, August 2006.

[IOC06] IOCE. G8 proposed principles for the procedures relating to digital
evidence. http://www.ioce.org/G8_proposed_principles_for_
forensic_evidence.html, February 2006.

[ipu06] iputils homepage. ftp://ftp.inr.ac.ru/ip-routing/
iputils-current.tar.gz, October 2006.

[jad06] jademx - JMX access to Jade agents. http://jademx.sourceforge.
net/, October 2006.

[jdb06] Sun’s list of available JDBC drivers. http://developers.sun.com/
product/jdbc/drivers, October 2006.

[jpc06] Jpcap - Java package for packet capture. http://netresearch.ics.
uci.edu/kfujii/jpcap/doc/index.html, August 2006.

[jts06a] Jump Topology Suite official homepage. http://www.
jump-project.org/project.php?PID=JTS\&SID=OVER, July
2006.

[jts06b] Wikipedia article on Jump Topology Suite (JTS). http://en.
wikipedia.org/wiki/JTS_Topology_Suite, July 2006.

[kml06a] The official KML documentation. http://earth.google.com/kml/,
September 2006.

[kml06b] Wikipedia article on Keyhole Markup Language. http://
en.wikipedia.org/wiki/Keyhole_Markup_Language, September
2006.

[lan06] Landserf official homepage. http://www.landserf.org, July 2006.

[lob06] The large-scale monitoring of broadband internet infrastructure project
LOBSTER. http://www.ist-lobster.eu/, October 2006.

[map06] Wikipedia article on map projections. http://en.wikipedia.org/
wiki/Map_projection, September 2006.

[net06] Wikipedia article on network neutrality. http://en.wikipedia.org/
wiki/Network_neutrality, November 2006.

[ope06a] Open Geospatial Consortium (OGC). http://www.opengeospatial.
org/, July 2006.

92

[ope06b] Open source GIS. http://opensourcegis.org/, September 2006.

[ope06c] Openmap official homepage. http://www.openmap.org, July 2006.

[pin06] Wikipedia article on ping. http://en.wikipedia.org/wiki/Ping,
November 2006.

[roc06] RockSaw API for raw socket network I/O in Java. http://www.
savarese.org/software/rocksaw/index.html, August 2006.

[sca06] A scaleable monitoring platform for the internet (SCAMPI). http://
www.ist-scampi.org/, July 2006.

[sta06] Wikipedia article on statistical mode. http://en.wikipedia.org/
wiki/Mode_(statistics), September 2006.

[utm06] Wikipedia article on universal transverse mercator coordinate system.
http://en.wikipedia.org/wiki/Universal_Transverse_
Mercator_coordinate_system, September 2006.

[wgs06] Wikipedia article on world geodetic system. http://en.wikipedia.
org/wiki/WGS84, September 2006.

[who06] Wikipedia article on whois service. http://en.wikipedia.org/
wiki/WHOIS, October 2006.

[wik06a] Wikipedia article on network address translation. http:
//en.wikipedia.org/wiki/Network_address_translation,
November 2006.

[wik06b] Wikipedia article on proxy server. http://en.wikipedia.org/
wiki/Proxy_server, November 2006.

[wik06c] Wikipedia article on virtual private network. http://en.wikipedia.
org/wiki/VPN, November 2006.

93

94

Appendix A

Article

This appendix contains a draft for an article based on the work we did in [1]. It
is included here to give a concise introduction to the multi-agent framework for
Internet investigations that this project is based on. The article will be expanded to
include the geolocation functionality developed in this thesis and submitted to the
Usenix Security’07 conference.

95

A Multi-Agent Framework for Internet Investigations

Abstract
With a dramatic increase of Internet related crimes, the field of Internet investigations
is becoming increasingly important. Available tools and methods for Internet
investigations are limited in scope, and they often do not sufficiently protect and
document the integrity of digital evidence. In this paper, we introduce a novel
approach to Internet investigations using multi-agent systems, providing the necessary
scalability and security for large scale Internet investigations. Central aspects of the
proposed approach are the preservation of evidence integrity and the mitigation of
unwanted detection by investigation targets. A framework for multi-agent Internet
investigations with a proof-of-concept application for securing digital evidence from
web sites is implemented. Experiments using the proof-of-concept application show
promising results with regards to scalability and generated traffic patterns.

Keywords: Internet Investigations, Multi-Agent Systems, Digital Forensic Science.

1 Introduction
With the immense success of the Internet as a global marketplace interconnected with virtually
all aspects of physical life, cyber crime and fraud on the Internet is becoming a major issue, and
even traditional criminal cases often involve digital evidence on the Internet. The media reports
that Internet-related crime now out-paces drug trafficking in the United States, as measured in
turnover [19]. Law enforcement has not been able to fully keep up with the explosive growth,
making the Internet an attractive arena for criminals seeking the anonymity of the masses. In
order to effectively handle this development, a new generation of tools for Internet investigations
is needed. If a crime scene has a digital component on the Internet, we need forensically sound
tools for Internet investigation that follow the same rigorous standards as those set for traditional
forensics.

The current generation of tools is limited and immature [16, 17]. Most of these tools are
based on clients running on single hosts, and many popular tools do not sufficiently protect and
document the integrity of the digital evidence. The centralized tools have limited scalability and
load-distribution, and the reliance on a static address makes the systems vulnerable to detection
by criminals targeted for investigation. Based on the results and recommendations published
in [15, 9, 10], we aim to partly mitigate these problems and to help establish a framework for
a new generation of investigation tools powered by multi-agent technology. We address this by
proposing a prototype framework for Internet Investigations using the JADE agent development
framework [3]. The Internet Investigations framework is designed to support rapid development
of a number of applications, such as securing content from different services and protocols on the
Internet, tracing of IP addresses, and monitoring networks for user information and traffic patterns.
Such an application concept is shown in Figure 1.

Section 2 discusses related work. Benefits and challenges of using multi-agent systems in Internet
Investigations are identified in Section 3. Section 4 describes the prototype framework, while

Figure 1: An example distribution of hosts participating in the system. A’s are agents T1 and T2 are
investigation targets.

Section 5 presents experimental results for the proof-of-concept application. Section 6 concludes
this paper and outlines areas for further work.

2 Related Work
The use of distributed systems for gathering and processing security-related information has been
extensively explored in the field of Intrusion Detection Systems (IDS). The idea of using agents
in IDSs was introduced by Crosbie and Spafford in [7, 8] and further explored in [2]. The latter
describes existing IDS architectures and their limitations and provides an analysis of how a system
of autonomous agents can help in overcoming these challenges. Carver et al. take the use of
agents a step further, and propose an integrated methodology for both intrusion detection and
response [14]. An IDS based on a combination of stationary and mobile agents travelling the
network is presented by Helmer et al. in [12]. Wei describes a more comprehensive system, where
mobile agents integrate with existing firewalls, honeynets and other IDS [23]. A simple framework
for distributed network forensics is presented in [20]. This framework employs IDS as a means
of detecting attacks, but the main purpose is not to prevent or warn about attacks, but to collect
enough evidence to perform an investigation. Our approach to using multi-agent systems for
Internet investigations takes a similar architectural approach as these systems, but the application
area and functionality of the agents overlap only to a small extent. Our system is designed to
support Internet Investigations in a forensically sound fashion, involving a wide range of services
and protocols. We also employ multi-agent systems not only for scalability and performance
reasons, but also for reducing the probability of detection and for handling increasingly dynamic
technologies, such as P2P.

3 Multi-Agent Systems Applied to Internet Investigations
The distributed architecture of a multi-agent system has many properties that are of immediate
use to the discipline of Internet Investigations. Below we discuss the possibilities these properties
open up for.

3.1 Traffic Patterns and Detectability

A shortcoming of the existing systems is their vulnerability to detection due to the generation of
large amounts of traffic from a single host. Using a multi-agent system for securing the content of

a website or file server can result in a less obvious traffic pattern, due to several agents at different
locations sharing the load, and not downloading everything in one session. If a website is to be
secured repeatedly the set of agents and hosts participating in the action can be changed, so as not
to generate similar traffic to the same set of addresses. The dynamic nature of the system could be
enhanced further by allowing any host/address to be part of the system only for a limited amount
of time, or by using a schedule with long periods of inactivity per host/address.

Networks of Internet sensors used for detecting malicious traffic have been shown to be vulnerable
to mapping attacks, based on publicly available information [4]. Applications using blacklists for
blocking known ’suspicious’ addresses are already in use. Should the addresses of a system used
for Internet Investigations be included on such a list, the usefulness of the system could drop
dramatically.A dynamic approach like the one described above leaves the system less vulnerable
to attempts at discovering its existence and mapping its extent. Although less likely, the traffic
pattern generated using such an approach can still be detected using passive fingerprinting.

Having multiple agents at different locations may also make it possible to pose as users in P2P
systems. Agents participating in file sharing networks could gather information about the files
being shared, IP addresses and activity patterns of other users and other information depending on
the network and protocol in question.

3.2 Scalability, Load-Balancing and Redundancy

Another shortcoming of the existing systems is the reliance on public information sources and
services. These sources and services often apply access restrictions, limiting the number of
connections from any host in a given period [9, 10]. In a multi-agent system, requests to such
sources and services can be done in a round robin fashion, distributing the access requests, thus
lowering the probability of the system being denied access. This will allow the system to run
multiple sessions requesting such information simultaneously. Additionally a distributed multi-
agent system need not be dependent on any single host, and may recover more gracefully from
communication breakdowns or the failure of a number of hosts. Communication breakdowns and
host failures can be mitigated by agents at other hosts taking over the workload of the disconnected
or lost agents. Another approach is to periodically save the state of all critical agents, and if
anything happens to the containing host(s), create new agents and load the saved state at operative
hosts.

3.3 Geographical Location

In a multi-agent system it is possible to use the hosts participating in the system itself as landmarks,
instead of using publicly available Looking Glass hosts as landmarks and dealing with the
accompanying problems, as in [11]. These hosts can be used exclusively or in addition to publicly
available hosts. In this way it is possible to pinpoint the location of the landmarks using for
instance the Global Positioning System (GPS). One would also probably have better knowledge
of the physical layout of the network connecting the hosts, and thereby be better equipped to
calculate deviances between network distance and actual distance between landmarks. Using the
same software across all hosts also makes it possible to standardise the format of requests and
replies.

3.4 Adaptability

The benefits achieved by using a multi-agent system described in the preceding sections are largely
due to the distributed nature of the system, and not because it is agent-based. A multi-agent system

provides well-defined interfaces, and mostly independent components in the form of agents. This
is in itself valuable, but the real power of agents lie in their adaptability and autonomy. The Internet
is not a static environment, P2P networks in particular have a high rate of change. Adaptability is
a very useful property in this situation. It might be difficult to foresee all possible events in such a
complex environment, combined with autonomy adaptability is a good solution to this problem.

3.5 Challenges of Distribution to Forensic Soundness

The use of a multi-agent system also introduces some challenges. The system in itself is more
complex, and is subject to all the challenges of distributed systems, often referred to as the fallacies
of distributed computing. This extra complexity of distributed systems makes it harder to maintain
the chain of custody, as there is no longer a single host-operator pair acting as custodian at all
times. Several hosts may be involved, and the possibility of one of them becoming compromised
is very real. Precautions must be taken so that a single compromised host does not void the
forensic soundness of the rest of the system. If one or more hosts become unavailable and contain
agents that are in the middle of investigation sessions the system should be able to cope by
redistributing the tasks of the affected agents to other agents, and maintain the integrity of the
ongoing investigation.

Even when all hosts of the system are available, and with no malicious activity, some challenges
remain. As part of the chain of custody it is important to correctly date the digital evidence. When
agents at different hosts more or less simultaneously collect evidence from the same digital crime
scene, they need to access synchronised and secure time. This is important to be able to prove the
relation of different pieces of evidence, i.e., that they existed in the given crime scene at the same
point in time [13].

It is inherent in Internet Investigations that active methods can change the state of targeted
systems. It is consequently important that investigative tools keep detailed logs for the purpose
of documenting all connections. Such documentation is essential for the purpose of presenting
digital evidence in court.

4 Framework Prototype
We have developed a prototype framework for multi-agent based applications for Internet
Investigations, capable of running multiple simultaneous investigation processes. The forensic
soundness is upheld by maintaining a chain of custody, using extensive logging, checksumming
and encryption of agent communication.

4.1 Underlying Multi-Agent Platform

There exist many platforms for developing multi-agent systems. We have chosen JADE [3], due to
its FIPA1 compliance and extensive use in multi-agent research. In addition, although JADE is not
designed with scalability as its main goal, it scales rather well [5, 6]. JADE uses messages based
on the FIPA Agent Communication Language (ACL) and ontologies2 for agent communication.
All ontology concepts are represented as Java classes. We have defined an ontology dealing with
Internet Investigations, using the ontology editor Protégé [1]. The classes were then generated by
a JADE plugin for Protégé named Ontology Bean Generator [21].

1Foundation for Intelligent Physical Agents, an IEEE Computer Society standards committee.
2Ontology: The conceptualisations that the terms of a knowledge representation vocabulary are intended to capture,

about the world or more often a specific domain.

All communication between agents on different containers is encrypted, and all communication,
whether intra- or inter-container, is signed. This is done through a security add-on to JADE named
JADE-S. JADE-S also provides functionality for ownership control, and access control based
on this. Taking advantage of this functionality would make it possible to give individual hosts
and users different access privileges, and to a degree enforce accountability. This has not been
implemented in the prototype, but would be critical in a large-scale production deployment.

4.2 Agent Design

Due to the strict requirements of collecting and preserving digital evidence, it is not desirable that
the agents act too autonomously. All parts of the process must be controllable by a human operator,
or at least it must be possible for an operator to verify the steps in detail afterwards. However, a
limited degree of autonomy is desirable. Once an agent is given a task by an operator we would
like the agent to decide by itself how to best accomplish the task. That is, how many other agents
it needs to cooperate with, and how the task is divided into subtasks and shared between the
participating agents. To allow for this limited autonomy we have created five different agent types,
each with their specific roles. For each container there are single, non-transient AdminAgents,
LogAgents and TimeAgents. Transient SessionAgents are created by AdminAgents when needed,
the SessionAgents in turn can create WorkerAgents. The different agent types, identified by the
first letter in their type name, are shown in Figure 2.

Figure 2: A High-Level Design of The Framework

The AdminAgent agent type is the operator’s single point of entry into the system. It is provided
with several behaviours to handle incoming requests, schedule (future) executions and report
on or abort any of its investigations, see Figure 3(a). The AdminAgent does not execute any
investigations itself, to do this it creates one or more SessionAgents in its home container that
handle(s) the current session(s) of the investigation. This is necessary for the AdminAgent to
be able to speedily handle operator requests, and manage multiple (active) investigations. The
operator may request a specific AdminAgent, or a heuristic for choosing one may be developed,
based on geographical location, host load or any other (combination of) metrics.

The SessionAgent agent type is, as the AdminAgent, equipped with behaviours for handling
requests, aborting and reporting. No scheduling is performed by the SessionAgent, instead it may
be equipped with different application specific initiation behaviours for preliminary execution of
investigation sessions. Which of these initiation behaviours is executed depends on the type of
investigation. Generally such a behaviour performs just enough of the investigation necessary to
create a set of WorkerAgents and distribute work items to them. The distribution of WorkerAgents
among the containers of the system is decided by the initiation behaviour, depending on the type
investigation. An example distribution is shown in Figure 2, where greyed out agents belong to

the same investigation session.

Instead of initiation behaviours the WorkerAgent agent type may be equipped with different
behaviours for executing assigned work items. A WorkerAgent instance is limited to a single work
behaviour, but only this behaviour needs to be exchanged or modified for the agent type to support
different types of work items. This makes it possible to deploy a new Internet Investigations
application by modifying only this behaviour in addition to a SessionAgent initiation behaviour.
When a WorkerAgent is done with its assigned work item, or unable to complete it, it typically
reports to its SessionAgent and terminates. A session is finished once all its WorkerAgents are
terminated. The SessionAgent then reports to its AdminAgent and terminates. The AdminAgent
closes the session by logging its completion status to the session log.

The TimeAgent agent type is responsible for keeping the time of its local container synchronized
to a trusted time source. The prototype implementation uses a behaviour that queries a pool of
NTP servers. The time source can be switched by altering this behaviour, without affecting the
rest of the agent type. It periodically queryes the configured time source and adjusts the local time
accordingly. If the offset between the trusted time source and local time is above a given threshold
it is logged to the system log, and all local agents are informed of the adjustment. Additionally
all agents may query the TimeAgent at any time for an offset to their local time. All TimeAgents
are registered with the Directory Facilitator such that if an agent is unable to contact its local
TimeAgent it can easily query another.

(a) The architecture of a JADE agent.
Light grey areas have been modified by
us.

(b) A conceptual view of the JADE agent system, showing
the distribution of agents among participating hosts.

Figure 3: The architecture of a JADE agent and the agent as part of the JADE distributed agent system,
adapted from [3].

The LogAgent agent type is responsible for all logging. In the prototype system two types of logs
are kept, a session log and system log. System logs contain information related to the system
itself, like time changes and agent failures. Session logs contain information about sessions like
time stamps, participating agents and file hash values. Logging is done via the standard Java
logging facility. A special Handler is used to forward all LogRecords to either the local LogAgent
of the originating agent, or if the agent belongs to a non-local investigation, to the LogAgent
local to the SessionAgent managing the investigation. Currently the LogAgents write the logs to
XML-formatted files, but any type of non-volatile storage may be used.

The system can contain an arbitrary number of containers, on an arbitrary number of hosts, see
Figure 3(b). The agent organisation resembles the hierarchic organisation described in [18], with
the exception that new agents routinely are added.

5 Experimental Results
A proof-of-concept application for securing static content from websites was developed on top
of the framework to demonstrate some of its functionality, and to show possible traffic patterns
generated by a distributed Internet Investigations application. The application was implemented
as a special agent and two behaviours added to SessionAgents and WorkerAgents, as explained
in Section 4.2. The test application agent represents a human operator giving input to the agent
system. It does this by sending an ACL message to an AdminAgent it finds querying the Directory
Facilitator of the platform, requesting the AdminAgent to start a new investigation session based
on the received URL. The application saves the first two levels of textual content of the website
represented by the URL. MD53-sums are generated for every downloaded file, and is logged
together with the location of the file, as part of upholding the chain of custody.

Three live web sites on public networks were used for testing. A simple static file-based host
running Apache 2.0.54 set up by us, a university web site and an online newspaper. Site references
have been anonymized, and we will refer to the sites as Simple, University and Newspaper. Due
to using live websites the content and the network conditions may change over time. The hosts
participating in the agent system running the test application will be refered to as Host A, B, C and
D, for the same reasons of anonymity. To keep the test application simple all tests were run with
the JADE Remote Management Agent GUI enabled. This slows things down to some extent, due
to extra communication between the agent system and the GUI. In all tests correct checksums and
timestamps were generated and added to the session log.

5.1 Traffic Patterns

The purpose of this test is to show possible traffic patterns generated by a distributed Internet
Investigations application. The test application, running on hosts A to D, was set to secure the
content of the Simple, University and Newspaper sites, one at a time.

(a) Simple (b) University (c) Newspaper

Figure 4: Number of connections to the webserver per host when running the different test cases.

As can be seen in Figure 4 no host exihibit a significantly different number of connections than the
others. This may help avoid detection by server operators, as described in Section 3.1. Controlling
the exact number of connections per host is difficult, due to not knowing the link structure and
number of files to secure beforehand. Figure 4 reflects this in that no host stand out as the one
with the most or fewest connections across the test cases. No attempt has been made at avoiding
duplicate downloads or balancing the distribution of connections in the test application. This
results in the number of connections being higher than the actual number of files to download,

3Recent research has uncovered weaknesses in the full MD5 [22].

due to duplicate downloads. In a production setup functionality for evening out the number of
connections between participating host should be included.

5.2 Load Balancing and Scalability

Load balancing among the hosts in the system is important to avoid any host acting as a bottle-
neck to the whole system. Scalability with regard to the number of active agents and the number
of simultaneous investigation sessions is also important. This is a good indicator of the scalability
of the framework, not only the content securing application. Table 1 shows details of single runs
for each of Simple, University and Newspaper.

Target: Simple University Newspaper

End status OK/failed All OK 161/234 199/577
Runtime 16 sec 112 sec 83 sec
WorkerAgents per host/ total 10+10+11 / 31 17+17+16+19 / 69 38+43+43+64 / 188
Avg. �les secured per WorkerAgent 3.77 2.33 1.06
Max �les secured by a WorkerAgent 18 16 4
Min �les secured by a WorkerAgent 1 1 1
Avg. time to secure a �le 0.14 sec 0.70 sec 0.42 sec
Checksum and timestamp status All OK All OK All OK

Table 1: Results of single runs in the three test cases.

The tests in Table 1 were run at a different time than those in Figure 4 and 5, and thus direct
comparison is impossible. Nonetheless it is interesting that although the load division between
the WorkerAgents is not very good, this does not result in correspondingly poor balancing in
the number of connections per host. The field ”End Status” in Table 1 indicates whether all
attempted links resulted in secured files. The reason for the relatively large numbers of failed
links in the University and Newspaper tests is a limitation in the link extraction code of the test
application. Being a proof-of-concept the application does not handle dynamic link structures such
as those generated by technologies like JavaScript or Flash. The initiation behaviour responsible
for distributing work items is over-cautios and creates a very high number of agents, which results
in few files secured by each agent. The total runtime and average time to secure a file does not
appear to suffer from this, and indicates that the framework handles a relatively large number of
agents well.

To stress the system, and show that it is actually capable of running multiple simultaneous
investigation sessions, the test application was modified to send the request to secure the web
site to all of the AdminAgents of the platform. This was done for the two most complex test cases,
University and Newspaper, in turn. The results are shown in Figure 5. The lines marked by squares
in each subfigure represents the time needed to run the same number of test cases serially, and are
included for comparison.

(a) University case (b) Newspaper case

Figure 5: Elapsed time for sets of sequential vs parallel test runs of content securing.

The data in Figure 5 is limited, the maximum number of simultaneous investigation sessions is
4. Up to and including this number of sessions the test application scales linearly. In the case
of 4 sessions in Figure 5(b) the number of active WorkerAgents is about 1100. As mentioned
above this is an excessive number. Modifying the initiation behaviour to distribute more work to
each WorkerAgent would drastically reduce this number, and result in less overhead assosciated
with agent life-cycle management for the agent system. The results in Figure 5, being from an
unomptimized application, bodes well for the scalability of the framework. More extensive testing
is needed to ascertain how well it scales with a massively increased number of simultaneous
investigation sessions and more hosts.

6 Conclusions and Further Work
We have shown that the value of using multi-agent technology in the field of Internet Investigations
is real, and that it indeed has the potential to help establish a basis for a new generation of
investigation tools. We stated in the purpose of this project that we aimed to address the limitations
of current tools and methods, related to scalability, evidence integrity, and unwanted detection by
investigation targets. As our tests have shown, the idea of distributing the traffic over several hosts
works, resulting in less detectable traffic patterns. The results in Section 5.2 shows this using
only four hosts. By employing a larger number of hosts in different address ranges, the traffic
pattern would be yet more difficult to detect. The agents could also be programmed to mimic the
behaviour of human users in order to camouflage investigations and avoid passive fingerprinting
attempts.

With regard to scalability more testing is necessary, but the initial results are promising. There is
room for optimising performance, as this is only a prototype. The overhead incurred by the use of
JADE-S is not known, and recent scalability analysis of JADE does not take JADE-S into account
[5, 6].

The framework prototype is based on a mature and well featured multi-agent platform, and as
such should be relatively easy to extend with desired functionality. The use of automated tools
for ontology creation enforces consistency, and although we have tried to make the ontology
flexible enough to handle extended functionality as it is, makes altering it a well-defined exercise.
Compared to traditional object oriented designs, the agents is more independent of each other, and
the high level communication using ACL messages makes interaction easy to grasp.

To further test the suitability of the framework for its intended purpose, additional Internet
investigations applications should be implemented on top of it. Of particular interest would be
geographical location with the landmarks as part of the multi-agent system, and agents acting as
users in different P2P-based file sharing networks. Naturally, performance evaluations including
measuring against other systems like GNU wget should be conducted. Extended scalability testing
in particular would be of interest. Establishing the framework’s security is important in relation to
the legally required integrity and confidentiality of the collected digital evidence.

Article References
[1] The Protégé Ontology Editor and Knowledge Acquisition System. http://protege.

stanford.edu, accessed April 2006.

[2] J. S. Balasubramaniyan, J. O. Garcia-Fernandez, D. Isacoff, E. Spafford, and D. Zamboni.
An architecture for intrusion detection using autonomous agents. In Proceedings of the 14th
Annual Computer Security Applications Conference, pages 13–24. IEEE Computer Society,
1998.

[3] Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa. Developing multi-agent systems
with a FIPA-compliant agent framework. Software: Practice and Experience, 31(2), 2001.

[4] John Bethencourt, Jason Franklin, and Mary Vernon. Mapping Internet sensors with probe
response attacks. In Proceedings of the 14th USENIX Security Symposium, pages 193–208.
USENIX, August 2005.

[5] Kalle Burbeck, Daniel Garpe, and Simin Nadjm-Tehrani. Scale-up and performance studies
of three agent platforms. In Proceedings of International Performance, Communication and
Computing Conference, Middleware Performance workshop, pages 857–863, April 2004.

[6] Krzysztof Chmiel, Maciej Gawinecki, Pavel Karczmarek, Michal Szymczak, and Marcin
Paprzycki. Efficency of JADE agent platform. Scientific Programming, 13:159–172, 2005.

[7] M. Crosbie and E. Spafford. Defending a computer system using autonomous agents. In
Proceedings of the 8th National Information Systems Security Conference, number 008 in
95, October 1995.

[8] M. Crosbie and G. Spafford. Active defense of a computer system using autonomous agents.
Technical report, COAST Group, Dept. of Computer Sciences, Purdue University, February
1995.

[9] Espen André Fossen. Automatic tracing of Internet addresses. Departement of Telematics,
NTNU, November 2004.

[10] Espen André Fossen. Principles of Internet investigations: Basic reconnaissance,
geopositioning and public information sources. Master’s thesis, Departement of Telematics,
NTNU, July 2005.

[11] Espen André Fossen and André Årnes. Forensic geolocation of internet addresses using
network measurments. In Helger Lipmaa and Dieter Gollman, editors, Proceedings of the
10th Nordic Workshop on Secure IT Systems, Tartu, Estonia, October 2005.

[12] G. Helmer, J. Wong, V. Honavar, and L. Miller. Lightweight agents for intrusion detection.
J. Syst. Softw., 67(2):109–122, 2003.

[13] Chet Hosmer. Proving the integrity of digital evidence with time. International Journal of
Digital Evidence, 1, Issue 1, 2002.

[14] Curtis A. Carver Jr., John M.D. Hill, John R. Surdu, and Udo W. Pooch. A methodology for
using intelligent agents to provide automated intrusion response. In Proceedings of the IEEE
Workshop on Information Assurance and Security, 2000.

[15] Christian Larsen. Automatisk sikring av nettsted fra internett. Departement of Telematics,
NTNU, November 2004.

[16] Ryan Leigland and Axel W. Krings. A formalization of digital forensics. International
Journal of Digital Evidence, 3, Issue 2, 2004.

[17] Matthew Meyers and Marc Rogers. Computer forensics: The need for standardization and
certification. International Journal of Digital Evidence, 3, Issue 2, 2004.

[18] Lin Padgham and Michael Winikoff. Developing Intelligent Agent Systems: A Practical
Guide. John Wiley and Sons, 1. edition, 2004.

[19] Souhail Karam (Reuters). Cybercrime yields more cash than drugs. In several major online
newspapers under slightly different headings, November 2005.

[20] Yongping Tang and Thomas E. Daniels. A simple framework for distributed forensics. In
Second International Workshop on Security in Distributed Computing Systems, pages 163–
169, 2005.

[21] Chris van Aart. Ontology Bean Generator. http://acklin.nl/page.php?id=34,
accessed March 2006.

[22] Xiaoyun Wang, Dengguo Feng, Xuejia Lai, and Hongbo Yu. Collisions for hash functions
MD4, MD5, HAVAL-128 and RIPEMD. Cryptology ePrint Archive, Report 2004/199, 2004.

[23] Ren Wei. A framework of distributed agent-based network forensics system. Presented at
the Digital Forensic Research Workshop 2004, August 2004.

Appendix B

Design Diagrams

This appendix contains the (A)UML diagrams for the classes used to implement
the geolocation functionality in MAFIF. Some classes belonging to MAFIF but
not developed as part of the geolocation functionality are also shown where they
contribute to the understanding of the other classes and their roles. These classes
are clearly marked with an M . The diagrams for all MAFIF classes are available
in [1].

107

B.1 (A)UML Diagrams

B.1.1 AdminAgent

Figure B.1: The AUML class diagram of AdminAgent and its behaviours.

108

B.1.2 SessionAgent

Figure B.2: The AUML class diagram of SessionAgent.

109

Figure B.3: The AUML class diagram of SessionAgent’s behaviours.

110

B.1.3 WorkerAgent

Figure B.4: The AUML class diagram of WorkerAgent.

111

Figure B.5: The AUML class diagram of WorkerAgent’s behaviours.

112

B.1.4 GWAgent

Figure B.6: The AUML class diagram of GWAgent.

113

Figure B.7: The AUML class diagram of GWAgent’s behaviours.

114

B.2 Servlet UML Diagrams

B.2.1 Servlet Core Classes

Figure B.8: The UML diagram of the core servlet classes.

115

B.2.2 Servlet Alpha Classes

Figure B.9: The UML diagram of the servlet alpha classes.

116

B.2.3 Servlet Circle Classes

These classes are only used for zooming functionality and contain much unused
legacy code.

Figure B.10: The UML diagram of the servlet circle classes.

117

B.3 Database

B.3.1 UML Class Diagram

Figure B.11: The UML class diagram of database related classes.

118

B.3.2 Database Tables

TABLE LANDMARKS (

NAME VARCHAR (32) NOT NULL ,

IPADR VARCHAR (39) NOT NULL ,

CHECKED TIMESTAMP ,

DISTANCE_KM DOUBLE NOT NULL ,

LATITUDE DOUBLE NOT NULL ,

LONGITUDE DOUBLE NOT NULL ,

MIN_RTT DOUBLE ,

AVG_RTT DOUBLE ,

C1 DOUBLE ,

EPSILON DOUBLE ,

HASH VARCHAR (64),

PRIMARY KEY(NAME ,IPADR)

)

TABLE TRACED (

NAME VARCHAR (32),

IPADR VARCHAR (39),

CHECKED TIMESTAMP NOT NULL ,

MIN_RTT DOUBLE NOT NULL ,

AVG_RTT DOUBLE ,

C1 DOUBLE ,

EPSILON DOUBLE ,

HASH VARCHAR (64),

PRIMARY KEY(IPADR)

)

TABLE MISC(

NAME VARCHAR (32),

IPADR VARCHAR (39),

LAST_BESTLINE TIMESTAMP ,

BESTLINE_M DOUBLE ,

BESTLINE_B DOUBLE ,

LATITUDE DOUBLE ,

LONGITUDE DOUBLE

)

119

120

Appendix C

Source Code

The source code of the classes implementing the geolocation functionality in MAFIF
along with management scripts and properties files are listed in this appendix.
Classes belonging to MAFIF but not developed as part of the geolocation function-
ality are not included. The source code for these classes are available in [1].

C.1 AdminAgent Classes

C.1.1 AdminReplyGWBehaviour

1 package kripos.geo;

2
3 import jade.content.Concept;

4 import jade.content.ContentElement;

5 import jade.content.lang.Codec.CodecException;

6 import jade.content.onto.OntologyException;

7 import jade.content.onto.UngroundedException;

8 import jade.content.onto.basic.Action;

9 import jade.core.AID;

10 import jade.core.behaviours.OneShotBehaviour;

11 import jade.lang.acl.ACLMessage;

12 import kripos.ontology.LogRec;

13 import kripos.ontology.OntDate;

14 import kripos.ontology.TraceResultList;

15
16 /**

17 *

18 *

19 * @author oysteine

20 * @version 1.0

21 */

22 public class AdminReplyGWBehaviour extends OneShotBehaviour {

121

23 private static final long serialVersionUID =

4025250051872250273L;

24 private AdminAgent myAdminAgent;

25 private ACLMessage myMsg;

26 private TraceResultList myTrl;

27
28 /**

29 * @param a

30 */

31 public AdminReplyGWBehaviour(AdminAgent a, ACLMessage msg) {

32 super(a);

33 myAdminAgent = a;

34 myMsg = msg;

35 }

36
37 /**

38 * Closes the case , logs appropriate information.

39 *

40 * @see jade.core.behaviours.Behaviour#action ()

41 */

42 @Override

43 public void action () {

44 try {

45 AID aid = myMsg.getSender ();

46 ContentElement ce = myAdminAgent.getContentManager ().

extractContent(myMsg);

47 Concept action = ((Action)ce).getAction ();

48 myTrl = (TraceResultList)action;

49 String status = myTrl.getDoneStatus ();

50
51 if(status.equalsIgnoreCase("OK")){

52
53 int cID = myAdminAgent.removeSessionAgentPackage(aid);

54 myAdminAgent.removeActiveCase(cID);

55 ACLMessage reply = myMsg.createReply ();

56 reply.setPerformative(ACLMessage.INFORM);

57 myAgent.send(reply);

58
59 /* Logs that the Case has been closed */

60 log("Case closed. SessionAgent terminated. Case end

status: "+

61 myTrl.getDoneStatus (), "Type:Session", cID);

62 //send die to SessionAgent

63
64 //send data to GWAgent

65 GWCase gwCase = myAdminAgent.getGWCase(cID);

66 AID gwAID = gwCase.getAID ();

67 String convID = gwCase.getConversationID ();

68
69 //use myMsg for sending to GWAgent , already has correct

content , only set envelopeinfo

70 myMsg.clearAllReceiver ();

71 myMsg.clearAllReplyTo ();

72 myMsg.addReceiver(gwAID);

122

73 myMsg.setConversationId(convID);

74 myMsg.setSender(myAdminAgent.getAID ());

75 myAgent.send(myMsg);

76 }

77 else if(status.equalsIgnoreCase("Fail")){

78 int cID = myAdminAgent.removeSessionAgentPackage(aid);

79 myAdminAgent.removeActiveCase(cID);

80
81 //FIXME logging

82 /*

83 log("Case closed. SessionAgent terminated.

Case end status: "+

84 myTrl.getDoneStatus () + "\n" + "Case

FAILED due to: "

85 + myTrl.getHasReason (), "Type:Session

", cID);

86 */

87
88 //send data to GWAgent

89 AID gwAID = myAdminAgent.getGWCase(cID).getAID ();

90 String convID = myAdminAgent.getGWCase(cID).

getConversationID ();

91
92 //use myMsg for sending to GWAgent , already has correct

content , only set envelopeinfo

93 myMsg.clearAllReceiver ();

94 myMsg.clearAllReplyTo ();

95 myMsg.addReceiver(gwAID);

96 myMsg.setConversationId(convID);

97 myMsg.setSender(myAdminAgent.getAID ());

98 myAgent.send(myMsg);

99 }

100 else{

101 ACLMessage reply = myMsg.createReply ();

102 reply.setPerformative(ACLMessage.NOT_UNDERSTOOD);

103 myAgent.send(reply);

104 }

105
106 } catch (UngroundedException e) {

107 e.printStackTrace ();

108 } catch (CodecException e) {

109 e.printStackTrace ();

110 } catch (OntologyException e) {

111 e.printStackTrace ();

112 }

113 }// action ()

114
115 /**

116 * Utility method for constructing LogRecs.

117 *

118 * @param logContent The content of the LogRec

119 * @param logType The Type of the LogRec

120 * @param caseID The CaseID of the LogRec

121 */

123

122 private void log(String logContent , String logType , int

caseID){

123 LogRec logr = new LogRec ();

124 logr.setHasCaseID(caseID);

125 //logr.setHasSessionID(myCase.getCaseSessions ().

getSessionID ());

126 logr.setLogType(logType);

127 OntDate od = new OntDate ();

128 od.setTime(myAdminAgent.getCalendar ().getTimeInMillis ());

129 logr.setHasDate(od);

130 logr.setLogLevel("INFO");

131 logr.setLogContent(logContent);

132 myAdminAgent.getLogger ().log(logr);

133 }

134
135 }//class

124

C.1.2 GWCase

1 package kripos.geo;

2
3 import jade.core.AID;

4
5 /**

6 * Utility class that bundles AID and Case information.

7 * For use by AdminAgents to keep track of which GWAgent

requested which Case

8 *

9 * @author oysteine

10 * @version 1.0

11 */

12 public class GWCase {

13 private AID myAID;

14 private int mySessionID;

15 private int myCaseID;

16 private String myConversationID;

17
18 /**

19 * Constructs an instance of GWCase

20 *

21 * @param aid the AID of an agent

22 * @param cID the case ID of a Case

23 */

24 public GWCase(AID aid , int cID , String convID) {

25 super();

26 myAID = aid;

27 myCaseID = cID;

28 myConversationID = convID;

29 }

30
31 /**

32 * @return the myAID

33 */

34 public AID getAID () {

35 return myAID;

36 }

37
38 /**

39 * @return the myCaseID

40 */

41 public int getCaseID () {

42 return myCaseID;

43 }

44
45 /**

46 *

47 * @return the myConversationID

48 */

49 public String getConversationID (){

50 return myConversationID;

51 }

125

52
53 }//class

126

C.2 SessionAgent Classes

C.2.1 InitiateTraceSessionBehaviour

1 package kripos.geo;

2
3 import java.sql.Connection;

4 import java.sql.DriverManager;

5 import java.sql.ResultSet;

6 import java.sql.SQLException;

7 import java.sql.Statement;

8 import java.util.ArrayList;

9 import java.util.Random;

10 import jade.content.ContentElement;

11 import jade.content.lang.Codec.CodecException;

12 import jade.content.lang.sl.SLCodec;

13 import jade.content.onto.OntologyException;

14 import jade.content.onto.UngroundedException;

15 import jade.content.onto.basic.Action;

16 import jade.content.onto.basic.Result;

17 import jade.core.AID;

18 import jade.core.ContainerID;

19 import jade.core.Location;

20 import jade.core.behaviours.OneShotBehaviour;

21 import jade.domain.JADEAgentManagement.CreateAgent;

22 import jade.domain.JADEAgentManagement.

QueryPlatformLocationsAction;

23 import jade.domain.JADEAgentManagement.WhereIsAgentAction;

24 import jade.domain.mobility.MobilityOntology;

25 import jade.lang.acl.ACLMessage;

26 import jade.lang.acl.MessageTemplate;

27 import kripos.gateway.CommandPackage;

28 import kripos.ontology .*;

29
30 /**

31 * Behaviour that initiates a trace

32 *

33 * @author oysteine

34 * @version 1.0

35 */

36 public class InitiateTraceSessionBehaviour extends

OneShotBehaviour {

37 private static final long serialVersionUID =

-5048721800518980650L;

38 // private ArrayList <Location > locations = new ArrayList <

Location >();

39 private SessionAgent mySessionAgent;

40 private Session mySession;

41 private boolean disableLookupDB = true;

42 private boolean disablePassive = true;

43
44 /**

45 * Creates an instance of this behaviour.

127

46 *

47 * @param a The agent this instance belongs to.

48 */

49 public InitiateTraceSessionBehaviour(SessionAgent a, Session

s) {

50 super(a);

51 mySessionAgent = a;

52 mySession = s;

53 }

54
55 /**

56 * Does initial work based on the type of trace session.

57 * *

58 * @see jade.core.behaviours.OneShotBehaviour#action ()

59 */

60 @Override

61 public void action (){

62 OntAddress toTrace = mySession.getHasBaseAddress ();

63 String params = mySession.getSessionParameters ();

64 //parse and check if dblookup

65 //parse and check if passive

66 //parse and check random -period for when to ping at a

67
68 String sessionType = mySession.getSessionType ();

69
70 //fill commandpackage in owning SessionAgent

71 CommandPackage atr = mySessionAgent.getAccTraceResults ();

72 atr.setReqTime(mySession.getSessionStarted ());

73 if(toTrace instanceof IP) {

74 atr.setTarget (((IP)toTrace).getHasName ());

75 }

76 else if(toTrace instanceof DNSname){

77 atr.setTarget (((DNSname)toTrace).getHasName ());

78 }

79 atr.setType(sessionType);

80
81 //TODO SEND 3 PINGS TO CHECK IF REACHABLE AT ALL BEFORE

WASTING RESOURCES

82
83 //TODO db lookup

84 if(! disableLookupDB){

85 dbLookup(toTrace);

86 }

87
88 if(! disablePassive){

89 // //TODO must return list of locations to use for trace

90 ArrayList locations = passiveLookup(toTrace);

91 //TODO superlandmark from this container?

92 createWorkers(locations);

93 }

94 else {

95 //TODO superlandmark from this container?

96 createWorkers(null);

97 }

128

98
99

100 // /* Logs the start of the Session */ TODO log correct

information

101 // log(" Session started. WorkerAgents created" + "\n" +

102 // "SessionType: " + mySession.getSessionType () +

103 // "\n" + "Target: "+ mySession.getHasProtocol ().getHasPrefix

() +

104 // mySession.getHasBaseAddress ()+mySession.getHasPath ().

toString (),

105 // "Type:Session", mySession.getCaseID ());

106
107 }

108
109 /**

110 * TODO

111 *

112 * @param adr

113 * @return

114 */

115 private boolean dbLookup(OntAddress adr){ //not return true?

116 boolean recent = false;

117 //les inn terskel fra properties?

118 // dboppslag

119
120 //if(){} break and return traceresult directly from db.

121 //else{

122 return recent;

123 // }

124 }

125
126 /**

127 * TODO

128 *

129 * @param adr

130 * @return

131 */

132 private ArrayList passiveLookup(OntAddress adr){

133 ArrayList list = new ArrayList ();

134 return list;

135 }

136
137 /**

138 * Creates the WorkerAgents that will perform the rest of

139 * the delay measurements of the trace operation.

140 *

141 * @param onLocations List of Locations to do measurements

from.

142 * If null all available Locations are used.

143 */

144 private void createWorkers(ArrayList onLocations){

145 ArrayList <Location > locations = new ArrayList <Location >();

146 AID myAMS = myAgent.getAMS ();

147

129

148 //query ams for platform available locations

149 QueryPlatformLocationsAction qpla = new

QueryPlatformLocationsAction ();

150 Action actAll = new Action(myAMS , qpla);

151 String convIDAll = sendRequest(actAll);

152
153 // receive locations

154 Result resAll = receiveInform(convIDAll);

155 jade.util.leap.Iterator it = resAll.getItems ().iterator ();

156
157 //uses all available locations

158 if(onLocations == null){

159 //due to unclear JadeGateway.init() documentation , need

to filter out extra containers at mainhost

160 ArrayList <String > onlyInclude = readLandmarks(connectDB ()

);

161
162 while (it.hasNext ()) {

163 Location loc = (Location)it.next();

164 for (int i=0;i<onlyInclude.size();i++){

165 if(loc.getName ().equalsIgnoreCase(onlyInclude.get(i))

){

166 locations.add(loc);

167 break;

168 }

169 }

170 }

171 // //add own location

172 // WhereIsAgentAction wia = new WhereIsAgentAction ();

173 // Action actSelf = new Action(myAMS , wia);

174 // String convSelf = sendRequest(actSelf);

175
176 // Result resSelf = receiveInform(convSelf);

177 // ContainerID cid = (ContainerID)resSelf.getValue ();

178
179 // locations.add(cid);

180 }

181
182 //uses only supplied locations

183 else{

184 while (it.hasNext ()) {

185 Location loc = (Location)it.next();

186 for(int i=0;i<onLocations.size();i++){ // should

optimize by removing from onLocation if match

187 if(loc.getName ().equalsIgnoreCase ((String)onLocations

.get(i))){

188 locations.add(loc);

189 }

190 }

191 }

192 }

193
194 // actually create agents

195 for (int i=0; i < locations.size(); i++){

130

196 CreateAgent ca = new CreateAgent ();

197 ca.setAgentName("Worker" + mySession.getSessionID () +" "+

i);

198 ca.setClassName("kripos.geo.WorkerAgent");

199 ContainerID cid = (ContainerID)locations.get(i);

200 ca.setContainer(cid);

201 ca.addArguments(myAgent.getName ());

202
203 WorkItem wi = new WorkItem ();

204 wi.setCaseID(mySession.getCaseID ());

205 wi.setSessionID(mySession.getSessionID ());

206 wi.setHasBaseAddress(mySession.getHasBaseAddress ());

207 wi.setSessionType(mySession.getSessionType ());

208 ca.addArguments(wi);

209 Action a2 = new Action(myAMS , ca);

210 String convID2 = sendRequest(a2);

211
212 MessageTemplate mt = MessageTemplate.MatchConversationId(

convID2);

213 ACLMessage resp = myAgent.blockingReceive(mt, 20000);

214
215 mySessionAgent.getConvList ().deregisterConversation(resp.

getConversationId ());

216 }

217
218 locations.clear();

219 }

220
221 /**

222 * Utility method for sending ACLMessages

223 * <p>

224 * Registers the conversationID in the convList

225 * to avoid loosing any reply to the generic receivebehaviour

226 *

227 * @param action the action that is to be wrapped in an

ACLMessage

228 * @return

229 */

230 private String sendRequest(Action action){

231 try {

232 ACLMessage qMsg = new ACLMessage(ACLMessage.REQUEST);

233 qMsg.setConversationId(myAgent.getName () + new Random ().

nextLong ());

234 qMsg.setLanguage(new SLCodec (0).getName ());

235
236 qMsg.setOntology(MobilityOntology.getInstance ().getName ()

);

237 myAgent.getContentManager ().fillContent(qMsg , action);

238 qMsg.addReceiver(action.getActor ());

239 // register conversation with agent to get correct

reception

240 mySessionAgent.getConvList ().registerConversation(qMsg.

getConversationId ());

241 myAgent.send(qMsg);

131

242 return qMsg.getConversationId ();

243 }

244 catch (CodecException e) {

245 e.printStackTrace ();

246 return null;

247 }

248 catch (OntologyException e) {

249 e.printStackTrace ();

250 return null;

251 }

252 }

253 /**

254 * Utility method for receiving ACLMessages with mathcing

conversation IDs

255 *

256 * @param cid the conversation id to match

257 * @return the content of the ACLMessage

258 */

259 private Result receiveInform(String cid){

260 try {

261 MessageTemplate mt = MessageTemplate.MatchConversationId(

cid);

262 ACLMessage resp = myAgent.blockingReceive(mt, 20000);

263 ContentElement ce = myAgent.getContentManager ().

extractContent(resp);

264 Result result = (Result) ce;

265 mySessionAgent.getConvList ().deregisterConversation(cid);

266 return result;

267 }

268 catch (UngroundedException e) {

269 e.printStackTrace ();

270 mySessionAgent.getConvList ().deregisterConversation(cid);

271 return null;

272 }

273 catch (CodecException e) {

274 e.printStackTrace ();

275 mySessionAgent.getConvList ().deregisterConversation(cid);

276 return null;

277 }

278 catch (OntologyException e) {

279 e.printStackTrace ();

280 mySessionAgent.getConvList ().deregisterConversation(cid);

281 return null;

282 }

283 }

284
285 /**

286 * Reads landmarks from the local database.

287 *

288 * @param con Database connection

289 * @return a list of landmarks

290 */

291 private ArrayList <String > readLandmarks(Connection con){

292 ArrayList <String > landmarkNames = new ArrayList <String >();

132

293
294 try {

295 Statement stmt = con.createStatement ();

296 String query = "SELECT NAME FROM LANDMARKS";

297 ResultSet rs = stmt.executeQuery(query);

298 while(rs.next()){

299 String name = rs.getString("NAME");

300 landmarkNames.add(name);

301 }

302 }catch (SQLException e) {

303 // TODO: handle exception

304 }

305 return landmarkNames;

306 }

307
308 /**

309 * Connects to the local database and returns the Connection

for further use.

310 *

311 * @return a connection to the database

312 */

313 private Connection connectDB (){//TODO path & password

314 Connection c = null;

315 try {

316 Class.forName("org.hsqldb.jdbcDriver");

317 c = DriverManager.getConnection("jdbc:hsqldb:hsql ://

localhost/xdb", "sa", "");

318 }catch (ClassNotFoundException e) {

319 //FIXME unable to find database classes. dosomething

320 e.printStackTrace ();

321 }

322 catch (SQLException e) {

323 //FIXME unable to connect to database dosomething

324 e.printStackTrace ();

325 }

326 return c;

327 }

328
329 /**

330 * Utility method for constructing LogRecs and logging them.

331 *

332 * @param logContent The content of the LogRec

333 * @param logType The Type of the LogRec

334 * @param caseID The CaseID of the LogRec

335 */

336 private void log(String logContent , String logType , int

caseID){

337 LogRec logr = new LogRec ();

338 logr.setHasCaseID(caseID);

339 logr.setHasSessionID(mySession.getSessionID ());

340 logr.setLogType(logType);

341 OntDate od = new OntDate ();

342 od.setTime(mySessionAgent.getCalendar ().getTimeInMillis ());

343 logr.setHasDate(od);

133

344 logr.setLogLevel("INFO");

345 logr.setLogContent(logContent);

346 mySessionAgent.getLogger ().log(logr);

347 }

348
349 }//class

134

C.2.2 TraceReduceBehaviour

1 package kripos.geo;

2
3 import java.sql.Connection;

4 import java.sql.DriverManager;

5 import java.sql.ResultSet;

6 import java.sql.SQLException;

7 import java.sql.Statement;

8 import java.util.ArrayList;

9 import java.util.Iterator;

10
11 import jade.content.ContentElement;

12 import jade.content.lang.Codec.CodecException;

13 import jade.content.lang.sl.SLCodec;

14 import jade.content.onto.OntologyException;

15 import jade.content.onto.UngroundedException;

16 import jade.content.onto.basic.Action;

17 import jade.core.AID;

18 import jade.core.behaviours.OneShotBehaviour;

19 import jade.lang.acl.ACLMessage;

20 import jade.lang.acl.MessageTemplate;

21 import kripos.gateway.CommandPackage;

22 import kripos.ontology .*;

23
24 /**

25 * Used by SessionAgent when a WorkerAgent is finished and

reports in

26 *

27 * @author oysteine

28 * @version 1.0

29 */

30 public class TraceReduceBehaviour extends OneShotBehaviour{

31 private static final long serialVersionUID =

-7988728778910969955L;

32 private SessionAgent mySessionAgent;

33 private ACLMessage myMsg;

34 private AID myWorkerAID;

35 private IP myTarget;

36 private String myType = null;

37 private String myWorkerDoneStatus = "OK";

38
39 /**

40 * Creates an instance of this Behaviour.

41 *

42 * @param a the SessionAgent that owns this instance

43 * @param m the ACLMessage this behaviour will work on

44 */

45 public TraceReduceBehaviour(SessionAgent a, ACLMessage m) {

46 super(a);

47 mySessionAgent = a;

48 myMsg = m;

49 }

50

135

51 /**

52 * Utility method for constructing LogRecs and logging them.

53 *

54 * @param logContent The content of the LogRec

55 * @param logType The Type of the LogRec

56 * @param caseID The CaseID of the LogRec

57 */

58 private void log(String logContent , String logType , int

caseID){

59 LogRec logr = new LogRec ();

60 logr.setHasCaseID(caseID);

61 logr.setHasSessionID(mySessionAgent.getSession ().

getSessionID ());

62 logr.setLogType(logType);

63 OntDate od = new OntDate ();

64 od.setTime(mySessionAgent.getCalendar ().getTimeInMillis ());

65 logr.setHasDate(od);

66 logr.setLogLevel("INFO");

67 logr.setLogContent(logContent);

68 mySessionAgent.getLogger ().log(logr);

69 }

70
71 /* (non -Javadoc)

72 * @see jade.core.behaviours.Behaviour#action ()

73 */

74 @Override

75 public void action () {

76 //TODO update db?

77 try {

78 myWorkerAID = myMsg.getSender ();

79 ContentElement ce = mySessionAgent.getContentManager ().

extractContent(myMsg);

80 TraceResultList trl = (TraceResultList)((Action)ce).

getAction ();

81 ArrayList <TraceResult > traceResults = new ArrayList <

TraceResult >();

82 Iterator it = trl.getAllTraceResult ();

83 while(it.hasNext ()){

84 traceResults.add((TraceResult)it.next());

85 }

86 myTarget = (IP)(traceResults.get(0)).getAddressToBeTraced

();

87
88 if(traceResults.size() <2){//TODO check type instead !!

89 //TODO check for error

90 myType = "TRACE -CBG";

91 trl.getDoneStatus (); //TODO set in total and discard

92 (mySessionAgent.getAccTraceResults ()).addResult(

traceResults.get(0));

93 }

94 else {

95 myType = "TRACE -GeoPing";

96 ArrayList <DelayVector > dVectors = mySessionAgent.

getAccTraceResults ().getDelayVectors ();

136

97 if(dVectors.isEmpty ()){

98 ArrayList <String > names = landmarkNames(myTarget);

99 for(int i=0;i<names.size();i++){

100 DelayVector dv = new DelayVector(names.get(i));

101 dVectors.add(dv);

102 }

103 }

104 for(int i=0;i<dVectors.size();i++){

105 for(int j=1;j<traceResults.size();j++){//skip the

TraceResult to target

106 if(dVectors.get(i).getName ().equalsIgnoreCase (((

DNSname)(traceResults.get(j).

getAddressToBeTraced ())).getHasName ())){

107 dVectors.get(i).add(traceResults.remove(j).

getTraceResultData (), traceResults.get(0).

getTraceResultData ());

108 }

109 }

110 }

111 }

112
113 //TODO myWorkerDoneStatus = done.getDoneStatus (); //fix

tilsvarende i trace

114 //TODO mySessionAgent.setDoneStatus(myWorkerDoneStatus);

115
116 if(myWorkerDoneStatus.equalsIgnoreCase("OK")){

117 reduce ();

118
119 log("WorkerAgent:" + myWorkerAID +

120 "finished successfully , terminated", "Type:Session"

,

121 mySessionAgent.getSession ().getCaseID ());

122 }

123 else if(myWorkerDoneStatus.equalsIgnoreCase("Fail")){

124 // Should do something more. Why failed? Create new

worker?

125 reduce ();

126
127 log("WorkerAgent:" + myWorkerAID + "failed due to" +//

FIXME done.getHasReason () +

128 ", terminated", "Type:Session",

129 mySessionAgent.getSession ().getCaseID ());

130 }

131 else{

132 ACLMessage reply = myMsg.createReply ();

133 reply.setPerformative(ACLMessage.NOT_UNDERSTOOD);

134 myAgent.send(reply);

135 }

136
137 } catch (UngroundedException e) {

138 e.printStackTrace ();

139 } catch (CodecException e) {

140 e.printStackTrace ();

141 } catch (OntologyException e) {

137

142 e.printStackTrace ();

143 }

144 }// action ()

145
146 /**

147 * Cleans up after a WorkerAgent is Done , and optionally

terminates the entire Session.

148 * <p>

149 * Removes the workerAgent that sent the TraceList from

myWorkerAgents.

150 * Sets the doneStatus of the sessionAgent to the doneStatus

in the incoming Done.

151 * Checks if there are any more WorkerAgents , if not

terminate the session and kill

152 * the owning SessionAgent after informing its AdminAgent.

153 */

154 private void reduce (){

155 mySessionAgent.removeWorker(myWorkerAID);

156 //TODO mySessionAgent.setDoneStatus(myWorkerDoneStatus);

157
158 if (mySessionAgent.getWorkers ().isEmpty ()){

159 TraceResultList trl = new TraceResultList ();

160 CommandPackage cp = mySessionAgent.getAccTraceResults ();

161 if(myType.equalsIgnoreCase("Trace -CBG")){

162 ArrayList <TraceResult > results = cp.getCBGResults ();

163 for(int i=0;i<results.size();i++){

164 trl.addTraceResult(results.get(i));

165 }

166
167 }

168 else if(myType.equalsIgnoreCase("Trace -GeoPing")){

169 ArrayList <DelayVector > dList = cp.getDelayVectors ();

170 ArrayList <Object[]> lInfo = landmarkInfo(myTarget);

171
172 double one = 99999999; // arbitrary high values

173 double two = 99999999;

174 double three = 99999999;

175 double four = 99999999;

176 TraceResult tr1 = new TraceResult ();

177 TraceResult tr2 = new TraceResult ();

178 TraceResult tr3 = new TraceResult ();

179 TraceResult tr4 = new TraceResult ();

180
181 for (int i=0;i<dList.size();i++){

182 Double temp = dList.get(i).euclidianDistance ();

183 if(temp <one && temp >0){

184 one = temp;

185 for(int j=0;j<lInfo.size();j++){

186 if(dList.get(i).getName ().equalsIgnoreCase ((

String)lInfo.get(j)[0])){

187 GeoLocation geo = new GeoLocation ();

188 geo.setLocationName ((String)lInfo.get(j)[0]);

189 geo.setLocationLatitude (((Double)lInfo.get(j)

[1]).floatValue ());

138

190 geo.setLocationLongitude (((Double)lInfo.get(j)

[2]).floatValue ());

191 tr1.setHasGeoLocation(geo);

192 }

193 }

194 tr1.setTraceResultData(temp.floatValue ());

195 }

196 else if(temp <two && temp >0){

197 two = temp;

198 for(int j=0;j<lInfo.size();j++){

199 if(dList.get(i).getName ().equalsIgnoreCase ((

String)lInfo.get(j)[0])){

200 GeoLocation geo = new GeoLocation ();

201 geo.setLocationName ((String)lInfo.get(j)[0]);

202 geo.setLocationLatitude (((Double)lInfo.get(j)

[1]).floatValue ());

203 geo.setLocationLongitude (((Double)lInfo.get(j)

[2]).floatValue ());

204 tr2.setHasGeoLocation(geo);

205 }

206 }

207 tr2.setTraceResultData(temp.floatValue ());

208 }

209
210 else if(temp <three && temp >0){

211 three = temp;

212 for(int j=0;j<lInfo.size();j++){

213 if(dList.get(i).getName ().equalsIgnoreCase ((

String)lInfo.get(j)[0])){

214 GeoLocation geo = new GeoLocation ();

215 geo.setLocationName ((String)lInfo.get(j)[0]);

216 geo.setLocationLatitude (((Double)lInfo.get(j)

[1]).floatValue ());

217 geo.setLocationLongitude (((Double)lInfo.get(j)

[2]).floatValue ());

218 tr3.setHasGeoLocation(geo);

219 }

220 }

221 tr3.setTraceResultData(temp.floatValue ());

222 }

223
224 else if(temp <four && temp >0){

225 four = temp;

226 for(int j=0;j<lInfo.size();j++){

227 if(dList.get(i).getName ().equalsIgnoreCase ((

String)lInfo.get(j)[0])){

228 GeoLocation geo = new GeoLocation ();

229 geo.setLocationName ((String)lInfo.get(j)[0]);

230 geo.setLocationLatitude (((Double)lInfo.get(j)

[1]).floatValue ());

231 geo.setLocationLongitude (((Double)lInfo.get(j)

[2]).floatValue ());

232 tr4.setHasGeoLocation(geo);

233 }

139

234 }

235 tr4.setTraceResultData(temp.floatValue ());

236 }

237
238 }

239 trl.addTraceResult(tr1);

240 trl.addTraceResult(tr2);

241 trl.addTraceResult(tr3);

242 trl.addTraceResult(tr4);

243 }

244
245 trl.setDoneStatus(mySessionAgent.getDoneStatus ());

246 ACLMessage isDone = new ACLMessage(ACLMessage.INFORM);

247 isDone.addReceiver(mySessionAgent.getAdmin ());

248 isDone.setLanguage(new SLCodec (0).getName ());

249 isDone.setOntology(InternetInvestigationsOntology.

getInstance ().getName ());

250 String convID = mySessionAgent.getConvList ().

registerConversation ();

251 isDone.setConversationId(convID);

252 Action act = new Action(mySessionAgent.getAdmin (), trl);

253
254 try {

255 mySessionAgent.getContentManager ().fillContent(isDone ,

act);

256 mySessionAgent.send(isDone);

257 } catch (CodecException e) {

258 e.printStackTrace ();

259 } catch (OntologyException e) {

260 e.printStackTrace ();

261 }

262
263 ACLMessage doneReply = mySessionAgent.blockingReceive(

MessageTemplate.MatchConversationId(convID), 90000);

264 if (doneReply != null){

265 if (doneReply.getPerformative () == ACLMessage.INFORM);

266 /* Log that we have reported done and terminated after

receiving reply*/

267 log(myAgent.getName () + "finished", "Type:Session",

268 mySessionAgent.getSession ().getCaseID ());

269
270 myAgent.doDelete ();

271 }

272 else{

273 /* Log that we have reported done and terminated on

timeout */

274 log(myAgent.getName () + "finished" + "selfterminated",

275 "Type:Session", mySessionAgent.getSession ().

getCaseID ());

276 myAgent.doDelete ();

277 }

278 }//outer if

279
280

140

281 }// reduce ()

282
283 /**

284 * Get the names of landmarks from the Landmarks database ,

285 * excluding any landmark matching the input IP adress.

286 *

287 * @param IP address to exclude

288 * @return the number of landmarks

289 */

290 private ArrayList <String > landmarkNames(IP ip){

291 Connection con = connectDB ();

292 ArrayList <String > names = new ArrayList <String >();

293 try {

294 Statement stmt = con.createStatement ();

295 String query = "SELECT NAME FROM LANDMARKS WHERE IPADR

<>’"+ip.getHasName ()+"’";

296 ResultSet rs = stmt.executeQuery(query);

297 while(rs.next()){

298 names.add(rs.getString (1));

299 }

300 }

301 catch(SQLException se){

302 se.printStackTrace ();

303 return names;

304 }

305 return names;

306 }

307
308 /**

309 * Get the names and geographic locations of landmarks from

the Landmarks database ,

310 * excluding any landmark matching the input IP adress.

311 *

312 * @param IP address to exclude

313 * @return an array containing the name and latitude and

longitude

314 */

315 private ArrayList <Object[]> landmarkInfo(IP ip){

316 Connection con = connectDB ();

317 ArrayList <Object[]> info = new ArrayList <Object []>();

318 try {

319 Statement stmt = con.createStatement ();

320 String query = "SELECT NAME , LATITUDE , LONGITUDE FROM

LANDMARKS WHERE IPADR <>’"+ip.getHasName ()+"’";

321 ResultSet rs = stmt.executeQuery(query);

322 while(rs.next()){

323 Object [] element = new Object [3];

324 element [0] = rs.getString("NAME");

325 element [1] = new Double(rs.getDouble("LATITUDE"));

326 element [2] = new Double(rs.getDouble("LONGITUDE"));

327 info.add(element);

328 }

329 }

330 catch(SQLException se){

141

331 se.printStackTrace ();

332 return info;

333 }

334 return info;

335 }

336
337 /**

338 * Connects to the local database and returns the Connection

for further use.

339 *

340 * @return a connection to the database

341 */

342 private Connection connectDB (){//TODO path & password

343 Connection c = null;

344 try {

345 Class.forName("org.hsqldb.jdbcDriver");

346 c = DriverManager.getConnection("jdbc:hsqldb:hsql ://

localhost/xdb", "sa", "");

347 }catch (ClassNotFoundException e) {

348 //FIXME unable to find database classes. dosomething

349 e.printStackTrace ();

350 }

351 catch (SQLException e) {

352 //FIXME unable to connect to database dosomething

353 e.printStackTrace ();

354 }

355 return c;

356 }

357
358 }//class

142

C.2.3 DelayVector

1 package kripos.geo;

2
3 import java.util.ArrayList;

4
5 /**

6 * A delay vector for a given landmark.

7 *

8 * @author oysteine

9 * @version 1.0

10 */

11 public class DelayVector extends ArrayList {

12 private static final long serialVersionUID =

7614366734429571963L;

13 private String myName;

14 private double sum;

15
16 /**

17 *

18 * @param name The name of the landmark represented by this

instance

19 */

20 public DelayVector(String name) {

21 myName = name;

22 }

23
24 /**

25 * Adds a delay component to this DelayVector

26 *

27 * @param toThis the delay from calling landmark to this

landmark

28 * @param toTarget the delay from calling landmark to the

target

29 */

30 public void add(double toThis , double toTarget){

31 Double temp = new Double ((toThis -toTarget)*(toThis -toTarget

));

32 this.add(temp);

33 sum = sum+temp;

34 }

35
36 /**

37 * Computes the Euclidian distance of this DelayVector

38 *

39 * @return the euclidian distance

40 */

41 public double euclidianDistance (){

42 if (sum >0){

43 return Math.sqrt(sum);

44 }

45 else {

46 return -1;

47 }

143

48 }

49
50 /**

51 *

52 * @return the name of the landmark represented by this

DelayVector

53 */

54 public String getName (){

55 return myName;

56 }

57
58 }//class

144

C.3 WorkerAgent Classes

C.3.1 WorkerTraceStart

1 package kripos.geo;

2
3 import java.net.InetAddress;

4 import java.net.UnknownHostException;

5 import java.sql.Connection;

6 import java.sql.DriverManager;

7 import java.sql.ResultSet;

8 import java.sql.SQLException;

9 import java.sql.Statement;

10 import java.util.ArrayList;

11 import java.util.Date;

12 import com.bbn.openmap.LatLonPoint;

13 import jade.core.behaviours.OneShotBehaviour;

14 import jade.core.behaviours.SequentialBehaviour;

15 import kripos.ontology.DNSname;

16 import kripos.ontology.IP;

17 import kripos.ontology.OntAddress;

18 import kripos.ontology.WorkItem;

19
20 public class WorkerTraceStart extends OneShotBehaviour {

21 private static final long serialVersionUID =

824433708805797669L;

22 private WorkerAgent myWorkerAgent;

23 private WorkItem myWorkItem;

24 private long allowedSlack = 0;//TODO set sane value

25
26 public WorkerTraceStart(WorkerAgent a, WorkItem wi) {

27 super(a);

28 myWorkerAgent = a;

29 myWorkItem = wi;

30 }

31
32 @Override

33 public void action () {

34 ArrayList <Landmark > landmarks = new ArrayList <Landmark >();

35 double [] bestLine = new double [2];

36 Landmark toTrace = null;

37 try {

38 toTrace = new Landmark(lookupIP ().get (0));//TODO only

uses first returned IP

39 } catch (UnknownHostException e1) {

40 e1.printStackTrace ();

41 }

42
43 Connection con = connectDB ();

44
45 ArrayList <Landmark > initialLandmarks = readLandmarks(con);

46 if(checkOldBestline(con)){

47 landmarks = initialLandmarks;

145

48 try {

49 Statement stmt = con.createStatement ();

50 String query = "SELECT BESTLINE_M , BESTLINE_B FROM MISC

";

51 ResultSet rs = stmt.executeQuery(query);

52 while(rs.next()){

53 bestLine [0] = rs.getDouble("BESTLINE_M");

54 bestLine [1] = rs.getDouble("BESTLINE_B");

55 }

56
57 ArrayList <String > ips = newlyTraced(con);

58 if (ips.get(ips.size() -1).equalsIgnoreCase("true")){

59 toTrace = new Landmark(ips.get(0));

60 try {

61 Statement st = con.createStatement ();

62 String query2 = "SELECT NAME , MIN_RTT , C1, EPSILON ,

 IPADR , CHECKED FROM TRACED WHERE IPADR = ’"+ips

.get(0)+"’";

63 ResultSet rs2 = st.executeQuery(query2);

64 while(rs2.next()){

65 double minRtt = rs2.getDouble("MIN_RTT");

66 double c1 = rs2.getDouble("C1");

67 double epsilon = rs2.getDouble("EPSILON");

68 toTrace.setMinRTT(minRtt);

69 toTrace.setC1(c1);

70 toTrace.setEpsilon(epsilon);

71 }

72 ((SequentialBehaviour)root()).addSubBehaviour(

73 new WorkerTraceFinal(myWorkerAgent , toTrace ,

bestLine , landmarks));

74
75 } catch (SQLException e) {

76 e.printStackTrace ();

77 }

78 }

79 else {

80 ((SequentialBehaviour)root()).addSubBehaviour(

81 new WorkerTraceTarget(myWorkerAgent , toTrace ,

bestLine , landmarks));

82 }

83 }

84 catch(SQLException se){

85 //FIXME do something

86 se.printStackTrace ();

87 }

88 }

89 else{

90 WorkerTraceLandmarks part2 = new WorkerTraceLandmarks(

myWorkerAgent , toTrace);

91 myWorkerAgent.getPingList ().setContent(initialLandmarks);

92 for (int i=0; i<initialLandmarks.size();i++){

93 PingBehave pb = new PingBehave(myWorkerAgent ,

initialLandmarks.get(i));

94 part2.addSubBehaviour(part2.getTbf ().wrap(pb));

146

95 }

96
97 ((SequentialBehaviour)root()).addSubBehaviour(part2);

98 }

99
100 }// action

101
102 /**

103 * If the class of myTarget is DNSName we need to get the IP

address.

104 * If the class of myTarget is IP no lookup is performed

before returning the IP address.

105 *

106 * @return An ArrayList of IP addresses as strings

107 * @throws UnknownHostException

108 */

109 private ArrayList <String > lookupIP () throws

UnknownHostException {

110 ArrayList <String > ipStrings = null;

111 OntAddress oa = myWorkItem.getHasBaseAddress ();

112 if(oa instanceof DNSname) {

113 DNSname dns = (DNSname)(oa);

114 InetAddress [] ips;

115 ips = InetAddress.getAllByName(dns.getHasName ());

116 ipStrings = new ArrayList <String >();

117 for(int i=0;i<ips.length;i++){

118 ipStrings.add(ips[i]. getHostAddress ());

119 }

120 return ipStrings;

121 }

122 else {

123 ipStrings = new ArrayList <String >();

124 ipStrings.add(((IP)myWorkItem.getHasBaseAddress ()).

getHasName ());

125 return ipStrings;

126 }

127 }

128
129 /**

130 * Reads landmarks from the local database.

131 *

132 * @param con Database connection

133 * @return a list of landmarsk sorted by increasing distance

from the owner of this instance

134 */

135 private ArrayList <Landmark > readLandmarks(Connection con){

136 ArrayList <Landmark > landmarks = new ArrayList <Landmark >();

137
138 try {

139 Statement stmt = con.createStatement ();

140 String query = "SELECT * FROM LANDMARKS ORDER BY

DISTANCE_KM ASC";

141 ResultSet rs = stmt.executeQuery(query);

142 while(rs.next()){

147

143 String name = rs.getString("NAME");

144 String ipAdr = rs.getString("IPADR");

145 double distance = rs.getDouble("DISTANCE_KM");

146 LatLonPoint llp = new LatLonPoint(rs.getDouble("

LATITUDE"), rs.getDouble("LONGITUDE"));

147
148 Landmark l = new Landmark(name , llp , ipAdr);

149 l.setDistance(distance);

150 landmarks.add(l);

151 }

152 }catch (SQLException e) {

153 // TODO: handle exception

154 }

155 return landmarks;

156 }

157
158
159 /**

160 * Checks if an IP address has currently been traced.

161 * The definition of current is given by allowedSlack.

162 *

163 * @param con The database connection to use

164 * @return true if this IP was recently traced

165 */

166 private ArrayList <String > newlyTraced(Connection con){

167 String newlyTraced = "false";

168 ArrayList <String > returnList = new ArrayList <String >();

169 try {

170 ArrayList <String > adrToCheck = lookupIP ();

171 Statement stmt = con.createStatement(ResultSet.

TYPE_SCROLL_INSENSITIVE ,ResultSet.CONCUR_READ_ONLY);

172 for(int i=0;i<adrToCheck.size();i++){

173 String query = "SELECT NAME , IPADR , CHECKED FROM TRACED

 WHERE IPADR = ’"+adrToCheck.get(i)+"’";

174 ResultSet rs = stmt.executeQuery(query);

175 if(!rs.next()){

176 returnList.add(adrToCheck.get(i));

177 }

178 rs.previous ();

179 while (rs.next()) {

180 Date lastChecked = (Date)rs.getTimestamp("CHECKED");

181 long toCheck;

182 if(rs.wasNull ()){

183 toCheck = 0;

184 }

185 else{

186 toCheck = lastChecked.getTime ();

187 }

188 long currentTime = myWorkerAgent.getCalendar ().

getTimeInMillis ();

189 long diff = currentTime - toCheck;

190 if(diff <allowedSlack){

191 returnList.add(rs.getString("IPADR"));

192 newlyTraced = "true";

148

193 }

194 else{

195 returnList.add(adrToCheck.get(i));

196 }

197 }

198 }

199 }

200 catch (UnknownHostException uhe){

201 uhe.printStackTrace ();

202 returnList.add("false");

203 return returnList;

204 }

205 catch (SQLException e) {

206 e.printStackTrace ();

207 returnList.add(newlyTraced);

208 return returnList;

209 }

210 returnList.add(newlyTraced);

211 return returnList;

212 }

213
214 /**

215 * Check if the most recently calculated bestLine for this

host is too old.

216 *

217 * @return true if the current baseLine is usable

218 */

219 private boolean checkOldBestline(Connection con){

220 Date lastChecked = new Date (0);

221 try {

222 Statement stmt = con.createStatement ();

223 String query = "SELECT LAST_BESTLINE FROM MISC";

224 ResultSet rs = stmt.executeQuery(query);

225 while (rs.next()) {

226 if(rs.getTimestamp("LAST_BESTLINE") != null){

227 lastChecked = (Date)rs.getTimestamp("LAST_BESTLINE")

;

228 }

229 }

230
231 } catch (SQLException e) {

232 e.printStackTrace ();

233 return false;

234 }

235
236 long toCheck = lastChecked.getTime ();

237 long currentTime = myWorkerAgent.getCalendar ().

getTimeInMillis ();

238 long diff = currentTime - toCheck;

239
240 if(diff <= allowedSlack){

241 return true;

242 }

243 else{

149

244 return false;

245 }

246 }

247
248 /**

249 * Connects to the local database and returns the Connection

for further use.

250 *

251 * @return a connection to the database

252 */

253 private Connection connectDB (){//TODO path & password

254 Connection c = null;

255 try {

256 Class.forName("org.hsqldb.jdbcDriver");

257 c = DriverManager.getConnection("jdbc:hsqldb:hsql ://

localhost/xdb", "sa", "");

258 }catch (ClassNotFoundException e) {

259 //FIXME unable to find database classes. dosomething

260 e.printStackTrace ();

261 }

262 catch (SQLException e) {

263 //FIXME unable to connect to database dosomething

264 e.printStackTrace ();

265 }

266 return c;

267 }

268
269 }//class

150

C.3.2 WorkerTraceLandmarks

1 package kripos.geo;

2
3 import jade.core.behaviours.ParallelBehaviour;

4 import jade.core.behaviours.SequentialBehaviour;

5 import jade.core.behaviours.ThreadedBehaviourFactory;

6
7 /**

8 * Wrapper for multiple PingBehaves running in dedicated

threads

9 *

10 * @author oysteine

11 *

12 */

13 public class WorkerTraceLandmarks extends ParallelBehaviour {

14 private static final long serialVersionUID =

-2880427229534140463L;

15 private ThreadedBehaviourFactory myTbf;

16 private Landmark myTarget;

17 private WorkerAgent myWorkerAgent;

18
19 public WorkerTraceLandmarks(WorkerAgent a, Landmark toTrace)

{

20 super(a, ParallelBehaviour.WHEN_ALL);

21 myTbf = new ThreadedBehaviourFactory ();

22 myTarget = toTrace;

23 myWorkerAgent = a;

24 }

25
26 /**

27 *

28 * @return the <code >ThreadedBehaviourFactory </code > of this

instance

29 */

30 public ThreadedBehaviourFactory getTbf (){

31 return myTbf;

32 }

33
34 @Override

35 public int onEnd(){

36 ((SequentialBehaviour)root()).addSubBehaviour(new

WorkerTraceCalculate(myWorkerAgent , myTarget));

37 return 0;

38 }

39
40 }//class

151

C.3.3 WorkerTraceCalculate

1 package kripos.geo;

2
3 import java.net.InetAddress;

4 import java.net.UnknownHostException;

5 import java.sql.Connection;

6 import java.sql.DriverManager;

7 import java.sql.ResultSet;

8 import java.sql.SQLException;

9 import java.sql.Statement;

10 import java.util.ArrayList;

11 import java.util.Date;

12 import Jama.Matrix;

13 import jade.core.behaviours.OneShotBehaviour;

14 import jade.core.behaviours.SequentialBehaviour;

15 import kripos.ontology.DNSname;

16 import kripos.ontology.IP;

17
18 public class WorkerTraceCalculate extends OneShotBehaviour {

19 private WorkerAgent myWorkerAgent;

20 private Landmark toTrace;

21 private double [] myBestLine = new double [2];

22 private ArrayList <Landmark > myLandmarks;

23 private double baseM = 0.02; //magic number due to lightspeed

in optical fibres

24 private long allowedSlack =0;

25
26 /**

27 *

28 * @param a

29 * @param toTrace

30 */

31 public WorkerTraceCalculate(WorkerAgent a, Landmark toTrace)

{

32 super(a);

33 myWorkerAgent = a;

34 this.toTrace = toTrace;

35 }

36
37 @Override

38 public void action () {

39 myLandmarks = myWorkerAgent.getPingList ().getLandmarkList ()

;

40
41 for(int o=0; o<myLandmarks.size();o++){

42 Landmark l = myLandmarks.get(o);

43 }

44
45 if(myWorkerAgent.getType ().equalsIgnoreCase("TRACE -CBG")){

46 myBestLine = calculateBestline(myLandmarks);

47 }

48
49 Connection con = connectDB ();

152

50 updateDB(con , myBestLine , myLandmarks);

51
52 ArrayList <String > ips = newlyTraced(con);

53
54 if (ips.get(ips.size() -1).equalsIgnoreCase("true")){

55 toTrace = new Landmark(ips.get(0));

56 Statement st;

57 try {

58 st = con.createStatement ();

59 String query2 = "SELECT NAME , MIN_RTT , C1, EPSILON ,

IPADR , CHECKED FROM TRACED WHERE IPADR = ’"+ips.get

(0)+"’";

60 ResultSet rs2 = st.executeQuery(query2);

61 while(rs2.next()){

62 double minRtt = rs2.getDouble("MIN_RTT");

63 double c1 = rs2.getDouble("C1");

64 double epsilon = rs2.getDouble("EPSILON");

65 toTrace.setMinRTT(minRtt);

66 toTrace.setC1(c1);

67 toTrace.setEpsilon(epsilon);

68 }

69 ((SequentialBehaviour)root()).addSubBehaviour(

70 new WorkerTraceFinal(myWorkerAgent , toTrace ,

myBestLine , myLandmarks));

71
72 } catch (SQLException e) {

73 e.printStackTrace ();

74 }

75 }

76 else{

77 ((SequentialBehaviour)root()).addSubBehaviour(

78 new WorkerTraceTarget(myWorkerAgent , toTrace ,

myBestLine , myLandmarks));

79 }

80 }

81
82 /**

83 * Calculates the bestline from ping measurements

84 *

85 * @param landmarks the landmarks used as a basis for

calculating the bestline

86 * @return an array containing the two double values that

constitutes the bestline

87 */

88 private double [] calculateBestline(ArrayList <Landmark >

landmarks){

89 double [] result = new double [2];

90 double bestMi = 9999999; // initial nonsense values

91 double bestBi = 9999999;

92
93 double smallestY = 99999999;

94 double smallestX = 0;

95 int startAt = 1; // requires sorted input!

96 for(int i=0;i<landmarks.size();i++){

153

97 double tempY = landmarks.get(i).getMinRTT ();

98 //set new value for smallestY , but only if it is sane

99 if(tempY < smallestY && landmarks.get(i).getMinRTT () >=

landmarks.get(i).getDistance () * baseM){

100 smallestY = tempY;

101 startAt = i+1;//only use landmarks with greater

distance for calculating bestline

102 smallestX = landmarks.get(i).getDistance ();

103 }

104 }

105 //set up matrices for solving y = mx + b

106 Matrix a = new Matrix (2,2);

107 Matrix b = new Matrix (2,1);

108 //fill matrices with values from landmark containing

smallestY

109 a.set(0, 0, smallestX);

110 a.set(0, 1, 1);

111 b.set(0, 0, smallestY);

112
113 //solve y = mx + b for all the pairs (smallestY , other

landmark)

114 for(int i=startAt;i<landmarks.size();i++){

115 a.set(1, 0, landmarks.get(i).getDistance ());

116 a.set(1, 1, 1);

117
118 b.set(1, 0, landmarks.get(i).getMinRTT ());

119
120 Matrix x = a.solve(b);

121 if((x.get(0,0)>baseM) && (x.get(1,0) >=0)){

122 if(x.get(0,0)< bestMi){

123 bestMi = x.get(0,0);

124 bestBi = x.get(1,0);

125 }

126 }

127 }

128
129 // choose next -smallest Y if result does not fall within

allowed region

130 if(bestMi <baseM || bestBi <0){

131 if(landmarks.size() >4){

132 landmarks.remove(startAt -1);// remove the outlier

measurement

133 calculateBestline(landmarks);

134 }

135 result [0] = bestMi;

136 result [1] = bestBi;

137 return result; //TODO throw exception instead

138 }

139 else{

140 result [0] = bestMi;

141 result [1] = bestBi;

142 return result;

143 }

144 }

154

145
146 /**

147 * Connects to the local database and returns the Connection

for further use.

148 *

149 * @return a connection to the database

150 */

151 private Connection connectDB (){//TODO path & password

152 Connection c = null;

153 try {

154 Class.forName("org.hsqldb.jdbcDriver");

155 c = DriverManager.getConnection("jdbc:hsqldb:hsql ://

localhost/xdb", "sa", "");

156 }catch (ClassNotFoundException e) {

157 //FIXME unable to find database classes. dosomething

158 e.printStackTrace ();

159 }

160 catch (SQLException e) {

161 //FIXME unable to connect to database dosomething

162 e.printStackTrace ();

163 }

164 return c;

165 }

166
167 /**

168 * Checks if an IP address has currently been traced.

169 * The definition of current is given by allowedSlack.

170 *

171 * @param con The database connection to use

172 * @return true if this IP was recently traced

173 */

174 private ArrayList <String > newlyTraced(Connection con){

175 String newlyTraced = "false";

176 ArrayList <String > returnList = new ArrayList <String >();

177 try {

178 String adrToCheck = toTrace.getIP();

179 Statement stmt = con.createStatement(ResultSet.

TYPE_SCROLL_INSENSITIVE ,ResultSet.CONCUR_READ_ONLY);

180 String query = "SELECT NAME , IPADR , CHECKED FROM TRACED

WHERE IPADR = ’"+adrToCheck+"’";

181 ResultSet rs = stmt.executeQuery(query);

182 if(!rs.next()){

183 returnList.add(adrToCheck);

184 }

185 rs.previous ();

186 while (rs.next()) {

187 Date lastChecked = (Date)rs.getTimestamp("CHECKED");

188 long toCheck;

189 if(rs.wasNull ()){

190 toCheck = 0;

191 }

192 else{

193 toCheck = lastChecked.getTime ();

194 }

155

195 long currentTime = myWorkerAgent.getCalendar ().

getTimeInMillis ();

196 long diff = currentTime - toCheck;

197 if(diff <allowedSlack){

198 returnList.add(rs.getString("IPADR"));

199 newlyTraced = "true";

200 }

201 else{

202 returnList.add(adrToCheck);

203 }

204 }

205 }

206 catch (SQLException e) {

207 e.printStackTrace ();

208 returnList.add(newlyTraced);

209 return returnList;

210 }

211 returnList.add(newlyTraced);

212 return returnList;

213 }

214
215 /**

216 * Updates the MISC table with the new bestline information

and

217 * any matching landmarks in the LANDMARK database with new

minRTT , C1, Epsilon and timestamp

218 *

219 * @param con The Connection to use

220 * @param mi the m part of the new bestline

221 * @param bi the b part of the new bestline

222 */

223 private void updateDB(Connection con , double [] bestline ,

ArrayList <Landmark > newLandmarks){

224 String newBestline = "UPDATE MISC SET LAST_BESTLINE = now ,

BESTLINE_M = "+

225 bestline [0]+", BESTLINE_B ="+ bestline [1];

226
227 try {

228 Statement st = con.createStatement ();

229 st.executeUpdate(newBestline);

230 for(int i=0; i<newLandmarks.size();i++){

231 String landmarkUpdate = "UPDATE LANDMARKS SET MIN_RTT=

"

232 +newLandmarks.get(i).getMinRTT ()+", CHECKED = now , C1

 = "+newLandmarks.get(i).getC1 ()+

233 ", EPSILON = "+newLandmarks.get(i).getEpsilon ();

234 st.executeUpdate(landmarkUpdate);

235 }

236 } catch (SQLException e) {

237 e.printStackTrace ();

238 }

239 }

240
241 }//class

156

C.3.4 WorkerTraceTarget

1 package kripos.geo;

2
3 import jade.core.behaviours.SequentialBehaviour;

4
5 import java.sql.Connection;

6 import java.sql.DriverManager;

7 import java.sql.ResultSet;

8 import java.sql.SQLException;

9 import java.sql.Statement;

10 import java.util.ArrayList;

11
12 public class WorkerTraceTarget extends PingBehave {

13 private static final long serialVersionUID =

1898594180371430543L;

14 private WorkerAgent myWorkerAgent;

15 private double [] myBestLine;

16 private ArrayList <Landmark > myLandmarks;

17
18 public WorkerTraceTarget(WorkerAgent a, Landmark target ,

double [] bestLine ,

19 ArrayList <Landmark > landmarks) {

20 super(a, target);

21 myWorkerAgent = a;

22 myBestLine = bestLine;

23 myLandmarks = landmarks;

24 myTarget = target;

25 }

26
27 public WorkerTraceTarget(WorkerAgent a, Landmark target , int

numPings ,

28 int pingDistance , boolean estimateEps , boolean estimateC1

,

29 double [] bestLine , ArrayList <Landmark > landmarks){

30 super(a, target , numPings , pingDistance , estimateEps ,

estimateC1);

31 myWorkerAgent = a;

32 myBestLine = bestLine;

33 myLandmarks = landmarks;

34 myTarget = target;

35 }

36
37 @Override

38 public void action () {

39 super.action ();

40 updateTracedDB(connectDB (), myTarget);

41 ((SequentialBehaviour)root()).addSubBehaviour(

42 new WorkerTraceFinal(myWorkerAgent , myTarget ,

myBestLine , myLandmarks));

43 }

44
45 /**

46 * Creates a new entry in the TRACED database ,

157

47 * or updates an existing entry if a mathcing IP address is

found

48 *

49 * @param con The database connection to use

50 * @param toTrace the landmark containg the information to

added

51 */

52 private void updateTracedDB(Connection con , Landmark toTrace)

{

53 try {

54 Statement stmt = con.createStatement ();

55 String query = "SELECT COUNT(IPADR) FROM TRACED WHERE

IPADR=’"+toTrace.getIP()+"’";

56 ResultSet rs = stmt.executeQuery(query);

57
58 while(rs.next()){

59 if(rs.getInt (1) >0){

60 String updateString = "UPDATE TRACED SET MIN_RTT ="+

toTrace.getMinRTT ()+", CHECKED= now WHERE IPADR=’"

+toTrace.getIP()+"’";

61 stmt.executeUpdate(updateString);

62 }

63 else{

64 String ip = toTrace.getIP();

65 String name = toTrace.getName ();

66 double c1 = toTrace.getC1();

67 double epsilon = toTrace.getEpsilon ();

68 double minRtt = toTrace.getMinRTT ();

69 String insertString = "INSERT INTO TRACED VALUES (’"+

name+"’,’"+ip+"’,now ,"+minRtt+",null ,"+

70 c1+","+epsilon+",null)";

71 stmt.executeUpdate(insertString);

72 }

73 }

74 } catch (SQLException e) {

75 e.printStackTrace ();

76 }

77 }

78
79 /**

80 * Connects to the local database and returns the Connection

for further use.

81 *

82 * @return a connection to the database

83 */

84 private Connection connectDB (){//TODO path & password

85 Connection c = null;

86 try {

87 Class.forName("org.hsqldb.jdbcDriver");

88 c = DriverManager.getConnection("jdbc:hsqldb:hsql ://

localhost/xdb", "sa", "");

89 }catch (ClassNotFoundException e) {

90 //FIXME unable to find database classes. dosomething

91 e.printStackTrace ();

158

92 }

93 catch (SQLException e) {

94 //FIXME unable to connect to database dosomething

95 e.printStackTrace ();

96 }

97 return c;

98 }

99
100 }//class

159

C.3.5 WorkerTraceFinal

1 package kripos.geo;

2
3 import java.sql.Connection;

4 import java.sql.DriverManager;

5 import java.sql.ResultSet;

6 import java.sql.SQLException;

7 import java.sql.Statement;

8 import java.util.ArrayList;

9 import jade.content.lang.Codec.CodecException;

10 import jade.content.lang.sl.SLCodec;

11 import jade.content.onto.OntologyException;

12 import jade.content.onto.basic.Action;

13 import jade.core.behaviours.OneShotBehaviour;

14 import jade.lang.acl.ACLMessage;

15 import kripos.ontology.DNSname;

16 import kripos.ontology.GeoLocation;

17 import kripos.ontology.IP;

18 import kripos.ontology.InternetInvestigationsOntology;

19 import kripos.ontology.TraceResult;

20 import kripos.ontology.TraceResultList;

21
22 public class WorkerTraceFinal extends OneShotBehaviour {

23 private static final long serialVersionUID =

-6054469352616818627L;

24 private WorkerAgent myWorkerAgent;

25 private Landmark toTrace;

26 private double [] myBestLine;

27 private ArrayList <Landmark > myLandmarks;

28
29
30 public WorkerTraceFinal(WorkerAgent a, Landmark toTrace ,

double [] bestLine ,

31 ArrayList <Landmark > landmarks){

32 super(a);

33 myWorkerAgent = a;

34 this.toTrace = toTrace;

35 myBestLine = bestLine;

36 myLandmarks = landmarks;

37 }

38
39 @Override

40 public void action () {

41 ACLMessage returnResult = new ACLMessage(ACLMessage.INFORM)

;

42 returnResult.addReceiver(myWorkerAgent.getSessionAgent ());

43 returnResult.setLanguage(new SLCodec (0).getName ());

44 returnResult.setOntology(InternetInvestigationsOntology.

getInstance ().getName ());

45 String convID = myWorkerAgent.getConvList ().

registerConversation ();

46 returnResult.setConversationId(convID);

47 Action act;

160

48 IP target = new IP();

49 target.setHasName(toTrace.getName ());

50 GeoLocation gl = new GeoLocation ();

51
52 try{

53 Connection con = connectDB ();

54 Statement st = con.createStatement ();

55 String getGeoLocation = "SELECT NAME , LATITUDE , LONGITUDE

 FROM MISC";

56 ResultSet rs = st.executeQuery(getGeoLocation);

57 while(rs.next()){

58 Double lat = rs.getDouble("LATITUDE");

59 Double lon = rs.getDouble("LONGITUDE");

60 String name = rs.getString("NAME");

61 gl.setLocationName(name);

62 gl.setLocationLatitude(lat.floatValue ());

63 gl.setLocationLongitude(lon.floatValue ());

64 }

65 }

66 catch(SQLException se){

67 se.printStackTrace ();

68 }

69
70 if(myWorkerAgent.getType ().equalsIgnoreCase("TRACE -CBG")){

71 TraceResultList trl = new TraceResultList ();

72 trl.setHasGeoLocation(gl);

73 TraceResult tr = new TraceResult ();

74 tr.setAddressToBeTraced(target);//TODO only first IP

address if DNSName

75 tr.setHasCaseID(myWorkerAgent.getCaseID ());

76 tr.setHasSessionID(myWorkerAgent.getSessionID ());

77 tr.setHasGeoLocation(gl);

78
79 Double geoDistance = (toTrace.getMinRTT () - myBestLine

[1])/myBestLine [0];

80 tr.setTraceResultData(geoDistance.floatValue ());

81
82 trl.addTraceResult(tr);

83 act = new Action(myWorkerAgent.getSessionAgent (), trl);

84 }

85
86 else if(myWorkerAgent.getType ().equalsIgnoreCase("TRACE -

GeoPing")){

87 TraceResultList trl = new TraceResultList ();

88 trl.setHasGeoLocation(gl);

89
90 TraceResult targetTr = new TraceResult ();

91 targetTr.setTraceResultData ((new Double(toTrace.getMinRTT

()).floatValue ()));

92 targetTr.setAddressToBeTraced(target);

93 trl.addTraceResult(targetTr);

94
95 for (int i=0;i<myLandmarks.size();i++){

96 TraceResult tr = new TraceResult ();

161

97 DNSname name = new DNSname ();

98 name.setHasName(myLandmarks.get(i).getName ());

99 tr.setAddressToBeTraced(name);

100 tr.setTraceResultData ((new Double(myLandmarks.get(i).

getMinRTT ())).floatValue ());

101 trl.addTraceResult(tr);

102 }

103
104 act = new Action(myWorkerAgent.getSessionAgent (), trl);

105
106 }

107 else{

108 TraceResultList trl = new TraceResultList ();

109 trl.setDoneStatus("failed");

110 act = new Action(myWorkerAgent.getSessionAgent (), trl);

111 }

112
113 try {

114 myAgent.getContentManager ().fillContent(returnResult , act

);

115 myWorkerAgent.send(returnResult);

116 myAgent.doDelete ();

117
118 } catch (CodecException e) {

119 System.out.println("Sending of ACL message failed");

120 e.printStackTrace ();

121 } catch (OntologyException e) {

122 System.out.println("Sending of ACL message failed");

123 e.printStackTrace ();

124 }

125 }

126
127 /**

128 * Connects to the local database and returns the Connection

for further use.

129 *

130 * @return a connection to the database

131 */

132 private Connection connectDB (){//TODO path & password

133 Connection c = null;

134 try {

135 Class.forName("org.hsqldb.jdbcDriver");

136 c = DriverManager.getConnection("jdbc:hsqldb:hsql ://

localhost/xdb", "sa", "");

137 }catch (ClassNotFoundException e) {

138 //FIXME unable to find database classes. dosomething

139 e.printStackTrace ();

140 }

141 catch (SQLException e) {

142 //FIXME unable to connect to database dosomething

143 e.printStackTrace ();

144 }

145 return c;

146 }

162

147
148 }//class

163

C.3.6 PingBehave

1 package kripos.geo;

2
3 import jade.core.behaviours.OneShotBehaviour;

4 import kripos.geo.ping.HostUnreachableException;

5 import kripos.geo.ping.MinRTT;

6
7 /**

8 * Performs actual pinging of remote hosts.

9 * Used by WorkerAgents and SessionAgents.

10 *

11 * @author oysteine

12 * @version 1.0

13 *

14 */

15 public class PingBehave extends OneShotBehaviour {

16 protected static final long serialVersionUID =

9200100880741959482L;

17 protected Landmark myTarget;

18 protected AgentTemplate myAgentTemplate;

19 protected MinRTT myMinRTT;

20 protected int myNumPings = 5;

21 protected int myPingDistance = 3;

22 protected boolean estimateEps = false;

23 protected boolean estimateC1 = false;

24
25 /**

26 * Uses default values for probeCount and interprobe delay

27 * No estimation of epsilon or C1, no rePing ()

28 *

29 * @param a the AgentTemplate this instance belongs to

30 * @param landmark the target to ping

31 */

32 public PingBehave(AgentTemplate a, Landmark target) {

33 super(a);

34 myAgentTemplate = a;

35 myTarget = target;

36 }

37
38 /**

39 * Uses supplied values

40 * TODO currently only IPv4

41 *

42 * @param a the AgentTemplate this instance belongs to

43 * @param landmark the target to ping

44 * @param numPings the number of pings to send

45 * @param pingDistance the time between pings are sent

46 * @param estimateEps true if epsilon is to be estimated

47 * @param estimateC1 true if C1 is to be estimated

48 */

49 public PingBehave(AgentTemplate a, Landmark target , int

numPings ,

164

50 int pingDistance , boolean estimateEps , boolean estimateC1

){

51 super(a);

52 myAgentTemplate = a;

53 myTarget = target;

54 myNumPings = numPings;

55 myPingDistance = pingDistance;

56 this.estimateEps = estimateEps;

57 this.estimateC1 = estimateC1;

58 }

59
60 /* (non -Javadoc)

61 * @see jade.core.behaviours.Behaviour#action ()

62 */

63 @Override

64 public void action () {

65 myMinRTT = new MinRTT ();

66 try {

67 myMinRTT.ping(myTarget.getIP(), myNumPings ,

myPingDistance , false);

68 if(estimateC1){

69 myMinRTT.computeCRegions(true);

70 myTarget.setC1(myMinRTT.getCI());

71 }

72 if(estimateEps){

73 myTarget.setEpsilon(myMinRTT.estimateEpsilon ());

74 }

75 myTarget.setMinRTT(myMinRTT.getMinRTT ());

76
77 } catch (HostUnreachableException e) {

78 }

79 }

80
81 }//class

165

C.4 GWAgent Classes

C.4.1 GWAgent

1 package kripos.gateway;

2
3 import java.util.ArrayList;

4 import java.util.GregorianCalendar;

5 import java.util.Random;

6 import java.util.concurrent.ConcurrentHashMap;

7 import jade.content.ContentElement;

8 import jade.content.lang.Codec.CodecException;

9 import jade.content.lang.sl.SLCodec;

10 import jade.content.onto.OntologyException;

11 import jade.content.onto.UngroundedException;

12 import jade.content.onto.basic.Action;

13 import jade.content.onto.basic.Result;

14 import jade.core.AID;

15 import jade.core.ContainerID;

16 import jade.domain.DFService;

17 import jade.domain.FIPAException;

18 import jade.domain.FIPAAgentManagement.DFAgentDescription;

19 import jade.domain.FIPAAgentManagement.FIPAManagementOntology;

20 import jade.domain.FIPAAgentManagement.SearchConstraints;

21 import jade.domain.FIPAAgentManagement.ServiceDescription;

22 import jade.domain.JADEAgentManagement.WhereIsAgentAction;

23 import jade.domain.mobility.MobilityOntology;

24 import jade.lang.acl.ACLMessage;

25 import jade.lang.acl.ConversationList;

26 import jade.lang.acl.MessageTemplate;

27 import jade.wrapper.gateway.GatewayAgent;

28 import kripos.ontology.InternetInvestigationsOntology;

29
30 /**

31 * @author oysteine

32 * @version 1.0

33 *

34 */

35 public class GWAgent extends GatewayAgent {

36 private static final long serialVersionUID =

-5814890860284035720L;

37 protected ConversationList convList;

38 protected GregorianCalendar myCal;

39 protected ConcurrentHashMap <AID , String > adminAgents = new

ConcurrentHashMap <AID , String >();

40 private ConcurrentHashMap <String , CommandPackage >

activeCommands =

41 new ConcurrentHashMap <String , CommandPackage >();

42
43 /**

44 *

45 */

46 public GWAgent () {

166

47 convList = new ConversationList(this);

48 myCal = new GregorianCalendar (); //timezone , not

implemented

49 }

50
51 @Override

52 protected void setup(){

53 getContentManager ().registerLanguage(new SLCodec (0));

54 getContentManager ().registerLanguage(new SLCodec ());//some

messages from AMS not set to SL -0

55 getContentManager ().registerOntology(MobilityOntology.

getInstance ());

56 getContentManager ().registerOntology(

InternetInvestigationsOntology.getInstance ());

57 getContentManager ().registerOntology(FIPAManagementOntology

.getInstance ());

58
59 //find AdminAgents

60 DFAgentDescription adminTemplate = new DFAgentDescription ()

;

61 ServiceDescription adminSd = new ServiceDescription ();

62 adminSd.setType("AdminAgent");

63 adminTemplate.addServices(adminSd);

64 SearchConstraints sc = new SearchConstraints ();

65 sc.setMaxDepth(new Long (0));

66 sc.setMaxResults(new Long (10000));

67 ArrayList <DFAgentDescription > tempList = new ArrayList <

DFAgentDescription >();

68
69 try {

70 DFAgentDescription dfas[] = DFService.search(this ,

adminTemplate , sc);

71 for(int i=0; i<dfas.length;i++){

72 tempList.add(dfas[i]);

73 }

74
75 } catch (FIPAException e1) {

76 e1.printStackTrace ();

77 }

78
79 for(int i=0;i< tempList.size();i++){

80 WhereIsAgentAction wiaa = new WhereIsAgentAction ();

81 wiaa.setAgentIdentifier(tempList.get(i).getName ());

82 AID myAMS = getAMS ();

83 Action act = new Action(myAMS , wiaa);

84
85 ACLMessage qMsg = new ACLMessage(ACLMessage.REQUEST);

86 String convID = getName () + new Random ().nextLong ();

87 qMsg.setConversationId(convID);

88
89 qMsg.setLanguage(new SLCodec (0).getName ());

90 qMsg.setOntology(MobilityOntology.getInstance ().getName ()

);

91

167

92 try {

93 getContentManager ().fillContent(qMsg , act);

94 qMsg.addReceiver(act.getActor ());

95 // register conversation with agent to get correct

reception

96 getConvList ().registerConversation(convID);

97 send(qMsg);

98
99 MessageTemplate mt = MessageTemplate.

MatchConversationId(convID);

100 ACLMessage resp = blockingReceive(mt, 1000000);

101 getConvList ().deregisterConversation(convID);

102 ContentElement ce = getContentManager ().extractContent(

resp);

103 Result result = (Result) ce;

104 ContainerID cid = (ContainerID)result.getValue ();

105 adminAgents.put(tempList.get(i).getName (), cid.getName

());

106 }

107 catch (UngroundedException e) {

108 e.printStackTrace ();

109 } catch (CodecException e) {

110 e.printStackTrace ();

111 } catch (OntologyException e) {

112 e.printStackTrace ();

113 }

114 }

115
116 AID df = getDefaultDF ();

117 ACLMessage adminSubs = DFService.createSubscriptionMessage(

this , df , adminTemplate , sc);

118 convList.registerConversation(adminSubs.getConversationId ()

);

119
120 addBehaviour(new AdminSubscribeBehaviour(this , adminSubs ,

adminAgents));

121
122 addBehaviour(new GWReceiveBehaviour(this));

123 }

124
125 /**

126 *

127 */

128 @Override

129 protected void processCommand(java.lang.Object command){

130 if (command instanceof CommandPackage){

131 CommandPackage cp = (CommandPackage)command;

132 addBehaviour(new LaunchTraceBehave(this , cp));

133 }

134 else {

135 //todo throw exception to alert gw and webapp/user of

error

136 System.out.println("erereorerer");

137 releaseCommand(command);

168

138 }

139 }

140
141 /**

142 * Get the CommandPackage assosciated with the conversation

ID supplied

143 * Remove the CommandPackage from the map

144 * Deregisters the conversation ID with the agent

145 *

146 * @param conversationID to match

147 * @return commandpackage assosciated with conversationID

148 */

149 public CommandPackage getMatchingCommand(String

conversationID){

150 convList.deregisterConversation(conversationID);

151 return activeCommands.remove(conversationID);

152 }

153
154 /**

155 * Adds an entry in the map of activeCommands

156 *

157 * @param convID

158 * @param cp

159 */

160 public void addCommand(String convID , CommandPackage cp){

161 activeCommands.put(convID , cp);

162 }

163
164 /**

165 * Returns the conversationlist of this agent

166 *

167 * @return the ConversationList of this agent

168 */

169 protected ConversationList getConvList (){

170 return convList;

171 }

172
173 /**

174 * Returns the GregorianCalendar of this agent

175 *

176 * @return the calendar of this agent

177 */

178 protected GregorianCalendar getCalendar (){

179 return myCal;

180 }

181
182 }//class

169

C.4.2 GWReceiveBehaviour

1 package kripos.gateway;

2
3 import java.util.ArrayList;

4
5 import jade.content.Concept;

6 import jade.content.ContentElement;

7 import jade.content.lang.Codec.CodecException;

8 import jade.content.onto.OntologyException;

9 import jade.content.onto.UngroundedException;

10 import jade.content.onto.basic.Action;

11 import jade.core.behaviours.CyclicBehaviour;

12 import jade.lang.acl.ACLMessage;

13 import jade.lang.acl.MessageTemplate;

14 import kripos.ontology.TraceResult;

15 import kripos.ontology.TraceResultList;

16 import kripos.ontology.UpdateTime;

17
18 /**

19 * @author oysteine

20 * @version 1.0

21 *

22 */

23 public class GWReceiveBehaviour extends CyclicBehaviour {

24 private static final long serialVersionUID =

2014289984738025171L;

25 private GWAgent myGWAgent;

26
27 /**

28 * @param a

29 */

30 public GWReceiveBehaviour(GWAgent a) {

31 super(a);

32 myGWAgent = a;

33 }

34
35 /* (non -Javadoc)

36 * @see jade.core.behaviours.Behaviour#action ()

37 */

38 @Override

39 public void action () {

40 MessageTemplate mt = myGWAgent.getConvList ().

getMessageTemplate ();

41 ACLMessage msg = myAgent.receive(mt);

42 if(msg != null){

43 handle(msg);

44 }

45 block (100); //this SHOULD work without timeout

46 //block();

47 }

48
49 /**

50 * Handles incoming messages.

170

51 * If the received action is not understood a NOT_UNDERSTOOD

messages is returned to the sender.

52 *

53 * @param msg incoming {@link jade.lang.acl.ACLMessage}

54 */

55 private void handle(ACLMessage msg){

56 try {

57 ContentElement content = myAgent.getContentManager ().

extractContent(msg);

58 Concept action = ((Action)content).getAction ();

59
60 if (action instanceof TraceResultList){

61 TraceResultList trl = (TraceResultList)action;

62 CommandPackage cp = myGWAgent.getMatchingCommand(msg.

getConversationId ());

63 ArrayList <TraceResult > resList = new ArrayList <

TraceResult >();

64 for(int i=0;i<trl.getTraceResult ().size();i++){

65 resList.add((TraceResult)trl.getTraceResult ().get(i))

;

66 }

67 if(cp.getType ().equalsIgnoreCase("TRACE -CBG")){

68 cp.setCBGResults(resList);

69
70 }

71 else if (cp.getType ().equalsIgnoreCase("TRACE -GEOPING")

){

72 cp.setGeoPingResults(resList);

73 }

74
75 cp.setRepTime(myGWAgent.getCalendar ().getTime ());

76 if(trl.getDoneStatus ().equalsIgnoreCase("OK")){

77 cp.setSuccessful(true);}

78 else{

79 cp.setSuccessful(false);

80 }

81 myGWAgent.releaseCommand(cp);

82 }

83 else if (action instanceof UpdateTime){

84 UpdateTime upd = (UpdateTime)((Action)content).

getAction ();

85 long offset = Math.round(upd.getHasOffset ());

86 myGWAgent.getCalendar ().setTimeInMillis(offset +

myGWAgent.getCalendar ().getTimeInMillis ());

87 //log to SysLog

88 }

89 else {

90 ACLMessage reply = msg.createReply ();

91 msg.setPerformative(ACLMessage.NOT_UNDERSTOOD);

92 myAgent.send(reply);

93 }

94 }

95 catch (UngroundedException e) {

96 e.printStackTrace ();

171

97 }

98
99 catch (CodecException e) {

100 e.printStackTrace ();

101 }

102
103 catch (OntologyException e) {

104 e.printStackTrace ();

105 }

106 }

107
108 }//class

172

C.4.3 LaunchTraceBehave

1 package kripos.gateway;

2
3 import java.math.BigInteger;

4 import java.util.GregorianCalendar;

5 import java.util.Iterator;

6 import java.util.Set;

7 import jade.content.lang.Codec.CodecException;

8 import jade.content.lang.sl.SLCodec;

9 import jade.content.onto.OntologyException;

10 import jade.content.onto.basic.Action;

11 import jade.core.AID;

12 import jade.core.behaviours.SimpleBehaviour;

13 import jade.domain.mobility.MobilityOntology;

14 import jade.lang.acl.ACLMessage;

15 import jade.lang.acl.MessageTemplate;

16 import kripos.ontology .*;

17
18 /**

19 * Launched by GWAgent when a CommandPackage containing

instructions to commence a trace is received

20 *

21 * @author oysteine

22 * @version 1.0

23 */

24 public class LaunchTraceBehave extends SimpleBehaviour {

25 private static final long serialVersionUID =

4144187902498096653L;

26 private CommandPackage command;

27 private GWAgent myGWAgent;

28 private boolean done;

29
30 /**

31 * Creates an instance of this behaviour

32 *

33 * @param a the GWAgent owning this instance

34 * @param the CommandPackage containing information about

what to do

35 */

36 public LaunchTraceBehave(GWAgent a, CommandPackage cp) {

37 super(a);

38 command = cp;

39 myGWAgent = a;

40 }

41
42 /* (non -Javadoc)

43 * @see jade.core.behaviours.Behaviour#action ()

44 */

45 @Override

46 public void action () {

47 //parse package

48 command.getReqTime ();

49 command.getTarget ();

173

50 command.getType ();

51
52 // construct and fill CreateCase , Case and Session

53 CreateCase cc = new CreateCase ();

54 OntAddress target;

55 if(isIP()){

56 IP ip = new IP();

57 ip.setHasName(command.getTarget ());

58 target = ip;

59 }

60 else{

61 DNSname dns = new DNSname ();

62 dns.setHasName(command.getTarget ());

63 target = dns;

64 }

65 Case c = new Case();

66 c.setCaseID ((int)Math.round((Math.random ())*100000000));

67 c.setCaseName("testcase"); //todo get from GUI

68
69 Session s = new Session ();

70 s.setCaseID(c.getCaseID ());

71
72 s.setHasBaseAddress(target);

73 c.setCaseSessions(s);

74 cc.setHasCase(c);

75
76 OntDate date = new OntDate ();

77 long time = GregorianCalendar.getInstance ().getTimeInMillis

();

78 date.setTime(time);

79 cc.setHasDate(date);

80 date.setTime(time +10000);

81 c.setCaseStartDate(date);

82
83 Action act = new Action(getRandomAdminAgent (),cc);

84 String convID = sendRequest(act);

85 myGWAgent.addCommand(convID , command);

86 MessageTemplate mt = MessageTemplate.MatchConversationId(

convID);

87 myAgent.blockingReceive(mt);

88 }

89
90 /**

91 *

92 * @return true if the String represents and IP address and

not DNS name

93 */

94 private boolean isIP(){

95 String toParse = command.getTarget ().replace(’.’, ’0’);

96 try{

97 new BigInteger(toParse);

98 return true;

99 }

100 catch(NumberFormatException nfe){

174

101 return false;

102 }

103 }

104
105 /**

106 * Get a random AdminAgent from the hashmap of AdminAgents

107 *

108 * @return the AID of the selected AdminAgent

109 */

110 private AID getRandomAdminAgent (){

111 int size = myGWAgent.adminAgents.size();

112 int random = (int)Math.round((Math.random ())*size);

113 Set <AID > tempSet = myGWAgent.adminAgents.keySet ();

114 Iterator <AID > it = tempSet.iterator ();

115 for(int i=0;i<random -1;i++){

116 it.next();

117 }

118 return it.next();

119 }

120
121 /**

122 * Utility method for sending ACLMessages

123 * <p>

124 * Registers the conversationID in the convList

125 * to avoid loosing any reply

126 *

127 * @param action the action that is to be wrapped in an

ACLMessage

128 * @return the conversationID for the created ACLMessage

129 */

130 private String sendRequest(Action action){

131 try {

132 ACLMessage qMsg = new ACLMessage(ACLMessage.REQUEST);

133 String convID = myGWAgent.getConvList ().

registerConversation ();

134 qMsg.setConversationId(convID);

135 qMsg.setLanguage(new SLCodec (0).getName ());

136 qMsg.setOntology(MobilityOntology.getInstance ().getName ()

);

137 myAgent.getContentManager ().fillContent(qMsg , action);

138 qMsg.addReceiver(action.getActor ());

139 // register conversation with agent to get correct

reception of reply

140 myAgent.send(qMsg);

141 return convID;

142 }

143 catch (CodecException e) {

144 e.printStackTrace ();

145 return null;

146 }

147 catch (OntologyException e) {

148 e.printStackTrace ();

149 return null;

150 }

175

151 }

152
153 /* (non -Javadoc)

154 * @see jade.core.behaviours.Behaviour#done()

155 */

156 @Override

157 public boolean done() {

158 return done;

159 }

160
161 }//class

176

C.4.4 AdminSubscribeBehaviour

1 package kripos.gateway;

2
3 import java.util.concurrent.ConcurrentHashMap;

4 import jade.content.ContentElement;

5 import jade.content.lang.Codec.CodecException;

6 import jade.content.lang.sl.SLCodec;

7 import jade.content.onto.OntologyException;

8 import jade.content.onto.UngroundedException;

9 import jade.content.onto.basic.Action;

10 import jade.content.onto.basic.Result;

11 import jade.core.AID;

12 import jade.core.ContainerID;

13 import jade.domain.DFService;

14 import jade.domain.FIPAException;

15 import jade.domain.FIPAAgentManagement.DFAgentDescription;

16 import jade.domain.JADEAgentManagement.WhereIsAgentAction;

17 import jade.domain.mobility.MobilityOntology;

18 import jade.lang.acl.ACLMessage;

19 import jade.lang.acl.MessageTemplate;

20 import jade.proto.SubscriptionInitiator;

21
22 /**

23 * Subscribes to changes in registered AdminAgents by the AMS

Service.

24 * Any changes are recorded in a ConcurrentHashMap

25 * that was first initialized by setup().

26 *

27 * @author oysteine

28 * @version 1.0

29 */

30 public class AdminSubscribeBehaviour extends

SubscriptionInitiator {

31
32 private static final long serialVersionUID =

988748612411732543L;

33 private GWAgent myAgent;

34 private ConcurrentHashMap <AID , String > myMap;

35
36 /**

37 * Constructor

38 *

39 * @param a The agent this instance belongs to

40 * @param msg The message used by the behaviour to initiate

subscription

41 * @param map The hashmap for recording changes.

42 */

43 public AdminSubscribeBehaviour(GWAgent a, ACLMessage msg ,

ConcurrentHashMap <AID , String > map) {

44 super(a, msg);

45 myAgent = a;

46 myMap = map;

47 }

177

48
49 /**

50 * Handles incoming inform messages that contains changes in

registered AdminAgents.

51 * The AMS is queried for the Location of any new AdminAgents

.

52 * Removed AdminAgents are delete from the hashmap.

53 */

54 @Override

55 protected void handleInform(ACLMessage inform) {

56 try {

57 DFAgentDescription [] dfds =

58 DFService.decodeNotification(inform.getContent ());

59 for(int i=0; i<dfds.length;i++){

60 AID aid = dfds[i]. getName ();

61
62 if(myMap.containsKey(aid)){

63 /* There seems to be a problem with the AMS , messages

containing

64 * removal information are sent without reason. This

functionality disabled.

65 myMap.remove(aid);

66 */

67 }

68 else{

69 WhereIsAgentAction wiaa = new WhereIsAgentAction ();

70 wiaa.setAgentIdentifier(aid);

71 AID myAMS = myAgent.getAMS ();

72 Action act = new Action(myAMS , wiaa);

73
74 ACLMessage qMsg = new ACLMessage(ACLMessage.REQUEST);

75 String convID = myAgent.getConvList ().

registerConversation ();

76 qMsg.setConversationId(convID);

77
78 qMsg.setLanguage(new SLCodec (0).getName ());

79 qMsg.setOntology(MobilityOntology.getInstance ().

getName ());

80 try {

81 myAgent.getContentManager ().fillContent(qMsg , act);

82 qMsg.addReceiver(act.getActor ());

83 // register conversation with agent to get correct

reception

84 myAgent.send(qMsg);

85
86 MessageTemplate mt = MessageTemplate.

MatchConversationId(convID);

87 ACLMessage resp = myAgent.blockingReceive(mt,

1000000);

88 myAgent.getConvList ().deregisterConversation(convID

);

89 ContentElement ce = myAgent.getContentManager ().

extractContent(resp);

90 Result result = (Result) ce;

178

91 ContainerID cid = (ContainerID)result.getValue ();

92 myMap.put(aid , cid.getName ());

93
94 } catch (UngroundedException e) {

95 e.printStackTrace ();

96 } catch (CodecException e) {

97 e.printStackTrace ();

98 } catch (OntologyException e) {

99 e.printStackTrace ();

100 }

101 }

102 }

103 }

104 catch (FIPAException fe) {

105 fe.printStackTrace ();

106 }

107 }

108
109 }//class

179

C.4.5 CommandPackage

1 //part of design

2
3 package kripos.gateway;

4
5 import java.util.Date;

6 import java.util.ArrayList;

7
8 import kripos.geo.DelayVector;

9 import kripos.geo.Landmark;

10 import kripos.ontology.TraceResult;

11
12 /**

13 * Class for wrapping all necessary information in a bundle for

easy exchange between

14 * the multi -agent system and the gateway -classes.

15 *

16 * @author oysteine

17 * @version 1.0

18 */

19 public class CommandPackage {

20 private String target; //the target of the trace

21 private String type; //trace type. may be extended to also

cover securing of content etc

22 private Date reqTime;// when was the trace requested

23 private Date repTime;// when was the trace finalized

24 private boolean successful = false; //the final state of the

trace

25 private ArrayList <Landmark > geoPingResults;

26 private ArrayList <TraceResult > CBGResults = new ArrayList <

TraceResult >();

27 private ArrayList <DelayVector > delayVectors = new ArrayList <

DelayVector >();

28
29 /**

30 * Construct an empty CommandPackage.

31 * Any fields must be filled by the relevant set methods.

32 */

33 public CommandPackage () {

34 }

35
36 public void addResult(TraceResult tr){

37 CBGResults.add(tr);

38 }

39
40 /**

41 *

42 * @return the cBGResults

43 */

44 public ArrayList <TraceResult > getCBGResults () {

45 return CBGResults;

46 }

47

180

48
49 /**

50 * @param results the cBGResults to set

51 */

52 public void setCBGResults(ArrayList <TraceResult > results) {

53 CBGResults = results;

54 }

55
56
57 /**

58 * @return the geoPingResults

59 */

60 public ArrayList getGeoPingResults () {

61 return geoPingResults;

62 }

63
64
65 /**

66 * @param geoPingResults the geoPingResults to set

67 */

68 public void setGeoPingResults(ArrayList geoPingResults) {

69 this.geoPingResults = geoPingResults;

70 }

71
72
73 /**

74 * @return the repTime

75 */

76 public Date getRepTime () {

77 return repTime;

78 }

79
80
81 /**

82 * @param repTime the repTime to set

83 */

84 public void setRepTime(Date repTime) {

85 this.repTime = repTime;

86 }

87
88
89 /**

90 * @return the reqTime

91 */

92 public Date getReqTime () {

93 return reqTime;

94 }

95
96
97 /**

98 * @param reqTime the reqTime to set

99 */

100 public void setReqTime(Date reqTime) {

101 this.reqTime = reqTime;

181

102 }

103
104
105 /**

106 * @return the successful

107 */

108 public boolean isSuccessful () {

109 return successful;

110 }

111
112
113 /**

114 * @param successful the successful to set

115 */

116 public void setSuccessful(boolean successful) {

117 this.successful = successful;

118 }

119
120
121 /**

122 * @return the target

123 */

124 public String getTarget () {

125 return target;

126 }

127
128
129 /**

130 * @param target the target to set

131 */

132 public void setTarget(String target) {

133 this.target = target;

134 }

135
136
137 /**

138 * @return the type

139 */

140 public String getType () {

141 return type;

142 }

143
144
145 /**

146 * @param type the type to set

147 */

148 public void setType(String type) {

149 this.type = type;

150 }

151
152 public ArrayList <DelayVector > getDelayVectors (){

153 return delayVectors;

154 }

155

182

156 }//class

183

C.5 Ping Classes

C.5.1 MinRTT

1 package kripos.geo.ping;

2 //TODO support ping4 and ping6 simultaneously

3 /*

4 * Some of the functionality of this class is adapted from

RTTOmeter.

5 * (Code originally released under GPLv2)

6 * The RTTOmeter application is available from: http :// idmaps.

eecs.umich.edu/rttometer/

7 * The GPLv2 is available at: http ://www.gnu.org/copyleft/gpl.

html

8 **/

9
10 import java.io.BufferedReader;

11 import java.io.IOException;

12 import java.io.InputStream;

13 import java.io.InputStreamReader;

14 import java.nio.charset.Charset;

15 import java.util.ArrayList;

16 import java.util.Arrays;

17
18 /**

19 *

20 * @author oysteine

21 * @version 1.0

22 *

23 */

24 public class MinRTT {

25 private float CI = 0;

26 private float CII = 0;

27 private float CIII = 0;

28 private ArrayList <PingItem > probeList = new ArrayList <

PingItem >();

29 private float minimumRTT = 99999.0f;

30 private float maximumRTT = 0;

31 private float epsilon = MINEPS;// automatically changed based

on minimumRTT

32
33 /* default values of epsilon */

34 public final static float UNINETTEPS = 0.7f; // single AS,

most paths <<20ms

35 public final static float MINEPS = 2; // <=50ms

36 public final static float MEDEPS = 4; //50-150ms

37 public final static float BIGEPS = 6; // >150ms

38
39 private float CI_threshold = 0.8f; // confidence in CI

40 private final int EPS_MIN_PROBES = 100; //magic number. only

for measuring between landmarks

41 private boolean estimate_CI_confidence;

42

184

43 private int listCounter = 0; //used to resume calculations if

the probeList is extended

44 private float accCi = 0; // cumulative

45 private float accCii = 0; // cumulative

46 private float accCiii = 0; // cumulative

47 private int accN = 0; // cumulative

48
49 private int numProbes; // Updated if successive runtimes

50 private int rePingCnt = 0;

51 //used by rePing ()

52 private String previousAddress;

53 private int previousNumPings;

54 private double previousPingDistance;

55
56 /**

57 *

58 */

59 public MinRTT (){

60 }

61
62 /**

63 *

64 * @param address

65 * @param numPings

66 * @param pingDistance

67 * @throws HostUnreachableException

68 */

69 public ArrayList ping(String address , int numPings , double

pingDistance ,

70 boolean reset) throws HostUnreachableException{

71 if(reset){

72 reset();

73 }

74
75 previousAddress = address;

76 previousNumPings = numPings;

77 previousPingDistance = pingDistance;

78
79 int lastSequence = 0;

80 listCounter = 0;

81
82 try {

83 Runtime runtime = Runtime.getRuntime ();

84 String command = "ping -i"+pingDistance+" -c"+numPings+"

" + address;

85 Process p = runtime.exec(command);

86 numProbes += numPings;

87 InputStream ip = p.getInputStream ();

88 InputStreamReader isr = new InputStreamReader(ip, Charset

.forName("ISO -8859 -1"));

89 BufferedReader br = new BufferedReader(isr);

90
91 String temp = null;

92 while((temp = br.readLine ()) !=null){

185

93 // handle unreachable host

94 if(temp.contains("0 received , 100% packet loss")){

95 for(int i=0;i<numPings;i++){

96 probeList.add(new PingItem(PingItem.LOST ,

lastSequence+i+1 , -999999));

97 listCounter ++;

98 }

99 throw new HostUnreachableException("100% packet loss"

);

100 }

101
102 //sort out filtered replies

103 if(temp.contains("Packet filtered")){

104 int cutSub = temp.indexOf("icmp_seq=");

105 String subTemp = temp.substring(cutSub);

106 int cutSeq = subTemp.indexOf(’=’);

107 int cutSeqEnd = subTemp.indexOf("Packet filtered");

108 String seqString = subTemp.substring(cutSeq+1,

cutSeqEnd -1);

109 int seq = Integer.parseInt(seqString);

110
111 int seqDelta = seq - lastSequence;

112 if(seqDelta > 1){

113 for(int i=0; i<seqDelta;i++){

114 PingItem lostPi = new PingItem(PingItem.LOST ,

lastSequence+i, -999999);

115 probeList.add(lostPi);

116 listCounter ++;

117 }

118 }

119
120 lastSequence = seq;

121 PingItem pi = new PingItem(PingItem.FILTERED , seq ,

-999999);

122 probeList.add(pi);

123 listCounter ++;

124 throw new HostUnreachableException("Packet filtering

on path to host");

125 }

126
127 // normal pingitem , if not 64 bytes it is not a regular

128 // ICMP_ECHO_REPLY packet and we ignore it

129 if(temp.contains("64 bytes from")){

130 int cutPoint = temp.indexOf("=");

131 String cutTemp = temp.substring(cutPoint);

132 int seqEndPoint = cutTemp.indexOf("ttl");

133 String seqString = cutTemp.substring(1,seqEndPoint -1)

;

134 int seq = Integer.parseInt(seqString);

135
136 //adds missing probes as they are not listed by ping’

s output

137 int seqDelta = seq - lastSequence;

138 if(seqDelta > 1){

186

139 for(int i=0; i<seqDelta;i++){

140 PingItem lostPi = new PingItem(PingItem.LOST ,

lastSequence+i, -999999);

141 probeList.add(lostPi);

142 listCounter ++;

143 }

144 }

145
146 lastSequence = seq;

147 int timePoint = temp.lastIndexOf("=");

148 int endPoint = temp.lastIndexOf("ms");

149 String time = temp.substring(timePoint+1, endPoint -1)

;

150 float rtt = Float.parseFloat(time);

151
152 PingItem pi = new PingItem(PingItem.NORMAL_RTT , seq ,

rtt);

153 probeList.add(pi);

154 listCounter ++;

155 }

156
157 if(temp.contains("rtt min/avg/max/mdev = ")){

158
159 // common variables

160 int cutPoint = temp.indexOf("=");

161 String cutTemp = temp.substring(cutPoint +2);

162 int firstSlashPoint = cutTemp.indexOf("/");

163
164 // maxRTT //not needed

165 int maxTempEndPointLong = cutTemp.indexOf("ms");

166 String maxTempLong = cutTemp.substring(0,

maxTempEndPointLong);

167 int maxTempEndPoint = maxTempLong.lastIndexOf("/");

168 String maxTemp = maxTempLong.substring(0,

maxTempEndPoint);

169 int maxEndPoint = maxTemp.lastIndexOf("/");

170 int maxPoint = maxTemp.indexOf("/");

171 String max = maxTemp.substring(maxPoint+1,

maxEndPoint);

172 float maxRtt = Float.parseFloat(max);

173 if (maximumRTT < maxRtt){

174 maximumRTT = maxRtt;

175 }

176
177 // minRTT

178 String min = cutTemp.substring(0, firstSlashPoint);

179 float minRtt = Float.parseFloat(min);

180 if(minimumRTT > minRtt){

181 minimumRTT = minRtt;

182 }

183 }//if

184
185 }//while

186 }//try

187

187 catch (IOException e) {

188 throw new HostUnreachableException(e.getMessage (),e.

getCause ());

189 }

190 return probeList;

191 }

192
193 /**

194 *

195 *

196 * Method adapted from RTTOmeter application

197 */

198 public int computeCRegions(boolean estimateConfidence){

199 estimate_CI_confidence = estimateConfidence;

200 float ci = 0;

201 float cii = 0;

202 float ciii = 0;

203 int n = 0; //total number of phaseplot points (not probes)

204 float val = 0;

205 float w1 = 0;

206 float w2 = 0;

207 float w = 0;

208 int loopStart = 0;

209
210 if(minimumRTT <20){

211 epsilon = UNINETTEPS;

212 }

213 else if(minimumRTT <50){

214 epsilon = MINEPS;

215 }

216 else if (minimumRTT <150){

217 epsilon = MEDEPS;

218 }

219 else{

220 epsilon = BIGEPS;

221 }

222
223 if(probeList.size() != listCounter){

224 loopStart = (probeList.size() - listCounter) -1; // include

the last probe from the previous run

225 }

226
227 for(int i=loopStart;i<probeList.size() -1;i++) {//we do not

want to compare the last pingitem to null

228 PingItem piCurrent = probeList.get(i);

229 PingItem piNext = probeList.get(i+1);

230
231 // Classify the point in the phase -plot

232 if(piCurrent.getType () == PingItem.NORMAL_RTT && piNext.

getType () == PingItem.NORMAL_RTT){

233 n++;

234
235 /* Point in CI, CII , or CIII */

236 if((piCurrent.getRTT () - minimumRTT) <= epsilon){

188

237 w1 = 1.0f;

238 }

239 else {

240 val = ((int)((piCurrent.getRTT () - minimumRTT)/

epsilon) + 1);

241 w1 = 1.0f/val;

242 }

243
244 if((piNext.getRTT () - minimumRTT) <= epsilon){

245 w2 = 1.0f;

246 }

247 else {

248 val = ((int)((piNext.getRTT () - minimumRTT)/epsilon)

+ 1);

249 w2 = 1.0f/val;

250 }

251
252 w = w1 * w2;

253 }

254 else {

255 /* Point in CII or CIII */

256 if(piCurrent.getType () == PingItem.LOST) {

257 w1 = 0.0f;

258 } else {

259 val = ((int)((piCurrent.getRTT () - minimumRTT)/

epsilon) + 1);

260 w1 = 1.0f/val;

261 }

262
263 if(piNext.getType () == PingItem.LOST) {

264 w2 = 0.0f;

265 } else {

266 val = ((int)((piNext.getRTT () - minimumRTT)/epsilon)

+ 1);

267 w2 = 1.0f/val;

268 }

269
270 w = w1 * w2;

271 }

272
273 ci += w;

274 if(w1 == 1 || w2 == 1){

275 /* This point in CII */

276 cii += (1-w);

277 }

278 else{

279 /* Definitely CIII */

280 ciii += (1-w);

281 }

282 }

283 accCi=+ci;

284 accCii =+cii;

285 accCiii =+ciii;

286 accN=+n;

189

287
288 if(accN > 0) {

289 CI = accCi/accN;

290 CII = accCii/accN;

291 CIII = accCiii/accN;

292 }

293 if(estimate_CI_confidence && CI < CI_threshold && rePingCnt

<= 2){

294 rePing ();

295 }

296 return n;

297
298 }// compute

299
300 /**

301 *

302 *

303 */

304 private void rePing () {// reuses original input. TODO:estimate

better values. wait() if c2 high?

305 rePingCnt ++;

306 try {

307 ping(previousAddress , previousNumPings ,

previousPingDistance , false);

308 computeCRegions(estimate_CI_confidence);

309 } catch (HostUnreachableException e) {

310 // TODO Auto -generated catch block

311 e.printStackTrace ();

312 }

313 }

314
315 private void reset(){

316 accCi = 0;

317 accCii = 0;

318 accCiii = 0;

319 accN = 0;

320 rePingCnt = 0;

321 numProbes = 0;

322 CI = 0;

323 CII = 0;

324 CIII = 0;

325 probeList.clear();

326 minimumRTT = 99999.0f;

327 maximumRTT = 0;

328 }

329
330 /**

331 * Estimates epsilon from the ping measurements

332 *

333 * Method adapted from RTTOmeter application

334 */

335 public float estimateEpsilon (){

336 int n = 0;

337 float eps = -1.0f;

190

338 float[] rtts = new float[numProbes];

339
340 /* make array of rtts from probelist */

341 for(int i=0;i<probeList.size();i++) {

342 PingItem piCurrent = probeList.get(i);

343 if(piCurrent.getType () == PingItem.NORMAL_RTT){

344 rtts[n++] = piCurrent.getRTT ();

345 }

346 }

347
348 if (n >= (0.8 * EPS_MIN_PROBES)) { /* At least 80% of the

probes are successful */

349 Arrays.sort(rtts);

350 ModeNode mn = new ModeNode ();

351 float mode_all = mn.mode(rtts , n);

352
353 /* Estimate epsilon */

354 eps = 2*(mode_all - rtts [0]); //or use minimumRTT , same

value

355
356 /* Make sure eps >=0, mode may be very close to min ,

357 * and due to precision the subtraction might give

negative result

358 */

359 if(eps < 0){

360 eps = 0.0f;

361 }

362 }

363 return eps;

364 }

365
366 /*

367 * Getter methods

368 */

369
370 public float getCI(){

371 return CI;

372 }

373
374 public float getCII (){

375 return CII;

376 }

377
378 public float getCIII (){

379 return CIII;

380 }

381
382 public float getMaxRTT (){

383 return maximumRTT;

384 }

385
386 public float getMinRTT (){

387 return minimumRTT;

388 }

191

389
390 }//class

192

C.5.2 ModeNode

1 package kripos.geo.ping;

2 /*

3 * Most of the functionality of this class is adapted from

RTTOmeter.

4 * While the main RTTOmeter application is released under the

GPLv2 ,

5 * the file mode.c is apparently not (breach of GPL?).

6 * The notice below is required by the original author.

7 */

8
9 /*

10 * Copyright (c) 2003, Amgad Zeitoun.

11 * All rights reserved.

12 *

13 * Redistribution and use in source and binary forms are

permitted

14 * provided that the above copyright notice and this paragraph

are

15 * duplicated in all such forms and that any documentation ,

16 * advertising materials , and other materials related to such

17 * distribution and use acknowledge that the software was

developed

18 * by Amgad Zeitoun at the University of Michigan , Ann Arbor.

The

19 * name of the University may not be used to endorse or promote

20 * products derived from this software without specific prior

21 * written permission.

22 * THIS SOFTWARE IS PROVIDED ‘‘AS IS’’ AND WITHOUT ANY EXPRESS

OR

23 * IMPLIED WARRANTIES , INCLUDING , WITHOUT LIMITATION , THE

IMPLIED

24 * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR

PURPOSE.

25 *

26 * Author:

27 * Amgad Zeitoun (azeitoun@eecs.umich.edu)

28 */

29
30 import java.util.Hashtable;

31
32 public class ModeNode {

33 private Long key;

34 private long cnt;

35
36 /**

37 *

38 * @param x

39 * @return

40 */

41 private int ceiling(float x){

42 if((int)(Math.abs(x) + 0.5) > (int)(Math.abs(x))){

43 return (int)(Math.abs(x+0.5));

193

44 }

45 else {

46 return (int)(Math.abs(x));

47 }

48 }

49
50 /**

51 *

52 * @param m1

53 * @param m2

54 * @return

55 */

56 public int matchNode(ModeNode m1, ModeNode m2){

57 if(m1.getKey () < m2.getKey ()) {

58 return -1;

59 }

60
61 if(m1.getKey () > m2.getKey ()) {

62 return 1;

63 }

64 return 0;

65 }

66
67
68 /**

69 * Calaculate the mode of an array of values with length

len

70 * @param array

71 * @param len

72 * @return

73 */

74 public float mode(float[] array , int len){

75 float mode = -1.0f;

76 long max_cnt = 0;

77 long val = 0;

78 boolean dbl_precision;

79 long key;

80
81 if (array.length <= 0){

82 return mode;

83 }

84 Hashtable <Long ,ModeNode > hashtable = new Hashtable <Long ,

ModeNode >(array.length);

85
86 /* If the RTTs are very small (i.e., less than 1 ms), make

double digitis mode

87 precision , otherwise make it a single digit

precision */

88 /* NOTE: I assume that array is sorted. Which is true ,

because I call mode()

89 after I qsort the array

90 */

91
92 if (array [0] < 1.0){

194

93 dbl_precision = true;

94 }

95 else{

96 dbl_precision = false;

97 }

98
99 for (float element : array) {

100
101 /* Using a single digit precision by default , except when

the values

102 of RTTs are really small (<1.0ms) */

103 if(dbl_precision){

104 key = ceiling(element * 100);

105 }

106 else{

107 key = ceiling(element * 10);

108 }

109
110 ModeNode m = hashtable.get(key);

111 if(m == null) {

112 m = new ModeNode ();

113 m.setKey(key);

114 hashtable.put(m.getKey (), m);

115 }

116
117 m.incCnt ();

118
119 if(m.getCnt () > max_cnt) {

120 /* we have a mode here */

121 max_cnt = m.getCnt ();

122 val = key;

123 }

124 /* TODO: detect multiple modes */ //dette fikser vi

125 }

126
127 /* The mode should be repeated more than once! */

128 /* Just in case we don’t have any mode at all */

129 if (max_cnt > 1) {

130 if(dbl_precision){

131 mode = (float)val /100;

132 }

133 else{

134 mode = (float)val /10;

135 }

136 }

137 return mode;

138
139 }//mode

140
141 /*

142 * Setter and getter methods

143 */

144
145 public void incCnt (){

195

146 cnt++;

147 }

148
149
150 public long getCnt (){

151 return cnt;

152 }

153
154
155 public Long getKey (){//param?

156 return key;

157 }

158
159
160 public void setKey(Long newKey){

161 key = newKey;

162 }

163
164 }//class

196

C.5.3 PingItem

1 package kripos.geo.ping;

2
3 public class PingItem {

4 public final static int FILTERED =-2;

5 public final static int LOST=-1;

6 public final static int NORMAL_RTT =0;

7 public final static int MIN_RTT =1;//not needed

8 public final static int MAX_RTT =2;//not needed

9 public final static int AVG_RTT =3;//not needed

10 public final static int MED_RTT =4;//not needed

11 private final int type;

12 private final int sequence;

13 private final float rtt;

14
15 /**

16 *

17 * @param newType

18 * @param seqnr

19 * @param rtt

20 */

21 public PingItem(int newType , int seqnr , float rtt){

22 type = newType;

23 sequence = seqnr;

24 this.rtt = rtt;

25 }

26
27 /*

28 * Getter methods

29 */

30
31 /**

32 * The type indicates if this PingItem represents

33 * real ping information or a lost packet

34 *

35 * @return the type of this PingItem

36 */

37 public int getType (){

38 return type;

39 }

40
41 /**

42 * The sequence number only has local meaning.

43 *

44 * @return the sequence number of this PingItem

45 */

46 public int getSequence (){

47 return sequence;

48 }

49
50 /**

51 *

52 * @return the RTT of this PingItem

197

53 */

54 public float getRTT (){

55 return rtt;

56 }

57
58 }//class

198

C.5.4 HostUnreachableException

1 package kripos.geo.ping;

2
3 public class HostUnreachableException extends Exception {

4
5 private static final long serialVersionUID =

-4310128500792634318L;

6
7 public HostUnreachableException () {

8 }

9
10 /**

11 *

12 * @param message

13 */

14 public HostUnreachableException(String message) {

15 super(message);

16 }

17
18 /**

19 *

20 * @param cause

21 */

22 public HostUnreachableException(Throwable cause) {

23 super(cause);

24 }

25
26 /**

27 *

28 * @param message

29 * @param cause

30 */

31 public HostUnreachableException(String message , Throwable

cause) {

32 super(message , cause);

33 }

34
35 }//class

199

C.6 Servlet Classes

C.6.1 GetTrace

1 package kripos.math.servlet;

2
3
4
5 import java.io.*;

6 import javax.servlet .*;

7 import javax.servlet.http .*;

8
9 /**

10 * Display a page where an IP to trace can be enter.

11 * Display a map with trace information if an IP has been

entered.

12 *

13 * @author oysteine

14 */

15 public class GetTrace extends HttpServlet {

16
17 private static final long serialVersionUID =

6720480250134837969L;

18
19
20 @Override

21 public void doGet(HttpServletRequest request ,

HttpServletResponse response)

22 throws IOException , ServletException

23 {

24 String ip = request.getParameter("ip");

25
26 response.setContentType("text/html");

27 PrintWriter out = response.getWriter ();

28 out.println("<html >");

29 out.println("<head >");

30 out.println("<title >Trace IP </title >");

31 out.println(" </head >");

32 out.println("<body >");

33
34 out.println("<h3>Perform tracing </h3>");

35 out.println("<form action =\"Map\" method=POST >");

36 out.println("IP:");

37 out.print("<input type=text size =20 name=ip");

38 if (ip != null) {

39 out.print(" value =\"" + ip + "\"");

40 }

41 out.println(">");

42 out.println("
");

43 out.println("<input type=submit name=action value =\"Get

trace\"> ");

44 out.println("<input type=submit name=action value =\" Force

trace\">");

200

45 out.println(" </form >");

46
47 out.println(" </body >");

48 out.println(" </html >");

49 }

50
51 @Override

52 public void doPost(HttpServletRequest request ,

HttpServletResponse response)

53 throws IOException , ServletException

54 {

55 doGet(request , response);

56 }

57 }

201

C.6.2 GetMap

1 package kripos.math.servlet;

2
3
4 import java.io.ByteArrayOutputStream;

5 import java.io.File;

6 import java.io.IOException;

7 import java.io.PrintStream;

8 import java.io.PrintWriter;

9 import java.util.Locale;

10
11 import javax.servlet.ServletContext;

12 import javax.servlet.ServletException;

13 import javax.servlet.http.HttpServlet;

14 import javax.servlet.http.HttpServletRequest;

15 import javax.servlet.http.HttpServletResponse;

16
17 import kripos.geo.openmap.IntersectionInfo;

18 import kripos.geo.openmap.MapDrawer;

19
20 /**

21 * Display a page with the results of a trace.

22 * The trace is performed if not cached already.

23 *

24 * @author oysteine

25 */

26 public class GetMap extends HttpServlet {

27 private static final long serialVersionUID =

7631170050282471534L;

28
29 private static String BASE_PATH = null;

30
31
32 /**

33 * @return path for OpenMap data. Does <i>not </i> end with

separator.

34 */

35 public static String getDataPath () {

36 String path = BASE_PATH;

37 if (path == null) {

38 path = System.getProperty("user.dir") + File.separator +

"data";

39 }

40 return path;

41 }

42
43
44
45 @Override

46 public void doGet(HttpServletRequest request ,

HttpServletResponse response)

47 throws IOException , ServletException

48 {

202

49 ServletContext sc = getServletContext ();

50 if (BASE_PATH == null) {

51 BASE_PATH = sc.getRealPath("") + File.separator + "data";

52 }

53
54 String ip = request.getParameter("ip");

55 String cacheId = request.getParameter("cacheId");

56
57 String strZoom = request.getParameter("zoom");

58 String strLongOffset = request.getParameter("longOffset");

59 String strLatOffset = request.getParameter("latOffset");

60 float zoom = 1.0f;

61 if (strZoom != null) {

62 zoom = Float.parseFloat(strZoom);

63 }

64 double longOffset = 0.0;

65 if (strLongOffset != null) {

66 longOffset = Double.parseDouble(strLongOffset);

67 }

68 double latOffset = 0.0;

69 if (strLatOffset != null) {

70 latOffset = Double.parseDouble(strLatOffset);

71 }

72
73
74
75 String action = request.getParameter("action");

76 boolean forceTrace = false;

77 String retrieval;

78 if ("Force trace".equals(action)) {

79 forceTrace = true;

80 retrieval = "Forced new trace";

81 } else if ("Get trace".equals(action)) {

82 if (TraceCache.hasTraceId(ip)) {

83 retrieval = "Using cached trace";

84 } else {

85 retrieval = "Performed new trace";

86 }

87 } else if ("Zoom in".equals(action)) {

88 retrieval = "Refreshed map of previous trace";

89 } else if ("Zoom out".equals(action)) {

90 retrieval = "Refreshed map of previous trace";

91 } else if ("Move up".equals(action)) {

92 retrieval = "Refreshed map of previous trace";

93 } else if ("Move down".equals(action)) {

94 retrieval = "Refreshed map of previous trace";

95 } else if ("Move left".equals(action)) {

96 retrieval = "Refreshed map of previous trace";

97 } else if ("Move right".equals(action)) {

98 retrieval = "Refreshed map of previous trace";

99 } else {

100 sc.log("Unknown action ’" + action + "’");

101 response.setStatus(HttpServletResponse.

SC_INTERNAL_SERVER_ERROR);

203

102 return;

103 }

104
105 if (ip == null) {

106 sc.log("Destination not specified!");

107 response.setStatus(HttpServletResponse.

SC_INTERNAL_SERVER_ERROR);

108 return;

109 }

110
111 // Perform trace or retrieve cached trace

112 if (cacheId == null) {

113 cacheId = TraceCache.getTraceId(ip, forceTrace);

114 }

115 TraceCacheEntry ce = TraceCache.getCachedTrace(cacheId , ip)

;

116 if (ce == null) {

117 sc.log("Could not find cache id ’" + cacheId + "’ for

address ’" + ip + "’.");

118 response.setStatus(HttpServletResponse.

SC_INTERNAL_SERVER_ERROR);

119 return;

120 }

121
122 IntersectionInfo intersectionInfo = MapDrawer.

getIntersectionInfo(ce.cacheId , ce.circles);

123 //try { Thread.sleep (500); } catch (Exception e) {}

124
125
126 response.setContentType("text/html");

127 PrintWriter out = response.getWriter ();

128 out.println("<html >");

129 out.println("<head >");

130 out.println("<title >Trace of " + ip + "</title >");

131 out.println(" </head >");

132 out.println("<body >");

133
134 out.println("<h3>Trace info </h3>");

135 out.println("Retrieval: " + retrieval + "
");

136 out.println("IP traced: " + ip + "
");

137 out.println("Trace started: " + ce.start + "
");

138 out.println("Trace time: " + ce.runTime + "
");

139 out.printf("<i>The trace information is cached for %d hours

 " +

140 "after last usage </i>
%n",

141 (TraceCache.CACHE_LIFE_TIME / 3600000));

142 out.println("<h3>Trace results </h3>");

143 out.printf(Locale.US,

144 "Estimated confidence region: %,.0f km<sup >2</sup >
%

n",

145 intersectionInfo.polygonArea);

146 out.println("Estimated location: ");

147 if (! intersectionInfo.centroidAvailable) {

148 out.println("(not available)");

204

149 } else {

150 out.println("longitude=" + degToString(intersectionInfo.

centroidLongitude) +

151 ", latitude=" + degToString(intersectionInfo.

centroidLatitude) +

152 "
");

153 }

154 out.println("<table ><tr>");

155 out.println("<td><form action =\"Map\" method=POST >");

156 out.print("<input type=hidden name=ip value =\"" + ip + "\">

");

157 out.print("<input type=hidden name=cacheId value =\"" +

cacheId + "\">");

158 out.print("<input type=hidden name=zoom value =\"" + (zoom *

2) + "\">");

159 out.print("<input type=hidden name=longOffset value =\"" + (

longOffset) + "\">");

160 out.print("<input type=hidden name=latOffset value =\"" + (

latOffset) + "\">");

161 out.println("<input type=submit name=action value =\" Zoom in

\">");

162 out.println(" </form ></td>");

163 out.println("<td><form action =\"Map\" method=POST >");

164 out.print("<input type=hidden name=ip value =\"" + ip + "\">

");

165 out.print("<input type=hidden name=cacheId value =\"" +

cacheId + "\">");

166 out.print("<input type=hidden name=zoom value =\"" + (zoom /

2) + "\">");

167 out.print("<input type=hidden name=longOffset value =\"" + (

longOffset) + "\">");

168 out.print("<input type=hidden name=latOffset value =\"" + (

latOffset) + "\">");

169 out.println("<input type=submit name=action value =\" Zoom

out\">");

170 out.println(" </form ></td>");

171 out.println("<td><form action =\"Map\" method=POST >");

172 out.print("<input type=hidden name=ip value =\"" + ip + "\">

");

173 out.print("<input type=hidden name=cacheId value =\"" +

cacheId + "\">");

174 out.print("<input type=hidden name=zoom value =\"" + (zoom)

+ "\">");

175 out.print("<input type=hidden name=longOffset value =\"" + (

longOffset) + "\">");

176 out.print("<input type=hidden name=latOffset value =\"" + (

latOffset +2) + "\">");

177 out.println("<input type=submit name=action value =\" Move up

\">");

178 out.println(" </form ></td>");

179 out.println("<td><form action =\"Map\" method=POST >");

180 out.print("<input type=hidden name=ip value =\"" + ip + "\">

");

205

181 out.print("<input type=hidden name=cacheId value =\"" +

cacheId + "\">");

182 out.print("<input type=hidden name=zoom value =\"" + (zoom)

+ "\">");

183 out.print("<input type=hidden name=longOffset value =\"" + (

longOffset) + "\">");

184 out.print("<input type=hidden name=latOffset value =\"" + (

latOffset -2) + "\">");

185 out.println("<input type=submit name=action value =\" Move

down\">");

186 out.println(" </form ></td>");

187 out.println("<td><form action =\"Map\" method=POST >");

188 out.print("<input type=hidden name=ip value =\"" + ip + "\">

");

189 out.print("<input type=hidden name=cacheId value =\"" +

cacheId + "\">");

190 out.print("<input type=hidden name=zoom value =\"" + (zoom)

+ "\">");

191 out.print("<input type=hidden name=longOffset value =\"" + (

longOffset -2) + "\">");

192 out.print("<input type=hidden name=latOffset value =\"" + (

latOffset) + "\">");

193 out.println("<input type=submit name=action value =\" Move

left\">");

194 out.println(" </form ></td>");

195 out.println("<td><form action =\"Map\" method=POST >");

196 out.print("<input type=hidden name=ip value =\"" + ip + "\">

");

197 out.print("<input type=hidden name=cacheId value =\"" +

cacheId + "\">");

198 out.print("<input type=hidden name=zoom value =\"" + (zoom)

+ "\">");

199 out.print("<input type=hidden name=longOffset value =\"" + (

longOffset +2) + "\">");

200 out.print("<input type=hidden name=latOffset value =\"" + (

latOffset) + "\">");

201 out.println("<input type=submit name=action value =\" Move

right\">");

202 out.println(" </form ></td>");

203 out.println(" </tr ></table >");

204 out.println("<img src=\" MapImage?" +

205 "ip=" + ip +

206 "&cacheId=" + cacheId +

207 "&zoom=" + zoom +

208 "&longOffset=" + longOffset +

209 "&latOffset=" + latOffset +

210 "\"" +

211 " border =1" +

212 " width=" + intersectionInfo.imageWidth +

213 " height=" + intersectionInfo.imageHeight +

214 " alt=\" OpenMap(tm) image\">
");

215
216 out.println(" </body >");

217 out.println(" </html >");

206

218 }

219
220 @Override

221 public void doPost(HttpServletRequest request ,

HttpServletResponse response)

222 throws IOException , ServletException

223 {

224 doGet(request , response);

225 }

226
227
228 private String degToString(double degrees) {

229 int deg = (int)degrees;

230 double minutes = (degrees - deg) * 60;

231
232 ByteArrayOutputStream tmp = new ByteArrayOutputStream ();

233 PrintStream stream = new PrintStream(tmp);

234 stream.printf(Locale.US , "%d° %.2f’", deg , minutes);

235 return tmp.toString ();

236 }

237
238 }

207

C.6.3 GetMapImage

1 package kripos.math.servlet;

2
3
4 import java.io.IOException;

5 import java.io.OutputStream;

6
7 import javax.servlet.ServletContext;

8 import javax.servlet.ServletException;

9 import javax.servlet.http.HttpServlet;

10 import javax.servlet.http.HttpServletRequest;

11 import javax.servlet.http.HttpServletResponse;

12
13 import kripos.geo.openmap.MapDrawer;

14
15 /**

16 * Create a map image from the cached circles corresponding to

17 * the given ID, using OpenMap.

18 *

19 * @author oysteine

20 */

21 public class GetMapImage extends HttpServlet {

22
23
24 private static final long serialVersionUID =

6720480250134837969L;

25
26
27 @Override

28 public void doGet(HttpServletRequest request ,

HttpServletResponse response)

29 throws IOException , ServletException

30 {

31 ServletContext sc = getServletContext ();

32
33 String ip = request.getParameter("ip");

34 String cacheId = request.getParameter("cacheId");

35 TraceCacheEntry ce = TraceCache.getCachedTrace(cacheId , ip)

;

36 if (ce == null) {

37 sc.log("Could not find cache id ’" + cacheId + "’ for

address ’" + ip + "’.");

38 response.setStatus(HttpServletResponse.

SC_INTERNAL_SERVER_ERROR);

39 return;

40 }

41
42
43 String strZoom = request.getParameter("zoom");

44 String strLongOffset = request.getParameter("longOffset");

45 String strLatOffset = request.getParameter("latOffset");

46 float zoom = 1.0f;

47 if (strZoom != null) {

208

48 zoom = Float.parseFloat(strZoom);

49 }

50 double longOffset = 0.0;

51 if (strLongOffset != null) {

52 longOffset = Double.parseDouble(strLongOffset);

53 }

54 double latOffset = 0.0;

55 if (strLatOffset != null) {

56 latOffset = Double.parseDouble(strLatOffset);

57 }

58
59
60 byte[] image = getImage(ce, zoom , longOffset , latOffset);

61 String filename = "mapView.gif";

62
63 String mimeType = sc.getMimeType(filename);

64 if (mimeType == null) {

65 sc.log("Could not get MIME type of " + filename);

66 response.setStatus(HttpServletResponse.

SC_INTERNAL_SERVER_ERROR);

67 return;

68 }

69
70 response.setContentType(mimeType);

71 response.setContentLength(image.length);

72
73 OutputStream out = response.getOutputStream ();

74 out.write(image);

75 out.close();

76 }

77
78 @Override

79 public void doPost(HttpServletRequest request ,

HttpServletResponse response)

80 throws IOException , ServletException

81 {

82 doGet(request , response);

83 }

84
85
86 private byte[] getImage(TraceCacheEntry ce,

87 float zoom , double longOffset , double latOffset) {

88 return MapDrawer.getMap(ce.cacheId , ce.circles ,

89 zoom , latOffset , longOffset);

90 }

91
92 }

209

C.6.4 TraceCache

1 package kripos.math.servlet;

2
3 import jade.util.BasicProperties;

4 import jade.wrapper.ControllerException;

5 import jade.wrapper.StaleProxyException;

6 import jade.wrapper.gateway.JadeGateway;

7
8 import java.util.ArrayList;

9 import java.util.Date;

10 import java.util.HashMap;

11 import java.util.Iterator;

12 import java.util.LinkedList;

13 import java.util.List;

14 import java.util.Map;

15 import java.util.Random;

16
17 import kripos.gateway.CommandPackage;

18 import kripos.math.circle.Circle;

19 import kripos.ontology.GeoLocation;

20 import kripos.ontology.TraceResult;

21
22 /**

23 * Perform IP tracing and add the results to cache.

24 *

25 * @author oysteine

26 */

27 public class TraceCache {

28
29
30 /** Max life time of a cache entry in milliseconds. */

31 static final long CACHE_LIFE_TIME = 24 * 3600 * 1000L;

32
33 static private final Random rand = new Random ();

34
35
36 private final static Object cacheMutex = new Object ();

37
38 /** Mapping from cacheId. */

39 private final static Map <Long ,TraceCacheEntry > idMap =

40 new HashMap <Long ,TraceCacheEntry >();

41
42 /**

43 * Mapping from IP to list of cacheId for all results

44 * performed for within cache life time.

45 * Most recent trace is stored first in the list. */

46 private final static Map <String ,List <Long >> destinationMap =

47 new HashMap <String ,List <Long >>();

48
49
50 /**

51 * Check if <code >destination </code > is cached.

52 *

210

53 * @param ip

54 * @return <code >true </code > iff <code >destination </code > can

55 * be retrieved with {@link #getTraceId(String , boolean)}

56 * without performing a trace

57 *

58 */

59 static boolean hasTraceId(String destination) {

60 synchronized (cacheMutex) {

61 List <Long > tmp = destinationMap.get(destination);

62 if (tmp != null) {

63 Long id = tmp.get (0);

64 TraceCacheEntry ce = idMap.get(id);

65 ce.lastAccess = new Date(); // to make sure it’s still

available when retrieving it a little later

66 return true;

67 } else {

68 return false;

69 }

70 }

71 }

72 /**

73 * Perform a trace or return most recent previous trace of <

code >ip </code >,

74 * if one has been done.

75 *

76 * @param ip a valid IP address

77 * @param forceNew if <code >true </code > a new trace will

always be performed ,

78 * even if <code >ip </code > already exists in the

cache

79 * @return a cache id that can be used with {@link #

getCachedTrace(String ,String)}

80 */

81 static String getTraceId(String destination , boolean forceNew

) {

82 cleanCache ();

83
84 Long id = null;

85 if (! forceNew) {

86 synchronized (cacheMutex) {

87 List <Long > tmp = destinationMap.get(destination);

88 if (tmp != null) {

89 id = tmp.get (0);

90 }

91 }

92 }

93
94 if (id == null) {

95 // NOTE: it is possible that two traces are performed

with the same IP

96 // at the same time

97 TraceCacheEntry ce = performTrace(destination);

98 insertToCache(ce);

99 id = ce.cacheId;

211

100 }

101
102 return id.toString ();

103 }

104
105
106 /**

107 * Retrieve the trace specified by <code >cacheId </code > from

cache.

108 *

109 * @param cacheId an id retrieved by {@link #getTrace(

String , boolean)} recently

110 * @param destination used to assert that the <code >cacheId </

code >

111 * entry was performed with this destination.

112 * If it was not , the request is treated as if <code

>cacheId </code >

113 * was not found

114 * @return <code >null </code > if <code >cacheId </code > is not

malformed ,

115 * it does not exist , or

116 * it does not match <code >destination </code >

117 *

118 */

119 static TraceCacheEntry getCachedTrace(String cacheId , String

destination) {

120 cleanCache ();

121
122 Long id = null;

123 try {

124 id = Long.parseLong(cacheId);

125 } catch (NumberFormatException e) {

126 return null;

127 }

128
129 TraceCacheEntry ce;

130 synchronized (cacheMutex) {

131 ce = idMap.get(id);

132 }

133
134 if (ce == null || !ce.destination.equals(destination)) {

135 return null;

136 }

137
138 return ce;

139 }

140
141
142 static private void insertToCache(TraceCacheEntry ce) {

143 synchronized (cacheMutex) {

144 long id = -1;

145 synchronized (rand) {

146 while (id < 0 || idMap.containsKey(id)) {

147 id = rand.nextLong ();

212

148 }

149 }

150 ce.cacheId = id;

151
152 idMap.put(ce.cacheId , ce);

153
154 List <Long > tmp = destinationMap.get(ce.destination);

155 if (tmp == null) {

156 tmp = new LinkedList <Long >();

157 destinationMap.put(ce.destination , tmp);

158 }

159 tmp.add(0, ce.cacheId);

160 }

161 }

162
163 /**

164 * Remove entries from cache if they are older than

165 * {@linkplain #CACHE_LIFE_TIME} ms.

166 */

167 static private void cleanCache () {

168 synchronized (cacheMutex) {

169 long curTime = System.currentTimeMillis ();

170 for (Map.Entry <String ,List <Long >> entry : destinationMap.

entrySet ()) {

171 List <Long > idList = entry.getValue ();

172 Iterator <Long > iter = idList.iterator ();

173 while (iter.hasNext ()) {

174 Long id = iter.next();

175 TraceCacheEntry ce = idMap.get(id);

176 if (curTime - ce.lastAccess.getTime () >

CACHE_LIFE_TIME) {

177 idMap.remove(id);

178 iter.remove ();

179 }

180 }

181 if (idList.size() == 0) {

182 destinationMap.remove(entry.getKey ());

183 }

184 }

185 }

186 }

187
188
189
190 /**

191 * @param destination a unique destination identifier

192 * @return resulting circles from a trace

193 */

194 static private TraceCacheEntry performTrace(String

destination) {

195 long startTime = System.currentTimeMillis ();

196 List <Circle > circles = TRACELIBRARY_getTrace(destination);

197 long endTime = System.currentTimeMillis ();

198 return new TraceCacheEntry(

213

199 destination , circles ,

200 new Date(startTime), endTime - startTime);

201 }

202
203
204 /**

205 * Interfaces with the multi -agent system to perfrom a trace

206 *

207 * @param the IP address to trace

208 * @return the geographical constraint circles

209 */

210 static private List <Circle > TRACELIBRARY_getTrace(String

destination) {

211 double KMperDegree = 1/111.15;

212 List <Circle > circles = new LinkedList <Circle >();

213
214 BasicProperties prop = new BasicProperties ();

215 prop.setProperty("platform -id", "futurum01.item.ntnu.no

:1099/ JADE");//hard coded for now :(

216 prop.setBooleanProperty("main", true);

217 prop.setProperty("mainURL","http :// futurum01.item.ntnu.no

:7778/ acc");//hard coded for now :(

218 JadeGateway.init("kripos.gateway.GWAgent", prop);

219 CommandPackage cp = new CommandPackage ();

220 cp.setTarget(destination);

221 cp.setType("TRACE -CBG");

222
223 try {

224
225 JadeGateway.execute(cp);

226 } catch (StaleProxyException e) {

227 e.printStackTrace ();

228 } catch (ControllerException e) {

229 e.printStackTrace ();

230 } catch (InterruptedException e) {

231 e.printStackTrace ();

232 }

233
234 ArrayList <TraceResult > traceRes = cp.getCBGResults ();

235 for(TraceResult tr : traceRes){

236 GeoLocation geoLoc = tr.getHasGeoLocation ();

237 double lat = geoLoc.getLocationLatitude ();

238 double lon = geoLoc.getLocationLongitude ();

239 double radius = tr.getTraceResultData () * KMperDegree;

240 circles.add(new Circle(lat , lon , radius));

241 }

242
243 return circles;

244 }

245
246 }//class

214

C.6.5 TraceCacheEntry

1 package kripos.math.servlet;

2
3
4 import java.util.Date;

5 import java.util.List;

6
7 import kripos.math.circle.Circle;

8
9 class TraceCacheEntry {

10
11 /** Address that was traced. */

12 final String destination;

13 /** Result of trace. */

14 final List <Circle > circles;

15 /** Time trace was started. */

16 final Date start;

17 /** Milliseconds used to perform the trace. */

18 final long runTime;

19
20 /** Last time this cache entry was used. */

21 Date lastAccess;

22
23 /**

24 * Internal {@link TraceCache} cache id.

25 * Set before added to the cache.

26 */

27 long cacheId = -1;

28
29 /**

30 * You must set {@link #cacheId} before inserting this entry

to cache

31 *

32 * @param destination

33 * @param circles

34 */

35 TraceCacheEntry(

36 String destination , List <Circle > circles ,

37 Date start , long runTime) {

38 this.destination = destination;

39 this.circles = circles;

40 this.start = start;

41 this.runTime = runTime;

42
43 this.lastAccess = new Date();

44 }

45
46 }

215

C.6.6 MapDrawer

1 package kripos.geo.openmap;

2
3
4 import java.awt.Color;

5 import java.awt.Point;

6 import java.awt.Shape;

7 import java.awt.geom.Area;

8 import java.awt.geom.FlatteningPathIterator;

9 import java.awt.geom.GeneralPath;

10 import java.awt.geom.PathIterator;

11 import java.awt.geom.Point2D;

12 import java.util.HashMap;

13 import java.util.Iterator;

14 import java.util.LinkedList;

15 import java.util.List;

16 import java.util.Map;

17 import java.util.Properties;

18 import java.util.concurrent.locks.ReentrantLock;

19
20 import kripos.math.circle.Circle;

21 import kripos.math.circle.Intersection;

22 import kripos.math.circle.Intersector;

23 import kripos.math.servlet.GetMap;

24
25 import com.bbn.openmap.LatLonPoint;

26 import com.bbn.openmap.Layer;

27 import com.bbn.openmap.MapBean;

28 import com.bbn.openmap.event.LayerStatusEvent;

29 import com.bbn.openmap.event.LayerStatusListener;

30 import com.bbn.openmap.image.AcmeGifFormatter;

31 import com.bbn.openmap.layer.OMGraphicHandlerLayer;

32 import com.bbn.openmap.layer.location.LocationHandler;

33 import com.bbn.openmap.layer.location.LocationLayer;

34 import com.bbn.openmap.layer.location.csv.CSVLocationHandler;

35 import com.bbn.openmap.layer.shape.ShapeLayer;

36 import com.bbn.openmap.omGraphics.OMCircle;

37 import com.bbn.openmap.omGraphics.OMGraphic;

38 import com.bbn.openmap.omGraphics.OMGraphicList;

39 import com.bbn.openmap.omGraphics.OMPoint;

40 import com.bbn.openmap.omGraphics.OMPoly;

41 import com.bbn.openmap.proj.Length;

42 import com.bbn.openmap.proj.Mercator;

43 import com.bbn.openmap.proj.Proj;

44 import com.bbn.openmap.proj.Projection;

45
46 /**

47 * Draw circles on a map.

48 * @author oysteine

49 */

50 public class MapDrawer {

51
52 private static final int MAX_CACHE = 100;

216

53 private static final Object cacheMutex = new Object ();

54 private static final Map <Long ,CacheEntry > mapCache =

55 new HashMap <Long ,CacheEntry >();

56
57 private static final List <Long > cacheLru = new LinkedList <

Long >();

58
59 private static class CacheEntry {

60 private final Long cacheId;

61 private final ReentrantLock lock = new ReentrantLock ();

62 /** Set <i>after </i> all other data have been set. */

63 private MapBean mapBean = null;

64 private LatLonPoint pointUpperLeft;

65 private LatLonPoint pointLowerRight;

66 private LatLonPoint pointCenter;

67 private float scale;

68 private float origScale;

69
70 private double area;

71 private LatLonPoint centroid = null;

72
73 private LayerListener listener;

74 private LocationHandler locationHandler;

75
76 private CacheEntry(Long cacheId) {

77 this.cacheId = cacheId;

78 }

79 }

80
81 private static CacheEntry acquireMap(Long cacheId) {

82 CacheEntry ce;

83 synchronized (cacheMutex) {

84 ce = mapCache.get(cacheId);

85 if (ce == null) {

86 ce = unsafeNewCacheEntry(cacheId);

87 }

88
89 cacheLru.remove(cacheId);

90 cacheLru.add(cacheId);

91 }

92
93 ce.lock.lock();

94 return ce;

95 }

96
97 private static void releaseMap(CacheEntry ce) {

98 synchronized (cacheMutex) {

99 ce.lock.unlock ();

100 cacheLru.add(ce.cacheId);

101 }

102 }

103
104
105 private static CacheEntry unsafeNewCacheEntry(Long cacheId) {

217

106 assert Thread.holdsLock(cacheMutex);

107
108 CacheEntry ce = new CacheEntry(cacheId);

109 mapCache.put(cacheId , ce);

110 if (mapCache.size() > MAX_CACHE) {

111 mapCache.remove(cacheLru.remove (0));

112 }

113 return ce;

114 }

115
116
117
118 /**

119 *

120 * @param cacheId use cached drawing instead of creating

using <code >circles </code >,

121 * if the cache holds anything

122 * @param circles

123 * @return informat about area and centroid that will be

drawn on map

124 */

125 static public IntersectionInfo getIntersectionInfo(

126 Long cacheId , List <Circle > circles) {

127
128 CacheEntry ce = acquireMap(cacheId);

129 try {

130 if (ce.mapBean == null) {

131 createMap(ce, circles);

132 }

133
134 if (ce.centroid == null) {

135 return new IntersectionInfo(

136 ce.area ,

137 ce.mapBean.getWidth (),

138 ce.mapBean.getHeight ());

139 } else {

140 return new IntersectionInfo(

141 ce.area ,

142 ce.centroid.getLatitude (),

143 ce.centroid.getLongitude (),

144 ce.mapBean.getWidth (),

145 ce.mapBean.getHeight ());

146 }

147
148 } finally {

149 releaseMap(ce);

150 }

151 }

152
153
154
155 private static final Proj dummyProj =

156 new Mercator(new LatLonPoint (0.123456 , -0.123456), 1.42E7f ,

640, 480);

218

157
158
159 /**

160 * @param cacheId use cached drawing instead of creating

using <code >circles </code >,

161 * if the cache holds anything

162 * @param circles

163 * @param zoom 1.0 is with polygon extremes on the borders ,

164 * smaller values are larger portion of the world ,

165 * greater values are zoomed inside polygon

166 * @param latOffset north offset of quasi center of polygon

in decimal degrees

167 * @param longOffset east offset of quasi center of polygon

in decimal degrees

168 * @return a map with <code >circles </code > painted on it

169 */

170 static public byte[] getMap(Long cacheId , List <Circle >

circles ,

171 float zoom , double latOffset , double longOffset) {

172
173 CacheEntry ce = acquireMap(cacheId);

174 try {

175 if (ce.mapBean == null) {

176 createMap(ce, circles);

177 }

178
179
180
181 LatLonPoint customCenter = new LatLonPoint(

182 ce.pointCenter.getLatitude () + latOffset ,

183 ce.pointCenter.getLongitude () + longOffset);

184 float customScale = ce.scale / zoom;

185 if (customScale > ce.origScale) {

186 customScale = ce.origScale;

187 }

188
189 // disable city names if showing too much of world at

once

190 ce.locationHandler.setShowNames(customScale < 2.5E7);

191
192 // update map

193 Proj proj = new Mercator(customCenter , customScale ,

194 ce.mapBean.getWidth (), ce.mapBean.getHeight ());

195
196 // if we use only default parameters the first time , then

for some reason:

197 // - traceLayer is not drawn

198 // - repaints hang in LayerListener

199 // so we use a dummy projection first

200 ce.listener.resetCompletion (1);

201 ce.mapBean.setProjection(dummyProj);

202 ce.listener.waitForCompletion ();

203
204 ce.listener.resetCompletion (1);

219

205 ce.mapBean.setProjection(proj);

206 ce.listener.waitForCompletion ();

207
208 // create image

209 AcmeGifFormatter gifFormatter = new AcmeGifFormatter ();

210 byte[] image = gifFormatter.getImageFromMapBean(ce.

mapBean);

211 return image;

212
213 } finally {

214 releaseMap(ce);

215 }

216 }

217
218
219
220
221 private static void createMap(CacheEntry ce, List <Circle >

circles) {

222 String shapeFile = GetMap.getDataPath () + "/shape/dcwpo -

browse.shp";

223 String spatialFile = GetMap.getDataPath () + "/shape/dcwpo -

browse.ssx";

224 String locationFile = GetMap.getDataPath () + "/cities.csv";

225
226 ce.listener = new LayerListener ();

227
228 MapBean mapBean = new MapBean ();

229 mapBean.setSize (1024, 768);

230 MapBean.suppressCopyright = true; // suppress after first

use

231 // political borders

232 ShapeLayer backgroundLayer = new ShapeLayer ();

233 ce.listener.addLayer(backgroundLayer , 1);

234 Properties backgroundProps = new Properties ();

235 backgroundProps.put("prettyName", "Political Solid");

236 backgroundProps.put("lineColor", "000000");

237 backgroundProps.put("fillColor", "BDDE83");

238 backgroundProps.put("shapeFile", shapeFile);

239 backgroundProps.put("spatialIndex", spatialFile);

240 backgroundLayer.setProperties(backgroundProps);

241 assert mapBean.getComponentCount () == 0 : mapBean.

getComponentCount ();

242 mapBean.add(backgroundLayer , 0);

243
244 OMGraphicList traceItems = new OMGraphicList (2);

245 OMGraphicList tracePolygon = new OMGraphicList (1);

246 OMGraphicList traceCircles = new OMGraphicList(circles.size

());

247
248 // inaccurate intersections used for initial scale

calculation

249 List <Intersection > inters2D = Intersector.getIntersections(

circles);

220

250 inters2D = Intersector.getMorePoints(inters2D , 0.2);

251
252 setBorders(ce, inters2D , traceItems , mapBean);

253 setBorderInfo(ce, traceItems);

254
255 setPolygon2D(inters2D , tracePolygon);

256 setCircles(circles , traceCircles);

257
258 OMGraphicHandlerLayer traceLayer = new

OMGraphicHandlerLayer ();

259 ce.listener.addLayer(traceLayer , 1);

260 traceItems.add(tracePolygon);

261 traceItems.add(traceCircles);

262 traceLayer.setList(traceItems);

263 mapBean.add(traceLayer , 0);

264 ce.listener.waitForCompletion ();

265
266 List <Point2D > screenPath = getWindingPath(ce, traceCircles ,

mapBean);

267 Point centroidXY = getScreenCentroid(screenPath);

268 if (centroidXY == null) {

269 ce.centroid = null;

270 } else {

271 ce.centroid = mapBean.getProjection ().inverse(centroidXY)

;

272 }

273 List <LatLonPoint > approximatedPath = new LinkedList <

LatLonPoint >();

274 for(Point2D next : screenPath){

275 Point temp = new Point((int)next.getX(), (int)next.getY()

);

276 approximatedPath.add(mapBean.getProjection ().inverse(temp

));

277 }

278 ce.area = getApproximatedPolygonArea(approximatedPath);

279
280 traceItems = new OMGraphicList (2);

281 tracePolygon = new OMGraphicList (1);

282 traceCircles = new OMGraphicList(circles.size());

283
284 setBorderInfo(ce, traceItems);

285 setApproximatedPolygon(approximatedPath , tracePolygon);

286 setCircles(circles , traceCircles);

287
288 LocationLayer locations = new LocationLayer ();

289 ce.listener.addLayer(locations , 1);

290 ce.locationHandler = new CSVLocationHandler ();

291 Properties lhProps = new Properties ();

292 lhProps.put("locationFile", locationFile);

293 lhProps.put("csvFileHasHeader", "false");

294 lhProps.put("showNames", "true");

295 // lhProps.put(" nameColor", "008 C54");

296 lhProps.put("nameColor", "000000");

297 lhProps.put("showLocations", "true");

221

298 lhProps.put("locationColor", "FF0000");

299
300 lhProps.put("name.lineColor", "FF008C54");

301 lhProps.put("location.lineColor", "FFFF0000");

302 lhProps.put("location.fillColor", "FFaaaaaa");

303 lhProps.put("location.pointRadius", "2");

304 lhProps.put("location.pointOval", "true");

305
306 lhProps.put("nameIndex", "0");

307 lhProps.put("latIndex", "2");

308 lhProps.put("lonIndex", "3");

309 ce.locationHandler.setProperties(lhProps);

310
311 // locations.setProperties(lhProps);

312 locations.setLocationHandlers(new LocationHandler [] { ce.

locationHandler });

313
314 Proj proj = new Mercator(ce.pointCenter , ce.scale ,

315 mapBean.getWidth (), mapBean.getHeight ());

316 ce.listener.resetCompletion (1);

317 traceItems.add(tracePolygon);

318 traceItems.add(traceCircles);

319 traceLayer.setList(traceItems);

320 mapBean.add(locations , 0);

321 mapBean.setProjection(proj);

322 ce.listener.waitForCompletion ();

323
324 ce.mapBean = mapBean;

325 }

326
327 private static double getApproximatedPolygonArea(List <

LatLonPoint > sortedPath){

328 if (sortedPath.size() < 3) {

329 return 0.0;

330 }

331
332 List <LatLonPoint > tmp = new LinkedList <LatLonPoint >(

sortedPath);

333 LatLonPoint base = tmp.remove (0);

334
335 int triangleCount = 0;

336 double interiorAngleSum = 0.0;

337 LatLonPoint prev = tmp.remove (0);

338 for (LatLonPoint next : tmp) {

339 LatLonPoint A = base;

340 LatLonPoint B = prev;

341 LatLonPoint C = next;

342 double a = B.distance(C);

343 double b = C.distance(A);

344 double c = A.distance(B);

345
346 if (a >= Math.ulp(a) && b >= Math.ulp(b) && c >= Math.ulp

(c)) {

347 double angleA = Math.acos(

222

348 (Math.cos(a) - Math.cos(b) * Math.cos(c)) /

349 (Math.sin(b) * Math.sin(c)));

350 double angleB = Math.acos(

351 (Math.cos(b) - Math.cos(c) * Math.cos(a)) /

352 (Math.sin(c) * Math.sin(a)));

353 double angleC = Math.acos(

354 (Math.cos(c) - Math.cos(b) * Math.cos(a)) /

355 (Math.sin(a) * Math.sin(b)));

356
357 interiorAngleSum += angleA + angleB + angleC;

358 triangleCount ++;

359 } else {

360 // 1 distance is 0, the other two are equal , OR

361 // all distances are 0

362 // assert a < Math.ulp(a) : A + "," + B + "," + C;

363 // assert b < Math.ulp(b) : A + "," + B + "," + C;

364 // assert c < Math.ulp(c) : A + "," + B + "," + C;

365 }

366
367 prev = next;

368 }

369
370 // approx , should use rad at current geodetic latitude

371 double earthRad = (6378.135 + 6356.750) / 2.0;

372 double area =

373 Math.pow(earthRad , 2) *

374 (interiorAngleSum - Math.PI * triangleCount);

375 return area;

376 }

377
378 private static double getScreenPolygonArea(List <Point2D >

sortedPath){

379 if (sortedPath.size() == 0) {

380 return 0.0;

381 }

382
383 double area = 0.0;

384
385 List <Point2D > tmp = new LinkedList <Point2D >(sortedPath);

386 Point2D prev = tmp.remove (0);

387 tmp.add(prev);

388 for (Point2D next : tmp) {

389 double x1 = prev.getX();

390 double y1 = prev.getY();

391 double x2 = next.getX();

392 double y2 = next.getY();

393 area += x1*y2 - x2*y1;

394 prev = next;

395 }

396 area *= 0.5;

397 return area;

398 }

399
400 private static Point getScreenCentroid(List <Point2D > points)

223

401 {

402 if (points.size() < 2) {

403 return null;

404 }

405
406 double area = getScreenPolygonArea(points);

407
408 double x = 0.0;

409 double y = 0.0;

410
411 List <Point2D > tmp = new LinkedList <Point2D >(points);

412 Point2D prev = tmp.remove (0);

413 tmp.add(prev);

414 for (Point2D next : tmp) {

415 double x1 = prev.getX();

416 double y1 = prev.getY();

417 double x2 = next.getX();

418 double y2 = next.getY();

419
420 double determinant = x1*y2 - x2*y1;

421 x += (x1+x2) * determinant;

422 y += (y1+y2) * determinant;

423
424 prev = next;

425 }

426
427 x /= (6 * area);

428 y /= (6 * area);

429
430 return new Point((int)x,(int)y);

431 }

432
433 private static List <Point2D > getWindingPath(

434 CacheEntry ce, OMGraphicList circles ,

435 MapBean mapBean) {

436
437 List <Point2D > ret = new LinkedList <Point2D >();

438 if (circles.size() == 0) {

439 return ret;

440 }

441
442 Proj proj = new Mercator(ce.pointCenter , ce.scale ,

443 mapBean.getWidth (), mapBean.getHeight ());

444 ce.listener.resetCompletion (1);

445 mapBean.setProjection(proj);

446 ce.listener.waitForCompletion ();

447
448 Iterator iter = circles.iterator ();

449 OMCircle circle = (OMCircle)iter.next();

450
451 Shape s = circle.getShape ();

452 assert s != null;

453 Area polygon = new Area(s);

454

224

455 while (iter.hasNext ()) {

456 circle = (OMCircle)iter.next();

457 s = circle.getShape ();

458 assert s != null;

459 Area area = new Area(s);

460 polygon.intersect(area);

461 }

462
463 PathIterator pathIter = polygon.getPathIterator(null);

464 GeneralPath genPath = new GeneralPath ();

465 int theType;

466 float[] theData = new float [6];

467
468 while(! pathIter.isDone ()){

469 theType = pathIter.currentSegment(theData);

470
471 switch(theType){

472 case PathIterator.SEG_MOVETO :

473 genPath.moveTo(theData [0], theData [1]);

474 break;

475 case PathIterator.SEG_LINETO :

476 genPath.lineTo(theData [0], theData [1]);

477 break;

478 case PathIterator.SEG_QUADTO :

479 genPath.quadTo(theData [0], theData [1], theData [2],

theData [3]);

480 break;

481 case PathIterator.SEG_CUBICTO :

482 genPath.curveTo(theData [0], theData [1], theData [2],

theData [3], theData [4], theData [5]);

483 break;

484 case PathIterator.SEG_CLOSE :

485 genPath.closePath ();

486 break;

487 }//end switch

488
489 pathIter.next();

490 }

491
492 PathIterator pathIter2 = genPath.getPathIterator(null);

493 FlatteningPathIterator fpi = new FlatteningPathIterator(

pathIter2 , 0.25);

494 double [] coords = new double [6];

495 while (!fpi.isDone ()) {

496 fpi.currentSegment(coords);

497 ret.add(new Point2D.Double(coords [0], coords [1]));

498 fpi.next();

499 }

500
501 return ret;

502 }

503
504

225

505 private static void setApproximatedPolygon(List <LatLonPoint >

approximatePath ,

506 OMGraphicList traceItems) {

507
508 if (approximatePath.size() > 0) {

509 float[] lats_lons = new float [2*(approximatePath.size()

+1)];

510 int i = 0;

511 for (LatLonPoint point : approximatePath) {

512 lats_lons[i++] = (float)point.getLatitude ();

513 lats_lons[i++] = (float)point.getLongitude ();

514 }

515 LatLonPoint firstPoint = approximatePath.get(0);

516 lats_lons[i++] = (float)firstPoint.getLatitude ();

517 lats_lons[i++] = (float)firstPoint.getLongitude ();

518 OMPoly omPolygon = new OMAlphaPoly(lats_lons , OMGraphic.

DECIMAL_DEGREES ,

519 OMGraphic.LINETYPE_STRAIGHT , 0.1f);

520 omPolygon.setLinePaint(Color.black);

521 omPolygon.setFillPaint(Color.red);

522 traceItems.add(omPolygon);

523 }

524 }

525
526
527 private static void setBorders(CacheEntry ce, List <

Intersection > inters ,

528 OMGraphicList traceItems , MapBean mapBean) {

529 double northMost = Double.MIN_VALUE;

530 double southMost = Double.MAX_VALUE;

531 double westMost = Double.MAX_VALUE;

532 double eastMost = Double.MIN_VALUE;

533
534 if (inters.size() == 0) {

535 northMost = 90.0;

536 southMost = -90.0;

537 westMost = -180.0;

538 eastMost = 180.0;

539 } else {

540 for (Intersection inter : inters) {

541 double longitude = inter.point.getY();

542 double latitude = inter.point.getX();

543
544 if (latitude > northMost) {

545 northMost = latitude;

546 }

547 if (latitude < southMost) {

548 southMost = latitude;

549 }

550 if (longitude < westMost) {

551 westMost = longitude;

552 }

553 if (longitude > eastMost) {

554 eastMost = longitude;

226

555 }

556 }

557 }

558
559 ce.pointUpperLeft = new LatLonPoint(northMost , westMost);

560 ce.pointLowerRight = new LatLonPoint(southMost , eastMost);

561
562 Projection prevProj = mapBean.getProjection ();

563 Point pUL = prevProj.forward(ce.pointUpperLeft);

564 Point pLR = prevProj.forward(ce.pointLowerRight);

565 ce.origScale = prevProj.getScale ();

566 ce.scale = 2f * prevProj.getScale(

567 ce.pointUpperLeft , ce.pointLowerRight , pUL , pLR);

568
569 ce.pointCenter = new LatLonPoint(

570 northMost - (northMost - southMost) / 2,

571 westMost + (eastMost - westMost) / 2);

572 }

573
574 private static void setBorderInfo(

575 CacheEntry ce, OMGraphicList traceItems) {

576
577 if (ce.centroid != null) {

578 OMPoint p = new OMPoint(

579 ce.centroid.getLatitude (),

580 ce.centroid.getLongitude (),

581 5);

582 p.setFillPaint(Color.pink);

583 traceItems.add(p);

584 }

585 }

586
587
588 private static void setPolygon2D(List <Intersection > inters ,

589 OMGraphicList traceItems) {

590
591 if (inters.size() > 0) {

592 float[] lats_lons = new float [2*(inters.size()+1)];

593 int i = 0;

594 for (Intersection inter : inters) {

595 lats_lons[i++] = (float)inter.point.getX();

596 lats_lons[i++] = (float)inter.point.getY();

597 }

598 Intersection firstInter = inters.get(0);

599 lats_lons[i++] = (float)firstInter.point.getX();

600 lats_lons[i++] = (float)firstInter.point.getY();

601 OMPoly omPolygon = new OMAlphaPoly(lats_lons , OMGraphic.

DECIMAL_DEGREES ,

602 OMGraphic.LINETYPE_STRAIGHT , 0.4f);

603 omPolygon.setLinePaint(Color.black);

604 omPolygon.setFillPaint(Color.red);

605 traceItems.add(omPolygon);

606 }

607 }

227

608
609
610 private static void setCircles(List <Circle > circles ,

611 OMGraphicList traceItems) {

612 for (Circle circle : circles) {

613 Point2D p = circle.origo;

614 LatLonPoint center = new LatLonPoint(p.getX(), p.getY());

615 OMCircle omCircle = new OMAlphaCircle(

616 center , (float)circle.rad , Length.DECIMAL_DEGREE , 0,

0.2f);

617 omCircle.setLinePaint(Color.black);

618 omCircle.setFillPaint(Color.black);

619 traceItems.add(omCircle);

620 }

621 }

622
623
624 private static class LayerListener implements

LayerStatusListener {

625
626 private final Object completionMutex = new Object ();

627 private final Map <Layer ,Integer > completionMap =

628 new HashMap <Layer ,Integer >();

629
630
631 private void addLayer(Layer layer , int remainingCount) {

632 synchronized (completionMutex) {

633 layer.addLayerStatusListener(this);

634 completionMap.put(layer , remainingCount);

635 }

636 }

637
638 public void updateLayerStatus(LayerStatusEvent evt) {

639 synchronized (completionMutex) {

640 switch (evt.getStatus ()) {

641 case LayerStatusEvent.DISTRESS:

642 break;

643 case LayerStatusEvent.FINISH_WORKING:

644 completionMap.put(evt.getLayer (),

645 completionMap.get(evt.getLayer ()) - 1);

646 completionMutex.notifyAll ();

647 break;

648 case LayerStatusEvent.START_WORKING:

649 break;

650 case LayerStatusEvent.STATUS_UPDATE:

651 break;

652 }

653 }

654 }

655
656
657 private void resetCompletion(int remainingCount) {

658 synchronized (completionMutex) {

659 for (Layer layer : completionMap.keySet ()) {

228

660 completionMap.put(layer , remainingCount);

661 }

662 }

663 }

664
665 private void waitForCompletion () {

666 synchronized (completionMutex) {

667 while (true) {

668 boolean allDone = true;

669 for (Integer remaining: completionMap.values ()) {

670 if (remaining > 0) {

671 allDone = false;

672 break;

673 }

674 }

675 if (allDone) {

676 break;

677 }

678 try {

679 long startTime = System.currentTimeMillis ();

680 completionMutex.wait (5000);

681 long endTime = System.currentTimeMillis ();

682 if (endTime - startTime > 4500) {

683 break;

684 }

685 } catch (InterruptedException e) {

686 throw new RuntimeException(e);

687 }

688 }

689 }

690 }

691 }

692
693 }//class

229

C.6.7 IntersectionInfo

1 package kripos.geo.openmap;

2
3 /**

4 * Information about the intersection represented in a map.

5 *

6 * @author oysteine

7 */

8 public class IntersectionInfo {

9
10 /**

11 * Calculated area of intersection polygon.

12 */

13 public final double polygonArea;

14
15 /**

16 * Whether {@link #centroidLatitude} and {@link #

centroidLongitude}

17 * contains legal values.

18 */

19 public final boolean centroidAvailable;

20
21 /**

22 * Latitude (north of Equator) of polygon centroid.

23 */

24 public final double centroidLatitude;

25
26 /**

27 * Longitude (east of Greenwich) of polygon centroid.

28 */

29 public final double centroidLongitude;

30
31 /**

32 * Pixel size of image.

33 */

34 public final int imageWidth;

35
36 /**

37 * Pixel size of image.

38 */

39 public final int imageHeight;

40
41
42 IntersectionInfo(double polygonArea , int imageWidth , int

imageHeight) {

43 this.polygonArea = polygonArea;

44 this.centroidAvailable = false;

45 this.centroidLatitude = Double.NaN;

46 this.centroidLongitude = Double.NaN;

47
48 this.imageWidth = imageWidth;

49 this.imageHeight = imageHeight;

50 }

230

51
52 IntersectionInfo(double polygonArea ,

53 double centroidLatitude , double centroidLongitude ,

54 int imageWidth , int imageHeight) {

55 this.polygonArea = polygonArea;

56 this.centroidAvailable = true;

57 this.centroidLatitude = centroidLatitude;

58 this.centroidLongitude = centroidLongitude;

59
60 this.imageWidth = imageWidth;

61 this.imageHeight = imageHeight;

62 }

63
64 }//class

231

C.6.8 Alpha

1 package kripos.geo.openmap;

2
3 /**

4 * Implemented by OMGraphic subclasses that support

5 * semi -transparent fill.

6 *

7 * @author oysteine

8 * @version 1.0

9 */

10 public interface Alpha {

11
12 /**

13 * @param alpha opacity in [0.0, 1.0]

14 */

15 public void setAlpha(float alpha);

16 }

232

C.6.9 OMAlphaCircle

1 package kripos.geo.openmap;

2
3 import java.awt.AlphaComposite;

4 import java.awt.Composite;

5 import java.awt.Graphics;

6 import java.awt.Graphics2D;

7
8 import com.bbn.openmap.LatLonPoint;

9 import com.bbn.openmap.omGraphics.OMCircle;

10 import com.bbn.openmap.proj.Length;

11
12 /**

13 * An {@link OMCircle} implementation that supports

transparency.

14 *

15 * Only the directly used constructors are implemented

16 *

17 * @author oysteine

18 */

19 public class OMAlphaCircle extends OMCircle implements Alpha {

20 private static final long serialVersionUID =

9141255017478768485L;

21 private Composite composite;

22
23
24 /**

25 * Create an OMCircle with a lat/lon center and a physical

26 * distance radius. Rendertype is RENDERTYPE_LATLON.

27 *

28 * @param center LatLon center of circle

29 * @param radius distance

30 * @param units com.bbn.openmap.proj.Length object specifying

31 * units for distance.

32 * @param nverts number of vertices for the poly -circle(if &

lt; 3,

33 * value is generated internally)

34 * @param alpha opacity in [0.0, 1.0]

35 */

36 public OMAlphaCircle(LatLonPoint center , float radius , Length

units ,

37 int nverts , float alpha) {

38 super(center , radius , units , nverts);

39 composite = AlphaComposite.getInstance(AlphaComposite.

SRC_OVER , alpha);

40 }

41
42
43 /**

44 * Set the alpha color

45 *

46 * @param the color value to set

47 */

233

48 public void setAlpha(float alpha) {

49 composite = AlphaComposite.getInstance(AlphaComposite.

SRC_OVER , alpha);

50 }

51
52
53 /**

54 * Overriding the fill method to set alpha before filling and

clearing it after.

55 * @param g the <code >Graphics </code > instance to use

56 */

57 @Override

58 public void fill(Graphics g) {

59 Graphics2D g2 = (Graphics2D)g;

60 Composite orig = g2.getComposite ();

61 g2.setComposite(composite);

62 super.fill(g);

63 g2.setComposite(orig);

64 }

65
66 }//class

234

C.6.10 OMAlphaPoly

1 package kripos.geo.openmap;

2
3 import java.awt.AlphaComposite;

4 import java.awt.Composite;

5 import java.awt.Graphics;

6 import java.awt.Graphics2D;

7 import java.awt.Paint;

8
9 import com.bbn.openmap.omGraphics.OMPoly;

10
11 /**

12 * An {@link OMPoly} implementation that supports transparency.

13 *

14 * Only the directly used constructors are implemented

15 *

16 * @author oysteine

17 */

18 public class OMAlphaPoly extends OMPoly implements Alpha {

19 private static final long serialVersionUID =

597512041926004097L;

20 private Composite composite;

21 private Composite orig;

22
23
24 /**

25 *

26 * @param llPoints latitude , longitude , latitude , longitude ,

...

27 * @param units

28 * @param lType

29 * @param alpha opacity in [0.0, 1.0]

30 */

31 public OMAlphaPoly(float[] llPoints , int units , int lType ,

float alpha) {

32 super(llPoints , units , lType);

33 composite = AlphaComposite.getInstance(AlphaComposite.

SRC_OVER , alpha);

34 }

35
36
37 /**

38 * Set the alpha color

39 *

40 * @param the color value to set

41 */

42 public void setAlpha(float alpha) {

43 composite = AlphaComposite.getInstance(AlphaComposite.

SRC_OVER , alpha);

44 }

45
46
47 @Override

235

48 public void render(Graphics g) {

49 // just to make sure we reset composite after

50 Graphics2D g2 = (Graphics2D)g;

51 orig = g2.getComposite ();

52 super.render(g);

53 g2.setComposite(orig);

54 }

55
56
57 @Override

58 public void setGraphicsForFill(Graphics g) {

59 ((Graphics2D)g).setComposite(composite);

60 super.setGraphicsForFill(g);

61 }

62
63
64 @Override

65 public void setGraphicsColor(Graphics g, Paint paint) {

66 ((Graphics2D)g).setComposite(composite);

67 super.setGraphicsColor(g, paint);

68 }

69
70 }//class

236

C.6.11 Circle

1 // legacy code. only works in 2D. originally meant used with a

flat map based on UTM coordinates

2 // turned out to be not accurate enough when spanning multipe

UTM zones

3
4 //only used for setting zoom level in current implementation

5
6 package kripos.math.circle;

7
8 import java.awt.geom.Point2D;

9 import java.io.ByteArrayOutputStream;

10 import java.io.PrintStream;

11 import java.util.LinkedList;

12 import java.util.List;

13 import java.util.Locale;

14
15 /**

16 * Representation of a circle , with methods to calculate

numbers relative to

17 * another circle.

18 *

19 * @author oysteine

20 *

21 */

22 public class Circle {

23
24 /**

25 * Center of circle;

26 */

27 public final Point2D origo;

28 /**

29 * Radius of circle

30 */

31 public double rad;

32
33 protected int intersectionCount = 0;

34
35
36 /**

37 *

38 * @param x cartesian x coord

39 * @param y cartesian y coord

40 * @param rad length of radius

41 */

42 public Circle(double x, double y, double rad) {

43 this.origo = new Point2D.Double(x, y);

44 this.rad = rad;

45 }

46
47
48 /**

49 *

237

50 * @param angle radians from x axis

51 * @return point on circle circumference

52 */

53 public Point2D getPoint(double angle) {

54 double x = origo.getX() + rad * Math.cos(angle);

55 double y = origo.getY() + rad * Math.sin(angle);

56 return new Point2D.Double(x, y);

57 }

58
59
60 /**

61 * @param inter target: a intersection on this circle

62 * @return the angle between the x axis and the line from

63 * this circle ’s origo point to <code >inter </code >’s

point

64 */

65 double getAngle(Intersection inter) {

66 assert this == inter.c1 || this == inter.c2;

67 double opposite = inter.point.getY() - origo.getY(); //

opposite

68 double hyp = rad;

69 if (inter.isAbove(origo)) {

70 if (inter.isRightOf(origo)) {

71 return Math.asin(opposite / hyp);

72 } else {

73 return Math.PI - Math.asin(opposite / hyp);

74 }

75 } else {

76 if (inter.isRightOf(origo)) {

77 return 2 * Math.PI + Math.asin(opposite / hyp);

78 } else {

79 return Math.PI - Math.asin(opposite / hyp);

80 }

81 }

82 }

83
84
85 /**

86 *

87 * @param inter

88 * @return <code >true </code > iff <code >inter </code > is

neither inside

89 * this circle ’s area nor on its circumference

90 */

91 boolean isOutside(Intersection inter) {

92 return !inter.belongsTo(this) &&

93 origo.distance(inter.point) > rad;

94 }

95
96
97 /**

98 *

99 * @param other

238

100 * @return <code >true </code > iff <code >c</code > is completely

within

101 * this circle ’s area or on its circumference

102 */

103 boolean isWithin(Circle other) {

104 if (other == this) {

105 return true;

106 }

107
108 double dist = origo.distance(other.origo);

109 return dist + other.rad <= rad;

110 }

111
112
113 /**

114 * @param other not <code >null </code >

115 * @return intersection points , or <code >null </code > if and

only f circles do not intersect

116 * at <i>two </i> points

117 */

118 List <Intersection > getIntersections(Circle other) {

119 assert other != null;

120
121 double maxDist = rad + other.rad;

122 double dist = origo.distance(other.origo);

123 if (dist >= maxDist) {

124 return null;

125 }

126 if (dist + Math.min(rad ,other.rad) < Math.max(rad ,other.rad

)) {

127 return null;

128 }

129
130 double x1 = origo.getX();

131 double y1 = origo.getY();

132 double r1 = rad;

133 double x2 = other.origo.getX();

134 double y2 = other.origo.getY();

135 double r2 = other.rad;

136
137 double d = Math.sqrt(Math.pow(x2-x1 ,2) + Math.pow(y2-y1 ,2))

;

138
139 double ixPart1 = (x2+x1) / 2 + (x2-x1) * (r1*r1-r2*r2) /

(2*d*d);

140 double ixPart2 = ((y2-y1) / (2*d*d)) *

141 Math.sqrt((Math.pow(r1+r2 ,2)-d*d) * (d*d-Math.pow(r2-r1 ,2))

) ;

142
143 double iyPart1 = (y2+y1) / 2 + (y2-y1) * (r1*r1-r2*r2) /

(2*d*d);

144 double iyPart2 = ((x2-x1) / (2*d*d)) *

145 Math.sqrt((Math.pow(r1+r2 ,2)-d*d) * (d*d-Math.pow(r2-r1 ,2))

);

239

146
147 Point2D first = new Point2D.Double(ixPart1+ixPart2 , iyPart1

-iyPart2);

148 Point2D second = new Point2D.Double(ixPart1 -ixPart2 ,

iyPart1+iyPart2);

149
150 List <Intersection > inters = new LinkedList <Intersection >();

151 inters.add(new Intersection(first , this , other));

152 inters.add(new Intersection(second , this , other));

153 return inters;

154 }

155
156
157 /**

158 * @param x

159 * @param y

160 * @return distance from the given point to circumference

161 */

162 public double getMargin(double x, double y) {

163 double margin =

164 Math.pow(x - origo.getX(), 2) +

165 Math.pow(y - origo.getY(), 2) -

166 Math.pow(rad , 2);

167 return margin;

168 }

169
170
171 @Override

172 public String toString () {

173 ByteArrayOutputStream tmp = new ByteArrayOutputStream ();

174 PrintStream stream = new PrintStream(tmp);

175 stream.printf(Locale.US , "Circle (%.2f, %.2f, %.2f)",

176 origo.getX(), origo.getY(), rad);

177 return tmp.toString ();

178 }

179
180 }//class

240

C.6.12 Intersection

1 // legacy code. only works in 2D. originally meant used with a

flat map based on UTM coordinates

2 // turned out to be not accurate enough when spanning multipe

UTM zones

3
4 //only used for setting zoom level in current implementation

5
6 package kripos.math.circle;

7
8 import java.awt.geom.Point2D;

9 import java.io.ByteArrayOutputStream;

10 import java.io.PrintStream;

11 import java.util.Locale;

12
13 /**

14 * Representing one intersection between two circles.

15 *

16 * @author oysteine

17 */

18 public class Intersection {

19 /** Where the two circles cross. */

20 public final Point2D point;

21 final Circle c1;

22 final Circle c2;

23
24
25 /**

26 *

27 * @param point the intersection

28 * @param circle1 one of the participating circles

29 * @param circle2 the other participating circle

30 */

31 public Intersection(Point2D point , Circle circle1 , Circle

circle2) {

32 this.point = point;

33 this.c1 = circle1;

34 this.c2 = circle2;

35 }

36
37
38 boolean isLeftOf(Intersection c) {

39 return isLeftOf(c.point);

40 }

41 boolean isLeftOf(Point2D p) {

42 return point.getX() < p.getX();

43 }

44
45 boolean isRightOf(Intersection c) {

46 return isRightOf(c.point);

47 }

48 boolean isRightOf(Point2D p) {

49 return point.getX() > p.getX();

241

50 }

51
52 boolean isAbove(Intersection c) {

53 return isAbove(c.point);

54 }

55 boolean isAbove(Point2D p) {

56 return point.getY() > p.getY();

57 }

58
59 boolean isBelow(Intersection c) {

60 return isBelow(c.point);

61 }

62 boolean isBelow(Point2D p) {

63 return point.getY() < p.getY();

64 }

65
66
67 /**

68 * @param c target: an intersection above this

69 * @return the angle between the x axis and the line from

70 * this intersection ’s point to <code >c</code >’s

point

71 */

72 double getAngle(Intersection c) {

73 assert !isAbove(c);

74 double opposite = c.point.getY() - point.getY(); //

opposite

75 double hyp = point.distance(c.point);

76 if (c.isRightOf(this)) {

77 return Math.asin(opposite / hyp);

78 } else {

79 return Math.PI - Math.asin(opposite / hyp);

80 }

81 }

82
83
84 /**

85 * @param c

86 * @return <code >true </code > iff <code >c</code > is one of the

circles in this intersection

87 */

88 public boolean belongsTo(Circle c) {

89 return c == c1 || c == c2;

90 }

91
92
93 /**

94 * @param c

95 * @return the circle that is not <code >c</code >

96 */

97 Circle getOtherCircle(Circle c) {

98 assert c == c1 || c == c2;

99 return c == c1 ? c2 : c1;

100 }

242

101
102
103 @Override

104 public String toString () {

105 ByteArrayOutputStream tmp = new ByteArrayOutputStream ();

106 PrintStream stream = new PrintStream(tmp);

107 stream.printf(Locale.US , "p(x=%.2f, y=%.2f), %s, %s",

108 point.getX(), point.getY(), c1.toString (), c2.toString

());

109 return tmp.toString ();

110 }

111
112 }//class

243

C.6.13 Intersector

1 // legacy code. only works in 2D. originally meant used with a

flat map based on UTM coordinates

2 // turned out to be not accurate enough when spanning multipe

UTM zones

3
4 //only used for setting zoom level in current implementation

5
6 package kripos.math.circle;

7
8 import java.awt.geom.Point2D;

9 import java.util.Arrays;

10 import java.util.Iterator;

11 import java.util.LinkedList;

12 import java.util.List;

13
14 /**

15 * Calculate intersections from many circles.

16 * @author oysteine

17 *

18 */

19 public class Intersector {

20
21 /**

22 *

23 * @param inters

24 * @return length of circumference of convex hull created by

<code >inters </code >

25 */

26 static public double getPolygonLength(List <Intersection >

inters) {

27 double length = 0.0;

28
29 if (inters.size() == 0) {

30 } else if (inters.size() == 1) {

31 // circumference of single circle

32 Intersection i = inters.get (0);

33 assert i.c1 == i.c2;

34 return 0.0;

35 // return 2.0 * Math.PI * i.c1.rad;

36 } else {

37 List <Intersection > tmp = new LinkedList <Intersection >(

inters);

38 Intersection prev = tmp.remove (0);

39 tmp.add(prev);

40 for (Intersection next : tmp) {

41 length += prev.point.distance(next.point);

42 prev = next;

43 }

44 }

45 return length;

46 }

47

244

48
49 /**

50 *

51 * @param inters

52 * @return area of convex hull created by <code >inters </code >

53 */

54 static public double getPolygonArea(List <Intersection > inters

) {

55 if (inters.size() == 0) {

56 return 0.0;

57 }

58
59 double area = 0.0;

60
61 List <Intersection > tmp = new LinkedList <Intersection >(

inters);

62 Intersection prev = tmp.remove (0);

63 tmp.add(prev);

64 for (Intersection next : tmp) {

65 double x1 = prev.point.getX();

66 double y1 = prev.point.getY();

67 double x2 = next.point.getX();

68 double y2 = next.point.getY();

69 area += x1*y2 - x2*y1;

70 prev = next;

71 }

72 area *= 0.5;

73 return area;

74 }

75
76 /**

77 * @param inters convex hull

78 * @return centroid of polygon or <code >null </code > if

invalid polygon

79 */

80 static public Point2D getCentroid(List <Intersection > inters)

81 {

82 if (inters.size() < 2) {

83 return null;

84 }

85
86 double area = getPolygonArea(inters);

87
88 double x = 0.0;

89 double y = 0.0;

90
91
92 List <Intersection > tmp = new LinkedList <Intersection >(

inters);

93 Intersection prev = tmp.remove (0);

94 tmp.add(prev);

95 for (Intersection next : tmp) {

96 double x1 = prev.point.getX();

97 double y1 = prev.point.getY();

245

98 double x2 = next.point.getX();

99 double y2 = next.point.getY();

100
101 double determinant = x1*y2 - x2*y1;

102 x += (x1+x2) * determinant;

103 y += (y1+y2) * determinant;

104
105 prev = next;

106 }

107
108 x /= (6 * area);

109 y /= (6 * area);

110
111 return new Point2D.Double(x,y);

112 }

113
114
115 /**

116 *

117 * @param circles

118 * @return exact size of area covered by all circles

119 */

120 static public double getExactArea(List <Circle > circles) {

121 if (circles.size() == 1) {

122 Circle c = circles.get(0);

123 return Math.PI * c.rad * c.rad;

124 }

125
126 List <Intersection > inters = getIntersections(circles);

127 if (inters.size() == 0) {

128 return 0.0;

129 }

130
131 double area = getPolygonArea(inters);

132
133 List <Intersection > tmp = new LinkedList <Intersection >(

inters);

134 Intersection prev = tmp.remove (0);

135 tmp.add(prev);

136 for (Intersection next : tmp) {

137 ArcInfo arc = getArc(prev , next);

138
139 double asize = arc.a2 - arc.a1;

140 double sliceArea = asize / 2 * Math.pow(arc.c.rad , 2);

141 double triangleArea = Math.pow(arc.c.rad , 2) *

142 Math.cos(asize /2) * Math.sin(asize /2);

143
144 area += sliceArea - triangleArea;

145
146 prev = next;

147 }

148
149 return area;

150 }

246

151
152
153 /**

154 *

155 * @param inters

156 * @param distance max distance between each point

157 * @return all original <code >inters </code > point plus points

158 * located on the circumferences on the circles ,

159 * with maximum <code >distance </code > length between

160 * two adjacent points

161 */

162 public static List <Intersection > getMorePoints(

163 List <Intersection > inters , double distance) {

164 List <Intersection > populated = new LinkedList <Intersection

>();

165 if (inters.size() == 0) {

166 return populated;

167 }

168
169 // System.out.println (" GETTING MORE POINTS !");

170
171 List <Intersection > tmp = new LinkedList <Intersection >(

inters);

172 Intersection prev = tmp.remove (0);

173 tmp.add(prev);

174 for (Intersection next : tmp) {

175 populated.add(prev);

176
177 ArcInfo arc = getArc(prev , next);

178
179 // System.out.printf(arc.c + ": a1=%.2f, a2=%.2f%n", arc.

a1, arc.a2);

180 double asize = arc.a2 - arc.a1;

181 double arclen = arc.c.rad * asize;

182 double adelta = asize / (arclen / distance);

183 for (double anew = arc.a1 + adelta; anew < arc.a2; anew

+= adelta) {

184 // System.out.printf (" adding %.2f%n", anew);

185 Point2D p = arc.c.getPoint(anew);

186 populated.add(new Intersection(p, arc.c, arc.c));

187 }

188
189
190 prev = next;

191 }

192
193 return populated;

194 }

195
196
197 private static class ArcInfo {

198 private final Circle c;

199 private final double a1;

200 private final double a2;

247

201
202 private ArcInfo(Circle c, double a1, double a2) {

203 this.c = c;

204 this.a1 = a1;

205 this.a2 = a2;

206 }

207 }

208
209 private static ArcInfo getArc(Intersection prev , Intersection

next) {

210 // find potential circles

211 Circle c = prev.c1;

212 Circle cc = null;

213 if (!next.belongsTo(c)) {

214 c = prev.c2;

215 } else {

216 cc = prev.c2;

217 if (!next.belongsTo(cc)) {

218 cc = null;

219 }

220 }

221
222 // find degrees and wanted circle

223
224 double a1 = c.getAngle(prev);

225 double a2 = c.getAngle(next);

226 if (a2 <= a1) { // equals to support a single circle with a

single point

227 a2 += 2 * Math.PI;

228 }

229
230 if (cc != null && cc != c &&

231 (a2 - a1 > Math.PI || c.rad < cc.rad)) {

232 double b1 = cc.getAngle(prev);

233 double b2 = cc.getAngle(next);

234 if (b2 < b1) {

235 b2 += 2 * Math.PI;

236 }

237
238 if (b2 - b1 < Math.PI ||

239 cc.rad < c.rad) {

240 c = cc;

241 a1 = b1;

242 a2 = b2;

243 }

244 }

245
246 return new ArcInfo(c, a1, a2);

247 }

248
249
250
251 /**

252 *

248

253 * @param circles

254 * @return all points where circles cross to make up

255 * the area all circles overlap

256 */

257 public static List <Intersection > getIntersections(List <Circle

> circles) {

258
259 List <Intersection > inters = new LinkedList <Intersection >();

260
261 if (circles.size() == 0) {

262 return inters;

263 }

264
265 // set intersections at each circle

266 List <Circle > sources = new LinkedList <Circle >(circles);

267 List <Circle > targets = new LinkedList <Circle >();

268
269 Circle firstSource = sources.remove (0);

270 targets.add(firstSource);

271 // add dummy intersection

272 inters.add(new Intersection(

273 firstSource.getPoint (0), firstSource , firstSource));

274 firstSource.intersectionCount += 2;

275
276 while (! sources.isEmpty ()) {

277 Circle source = sources.remove (0);

278
279 // remove previous intersections that fall outside new

source

280 Iterator <Intersection > iterator = inters.iterator ();

281 while (iterator.hasNext ()) {

282 Intersection inter = iterator.next();

283 if (source.isOutside(inter)) {

284 iterator.remove ();

285 inter.c1.intersectionCount --;

286 inter.c2.intersectionCount --;

287 }

288 }

289
290 // add new intersections from source

291 for (Circle target : targets) {

292 List <Intersection > newInters = target.getIntersections(

source);

293
294 if (newInters != null) {

295 for (Intersection newInter : newInters) {

296 boolean valid = true;

297 for (Circle target2 : targets) {

298 if (target2.isOutside(newInter)) {

299 valid = false;

300 break;

301 }

302 }

303 if (valid) {

249

304 inters.add(newInter);

305 newInter.c1.intersectionCount ++;

306 newInter.c2.intersectionCount ++;

307 }

308 }

309 }

310 }

311
312 if (inters.size() == 0) {

313 // add dummy intersection if source is within all

targets

314 boolean withinAll = true;

315 for (Circle target : targets) {

316 if (! target.isWithin(source)) {

317 withinAll = false;

318 break;

319 }

320 }

321
322 // add dummy intersection

323 if (withinAll) {

324 inters.add(new Intersection(

325 source.getPoint (0), source , source));

326 source.intersectionCount += 2;

327 }

328 } else if (inters.size() > 1) {

329 // remove dummy intersection

330 Intersection test = inters.get(0);

331 if (test.c1 == test.c2) {

332 inters.remove (0);

333 test.c1.intersectionCount -= 2;

334 }

335 }

336
337 // add source as target

338 targets.add(source);

339
340 // remove targets without any intersections

341 Iterator <Circle > citer = targets.iterator ();

342 while (citer.hasNext ()) {

343 Circle target = citer.next();

344 assert target.intersectionCount >= 0 :

345 target.toString () + ", intersCount=" + target.

intersectionCount;

346 if (target.intersectionCount == 0) {

347 citer.remove ();

348 }

349 }

350 }

351
352 if (inters.size() == 0) {

353 return inters;

354 }

355

250

356
357
358 // find lowest point to start convex polygon creation

359 Intersection bottom = inters.get(0);

360 for (Intersection inter : inters) {

361 if (inter.isBelow(bottom)) {

362 bottom = inter;

363 }

364 }

365 inters.remove(bottom);

366
367 // find angles from bottom to rest of intersections

368 AngledIntersection [] angles = new AngledIntersection[inters

.size()];

369 int i = 0;

370 for (Intersection inter : inters) {

371 angles[i++] = new AngledIntersection(

372 inter ,

373 bottom.getAngle(inter));

374 }

375
376 // sort angles and add

377 List <Intersection > sorted = new LinkedList <Intersection >();

378 sorted.add(bottom);

379 Arrays.sort(angles);

380 for (AngledIntersection tmp : angles) {

381 sorted.add(tmp.inter);

382 }

383
384 return sorted;

385 }

386
387
388 private static class AngledIntersection implements Comparable

<AngledIntersection > {

389 private final Intersection inter;

390 private final double angle;

391 private AngledIntersection(Intersection inter , double angle

) {

392 this.inter = inter;

393 this.angle = angle;

394 }

395
396 public int compareTo(AngledIntersection other) {

397 if (angle < other.angle) {

398 return -1;

399 } else if (angle > other.angle) {

400 return 1;

401 } else {

402 // TODO: compare distance

403 return 0;

404 }

405 }

406 }

251

407 }

252

C.7 DB Classes

C.7.1 DBCreator

1 package kripos.tools;

2
3 import java.net.InetAddress;

4 import java.net.UnknownHostException;

5 import java.sql.Connection;

6 import java.sql.DatabaseMetaData;

7 import java.sql.DriverManager;

8 import java.sql.ResultSet;

9 import java.sql.SQLException;

10 import java.sql.Statement;

11 import java.util.ArrayList;

12
13 import kripos.geo.Landmark;

14
15 /**

16 * Creates and fills the database used by agents for

17 * storing geolocation information

18 * Any existing database and content will be dropped!

19 *

20 * @author oysteine

21 * @version

22 *

23 */

24 public class DBCreator {

25 private String dbmsPath;//TODO not used yet

26 private String user;//TODO not used yet

27 private String pw;//TODO not used yet

28 private String myName;

29
30 /**

31 * Creates the database tables relative to the landmark host

32 */

33 public DBCreator () {

34 InetAddress iadr;

35 try {

36 iadr = InetAddress.getLocalHost ();

37 myName = iadr.getCanonicalHostName ();

38 } catch (UnknownHostException e) {

39 System.out.println("Unable to get local fqdn hostname");

40 e.printStackTrace ();

41 }

42 }

43
44 /**

45 * Establishes a connection to the database

46 *

47 * @return con connection to the database

48 */

253

49 private Connection connect () throws SQLException ,

ClassNotFoundException{

50 Connection c = null;

51 Class.forName("org.hsqldb.jdbcDriver");

52 c = DriverManager.getConnection("jdbc:hsqldb:hsql ://

localhost/xdb", "sa", "");

53 return c;

54 }

55
56 /**

57 * Creates and fills the table containing information about

landmarks

58 *

59 * @param Database connection con

60 */

61 private void createLandmarkTable(Connection con) throws

SQLException{

62 String landmarkTable = "CREATE TABLE LANDMARKS " +

63 "(NAME VARCHAR (32) NOT NULL , IPADR VARCHAR (39) NOT NULL ,

CHECKED TIMESTAMP , " +

64 "DISTANCE_KM DOUBLE NOT NULL , LATITUDE DOUBLE NOT NULL ,

LONGITUDE DOUBLE NOT NULL , MIN_RTT DOUBLE , " +

65 "AVG_RTT DOUBLE , C1 DOUBLE , EPSILON DOUBLE , HASH VARCHAR

(64), PRIMARY KEY(NAME ,IPADR))";

66
67 Statement stmt;

68 stmt = con.createStatement ();

69 // create table

70 stmt.executeUpdate(landmarkTable);

71 //fill table

72 LandmarkReader lr = new LandmarkReader ();

73 ArrayList <Landmark > landmarks = lr.distance(myName);

74
75 for(int i=0;i<landmarks.size();i++){

76 Landmark l = landmarks.get(i);

77 double distance = l.getDistance ();

78 double latitude = l.getGeoPosition ().getLatitude ();

79 double longitude = l.getGeoPosition ().getLongitude ();

80 String IP = l.getIP ();

81 String name = l.getName ();

82 String landmarkAdd = "INSERT INTO LANDMARKS " +

83 "VALUES (’"+name+"’,’"+IP+"’,null ,"+distance+","+latitude

+","+longitude+"," +

84 9999999+"," + -1+"," + -1+"," + -1+",’A’)";

85
86 stmt.executeUpdate(landmarkAdd);

87 }

88 }

89
90 /**

91 * Creates the table containing information about traced

hosts

92 *

93 * @param Database connection con

254

94 */

95 private void createTraceTable(Connection con) throws

SQLException{

96 // contains traced hosts and info

97 String traceTable = "CREATE TABLE TRACED " +

98 "(NAME VARCHAR (32), IPADR VARCHAR (39), CHECKED TIMESTAMP

NOT NULL , " +

99 "MIN_RTT DOUBLE NOT NULL , AVG_RTT DOUBLE , C1 DOUBLE ,

EPSILON DOUBLE , HASH VARCHAR (64), PRIMARY KEY(IPADR))";

100
101 Statement stmt;

102 stmt = con.createStatement ();

103 stmt.executeUpdate(traceTable);

104 }

105
106 /**

107 * Creates the table containing misc information ,

108 *

109 * @param Database connection con

110 */

111 private void createMiscTable(Connection con)throws

SQLException{

112 // contains misc data. when last bestline etc.

113 String miscTable = "CREATE TABLE MISC " +

114 "(NAME VARCHAR (32), IPADR VARCHAR (39), LAST_BESTLINE

TIMESTAMP , BESTLINE_M DOUBLE , BESTLINE_B DOUBLE ,

LATITUDE DOUBLE , LONGITUDE DOUBLE)";

115
116 Statement stmt = con.createStatement ();

117 // create table

118 stmt.executeUpdate(miscTable);

119
120 //fill table

121 LandmarkReader lr = new LandmarkReader ();

122 Landmark l = lr.getSingleLandmark(myName);

123
124 double latitude = l.getGeoPosition ().getLatitude ();

125 double longitude = l.getGeoPosition ().getLongitude ();

126 String IP = l.getIP ();

127
128 String miscAdd = "INSERT INTO MISC VALUES (’"+myName+"’,’"+

IP+"’,null ,0,0,"+latitude+","+longitude+")";

129 stmt.executeUpdate(miscAdd);

130 }

131
132 /**

133 * @param args

134 * @throws SQLException

135 */

136 public static void main(String [] args) {

137 DBCreator dbCreate = new DBCreator ();

138 try{

139 Connection con = dbCreate.connect ();

140 Statement stmt;

255

141 stmt = con.createStatement ();

142 DatabaseMetaData dbmd = con.getMetaData ();

143 ResultSet rs1 = dbmd.getTables(null ,null ,null ,null);

144 //drop all existing normal tables

145 while(rs1.next()){

146 String tableName = rs1.getString("TABLE_NAME");

147 String tableType = rs1.getString("TABLE_TYPE");

148 if(tableType.equalsIgnoreCase("TABLE")){

149 stmt.execute("DROP TABLE " +tableName);

150 }

151 }

152 // create and fill tables

153 dbCreate.createLandmarkTable(con);

154 dbCreate.createTraceTable(con);

155 dbCreate.createMiscTable(con);

156 con.close();

157 System.out.println("Database created successfully!");

158 System.exit (0);

159
160 } catch (SQLException se) {

161 System.out.println("Database creation FAILED!");

162 se.printStackTrace ();

163 System.exit (1);

164 }catch (ClassNotFoundException ce) {

165 System.out.println("Database creation FAILED!");

166 ce.printStackTrace ();

167 System.exit (1);

168 }

169 }

170
171 }//class

256

C.7.2 DBStop

1 package kripos.tools;

2
3 import java.sql.Connection;

4 import java.sql.DriverManager;

5 import java.sql.SQLException;

6 import java.sql.Statement;

7
8 /**

9 * @author oysteine

10 *

11 */

12 public class DBStop {

13
14 public DBStop () {

15 }

16
17 public static void main(String [] args){

18 DBStop dbs = new DBStop ();

19 try {

20 Connection con = dbs.connect ();

21 Statement st = con.createStatement ();

22 st.execute("SHUTDOWN");

23
24 } catch (SQLException e) {

25 e.printStackTrace ();

26 } catch (ClassNotFoundException e) {

27 e.printStackTrace ();

28 }

29 }

30
31 /**

32 * Establishes a connection to the database

33 *

34 * @return con connection to the database

35 */

36 private Connection connect () throws SQLException ,

ClassNotFoundException{

37 Connection c = null;

38 Class.forName("org.hsqldb.jdbcDriver");

39 c = DriverManager.getConnection("jdbc:hsqldb:hsql ://

localhost/xdb", "sa", ""); //FIXME

40 return c;

41 }

42
43 }

257

C.7.3 LandmarkReader

1 package kripos.tools;

2
3 import java.io.BufferedReader;

4 import java.io.FileNotFoundException;

5 import java.io.FileReader;

6 import java.io.IOException;

7 import java.net.InetAddress;

8 import java.util.ArrayList;

9 import kripos.geo.Landmark;

10 import com.bbn.openmap.LatLonPoint;

11 import com.bbn.openmap.proj.Length;

12 import com.bbn.openmap.proj.coords.UTMPoint;

13
14 /**

15 * Tool to read landmarkinformation from file.

16 * Includes method to calculate distance between landmarks

17 *

18 * @author oysteine

19 * @version 1.1

20 *

21 */

22 public class LandmarkReader {

23 private ArrayList <Landmark > landmarks = new ArrayList <

Landmark >();

24
25 /**

26 * Creates a LandmarkReader and reads in landmarkinformation

from file

27 */

28 public LandmarkReader () {

29 convert ();

30 }

31
32 /**

33 * Calculates and returns the distances to all landmarks

34 * from the landmark with the name provided.

35 *

36 * @param name of landmark to compute distances from

37 * @return list of landmarks with distances.

38 */

39 public ArrayList <Landmark > distance(String landmarkName){

40 Landmark from = null;

41 for(int i=0;i<landmarks.size();i++){

42 if(landmarkName.equalsIgnoreCase(landmarks.get(i).getName

())){

43 from = landmarks.remove(i);

44 break;

45 }

46 }

47
48 for(int i=0; i<landmarks.size();i++){

258

49 double radDistance = from.getGeoPosition ().distance(

landmarks.get(i).getGeoPosition ());

50 Length converter = Length.KM;

51 landmarks.get(i).setDistance(converter.fromRadians(

radDistance));

52 }

53 return landmarks;

54 }

55
56 /**

57 * Get information about a single landmark in the form of

Landmark object

58 *

59 * @param landmarkName the name of the

60 * @return the Landmark object for the landmark queried for

61 */

62 public Landmark getSingleLandmark(String landmarkName){

63 Landmark result = null;

64 for(int i=0;i<landmarks.size();i++){

65 if(landmarkName.equalsIgnoreCase(landmarks.get(i).getName

())){

66 result = landmarks.remove(i);

67 break;

68 }

69 }

70 return result;

71 }

72
73 /**

74 * Reads landmarkinformation from file

75 * | is used as field separator

76 * lines starting with # are ignored

77 */

78 private void convert (){

79 try {

80 FileReader fr = new FileReader("maalepaaler.txt");

81 BufferedReader br = new BufferedReader(fr);

82 String temp = null;

83
84 while((temp = br.readLine ()) !=null){

85 if(’#’ == temp.charAt (0)){ // ignore lines starting with

#

86 }

87 else{

88 int firstCutPoint = temp.indexOf(’|’);

89 String name = temp.substring(0, firstCutPoint);

90 int secondCutPoint = temp.indexOf(’|’, firstCutPoint

+1);

91 int UTMZone = Integer.parseInt(temp.substring(

firstCutPoint +1, secondCutPoint));

92 int thirdCutPoint = temp.indexOf(’|’, secondCutPoint

+1);

93 int UTMNorthing = Integer.parseInt(temp.substring(

secondCutPoint +1, thirdCutPoint));

259

94 int UTMEasting = Integer.parseInt(temp.substring(

thirdCutPoint +1));

95 UTMPoint utmp = new UTMPoint(UTMNorthing , UTMEasting ,

UTMZone ,’N’);

96 LatLonPoint llp = utmp.toLatLonPoint ();

97
98 //get the current IP-address of the hostname

99 InetAddress iadr = InetAddress.getByName(name);

100 String IP = iadr.getHostAddress ();

101
102 Landmark l = new Landmark(name , llp , IP);

103 landmarks.add(l);

104 }

105 }

106 } catch (FileNotFoundException e) {

107 e.printStackTrace ();

108 } catch (IOException e) {

109 e.printStackTrace ();

110 }

111 }

112
113 }//class

260

C.7.4 Landmark

1 package kripos.geo;

2
3 import java.util.Date;

4
5 import com.bbn.openmap.LatLonPoint;

6
7 /**

8 * Contains information about a single Landmark ,

9 * relative to the position of the owner of this instance.

10 *

11 * @author oysteine

12 * @version 1.0

13 */

14 public class Landmark {

15 private String myName;

16 private LatLonPoint geoPosition; //TODO

17 private double myDistance;

18 private String myIP;

19 private Date lastChecked;

20 private double minRTT = 0;

21 private double avgRTT;

22 private double C1;

23 private double epsilon;

24 private String hashedTimestamp; //TODO

25
26 /**

27 *

28 */

29 public Landmark(String IP) {

30 myIP = IP;

31 }

32
33 /**

34 *

35 */

36 public Landmark(String name , LatLonPoint llp , String IP) {

37 myName = name;

38 myIP = IP;

39 geoPosition = llp;

40 }

41
42 /**

43 *

44 */

45 public Landmark(String name , double distance , String IP) {

46 myName = name;

47 myDistance = distance;

48 myIP = IP;

49 }

50
51 /**

52 * @return the geoPosition

261

53 */

54 public LatLonPoint getGeoPosition () {

55 return geoPosition;

56 }

57
58 /**

59 * @param myDistance the myDistance to set

60 */

61 public void setDistance(double myDistance) {

62 this.myDistance = myDistance;

63 }

64
65 /**

66 * @return the avgRTT

67 */

68 public double getAvgRTT () {

69 return avgRTT;

70 }

71
72 /**

73 * @param avgRTT the avgRTT to set

74 */

75 public void setAvgRTT(double avgRTT) {

76 this.avgRTT = avgRTT;

77 }

78
79 /**

80 * @return the c1

81 */

82 public double getC1() {

83 return C1;

84 }

85
86 /**

87 * @param c1 the c1 to set

88 */

89 public void setC1(double c1) {

90 C1 = c1;

91 }

92
93 /**

94 * @return the epsilon

95 */

96 public double getEpsilon () {

97 return epsilon;

98 }

99
100 /**

101 * @param epsilon the epsilon to set

102 */

103 public void setEpsilon(double epsilon) {

104 this.epsilon = epsilon;

105 }

106

262

107 /**

108 * @return the hashedTimestamp

109 */

110 public String getHashedTimestamp () {

111 return hashedTimestamp;

112 }

113
114 /**

115 * @param hashedTimestamp the hashedTimestamp to set

116 */

117 public void setHashedTimestamp(String hashedTimestamp) {

118 this.hashedTimestamp = hashedTimestamp;

119 }

120
121 /**

122 * @return the lastChecked

123 */

124 public Date getLastChecked () {

125 return lastChecked;

126 }

127
128 /**

129 * @param lastChecked the lastChecked to set

130 */

131 public void setLastChecked(Date lastChecked) {

132 this.lastChecked = lastChecked;

133 }

134
135 /**

136 * @return the minRTT

137 */

138 public double getMinRTT () {

139 return minRTT;

140 }

141
142 /**

143 * @param minRTT the minRTT to set

144 */

145 public void setMinRTT(double minRTT) {

146 this.minRTT = minRTT;

147 }

148
149 /**

150 * @return the distance

151 */

152 public double getDistance () {

153 return myDistance;

154 }

155
156 /**

157 * @param distance the distance to set

158 */

159 public void SetDistance(double distance) {

160 myDistance = distance;

263

161 }

162
163 /**

164 * @return the ip

165 */

166 public String getIP() {

167 return myIP;

168 }

169
170 /**

171 * @return the name

172 */

173 public String getName () {

174 return myName;

175 }

176
177 }//class

264

C.8 Scripts used for Managing the System

C.8.1 Unidist

1 #!/bin/bash

2 hostfile =~/ diplom/shell/unihosts

3 uniuser="oysteine"

4 content =~/ diplom/shell/disttest

5
6 files=‘find $content -maxdepth 1 -type f‘

7 directories=‘find $content -mindepth 1 -maxdepth 1 -type d‘

8
9 destination =~/

10
11 if [[! -e "$hostfile"]]

12 then

13 printf "${hostfile ##*/}non -existent"

14 exit 1

15 fi

16
17 for host in $(cat $hostfile)

18 do

19 printf "Copying to host $host *************************"

20 for directoryLine in $directories

21 do

22 scp -r "$directoryLine/" $uniuser@$host:$destination

23 done

24
25 for fileLine in $files

26 do

27 scp "$fileLine" $uniuser@$host:$destination

28 done

29 done

30
31 printf "Copied current version to all unihosts"

32 printf "\n"

C.8.2 Unirun

1 #!/bin/bash

2 hostfile =~/ diplom/shell/unihosts

3 uniuser="oysteine"

4 classpath1="/home/oysteine/hsqldb/lib/hsqldb.jar:/home/oysteine

/jade/lib/jade.jar:/home/oysteine/jade/lib/jadeTools.jar:/

home/oysteine/jade/lib/iiop.jar:/home/oysteine/jade/lib/

commons -codec -1.3. jar"

5 classpath2="/home/oysteine/jade/lib/jade.jar :.:/ home/oysteine/

jade/lib/jadeTools.jar:/home/oysteine/jade/lib/iiop.jar:/

home/oysteine/jade/lib/commons -codec -1.3. jar:/home/oysteine/

openmap/lib/openmap.jar:/home/oysteine/Jama -1.0.2. jar:/home/

oysteine/hsqldb/lib/hsqldb.jar"

6 sjef="futurum01.item.ntnu.no"

265

7
8 if [[! -e "$hostfile"]]

9 then

10 printf "${hostfile ##*/}non -existent"

11 exit 1

12 fi

13
14 for host in $(cat $hostfile)

15 do

16 ssh $uniuser@$host java -cp $classpath1: org.hsqldb.Server

-database .0 mydb -dbname .0 xdb &

17 ssh $uniuser@$host java -cp $classpath2 jade.Boot -

nomobility -container -host $sjef -container -name

$host $host -Admin:kripos.geo.AdminAgent &

18 ssh $uniuser@$host java -cp $classpath2 jade.Boot -

container -host $sjef -container -name $host $host -Admin:

kripos.geo.AdminAgent &

19 sleep 1

20 done

21
22 printf "system started"

C.8.3 Unistop

1 #!/bin/bash

2 hostfile =~/ diplom/shell/unihosts

3 uniuser="oysteine"

4 classpath1="~/ hsqldb/lib/hsqldb.jar:~/ geolocate.jar"

5
6 if [[! -e "$hostfile"]]

7 then

8 printf "${hostfile ##*/}non -existent"

9 exit 1

10 fi

11
12 for host in $(cat $hostfile)

13 do

14 ssh $uniuser@$host java -cp $classpath1: kripos.tools.

DBStop

15 ssh $uniuser@$host killall java

16 done

17
18 printf "system stopped"

C.8.4 Unikill

1 #!/bin/bash

2 hostfile =~/ diplom/shell/unihosts

3 uniuser="oysteine"

4 classpath1="~/ hsqldb/lib/hsqldb.jar:~/ geolocate.jar"

5
6
7 if [[! -e "$hostfile"]]

266

8 then

9 printf "${hostfile ##*/}non -existent"

10 exit 1

11 fi

12
13 for host in $(cat $hostfile)

14 do

15 ssh $uniuser@$host java -cp $classpath1: kripos.tools.

DBStop

16 ssh $uniuser@$host killall -9 java

17 done

C.8.5 Unicdb

1 #!/bin/bash

2 hostfile =~/ diplom/shell/unihosts

3 uniuser="oysteine"

4 classpath1=".:/ home/oysteine/hsqldb/lib/hsqldb.jar:/home/

oysteine/openmap/lib/openmap.jar"

5
6 if [[! -e "$hostfile"]]

7 then

8 printf "${hostfile ##*/}non -existent"

9 exit 1

10 fi

11
12 for host in $(cat $hostfile)

13 do

14 printf "$host ***************"

15 printf "\n"

16 ssh $uniuser@$host java -cp $classpath1: org.hsqldb.Server -

database .0 mydb -dbname .0 xdb &

17 sleep 2

18 ssh $uniuser@$host java -cp $classpath1 kripos.tools.

DBCreator &

19 done

C.9 JADE properties files

C.9.1 JADE-S main.conf

1 # ---- JADE configuration ----

2
3 # ------ Services ------

4 services =\

5 jade.core.security.SecurityService ;\

6 jade.core.security.signature.SignatureService ;\

7 jade.core.security.encryption.EncryptionService ;\

8 jade.core.event.NotificationService

9
10

267

11 # ------ Agents ------

12 agents=kripos -rma:jade.tools.rma.rma

13
14 # ------ Security configuration ------

15
16 # ---- Permission ----

17 # Permission Policy file

18 java.security.policy=policy.txt

19
20
21 # ---- Authentication ----

22
23 # - Type of Prompt

24 jade.security.authentication.logincallback=Cmdline

25
26 # - if Cmdline , use this user/pass -

27 owner=kripos:test

28
29 # - Auth module

30 jade.security.authentication.loginmodule=Simple

31
32 # - if Simple , use this password file

33 jade.security.authentication.loginsimplecredfile=passwords.txt

34
35
36 # - JAAS configuration file -

37 java.security.auth.login.config=jaas.conf

38
39 # ---- end JADE configuration ----

268

C.9.2 jaas.conf

1 /*

2 * JAAS configuration file

3 */

4
5 Simple {

6 jade.core.security.authentication.SimpleLoginModule required

;

7 };

8
9 Unix {

10 com.sun.security.auth.module.UnixLoginModule required;

11 };

12
13 NT {

14 com.sun.security.auth.module.NTLoginModule required;

15 };

16
17 Kerberos {

18 com.sun.security.auth.module.Krb5LoginModule required;

19 };

C.9.3 policy.txt

1 grant codebase "file:/home/oysteine/jade/add -ons/security/lib/

jadeSecurity.jar" {

2 permission java.security.AllPermission; };

3 grant codebase "file:/home/oysteine/jade/lib/jade.jar" {

4 permission java.security.AllPermission; };

5 grant codebase "file:/home/oysteine/jade/lib/jadeTools.jar" {

6 permission java.security.AllPermission; };

7
8 // --- Policy on the MAIN container ---

9
10 grant principal jade.security.Name "kripos" {

11 permission java.security.AllPermission;

12 };

C.9.4 passwords.txt

1 kripos test

269

270

Appendix D

Map Projections and Reference
Systems

In this Appendix some of the geographical properties of the earth with regard to
GIS and maps are described. A basic understanding of these properties and dif-
ferent ways to model the earth and locations on it is necessary to appreciate some
of the discussion with regard to the choice of geographical toolkit, and also the
distance calculations involved in converting delay measurements to geographical
distance.

Most of the effects on geolocation due to the differences among the reference
systems and earth models described below are minor. Current geolocation tech-
niques are not accurate enough for these effects to be important. They are only
included here for completeness and future reference.

D.1 Map Projections

All maps of the earth are based on map projections. A map projection is any
method used in cartography to represent the two-dimensional curved surface of the
earth or other body on a plane [map06]. A surface that can be unfolded into a flat
plane without any form of distortion is called a developable surface. Unfortunately
the earth is an approximately elliptical spheroid, a form that is not a developable
surface. Any projection used to "flatten" it will incur some distortions. The type
and severity of the distortions depends on the projection used. Different projections
are designed to preserve certain properties, as it is impossible to avoid distortion
all together.

For map projections, and particularly for GIS systems, different approximations
of the shape of the earth are used, with different distortion properties. This, in

271

addition to the choice of map projection, leads to slightly different coordinates
being assigned to the same location, depending on the earth model an map projection
used. These differences influence the accuracy of distance calculation in our system.

D.2 Geographical Reference Systems

Not only are there different map projections based on different earth models. Several
different reference systems have also been developed. Most of these reference
systems define what model of the earth is to be used to avoid ambiguity between
locations and their coordinates. However, conversion between the different systems
may introduce inaccuracies.

D.2.1 World Geodetic System (WGS)

The World Geodetic System defines a fixed global reference frame for the earth.
It was originally conceived in 1960 and named WGS60. The latest revision is
WGS 84 dating from 1984, although with several minor updates, the last from
2004. WGS84 is used by the Global Positioning System (GPS). It is geocentric
and globally consistent within ± 1 m. The longitude positions on WGS84 differ
somewhat from older datums, the zero meridian of WGS84 is about 100 meters to
the east of the traditional zero meridian at Greenwich [wgs06].

D.2.2 Universal Transverse Mercator (UTM)

UTM is a grid-based method of specifying locations on the surface of the Earth.
It differs from the method of latitude and longitude in several respects. Unlike for
latitude and longitude, there is no physical frame of reference for the UTM grid.
Latitude is determined by the earth’s polar axis and longitude is determined by the
its rotation. UTM coordinates are simply defined by the grid used [Dut06].

The UTM system is not a map projection, it is based on a collection of sixty
longitude zones, where each zone is based on a specifically defined Transverse
Mercator projection. The WGS84 ellipsoid is used as the underlying earth model.
UTM does not cover the entire surface of the earth, the zones do not cover the
areas north of 84◦ and south of 80◦. Each of the 60 zones is 6◦ longitude wide
and centered over a meridian of longitude. Zone 1 is defined as longitude 180◦ to
174◦ W. Zone numbers increase in an easterly direction. Each zone maps a region
of large north-south extent with a low amount of distortion, below 1:1,000 inside
each zone, distortion is higher at the edges of a zone. The longitude zones are
partitioned into 20 latitude zones, each 8 degrees high [utm06, Dea06].

272

The partition into longitude and latitude zones is globally uniform, except in two
areas; on the southwest coast of Norway, the zone 32V is extended westward,
and the zone 31V is correspondingly shrunk to cover only open water, see Figure
D.1. Also, in the region around Svalbard, the longitude zones are given double
their normal width. This has implications for the accuracy of the locations of
some of our measurement nodes, since their locations were provided in UTM
format by Uninett. The UTM system’s accuracy is rated as 1:2,500 [Dea06]. This
means that the true length of a distance measured to be 2,500km lies between
2,499km and 2,501km. The accuracy will of course be lower when the zone
size is doubled. Conversion between longitude/latitude and UTM involves rather
complex equations, and different implementations may take shortcuts leading to
small inaccuracies.

Figure D.1: The extended UTM zone 32V and the shrunk 31V.

D.3 Great-circle Distance

Great-circle distance is the shortest distance between any two points on the surface
of a sphere. It is defined by a great circle with the same center as the sphere:
Between any two points on a sphere, there is a unique great circle, except if the
two points are exactly opposite each other, in which case there is an infinite set of
matching great circles. The two points separate the great circle into two arcs. The
length of the shorter arc is the great-circle distance between the points.

Great-circle distances can be used to calculate the distance between locations on
earth, if the form of the earth is approximated as a sphere. Using a sphere with a
radius of 6372.795 km this approximation results in an error of up to about 0.5%
[gre06].

273

