
Abstract

Pattern discovery in genetic sequences is one of the major problems in contempo-

rary biological research. Many algorithms exist for locating such patterns, and most

of these are based on a small set of building blocks for testing calculated patterns.

One of these building blocks is the Position Weight Matrix (PWM), which represents

the problem as a matrix of scores that is compared to a series of sequence windows

to produce a set of PWM scores.

The PWM calculation is the bottleneck in most of these algorithms. This paper

therefore explores the viability of making an implementation of a PWM on a Field-

Programmable Gate Array (FPGA) in order to exploit the large inherent parallelism

in the PWM algorithm. Several different solutions are explored in the overall design

as well as in the various modules, in order to balance factors such as throughput,

accuracy and bit resolution, dataset storage capacity, substring length, alphabet size

and chip utilization. The speedups attained are then compared to pure software

solutions.

1

2

Contents

1 Introduction 7

1.1 The Cray XD1 Supercomputer . 8

1.2 Field-Programmable Gate Arrays . 10

1.3 The Significance of In Silico Motif Discovery 12

1.4 The PWM Algorithm . 13

1.5 Earlier work in this area . 14

2 The FPWM Prototype 17

2.1 The Hardware Implementation . 17

2.1.1 The Control Module . 18

2.1.2 The Memory Module . 21

2.1.3 The PWM Module . 22

2.1.4 The Adder Module . 23

2.1.5 The Result Module . 24

2.2 The Hardware-Software Interface . 26

2.3 Implementation Problems . 28

2.4 Summary . 31

3 The FPWM Prototype Simulator 33

3.1 The FPWMSim Implementation . 33

3.2 FPWMSim Data Files . 34

3.3 Using FPWMSim . 35

3.4 Summary . 37

4 Results 39

4.1 Performance Measurements . 39

4.1.1 Compared to general-purpose CPUs 39

4.1.2 Compared to Interagon’s Pattern Matching Chip 41

4.2 Resource Measurements . 42

4.2.1 Bit Resolution . 42

4.2.2 PWM length . 43

4.2.3 Alphabet size . 43

4.2.4 Sequence Length . 44

4.3 Summary . 45

3

5 Future Work 47

5.1 Module Variations . 47

5.1.1 Changing the bit resolution . 47

5.1.2 Changing the PWM length . 48

5.1.3 Changing the alphabet size . 49

5.1.4 Result Module: Simple filtered output 49

5.2 Local Parallelized FPWM Cores . 50

5.3 Multi-Node FPWM Implementations . 54

5.3.1 Parallelizing Work . 55

5.3.2 Parallel Computation . 55

5.4 Summary . 57

6 Conclusions 59

4

List of Figures

1 The Cray XD1 System. 9

2 The FPGA’s interconnection facilities. 10

3 Two steps of the PWM algorithm. 15

4 An overview illustration of the entire system. 19

5 An overview illustration of the entire FPGA, including the various modules

of the FPWM, and the FPGA’s connections to the outside world. 21

6 An 8/4 PWM Module . 23

7 A full eight-element Adder Module. 24

8 A Storage Element. 26

9 A simplified four-element Result Module. 27

10 FPWMSim during operation. 36

List of Tables

1 The resource consumptions of each module on the FPWM with the default

configuration. 42

2 The results of varying the bit resolution on the FPWM prototype. 43

3 The results of varying the PWM length on the FPWM prototype. 43

4 The results of varying the alphabet size on the FPWM prototype. 44

5

6

1 Introduction

Position Weight Matrices (PWMs) are often used to represent patterns in biological se-

quences. A PWM is based around a matrix of element scores, holding one score value for

each particular element for each column position in the matrix. A set of scores for a string

of elements is computed by sequentially looking at fixed-length windows, or substrings, and

looking up the value for each element of the substring. In the case of log-likelihood PWMs,

which are examined here, these values are summed to produce a set of score sums, called

the string’s profile.

The overall goal of this paper was to explore the viability of using a Field-Programmable

Gate Array (FPGA) implementation of a PWM in order to speed up this computation

without severely compromising accuracy or flexibility, since the PWM calculation is a

bottleneck in several popular algorithms used to discover biological motifs. Using an FPGA

enables a large amount of parallel computation to be performed, provided the algorithm

in question is highly parallelizable, as is the case with PWMs.

This paper presents an FPGA implementation of a PWM, where each particular part of

the PWM process is implemented as an individual module, to easily allow replacement of

alternative implementations. The implementation was done on a Cray XD-1 Supercom-

puter, which has a base configuration of six dual-CPU SMP nodes, each having an FPGA

directly connected to the SMP through a HyperTransport bus. Several different solutions

were explored in the overall design as well as in the various modules, in order to balance

factors such as throughput, accuracy and bit resolution, dataset storage capacity, substring

length, alphabet size and chip utilization.

This implementation was to be used as a black box PWM solver for Gibbs Sampling and

MEME pattern discovery implementations ([16], [17]), with performance measurements of

these implementations being compared to naive and optimized software solutions, as well as

an earlier solution running on Interagon’s Pattern Matching Chip. Tests were also to be run

to both calculate the speedup of the PWM solver by itself, using synthetic data, as well as

the overall speedup of the algorithms using the PWM, using real data sets. Unfortunately,

this goal was never fully reached due to problems with the implementation, described in

detail in Section 2.3. However, due to the predictable nature of the implementation, some

performance estimations are given where empirical performance tests of PWM software

implementations are compared to the realistic theoretical performance of the hardware

7

implementation.

1.1 The Cray XD1 Supercomputer

The implementation in this project was done on a Cray XD1 Supercomputer, which is

largely a general-purpose computer, except for certain special hardware used for reconfig-

urable computing. As the underlying hardware of this computer was described in detail in

an earlier project ([7]), this paper will only give a short overview of its technical capabilities

in lieu of a full treatise.

The Cray XD1 installation at NTNU consists of a single Cray XD1 chassis that contains

a total of six nodes. Each node is physically seated on its own compute blade, and consists

of two single-core 64-bit AMD Opteron 250 Series general-purpose CPUs and 4 GB RAM

shared between the two CPUs in a SMP configuration, as well as a Xilinx Virtex-II Pro

XC2VP50-7 FPGA1 connected to the SMP using Cray’s proprietary RapidArray transport.

The compute nodes are connected through the so-called RapidArray fabric on the main

board, which also has facilities for connecting several chassis together. This configuration

is shown in Figure 1 [2].

On the software side, each node runs a separate instance of the SuSE GNU/Linux operating

system, independent of the other nodes. There is no memory sharing between the nodes,

and all communication is done through the aforementioned RapidArray fabric. Several

libraries optimized for inter-node parallelization on the Cray XD1 are provided, of which

the most important one is Message Passing Interface (MPI). These libraries take advantage

of many interesting features of the RapidArray transport, such as the possibility to directly

write to an SMP’s RAM, bypassing the OS kernel.

The most interesting feature of the Cray XD1, and the one which is the focus of this paper,

is the possibility of using the attached FPGAs for application acceleration. A more general

description of the technology behind FPGAs is described below, in Section 1.2. Using these,

it is possible to create a design specialized for highly parallelized pattern discovery, which

is then uploaded to the FPGA and executed there as a circuit. This design, in conjunction

with a controlling C application, would be able to exploit the lack of data dependency

inherent in such applications, significantly increasing the performance compared to similar

1More recent releases of this hardware platform used the larger Virtex-4 family.

8

Figure 1: The Cray XD1 System.

9

implementations running on general-purpose sequential processors. Figure 2 shows the

FPGA together with its various communication facilities [2].

Figure 2: The FPGA’s interconnection facilities.

1.2 Field-Programmable Gate Arrays

A Field-Programmable Gate Array (FPGA) is a reconfigurable circuit that can be loaded

with a design specification, which is form of user-specified program, to perform a given

task. The design specification is typically given in the form of a bit file, which contains

a representation of each individual programmable bit in the FPGA. When the bit file is

loaded to the FPGA, this configures the various Configurable Logic Blocks (CLBs) in the

FPGA, as well as the routing matrix that connects the CLBs, to perform the functionality

specified by the design.

The design also describes the way in which the CLBs are connected to the Input/Output

Blocks (IOBs) located at the FPGA’s boundary, which are hooked up to the physical

pin-outs on the FPGA’s exterior, allowing it to be interconnected with other circuitry.

10

This circuitry could for instance be other digital or digital/analogue hardware components

controlled by the FPGA, other FPGAs that cooperate in solving a task, or in the case of

the Cray XD1, a RapidArray processor that connects it to the host node.

Traditionally, FPGAs have been popular as a use for a prototyping tool for Application

Specific Integrated Circuits (ASICs). Generally, many of the same design rules apply for

these two technologies. However, the major difference is that moving an ASIC design to

silicon is a very expensive process in low quantities, while FPGAs, due to their repro-

grammability, can in many cases easily be used in place of an ASIC. If put in a circuit by

means of a socket, replacing and reprogramming the FPGA is effortless, and offers large

cost savings over using ASICs for prototyping directly.

However, the focus of this paper lies in the use of FPGAs in conjunction with traditional

general-purpose CPUs for increasing the performance of scientific applications. It is not

strictly a recent idea, and papers describing ways of combining general-purpose processors

and programmable logic systems appeared as early as 1963 ([8], [9], [10]). However, the

necessary hardware for doing this efficiently on a large scale has only appeared in the last

few years.

Most of the early platforms consisted of an extension card that was hosted by a standard

PC, and connected to its host computer through a traditional PC interconnect such as the

PCI bus. The drawbacks of this approach should be obvious. Firstly, the PCI bus has a

relatively high latency. Secondly, the bandwidth is often limited, with conventional PCI

being limited to 133 MB/s. Thirdly, the bus is shared with other devices, meaning that

contention can cause a much lower rate than the theoretical maximum. The last point is

particularly important if there is a requirement to host several PCI-based FPGA cards in

the same computer.

A more viable alternative to using the PCI bus for communication between the FPGA

and its host node is to use a dedicated bus, which in latency and bandwidth terms is

closer to the CPU than devices connected through PCI. The solution chosen on the Cray

XD1, where the FPGA is situated directly on the compute blade, has the advantage of

being connected directly to the CPUs through the HyperTransport bus, in the form of the

RapidArray transport. This makes for a low latency and high bandwidth interconnect,

enabling the FPGA to be used both for applications that require fine-grained parallelism

with regard to the SMP node, and for applications that have high bandwidth demands.

11

[11] lists a number of performance advantages of applying reconfigurable computing to

scientific applications. The most important and also most obvious of these is that the

resources of the hardware can be applied where it is most needed, instead of using the

static arrangement found in general-purpose CPUs. Components and datapaths can be

defined, created and arranged to exploit task-specific parallelism in ways impossible to

attain otherwise. The main reason for this is that general-purpose CPUs are created to

be as fast as possible over a large number of applications, which means that much of the

CPU is idle during any given operation, while a reconfigurable platform can be made with

a very high resource utilization for one particular application. Another point to make is

that a large part of a CPU’s silicon is used by control logic, such as branch predicion and

systems required to deal efficiently with virtual memory, as well as other units used to

boost general performance such as memory caches. By having a core specially designed

for a particular application, all unnecessary logic can be thrown out, making the actual

work-performing logic a much larger percentage than on a general-purpose CPU.

There are of course drawbacks. The complexity of creating a design for a reconfigurable

platform is close or equal to that of any other hardware design, and is generally done using

relatively low level languages such as VHDL and Verilog. The time required for creating

a design of any complexity is therefore very high. The high development cost is the main

reason reconfigurable computing is not more wide-spread than it is, but certain signs, such

as hardware support from major supercomputing companies such as Cray and SGI, indicate

that it could become more common. Certain developments in using software development

tools for hardware development, such as the C-based SystemC and Impulse C, should also

make reconfigurable computing more available for software programmers. (These tools are

not covered further in this paper, which is based on VHDL for the hardware development.)

A more comprehensive treatise on FPGAs, including an overview of some projects that

have successfully used FPGAs for application acceleration, can be found in [7].

1.3 The Significance of In Silico Motif Discovery

Motif discovery is an important part of what is considered bioinformatics, and is an active

field of research. Its main use is to discover interactions between transcription factors in

genetic sequences in order to pave the way for the discovery of so-called promoter regions,

or in other words, locate the parts of a genome that are likely to control a particular aspect

12

of a living entity. This is done in order to chart factors that affect everything from the

color of a person’s hair to diseases leading from genetic defects.

In the earlier days of biological research, most of the work was manual. However, as the

data available on the various genomes increased, manual comparisons of different data sets

became excessively hard to perform. Therefore, scientists started work on using computers

for pattern discovery in the late 70s and early 80s. [3] gives an overview of the work that

has been done in this field in the past three decades. Today, the vast amount of data

gathered from genomes of various species are far beyond what can be efficiently examined

by non-computational means. The computational complexity of many of the problems are

in fact so vast that they in their full scale only be solved in a reasonable amount of time

by means of supercomputers or massively distributed efforts 2.

[4] mentions three overlapping categories of transcription: “identification of properties asso-

ciated with regulatory sequences, construction and analysis of quantitative models for the

binding to DNA of individual [transcription factors], and the identification of combinations

of transcription factor binding sites likely to be associated with regulatory processes.” The

focus here is on the second of these categories, which is considered the most basic level.

The discovery of individual transcription factor bindings is a necessary building block for

the other two, and used together these methods can discover exactly what combinations

of which transcription factors cause a particular attribute of an organism.

The solutions in this paper are not however particular to bioinformatics, and the develop-

ment and analysis of the solutions are done on a lower level, corresponding to a form of

string matching. The biological background is therefore not very important in this context,

and will not be discussed outside this introduction.

1.4 The PWM Algorithm

The introduction of Position Weight Matrices is usually credited to a paper by Rodger

Staden in 1983 [5], as an in silico method for locating signals in nucleic acid sequences,

according to the article including “ribosome binding sites, promoter sequences and splice

junctions”. Since its introduction, it has become an essential part of a large number of

2An somewhat related example of using distributed computing in bioinformatics is Rosetta@home,
which harnesses the power of tens of thousands of personal computers to predict the folded three-
dimensional shape of proteins [1].

13

motif discovery methods. [6] lists 119 publicized motif discovery methods, of which 59 use

a PWM as the cornerstone of the method.

In its most common form, a PWM consists of a matrix of position weights of log-likelihoods,

representing the value (likelihood in log form) of each element (nucleotide) for a given

position in the window. The matrix has a length equal to the length of the motif it is to

be compared against, and a height equal to the number of distinct elements in the data

sequence (typically 4, for A T G C). A PWM score is defined as
∑N

j=1 mi(j),j where i(j)

is the score for a given element j and N is the number of columns in the PWM. That is,

for a given window in the data sequence, the PWM score is calculated by looking up the

score for each element in the window, and adding the individual element scores together.

The resulting set of indexed scores, usually called the profile, is the final product of the

algorithm [5].

Figure 3 illustrates two consequtive steps of the PWM algorithm3. In the first step, the

window shown at top contains the elements in the sequence stream. The scores of these

elements are looked up in the PWM, and each individual score is added together to provide

the window score, shown at the bottom. In the second step, the window has shifted one

step to the right, discarding the ’A’ corresponding to the lowest index presently in the

window, and bringing in a new ’G’. This process is repeated until one window score has

been calculated for each possible window.

Variations of the basic PWM do exist, and the algorithm has been extended to fit several

more specialized applications. However, as we here only deal with the basic log-likelihood

version, this is outside the scope of this paper.

1.5 Earlier work in this area

Using FPGAs in bioinformatics is not entirely new, and several papers have been sub-

mitted in the area over the last few years. For example, [13] describes a method where

FPGAs are used to compute sequence alignments by means of a Smith-Waterman dynamic

programming matrix, where a single FPGA achieves a speedup of between 45 and 50 on a

Xilinx Virtex-II XC2V6000 FPGA, compared to running it on a Pentium IV 3GHz CPU.

3Log-likelihood PWM scores, where each value is the logarithm of a value between 0 and 1 inclusively, are
actually negative, but this is not significant to the algorithm, so the negative signs are dropped throughout
this paper.

14

Figure 3: Two steps of the PWM algorithm.

[12] describes an implementation for discovering similarities within proteomes, called PRO-

SIDIS (PROtein SImilarity DIScovery), where a speedup of 5 using a Xilinx Virtex XV1000

FPGA was attained, compared to a Pentium III 1GHz CPU.

However, no mentions on the specific task of using FPGAs for PWM matching have been

found during the preliminary studies of this project, so it is assumed that this work is

either novel, or that any papers mentioning the subject have either not been submitted, or

have not been indexed by relevant keywords in any of the major article databases used in

the search4.

4This include all Computer Science and Medical databases available though UBiT.

15

16

2 The FPWM Prototype

An FPGA-based PWM implementation prototype dubbed the FPWM was developed as

a way to gain real-life intimacy with the FPGA platform and get a base for future work.

The implementation accepts an element string from the SMP node and stores it in the

local SRAM of the FPGA, as well as a score matrix which is stored in the FPGA itself.

The elements are then read from the SRAM into a window buffer in the FPGA, after

which the scores are looked up in the score matrix, and added together by a parallelized

and pipelined adder. The results from the adder are then stored in a queue that saves the

eight highest-scoring results, which are written back to the SMP when the operation is

completed.

2.1 The Hardware Implementation

The hardware implementation of the FPWM is relatively simple compared to more general

processor cores. The implementation is modular, to make it possible to, for instance,

replace the current result queue with an implementation using a larger queue and/or an

alternative algorithm without altering the other modules, or increase the width of the PWM

without affecting the memory and result queue modules. The modules are organized in

a pipeline structure, where each module pass a self-containing package of data, usually

consisting of one or more data elements as well as an index, to the module below it in

the hierarchy. Several of the modules also employ a pipeline structure internally, to enable

the FPWM to run at the maximum speed of the FPGAs installed on the Cray XD1. The

different modules are described in greater detail below.

Together, the various modules perform a large number of elementary operations in parallel

every cycle when the pipeline has been filled, enabling the FPWM to process one element

of the input string each cycle. Due to memory bandwidth limitations on the Cray XD-1,

an ideal implementation could process up to 32 elements each cycle using 8-bit elements,

or 64 elements using 4-bit elements, but size constraints in contemporary FPGAs would

likely prevent an implementation on the hardware used in this project to exceed roughly

8 elements/cycle with an implementation similar to the one used here. These numbers ex-

clude pipeline warm-up effects, which add insignificant delays for reasonably large sequence

lengths (see Section 4.1).

17

The pipelines in the FPWM do not suffer many of the problems pipelines in contemporary

general CPUs do 5. The main reason for this is the lack of hazards inherent in the algorithm.

A computation is never dependent on the results of any other computation except for those

directly leading up to it in the pipeline, meaning that no data hazards ever occur. Similarly,

there is no significant dynamic control in the pipeline, nor any possibility or need to change

the execution flow, so there are no branch hazards. For these reasons, the pipeline will

never have to be stalled or flushed, and with the exception of the pipeline warm-up at

the beginning of a computation sequence and the pipeline cooldown at its end, there is no

penalty involved in using a pipeline here except for the use of some additional hardware

resources and a comparatively higher implementation complexity.

Figure 4 shows an overview of the entire system, and indicates the interconnections between

the various devices. The SMP node and the FPGA are displayed connected through the

RapidArray fabric, and we can see the User Application part (here dubbed the FPWM

Core) being connected to the rest of the system through Cray’s proprietary RT and SRAM

cores.

2.1.1 The Control Module

The Control Module is responsible for coordinating the operation of the other elements.

As much of the coordination happens directly between the other modules themselves, it

is not very involved in the actual computation. What it does do is receive and interpret

the commands from the SMP node (through the RT Core), and pass them along to other

modules as needed, such as when the element sequence is loaded to the SRAM and when the

PWM is initialized. It is also responsible for starting the FPWM’s computation sequence,

maintaining the element index used by the memory module, and telling the result queue

to start writing the result data back to the SMP node when the computation sequence has

completed.

The implementation of the Control Module is based around a simple five-state FSM: Idle,

Active, Cooldown, Output and Reset. These is also an independent system for commu-

5As a case in point, the Netburst architecture used in the Intel Pentium IV Prescott core used no
less than 31 pipeline stages, making for an extreme branch misprediction penalty and intolerable power
requirements. The core was deemed a failure that never fulfilled its high expectations, as it was supposed
to breach the 10GHz barrier but never made it past 4GHz, and further development on the core was
abandoned.

18

Figure 4: An overview illustration of the entire system.

19

nication with the host SMP node, so it is possible to write data to the FPWM while

computations take place. In short, control signals for the pipeline and execution flow is

provided by the first system, while control signals for writing to the SRAM and PWM is

provided by the second system.

While in the Idle state, the Control Module does not read from memory, the index counter

is not incremented, and the Output Module is signaled to not output any data. While in

this state, the SMP node is expected to set the element stream and PWM values, the start

and end offset of the element sequence in the SRAM on which the computation is to be

performed, as well as a return pointer to a location in the host SMP node’s memory space,

to which the FPWM can write the results when the computation sequence is complete. As

soon as the module receives a particular signal from the host SMP node, namely a write

of 0x01 to 0x78 in the FPGA’s internal address space, it switches from the Idle state to

the Active state.

In the Active state, the index counter, which is initialized by the host SMP node during the

Idle state as the pointer to the memory start offset, is incremented by one each cycle, and

used as an address pointer for the Memory Module. The read signal to the Memory Module

is also asserted, and after a memory fetch delay of eight cycles the Memory Module starts

outputting the element stream in its output bus, one at a time. Note that no other control

signals are asserted during the Active stage, as the PWM Module and Adder Module are

controlled only by the data and index they receive, while the Result Module does not need

any commands at this time.

When the index counter reaches the memory end offset set earlier by the SMP node, the

FSM enters the Cooldown stage, and the read signal to the Memory Module is deasserted.

The Control Module then waits for the last elements in the pipeline to clear. The wait

period is equal to the number of addition steps, plus the memory fetch delay, plus three

cycles for PWM lookup and result sort delays.

After the Cooldown stage is complete, the FSM enters the Output stage. In this stage, the

Result Module is signaled to start outputting the signal. The Control Module then enters

the Reset stage on the next cycle while the Result Module finishes the output sequence,

where certain signals are reset to prepare for a new compute cycle. After this stage, the

module finally returns back to the Idle stage, and can again accept work from the host

SMP node.

20

Figure 5 shows the FPWM core with its various modules, and indicates the amount and

direction of data flowing between the various modules.

Figure 5: An overview illustration of the entire FPGA, including the various modules of
the FPWM, and the FPGA’s connections to the outside world.

2.1.2 The Memory Module

The Memory Module is responsible for handling the communication between the FPWM

and the FPGA’s off-chip SRAM. It has two major functions: writing the element sequence

from the Control Module to the SRAM during initialization, and reading elements back

from the SRAM and feeding them as a stream to the PWM, together with the element

indexes, during computation. These two processes are functionally separate to allow inter-

leaving, and it is up to the Control Module to tell the Memory Module what action(s) it

should perform when.

21

The memory write functionality of the Memory Module is designed to accept data from the

SMP node via the Control Module, and write them to the FPGA’s off-chip SRAM. This

functionality is rather simple, as the Control Module simply forwards the local address

part of the memory address together with the data received, and asserts a write signal to

the Memory Module. The Memory Module then uses the SRAM Core provided by Cray

to write this data to the given position in the external SRAM.

The memory read function’s main responsibility is matching up the indexes it is given by

the Control Module with the data elements it fetches from the SRAM. It does this by

asserting the address bus with the index when it’s retrieved from the Control Module,

while at the same time inserting the index into an eight-step shift register to match the

eight-cycle memory fetch delay from the SRAM. After this delay, the index/element pair

is passed on to the PWM Module.

2.1.3 The PWM Module

The PWM Module, together with the Adder Module, is the actual implementation of the

PWM algorithm. Its primary function is taking a stream of elements from the Memory

Module, and looking up the scores in the score matrix for every element in each window.

The set of scores for each window, the sum of which is hereby referred to as the window

score, is passed to the Adder Module along with the smallest index of the elements in the

window (i.e., the left-most index), hereby referred to as the window index.

The PWM itself can consist of a virtually arbitrary number of rows and columns (subject

to the restrictions placed by the total resources available on the FPGA), but is fixed to

eight rows and four columns in the prototype. What this means is that it can look for

sequences with a length of up to eight elements, using an alphabet size of four. Each

matrix element itself is an integer, set to 32 bits in the prototype, denoting the value of a

particular element in a particular position.

After the pipeline warm-up, when the element window buffer in the PWM is filled with

a number of elements equal to the length of the PWM, the PWM Module simultaneously

looks up the integer score for each of the elements in the window, thus processing a full

window of elements in just a single cycle. The resulting window score is then passed on to

the Adder Module, along with the window index.

22

Figure 6 shows the current PWM module with a window size of eight and alphabet size of

four. Note that the selection lines are only displayed for the first column.

Figure 6: An 8/4 PWM Module

2.1.4 The Adder Module

The Adder Module, shown in Figure 7, is the final stage of the actual PWM algorithm, and

is responsible for finalizing the window score by adding together the set of element scores

produced by the PWM Module, before providing the sum to the Result Module along with

the window index.

The prototype implementation does this using a set of 38-bit6 adders in a pipelined tree con-

figuration, capable of creating one window score each cycle with a delay of log2pwm length

cycles. Note that there is a pipeline stage built into each level of the adder tree, which is the

reason for the delay. The initial output from the PWM Module is first summed together

in pairs using pwm length/2 adders, producing pwm length/2 partial sums. These sums

and the window index are stored in a pipeline memory element. On the next cycle, these

are passed on to the next pwm length/4 adders to create pwm length/4 partial sums, and

6While each adder is defined as 38 bits, more than what is needed for all but the last level, the excessive
bits on each stage are automatically removed by the synthesizer’s optimization process.

23

so on until a single sum has been computed.

When the result score has been reduced to a single number, the actual PWM algorithm is

complete for that window, and the window score together with its index is passed to the

Result Module to determine whether that particular score will be stored or discarded.

Figure 7: A full eight-element Adder Module.

2.1.5 The Result Module

The Result Module is responsible for returning the results of the computation to the SMP

node. Various approaches can be used in this module, both in the number of results re-

turned and in the different levels of post-processing that can be performed. The prototype

implementation uses a sorting mechanism that maintains a sorted array of result-index

pairs, capable of accepting one new result from the Adder each cycle. When the computa-

tion is complete, the Control Module sends it a certain signal that initiates a write of the

content of the result queue to a predetermined memory location on the SMP node itself.

The prototype Result Module is based around a number of fairly complex Storage Elements,

each of which can store a single result-index pair. The prototype implementation has eight

of these Storage Elements, interconnected in a chain. The Storage Elements work by

simultaneously comparing the result value it has stored with the result value provided by

the Adder Module each cycle, and combining it with data from the neighboring Storage

24

Elements to do one of three actions: (1) Take the result-index pair from the next-higher

Storage Element as its own, (2) Insert the new result-index pair as its own, or (3) Keep its

current value.

The actual algorithm is relatively simple, and can be expressed as the following:

(1) IF new_result > old_result AND next Storage Element in chain reports

new_result > old_result THEN

Replace current result-index pair with result-index pair from next Element

(2) ELSIF new_value > old_value AND next Storage Element in chain reports

new_result <= old_result THEN

Replace current result-index pair with the newly arrived result-index pair

(3) ELSE

Do nothing

The Result Queue as a whole can accept and sort one result per cycle, but sorting each

element must be performed over two cycles, as the Storage Elements must exchange infor-

mation to determine the correct course of action for each given result. In the first cycle,

each Storage Element determines whether it will have its contents replaced during the

NEXT cycle, that is, if the new result is larger than the currently stored result OR larger

than the result being written to it THIS cycle, if any. This comparison is then propagated

from each Storage Element to the previous Storage Element in the chain. In cycle two, the

Storage Elements will then perform action (1) if the next Storage Element in the chain is

to be replaced, (2) if the next Storage Element in the chain is not replaced but the new

result is found to be larger than the current result stored in this Storage Element, and (3)

otherwise.

Note that these two sort cycles happen concurrently, and in all of the Storage Elements

simultaneously. Which action is taken on an element on a given cycle is determined by

the data generated from the next Storage Element in the chain in the previous cycle, thus

creating a rather large and complex unit.

Special attention also has to be given to the first and last Storage Element in the chain.

For the last Storage Element, it is a given that if it is replaced, its result-index pair is

25

not forwarded anywhere, and is thus discarded. For the first Storage Element, there is

no higher-order Storage Element to communicate with, so this Element can be somewhat

simplified, as the only actions that can occur are (2) and (3).

Figure 8 shows the internals of the Storage Element, while a simplified, four-element Result

Module is illustrated in Figure 9. Note that certain control lines are not shown on the latter,

to avoid excessive clutter.

Figure 8: A Storage Element.

2.2 The Hardware-Software Interface

An intermediate C interface for use by client applications was developed in order to simplify

control of the FPWM. Calling the functions in the interface indirectly invokes communica-

tion with the FPWM through the FPGA API provided by Cray, which transfers the actual

data between the SMP node and the RT interface hosted on the FPGA itself, from where

it can be accessed by the user design.

The interface consists of three major functions:

int fpwm_init() prepares the FPGA for operation, loads the FPWM design to the FPGA,

and returns the needed file descriptor to the user application, which should be used to

26

Figure 9: A simplified four-element Result Module.

reference the FPGA on future calls to the library.

int* fpwm_load_dataset(int handle, int* mempointer, char* dataset,

unsigned long offset, unsigned long length) loads the FPGA’s SRAM with the

dataset that is to be used by the FPWM. Due to a limitation in the current design,

the function will create a memory area used for writing to the FPWM the first time it

is called (with mempointer set to NULL), which is returned to the user application as a

pointer. The interface expects to be given this pointer as an argument on future calls to

this function. Note that char* dataset should be a pointer to the first byte of the sequence

to be loaded.

offset and length define which parts of the char array will be written to the FPGA, and

where in the FPGA’s SRAM it will be written. For example, if offset is given as 32 and

length as 16, 16 bytes will be transferred starting from offset 32 in the char array to offset

32 in the FPGA’s SRAM. It is the user application’s responsibility to make sure these

values are valid (not out-of-bounds), and that they do not overwrite already written data

unless the overwrite is intentional.

(Note: It is technically possible to use Cray’s API to write directly to the memory area given

by the returned memory pointer to alter data on the FPGA, but this is not recommended

as the underlying functionality of the interface may change in the future.)

long* fpwm_compute_pwm(int handle, long* pwm, unsigned long range_start,

unsigned long range_length) is used to start the computation itself. The pwm argument

27

is a pointer to the first score value of the PWM, which must be the same size or be padded

to equal the size FPWM_PWM_MAX_ROWS * FPWM_PWM_MAX_COLS, defined by the header file.

The PWM should be stored in the standard C row-major order, and if called externally

from a programming language using column-major order (such as FORTRAN) it must be

translated by the user application, or simply stored as a flat array. The range_start and

range_length arguments define the memory range in the FPGA’s SRAM (that is, the

element sequence) on which the computation is to take place.

It should be noted that since the prototype FPWM did not reach a fully working condition

within the duration of the project, the interface remains largely untested.

At the current time, the interface is relatively low-level, and leaves much of the book

keeping to the user application. Much of this is because the interface currently does not

have an internal state, which means information must be stored by the user application

instead of within the interface itself. This could be regarded as a weakness, as it exposes

parts of the internals to the user application, and makes for a weaker encapsulation than

what is usually desired. It also requires the user application to operate at a byte level

when referring to the element sequence memory (datasets), while in many cases it could

be desired to refer to it as named sets or similar instead.

The solution to these problems that has the highest degree of encapsulation would be to

contain the interface in a C++ class, and store the data required for this functionality in

this class instead of within the user application itself. For C++ applications, this would be

the best solution, and one that should be explored in order to ease the implementation of

the user application. Of course, a C++-contained class would be hard to use from a plain

C application, so such an implementation might not always be desirable. In C, a struct

could fill these demands in place of a class, and while such a solution still requires that the

user application keeps track of a pointer to the struct, and the user application could still

access and modify its data, it is a better solution than the simple approach used today as

it offers a higher level of containment.

2.3 Implementation Problems

Due to the complexity of writing hardware specifications with VHDL, combined with the

relative inexperience with such programming on behalf of the author and the unpolished

nature of the hardware platform and tools used during the development, several major

28

problems occurred during development, greatly slowing down development and forcing

some less than optimal solutions on the code side.

The one factor that caused the largest amount of problems and frustrations was the primary

implementation tool, Xilinx ISE Foundation 7.1i. For one, the tool is very choosy about

what language constructs it is willing to synthesize. Many of the array constructs that were

attempted in the project were either not possible to synthesize, not possible to simulate, or

both. This included several built-in standard functions in the IEEE 1164 library standard,

of which the lack support made the code much more complex than what should have been

necessary.

Worse still, the tool has a tendency to terminate during the synthesizing process for no

apparent reason. Error messages such as

ERROR:DeviceResourceModel:1071 - NP_NODE::getwirewitharc failed.

FATAL_ERROR:Par:Portability/export/Port_Main.h:127:1.12.12.6 -

This application has discovered an exceptional condition from which it

cannot recover. Process will terminate. To resolve this error, please

consult the Answers Database and other online resources at

http://support.xilinx.com. If you need further assistance, please open

a Webcase by clicking on the "WebCase" link at http://support.xilinx.com

ERROR: XST failed

Process "Synthesize" did not complete.

and

Building and optimizing final netlist ...

FATAL_ERROR:Xst:Portability/export/Port_Main.h:127:1.13.276.1 -

This application has discovered an exceptional condition from which it

cannot recover. Process will terminate. To resolve this error, please

consult the Answers Database and other online resources at

http://support.xilinx.com. If you need further assistance, please open

a Webcase by clicking on the "WebCase" link at http://support.xilinx.com

ERROR: XST failed

Process "Synthesize" did not complete.

29

were all too common, and the provided resources generally provided very little informa-

tion on how to correct them. Considering that these errors usually occurred during the

Place and Route phase, roughly 30-40 minutes into the synthesizing process, and that they

occasionally made the host computer lock up completely, much time was wasted dealing

with them. To make matters even worse, in many cases the errors did not seem to be

caused by any particular code lines. Often the error would go away after changing the

order in which certain lines of recently added code was written (which, due to the parallel

nature of VHDL generally does not have any syntactic or semantic significance except for

within defined constructs), or simply by cleaning the project files (i.e., deleting all the files

generated by ISE) and re-running the synthesizing process.

Another problem that slowed down the process was the lack of documentation available

for the Cray XD1 platform. Certain subjects, such as the differing memory access schemes

internally and externally of the FPGA (or more precisely, the important difference between

byte addressing on a quad-word boundary and quad-word addressing), were very poorly

described. Other functionality mentioned in the documentation, such as the use of the

Xilinx RocketI/O interface for direct communication between FPGAs on neighboring nodes

were not explained at all, despite being illustrated on diagrams such as Figure 2 7.

Together, these problems and the large amount of debugging that had to be performed

partially because of them slowed down development to such an extent that, while developing

a codebase that simulated correctly by itself was done within the first month of the project,

it was followed by a three-month debugging and troubleshooting process. Therefore, a

working (but so far largely untested) version of the FPWM was only available four days

before the project’s deadline.

In summary, the goal of creating an FPGA-based PWM matcher was only partially at-

tained, primarily due to the lack of time and hardware availability to test and benchmark

the final version of the implementation. The prototype was at the end of the project work-

ing perfectly in simulations, but as the Cray XD1 platform was unavailable at the last

stages of the project due to user account problems, there was no chance to test the final

product. It follows that the desired empirical measurements of the performance of the

FPWM, both by itself and in conjugation with the two other projects, were not obtained.

7Note that release 1.2 of the node software, which was used on the current Cray XD1 until the start of
2006, also had extreme stability problems, where the entire node would suddenly lock up and reboot when
the FPGA was used, even using the reference designs from Cray itself [7]. These problems did however
seem to have been corrected in the current 1.3.1 release.

30

Estimated values for these measurements are however provided below, in Section 4.1.

2.4 Summary

This section has presented the FPWM prototype along with its various modules, and

described the inner workings of its implementation. A C interface for communicating from

a C application running on the SMP node has also been discussed. Finally, several major

problems encountered during the implementation process have been listed and described.

While the implementation at its current stage is not fully tested, and cannot be said

to be operative, the main codebase for the prototype has been developed and simulated

correctly8. Work still remains on testing and improving the interface, as well as making it

more encapsulated and thus easier to work with for application programmers. Work will

continue on the FPWM prototype even after the end of this phase of the project, and will

hopefully end up as a useful tool for bioinformatics.

8Current versions of the simulations can be found in the accompanying datafiles as test bench waveforms,
as most are too large and complex to be rendered properly within this document. The largest test bench
tracks 65 signals over 250 time steps, and would require a decent number of A3 pages laid side-to-side to
make it legible in a paper format.

31

32

3 The FPWM Prototype Simulator

Because of the earlier mentioned problems with getting the prototype up and running

on the provided hardware, a simulator dubbed FPWMSim was implemented in Java to

more easily test the prototype implementation, and give a framework that could be used

to measure the potential performance of module variations. The simulator also gives a

complete visualization of the contents of all registers in the pipeline, along with additional

information about which actions the virtual FPWM is currently performing.

3.1 The FPWMSim Implementation

FPWMSim consists of a number of base classes that provide the framework for the func-

tionality:

- FPWMSim.java provides simulation control and the main drawing facilities, as well as

the threading and control functionality. Its main responsibilities are initializing the other

classes, as well as managing the order in which the modules fire, and the passing of com-

munication packages between them.

- PrefManager.java is responsible for parsing input data from a plain text file containing

configuration data, as well as the PWM scores and the element stream. The other classes

have a reference to this class, and can request the various data as needed.

- FPWM DataPackage.java is an abstract class representing the data exchanged between

two modules. A derived class must be provided for each pair of modules that require

intercommunication, containing the data fields required by the transaction.

- FPWM Module.java is an abstract class representing a Module. All classes that are to

act as modules in the simulator must be derived from this class.

One of the main goals of FPWMSim was to mimic the exact workings of the real FPWM. In

order to do this, the virtual FPWM is implemented as a number of Modules that exchange

data via a simple interface, just as in the FPGA-based FPWM implementation. In each

cycle, an FPWM Module is passed an FPWM DataPackage from the module above it in

the hierarchy, acts on the content of this data as well as its internal state, and forwards a

new data package to the module below it.

33

The modules of the implementation are 1:1 equivalent to the modules in the FPWM, and

consist of FPWM Module Adder.java, FPWM Module Mem.java,

FPWM Module PWM.java and FPWM Module Result.java. FPWMSim.java takes the

role of the Control Module as the actual setup process of the memory and PWM are

not simulated (but the time needed for this setup is estimated). An additional module,

FPWM Module Output.java, has also been added to display various statistics, control

information, and the current output of the virtual FPWM.

Since the platforms used to implement the FPWM and its simulator are fundamentally

different, the modules do not compute their state in the exact same way. However, the

internal state of each register after a given cycle, including the precision of the processing,

should still remain identical, except for the Result Module, which was somewhat simplified

in the simulator due to time constraints. For all cases, the output still remains identical, and

the simulation output properly indicates the most important functionality of the modules.

3.2 FPWMSim Data Files

FPWMSim operates on two data files, an input file defaulting to data.in and an output

file defaulting to data.out. The data.in file is expected to contain two constructs, SEQ

and PWM, describing the sequence and PWM, respectively. No more than one sequence

of each type should be present in the file, but if duplicate constructs are found, the last

construct of that type will be used. A typical file would look like this:

SEQ,32

1,0,2,3,1,2,3,3,2,1,0,0,0,0,3,1,2,3,1,2,2,2,1,2,1,1,0,3,3,3,2,1

/SEQ

PWM,8,4

32, 12, 4, 1, 24, 3, 89, 4,

5, 43, 1, 23, 3, 12, 94, 4,

32, 12, 4, 1, 24, 3, 89, 7,

5, 43, 1, 23, 3, 12, 94, 7

/PWM

34

SEQ,32 denotes the start of a sequence construct with 32 elements. The elements are

expected to start on the next line, and are a comma-separated list of alphabet indexes.

Line breaks in this sequence is allowed, and can be used to improve readability if the file

is manually created. /SEQ on a line by itself denotes the end of the sequence construct.

PWM,8,4 denotes the start of a PWM construct with 8 columns and 4 rows (i.e., a PWM

of length 8 with an alphabet size of 4). The elements are expected to start on the next

line, as a comma-separated list of PWM score values given in a row-major order (C-style,

which is stored in a row-by-row basis, as opposed to column-major order as is used in

FORTRAN). Line breaks can be used to improve readability as in the example, but they

are not required. /PWM on a line by itself denotes the end of the PWM construct.

A line can be commented out by starting it with either of the following characters:

! // -

In-line comments are not recognized and must be avoided.

The output is given as a list of Index-Result pairs, with one pair on each line, separated

by a comma.

3.3 Using FPWMSim

Invoking FPWMSim with the default settings is done through the command

javaw FPWMSim . It defaults to reading data from the file data.in and writing output to

data.out, but this can be changed with the -indata filename and -outdata filename

directives on launch.

When the program has loaded, it will start in the PAUSED state. To control the simulation,

use the arrow keys on the keyboard in the following fashion:

Arrow Key Left: Switch between the PAUSED and RUNNING simulation states.

Arrow Key Right: Skip one cycle while in the PAUSED state. This button has no

effect in the RUNNING state.

Arrow Key Up/Down: Increase and decrease the simulation speed used in the RUN-

NING state.

35

Figure 10: FPWMSim during operation.

36

While in the PAUSED state, the simulation progress will not proceed automatically, and

is controlled by the user with the right arrow key. While in the RUNNING state, the

simulation will proceed at a rate specified by the user using the up and down arrow keys.

Figure 10 shows FPWMSim after completing 25 steps of the default test run.

Note that the simulator is intended as a tool to experiment with various FPWM configura-

tions, and to visualize its operations, and therefore does not currently have a non-interactive

mode. It is not optimized as a PWM solver, and would be grossly inefficient for this us-

age, so this functionality will likely not be required, as much more powerful software-based

PWM solvers exist.

3.4 Summary

This section has presented a simulator framework for the FPWM that enables a developer

to visualize the inner workings of the chip, and to a certain extent measure the effect any

changes have on the output (although this instrumentation remains somewhat sketchy).

While it still has some drawbacks, such as the lack of general drawing facilities (i.e., each

module is responsible for drawing itself from scratch), testing a module written in Java on

the simulator before doing a full-blown VHDL implementation should prove an efficient

way to avoid wasting time on inferior solutions, provided the solution cannot be modelled

exactly. This is mainly because Java is a much more comfortable language to work in than

VHDL, but also because the changes resulting from the implementation become readily

visualized, making it easier to gain an overview of the current state of the implementation.

37

38

4 Results

While a working FPGA-based PWM matcher was created within the time available for

this project, some of the desired measurements were not ready in time to be included in

this paper, and most of the actual data from the different implementation techniques that

were to be explored has not been obtained. However, as earlier mentioned, due the nature

of the FPWM prototype it is easy to measure its performance theoretically. These figures

are provided below, in Section 4.1. Section 4.2 provides the data obtained as well as some

estimated values for resource consumption given different configurations, while Section 5

outlines the work required to get the rest of these data, as well as the required work needed

to increase the performance by moving from a single-core, single-node implementation to

a multi-core, multi-node implementation.

4.1 Performance Measurements

Due to the predictable nature of the prototype FPWM, it is effortless to accurately estimate

the required processing time for a given work load. The total computation time can be

split into Sequence Load Time, PWM Load Time, Compute Time and Output Time. For

a result given in Cycles, using the constraints of the prototype, these can be computed as

such:

Cseqload = sequence length ∗ (1/8) ∗ (9/8)

Cpwmload = pwm columns ∗ pwm rows ∗ (9/8)

Ccompute = sequence length + memory fetch delay + log2(pwm columns) + 1

Coutput = result queue length ∗ (9/8) + 1

For all steps involved in data transfer between the SMP and the FPWM, there is a factor

(9/8) applied due to the burst mechanism in the RT interface. A total of eight quad-words

can be transferred in one burst of eight cycles, followed by a one-cycle cooldown.

4.1.1 Compared to general-purpose CPUs

A standard PWM matching algorithm with a PWM length of 20 and alphabet size of 4

run on a Pentium M 1.8GHz computer, matching a 4MB dataset 100 times, was clocked

to about 30 seconds, while matching a 0.5MB dataset 100 times was clocked to about 4

39

seconds. Matching speed therefore varied from about 12.5 MB/s to 13.5 MB/s on this

particular platform9. Running the 4MB example on a theoretical FPWM would yield the

following results:

Cseqload = 4 ∗ 220 ∗ (1/8) ∗ (9/8) = 589′824 cycles

Cpwmload = 20 ∗ 4 ∗ (9/8) = 72 cycles

Ccompute = 4 ∗ 220 + 8 + log220 + 1 = 4′194′311 cycles

Coutput = 8 ∗ (9/8) + 1 = 9 cycles

Ctotal = 1 ∗ Cseqload + 100 ∗ (Cpwmload + Ccompute + Coutput) = 420′029′024 cycles

Running at 200MHz, this gives a total time of 2.1 seconds, or roughly 15x speedup, with

a matching speed of 200 MB/s. Note that the sequence load time is only included once,

since the same sequence is used in all 100 runs. Also, the time used for any computations

outside the PWM matching itself, which is assumed to be very low if at all measurable

even for the CPU example, is not included in this figure.

Even though a theoretical result such as this should be taken with a grain of salt, the

FPWM is highly predictable in nature, so the only questionable parts of this estimation

are the terms involving communication with the SMP. Since the communication between

the SMP and the FPGA are somewhat abstracted in a memory mapping from the SMP’s

memory to the FPGA, and this is subject to factors such as the load on the memory bus,

this figure cannot be established with 100% certainty.

As can be seen from the above equation, for a relatively large number of runs, the Cseqload

factor becomes negligible, accounting for about 0.1% of the total time in this example.

Similarly, Cpwmload and Coutput are also negligible for runs on any reasonably large datasets.

Under these assumptions, a reasonable estimate can therefore be calculated using Ccompute

by itself for the current prototype. In fact, seeing as Ccompute itself only has one dominating

term, using the length of the element sequence alone gives a decent estimate for the required

match time.

In theory, the PWM matcher should be capable of a matching speed as high as 6.4 GB/s,

which is the limit of the memory bandwidth on the Cray XD1. This speed, which could

be attained using 32 parallel cores in a configuration such as the one described below in

Section 5.2, would reduce the time needed for Ccompute to about 13’125’000 cycles (about

70 milliseconds), and increase the speedup to about 480x compared to the attained perfor-

9The reason the tests were not run on the AMD Opteron CPUs, which most likely would have performed
somewhat better, was that the test tool for unknown reasons failed to compile on this platform.

40

mance on the CPU used in this test. However, due to the limitations on today’s FPGAs,

it is unlikely that one could fit that many cores on one single FPGA without making sig-

nificant compromises regarding resolution and PWM length, so this number can currently

only be considered a theoretical limit on the potential for this method.

However, it is important to keep Amdahl’s law10 in mind when making such statements.

Numbers quoted to the author say that about 95% to 99% of the time spend in most of these

algorithms is the PWM matching, while the rest is mostly spent on building new PWMs,

meaning that the bottleneck at these speedups would move from the PWM matching to

the PWM building, and prevent any total speedup for the algorithm as a whole to exceed

20x (at 95%) to 83x (at 99%). Therefore, as the speedup for the PWM matching itself

increases, it becomes much more important that the user application itself is optimized in

order to keep up with the increase in performance. Attempts to move parts or the whole

of the remaining algorithm to the FPGA, provided it can be properly parallelized, should

also be considered in this case.

4.1.2 Compared to Interagon’s Pattern Matching Chip

The Pattern Matching Chip (PMC) is a special ASIC-based chip developed by Interagon,

and is geared towards a more general usage in pattern-matching. Earlier empirical runs on

the PMC using MEME on a half-megabyte dataset measured it at a maximum speedup of

about 9x compared to a pure CPU when five PMC chips were used in parallel, while further

increasing the number of parallel matchers created a bottleneck in the CPU, and caused

so much overhead that the total time required for the run increased [15]. Unfortunately,

as there was no time to do empirical comparisons head-to-head using real data, no hard

conclusions can be made regarding the difference in performance between this chip and the

FPWM, but judging from the numbers presented earlier in Section 4.1.1, even the current

prototype should provide a higher level of performance, even discounting the additional

processing involved in the MEME algorithm. This performance advantage is largely rooted

in the specialized nature of the FPWM, as it is designed to do one single function very

fast, while the PMC has a more general-purpose design.

10Amdahl’s law provides a limit on the overall speedup attainable for an algorithm when one particular
part of the algorithm is optimized. It is often formulated as S = 1

(1−p)+s/p , where S is the total speedup,
s is the speedup for the optimized part of the algorithm, and p is the proportion of the time originally
spent in that part of the algorithm [14].

41

4.2 Resource Measurements

One of the goals of this paper was to chart the resource consumptions and performance

implications of the prototype given changes to certain factors, such as input- and output

resolution, PWM length, alphabet size and sequence length. This is given in the tables

below. However, with the current state of the prototype, not all values could be easily

determined, so some are extrapolated from current data, by increasing or decreasing the

relative resource consumption with respect to the known changes that occur in each module.

Extrapolated and estimated values are denoted by being enclosed in parentheses.

The prototype’s resource consumption in slices for each module by itself is given in Table 1.

Note that the total resource consumption is not a simple sum of the resource consumption

of each module, as a certain amount of optimization and slice sharing takes place between

the various modules 11. The Total figure also includes the RT and SRAM cores. The

maximum number of slices available for this particular FPGA model is 23’616.

Module Slices
Control 239 slices
Memory 64 slices
PWM 1033 slices
Adder 273 slices
Result 653 slices
Total 1943 slices

Table 1: The resource consumptions of each module on the FPWM with the default con-
figuration.

4.2.1 Bit Resolution

The input and output resolution for PWM values and output results can currently be

changed easily simply by altering a constant in the package file (see Section 5.1.1). The

resolution used has a relatively major impact on the resource consumption on the chip,

but only a minor effect on the maximum speed attainable, which either way is above the

11A “slice” on the Virtex-II Pro XC2VP50-7 FPGA consists of two 4-input LUTs (Look-Up Tables) and
two Slice Flip Flops. In many cases, a particular module will consume more LUTs than flip flops, or vice
versa. The synthesizer will attempt to organize this in a fashion so that as much as possible of a particular
slice is used, and functionality from LUT-heavy modules will therefore often partially share slices with flip
flop-heavy modules.

42

maximum speed allowed by the underlying hardware (200 MHz). The output resolution

has to be chosen so that the largest possible result can be stored, but superfluous bits will

generally be optimized away by the synthesizing software, and is chosen to accommodate

a maximum window size (PWM length) of 64 (6 adder levels). Results for changing the

bit resolution while keeping all other factors static are displayed below in Table 2.

Bit Resolution Total Slices Max Speed
4/10 734 slices 220.495 MHz
8/14 905 slices 220.495 MHz
16/22 1223 slices 220.495 MHz
32/38 1943 slices 217.125 MHz

Table 2: The results of varying the bit resolution on the FPWM prototype.

4.2.2 PWM length

The PWM length is the largest factor in deciding the total resource consumption of the

FPWM, as it not only will linearly grow the largest module on the chip (the PWM Module),

but also linearly increase the number of required adders in the Adder Module. While seven

adders are required for eight elements, sixteen elements require fifteen adders and thirty-

two elements require thirty-one adders. It does not affect the maximum speed however,

as these modules are built to scale effortlessly to an arbitrary number of elements. The

changes in resource consumption for altering these values are shown below in Table 3.

PWM length Total Slices
8 1943 slices
16 (3800 slices)
32 (5600 slices)

Table 3: The results of varying the PWM length on the FPWM prototype.

4.2.3 Alphabet size

The current prototype supports an alphabet size of up to 128 without making any major

changes to the implementation. Increasing it will cause the size of the PWM Module to

increase linearly, but unlike changing the PWM length, it does not require any changes to

43

the Adder Module. While it could decrease the maximum speed, as the required multiplex-

ers for the PWM lookups will be larger, with higher latency, the current PWM can run at

a contained speed of 311.444 MHz, so there is plenty of room for such an increase. Since

these localized changes in speed did not affect the overall speed of the implementation,

this has therefore not been included. The effect on resource consumption of altering the

alphabet size is shown in Table 4.

The reason for the large increases in resource consumption when the score matrix is in-

creased is that it at the current default level of 8/4/32 bit consumes about half the total

resources of the FPWM, since it is implemented as registers instead of normal memory.

The reason for this is to allow a large amount of parallel lookups, something that would be

much harder to do with the normal integrated memory modules provided by the FPGA.

Since the alphabet size, and therefore the matrix, is doubled at each step, the total re-

source consumption of the PWM Module is doubled, and since it at an alphabet size of

128 consumes about 31700 of the 32687 slices (about 50% more than can actually fit on

the FPGA), it approximates the FPWM itself doubling at each step.

Alphabet Size Total Slices
4 1943 slices
8 2914 slices
16 4901 slices
32 8848 slices
64 16719 slices
128 32687 slices

Table 4: The results of varying the alphabet size on the FPWM prototype.

4.2.4 Sequence Length

In the current version, sequence length is fixed to a maximum of 16M elements. Decreasing

this limit will not lead to any major savings in resource consumption, while increasing it

is hard to do on the current implementation, as it is limited by the available memory in

the attached SRAM. Running sequences larger than 16M either requires a redesign to use

the SMP’s memory to store the sequence, or using a parallelized method such as the one

described below in Section 5.3. No data is therefore given for this factor.

44

4.3 Summary

This section has provided some empirical and estimated performance data for the FPWM,

as well as tables showing the resource consumption of the various modules given certain

changes in the FPWM’s configuration. With an estimated speedup of 15x compared to a

contemporary general-purpose CPU, using about 8% of the FPGA’s total resources, the

true potential of this method has not yet been unlocked. However, unless there are any

significant flaws with the estimation process used here, the results indicate that the method

presented indeed holds a large potential, in particularly if one is able to exploit the entire

memory bandwidth through parallel cores, as is described in Section 5.2.

45

46

5 Future Work

One of the goals of the project was to examine variations of the modules and overall design

of the base FPWM prototype, to realize one or more high-performance implementations

optimized on one or more of the following metrics: bit resolution and accuracy, PWM

length, alphabet size, and throughput. A multi-node implementation using several FPGAs

in parallel was also planned as an extension of the base project if there was any remaining

time after the work on the prototype was finished. Unfortunately, due to the aforemen-

tioned problems with getting an implementation up and running on the target hardware,

there was not a chance to do much of this work.

However, several variations and modifications were outlined during the project, and these

will be described here. In most cases, the concepts described are sound, and would be

relatively easy to implement on a working base prototype. These variations are mostly

confined to Section 5.1. Some less-explored variations for increasing performance by using

stream parallelization are presented in Section 5.2 and Section 5.3.

5.1 Module Variations

The simplest variations that can be done on the FPWM are changing the bit resolution

(accuracy), PWM length, and alphabet size. These minor alterations all keep the base

functionality of their modules. Of the more drastic alterations that does not involve ad-

ditional parallelization, the module with the highest potential for change is the Result

Module, of which one alternative implementation is described here.

5.1.1 Changing the bit resolution

The FPWM uses two different resolution parameters, an input resolution and an output

resolution. The former denotes the number of bits in the PWM score values, while the latter

denotes the number of bits in the window score. These resolution parameters can be ad-

justed independently, simply by changing the RESOLUTION_INPUT and RESOLUTION_OUTPUT

variables in user_pkg.vhd. Since the addition of any two numbers can at most produce

a number that uses one more bit than the largest of the numbers, the output resolution

should generally be equal to the input resolution plus the number of levels in the Adder,

47

to not risk an overflow in the calculation, but it could be set lower if the score matrix is

known to have characteristics that avoid such overflow in all cases.

The prototype has set the input resolution to 32 bits and the output resolution to 38 bits.

These numbers are chosen to fit the current Result Module, which outputs the results as a

result-index pair packed into a single long, consisting of a 26-bit index and a 38-bit result.

If a larger resolution is required, the Result Module needs to be modified to output one

result as a set of longs. If a smaller resolution is required, no changes need to be made to

this module.

5.1.2 Changing the PWM length

Increasing the PWM length is somewhat more complicated, as some parts of the VHDL

code currently do not scale automatically, due to the complexity involved and due to

problems with creating scalable code which was also synthesizable 12. Firstly, the PWM_ROWS

and PWM_ROW_BITS variables need to be changed to the new size. Secondly, the number

of columns in the memory matrix of the PWM Module needs to be changed to the new

module. Thirdly, the number of data connections between the PWM Module and the

Adder Module need to be changed to match the new length. Finally, the Adder Module

must be altered to cope with the additional input lines. This will usually involve adding

or removing whole pipeline levels on the addition tree, but is a relatively simple operation

to perform.

Except for the changes in the PWM- and Adder Modules, no further functional changes

need to be made to the other modules to cope with the additional length. However, the

Control Module must be updated with the new Cooldown Delay of the circuit as a whole

(i.e., how long it takes after the last memory element is sent from the Memory Module to

the last potential result arrives at the Result Module). This change is equal to the number

of elements added to or removed from the Adder Module.

A finalized design should be able to perform many of these operations automatically, simply

by altering a constant. There was however no time to do this before the end of the project.

12Unlike most software programming languages, VHDL does not necessarily guarantee that code which
is both syntactically and semantically correct, and simulates correctly, is possible to synthesize into a
working chip. An example of an element that often is impossible to synthesize is a memory structure with
a dimension higher than two.

48

5.1.3 Changing the alphabet size

The alphabet size can be changed by increasing the PWM_COLS and PWM_COL_BITS variables

in user pkg.vhd, as well as increasing the size of the memory matrix in the PWM module.

In the prototype, each element is encoded using three of the eight bits available in the byte,

with the actual alphabet being bits 1:0, and bit 2 being a NULL element marker 13.

Using the current system, the alphabet size can be increased to 128 without exceeding

the byte boundary. Larger alphabet sizes could be used, but this would require using a

multi-byte encoding, which would increase the memory bandwidth required. In most cases,

this would not be a problem as there is still much spare bandwidth available, but it would

be problematic with a parallel solution using more than 16 cores (see Section 5.2). Of

course, seeing as the current FPGA according to the numbers presented in Section 4.2.3

cannot accommodate an alphabet size larger than 64 with a PWM length of 8, the concerns

brought up by this point are largely moot.

5.1.4 Result Module: Simple filtered output

The earliest design draft used a Result Module that simply took a threshold value, and

transferred any results that passed this threshold immediately to the SMP node. The

advantage this design had was its simplicity, and that it would allow an arbitrary number

of results to be obtained from one run. As the design was discarded for the sorting Result

Module early in the process, the final workings of the module were not finalized, but it was

suggested that it could be developed later, as an alternative for problems that required a

larger result set.

While simple, there is one problem that has to be solved to allow this variation of the

module to work. Since the RT Interface has a one-cycle cooldown after a write, any

consecutive series of results, caused either by a low threshold or certain repeating patterns

in the data, could normally not be written fast enough. The simplest solution to this

problem is to stall the pipeline if two results clear the threshold on consecutive cycles. A

more advanced solution could employ buffers to lower the number of stalls required, and

13The reason a bit reserved as a NULL marker instead of using an encoding scheme where, say, an element
of all 1s is NULL, is that this simplifies the logic required to recognize the NULL elements. As there is plenty
of memory bandwidth available, this was deemed more important than saving one bit for each element in
the element stream.

49

combine it with burst writes to increase bandwidth if there are more than one result present

in the buffers.

Note that in the worst-case event that all results are larger than the threshold, the system

would be unable to process the writes fast enough even with taking full advantage of the

burst write facilities, as over each nine-cycle period, nine results would be generated while

eight would be written to the SMP. A system for stalling the pipeline would therefore be

needed in any case, unless it is acceptable to discard results when the buffers are full.

5.2 Local Parallelized FPWM Cores

At the start of the project, a huge parallelized solution that would utilize the full 6.4GBps

of memory bandwidth provided by the Cray XD1 was envisioned, but as the project took

form and the components were finalized it became obvious that the FPGA installed on the

Cray XD1 was not large enough to hold the required number of processing cores, at least

not with the implementation developed in this project. A certain amount of parallelization

is still realistic, as the FPWM prototype consumes about 8% of the total resources on the

chip. Accounting for the overhead and additional circuitry needed to control additional

cores, a realistic expectation would be that eight cores is a reasonable goal using the

configuration of the current FPWM, while sixteen could be possible if some time was spent

optimizing the design. If a larger FPGA could be obtained, more cores would of course be

realistic.

To parallelize the PWM algorithm over several cores, the only observation needed is that

any window score can be computed independently of all other window scores. That is,

to compute window score i in a problem that normally would yield j window scores,

none of the other j − 1 window scores need to be computed. Using this observation, an

implementation with a number of separate and independent cores that each produce the

window score for a different index each cycle can be envisioned.

The implementation suggested here assumes that there is one memory controller shared

between all the cores. This memory controller feeds a larger shared element window buffer

of size pwm length + num cores, to which the PWM module of each core is wired in such

a way that the first core receives elements 1 through pwm length, the second core receives

element 2 through pwm length + 1, and so on, until the last core which receives element

num cores through pwm length + num cores. For each cycle, the window element buffer

50

is shifted by num cores elements (discarding elements that are shifted out), with the same

number of elements being loaded into the element window buffer by the memory module.

Using this scheme, on the first cycle the first core will start computation of the window

score of the first index, the second core will start computation of the window score of the

second index, and so on. The computation cycles will thus simply be cut to 1/num cores,

as there is no additional overheard in the memory module or shared memory element buffer.

The problems start when the set of scores have been calculated, and are to be stored

by the Result Module. The implementation of the Result Module used in the prototype

FPWM, while powerful, is unable to accept more than one element each cycle. Having one

shared Result Module with the current implementation would therefore not be possible.

Two different solutions to this problem will be discussed next, one using a large shared

enhanced Result Module, modified to handle more than one element at a time, and one

where each core has its own Result Module followed by a shared Result Aggregation Module

that processes data from the individual Result Modules and outputs the highest-scoring of

the aggregated results.

Shared Result Module

To use one shared Result Module that hooks directly into the Adder Module of each of

the cores, the Result Module implementation must be enhanced to cope with a number

of results equal to the number of cores each cycle. This doesn’t necessarily mean that it

must be able to sort this many elements each cycle, but that it must deal with the results

in a way that has an acceptable performance according to some standard, namely that it

on average does not have to stall the pipeline cores more frequently than a set value.

Since it would be hard (but most likely not impossible) to make an implementation that

actually sorts more than one result per cycle, the suggested solution reuses the core Storage

Elements from the old Result Module, but appends pruners to accept the elements while

they are being sorted. There is one pruner for each core input, with the task of discarding

any results that are less than the current minimum result stored in the Storage Elements

(that is, the left-most result). If the result is larger, it is given to the Result Queue as

usual. If more than one pruner has a larger result, the pipeline cores are stalled to give the

Result Module time to catch up, and the results are given to the Result Module one at a

time.

This solution could be improved by combining each pruner with a small buffer in order to

51

decrease the frequency of which the pipeline cores have to be stalled. Even if the result

in the buffer is found to be stale in the sense that it is no longer a candidate for insertion

by the time it has cleared the buffer, this would be handled by the Result Module in the

final stage of the sorting. Whether the additional cycles required to sort false positives is

acceptable compared to the compute cycles lost due to pipeline stalls would be dependent

on the particular problem, and simulations on several different problems should be run

before making a decision one way or another.

Another improvement would be to set a minimum value to decrease the stalls that would

otherwise be experienced while the Result Module fills up during the start of a computation.

When the computation first starts, the Result Module is empty, and every result from the

pipeline cores would be accepted by the pruners as a potential result. This would lead to

several stalls, which could possibly be prevented by setting such a value. Determining a

good minimum value could however be problematic, and is not examined further here. The

time lost to these stalls would also be relatively negligible for large runs, but could become

a large factor for very small problem sizes.

Separate Result Modules combined with Result Aggregation Module

An alternative to the solution examined above is to employ one separate and independent

Result Module per processing core. The Result Modules here can reuse the design in the

prototype FPWM without significant alterations, and since there is no communication

between the Result Modules, and they each receive exactly one result each cycle, there is

no need to stall the pipelines in this scenario.

After the compute sequence has completed, the Result Module in each of the core will now

hold a sorted array of the results computed by this particular core. To combine these results

into one result array that can be returned to the SMP, another unit dubbed the Result

Aggregation Module is needed. This module takes care of post-computation sorting of the

result sequences from the individual Result Modules, an operation which is significantly

simplified by the fact that each individual result sequence already is sorted.

The Result Aggregation Module simply needs to implement a variant of the last stage of

the standard merge sort algorithm. A number of pointers are initialized for each of the

Result Module result arrays, pointing to the largest (right-most) element of each array.

For each cycle of the sort algorithm, the largest number pointed to is stored in the Result

Aggregation Module together with its index, and the pointer for that particular result array

52

is decremented to the next-lower result. This is repeated a number of cycles equal to the

number of required results.

Another advantage of this implementation is that it is possible to return more results than

are kept in each individual result buffer. However, in this case it cannot be guaranteed

that all the largest results are returned. To show this, consider the extreme case where

each result module can hold eight results, and the nine top results are generated by the

same core. Only eight of these results will be returned, together with lesser-fitting results

from other cores if the number of requested results is higher than eight. However, since

the distribution of data between the cores is done by interleaving, it can be assumed that

the results in most cases will be relatively evenly distributed between the cores, but a user

application should not rely on this.

Solution Comparison

The two solutions presented differ both in their impact on the overall performance, their

implementation complexity, and the amount of chip resources they consume. It is hard to

make accurate estimations without doing a test implementation, but generally it can be

assumed that the Shared Result Module will have a higher implementation complexity, as

it has to manage sorting from several cores and deal with stalling as well as buffers. On

the other hand, it will likely have lower chip resource demands than the solution with a

Result Aggregation Module, as it avoids storing results that will not be used.

On the performance side, the obvious drawback of the Shared Result Module is the need

for pipeline stalls. However, the impact of this is highly problem dependent, and should

in many cases be negligible, but in the worst-case situation, where each result is larger

than any results before it, the performance would degrade to that of a single core. The

alternative also has its drawbacks however, as an additional sorting stage is introduced

following the computation stage. Nevertheless, since the time required for this stage is

linear to the number of elements that are to be returned, the time required here will

always be predictable and negligible for any realistic problem sizes.

Using the prototype implementation as a starting point, it would be less complex to move

to the solution with the Result Aggregation Module, as this simply involves duplicating

the current core and creating the new module, which operation is relatively simple.

53

5.3 Multi-Node FPWM Implementations

In the case of the Cray XD1, there are a total of six nodes available per chassis, with each

node holding two AMD Opteron general-purpose CPUs as well as one FPGA-based appli-

cation acceleration processor. The current prototype implementation is only designed to

use one single node, with application logic being responsible for any multi-node parallelism.

This solution does have some advantages, as the application logic is free to do problem-

dependent optimizations with the data distribution, as well as utilize the additional CPUs

as it sees fit. It does however have the distinct disadvantage of having to reinvent the wheel

with each new application.

For many algorithms that use PWMs, the PWM calculation itself greatly dominates the

computation time required. In this case, a simple library that utilizes all the available

nodes, each running a small piece of control code on their host CPUs, would likely be suffi-

cient. That is, the user application itself is contained on one single node, which exploits the

computation capacity of the other nodes for the PWM calculation alone. If this assumption

can be made, it is relatively simple to create a library that can be called from this node

without making any changes to the current interface. This library would be responsible for

initializing the other nodes to hold the necessary control code, and divide the work load

between the various nodes.

If the assumption does not hold, and the computations performed by the application logic

itself is sufficiently time-consuming that it is desirable to utilize the computation power of

several CPUs to run it, a more complex solution may be required. Again, what would be

considered the best implementation is highly dependent on the nature of the user applica-

tion. If each node produces work independently, or in such a way that each node can be

assumed to be able to keep its own FPGA busy, today’s system could be applied directly,

where each FPGA only receives and processes work from a single node. If the application

nodes cooperate in some way in building one or more PWM work units that cannot be

directly mapped 1:1 between a node and an FPGA in a way that keeps all the FPGAs busy,

it could however be better to utilize one node as a control node that accepts these work

units and distributes them through a library such as the one mentioned in the previous

paragraph.

As the problem where each of the nodes can be directly mapped to a single FPGA does

not require any special treatment, the focus should be on how to make it possible to utilize

54

a set of nodes, each with one instance of an FPWM implementation running on its FPGA,

as if it were one single FPWM.

5.3.1 Parallelizing Work

As mentioned earlier in Section 5.2, there is very little data dependency involved in com-

puting the window scores in the PWM algorithm. However, there are two reasons not

to use the same attack vector for multi-node parallelizing as was used in the multi-core

parallelizing. Firstly, transferring data between distinct nodes is generally more efficient

for contiguous data than for interleaved data, as memory accesses on contemporary com-

puters are typically done in 64- or 128-bit wide chunks, while each data element is eight

bits. Secondly, the granularity on inter-node communication cannot be as fine-grained as

in the internals of the FPWM. To avoid spending precious compute cycles on wastefully

repacking data, it is therefore preferred to divide the workload into a number of contiguous

element streams equal to the number of FPWMs available.

However, it is important to note that a clean split would ignore any results occurring on

the element stream near the split. That is, if the FPWM uses a PWM length of eight,

and an element stream of length 64 were split into two sequences, one ranging from 1-32

and the other from 33-64, window scores with indexes ranging from 26 to 32 would not be

computed, as parts of the required data would not be present on either of the computing

nodes. An overlap of a number of elements equal to the PWM length is therefore required.

Using the aforementioned example, the stream could for instance be split into 1-35 on node

1 and 29-64 on node 2.

5.3.2 Parallel Computation

When the element streams have been distributed to their respective nodes together with

the score matrix itself through a distributed-memory parallel system such as MPI, no

special considerations need to be taken in order to compute the scores for each individual

stream. However, as each partial element stream would most likely be stored beginning

at index 0 of the FPGA’s SRAM, the order of the streams must be preserved, in order to

determine the correct global index for each individual result when it has been computed.

The rationale for doing an index reordering instead of using the global index exclusively is

that in addition to simplifying certain parts of the FPWM’s operation, avoiding the need to

55

change it to support multi-node parallelization, it allows a multi-node implementation to

use larger element streams than the single-node implementation supports, without altering

the FPWM to use the SMP’s memory.

As was discussed earlier, the overhead of using a multi-core solution is negligible for rea-

sonably large sequences, and will accelerate the speed roughly linearly to the number of

cores in the implementation. The multi-node implementation on the other hand does have

some overhead. This overhead can mostly be isolated to three factors: the time required

to scatter the element stream, the time required to broadcast the PWM score matrix, and

the time required to gather the results back to the primary node. However, the actual

time required for these three factors depends highly on the distribution mechanism used.

Using MPI as an example, many of the implementations differ in how they perform the

elementary operations such as broadcast and scatter. The reasons for this mostly lie in the

different abilities of the target hardware, such as if a broadcast mechanism is available or

if the system must depend on point-to-point communication alone.

Determining where the major overhead of a given multi-node implementation is depends

both on said differences in functionality and performance of the underlying distribution

mechanism, and the nature of the problem (or rather, set of problems) given by the user

application. If only a single run is to be performed, or the element stream changes between

the runs, it can be assumed that the scattering of the element stream to the various nodes

will be a potential bottleneck. A typical stream ranges from 0.5 to 8 MB, the largest of

which would take 4 milliseconds to scatter on a Cray XD1 (assuming the full bandwidth

of 2 GB/s per node is achieved), while the computation process itself would take about

40 milliseconds on the current single-core implementation (using the estimates given in

Section 4.1). On a multi-core implementation, this number will decrease roughly linearly

with the number of cores used, making the time required for the scatter the dominant term

when the number of cores hits 5 or 6, due to the additional overhead of transferring the

sequence data to the FPGA itself.

The PWM score matrix, while generally much smaller (128 bytes on the prototype, 1024

bytes on a 32-bit 64x4 implementation), will usually be replaced between each run, requiring

a broadcast for each run. The gather of the results at the end, which also happens on each

run, is 64 bytes per node with the current 8x 64-bit results. However, getting an accurate

estimate of the real impact of this overhead is hard without doing simulations directly on

the target hardware, as communication latency and the load of the network, in addition to

56

pure bandwidth, greatly affects the results.

Generally, applying a multi-node solution on problems that require a scatter of the element

stream for each run will most likely not be fruitful, but this limitation applies on the basic

FPWM too, where the load time would dominate the total runtime with implementations

that have 8 or more cores. The time taken for the PWM broadcast and the result gather

would on the other hand most likely be negligible for large runs, but could have a significant

effect if the user application often requests runs on relatively short element sequences, or

the latency in the underlying interconnect is high.

Note that this multi-node implementation can be used together with the multi-core solution

described in Section 5.2 without making additional modifications.

5.4 Summary

This section has presented a number of options that can be explored to more fully assess the

potentials of using reconfigurable computing for pattern discovery in biological sequences,

while restricting itself to the implementation of the PWM part of the implementation. The

possibility of moving more of the application logic to the FPGA itself to further speed up

the process is of course an interesting one, but as it would make the solution less general,

and requires expert knowledge outside the scope of this paper, this has been deferred.

Due to the problems encountered while attempting to implement a working PWM on the

Cray XD1’s FPGAs, the true potential of this application of reconfigurable computing

have still not been adequately explored. While the theoretical calculations show that

there is indeed a large amount of potential in this approach, it is difficult to make hard

statements without having empirical measurements of the performance on real problems.

Furthermore, as has been examined in this section, the level of additional performance that

could be harvested from parallelizing the work over multiple cores and nodes is particularly

hard to estimate, so empirical data would be required to make a solid argument that the

performance is indeed much higher than can be achieved using traditional general-purpose

processors. Nevertheless, the estimates presented here do indicate that the increase in

performance would be significant, so it is therefore the opinion of the author that exploring

these options would be a viable strategy.

57

58

6 Conclusions

This paper has presented a solution to an FPGA-based PWM matcher in the form of the

so-called FPWM Prototype, using the hardware facilities on the Cray XD1 Supercomputer.

The prototype implementation currently runs as a single core on a single node of the Cray,

and provides a theoretical PWM matching capability roughly 15 times greater than a

contemporary Pentium M general-purpose CPU. Theoretical and empirical data regarding

performance and resource consumption for this implementation have been provided.

A method for increasing the speedup to a theoretical maximum of 480x has also been

described, using a multi-core implementation on a single chip. This theoretical limit could

potentially be attained with today’s hardware, but would require certain compromises

with regard to bit resolution and PWM length in order to fit on the FPGA. A full-scale

implementation providing the capabilities required by many of today’s algorithms would

most likely not reach this speed, but as the FPGA currently installed on the Cray is also

available in a larger variant (the Virtex-4 family), it is reasonable to assume that such an

implementation could indeed be feasible on contemporary hardware.

A method for using several nodes on the Cray XD1 transparently for the user application,

in order to further increase the performance, has also been described. However, as theo-

retical performance estimation on such hardware is a highly inexact science, and empirical

measurements could not be performed at this time due to the state of the prototype, no

estimates have been provided for this method.

While some of the original goals were attained, other parts of the project could be con-

sidered a failure. Due to a number of implementation problems, a working FPWM was

not available in time for use with the two other projects mentioned in the introduction,

involving hardware acceleration of the Gibbs Sampling and MEME algorithms. The main

problem with the cooperation between these projects was that it relied on the FPWM

being in a finished and working condition before the work involving it could begin, which

turned out to be much harder and take much longer time than what was first envisioned.

The planned empirical measurements of the performance boost for these algorithms are

therefore not yet available.

59

60

References

[1] David Baker, “Rosetta@home Website,” http://boinc.bakerlab.org/rosetta/; accessed

July 3., 2006.

[2] Cray XD1 Documentation, “Cray XD1 Programming (S-2433-131),” Cray Private,

2005.

[3] Gary D. Stormo, “DNA binding sites: representation and discovery,” Oxford Univer-

sity Press, 2000.

[4] Wyeth W. Wasserman & William Krivan, “In silico identification of metazoan tran-

scriptional regulatory regions,” Springer-Verlag, 2003.

[5] Rodger Staden, “Computer methods to locate signals in nucleic acid sequences,” IRL

Press Limited, 1983.

[6] Geir Kjetil Sandve & Finn Drabløs, “A survey of motif discovery methods in an

integrated framework,” NTNU, Unpublished, 2005.

[7] Lars Krut̊adal, “Introduksjon til bruk av FPGA i vitenskaplige beregninger,” NTNU,

Unpublished, 2005.

[8] Gerald Estrin, “FIXED + VARIABLE Computer,” IEEE Trans. on Electronic Com-

puters, V12, pp.747-754,755-773, 1963.

[9] Gerald Estrin, “Reconfigurable computer origins: the UCLA fixed-plus-variable (F+V)

structure computer,” Annals of the History of Computing, IEEE, Volume 24, Issue 4,

Oct.-Dec. 2002 Page(s):3 - 9, 2002.

[10] Mario Schaffner, “A computer architecture and its programming language,” IEEE

Trans. on Computers, V27, N12, pp.1015-1028, 1978.

[11] Andre DeHon, “Notes on Coupling Processors with Reconfigurable Logic,” MIT

Transit Project, 1995.

[12] Alessandro Marongiu, et.al, “Designing hardware for protein sequence analysis,” Bioin-

formatics, Vol.19, no. 14 2003, pp. 1739-1740, 2003.

[13] Tim Oliver, et.al, “Using reconfigurable hardware to accelerate multiple sequence

alignment with ClustalW,” Bioinformatics, Vol.21, no. 16 2005, pp. 3431-3432, 2005.

61

[14] Peter S. Pacheco, “Parallel Programming with MPI,” Morgan Kaufmann Publishers,

Inc., pp. 259-260, 1997.

[15] Øyvind Bø Syrstad & Lars Andreas Eidsheim, “Akselerering av MEME-algoritmen

ved hjelp av PMC,” NTNU, Unpublished, 2005.

[16] Øyvind Bø Syrstad, “Metoder for akselerering av MEME,” NTNU, Unpublished, 2006.

[17] Lars Andreas Eidsheim, “Parallell hardwareakselerert Gibbssampler,” NTNU, Unpub-

lished, 2006.

62

