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CHAPTER1
INTRODUCTION

1.1 Background

As the Internet grows, web search engines are continuously improving and can now handle
billions of documents. In result, a typical user query results in millions of hits. Overwhelmed
by the number of results, many users investigate only the two or three top ranked documents.
If nothing interesting is found most users reformulate their query rather than sift through
many pages of search results. A large study done using a query log from the AltaVista search
engines revealed that users tend to type short queries and only look at the first results [7].

A way of assisting users in finding what they are looking for quickly is to group the search
results by topic. The user does not have to reformulate the query, but can merely click on the
topic most accurately describing his or her spesific information need. The process of grouping
documents is called clustering and was originally used for analysing numerical data in the field
of data mining. It has since been adapted to suit the needs for clustering textual documents.

The two main challenges with adapting clustering to suit the needs of web search engines
and textual data has been to give good descriptive labels to the clusters and to be able to
cluster documents on-the-fly in response to a particular user query. Traditional data mining
approaches are not concerned with labelling clusters, but in return they are often very good
at grouping data. Unfortunately, regardless of how good the document grouping is, users
are not likely to use a clustering engine if the labels are poor. Clustering performance is also
a major issue, because web users expect fast response times. To deal with this linear time
clustering algorithms that can cluster hundreds of documents in under a second have been
developed.

Several commercial clustering engines exist. The most famous is the Vivisimo engine,
which was rewarded by SearchEngineWatch.com for best meta-search engine from 2001 to
2003. Large companies such as Google and Microsoft also seem to be interested in clustering
and the technology has been called “the PageRank of the future” [23, 27].

1.2 Approach

As described in the problem statement, this project will develop a prototype for on-line clus-
tering of web search results. A clustering engine relies on a search engine to give a ranked list
of matches releavant to a given query. Therefore the first step is to develop a search engine
using standard information retrieval techniques. The the clustering is built on top of this, us-
ing an algorithm called Suffix Tree Clustering (STC). A technique for labelling clusters based
on the clustering algorithm will also be developed. Finally, a web interface will be developed
to allow users easy access to the system.

3



4 CHAPTER 1. INTRODUCTION

1.3 Contributions

Most articles available on clustering describe a clustering algorithm and how it is used to
group documents, but few articles focus on the actual labelling of the clusters. This is naturally
a crucial part for the end-user, who might fail to see the added value of clustering the results
if the labels are bad. In addition, the articles that actually describe the process of labelling the
clusters often leave out details or contain certain unspecified elements.

The main contribution of this thesis is to show how a clustering engine complete with a
search engine and state-of-the-art post-retrieval clustering mechanism can be developed. It
builds on the well-known Suffix Tree Clustering algorithm, and through thorough testing of
the prototype most of the issues not discussed in the original article on STC are addressed.

In addition, experimenting with the prototype sheds new light on many of the choices
made by the authors of the clustering algorithm, including the use of stemming, removal of
stopwords, join criteria for clusters and most importantly on labelling. The possibilities of
using additional knowledge bases for improving cluster labels are also explored.

1.4 Document Outline

The document is organized in four parts. Part I is this introductory chapter. Part II presents the
theoretical background, including an overview of the technology used in later chapters and a
state-of-the-art survey. Part III describes the approach taken to document clustering and the
implementation of the prototype system. Part IV presents the evaluation of the prototype,
along with a discussion of the results and a concluding chapter.
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Theoretical Background
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CHAPTER2
TECHNOLOGICAL OVERVIEW

Techniques drawn from information retrieval, data mining and text mining are used through-
out the thesis. This chapter gives background information and discusses the various tech-
niques and concepts used in later chapters.

2.1 Classical Information Retrieval

In essence, an information retrieval system processes a document collection to select a set of
index terms and build an index that allows searching the documents efficiently. Given a model
for representing documents, the query can be matched against each document in the collection
and a list of relevant documents is then returned to the user.

The simplest strategy for selecting index terms is to use all words in all documents. Ad-
ditional strategies are aimed at either reducing index size or improving retrieval performance.
Strategies include removing stop words and stemming or lemmatizing the words before in-
dexing.

Having selected the index terms, different models exists for representing the documents.
The classic models are the Boolean model, the vector space model and the probabilistic mod-
els. Only the vector space model is presented here since it is the most widely adopted and the
one used in the prototype described later.

In the model, each document is represented in the term space corresponding to the union
of all index terms appearing in the document collection [4]. A document collection of n docu-
ments D = {d1, ..., dn} containing m unique words can be described by means of n document
vectors dj = (wj1, ..., wjm), where wji designates a weight for the term ti in document dj . The
most widely adopted scheme for term weighting called tf ∗ idf is defined as

wi,j = tf ∗ idf =
freqi,j

maxl freql,j
∗ log

N

ni
(2.1)

where freqi,j is the raw frequency of ti in document dj and the maximum frequency is
computed over all words occurring in dj . N is the number of documents in the collection and
ni is the number of documents containing the term ti. The tf ∗ idf -measure tries to balance
two effects: Words frequently occurring in a document are likely to be important (hence the tf
or term frequency part), but words occurring in a large percentage of the document collection
are less discriminating and thus less important for retrieval (hence the idf or inverse document
frequency part). The denominator of the term frequency is a way of normalizing the term
frequency according to the length of the document, so that long documents are not favoured.

Although several alternatives have been proposed, some variant of tf ∗ idf is often used
for weighting. Several variations are described in a paper by Salton and Buckley [19]. For
weighting query terms they suggest:

7
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wi,q =

(
0.5 +

0.5 freqi,q
maxl freql,q

)
∗ log

N

ni
(2.2)

where wiq is the weight for the term ti in the query q, N is the number of documents in the
collection and ni is the number of documents containing the term ti. The similarity between
two term vectors is determined by measuring their vector distance. A common measure is the
cosine-similarity ϕ defined as:

ϕ(di, dj) =
~di • ~dj

|~di| ∗ |~dj |
(2.3)

where ~di is the document vector for document di. The vector model is a simple and fast
strategy that has the advantage of allowing partial matches, and provides improved retrieval
performance by ranking the results according to similarity to a query [4].

2.2 Document Clustering

Clustering is the process of grouping documents with similar contents. Initially, clustering
was used in information retrieval systems for increasing precision or recall [21] and finding
similar documents. Later it has been used for browsing document collections [8] and for
automatically building taxonomies [14]. In this thesis however, we focus on using clustering
to organize results from a search engine like in [16].

Although it is possible to cluster documents before the user submits a query, the amount
of information and variety of topics present on the Internet suggests that we need to come up
with specialized categories in response to each user query. This has been referred to as on-
line or query-time clustering, which obviously introduces major performance requirements. A
typical web user is not very patient, and will be annoyed by having to wait more than a couple
of seconds at most for the results of his request. Therefore the performance of clustering is a
major concern. This thesis focuses on the suitability of clustering for on-line grouping of
documents returned by a search engine into categories with descriptive labels.

Clustering is traditionally a part of data mining where it is usually applied to numerical
data. The document clustering techniques can be divided in the techniques directly adapted
from data mining and the algorithms defined specifically with unstructured text in mind.

Document clustering shares several characteristics with the field of text categorization. The
main difference is that categorization focus on assigning documents to predefined groups, where
as document clustering tries to extract the groupings inherent in the documents. Many text cat-
egorization approaches build classifyers that are trained to categorize documents efficiently,
but this would not work for clustering since the categories are not know in advance.

Document clustering essentially has two major challenges: to group similar documents
into coherent clusters, and to label these clusters with descriptive labels. The former challenge
is often addressed by transforming the documents into vectors and then using well tested
data mining techniques for clustering numerical data in order to produce the clusters. The
labelling is more difficult, especially for the document vector approaches. While clustering
has been researched for decades, only in the last decade has specialized clustering algorithms
designed for dealing with unstructured textual data appeared.

The next section discusses why we should cluster search results, and then some of the
well-known approaches to clustering are described.
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2.2.1 Why Cluster Search Results

Search results on the web are traditionally presented as a flat ranked list of documents, fre-
quently millions of documents long. The main use for clustering is not to improve the actual
ranking, but to give the user a quick overview of the results. Having divided the result set
into clusters, the user can quickly narrow down his search further by selecting a cluster. This
resembles query refinement, but avoids the need to query the search engine for each step.

Evaluations done using the Grouper system [35] indicate that users tend to investigate
more documents per query than in normal search engines. It is assumed that this is because
the user clicks on the desired cluster rather than reformulating his query. The evaluation
also indicates that once one interesting document has been found, the users often find other
interesting documents in the same cluster.

2.2.2 Traditional Clustering Approaches

In general, these techniques transform the documents to vectors, and employs standard means
of calculating differences between vectors to cluster the documents.

Hierachical Clustering

In general, there are two types of hierarchical clustering methods [10]:
Agglomerative or bottom-up hierarchical methods create a cluster for each document and

then merges the two most similar clusters until just one cluster remains or some termination
condition is satisfied. Most hierarchical clustering methods fall into this category, and they
only differ in their definition of intercluster similarity and termination conditions.

Divisive or top-down hierarchical methods do the opposite, by starting with all documents
in one cluster. The initial cluster is divided until some termination condition is satisfied.

Hierarchical methods are widely adopted, but often struggle to meet the speed require-
ments of the web. Usually operating on document vectors with a time complexity of O(n2) or
more, clustering more than a few hundred snippets is often unfeasible. Another problem is
that if two clusters are incorrectly merged in an early state there is no way of fixing this later
in the process. Finding the best halting criterion that works well with all queries can also be
very difficult.

K-Means Clustering

The K-Means algorithm comes in many flavours and produces a fixed number (k) of flat clus-
ters. The algorithms generally follow the following process: Random samples from the collec-
tion are drawn to serves as centroids for initial clusters. Based on document vector similarity,
all documents are assigned to the closest centroid. New centroids are calculated for each
cluster, and the process is repeated until nothing changes or some termination condition is
satisfied.

The process can be speeded up by clustering a subset of the documents, and later assign
all documents to the precomputed clusters. Several problems exist with this approach: It
can only produce a fixed number of clusters (k). It performs optimally when the clusters are
spherical but we have no reason to assume that documents clusters are spherical. Finally, a
“bad choice” in the random selection of initial clusters can severely degrade performance.
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Buckshot and Fractation Algorithm

These linear time clustering algorithms were both introduced in [8], and are so-called seed-
based partitional clustering techniques. Partitional clustering follows a three-step process: (1)
Find k cluster centers, (2) Assign each document to the nearest cluster, (3) refine the partition-
ing. Buckshot and Fractation are different strategies for generating the initial k cluster centers
from n documents (1). The idea is to employ a slow (typically quadratic) but high-quality
clustering techniques on a subset of the data, and then uses the results to approximate the
final clusters.

Buckshot selects
√
kn of the documents and applies the clustering algorithm, and thus

runs in O(nk) time. Buckshot is a non-deterministic but fast technique. Fractation splits the
document collections into a m buckets (m > k) and clusters each bucket. These clusters are
then treated as the individuals and the process is repeated until only k clusters remain. This
process can be shown to run in O(mn) time.

The rest of the documents are then assigned to their nearest cluster center based on some
heuristic. In step three clusters are refined either by re-applying the nearest cluster center
approach (resembling the k-means approach), or by splitting and/or joining cluster based on
some heuristic of overlap/disjointness.

According to the authors, Buckshot achieves high performance and is thus better suited
for roughly clustering on-line, while Fractation can be used to determine primary partitioning
of an entire corpus. They propose a technique (Scatter/Gather [8]) that uses Fractation to
create an initial partitioning and then uses Buckshot to do on-the-fly clustering to tailor the
results from the Fractation algorithm towards the specific user request at query-time.

2.2.3 Text-Oriented Clustering Approaches

These techniques are characterized by their focus on words rather than document vectors.
Instead of representing documents as vectors the typically focus on grouping documents that
share sets of frequently occurring phrases.

Frequent Itemsets Clustering

Wang, Fung and Ester [3] propose using the data mining notion of frequent itemsets to cluster
documents. Frequent itemsets originate from association rule mining typically used in data
warehouses. The idea is that documents that share a set of words that appear frequently are
related, and this is used cluster documents. The article also presents a way to infer hierarchies
of clusters.

Ferragina and Gulli [9] propose a similar method that mines for so-called gapped sequences,
that do not necessarily appear continuously in the text. They also cluster based on the occur-
rence of such frequent phrases and build hierachical clusters.

Suffix Tree Clustering

The Suffix Tree Clustering (STC) algorithm was introduced by Zamir and Etzioni [16] and
further developed in [34]. The algorithm focuses on clustering snippets faster than standard
data mining approaches to clustering by using a data structure called a suffix tree. Its time
complexity is linear to the number of snippets, making it attractive when clustering a large
number of documents. Since this is the core clustering approach used by the prototype pre-
sented in this thesis, the algorithm will be presented in detail.
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The algorithm consists of three steps: (1) Document cleaning, (2) Identifying base clusters,
and (3) combining base clusters into clusters. These steps are demonstrated by running the
algorithm on the following document collection (resembling sample web documents titles):

Document 1: Jaguar car reviews - Review Centre
Document 2: ## PANTERA ONCA ##
Document 3: Jaguar reviews!
Document 4: Buy Pantera Onca Pictures

1. Document cleaning: This step uses a light stemming algorithm on the text. Sentence
boundaries are marked and non-word tokens are stripped. After the pre-processing we
are left with the following “sentences” for each of the documents:

Document 1: {jaguar car review, review centre}
Document 2: {pantera onca}
Document 3: {jaguar review}
Document 4: {buy pantera onca picture}

2. Identifying base clusters: The process of identifying base clusters resembles building
an inverted index of phrases for the document collection. The data structure used is a
suffix tree [32], which can be built in time linear to the collection size [20].

The following definition of a suffix tree is adapted from [16]: Formally, a suffix tree is
a rooted, directed tree. Each internal node has at least 2 children. Each edge is labeled
with a non-empty sub-string of S (hence it is a trie). The label of a node is defined to
be the concatenation of the edge-labels on the path from the root to that node. No two
edges out of the same node can have edge-labels that begin with the same word (hence
it is compact). For each suffix s of S, there exists a suffix-node whose label equals s.

Figure 2.1 illustrates the suffix tree built using the sentences identified in our sample
document collection. Each node represents a phrase and has a list of document IDs in
which the phrase occurs.

car review
[1]

review
[1, 3]

centre
[1] jaguar buy pantera

onca picture [4]
pantera onca

[2]
onca
[2]

picture
[4]

centre
[1]

car review
[1]

review
[3]

picture
[4]

picture
[4]

review
[1, 3]

pantera onca
[2, 4]

onca
[2, 4]

jaguar
[1, 3]

Figure 2.1: Suffix tree of the sample document collection

Each node in the tree represents a group of documents (a base cluster) and is labelled with
a phrase that is common to all of them. All groups containing two or more documents
are selected to serve as the base clusters.

Each of the base clusters are assigned a score according to formula 2.4.
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Phrase Documents Score
review 1, 3 2
jaguar 1, 3 2
pantera onca 2, 4 4
onca 2, 4 2

Table 2.1: Base Clusters

s(B) = |B| · f(|P |) (2.4)

where |B| is the number of documents in base cluster B, and |P | is the number of words
in P that have a non-zero score (the effective length of the phrase). Words that appear in
more than 40% of the collection or in less than three documents receive a score of zero.
The function f penalizes single word phrases, is linear for phrases of two to six words,
and is constant for longer phrases.

The scored base clusters are shown in table 2.1. Note that since there are only four
documents in the sample collection, no words have been given a zero-score.

3. Combining base clusters: This step merges base clusters with highly overlapping doc-
ument sets. The similarity of base clusters Bn and Bm is a binary function ψ defined
as

ψ(Bm, Bn) =

{
1 iff |Bm ∩Bn| / |Bm| > 0.5 and |Bm ∩Bn| / |Bn| > 0.5
0 otherwise

(2.5)

where |Bm ∩ Bn| is the number of documents shared by Bm and Bn. Calculating this
similarity between all base clusters we can create a base cluster graph, where nodes are
base cluster, and two nodes are connected iff the two base clusters have a similarity of 1.
Using this graph a cluster is defined as a connected component in the graph.

The following algorithm is adapted from Cormen et al [6] and presents a simple way
of determining the connected components in a graph G, given a function SET(v) that
returns the set containing the vertex (base cluster) v.

CONNECTED-COMPONENTS(G)

1 for each vertex v ∈ V [G]
2 do make new set containing v
3 for each edge (u, v) ∈ E[G]
4 do if SET(u) 6= SET(v)
5 then join the sets u and v

Figure 2.2 shows the graph with its connected components.

Each connected components constitutes a cluster, and it consists of the union of the
documents contained in each of its base clusters. The original article on STC states that
“The final clusters are scored and sorted based on the scores of their base clusters and
their overlap”, without giving any detail as to how this is done. The article says nothing
about labelling the clusters either.
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Figure 2.2: Base Cluster graph

2.3 Document Snippets

A common techniqe used by clustering engines is to cluster so-called document snippets rather
than entire documents. Snippets are the small paragraphs often displayed along with web
search results to give the user an indication of the document contents. Figure 2.3 shows the
first three results along with their snippets generated by the Google search engine.

Snippets are considerably smaller than the documents (typically only 100-200 characters),
thereby drastically reducing the computational cost of the clustering. This is very important
since scalability and performance are major challenges for most clustering engines. When
building clusters based only on short extracts from the documents, the quality of the snip-
pets returned by the search engine naturally becomes very important. Snippet generation
approaches vary from naive (e.g. first words in the document) to more sophisticated (e.g. dis-
play the passage containing the most words from the query or multiple passages containing
all or most of the query keywords).

Figure 2.3: Snippets from Google

Clustering algorithms differ in their sensitivity to document length, but generally the effect
of using snippets as opposed to entire documents is surprisingly small as demonstrated by
[34]. Only about 15% average loss of precision for the clusters was found when using snippets
rather than entire documents. The article suggests that this is caused by the search engines
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christmas tree
Marcasite Enamel
cat
diamond stud earrings
Golf Water Globe
song lyrics
MD Formulations
shockwave . com
barbie styling
winter jackets
mALL mADNESS GAME BOARD
flatwear
christmas cards
top websites
wwe.com

Table 2.2: Excerpt from a query log

efforts to extract meaningful snippets concerning the user query, which reduces the noise
present in the original document so much that the results do not deteriorate significantly. This
further emphasises the importance of high quality snippet extraction for snippet clustering
approaches.

2.4 Query Log

A query log is a list of queries submitted by users to a search engine. Information stored
ranges from only the query to details about each of the resulting pages the user has clicked
on, special fields used by the search engine etc. Figure 2.2 shows an example excerpt from a
query log, illustrating a simple log file and how diverse user requests can be.

Query logs can contain several types of interesting information: In most cases, it is used
to monitor user behaviour in order to either personalize the search engine or to improve the
service based on common behavioural patterns. Several large scale studies have investigated
query logs from web search engines in order to discover how users normally interact with the
engine [1, 7].

Another interesting aspect of the query log is its ability to capture the vocabulary of the
users, since users formulate queries according to their perception of a domain, not according
to the contents of the documents of the domain.

2.5 Open Directory Project (ODP)

The Open Directory Project (ODP) is the most comprehensive human-edited directory of the
Web. A global community of volunteer editors maintains this hierarchy of over 700000 cate-
gories [28]. It is used in a variety of web applications around the world, and perhaps most
famously by Google in their directory service [25].

The information stored in the hierarchy is contained in two RDF-files. The first file is the
content file that defines each category with a category ID and optional descriptions and links
to web pages. The following listing shows a portion of the contents file:
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<Topic r:id="Top/Computers">
<tag catid="4"/>
<d:Title>Computers</d:Title>
<link r:resource="http://www.cs.tcd.ie/FME/"/>
<link r:resource="http://pages.whowhere.com/computers/Timeline.html"/>

</Topic>

<ExternalPage about="http://www.cs.tcd.ie/FME/">
<d:Title>FME HUB</d:Title>
<d:Description>Formal Methods Europe (FME) is a European organization
supported by the Commission of the European Union. </d:Description>

</ExternalPage>

The second file is the structure file that defines the relationships between the categories as
demonstrated in the following listing:

<Topic r:id="Top/Shopping/Niche/Politics">
<catid>183341</catid>
<d:Title>Politics</d:Title>
<narrow2 r:resource="Top/Shopping/Niche/Politics/Socialism"/>
<narrow2 r:resource="Top/Shopping/Niche/Politics/Conservatism"/>
<narrow2 r:resource="Top/Shopping/Niche/Politics/Social_Liberalism"/>

</Topic>





CHAPTER3
STATE-OF-THE-ART SURVEY

The literature offers several solutions to the problem of clustering web documents. Unfortu-
nately, very little information is available about the commercial systems, and the performance
of the approaches described in the literature is far from that of the commercial systems. Even
though the general approach is described to a point where you could implement a similar
system, the tuning and all the little tricks learned through implementing a commercial system
are seldom described in the articles. It is likely that they use a somewhat standard clustering
algorithm at the base of the approach, but they might also use additional information sources
such as lists of named entities or rules etc. to further improve the cluster quality. This chap-
ter presents a way of classifying the approaches and surveys related work on web document
clustering.

3.1 Classifying Web Clustering Approaches

We will use the term web clustering approach to refer to all aspects of the clustering process for
web documents: the data acquisition and processing, the clustering algorithm, the labelling
process etc. The following list presents terms and concepts relevant to describing web clus-
tering approaches:

Clustering algorithm: Different clustering algorithms are used at the base of the clustering
approach. For details on different algorithms see section 2.2. This part is usually crucial
to the overall performance of the approach.

Standard vs. Meta-Search: Results for a query is typically gathered either by searching a lo-
cal index (standard search) or by searching one or more other engines, combining the
results, and using only the information returned by the other engines to do the cluster-
ing (meta-search).

Flat vs. Hierarchical Clustering: The clusters resulting from the algorithm can be either a flat
list or a browsable hierarchy of two or more levels of clusters.

Single vs. Multiword Labels: Approaches differ in the way labels are constructed. This ranges
from single word labels to lists of words or phrases.

On-Line vs. Off-Line clustering: On-line clustering approaches cluster the documents in a
result set on-the-fly at query-time. Off-line approaches cluster all the documents at
index-time, and only displays the pre-computed clusters at query-time.

17
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3.2 Related Work

Clustering has been researched for decades, and since so many different strategies we can
only present a selection of available clustering approaches.

Scatter/Gather: Scatter/Gather [12] was one of the first proposed clustering approaches in-
tended for use on top of a search engine. It uses the non-hierarchical partitioning algo-
rithms Buckshot and Fractionation [8] to cluster documents in linear time based on the
cosine similarity between documents.

Grouper: Grouper [35] was one of the early approaches to web snippet clustering. It is a
document clustering interface to the HuskySearch meta-search service, and it imple-
ments the Suffix Tree Clustering algorithm described in section 2.2.3. Heuristics based
on word overlap and word coverage within each cluster are used to label the clusters
with the best phrases identified by the STC algorithm. It is one of the best performing
clustering engines, being able to cluster 500 clusters in only one second [35]. The system
is available through the open source project Carrot2 [33].

Lingo: The Lingo system [17] uses Singular Value Decomposition (SVD) on the term-document
matrix to find multiple word labels. It starts by identifying key phrases and represents
them in the same vector space as the documents. Vectors are then transformed using
SVD, and clusters are identified by using the notion of document similarity from the
Vector Space Model, labelling the clusters with the terms closest to the center of the doc-
uments vectors in the cluster. This approach does not scale very well because SVD is a
rather time-consuming process.

Clusty/Vivisimo: The Clusty/Visvisimo engine [22, 31] is one of the best performing com-
mercial clustering engines available. It produces high quality hierachical clusters with
multiple word or phrase labels. Clusty uses a meta-search approach drawing snippets
from 10 other search engines. Vivisimo is an enterprise search platform that includes
several services in addition to clustering. Little is known about the internals of the en-
gine because it is commercial.

SnakeT: SnakeT [9] is a meta-search engine that draws results from 15 commodity search
engines and builds hierarchical clusters based on snippets. It uses an on-line hierar-
chical clustering approach based on the notion of frequent itemsets from Data Mining.
It extracts so-called gapped-sentences (related but not necessarily continuously appearing
words) that form multiple-word labels. It also employs two knowledge bases (the Dmoz
hiearchy and “anchor texts”) to improve performance. It produces clusters of quality
comparable to that of Vivisimo, but fails when data sets grow large. Experiments done
in [9] show that the clustering 200 snippets takes over 4 seconds, and 400 snippets takes
about 9 seconds, which is too slow for the average internet user.
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Prototype
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CHAPTER4
APPROACH

This chapter describes the approach taken to document clustering, focusing on the choice
of techniques. The next chapter describes the implementation of the different components
in detail. The first section of this chapter presents the general idea and overview for the
approach. The next section describes each of the components in greater detail and provides
rationale for choices made at each level.

4.1 General Idea

The goal of the prototype is to be able to cluster web search results efficiently while producing
high-quality labels. After reviewing the state-of-the-art and testing several of the clustering
techniques, the Suffix Tree Clustering algorithm was chosen at the core of the approach. The
algorithm proved to be much faster than the other approaches that were tested and it has
several other attractive features (see section 4.4.5 for details). Since the clustering relies on
snippets generated by the search engine, it is necessary to be able to control how snippets are
generated. This means implementing a search engine from scratch, which gives the additional
advantage of having complete control over the ranking.

With this in mind, a relatively standard search engine using classic IR methodology was
developed. The clustering component was built on top of this, decoupled from the engine.
The clusterer essentially only takes a set of snippets as input and returns clusters. Thus, it can
easily be customized to fit on top of any engine.

4.2 Prototype Overview

The prototype operates in two separate phases. The first phase called ‘Indexing’ processes a
document collection and builds an index to enable searching. The second phase called ‘Re-
trieval’ allows users to submit queries and then uses the index to retrieve relevant documents.
The results are clustered and the user is presented with the clustered results. The subsequent
sections describe these phases in greater detail.

4.3 Indexing Phase

Figure 4.1 shows the steps involved in the Indexing phase. The document collection is first
pre-processed and then indexed. The index is stored on disk. The following sections detail
each stage.
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IndexText
preprocessing Indexing

Document
collection

Figure 4.1: Indexing

4.3.1 Text Pre-processing

This stage prepares the documents for indexing by transforming them from a stream of char-
acters to a list of index terms. At this stage a simple tokenization algorithm is first applied,
and stopwords are then removed.

Stemming has been proposed as a means of reducing the index size and improve retrieval
performance. Kraaij and Pohlmann [15] conclude that stemming does improve recall, but an
evaluation performed by Hull [13] found little improvement in precision as compared to not
using stemming. In this prototype the Porter stemming algorithm [18] is applied to the text,
in order to reduce the index size and hopefully improve recall.

4.3.2 Indexing

Indexing is done by parsing the tokenized documents, keeping a list of each unique word
(called the vocabulary) and a list of occurrences (called postings) to keep track of how many
times a word occurs in each of the documents in the collection. This is done to create the classic
inverted index. Before writing the index to disk, words that only occur in a single document
are removed. In addition to the vocabulary and postings, certain features are extracted and
calculated from each of the documents and stored in a separate file.

4.4 Retrieval Phase

Figure 4.2 shows the steps involved in the Retrieval phase. The search engine reads the nece-
sessary information from the index at the preparation stage. The user query is pre-processed
and passed on to the search engine. The retrieval stage searches the index using the user query
and returns a list of results. Snippets for the results are drawn from the document collection.
The results are then clustered and presented to the user. The following sections detail each of
these stages.

4.4.1 Preparation

The preparation simply consists of reading the vocabulary and document information from
disk. There is no setup required for the clusterer.
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Figure 4.2: Retrieval

4.4.2 Query pre-processing

Queries are pre-processed in exactly the same manner as the documents, using tokenization,
stopword removal and stemming.

4.4.3 Retrieval

The underlying search engine uses a classical approach. It uses the vocabulary and the in-
verted index built in the first phase. Term weights are calculated according to the well-known
td ∗ idf -scheme, and term weights for queries are calculated using the measure suggested by
Salton and Buckley in [19]. Document similarity is calculated using cosine similarity.

4.4.4 Snippet generation

To speed up the clustering process, only a snippet of each document is considered. After rank-
ing the result from the search engine, snippets from a number of the top resulting documents
are generated. This is done simply by reading a portion of the original file from disk.

Using snippets instead of entire documents, not only reduced the workload for the clus-
tering algorithm drastically, it also takes load of the usually very busy search engine core (that
has to produce the snippets anyway). Relying only on snippets also allows clustering to be
added on top a regular search engine to create a meta-search engine that uses the results and
snippets returned by the search engine to do clustering.

4.4.5 Clustering

The results from the search engine are clustered using the Suffix Tree Clustering algorithm
described in section 2.2.3. The algorithm takes as input the generated snippets, and returns a
list of labelled clusters of documents.

The original paper describing the algorithm [16] lists several key requirements for web
document clustering, including:

Relevance: The clusters should be relevant to the user query and their labels easily under-
stood by the user.
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Overlap: Because documents can have several topics, it is favourable to allow a document to
appear in several clusters.

Snippet-tolerance: In order to be feasible in large-scale applications the algorithm should be
able to produce high-quality clusters based only on the snippets returned by the search
engine.

Speed: The clusters should be generated in a matter of milliseconds to avoid user annoyance
and scalability issues.

The STC algorithm has all these qualities, but the main reason for choosing it was its
speed, simplicity and ability to produce good cluster labels. Several factors influence the
performance of STC, and the following sections describes the choices made at each step:

Stemming Snippets

[34] suggests stemming all words in the snippets with a light stemming algorithm. To present
readable labels to the user they save a pointer for each phrase into the snippet from which
it originated. In this way one original form of the phrase can be retrieved. Note that several
original phrases from different snippets may belong to the same base cluster, but which of
these original forms is chosen is not detailed in the article.

The prototype only stems plurals to singular, using a very light stemming algorithm. The
effects of stemming the snippets is further assessed in the evaluation (see section 7.2.2). Orig-
inal snippets are stored to allow original phrases to be reconstructed after clustering.

Removing Stopwords in Snippets

The authors of STC suggest dealing with stopwords in phrases by allowing them as long as
they are not the first or the last word in the phrase, for instance allowing ‘product of France’
but not ‘product of’ [35].

Testing the prototype without removing stopwords, it seems that phrases containing stop-
words are rarely selected as labels. Therefore, the prototype simply skips stopwords and
inserts phrase boundaries instead. Testing indicates that this has very little impact on the
resulting clusters and it’s therefore preferred for it’s simplicity.

Labelling Clusters

The clustering algorithm outputs a set of labelled base clusters for each cluster, and the authors
suggest using these base cluster labels as labels for the final cluster. In their Grouper system,
clusters are labelled with all the labels from the base clusters [35].

The STC algorithm assigns a score to each base cluster, but never utilizes it. The approach
taken in the prototype is to treat the base cluster labels as candidate labels for the final cluster,
and use the scoring to select the highest ranked candidate as the final label. It is assumed
that having one or two phrases as a label instead of labelling each cluster with all candidates
enhances usability.

The original paper describing STC suggests scoring base clusters using the formula s(B) =
|B| ∗ f(|P |) where |B| is the number of documents in base cluster B, and |P | is the number
of words in P that have a none-zero score. Zero-scoring words are defined to be stopwords,
words that appear in less than three documents or words that appear in more than 40% of the
document collection. f is a function that penalizes single word phrases, is linear for two to six
words long phrases and constant for longer phrases.
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The scoring scheme used by the prototype closely resembles the suggested formula, be-
cause initial testing indicated that it worked very well. Whether the algorithm succeeds in
selecting the “correct” candidate is addressed in the evaluation chapter section 6.3. The pro-
totype doesn’t include stopwords in the zero-scoring words since all stopwords are removed
during pre-processing. The function f gives a score of 0.5 for single word phrases, 2 to 6 for
two to six words phrases respectively, and 7 for longer phrases. If the two top ranked base
clusters have the same score, the one with the largest document set is used as the label. This
is because phrases occurring in many documents are assumed to represent more important
categories.

Ranking Clusters

As previously mentioned, the original STC paper does not detail how the final clusters are
ranked. One of the best performing systems available, Clusty.com, seem to almost always
presents cluster lists sorted by the number of documents they contain. Minor deviations from
this approach can be observed, indicating that they use some additional heuristic. This sug-
gests that it might be a small trade-off between quality and performance, given that additional
processing of the clusters can produces a slightly altered (and hopefully improved) ordering
of clusters. In the prototype this extra processing is assumed to cost more time than it gains
in quality. It is assumed that large clusters are more interesting, and clusters are thus simply
ranked by the number of documents they contain.

4.4.6 Presentation

The prototype includes a web front-end to the search engine merely for testing purposes. It
allows the user to submit a query and returns a list of matching documents and browsable
clusters. The documents are presented with the document title, the generated snippet and a
link to the corresponding web page.

4.5 Gathering Test Data

For evaluation purposes, a collection of web documents was needed. A crawler was devel-
oped to generate the document collection. It takes as input a set of queries and uses the Google
Search API [24] to search Google. For each query, the URLs of the 1000 top hits are stored and
the corresponding web pages are downloaded. The documents vary in length but are on av-
erage about 5 kilobytes after stripping the html codes. For English text, this is about 800-1000
words.

To reduce the space requirements and remove noise from the downloaded documents a
good HTML-stripper was needed. Several open source variants were tested, but none of these
managed to deal with the noise and errors present in HTML code on the web. Therefore a
simple yet efficient stripper was developed from scratch.





CHAPTER5
IMPLEMENTATION

The prototype was developed in using Sun’s Java 1.4.2 SDK. It consists of a set of a crawler
for gathering documents, the search engine with clustering capabilities and a web front-end
to present the results to the user.

The implemented prototype operates in the two phases described in the previous chapter.
The subsequent sections describe the implementation of these phases. These sections mirror
those of the previous chapter.

5.1 Indexing Phase

This section provides implementation details for the Indexing phase. Figure 4.1 showing the
steps of the Indexing phase is repeated here for convenience. The following sections describe
the implementation of each stage.

IndexText
preprocessing Indexing

Document
collection

Figure 5.1: Indexing

5.1.1 Text Pre-processing

Several pre-processing steps transform each document from a stream of characters to a set of
index terms.

The document is first tokenized, by means of a simple tokenization algorithm. Web doc-
uments tend to contain a lot of noise and special characters so the index is easily filled with
terms not useful for retrieval. To reduce noise tokenization is achieved simply by selecting all
sequences of standard English letters (A-Z or a-z) of more than one character. This approach
has is obvious limitations (such as not being able to index words with special characters or
text in foreign languages properly), but is chosen because of its simplicity and the fact that all
documents in the collection are in English.

The pre-processor is provided with a file containing stopwords to be removed from the
index. All tokens that appear in a list of stopwords are removed, and the cleaned set of tokens
is passed on to the next stage.
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For all tokens a filepointer to its position in the original document is also stored to aid
operations such as snippet generation.

The prototype uses the Porter stemming algorithm, and a java version of the stemmer is
available at Martin Porter’s homepage [29].

5.1.2 Indexing

The Indexer processes each word of each document, and keeps track of the number of times
it appears in each document. This vocabulary is first sorted, and then a list of document IDs
and word frequencies is written to a postings file for each of the word. In a separate file (called
the vocabulary file) the word is written along with the number of documents it appears in and
a filepointer into the postings file. Afterwards, vectors containing the vector lengths of all
document vectors and the frequency of the most frequent word in the document are built.
These are needed for the similarity computation at query time. All information about the
documents are written to a document info file. This includes an ID, the file name on disk and
the title and URL for the corresponding web page.

The index is capable of indexing at least a couple of hundred thousand document just
using main memory available at most desktop computers today. If a larger index needs to be
constructed, one could easily build several partial indices the size of the main memory, store
them on disk, and then merge them afterwards [4].

5.2 Retrieval Phase

This section provides implementation details for the Retrieval phase. Figure 4.2 showing the
steps of the Retrieval phase is repeated here for convenience. The following sections describe
the implementation of each stage.

Preparation Retrieval

User query

Index

Document
collection

Snippet
generation

Preprocessing

Clustering

Presentation

Figure 5.2: Retrieval

5.2.1 Preparation

Preparing the search engine to accept queries consists simply of reading the vocabulary and
the document information stored on disk by the Indexer. The vocabulary is a set of triplets
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called VocabularyEntries containing the actual word, accompanied by the number of docu-
ments containing the word and a filepointer into the postingsfile. Keeping the vocabulary
sorted allows us to binary search it without any excess memory usage, yielding a runtime
complexity of only O(lg n). The documents are stored by a DocumentManager, that allows
easy access to auxiliary file information such as document title, url and information needed
by the similarity calculations (document vector length and the frequency of the most frequent
word in the document).

Since the vocabulary and document information files are small compared to the size of the
collection, they usually fit in main memory even for large collections. Testing done with a
250MB collection of 50000 documents resulted in vocabulary and document information files
that were just over 10MB combined. The size of the document information file is obviously
linear to the collection size. The vocabulary on the other hand grows sublinearly according to
Heaps’ Law [11]. The law states that vocabulary size V = O(nβ), and experiments indicate that
β is between 0.4 and 0.6 for the TREC-2 collection [2]. This means that the memory require-
ments grow sublinearly to the collection size, thus suggesting that document information and
vocabularies can be held in main memory even for very large collections.

5.2.2 Query pre-processing

Given a query, the engine pre-processes it using the same techniques applied to the documents
in the pre-processing stage of the Indexing phase. That includes tokenization, stopword re-
moval and stemming, see section 5.1.1 for further details.

5.2.3 Retrieval

For each of the query tokens the term weight is calculated according to the formula in 2.1,
and the corresponding DictionaryEntry is retrieved. Using a sparse vector representation for
storage, term weights are calculated for the query terms for each of the documents in the
index according to the tf ∗ idf -measure. The cosine similarity is then calculated between the
query and all documents in the index. Since the DocumentManager stores vector lengths and
highest frequencies for each document the similarity calculation requires only one disk access
per token in the query, which is acceptable because user queries tend to be short.

5.2.4 Snippet generation

The DocumentManager is also responsible for generating snippets. For each word in the vo-
cabulary, a filepointer is stored to its first occurrence in each document. Snippet generation is
simply done by reading the first 150 characters from the first query term occurring in the doc-
ument onwards. The file pointers use a block addressing scheme roughly mirroring sentence
structure so that snippets are usually drawn from the beginning of a sentence.

5.2.5 Clustering

A suffix tree the uses words instead of the usual characters as nodes was implemented. The
tree is built from a list of phrases from each document. In order to reconstruct these phrases
to display as labels the original phrases are stored and the pre-processed phrases each map to
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one original phrase. Each pre-processed phrase is a String array, and the label for each node
in the tree is represented by one of these phrases, an offset and a length. This allows to use
only use pointers to the original strings and two integers for each node in the tree, both saving
memory and eliminating the need for copying and changing strings.

Although linear time suffix tree construction algorithms exist, these are often cumbersome
to implement. As the suffix tree construction was not found to be a bottleneck in the imple-
mentation, a naive algorithm resembling how one would construct a suffix tree by hand was
used.

5.2.6 Presentation

The web front-end was developed using the Spring open source framework for Java [30].
Spring provides a comprehensive Model-View-Controller framework for Java Server Pages.
The web application was deployed on the open source application server JBoss.

Figure 5.3 shows the user interface presenting the results of a query and the clusters.

Figure 5.3: Web Interface
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5.3 Class Diagrams

This section details the actual implementation of the prototype. Section 5.3.1 describes the five
top-level packages, and sections 5.3.2 and 5.3.3 describe the internals of package searching
and clustering respectively. Since the other top-level packages (web, tools and crawling
only consist of independent classes their internals are only briefly discussed in the next sec-
tion.

5.3.1 Packages

web

tools

searching

dataobjects

engine

crawling

odp google querylog

clustering

suffixtree

stc

Figure 5.4: Packages

Figure 5.4 shows all packages in the prototype and their dependencies.
Package searching is responsible for the search engine functionality such as building

and index and allowing search. It consists of the engine and a set of dataobjects used for
storing data by the engine.

Package clustering implements the document clustering. Package stc implements
the Suffix Tree Clustering (STC) algorithm and depends on the suffixtree package for
constructing the suffix tree needed for storage.

Package crawling contains several independent utility classes used to build the docu-
ment collection and to extract information from the ODP hierarchy and the query log. Package
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google queries Google through the Google API, and allows the resulting urls to be down-
loaded to disk. Package odp traverses the ODP hierarchy to extract labels. Package querylog
analyses the original query log, extracts only the actual queries and performs simple text pro-
cessing to “clean” the data. The crawling also depends on the tools package.

Package tools provides shared tools used by the other packages. These tools include an
HtmlStripper, a PorterStemmer, a StopWordRemoverand other convenience classes for
performing simple operations.

Package web provides the web front-end. It consists of a single servlet called MainController
that acts as the “Controller” and builds the “Model” in the MVC-paradigm. The views are
provided by a set of Java Server Pages not shown in the diagram.

5.3.2 Package Searching

VocabularyEntry

Document IndexWriter

DocumentManager

IndexSearcher

Result

Index

Figure 5.5: Package Searching

Figure 5.5 shows the internals of the searching packages. The IndexWriter is respon-
sible for constructing the index and it uses Document and VocabularyEntry to hold docu-
ment and vocabulary information while indexing. The DocumentManager controls the doc-
ument collection and provides the Index with information about each document. The Index
is the class responsible for look-ups in the data-files containing the index on disk. It stores
the vocabulary as VocabularyEntries, accepts queries and produces lists of Results. The
Result class is a passive data object containing information about a specific query result
such as document title, similarity with the query etc. IndexSearcher is just a wrapper class
providing a convenient way of querying the Index , gathering the Results and retrieving
document information from the DocumentManager.
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5.3.3 Package Clustering

Figure 5.6 shows the internals of the clustering packages. The SuffixTreeClusterer
is responsible for the actual clustering, storing temporary data in BaseClusters and final
clusters in Clusters as approperiate. It depends on the SuffixTree for constructing a
suffix tree from the snippets. The tree consists of a hierarchy of Node objects, that can be
either InternalNodes or LeafNodes.

Cluster BaseCluster

SuffixTreeClusterer SuffixTree

<< Node >>

InternalNode LeafNode

Figure 5.6: Package Clustering
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CHAPTER6
EVALUATION

This chapter describes the formal evaluation of the prototype. Two tests were set up, and the
following sections provide details about the tests, methodology and results.

Several aspects of the prototype have been assessed only through experimentation with
the prototype code. No specific test setup or methodology was used, and the results are
therefore only included as a discussion in the next chapter.

Since we seek to achieve performance comparable to that of the state-or-the-art the best
thing would of course be to evaluate directly against some of the best available systems.
However, since these systems are commercial we could obviously not get hold of the same
document collections and other resources, making a direct comparison very difficult. The
STC algorithm lies at the core of our approach, and has been evaluated against many other
well known clustering algorithms in [34].

It is difficult to evaluate cluster labels directly, because it ideally involves investigating
the contents of potentially hundreds of documents in each cluster. Since we have limited
evaluation resources the quality of the cluster labels is assessed only through inspection of the
candidate labels and example document titles resulting from the STC algorithm.

This chapter describes the document collection and the test setup used for all evaluations,
and the last sections detail the formal evaluation.

6.1 Document Collection

Using the crawler described in section 4.5, 1000 documents were retrieved from Google for
each of the queries used in the evaluation. The queries are ‘paris’, ‘jaguar’, ‘apple’, ‘holly-
wood’ and ‘red hot chili peppers’. All documents containing less than twice as many charac-
ters as the document title were discarded. This is because many web sites simply consist of
a flash animation or a splash screen that is not interesting for retrieval purposes. Some doc-
uments were not retrieved because of technical issues such as web servers not responding et
cetera. A total of about 3900 documents constitute the final document collection.

The language in the documents is obviously dependent on the queries used to retrieve
them, but for the queries used in this document collection the language is assumed to be
rather unformal and without many technical details.

6.2 Test Setup

The tests were run using the document collection described above, and the prototype was
set up according to the approach described in chapter 4. This involves removing stopwords
and stemming the words in the index, and removing all words that appear in only one doc-
ument. The snippets are generated by reading 150 characters from the sentence in which the
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first query word appears in the original file onwards. Stopwords are removed from the snip-
pets and trailing s’es in plural forms are removed. Candidates are scored using the standard
method suggested by [34] and base clusters are joined when they have a mutual document
overlap of more than 40%. Each cluster is labelled with its highest scoring base cluster.

6.3 Label Quality

In essence, the STC algorithm outputs a number of clusters that contain base clusters, whose
labels can be used as candidate labels for the cluster. A crucial step in the algorithm is thus the
selection of one or more of the base cluster labels to serve as the cluster label, since this greatly
impacts the user experience. Given a set of candidate labels, this test evaluates whether our
approach correctly selects the best candidate to serve as a label for each cluster.

6.3.1 Methodology

This test was performed by four computer science students (three master degree candidates
and one PhD candidate). Five different queries where run and the first 200 resulting docu-
ments were clustered. The queries were ‘paris’, ‘jaguar’, ‘apple’, ‘hollywood’ and ‘red hot
chili peppers’. The test subjects were presented with all candidate phrases (in random order)
of the top ten ranked clusters for each query. They did not know which of the candidates that
were selected as the cluster labels by the system.

Since some clusters are larger than 50 documents, having the test subjects sift through all
documents for all clusters would be too laboursome. Instead, they were provided with five
example document titles for each cluster and the coverage of each candidate phrase. The coverage
is defined as the percentage of documents in the cluster in which the candidate phrase occurs.

For each cluster, the test subjects were instructed to select the most approperiate candidate
to serve as a cluster label. In addition, they gave a score for cluster coherence and label quality.
Cluster coherence is whether the candidate phrases and example document titles seem to
describe a common topic. Label quality was defined as whether they think the candidate they
chose as cluster label is a suitable cluster label. The scores were given using a three point scale
(poor, medium and good). The evaluation forms and instructions sent to the test subjects can
be found in appendix A. This appendix also lists all phrases generated for all five queries, and
shows which ones were chosen as labels by the prototype.

6.3.2 Expected Results

The document clustering quality (coherence) is assumed to be good, since the mechanism for
grouping documents essentially is the same as in the orginial paper on STC. Initial testing of
the prototype indicated that the most approperiate candidate label was often chosen by the
prototype, so the test subjects are assumed to have a relatively high percentage of correctly
chosen candidate labels. The label quality might vary significantly among the test subjects
since it’s the most subjective part of the evaluation.
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6.3.3 Results

Figure 6.1 shows the average score given for each query (see appendix B for details about the
results for each test subject). Note that precision ranges from 0 to 1 while cluster coherence
and label quality range from 0 to 2. Precision is defined to be 1 if the subject selected the
same candidate as the prototype and 0 if another candidate was selected. Some of the test
subjects often selected a candidate equal to the one selected by the prototype, but prefixed by
the query (for instance selecting Paris Hotels instead of Hotels for the query ‘paris’). In these
cases a score of 0.5 was assigned. Whether to allow the cluster labels to be prefixed by query
or not is further addressed in section 7.2.3.
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Figure 6.1: Average score for all queries

Since only four test subjects were used, variability in the results is expected. It is interesting
to see which of the dimensions (precision, coherence, quality) that vary the most. Figure 6.2
shows the total number of points assigned by each of the subjects for the three dimensions.
Again, refer to appendix B for all result details.

6.4 Clustering Performance

In order to be feasable in a large-scale setting, the prototype should be able to cluster hun-
dreds of document snippets in less than a second. This test addresses the performance of the
prototype when clustering increasing number of snippets.

6.4.1 Methodology

Using the query ‘paris’ the execution time of the clustering operation for the prototype was
measured for various collection sizes. Tests were run with 100 to 1000 snippets, and each
reported time is averaged over 100 tests for each collections size.

Time is measured from the search and snippet generation has completed, until the final
clusters are created and labelled. This is done to emphasize the overhead of the clustering,
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Figure 6.2: Total score for each test subject

and to give an idea of how fast it would be when used in a meta-search approach (i.e. drawing
snippets from an external search engine).

Tests are run on a Athlon XP 1700+ (1,47GHz) with 512MB RAM. The execution times
are compared to those reported by [34] using the orinal STC algorithm implementation. It’s
important to note that these tests were run on a Pentium 200 (200MHz), thus making the
results hard to compare.

6.4.2 Expected Results

Even though the authors claim the execution time of STC is linear to the collection size, the
prototype is not expected to perform linearly. This is in part because the suffix tree construc-
tion, which is an important part of the overall time spent on clustering, is not done in linear
time. In addition, several parts of the prototype have not been tuned optimally, further de-
grading the performance.

The clustering is expected to be feasable for up to about 500 document snippets, meaning
that it should not take more than about a second to perform.

6.4.3 Results

Figure 6.3 shows the execution time (in milliseconds) of the prototype clustering algorithm
and the original STC implementation as a function of collection size.



6.4. CLUSTERING PERFORMANCE 41

nof suffix cluster total STC
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200 53 107 160 900
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Figure 6.3: Clustering Performance





CHAPTER7
DISCUSSION

This chapter discusses the results of the evaluation, interesting observations made while ex-
perimenting with the prototype and possible improvements of the prototype.

7.1 Findings

Section 6.3.3 and 6.4.3 present the results from the formal evaluation of the prototype. This
section investigates these results and presents the findings.

7.1.1 Label Quality

The average number of times where the prototype selected the same label as the test subjects is
close to 80%, which is quite impressive. It indicates that the prototype in most cases succeeds
in selecting the same label as human users. However, this does not mean that it necessarily
selects the correct label, but merely the same as a small sample of test users.

The average score for the coherence of each cluster is 1.6 out of 2 points, which means that
they on average are closer to “good” than “medium”. This indicates that the clustering algo-
rithm is good at grouping documents, and it confirms the original assumption that documents
that share phrases often address the same topic.

Results were less promising when it comes to label quality, averaging at only 1.3 out of 2
points. Looking at the results from each test subject (appendix B), we discover that three sub-
jects have an average of about 1.5 while the last subject has an average of only 0.6. Although
the points for quality were expected to vary between subjects, this is suprisingly much. It in-
dicates that label clustering is generally very subjective, but also that more test subjects should
have been used to reduce the effects of potential ‘outliers’.

It is interesting to look at what causes low precision for some of the clusters. Looking at the
average precision from appendix B we notice two cases in which the score is particularly low:
when clusters have many overlapping candidates and when they have little coherence. Both
cluster 6 of the query ‘paris’ and cluster 3 for ‘red hot chili peppers’ score below 0.5 points,
and have many candidates that are highly overlapping. Having many similar candidates
naturally makes it difficult to choose the correct label because users might find several labels
equally good. The low precision is therefore to be expected. As for the other set of clusters
with low precision see for example cluster 6 from ‘jaguar’ and clusters 1 and 2 from ‘apple’.
These clusters all have many candidates and in addition to having little or no coherence.

Looking at the average scores and the number of candidates for each cluster, it is obvious
that the method of evaluation has it’s limitations. If all clusters had only one candidate they
would all have 100% precision and nearly 100% coherence, although label quality might have
declined.
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As described in the result section of the previous chapter, two of the test subjects repeat-
edly market the same candidate as the prototype but prefixed with the query (for instance
marking Red Hot Chili Peppers Concert Tickets rather than Concert Tickets for the query red hot
chili peppers). We argue that in most cases labels should not be prefixed by the query. It is
assumed that if the test subjects where shown a list of only the final cluster labels along with
the query (much like in the web interface) they would recognize the redundancy in prefixing
each cluster with the query. Had the instructions (see appendix A) given to the test subjects
adressed this issue, which they unfortunately do not, the results might have been different.

7.1.2 Clustering Performance

The performance test was done simply to show that clustering on-the-fly is feasable for several
hundred documents. Figure 6.3 shows that up to 500 documents can be clustered in under a
second. Testing has given good results when clustering only 200 documents, and that took
only 160 milliseconds on average. In addition, the clustering can be built outside the search
engine core (a meta-search approach) without impacting the performance of the search engine.

As previously mentioned, the original STC implementation was tested on a Pentium 200MHz
and the prototype on a AMD Athlon 1700+. That makes the two curves hard to compare di-
rectly. It is interesting to see that while the original implementation seems more or less linear
to the collection size, the curve for the prototype forms a parabola. It is difficult to say exactly
what separates the two, but the original implementation is obviously much better tested and
tuned. In addition, we know that the suffix tree construction algorithm used in the prototype
is not linear.

7.2 Prototype Experimentation Findings

The prototype has many features and parameters that can be tuned and altered. This section
presents the informal testing done through experimentation with the prototype.

7.2.1 Base Cluster Similarity

The original paper on STC joins base clusters that have more than 50% mutually overlapping
documents (see the formula in section 2.5). Through manual inspection of the base clusters
contained in each of the final clusters for several queries, it seems that many clusters are so
similar that they should have been joined. A solution might be to lower the threshold to
increase the number of base clusters joined, thus creating fewer and larger clusters. Table 7.1
shows the clusters with all base clusters for the query ‘paris’ when clustering 200 documents
and using a 50% threshold.

Experimenting with the prototype indicates that 40% might be a better threshold. Con-
trary to the findings of the authors, it seems that this factor impacts clustering performance a
great deal. A mere 10% change from 50% to 40% resulted in a reduction from 136 to 96 clus-
ters (30% fewer) when clustering results from the query ‘paris’ using 200 snippets. Table 7.2
shows the results when using the 40% threshold. It is difficult to quantitatively measure any
improved quality resulting from this, but the average number of base clusters in the top 20
ranked clusters increased from 1.6 to 2.6 when lowering the threshold. Of the final clusters,
‘Travel’ and ‘Guide’ are joined into the cluster ‘Travel Guide’, and ‘Hotels’ and ‘Hotels Paris’
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Cluster Phrases
1 {France}
2 {Hotels, Paris Hotels}
3 {Travel}
4 {Guide}
5 {Hotels Paris}
6 {Pages}
7 {Tour}
8 {City}
9 {Paris Apartment Rentals, Apartment Rentals, Apartments, Rentals, Paris Apartments}

10 {Travel Guide, Paris Travel Guide, Paris Travel, Restaurants}

Table 7.1: Base Clusters with 50% threshold

are joined into the cluster ‘Hotels’. Both of these changes seem attractive. In general, having
a 40% threshold results in more clusters with only one base cluster.

Cluster Phrases
1 {France}
2 {Hotels, Paris Hotels, Hotels Paris}
3 {Travel Guide, Paris Travel Guide, Travel, Guide, Paris Travel, Restaurants}
4 {Pages}
5 {Tour}
6 {Paris Apartment Rentals, Apartment Rentals, Apartments, Rentals, Rent}
7 {City}
8 {Information}
9 {Paris France}

10 {Hotel Reservation, Paris Hotel Reservation, Reservation}

Table 7.2: Base Clusters with 40% threshold

7.2.2 Effects of Stemming Snippets

The authors of the STC algorithm suggest stemming the snippets in the pre-processing stage.
Perhaps the most popular stemmer available is the Porter stemming algorithm [18]. Since
we are mostly interested in nouns, Porter’s algorithm is a bit cumbersome. Experimenting
with the prototype revealed that stemming takes about 200 milliseconds when clustering 100
snippets, and it grows approximately linearly with larger numbers of snippets.

It is natural to assume that the additional cost of stemming would to some degree be
made up for by the reduced size of the suffix tree and thus faster computation of clusters. A
test done with 200 snippets from the query ‘paris’ showed that 2058 tree nodes where created
without stemming and as much as 2025 nodes when using stemming. Surprisingly, it seems
that stemming has little effect on the size of the tree.

This supports the idea of using only a very light stemming algorithm. In the first attempt,
plural endings for nouns (such as -s and -ies) were stripped. Testing revealed that as much as
99% of the endings stripped were trailing s’es. To further increase the speed of the stemming
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algorithm, it was therefore reduced to simply stripping the s if it’s at the end of a word and
the second last character is not an s.

In general, stemming does not seem to influence the clustering significantly. Several tests
indicate only minor changes in the top 10 cluster labels and about 10% reduction in the total
number of clusters.

7.2.3 Label Overlap

Because the all suffixes of each phrase is generated, it is common that clusters contain several
very similar phrases (e.g. jaguar car reviews, car reviews and reviews for the query ‘jaguar’).
Often the phrases start with the query itself, but it seems that the final labels seldom contain
the query. This is because the query terms get zero score since they appear in more than 40%
of the collection. This is a good thing, since we are usually not interested in having all clusters
prefixed by the query.

However, in some cases we do want the query to appear in the label. For instance when
Apple Macintosh appears while searching for apple. A solution could be to use Named Entity
Recognition to detect trademarks and people etc. One could then say that the word apple in a
phrase does not recieve a zero score if the entire phrase is a named entity (e.g. when the next
word is macintosh). That way, the phrase apple macintosh would recieve a greater total score
than macintosh and thus be selected as the label.

7.2.4 Snippet Generation

Snippet generation requires reading from disk a portion of each of the documents that are to
be clustered. This turned out to be a major part of the overall time spent for each request when
testing on a single desktop computer. Time required to read a couple of hundred file portions
varied from 0,2 seconds to 5 seconds, depending on several factors: whether the disk was
currently busy with another operation, and the size of the folders containing the documents.
The first factor is very hard to control when using a single desktop computer, but should
be less crucial when using dedicated file servers. The second factor was found surprisingly
important when testing on the Windows NTFS file system. It seems that directory look-ups
get really slow when they contain several thousand files. The solution was to distribute the
files in a large number of directories, which drastically improved the performance.

7.2.5 Parts-of-Speech in Cluster Labels

For descriptive phrases, we are generally most interested in nouns and adjectives. To achieve
this, one might use a part-of-speech tagger and then select only spesific parts of speech to
serve as label candidates. Unfortunately, part-of-speech tagging is generally very expensive.
It is therefore interesting to observe that despite not using any part-of-speech detection, the
resulting cluster labels are almost always nouns, sometimes adjectives, but rarely verbs or any
other parts of speech. It seems that analyzing parts of speech is a waste of time when using
the STC algorithm.
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7.3 Improvements

Since limited time was available for developing the prototype, several features have been
implemented in a simple and straight-foreward manner. The resulting prototype works, but
is far from optimal. This section describes some potential improvements of the prototype.

7.3.1 Search Engine Ranking

In order to generate high-quality clusters for a given query, high-quality snippets are needed,
which in turn depends on relevant and high-quality documents in the result set produced by
the search engine. Ranking in the search engine is done simply by using the tf ∗ idf mea-
sure and computing the cosine similarity between the query and all documents. This can
be improved through for instance employing the HTML-code available for each document
to extract important features such as headlines. More sophisticated schemes that utilize link
information like Google’s PageRank [5] could also be implemented.

7.3.2 Snippet Generation

Since the clustering algorithm relies solely on the snippets, their quality is very important.
Good quality snippet should contain as much information about the query and as little noise
as possible. In the prototype, snippets are simply drawn from the first appearing query word
onwards. This ensures the occurrence of the first query word, but not necessarily the best
snippet for that query word and certainly not the best snippet if the query contains multiple
words. A slightly more advanced scheme would for instance be to use the paragraph contain-
ing the maximum number of query words, or multiple small passages containing all query
words.

7.3.3 Suffix Tree Tuning

Several techniques can be used to improve the performance of the suffix tree used for cluster-
ing. As previously mentioned, the prototype uses a naive construction algorithm, and the tree
can be built in time linear to the collection size [20].

Since all phrases that occur in less than three documents are discarded, they could be
removed before building the tree. Reducing the size of the tree makes building and searching
the tree faster.

The data representation used for each node is not optimal. An obvious improvement
would be to encode each stemmed word as an integer instead of a string, because matching
integers is much faster than matching strings. [35] also suggest encoding documents belong-
ing to each node with bit vectors to reduce time spent on calculating overlap between clusters.





CHAPTER8
EMPLOYING ADDITIONAL KNOWLEDGE

BASES

Although indicating that the acutal clustering works well, the evaluation of the prototype
shows that labelling clusters with good quality phrases is very difficult. This chapter fo-
cuses beyond the actual clustering algorithm used, and discusses what kind of additional
data sources could be useful in extracting high-quality labels for clusters. The last section
discusses how these techniques apply to the STC algorithm used in the prototype.

8.1 Clustering using a query log

A problem with traditional document vector based clustering algorithms is how to extract
meaningful labels. Assuming a very large log of queries submitted by users, this could actu-
ally serve as the user vocabulary. The assumption is that users describe their information needs
using their perception of a domain rather than the contents of the documents describing the
domain.

An idea is to translate the document vectors from the usual index term-space into a query
log-space consisting only of those index terms contained in the query log. Then clustering
could be performed as usual, but it would cluster based on the words used by actual users.
This could hopefully yield more natural groupings of documents, reflecting how users per-
cieve the domain. Also for the actual labelling, one could assume that terms appearing in a
query log are more likely to make a good labels than just any word in a document.

8.2 Using the ODP hiearachy

The ODP hierarchy inhibits at least two valuable sources of information for clustering: the
category labels are likely to be good labels for clusters since they often represent concepts,
and the hierarchy structure can be useful for labelling hierarchical clusters.

The SnakeT system (described in chapter 3) utilized the ODP hierarchy for cluster labelling.
It calculates a sort of tf ∗ idf score that reflects how significant a word is and how specific it
is (measured by its depth in the hierarchy). They then use these scores to boost the words
accordingly, thus increasing the likelyhood of selecting these words as labels for the clusters.

8.3 Improving the STC algorithm

Several test were carried out using both ODP data and a query log with the prototype. None
of them showed any immediate improvement, but we argue that this is due to the nature of
the STC algorithm rather than the knowledge bases. The main problem is that unless the fun-
damental clustering technique of grouping frequent phrases is altered, STC generates rather
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few candidate labels for each cluster (typically less than five). In addition, these labels are
very frequently subsets of each other since all suffixes of all phrases are generated.

Given a cluster with only one or two candidate labels, it is unlikely that ODP data or a
query log can improve the labelling. Experimentation with the prototype indicated that to get
a noticable change in the labelling as a result of for instance the ODP data, words appearing
in the hierarchy must recieve a significant boost in their score. This did however seem to
degrade the ranking of the labels rather than improve it.

Named Entity Recognition might on the other hand serve a special purpose in combination
with the STC algorithm. The evaluation revealed that STC in most cases does not generate
cluster labels that are prefixed by the actual user query, but in some cases this is exactly what
we want. Given for instance the query johnny and a cluster with the candidates Johnny Cash
and Cash, the former is more likely to be relevant even though it is prefixed by the query. This
represents a special case where the phrase ‘Johnny Cash’ represents a named entity. Under
normal circumstances, the first phrase would not have recieved a higher score than the sec-
ond because johnny would appear in more than 40% of the snippets and thus be considered a
’stopword’. If such named entitites are recognized, they can be boosted to increase the likely-
hood of being selected as cluster labels. In general, it seems that phrases representing named
entities are more likely to make good cluster labels.



CHAPTER9
CONCLUSION

Clustering in a data mining setting has been researched for decades. Lately, document cluster-
ing used to cluster web search engine results have recieved much attention. Large companies
such as Google and Microsoft have shown their interest and we have seen the emergence of
commercial clustering engines such as Vivisimo.

This thesis has shown how a search engine with clustering capabilities can be developed.
The approach described has been implemented as a working prototype that allows searching
and browsing clusters through a web interface. The prototype has been evaluated in a user
survey and through informal testing.

The evaluation indicated that the resulting clusters are coherent and that clustering several
hundred documents is feasable. Unfortunately, the quality of the cluster labels was found to
be only “medium” by the test subjects. It is however believed that additional tuning of the
prototype and the implementation of some of the suggested improvements would result in
significantly better labels. Only four test subjects were used, and larger test should be set up
in order to better investigate cluster quality.

The use of additional knowledge bases for clustering has been discussed. It turns out that
data from ODP or search engine logs that might benefit traditional clustering approaches are
difficult to make use of with the suffix tree clustering used in the prototype.

Although commercial clustering engines exist, clustering is yet to be deployed on major
search engines like Google or in Fast ESP. This is presumably because of the computational
overhead and because it is so difficult to consistently get high-quality labels for clusters in the
noise world of the web. It is possible that clustering will never be used in large-scale web
search because it costs too much, but it might be feasable for enterprise search engines that
have fewer users.

51





Bibliography

[1] M. J. Amanda Spink, Dietmar Wolfram and T. Saracevic. Searching the web: The public
and their queries. Journal of the American Society for Information Science and Technology,
52(3):226–234, 2001.

[2] M. Araújo, G. Navarro, and N. Ziviani. Large text searching allowing errors. In Proc. of
WSP’97, pages 2–20. Carleton University Press, 1997.

[3] K. W. B. Fung and M. Ester. Large hierarchical document clustering using frequent item-
sets. In SDM03, 2003.

[4] R. A. Baeza-Yates and B. A. Ribeiro-Neto. Modern Information Retrieval. ACM Press /
Addison-Wesley, 1999.

[5] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine. In
Proceedings of the seventh international conference on World Wide Web, pages 107–117, 1998.

[6] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to Algorithms.
McGraw-Hill Higher Education, 2001.

[7] M. H. Craig Silverstein, Hannes Marais and M. Moricz. Analysis of a very large web
search engine query log. SIGIR Forum, 33(1):6–12, 1999.

[8] D. R. Cutting, J. O. Pedersen, D. Karger, and J. W. Tukey. Scatter/gather: A cluster-based
approach to browsing large document collections. In Proceedings of the Fifteenth Annual
International ACM SIGIR Conference on Research and Development in Information Retrieval,
pages 318–329, 1992.

[9] P. Ferragina and A. Gulli. A personalized search engine based on web-snippet hierar-
chical clustering. In WWW ’05: Special interest tracks and posters of the 14th international
conference on World Wide Web, pages 801–810, New York, NY, USA, 2005. ACM Press.

[10] J. Han and M. Kamber. Data Mining - Concepts and Techniques. Academic Press, 2001.

[11] H. S. Heaps. Information Retrieval: Computational and Theoretical Aspects. Academic Press,
Inc., Orlando, FL, USA, 1978.

[12] M. A. Hearst and J. O. Pedersen. Reexamining the cluster hypothesis: scatter/gather
on retrieval results. In SIGIR ’96: Proceedings of the 19th annual international ACM SIGIR
conference on Research and development in information retrieval, pages 76–84, 1996.

[13] D. A. Hull. Stemming algorithms - a case study for detailed evaluation. JASIS, 47(1):70–
84, 1996.

53



54 BIBLIOGRAPHY

[14] D. Koller and M. Sahami. Hierarchically classifying documents using very few words.
In D. H. Fisher, editor, Proceedings of ICML-97, 14th International Conference on Machine
Learning, pages 170–178, Nashville, US, 1997. Morgan Kaufmann Publishers, San Fran-
cisco, US.

[15] W. Kraaij and R. Pohlmann. Viewing stemming as recall enhancement. In Proc. of SIGIR
’96, pages 40–48, 1996.

[16] O. M. Oren Zamir, Oren Etzioni and R. Karp. Fast and intuitive clustering of web doc-
uments. In Proceedings of the 3rd International Conference on Knowledge Discovery and Data
Mining, pages 287–290, 1997.

[17] S. Osinski and D. Weiss. Conceptual clustering using lingo algorithm: Evaluation on
open directory project data. In IIPWM04, 2004.

[18] M. F. Porter. An algorithm for suffix stripping. In Readings in information retrieval, pages
313–316, 1997.

[19] G. Salton and C. Buckley. Term-weighting approaches in automatic text retrieval. Inf.
Process. Manage., 24(5):513–523, 1988.

[20] E. Ukkonen. Constructing suffix trees on-line in linear time. In Proceedings of the IFIP 12th
World Computer Congress on Algorithms, Software, Architecture - Information Processing ’92,
Volume 1, pages 484–492. North-Holland, 1992.

[21] C. J. Van Rijsbergen. Information Retrieval, 2nd edition. Dept. of Computer Science, Uni-
versity of Glasgow, 1979.

[22] Webpage. Clusty.com. http://clusty.com/. Accessed March 2006.

[23] Webpage. Demonstration of clustering from google.
http://www.searchenginelowdown.com. Accessed June 2006.

[24] Webpage. Google apis. http://www.google.com/apis/. Accessed April 2006.

[25] Webpage. Google directory. http://directory.google.com/. Accessed March
2006.

[26] Webpage. List of stopwords. http://www.idi.ntnu.no/emner/tdt4215/resources/.
Accessed January 2006.

[27] Webpage. Microsoft tests search clustering. http://www.betanews.com. Accessed
June 2006.

[28] Webpage. Odp/dmoz homepage. http://dmoz.org/. Accessed March 2006.

[29] Webpage. Porter stemmer in java. http://www.tartarus.org/~martin/PorterStemmer.
Accessed January 2006.

[30] Webpage. Spring. http://www.springframework.com/. Accessed February 2006.

[31] Webpage. Vivisimo. http://vivisimo.com/. Accessed March 2006.

[32] P. Weiner. Linear pattern matching algorithms. In Proceedings of the 14th IEEE Symposium
on Switching and Automata Theory, pages 1–11, 1973.



BIBLIOGRAPHY 55

[33] D. Weiss and J. Stefanowski. Web search results clustering in polish: Experimental eval-
uation of carrot. In IIS03, 2004.

[34] O. Zamir and O. Etzioni. Web document clustering: a feasibility demonstration. In
SIGIR ’98: Proceedings of the 21st annual international ACM SIGIR conference on Research and
development in information retrieval, pages 46–54, New York, NY, USA, 1998. ACM Press.

[35] O. Zamir and O. Etzioni. Grouper: a dynamic clustering interface to Web search results.
Computer Networks (Amsterdam, Netherlands: 1999), 31(11–16):1361–1374, 1999.





APPENDIXA
EVALUATION INSTRUCTIONS AND FORMS

A.1 Instructions

The following instructions (in Norwegian) were given to the test subjects along with the eval-
uation form:

Det er 5 queries (hver har et ark i excel-filen), og jeg viser
top 10 clustere for hvert query. For hvert cluster viser jeg
kandidatlabels og 5 titler fra dokumenter i clusteret.

Deres oppgave er å sette kryss ved det beste kandidatlabelet,
og gi en score for cluster coherence (hvorvidt clusteret det ser
ut til å dreie seg om ett emne) og label quality (hvorvidt det
valgte labelet er et godt navn på et cluster). Poengsummer gis
fra 0-2 der 0 er dårlig, 1 er medium og 2 er god.

A.2 Evaluation Form

Figure A.1 shows an example evaluation form for the query ‘paris’ as it was sent to the test
subjects.

A.3 Evaluation Clusters

Figure A.2 and A.3 show the clusters generated by the prototype that were used in the eval-
uation. For each cluster all candidates are listed with coverage, and the candidates chosen by
the prototype as cluster labels are in bold face.
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Query: "paris"

Candidate phrase Coverage Best label Coherence Label quality Example Document Titles

Cluster 1 (52 documents):
France 100 % X

Cluster 2 (50 documents):
Hotels Paris 40 %
Hotels 100 %
Paris Hotels 68 %

Cluster 3 (39 documents):
Travel 66 %
Travel Guide 23 %
Paris Travel 23 %
Paris Travel Guide 17 %
Guide 56 %
Restaurants 20 %

Cluster 4 (15 documents):
Tour 100 % X

Cluster 5 (14 documents):
City 100 % X

Cluster 6 (14 documents):
Rent 35 %
Paris Apartments 78 %
Rentals 85 %
Apartments 92 %
Apartment Rentals 50 %
Paris Apartment Rentals 50 %

Cluster 7 (13 documents):
Information 100 % X

Cluster 8 (12 documents):
Paris France 100 % X

Cluster 9 (11 documents):
Paris Hotel Reservation 36 %
Hotel Reservation 63 %
Reservation 100 %

Cluster 10 (11 documents):
Hilton 100 %
Paris Hilton 90 %

Visit Paris, France - Travel in Paris - Paris Hotels
Paris Hotels Guide - Cybevasion France Hotels
Hotel Paris - Paris Hotels Reservation - hotels-paris.com
Architecture of Paris, France - Great Buildings Online
Paris, France Forecast : Weather Underground

Paris hotels and Paris city guide with Paris hotel discounts
Paris hotel : hotel Paris reservation - Paris hotels discount
Visit Paris, France - Travel in Paris - Paris Hotels
Paris Hotels Guide - Cybevasion France Hotels
Visit Paris in May

Paris hotels and Paris city guide with Paris hotel discounts
Visit Paris, France - Travel in Paris - Paris Hotels
Paris Hotels Guide - Cybevasion France Hotels
Information on Paris: Paris Hotels, many monuments such as the Eiffel ...
Paris Travel Guide | Fodor's Online

Visit paris, visit france, tour eiffel, louvre, versailles, mont saint...
Fat Tire Bike Tours - Paris, Fat Tyre Bike Tours - Paris :: Enjoy a bi...
Paris Museum Pass, Paris Metro Pass, Paris tour and attractions, Cabar...
Paris hotels - France - paris apartments rentals and lodging in Paris,...
WebMuseum: Paris: Tours

Paris hotels and Paris city guide with Paris hotel discounts
Paris Hotels - Find Hotel Deals for Paris Hotels
Paris, France Forecast : Weather Underground
Paris Digest, the Paris city guide and online portal
Paris hotels, discount, budget and luxury accommodation. City hotels...

Paris Net - Apartments for rent in Paris Vacation apartment rentals
PARIS APARTMENTS Paris Apartment HOTELS PARIS, accommodation rentals
Paris Apartments : Apartment & Flat Rentals in Paris
Paristay apartment rentals : authentic apartments for rent in Paris fr...
Paris Apartments in Paris Apartment Rentals RENTALS IN PARIS

Paris Information
Paris hotel : hotel Paris reservation - Paris hotels discount
Information on Paris: Paris Hotels, many monuments such as the Eiffel ...
Paris for Visitors - Travel and Tourist Information
Paris tourist information - VIRTOURIST.COM

Hotel Paris - Paris Hotels Reservation - hotels-paris.com
Hotels in paris - Hotel paris Left bank Latin Quarter st Germain. Char...
Home page, france, travel france, france paris, paris france, france ...
WebFrance International, Paris, France
Paris France WebFrance International

Paris hotel : hotel Paris reservation - Paris hotels discount
Hotel Paris - Paris Hotels Reservation - hotels-paris.com
Paris Hotel reservation service offers top quality charming Paris hote...
Hotels: Paris, France. Hotel Accommodation. WWW.OUR-PARIS.COM
Paris Hotels & Lodging - Discount Paris Hotel Reservations - Discount ...

Club Paris - Paris Hilton Downtown Orlando Florida Night...
Paris Hilton Pictures
AskMen.com - Paris Hilton
Paris Hilton Pictures, Biography, Filmography, News, Videos, Wallpaper...
Paris Hilton, Paris Hilton picture gallery, free wallpapers, photo gal...

Figure A.1: Evaluation Form
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hollywood paris jaguar

Candidate phrase Coverage Candidate phrase Coverage Candidate phrase Coverage

Cluster 1 (32 documents): Cluster 1 (52 documents): Cluster 1 (57 documents):
Los Angeles 65 % France 100 % Cars 100 %
Los 68 % Jaguar Cars 52 %
California 62 % Cluster 2 (50 documents):
Angeles 68 % Hotels Paris 40 % Cluster 2 (37 documents):

Hotels 100 % Cats 100 %
Cluster 2 (17 documents): Paris Hotels 68 %
Movies 100 % Cluster 3 (26 documents):

Cluster 3 (39 documents): Panthera Onca 88 %
Cluster 3 (15 documents): Travel 66 % Panthera 96 %
Hotels 100 % Travel Guide 23 % Onca 96 %
Hollywood Hotels 53 % Paris Travel 23 %

Paris Travel Guide 17 % Cluster 4 (22 documents):
Cluster 4 (14 documents): Guide 56 % Parts 68 %
Film 100 % Restaurants 20 % Jaguar Parts 45 %

Car Parts 9 %
Cluster 5 (11 documents): Cluster 4 (15 documents): View Cart 13 %
Store 63 % Tour 100 % View 27 %
Directory 63 % Jaguar Auto Parts 22 %

Cluster 5 (14 documents): Auto Parts 31 %
Cluster 6 (10 documents): City 100 % Oem Parts 9 %
City 70 % Cart 22 %
Florida 60 % Cluster 6 (14 documents): Jaguar Oem Parts 9 %

Rent 35 %
Cluster 7 (10 documents): Paris Apartments 78 % Cluster 5 (20 documents):
West Hollywood 100 % Rentals 85 % Reviews 100 %

Apartments 92 %
Cluster 8 (10 documents): Apartment Rentals 50 % Cluster 6 (19 documents):
Books 100 % Paris Apartment Rentals 50 % Jaguar North America Joins Happy Hollow Park 10 %

America 42 %
Cluster 9 (10 documents): Cluster 7 (13 documents): Central 21 %
Real Estate 70 % Information 100 % North America Joins Happy Hollow Park 10 %
Jobs 60 % America Joins Happy Hollow Park 10 %
Estate 70 % Cluster 8 (12 documents): Join 21 %

Paris France 100 % Central America 10 %
Cluster 10 (9 documents): Zoo 47 %
Entertainment 100 % Cluster 9 (11 documents): South America 21 %

Paris Hotel Reservation 36 % South 31 %
Hotel Reservation 63 %
Reservation 100 % Cluster 7 (19 documents):

Auto 100 %
Cluster 10 (11 documents):
Hilton 100 % Cluster 8 (18 documents):
Paris Hilton 90 % Service 44 %

Vehicles 61 %
Owners 50 %
Finances 50 %
Company 33 %

Cluster 9 (17 documents):
Type 100 %

Cluster 10 (16 documents):
Buy 100 %

Figure A.2: Evaluation Clusters



60 APPENDIX A. EVALUATION INSTRUCTIONS AND FORMS

red hot chili peppers apple

Candidate phrase Coverage Candidate phrase Coverage Candidate phrase Coverage

Cluster 1 (54 documents): Cluster 1 (44 documents): Cluster 9 (10 documents):
Music 100 % Items Ebay 15 % Support 100 %

Apple Macintosh Computers Items Ebay 4 %
Cluster 2 (48 documents): Macintosh Computers 13 % Cluster 10 (9 documents):
Artists 79 % Low Prices 13 % Software 100 %
Albums 56 % Map 38 %

Items Low Prices 13 %
Cluster 3 (36 documents): Items 34 %
Hot Chili Peppers Tickets 61 % Macintosh Computers Items Ebay 4 %
Hot Chili Peppers Concert Tickets 22 % Pay 56 %
Red Hot Chili Peppers Concert Tickets 22 % Macintosh 34 %
Concert Tickets 30 %
Chili Peppers Tickets 63 % Cluster 2 (41 documents):
Peppers Tickets 63 % Developers 21 %
Red Hot Chili Peppers Tickets 61 % Faq 19 %
Tickets 91 % Pay Developers 9 %
Chili Peppers Concert Tickets 22 % Linux 17 %
Peppers Concert Tickets 22 % Zdnet 21 %

Blogs 17 %
Cluster 4 (18 documents): Hardware 17 %
Lyrics 100 % Stories 17 %
Chili Peppers Lyrics 61 % Books 19 %
Red Hot Chili Peppers Lyrics 61 % White Papers 12 %
Peppers Lyrics 61 %
Hot Chili Peppers Lyrics 61 % Cluster 3 (28 documents):

Consumer Electronics 7 %
Cluster 5 (18 documents): Electronics 14 %
Songs 100 % Player Accessories 14 %

Ipod 92 %
Cluster 6 (18 documents): Apple Ipod 46 %
Videos 100 % Accessories Items 7 %

Accessories 32 %
Cluster 7 (16 documents): Players 28 %
Review 100 %

Cluster 4 (24 documents):
Cluster 8 (16 documents): Computer 100 %
Dvds 68 % Apple Computer 62 %
Book 62 %

Cluster 5 (19 documents):
Cluster 9 (15 documents): Reviews 100 %
Stadium Arcadium 86 %
Arcadium 86 % Cluster 6 (18 documents):
Stadium 100 % Apple Store Online 16 %

Store Online 16 %
Cluster 10 (12 documents): Online 33 %
Downloads 100 % Apple Store 38 %

Visit 33 %
Store 83 %

Cluster 7 (18 documents):
Mac 100 %

Cluster 8 (17 documents):
Read 23 %
Cars 23 %
Airport Express 11 %
Compare Prices Ciao 11 %
Read Reviews 11 %
Airport 29 %
Desktops 23 %
Apple Airport 23 %
Online Stores 11 %
Compare Prices 23 %

Figure A.3: Evaluation Clusters



APPENDIXB
TEST RESULTS

This chapter lists the results of the user survey for all five queries. The three first columns
show the points given by each of the four test subjects (labelled S1-S4) for precision, coherence
and label quality for each of the ten clusters per query. The last column shows the average
values (averaged over all test subjects).

hollywood

Precision Coherence Label quality Cluster Precision Coherence Quality
S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4

1 1 1 1 2 1 2 2 1 1 2 2 1 1 1,75 1,5
1 1 1 1 2 2 2 2 2 0 2 2 2 1 2 1,5
1 0,5 1 0,5 2 1 2 2 2 1 2 2 3 0,75 1,75 1,75
1 1 1 1 2 2 2 2 2 1 2 2 4 1 2 1,75
1 1 1 0 1 0 1 1 0 0 1 1 5 0,75 0,75 0,5
0 0 0 1 0 1 0 1 0 1 1 0 6 0,25 0,5 0,5
1 1 1 1 2 2 2 2 0 1 1 2 7 1 2 1
1 1 1 1 2 2 2 1 1 0 2 1 8 1 1,75 1
1 1 1 1 1 1 1 1 1 1 2 1 9 1 1 1,25
1 1 1 1 2 2 2 2 2 0 2 2 10 1 2 1,5

All 0,875 1,55 1,225

paris

Precision Coherence Label quality Cluster Treffrate Coherence Quality
S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4

1 1 1 1 2 2 2 2 0 0 2 2 1 1 2 1
1 0,5 1 0,5 2 2 2 2 2 2 2 2 2 0,75 2 2
1 0,5 1 0,5 1 1 2 2 1 1 2 2 3 0,75 1,5 1,5
1 1 1 1 2 2 2 2 0 0 2 2 4 1 2 1
1 1 1 1 2 2 2 2 0 0 1 2 5 1 2 0,75
0 0,5 0 0,5 2 1 2 2 2 1 2 2 6 0,25 1,75 1,75
1 1 1 1 2 2 2 1 1 0 1 1 7 1 1,75 0,75
1 1 1 1 2 2 2 2 0 0 1 2 8 1 2 0,75
1 0,5 1 0,5 2 1 2 2 2 1 2 2 9 0,75 1,75 1,75
1 1 1 1 2 2 2 1 2 2 2 2 10 1 1,75 2

All 0,85 1,85 1,325

Figure B.1: Evaluation Results
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jaguar

Precision Coherence Label quality Cluster Treffrate Coherence Quality
S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4

1 0,5 1 0,5 2 1 2 2 2 1 2 2 1 0,75 1,75 1,75
1 1 1 1 2 2 2 2 2 0 2 2 2 1 2 1,5
1 0 0 1 2 0 2 1 2 0 2 1 3 0,5 1,25 1,25
1 0 1 0,5 2 1 1 2 1 2 2 2 4 0,625 1,5 1,75
1 1 0 1 2 2 2 2 1 1 2 1 5 0,75 2 1,25
0 0 0 0 0 0 0 0 2 0 1 0 6 0 0 0,75
1 1 1 1 2 2 2 2 2 0 2 2 7 1 2 1,5
1 1 1 1 0 0 1 2 1 0 1 1 8 1 0,75 0,75
1 1 1 1 2 2 2 1 0 0 1 0 9 1 1,75 0,25
1 1 1 1 2 2 2 1 0 0 1 1 10 1 1,75 0,5

All 0,7625 1,475 1,125

apple

Precision Coherence Label quality Cluster Treffrate Coherence Quality
S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4

0 0 0 0 1 0 1 2 1 1 1 2 1 0 1 1,25
0 0 0 0 0 0 0 0 1 0 1 1 2 0 0 0,75
1 0,5 0 1 1 1 0 2 2 1 1 2 3 0,625 1 1,5
1 0,5 1 0,5 2 1 2 2 2 1 2 2 4 0,75 1,75 1,75
1 1 1 1 2 2 2 2 1 0 2 1 5 1 2 1

0,5 0 1 0 1 1 2 2 1 1 1 2 6 0,375 1,5 1,25
1 1 1 1 2 2 2 2 1 2 2 2 7 1 2 1,75
0 0 0 0 0 0 0 1 2 1 1 1 8 0 0,25 1,25
1 1 1 1 2 2 2 1 1 1 2 1 9 1 1,75 1,25
1 1 1 1 2 2 2 1 2 0 2 1 10 1 1,75 1,25

All 0,575 1,3 1,3

red hot chili peppers

Precision Coherence Label quality Cluster Treffrate Coherence Quality
S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4

1 1 1 1 2 2 2 2 2 1 2 2 1 1 2 1,75
1 1 0 1 0 1 1 2 1 0 2 2 2 0,75 1 1,25
0 0 1 0,5 2 2 2 2 2 2 2 2 3 0,375 2 2
1 0,5 1 0,5 2 1 2 2 2 2 2 2 4 0,75 1,75 2
1 1 1 1 2 2 2 2 2 0 2 2 5 1 2 1,5
1 1 1 1 2 2 2 2 2 0 2 2 6 1 2 1,5
1 1 1 1 2 2 2 2 1 0 2 2 7 1 2 1,25
1 1 0 1 0 1 1 2 1 0 1 2 8 0,75 1 1
1 1 1 1 2 1 1 2 1 1 2 1 9 1 1,5 1,25
1 1 1 1 2 2 2 1 2 0 2 2 10 1 1,75 1,5

All 0,8625 1,7 1,5

Figure B.2: Evaluation Results



APPENDIXC
STOPWORDS

The prototype uses a standard list of stopwords, and an additional list of web specific stop
words. The following words are the web spescific stopwords:

home
search
login
user
sign
amp
page
site
find
contact

free
top
mail
version
web
log
password
username
register
navigation

The following are the stopwords used in the prototype, acquired from [26].

a
a’s
able
about
above
according
accordingly
across
actually
after
afterwards
again
against
ain’t
all
allow
allows
almost
alone
along
already
also
although

always
am
among
amongst
an
and
another
any
anybody
anyhow
anyone
anything
anyway
anyways
anywhere
apart
appear
appreciate
appropriate
are
aren’t
around
as

aside
ask
asking
associated
at
available
away
awfully
b
be
became
because
become
becomes
becoming
been
before
beforehand
behind
being
believe
below
beside

besides
best
better
between
beyond
both
brief
but
by
c
c’mon
c’s
came
can
can’t
cannot
cant
cause
causes
certain
certainly
changes
clearly

63



64 APPENDIX C. STOPWORDS

co
com
come
comes
concerning
consequently
consider
considering
contain
containing
contains
corresponding
could
couldn’t
course
currently
d
definitely
described
despite
did
didn’t
different
do
does
doesn’t
doing
don’t
done
down
downwards
during
e
each
edu
eg
eight
either
else
elsewhere
enough
entirely
especially
et
etc
even
ever
every
everybody

everyone
everything
everywhere
ex
exactly
example
except
f
far
few
fifth
first
five
followed
following
follows
for
former
formerly
forth
four
from
further
furthermore
g
get
gets
getting
given
gives
go
goes
going
gone
got
gotten
greetings
h
had
hadn’t
happens
hardly
has
hasn’t
have
haven’t
having
he
he’s

hello
help
hence
her
here
here’s
hereafter
hereby
herein
hereupon
hers
herself
hi
him
himself
his
hither
hopefully
how
howbeit
however
i
i’d
i’ll
i’m
i’ve
ie
if
ignored
immediate
in
inasmuch
inc
indeed
indicate
indicated
indicates
inner
insofar
instead
into
inward
is
isn’t
it
it’d
it’ll
it’s
its

itself
j
just
k
keep
keeps
kept
know
knows
known
l
last
lately
later
latter
latterly
least
less
lest
let
let’s
like
liked
likely
little
look
looking
looks
ltd
m
mainly
many
may
maybe
me
mean
meanwhile
merely
might
more
moreover
most
mostly
much
must
my
myself
n
name
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namely
nd
near
nearly
necessary
need
needs
neither
never
nevertheless
new
next
nine
no
nobody
non
none
noone
nor
normally
not
nothing
novel
now
nowhere
o
obviously
of
off
often
oh
ok
okay
old
on
once
one
ones
only
onto
or
other
others
otherwise
ought
our
ours
ourselves
out

outside
over
overall
own
p
particular
particularly
per
perhaps
placed
please
plus
possible
presumably
probably
provides
q
que
quite
qv
r
rather
rd
re
really
reasonably
regarding
regardless
regards
relatively
respectively
right
s
said
same
saw
say
saying
says
second
secondly
see
seeing
seem
seemed
seeming
seems
seen
self

selves
sensible
sent
serious
seriously
seven
several
shall
she
should
shouldn’t
since
six
so
some
somebody
somehow
someone
something
sometime
sometimes
somewhat
somewhere
soon
sorry
specified
specify
specifying
still
sub
such
sup
sure
t
t’s
take
taken
tell
tends
th
than
thank
thanks
thanx
that
that’s
thats
the
their

theirs
them
themselves
then
thence
there
there’s
thereafter
thereby
therefore
therein
theres
thereupon
these
they
they’d
they’ll
they’re
they’ve
think
third
this
thorough
thoroughly
those
though
three
through
throughout
thru
thus
to
together
too
took
toward
towards
tried
tries
truly
try
trying
twice
two
u
un
under
unfortunately
unless
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unlikely
until
unto
up
upon
us
use
used
useful
uses
using
usually
uucp
v
value
various
very
via
viz
vs
w
want

wants
was
wasn’t
way
we
we’d
we’ll
we’re
we’ve
welcome
well
went
were
weren’t
what
what’s
whatever
when
whence
whenever
where
where’s

whereafter
whereas
whereby
wherein
whereupon
wherever
whether
which
while
whither
who
who’s
whoever
whole
whom
whose
why
will
willing
wish
with
within

without
won’t
wonder
would
would
wouldn’t
x
y
yes
yet
you
you’d
you’ll
you’re
you’ve
your
yours
yourself
yourselves
z
zero


