
July 2006
Tor Stålhane, IDI
Siv Hilde Houmb, IDI

Master of Science in Computer Science
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

An analysis of the development of a
safety-critical system for an Urban
Search

Jean Paul Franky Friquin

Problem Description
This report describes the design and implementation of a safety-critical system of a Lego
Mindstorms Urban Search and Rescue (USAR) robot prototype.

Assignment given: 23. January 2006
Supervisor: Tor Stålhane, IDI

An analysis of the development of a
safety-critical system for an Urban

Search and Rescue robot using a Lego
Mindstorms robot model.

by Jean Paul Franky Friquin
July 10, 2006

under the supervision of
Professor Tor St̊alhane and

NTNU PhD candidate Siv Hilde Houmb.

Submitted to the Faculty of Information Technology, Mathematics and Electrical
Engineering, Department of Computer Science and Information Technology in partial fulfillment
of the requirements for the degree of Master of Technology in Computer Science at the
Norwegian University of Science and Technology, Trondheim, Norway.

Abstract

Earthquakes, avalanches, floods, cyclones, tornadoes and more recently tsunamis, or
even airplane crashes, explosions like in the recent waves of terror in London [3], the
United States [4], Bali,Indonesia [5] or the middle-east [6] are of those events that
leave unforgettable scenes of catastrophic disasters. The consequences are such disasters
are complicated rescue operations and chaotic information gathering. Today, dogs and
humans are used in rescueing victims from disasters involving collapsed buildings, trapped
tunnels and so forth. However, in some cases, robots have been deployed to assist the
rescue teams. The tragic events of the World Trade Center in 2001 involved Urban
Search and Rescue (USAR) robots pioneering rescue search with the help of information
technology and robotics engineering. This report describes the design and implementation
of a safety-critical system of a USAR robot model which will serve as a basis for analysis
and development of future USAR robots. The scenario used in the experiment is a USAR
robot prototype searching for survivors in a building which has collapsed. We analyse
the scenario on a real prototype made up of Lego Mindstorms parts and equipped with
a camera relaying real-time images to a workstation. The paper is a continuation of the
report I submitted in December 2005; ‘Identifying the risks involved in the design of a
safety-critical system for an Urban Search and Rescue robot’ [12].

i

Preface

Throughout the course of my studies in computer science, I have been developing software
systems that could only be run on the computer screen. With this research work, I have
fulfilled my desire to develop a tangible system. I feel that implementation of robotic
systems gives developers a priceless, and far more enriching experience because of the
interaction between hardware and software. This interaction is both fascinating and
appealing to me as it calls upon putting into practice several areas of my education:
physics, mathematics, software development, digital design and networking.

This report documents my thesis work, the culmination of a year’s research about the
implementation and design of a safety-critical system for an Urban Search and Rescue
robot model. It has been written using the MiKTeX version of LATEX2ε. The report
describes the design, the implementation, the different components of the robot model
and provides an insight into how the components are connected together to perform a
search and rescue operation. Pseudo codes and algorithms are provided to show the
sequence of instructions to perform various tasks. To further enhance understanding
about the implementation of this robotic system, the source code files for the robotic
system is listed in B two movie files are bundled together with the electronic version of
this document. The report is divided into 10 chapters, each of which are described below.

Chapter 1: Introduction. This chapter introduces this report with the
motivation, background, definition of the problem and a list of the main actors in the
field of search and rescue robotics .

Chapter 2: Problem analysis. This chapter gives an overview of the objectives
and software lifecycle used to implement the Lego Mindstorm USAR.

Chapter 3: The software development process. This chapter presents the
functional and non-functional requirments for the USAR model. These requirements are
a revised version of those from [12].

Chapter 4: System architecture. This chapter presents the architecture of the
robotic system.

iii

Chapter 5: Software, hardware and infrastructure. This chapter describes
the software and hardware equipment used in this robot model.

Chapter 6: Navigation. This chapter presents the navigation module of the
USAR robot giving an insight about the concepts and algorithms used for the movement
of the robot.

Chapter 7: Communication. This chapter describes and evaluates the
communication mechanism to enable reporting and remote controlling of the robot.

Chapter 8: Object detection, identification and localisation. This chapter
presents how the victims are being detected, identified and localised in the arena.

Chapter 9: Presentation of information. This chapter presents the graphical
user interface to present the information to the users of the system.

Chapter 10:Discussion and Conclusion. This chapter begins by identifying and
discussing some of the problems encountered during the development and implementation
of the system. It also presents areas for further work and concludes the project.

iv

Acknowledgements

This research project began in the summer of 2005 with a telephone call from a Phd.
candidate, now my adviser on this report, tipping me about the BUCS research project.
Since then, the journey has been long and hard, exhausting at times, but yet very
enriching and exciting. The research would not have happened if it were not for the help,
guidance, and support of a number of individuals. First and foremost, I am thankful to
my supervisor Professor Tor St̊alhane for his advice and help. He has been very patient
and helpful for the numerous times I knocked at his door asking for help and counselling.
I wish to express my gratitude to my adviser PhD candidate Siv Hilde Houmb for general
guidance, support and invaluable feedback for critically commenting and advising on my
draft reports. I would also like to extend my gratitude to PhD candidate Pavel Petrovic.
He has been of great help in implementing additional hardware components to the robot,
and has been of great support, showing no doubts about the viability of the system.

In addition, I wish to thank Sigbjorn Pareli Lyngdal (Fire department, Trondheim,
Norway) for sharing with me his expertise about search and rescue, and the Carpentry
section at NTNU for helping me build the search arena.

I dedicate this work to my family: my two children, Frederik and Bianca, who
have been the source of my inspiration and my wife, Kathinka for her love, patience and
understanding during this arduous journey of graduate study.

- Jean Paul Franky Friquin

v

Contents

Abstract i

Preface iii

Table of Contents vii

1 Introduction 1

1.1 Motivation . 1

1.2 Background . 2

1.3 Problem definition . 2

1.4 Related work . 3

2 Problem analysis 7

2.1 Introduction . 7

2.2 Objectives of the USAR robot model . 9

2.3 Software Life Cycle . 10

3 Requirements specification (revised) 13

3.1 Functional requirements . 13

3.2 Non-functional requirements . 15

4 System architecture 17

4.1 System description . 17

4.2 System design . 18

4.3 Class diagram . 20

4.4 Network architecture . 22

vii

4.5 Code implementation and testing . 23

5 Software, hardware and infrastructure 25

5.1 Software . 25

5.2 Hardware and infrastructure . 26

6 Navigation 37

6.1 The concept . 37

6.2 Navigator API . 38

6.3 Navigation and wall detection with collision avoidance 41

7 Communication 43

7.1 Camera to PC . 43

7.2 PC to Usario and Usario to PC . 44

8 Object detection, identification and localization 49

8.1 Camera image . 49

8.2 Object detection . 50

8.3 Object identification . 53

8.4 Object localization . 54

9 Presentation of information 57

9.1 The Graphical User Interface . 57

9.2 A video demonstration of the GUI . 61

10 Discussion and Conclusion 63

10.1 Discussion . 63

10.2 Conclusion . 66

10.3 Future work . 66

A Meeting with the Fire department in Trondheim 69

B Source code for the robotic system 73

Bibliography 97

viii

List of Figures

2.1 Iterative model with protyping and evaluation. 11

4.1 Overview of the system. 18

4.2 Class diagram for PC side in UML 2.0 notation 21

4.3 Class diagram for Usario side in UML 2.0 notation 22

4.4 System Architecture . 23

5.1 Loading LeJOS onto the RCX . 27

5.2 Loading programs onto the RCX . 28

5.3 High level view of the nodes of Usario . 30

5.5 The IR transceiver embedded in the InfraRed/Bluetooth circuit. 32

5.4 The BlueSMiRF V1 module . 32

5.6 The floor model . 33

5.7 The Bluetooth dongle . 34

6.1 Dead Reckoning . 38

6.2 Video file showing the navigation module (requires at least a Windows
Movie player Version 9) . 42

7.1 Data communication between PC and Usario 45

7.2 Sequence diagram for communication between PC and Usario in UML 2.0
notation . 47

8.1 Survivor being detected . 51

8.2 Illustration of a survivor being localized . 55

8.3 Screenshot of a victim being localized . 56

ix

9.1 The GUI program model . 58

9.2 Screenshot of the GUI . 60

9.3 Video file showing robotic system(requires at least a version 9.0 Windows
Movie player) . 61

x

List of Tables

4.1 Class description for PC side . 19

4.2 Class description for robot side . 20

5.1 Interpretation of the different readings from the IRPD sensor. 29

5.2 Maximum/minimum voltage capacity for the powered units. 35

6.1 Basic functions in LeJOS. 37

6.2 Deciding for a direction . 41

7.1 Internet camera network settings . 44

xi

Chapter 1

Introduction

1.1 Motivation

The project ‘Identifying the risks involved in the design of a safety-critical system for
an Urban Search and Rescue robot’ [12], describes the qualitative research to identify
the requirements in building a safety-critical system for a USAR robot. The document
was submitted in December 2005 and the main focus was to look into the requirements
and the associated risks in developing a Lego Mindstorm-based prototype USAR. The
report also looked into the development life cycle of a safety-critical system based on
the international standard IEC61508 for safety-related systems and CORAS standard
platform for risk assessment. In order to identify and analyse the risks, I performed a
Preliminary Hazard Analysis (PHA), which is tailored for early stages of development
such as requirement analysis. The PHA and HazOp analyses carried out to identify and
analyze the risks were presented as well as an insight into the implementation of the
robot model. However, the physical design and implementation part were not included.
Therefore based on this pre-study project and the results obtained, we will in this report
describe the aspects of implementing a low-cost USAR robot model, named Usario1 . The
robot model will serve as a basis for analysis and development of future USAR robots.
The scenario used to simulate the operation of the USAR robot prototype is a search and
rescue mission within one floor of a collapsed building. The core base of the robot model
is built of Lego Mindstorms parts and equipped with a camera relaying real-time images
to a workstation.

1The robot model will be referred to as Usario, which, in creole, means small USAR. In creole, a dialect
of French, the suffix -io in words means small or diminished. The objective of naming the robot model is
to avoid confusion, easier reference and greater convenience when the robot is referenced which could be
the robot used as model, a USAR or any other robot.

1

2 CHAPTER 1. INTRODUCTION

1.2 Background

Currently, dogs and humans are used in rescueing people from disaster involving man
made structures, like collapsed buildings. However, robots have been deployed in a few
cases to assist the rescue teams. The University of South Florida, through its Center for
Robot-Assisted Search and Rescue (CRASAR) developed a USAR robot to assist rescue
workers by providing sound and images of places unreachable to dogs and humans. The
robot was first used during the World Trade Center disaster in 2001, but had unfortunately
neither found nor rescued any survivor. However, it has shown some great potential as
described in the National Geographic article [25]. In order to have a more accurate
picture of the situation in the case of a collapsed building, we had a meeting with the
local Fire department in the city of Trondheim. The interview lasted for one hour and is
documented in Appendix A. During the event of a building collapse, the police, the fire
brigade, the paramedics, the Civil Defence (represented by the Red Cross or the ‘Norsk
Folkehjelp’ in the event of big catastrophies), and the police dog rescue unit are the main
actors at the scene. The police represents the legal local authority and is thus called the
‘owner’ of the accident. However, if the fire brigade arrives at the scene before the police,
the former becomes the owner of the scene and passes ownership onto the police as soon
as they reach the site. Paramedics do not have the authority at the scene and remain
under the command of the police. The standard procedures require that the paramedics
and/or firemen enter the scene only after it has been secured as ‘no danger of an additional
explosion’, collapse or fire. From this point on, the objectives (in priority order) of the
rescue team are to

1. Safeguard and rescue human lives.

2. Prevent deterioration and preserve assets, material property and infrastruture.

3. Safeguard and rescue animal lives.

In order to achieve these objectives, the rescue team is faced with challenges like
determining the number of people trapped inside the building, their location and gaining
an extended but adequate knowledge about the environment. Empirical knowledge about
the dangers of the scene also helps the owners of the scene to assert the extent of the
accidents and hence take appropriate measures.

1.3 Problem definition

After an accident, the conditions at a disaster area are extreme with many unknown
parameters. According to the fire department, the safety of any rescuer should in no
case be put at risk during a rescue operation. Rather than acting immediately without
proper control, they would instead rely on information and intelligence to achieve their

1.4. RELATED WORK 3

objectives. The use of Information technology and robotics can be of great use in such
situations. Under such circumstances, eventual robots deployed will be subject to a series
of hazards and risks that might affect their performance. Victims may be covered in
debris and somehow trapped in between objects, which decreases the robot’s chances for
detection and rescue. Communication with the server might suddenly drop or even be
lost. Hackers might break into the robotics software system thus jeopardizing the entire
rescue operation.

In this case, pure gathering information and intelligence about the disaster site will
not satisfy the requirements in its entirety. There is an additional need to implement
an adequate and comprehensive robotic system to assist the police or the owners of the
scene. The system must not only collect, process and present information about the scene,
it must also act as a support tool such that the scene owners can use to support their
continuous information needs without putting additional lives in danger.

1.4 Related work

Motivated by the positive contribution of robots in the World Trade Center disaster, search
and rescue robotics is increasingly gaining interest from both academia and industry.
Currently, there are numerous private companies, universities and some government
institutions that are actively involved in the development of USAR robots. The following
subsections present a list of some of the main actors in the field as well as a highlight of
some robotics competitions intended for the general public, together with some groups
of interest. The first part presents a list of some of the main actors in the field while
the second part highlights some robotics competitions intended for the general public,
together with some groups of interest. These are by no means exhaustive lists as there
are several other relevant USAR robots available and other ongoing activites .

1.4.1 USAR robot development

USAR robot builders can be divided into three distinct groups; university researchers,
private companies (here referred to as the ‘industry’) and government institutions. The
three groups are introduced below.

University research:

1. The University of South Florida, through its Center for Robot-Assisted Search
and Rescue (CRASAR) [25] developed a USAR robot to assist first-aid workers
by providing sound and images of places where dogs and/or humans cannot reach.
The robot was first used during the World Trade Center disaster, but unfortunately
did neither find nor rescue any survivor.

4 CHAPTER 1. INTRODUCTION

2. Carnegie Mellon University’s National Robotics Engineering Consortium (NREC) [7],
a part of the Robotics Institute in the School of Computer Science, has contributed
a lot in the field of robotics. In February 2005, they completed a highly
successful prototype development program that validated their technology and
which included conducting mobility and scout demonstrations of their system,
known as the Gladiator Tactical Unmanned Ground Vehicle (GTUGV) [7]. In
these demonstrations, the Gladiator prototype met all key system performance
parameters, as well as other critical requirements.

3. As early as in 1995, Kobe University from Japan completed the development of
their Utility Vehicle for Search (UVS) [18], involved during the Hanshin-Awaji
earthquake. The UVS consists of several homogeneous small robots linked together
and which can climb over obstacles. They have also developed a simulator for
Robocup-Rescue, a simulation league that focuses more on coordination rather than
victim detection and issues individual robots must solve.

Industry:

1. iRobots Corporation [16] is a private-owned company that develops robots
for both the consumer market and the military. The military R-gator [16] and
packbot [16] are their two most relevant contributions in USAR robots category.

2. Inuktun Services Ltd [15] is a canadian company that manufactures and markets
steerable crawler robots. These robots are equipped with cameras and crawlers
which provide detailed video output using variable lighting with pan, tilt and zoom
controls.

Government institutions:

1. The NASA [22] is a pioneer and key leader in the development of robotics.
It has developed, among other robots, Urbie to investigate urban environments
contaminated with radiation, biological warfare, or chemical spills.

2. The United States Department of Defence [38] is a big player in the robotics market.
In many of its key robotics programs, the United Defense Incorporation is the sole-
source prime contractor and systems integrator. The department also hires and
contracts other companies.

1.4.2 Robotics competitions

1. The RoboCup Soccer [29] competition, founded in 1995 is an international
research and education effort. Its purpose is to foster Artificial Intelligence (AI) and
robotics research by providing a standard problem where a wide range of technologies

1.4. RELATED WORK 5

can be integrated and examined. The ultimate goal of RoboCup is to develop, by
the middle of the 21st century, a team of fully autonomous humanoid robot soccer
players shall be able to play a soccer game against human world champions. The
first edition of the competition took place in 1997 in Japan and has since been held
every year.

2. RoboCup Rescue project [29] is a contest that focuses on the use of robotics as
an aid in rescue operations. Its intention is to promote research and development in
disaster rescue by involving multi-agent team work coordination, physical robotic
agents for search and rescue, information infrastructures, personal digital assistants,
standard simulator and decision support systems, evaluation benchmarks for rescue
strategies and robotic systems that are all integrated into a comprehensive system
in the future. RoboCup Rescue [30] is a child competition of RoboCup Soccer that
started in 2001 and consists of three leagues:

(a) The RoboCup Rescue Robot League is a competition entirely devoted
to designing, building and programming of semi-autonomous and autonomous
USAR robots.

(b) The RoboCup Rescue Simulation League is a competition that focuses
on group coordination during disaster rescue operations. A generic urban
disaster simulation environment is constructed on network computers and every
participant cooperates with many others, most often from other disciplines, to
coordinate and conduct a rescue operation.

(c) Robocup Junior [31] is a project-oriented educational initiative that sponsors
local, regional and international robotic events for young students. It is
designed to introduce RoboCup to primary and secondary school children, as
well as undergraduates, who do not have the resources to get involved in the
senior leagues. The focus in the Junior league is on education and it is divided
into three categories: soccer, dance and rescue.

Chapter 2

Problem analysis

Having defined the problem in section 1.3, the objective of this chapter is to give
an overview of the strategy used to implement a Lego Mindstorm USAR. In the risk
assessment of [12], a list of requirements has aready been identified.

2.1 Introduction

This section summarises the identified safety and security requirements (from the report
[12]) that need to be satisfied in the development of USAR robots. These requirements
have been identified in the risk management process through a PHA and a HaZop, but
are not an exhaustive list as further analysis and testing will probably reveal more system
hazards. Note that most of the critical hazards (class types I and II) that have been
identified, have been treated accordingly, while the other specifications have only been
recorded during the conduct of the experiment. They are purely based on observation
and are therefore marked as ‘Observation’.

The safety requirements identified in [12] are:

1. Robot MUST detect all humans wherever there are humans. (Detect require-
ment)

2. Robot must be able to navigate through the entire site.(Turn, Move, Follow
requirements)

3. Robot must be able to notify control unit about its own position at any time.
(Report requirement)

4. Robot must be able to notify control unit about the location of victims within the
shortest delay.(Report requirement)

5. Communication must be error-free and reliable.(Communication requirement)

7

8 CHAPTER 2. PROBLEM ANALYSIS

6. Access to data must be controlled.(Communication requirement)

7. There should not be any buttons easily available for unauthorized personnel to
tamper with. (Observation)

8. Battery/power level must always be monitored. (Move requirement)

9. Robot MUST NOT bump into humans. This can injure or deteriorate victims
conditions. (Detect requirement)

10. Robot must back up on its original track in case of some malfunctions or physical
damages.(Turn, Move, Follow requirement)

11. Robot must use the least time possible to accomplish its mission. (Turn, Move,
Follow, Report, Locate requirement)

12. In case robot fails to perform according to established procedures, operator must
take control over the system.(Observation)

13. Robot must operate independently in case of component/system failure. (Obser-
vation)

The security requirements identified in [12] are:

1. Only authorized personnel can have access to the system. The use of login and
password is recommended.(Validation requirement)

2. Access to the system is restricted to authorized personnel holders of a private key
or certificate (Authentication requirement).

3. Make use of virtual private network so as to ensure an encrypted tunnel of commu-
nication shutting down the threat of hackers tapping into the system.(Reliability,
Integrity requirements)

4. Back up of data must be done as often and quickly as possible.(Observation)

5. Back up server must be at a different location, other than on site.(Observation)

Grouping these requirements, we get five distinct categories that will be described in
detail throughout this report:

1. Navigation. Since the robot will be operating in a rapidly-changing and
unpredictable environment, the robotic system has to be able to detect and adapt
itself to the environment; it has to exhibit the property of context-awareness
as it navigates within an unknown environment. Walls, obstacles, victims and
unpredictable events have to be anticipated and catered for. The robot should
be at all times ready to react to the situation in a safe and secure way. This issue
is discussed in more details in Chapter 6.

2.2. OBJECTIVES OF THE USAR ROBOT MODEL 9

2. Communication. As data are captured by Usario, simple computations are made
locally before being sent to the server for further processing and presentation to the
user. There is a need to establish a proper communication environment between the
robot and the PC server. The different nature of data captured leads us to devise
two communication medium which are wireless intranett and Infra Red/Bluetooth
signals. This issue of communication and data transport protocol is discussed in
more details in chapter 7.

3. Object detection, identification and localisation. The detection, identifica-
tion and localisation of victims are all major aspects of the search mission.The robot
needs to look for victims and at the same time identify and locate their positions
within the accident site. Chapter 8 describes the technique and technology behind
this search.

4. Presentation of information. A Graphical User Interface presents the informa-
tion collected by the robot during its mission. Chapter 9 describes the objective
and functionalities of the GUI.

5. Security. This category has not been dealt with in the implementation of this
sytem because of time constraints. However, we feel that it is an important aspect
of the system and it should be composed of a login facility with ID and password,
as well as private keys on both client and server sides.

Based on these requirements, we can therefore implement a safety-critical system to
help the rescuers in their mission. Our robotic safety-critical system will comprise of
a Graphical User Interface(GUI) installed on a remote computing device and a USAR
robot which will collect inputs from the environment and present the data on the GUI.
In other words, the rescue robot must detect and report the position of victims (either
dead or alive) and at the same time gather knowledge about the environment.

2.2 Objectives of the USAR robot model

The objective of the USAR robot model is to serve as a prototype which will eventually
help in the building of a USAR robot to assist the owner of the accident. A USAR is
a semi-autonomous robot designed to help emergency rescuers in detecting and locating
survivors and cadavers in events of crashed buildings. The robotic system will collect
data from areas of high risk for rescuers. The data is to be processed and presented as
meaningful information to the decision makers. Moreover, the system should also allow
a certain degree of freedom in the selection of the data e.g. the robot will be semi-
autonomous as it will perform its mission both with and without human intervention. At
any time during its search mission, the user must have the option to remotely stop and
navigate the robot to any desired location.

10 CHAPTER 2. PROBLEM ANALYSIS

2.3 Software Life Cycle

Life cycle models are useful means of describing the various phases of a development
project, from the conception of a system to its eventual decommissioning.The software
life cycle for this USAR robot model is an iterative one with prototyping and evaluation.
The life cycle is described as iterative because at all stages of development, there was the
need to cycle through the different development activities. Earlier stages were revisited
allowing proper changes to be made when appropriate. Basically, there are four stages:

Stage 1. Requirements specification - Identify and define functional and non
functional requirements - Completed in [12].

Stage 2. Design - Incomplete in [12]
Stage 3. Implementation - Incomplete in [12]
Stage 4. Testing - Left as a future assignment

Figure 2.1 shows the iterative process model that incorporates the ability to create
prototypes during any development stage in order to explore unknown issues. The figure
also shows another necessary step at each stage in the process. Before moving on to
the next stage, the results of the current change were evaluated. Stage 1 and part of
stage 2 were already completed in [12]. After the completion of the report, some aspects
of communication and navigation were investigated further. As a result, new features
could be implemented to improve the system. Therefore, amendments were made and the
requirements specification has been revised accordingly2 . Sections 3.1 and 3.2 explore
this in more details.

2A new HazOp should have been conducted to take into account these changes but is left for future
assignments.

2.3. SOFTWARE LIFE CYCLE 11

Prototype Prototype

Requirements
specification ImplementationDesign Testing

Evaluate

PrototypePrototype

EvaluateEvaluateEvaluate

Release

Figure 2.1: Iterative model with protyping and evaluation.

Chapter 3

Requirements specification (revised)

The main objective of an USAR robot during a rescue operation is to detect and report
the location of survivors as a complementary aid to rescuers. However, during this task,
the robots are exposed to uncertain events that may pose risk to the operation of the
robot as very few of them operate in a risk free environment. The use of good risk
management strategies and tools can aid in preparing the robot for some of these events.
By identifying, assessing and controlling the risks involved, one makes what is unknown
known and are hence able to incorporate proper mechanism. Therefore risk, safety and
security management are important aspects of the development that have to be dealt with
to ensure the proper running of the operation. This has been done in Friquin [12]. Here
we present an updated requirements specification list.

3.1 Functional requirements

This section presents the functional requirements of the system. This functional
requirements list is derived from the use case scenarios on page 35 in [12] and extended to
incorporate the results from the risk assessment in [12]. The requirements are numbered,
with the abbreviation F preceding the number.

F 1: Navigation
Usario shall be able to:

F 1.1 turn right.
F 1.2 turn left.
F 1.3 move forward.
F 1.4 move backward.
F 1.5 follow a coloured line. (OBSOLETE !!) This requirement is now obsolete

as Usario can now move by sensing objects on its path.
F 1.6 avoid obstacles.
F 1.7 travel autonomously.(NEW !!)

13

14 CHAPTER 3. REQUIREMENTS SPECIFICATION (REVISED)

F 1.8 be remote controlled.(NEW !!)

F 2: Detection
The camera vision of Usario shall be able to:

F 2.1 detect objects.
F.2.2 detect humans.

Usario shall be able to:
F 2.3 detect walls.
F 2.4 avoid walls.
F 2.5 detect obstacles.
F 2.6 avoid obstacles.

F 3: Identification
The camera vision of Usario shall be able to:

F 3.1 determine the state of the victims (a dead victim is represented by red
colour and an alive victim by green colour).

F 3.2 capture image of the victims.
F 3.3 capture sound from the environment.

F 4: Localization
The RCX of Usario shall be able to:

F 4.1 determine its own position.
F 4.2 determine the position of the humans.

F 5: Reporting
The RCX of Usario shall be able to:

F 5.1 report its own position.
F 5.2 report the location of the identified humans.

F 6: Communication
The RCX of Usario shall be able to:

F 6.1 communicate in half-duplex with the PC unit through the IR - Bluettoth
interface.(NEW !!)

F 6.2 communicate with the camera through a simple 4-pin flat cable.(OBSOLETE
!!)This requirement is now redundant as the RCX can send data to the PC controller
through the IR-Bluetooth interface.

The camera unit of Usario shall be able to:
F 6.3 communicate with the PC controller through wireless LAN.
F 6.4 Communicate with the RCX through a flat cable.(OBSOLETE !!) This

requirement is now redundant as the RCX can send data to the PC controller through
the IR-Bluetooth interface.

F7: Access
The system shall

F 7.1 validate and give access to authorized personel only.

F 8: Power

3.2. NON-FUNCTIONAL REQUIREMENTS 15

Usario shall:
F 8.1 be DC battery-driven.
F 8.2 be wireless.

F 9: Speed
Usario shall:

F 9.1 move at a reasonable speed.

F10: Presentation of information
The Graphical User Interface(GUI) shall :

F 10.1 graphically depict the top view of a rectangualr floor.(NEW !!)
F 10.2 display the image captured by Usario.(NEW !!)
F 10.3 graphically plot the path of Usario in operation.(NEW !!)
F 10.4 provide a joystick facility to enable the remote controlling of Us-

ario.(NEW !!)

3.2 Non-functional requirements

The section presents the non-functional requirements of the system. These requirements
place restrictions on the robotics system and the development process, as well as specifying
external constraints that should be met. There are no changes to the non-functional
requirements list from that specified in [12]. The requirements are numbered, with
the abbreviation N proceeding the number and are divided into the following categories:
environment, reliability, maintainability and upgradability.

N1 Environment
Usario shall not :

N 1.1 bump into objects.
N 1.2 hurt humans.
N 1.3 aggravate condition of victim(s).
N 1.4 damage property.

N2 Reliability
Usario shall not :

N 2.1 be operated/interfered/manipulated by unauthorised personel.
N3 Maintainability

Usario shall :
N 3.1 be easily modified for maintainance purposes.

N4 Upgradability
Usario shall :

N 4.1 be easily upgradable, by use of plug-in components.

Chapter 4

System architecture

The implementation of the safety-critical system has been based on a list of functional
and non-functional requirements, which is itself a refinement of the above five categories
of requirements. A general description of the system as well as the system design, class
diagram and network architecture are discussed in this chapter.

4.1 System description

Usario, the USAR robot prototype, is a mobile robot searching for survivors and cadavers
on one floor of a collapsed building. It is a semi-autonomous Lego Mindstorms robot
capable of relaying sound and images of the scene to a server machine named PC. The
critical issue is that Usario must detect ALL bodies or survivors in all the rooms it visits,
in other words it must detect humans whenever there are humans in the vicinity. In
addition, Usario must be able to correctly report both its own position and the position
of the humans identified. Figure 4.1 represents an overview of the robotic system. A
java program is downloaded to the Robotics Command Explorer (RCX) by use of a USB
tower connected to the server. The program contains instructions in Java code to operate
Usario in its search mission. Usario navigates around a one-floored site by avoid collision
with the walls. The camera is constantly sending images of the scene (using 802.11g) to
the server via the wireless access point. As soon as human survivors are within sight of
the camera, the camera’s colour recognition function detects the status of the humans
(characterized by a green or red toy figure). At the same time, a message is sent by the
PC to the RCX, to inform the latter about the identification of the victim. Meanwhile,
an authorised user (shown as the operator in the drawing) who is connected to the server,
monitors the progress of Usario on his own screen. He also has the possibility to remotely
control Usario based on the information presented to him.

17

18 CHAPTER 4. SYSTEM ARCHITECTURE

Entry/Exit point

Survivor

Dead body

USB BlueTooth
or BT-IR module

Legend

Operator

Webcam

TCP/IP

802.11g Wireless
Network Access
Point or Network
Card

RCX

Robot pathRobot

Control unit

Figure 4.1: Overview of the system.

4.2 System design

The design of our robotic system has been an iterative process. An initial set of objects was
chosen based on the requirements (sections 3.1 and 3.2) and general problem description

4.2. SYSTEM DESIGN 19

of the system. As behaviours and scenarios were developed for these objects, the need for
other object components became apparent. As the design was maturing, the objects were
abstracted into classes with common functionalities that were grouped into parent classes
with the detailed functions specified in child classes. The initial design effort focused on
the overall structure of the program. The individual algorithms for methods were specified
using pseudocode and will be presented over the next chapters. Tables 4.1 and 4.2 specify
the main classes and functions required, together with a short description.

Package Class Method Short description
PC Controller class at the

PC side
GUI Class for the GUI

Frame Deployment of the GUI
shell

Path Plot Drawing of the robot
path

Remote Control Joystick to remotely
control Usario

misc Display of miscellaneous
items

commPC Class controlling the
data transport from
PC to RCX

sendData Sends data
receiveData Receives data

SimpleCommPC Contains the data
communication protocol

TestDetect Defines the detection
parameters for objects

Detect Folder containing
C++ files for
object detection

openCV OpenCV’s class for
capturing images

Table 4.1: Class description for PC side

20 CHAPTER 4. SYSTEM ARCHITECTURE

Package Class Method Short description
RCX Controller class at the

robot side
RCXcontroller Class controlling the

operations of the robot
move Starts the search

mission
scan Allows robot to rotate

over 3600

getPos Calculates the
position of Usario

checkWall Verifies the
existence of walls

Robot Class controlling the
basic functions of the
robot.

stop Stops robot
turn Turns robot sideways

to scan
forward Moves robot forward
backward Moves robot backwards
travel Moves robot over a

specific distance
rotate Allows robot to rotate

over a specific angle
commRCX Class controlling the

data transport from
RCX to PC

sendData Sends data
receiveData Receives data

SimpleCommRCX Contains the data
communication protocol

Table 4.2: Class description for robot side

4.3 Class diagram

Figure 4.2 shows the class diagram in UML 2.0 notation for the server side of the system.
The GUI class is the main class and which starts the commPC and Camera threads. The
GUI makes use of the listeners in the ‘eclipse.org.SWT’ library package to detect occuring
events within the class. The Camera class contains the settings for the parameters
for the Detect DLL’s and the Intel’s OpenCVimage processing library. The commPC

4.3. CLASS DIAGRAM 21

thread repeatedly transfers data packets to and from the GUI by using an instance of the
SimpleCommPC class.

1
1

1

1

0,1..

1

1

1

0,1..

1 `is a´

1

1

1

action : int
posX : float
posY : float
angle : float
command : int
..
Frame()
displayImage()
plotPath()
remoteControl()
Misc()

Send() : void
Receive() : void

commPC

GUI

SimpleCommPC

..

..

redValue : int
greenValue : int
setParameter()
setRedParam()
setGreenParam()
detect()
identify()

Camera

..

..

Detect
..

..

OpenCV

0,1..

eclipse.org.swt

Listeners

EventListener

ButtonListener

TextListener

`is a´

Figure 4.2: Class diagram for PC side in UML 2.0 notation

Figure 4.3 shows the class diagram for Usario’s side as UML 2.0 notation. The
RCX is the main class and is responsible for the operations of the robot. The Robot
class implements the basic functions of the robot by interacting with the inputs (here the
sensors) and the outputs (i.e. motors). The RCX retrieves information about the position
of the robot to send it to the PC side by use of the commPC thread, which is itself an
instance of the SimpleCommRCX class.

22 CHAPTER 4. SYSTEM ARCHITECTURE

2

1

1

1

`is a´

1
1

1

1
11

1

1

1

2

...

Action : int
commReceived:int

Move() : void
Scan() : void
GetPos() : int []
checkWall(int) : bool

RCX
positionX: int
positionY:int
Angle:float
Stop() : void
Forward() : void
Backward() : void
Travel(dist) : void
Rotate(angle) : void
updateX(dist,angle) : int
updateY(dist,angle) : int

Send() : void
Receive() : void

Robot

commRCX

SimpleCommRCX

LightSensor

Motor

...

RotationSensor

`is a´

`has a´

josx.platform.rcx
Motor

Sensor

Figure 4.3: Class diagram for Usario side in UML 2.0 notation

4.4 Network architecture

The system is a three-tier architecture model. There are three communication interfaces:
1) between the RCX and the server (referred to as the PC), 2) between the client and
the server, and 3) between the camera and the PC. Usario communicates with the PC in
two ways: (1) through the InfraRed-Bluetooth interface and (2) via the camera through
wireless Ethernet. Figure 4.4 depicts the architecture of the safety-critical robotics system.
The first layer of the architecture contains the data link and physical layers of the OSI
Model, the hardware components of Usario and the PC. The operating systems of both
Usario and the PC are contained in the layer composed of the Network and Transport
layers along with the LNP (Layered Networking Protocol) contained in the LeJos package.

4.5. CODE IMPLEMENTATION AND TESTING 23

The third layer represents the session, presentation and application layers, and contains
the applications to enable display and capture the information at the client’s side.

Data Link and physical layer

IR Tower

Usario
RCX IR port

IR-BT
interface

Camera

Network and transport layer

LeJos

IR

Windows(TCP/IP)

Bluetooth

Wireless
Ethernet

Session,
presentation and
application layer

client

Network card

PC

Network
card

Bluetooth
dongle

USB port

Figure 4.4: System Architecture

4.5 Code implementation and testing

The implementation of the system was carried out through a combination of building the
physical robot and coding in paralell. As modular classes were built and incorporated
with each other, physical modifications had to be made to the robot. For example, the
‘navigation’ function worked perfectly fine when tested alone. However, this was not the
case when it was integrated with other modules, even though the functions were loosely
coupled to each other. The reason was that as more units were added to the robot, its

24 CHAPTER 4. SYSTEM ARCHITECTURE

weight and size also increased, which meant that the motors, having a constant power
output, needed greater torque to rotate the wheels.

Prot (rotational Power) = τ (Torque)× ω (angular velocity)
This issue is discussed in more detail in chapter 10.1 and a listing of some of the classes
is provided in B.

Chapter 5

Software, hardware and
infrastructure

The first section of this chapter describes the software and development platform used. It
introduces the various editors and the programming language used in the implementation
of Usario. A more comprehensive description of the hardware equipment used is given in
the second section.

5.1 Software

5.1.1 Development environment

In [12], Chapter Evaluation of available programming languages page 68-69, Java was
identified as the most ideal implementation language for the robotic system. Based on
the evaluation done and the fact that we are experienced and comfortable in programming
with Java, it is still the preferred choice as programming language. We made extensive use
of Eclipse and Textpad IDEs (Integrated Development Environments) to write, compile
and run Java SE, Java AWT, Java SWT and LeJos codes in our implementation. The
development platforms used are:

1. Java : an object-oriented programming language developed by James Gosling and
colleagues at Sun Microsystems in the early 1990s. Unlike conventional languages
which are generally designed to be compiled to native code, Java is compiled to
a bytecode which is then run (generally using JIT compilation) by a Java virtual
machine. The language itself borrows much syntax from C and C++ but has a
much simpler object model and does away with low-level tools like programmer-
manipulated pointers [20].

25

26 CHAPTER 5. SOFTWARE, HARDWARE AND INFRASTRUCTURE

2. Java Platform, Standard Edition or Java SE (formerly known as J2SE) :
a collection of Java programming language APIs useful to many Java platform
programs [20].

3. Java Abstract Window Toolkit (AWT) : Java’s original platform-independent
windowing, graphics, and user-interface widget toolkit. The AWT is part of the
Java Foundation Classes (JFC) - the standard API for providing a graphical user
interface for a Java program [20].

4. Standard Widget Toolkit (SWT) : a Graphical User Interface (GUI) toolkit for
Java. It is an open source toolkit and included as part of the Java standard and the
Sun Microsystem’s proprietary software. SWT accesses native code GUI libraries
through the Java Native Interface (JNI) to display its GUI widgets [14].

5. LeJos : LeJos [32], is a Java environment for the Lego Mindstorms programmable
RCX controller and provides a replacement to the default RCX firmware. It is an
open source project and is currently available on both Windows and Unix systems.
It includes a Java virtual machine which allows Lego Mindstorms robots to be
programmed in the Java Object-Oriented programming language. It is portable,
reliable and offers multithreading. However, it is worth to be noted that leJos,
unlike Java, does not provide garbage collection facilities.

Whereas the IDEs are:

1. Eclipse : an open source platform-independent software framework for delivering
what the project calls “rich-client applications”, as opposed to “thin client” browser-
based applications. Eclipse has been used for editing codes for both the RCX and
the GUI.

2. TextPad : a text editor for the Microsoft Windows family of operating systems
[11]. It has been used mostly for editing and compiling codes for the RCX using
LeJos.

5.2 Hardware and infrastructure

The entire robotic system comprises of the following parts:

1. one robot chassis and various lego parts

2. one camera

3. one InfraRed-Bluetooth interface

4. one search arena

5.2. HARDWARE AND INFRASTRUCTURE 27

5. one PC server

6. one Bluetooth dongle

7. Three power supply units

They are described in more details in the following subsections.

5.2.1 The robot chassis and Lego parts.

The robot’s chassis is made up of various Lego bricks and constitutes its backbone. The
six most relevant Lego parts for this work are 1. RCX, 2. InfraRed proximity sensor, 3.
motors, 4. IR serial port, 5. rotation sensors, and 6. wheels. A short description of these
components, together with their configuration and calibration details are given below.

1. RCX
Description: The RCX(see [12], pg 22) is the Central Processing Unit of the robot
and is included as a standard part of the Lego Mindstorms 2.0. The RCX brick, as
it is called, encloses a Hitachi H8/3292 series micro-controller. The H8 is capable
of running at a clock rate of between 10 MHz and 16 MHz, and the RCX uses the
highest clock rate of 16 MHz. This is extremely low compared to modern processors
that run at speeds higher than 1000 MHz but it is fast enough for most of the
functions of Usario such as turning motors on and off, reading input from sensors
and computing the next logical move.
Installation and configuration: The RCX is first loaded with LeJos, a replacement
firmware for the Lego Mindstorms RCX brick. Figure 5.1 shows the downloading
of the LeJos firmware, a Java Virtual Machine that fits within the 32KB ROM on
the RCX brick.

Figure 5.1: Loading LeJOS onto the RCX

28 CHAPTER 5. SOFTWARE, HARDWARE AND INFRASTRUCTURE

The RCX brick can store programs in its memory. However, it has been our
experience that only 4 programs (storage # s 2-5) can be allocated to user-written
programs. The appropriate classes necessary to run the robot are then loaded to the
RCX, as shown in figure 5.2. The command “lejosc RCX12.java” compiles the Java
class RCX12 in bytecode. The command “lejos RCX12” then triggers the download
of the compiled RCX12.class to the RCX brick.

Figure 5.2: Loading programs onto the RCX

2. Infrared Proximity Detector (IRPD)
Description: The IRPD sensor is an extra part of the family of Lego Mindstorms
products which is used for measuring the intensity of light that enters the tiny lens
on the front of the sensor. It can also be used to distinguish dark objects from light.
The light sensor has a small red light-emitting diode (LED) that illuminates the
scene in front of the sensor. It reads values from 0 to 100, and a 75 value meaning
there is no object detected. The basic idea is to send a light towards an object and
record the corresponding percentage (or raw value) of light reflected back.
Calibration: Results for a small test program for a robot to stop when facing a wall
shows an average value of 0 units. Table 5.1 shows the average values in different
situations. The IRPD sensor is initialized as ‘LIGHT’ and ‘RAW’ in the constructor
of the class. The sensor detects objects which are within the 12-18 cm range, which
means that we should set Usario to be navigating within this distance range from
the walls and objects.

5.2. HARDWARE AND INFRASTRUCTURE 29

Value Interpretation
75 No object detected
48 Object on right
22 Object on left
0 Object straight ahead

Table 5.1: Interpretation of the different readings from the IRPD sensor.

3. Wheels
Usario is using two wheels, each attached to a motor on either side of the robot
chassis. The wheels have non-pneumatic rubber tyres and have an external diameter
of 8.16 cm.

4. Motors
Description: Usario is using two standard Lego motors to power the wheels. Each
motor (part number: 71427) is connected to a Lego shaft and a gear to transmit
the power to the wheels. The main purpose of the motors are to turn the wheels.

Calibration: The power of the motors can be adjusted from zero to seven, zero
producing the weakest Torque. According to the Lego Mindstorms specifications
[11], within the the internals of the motor, there are sixteen gears in the outside of a
shaft which means that the motor provides rotations up to an accuracy of a sixteenth
of one turn, i.e. 22.5 degrees. Moreover, while assembling the gears on Usario, we
noticed a clearance in between the teeth of the gears when they are connected. This
leads to a possible ±22.50 error margin while computing the rotation of the wheels.

5. Serial IR port
The serial IR port is located at the top of the RCX. It provides InfraRed
communication between the RCX and another device. The IR port sends and
receives IR signals at a frequency of 38KHz. The communicating devices must
be facing each other, with no obstacles in between as it would impair the signals
transfer.

6. Rotation sensors
The rotation sensor is an extra add-on part to the family of Lego products. It
is connected to an input of the RCX and is designed to register the number of
revolutions of rotating parts like motors and wheels. We are presently using two
such rotation sensors, one connected to each wheel of Usario. As a wheel starts to
rotate, a rotation sensor registers the number of rotations, but when the direction
of rotation changes the number recorded is decremented. In other words, when the
robot moves forward a positive value for the number of revolutions is recorded and

30 CHAPTER 5. SOFTWARE, HARDWARE AND INFRASTRUCTURE

when the robot is going backward, that value is decremented accordingly.

Usario

RCX

Rotation
sensor A

Proximity
sensor

Motor A

Rotation
sensor B

Motor B

IR-BT
interface

Camera

IR serial
port

Figure 5.3: High level view of the nodes of Usario

These components are all mounted around the Lego chassis of Usario. The rotation
sensors and the IR proximity sensor are the inputs to the RCX, while the outputs are
the motors which in turn turn the wheels. The sensors and motors are connected to the
RCX through standard Lego cables, while the IR serial port is built in the RCX. Figure
5.3 shows how the physical components of Usario are connected.

5.2.2 Camera

The image and sound capturing device for Usario is a DCS-5300G Internet camera, which
is a model from D-Link in the wireless internet camera range [9]. It is a digital surveillance
system that connects to an Ethernet or wireless broadband network to provide remote
video and audio. Using the 802.11g wireless technology, the camera has an built-in
webserver and communicates at a maximum wireless signal of up to 54Mbps. Access
and control of the DCS-5300G is made using the Internet Explorer browser, telnet and
FTP.

5.2. HARDWARE AND INFRASTRUCTURE 31

5.2.3 InfraRed-Bluetooth interface

Given the present state of the RCX, communication between the RCX and the PC can
be very troublesome as the RCX’s serial port needs to be placed in a straight line with
the IR tower. This is somewhat difficult as the IR tower will have to be mobile, and
in addition, the walls of the arena might be obstructing the IR beam. This is not a
convenient communication system for Usario as it needs to be mobile and wireless. The
next version of Lego Mindstorms to be released in August 2006 does however provide an
RCX brick which communicates via Bluetooth. This would largely solve our problem.
For this work, we had to develop a customized InfraRed-Bluetooth interface.

The InfraRed-Bluetooth interface developed is a tailor-made transceiver built for
this Lego Mindstorm USAR prototype by NTNU PhD candidate Pavel Petrovic. It is a
device that enables transmission and reception of data between an RCX and a computing
device through a combination of Infra Red and Bluetooth radio protocols. The heart of the
interface is a BlueSmirf module that transmits and receives bluetooth signals to and from
the bluetooth-enabled PC. The BlueSmirf is connected to a circuit which encapsulates an
IR transceiver and which relays the converted IR signal from BlueSmirf to the RCX IR
serial port, and back. At the same time the interface transforms the IR signal emitted by
the RCX’s serial port into a TTL level input further into the BlueSmirf module, which
transmits it further over the Bluetooth radio protocol. The communication is half-duplex,
robust, reliable and fully adequate for the context of this work. The interface is placed
on top of the RCX facing the IR port and consists of three parts:

1. BlueSmirf chip. The BlueSmirf module (see [36]) is a ‘black box’ wireless serial
link operating at a frequency of 2.4GHz. The link is composed of two units; a
Bluetooth dongle (see 5.7) and a BlueSmirf remote as shown in Figure 5.4. The
base unit is a Bluetooth USB dongle5.7 that one attaches to the Windows computer
via the USB port. The other unit is a small and unpackaged device that can be
powered from 3 to 6V for battery attachment and supports a maximum of eight
connections from Bluetooth enabled devices. The device has a built-in antenna and
the link can handle full-duplex data rates of up to 115200bps. However, for this
project, it has been configured to transfer data at 2400bps in a half-duplex mode.
The BlueSmirf firmware buffers incoming and outgoing data while providing for full
error checking and packet delivery quarantee.

2. IR transceiver. The IR transceiver communicates with the RCX through the serial
IR port. It is transmitting analogue signals to the RCX through an IR diode placed
next to the RCX port. On the receiving end there is an InfraRed receiver which
collects all data sent by the RCX. The analogue signals are emitted and received at
the RCX’s standard frequency of 38KHz.

3. IRBT circuit. The InfraRed-Bluetooth circuit is the device that converts the
Bluetooth signals to IR signals and vice versa. On one end, it is exchanging

32 CHAPTER 5. SOFTWARE, HARDWARE AND INFRASTRUCTURE

Figure 5.5: The IR transceiver embedded in the InfraRed/Bluetooth circuit.

data using Bluetooth technology with the BlueSmirf chip. On the other end,
the InfraRed-Bluetooth circuit is communicating with the RCX through the IR
transceiver. Figure 5.5 show the IR transceiver embedded in the InfraRed-Bluetooth
circuit.

Figure 5.4: The BlueSMiRF V1 module

5.2.4 Search arena

To facilitate testing of Usario, we built a search arena. The arena is a custom made field
that simulates a floor of a building. It consists of a 1.40 × 1.60 metre wooden frame with
a white cardboard floor. The floor, inner and outer walls are all painted white to allow

5.2. HARDWARE AND INFRASTRUCTURE 33

maximum reflection of light from the proximity sensor. Figure 5.6 shows the search arena.

Figure 5.6: The floor model

5.2.5 PC server

The PC unit used is a notebook computer running at a clock speed of 2.0 GHz and
with Microsoft Windows XP as operating system. It contains the GUI program, the
communication programs and has appropriate sound and graphics card. The PC unit has
Java SDE 1.4 and Java Virtual Machine installed. Furthermore, it is connected to the
internet and is a Bluetooth-enabled device.

5.2.6 Bluetooth dongle

We used the Trendnet TBW-102UB Bluetooth dongle to exchange data with Usario.
Being compliant with USB 1.1 and Bluetooth 1.1 specifications. The dongle is connected
via USB to the PC unit to communicate using Bluetooth protocol. It transmits and
receives data at a 2.4GHz radio frequency band and has, according to the producer, a

34 CHAPTER 5. SOFTWARE, HARDWARE AND INFRASTRUCTURE

maximum data transfer rate of 723Kbps is ensured within a connection range of up to
100 meters. Figure 5.7 shows the Bluetooth dongle.

Figure 5.7: The Bluetooth dongle

5.2.7 Power supply

Requirement F8.1 (see 3.1) of the robotic system stipulates that it has to be free from
power cables. It should be powered with battery so as to avoid the danger of the robot
being entangled with the wires while it is moving around. The RCX itself is designed
to accomodate six 1.5V DC batteries which also provides the power required to run the
sensors, motors and IR port. However, the camera (see 5.2.2) does not come equipped
with battery facilities and adjustments had to be made for the purpose of this experiment.
The camera requires a 12V power supply [10] and which has been achieved by a 10 x
1.2V DC battery pack. In addition, the IR-bluetooth interface requires a power supply of
a 9V DC battery. Therefore, the robot is completely battery powered with a total of 16
AA batteries and a 9V LR-61 flat battery.

There are many factors affecting the performance and accuracy of the robot during
its mission. A few of these factors are the battery power, physical robot size, lighting
conditions, the wifi network and interference in the Bluetooth communication. Therefore,
in order to enable Usario fulfilling its mission, the robot needs to be recalibrated each
time one of the above factor changes. This is especially important when it comes to
multiple runs in the implementation phase, as battery power was found to decrease after
every successive run. When we discovered that the robot was not behaving as expected,
the batteries were checked and changed/recharged whenever they were found to be below
a certain voltage level. Low battery power has also been the cause of problems like
truncated or loss of bits in data transfer, inexistant/poor connection, loss of connection,
poor quality or no display of images and a drastic reduction in the performance of the
RCX. Table 5.2 summarises the minimum and maximum capacity voltage of the powered
units of Usario. The minimum voltage is our experienced minimum voltage required to
run Usario without any consequent drop in performance, and the maximum voltage is the
maximum Voltage when the batteries are fully charged.

5.2. HARDWARE AND INFRASTRUCTURE 35

Unit Minimum (Volt) Maximum (Volt)
RCX 7.6 9.0
Camera 10.0 12.0
IR-BT interface 7.8 9.0

Table 5.2: Maximum/minimum voltage capacity for the powered units.

Chapter 6

Navigation

This chapter describes the techniques and principles behind the robot’s manoeuvres. It
introduces the concept of dead reckoning in navigation and presents how it has been
implemented to satisfy functional requirement F1 Navigation (see section 3.1) for Usario.

6.1 The concept

Early sailors before the 16th century navigated using a method called deduced reckoning
or dead reckoning [23]. This type of reasoning helped navigators to find their position by
measuring the course and the distance travelled from a known point. For some time now,
this method has been adopted for robot navigation. Knowing the starting coordinates,
the angle and distance travelled by the robot, one can deduce the current position and
destination coordinates as shown in Figure 6.1.

The LeJOS API provides some basic functions to control the motors and read the
values of the sensors. The functions are summarised and described in Table 6.1. These

Function Description
forward moves motor in a forward direction
backward moves motor in a backward direction
stop stops and locks(brakes) the motor
float stops but does not lock the motor
readRawValue reads the canonical value of the sensor

Table 6.1: Basic functions in LeJOS.

functions enable basic movements of the robot and a function for reading a sensor. The
accuracy of movements for Usario is based on these functions.

37

38 CHAPTER 6. NAVIGATION

X

Y

(x,y)

x = cos(angle) x distance

y = sin(angle) x distance

Figure 6.1: Dead Reckoning

6.2 Navigator API

The LeJOS API has a built-in class for navigation called ‘Navigator’ and which is based
on dead reckoning navigation. This class caters for robots with differential steering3 [23].
It provides methods for moving a robot over a particular distance and rotating at a certain
angle. The robots current (x, y) coordinates and angle are maintained by the Navigator
object, and updated after every stop movement. LeJOS provides two classes that use this
interface. The difference between them is the way in which the angle and distance, needed
for dead reckoning navigation, are measured. The first one is called ‘TimingNavigator’ and
measures the movement in terms of the number of seconds travelled. When instantiating
this navigator class, it should be provided with time taken by the robot to move 100 cm
and to complete one full rotation. Once instantiated, the class computes the number of
seconds it should allow the motors to run before coming to a stop. A second and more
accurate class is the ‘RotationNavigator’ class which records the movements of the robot,
over a particular distance, in terms of the number of rotations of the robots wheels. A
rotation sensor is connected to each of the wheels’ axle. Both classes require that the

3Differential steering is a wheel-based propulsion system commonly used in small robots with two wheels
mounted on a single axis. The two wheels are independently powered and controlled, thus providing both
drive and steering functions

6.2. NAVIGATOR API 39

robot used is two-wheeled and that the rotation sensors record a positive value when
the motors are moving forward. However, while extending these classes to accomodate
the needs of the project, we discovered that one had a better control over the sensor
and constant values by implementing our own Navigator class which is described further
below.

Dead reckoning is less expensive compared to other navigational systems and the
computation involved is based on simple calculus and trigonometry. To move the robot
forward, both motors are powered in a forward direction. The opposite in the case of
moving backward. From simple mathematics calculation, we know that one wheel moves
a distance of

π ×D, (D being the diameter of a wheel of the robot)

for one wheel revolution. A rotation of Usario, being a two wheeled robot, involves both
wheels running at the same time, but in an opposite direction. This rotation about
its original axis can be regulated by rotating the wheels for some distance in order to
rotate for a certain specific angle. In addition, since Usario is equipped with two rotation
sensors, one on each wheel and has a gear ratio of 1:1, we are able to trace and monitor
its movement. However, this only holds for a flat and uniform floor surface. Therefore,
based on the basic LeJOS functions of Section 6.1 our Navigator API is as follows:

**moves the robot forward until stop is called
public void forward(){
Motor1.forward();
Motor2.forward();
}
**moves the robot backward until stop is called
public void backward(){
Motor1.backward();
Motor2.backward();
}
**stops the robot and updates the X and Y coordinates
public void stop() {
Motor1.stop();
Motor2.stop();
}
**moves the robot for the given distance; a positive value indicates a forward
movement and negative value indicates a backward movement
public void travel(int distance) {
int requiredNumberOfRevolutions = distance

2×π×radiusofwheel
× 16;

while(RotationSensors != requiredNumberOfRevolutions) {
if (distance > 0) go forward();
else if (distance < 0) go backward();
} }

40 CHAPTER 6. NAVIGATION

**rotates the robot for the given angle; a positive angle indicates a clockwise
rotation and a negative angle indicates a counterclockwise rotation
public void rotate(float angle) {
int distanceToTravel = 1

2
× axle length × angle;

if (angle > 0) then {
Motor1.travel(distanceToTravel);
Motor2.travel(-distanceToTravel);
}
else {
Motor1.travel(-distanceToTravel);
Motor2.travel(distanceToTravel);
}
}

**rotates the robot to face the destination and moves it through the required
distance to reach the target point.
public void gotoPoint(float x, float y) {
float angleToRotate = tan−1(y

x
);

int distanceToTravel =
√

x2 + y2;
rotate(angleToRotate);
travel(distanceToTravel);
}

**returns the current X coordinate of the robot
public float getX() {
return this.Xcoordinate;
} **returns the current Y coordinate of the robot
public float getY() {
return this.Ycoordinate;
} **returns the current angle of the robot
public float getAngle() {
return this.angle;
}

For every rotation of 22.5 degrees of the motor shaft, the RCX increments the rotation
count by 1. That is, for every full rotation of the wheel, a count of 16 should be recorded
by the rotation sensor. Turning the wheels in the reverse direction decrements the count
in the same manner as described. The RCX can count up to a speed of 600 rotations per
minute. The instance of this navigator is provided with the wheel diameter and the drive
length of the axle. The drive length is the distance between the two wheels. When a wheel
has completed one complete turn, the robot will have travelled a distance equal to the
circumference of that wheel. Knowing the wheel diameter and hence the circumference,
distance to be travelled can be broken down into number of rotations of the wheel. Sixteen
times this is the count up to which the RCX has to measure before it can stop the motors.

6.3. NAVIGATION AND WALL DETECTION WITH COLLISION AVOIDANCE 41

When the robot makes a full 360 degrees turn to the left, the left wheel rotates backward
and the right wheel rotates forward for a distance equal to the circumference of a circle
whose diameter is equal to the drive length. When the robot has to turn a lesser angle,
the wheels will rotate for a fraction of this circumference.

6.3 Navigation and wall detection with collision

avoidance

Usario basically moves around in the arena by activating the motors on forward mode.
The robot stops when the proximity sensor detects an obstacle object on its path. The
robot then rotates about itself4 for 360 degrees at intervals of 45 degrees and thus obtains
values from the sensor at direction angles of 00, 900 and 2700. By experimentation, the
sensor has been found to read a value of 0 when it is perpendicular to a wall within a
distance range of 12-18 cm. Therefore by knowing the values of reflected light to the left
and right of the robot, we are able to deduce where the side walls (if any) are in relation
to the robot. Our algorithm arbitrarily sets the course of the robot to the free side and
in cases where both sides do not have any wall, the course is arbitrarily set to be one of
the sides. To avoid the robot ending up in a deadlock situation, the previous arbitrary
decision is remembered and every time there is a branching decision to make, the robot
is set to move in the direction opposite to the previous. Three possible locations for the
walls gives eight possibilities. This decision process is summarised in Table 6.2. The
pseudo code is listed in Subsection 6.3.1, while the movie in Figure 6.2 demonstrates the
navigation module and algorithm.

Wall at previous decision Decision
Front Left Right
Front Right Left

Front and Left Right
Front and Right Left

Table 6.2: Deciding for a direction

6.3.1 Pseudo-code

The pseudo-code for the navigation module is as follows:

4Two rotations to the left and the right would have sufficed to determine the presence of side walls,
but since we are looking around for victims, a 3600 scan is a more reasonable alternatice.

42 CHAPTER 6. NAVIGATION

‘do the following 8 times:’ {
‘At each interval record the sensor value’
‘rotate 45 degrees anticlockwise’

}
if ‘wall only in forward direction’

if ‘the PreviousDirection is RIGHT’ {
‘turn robot left’
}

else {
‘turn right’
}

else if ‘wall is ahead and to the left’ {
‘turn robot right’;
}

else if ‘wall is ahead and to the right’ {
‘turn robot left’;
}

else {do nothing but moving forward if wall combinations are
different from those above }

Keep robot moving forward until
sensor reads a value of > 700;
stop robot;

6.3.2 Video demonstrating the navigation module

Figure 6.2 is a video file showing the robot model in action. The video shows Usario
navigating around in the arena, when viewed from the top. The video is in ‘avi’ format
and requires at least a version 9.0 of Windows Movie player to be displayed properly.

Figure 6.2: Video file showing the navigation module (requires at least a Windows Movie
player Version 9)

Chapter 7

Communication

To satisfy the system requirement F5 - Report (Section 3.1) and F6 - Communication
(Section 3.1), a communication mechanism has to be established to allow reporting of
data. Data captured by the robot inputs can be processed locally by the robot’s own
processor before being sent to a remote server for further processing and presentation.
Two categories of data are distinguishable: image/audio and other input data. They will
however have to be sent through different communication channels, as we do not want to
congest the communication channel and would like to have a backup alternative to the
data stored on the robot itself. Therefore, our communication module is split into two
parts; 1. Communcation from the camera unit to the PC class, and 2. Communication
between PC and RCX . These are described in the following sections.

7.1 Camera to PC

The camera to PC module is a permanent communication channel which transfers data to
the server. This communication module uses wireless internet as transmission protocol.
It is a one way data transfer where images and sound from the scene as captured by the
camera, are sent to the camera’s own web server. To transfer sound and images, the Dlink
DCS5300G camera is connected to the faculty’s wireless access point. Access and control
of the DCS5300G are made using the Internet Explorer version 6 browser, telnet and
FTP. However, in order to avoid the fuss of reconfiguring the system each time the robot
is switched on, the camera needs to be assigned a static IP address. Hence the camera
runs TCP/IP on the faculty’s wireless LAN with the assigned IP address 229.241.102.545

. The settings for the control unit are configured as shown in table 7.1.

5This is a fictive IP address

43

44 CHAPTER 7. COMMUNICATION

Item Description Default setting
Hostname The name of DCS5300G DCS5300G

to be used for wireless
LAN communication

IP address IP address 229.241.102.545

Subnet mask Subnet mask 255.255.255.0
IP Gateway Gateway address 229.241.102.15

SSID The name of the Wireless IDIlab
LAN network to be
used

WEP key The character string toysrus
to be used as the key
for encrypting data
transmission over the
wireless LAN

Operating mode Infrastructure mode ad hoc
or ad hoc demo mode

wireless channel channel between 1 and 11 1

Table 7.1: Internet camera network settings

7.2 PC to Usario and Usario to PC

The communcation between the PC and Usario is implemented as a synchronous half-
duplex communication module. The module is a half duplex communication class, as data
can be transmitted over both directions but does not offer simultaneous transfer of data.
Only one side can initiate data transfer at a time and the receiving end has to wait for
this transfer to be completed before it can start sending information. This half duplex
communication transfer is done through the IR-Bluetooth transceiver (Section 5.2.3) by
a combination of Infra Red beams and Bluetooth signals. Once the BlueSmirf module is
paired with the Bluetooth dongle on the server and the GUI is launched, a permanent and
synchronous communication exists between the two of them. Data is sent from PC to the
BlueSmirf unit, which in turn relays it to the RCX via the IR LED. Figure 7.1 illustrates
the communication process between the PC and Usario. The PC generates command
data which is sent to the RCX to be executed, while Usario returns information about its
whereabouts to the PC.

7.2. PC TO USARIO AND USARIO TO PC 45

PC

CommandData

Usario

GeneralData

CommandData

GeneralData

InfraRed/Bluetooth interface

InfraRedBluetooth

Figure 7.1: Data communication between PC and Usario

Figure 7.2 shows a UML 2.0 sequence diagram depicting communication between
the server, represented by the PC, and Usario characterised by the RCX. On the PC side,
the GUI initiates the communication by sending a command to Usario. The commPC
thread encapsulates the 8-bit command data with the necessary headers (3 bits) and
transmits the datapacket to the corresponding thread of communication in the RCX of
Usario, commRCX. The packet only contains the action to be performed by Usario.

On receipt of the datapacket, commRCX removes the header and trailer bits and
transmits the data to the RCX. The data command received by the RCX is then executed
by Usario and the relevant attributes of the RCX are updated. The PC is made aware
of these changes at the receipt of the next datapacket. The coordinates of the robot
are generated by the functions updateX and updateY from the RCX.java class. At the
same time of receipt of the packet from the PC, commRCX sends back a message to
commPC which contains four bytes of information: 1. coordinates information of the
robot (x,y), 2. the angle at which the robot is facing, 3. the command request by the
PC and 4. the command being executed. The communication is synchronous as the PC
starts the transfer process and for every message sent, there is a corresponding reply to the
message. The PC and RCX classes do not explicitly send messages; they rather update
their variables and the two threads commPC and commRCX send messages(represented
by the recursive dotted arrowhead line) with the updated data without even knowing
about updates.

The commPC and commRCX threads do not wait for new data, but keep on
continously exchanging data packets (represented by a recursive solid arrowhead line)
which are limited to 5 bytes. The communication reliability is somewhat compromised by
the inherent unreliability of the IR communication implementation in the LeJos system
environment. However, provided that the voltage level of the batteries is sufficient enough,

46 CHAPTER 7. COMMUNICATION

the packets are delivered reliably and in correct order. Longer packets can be sent as well
and they are automatically divided into multiple smaller packets due to the limitation of
the buffer size for IR communication in the LeJos system environment that optimistically
relies on the RCX ROM routines. Section 10.1 and the technical report [27] elaborate
more on this issue.

7.2. PC TO USARIO AND USARIO TO PC 47

Usario sidePC side

: RCX: commRCX: GUI : commPC

sendCommandGenerate
command

re
cu

rs
io

n(
da

ta
)

updateCommand

sendCommand

re
cu

rs
io

n(
pa

ck
et

)

updateCommand
re

cu
rs

io
n(

da
ta

)

Figure 7.2: Sequence diagram for communication between PC and Usario in UML 2.0
notation

Chapter 8

Object detection, identification and
localization

As Usario moves around the arena, it has to detect victims by a coordination of its
movements and the camera placed on its top. The robot has the ability to move and
rotate about itself while the camera does not; it remains fixed and it only captures images
straight ahead of the robot. This chapter describes the concepts used to detect, identify
and localize the victims.

8.1 Camera image

Recall that movies are a succession of pictures at a speed higher than what the human
eye movement can detect. Also relevant to our discussion is the process of displaying
images; any image capturing device has to, at some point in time, store the sequence of
images somewhere. The pictures will then be displayed in a browser at a frame rate set
by the browser itself and depending on the speed of data transfer. The main idea is to
grab the images captured by the camera inside its own webserver. In this implementation,
when the camera is activated, it starts capturing images at a rate of 30 frames per second
and stores these as pictures in its webserver. Knowing that these pictures are available
at the address ‘http://229.241.102.54/picture.jpg’ in a browser, we somehow needed an
application to access this site and copy the pictures from there. We used Telnet (a terminal
program and protocol) to trigger the digital output of the camera and detect changes on
the digital input of the camera when we were communicating with the RCX through the
special cable attached to the camera [12].

Our image capturing device is the Dlink DCS5300G network camera (section 5.2.2).
It is running a built-in webserver, which makes the video viewable in a web-browser with a
proprietary ActiveX plugin. However, according to the manufacturer, there are two ways
to obtain the frames. The first way is to grab the frames from the web-browser screen and
the second option is to retrieve the frames stored in jpeg format directly from the camera

49

50 CHAPTER 8. OBJECT DETECTION, IDENTIFICATION AND LOCALIZATION

using ftp protocol - this is what we were doing earlier in [12]. However, the problem with
this approach is that the update rate of these captured still images is 1 second, which is
not sufficient for a mobile robot application. The only faster method according to the
manufacturer is to grab the images directly from the browser’s window. In agreement
with PhD candidate Pavel Petrovic, we adpoted this recommendation and developed a
dynamic loadable library (DLL) in C++ that starts a separate network browser window
showing the camera view image, and grabs the frames from its window graphics area using
the PrintWindow() Windows API function while running in the background. The main
Java GUI application is communicating with the DLL using the provided API based on
JNI. The DLL uses the OpenCV library to visualize the grabbed images in a separate
window that is placed on top of the Java’s GUI. The grabbed images are further processed
using the Intel’s OpenCV image processing library [35].

8.2 Object detection

8.2.1 Objective

The objective of object detection is to satisfy the functional requirements F2.1 - Detect
objects (section 3.1) and F2.2 - Detect humans (section 3.1) , which gives the owner of
the accident more detailed information about the existence of victims.

8.2.2 The concept

The basic idea to detect objects is to identify the coloured pixels from each individual
picture generated. The OpenCV library displays the frames that are grabbed from the
browser window in a separate GUI window. Since the victims have been preassigned red
or green colours, groups of pixels that contain a specific number of coloured pixels can
thus be declared as objects whenever present. More formally, we test each pixel’s color
values in the RGB color model with red and green color predicates defined as follows:

red(r, g, b), iff((r > RED C1 ∗ b) ∩ (r > RED C2 ∗ g)) ∪ ((r > RED C3) ∩ (r >
RED C4 ∗ b) ∩ (r > RED C5 ∗ g))

where r, g, b are the red, green, and blue color values of the pixel, and
RED C1 . . . RED C5 are the detection parameters tuned to fit with the actual light
conditions and required sensitivity. In our application, we use the following configuration:
(RED C1 = 2.0, RED C2 = 2.0, RED C3 = 140, RED C4 = 1.4, RED C5 = 1.4).
In other words, the pixel is considered red, when its red color component is much higher
than the green and blue component, or alternately, when its red component is slightly
higher than the green and blue components, and at the same time, the red component is
above certain threshold. When compared to other systems (for example AIBO’s built-in
color detection, which defines component value intervals for 32 different intensity values),

8.2. OBJECT DETECTION 51

Figure 8.1: Survivor being detected

our model is farily simple. As a consequence, it is simpler to configure and while we are
only detecting the basic colors: red and green, we find it strong enough for our purposes.

Green color pixels are detected analogically using the following predicate:

green(r, g, b), iff((g > GREEN C1 ∗ b) ∩ (g > GREEN C2 ∗ r)) ∪ ((g >
GREEN C3) ∩ (g > GREEN C4 ∗ b) ∩ (g > GREEN C5 ∗ r)).

Once the pixels of the image frame are assigned green and red labels, we consider
the pixel rasters - neighbourhoods of the size N × N (i.e. N = 10). If at least δ (i.e.
δ = 33)pixels in the neighbourhood are green or red, we label the whole group with
the respective color. Consequently, we consider the connected components consisting
of rasters labeled with the same color as the candidates for the detected objects. This
method allows for tolerance of local errors, holes, reflections, and other noise contained in
the object and estimates the borders of the detected objects robustly. Detected victims
are shown on the camera image with a surrounding rectangle as shown in figure 8.1.

52 CHAPTER 8. OBJECT DETECTION, IDENTIFICATION AND LOCALIZATION

8.2.3 Pseudo-code for camera

The following java code section represents the implementation of the image grabbing from
the browser window and the setting up of parameters for the detection of victims.

Step 1 : create object of Petrovic’s Detect function

Step 2 : setup the path to the network browser (such as ”c:
program files
Internet Explorer
iexplore.exe)̈ and the local file that contains reference to the camera image view
(such as ”m:
test.html”) as well as the expected title of the browser’s window from which the
frames are grabbed (such as ”X - Microsoft Internet Explorer”).

Step 3 : set up 4 parameters for object detection in Detect().

parameter 1 - the maximum allowable objects to be detected in one picture is
set to 400.

parameter 2 - the length of the raster is set to 10 and since it is a square, the
raster is of size 100 pixels.

parameter 3 - the required percentage of color pixels in the raster is set to 33%.

parameter 4 - this parameter sets the minimum number of rasters required to
be detected as an object.

Step 4 : set the parameters for the green and red color detection as described in the previous
section.

8.2.4 Pseudo-code for Usario

Since the camera is fixed in front of the robot, Usario has to rotate about itself to have a
complete view of its surroundings and detect victims. The rotation is divided into eight
intervals of 45 degrees, and the objects found in the camera view will be processed by
the server. This rotation is executed whenever 1) Usario stops and 2) after Usario has
travelled a distance of 50 cm in a straight line. The pseudocode for the object detection
module in Usario is:

if (robot is stopped OR distance travelled = 50)

rotate 360deg at 45 deg interval.

8.3. OBJECT IDENTIFICATION 53

8.3 Object identification

Two colours of the RGB scale, red and green, are used to identify the state of the victim.
Red represents a dead victim and green, an alive victim in accordance with requirement
F3.1 - Determine the state of the victims(section 3.1) .

8.3.1 Objective

The objective of object identification is to satisfy functional requirement F3.1 which
provides more detailed information about the state of the victims to the owner of the
accident.

8.3.2 The concept

Red and Green objects, being native colours from the RGB colour scheme, are detected
using the proprietary algorithm for simple colour segmentation of the image in detect.dll.
In other words, when objects are detected, the RGB values of objects are checked and
compared and the corresponding colours will indicate the status of the victims.

8.3.3 Pseudo-code

The following code fragment from Camera.java describes how the parameters (for the
colour detection scheme of Detect.dll) are set, based on the concept in section 8.2.

{....

line 20. - //relative1B, relative1G, otherwise required R, relative2B,

// relative2G

line 24. - d.redparam((float)2.0, (float)2.0, (float)140.0, (float)1.4,

//(float)1.4);

. - //setup green colour detection:

line 26. - //relative1B, relative1R, otherwise required G, relative2B,

//relative2R

line 28. - d.greenparam((float)2.0, (float)2.0, (float)100.0, (float)1.0,

// (float)1.5);

. -}

54 CHAPTER 8. OBJECT DETECTION, IDENTIFICATION AND LOCALIZATION

8.4 Object localization

8.4.1 Objective

The objective of object localization is to satisfy functional requirement F4.28 (Section
3.1). It gives the owner of the accident more detailed information about the position of
the victims to be rescued.

8.4.2 The concept

Since there is no practical way to determine the angle at which the camera is facing, we
decided to keep the camera fixed and instead rotate the robot to determine the angle of
an object in relation to the the robot itself. Only objects that lie in the y-axis (i.e. at
line x=0) of the camera will be considered relevant. The position of the robot and the
angle at which the robot is facing being known at any time, we can deduce the location of
the detected object. However, the distance from the camera to the object is not known.
To counteract this, we use the idea that when the same object is viewed from two known
positions, one can deduce the object’s position. Figure 8.2 illustrates this. As Usario
detects a victim, a coloured line corresponding to the colour of the victim is drawn at the
angle Usario is pointing to. Here the angle is 3150 and the the victim is alive, hence a
green line is drawn at an angle of 3150. At every scan of the robot, the angle at which it
is pointing to, is sent to the server. Meanwhile, the server is processing the image from
the camera’s webserver to detect objects. On detection (and identification) of the object,
the current angle is recorded as this information is always included in the packets sent
by the RCX. On receipt of the information, the position of the victim is then deduced to
be at the intersection of two lines of the same colour and displayed in the GUI (section
9.1). Figure 8.3 shows the position of a cadavre being localized at the intersection of two
red lines. The intersection of the two green lines represents the position of a survivor,
detected at a previous stage.

8.4. OBJECT LOCALIZATION 55

Figure 8.2: Illustration of a survivor being localized

56 CHAPTER 8. OBJECT DETECTION, IDENTIFICATION AND LOCALIZATION

Figure 8.3: Screenshot of a victim being localized

Chapter 9

Presentation of information

In order to display the captured inputs and present information to users of this
system as per requirements F10(section 3.1), a Graphical User Interface(GUI) has been
implemented. The GUI displays the images of the camera and at the same time provides
control facilities to the user. A live feed of the images captured by the camera are preferred
to be displayed in order to describe movements because human decision-makers interprete
images quicker and in a more efficient way than when presented with a set of statistical
data. The amount of information could also be too large or complex to be handled and
analyzed without some kind of ordered and systematic visualization of data. This chapter
describes the GUI together with its various components including a video demonstrating
it.

9.1 The Graphical User Interface

The GUI module has Java 2.0 Standard Edition and Java Standard Widget Toolkit (SWT)
as underlying technology. It has been developed using Eclipse and SWT Designer. Java
SWT provides a set of classes derived from the Component class to construct GUI’s.
This graphical user interface allows a user to control Usario and at the same time display
specific information like a live feed of the floor space from the camera and the movement
of the robot represented in a map of the area. As the user presses on graphic buttons of a
joystick to move the robot around, the listeners6 of the underlying program detect that a
specific action has occurred and trigger an appropriate response to the event accordingly.
The GUI components generate events that indicate that specific actions have occurred
and handles them accordingly. Also, the GUI is using an instance of the commPC.java
and Detect.java classes to send and receive data, and also to display live images of the
scene (see Figure 9.1).

6A listener in programming context means special functions that always check the status of another
entity.

57

58 CHAPTER 9. PRESENTATION OF INFORMATION

Communication Camera
feed

Relays data & commands

GUI

Add Listeners Event effects

Handle eventsListeners

EventListener
ButtonListener
TextListener

live image

Program-
specific

GUI.java

CommPC.java Detect.java

Figure 9.1: The GUI program model

The graphical user interface is composed of four main layers:

1. Camera display

2. Joystick

3. Location map

4. Miscellaneous

9.1.1 Camera Display.

This section of the GUI contains the image captured from the scene displayed in a native
Windows window. The images displayed are those images grabbed from the camera’s
webserver and further processed to identify the victims. The ‘camera display’ section

9.1. THE GRAPHICAL USER INTERFACE 59

occupies the top left hand corner of the GUI. An example of the couloured victims being
displayed surrounded by a rectangular frame in the ‘camera display’ section is shown in
Figure 9.2.

9.1.2 Remote Control.

The remote Control is a component which allows the user to remotely control Usario’s
whereabouts. It is placed in the top right hand corner of the GUI, next to the ‘Camera
display’ as shown in Figure9.2. The user controls the operation mode of Usario by setting
on and off the autonomous or remote control mode . However, on starting the system
the robot is under the control of the user who manoeuvres it around the arena. The
joystick command, characterized by the arrow and the stop buttons) offers six available
options to the user: 1. forward, 2. backward, 3. turn left, 4. turn right, 5. stop and 6.
search. The first five commands are self-explanatory and the ”search” button will trigger
the autonomous mode of operation while the stop button disactivates the autonomous
mode, giving control back to the user.

9.1.3 Location map.

The ‘location map’ is a window which displays the path taken and the position of the
identified victims by Usario. Figure 9.2 illustrates the window. The blue line represents
the robot path while a red or green dot represents the postion of a victim.

• Robot path plot. The path of the robot is displayed as a series of lines joined
together. The path is redrawn whenever Usario is stopped.

• Victim location. Knowing the current angle faced by Usario and the status of the
detected object(s), a corresponding line is drawn on the canvas. The intersection of
the two corresponding lines for the same victim indicates the exact location of the
victim.

9.1.4 Miscellaneous

This section contains information about the system itself e.g time elapsed since start of
system, current time and battery level indicator for the RCX. It is situated in the bottom
right end of the GUI as shown in Figure 9.2.

60 CHAPTER 9. PRESENTATION OF INFORMATION

Figure 9.2: Screenshot of the GUI

9.2. A VIDEO DEMONSTRATION OF THE GUI 61

9.2 A video demonstration of the GUI

Figure 9.3 is a video file showing the robot model in action. The video shows the captured
output from the screen as seen by a user logged into the system. . The video7 is in ‘avi’
format and requires at least a version 9.0 Windows Movie player to be displayed properly.

Figure 9.3: Video file showing robotic system(requires at least a version 9.0 Windows
Movie player)

7The video shows an outdated version of the ‘Miscellaneous’ section. It has been replaced by a newer
version as in Figure 9.2

Chapter 10

Discussion and Conclusion

10.1 Discussion

This Section describes the problems encountered in the development of Usario, the USAR
robot prototype, as well as investigating potential solutions to these problems.

(a) General. During the modular development of the robot prototype, things turned
out to be working relatively well. However, as we started integrating the different
modules together, the robot was getting very heavy and big. As an example, the
navigation module for the robot was working satisfactorily but when the camera
was added on for detection and localisation of the victims, the robot lost its
accuracy. Recalibrating the torque for the motors and sensors did not help much
as the Lego chassis for the robot would not tolerate heavy payloads; the robot was
carrying a total of 16 AA and one 9 V batteries in addtion to the camera and the
InfraRed/Bluetooth interface. Altogether, it summed up to a total weight of 2.8
kg. On epossible solution could be to use a smaller battery but which could provide
power to the RCX, the camera and the InfraRed-Bluetooth interface simultaneously.

(b) Navigation. Without the DC battery units and the camera, the navigation
alogrithm works well as Usario navigates throughout the search arena and did
demonstrate that it would be able to exit the maze after exploring all rooms.
However, affter being loaded with the camera and the InfraRed-Bluetooth interface,
this was not the case. The robot could not complete a 360 degrees rotation when
required . It was found that, for a rotation of 3600 at 450 intervals, it would revolve
either only about three quarter of a turn or 1.25 revolutions, i.e. the robot was
not turning at the intended increments of 450, but sometimes less than 450 and
sometimes more. The first or second 450 rotations were observed to be correct, but
then for the rest of the rotations, the robot would have an inaccuracy of 10 to 150.
This would lead to an accumulated inaccuracy of 750 ± 15 for a 3600 rotation and
cause the robot to turn around the arena without moving in a reasonable direction

63

64 CHAPTER 10. DISCUSSION AND CONCLUSION

for further exploration. According to our own experience and observation, we give
the following hypotheses as potential causes of the problem:

Hypothesis 1: Before any sidewise turn, the robot’s wheel would be rotating
perpendicularly to its axle. However, as it turns to one side, there is a greater
friction force generated by the ground against the wheels. The robot had also a
smaller surface contact area with the floor when it had lesser weight. As more
weight was added to the robot, the tyres had a greater surface area contact with the
ground and thereby provided greater friction. As described in section 5.2.1-wheels,
the tyres being non-pneumatic, there are no means to inflate the tyres to reduce the
area of surface contact.

Hypothesis 2: The two DC 9V motors that are being used do not provide necessary
Torque to manoeuvre heavy payloads,in addition to what they are designed for.
They therefore consume more power in their attempt to rotate the wheels and as
a consequence, the batteries get drained quicker than usual. One of the biggest
problems in achieving accurate parameters is that as the battery loses power, the
output speed of the motors changes. We have noticed several times that when the
RCX is turned on, it may have a charge of 7.6 V, and by the time the program
terminates the battery power is down to 7.3 V. Then, after shutting down for a few
minutes and turning it on, the voltage once again reads 7.6 V. This significant drop
in voltage really affetcs the rotations. As the battery charge lessens, the settings
become no longer valid. One solution to this problem is to use freshly charged
batteries very frequently,such as for every run.

Hypothesis 3: Differences in motor speed between the left motor and the right
motor also affect accuracy greatly. One of the noticeable problems encountered in
this experiment is the inability of the robot to navigate in a straight line. Just
when we thought we had the motors balanced it would start drifting to the right.
Then, later in the same run, it would mysteriously straighten up for some stretches.
This effect can be attributed to a mix of frictional differences in the structure of the
robot, the uneven distribution weight across the robot and the differences in motor
power.

Hypothesis 4: The rotation function in the navigation function of the RCX is limited
to the rotation capabilities of the motors. Although the rotation sensors enables
recording of the number of rotations, there is no known way to control fractions
of rotations; i.e. the motors can be set to rotate for some integer units but not in
fractions of rotations. In a simple test experiment where we observed the number
of rotations of the motors for a 360 degrees rotation of Usario, 26 rotations were
recorded. We suspect that when Usario is rotating for a 450 interval, the motors will
turn to either 3 or 4 rotations, not to 3.25 rotation, which leads to an accumulated
error of -13.8 or + 83.1 degrees. We then adjusted our rotation/scanning algorithm

10.1. DISCUSSION 65

for Usario accordingly. The robot was forced to turn 3 rotations for a 450 interval
when it is in the rotation segments 1, 2, 3, 5, 6 and 7. In the 4th and 8th intervals,
the robot is made to turn 4 rotations, which ensures that the total rotation angle is
3600 and the number of rotations 26.

(c) Communication. It has been observed during the exchange of data between
the PC and the RCX that data sometimes get distorted or lost. The embedded com-
munication protocol in the IR-Bluetooth interface (i.e. class SimpleCommRCX.java
and SimpleCommPC.java) do try, to a certain extent, to correct these imperfections.
However, not all data are properly transferred, which leads to some occasional
deadlocks and that paralyses the whole system. The entire system gets affected
because the communication protocol implemented in the RCX is entirely reliant on
a smooth interaction between the sender and receiver. Once the communication
link is broken or deadlocked, the next operation does not get executed, hence
paralysing the entire system. According to the technical report “Simple Error-
Correcting Communication Protocol for RCX” [27] this is an issue that seems to be
unavoidable:

“.. Unfortunatelly, the LeJos/ROM sending routines do not work
perfectly, and sometimes emit erroneous IR signals. We believe that this
is due to the fact that LeJos firmware does some interrupt-handling for
multitasking, or another low-level system activity that interferes with the
sending routines, but the outcome is that the messages are sometimes
sent with bit errors. Since the IR signal is received with the IR to BT
converter, the BT module simply discards those bytes where the parity bit
check fails. As a consequence, the message received by the BT receiver on
the side of the PC does contain occassional erasures at unknown locations
as well as occassional errors - in cases where the erroneous byte still passes
the parity-bit checking. Finally, in all our measurements, we noticed that
the scrumbled or missing bytes occur seldom - never more often than every
fourth byte..” Extracted from page 3 in [27].

(d) Object detection. The inaccuracy in navigation leads to some unexplored
areas by the camera. Recall that that the robot detects only those objects/victims
that are in the middle of the camera view, and since the robot is not accurate
in pointing at angles, as it should have been, some objects/victims might be left
undetected. The angle of rotation while scanning has been chosen to be 45 degrees
to keep the number of turns as low as possible. No tests or experiments have been
performed to carefully determine the appropriate angle that would cover all regions.
Therefore, this is another possible reason that victimsare sometimes not detected.
One potential solution to this problem could be to rotate the camera instead of
rotating Usario. Appropriate functions exist within the configuration page (of the
camera) to remotely control the camera in such a way.

66 CHAPTER 10. DISCUSSION AND CONCLUSION

(e) Object localization. Since the robot is not performing as it should, the data
collected becomes unreliable. After scanning around at an angle of 3600 to look
for victims, the robot has actually rotated only 2700 which invalidates the position
coordinates of both robot and victim(s). All position coordinates become invalid as
the robot is now in conflict with the real situation; it thinks that it is facing the
same angle after having rotated 3600(or 26 rotaions of the motor(s)) while it has, in
fact, rotated only an angle of 2700. Another problem is that Usario does not take
the position of the room separations of the search area into consideration at all.
This has lead to invalid data and a possible solution could be to draw the position
of the walls and room separations on the map.

(f) Presentation of information. The problem of incremental inaccuracy
while turning leads to some unreliable data coordinates. As the robot’s coordinates
are sent to the server, the robot is actually at a different place than where the RCX
has computed. This lead to an erroneous data map coordinates being plotted on
the GUI. These are all errors that must be corrected for the robot to be used.

10.2 Conclusion

In this experiment we have only dealt with a one-floor crash site but in a real life situation,
such crashed sites are far more complex and unpredictable. However, this work represents
a step forward in the development of a robotic system since we have managed to build
and implement a customized and tailor-made system from relatively cheap equipment.
Components like the RCX were not really suited for moving robots but we have found
solutions to adapt it to our needs by implementing a new InfraRed-Bluetooth interface.
Furthermore, the standard Lego camera was not good enough to capture quality images for
further image processing so we improvised and used another camera, originally designed
for home and office monitoring. In addition, all the Functional requirements listed in 3.1
have been satisfied, except for F7 - Access, due to time constraints. We hope that this
experiment will contribute to the research on robotic search and rescue operations. It
could, for instance, be used as a preliminary work for those researching on safety-critical
USARs, as we have discussed and tested some of the core issues that need to be with for
a safety critical control and monitoring USAR robotic system. It could also be used as
a basis for secondary institutions who are comtemplating entering the RoboCup Rescue
competition(s).

10.3 Future work

While performing this experiment, some aspects of the robot have been identified as they
have the potential to improve the potential of the robot. Improving these aspects could

10.3. FUTURE WORK 67

make the robot more accurate and smoothly working. In future assignments, more focus
and efforts should be put in the following:

(a) Instead of rotating the robot to detect objects, one should consider turning the
camera. This is more practical as turning the camera leads to less energy
consumption. It also gives a continuous image as it turns, something which our
robot does not.

(b) The Legos core chassis proved to be too weak to support bigger weights. One could
either switch to another chassis, other than Lego, or consider lighter equipment
parts than the RCX and the camera. In addtition, an alternative to the 17 DC
batteries which weighs less would also help.

(c) The ability to hear, see, speak, sense and move is key to the human ability to interact
with its environment. However, to perform such human-like tasks, robotics systems
must be able to emulate these functions using software. Speech is the only aspect
of these that has not been investigated t in this work. A speech-enabled application
can be developed alongside the robotics system and give a better interaction with
the victims rather than just detecting and/or localising them.

(d) The GUI of the search and rescue robotics system should also be ported to a palmtop.
This would enable the owners of the site to be mobile and not be restricted to the
constraints of laptops and desktops.

(e) The robot should be able to climb over obstacles and have better wheels for better grip
of the ground floor (like the wheels of a tanker or a ‘caterpillar’). An alternative
could be to acquire the crawler robot of Inuktun services [15] and modify the
software system accordingly.

(f) As a safety precaution, an improved mechanism for detection of humans should be
considered. In addition to object detection by camera, one could consider detecting
humans by Carbon Dioxide, temperature or even by the presence of blood. There
are a wide range of sensors on the market that are made to detect specific gases,
temperature and even recognition of liquids. An improved detection mechanism
could be by detecting the presence of Carbon Dioxide and/or the use of heat sensors.

Appendix A

Meeting with the Fire department in
Trondheim

This chapter presents the conversation between J.P.Franky Friquin (F) and Fire Officer
Sibjœrn Pareli Lyngdal (L) from the central Fire department in Trondheim, Norway about
search and rescue operations. The conversation took place on the 8th of March, 2006 at
1300 hrs. The objective of this meeting is to have a clearer and more accurate picture of
the rescue operations during a rescue operation after a building collapse.

F Good afternoon, Mr Lyngdal.

L Good afternoon.

F From a fireman’s point of view, can you define the objectives of a search
and rescue operation?

L 1. Save human lives 2. Prevent and preserve damages to property and
infrastructure. 3. Save animal lives.

F Can you tell me a bit about the process of rescue operation?

L First of all, in the case of an accident or catastrophe, there are a number of
groups of people involved; the police, the Fire Search and Rescue department,
the paramedics, the Civil Defence and the Dog Rescue unit. In cases of really
big accidents , the Red Cross or the Norsk Folkehjel’ are also present. The
police has the general command of the operations and is so-called the “Owner
of the scene”. They use the leaders of the different groups as advisers as they
co-ordinate the effort. They have the duty and authority to secure the area

69

70 APPENDIX A. MEETING WITH THE FIRE DEPARTMENT IN TRONDHEIM

and call for extra personnel, equipment or expertise.

F What are the duties of the other people at the scene?

L If the firemen arrive first at the scene, they have the legal authority and
command until the police arrives. The paramedics do not have any authority
and are always under the command of the owner.

F What are the standard procedures?

L The standard procedures, from the owner’s point of view, is first to secure
the area around the facility, then the facility itself. The owner has to ensure
that the accident does not become a danger to the surroundings. Like for
example, he has to ensure that there is no danger of additional fire or explosions
and that there is no risk of further casualties and injuries, albeit deaths.
From a fireman’s point of view, the procedure is such that once the go ahead
clearance is granted, the main priority is to evacuate the civilians from the
scene. However, much emphasis is laid out on safety and security. Securing
the site is our absolute priority as the regulations, in Norway, stipulate that
personnel should not be sacrificed or put at risk to rescue endangered victims.

F The owner of the scene does take advice from the leader of the different
groups involved, what kind of information does he need? What kind of
information is he looking for when he is consulting the other leaders?

L

• Where is the exact location of the fire/accident?

• Are there any victims inside? How many of them?

• What is their location?

• What is their status? dead, alive, injured,etc..

• How is the plan of the building/scene?

• What is the extent of the fire?

71

• What is the stage of the fire? Is it at the beginning, the middle or the
end phase?

• Where has the fire spread?

• Are there any other possible dangers? Like gas explosions etc..

• Is there any danger to the structure of the building?

• What is the quality of the air inside? Is there any visibility?

• What is the evaluation of the benefits of output against input? He has to
weigh exposing the rescue personnel to danger versus the final outcome
of the effort.

F There seems to be a strong need to gather intelligence. Do you think that
Information technology can be of a help?

L Yes.

F What are the current problems in gathering intelligence?

L Sometimes, it is very difficult to obtain information like the number of
people, their location and their status. In addition, it could be hard to have
an extended knowledge of the situation inside the scene itself.

F Do you think that robotics can be of any help in rescue operations?

L Yes. They can attend to places inaccessible or difficult for humans or dogs
to reach.

F Any example of such situations?

L In accidents during the transportation of bio-chemical stuffs, in cases where
anthrax or other poisonous gases are involved.

F Mr Lyngdal, thank you for answering my questions.

72 APPENDIX A. MEETING WITH THE FIRE DEPARTMENT IN TRONDHEIM

L Vær s̊a god.

-

Appendix B

Source code for the robotic system

The following are the Java source code file for both Usario and PC. They are provided
for a better understanding of the system implementation.

Listing B.1: Multi-PageJava code for Usario� �
2 import j o sx . p lat form . rcx . ∗ ;
import j o sx . r ob o t i c s . ∗ ;

4 /∗ ∗ This c l a s s c on t r o l s the RCX which performs func t i on s f o r
nav i ga t i on and sending coord ina t e s to the s e r v e r . ∗/

6 class RCX12 extends Thread
{

8 private int commandReceived ;
private int ac t i on ;

10 private int i =0;
private f loat x , y ; // curren t coord ina t e s

12 private int ang le ; // curren t ang l e (0−7) in 45−degree mu l t i p l i e s
private int movement started ; // va lue on the r o t a t i on sensor when

t h i s movement s t a r t e d
14 private int movement started1 ; // va lue on the r o t a t i on sensor when

t h i s movement s t a r t e d
private int movement started3 ; //same fo r sensor3

16 private int movement type ; // e i t h e r +1 i f we are moving forward or
−1 otherwise , 0 i f we are turn ing

private byte [] packetIn ;
18 private byte [] packetOut ;

private int l en ; // w i l l conta in the l en g t h o f r e c e i v ed packe t
20 private int [] scanArray ;

private SimpleCommRCX commRCX;
22 private boolean wallAtFRONT ; // i n d i c a t e s i f t h e r e i s wa l l / o b s t a c l e

73

74 APPENDIX B. SOURCE CODE FOR THE ROBOTIC SYSTEM

in t h i s d i r e c t i o n
private boolean wallAtRIGHT ; // i n d i c a t e s i f t h e r e i s wa l l / o b s t a c l e

in t h i s d i r e c t i o n
24 private boolean wallAtLEFT ; // i n d i c a t e s i f t h e r e i s wa l l / o b s t a c l e

in t h i s d i r e c t i o n
private int d i r e c t i o n ; /∗ i n d i c a t e s the ca rd ina l d i r e c t i o n the

robo t i s t r a v e l l i n g .
26 NOTE: t h i s d i r e c t i o n i s wi th r e s p e c t to the d i r e c t i o n

the
∗ robo t was f a c i n g at the prev ious move . ∗/

28 f loat l a s tScan = 0 ;
private int pr ev i ou sD i r e c t i on ;

30 private f ina l int FRONT = 0 ;
private f ina l int LEFT = 2 ;

32 // p r i v a t e f i n a l i n t SOUTH = 6;
private f ina l int RIGHT = 6 ;

34 private f ina l int AUTONOMOUS = 0 ;
private f ina l int STOP = 1 ;

36 private f ina l int MOVE = 2 ;
private f ina l int FORWARD = 3 ;

38 private f ina l int BACKWARD = 4 ;
private f ina l int ROTATE RIGHT = 5 ;

40 private f ina l int ROTATE LEFT = 6 ;
private f ina l int DECIDE = 7 ;

42 private f ina l int SCAN = 8 ;
private f ina l int RUN = 9 ;

44 private f ina l int ROTATE = 10 ;
private f ina l int BACKTOBASE = 11 ;

46 private f ina l int NONE = 999 ;

48 private f ina l f loat SQRT2 = 1.41421356237 f ;
private stat ic f ina l int TURN45DEGREE=3;

50

// p r i v a t e s t a t i c i n t b a t t e r yVo l t a g e ;
52 // ba t t e r yVo l t a g e = Bat tery . g e tVo l t a g eM i l l iVo l t () ;

54 public RCX12() {
x = 0 ; y = 0 ; ang le = 0 ; movement type = 0 ;

56

commandReceived = NONE;
58

pr ev i ou sD i r e c t i on = LEFT;
60 commRCX = new SimpleCommRCX() ;

packetIn = new byte [1] ; // incoming packe t
62 packetOut = new byte [5] ; // outgo ing packe t

d i r e c t i o n = LEFT;

75

64 scanArray = new int [1 2] ;
}

66

public stat ic void main (St r ing args []) throws Exception {// t h i s
main a l l ow s robo t to s t a r t in autonomous mode ! ! ! ! !

68 RCX12 f f = new RCX12() ;
f f . s ta r tup () ;

70 }

72 private void s ta r tup () {
int cnt = 0 ;

74 setup () ;
this . s t a r t () ;

76

ac t i on = RUN;
78 while (true) {

i f (commandReceived == AUTONOMOUS) {
80 //Sound . buzz () ;

try {
82 scan () ;

dec ide () ;
84 } catch (Inter ruptedExcept ion e) {Sound . beepSequence () ;}

f ina l ly {
86 try {Thread . s l e e p (1000) ;} catch (Inter ruptedExcept ion e)

{}
i f (commandReceived == AUTONOMOUS) {

88 move () ;
Sound . beepSequence () ;

90 commandReceived = NONE;
}

92 }
}

94 else i f (commandReceived == STOP) { //comman 1; opera tor
t a k e s c on t r o l o f robot , and robo t s t op s to wai t f o r next
command
ac t i on = STOP;

96 Stop () ;
commandReceived = NONE;

98 }
/∗ e l s e i f (commandReceived == MOVE) { //

100 }∗/
else i f (commandReceived == FORWARD) {//command 3 ; t r a v e l

moves robo t forward f o r 1 sec .
102 ac t i on = FORWARD;

forward () ;
104 commandReceived = NONE;

76 APPENDIX B. SOURCE CODE FOR THE ROBOTIC SYSTEM

//myTravel () ;
106 }

else i f (commandReceived == BACKWARD) {
108 ac t i on = BACKWARD;

backward () ; //command 4 , moves robo t backwards u n t i l s top
() i s c a l l e d

110 commandReceived = NONE;
}

112 else i f (commandReceived == ROTATE LEFT) {
ac t i on = ROTATE LEFT;

114 turn45 () ; //command 5 ; r o t a t e s robo t 30 degrees to the
l e f t

commandReceived = NONE;
116 }

else i f (commandReceived == ROTATE RIGHT) {
118 ac t i on = ROTATE RIGHT;

tu rn45 t i () ; //command = 6; r o t a t e s robo t 30 degrees to
the r i g h t

120 commandReceived = NONE;
}

122 else i f (commandReceived == SCAN) {
ac t i on = SCAN;

124 try{ scan () ;} catch (Inter ruptedExcept ion i e) {} // robo t scans
around f o r v i c t ims .

commandReceived = NONE;
126 }

else i f (commandReceived == BACKTOBASE) {
128 ac t i on = BACKTOBASE;

commandReceived = NONE;
130 }

else { i f (cnt % 10 == 0) update coord inate s () ; cnt++;
adjust movement () ; }

132 } // end wh i l e (True)
} // end main () ;

134

136 private void scan () throws Inte r ruptedExcept ion {
Thread . s l e e p (1000) ;

138 wallAtFRONT = fa l se ;
wallAtLEFT = fa l se ;

140 wallAtRIGHT = fa l se ;
a c t i on = SCAN;

142

// scanning method
144 for (i =0; i <8; i++){

i f (commandReceived == AUTONOMOUS) {

77

146 scanArray [i] = Sensor . S2 . readValue () ;
tu rn45 t i () ;

148 i f (i == FRONT) {
i f (checkWall (scanArray [i])) {

150 wallAtFRONT = true ;
}

152 }
else i f (i == LEFT) {

154 i f (checkWall (scanArray [i])) {
wallAtLEFT = true ;

156 }
}

158 else i f (i == RIGHT) {
i f (checkWall (scanArray [i])) {

160 wallAtRIGHT = true ;
}

162 }
else {}

164 LCD. setNumber (LCDConstants .LCD SIGNED, (scanArray [i]) ,
LCDConstants .LCD DECIMAL 0) ;

}
166 Thread . s l e e p (1000) ;

} // end f o r
168 // re turn scanArray ;

} // end method scan ()
170

172 public boolean checkWall (int sensorValue) {
boolean wal l = fa l se ;

174 i f (sensorValue < 62) {
wal l = true ;

176 }
return wal l ;

178 }

180 // dec ide where to move
public void dec ide () {

182 ac t i on = DECIDE;

184 i f ((! wallAtFRONT) && (! wallAtRIGHT) && (! wallAtLEFT)) {
//move () ;

186 }
else i f (! wallAtFRONT && ! wallAtRIGHT && wallAtLEFT) {

188

}
190 else i f (! wallAtFRONT && wallAtRIGHT && ! wallAtLEFT) {

78 APPENDIX B. SOURCE CODE FOR THE ROBOTIC SYSTEM

192 }
else i f (! wallAtFRONT && wallAtRIGHT && wallAtLEFT) {

194

}
196 else i f (wallAtFRONT && ! wallAtRIGHT && ! wallAtLEFT) {

i f (g e tPrev i ou sD i r e c t i on () == LEFT) {
198 s e tPr ev i ou sD i r e c t i on (RIGHT) ;

d i r e c t i o n = RIGHT;
200 turn90c lockwi s e () ;

}
202 else {

s e tPr ev i ou sD i r e c t i on (LEFT) ;
204 d i r e c t i o n = LEFT;

tu rn90ant i c l o ck () ;
206 }

}
208 else i f (wallAtFRONT && ! wallAtRIGHT && wallAtLEFT) {

d i r e c t i o n = RIGHT;
210 turn90c lockwi s e () ;

}
212 else i f (wallAtFRONT && wallAtRIGHT && ! wallAtLEFT) {

d i r e c t i o n = LEFT;
214 tu rn90ant i c l o ck () ;

}
216 else i f (wallAtFRONT && wallAtRIGHT && wallAtLEFT) {

218 }
}

220

public int ge tPrev i ou sD i r e c t i on () {
222 return pr ev i ou sD i r e c t i on ;

}
224 public void s e tPr ev i ou sD i r e c t i on (int d i r) {

pr ev i ou sD i r e c t i on = d i r ;
226 }

228

private void setup ()
230 {

Sensor . S1 . setTypeAndMode (4 , 0xE0) ;
232 Sensor . S3 . setTypeAndMode (4 , 0xE0) ;

Sensor . S1 . a c t i v a t e () ;
234 Sensor . S3 . a c t i v a t e () ;

Sensor . S1 . se tPrev iousValue (0 x4000) ;
236 Sensor . S3 . se tPrev iousValue (0 x4000) ;

79

Sensor . S2 . setTypeAndMode (SensorConstants .SENSOR TYPE LIGHT,
SensorConstants .SENSOR MODE PCT) ;

238 Sensor . S2 . a c t i v a t e () ;
Button .PRGM. addButtonListener (new myListener ()) ;

240 fu l lPower () ;
}

242

private void fu l lPower ()
244 {

Motor .A. setPower (7) ;
246 Motor .C. setPower (7) ;

}
248

private void forward ()
250 {

fu l lPower () ;
252 movement started = Sensor . S1 . readValue () ;

movement started1 = Sensor . S1 . readValue () ;
254 movement started3 = Sensor . S3 . readValue () ;

movement type = 1 ;
256 Motor .A. forward () ;

Motor .C. forward () ;
258 }

260 private void backward ()
{

262 fu l lPower () ;
movement started = Sensor . S1 . readValue () ;

264 movement started1 = Sensor . S1 . readValue () ;
movement started3 = Sensor . S3 . readValue () ;

266 movement type = −1;
Motor .A. backward () ;

268 Motor .C. backward () ;
}

270

private void tu rnant i ()
272 {

Motor .A. forward () ;
274 Motor .C. backward () ;

}
276

private void turn ()
278 {

Motor .A. backward () ;
280 Motor .C. forward () ;

}

80 APPENDIX B. SOURCE CODE FOR THE ROBOTIC SYSTEM

282

private void adjust movement ()
284 {

i f (movement type == 0) return ;
286 int s1 = Sensor . S1 . readValue () − movement started1 ;

int s3 = Sensor . S3 . readValue () − movement started3 ;
288 i f (s1 < 0) s1 = −s1 ;

i f (s3 < 0) s3 = −s3 ;
290 LCD. showNumber (s1) ;

i f (s1 > s3 + 1) { Motor .A. setPower (7) ; i f (movement type == 1)
Motor .A. forward () ; else Motor .A. backward () ; Motor .C. f l t () ;

}
292 else i f (s3 > s1 + 1) { Motor .C. setPower (7) ; i f (movement type

== 1) Motor .C. forward () ; else Motor .C. backward () ; Motor .A.
f l t () ; }

else { Motor .A. setPower (7) ; Motor .C. setPower (7) ; i f (
movement type == 1) { Motor .A. forward () ; Motor .C. forward () ;
} else { Motor .A. backward () ; Motor .C. backward () ; }}

294 }

296 private void update coord inate s ()
{

298 int new ro ta t i on va lue = Sensor . S1 . readValue () ;
int d i s t anc e = movement type ∗ Math . abs (new ro ta t i on va lue −

movement started) ;
300 movement started = new ro ta t i on va lue ;

i f (ang le == 0) y += d i s t anc e ;
302 else i f (ang le == 1)

{
304 x += di s t anc e /SQRT2;

y += d i s t anc e /SQRT2;
306 }

else i f (ang le == 2) x += d i s t anc e ;
308 else i f (ang le == 3)

{
310 x += di s t anc e /SQRT2;

y += d i s t anc e /SQRT2;
312 }

else i f (ang le == 4) y −= di s t anc e ;
314 else i f (ang le == 5)

{
316 x += di s t anc e /SQRT2;

y += d i s t anc e /SQRT2;
318 }

else i f (ang le == 6) x −= di s t anc e ;
320 else

81

{
322 x += di s t anc e /SQRT2;

y += d i s t anc e /SQRT2;
324 }

}
326

private void Stop ()
328 {

int d i s t anc e ;
330

Motor .A. stop () ;
332 Motor .C. stop () ;

try { Thread . s l e e p (50) ; } catch (Exception e) {}
334 Motor .A. f l t () ;

Motor .C. f l t () ;
336

update coord inate s () ;
338 movement type = 0 ;

}
340

private void turn45 ()
342 {

fu l lPower () ;
344 int va l1 = Sensor . S1 . readValue () ;

int l im i t = TURN45DEGREE;
346 tu rnant i () ;

while (Math . abs (Sensor . S1 . readValue () − va l1) < l im i t) ;
348 try { Thread . s l e e p (8) ; } catch (Exception e) {}

Stop () ;
350 angle−−;

i f (ang le < 0) ang le = 7 ;
352 }

354 private void tu rn45 t i ()
{

356 fu l lPower () ;
int va l1 = Sensor . S1 . readValue () ;

358 int l im i t = TURN45DEGREE;
turn () ;

360 while (Math . abs (Sensor . S1 . readValue () − va l1) < l im i t) ;
try { Thread . s l e e p (8) ; } catch (Exception e) {}

362 Stop () ;
ang le++;

364 i f (ang le == 8) ang le = 0 ;
}

366

82 APPENDIX B. SOURCE CODE FOR THE ROBOTIC SYSTEM

private void tu rn90ant i c l o ck ()
368 {

fu l lPower () ;
370 int va l1 = Sensor . S1 . readValue () ;

int l im i t = TURN45DEGREE ∗ 2 ;
372 turn () ;

while (Math . abs (Sensor . S1 . readValue () − va l1) < l im i t) ;
374 try { Thread . s l e e p (16) ; } catch (Exception e) {}

Stop () ;
376 ang le = (ang le + 6) % 8 ;

}
378

private void turn90c lockwi s e ()
380 {

fu l lPower () ;
382 int va l1 = Sensor . S1 . readValue () ;

int l im i t = TURN45DEGREE ∗ 2 ;
384 tu rnant i () ;

while (Math . abs (Sensor . S1 . readValue () − va l1) < l im i t) ;
386 try { Thread . s l e e p (16) ; } catch (Exception e) {}

Stop () ;
388 ang le = (ang le + 2) % 8 ;

}
390

private void move ()
392 {

fu l lPower () ;
394 ac t i on = MOVE;

forward () ;
396 Sound . beep () ;

while (Sensor . S2 . readValue () >= 62) { update coord inate s () ;
adjust movement () ; }

398 Stop () ;
Sound . buzz () ;

400 }

402 private void ac t i va t eRec e i v e () {
l en = 0 ;

404 do {
l en = commRCX. r e c e i v e (packetIn) ;

406 } while (l en <= 0) ;
commandReceived = (int) ((byte) packetIn [0]) ;

408 Sound . beep () ;
}

410

private void getAndSendCoords () {

83

412 packetOut [0] = (byte) commandReceived ;
packetOut [1] = (byte) x ;

414 packetOut [2] = (byte) y ;
packetOut [3] = (byte) ang le ;

416 packetOut [4] = (byte) ac t i on ;
commRCX. send (packetOut , 5) ;

418 Sound . beep () ;
}

420

public void run ()
422 {

while (true)
424 {

ac t i va t eRec e i v e () ;
426 try { Thread . s l e e p (8) ; } catch (Exception e) {}

getAndSendCoords () ;
428 }

}
430

432 }// end c l a s s RCX12
� �

84 APPENDIX B. SOURCE CODE FOR THE ROBOTIC SYSTEM

Listing B.2: Multi-Page Java code for GUI unit� �
import org . e c l i p s e . swt .SWT;

2 import org . e c l i p s e . swt . events . ∗ ;
import org . e c l i p s e . swt . g raph i c s . Image ;

4 /∗ Class r e s p on s i b l e f o r the d i s p l a y o f the GUI at the PC s i d e ∗/

6 import org . e c l i p s e . swt . widgets . ∗ ;
import org . e c l i p s e . swt . layout . GridData ;

8 import org . e c l i p s e . swt . layout . GridLayout ;
import com . swtdes igner . SWTResourceManager ;

10

public class TestFrame{
12 public Display d i sp l ay ;

public Canvas canvas ;
14 public int [] ArrayXcoords ;

public int [] ArrayYcoords ;
16 public int arrayIndex ;

public double ang le ;
18 public int command ;

// pu b l i c S t r ing ba t t e ryVa lue ;
20 private f ina l int AUTONOMOUS = 0 ;

private f ina l int STOP = 1 ;
22 // p r i v a t e f i n a l i n t MOVE = 2;

private f ina l int FORWARD = 3 ;
24 private f ina l int BACKWARD = 4 ;

private f ina l int ROTATE RIGHT = 5 ;
26 private f ina l int ROTATE LEFT = 6 ;

private f ina l int NONE = 0 ;
28 private f ina l int RED = 1 ;

private f ina l int GREEN = 2 ;
30 // p r i v a t e f i n a l i n t DECIDE = 7;

// p r i v a t e f i n a l i n t SCAN = 8;
32 // p r i v a t e f i n a l i n t RUN = 9;

// p r i v a t e f i n a l i n t ROTATE = 10;
34 private f ina l int BACKTOBASE = 11 ;

public int objec tDetec ted ;
36 private int x1 , x2 , y1 , y2 ;

private int m = 0 ;
38 private int n = 0 ;

private f ina l int [] [] arrayRed = new int [5 0] [4] ;
40 private f ina l int [] [] arrayGreen = new int [5 0] [4] ;

public Label time2 ;
42 public St r ing myTime ;

44 public TestFrame () {

85

ArrayXcoords = new int [1 0 0 0 0] ;
46 ArrayYcoords = new int [1 0 0 0 0] ;

arrayIndex = 0 ;
48 command = STOP;

}
50 public void run () {

d i sp l ay = new Display () ;
52 She l l s h e l l = new She l l (SWT.SHELL TRIM) ;

s h e l l . addDisposeL i s tener (new Dispo s eL i s t ene r () {
54 public void widgetDisposed (DisposeEvent e) {

System . e x i t (0) ;
56 }

}) ;
58 s h e l l . setLayout (new GridLayout ()) ;

s h e l l . setMaximized (true) ;
60 s h e l l . setImage (new Image (d i sp lay , ”C:\\ EclipseWorkspace \\

HelloWorld \\ s r c \\ p i c s \\Robot . g i f ”)) ;
s h e l l . setText (”Usar io Control System”) ;

62 s h e l l . pack () ;
s h e l l . s e t S i z e (900 , 680) ;

64 createContents (s h e l l) ;
s h e l l . open () ;

66 while (! s h e l l . i sD i sposed ())
i f (! d i sp l ay . readAndDispatch ())

68 d i sp l ay . s l e e p () ;
d i sp l ay . d i spo s e () ;

70 }
public void createContents (Sh e l l s h e l l) {

72 {
f ina l Composite composite = new Composite (s h e l l , SWT.NONE) ;

74 f ina l GridLayout gridLayout = new GridLayout () ;
gr idLayout . numColumns = 2 ;

76 GridData compositeLData = new GridData (GridData .END, GridData .
CENTER, false , fa l se) ;

compositeLData . widthHint = 800 ;
78 compositeLData . he ightHint = 800 ;

composite . setLayoutData (compositeLData) ;
80 composite . setLayout (gr idLayout) ;

{
82 f ina l Group ImageDisplay = new Group(composite , SWT.NONE) ;

f ina l GridLayout gr idLayout 1 = new GridLayout () ;
84 ImageDisplay . setLayout (gr idLayout 1) ;

GridData ImageDisplayLData = new GridData (GridData .END,
GridData .CENTER, false , fa l se) ;

86 ImageDisplayLData . widthHint = 550 ;
ImageDisplayLData . he ightHint = 375 ;

86 APPENDIX B. SOURCE CODE FOR THE ROBOTIC SYSTEM

88 ImageDisplay . setLayoutData (ImageDisplayLData) ;
ImageDisplay . setText (”Camera Display ”) ;

90

}
92 {

f ina l Group RemoteControl = new Group(composite , SWT.NONE) ;
94 f ina l GridLayout gr idL = new GridLayout () ;

gr idL . numColumns = 3 ;
96 GridData RemoteControlData = new GridData (GridData .CENTER,

GridData . FILL , false , fa l se) ;
RemoteControl . setLayout (gr idL) ;

98 RemoteControl . setLayoutData (RemoteControlData) ;
RemoteControl . setText (”Remote Control ”) ;

100 {
f ina l Button button1 = new Button (RemoteControl , SWT.NONE) ;

102 button1 . s e tV i s i b l e (fa l se) ;
button1 . setEnabled (fa l se) ;

104 button1 . setImage (SWTResourceManager . getImage (TestFrame .
class , ” p i c s / p ic1 . g i f ”)) ;

button1 . setBounds (301 , 35 , 50 , 50) ;
106 }

{
108 f ina l Button button2 = new Button (RemoteControl , SWT.NONE) ;

button2 . addSe l e c t i onL i s t en e r (new Se l ec t ionAdapter () {
110 public void widge tSe l e c t ed (Se l e c t i onEvent e) {

command = FORWARD;
112 }

}) ;
114 button2 . setLayoutData (new GridData ()) ;

button2 . setImage (SWTResourceManager . getImage (TestFrame .
class , ” p i c s / p ic2 . g i f ”)) ;

116 button2 . setBounds (355 , 35 , 50 , 50) ;
}

118 {
f ina l Button button3 = new Button (RemoteControl , SWT.NONE) ;

120 button3 . s e tV i s i b l e (fa l se) ; // f a l s e) ;
button3 . setEnabled (fa l se) ; // f a l s e) ;

122 button3 . setImage (SWTResourceManager . getImage (TestFrame .
class , ” p i c s / p ic3 . g i f ”)) ;

button3 . setBounds (410 , 35 , 50 , 50) ;
124 }

{
126 f ina l Button button4 = new Button (RemoteControl , SWT.NONE) ;

button4 . addSe l e c t i onL i s t en e r (new Se l ec t ionAdapter () {
128 public void widge tSe l e c t ed (Se l e c t i onEvent e) {

command = ROTATE LEFT;

87

130 }
}) ;

132

button4 . setImage (SWTResourceManager . getImage (TestFrame .
class , ” p i c s / p ic4 . g i f ”)) ;

134 button4 . setBounds (301 , 90 , 50 , 50) ;
}

136 {
f ina l Button button5 = new Button (RemoteControl , SWT.NONE) ;

138 button5 . addSe l e c t i onL i s t en e r (new Se l ec t ionAdapter () {
public void widge tSe l e c t ed (Se l e c t i onEvent e) {

140 command = STOP;
}

142 }) ;
button5 . setLayoutData (new GridData ()) ;

144 button5 . setImage (SWTResourceManager . getImage (TestFrame .
class , ” p i c s / p ic5 . g i f ”)) ;

button5 . setBounds (355 , 90 , 50 , 50) ;
146 }

{
148 f ina l Button button6 = new Button (RemoteControl , SWT.NONE) ;

button6 . addSe l e c t i onL i s t en e r (new Se l ec t ionAdapter () {
150 public void widge tSe l e c t ed (Se l e c t i onEvent e) {

command = ROTATE RIGHT;
152 }

}) ;
154 button6 . setImage (SWTResourceManager . getImage (TestFrame .

class , ” p i c s / p ic6 . g i f ”)) ;
button6 . setBounds (410 , 90 , 50 , 50) ;

156 }
{

158 f ina l Button button7 = new Button (RemoteControl , SWT.NONE) ;
button7 . s e tV i s i b l e (fa l se) ;

160 button7 . setEnabled (fa l se) ;
button7 . setImage (SWTResourceManager . getImage (TestFrame .

class , ” p i c s / p ic7 . g i f ”)) ;
162 button7 . setBounds (301 , 145 , 50 , 50) ;

}
164 {

f ina l Button button8 = new Button (RemoteControl , SWT.NONE) ;
166 button8 . addSe l e c t i onL i s t en e r (new Se l ec t ionAdapter () {

public void widge tSe l e c t ed (Se l e c t i onEvent e) {
168 command = BACKWARD;

}
170 }) ;

88 APPENDIX B. SOURCE CODE FOR THE ROBOTIC SYSTEM

172 button8 . setLayoutData (new GridData ()) ;
button8 . setImage (SWTResourceManager . getImage (TestFrame .

class , ” p i c s / p ic8 . g i f ”)) ;
174 button8 . setBounds (355 , 145 , 50 , 50) ;

}
176 {

f ina l Button button9 = new Button (RemoteControl , SWT.NONE) ;
178 button9 . s e tV i s i b l e (fa l se) ;

button9 . setEnabled (fa l se) ;
180 button9 . setImage (SWTResourceManager . getImage (TestFrame .

class , ” p i c s / p ic9 . g i f ”)) ;
button9 . setBounds (410 , 145 , 50 , 50) ;

182 }
{

184 f ina l Button button10 = new Button (RemoteControl , SWT.NONE)
;

button10 . s e tV i s i b l e (fa l se) ;
186 button10 . setEnabled (fa l se) ;

button10 . addSe l e c t i onL i s t en e r (new Se l ec t ionAdapter () {
188 public void widge tSe l e c t ed (Se l e c t i onEvent e) {

command = BACKTOBASE;
190 }

}) ;
192 button10 . setLayoutData (new GridData (GridData . FILL , GridData

. FILL , false , false , 3 , 1)) ;
button10 . setText (”RESET”) ;

194 button10 . setBounds (301 , 140 , 460 , 90) ;
}

196 f ina l Button button11 = new Button (RemoteControl , SWT.NONE) ;
button11 . s e tV i s i b l e (fa l se) ;

198 button11 . setEnabled (fa l se) ;
f ina l Button AutonomousOnOff = new Button (RemoteControl , SWT.

TOGGLE) ;
200 AutonomousOnOff . setLayoutData (new GridData (GridData . FILL ,

GridData . FILL , false , false , 1 , 2)) ;
AutonomousOnOff . setText (”Search ”) ;

202 AutonomousOnOff . s e t S e l e c t i o n (fa l se) ;
AutonomousOnOff . addSe l e c t i onL i s t en e r (new Se l ec t ionAdapter () {

204 public void widge tSe l e c t ed (Se l e c t i onEvent e) {
command = AUTONOMOUS;

206 i f (AutonomousOnOff . g e t S e l e c t i o n ()) {
command = AUTONOMOUS;

208 AutonomousOnOff . setText (”Grab Control ”) ;
AutonomousOnOff . s e t S e l e c t i o n (true) ;

210 }
else {

89

212 command = STOP;
AutonomousOnOff . setText (”Search ”) ;

214 AutonomousOnOff . s e t S e l e c t i o n (fa l se) ;
} }

216 }) ;

218 }
{

220 f ina l Group PathPlot = new Group(composite , SWT.NONE) ;
f ina l GridLayout gr idLayout 1 = new GridLayout () ;

222 PathPlot . setLayout (gr idLayout 1) ;
GridData PathPlotLData = new GridData (550 , 270) ;

224 PathPlot . setLayoutData (PathPlotLData) ;
PathPlot . setText (”Locat ion Map”) ;

226 {
}

228 canvas = new Canvas (PathPlot ,SWT.BORDER) ;
canvas . setBackground (SWTResourceManager . getColor (255 , 255 ,

255)) ;
230 f ina l GridData gridData = new GridData (512 , 236) ;

canvas . setLayoutData (gridData) ;
232 canvas . s e tV i s i b l e (true) ;

canvas . addPaintLi s tener (new Pa in tL i s t ene r () {
234 public void pa intContro l (PaintEvent e) {

e . gc . setForeground (e . d i sp l ay . getSystemColor (SWT.
COLOR BLUE)) ;

236 e . gc . setLineWidth (2) ;
for (int i =1; i<arrayIndex ; i++) {

238 e . gc . setForeground (e . d i sp l ay . getSystemColor (SWT.
COLOR BLUE)) ;

x1 = ((int) ArrayXcoords [i − 1]) +250;
240 x2 = ((int) ArrayXcoords [i]) +250;

y1 = ((int) ArrayYcoords [i − 1]) +100;
242 y2 = ((int) ArrayYcoords [i]) +100;

e . gc . drawLine (x1 , y1 , x2 , y2) ;
244 time2 . update () ;

System . out . p r i n t l n (” s t a t e o f ob jec tDetec ted va r i ab l e i s
: ” + objec tDetec ted) ;

246 i f (ob jec tDetec ted != NONE)
{

248 System . out . p r i n t l n (”Detected v ic t im i s : ” +
objec tDetec ted) ;

ang le ∗= 45 ;
250 i f (y1 > y2)

{
252 ang le += 180 ;

90 APPENDIX B. SOURCE CODE FOR THE ROBOTIC SYSTEM

}
254 i f (x1 < x2)

{
256 ang le += 90 ;

}
258 else i f (x1 > x2)

{
260 ang le += 270 ;

}
262 i f (ob jec tDetec ted == RED)

{
264 System . out . p r i n t l n (”Detected v ic t im i s : ” +

objec tDetec ted) ;
arrayRed [m] [0] = x1 ;

266 arrayRed [m] [1] = y1 ;
arrayRed [m] [2] = x2+(int) (Math . cos (ang le) ∗30) ;

268 arrayRed [m] [3] = y2+(int) (Math . s i n (ang le) ∗30) ;
m++;

270 }
else i f (ob jec tDetec ted == GREEN)

272 {
arrayGreen [n] [0] = x1 ;

274 arrayGreen [n] [1] = y1 ;
arrayGreen [n] [2] = x2+(int) (Math . cos (ang le) ∗30) ;

276 arrayGreen [n] [3] = y2+(int) (Math . s i n (ang le) ∗30) ;
n++;

278 }
}

280 objec tDetec ted = NONE;
}

282 e . gc . setLineWidth (2) ;
e . gc . setForeground (e . d i sp l ay . getSystemColor (SWT.COLOR RED

)) ;
284 e . gc . drawLine (arrayRed [m] [0] , arrayRed [m] [1] , arrayRed [m

] [2] , arrayRed [m] [3]) ;
e . gc . setForeground (e . d i sp l ay . getSystemColor (SWT.

COLOR GREEN)) ;
286 e . gc . drawLine (arrayGreen [n] [0] , arrayGreen [n] [1] ,

arrayGreen [n] [2] , arrayGreen [n] [3]) ;
}

288 }) ;

290 }
{

292 f ina l Group Misc = new Group(composite , SWT.NONE) ;
f ina l GridLayout gr idLayout 1 = new GridLayout () ;

91

294 gr idLayout 1 . numColumns = 2 ;
Misc . setLayout (gr idLayout 1) ;

296 GridData MiscLData = new GridData (GridData . FILL , GridData .
FILL , true , false , 1 , 2) ;

Misc . setLayoutData (MiscLData) ;
298 Misc . setText (” Misce l l aneous ”) ;

f ina l Label currentTime = new Label (Misc ,SWT.NONE) ;
300 currentTime . setText (”Current time”) ;

time2 = new Label (Misc ,SWT.BORDER) ;
302 time2 . setText (myTime) ;

f ina l Label t imeElapsed = new Label (Misc ,SWT.NONE) ;
304 t imeElapsed . setText (”Time e lapsed ”) ;

f ina l Label time3 = new Label (Misc ,SWT.BORDER) ;
306 time3 . setText (” 00 :00 ”) ;

f ina l Label batte ryLabe l = new Label (Misc , SWT.NONE) ;
308 batteryLabe l . setText (”Battery %”) ;

Text t ext = new Text (Misc , SWT.BORDER) ;
310 t ex t . setLayoutData (new GridData (GridData .BEGINNING, GridData .

CENTER, true , fa l se)) ;
t ex t . setText (”97”) ;

312 t ex t . s e tEd i t ab l e (fa l se) ;
f ina l Label Bat te ryVo l tage Ind i ca to r = new Label (Misc , SWT.

NONE) ;
314 Batte ryVo l tage Ind i ca to r . setText (”Battery Voltage i nd i c a t o r : ”

) ;
f ina l ProgressBar progressBar = new ProgressBar (Misc , SWT.

NONE) ;
316 progressBar . s e t S e l e c t i o n (95) ;

progressBar . setLayoutData (new GridData (GridData .BEGINNING,
GridData .CENTER, false , false , 3 , 1)) ;

318 }
}

320

}
322 public stat ic void main (St r ing [] a rgs) {

TestFrame TF = new TestFrame () ;
324 CommPC commpc = new CommPC(TF) ;

commpc . s t a r t () ;
326 Camera cam = new Camera (TF) ;

cam . s t a r t () ;
328 myClock mc = new myClock (TF) ;

mc . s t a r t () ;
330 TF. run () ;

}
332 }
� �

92 APPENDIX B. SOURCE CODE FOR THE ROBOTIC SYSTEM

Listing B.3: Multi-Page Java code for Camera unit� �
/∗ Camera . java

2 c l a s s f o r d e t e c t i on o f v i c t ims in the frames ob ta ined from camera
∗/

4 import java . u t i l . Vector ;

6 import de te c t . Detect ;
import de te c t . DetectedObject ;

8

public class Camera extends Thread {
10 TestFrame t f ;

public Camera (TestFrame te s t f rame) {
12 t f = te s t f rame ;

}
14 public void run ()

{
16 int i , j ;

// c rea t e d e t e c t o b j e c t
18 Detect d = new Detect (”\” c :\\ program f i l e s \\ I n t e rn e t

Explorer \\ i e x p l o r e . exe \” D:\\ Usario2 .4\\ support \\ de te c t
\\ camera . html” ,

”X − Microso f t I n t e rn e t Explorer ” ,
10 , 198 , 116 , 83) ;

20 // se tup d e t e c t i on parameters :
//max . number o f o b j e c t s , s i z e o f ra s t e r , r e qu i r ed number

o f co l o r p i x e l s in ras t e r , r a s t e r s r e qu i r ed f o r o b j e c t
22 d . setparam (400 , 10 , 33 , 10) ;

// se tup red co l o r d e t e c t i on : r e l a t i v e1B , re la t i ve1G ,
o therw i s e r e qu i r ed R, re l a t i v e2B , r e l a t i v e2G

24 d . redparam ((f loat) 2 . 0 , (f loat) 2 . 0 , (f loat) 140 .0 , (f loat)
1 . 4 , (f loat) 1 . 4) ;

// se tup green co l o r d e t e c t i on : r e l a t i v e1B , re la t i ve1R ,
o therw i s e r e qu i r ed G, re l a t i v e2B , r e l a t i v e2R

26 d . greenparam ((f loat) 2 . 0 , (f loat) 2 . 0 , (f loat) 100 .0 , (f loat)
1 . 0 , (f loat) 1 . 5) ;

28 d . v i s u a l i z e (Detect .IMAGE WITH FRAME) ;
Thread t = new Thread (d) ;

30 t . s t a r t () ;
int greencand idate = 0 ;

32 int redcandidate = 0 ;
for (i = 0 ; i < 10000 ; i++)

34 {
Vector a ;

36 a = d . de t e c t () ;

93

int s e eg r een = 0 ;
38 int s e e r ed = 0 ;

for (j = 0 ; j < a . s i z e () ; j++)
40 {

i f (((((DetectedObject) a . elementAt (j)) . minx) >= 90) && ((((
DetectedObject) a . elementAt (j)) .maxx) <= 250)) {

42

i f (((DetectedObject) a . elementAt (j)) . type == DetectedObject
.GREEN)

44 t f . ob j ec tDetec ted = 2 ;

46 else t f . ob j ec tDetec ted = 1 ;
}

48 i f ((((DetectedObject) a . elementAt (j)) . type ==
DetectedObject .GREEN) && (((DetectedObject) a .
elementAt (j)) . count > 200))

{
50 s e eg r een = 1 ;

}
52 i f ((((DetectedObject) a . elementAt (j)) . type == DetectedObject .

RED) && (((DetectedObject) a . elementAt (j)) . count > 200))
{

54 s e e r ed = 1 ;
}

56 }
i f (s e eg r een == 1) greencandidate++;

58 else greencand idate =0;
i f (s e e r ed == 1) redcandidate++;

60 else redcandidate =0;
}

62 System . out . p r i n t l n (” f i n a l i z i n g \n”) ;
// r e l e a s e memory at the end o f the program (op t i ona l)

64 d . d e s t ru c t o r () ;
d = null ;

66 }
}
� �

94 APPENDIX B. SOURCE CODE FOR THE ROBOTIC SYSTEM

Listing B.4: Multi-Page Java Code for commPC� �
2 /∗ thread f o r communication between PC and Usario ∗/

4 import org . e c l i p s e . swt . widgets . Display ;

6 class CommPC extends Thread{
TestFrame t f ;

8 private byte [] packet ; // outgo ing packe t
private byte [] answer ; // r e c e i v ed packe t

10 private int l en ; // w i l l conta in the l en g t h o f r e c e i v ed packe t
// p r i v a t e f i n a l i n t ROTATE = 10;

12 private f ina l int STOP = 1 ;
private f ina l int FORWARD = 3 ;

14 private f ina l int BACKWARD = 4 ;
private f ina l int ROTATE RIGHT = 5 ;

16 private f ina l int ROTATE LEFT = 6 ;

18 public CommPC(TestFrame te s t f rame) {
packet = new byte [1] ;

20 answer = new byte [5] ;
t f = te s t f rame ;

22 }
public void run () {

24 SimpleCommPC comm = new SimpleCommPC(”COM7” , (byte) 0 , fa l se) ;
try {

26 try { Thread . s l e e p (5000) ; } catch (Exception e) {}
while (true)

28 {
// send packe t to RCX

30 i f (answer [4] == FORWARD | | answer [4] == BACKWARD | |
answer [4] == ROTATE LEFT | | answer [4] ==
ROTATE RIGHT) {

t f . command = STOP;
32 packet [0] = (byte)STOP;

} else {
34 packet [0] = (byte) t f . command ;

}
36 System . out . p r i n t l n (”Command i s : ”+t f . command) ;

comm. send (packet , 1) ;
38 pr in t (” sent command packet : ” , packet , 1) ;

// wai t f o r new packe t from RCX and s t o r e i t to array
answer

40 //System . out . p r i n t l n (” h e l l o ”) ;
do {

95

42 l en = comm. r e c e i v e (answer) ;
} while (l en <= 0) ;

44 t f . ArrayXcoords [t f . arrayIndex] = (int) (answer [1] ∗ 0 . 7 5)
;

t f . ArrayYcoords [t f . arrayIndex] = (int) (50 − (answer
[2] ∗ 0 . 7 5)) ;

46 t f . ang le = (double) answer [3] ∗ 4 5 ;
// here answer [3] con ta ins ang l e encoded as 0=NORTH, 1=

NE, . . . , 7=NW
48 t f . arrayIndex++;

p r in t (” r e c e i v ed packet : ” , answer , l en) ;
50 // repa in t the map on the screen

Display . ge tDe fau l t () . asyncExec (new Runnable () {
52 public void run () {

t f . canvas . redraw () ;
54 }

}) ;
56 try { Thread . s l e e p (1000) ; } catch (Exception e) {}

}
58 } catch (Exception e) { System . out . p r i n t l n (”Exception ” + e) ;

e . pr intStackTrace () ; }
comm. c l o s e () ;

60 }
private stat ic void pr in t (S t r ing t i t l e , byte [] p , int l en)

62 {
int counterRotate=−1;

64 St r ing ac t i on=”” ;
System . out . p r i n t (t i t l e) ;

66 for (int i = 0 ; i < l en ; i++) {
System . out . p r i n t (p [i] + ” ”) ;

68 }
i f (t i t l e . equa l s IgnoreCase (” r e c e i v ed packet : ”)) {

70 switch (p [4]) {
case 0 : a c t i on = ”AUTONOMOUS” ;

72 break ;
case 1 : a c t i on = ”STOP” ;

74 break ;
case 2 : a c t i on = ”MOVE” ;

76 break ;
case 3 : a c t i on = ”FORWARD” ;

78 break ;
case 4 : a c t i on = ”BACKWARD” ;

80 break ;
case 5 : a c t i on = ”ROTATE RIGHT” ;

82 break ;
case 6 : a c t i on = ”ROTATE LEFT” ;

96 APPENDIX B. SOURCE CODE FOR THE ROBOTIC SYSTEM

84 break ;
case 7 : a c t i on = ”DECIDE” ;

86 break ;
case 8 : a c t i on = ”SCAN” ;

88 break ;
case 9 : a c t i on = ”RUN” ;

90 break ;
case 10 : ac t i on = ”ROTATE” ; counterRotate++;

92 break ;
case 11 : ac t i on = ”BACKTOBASE” ;

94 break ;
}// end sw i t ch

96 i f (counterRotate == −1){
System . out . p r i n t l n (” ”+ ac t i on) ;

98 }
else {

100 System . out . p r i n t l n (” ”+ ac t i on +” (r o t a t i on number : ”+
counterRotate+”) ”) ;

}
102 } // end outer i f

System . out . p r i n t l n (” ”) ;
104 } // end method p r i n t ()

}
� �

Bibliography

[1] AI group IDI, NTNU. AI Group - Eval. Available from http://www.idi.ntnu.no/

grupper/ai/eval/software.html Accessed 07.11.05

[2] B.Bagnall. Core Lego Mindstorms programming Prentice Hall, 2002.

[3] BBC news. London attacks Available from http://news.bbc.co.uk/1/shared/

spl/hi/uk/05/london_blasts/html/default.stm Accessed 11.09.2005

[4] BBC news. 11 September Available from http://news.bbc.co.uk/cbbcnews/hi/

find_out/guides/newsid_2209000/2209407.stm Accessed 11.09.2005

[5] BBC news. Bali bomb attack Available from http://news.bbc.co.uk/1/hi/world/

asia-pacific/4300274.stm Accessed 11.09.2005

[6] BBC news. Terror attack in Egypt Available from http://www.somethingjewish.

co.uk/articles/1216_terror_attack_in_egy.htm Accessed 11.09.2005

[7] Carnegie Mellon press Carnegie Mellon press release Available from http://www.

cmu.edu/PR/releases05/050210_marines.html Accessed 30.09.2005

[8] G. Dudek, M. Jenkin Computational principles of mobile robotics Cambridge
University Press, 2000.

[9] Dlink. Wireless Security camera-DCS-5300G Available from http://www.dlink.

com/products/?pid=342 Accessed 07.11.05

[10] DLink. DCS5300G Available from ftp://ftp10.dlink.com/pdfs/products/

DCS-5300G/DCS-5300G_ds.pdf Accessed 11.09.2005

[11] G.Ferrari. Lego Mindstorms with Java Syngress Media, 2002.

[12] J.P.F. Friquin.Identifying the risks involved in the design of a safety-critical
system for an Urban Search and Rescue robot Available from http://www.idi.

ntnu.no/grupper/su/fordypningsprosjekt-2005/friquin-fordyp05.pdf. IDI,
NTNU. 2005.

97

http://www.idi.ntnu.no/grupper/ai/eval/software.html
http://www.idi.ntnu.no/grupper/ai/eval/software.html
http://news.bbc.co.uk/1/shared/spl/hi/uk/05/london_blasts/html/default.stm
http://news.bbc.co.uk/1/shared/spl/hi/uk/05/london_blasts/html/default.stm
http://news.bbc.co.uk/cbbcnews/hi/find_out/guides/newsid_2209000/2209407.stm
http://news.bbc.co.uk/cbbcnews/hi/find_out/guides/newsid_2209000/2209407.stm
http://news.bbc.co.uk/1/hi/world/asia-pacific/4300274.stm
http://news.bbc.co.uk/1/hi/world/asia-pacific/4300274.stm
http://www.somethingjewish.co.uk/articles/1216_terror_attack_in_egy.htm
http://www.somethingjewish.co.uk/articles/1216_terror_attack_in_egy.htm
http://www.cmu.edu/PR/releases05/050210_marines.html
http://www.cmu.edu/PR/releases05/050210_marines.html
http://www.dlink.com/products/?pid=342
http://www.dlink.com/products/?pid=342
ftp://ftp10.dlink.com/pdfs/products/DCS-5300G/DCS-5300G_ds.pdf
ftp://ftp10.dlink.com/pdfs/products/DCS-5300G/DCS-5300G_ds.pdf
http://www.idi.ntnu.no/grupper/su/fordypningsprosjekt-2005/friquin-fordyp05.pdf
http://www.idi.ntnu.no/grupper/su/fordypningsprosjekt-2005/friquin-fordyp05.pdf

98 BIBLIOGRAPHY

[13] B. Gates, N. Myhrvold and P. Rinearson. Bill Gates: The Road Ahead Penguin,
1996

[14] T. Hatton. SWT: A Developer’s Notebook O’reilly, 2004

[15] Inuktun Services Ltd. Inuktun Services Available from http://www.inuktun.com/

Accessed 27.09.2005

[16] iRobots inc. Robots for the real-world. Available from http://www.irobot.com

accessed 27.09.2005

[17] J. Knudsen. Imaginations run wild with Java Lego robots Available from http:

//www.javaworld.com/javaworld/jw-02-2001/jw-0209-lejos_p.html accessed
15.09.2005.

[18] Kobe University. Utility Vehicle for Search version IV Available from http://www.

rescuesystem.org/robocuprescue/UVS.pdf Accessed 30.09.2005

[19] Lego inc. Lego Mindstorms home Available from http://mindstorms.lego.com/

eng/default.asp accessed 15.09.2005.

[20] J. Lewis, W. Loftus. Java Software Solutions; Foundations of program design.
Addison-Wesley, 1998

[21] http://www.lugnet.com accessed August 15.09.2005.

[22] NASA. Urbie- Urban Robot project Available from http://robotics.jpl.nasa.

gov/tasks/tmr/homepage.html accessed 27.09.2005

[23] G.W. Lucashttp://rossum.sourceforge.net/papers/DiffSteer/DiffSteer.html Accessed,
27.01.2006

[24] R.R. Murphy. Introduction to AI robotics MIT press, 2000.

[25] National geographic News. Search-and-Rescue Robots Tested at New York Disaster
Site Available from http://news.nationalgeographic.com/news/2001/09/0914_

TVdisasterrobot.html Accessed 27.09.2005

[26] C. Perrow. Normal Accidents: Living with high-risk technologiesPrinceton University
Press,1999.

[27] P. Petrovic. Pavel Petrovic homepage Available from http://www.idi.ntnu.no/

~petrovic/ecc_tekrep.pdf Accessed 25.03.2006

[28] P. Petrovic. Wireless Communication with RCX Available from http://www.

robotika.sk/projects/rcxbt/ Accessed 14.04.2006

[29] RoboCup. Robocup official site Available from http://www.robocup.org/ Accessed
27.09.2005

http://www.inuktun.com/
http://www.irobot.com
http://www.javaworld.com/javaworld/jw-02-2001/jw-0209-lejos_p.html
http://www.javaworld.com/javaworld/jw-02-2001/jw-0209-lejos_p.html
http://www.rescuesystem.org/robocuprescue/UVS.pdf
http://www.rescuesystem.org/robocuprescue/UVS.pdf
http://mindstorms.lego.com/eng/default.asp
http://mindstorms.lego.com/eng/default.asp
http://www.lugnet.com
http://robotics.jpl.nasa.gov/tasks/tmr/homepage.html
http://robotics.jpl.nasa.gov/tasks/tmr/homepage.html
http://news.nationalgeographic.com/news/2001/09/0914_TVdisasterrobot.html
http://news.nationalgeographic.com/news/2001/09/0914_TVdisasterrobot.html
http://www.idi.ntnu.no/~petrovic/ecc_tekrep.pdf
http://www.idi.ntnu.no/~petrovic/ecc_tekrep.pdf
http://www.robotika.sk/projects/rcxbt/
http://www.robotika.sk/projects/rcxbt/
http://www.robocup.org/

BIBLIOGRAPHY 99

[30] RoboCup Rescue. RoboCup Rescue official page Available from http://www.

rescuesystem.org/robocuprescue/ Accessed 27.09.2005

[31] RoboCupJunior. RoboCup Junior official page Available from http://www.robocup.

org/junior/index.html 27.09.2005

[32] leJOS Available from http://lejos.sourceforge.net/ accessed August
15.09.2005.

[33] leJOS API Available from http://lejos.sourceforge.net/apidocs/index.html

accessed August 2005

[34] IUI 04 - 2004 International conference on Intelligent User Interface. Where to look:
A study of human-robot Engagement by C.L. Sidner, C.D. Kidd, C. Lee and N.Lesh
Association for computing machinery, 2004

[35] sourceforge.net: OpenCV library Open computer vision library Available from http:

//sourceforge.net/projects/opencvlibrary/ Accessed 07.10.05

[36] SparkFun electronics. BlueSMiRF V1 Available from http://www.sparkfun.com/

commerce/product_info.php?products_id=582 Accessed15.03.2006

[37] Trendnet. Trendnet Bluetooth TBW-102UB Available from http://www.trendnet.

com/en/products/TBW-102UB_o_1.htm Accessed 26.03.2006

[38] BAE systems. BAE systems Available from http://www.uniteddefense.com/

Accessed 30.09.5002

http://www.rescuesystem.org/robocuprescue/
http://www.rescuesystem.org/robocuprescue/
http://www.robocup.org/junior/index.html
http://www.robocup.org/junior/index.html
http://lejos.sourceforge.net/
http://lejos.sourceforge.net/apidocs/index.html
http://sourceforge.net/projects/opencvlibrary/
http://sourceforge.net/projects/opencvlibrary/
http://www.sparkfun.com/commerce/product_info.php?products_id=582
http://www.sparkfun.com/commerce/product_info.php?products_id=582
http://www.trendnet.com/en/products/TBW-102UB_o_1.htm
http://www.trendnet.com/en/products/TBW-102UB_o_1.htm
http://www.uniteddefense.com/

Index

BlueSmirf, 31
Bluetooth

IR-Bluetooth, 31

Camera
DLink DCS-5300G, 30

camera
image, 49

communication, 9, 43
discussion, 65

Graphical user interface, 9, 57

Java, 26

Lego
RCX, 27
sensor

light, 28
rotation, 29

serial IR port
description, 29

wheels
description, 29

LeJos, 26

motors
description, 29

navigation, 8, 37
discussion, 63

Navigator
API, 38
RotationNavigator class, 38

object
detection, 9, 49, 50

discussion, 65

identification, 9, 49
localisation, 9
localization, 49

discussion, 66

PC
the name, 17

presentation
of information, 57

discussion, 66
problem

analysis, 7
definition, 2

Requirements
Functional, 13
Non-Functional, 15

safety-critical system
objective, 9

security, 9
System

description, 17

Usario
the name, 1

101

