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ABSTRACT
We present the architecture of PROSIDIS, a special pur-
pose co-processor designed to search for the occurrence of
substrings similar to a given ‘template string’ within a pro-
teome. Actual tests show speed up figures ranging from
5 to 50 with respect to conventional general-purpose pro-
cessors.
Availability: the PROSIDIS configuration file and the c code
are available at http://www.enea.it/hpcn/php/rosato/
Contact: palazzari@casaccia.enea.it

INTRODUCTION
Analysis of biological sequences could benefit from the
adoption of devices purposely designed to accomplish this
task. Unfortunately, the design of a dedicated device requires
both long development time and good skills in electronic
system design, thus discouraging bioinformatics research-
ers from the implementation of specialized architectures.
In order to avoid these drawbacks, we have developed an
automatic tool which allows the fast designing and pro-
totyping of dedicated systems: the parallel hardware gen-
erator (PHG) (Marongiu and Palazzari, 2001). It allows
short design times starting from the high level descrip-
tion of the computation, fast prototyping and high HW
re-use resulting from the adoption of the field program-
mable gate array (FPGA) reconfigurable technology. Use
of FPGA for biological computations is also described in
Yamaguchi et al. (2002) and in the references reported
therein.

PHG implements, in a fully automatic way, a design
flow which, starting from an abstract representation of the
algorithm to be implemented, gives the skeleton of a program
written in a hardware description language (VHDL) which
completely describes the highly parallel architecture of the
system implementing the algorithm. At this stage, design only
requires the definition of the VHDL code describing the com-
binatorial behavior of the functional units. The VHDL code
is then processed by standard CAD tools to obtain the FPGA
configuration bit-stream.

∗To whom correspondence should be addressed.

METHODS
We report the results achieved in the implementation of a
dedicated hardware device for ‘proteomic computation’: the
PROSIDIS device (PROtein SImilarity DIScovery) designed
to find similarity regions within a proteome. It could be
used as a building block for more complex protein analysis
algorithms—far beyond the scope of this application note.
The reason compelling the development of PROSIDIS is that
protein analysis (as well as DNA analysis) is a time consum-
ing task not efficiently supported by conventional processor
architectures.

Even if technology is growing fast, to date FPGAs are still
clocked at frequency significantly lower than the clock fre-
quency of general-purpose processors. For this reason the
algorithm parallelism has to be efficiently exploited to make
the FPGA-based implementation more effective than that
implemented on the general-purpose processor. The PHG tool
has been designed to automatically extract the parallelism
from the algorithm and to generate the skeleton of the VHDL
code describing the system.

The PHG design flow is composed of the following steps:

– the algorithm to be implemented is coded through the
SIMPLE (Sare IMPLEmentation) language (Marongiu
et al., 2000). Such a language allows to specify the
algorithm by means of a System of Affine Recurrent
Equations (SARE) (Loechner and Mongenet, 1996).

– the algorithm is automatically parallelized through
the ‘allocation and scheduling’ step (Marongiu and
Palazzari, 2000) which produces the system architecture
which is composed by a data path managed by a finite
state machine (data path controller);

– the VHDL programs for data path and data path controller
are automatically generated;

– designer fills previous skeleton with the VHDL code
implementing the combinatorial behavior of the func-
tional units.

The final VHDL program is synthesized through standard
design automation tools producing the FPGA configura-
tion file.
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PROSIDIS faces the problem of finding the ‘degree of sim-
ilarity’ between a short sequence s of m amino acids called
peptide and a long sequence p of n amino acids representing
a proteome. Such an operation is the basis of many alignment
algorithms.

Typical lengths of proteome p are between 106 and 107

characters. Given a peptide of m amino acids, the PROSIDIS
problem can be stated as the computation of the n−m values

M(i) =
m−1∑

j=0

DM[p(i + j), s(j)] i = 0, . . . , n − m − 1

(1)
which give the ‘similarity’ between the peptide s and a seg-
ment of p. DM(a, b) is a weighting matrix which, for any
pair of amino acids a and b, returns a 4 bit integer number
representing the degree of similarity between them [we used
the BLOSUM62 weighting matrix (Henikoff and Henikoff,
1992)]. During the cumulation process, the partial value of
M(i) is set to 0 whenever it becomes negative.

The whole design process, from the SIMPLE algorithm
implementing (1) to the first working prototype, has been
carried out in less than one week.

The test bed we used to implement the PROSIDIS archi-
tecture is a prototyping board equipped with a PCI interface
(33 MHz), 8 MB of SRAM memory and one Xilinx Virtex
XV1000 FPGA; the cost of the board is approximatively
3K$. The board is hosted by a standard PIII@550 MHz PC.
Due to the large size of the FPGA device and in order to
increase the computing power of the PROSIDIS architecture,
we choose to implement four times the system implementing
(1) hence the PROSIDIS architecture is able to perform
the simultaneous comparison of a single peptide of length
m = 24 against four proteomes of length n = 524 000. The
clock cycles needed to carry out the whole computation are
m+n = 524 024. Constrained at the speed grade of the FPGA
we used (−4), the synthesized design is clocked at a frequency
fck = 30 MHz, corresponding to a sustained computing rate of
2.88 × 109 operations per second (one operation is composed
by the access to the weighting matrix and by the sum opera-
tion). Referring to the Protein Similarity Discovery problem,
the core of the computation is demanded to the PROSIDIS
processor while the global control flow (loading/reading data
to/from board memory, starting the FPGA computation) is
demanded to the PIII host computer. In order to test the advant-
ages attainable by using the PROSIDIS dedicated processor as
booster for a conventional sequential system, we implemented
optimized algorithms to solve the same problem on different
general purpose platforms. Results have been compared with
those obtained on the test bed architecture.

The architectures used in the tests are reported in Table 1.
Table 2 summarizes the results reporting, for each machine

configuration, the time spent to execute the searching for
Table 1. Architectures used in tests

Processor Clock L2 OS Compiler
frequency cache

size

Pentium III 1 GHz 512 KB Win2000 MS Visual
Studio 6.0

Alpha EV67 667 MHz 4 MB Linux ccc 6.2
(kernel 2.3.14)

R12000 300 MHz 4 MB Irix 6.5 MIPS C
Power3 200 MHz 4 MB AIX 4 OS AIX C 4.4
UltraSparc 450 MHz 4 MB Solaris 2.7 Sun

WorkShop C 5.0

Table 2. Test results

Architecture Exec time (ms) FPGA speed up

FPGA + PIII@550 MHz 57 1
PIII@1000 MHz 290 5.1
Alpha EV6.7@667 MHz 387 6.8
SGI R12000 533 9.4
IBM Power 3 1152 20.2
UltraSparc 2892 50.7

a sequence with m = 24 amino acids on a portion of proteome
with length n = 2 096 000 amino acids.
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