
Cray XD1™ Programming

Private
S–2433–131

©2005 Cray Inc. All Rights Reserved. This manual or parts thereof may not be reproduced in any form unless permitted by contract
or by written permission of Cray Inc.

U.S. GOVERNMENT RESTRICTED RIGHTS NOTICE

The Computer Software is delivered as "Commercial Computer Software" as defined in DFARS 48 CFR 252.227-7014.

All Computer Software and Computer Software Documentation acquired by or for the U.S. Government is provided with Restricted
Rights. Use, duplication or disclosure by the U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14
or DFARS 48 CFR 252.227-7014, as applicable.

Technical Data acquired by or for the U.S. Government, if any, is provided with Limited Rights. Use, duplication or disclosure by the
U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14 or DFARS 48 CFR 252.227-7013, as applicable.

Autotasking, Cray, Cray Channels, Cray Y-MP, GigaRing, LibSci, UNICOS and UNICOS/mk are federally registered
trademarks and Active Manager, CCI, CCMT, CF77, CF90, CFT, CFT2, CFT77, ConCurrent Maintenance Tools, COS, Cray Ada,
Cray Animation Theater, Cray APP, Cray Apprentice2, Cray C++ Compiling System, Cray C90, Cray C90D, Cray CF90, Cray EL,
Cray Fortran Compiler, Cray J90, Cray J90se, Cray J916, Cray J932, Cray MTA, Cray MTA-2, Cray MTX, Cray NQS, Cray Research,
Cray SeaStar, Cray S-MP, Cray SHMEM, Cray SSD-T90, Cray SuperCluster, Cray SV1, Cray SV1ex, Cray SX-5, Cray SX-6, Cray T3D,
Cray T3D MC, Cray T3D MCA, Cray T3D SC, Cray T3E, Cray T90, Cray T916, Cray T932, Cray UNICOS, Cray X1, Cray X1E,
Cray XD1, Cray X-MP, Cray XMS, Cray XT3, Cray Y-MP EL, Cray-1, Cray-2, Cray-3, CrayDoc, CrayLink, Cray-MP, CrayPacs,
Cray/REELlibrarian, CraySoft, CrayTutor, CRInform, CRI/TurboKiva, CSIM, CVT, Delivering the power..., Dgauss, Docview,
EMDS, HEXAR, HSX, IOS, ISP/Superlink, MPP Apprentice, ND Series Network Disk Array, Network Queuing Environment,
Network Queuing Tools, OLNET, RapidArray, RQS, SEGLDR, SMARTE, SSD, SUPERLINK, System Maintenance and
Remote Testing Environment, Trusted UNICOS, TurboKiva, UNICOS MAX, UNICOS/lc, and UNICOS/mp are trademarks of
Cray Inc.

AMD and Opteron are trademarks of Advanced Micro Devices, Inc. FLEXlm is a trademark of Macrovision Corporation. GNU
is a trademark of The Free Software Foundation. Linux is a trademark of Linus Torvalds. PBS Pro is a trademark of Altair Grid
Technologies. PGI is a trademark of The Portland Group Compiler Technology, STMicroelectronics, Inc. SUSE is a trademark of
SUSE LINUX Products GmbH, a Novell business. Virtex, Virtex II, Virtex II Pro, and Xilinx are trademarks of Xilinx, Inc. All
other trademarks are the property of their respective owners.

New Features

Cray XD1™ Programming S–2433–131

This manual contains changes to address the FPGA driver enhancement that enables the FPGA to access a
larger region of Opteron memory (up to 1 GB). The manual describes two new C functions in the FPGA API
that support this enhancement:

• fpga_register_ftrmem(3)

• fpga_dereg_ftrmem(3)

Record of Revision

Version Description

1.3.1 October 2005
Converted to new document format. Minor editorial changes.

1.3 July 2005
Updates to support the new and changed features in Cray XD1 release 1.3 (limited
availability).

1.2.1 May 2005
Minor corrections.

1.2 April 2005
Updates to support the new and changed features in Cray XD1 release 1.2 (limited
availability).

1.1 October 2004
Updates to support the new and changed features in Cray XD1 release 1.1.

1.0 August 2004
Initial release; supports Cray XD1 release 1.0.

S–2433–131 Cray Private i

Contents

Page

Preface ix

Accessing Product Documentation ix

Conventions . x

Reader Comments . xi

Cray XD1 Support . xi

Introduction [1] 1

Who Should Read this Manual . 1

Scope of this Manual . 1

How this Manual is Organized . 1

Related Publications . 2

Programming Environment [2] 5

The Cray XD1 Environment . 5

System Description . 5

Operating System . 5

Linux Synchronized Scheduler (LSS) 6

Driver for the RapidArray Interconnect 6

Driver for the FPGA Application Acceleration Processor 6

Sockets Direct Protocol . 7

User Environment . 7

Job Environment . 8

Accessing the System . 8

Development Tools . 9

Standard Tools . 9

Optional Tools . 10

Local and Other Third-party Tools 10

S–2433–131 Cray Private iii

Cray XD1™ Programming

Page

Libraries . 10

Using Tools and Libraries [3] 15

General Compiling and Linking Considerations 15

Required Compiler Options . 15

Dynamic Linking Versus Static Linking 15

Using the MPI Libraries . 16

MPICH Libraries . 16

Using Compiler Scripts to Build MPI Applications 17

Available Compiler Scripts . 17

Setting Your PATH Variable . 18

Example 1: Adding an instance of MPICH to your PATH variable 18

Invoking a Compiler Script . 18

Manually Compiling and Linking MPI Applications 19

Include File Path . 20

Example 2: Specifying the MPICH header file location 20

Linking the Main MPICH Library 20

Linking Other Required Libraries 21

Combined Examples . 21

Example 3: Manually building an MPI application with the GNU C compiler with static
linking . 21

Example 4: Manually building an MPI application with the PGI Fortran 90 compiler with
dynamic linking . 22

Building In the Path to the Shared Library 22

Example 5: Manually building an MPI application with the GNU FORTRAN 77 compiler
with dynamic linking . 22

Using Other Libraries and Tools . 22

ACML . 23

Apprentice2 . 24

ARMCI . 24

CrayPAT . 25

FPGA Application Acceleration Processor API 26

iv Cray Private S–2433–131

Contents

Page

Global Arrays . 26

GPSHMEM . 26

PAPI . 27

ScaLAPACK . 28

Using the Modules Package to Configure Your Environment 29

Overview of the Modules Package 29

Introduction to the module Command 29

Predefined Modulefiles . 30

Developing Other Modulefiles from Templates 30

Compiler Modulefile Template 30

Example 6: Template for a PGI compiler modulefile 31

MPICH Library Modulefile Template 32

Example 7: Template for an MPICH library modulefile 32

Building an MPICH Library Instance 33

Obtaining the MPICH Source Code 33

Procedure 1: To obtain the MPICH source code 33

Example 8: Accessing the source disc image 33

Example 9: Copying the MPICH source package to the Cray XD1 system 34

Compiling the MPICH Library 34

Procedure 2: To compile the MPICH library 34

Deploying the MPICH Library Instance 36

Procedure 3: To deploy the MPICH library instance 36

Using the FPGA Application Acceleration Processor [4] 39

Overview . 39

Preparing an FPGA Logic File . 42

Developing a Raw FPGA Logic File 42

Converting a Raw Logic File to Loadable Form 43

Procedure 4: To convert a raw logic file to loadable form 43

Managing FPGA Logic from the Command Line 44

Loading FPGA Logic into the Device 44

S–2433–131 Cray Private v

Cray XD1™ Programming

Page

Resetting an FPGA . 44

Releasing an FPGA from Reset State 45

Querying the Status of an FPGA 45

Erasing an FPGA . 45

Managing FPGA Logic in an Application Program 45

Using an FPGA in Application Programs 46

Typical Application Workflow 46

Understanding Address Spaces on a Node 46

Data Transfer Methods . 48

Using an FPGA in a C Program 48

Typographic Conventions . 48

Library Files . 49

Opening an FPGA . 49

Loading FPGA Logic into the Device 50

Resetting an FPGA . 51

Releasing an FPGA from Reset State 52

Mapping FPGA Locations to the Application Address Space 53

Synchronizing Accesses to FPGA Locations 55

Writing and Reading Individual FPGA Locations 57

Accessing Application Memory from an FPGA 60

Checking the Status of an FPGA 62

Checking the Programming State of an FPGA 63

Erasing an FPGA . 64

Closing an FPGA . 65

Sample Application: Using the Mersenne Twister Accelerator 66

Algorithm . 66

High-level Design of Application and FPGA Logic 67

Some Design Details . 67

Walkthrough . 69

Getting Started with the FPGA . 70

vi Cray Private S–2433–131

Contents

Page

Procedure 5: To get started with the FPGA 70

Appendix A Program Listing: mta_test.c 75

Glossary 87

Index 93

Tables
Table 1. Related publications . 2

Table 2. Software development tools in the Cray XD1 software distribution 9

Table 3. Key software libraries in the Cray XD1 software distribution 11

Table 4. Required compiler options 15

Table 5. MPICH libraries in the Cray XD1 software distribution 16

Table 6. MPICH subdirectories . 17

Table 7. MPI compiler scripts . 18

Table 8. Using MPICH . 19

Table 9. Using ROMIO . 20

Table 10. Resolving MPI references 21

Table 11. Using ACML . 23

Table 12. Using Apprentice2 . 24

Table 13. Using ARMCI . 25

Table 14. Using CrayPAT . 25

Table 15. Using the FPGA application acceleration processor API 26

Table 16. Using Global Arrays . 26

Table 17. Using GPSHMEM . 27

Table 18. Using PAPI . 27

Table 19. Using ScaLAPACK . 28

Table 20. Common module subcommands 29

Table 21. fpga_open(3) arguments and return value 50

Table 22. fpga_load(3) arguments and return value 51

Table 23. fpga_reset(3) arguments and return value 52

S–2433–131 Cray Private vii

Cray XD1™ Programming

Page

Table 24. fpga_start(3) arguments and return value 53

Table 25. fpga_memmap(3) arguments and return value 54

Table 26. fpga_mem_sync(3) arguments and return value 56

Table 27. fpga_wrt_appif_val(3) arguments and return value 58

Table 28. fpga_rd_appif_val(3) arguments and return value 60

Table 29. fpga_register_ftrmem(3) and fpga_dereg_ftrmem(3) arguments and return
value . 62

Table 30. fpga_status(3) arguments and return value 63

Table 31. fpga_is_loaded(3) arguments and return value 64

Table 32. fpga_unload(3) arguments and return value 65

Table 33. fpga_close(3) arguments and return value 66

Table 34. MTA registers . 68

Figures
Figure 1. Applications and communication libraries 13

Figure 2. Development workflow for FPGA applications 41

Figure 3. Physical components of a node and related address spaces 47

viii Cray Private S–2433–131

Preface

The information in this preface is common to Cray documentation provided with
this software release.

Accessing Product Documentation

With each software release, Cray provides books and man pages, and in
some cases, third-party documentation. These documents are provided in the
following ways:

CrayDoc The Cray documentation delivery system that allows you to
quickly access and search Cray books, man pages, and in some
cases, third-party documentation. Access this HTML and PDF
documentation via CrayDoc at the following locations:

• The local network location defined by your system
administrator

• The CrayDoc public website: docs.cray.com

Man pages Access man pages by entering the man command followed by the
name of the man page. For more information about man pages,
see the man(1) man page by entering:

% man man

Third-party documentation

Access third-party documentation not provided through
CrayDoc according to the information provided with the
product.

S–2433–131 Cray Private ix

http://docs.cray.com/

Cray XD1™ Programming

Conventions

These conventions are used throughout Cray documentation:

Convention Meaning

command This fixed-space font denotes literal items, such as file
names, pathnames, man page names, command names, and
programming language elements.

variable Italic typeface indicates an element that you will replace with a
specific value. For instance, you may replace filename with the
name datafile in your program. It also denotes a word or
concept being defined.

user input This bold, fixed-space font denotes literal items that the user
enters in interactive sessions. Output is shown in nonbold,
fixed-space font.

[] Brackets enclose optional portions of a syntax representation for
a command, library routine, system call, and so on.

... Ellipses indicate that a preceding element can be repeated.

name(N) Denotes man pages that provide system and programming
reference information. Each man page is referred to by its name
followed by a section number in parentheses.

Enter:

% man man

to see the meaning of each section number for your particular
system.

x Cray Private S–2433–131

Preface

Reader Comments

Contact us with any comments that will help us to improve the accuracy and
usability of this document. Be sure to include the title and number of the
document with your comments. We value your comments and will respond to
them promptly. Contact us in any of the following ways:

E-mail:
docs@cray.com

Telephone (inside U.S., Canada):
1–800–950–2729 (Cray Customer Support Center)

Telephone (outside U.S., Canada):
+1–715–726–4993 (Cray Customer Support Center)

Mail:
Software Publications
Cray Inc.
1340 Mendota Heights Road
Mendota Heights, MN 55120–1128
USA

Cray XD1 Support

Obtain support for the Cray XD1 product in either of the following ways:

Telephone:
1–888–279–2729 (Cray XD1 Customer Support Center)

Through the CRInform website:
http://crinform.cray.com/xd/

Note: Use the contact information provided here if you have a support
agreement with Cray. If, however, you have a support agreement with
a third-party organization that is a Cray channel partner, contact that
organization instead: do not contact Cray directly.

S–2433–131 Cray Private xi

file:///data/mw/pubs/edit/xml/smg/S-2433/mailto:docs%40cray.com
http://crinform.cray.com/xd/

Introduction [1]

This chapter identifies the intended audience, describes the scope and
organization of the manual, and lists related publications.

1.1 Who Should Read this Manual

This manual is intended for experienced programmers who want to develop
application software to run on the Cray XD1 system. The specific prerequisites
for understanding this manual include working knowledge of the following
items:

• The Linux command-line environment

• The C programming language

• The standard tools for developing C programs (editors, compilers, debuggers,
and so on)

• The architecture and operational concepts of the Cray XD1 system

1.2 Scope of this Manual

This manual is a guide to the programming environment of the Cray XD1
system and a primer on how to use the optional application acceleration
processors in an application program. The application acceleration processors are
field-programmable gate arrays (FPGAs).

This manual is not a guide to programming in general or to high performance
computing (HPC) in particular. It does not provide information about how to
design parallel programs, and is not a general guide to the common libraries that
are used in HPC applications. It does not describe how to design FPGA logic; for
an overview of that process, see Cray XD1 FPGA Development (S–6400).

1.3 How this Manual is Organized

This manual consists of the following chapters and appendix:

• Chapter 2: Programming Environment

Summarizes the programming environment of the Cray XD1 system.

S–2433–131 Cray Private 1

Cray XD1™ Programming

• Chapter 3: Using Tools and Libraries

Provides information for compiling and linking applications with the libraries
in the Cray XD1 software distribution and describes the Modules package.

• Chapter 4: Using the FPGA Application Acceleration Processor

Describes the utility program and the application programming interface
(API) library that enable you to use the optional FPGA application
acceleration processors. A sample program illustrates the API.

• Appendix A: Program Listing: mta_test.c

A full source-code listing of the sample program that is discussed in Chapter
4.

1.4 Related Publications

Refer to the publications in Table 1, page 2 for related information about the
Cray XD1 system.

Table 1. Related publications

Publication title Brief description

Cray XD1 Release Description (S–2453) Identifies the main new features and
enhancements in a particular release
of the product. Includes information
about the hardware, embedded
software, and Linux-based software of
the system.

Cray XD1 System Overview (S–2429) Overview of the Cray XD1 computer
and a description of its hardware and
software components.

Cray XD1 System Administration
(S–2430)

System administration and
monitoring. Also includes all
end-user topics such as submitting
jobs.

Cray XD1 FPGA Development (S–6400) Overview of the process and tools for
developing FPGA logic files.

2 Cray Private S–2433–131

Introduction [1]

Publication title Brief description

Design of Cray XD1 RapidArray
Transport Core (S–6411)

Companion document to Cray XD1
FPGA Development (S–6400). Provides
in-depth design details.

Design of Cray XD1 QDR II SRAM Core
(S–6412)

Companion document to Cray XD1
FPGA Development (S–6400). Provides
in-depth design details.

Cray XD1 Release Notes (S–2455) Information about resolved issues and
known issues for a particular release
of the product.

S–2433–131 Cray Private 3

Cray XD1™ Programming

4 Cray Private S–2433–131

Programming Environment [2]

This chapter is a summary of the programming environment of the Cray XD1
system. It identifies the tools and libraries that are available to programmers who
develop applications to run on the system. It also provides an overview of how
you access the system.

2.1 The Cray XD1 Environment

This section briefly describes the Cray XD1 system, the operating system details
that are relevant to programmers, and the system’s user environment and job
execution environment.

2.1.1 System Description

A node in the Cray XD1 system is an instance of the Linux operating system
and the hardware components that it controls, including an Opteron symmetric
multiprocessor (SMP), one or two RapidArray processors which interface to the
RapidArray interconnect, and an optional field-programmable gate array (FPGA)
application acceleration processor. Each Cray XD1 chassis has six nodes.

For a full description of the hardware components of the system, see Cray XD1
System Overview (S–2429).

2.1.2 Operating System

The Linux system that runs on the SMP of each node is based on a 64-bit SuSE
Linux Enterprise Server (SLES) distribution. For information on the specific
versions of the SuSE distribution and the Linux kernel in the Cray XD1 software
distribution, see Cray XD1 Release Description (S–2453).

Cray has enhanced the Linux distribution to support high performance
computing (HPC) applications that run on the Cray XD1 system. The
enhancements are as follows:

• Linux synchronized scheduler

• Driver for the RapidArray interconnect

• Driver for the FPGA application acceleration processor

• Sockets Direct Protocol

S–2433–131 Cray Private 5

Cray XD1™ Programming

The following subsections describe these features.

2.1.2.1 Linux Synchronized Scheduler (LSS)

In the Cray XD1 system, administrators can specify synchronized scheduling for
the processes of batch jobs. This enhanced process scheduling method provides
two advantages that improve the performance of parallel applications:

• Time slots on all nodes in a partition synchronize to a common time source
with microsecond accuracy. This reduces the time that job processes lose
while they wait to perform a collective operation.

• The scheduler applies a batch scheduling algorithm to job processes, which
gives them long uninterrupted time slots and restricts overhead processes to
relatively short segments of a scheduling cycle. This gives applications more
processor time overall and reduces time lost to context switches.

You do not need to change application programs to take advantage of this
feature. Administrators can enable it for selected partitions; for details, see Cray
XD1 System Administration.

2.1.2.2 Driver for the RapidArray Interconnect

The device driver for the RapidArray interconnect, which is the principal
mechanism for interprocessor communication in a Cray XD1 system, provides
transparent access to this high-bandwidth, low-latency internal network. This
driver is statically linked into the kernel. Cray customized the Message Passing
Interface (MPI) library and the Aggregate Remote Memory Copy Interface
(ARMCI) library to use the RapidArray interconnect directly. Computing jobs
that use these libraries benefit automatically from the use of the interconnect.
In addition, the system supports IP communication over the RapidArray
interconnect, so any system or application process can use it.

2.1.2.3 Driver for the FPGA Application Acceleration Processor

The system includes a device driver that supports communication between an
application and the optional FPGA application acceleration processor. This
driver is dynamically linked into the kernel and is present only if the node that
is running the Linux instance has an expansion module that includes the FPGA
application acceleration processor. For more information on these and other
components of the Cray XD1 system, see Cray XD1 System Overview (S–2429).

For information about using the FPGA application acceleration processor in an
application program, see Chapter 4, page 39.

6 Cray Private S–2433–131

Programming Environment [2]

2.1.2.4 Sockets Direct Protocol

Cray XD1 Linux provides an implementation of the Sockets Direct Protocol (SDP)
to accelerate applications that rely heavily on interprocessor communication
via TCP/IP. Applications that are specified in a system configuration file
transparently use SDP over the RapidArray interconnect instead of TCP/IP over
RapidArray. You do not need to change source code or even relink applications to
take advantage of this feature.

For information about using SDP, see Cray XD1 System Administration (S–2430).

2.1.3 User Environment

Each node in the Cray XD1 system runs Linux and potentially provides a
working environment for the programmer. The nodes that are actually available
for your use depend on how the administrator configured the system through
the Active Manager software.

The Cray XD1 system implements a flexible concept of partitions—collections of
nodes that can function as single logical computers. For partitions that the Active
Manager software manages1, the administrator must configure an attribute of a
partition so that users can log in for interactive work. Normally, you log in to a
partition (rather than directly to a particular node) and the system assigns your
login session to a node in the partition. This distributes the load.

Before you can log in, you must have a user ID that the system recognizes. In
addition, you must belong to a Linux group that is configured to access the
partition you want to use. Ask your administrator to set up these items for you.

An administrator can restrict access to a partition at any time. Each partition has
an access control setting that determines whether the partition is open (accepts
logins or jobs, depending on how it is configured) or closed (does not accept
logins or jobs). Each node also has a similar setting. Before you can log in to a
node, both the node and the partition it is in must be open.

When you log in to Linux on a Cray XD1 node, you have a normal Linux
environment. You can use the command line or an X Window environment
such as Gnome or KDE according to your own preferences. For programming
purposes, you must log in to a partition that is configured to use the full set of
software packages available in the distribution. Consult your administrator to
determine which partition is suitable.

1 The system also allows custom partitions that the Active Manager software creates but does not manage.

S–2433–131 Cray Private 7

Cray XD1™ Programming

2.1.4 Job Environment

If you develop compute-intensive applications, end users will typically run them
as batch jobs. Normally, the administrator defines at least one partition with the
job execution and synchronized scheduling attributes enabled (and the login
attribute disabled). Such a partition is reserved for executing batch jobs.

An end user logs in to Linux in a login partition or logs in to the Active Manager
graphical user interface (GUI) and submits a job to a specified partition. As part
of job submission, the user specifies the resources the job needs, such as the
number of processes and whether the job uses FPGA application acceleration
processors.

The workload management (WLM) system for which the system is configured
queues the job and launches it when the requested resources are available. The
WLM system determines which nodes in the partition run the job—the user is not
concerned with this. The user can see the status of the job in the Active Manager
GUI or in the user interfaces of the WLM system.

2.2 Accessing the System

See Cray XD1 System Administration (S–2430) for details on how to access the
Cray XD1 system either through the browser-based Active Manager GUI or
through a Linux shell. Although you will log in to Linux for most of your
development activities, you can also submit jobs through the GUI.

The following points summarize the prerequisites for accessing the Linux
environment on the Cray XD1 system:

• Ensure that the Cray XD1 system is accessible from your LAN. Normally, the
administrator sets up this access when he or she commissions and sets up
the system. You need to know the fully qualified domain name (FQDN) of
the system.

• Ensure that you have a user ID on the Cray XD1 system and that you know
your password.

• Ensure that your home directory and other resources on your LAN will be
accessible (if you need them) when you log in. Consult the administrator.

• Ensure that you have client software installed on your workstation for a
remote login method that the system supports. The system supports only
ssh by default.

8 Cray Private S–2433–131

Programming Environment [2]

• Identify the names of the partitions to use for your development activities
and for executing jobs. Ensure that the administrator grants you access to
these partitions.

When you satisfy these prerequisites, log in to Linux on a node in the Cray XD1
system by using the following command:

ssh user@partition.system-fqdn

For example, if your user name is jsmith, the site domain name is
mycompany.com, the Cray XD1 system domain is crayxd1, and the partition
for development work is dev, you log in as follows:

ssh jsmith@dev.crayxd1.mycompany.com

2.3 Development Tools

The Cray XD1 software distribution includes the standard set of Linux software
development tools. In addition, Cray offers some optional third-party tools. The
administrator can also install other local or third-party tools.

2.3.1 Standard Tools

Table 2, page 9 summarizes the standard software development tools that the
Cray XD1 software distribution includes. The table lists only the major tools
of interest in each category; in some cases, other minor tools are also in the
distribution.

Table 2. Software development tools in the Cray XD1 software distribution

Category Tool Comments

Text editors vim Vi IMproved

emacs

Compilers gcc GNU C compiler

g++ GNU C++ compiler

g77 GNU FORTRAN 77 compiler

Debuggers gdb GNU debugger for programs in various
languages

S–2433–131 Cray Private 9

Cray XD1™ Programming

Category Tool Comments

Scripting perl

python

Documentation groff GNU implementation of the troff
document formatting system. Includes
a macro package for coding man pages

info,
makeinfo

Texinfo system of online
documentation

2.3.2 Optional Tools

Other third-party development tools may be available for the Cray XD1 system.
For the current list of third-party tools that Cray sells and supports, consult your
Cray representative.

2.3.3 Local and Other Third-party Tools

One advantage of the AMD Opteron processors in the Cray XD1 system is
that they support both 32–bit and 64-bit applications. Many existing local and
third-party software products can run on the Cray XD1 system.

If you have your own development tools that you want to use on the system, ask
your administrator to install them. The procedure to install such software varies
depending on when the installation occurs and where you want the software to
be available; for a more detailed discussion, see the chapter on setting up the
system in Cray XD1 System Administration (S–2430). Ideally, the same software is
available on all nodes in a partition. Ensure that you have the proper licenses for
the scope of your proposed installation.

2.4 Libraries

HPC applications typically depend heavily on subprogram libraries in two main
areas: mathematical and scientific routines, and communication routines. Table 3,
page 11 summarizes the major libraries in the Cray XD1 software distribution or
optionally available from Cray that are of general interest for HPC applications.
For information on the specific version of each library, see Cray XD1 Release
Description (S–2453).

10 Cray Private S–2433–131

Programming Environment [2]

Table 3. Key software libraries in the Cray XD1 software distribution

Category Library Comments

General GNU C Library (glibc) Standard Linux C library;
designed for portability and
high performance. Conforms to ISO
C, POSIX, and other standards.

Mathematical AMD Core Math Library (ACML) Three standard libraries which are
optimized for the AMD Opteron
processor:

• Basic Linear Algebra
Subprograms (BLAS)

• Fast Fourier Transform (FFT)

• Linear Algebra Package
(LAPACK)

Includes both C and Fortran
interfaces.

Scalable Linear Algebra Package
(ScaLAPACK)

High-performance linear
algebra routines similar to
LAPACK; designed specifically
for distributed-memory
message-passing computers.

Communication Message Passing Interface (MPI) The major synchronous (2-sided)
communication standard for HPC.
Cray modified this implementation
to work with the Cray XD1
RapidArray interconnect; the API is
unchanged.

ROMIO The Argonne National Laboratory
implementation of MPI-IO.

S–2433–131 Cray Private 11

Cray XD1™ Programming

Category Library Comments

Aggregate Remote Memory Copy
Interface (ARMCI)

Foundation of asynchronous
(1-sided) communication functions.
Not used directly by application
programs. Originally part of the
GA distribution. Cray separated it
and modified it to work with the
Cray XD1 RapidArray interconnect.
Uses some routines in MPI.

Global Arrays (GA) Provides a shared-memory interface
for distributed-memory computers.
Uses ARMCI.

Generalized Portable SHMEM
(GPSHMEM)

Portable implementation of the
original Cray Shared Memory
(SHMEM) interface. Uses both
ARMCI and MPI. Cray modified
the implementation to work with its
implementation of ARMCI.

FPGA application
acceleration processor

Cray XD1 FPGA application
acceleration processor interface
library (libufp.a)

Functions to control FPGA
application acceleration processors.
See Chapter 4, page 39

Performance analysis Performance Application
Programming Interface (PAPI)

A standard API for accessing the
hardware performance counters
that are available on most modern
microprocessors.

Cray Performance Analysis Tool
(CrayPAT)

Optional set of Cray tools for
performance instrumentation and
measurement. Supports use of
a run-time library for collecting
performance data during execution
without modifications to source
code.

Apprentice2 is a related optional
tool that displays graphical analyses
of the CrayPAT data.

12 Cray Private S–2433–131

Programming Environment [2]

Table 3, page 11 indicates the dependencies among the Cray XD1
implementations of the libraries. These dependencies are as follows:

• GPSHMEM uses both ARMCI and MPI.

• Global Arrays uses ARMCI.

• ARMCI uses MPI.

Figure 1, page 13 illustrates these relationships.

RapidArray Interface

ARMCI MPI

Global Arrays GPSHMEM

Application Application Application

Figure 1. Applications and communication libraries

In addition to the major libraries in the table, which are applicable to all
application domains, the Cray XD1 software distribution provides many other
libraries that may be useful in particular application domains. These include
support for graphics, image processing, cryptography, audio processing,
networking, and so on. These libraries are well known in the Linux community
and are outside the scope of this manual.

S–2433–131 Cray Private 13

Cray XD1™ Programming

14 Cray Private S–2433–131

Using Tools and Libraries [3]

This chapter provides specific information for compiling and linking applications
that use the main mathematical and communications libraries in the Cray XD1
software distribution. It focuses primarily on using the Message Passing Interface
(MPI) library. It also recommends an approach to configuring your Cray XD1
environment for application development and execution.

3.1 General Compiling and Linking Considerations

If you do not have predefined environment modules to configure your shell
environment (see Section 3.4, page 29), you can use the general information in the
following subsections and the specific information about various libraries in the
rest of this chapter to set appropriate options and paths.

3.1.1 Required Compiler Options

Table 4, page 15 lists the options that Cray recommends for various compilers to
build applications for the Cray XD1 system.

Table 4. Required compiler options

Compiler Version Required options

GNU C 3.3.3 -mcpu=opteron -m64

GNU Fortran 77 3.3.3 -mcpu=opteron -m64

PathScale all -m64 (this is the default)

PGI all -tp k8-64

3.1.2 Dynamic Linking Versus Static Linking

Cray recommends that you use shared libraries, that is, dynamically linked
libraries, whenever possible. An application executable file that uses shared
libraries is much more likely to run without change across successive releases of
the Cray XD1 software distribution.

For example, if the Cray XD1 implementation of the MPICH library changes
to accommodate a change in the operating system support for the RapidArray

S–2433–131 Cray Private 15

Cray XD1™ Programming

interconnect, the change is completely transparent to an application that uses
dynamic linking. In the same circumstances, however, a statically linked
application may fail after the software upgrade.

When your application uses dynamic linking, all the nodes in a partition that
runs the application must have a consistent set of dynamic libraries. Similarly, the
environment variable for the dynamic library path (LD_LIBRARY_PATH) must
also be consistent in those nodes (unless you build the path in to the executable;
see Section 3.2.3.5, page 22).

3.2 Using the MPI Libraries

The Cray XD1 system has features that make it an excellent platform for running
MPI-based parallel applications. This section focuses on the information that you
need to build executable MPI applications from source files. It does not cover
the design of MPI applications.

3.2.1 MPICH Libraries

Cray provides several instances of the MPICH object library for the Cray XD1
system. Each instance of the library is compiled from the same source code with
a different compiler, including some compilers that are not in the Cray XD1
software distribution. Each Cray XD1 release includes the MPICH libraries that
are available at the time of release. Cray may generate additional instances of the
library between releases, and these are available on the CRInform website; for the
URL, see "Cray XD1 Support," page xi.

Table 5, page 16 lists the MPICH libraries in the present release.

Table 5. MPICH libraries in the Cray XD1 software distribution

Compiler
Vendor

Compiler
Version Path to MPICH resources

GNU 3.3.3 /usr/mpich/mpich-1.2.6

PGI 5.2-4 /usr/mpich/mpich-1.2.6-pgi524

PGI 6.0.1 /usr/mpich/mpich-1.2.6-pgi601

PathScale 2.0 /usr/mpich/mpich-1.2.6-path20

In the following sections, a particular MPICH directory is represented generically
by the mpich-dir variable notation.

16 Cray Private S–2433–131

Using Tools and Libraries [3]

Each of these directories has the same subdirectory structure. Table 6, page 17
lists the subdirectories.

Table 6. MPICH subdirectories

MPICH subdirectory Contents

lib Static MPICH object libraries

lib/shared Dynamic MPICH object libraries

include MPICH include files

bin MPICH tools and utilities

3.2.2 Using Compiler Scripts to Build MPI Applications

Each instance of the MPICH library on the Cray XD1 system includes a bin
directory which contains executable tools and utilities that are customized for
that instance of the library. In particular, the bin directory includes scripts that
compile and link an application with the same compiler that was used to compile
the library.

These scripts specify all the required parameters, including the following items:

• Directory path for MPICH include files

• Directory paths for MPICH libraries (static and shared)

• All libraries on which the Cray XD1 MPICH libraries depend

Cray recommends the use of these compiler scripts when you build your MPI
applications.

3.2.2.1 Available Compiler Scripts

Table 7, page 18 lists the MPI compiler scripts that are in the Cray XD1 software
distribution.

S–2433–131 Cray Private 17

Cray XD1™ Programming

Table 7. MPI compiler scripts

Compiler vendor MPI compiler scripts

GNU mpicc, mpiCC, mpif77

PGI mpicc, mpiCC, mpif77, mpif90

PathScale mpicc, mpiCC, mpif77, mpif90

3.2.2.2 Setting Your PATH Variable

To use the compiler script that matches the MPICH library that you want, ensure
that your PATH environment variable specifies both the path to the correct library
bin directory and the path to the corresponding compiler. For a library other
than the GNU MPICH library, you must prepend its bin directory to your
default PATH because the latter always includes the path to the GNU MPICH
bin directory.

Example 1: Adding an instance of MPICH to your PATH variable

If you use the bash shell, set your PATH variable as follows to access the scripts
that use the PGI 5.2-4 compilers:

> export PATH=/usr/mpich/mpich-1.2.6-pgi524/bin:$PATH

In this case, you also have to add the path for the compiler itself to your PATH
variable (not shown in the example).

3.2.2.3 Invoking a Compiler Script

Once your PATH variable is fully defined, you can build your application. To
do so, use the compiler script name in place of the native compiler name. For
example, use mpicc instead of pgcc. Do this whether you issue the command
from the command line or in a makefile.

The best way to establish the right environment for using an MPI compiler
script is to use a modulefile as described in Section 3.4, page 29. If you prepare
a suitable modulefile and you use an MPI compiler script, you can very easily
build your application with different compilers. For example, the commands to
compile and link the MPI application my_app with the PGI 5.2-4 C compiler
could be as simple as the following example:

module add pgi/5.2-4
mpicc my_app

18 Cray Private S–2433–131

Using Tools and Libraries [3]

3.2.3 Manually Compiling and Linking MPI Applications

If you do not use an MPI compiler script to build an application, you must
manually specify all the required options and arguments when you run the
compiler. Table 8, page 19 summarizes the paths for include files and libraries.
This information is repeated in the remainder of this section in the context of
the required compiler command arguments. The mpich-dir variable notation
represents the path to the particular instance of the MPICH library. For the
various values of mpich-dir, see Section 3.2.1, page 16.

Table 8. Using MPICH

Detail Comment

Include file path mpich-dir/include/mpi.h C header file.

mpich-dir/include/mpif.h FORTRAN 77 include file

Object library path mpich-dir/lib/libmpich.a Static main library.

mpich-dir/lib/shared/libmpich.so Shared main library.

mpich-dir/lib/libfmpich.a Static additional library for
Fortran programs.

mpich-dir/lib/shared/libfmpich.a Shared additional library for
Fortran programs.

Documentation MPI—The Complete Reference; Volume 1, The MPI
Core, M. Snir et al., The MIT Press

> man MPI

and man pages for individual routines

http://www-unix.mcsl.gov/mpi/mpich Argonne National
Laboratory website for
MPICH

Table 9, page 20 provides supplementary information for the related ROMIO
library. This implementation of the MPI-IO library is part of the MPICH library;
you do not have to specify a separate object library path.

S–2433–131 Cray Private 19

http://www-unix.mcsl.gov/mpi/mpich

Cray XD1™ Programming

Table 9. Using ROMIO

Detail Comment

Include file path mpich-dir/include/mpio.h C header file.

mpich-dir/include/mpiof.h Fortran include file

Documentation Chapter 3 of Using MPI-2: Advanced Features of the
Message-Passing Interface, W. Gropp et al., The MIT
Press

Man pages for individual routines; for example,
> man MPI_File_open

http://www-unix.mcs.anl.gov/romio/

Note: The remainder of this section uses the common command-line option
names. You may need to translate the option names into the equivalent ones
for your specific compiler.

3.2.3.1 Include File Path

Specify the path at which the compiler can find source include files for MPICH as
follows:

-Impich-dir/include

Example 2: Specifying the MPICH header file location

For the MPICH 1.2.6 library that was compiled with the GNU compilers, use
the following command:

> gcc -I/usr/mpich/mpich-1.2.6/include

other-options files

3.2.3.2 Linking the Main MPICH Library

Table 10, page 21 lists the options and arguments that you include to resolve
direct references to MPI routines in various languages. The table shows both
the statically linked and dynamically linked cases. Include the options and
arguments in your command line in the same order that they appear in the table.

20 Cray Private S–2433–131

http://www-unix.mcs.anl.gov/romio/

Using Tools and Libraries [3]

Table 10. Resolving MPI references

Language Static linking Dynamic linking

C -Lmpich-dir/lib -lmpich -shared -Lmpich-dir/lib/shared

-Lmpich-dir/lib -lmpich

C++ -Lmpich-dir/lib -lpmpich++

–lmpich
Not available

FORTRAN 77 -Lmpich-dir/lib -lmpich -shared -Lmpich-dir/lib/shared

-Lmpich-dir/lib -lmpichfarg –lmpich

Fortran 90 -Lmpich-dir/lib -lmpich -shared -Lmpich-dir/lib/shared

-Lmpich-dir/lib -lmpichf90 –lmpichfarg

–lmpich

3.2.3.3 Linking Other Required Libraries

The Cray XD1 MPICH library source code has been customized to perform
interprocessor communication directly over the RapidArray network.
Consequently, when you link an MPI application, you must specify two
additional libraries, as follows:

-L/usr/local/lib64 -lrapl -lpthread

Place the two -l options at the end of the list of libraries in the command.

3.2.3.4 Combined Examples

Example 3, page 21 shows a command to compile and statically link an MPI
application with the GNU C compiler.

Example 3: Manually building an MPI application with the GNU C compiler
with static linking

> gcc -I/usr/mpich/mpich-1.2.6/include

–L/usr/mpich/mpich–1.2.6/lib -L/usr/local/lib64 -lmpich

–lrapl –lpthread other-options

files

Example 4, page 22 shows a command to compile and dynamically link an MPI
application with the PGI Fortran 90 compiler version 5.2-4.

S–2433–131 Cray Private 21

Cray XD1™ Programming

Example 4: Manually building an MPI application with the PGI Fortran 90
compiler with dynamic linking

> pgf90 -I/usr/mpich/mpich-1.2.6-pgi524/include -shared

–L/usr/mpich/mpich–1.2.6-pgi524/lib/shared

–L/usr/mpich/mpich–1.2.6-pgi524/lib -L/usr/local/lib64

–lmpichf90 -lmpichfarg –lmpich –lrapl –lpthread

other-options files

3.2.3.5 Building In the Path to the Shared Library

When you build an application to use the shared library, you may also want
to build in the path that allows the system to resolve calls dynamically at run
time. If you do not do so, users of the application must set the path in their
LD_LIBRARY_PATH environment variable.

With the GNU compilers, you can build in the shared library path by including
the following options in the compiler command:

-Wl,-rpath -Wl,mpich-dir/shared

where mpich-dir is the appropriate path from Table 5, page 16.

Example 5, page 22 shows a command to compile and dynamically link an MPI
application with the GNU FORTRAN 77 compiler. This example builds in the
path to the shared library.

Example 5: Manually building an MPI application with the GNU FORTRAN 77
compiler with dynamic linking

> g77 -I/usr/mpich/mpich-1.2.6/include -shared

–L/usr/mpich/mpich–1.2.6/lib/shared

–L/usr/mpich/mpich–1.2.6/lib -L/usr/local/lib64 -lmpichfarg

–lmpich –lrapl –lpthread

-Wl,-rpath -Wl,/usr/mpich/mpich-1.2.6/lib/shared

other–options files

3.3 Using Other Libraries and Tools

This section gives the specific information that you need to compile and
link programs that use each of the main HPC libraries in the Cray XD1
software distribution, to access the available performance analysis tools, and
to access documentation for these libraries and tools. Libraries and tools of

22 Cray Private S–2433–131

Using Tools and Libraries [3]

all types—communications, mathematical, and other—are described here in
alphabetical order.

If a predefined environment module is provided with the library, it is also
identified in this section. For a general description of environment modules,
see Section 3.4, page 29.

3.3.1 ACML

Table 11, page 23 lists information about the AMD Core Math Library (ACML) on
the Cray XD1 system.

Table 11. Using ACML

Detail Comment

Include file paths /opt/acml2.0/gnu64/include/acml.h C header file.

Use with GNU compilers.

/opt/acml2.0/pgi64/include/acml.h C header file.

Use with PGI compilers.

/opt/acml2.0/pgi64_mp/include/acml.h C header file.

Use with PGI compilers
and OpenMP.

Object library paths /opt/acml2.0/gnu64/lib/libacml.a Static.

Use with GNU compilers.

/opt/acml2.0/gnu64/lib/libacml.so Shared.

Use with GNU compilers.

/opt/acml2.0/pgi64/lib/libacml.a Static.

Use with PGI compilers.

/opt/acml2.0/pgi64/lib/libacml.so Shared.

Use with PGI compilers.

S–2433–131 Cray Private 23

Cray XD1™ Programming

Detail Comment

/opt/acml2.0/pgi64_mp/lib/libacml.a Static.

Use with PGI compilers
and OpenMP.

/opt/acml2.0/pgi64_mp/lib/libacml.so Shared.

Use with PGI compilers
and OpenMP.

Documentation The user guide, AMD Core Math Library
(ACML), is installed with the software at
/opt/acml2.5-64bit/Doc/acml.pdf.

Other formats are also present.

3.3.2 Apprentice2

Table 12, page 24 lists information about the optional Apprentice2 tool on
the Cray XD1 system. Use this tool in conjunction with CrayPAT to analyze
performance data graphically.

Table 12. Using Apprentice2

Detail Comment

Environment module > module use /opt/modulefiles

> module load apprentice2

Documentation > man app2

Online help in the tool.

3.3.3 ARMCI

Table 13, page 25 lists information about the Aggregate Remote Memory Copy
Interface (ARMCI) on the Cray XD1 system.

24 Cray Private S–2433–131

Using Tools and Libraries [3]

Table 13. Using ARMCI

Detail Comment

Include file path /usr/local/include/armci.h C header file.

Object library path /usr/local/lib64/libarmci.a

Documentation http://www.emsl.pnl.gov/docs/parsoft/armci/

3.3.4 CrayPAT

Table 14, page 25 lists information about the optional Cray Performance Analysis
Tool (CrayPAT) on the Cray XD1 system.

Table 14. Using CrayPAT

Detail Comment

Environment module > module use /opt/modulefiles

> module load craypat

Include file path /opt/xd-pe/craytools/1.0.1/cpatx/
include/hwpc.h

C header file.

The include path is not
required in the compile
step if you load the
specified modulefile.

/opt/xd-pe/craytools/1.0.1/cpatx/
include/hwpcf.h

Fortran include file.

The include path is not
required in the compile
step if you load the
specified modulefile.

Object library path /opt/xd-pe/craytools/1.0.1/cpatx/
lib/libhwpc.a

The library path is not
required in the link step
if you load the specified
modulefile.

Documentation > man hwpc

For information about the CrayPAT command-line
tools:
> man pat

S–2433–131 Cray Private 25

http://www.emsl.pnl.gov/docs/parsoft/armci/

Cray XD1™ Programming

3.3.5 FPGA Application Acceleration Processor API

Table 15, page 26 lists information about the field-programmable gate array
(FPGA) application acceleration processor’s application programming interface
(API) on the Cray XD1 system.

Table 15. Using the FPGA application acceleration processor API

Detail Comment

Include file path /usr/local/include/ufplib.h C header file

Object library path /usr/local/lib64/libufp.a

Documentation > man fpga_intro

and man pages for individual functions

Chapter 4, page 39 In this manual.

3.3.6 Global Arrays

Table 16, page 26 lists information about the Global Arrays (GA) library on the
Cray XD1 system.

Table 16. Using Global Arrays

Detail Comment

Include file path /usr/local/include/ga.h C header file

Object library path /usr/local/lib64/libglobal.a

Documentation http://www.emsl.pnl.gov/docs/global/ga.html

3.3.7 GPSHMEM

Table 17, page 27 lists information about the Generalized Portable Shared
Memory (GPSHMEM) library on the Cray XD1 system.

26 Cray Private S–2433–131

http://www.emsl.pnl.gov/docs/global/ga.html

Using Tools and Libraries [3]

Table 17. Using GPSHMEM

Detail Comment

Include file path /usr/local/include/gpshmem-1.0/
gpshmem.h

C header file

/usr/local/include/gpshmem-1.0/
gpshmem.Fh

Fortran include file

Object library path /usr/local/lib64/libgpshmem.a

Documentation > man gpshmem

and man pages for individual routines

3.3.8 PAPI

Table 18, page 27 lists information about the Performance Application
Programming Interface (PAPI) library on the Cray XD1 system.

Table 18. Using PAPI

Detail Comment

Environment module > module use /opt/modulefiles

> module load papi

Include file path /opt/xd-pe/papi/3.0.7/include/ papi.h C header file.

The include path is not
required in the compile
step if you load the
specified modulefile.

/opt/xd-pe/papi/3.0.7/include/ fpapi.h Fortran include file.

The include path is not
required in the compile
step if you load the
specified modulefile.

Object library path /opt/xd-pe/papi/3.0.7/lib/ libpapi.a The library path is not
required in the link step
if you load the specified
modulefile.

S–2433–131 Cray Private 27

Cray XD1™ Programming

Detail Comment

Documentation > man PAPI

and man pages for individual routines

http://icl.cs.utk.edu/papi

3.3.9 ScaLAPACK

Table 19, page 28 lists information about the Scalable Linear Algebra Package
(ScaLAPACK) on the Cray XD1 system. The ScaLAPACK library uses the Basic
Linear Algebra Subprograms (BLAS) library and the Basic Linear Algebra
Communication Subprograms (BLACS) library. BLACS is included in the
ScaLAPACK software package for the Cray XD1 system and is included in this
table. A version of BLAS that is optimized for the Opteron processor is part of
ACML.

Table 19. Using ScaLAPACK

Detail Comment

Include file path /usr/local/include/blacs.h

/usr/local/include/scalapack.h

Object library path /usr/local/lib/libscalapack.a

/usr/local/lib/libblacs.a

/usr/local/lib/libblacsCinit.a

/usr/local/lib/libblacsFinit.a

32-bit libraries.

/usr/local/lib64/libscalapack.a

/usr/local/lib64/libblacs.a

/usr/local/lib64/libblacsCinit.a

/usr/local/lib64/libblacsFinit.a

To link BLAS, see Section 3.3.1, page 23.

64-bit libraries.

Documentation http://www.netlib.org

28 Cray Private S–2433–131

http://icl.cs.utk.edu/papi
http://www.netlib.org

Using Tools and Libraries [3]

3.4 Using the Modules Package to Configure Your Environment

Most of the choices you make as you compile and link your application can be set
by environment variables. The Cray XD1 system includes the Modules package
which makes it easy to change your working environment.

3.4.1 Overview of the Modules Package

The Modules package allows you to change your environment with a single
command—module—that can deploy a predefined environment configuration
called a modulefile. Each modulefile is a text file that specifies the information that
the command uses to configure your shell for a particular purpose; for example,
for a particular version of an application. The module command supports all
popular shells and some scripting languages.

The module command can access the modulefiles in the directories that are
specified in your MODULEPATH environment variable. You can use the module
command itself to change this variable; see the use subcommand in Table 20,
page 29.

3.4.2 Introduction to the module Command

The syntax of the module command is as follows:

> module [options] subcommand [subcommand-args]

Table 20, page 29 describes the most common subcommands.

Table 20. Common module subcommands

Subcommand Description

help Lists all subcommands or displays help information
for a specified modulefile.

use Prepends a directory to the MODULEPATH variable.

avail Lists all available modulefiles.

load or add Loads a specified modulefile into the shell
environment.

list Lists the loaded modulefiles.

display or show Displays the environment changes a modulefile
specifies (except for conditional changes).

S–2433–131 Cray Private 29

Cray XD1™ Programming

Subcommand Description

unload or rm Removes a specified modulefile from the shell
environment.

purge Unloads all loaded modulefiles.

For full details of all options, subcommands, and subcommand arguments, see
the module man page.

Optionally, the system can have a global modulefile that applies to all users on
a host, and individual users can have a user-specific default modulefile. When
you invoke the module command, it automatically invokes these modulefiles (if
they exist) before it performs the specified subcommand. For more details, see
the man page.

3.4.3 Predefined Modulefiles

Some libraries and tools in the Cray XD1 software distribution or available as
options include a predefined modulefile to provide access or to assist you in
building applications. Section 3.3, page 22 identifies these modulefiles where
they are available. Third-party products that you install may also include a
modulefile.

Use the following command to see all the modulefiles that are available with the
current value of your MODULEPATH environment variable:

> module avail

3.4.4 Developing Other Modulefiles from Templates

The Cray XD1 software distribution includes two templates from which you can
develop your own modulefiles for the following situations:

• Using a particular compiler

• Using the MPICH library instance that was built by a particular compiler

For a description of the syntax of modulefiles, see the modulefile man page.

3.4.4.1 Compiler Modulefile Template

The template for a compiler modulefile—see Example 6, page 31—includes most
of what you need in a modulefile for the PGI compiler. Whether you use the

30 Cray Private S–2433–131

Using Tools and Libraries [3]

PGI compiler or another compiler, you must edit this example to supply specific
information for your system.

The first step is to copy the following file to another location and rename it:

/opt/XD1/templates/compiler_module

For the PGI compiler, replace the version placeholders in the file with the actual
version numbers. The template file uses the following notation for placeholders
to indicate text that you must replace: %name%; for example, %MAJOR_VERSION%.

If you use a different compiler, change the PGI-based names in the file to
something else and make any other necessary adjustments. For example, you
may not need to set the LM_LICENSE_FILE variable.

This template sets the MPICH environment variables that allow you to use the
MPI compiler commands and have them execute the compiler of your choice.

Example 6: Template for a PGI compiler modulefile

#%Module

#

pgi module

#

proc ModulesHelp { } {

puts stderr "\tpgi - loads ...\n"

}

module-whatis "sets the environment variables for pgi compiler"

setenv PGI_MAIN_VER %MAJOR_VERSION% #Example: 5.2

setenv COMPILER_ROOT %DIRECTORY_PATH% #Example: /opt/pgi-5.2-4

Search for demo license before searching flexlm servers

prepend-path LM_LICENSE_FILE $env(COMPILER_ROOT)/license.dat

set pgidir $env(COMPILER_ROOT)/linux86-64/$env(PGI_MAIN_VER)

prepend-path PATH $pgidir/bin

prepend-path MANPATH $env(COMPILER_ROOT)/common/man

prepend-path LD_LIBRARY_PATH $pgidir/lib

prepend-path LD_LIBRARY_PATH $pgidir/libso

setenv MPICH_CLINKER pgcc

S–2433–131 Cray Private 31

Cray XD1™ Programming

setenv MPICH_CCC pgCC

setenv MPICH_CCLINKER pgcc

setenv MPICH_CC pgcc

setenv MPICH_F90 pgf90

setenv MPICH_F90LINKER pgf90

3.4.4.2 MPICH Library Modulefile Template

The template for an MPICH library modulefile—see Example 7,
page 32—includes most of what you need in a modulefile for the instance of the
MPICH library that was compiled with the PGI compiler. Whether you use the
PGI compiler or another compiler, you must edit this example to supply specific
information for your system.

The first step is to copy the following file to another location and rename it:

/opt/XD1/templates/mpich_module

Replace the version placeholder in the file with the actual directory name
of the MPICH instance. The template file uses the following notation for the
placeholder: %MPICH_4_PGI_COMPILER%. The comment on the same line
shows an example. Table 5, page 16 shows more examples.

If you use a different compiler, change the PGI references in the heading
comment and in the help string to something else.

Example 7: Template for an MPICH library modulefile

#%Module

#

mpich module for PGI compiler

#

proc ModulesHelp { } {

puts stderr "\tmpich for pgi compiler - loads ...\n"

}

setenv MPICH_VERSION %MPICH_4_PGI_COMPILER% #mpich-1.2.6-pgi524

setenv MPICH /usr/mpich/$env(MPICH_VERSION)

setenv MPICH_HOME $env(MPICH)

prepend-path PATH $env(MPICH)/bin

prepend-path MANPATH $env(MPICH)/man

prepend-path LD_LIBRARY_PATH /lib64

prepend-path LD_LIBRARY_PATH $env(MPICH)/lib/shared

prepend-path INCLUDE_PATH $env(MPICH)/include

32 Cray Private S–2433–131

Using Tools and Libraries [3]

3.5 Building an MPICH Library Instance

If you compile your MPI applications with a compiler other than those for which
an MPICH library instance already exists (either in the Cray XD1 software
distribution or on the CRInform website), and you want the library to be
compiled with the same compiler, the Cray XD1 administrator can build a new
instance of the MPICH library for you.

3.5.1 Obtaining the MPICH Source Code

The source code for the components of the Cray XD1 software distribution that
are under the GNU Public License (GPL) is available on the Cray website as an
ISO 9660 disc image. This image includes an RPM package for the MPICH source
code. In this procedure, you download the disc image and copy the MPICH
source package to the Cray XD1 system. If you do not record the disc image onto
a physical disc, and if you use the same workstation to access both the Internet
and the Cray XD1 system, it must be a Linux workstation.

Procedure 1: To obtain the MPICH source code

1. From a workstation with Internet access, use your web browser to navigate
to the software releases page of the CRInform website; for the URL, see
"Cray XD1 Support," page xi.

2. Check the size of the ARP Linux distribution source disc image and your
available disk space.

3. Download the disc image.

4. If necessary, move the disc image to a Linux workstation that has access to
the Cray XD1 system.

5. Find or create a suitable directory on which to mount the disc image file, then
mount the file as if it were a device:

mount -t iso9660 -o loop,ro path-to-disc-image mount-point

Example 8: Accessing the source disc image

This example assumes that you downloaded the disc image file to the /tmp
directory of your workstation.

mkdir /tmp/xd1-src

mount -t iso9660 -o loop,ro /tmp/ARP_01_02_0034_src.iso \

/tmp/xd1-src

S–2433–131 Cray Private 33

Cray XD1™ Programming

6. Copy the mpich-version-release.src.rpm file to a temporary location
on the Cray XD1 system, where version identifies the particular MPICH
version and release is the release number of this package from Cray Inc.

Example 9: Copying the MPICH source package to the Cray XD1 system

This example makes the following assumptions:

• Your Cray XD1 administrator name is xd1admin.

• The domain name of the master node is xd1.company.com.

• You mounted the disc image at /tmp/xd1-src.

• The Cray XD1 application release package (ARP) version is 1.2-34.

• The MPICH source package version and release are 1.2.6-3.

cd /tmp/xd1-src/01_02_0034/sources

scp mpich–1.2.6-3.src.rpm xd1admin@xd1.company.com:/tmp

3.5.2 Compiling the MPICH Library

In this procedure, you first install the source software package, then apply Cray
patches, configure certain parameters, compile the library, and finally install the
library in the correct location.

Procedure 2: To compile the MPICH library

1. Log in to the master node of the Cray XD1 system as root.

2. Go to the directory that contains the Cray XD1 MPICH source software
package. For example:

cd /tmp

3. Install the package:

rpm -ivv

mpich-version-release.src.rpm

where version identifies the particular MPICH version and release is the
release number of this package from Cray Inc. For example, the package file
name could be mpich–1.2.6-3.src.rpm.

The command installs the contents of the package into the following
directory: /usr/src/packages/SOURCES.

34 Cray Private S–2433–131

Using Tools and Libraries [3]

4. Apply the Cray patches to the MPICH source files:

rpmbuild -bp /usr/src/packages/SPECS/mpich.spec

The set of source files that are ready to build is now under the following
directory: /usr/src/packages/BUILD/mpich-version.

5. Cray recommends that you change this directory to the following
name to indicate the Cray release as well as the MPICH version:
mpich–version–release.

6. Cray recommends that you copy the source tree (the
mpich–version–release directory and all its contents) to
another location. This preserves the installed source tree for further use—that
is, for compiling with other compilers.

7. Go to the working mpich–version–release directory and edit the
following file: rai_configure.sh. This Cray script is a wrapper for the
MPICH configure script. Apply the following changes to it:

• Change the values of the following variables to specify which compilers
to use: CC, CXX, FC, and F90. If you will not use a Fortran 90 compiler,
leave the F90 variable with a null value.

• Change the default value of the INSTALL_DIR variable which specifies
the target location of this instance of the MPICH library. You should
follow the convention that is described in Section 3.2.1, page 16. If you
leave the default value, the new library will overwrite the GNU instance
of the library.

• If you want to use a Fortran 90 compiler, remove the --disable-f90
option from the configure command.

• In the CFLAGS variable, if the optimization option is -O6 and you are not
using GNU compilers, change the option to -O3.

8. Execute the rai_configure.sh script.

The script checks many prerequisites and displays its progress. Watch for
error messages. If the script is successful, it generates a makefile. The last line
of the message output should be as follows:

Configuration completed.

9. Compile the library:

make mpi

S–2433–131 Cray Private 35

Cray XD1™ Programming

This process takes a minute or two and may produce many messages. Watch
for error messages, but you can safely ignore the warnings.

If the compilation is successful, the final set of messages begins with the
following one:

Completed build of MPI

10. Install this instance of the MPICH library:

make install

This command installs the MPICH library (including the various object
libraries, documentation, compiler scripts, and so on). It also builds some
simple test applications. Watch for error and warning messages from these.

Note: In this release, building the C++ test application generates a warning
message, but you can ignore it.

The final output from this command should be as follows:

installed MPICH in mpich-dir

where mpich-dir is the target directory that you configured in step 7.

3.5.3 Deploying the MPICH Library Instance

In the previous section, you compiled and installed the MPICH library instance
on the master node of the Cray XD1 system. You must also make the library
available on every node where it is needed. In the procedure in this section, you
install the library in each relevant partition master software image and propagate
the changes to the nodes that are already in the partition. For an explanation of
partition master software images and a general discussion of managing custom
configurations of the system, see Cray XD1 System Administration (S–2430).

This procedure assumes that you are still logged in to the master node as root.
However, you can also perform this procedure as an administrator.

Procedure 3: To deploy the MPICH library instance

1. Copy the library instance into each relevant partition master software image:

cp -fpr mpich-dir

/var/opt/pce/partmaster/partition/root/usr/mpich

where mpich-dir is the path to the directory in which you installed the library
in the preceding procedure, and partition is the name of the target partition.

36 Cray Private S–2433–131

Using Tools and Libraries [3]

2. Propagate the changes in each relevant partition to all the nodes in the
partition:

chpart --synchronize-partition now partition

The command generates an update package for each node in the target
partition, prints a request ID, and terminates. For a partition with the full
set of software packages, this takes approximately 20 seconds. The update
packages contain all of the changes to the partition master software image
since you last synchronized the partition.

Note: If you have made other changes to the partition master software
image besides adding the new MPICH library instance, consider closing
the partition and waiting until user activity terminates before you
synchronize the partition.

Each node processes its update package asynchronously. If a node is down
when you issue this command, the update package remains in a queue; when
the node boots, it detects and processes the update package.

3. You can check on the progress of the partition synchronization request at
any subsequent time:

> amrequestmon --show-request-tasks request-id

where request-id is the request ID from the chpart command. This command
displays information about the tasks that result from the asynchronous
request. When a task completes, Active Manager removes it from the
database and it no longer appears in the output of this command.

S–2433–131 Cray Private 37

Cray XD1™ Programming

38 Cray Private S–2433–131

Using the FPGA Application Acceleration
Processor [4]

This chapter describes how to use the optional field-programmable gate array
(FPGA) application acceleration processors in a Cray XD1 system. Cray provides
a utility program and an application programming interface that together
support the use of these processors by an application program.

4.1 Overview

The FPGA application acceleration processors in a Cray XD1 system are Xilinx
Virtex II Pro field-programmable gate arrays. In this chapter, we usually refer to
them simply as FPGAs unless the context requires more precision (the Cray XD1
system also uses FPGAs for other purposes). An FPGA application acceleration
processor is an optional component of the optional expansion module that may
be added to each compute blade in a Cray XD1 chassis. (For more information
on these and other components of the Cray XD1 system, see Cray XD1 System
Overview (S–2429).) You can use the FPGAs to implement selected algorithms or
parts of algorithms in hardware.

FPGAs can significantly improve the performance of some applications.
Typically, they achieve this in one or both of the following ways:

• Performing the same processing step on multiple data elements in parallel

• Pipelining multiple sequential processing steps that are performed on each
element of a large data set

The logic that is programmed into an FPGA exists first as a binary file that
encodes the required hardware design. The FPGA utility program, fcu, converts
a raw FPGA binary file that the FPGA development tools produce to a form that
the system can use. The FPGA application programming interface (API) library
provides the functions that an application needs in order to use an FPGA once
the converted FPGA logic file exists.

This chapter explains the sequence of operations that you perform to use
an FPGA and gives informal descriptions of the fcu command and the API
functions. For more formal descriptions that show the full set of command
options and the function prototypes, see the man pages online.

S–2433–131 Cray Private 39

Cray XD1™ Programming

Figure 2, page 41 illustrates the process of developing an application that uses
the FPGA.

For an example that applies the various commands that this chapter describes to
the sample program, see Section 4.6, page 70.

40 Cray Private S–2433–131

Using the FPGA Application Acceleration Processor [4]

Design
FPGA
logic

Code
application
program

Hardware description
language files

Application source
files

Create
header file:
fcu --build

ufplib.h

libufp.a

Synthesize,
place, and

route
Compile

Header file
(default: ufphdr)

Raw logic file
(file.bin)

Application object
files

Link
Convert:
fcu

--convert

Load logic:
fcu --load

(optional)

Converted logic file
(default: file.ufp)

Application
executable

Execute
application

FPGA

(op
tio

na
l)

fp
ga
_l
oa
d(
)

Figure 2. Development workflow for FPGA applications

S–2433–131 Cray Private 41

Cray XD1™ Programming

4.2 Preparing an FPGA Logic File

Before you can use the FPGAs in an application program, you must have a logic
file in the proper form. The two stages in the preparation of such a file are as
follows (from the viewpoint of application development):

1. Develop a raw FPGA logic file.

2. Convert the raw logic file to the loadable form.

4.2.1 Developing a Raw FPGA Logic File

The details of developing a raw FPGA logic file are outside the scope of this
manual. A separate manual, Cray XD1 FPGA Development (S–6400), provides a
high-level overview of this subject. In addition, Design of Cray XD1 RapidArray
Transport Core (S–6411) and Design of Cray XD1 QDR II SRAM Core (S–6412)
describe two essential logic cores that are provided with the system. This section
describes only the role of the application programmer in the logic development
process and the output of that process.

Development of the raw FPGA logic file is a complex process that requires
specialized knowledge and tools. As an application programmer, you typically
collaborate with a hardware designer or other specialist in this task. Your role in
the process is mainly to identify the parts of the application that are suitable for
implementation in the FPGA and to communicate precise specifications to the
logic developer. You also need to work closely with the logic developer to design
the protocol for communication between the application and the FPGA logic.

All communication between the FPGA and an Opteron processor uses the
RapidArray link between the FPGA and the RapidArray processor on the
expansion module. Therefore, the logic developer must always include the
RapidArray Transport Core (RT Core) in the logic design. This is a prerequisite
for using the commands and functions that this chapter describes.

If the logic design uses the QDR II SRAM that is physically connected to the
FPGA, the logic developer must also include the QDR II SRAM core. The
developer can omit this core if the logic does not use the SRAM.

The output of the FPGA logic development process is a raw logic file (often called
simply the binary file). Usually, the name of this file has a .bin suffix. It must
have been compiled for a particular variant of the FPGA—each combination of
FPGA size (number of gates) and speed grade requires a different binary file.

42 Cray Private S–2433–131

Using the FPGA Application Acceleration Processor [4]

4.2.2 Converting a Raw Logic File to Loadable Form

The model of FPGA in the Cray XD1 system requires a slightly different file
format than the development tools produce—it requires reversal of the bits in
each byte. In addition, the FPGA API and the Cray XD1 Linux driver for the
device assume that extra information about the expansion module is in the binary
logic file. Therefore, you must transform the raw logic file to reverse the bits and
embed the extra information before you can use it.

The multipurpose FPGA control utility, fcu(1), performs these two operations
of the conversion.

Procedure 4: To convert a raw logic file to loadable form

1. Identify the Cray part number of the target FPGA. It is a string of the form
90–nnnn–nn that specifies the particular variant of FPGA that is present.
You can identify the part numbers of the FPGAs in a system by using the
Active Manager lsnode ––verbose command.

Note: In previous releases, the FPGA part number that the command
requires was of the form 87-nnnn-nn. In the current release, the fcu(1)
command still accepts a part number of this form, but will not in future
releases.

2. Create a header file (which you will later merge with the logic file):

> fcu --build [headerfile] [--partnum part-number]

[--clock clock-freq]

where headerfile is the output file name, part-number is the Cray part number
of the FPGA, and clock–freq is the clock frequency at which to run the FPGA,
in megahertz. If you omit headerfile, the output file name is ufphdr. The
logic designer can provide the clock frequency; it must be in the range 63
through 199. If you do not specify the part number or the clock frequency in
the command line, the command prompts you for the information.

The fcu program creates the header file.

3. Merge the header file and the raw logic file:

> fcu --convert rawfile headerfile [loadfile]

where rawfile is the name of the input raw logic file (typically, design.bin),
headerfile is the name of a header file that was previously created by the
--build option of fcu (as in the preceding step), and loadfile is the name of
the output file. If you omit loadfile, the output file name is rawfile.ufp.

S–2433–131 Cray Private 43

Cray XD1™ Programming

The fcu program prepends the header file to the logic file and transforms the
logic file as necessary. The output file is ready to load into the FPGA.

4.3 Managing FPGA Logic from the Command Line

You can perform some of the tasks involved in using an FPGA from the Linux
command line with the FPGA control utility, fcu(1). Alternatively, you can
perform the same tasks and more with the functions of the FPGA API; for details,
see Section 4.4, page 45. Therefore, you can choose whether to perform these
tasks in a job script or in the application program itself.

4.3.1 Loading FPGA Logic into the Device

After you convert the raw logic file into loadable form, you can load it into the
FPGA device in preparation for running your application.

To load FPGA logic into the device from the command line, run the following
command:

> fcu --load loadfile

where loadfile is the path name of the converted FPGA logic file.

The fcu program loads the specified file into the local FPGA. The application
logic is reset, then released from reset.

4.3.2 Resetting an FPGA

You can explicitly reset the application logic within an FPGA from the command
line when necessary.

To reset an FPGA from the command line, run the following command:

> fcu --reset

The fcu program resets the local FPGA by asserting the user_reset_n signal
that the RT Core outputs. Any application logic that is connected to this signal
is reset.

Note: Exercise care when you reset the FPGA application logic. In a typical
design, the reset logic overrides most other logic functions in a device. If you
reset the application logic while the FPGA is actively performing a task, the
output may be meaningless.

44 Cray Private S–2433–131

Using the FPGA Application Acceleration Processor [4]

4.3.3 Releasing an FPGA from Reset State

After you reset an FPGA, you must explicitly release it from reset. To do so from
the command line, run the following command:

> fcu --exec

The fcu program takes the local FPGA out of reset by de-asserting the
user_reset_n signal that the RT Core outputs. Any application logic that is
connected to this signal is released from reset.

4.3.4 Querying the Status of an FPGA

You can display information about the status of the FPGA at the command line.
To do so, run the following command:

> fcu --status

The program displays a numeric status code that depends on the state of the
device. This is the value of the host latch register in the RT Core as a decimal
integer. For details, see Design of Cray XD1 RapidArray Transport Core (S–6411). A
value of 255 indicates that the FPGA is not programmed.

4.3.5 Erasing an FPGA

If security is an issue at your site, you can use the fcu command to completely
clear the programming of the FPGA after you finish using it.

Note: You do not need to erase the FPGA explicitly before you load another
logic file because the load operation also initially erases the device.

To erase an FPGA from the command line, run the following command:

> fcu --unload

4.4 Managing FPGA Logic in an Application Program

Note: In this release, the FPGA application programming interface is available
only as a C library.

S–2433–131 Cray Private 45

Cray XD1™ Programming

4.4.1 Using an FPGA in Application Programs

4.4.1.1 Typical Application Workflow

An application program uses an FPGA similarly to other devices—the program
opens the device to get a file descriptor, uses the descriptor to interact with the
device, and finally closes the device.

Your program begins to interact with the FPGA by loading the converted logic
file into the device (unless you plan to do this from the command line prior to the
start of the application; see Section 4.3.1, page 44). Then the program can set up
the data and execute the logic as often as necessary.

Your program can transfer data in either direction by setting up the appropriate
memory access. In addition, functions are available to read and write individual
values in the FPGA address space. For example, you can read and write
application-defined registers that are used for control and status operations.

Finally, a program can reset the FPGA to halt the execution of the logic and close
the file descriptor.

4.4.1.2 Understanding Address Spaces on a Node

To understand the methods of communication between an application and the
FPGA, you need to know about the relationships among the address spaces
of the node components—the Opteron symmetric multiprocessor (SMP), the
RapidArray processor (RAP) on the optional expansion module, and the
FPGA application acceleration processor. Figure 3, page 47 illustrates these
relationships.

46 Cray Private S–2433–131

Using the FPGA Application Acceleration Processor [4]

SMP RAP-2

DIMMs DIMMs 1 2 3 4
QDR SRAM

Expansion module

HyperTransport
RapidArray Transport

(RT)

RAP-2
512 MB

RAP-1
512 MB

RAM

AAP
128 MB

RAP

00

512 MB 128 MB

D
R

A
M

 s
pa

ce

0

FPGA
App.

Accel.
Processor

Application-
dependent

memory map

I/O
 s

pa
ce

Figure 3. Physical components of a node and related address spaces

S–2433–131 Cray Private 47

Cray XD1™ Programming

The physical interpretation of locations in the FPGA address space depends
entirely on the design of the application logic in the FPGA. The logic may map
the Quad Data Rate (QDR) II SRAM (which is attached to the FPGA) and
the internal resources of the FPGA (such as registers and RAMs) to arbitrary
addresses in its address space. For example, low addresses (starting at an offset
of 0) could map to locations in the QDR II SRAM, and addresses starting at offset
0x4000000 (64 MB) could map to internal resources in the FPGA.

Note: Cray Inc. supplies an FPGA logic core—the QDR II SRAM core—that
enables application logic in the FPGA to use the SRAM.

4.4.1.3 Data Transfer Methods

The protocol that you design for the interaction between your application process
(which runs on an Opteron processor) and the FPGA application logic can use
any or all of the following methods to transfer data:

• The application process can map a region of the FPGA address space into its
own address space and access a location in the region using a normal memory
reference (pointer). It can set or use the contents of any location within the
mapped region. For details, see Section 4.4.2.7, page 53. If the sequence of
accesses is important, the application must explicitly request synchronization
of accesses at appropriate points; for details, see Section 4.4.2.8, page 55.

• The application process can allocate a block of memory within its own
address space and register it for direct access by the FPGA logic. This block is
called an FPGA transfer region (FTR). The FPGA can set or use the contents of
any location in the registered region. For details, see Section 4.4.2.10, page 60.

• The application process can write and read individual 64-bit values at
locations in the FPGA address space. Each such operation requires a function
call. These calls guarantee the order of access.

4.4.2 Using an FPGA in a C Program

4.4.2.1 Typographic Conventions

In the code samples in this section, bold and italic text highlights only the
elements that directly declare or use the function under discussion and its
arguments. Bold text represents elements that you type exactly as shown, and
italic text represents variables that you name. All the other code in plain
fixed-width font is arbitrary sample code that you replace according to the
needs and coding style of your application.

48 Cray Private S–2433–131

Using the FPGA Application Acceleration Processor [4]

4.4.2.2 Library Files

The C header file, ufplib.h, provides the declarations of the functions and data
types that are defined in the FPGA API library. Include it in any C source file that
uses the library. The location of this file is specified in Section 3.3.5, page 26.

The object library name is libufp.a. The location of this file is specified in
Section 3.3.5, page 26.

4.4.2.3 Opening an FPGA

The first operation in using an FPGA in an application program is to open the
device with the fpga_open(3) function. This operation interacts only with the
Linux kernel to prepare for the communication to follow—it does not physically
affect the FPGA. The result is a file descriptor that your application uses in all
other function calls that affect the device.

To open an FPGA, use statements like the following examples in your program:

#include <fcntl.h>

#include "ufplib.h"

int fpga_fd;

const char *fpga_path;

int flags; /* For example: O_RDWR | O_SYNC */

err_e err;

/* ... */

/* Set values of function arguments. */

/* ... */

fpga_fd = fpga_open(fpga_path, flags, &err);

if (fpga_fd < 0) {

/* Handle error.*/

}

Table 21, page 50 describes the variables in the sample code.

S–2433–131 Cray Private 49

Cray XD1™ Programming

Table 21. fpga_open(3) arguments and return value

Variable
Input or
output Description

fpga_path Input The absolute path of the FPGA character
device file. Typically: /dev/ufp0.

flags Input Controls the type of access to the device.
Specify it as the bitwise OR of the appropriate
masks that the open system call recognizes.
For details, see the open man page.

err Output The error code that is set upon function return:
either NOERR or another constant that is
specified by the err_e enumerated type in
ufplib.h.

fpga_fd Output The file descriptor of the FPGA. Used in all
other function calls of the FPGA API.

4.4.2.4 Loading FPGA Logic into the Device

If you do not load the converted logic file into the FPGA before you execute your
program, you must use the fpga_load function to load the logic file after the
program opens the device. This programs the device with the specific logic for
your application.

When the load operation is complete, the system resets the application logic and
releases it from reset.

To load FPGA logic into the device, use statements like the following examples
in your program:

#include "ufplib.h"

int fpga_fd;

const char*loadfile = "my_logic.ufp"; /* for example */

err_e err;

int num_bytes;

/*... */

num_bytes = fpga_load(fpga_fd, loadfile, &err);

50 Cray Private S–2433–131

Using the FPGA Application Acceleration Processor [4]

if (num_bytes < 0) {

/* Handle error.*/

}

Table 22, page 51 describes the variables in the sample code.

Table 22. fpga_load(3) arguments and return value

Variable
Input or
output Description

fpga_fd Input The file descriptor of the FPGA that
fpga_open returned.

loadfile Input The path of the converted FPGA logic file that
the fcu command created.

err Output The error code that is set upon function return:
either NOERR or another constant that is
specified by the err_e enumerated type in
ufplib.h.

num_bytes Output The value returned by fpga_load: either the
number of bytes written to the device or -1
on failure.

4.4.2.5 Resetting an FPGA

If the application program loads the logic file, it does not need to reset the logic
initially because the load operation does so automatically. However, if the user or
another application loaded the logic file before this application executes, consider
resetting the logic to put it into a known initial state. The fpga_reset(3)
function places the application logic of a previously loaded FPGA into a reset
state. It does this by asserting the user_reset_n signal that the RT Core
outputs. Any application logic that is connected to this signal is reset.

To reset an FPGA, use statements like the following examples in your program:

#include "ufplib.h"

int fpga_fd;

err_e err;

int status;

/* ... */

S–2433–131 Cray Private 51

Cray XD1™ Programming

status = fpga_reset(fpga_fd, &err);

if (status < 0) {

/* Handle error. */

}

Table 23, page 52 describes the variables in the sample code.

Table 23. fpga_reset(3) arguments and return value

Variable
Input or
output Description

fpga_fd Input The file descriptor of the FPGA that
fpga_open returned.

err Output The error code that is set upon function return:
either NOERR or another constant that is
specified by the err_e enumerated type in
ufplib.h.

status Output The status value that fpga_reset returns:
either 0 on success or -1 on failure.

4.4.2.6 Releasing an FPGA from Reset State

If the application program loads the logic file, it does not need to release the logic
from reset initially because the load operation does so automatically. However, if
the application explicitly resets the application logic, it must take the logic out of
the reset state to start execution of the logic. The fpga_start(3) function does
this by de-asserting the user_reset_n signal that the RT Core outputs. Any
application logic that is connected to this signal is released from reset.

Use the fpga_reset(3) and fpga_start(3) functions together to perform a
reset cycle on the FPGA. You can also use the fpga_start(3) function alone to
ensure that the application logic is not in the reset state.

To release an FPGA from reset state, use statements like the following examples
in your program:

#include "ufplib.h"

int fpga_fd;

err_e err;

int status;

52 Cray Private S–2433–131

Using the FPGA Application Acceleration Processor [4]

/* ... */

status = fpga_start(fpga_fd, &err);

if (status < 0) {

/* Handle error. */

}

Table 24, page 53 describes the variables in the sample code.

Table 24. fpga_start(3) arguments and return value

Variable
Input or
output Description

fpga_fd Input The file descriptor of the FPGA that
fpga_open returned.

err Output The error code that is set upon function return:
either NOERR or another constant that is
specified by the err_e enumerated type in
ufplib.h.

status Output The status value that fpga_start returns:
either 0 on success or -1 on failure.

4.4.2.7 Mapping FPGA Locations to the Application Address Space

The fpga_memmap(3) function maps a region of the FPGA address space to
the application address space. The application can then use normal memory
references (pointers) to read or write values in the mapped region. For a
description of the FPGA address space, see Section 4.4.1.2, page 46.

This function uses the write-combining feature of the Opteron processor, which
can lead to out-of-sequence transactions between the Opteron and the FPGA. The
API lets you synchronize the transactions to ensure the proper sequence when
necessary; see Section 4.4.2.8, page 55.

Instead of (or in addition to) mapping a whole region of the FPGA address space,
the application can also use function calls to access individual locations in the
FPGA address space; see Section 4.4.2.9, page 57.

To map FPGA locations to the application address space, use statements like the
following examples in your program:

#include <sys/types.h>

#include "ufplib.h"

S–2433–131 Cray Private 53

Cray XD1™ Programming

#define X_OFFSET 0x100

#define Y_OFFSET 0x200

int fpga_fd, prot, flags;

size_t len;

off_t offset;

err_e err;

void *fpga_base;

long x, y;

/* ... */

/* Set values of function arguments. */

/* ... */

fpga_base = fpga_memmap(fpga_fd, len, prot, flags,

offset, &err);

if (fpga_base == NULL) {

/* Handle error. */

}

/* Use the pointer to write or read values in the FPGA. */

/* Initialize x. */

/* ... */

*(fpga_base + X_OFFSET) = x;

/* ... */

y = *(fpga_base + Y_OFFSET);

Table 25, page 54 describes the variables in the sample code.

Table 25. fpga_memmap(3) arguments and return value

Variable
Input or
output Description

fpga_fd Input The file descriptor of the FPGA that
fpga_open returned.

len Input The number of bytes to be mapped.

prot Input A bit array that specifies the desired memory
protection. It is either PROT_NONE or the
bitwise OR of one or more of the other PROT_*
flags specified by the Linux mmap function.
These constants are defined in sys/mman.h
which is included by ufplib.h.

54 Cray Private S–2433–131

Using the FPGA Application Acceleration Processor [4]

Variable
Input or
output Description

flags Input A bit array that specifies mapping options
like those of the Linux mmap function. It is
the bitwise OR of either MAP_SHARED or
MAP_PRIVATE and zero or more of the other
flags described in the mmap man page. These
constants are defined in sys/mman.h which
is included by ufplib.h.

offset Input The byte offset in the FPGA address space at
which the mapped region begins.

err Output The error code that is set upon function return:
either NOERR or another constant that is
specified by the err_e enumerated type in
ufplib.h.

fpga_base Output A pointer to the mapped area in the
application address space. NULL indicates
failure.

4.4.2.8 Synchronizing Accesses to FPGA Locations

The fpga_memmap(3) function (see Section 4.4.2.7, page 53) uses the
write-combining feature of the Opteron processor to communicate with an FPGA.
While this can be more efficient, it can also lead to an out-of-sequence execution
of accesses to locations in the FPGA address space. The fpga_mem_sync(3)
function executes a memory barrier to flush out all transactions to the region
that is mapped by the fpga_memmap(3) function. This function ensures that
the Opteron processor completes all previous accesses before it performs any
subsequent accesses. Use this function if the order of accesses in the application
is important.

To synchronize accesses to FPGA locations, use statements like the following
examples in your program:

#include <sys/types.h>

#include "ufplib.h"

#define X_OFFSET 0x100

#define Y_OFFSET 0x200

int fpga_fd;

err_e err;

S–2433–131 Cray Private 55

Cray XD1™ Programming

int status;

int prot, flags;

size_t len;

off_t offset;

void *fpga_base;

long x, y;

/* ... */

/* Set values of fpga_memmap arguments. */

/* ... */

fpga_base = fpga_memmap(fpga_fd, len, prot, flags, offset,

&err);

if (fpga_base == NULL) {

/* Handle error.*/

}

/* Some FPGA accesses */

*(fpga_base + X_OFFSET) = x;

/* ... */

/* Synchronize */

status = fpga_mem_sync(fpga_fd, &err);

if (status < 0) {

/* Handle error. */

}

/* Some more FPGA accesses */

y = *(fpga_base + Y_OFFSET);

/* ... */

Table 26, page 56 describes the variables in the sample code.

Table 26. fpga_mem_sync(3) arguments and return value

Variable
Input or
output Description

fpga_fd Input The file descriptor of the FPGA that
fpga_open returned.

err Output The error code that is set upon function return:
either NOERR or another constant that is
specified by the err_e enumerated type in
ufplib.h.

status Output The status value that fpga_mem_sync
returns: either 0 on success or -1 on failure.

56 Cray Private S–2433–131

Using the FPGA Application Acceleration Processor [4]

4.4.2.9 Writing and Reading Individual FPGA Locations

In addition to mapping a region of the FPGA address space and accessing
it with ordinary memory references, an application can also write and
read any individual 64-bit value in the FPGA address space by using the
fpga_wrt_appif_val(3) and fpga_rd_appif_val(3) functions. These
functions guarantee that the order of access is the order in which the
application calls these functions. You do not need to use fpga_memmap(3) or
fpga_mem_sync(3) in conjunction with these functions.

For a description of the FPGA address space, see Section 4.4.1.2, page 46.

Note: The meaning of the offset parameter of fpga_rd_appif_val and
fpga_wrt_appif_val changed in release 1.2 of the Cray XD1 system.
Previously, these functions assumed a particular mapping of FPGA resources
in the FPGA address space such that a zero value of the offset parameter
accessed the first FPGA register at a fixed location of 0x4000000 in the FPGA
address space. Now, the parameter is generalized to allow access to both the
internal resources of the FPGA and the attached QDR II SRAM, and the offset
value can access any location in the whole FPGA address space. If you have
an application program that calls these functions with the old meaning of
offset, you need to change your source code to work with release 1.2 and
later. Set the value of this parameter to be the address in the FPGA address
space of the resource you want to access. This value depends entirely on the
design of the FPGA application logic.

4.4.2.9.1 Writing to an FPGA Location

Use the fpga_wrt_appif_val(3) function to write a 64-bit value into a
specified location in the FPGA’s address space.

This function can provide special treatment for a data value that is a virtual
address in an FPGA transfer region—a memory region in the application’s
address space that was registered by the fpga_register_ftrmem(3) function
for direct access by the FPGA (see Section 4.4.2.10, page 60). For such a data
value, the function first transforms it to a physical address that the FPGA logic
can use.

To write to an FPGA location, use statements like the following examples in your
program:

#include "ufplib.h"

int fpga_fd;

unsigned long val;

S–2433–131 Cray Private 57

Cray XD1™ Programming

unsigned long offset;

unsigned long type;

err_e err;

int status;

/* ... */

/* Set values of function arguments. */

/* ... */

status = fpga_wrt_appif_val(fpga_fd, val, offset,

type, &err);

if (status < 0) {

/* Handle error. */

}

Table 27, page 58 describes the variables in the sample code.

Table 27. fpga_wrt_appif_val(3) arguments and return value

Variable
Input or
output Description

fpga_fd Input The file descriptor of the FPGA that
fpga_open returned.

val Input The value to write.

offset Input The byte offset of the location in the FPGA
address space.

type Input One of:

• 0—The value is written as is.

• 1—The value is a user-space virtual
memory address in an FPGA transfer
region (see Section 4.4.2.10, page 60).
The fpga_wrt_appif_val function
transforms this virtual address to a
physical address before writing it.

58 Cray Private S–2433–131

Using the FPGA Application Acceleration Processor [4]

Variable
Input or
output Description

err Output The error code that is set upon function return:
either NOERR or another constant that is
specified by the err_e enumerated type in
ufplib.h.

status Output The status value that fpga_wrt_appif_val
returns: either 0 on success or -1 on failure.

4.4.2.9.2 Reading from an FPGA Location

Use the fpga_rd_appif_val(3) function to read a 64-bit value from a specified
location in the FPGA’s address space.

To read from an FPGA location, use statements like the following examples
in your program:

#include "ufplib.h"

int fpga_fd;

unsigned long val;

unsigned long offset;

err_e err;

int status;

/* ... */

/* Set values of function arguments. */

/* ... */

status = fpga_rd_appif_val(fpga_fd, &val,

offset, &err);

if (status <0) {

/* Handle error. */

}

Table 28, page 60 describes the variables in the sample code.

S–2433–131 Cray Private 59

Cray XD1™ Programming

Table 28. fpga_rd_appif_val(3) arguments and return value

Variable
Input or
output Description

fpga_fd Input The file descriptor of the FPGA that
fpga_open returned.

val Output The value that was read.

offset Input The byte offset of the location in the FPGA
address space.

err Output The error code that is set upon function return:
either NOERR or another constant that is
specified by the err_e enumerated type in
ufplib.h.

status Output The status value that fpga_rd_appif_val
returns: either 0 on success or -1 on
failure.

4.4.2.10 Accessing Application Memory from an FPGA

The API also supports access by the FPGA logic to a region of application
memory—the FPGA transfer region that is described in Section 4.4.1.3,
page 48. Your program allocates a memory block, then uses the
fpga_register_ftrmem(3) function to register the block as an FTR. This sets
up the memory block for the FPGA to access it directly.

Note: The fpga_set_ftrmem(3) function that you used in previous
releases to allocate and register an FTR is now deprecated. Use the
fpga_register_ftrmem(3) function instead.

The memory block that you register as an FTR must be aligned on a memory
page boundary, and its size must be a multiple of the memory page size.1 The
minimum size that you can register is the equivalent of one memory page,
and the maximum size is 1 GB. (The older fpga_set_ftrmem(3) function can
allocate a maximum of only 2 MB.)

The fpga_register_ftrmem(3) function does not automatically provide
the address of this region to the FPGA application logic. The way that the
application communicates this information depends on the protocol that you
establish between the application and the FPGA logic. One way to communicate

1 You can use the Linux getpagesize function to discover the memory page size and the Linux
posix_memalign function to allocate a suitably aligned block of memory.

60 Cray Private S–2433–131

Using the FPGA Application Acceleration Processor [4]

the address is to establish an FPGA register for that purpose and use the
fpga_wrt_appif_val(3) function to write the value to the register. For more
details, see Section 4.4.2.9, page 57.

When the application program finishes using the FTR, it should deregister
the FTR by calling the fpga_dereg_ftrmem(3) function. This frees the
memory mapping capability of the processor so that other processes can use
the capability. Deregister the FTR regardless of how you registered it: the
fpga_register_ftrmem(3) function or the older (and now deprecated)
fpga_set_ftrmem(3) function.

To access application memory from an FPGA, use statements like the following
examples in your program:

#define _XOPEN_SOURCE 600

#include <stdlib.h>

#include <unistd.h>

#include "ufplib.h"

int fpga_fd;

unsigned int size = getpagesize()*10000;

err_e err;

void *ftr_mem;

int status;

status = posix_memalign(&ftr_mem, getpagesize(), size);

if (status != 0) {

/* Handle error. */

}

/* ... */

/* Set other values of function arguments. */

/* ... */

status = fpga_register_ftrmem(fpga_fd, ftr_mem, size, &err);

if (status < 0) {

/* Handle error. */

}

/* Communicate the FTR base address to the FPGA */

/* ... */

/* Perform the main work of the application */

/* ... */

status = fpga_dereg_ftrmem(fpga_fd, ftr_mem, &err);

Table 29, page 62 describes the variables in the sample code.

S–2433–131 Cray Private 61

Cray XD1™ Programming

Table 29. fpga_register_ftrmem(3) and fpga_dereg_ftrmem(3) arguments
and return value

Variable
Input or
output Description

fpga_fd Input The file descriptor of the FPGA that
fpga_open returned.

ftr_mem Input A pointer to a memory block in the
application address space to use as the FTR.

size Input The size of the FTR in bytes. It must be
a multiple of the memory page size. The
maximum size is 1 GB.

err Output The error code that is set upon function return:
either NOERR or another constant that is
specified by the err_e enumerated type in
ufplib.h.

status Output The status value that
fpga_register_ftrmem or
fpga_dereg_ftrmem returns: either
0 on success or -1 on failure.

4.4.2.11 Checking the Status of an FPGA

The fpga_status(3) function returns a status value from a previously opened
FPGA. This value is the value of the host latch register in the RapidArray
Transport Core. It is an integer in the range 0 to 255. For information about the
meanings of this status value, see Design of Cray XD1 RapidArray Transport Core
(S–6411).

To check the status of an FPGA, use statements like the following examples
in your program:

#include "ufplib.h"

int fpga_fd;

err_e err;

int dev_status;

/* ... */

dev_status = fpga_status(fpga_fd, &err);

/* Check the returned value against expected values */

62 Cray Private S–2433–131

Using the FPGA Application Acceleration Processor [4]

Table 30, page 63 describes the variables in the sample code.

Table 30. fpga_status(3) arguments and return value

Variable
Input or
output Description

fpga_fd Input The file descriptor of the FPGA that
fpga_open returned.

err Output The error code that is set upon function return:
either NOERR or another constant that is
specified by the err_e enumerated type in
ufplib.h.

dev_status Output The FPGA status value that fpga_status
returns: an integer from 0 to 255 or -1 on
failure.

4.4.2.12 Checking the Programming State of an FPGA

The fpga_is_loaded(3) function queries the programming state of a
previously opened FPGA. The return value indicates whether a logic file is
currently loaded into the FPGA.

To check the programming state of an FPGA, use statements like the following
examples in your program:

#include "ufplib.h"

int fpga_fd;

err_e err;

int loaded;

/* ... */

loaded = fpga_is_loaded(fpga_fd, &err);

if (loaded) {

/* do something */

}

else {

/* do something else */

}

Table 31, page 64 describes the variables in the sample code.

S–2433–131 Cray Private 63

Cray XD1™ Programming

Table 31. fpga_is_loaded(3) arguments and return value

Variable
Input or
output Description

fpga_fd Input The file descriptor of the FPGA that
fpga_open returned.

err Output The error code that is set upon function return:
either NOERR or another constant that is
specified by the err_e enumerated type in
ufplib.h.

loaded Output The result that fpga_is_loaded returns. A
nonzero value means that the FPGA is loaded
and zero means it is not.

4.4.2.13 Erasing an FPGA

The fpga_unload(3) function clears the programming of an FPGA. The function
erases the logic that was previously loaded with the fpga_load(3) function or
the fcu(1) command.

This function is provided for extra security only. You do not need to call it before
you load your logic file because the fpga_load(3) function has the same effect.
You need this function only if you want to completely clear the FPGA after
you finish using it. In this case, call it just before you call the fpga_close(3)
function.

To erase an FPGA, use statements like the following examples in your program:

#include "ufplib.h"

int fpga_fd;

err_e err;

int status;

/* ... */

status = fpga_unload(fpga_fd, &err);

if (status < 0) {

/* Handle error. */

}

Table 32, page 65 describes the variables in the sample code.

64 Cray Private S–2433–131

Using the FPGA Application Acceleration Processor [4]

Table 32. fpga_unload(3) arguments and return value

Variable
Input or
output Description

fpga_fd Input The file descriptor of the FPGA that
fpga_open returned.

err Output The error code that is set upon function return:
either NOERR or another constant that is
specified by the err_e enumerated type in
ufplib.h.

status Output The status value that fpga_unload returns:
either 0 on success or -1 on failure.

4.4.2.14 Closing an FPGA

Use the fpga_close(3) function to close an FPGA that was opened previously.
This clears any associations of the application process to the FPGA memory that
the fpga_memmap(3) function established (see Section 4.4.2.7, page 53).

To close an FPGA, use statements like the following examples in your program:

#include "ufplib.h"

int fpga_fd;

err_e err;

int status;

/* ... */

status = fpga_close(fpga_fd, &err);

if (status < 0) {

/* Handle error. */

}

Table 33, page 66 describes the variables in the sample code.

S–2433–131 Cray Private 65

Cray XD1™ Programming

Table 33. fpga_close(3) arguments and return value

Variable
Input or
output Description

fpga_fd Input The file descriptor of the FPGA that
fpga_open returned.

err Output The error code that is set upon function return:
either NOERR or another constant that is
specified by the err_e enumerated type in
ufplib.h.

status Output The status value that fpga_close returns:
either 0 on success or -1 on failure.

4.5 Sample Application: Using the Mersenne Twister Accelerator

Our sample application is a program that generates pseudorandom numbers
by using the Mersenne Twister algorithm. Cray has implemented the twisting
function of the algorithm in FPGA logic, which we refer to here as the Mersenne
Twister Accelerator (MTA). The Cray XD1 software distribution includes the
MTA logic file and a sample C program (mta_test.c) that uses it.

This section provides some background information and commentary to help
you understand the sample program. It also provides a full example of how to
execute this program on the Cray XD1 system.

A full listing of the program is in Appendix A, page 75. In the listing, each line
of code is numbered. In this section, references such as “(line n)” refer to the
numbered source code line in the listing.

4.5.1 Algorithm

The Mersenne Twister algorithm is an efficient algorithm for generating
pseudorandom numbers with excellent statistical properties. It has become
popular as a source of pseudorandom numbers in Monte-Carlo simulations. The
algorithm is a form of linear feedback shift register with an extremely long period
of 219937–1. A paper by Matsumoto and Nishimura2 describes the algorithm in
detail.

2 Makoto Matsumoto and Takuji Nishimura, “Mersenne Twister: A 623-dimensionally equidistributed
uniform pseudorandom number generator,” ACM Transactions on Modeling and Computer Simulation,
vol 8, no. 1, pp. 3-30.

66 Cray Private S–2433–131

Using the FPGA Application Acceleration Processor [4]

4.5.2 High-level Design of Application and FPGA Logic

The MTA logic starts with an initial seed value of 19,938 bits that is generated by
the application program and implemented as a state array of 624 pseudorandom
32-bit numbers. The MTA progressively transforms the array into new
pseudorandom numbers according to the algorithm. It exploits opportunities for
both parallel and pipelined computations. For a description of the MTA logic
design, see the following document, which is also in the Cray XD1 software
distribution:

/usr/local/ufpapps/mta/doc/PNR-DD-0022-MtaFPGA.pdf

The application writes the initial state array into the FPGA registers. It also
writes the addresses of the output buffers and an output format selector into the
registers. The application sets up the output buffers as FPGA transfer regions,
and the MTA logic outputs the results to the FTRs using a double-buffering
scheme. The application extracts results from a full buffer while the MTA logic
fills the empty buffer.

4.5.3 Some Design Details

The user specifies the type (format) and number of numbers to generate as
command-line arguments. For details on the use of the mta_test command,
refer to an appendix of the MTA design document.

The sample program assumes that the user previously loaded the MTA logic into
the FPGA from the command line. For details on this procedure, see Section 4.3.1,
page 44. This design choice is efficient for running the application multiple times
(for example, for measuring performance). In a real application, you may prefer
to have your program load the logic via the fpga_load(3) function.

The MTA design illustrates one way of establishing a protocol for communication
between the application and the FPGA logic. The MTA initializes itself when it
starts, then holds itself in that state. The MTA design includes a register that
allows the application to start and stop the computation of pseudorandom
numbers.

The MTA also defines registers to specify the output format, to configure
the output buffers, to specify the output buffer addresses, and to hold
the Mersenne Twister state array. The MTA registers begin at an offset of
64 MB (0x4000000) in the FPGA address space. Table 34, page 68 shows the
additional offsets of the registers of interest from that base address. Application
programs must use the total offset value (for example 0x4000008) in calls to the
fpga_wrt_appif_val(3) function. (In this design, the application does not
read any registers.)

S–2433–131 Cray Private 67

Cray XD1™ Programming

Table 34. MTA registers

Offset
(hexadecimal)
0x4000000 +

Offset
(decimal)
64MB + Description

0x8 8 Application configuration register. Bit 0 is the
flag that holds the MTA in its initial state or
releases it to start computation.

0x18 24 Buffer configuration register. Holds the
following items:

• Bits 0 to 8 specify the buffer size in units of
4 KB pages.

• Bits 32 to 47 specify the buffer status polling
interval in units of user clock cycles.

0x20 32 Buffer 0 base pointer register. Holds the base
address of the first output buffer.

0x28 40 Buffer 1 base pointer register. Holds the base
address of the second output buffer.

0x1000 and
up

4096 and up Mersenne Twister state array.

The FPGA typically generates results faster than an Opteron processor can fetch
them. The double-buffering scheme that is used in this sample application for
FPGA output uses a handshake mechanism to make the operation efficient. After
filling one buffer, the MTA continues to generate results in the next buffer while
the application extracts those in the previous buffer. The block size (eight 64-bit
numbers) that is used in the sample program to extract the results provides
optimum performance.

The first 64 bytes of each output buffer are reserved for status information, of
which the first 8 bytes are a buffer status flag (0—empty or 1—full) that triggers
buffer switching. After the sample program creates the output buffers, it zeroes
them, which also marks them as empty initially.

When the MTA logic is computing, it polls the status of the next output buffer
until the status flag shows that the buffer is empty. It then computes numbers
and transfers them to the output buffer until the buffer is full. It updates the
buffer status to full, then polls the status of the next buffer.

68 Cray Private S–2433–131

Using the FPGA Application Acceleration Processor [4]

The sample program only illustrates how to use the MTA logic; it does not use
the pseudorandom numbers that are generated. However, it does use some
microsecond-precision timing functions (also in the software distribution) that
enable you to measure the rate of production of the numbers.

4.5.4 Walkthrough

The mta_test program structure includes four major functions and three
wrapper functions that cast the output as different data types:

• parse_opt—Parses the command-line options and arguments (line 129 to
line 157).

• mt_1999_set—Initializes the state array, sets up and configures the output
buffers, and starts the computation (line 162 to line 260).

• mt_get—Fetches blocks of pseudorandom numbers from the output buffers
for use in the main program (line 271 to line 311). In addition, see the
functions mt_get_int, mt_get_float, and mt_get_double at line 317 to
line 330.

• main—The main program (line 336 to line 461).

The main program first parses the command-line arguments (line 357). It uses
the argp_parse function from the GNU C Library, which in turn calls the
parse_opt function in this program.

Then it opens the FPGA device (line 368) and resets and starts the logic to ensure
that it is in a known state (line 377 and line 378).

The main program calls mt_1999_set (line 381), which performs the rest of
the initialization:

• Computes the initial contents of the Mersenne Twister state array—the seed
value of the algorithm (line 169 to line 179).

• Allocates the output buffers (line 184 and line 190), registers them as FTRs
(line 197 and line 205), and zeroes them (line 214 and line 215).

• Writes the buffer addresses (line 220 to line 223), buffer configuration (line 229
to line 232), and initial state array (line 235 to line 240) to the registers.

• Sets the application configuration register to start the computation (line 244
to line 263).

S–2433–131 Cray Private 69

Cray XD1™ Programming

The main program is now ready to receive the pseudorandom numbers that the
FPGA generates. It calls the appropriate mt_get wrapper function for every set
of eight 64-bit numbers that it wants (line 384 to line 430). If the current buffer is
empty (ready to write), the mt_get function polls the buffer flag until it changes
to full (ready to read).

On each call, mt_get returns the next block of eight 64-bit numbers (line 295, line
296, and line 310). After it takes the last eight numbers in the buffer, mt_get
marks the buffer as empty (line 300 or line 306) and switches to the next buffer.

Finally, the program sets the MTA application configuration register to stop the
computation (line 439), deregisters the FTRs (line 442 and line 447), frees the
buffers (line 454 and line 455), and closes the device (line 458).

4.6 Getting Started with the FPGA

This chapter described both the command-line tools and the API that enable
you to use an FPGA on the Cray XD1 system. The source code of the sample
Mersenne Twister application uses many of the API functions. This section
illustrates the commands to compile the sample application, convert the
appropriate logic file, load the FPGA, and run the sample application. This
procedure is one way to verify that an FPGA and the communication path to
it work correctly.

This procedure makes the following assumptions:

• You have an account on the Cray XD1 system.

• The nodes of the partition that allows you to log in do not have FPGAs.
Therefore, you must submit the job to another partition.

• You have access to a job execution partition that has at least one node with
an FPGA.

Procedure 5: To get started with the FPGA

1. Log in to Linux on the Cray XD1 system.

2. Copy the sample program and related files to your home directory:

> cp -r /opt/ufpapps

3. Examine the contents of ~/ufpapps.

Although both the source and executable mta_test programs are present,
you will rebuild the executable in this example; a suitable Makefile is

70 Cray Private S–2433–131

Using the FPGA Application Acceleration Processor [4]

already present. Similarly, although both the raw and loadable MTA logic
files are present, you will rebuild the loadable file in this example.

4. Build the executable application program:

> cd ~/ufpapps/mta/src

> make mta_test

The new mta_test executable file that results is in ~/ufpapps/mta/bin.

5. Identify the FPGA variant that is present in the system:

> lsnode -v | less

You may want to redirect the lsnode(1) output to a file rather than read
it on the screen.

The output includes about 34 lines for each node in the system, so it will be
long, especially if you have multiple chassis in the system. The information
for each node begins with lines such as the following examples:

Hardware ID: 65439.4

Partition: compute

Look for a line similar to the following example in the middle of the
information for each node:

App Accelerator: 90-0003-05

This is the Cray part number for an FPGA. If an FPGA is not present on the
node, the part number is listed as --. Normally, all the FPGAs in a system
have the same part number.

Take note of the part number and which partition or partitions have FPGAs.

6. Build the appropriate FPGA logic file:

> cd ~/ufpapps/mta/bin

> fcu --build --partnum 90-0003-05 --clock 180

creating header file ufphdr....

> fcu --convert mta50.bin ufphdr

header size 59

input fpga load size 2377668

The raw MTA logic file is provided for several variants of the FPGA. The file
named mta50.bin corresponds to the part number 90-0003-05.

The output of the last command is the loadable logic file mta50.bin.ufp.

S–2433–131 Cray Private 71

Cray XD1™ Programming

7. Create a job script that will load the logic file and run the application to
generate 500 million pseudorandom numbers; do this in a separate directory:

> mkdir ~/test

> cd ~/test

> cat > mta_job

fcu --load ~/ufpapps/mta/bin/mta50.bin.ufp

~/ufpapps/mta/bin/mta_test 500000000

Ctrl+D

> chmod +x mta_job

8. Submit the job to a partition that has an FPGA; use the appropriate command
for the configured workload management (WLM) system. For example, to
submit the job to the compute partition and request the use of an FPGA with
PBS Pro:

> qsub -q compute -l nodes=1:fpga mta_job

Take note of the job ID that the command returns (it may be embedded in a
string with other information, depending on the WLM system); for example:
1798.

9. Monitor the progress of the job by using the WLM system. Once the WLM
system launches this sample job, it takes only a few seconds to execute.

10. After the job is complete, examine the output file; its name follows the
conventions of the WLM system. For example, here are the contents of
mta_job.o1798:

file size 2381764

setting device location /dev/ufp0

programming device 2381764 bytes

opening device /dev/ufp0

programmed FPGA 2381764 bytes

closing device file descriptor 4

Generating 500000000 32 bit pseudo-random numbers with FPGA.

Calibrating timer ... cpuHz is 2200000000

Last number : 0x25E3795A

Elapsed time : 1559268 microseconds

Rate : 320663285.593 32 bit integers/second

The first part of the output shows that the fcu --load command was
successful. The second part is the output from the application. It shows
that the program generated 500,000,000 pseudorandom numbers (32-bit) in

72 Cray Private S–2433–131

Using the FPGA Application Acceleration Processor [4]

1,559,268 microseconds, which is an average rate of 320,663,285 numbers per
second. Any rate that exceeds 250,000,000 numbers per second indicates that
the FPGA and the infrastructure that supports it are working properly.

S–2433–131 Cray Private 73

Cray XD1™ Programming

74 Cray Private S–2433–131

Program Listing: mta_test.c [A]

1 /*

2 * This program demonstrates random number generation on the Cray XD1

3 * system with an FPGA co-processor.

4 * Usage : mta_test <number>

5 * Generates a pseudo-random sequence of <number> length, using the

6 * default seed 4357

7 * Mersenne-Twister algorithm is used to generate the numbers.

8 * The FPGA must be programmed with the official Mersenne-Twister

9 * logic distributed by Cray along with this program.

10 * Timing code is provided in file timer.c.

11 */

12

13 #include <stdio.h>

14 #define __USE_XOPEN

15 #define __USE_XOPEN2K

16 #define _XOPEN_SOURCE 600

17 #include <stdlib.h>

18 #include <sys/types.h>

19 #include <sys/stat.h>

20 #include <fcntl.h>

21 #include <assert.h>

22 #include <unistd.h>

23 #include <string.h>

24 #include <argp.h>

25

26 #include <einlib.h>

27 #include "timer.h"

28

29 #define N 624 /* Period parameters */

30 #define INT32_MASK 0xFFFFFFFF

31 #define DEFAULT_SEED 4357UL

32 #define MULTIPLIER 1812433253UL /* Don Knuth, Vol 2 */

33

34 /* values specific to Cray FPGA logic */

35 #define TYPE_VAL 0UL

36 #define TYPE_ADDR 1UL

37 #define READ_NUMS 8 /* every call of mt_get fetches us this many 64-bit random numbers */

38 #define BUFF_SIZE (1 * 1024 * 1024)

39 #define BUFF_RD_RDY 1UL /* buffer is ready to be read by the Opteron */

40 #define BUFF_WRT_READY 0UL /* buffer is ready to be written into by the FPGA */

S–2433–131 Cray Private 75

Cray XD1™ Programming

41 #define QUAD_WRDS_PER_BUF (BUFF_SIZE/8)

42

43 /* Define the address offsets for the MTA FPGA Registers */

44 #define REG_OFFSET (64 * 1024 *1024) /* Registers start at 64M */

45 #define APP_ID_REG (REG_OFFSET + 0x00UL)

46 #define APP_CFG_REG (REG_OFFSET + 0x08UL)

47 #define APP_LATCH_REG (REG_OFFSET + 0x10UL)

48 #define BUFF_CFG_REG (REG_OFFSET + 0x18UL)

49 #define BUFF0_PTR_REG (REG_OFFSET + 0x20UL)

50 #define BUFF1_PTR_REG (REG_OFFSET + 0x28UL)

51 #define MTA_RAM_ARRAY (REG_OFFSET + 0x1000UL)

52

53 /* Convenient bit masks for the MTA registers. */

54 #define MTA_INTEGER 0x0UL

55 #define MTA_FLOAT 0x1UL

56 #define MTA_DOUBLE 0x2UL

57 #define MTA_INIT_KEY 0x1UL

58 #define MTA_FORMAT 0x6UL

59

60 typedef unsigned long u_64;

61 typedef struct {

62 unsigned long mt[N];

63 int mti;

64 } mt_state_t;

65

66

67 int fp_id;

68 volatile u_64 * buf0_ptr;

69 volatile u_64 * buf1_ptr;

70

71 /**/

72 /* The following code relates to the commmand line parsing and can pretty */

73 /* much be ignored. */

74 /**/

75 static struct argp_option options[] = {

76 {"verbose", 'v', 0, 0, "Produce verbose output"},

77 {"format", 'f', "STRING", 0, "Output format ('int, 'float' or 'double')."},

78 {0}

79 };

80 static error_t parse_opt (int key, char *arg, struct argp_state *state);

81

82 struct arguments

83 {

76 Cray Private S–2433–131

Program Listing: mta_test.c [A]

84 char *args[1];

85 int verbose; /* The -v flag */

86 char *format; /* Argument for -f */

87 };

88

89 const char *argp_program_version = "mta_test 1.1";

90 const char *argp_program_bug_address = "<http://crinform.cray.com/xd>";

91 static char args_doc[] = "number";

92 static char doc[] = "mta_test -- A program that generates random numbers using the MTA FPGA.";

93 static struct argp argp = {options, parse_opt, args_doc, doc};

94

95 int print_err (err_e e)

96 {

97 switch (e) {

98 case NOERR:

99 printf("Success.\n");

100 break;

101 case FILEOPRERR:

102 printf("File operation system call failed.\n");

103 break;

104 case INVALIDOP:

105 printf("Invalid API operation requested.\n");

106 break;

107 case INVALIDVAL:

108 printf("Invalid value passed to the API call.\n");

109 break;

110 case INVALIDARGS:

111 printf("Invalid argument passed to the API call.\n");

112 break;

113 case INVALIDINP:

114 printf("Invalid input given to the API call.\n");

115 break;

116 case DEVOPRERR:

117 printf("FPGA device operation error.\n");

118 break;

119 case UNKNOWNERR:

120 printf("Unknown error.\n");

121 break;

122 default:

123 break;

124 }

125 return 0;

126 }

S–2433–131 Cray Private 77

Cray XD1™ Programming

127

128 /* Provide a function to parse the parameters. */

129 static error_t parse_opt (int key, char *arg, struct argp_state *state)

130 {

131 struct arguments *arguments = state->input;

132

133 switch (key) {

134 case 'v':

135 arguments->verbose = 1;

136 break;

137 case 'f':

138 arguments->format = arg;

139 break;

140 case ARGP_KEY_ARG: // one argument accepted

141 if (state->arg_num >= 1) {

142 argp_usage(state);

143 }

144 arguments->args[state->arg_num] = arg;

145 break;

146 case ARGP_KEY_END:

147 if (state->arg_num < 1) {

148 /* Not enough arguments. */

149 argp_usage (state);

150 }

151 break;

152 default:

153 return ARGP_ERR_UNKNOWN;

154 }

155

156 return 0;

157 }

158

159 /**/

160 /* Initialize the FPGA */

161 /**/

162 static void

163 mt_1999_set (void *vstate, unsigned long int s, struct arguments *arguments)

164 {

165 mt_state_t *state = (mt_state_t *) vstate;

166 int i, page_size;

167 err_e e;

168 unsigned long val;

169 if (s == 0) s = DEFAULT_SEED; /* the default seed is 4357 */

78 Cray Private S–2433–131

Program Listing: mta_test.c [A]

170

171 state->mt[0]= s & INT32_MASK;

172

173 for (i = 1; i < N; i++)

174 {

175 state->mt[i] = (MULTIPLIER*(state->mt[i-1]^(state->mt[i-1] >> 30)) + i);

176 state->mt[i] &= INT32_MASK;

177 }

178

179 state->mti = i;

180

181 /* set up the FTR memory */

182 /* Allocate two buffers of 1MB each */

183 page_size = getpagesize();

184 i = posix_memalign((void *) &buf0_ptr, page_size, BUFF_SIZE);

185 if (i != 0) {

186 printf("Unable to allocate memory for buffer 0.\n");

187 exit(1);

188 }

189

190 i = posix_memalign((void *) &buf1_ptr, page_size, BUFF_SIZE);

191 if (i != 0) {

192 printf("Unable to allocate memory for buffer 1.\n");

193 exit(1);

194 }

195

196 /* Register the buffers with the FPGA device driver */

197 fpga_register_ftrmem(fp_id, (void *) buf0_ptr, BUFF_SIZE, &e);

198 if (e != NOERR) {

199 printf("Unable to register buffer 0 with the FPGA device driver.\n");

200 print_err(e);

201 free((void *) buf0_ptr);

202 free((void *) buf1_ptr);

203 exit(1);

204 }

205 fpga_register_ftrmem(fp_id, (void *) buf1_ptr, BUFF_SIZE, &e);

206 if (e != NOERR) {

207 printf("Unable to register buffer 1 with the FPGA device driver.\n");

208 print_err(e);

209 free((void *) buf0_ptr);

210 free((void *) buf1_ptr);

211 exit(1);

212 }

S–2433–131 Cray Private 79

Cray XD1™ Programming

213

214 bzero ((void *) buf0_ptr, BUFF_SIZE);

215 bzero ((void *) buf1_ptr, BUFF_SIZE);

216

217 /* FTR memory is split into two buffers for */

218 /* data transfer between FPGA and the SMP */

219 /* Program the buffer addresses. */

220 fpga_wrt_appif_val (fp_id,

221 (u_64) buf0_ptr,

222 BUFF0_PTR_REG, TYPE_ADDR, &e);

223 fpga_wrt_appif_val (fp_id,

224 (u_64) buf1_ptr,

225 BUFF1_PTR_REG, TYPE_ADDR, &e);

226

227 /* set up the config register */

228 /* the value contains polling frequency and number of pages per buffer */

229 val = (1UL << 8) - 1; /* polling value set at 255 */

230 val <<= 32;

231 val |= ((1UL << 8) - 1); /* each buffer has 256 pages */

232 fpga_wrt_appif_val (fp_id, val, BUFF_CFG_REG, TYPE_VAL, &e);

233

234 /* write the state array */

235 for (i = 0; i < N/2; i++) {

236 fpga_wrt_appif_val (fp_id,

237 (((0UL | state->mt [2*i+1]) << 32) |

238 state->mt [2*i]),

239 MTA_RAM_ARRAY + (unsigned long) i*8, TYPE_VAL, &e);

240 }

241

242 /* Generate the configuration register value. */

243 /* Start by turning the init key off. */

244 val = 0;

245 val |= (MTA_INIT_KEY & 0UL);

246

247 /* Set the output format bits according to the command line parameter. */

248 switch(arguments->format[0]) {

249 case 'i': /* integer */

250 val |= (MTA_FORMAT & (MTA_INTEGER<<1));

251 break;

252 case 'f': /* float */

253 val |= (MTA_FORMAT & (MTA_FLOAT<<1));

254 break;

255 case 'd': /* double */

80 Cray Private S–2433–131

Program Listing: mta_test.c [A]

256 val |= (MTA_FORMAT & (MTA_DOUBLE<<1));

257 break;

258 default:

259 break;

260 }

261

262 /* Write the format and start value to the FPGA */

263 fpga_wrt_appif_val (fp_id, val, APP_CFG_REG, TYPE_VAL, &e);

264 }

265

266 /**/

267 /* Fetches random numbers written into the buffer space by the FPGA. */

268 /* Returns a pointer to a block_ptr of 64-bit numbers. */

269 /**/

270

271 static inline volatile u_64 * mt_get (void)

272 {

273 static volatile u_64 * block_ptr = 0 ;

274 static volatile u_64 * curr_ptr = 0;

275 static int n = 1;

276 volatile u_64 * buf_ptr_arr [2];

277

278 buf_ptr_arr [0] = buf0_ptr;

279 buf_ptr_arr [1] = buf1_ptr;

280

281 if (n) {

282 curr_ptr = buf0_ptr;

283 n = 0;

284 }

285

286 if ((curr_ptr == buf_ptr_arr [0])

287 || (curr_ptr == buf_ptr_arr [1])) {

288 while (*curr_ptr != BUFF_RD_RDY) {

289 /* Wait ... */

290 }

291 /* first 64 bytes are unused except for the read-write flags */

292 curr_ptr += 8;

293 }

294

295 block_ptr = curr_ptr;

296 curr_ptr += READ_NUMS;

297

298 if ((curr_ptr == buf_ptr_arr [0] + QUAD_WRDS_PER_BUF)) {

S–2433–131 Cray Private 81

Cray XD1™ Programming

299 /* done reading this buffer */

300 *(curr_ptr - QUAD_WRDS_PER_BUF) = BUFF_WRT_READY;

301 curr_ptr = buf_ptr_arr[1];

302 }

303

304 if (curr_ptr == (buf_ptr_arr [1] + QUAD_WRDS_PER_BUF)) {

305 /* done reading this buffer */

306 *(curr_ptr - QUAD_WRDS_PER_BUF) = BUFF_WRT_READY;

307 curr_ptr = buf_ptr_arr [0];

308 }

309

310 return block_ptr;

311 }

312

313 /**/

314 /* Cast the pointer type returned by mt_get(). */

315 /**/

316

317 unsigned int *mt_get_int(void)

318 {

319 return (unsigned int *) mt_get();

320 }

321

322 float *mt_get_float(void)

323 {

324 return (float *) mt_get();

325 }

326

327 double *mt_get_double(void)

328 {

329 return (double *) mt_get();

330 }

331

332 /**/

333 /* Main body */

334 /**/

335

336 int main (int argc, char *argv [])

337 {

338 struct arguments arguments;

339 u_64 i=0,j=0,n=0;

340 mt_state_t state;

341 err_e e;

82 Cray Private S–2433–131

Program Listing: mta_test.c [A]

342 long begin=0, end=0, diff=0;

343 double rate;

344 volatile unsigned int *int_array = NULL;

345 volatile float *float_array = NULL;

346 volatile double *double_array = NULL;

347 unsigned int k = 0;

348 float f = 0.0;

349 double d = 0.0;

350

351 /* Set argument defaults */

352 arguments.verbose = 0;

353 arguments.format = "int";

354

355 /* Parse any command line options and arguments. Store them in */

356 /* the arguments structure. */

357 argp_parse (&argp, argc, argv, 0, 0, &arguments);

358

359 /* Check that the length of the test is reasonable */

360 n = strtol (arguments.args[0], NULL, 10);

361 if (n < 2) {

362 printf ("The minumum number of comparisons is 2 ... exiting.\n");

363 return(1);

364 }

365

366 /* Open the FPGA device */

367 /* We install the FPGA as /dev/ufp0 */

368 fp_id = fpga_open ("/dev/ufp0", O_RDWR|O_SYNC, &e);

369

370 /* If FPGA open failed exit. */

371 if (e != NOERR) {

372 printf ("Failed to open FPGA device. Exiting.\n");

373 return(1);

374 }

375

376 /* Reset the then restart. This puts the FPGA in a known state. */

377 fpga_reset (fp_id, &e);

378 fpga_start (fp_id, &e);

379

380 /* Initialize the FPGA. */

381 mt_1999_set (&state, 0UL, &arguments);

382

383 /* Fetch the reqired set of numbers based on command line arguments. */

384 switch(arguments.format[0]) {

S–2433–131 Cray Private 83

Cray XD1™ Programming

385 case 'i': /* integer */

386 printf ("\nGenerating %ld 32 bit integers with FPGA.\n", n);

387 printf ("Calibrating timer ... ");

388 fflush(stdout);

389 begin = ustime ();

390 for (i = 0; i < n; i += READ_NUMS*2) {

391 int_array = mt_get_int();

392 for (j = 0; j < READ_NUMS*2; j++) {

393 k = int_array[j];

394 }

395 }

396 end = ustime ();

397 printf ("\n Last number : 0x%08X\n", k);

398 break;

399 case 'f': /* float */

400 printf ("\nGenerating %ld 32 bit floats with FPGA.\n", n);

401 printf ("Calibrating timer ... ");

402 fflush(stdout);

403 begin = ustime ();

404 for (i = 0; i < n; i += READ_NUMS*2) {

405 float_array = mt_get_float();

406 for (j = 0; j < READ_NUMS*2; j++) {

407 f = float_array[j];

408 }

409 }

410 end = ustime ();

411 printf ("\n Last number : %1.10f\n", f);

412 break;

413 case 'd': /* double */

414 printf ("\nGenerating %ld 64 bit doubles with FPGA.\n", n);

415 printf ("Calibrating timer ... ");

416 fflush(stdout);

417 begin = ustime ();

418 for (i = 0; i < n; i += READ_NUMS) {

419 double_array = mt_get_double();

420 for (j = 0; j < READ_NUMS; j++) {

421 d = double_array[j];

422 }

423 }

424 end = ustime ();

425 printf ("\n Last number : %1.20f\n", d);

426 break;

427 default:

84 Cray Private S–2433–131

Program Listing: mta_test.c [A]

428 printf ("\nUnknown format requested.\n");

429 break;

430 }

431

432 /* Calculate the time taken to generate the numbers. */

433 diff = end - begin;

434 rate = (double) n /(double) diff;

435 printf (" Elapsed time : %ld microseconds\n", diff);

436 printf (" Rate : %4.3lf million numbers/second\n\n", rate);

437

438 /* stop the random number generation. */

439 fpga_wrt_appif_val (fp_id, 1UL, APP_CFG_REG, TYPE_VAL, &e);

440

441 /* deregister the buffers */

442 fpga_dereg_ftrmem(fp_id, (void *)buf0_ptr, &e);

443 if (e != NOERR) {

444 printf("Unable to deregister buffer 0 with the FPGA device driver\n");

445 print_err(e);

446 }

447 fpga_dereg_ftrmem(fp_id, (void *)buf1_ptr, &e);

448 if (e != NOERR) {

449 printf("Unable to deregister buffer 1 with the FPGA device driver\n");

450 print_err(e);

451 }

452

453 /* Free the buffers */

454 free((void *) buf0_ptr);

455 free((void *) buf1_ptr);

456

457 /* close the device */

458 fpga_close (fp_id, &e);

459

460 return 0;

461 }

S–2433–131 Cray Private 85

Cray XD1™ Programming

86 Cray Private S–2433–131

Glossary

ACML

AMD Core Math Library

Active Manager

The software that monitors and manages all aspects of the Cray XD1 system.
Its user interfaces provide administrators and end users with a single point of
control for the system.

administrator

A user of the Cray XD1 system with unlimited access privileges, including
permission to issue all Active Manager commands. The administrator is
responsible for monitoring and managing the system.

AMD Core Math Library

A software package included with Cray XD1 Linux that includes routines for
BLAS, FFT, and LAPACK. Routines are available for both Fortran 77 and C
interfaces.

application release package

The major unit of distribution of software for the Cray XD1 system; contains
HPC-optimized Linux, the Active Manager application layer, any third-party
applications bundled by Cray, and, optionally, the FPGA logic framework and
sample FPGA logic. The application release package consists of RPM packages.

compute blade

One of six circuit boards in a Cray XD1 chassis; contains Opteron processors
configured as an SMP, DIMMs, and a RapidArray processor. A compute blade
may also have an expansion module.

Cray XD1 system

A stand-alone Cray XD1 chassis or multiple chassis that communicate over both
the supervisory network and the RapidArray interconnect.

S–2433–131 Cray Private 87

Cray XD1™ Programming

end user

A user of the Cray XD1 system who does not have administrator privileges.

expansion module

Optional Cray XD1 hardware that connects to each compute blade; if they are
present, a chassis has six expansion modules. The expansion modules provide
a node with a second RapidArray processor, two additional Rapid Array links,
and an optional application acceleration processor.

field-programmable gate array

An integrated circuit that consists of arrays of AND and OR gates (typically
thousands) that can be programmed to perform complex functions. The Cray
XD1 system has optional FPGAs available for use as application acceleration
processors.

FPGA

See field-programmable gate array.

FPGA application acceleration processor

An FPGA that users can program to accelerate computationally intensive and
repetitive algorithms; acts as a co-processor to the Opteron processor. This is an
optional component on the expansion module. See also JTAG interface card.

infrastructure release package

The major unit of distribution of software for the Cray XD1 system that contains
software and firmware components for the hardware supervisory subsystem and
the compute blades. See also application release package.

interconnect

See RapidArray interconnect.

job

A computing task that runs on one processor or multiple processors concurrently.
The workload management (WLM) system assigns the requested resources and
launches the job.

88 Cray Private S–2433–131

Glossary

JTAG interface card

Optional hardware that tests the application acceleration processor's integrated
circuits. This card connects to one of the high-speed I/O slots on the main board
of a Cray XD1 chassis.

Linux, Cray XD1

The HPC-optimized Linux operating system, based on the SuSE Linux Enterprise
Server (SLES) distribution, that runs on each node. Cray optimizations include
the implementation of a synchronized scheduler. See also synchronized scheduler,
Linux.

LSS

Linux synchronized scheduler. See synchronized scheduler, Linux.

master node

The node on which the Active Manager server runs.

Message Passing Interface (MPI)

A widely accepted standard for communication among nodes that run a parallel
program on a distributed-memory system. MPI is a library of routines that can be
called from Fortran, C, and C++ programs.

node

An instance of the Linux operating system and the hardware components that
it controls. The hardware components in a Cray XD1 node include an SMP
and its associated memory, one or two RapidArray processors (depending on
configuration) and, optionally, an FPGA application acceleration processor.

node working software image

The software image that is configured for an individual node and from which the
node boots; generated automatically from the partition master software image
by the Active Manager software when the node is allocated to a partition. The
node working software image is stored either on the local disk of the node or in
the Active Manager repository and NFS-mounted.

partition

A logical group of nodes with the same operating system version and

S–2433–131 Cray Private 89

Cray XD1™ Programming

configuration; may reside in more than one Cray XD1 chassis. Partitions enable
an organization to dedicate a set of nodes to perform a particular function (run
a type of job, host a system-wide service, or serve a particular user group).
Users treat the set of nodes in a partition as a single, homogeneous computing
resource. Administrators specify the attributes of a partition. See also partition
master software image.

partition master software image

The software image associated with a partition; used to generate the working
software images of nodes that are allocated to the partition. The partition master
software image is created from a combination of an application release master, a
configuration determined by the partition's attributes, any other partition-wide
configuration (such as services), and any installed local or third-party software.

RAP

RapidArray processor.

RapidArray interconnect

The high-speed network that interconnects the nodes in a Cray XD1 chassis,
and connects all nodes in a Cray XD1 system via cables and optional external
RapidArray switches. The RapidArray interconnect consists of a main and an
optional expansion fabric, each with its own set of fabric components. The
configuration of the RapidArray interconnect in a multichassis system is called
the physical topology.

RapidArray link

The physical communication path between two RapidArray ports. Each link
can carry two gigabytes per second.

RapidArray processor

The special-purpose processor on a Cray XD1 compute blade; responsible for
most communication functions within the system. The RapidArray processor
interfaces an Opteron processor to the RapidArray fabric.

RapidArray Transport core

An IP core for the FPGA application acceleration processor that provides the
logic necessary for an FPGA design to interface (via the RapidArray fabric) to the
rest of the Cray XD1 system.

90 Cray Private S–2433–131

Glossary

release package

A unit in which Cray delivers software and firmware upgrades for the Cray XD1
system. See also application release package and infrastructure release package.

software image

A directory tree that contains the Cray XD1 Linux operating system, application
software, and configuration information that is appropriate for the use of the
image. See also partition master software image and node working software image.

symmetric multiprocessor (SMP)

In a Cray XD1 system, an SMP is formed from two single- or dual-core Opteron
processors and their associated memory. One compute blade holds one SMP.
Each chassis contains six compute blades and therefore contains six SMPs. See
also node.

synchronized scheduler, Linux

The Linux process scheduler customized for the Cray XD1 system. It
synchronizes time slots across all nodes in the system and allocates more time
slots to computing jobs to maximize application performance. Administrators
can configure the allotment of time slots on a partition-by-partition basis.

ufp

User FPGA processor. A combining form that occurs in file and directory
names; for example, in <literal>libufp.a</literal>. It is a synonym for the FPGA
application acceleration processor.

workload management (WLM) system

Software that schedules jobs for execution in a system of networked nodes.

S–2433–131 Cray Private 91

Cray XD1™ Programming

92 Cray Private S–2433–131

Index

A
access control

nodes, 7
partitions, 7

ACML
BLAS, 11
FFT, 11
LAPACK, 11
using, 23

Aggregate Remote Memory Copy Interface
See ARMCI

AMD Core Math Library
See ACML

API
See FPGA API

application acceleration processors
See FPGAs

application programming interface (for FPGAs)
See FPGA API

applications, sample
See Mersenne Twister pseudorandom numbers

Apprentice2

using, 24
ARMCI

in software distribution, 12
using, 24

B
Basic Linear Algebra Subprograms

See BLAS
batch process scheduling, 6
BLAS, 11

C
C compilers

GNU, 9
C++ compilers

GNU, 9

closing FPGAs, 65
command line

See managing FPGA logic: command line
communication libraries

ARMCI, 12
GA, 12
GPSHMEM, 12
MPI, 11
relationships (illustration), 13
ROMIO, 11

compiler options, required, 15
compiler scripts, MPICH, 17
compilers

in software distribution, 9
modulefile template, 30

compiling
MPICH library, 33

compiling and linking
general considerations, 15
MPICH applications, 19

compute blades, 39
converting raw FPGA logic files

creating header file, 43
merging header file, 43
procedure, 43
purpose, 43

coprocessors
See FPGAs

CrayPAT
in software distribution, 12
using, 25

D
debuggers, 9
development tools

See tools, development
device drivers

FPGA application acceleration processor, 6

S–2433–131 Cray Private 93

Cray XD1™ Programming

RapidArray interconnect, 6
documentation tools, 10
domain names

partitions, 9
system, 8

double-buffering, in MTA, 68
drivers

See device drivers

E
editors, text, 9
emacs, 9
environment

Cray XD1, 5
user, 7

environment modules
See Modules package

erasing, FPGAs, 45, 64

F
Fast Fourier Transform

See FFT
fcu command

examples, 70
introduction, 39
options
build, 43
convert, 43
exec, 45
load, 44
reset, 44
status, 45
unload, 45

FFT, 11
field-programmable gate arrays

See FPGAs
file descriptors, FPGA, 49
FORTRAN 77 compiler, 9
FPGA API

compiling and linking applications, 26
data transfer methods, 48
device files, 50

file descriptors, 49
fpga_close, 65
fpga_dereg_ftrmem, 61
fpga_is_loaded, 63
fpga_load, 50
fpga_mem_sync, 55
fpga_memmap, 53
fpga_open, 49
fpga_rd_appif_val, 59
fpga_register_ftrmem, 60
fpga_reset, 51
fpga_set_ftrmem, 60
fpga_start, 52
fpga_status, 62
fpga_unload, 64
fpga_wrt_appif_val, 57
introduction, 39
overview, 46
workflow, typical, 46

FPGA logic
loadable files

creating, 43
defined, 39

loading
API, 50
command line, 44

raw files
converting, 43
defined, 42
developing, 42
role of application programmer, 42

FPGA transfer region
See FTR

fpga_close function, 65
fpga_deprogram function, 64
fpga_dereg_ftrmem function, 61
fpga_is_loaded function, 63
fpga_load function, 50
fpga_mem_sync function, 55
fpga_memmap function, 53
fpga_open function, 49
fpga_rd_appif_val function, 59

94 Cray Private S–2433–131

Index

fpga_register_ftrmem function, 61
fpga_reset function, 51
fpga_set_ftrmem function, 60
fpga_start function, 52
fpga_status function, 62
fpga_wrt_appif_val function, 57
FPGAs

address space, mapped, 48
clock speed, 43
closing, 65
device driver, 6
erasing

API, 64
command line, 45

getting started, 70
opening, 49
optional component, 39
parallel computations, 39
part number of variant, 43
pipelined computations, 39
programming state, 63
purpose, 39
releasing from reset

API, 52
command line, 45

resetting
API, 51
command line, 44

resetting user logic, 44
sample application

described, 66
running, 70

status, 45, 62
variants, 42
verifying operation, 70

FTR
communicating address to FPGA, 60
deregistering, 61
overview, 48
registering, 60
sample application, 67
size, 62

G
g++, 9
g77, 9
GA, 12
gcc, 9
gdb, 9
Generalized Portable SHMEM

See GPSHMEM
Global Arrays

See GA
using, 26

GNU C compiler
in software distribution, 9
options, required, 15

GNU C++ compiler, 9
GNU FORTRAN 77

options, required, 15
GPSHMEM

in software distribution, 12
using, 26

groff, 10

H
halting FPGA logic

See resetting FPGAs
header files

converting raw FPGA logic file, 43
FPGA API, 49

I
info command (Linux), 10
interconnect

See RapidArray interconnect

J
jobs, overview, 8

L
LAPACK, 11
libraries, software development

communication, 11
domain-specific, 13

S–2433–131 Cray Private 95

Cray XD1™ Programming

FPGA API, 12
general, 11
HPC, 10
mathematics, 11
performance analysis, 12

libufp.a, 12
libufp.a, FPGA API object library, 49
Linear Algebra Package

See LAPACK
linking

dynamic vs. static, 15
Linux, Cray XD1

enhancements for HPC, 5
overview, 5
synchronized scheduler, 6

loading FPGA logic
API, 50
choosing a method, 67
command line, 44

locations, FPGA
accessing from application, 53
physical interpretation, 47

logging in
command, typical, 9
prerequisites, 7–8
to partitions, 7

logic
See FPGA logic

M
makeinfo command (Linux), 10
managing, FPGA logic

API, 45
command line, 44

mathematics libraries
BLAS, 11
FFT, 11
LAPACK, 11

Matsumoto, 66
memory, application, accessing from FPGA, 60
memory, FPGA

mapping options, 55

offset, 55
pointer in application address space, 55
protection, 54
type, 47

Mersenne Twister Accelerator
See MTA

Mersenne Twister pseudorandom numbers
algorithm, 66
high-level design, application, 67
sample program, 66
source code listing, 75
structure of program, 69
walkthrough, 69

Message Passing Interface
See MPI

mmap, 54–55
module command, 29
modulefiles

described, 29
predefined, 30
templates

compiler, 30
MPICH library, 32

MODULEPATH environment variable, 29
Modules package
module command, 29
modulefiles, 29
MODULEPATH environment variable, 29
overview, 29

MPI, 11
MPI-IO

See ROMIO
MPICH

applications
compiling and linking, 19

compiler scripts
available, 17
described, 17
invoking, 18
paths, 18

compiling the library, 33
include file path, 20

96 Cray Private S–2433–131

Index

instances, multiple, 16
linking applications

dependencies, 21
examples, 21
main library, 20
shared library path, 22

modulefile template, 32
subdirectories, 16

MTA
double-buffering, 68
FPGA logic, sample, 66
high-level design, 67
protocol, 67
registers, 67

N
Nishimura, 66
nodes

access control, 7
overview, 5

O
opening FPGAs, 49
operating system, Cray XD1, 5
options, compiler, 15

P
PAPI

in software distribution, 12
using, 27

partitions
access control, 7
defined, 7
domain name, 9

PathScale compiler
options, required, 15

performance analysis
CrayPAT, 12
PAPI, 12

Performance Application Programming Interface
See PAPI

perl, 10

PGI compilers
options, required, 15

programming state, FPGA, 63
protection, FPGA memory, 54
protocol, FPGA, sample application, 67
python, 10

Q
QDR II SRAM, 47

R
RapidArray interconnect, device driver, 6
registers

MTA, 67
reading, 59
transforming an address before writing, 58
writing, 57

releasing from reset, FPGAs
API, 52
command line, 45

resetting FPGAs
API, 51
command line, 44

ROMIO
compiling and linking applications, 19
in software distribution, 11

S
ScaLAPACK

using, 28
scripting tools, 10
SDP, 7
SHMEM

See GPSHMEM
SLES, 5
SMPs, 5, 46
Sockets Direct Protocol

See SDP
ssh, 8
status, FPGA, 45, 62
SuSE Linux Enterprise Server, version, 5
symmetric multiprocessors

S–2433–131 Cray Private 97

Cray XD1™ Programming

See SMPs
synchronized process scheduling, 6
synchronizing, accesses to FPGA locations, 55

T
templates, modulefile

compiler, 30
MPICH library, 32

text editors, 9
time measurement, in sample application, 68
time slots, synchronized scheduling, 6
tools, development

included, 9
local and third-party, 10
optional, 10

troff, 10

U
ufplib.h, FPGA API header file, 49
user FPGAs

See FPGAs
utility programs

See fcu

V
variant FPGAs, 42
vim, 9

X
Xilinx Virtex II Pro, 39

98 Cray Private S–2433–131

	Cray XD1™ Programming
	New Features
	Preface
	Accessing Product Documentation
	Conventions
	Reader Comments
	Cray XD1 Support

	Introduction [1]
	1.1 Who Should Read this Manual
	1.2 Scope of this Manual
	1.3 How this Manual is Organized
	1.4 Related Publications

	Programming Environment [2]
	2.1 The Cray XD1 Environment
	2.1.1 System Description
	2.1.2 Operating System
	2.1.2.1 Linux Synchronized Scheduler (LSS)
	2.1.2.2 Driver for the RapidArray Interconnect
	2.1.2.3 Driver for the FPGA Application Acceleration Processor
	2.1.2.4 Sockets Direct Protocol

	2.1.3 User Environment
	2.1.4 Job Environment

	2.2 Accessing the System
	2.3 Development Tools
	2.3.1 Standard Tools
	2.3.2 Optional Tools
	2.3.3 Local and Other Third-party Tools

	2.4 Libraries

	Using Tools and Libraries [3]
	3.1 General Compiling and Linking Considerations
	3.1.1 Required Compiler Options
	3.1.2 Dynamic Linking Versus Static Linking

	3.2 Using the MPI Libraries
	3.2.1 MPICH Libraries
	3.2.2 Using Compiler Scripts to Build MPI Applications
	3.2.2.1 Available Compiler Scripts
	3.2.2.2 Setting Your PATH Variable
	3.2.2.3 Invoking a Compiler Script

	3.2.3 Manually Compiling and Linking MPI Applications
	3.2.3.1 Include File Path
	3.2.3.2 Linking the Main MPICH Library
	3.2.3.3 Linking Other Required Libraries
	3.2.3.4 Combined Examples
	3.2.3.5 Building In the Path to the Shared Library

	3.3 Using Other Libraries and Tools
	3.3.1 ACML
	3.3.2 Apprentice 2
	3.3.3 ARMCI
	3.3.4 CrayPAT
	3.3.5 FPGA Application Acceleration Processor API
	3.3.6 Global Arrays
	3.3.7 GPSHMEM
	3.3.8 PAPI
	3.3.9 ScaLAPACK

	3.4 Using the Modules Package to Configure Your Environment
	3.4.1 Overview of the Modules Package
	3.4.2 Introduction to the module Command
	3.4.3 Predefined Modulefiles
	3.4.4 Developing Other Modulefiles from Templates
	3.4.4.1 Compiler Modulefile Template
	3.4.4.2 MPICH Library Modulefile Template

	3.5 Building an MPICH Library Instance
	3.5.1 Obtaining the MPICH Source Code
	3.5.2 Compiling the MPICH Library
	3.5.3 Deploying the MPICH Library Instance

	Using the FPGA Application Acceleration Processor [4]
	4.1 Overview
	4.2 Preparing an FPGA Logic File
	4.2.1 Developing a Raw FPGA Logic File
	4.2.2 Converting a Raw Logic File to Loadable Form

	4.3 Managing FPGA Logic from the Command Line
	4.3.1 Loading FPGA Logic into the Device
	4.3.2 Resetting an FPGA
	4.3.3 Releasing an FPGA from Reset State
	4.3.4 Querying the Status of an FPGA
	4.3.5 Erasing an FPGA

	4.4 Managing FPGA Logic in an Application Program
	4.4.1 Using an FPGA in Application Programs
	4.4.1.1 Typical Application Workflow
	4.4.1.2 Understanding Address Spaces on a Node
	4.4.1.3 Data Transfer Methods

	4.4.2 Using an FPGA in a C Program
	4.4.2.1 Typographic Conventions
	4.4.2.2 Library Files
	4.4.2.3 Opening an FPGA
	4.4.2.4 Loading FPGA Logic into the Device
	4.4.2.5 Resetting an FPGA
	4.4.2.6 Releasing an FPGA from Reset State
	4.4.2.7 Mapping FPGA Locations to the Application Address Space
	4.4.2.8 Synchronizing Accesses to FPGA Locations
	4.4.2.9 Writing and Reading Individual FPGA Locations
	4.4.2.9.1 Writing to an FPGA Location
	4.4.2.9.2 Reading from an FPGA Location

	4.4.2.10 Accessing Application Memory from an FPGA
	4.4.2.11 Checking the Status of an FPGA
	4.4.2.12 Checking the Programming State of an FPGA
	4.4.2.13 Erasing an FPGA
	4.4.2.14 Closing an FPGA

	4.5 Sample Application: Using the Mersenne Twister Accelerator
	4.5.1 Algorithm
	4.5.2 High-level Design of Application and FPGA Logic
	4.5.3 Some Design Details
	4.5.4 Walkthrough

	4.6 Getting Started with the FPGA

	Program Listing: mta_test.c [A]
	Glossary
	Index
	List of Examples
	Example 1: Adding an instance of MPICH to your PATH variable
	Example 2: Specifying the MPICH header file location
	Example 3: Manually building an MPI application with the GNU C c
	Example 4: Manually building an MPI application with the PGI For
	Example 5: Manually building an MPI application with the GNU FOR
	Example 6: Template for a PGI compiler modulefile
	Example 7: Template for an MPICH library modulefile
	Example 8: Accessing the source disc image
	Example 9: Copying the MPICH source package to the Cray XD1 syst

	List of Procedures
	Procedure 1: To obtain the MPICH source code
	Procedure 2: To compile the MPICH library
	Procedure 3: To deploy the MPICH library instance
	Procedure 4: To convert a raw logic file to loadable form
	Procedure 5: To get started with the FPGA

	List of Tables
	Table 1. Related publications
	Table 2. Software development tools in the Cray XD1 software dis
	Table 3. Key software libraries in the Cray XD1 software distrib
	Table 4. Required compiler options
	Table 5. MPICH libraries in the Cray XD1 software distribution
	Table 6. MPICH subdirectories
	Table 7. MPI compiler scripts
	Table 8. Using MPICH
	Table 9. Using ROMIO
	Table 10. Resolving MPI references
	Table 11. Using ACML
	Table 12. Using Apprentice 2
	Table 13. Using ARMCI
	Table 14. Using CrayPAT
	Table 15. Using the FPGA application acceleration processor API
	Table 16. Using Global Arrays
	Table 17. Using GPSHMEM
	Table 18. Using PAPI
	Table 19. Using ScaLAPACK
	Table 20. Common module subcommands
	Table 21. fpga_open (3) arguments and return value
	Table 22. fpga_load (3) arguments and return value
	Table 23. fpga_reset (3) arguments and return value
	Table 24. fpga_start (3) arguments and return value
	Table 25. fpga_memmap (3) arguments and return value
	Table 26. fpga_mem_sync (3) arguments and return value
	Table 27. fpga_wrt_appif_val (3) arguments and return value
	Table 28. fpga_rd_appif_val (3) arguments and return value
	Table 29. fpga_register_ftrmem (3) and fpga_dereg_ftrmem (3) arg
	Table 30. fpga_status (3) arguments and return value
	Table 31. fpga_is_loaded (3) arguments and return value
	Table 32. fpga_unload (3) arguments and return value
	Table 33. fpga_close (3) arguments and return value
	Table 34. MTA registers

