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Problem Description

With more and more cellular phone handsets being introduced with short-range wireless
communications interfaces (Bluetooth and, lately, wifi), an alternative to using the purely cell-
based mobile phone networks infrastructure can be envisioned: mobile phone cells can be
extended via ad-hoc relaying of traffic from out-of-coverage handsets towards in-coverage
handsets, and mobile phones might be able to establish communication paths between them
without passing through the cellular infrastructure. Furthermore, with wifi-enabled handsets and
low-bandwidth voice-over-IP, traditional cellular network coverage may easily be extended by
multi-fabric access to e.g. GSM, UMTS and wifi access points.

This presents a number of challenges including, but not limited to, billing, security, multi-fabric
routing, hand-over and quality of service. One task of this project is thus to look at the necessity of
providing brokering network access, addressing variables influencing its success.

The other task for this project is to construct the necessary mechanisms for establishing the ad-
hoc part of an extension to cellular networks. This involves analysing ad-hoc networking and
implementing OLSRv2, one of several experimental solutions for ad-hoc networking that exist
within the Internet Engineering Task Force (IETF). To emulate such a system, but also for
debugging and evaluating the implementation, a test-bed is required to be constructed.
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Abstract

This master dissertation describes perspectives to an ad-hoc extension
of cellular networks such as GSM or UMTS, but the ideas may also be valid
for 802.11 hotspots. By extending cellular networks with ad-hoc networking,
the range of the cellular network can greatly be extended. Other than the
technical infrastructure to provide connectivity, a policy enforcing mech-
anism - a broker - is envisioned to administer and maintain connections,
and handle issues such as billing, security, hand-over and quality of service.
This thesis describes a thus far little explored application domain for mobile
networks.

The dissertation analyses ad-hoc networks and the application areas in
general, and in particular the Optimized Link-State Routing protocol version
2 (OLSRv2), which is one of the standards track ad-hoc routing protocols
developed within the Internet Engineering Task Force (IETF).

The results obtained during this project are the very first implementation
of the OLSRv2 specifications, and also the very first practical experiments
with the protocol. The implementation has been tested and validated using
a small test-bed. Furthermore, a brokering network access mechanism is sug-
gested to accommodate an ad-hoc extension of cellular networks, discussing
factors that should be considered before a successful deployment.
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Chapter 1

Introduction

This chapter gives an introduction and overview of the motivating applica-
tion scenario. It will describe perspectives to an extension of cellular based
networks where ad-hoc networking is used, as well as describing the struc-
ture and scope of the dissertation. Thus, section 1.1 will take a look at
the background and motivating factors. Section 1.2 describes the problem
domain, while section 1.3 takes a closer look at which of these problems the
dissertation will treat.

1.1 Background and motivation

With more and more cellular phone handsets being introduced with short-
range wireless communications interfaces (Bluetooth and, lately, wifi), an
alternative to using the purely cellular based mobile phone networks in-
frastructure can be envisioned: mobile phones might be able to estab-
lish communication paths without passing through the cellular infrastruc-
ture, via ad-hoc relaying of traffic from out-of-coverage handsets towards
in-coverage handsets. Furthermore, with wifi-enabled handsets and low-
bandwidth voice-over-IP, traditional cellular network coverage may easily
be extended by multi-fabric access to e.g. GSM, UMTS and wifi access
points.

This presents a number of challenges including, but not limited to,
billing, security, multi-fabric routing, hand-over, quality of service and so
on.

1.2 Problem domain description

Cellular based networks such as the Global System for Mobile Com-
munications (GSM) has been around for decades. Even though there
has been an increase in bandwidth and greater coverage over the years, the
fundamental principle stays the same. Users communicate with each other
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Figure 1.1: A traditional cellular mobile network. Users communicate with
each through the use of cellular towers when within range (big circle) but
not directly.

through cellular towers when in coverage. The traffic must pass through
the towers, acting as base stations, and users are not able to communicate
directly (figure 1.1).

In recent years, Personal Digital Assistants (PDAs), but also mo-
bile phones have been equipped with wifi network interfaces, in addition
to the normal support for cellular networks such as the Universal Mo-
bile Telecommunications System (UMTS). This opens the door to a
co-existence between cellular and mobile ad-hoc networks (MANETs),
broadening the coverage area and reducing the load on the cellular network.

However, this merge is far from trivial when it comes to billing. In
purely cellular networks, mobile operators control the network and can easily
monitor the traffic. Using different billing schemes, either the sender or
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Figure 1.2: A scenario with both a MANET and a cellular network in action.
The two headed arrows indicate connections, where the dashes lines are
MANET connections while the solid lines are cellular network connections.
The big circle denotes the coverage area of the cellular tower. Only user C
is within coverage of the cellular tower, and in our scenario user A wishes
to gain access to its network.

receiver, or both, can be charged.
The introduction of MANETs within cellular networks makes things

more complicated. Figure 1.2 shows an example where users, equipped with
handsets supporting both cellular and MANETs are in the same network.
A user outside the coverage area of the cellular tower wishes to gain access
to the network provided by the tower. Obviously, he cannot use the built-in
cellular network support, since he is not within range. However, intermedi-
ate nodes relay the traffic, a connection is possible. This connection arises
a number of questions. Who will pay for the connection? After all, the
sender is not the one directly connected to the cellular tower. Why would
the intermediate nodes relay traffic? By doing so, there are nothing but dis-
advantage as the relaying is expensive in terms of process power and power
consumption. Should there be some kind of reward for bandwidth sharing
users?

Developing the previous scenario, the billing gets more complicated. In
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Figure 1.3: A scenario with both a MANET and a cellular network in action.
The two headed arrows indicate connections, where the dashed lines are
MANET connections while the solid lines are cellular network connections.
The big circle indicates the coverage area of the cellular tower. In this
scenario user A wants to connect to user E, but none of them are within
the coverage area of the cellular tower. However, using a combination of
MANET and cellular network connections there exists a path over which
they can communicate.

figure 1.3, two users outside the coverage area of the cellular tower wish to
communicate. Like in the previous scenario, the path from the sender to
the receiver involves both the MANET and cellular network. Who should
pay for the connection through the cellular tower? Should the expenses be
shared between the sender and receiver, and if so, how should it be done?

Besides billing, other issues may also be addressed. In networks where
users relay traffic for each other, security becomes important. How can users
be sure that messages they send are not read or altered by others when
relayed? How can they know that the messages actually reach the destina-
tions? There are also questions related to hand-overs, that is, when users
switch between the networks. Should the transition be automatic, or should
the user disconnect from one network and then reconnect to another? Fi-
nally, quality of service (QoS) is important. What are acceptable packet
losses and bandwidth? How can a system make QoS guarantees in a multi
network environment, possibly involving intermediate nodes forwarding traf-

12



fic? How can the system decide whether to use the ad-hoc or cellular network
with a given set of conditions?

All these questions need to be accounted for, for an ad-hoc extension to
cellular networks to work as intended. There is thus a need for a mechanism
providing brokering network access, handling issues such as billing, security,
hand-over and QoS.

1.3 Objectives and scoping

With the last section in mind, this dissertation deals with a certain number
of the issues mentioned. The proposed system (figure 1.3) can be divided
in two main parts: the cellular and ad-hoc network. Cellular networks have
been around for decades, are well known, and do not offer many technical
challenges. Ad-hoc networks, on the other hand, is still at an early stage
of development, and not very explored in this context. These observations
made ad-hoc networking the most interesting approach to take.

The tasks among others of this project are thus to construct the necessary
mechanisms for establishing the ad-hoc part of the system. This involves
analysing ad-hoc networking and implementing a routing protocol. Several
experimental solutions for ad-hoc networking exist, but while working with
the team behind OLSR, a quite natural choice was to implement the new
version currently under development.

The proposed system (figure 1.3) includes handsets capable of both ad-
hoc and cellular based communication. To emulate such a system, but also
for debugging and evaluating the implementation, a test-bed is required to
be constructed.

Furthermore, the necessity of providing brokering network access will be
discussed, looking at motivating factors for such a service.

1.4 Overview and structure

The remainder of this dissertation is structured as follows.

Chapter 2 describes mobile ad-hoc networks, and looks at what they do,
where they are used and how they work.

Chapter 3 describes one of several ad-hoc routing protocols, OLSR. The
general characteristics and algorithms are explained before detailing
its anatomy, explaining how the different components work together.
Finally, a comparison between OLSR [6] and its coming successor OL-
SRv2 is given, highlighting the improvements.

Chapter 4 takes a closer look at the work done during the implementation
of OLSRv2. The chapter provides background for the programming
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language used, focusing on its strengths and weaknesses regarding an
implementation of an ad-hoc routing protocol. Then, an overview of
the code structure is given, followed by an overview of the test-bed,
looking at why it was set up and what it was used for.

Chapter 5 describes the perspectives of a brokering network access service,
highlighting its motivating factors.

Chapter 6 discusses future work.

Chapter 7 concludes this dissertation, by summarising the goals achieved
and the contributions made to the OLSRv2 standardisation effort.

1.5 Summary

Limited coverage in cellular networks may be extended by deploying ad-hoc
networks in the out-of-coverage areas, connecting these networks to cellu-
lar towers. This chapter has described such a system, discussing some its
challenges concerning billing, hand-overs and quality of service. It has also
scoped the work in this dissertation to focus on the ad-hoc part, implement-
ing and testing an ad-hoc routing protocol, as well as discussing the use of
a broker service.

Thus, the following chapter will detail mobile ad-hoc networks, giving
an overview of their application domains as well as analyse different routing
protocol taxonomies.
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Chapter 2

Mobile Ad-hoc Networks

Focusing on the ad-hoc part of the proposed system in section 1.2, this
chapter will in section 2.1 provide an overview of mobile ad-hoc networks
(MANETs). Then, applications of MANETs are discussed in section 2.3,
followed by a presentation of different routing protocol taxonomies in section
2.4.

2.1 Overview

A MANET is a collection of mobile nodes communicating over wireless
links. Mobile nodes (see figure 2.1), hereafter nodes, are wireless network
devices that freely can change their position over time. A wireless link,
hereafter link, is an arbitrary direct connection between two mobile nodes.
The nodes’ possible random movements, combined with their appearances
and disappearances affects the network topology, the configuration of
connections between nodes in a network.

Wireless communication implies that nodes may have limited range and
constrained bandwidth. This means that destinations may be out of range,
and that nodes may have to relay data traffic. The data traffic may be
relayed multiple hops before it reaches the destination. A hop means an
intermediate connection in a chain of links, and a chain of links is also known
as a path.

These facts place two fundamental requirements on the routing proto-
col, the mechanism used to provide each node with topological information
allowing it to calculate the appropriate paths over which data is transmitted.
First, the calculation must be decentralised, since there is most likely no sin-
gle node connected to all other nodes. Second, since the topology changes
can occur frequently, nodes must be self-configuring and the routing proto-
col must compute multiple, loop-free routes while keeping the overheads
to a minimum. Overhead means any resource, such as computation time,
memory or bandwidth, that is utilised by a routing protocol.
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Figure 2.1: Mobile nodes can change their position randomly and at any
time, creating different topologies and networks. In this example, at t=0,
there are two MANETs, formed by nodes A, B and C and nodes D, E ,F, G
and H, indicated by the lines between them. The dashed lines with arrows
indicate the movements the nodes are about to make. At t=1 the original
two networks have split into three, all having new topologies.
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2.2 Wireless networking

A wireless network is any network where there exist no physical wired con-
nection between the nodes, but where the nodes are connected using radio
waves. There exists two types of wireless networks, differentiated by how
many hops there are along the paths in the network.

2.2.1 Single hop networks

In the single node architecture connectivity is provided by access points (see
figure 2.2). All communication goes through the access point, acting as a
router. This is how the ever popular 802.11 access points, as well as cellular
phone systems function. The access point determines the range and size of
the network, and may also act as a static backbone to other networks.

Figure 2.2: An example of a single hop network, where the lines indicate
links. All nodes relay traffic through the access point (indicated in grey).
Even if they may be within range of each other, they do not communicate
directly.

2.2.2 Multi hop ad-hoc networks

In multi hop ad-hoc networks all nodes act as routers. There is no common
access point, and thus no reliance on any fixed infrastructure. Since all
nodes may not be within radio range of all other nodes, destinations may be
multiple hops away, meaning that traffic must be forwarded by intermediate
nodes if it is to reach the destination. This implies that every node is as
important as the next, as each node may be an intermediate hop on a path
towards the destination. Figure 2.3 shows such a network. The range of
multi hop ad-hoc networks is typically larger than single hop networks, as
every participating node expands the coverage.
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Figure 2.3: An example of an ad-hoc network with an arbitrary topology,
where the lines indicate links. All nodes may act as routers, forwarding
traffic. In this example, traffic from node A to D can be forwarded by B or
through other paths such as through B and C.

2.3 Application domain

Applications for MANETs are many and varied. The classic example is crisis
areas where the infrastructure, such as cellular towers, power supplies and
fibre optic networks, has been fully or partially destroyed, and communica-
tion links has to be set up quickly and without central coordination. Such
scenarios may include many participants relocating at will. These character-
istics suit MANETs, with their ability to allow for rapid changing topologies
and number of participants.

MANETs may also find use in military operations for closed, in-team
communication and in areas with little or no centralised and organised con-
nectivity.

Another industry example is wireless sensor networks (WSN), where
spatially distributed devices using sensors monitor physical or environmental
conditions such as sound, vibration, temperature and pressure. Originally
motivated by military operations such as battlefield surveillance, WSN has
found its way into civilian application areas as environment surveillance and
traffic control.

MANETs may however also be used in so-called hybrid networks, where
parts of the network are fixed. For example, in urban areas, the range of
hotspots could greatly be expanded without costly pulling of fibres etc.,
by deploying MANET nodes. These nodes would then allow users out of
hotspot range to get connected by relaying traffic.

2.4 Routing protocols

The purpose of routing protocols is to dynamically communicate informa-
tion about paths between nodes in a network. When several paths lead
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to the same destination, metrics are used to determine whether one path
should perform better than another. Metrics can express any values, such as
bandwidth, hop count, load, delay, reliability and communication cost. The
simplest is hop count, implying that the transmission cost over each link is
1.

2.4.1 Distance-vector routing protocols

Distance-vector routing protocols determine the best path on how far away
the destination is, choosing the path with the lowest ”distance”, which can,
again in the simplest case, be as simple as an aggregation of hop counts.
Each node only knows the next hop and distance to its destination, the so-
called distance-vector. This differs from link-state routing, where each node
knows the full topology.

How it works

At first, a node searches for other nodes within range. It then learns who its
neighbours are, that is, nodes to which it has direct links. Using metrics,
it assigns a distance to each of its neighbours. Then, each node sends its
distance-vectors to its neighbours, and this is done every time a change is
detected in the distance-vectors. The neighbours compare these distance-
vector with their own, possible updating their own if they find better paths,
i.e. paths with lower distance. This process continues until no more up-
dates are detected when processing the distance-vector of neighbours. The
network is said to have converged, and no more messages are sent until a
change is detected. The most commonly used algorithm for this task is the
Bellmann-Ford algorithm [12]. Over time, all nodes discover the best hop
towards all destinations. If a node becomes unavailable, its links will remove
it from their distance-vectors. On the following updates, this information
will propagate and new paths will eventually be found to all nodes still
reachable.

The collection of distance-vectors make up the routing table on a node,
in form of destination, distance, next hop entries, and this information is
used when relaying normal data traffic.

Pros and cons

Distance-vector routing protocols are simple and efficient in small networks,
and require little, if any management. However, they do not scale well, since
each node sends all its distance-vectors on each update, creating a signifi-
cant communication overhead in larger networks. These protocols may also
suffer from convergence issues, such as the classic count-to-infinity-problem
(see appendix B), which is a direct result of the asynchronous announcement
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scheme. These factors, including the fact that distance-vector routing pro-
tocols only use local information, such as distance, and not path, have led
to the development of more complex, but more scalable link-state routing
protocols for use in large networks.

2.4.2 Link-state routing protocols

The basic concept of link-state routing is that every node acquire topol-
ogy maps, containing partial topologies. These maps are used to calculate
routes to all destinations. The status of the links is updated at all times,
hence the name link-state. This approach differs from distance-vector rout-
ing, where all destinations are sent, but to neighbours only.

How it works

After searching for nodes within range, every node floods the network with a
topology map, listing their neighbours only. This information is assembled
on every node and used to create a graph, showing the full topology of
the network. Each node then independently calculates, generally using a
shortest path algorithm such as Dijkstra’s algorithm [12], the paths to every
other node. The resulting part is finally stored in the routing table.

Pros and cons

The advantage of link-state routing protocols is that they react more quickly
to topology changes [7], making them more fit for dynamic environments.
The communication overhead is generally smaller than for distance-vector
routing protocols [7], since only information about the neighbours are trans-
mitted, while the entire routing table is sent in distance-vector routing pro-
tocols.

The main disadvantage of link-state routing protocols is the continuous
calculations and memory burdens. These may be too heavy, especially for
small devices.

2.4.3 The MANET approach

MANET routing protocols differ from wired routing protocols, mainly due
to the transmission particularities as limited range, restrained capacity and
more frequent packet collisions. The MANET Working Group (see appendix
C) classifies two types of MANET routing protocols, a classification perpen-
dicular to the classic classifications of distance-vector and link-state routing
protocols. Based on route discovery time, MANET protocols are either
proactive and reactive. There is also a third category, known as hybrid
routing protocols, which tries to encompass the advantages of the two for-
mer.
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Proactive

Proactive or table-driven protocols are routing protocols which are updated
with the state of the network at all times. The advantage of such protocols
is that there will be no delay when a route is needed, since all routes already
are known to all nodes. The communication overhead is also constant, but
smaller than for reactive ones except in special cases [7].

The Optimized Link-State Routing Protocol (OLSR) [6] is an example
of a proactive link-state protocol, which uses partial topology maps and op-
timised flooding, while the Destination-Sequenced Distance-Vector routing
(DSDV) [11] is an example of a proactive distance-vector protocol. OLSR
will be further discussed in chapter 3.

Reactive

Reactive or on-demand protocols will try to find a route to a destination
only when required, i.e. when a node has a packet to deliver to a given des-
tination. The memory and processing overhead is smaller than for proactive
protocols, as there is less state to maintain per node. The communication
overhead is traffic and mobility dependent, and will only in special cases [7]
be smaller than proactive protocols. Another drawback is the delay before a
link to the destination is established, as the route must be discovered first.

The Ad-hoc On-demand Distance-vector (AODV) [10] is an example of
a reactive distance-vector protocol.

Hybrid

Hybrid protocols are, as the name implies, a mixture of proactive and re-
active protocols. The idea is to take the advantages from both types of
protocols to create a fusion which works well in different situations.

An example of such a protocol is the Zone Routing Protocol [8]. The
basic idea is to split the network into different zones. Within a zone, a proac-
tive protocol is used while a reactive protocol is used between zones. This
means that a node will know the topology of its imminent neighbourhood
while not having to know the topology of the whole network, thus taking
the favourable sides of both proactive and reactive routing protocols. The
protocol is modular in the way that any proactive and reactive protocols
can be used. However, since hierarchical routing is used, the path to a des-
tination may be suboptimal. While the research community is active within
the area of hybrid protocols, this class of protocols is less mature and, thus,
not currently candidates for standardisation.
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2.5 Summary

Routing protocols have classically been described as either distance-vector
or link-state. MANETs introduce the perpendicular classes proactive and
reactive protocols. Using these classifications, the existing MANET proto-
cols under development can be classifieds as shown in table 2.1.

The next chapter will detail one of these routing protocols: OLSR.

Distance-vector Link-state
Proactive DSDV OLSR
Reactive AODV DSR

Table 2.1: Table showing the relationship between distance-vector and link-
state routing protocols on one side, and proactive and reactive protocols on
the other side with examples of protocols.
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Chapter 3

OLSR

This chapter discusses the Optimized Link-State Routing Protocol (OLSR),
by first giving an overview in section 3.1. OLSR has three main characteris-
tics which will each be discussed consecutively. There is the neighbourhood
discovery in section 3.2, then the multipoint relay flooding in section 3.3 and
finally the topology diffusion in section 3.4. Then follows a closer look at
how the protocol is constructed and how the different components work in
section 3.5. Section 3.6 looks at differences between the original OLSR and
the new version under development.

3.1 Overview

OLSR [6] is a proactive link-state routing protocol used in MANETs. Being
a link-state protocol, each node continuously collects control traffic diffused
in the network by other nodes, in order to calculate a routing table.

OLSR can be described as three functional components, which will be
further explained in the following sections.

• The neighbourhood discovery, the process of looking for nodes within
range.

• Multipoint relay (MPR) flooding, a technique used such that every
node can receive a given message in an optimised way.

• Link-state diffusion, the process of distributing topology maps used
shortest paths calculations.

3.2 Neighbourhood discovery

Neighbourhood discovery is a continuous process, whereby nodes are deter-
mining the set of nodes which are within transmission range. This is done
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through each node periodically transmitting HELLO messages. The pur-
pose of these messages is to inform potential receivers about the node and
its neighbours, populating the receivers’ one and two hop neighbourhoods.
The one hop neighbourhood is the set of nodes one hop away, while the
two hop neighbourhood is the set of nodes two hops away.

3.2.1 One hop neighbourhood population

Following figure 3.1, once a node B receives a HELLO message from node A,
it will add A to its one hop neighbourhood, which is a list of addresses along
with timestamps telling when entries expire. This is illustrated at t=0. At
t=1, B broadcasts a HELLO message, telling that A is an asymmetric
link, meaning that B does not know if A can receive its messages. When A
receives this message, it knows that there is a symmetric link between the
two nodes, since messages have been sent and received in both directions.
At t=2, A will announce this information. When B receives this message,
it will update the status of its link to A to symmetric, broadcasting this
information in the next HELLO message at t=3.

3.2.2 Two hop neighbourhood population

Continuing with the example in figure 3.1, assume that a new node appears
next to node B (see figure 3.1). At t=4, node B receives a its HELLO mes-
sage. The next HELLO message from node B will thus include information
about the symmetric link to node A and the asymmetric link to C, as shown
at t=5. Node A does regard C to be a two hop neighbour at this point,
as the link between B and C is asymmetric. At t=6, node C confirms its
symmetric link to node B. At t=7, node A receives a HELLO message from
B, with a confirmation that node B has a symmetric link to node C. Node
A will now add node C to its two hop neighbourhood, which along with the
one hope neighbourhood makes the basis for the multipoint relay flooding
explained in the next section.

3.3 Multipoint relay flooding

OLSR uses a technique called multipoint relay (MPR) flooding (fig-
ure 3.3) to diffuse partial maps of the topology. This is an optimisation
over classic flooding, where information propagates outwards from the orig-
inating node (figure 3.2) by being relayed once by each node receiving the
information. The idea of MPR flooding is to only let certain nodes perform
the relaying. The advantage compared to classic flooding is clear [9], since
it generates less transmission and thus fewer collisions in a wireless network,
while ensuring a network wide spread.
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Figure 3.1: A typical example of one and two hop neighbourhood discovery.
The arrows indicate broadcasts.
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Figure 3.2: An example of classic flooding. The arrows indicate only the way
control traffic is passed, not all transmissions. Every node in the network
relays data outwards from the centre node.

A node does not choose to be an MPR itself, but is elected as such by
its neighbours. By selecting a neighbour as MPR, the selector node asks the
MPR to relay any broadcasted message received from the sender. The MPR
selector also asks the MPR to advertise the link between them in topology
control (TC) messages.

The purpose of the MPR selection procedure is to find those one hop
neighbours that best cover all two hop neighbours. This is done to ensure
that all neighbours two hops away will receive the information the node has
gathered (see section 3.4). MPR selection is done as soon as a node has
started populating its two hop neighbourhood, and is a continuous process
that reflects the changes in the topology. For more about the one and two
hop neighbourhood discovery procedures, see section 3.2.

3.4 Topology diffusion

A node selected as MPR has a special responsibility in OLSR: to diffuse link-
state information describing the links between itself and the MPR selectors
throughout the network. A node will do this through TC messages which by
default are transmitted with fixed intervals. These messages, containing the
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Figure 3.3: An example of MPR flooding. The arrows indicate only the
way traffic control is passed, not all transmissions. The centre node selects
nodes as MPR such that the all 2-hop neighbours are reached. By selecting
carefully, the amount of communication overhead used for topology diffusion
can severely be decreased. MPR nodes are depicted in grey.
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addresses of the nodes that have selected it as MPR, and possibly also other
nodes, are diffused throughout the network through other MPRs. With
topology maps included in TC messages, each node can build a full topology
graph. This information is then used to calculate the shortest paths as
described in chapter 2. The results are recorded in the routing table. Then,
the Internet Protocol (IP) [13] stack can use this information when doing
forwarding of normal data traffic. An example of topology diffusion is given
in figure 3.4.

3.5 Protocol anatomy

This section will give a detailed description of the anatomy of OLSRv2.
The relationship between OLSR and OLSRv2 will be discussed in detail in
section 3.6.

3.5.1 Overview

Looking at the protocol from an abstract point of view, there are two sorts of
input and outputs in each node: HELLO and TC messages. Incoming mes-
sages are used to update the information repositories, from which outgoing
messages are built. The relationship between the information repositories
and messages in OLSRv2 is shown in figure 3.5. Finally, an optimised rout-
ing table is calculated from the information gathered.

3.5.2 Information repositories

The information repositories contain two subrepositories, the neighbour-
hood information base and the topology information base. Some of the sets
include information about when entries should expire, the so-called time-
to-live value. This value is important but also difficult to decide. If entries
are kept too long, there is a risk of redundant information, and packets can
get lost in the relaying process. On the other hand, if the time-to-live is too
short, information will appear and disappear from the sets, even if the node
in questions is healthy and alive.

Neighbourhood information base:

The link set contains all the neighbours that are within range, e.g. nodes
that are 1-hop away. Information such as the neighbours’ IP addresses
are recorded along with the link status. The link status can be one of
three; SYMMETRIC meaning a bidirectional link, HEARD meaning
an unidirectional link or LOST denoting an expired link.

The symmetric neighbour set contains all 1-hop neighbours with link
status SYMMETRIC.

28



Figure 3.4: An example of topology diffusion. At t=0, node A moves towards
the network, connecting to B. Node A chooses B as MPR, asking B to
advertise the link between them. At t=1, this information is diffused through
the MPRs in the network, depicted in grey. The arrows indicate the way
the topology map are passed.
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Figure 3.5: Figure showing how HELLO and TC messages are used to up-
date the different repositories on a node running OLSRv2. The dashed lines
indicate message transmissions between a node and the MANET. The solid
lines indicate how the different messages and sets update one another. A
single headed arrow indicate a one way update, while a double headed arrow
indicate a two way update.
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The neighbourhood address association set records information about
the MANET interface configuration in the 1-hop neighbourhood.

The 2-hop neighbour set contains information about nodes 2-hops away.
Only SYMMETRIC links are recorded.

The MPR set lists which nodes the node has selected as MPRs.

The MPR selector set lists which nodes have selected the node as MPR.

Topology information base:

The topology set contains the topology maps acquired from diffused TC
messages. The maps are the basis for the full topology graph and
shortest path calculation.

The advertised neighbour set sequence number (ANSN) history set
records information about the freshness of the topology maps received.

The advertised neighbour set maintains a set of addresses of symmetric
1-hop neighbours, which are to be advertised through TC messages.

The attached network set maintains information about attached net-
works and through which nodes they can be accessed.

The routing set describes the selected path to each destination in the
network for which a route is known.

3.6 OLSRv2 - What’s new

The original version of OLSR [6] became an IETF Request for Comments
(RFC) in October 2003. Provided the feedback and continuous work on the
original protocol, a new version of OLSR has emerged, essentially retaining
the fundamental algorithms (link-state, proactive, MPR flooding), while
making several other improvements. At the time of writing, OLSRv2 is still
an Internet-Draft, but is expected to be published as standards track RFC
early 2007.

3.6.1 Protocol composition

The previous one protocol specification is now three independent documents.
The main specification [5] is supplemented by a document [3] specifying a
generalised MANET packet/message format and a protocol [4] specifying a
MANET neighbourhood discovery.
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3.6.2 Neighbourhood discovery

The process of neighbourhood discovery has been extracted from the main
document and can thus easier be used as reference for other applications.
The independent protocol [3] is expected to published as standards track
RFC in 2007.

3.6.3 Packet format

The packet format used in OLSRv2 has been revamped and is now specified
in an independent document [3] that may be used by other MANET pro-
tocols. The packet format now uses time-value-length (TLV) blocks for
conveying additional information in messages. This implies that third party
extensions can be developed and used within an OLSRv2 network, without
affecting pure OLSRv2 nodes.

An optimisation has been implemented for listing addresses. Since parts
of addresses on the same network often are common, they can efficiently be
compressed, by listing the common parts only once. As an example, the IP
addresses [10.1.2.48], [10.2.3.48], [10.22.4.48] can be compressed
to [10],[1.2,2.3,22.4],[48], later being rearranged to the original ad-
dresses, resulting in less communication overhead.

3.6.4 Messages

The five different message types in OLSR have been cut down to two. They
now also have the same structure of address blocks and tlv blocks, leaving
a single parser for all OLSRv2 messages. This means that there is a cut in
parser code size by approximately 33%. Still, these two message types are
able to do the same tasks previously done by five.

3.6.5 Multiple interfaces

Multiple interface support is changed. Previously, multiple interface declara-
tion (MID) messages were used. These are no longer needed as all interfaces
are listed in all packets. Even though this may increase the size of individual
packets, it leads to a decreased chance of collisions and lost packets since
fewer packets are sent.

3.6.6 Gateway handling

The host and network association (HNA) messages from OLSR are
eliminated. HNA messages were used to inform about gateways, access
points to external networks such as the Internet. The information contained
in HNA messages is now found in TC messages, and this is possible due to
the use of TLVs including the same information. This change makes the
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protocol more efficient, as it generates less control traffic while doing the
same job. TC messages has sequence numbers, allowing explicit expiration of
information. HNA information was non-expirable, possibly making gateway
information redundant. The integration of TC and HNA messages means
that gateway information can be expired.

3.6.7 Processing and forwarding

Processing and forwarding of incoming packets are now cleanly separated
in the specification, making implementation easier and improves code read-
ability. Essentially, processing and forwarding are two entirely independent
processes, are specified as such, and can be implemented as such.

3.6.8 Extensibility

The independent specification of the message exchange format [3], provides
a way to allow for third-party applications to be developed and used within
an OLSRv2 network, without interfering with the normal use. Through
the use of internal and external extensibility, third-party extensions are
able to let normal nodes diffuse their information. Internal extensibility
implies that information is injected using the TLV mechanism, while external
extensibility implies that a protocol extension may specify and exchange new
message types, which can be forwarded and delivered correctly. OLSR only
allowed for external extensibility.

Examples of internal extensibility is adding checksums to messages, to
protect the integrity of the data by detecting errors, or by signing messages
to authenticate the sender. External extensibility can for example be mes-
sages diffused in the network for quality of service surveillance, measuring
the delay from sender to destination.

3.7 Summary

From the MANET protocols introduction in chapter 2, this chapter has
detailed one - OLSR. Existing in two version, OLSR [6], a standards track
RFC since 2003 and OLSRv2 currently undergoing standardisation, this
chapter has extracted and presented the common core algorithm functions
to both versions, as well as described how OLSRv2 has evolved from OLSR.

The next chapter will look at the implementation work of OLSRv2.
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Chapter 4

Implementation and Testing

Based on the specification of OLSR, which was analysed in chapter 3, this
chapter will

1. set up the requirements to an implementation,

2. justify, based on the requirements, choice of programming language
and implementation model, as well as present the code design,

3. present the test-bed and the testing conducted on OLSRv2.

4.1 Requirements

Other than implementing OLSRv2, the factual requirements are:

Compliance to the specifications. The implementation should function
as a live demonstration of the work being done on the specifications,
acting as a reference implementation.

Easy-to-read code is a priority, since the specifications work will not com-
pleted before the code is to be delivered. As a result, other students
should be able to continue, implementing the changes between the
Internet-Drafts and the final RFCs.

Platform independence , as it allows the same implementation being
tested on numerous devices without changing the code or doing re-
compilations.

Develop my programming skills - this is a pedagogical requirement, as
I knew little about network programming before starting.

With the OLSRv2 specifications still being Internet-Drafts, the implemen-
tation process would be gradual. Each time a new draft emerges, the code
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should be altered to apply to the modifications. More importantly, this al-
lows for direct feedback from the implementation experiences to be used and
taken into account for improving the specifications.

4.2 Java

Java is a well known and powerful object oriented programming language,
developed by Sun Microsystems since the early 1990s. Java is designed to
be not only cross platform in source form, but also in compiled form. This
is done through the use of intermediate byte code, which is interpreted by
the Java Virtual Machine (JVM). Java quickly became popular, much
due to its simplicity compared to other languages (e.g. implicit garbage
collection and memory management), and is used today in a variety of plat-
forms spanning from embedded devices and cellular phones on the low end
to enterprise servers and super computers on the high end. Another inter-
esting aspect of Java is its ubiquity on mobile phones, which makes it the
de facto industry standard when developing software on such devices. Java
also comes with Javadoc for generating API documentation from source
code.

Java comes in three different flavours, so called Java Runtime Environ-
ments (JRE), which are each implemented with a special kind of platform
in mind.

Java ME (Micro Edition) is a limited implementation for small devices
such as mobile phones and PDAs, considering their restricted capacity
both in storage and processor power.

Java SE (Standard Edition) is a general purpose implementation for
PCs, servers and similar devices.

Java EE (Enterprise Edition) is Java SE, with special purpose APIs for
multi-tier client-server applications.

As a result of Java’s many and strong features with the requirements in
section 4.1 in mind, the latest incarnation of the standard edition, version
5.0, was chosen for this project.

4.2.1 Challenges

By using intermediate code, Java should in theory be ”write once run every-
where”, and this is mostly the case. However, life is not always that simple.
Even though Java has become more powerful over the years in terms of ac-
cessing system functions, the current version (5.0) cannot alter the systems’
routing tables. This being a crucial part of any routing protocol, a work-
around was required through the use of native code, written in C++. This

35



Figure 4.1: The Java Native Interface serves as the glue between Java and
native applications, allowing Java to invoke native code and vice versa.

means that for each platform the code is to run on, a set of native methods
performing the task of altering the routing tables must be developed. Hope-
fully, future version of Java will address this limitation, but for the time
being it is an adequate workaround.

One way native code can be used within Java applications is through
the use of the Java Native Interface. JNI lets Java code use code and
code libraries written in other languages, such as C or C++, and allows for
calling Java code from within native code (figure 4.1).

4.2.2 Logging

The implementation make use of the Java Logging APIs, meaning that log
reports can be recorded sequentially and in chronological order. The log
reports can include from nothing at all to full and detailed information
about received and sent packets or system failures. Information about the
different repositories are also provided at will, and the information can easily
be output to screen or written to a file. The level of logging can be changed
at runtime, which means that no recompilation of the code is necessary.
Apart from being a tool for seeing what is going on behind the scenes, the
logging framework also serves as a tool for debugging the code.

4.3 Algorithms and data structures

The specification [5] does not put any constraints on the data structure nor
algorithms used in the calculations on the information repositories.

Regarding the use of algorithms, there are two main challenges in OL-
SRv2.

The first one is the calculation of MPRs, which is a variant of the NP-
complete set cover problem, in which each node tries to find the set of one
hop neighbours that best covers all two hop neighbours. A greedy heuristic
is implemented as suggested, where one hop neighbours are chosen by the

36



number of two hop neighbours they cover, choosing the one hop neighbours
covering the most two hop neighbours first.

The second challenge is packing the messages as small as possible. A
message may contain any number of address blocks and TLV blocks, both
having contents that may be arranged in a number of ways. This is a variant
of the bin packing problem, which is NP-hard. A variant of the suggested
heuristic is implemented, where all addresses in a HELLO message other
than those in the local information base is put in one single address block,
sorted by link status. In TC messages, all advertised neighbours are put in
one address block while gateways are put in another.

The packet format specification [3] used in OLSRv2 suggests the use of
address compression in address blocks. IP addresses on the same network
often have common parts, meaning that they efficiently can be compressed
by listing the common parts only once. By splitting addresses into head,
middle and tail parts, there are essentially four ways to categorise a given
set of addresses:

• common head, individual middle, common tail ([a.b.b.c], [a.d.d.c])

• common head, individual middle, no tail ([a.b.b.b], [a.c.c.c])

• no head, individual middle, common tail ([a.a.a.b], [c.c.c.b])

• no head, individual middle, no tail ([a.a.a.a], [b.b.b.b])

The implementation finds where to make the splits, by searching for differ-
ences from both sides of the addresses. The head is found by looking at the
first bytes of all addresses, advancing one step to the right until a difference
is found. The tail is found in the opposite way, starting with the last bytes of
all addresses, working its way to the left while comparing until a difference
has been detected. This is illustrated with an example in figure 4.2.

The data structures are implemented in the most simple way, using dy-
namic arrays (ArrayList). The elements are listed consecutively, and there
is no sorting of elements.

It is important to note that these solutions are chosen deliberately, as
there is no functional requirement to performance. The priority was to make
the implementation work, to demonstrate and validate the protocol’s fun-
damental mechanisms. Code optimisation is listed as future work (chapter
6).

4.4 Code structure

While implementing the protocol, the specifications were followed closely
for several reasons. Firstly, the implementation served to verify if the pro-
posed structure in the specifications easily could be transformed into well
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Figure 4.2: Figure showing how the head, middle and tail are found in a set
of addresses. In this example, the search for the tail is stopped right away
as the last bytes of the two first addresses differ. The head is found to be
the two first bytes of the addresses, as the third bytes of address 1 and 3
differ. This means that the addresses can be packet as [10.0],[1.48,1.40,2.66],
reducing communication overhead.

structured object oriented code. Secondly, issues not envisioned while writ-
ing the specifications could be highlighted when implemented. Thirdly, a
close tie between specification and code is good in an educational sense, as
it makes the code easier to follow. Such a tie could also be an indicator of
specification readability and consistency.

As the complete system makes a rather complex figure, only a part of
it is shown in figure 4.3, where focus has been put on showing the main
components, excluding the information repositories. The anatomy of the
information repositories, which is identical in code form, can be found in
figure 3.5. This section will present some of the implementation’s main
components.

4.4.1 Node

The node class is the main object, and is the point of departure when run-
ning the implementation. A node can have one or multiple interface class,
each of which has a sender and receiver class for packet transmissions. Each
node has an originator address, which is used by the interfaces to tell that
all control traffic is coming from the same node. The main threads also
runs on the node (figure 4.4.1), alternating between purging the reposito-
ries, generating messages and processing incoming parsed packets on each
Interface.
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Figure 4.3: UML class diagram showing parts of the system

The HELLO flag is set to true every 2 seconds, while the TC flag is set
to true every 5 seconds, as proposed in the specifications [5]. This means
that the greater part of the time is used to keep the repositories fresh, either
by removing expired entries, or adding or updating entries based on the
information found in received messages.

The purging of the repositories goes through every repository, looking
for expired entries. If old entries are found, they are deleted, possibly re-
sulting in recalculations of MPRs and routing tables. The structure of the
information repositories and their interaction with messages can be found
in figure 3.5.

4.4.2 Interface

Each interface class has a local address used to separate interfaces from
the same node. One of these addresses are chosen as originator address
in the node. Messages are created periodically on each interface by the
generate HELLO and generate TC methods. All messages include the local
information block as the first address block, which includes all interface
addresses on a given node. The messages are then put in the outgoing
messages queue on the respective interfaces.

The generate HELLO method gathers its neighbours found in the link
set, and sorts them by link status (which can either be SYMMETRIC,
HEARD or LOST). It then packs these links in an address block with ap-
purtenant TLVs indicating link status and information about links chosen
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purgeRepositories();

if(flagHello){
for (Interface i : interfaces)
i.generateHello();

flagHello = false;
}

if(flagTc){
for (Interface i : interfaces)
i.generateTc();

flagTc = false;
}

for (Interface i : interfaces)
i.processParsedPackets();

Figure 4.4: Figure showing the code running in the main loop. The code
alternates between sending messages and purging and updating the reposi-
tories.

as MPR.
The generate TC method enquires the advertised neighbour set for ad-

dresses to include. It also includes gateway addresses if applicable.

Sender

The sender class will try to pack as many messages as possible into the same
packet before transmitting. As the sender is scheduled to create and send
packets with a fixed interval, the message generating methods may have had
time to produce several messages, saving communication overhead.

Receiver

Incoming packets are received on each interface by the receiver class. It
saves the incoming bytes and asks the packet parser class to parse them.
If everything goes well, a parsed packet will be delivered to the interface
receiving it, put in the parsed packets queue, ready for processing.

4.4.3 Packet

The variables of packets class are as follows:
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private static final int zero = 0;
private static final int reserved = 0;
private int sequenceNumber;
private ArrayList<Message> messages;

Each packet includes thus one or more messages and a sequence number
used to determine its freshness. The zero and reserved are special vari-
ables set to 0 as specified in [5]. In the specifications, external packets may
include a packet TLV block, as shown in figure 4.4.3, but currently there is
no use of packet TLV in OLSRv2, and are therefore not supported in the
implementation. When a packet is ready to be transmitted, a nested loop
is run making the contents of each message, address block, TLV block etc.
into a stream of bytes.

4.4.4 Message

The variables in the message class are as follows:

private MessageTypes type;
private int semantics;
private InetAddress originatorAddress;
private int hopLimit;
private int hopCount;
private int sequenceNumber;

private TlvBlock messageTlvBlock;
private ArrayList<AddressBlock> addressBlocks;
private ArrayList<TlvBlock> tlvBlocks;

The message class has a message type, which for OLSRv2 either can be
HELLO or TC, and a message semantics which specifies the interpretation
of the remainder of the message header. This means that a decision to
process a message or not can be made simple by reading as far as this value.
The originator address identifies the interface originating the message. Hop
limit is the maximum number of hops the message is allowed to do, while
hop count is the number of hops the message has been transmitted so far.
The message also have a sequence number to determine its freshness. The
fields described so far is the message header. The message body consists
of a message TLV block and zero or more pairs of address blocks and TLV
blocks. The blocks are collections of respectively addresses and TLVs. The
complete message layout is shown in figure 4.4.4. The messages are 32-bit
aligned by padding if necessary.
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0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|0 0 0 0 0 0 0 0| Reserved |0|0| Packet Sequence Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
| Message + Padding |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: ... :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
| Message + Padding |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|0 0 0 0 0 0 0 0| Reserved |1|0| Packet Sequence Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
| Packet TLV Block |
| |
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | Padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
| Message + Padding |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: ... :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
| Message + Padding |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 4.5: Figure showing the two alternative layouts of an OLSRv2 packet,
the difference being the packet having a packet TLV block or not. For details
about the different fields, see [3] [5]. 42



0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Message Type | Resv |N|0|0| Message Size |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Originator Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Hop Limit | Hop Count | Message Sequence Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
| Message Body |
| |
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | Padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 4.6: Figure showing the layout of an OLSRv2 message. For details
about the different fields, see [3] [5].

4.5 Jitter

As discussed in [7], periodical emissions of control messages in a MANET
may suffer from transient loss of routes to parts of the network. This can
happen due to changes in the MPR set being announced at the same time
from different nodes, leading to packet collisions. This synchronisation prob-
lem can be reduced by enforcing jitter, a random time value, making the
messages either be sent before or after the schedule transmission. The jitter
makes the messages less synchronised and more tolerant to getting dropped,
leading to more stable routes.

The use of jitter is not required by the specifications for interoperability,
but is nonetheless implemented with a random delay between -0.5 and 0
seconds on each Node.

4.6 Testing

The test-bed (figure 4.7) consists of four PCs and a laptop, all equipped
with both Ethernet and wifi interfaces, as well as the latest version of Java
(5.0). By using Secure Shell (SSH), all machines can be controlled from a
single computer, creating logs for later analysis.

The set-up creates two fully connected networks, one on each of the
interfaces. There are essentially two ways of creating other topologies. One
is to simply enable/disable network interfaces. A more sophisticated way,
which also allows for more complex topologies, is to filter incoming packets.
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Figure 4.7: On the figure to the left, a schematic overview of the test-bed
is shown. All machines are equipped with both wifi and Ethernet cards,
creating fully connected networks on both interfaces, indicated by the grey
two headed arrows. In the scenario to the right, the laptop is emulating a
cellular tower through the Ethernet connection, indicated by the solid double
headed arrows, while the PCs are running an ad-hoc network, indicated by
the dashed arrows. Note that all the links in the ad-hoc network are not
symmetric, indicated by the single headed arrows.

This is done by defining topologies in software, dropping packets as they
arrive.

The test-bed is set up with two goals in mind. One is to allow iterative
testing and debugging of the code while implementing the specifications.
The value of having such equipment while developing is great, as it gives a
direct indication to whether or not the implementation works and behaves
as expected. This allows improving the quality of the code, making it more
robust, experimenting with parameters such as mobility and willingness to
relay traffic, making nodes handle packets with unexpected contents etc.

The second goal is to emulate the use of ad-hoc networks within cellu-
lar networks, as proposed in section 1.2. With all computers having two
network interfaces, using the techniques described above to create different
topologies, the scenarios found in section 1.2 can be emulated. One or more
computers can emulate the cellular towers, while the others form an ad-hoc
network. An example of such a scenario is shown in figure 4.7. These tests
showed that such a system, from a technical point of view, can be developed.
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4.7 Summary

This chapter has described the implementation of one of the MANET pro-
tocols proposed by the IETF: OLSRv2. A test-bed was set up for testing
the code during the development, as well as to emulate an extended cellular
network where ad-hoc networks are deployed.

The next chapter will look at the perspectives of this extension.
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Chapter 5

Perspectives: Brokering
Network Access

With an ad-hoc extension to cellular networks, the ad-hoc networking is
assumed to be provided by the users themselves, through ”lending resources
of their handsets” to other, meaning that the functionality of the network
depends heavily on users’ co-operability. In a perfect world, everyone would
relay traffic, making the network as robust and efficient as possible, and
nobody would abuse the network provided by others by using excessive re-
sources etc. This can be true for closed ad-hoc networks, such as military
operations networks, or in networks where all users are working towards the
same goal. However, in the consumer market, the scenario is quite different.
One can no longer assume that users are willing to constantly share their
connections for free, as the disadvantages of doing such are greater than the
benefits. The users can be assumed to be selfish, as it is likely that they
would want to send data without relaying themselves. These uncooperative
nodes has a dramatic effect on the operation of the network. Thus, in order
to motivate for bandwidth sharing and to administer such a system, broker-
ing network access, i.e. ensuring security, billing, hand-over etc., should be
considered.

5.1 Background

In the last years, mobile phones have not only been integrate with short
range wireless interfaces such as Bluetooth, but also wifi technology such as
wireless local area network (WLAN). This implies that a user can choose
between deploying the ordinary cellular networks or wifi networks, or both.

In such multiple interface networks, the use of ad-hoc networking can be
envisioned. Users out of reach of wifi access points or cellular towers, may
reach them through intermediate nodes, e.g. other users and their handsets.

Both from the network provider and user point of view, this extension
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has several advantages, but also introduces a new set of challenges, as the
following sections will elaborate. In this context, a network provider is an
organisation providing cellular networks and/or wifi access points.

5.2 Variables

An ad-hoc extended cellular network has several variables that needs to
be considered when making network brokering decisions. This section will
look closer at four of them: load distribution, cost distribution, coverage
extension and quality of service, discussing their values from both the user
and network provider’s point of view. The main points of this discussion
can be found in table 5.1. This is detailed further in the following sections.

Variable Network provider User
Pros Cons Pros Cons

LD Frees re-
sources

Fewer users Competition
freedom

Locked de-
vices

CD Cheap No device
control

Device con-
trol

Expensive

CE Broader audi-
ence

Uncontrolled
coverage

Easier to con-
nect

No QoS guar-
anty

QoS Attract users Infrastructure
development

Higher band-
width

No guaranty

Table 5.1: Table showing the advantages and disadvantages for both network
providers and users regarding load distribution (LD), cost distribution (CD),
coverage extension (CE) and quality of service (QoS).

5.2.1 Load distribution

With users employing their ad-hoc wifi connection to communicate, they
may no longer need to use the network providers’ equipment for their con-
nections, opening for competition freedom in offering cheap hotspots or other
access points. On the other hand, this may result in network providers lock-
ing their handsets to only allow for certain connections. For the network
provider, this load distribution results in a decreased load, which frees re-
sources allowing more cellular based connections. At the same time, fewer
users may lead to decreased benefits.

5.2.2 Cost distribution

After the initial cost of developing and deploying such a system, the cost of
growth will be on the user side, and not only in terms buying new handsets.
Battery is depleted more quickly on small devices when enabling support for
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wifi connections. Although battery capacity is an ongoing field of research, it
has not kept pace with the rest of the industry. Processor power is consumed
on processing other people’s data, power that already may be limited on
handsets. However, a user may choose between different types of mobiles,
finding one with fitting its requirements to price, battery capacity etc.. The
cost distribution also means that the network providers are not in control
of the equipment used, possibly relying on underperforming nodes.

5.2.3 Coverage extension

For the users, coverage extension means that may be easier to connect to the
network. However, this does not say anything about the quality of service
once connected. Greater coverage through ad-hoc networking also means
that network providers are able to reach more customers without the need
of extra cellular towers or hotspots. However, since the nodes providing the
extension are mobile, it is not possible to control the spatial distribution,
possibly resulting in unbalanced topologies. Also, a larger coverage is harder
to provide regarding quality of service (see section 5.2.4).

5.2.4 Quality of service

Current wifi technologies offer a greater bandwidth than that of cellular
based networks, and could therefore be attractive to users demanding high
speed connections. However, wifi connections have a nominal bandwidth,
and make no guaranty to latency, dropped packets, errors and other quality
of service issues. Ad-hoc networks, with their multi hop architecture, make
the situation even worse. By sharing the bandwidth through relaying, the
user’s own data rate decreases as well. The network providers may advertise
the higher bandwidth to attract more users, but may be forced to develop
their infrastructure to guaranty a minimum quality of service.

5.3 Challenges

The main challenge for mobile operators is how to profit from customers
using wifi enabled devices to communicate between each other in ad-hoc
modus, escaping the need to utilise the mobile operator’s equipment. There
is little doubt that this is any mobile operator’s worst nightmare technology,
rendering them obsolete. However, an important aspect mentioned in the
introduction is that it is not likely that users will share their wifi connections
out of pure ideology. Thus, there is still a need for an organising party, which
will be in charge of setting up, maintaining connections etc., as well as the
cellular based network for traffic that does not fit ad-hoc networks, implying
that brokering network access cannot be completely self-organised.
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With the last section in mind, an approach to the problem is looking
at the motivating factors, finding a balance between the advantages and
disadvantages. The variables in table 5.1 can be treated as a case of cost-
benefit analysis, maximising the advantages while keeping the disadvantages
at a minimum, both for the mobile operators and users. The challenge is
of course to find both qualitative and quantitative ways to measure these
variables in terms of costs and benefits. The accuracy of the outcome is
closely tied to the accuracy of the estimations, meaning that the estimations
must be done with great care. Constructing plausible measures of the costs
and benefits of variables is often both time-consuming and difficult, but a
necessary mean to create an optimal system.

Once these factors have been decided, there is the questions of how
network providers can make money in such a business model. The idea of
users operating outside the network providers’ jurisdiction is undoubtedly a
controversial one, which requires a change of paradigm and a complete new
way of thinking. For conservative network providers, these ideas may be
compared to a revolution, threatening their position.

In [2] a system with virtual currency is proposed for stimulating users
in an ad-hoc network to forward packets for each other. The idea of virtual
currency is that each user must earn the right to have traffic forwarded by
first forwarding for others, earning money, so-called ”nuglets”. The ”nu-
glets” can later be used as a payment for getting packets forwarded. This
may also stimulates users to a moderate use of the network, and that it will
result in users leaving their devices turned on, so that they can be used as
relays.

Such ”nuglets-based” systems could be adopted by network providers,
being the authority which authenticates and issues this currency to users.
They could sell ”nuglets” for real money, let users earn them through re-
laying for others, or use any other business model they see fit. Either way,
this example shows that technically, the different components making the
system envisioned in section 1.2 exist, and thus can be deployed.

5.4 New killer applications

As history shows, new technologies introduce new services, services that may
not have been envisioned at the time of deployment. When Short Message
Service (SMS) was introduced in the GSM system, it turned out to be
an accidental success that took nearly everyone in the mobile industry by
surprise. Piggybacking on the carrier’s control channel, the same portion of
the spectrum used for phone location and status updates, made, and still
makes SMS very cheap for the mobile operators. With spin-off products like
ring tones and wallpapers, SMS quickly became extremely profitable.

SMS is an example of a ”killer application”, a service that creates a
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sustaining market and proves the value of the underlying technology. SMS,
with its asynchronous and time insensitive delivery characteristics, could be
deployed in ad-hoc networks. In an airport, airline companies could send
SMS messages about flight reschedules or cancellations to their passengers,
either using the mobile operators’ systems or transmitting through an air-
port ad-hoc network, saving money. All that the airline companies should
have to do, would be to buy a handful of ”nuglets” and be on its way.

A promising service for ad-hoc networks is Voice-over-IP-over-Wireless
(VoIPoW) [14], which is the routing of voice conversations over wireless
IP networks. However, during the design of WLAN, effort was made in
making flawless transmissions over unpredictable and disruptive communi-
cations streams, by distributing the transmissions and transfer load. While
this is not a problem for applications rearranging the packets back together,
it may be critical for delay and bandwidth sensitive voice transmissions.

Another less demanding service is Push-to-talk (PTT), where users
alter to send and receives voice messages. The concept is similar to asyn-
chronous instant messaging or SMS, and PTT is less sensitive to delay and
bandwidth restrictions.

5.5 Summary

This chapter has shown the value of introducing a brokering network access
service in an ad-hoc extended cellular network. A selection of the challenges
has been explored, challenges not related to providing the infrastructure, but
rather deploying and operating the infrastructure while being in both users
and network providers’ best interest. The deployment of such a system can
lead to killer applications, proving the value of the underlying technology.

Given the limited time for this dissertation, the next chapter will look
at future work.
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Chapter 6

Future Work

While OLSRv2 has been implemented and tested, there are still tasks which
could be undertaken. These fall into two broad categories: continuing devel-
oping OLSRv2 as it published as standards track RFC in 2007, and develop
and implement the brokering network access service described in chapter 5.
This chapter will briefly outline directions for future work on the foundation
made in this dissertation.

6.1 Implementation of OLSRv2

This section looks at which implementation issues remain. The implementa-
tion includes Javadoc, the industry standard for documenting Java classes,
which eases further development.

6.1.1 RFC compliance

The implementation was made with compliance to the Internet-Drafts [3] [4]
[5] in mind. At the time of writing, the specifications are still Internet-Drafts,
with [3] submitted to the IETF for standards track RFC publication. The
implementation could be developed further side by side with [4] [5] towards
a final 1-to-1 compliance with the RFCs.

One feature not implemented is packet TLVs, which are currently not
used in OLSRv2, but specified in [5]. This feature may need to be imple-
mented in the future.

6.1.2 Code optimisation

Other than being compliant to the specifications [3] [4] [5], there were no
functional requirements regarding the use of overhead such as processor
power or memory. The focus of the implementation was to have a practical
way to continuously accommodate and test specific features being worked on
in the specifications. The implementation can thus be seen as an educational
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implementation, and there exist no other performance results other than
stating that the implementation works as specified in [3] [4] [5].

This means that many of the implemented solutions both regarding
heuristic algorithms and data structures are suboptimal. The Java SE API
implements several well known data structures which should be considered
for better performance, and different heuristic algorithms could for exam-
ple be deployed depending of network characteristics such as mobility and
topology.

6.1.3 Platform variety

As discussed in chapter 4, Java 5.0 does not allow routing table manage-
ment, meaning that native code has to be written for each new system.
Hopefully, support for routing table management will be included in future
version of Java, making the implementation true cross-platform. It can be
discussed how likely this is to happen, but in the meantime, the implemen-
tation could be developed to support more platforms, by the use of native
code, as described in 4.2.1.

6.1.4 Degree of freedom using variables

The current implementation only allows certain variables to be specified by
the user, others are defaulted to the values suggested in the specifications.
To permit more customisation, all fixed values found in the specifications
should be changeable, allowing a greater degree of freedom to the user.

6.2 Brokering network access service

OLSRv2 allows for third-party applications to be developed and used in pure
OLSRv2 networks without disturbing the normal operation. This can be
done using the message exchange format, specified in [3], taking advantage
of the extensibility options described in 3.6.8. Thus, a brokering network
access service could be implemented, being in charge of billing, security,
hand-over, QoS etc. as suggested in section 1.2.

6.3 Summary

This chapter has looked at future work on implementing OLSRv2 as well as
the broker system. The next and last chapter will conclude the dissertation.
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Chapter 7

Conclusion and
Contributions

With more and more handsets being introduced with wifi capabilities, ad-
hoc extensions of cellular networks can be envisioned. This dissertation has
described perspectives to such a system. It has been shown that several
components must be present, and the main focus has been put on the ad-
hoc networking. The proactive link-state protocol OLSRv2 [5], has been
implemented and tested, focusing on platform independence, code readabil-
ity and specifications compliance. The implementation has been tested for
correctness using a small test-bed. The test-bed also served as a platform
for emulating deployment of ad-hoc networking within purely cellular based
networks, showing that such systems can exist.

For a merge between ad-hoc and cellular networks to work as proposed,
the need for a brokering network access service has been identified, looking
at variables that may determine its success. However, the main problem
has been identified to be more of a political question than a technical one,
as the mechanisms for such a system already exist. The business model
used by most network providers may be in direct conflict with the ideas of
ad-hoc networking, as users may be able to communicate without deploying
network provider equipment. However, as new services emerge, the value of
the underlying technology may be proven, creating a sustaining market.

The remainder of this chapter looks at contributions made through my
work.

7.1 Graduate student criteria

At the Paris IETF meeting in 2005, my supervisor Thomas H. Clausen set
forth a ”graduate student criteria” for the specification of the new OLSR
protocol:
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The specification should be such that a good graduate student
can implement it without previous knowledge, and without spend-
ing 3 years studying the domain in advance.

Since March this year, I have been that guinea pig. Starting with no ex-
perience in mobile network programming, but with a profound interest in
mobile networking, I have implemented and tested the new specifications of
OLSR. I have worked very close to the authors, providing them continuous
feedback as they released new Internet-Drafts, and I feel honoured having
my name being mentioned in the acknowledgement of OLSRv2.

I reckon we did good regarding the graduate student criteria. The speci-
fications are written in such a manner that they can be implemented without
having a broad MANET background. It was a bit like following a recipe,
and where things were inaccurate or ambiguous, I asked the authors for
elaborations and clearing up. They took my questions into consideration,
and the changes could be reflected in the next Internet-Draft.

I think the graduate student criteria is an interesting experiment, which
lowers the barrier for people interested in MANETs. With the forthcoming
OLSRv2 RFCs, it is in my opinion possible for a graduate student to do an
implementation within the limited time period of a dissertation.

7.2 First implementation of OLSRv2 from scratch

When starting on the implementation work, I basically had two choices.
The first was to develop an existing OLSR implementation, making updates
to accommodate the changes. After all, even if there are several changes
between the two versions, the basic mechanisms are the same. Alternative
two was to implement OLSRv2 from scratch, and this was the path I fol-
lowed, for several reasons. First, it would be more challenging, not relying
on other’s work. It also meant that I would have to come up with good
solutions to the numerous challenges, which will be elaborated later. Sec-
ond, doing an implementation from scratch also meant that I would have to
dig deep into every aspect of the protocol, turning every rock, analysing the
specifications down to every sentence. This was also the most interesting
path from the authors’ perspective, as they wanted a thorough analysis of
the specifications. Running code is a significant part of decision making in
the MANET working group, and during the dissertation, I have contributed
to [3] [4] [5], all standards track RFCs currently under development.

The result is the very first implementation of OLSRv2 from scratch,
compliant to the latest Internet-Drafts [3] [4] [5] at the time of writing.
As mentioned, implementing specifications can be compared to following a
recipe: you are told what to do, but not how to do it. So the challenges were
in designing such a system, deciding the structure and figuring out how to
make it all run together. Working on several Internet-Drafts at once was a
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challenge in itself, as new versions emerged every now and then, forcing code
updates, or even redesigns of whole sections. These tasks took more time
than first anticipated, as the possible ripple effects of code changes had to
be accounted for. It also forced me to adopt methodical habits for checking
for changes. Apart from that, I found the implementation work to be quite
straightforward, discovering new and better ways to solve the tasks along
the way as my experience and knowledge grew. One thing that caused a bit
of a headache was the lack of routing table support in Java as mentioned
in section 4.2.1, which meant that the cross platform requirement could not
be fulfilled as desired. However, the amount of native code required on the
respective platforms is not significant.

7.3 MANET test-bed

Before starting the implementation work, it was apparent that there was a
need to set up a test-bed. A test-bed, the very first MANET test-bed at
Ecole Polytechnique, was assembled using computers equipped with both
wifi and Ethernet interfaces. This was done with several goals in mind.
First, the test-bed served as a demonstration laboratory running a live im-
plementation of OLSRv2, validating the protocol’s correctness as it was
developed. Second, with section 1.2 in mind, the test-bed would emulate a
cellular network extended by ad-hoc networking.

While implementing OLSRv2, the test-bed served, using the logging
functionality (see section 4.2.2), as a great help for debugging the code. The
test-bed showed several interesting aspects of the specifications. Features
could be tested right away, giving valuable feedback to the specifications
authors. With the proposed system from section 1.2 in mind, the test-bed
showed that a multi network environment indeed is possible.

Other than serving as a demonstration of the protocol, the test-bed can
be used for future works on OLSRv2, extensions to it, or for other MANET
protocol testing.

7.4 Nokia 770 demonstration

The DIX at Ecole Polytechnique obtained twelve Nokia 770 Internet Tablets
(see figure 7.1) for doing on site MANET experiments, and for extending
the test-bed with mobile entities. Being merely 15 cm x 8 cm in size, these
wifi enabled devices are perfect for the task. Running Linux, it should be
possible to use Java on them, but at the time of implementation there was
no JVM available supporting the most Java 5.0. However, the 770s are set
up, and all that is needed for the implementation to run, is a compatible
JVM and some native code handling the routing tables.
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Figure 7.1: The twelve Nokia 770s used for testing OLSR.

The 7th of July 2006, the 2006 edition [1] of the operating system on the
Nokias was released, unfortunately still without support for Java. At the
time of writing, Nokia has not released a plan for incorporating it.

As a result, the demonstrations were carried out with a C++ imple-
mentation of the original OLSR, making different topologies by placing the
Nokias in different constellations outside the department buildings. Mainly
for demonstration purposes, running simple ping commands discovering the
devices’ range, we tested OLSR using a real world example.
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Appendix A

jolsrv2

jolsrv2 is a stand alone application written in Java SE version 5.0, and is
an implementation of the OLSRv2 link-state routing protocol. This chapter
describes how to install, configure and run jolsrv2, as well as gives some
examples log output. The implementation only supports the Windows plat-
form to the full extent, and a brief explanation to how to make the code run
on other platforms is included.

A.1 Configuration and running

Installation is meant to be easy, as the distribution only includes one jar
file, ready to launch with the command:

java -jar jolsrv2.jar

However, some settings are required before launching. The parameters that
need to be set can be found in the included config.txt file. The parameters
are explained below.

IPVERSION specifies which IP version to use. Legal values are 4 or 6. This
parameter cannot be omitted.

WILLINGNESS denotes a notes willingness to relay traffic. Legal values are
NEVER, LOW, DEFAULT, HIGH or ALWAYS as described in [5]. If omitted, the
value DEFAULT is used.

GATEWAY specifies to which gateway a node is connected. In case of no gate-
ways, the parameter can be omitted. The implementation only supports the
use of one gateway.

INTERFACE specifies the name of the interfaces to use, separated by space.
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This parameter cannot be omitted.

PREFIX is the length of the address prefixes to use, separated by space.
Note that the order of prefixes must be the same as used for the interface
addresses in INTERFACE. If omitted, it defaults to the number of bits in the
belonging INTERFACE.

BROADCAST defines the broadcast addresses to use, separated by space. Note
that the order of broadcast addresses must be the same as used for the in-
terfaces addresses in INTERFACE. This parameter cannot be omitted.

Furthermore, logs can be recorded. There are several logging levels, depend-
ing on how much information about the system is requested:

ALL indicates that all messages are logged.
CONFIG is a message level for static configuration messages.
FINE is a message level providing tracing information.
FINER indicates a fairly detailed tracing message.
FINEST indicates a highly detailed tracing message.
INFO is a message level for informational messages.
OFF is a special level that can be used to turn off logging.
SEVERE is a message level indicating a serious failure.
WARNING is a message level indicating a potential problem.

A logging properties file is included with logging level set to FINE, which out-
puts log records to the console. The properties file, logging.properties,
can be loaded using the command:

java -Djava.util.logging.config.file=logging.properties -jar jolsrv2.jar

For further instructions on how to set up logging, see:
http://java.sun.com/j2se/1.5.0/docs/guide/logging/overview.html
Before running the application, root access must be obtained, in order to
manage the routing tables. Then, the wifi connection must be activated,
and an ad-hoc network must be created or joined. For instructions on how
to do this, please consult your operating system manuals.

A.2 Examples

This section gives some examples of log records created by running jolsrv2
with different logging levels. The first example shows the sending of the first
HELLO message with logging level set to INFO.

INFO: jOLSRv2
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INFO: Generating HELLO on interface 192.168.10.100/32
INFO: Packet 0 sent with 40 bytes containing 1 message(s) over

interface 192.168.10.100/32
INFO: Packet received on interface 192.168.10.100/32 from /192.168.10.55

There is not much information given, but sufficient for normal use. In the
second example, the logging level is set to FINE, continuing where the pre-
vious example ended.

INFO: Packet received on interface 192.168.10.100/32 from /192.168.10.55
FINE: ,------------------
FINE: | PARSING PACKET
FINE: |------------------
FINE: | * Receiving interface: 192.168.10.100/32
FINE: | - Found zero and reserved
FINE: | * Packet seq number: 79
FINE: | ,-------------------
FINE: | | PARSING MESSAGE
FINE: | |-------------------
FINE: | | * Message type: HELLOV2
FINE: | | * Message semantics : 0
FINE: | | * Message size: 30
FINE: | | * Originator address: /192.168.10.55
FINE: | | * Hop limit: 1
FINE: | | * Hop count: 0
FINE: | | * Message seq number: 79
FINE: | | - Parsing TLV block
FINE: | | - Parsing address block
FINE: | | - Parsing TLV block
FINE: | ‘------------------
FINE: ‘-----------------
INFO: POPULATING REPOSITORIES
FINE: - LinkSet: Added tuple from 192.168.10.100/32 to 192.168.10.55/32 (LOST)
FINE: - NAA set: Added tuple to [192.168.10.55/32]

Using logging level FINE, the contents of packets received are shown, giving
a more detailed view than the previous example. The log record shows that
the packet contains one HELLO message which then is parsed. The contents
of the message is finally used to update the repositories. In the last example,
logging level is set to ALL. The scenario is system start-up, sending the first
packet.

INFO: jOLSRv2
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FINE: - Using IPv4 address /192.168.10.100 on
Dell TrueMobile 1300 WLAN Mini-PCI Card

CONFIG: * Operating system: Windows XP
CONFIG: * Port: 50000
CONFIG: * Interface: 192.168.10.100/32 Broadcast: /192.168.10.255
CONFIG: * Originator address: /192.168.10.100
CONFIG: * Willingness: WILL_DEFAULT
INFO: Generating HELLO on interface 192.168.10.100/32
FINE: No links in LinkSet
FINEST: Getting bytes from Tlv
FINEST: Tlv type: VALIDITY_TIME
FINEST: Semantics: 4
FINEST: -noindex
FINEST: Bytes size: 4
FINEST: Getting bytes from Tlv
FINEST: Tlv type: INTERVAL_TIME
FINEST: Semantics: 4
FINEST: -noindex
FINEST: Bytes size: 4
FINEST: Getting bytes from Tlv
FINEST: Tlv type: WILLINGNESS
FINEST: Semantics: 4
FINEST: -noindex
FINEST: Bytes size: 4
FINEST: mid
FINE: Added 2 byte(s) of padding
INFO: Packet 0 sent with 40 bytes containing 1 message(s) over

interface 192.168.10.100/32

The log record information about the configuration, followed by the gener-
ating of the first HELLO message, detailing its contents. This level is first
and foremost used for debugging.

A.3 Multiple platforms

As explained in section 4.2.1, each type of operating system must use a piece
of native code handling the routing table operations. This implementation
only includes native code for the Windows platform, compiled in a library
called jolsrv2_rt.dll. If the implementation is to be used on other plat-
forms, the following method interfaces handling routing table management
must be implemented:

CreateEntry(String destination, String netmask, String gateway,
String iface, int metric)
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where

destination indicates the destination interface address.
netmask indicates the network mask of the interface creating the entry.
gateway indicates the address of the next hop towards the destination from
the interface creating the entry.
iface indicates the interface address creating the entry.
metric indicates the metric of the route.

and

DeleteEntry(String destination)

where

destination indicates the destination interface.

These methods are found in the RoutingSet.java file. In the same file,

static {System.loadLibrary("jolsrv2_rt");}

must be changed to reflect the native library in use. For a comprehensive
guide to how this is done, see
http://java.sun.com/j2se/1.5.0/docs/guide/jni/.
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Appendix B

The Count-to-infinity
Problem

One of the most important problems with distance-vector algorithms is the
”count-to-infinity” problem, which will be examined in this chapter.

Imagine a network with four nodes running a distance-vector algorithm.
The cost between each node is 1, as shown in figure B.1

Figure B.1: A network containing four nodes running a distance-vector al-
gorithm.

When the network has converged, the cost reaching each node is known.
Table B.1 shows the total costs in the network.
PPPPPPPPPfrom

to
A B C D

A 0,- 1,B 2,B 3,B
B 1,A 0,- 1,C 2,C
C 2,B 1,B 0,- 1,D
D 3,C 2,C 1,C 0,-

Table B.1: Table showing the routing tables of each node after the network
has converged. n,X means that the total cost going through node X is n.

Imagine now that the link between nodes A and B breaks. Node B will
reflect this in its routing table, and put infinity as link cost, but node C is
unaware of the breakage. As node B receives C’s routing table, it will see
that node C has a link to node A costing 2, which is better than infinity,
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and will believe that node C has an independent link to node A. Node B
will thus update its link to A with cost 3 through C. When C receives B’s
routing table, it sees that B has updated its link cost to A from 1 to 3, and
will update its own link to A to 4. This process loops until all nodes find
out that the weight of link to A is infinity. These facts is the reason why
distance-vector algorithms are said to have a slow convergence rate.
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Appendix C

The MANET Working
Group

An IETF working group is a branch within the Internet Engineering Task
Force (IETF), working on a limited set of tasks. It is open to all who want
to participate, and unlike other groups, like those in the IEEE, there is no
voting procedure nor membership fees. The final arbiter of decision making
is ”rough consensus and running code”. An IETF working group lasts as
long as there are unsolved problems within that particular field of interest,
and will normally be closed once the work described is finished.

The tasks of the MANET working group is summarised as follows on
their website:

The purpose of the MANET working group is to standardize IP
routing protocol functionality suitable for wireless routing appli-
cation within both static and dynamic topologies with increased
dynamics due to node motion or other factors.

The members of the MANET working group are working on reactive and
proactive protocols, and the working group’s objective is to create standards
for both. If however, they learn that the similarities between the too are
significant, they may wish to follow the path of a converged approach. The
neighbourhood discovery [4] and packet format [3] being factored out of
OLSRv2 [5] are examples of such convergences. During my dissertation, I
have contributed to the ”running code” bit to [3] [4] [5], and the value of
this is significant.
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