
June 2006
Pinar Öztürk, IDI

Master of Science in Computer Science
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Benchmarking Catastrophic Forgetting
in Neural Networks

Ole-Marius Moe-Helgesen





Problem Description
Catastrophic Forgetting, a common problem when neural networks are provided with information
sequentially, is a subject for an increasing amount of research.  There is currently no uniform way
to measure and test artificial neural networks for catastrophic forgetting.  Is it possible to compile
a set of rules and guidelines for measuring and testing neural networks for catastrophic
forgetting?

If so, how well does existing proposals to solving Catastrophic Forgetting work?  Are the solutions
applicable on real-world data as well as the randomized data structures used in experiments?

Assignment given: 20. January 2006
Supervisor: Pinar Öztürk, IDI





Abstract

Catastrophic Forgetting is a behavior seen in artificial neural networks (ANNs)
when new information overwrites old in such a way that the old information
is no longer usable. Since this happens very rapidly in ANNs, it leads to
both major practical problems and problems using the artificial networks as
models for the human brain.

In this thesis I will approach the problem from the practical viewpoint and
attempt to provide rules, guidelines, datasets and analysis methods that can
aid researchers better analyze new ANN models in terms of catastrophic
forgetting and thus lead to better solutions.

I suggest two methods of analysis that measure the overlap between input
patterns in the input space. I will show strong indications that these mea-
surements can predict if a back-propagation network will retain information
better or worse.

I will also provide source code implemented in Matlab for analyzing datasets,
both with the new suggested measurements and other existing ones, and for
running experiments measuring the catastrophic forgetting.
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1 INTRODUCTION

1 Introduction

Last fall I worked on reviewing the problem of catastrophic forgetting and
solutions provided to solve it. In the project written by myself and Håvard
Stranden[1] we also reproduced two important experiments from the litera-
ture and reported the results. The work in this thesis is a continuation of
the work done then.

In this chapter I will introduce the problem of catastrophic forgetting, provide
motivation for solving the problem, present a brief review of some proposed
solutions, and present the motivation for why a benchmark for catastrophic
forgetting is needed.

I will also provide some information on artificial neural networks themselves.
While this information might be well known to the reader, it also serves
to establish the terminology regarding neural networks used in this thesis.
For a more detailed introduction to both catastrophic forgetting and neural
networks in general, I refer the reader to the above mentioned report by
myself and Stranden.

Before diving into the details though, I want to provide some motivation for
why this thesis has been written and why it has been written the way it has.

1.1 Motivation

The work I had done preceding this thesis together with Håvard Stranden [1]
revealed that scientific reports and papers regarding catastrophic forgetting
were lacking both in terms of the necessary details for reproducing the exper-
iments and in terms of how general the results were. What we experienced
when testing our implementation of architectures described in scientific pa-
pers was that we had to make several assumptions regarding parameters,
network topology, training rules and so on. If all these details had been ac-
curately reported, the experiments could have been reproduced and studied
further much faster than what was the case. We also saw that the data used
for testing these networks were questionable at best. They were artificial and
randomly generated and with very few attributes (such as how they were dis-
tributed in the input space, how many classes there were, etc) deliberately
chosen by the researchers.

With that in mind, I set out with several goals for this thesis

1



1 INTRODUCTION

1. Can a set of rules and guidelines be set up for testing catastrophic for-
getting such that other researchers can reproduce experiments without
having to make assumptions on how the original experiment was done.

2. Does a set of real-world datasets to be used for catastrophic forgetting
tests exist?

3. Can datasets be analyzed before training commences to see if they
are liable to be easily forgotten? Will some datasets suffer more from
catastrophic forgetting than others?

4. How well does the architectures we studied last fall perform on such
real-world datasets?

I discovered quickly that the same issues with reporting we had seen in the
papers on catastrophic forgetting papers, others had seen concerning the
ANN and AI communities in general, and much work on providing rules and
guidelines had already been done. I looked at several of these in order to
compile some common guidelines for catastrophic forgetting in particular.

1.2 Reader’s Guide

In chapter 2 I will present my studies into current approaches to benchmark
neural networks. The goal of that chapter was to provide information usable
to answer question one above. In chapter 3 I will work on answering the
third question. I approach that issue by looking at a taxonomy of features
devised for datasets in general, and proceed by formulating two more features
specifically developed with catastrophic forgetting in mind.

In chapter 4, I discuss how best to measure forgetting in neural networks.
This is essential both to aid researcher and thus answer the first problem
posed and to facilitate the experiments performed later in this thesis.

In chapter 5 I provide a summary of the earlier chapters and discuss some of
the issues and suggestions provided by the papers and reports studied. This
chapter will provide my answer for how best to solve question one above.

In chapter 6 I describe the implementational work done for this thesis. All of
this work is done in Matlab with the exception of some shell scrips for Unix
used to generate and divide the datasets. Chapter 7 describes the experi-
ments done in the Matlab setting. It also provides the results and discusses
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1 INTRODUCTION

these. These experiments will both attempt to study the measurements sug-
gested earlier, test the existing architectures as described in question four
above, and test other dataset attributes for connections with catastrophic
forgetting.

In the final chapter, chapter 8 I provide my conclusions for the thesis and
look at future work based on what I have done.

1.3 Artificial Neural Networks

Neural Networks are at the core of this thesis, as it is the loss of information
in such networks that is being studied. These networks are inspired by the
neural connections in the brain of humans and other animals. It is in the
connections between the neurons that memories are stored, and similarly is
it in the weights on arcs connecting nodes that ANNs store data.

Figure 1: A conceptual view of an artificial neural network showing a three-layered
network with input and output patterns, weights and nodes.

Any piece of information stored in an ANN is distributed across many or
all the weights in the network. An output from the network is produced
by combining the output of nodes with the weights on the arcs. The node
outputs is again produced by taking the weighed sum of all outputs leading

3



1 INTRODUCTION

to that node and passing that sum through an activation function. More
specifically, the network is divided into several layers. When producing an
output to a given stimuli, an input pattern is used and provided as inputs
to the first layer (or input layer). These inputs are then multiplied by the
weights attached to the arcs connecting the input layer to the next layer to
produce, at each node, a net input or weighted input. This net input is the
passed through an activation function, often the sigmoidal function 1

1+e−1 , to
produce the output at each node. This process is then repeated for each of
the layers in the network until an output is produced at the final layer.

This output is then compared to the target output or output pattern associ-
ated with the current input pattern. The combined input and output pattern
is called a training or test instance, or an exemplar. The difference between
the target output and the actual output is calculated, and the weights are
then updated in some fashion so they will reduce this error. Different algo-
rithms can be used for this purpose, with back-propagation being the most
common.

Figure 1 shows a conceptual view of an ANN with some of the most important
terms labeled.

1.4 Catastrophic Forgetting

Catastrophic forgetting is the inability of ANNs to keep old information while
at the same time learning new. It was discovered at the end of the 1980’s
by two separate research groups: McCloskey and Cohen[2] and Ratcliff[3].
It’s been studied extensively in the 15 years passed since then, and several
solutions has been suggested. Although it was discovered in the late 80’s for
neural networks, catastrophic forgetting is in fact a special case of the general
dilemma termed the stability-plasticity dilemma in 1980[4] by Grossberg. The
dilemma is that the adaptive mechanisms of an organism needs to be plastic
enough to adapt to new changes, but at the same time stable enough to retain
its old information. Make it too stable and it can’t learn new information,
but make it too plastic and it learns everything new while forgetting the old.
Catastrophic forgetting is a manifestation of this "too plastic" behavior.

Catastrophic forgetting is an interesting problem seen from two important
research perspectives: (1)Memory models that exhibit catastrophic forgetting
are not plausible models of a human brain and (2) computer systems that
forget old information when learning new is not suitable for a large range of
problem domains. In this thesis the problem is approached from the second
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1 INTRODUCTION

viewpoint and thus only evaluated in terms of performance.

1.5 Approaches to solving catastrophic forgetting

There has been many papers published on research into catastrophic forget-
ting the last 15 years. In the project written by Håvard Stranden and myself
the fall of 2005 [1] several of these were studied. We selected two for addi-
tional studies: The Pseudorehearsal solution developed by Anthony Robins
and the Activation Sharpening algorithm by Robert M. French.

The Pseudorehearsal solution is based on the idea that old information should
be learned alongside the new to make sure that the old is still retained. But to
avoid having to explicitly store old patterns, one creates pseudo patterns for
this purpose. These pseudo patterns are created by applying random inputs
to the network and measuring the output that is produced. The analogy
used is that if what one is training the network to do is to approximate a
function, and the training patterns are the points on this function graph one
wants to learn, the pseudo patterns are random samples along the curve.

The Activation Sharpening algorithm was developed after French studied the
internal overlap of storage in neural networks. He hypothesized that if one
could reduce the internal overlap, there wouldn’t be as much data overwrite
when learning new patterns. This was done by “sharpening” the nodes such
that nodes with high activation got even higher activation and nodes with
lower activation got even lower.

There have been other approaches to solving catastrophic forgetting as well,
and several of these include dual-network architectures where one network
serves as short-term memory and the other as long-term. These models
are also more biologically plausible than for instance the pseudo rehearsal
solution as evidence is found. It is however the two solutions we worked with
last fall I have chosen to continue working with in this thesis.

1.6 Benchmarking

Neural Networks are highly complex data structures and so is the data that
we use these data structures to analyze and work with. In fact they are so
complex that we are at this point not near being able to perform complete
formal studies on them. Due to this it is necessary to use empirical testing
and experiments to perform research, improve on the existing models and to
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discover new and better models. The challenge is to perform these experi-
ments properly and in such a way that the conclusions that are drawn are
in fact correct. From the middle of the 1990’s, several researchers started
acknowledging that the neural network community was lacking in this area.
Several papers and some software packages were published discussing and
providing solutions to this. In this thesis I will build on these works, from
both the neural network and machine learning communities, and include
benchmarking of catastrophic forgetting as well. As discussed above, catas-
trophic forgetting a serious problem when dealing with neural networks and
proper testing is necessary if one is to be able to reduce or remove it as a
general problem.

6



2 EXISTING BENCHMARK PACKAGES

2 Existing Benchmark Packages

In this chapter I will look existing ways to benchmark neural network. This
includes both methods for evaluating networks and datasets used during
such evaluations. The methods form the basis for my suggestion for how to
benchmark for catastrophic forgetting as formulated in question one in the
motivation. I will describe the contents of the studied packages and discuss
some of the arguments made by their authors.

I will however start with some information on the UCI repository as this is
used by all of the packages studied in this chapter.

2.1 UCI Repository

The University of California, Irvine Machine Learning Repository is “a col-
lection of problem databases, domain theories and data generators that can
be used by machine learning researchers”[5]. With a few exceptions, all of
the data in the repository is freely available to use as long as proper credit
is given. The repository is available on the Internet from open HTTP and
FTP servers1

The UCI repository is the de facto standard place to find datasets to use
when testing a new machine learning algorithm or method in today’s research
community, and the datasets are as such widely used. All the packages
discussed in this chapter uses the UCI repository.

The information provided on each dataset from the UCI website is limited.
For each dataset the website provides information about the origin of the
dataset, published works using the dataset, size of the dataset and input
and output vectors, how the instances are distributed across the classes, and
domain information regarding what the individual attributes in each data
instance is to be interpreted as.

At the time of writing this thesis, 103 public documented datasets and four
undocumented ones were available from the UCI website.

1Available from http://www.ics.uci.edu/ mlearn/MLRepository.html
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2.2 Proben1

Proben1 is a package containing a technical report [6] with guidelines for
benchmarking neural networks as well as a set of problems to use for these
benchmarks. The technical report “PROBEN1 - A Set of Neural Network
Benchmark Problems and Benchmarking Rules” that accompany the package
is written by Lutz Prechelt from the university of Karlsruhe, Germany. The
Proben1 package is available online from a public FTP server2

The Proben1 developers has done some analysis of the datasets provided
with the package. They identified a number of different features in datasets
that could be of interest, 16 in total, but have not made any attempt to
completely classify the datasets according to those features. These features
are mostly the same features as those introduced by Zijian Zheng[7], and
they will be introduced and discussed thoroughly in section 3.1.

In addition to these features, Proben1 contains some useful guidelines for
benchmarking. These rules cover both how one should conduct testing
and how one should report them. Prechelt argues that without complete
and explicit reporting of all parameters that can influence the results, “the
experiments become irreproducible and the comparability of the results is
hampered”. These benchmarking rules are summed up in a 8-point list of
information that should be included in every report about neural network
experiments. The list, with some additional comments, is reproduced below.

1. Problem: Name, address, version/variant, etc. All the information
necessary to uniquely identify the problem so other researchers can
experiment with the exact same data.

2. Datasets: Training set, validation set, test set. How the dataset is
split into smaller subsets for various phases must be specified. Are
the instances randomly selected for the various sets or is some other
algorithm used to achieve specific characteristics in and between the
datasets?

3. Network: Nodes, connections, activation functions. The topology of
the network is important, so it follows that one must report in detail
how the network is constructed: how is the input and output fed and
read? Are all layers fully connected? Is the same activation function
used in all nodes? Which activation function(s) is(are) used?

2Proben1 is downloadble from ftp://ftp.ira.uka.de/pub/neuron/proben1.tar.gz
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4. Initialization: Initialization values and the ranges of the random val-
ues if some values are randomly initialized is important to report. There
can be great performance differences between a network with weights
randomly initialized in the range [-1,1] and the same network with
weights in the range [-10,10], so remember to report the range or dis-
tribution of random values as well.

5. Algorithm: Specific parameters and parameter adaption rules. Most
update and training algorithms have some parameters that can be
tuned, and as all ANN researchers have experienced changing these
will have great impact on how well the algorithm in question performs.
It is therefore vital that one reports all parameters used to initialize
an algorithm. Providing pseudo code as well will help to expose any
assumption that has been implicitly made.

6. Termination: Criteria for terminating, changing algorithm phases and
restarting. It’s important to be very specific about termination criteria
for when to stop training, accept a test example as correct, and when
to restart training due to the network not converging as wanted. Again
providing pseudo code or regular code will help readers see exactly how
this is done.

7. Error Function: Which error function or function, normalization
rules. Closely related to termination criteria is the error function used
to calculate how well the network performs. It is hard or impossible to
reproduce results if a different error function from the original is used,
so again be explicit and don’t make assumptions about your readers
having the same background as you.

8. Experiment Parameters: Number of runs, rules for excluding runs.
Sometimes runs needs to be excluded from the averaged results due
to the network not converging in the time alloted, it converging to a
local maxima not providing good enough performance on the training
or verification set, or for other reasons. Be sure that such possible
factors are reported as well as the number of runs used to produce the
reported results.

Finally Proben1 contains twelve benchmarking problems, and some analysis
of the associated datasets. Some basic attribute features (see section 3.1)
has been identified, some higher level analysis of instance and class features
has been done, and they have all been encoded in a uniform way so they can
easily be used for benchmarking.
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All the datasets provided with Proben1 are from the UCI repository and
are real-world problems. In the accompanying technical report, Prechelt
argues that artificial datasets are not needed. His arguments for this is that
for older problems that they are too easy to solve if the challenge of the
dataset is known (such as the often used XOR-problem that is not linearly
separable), and thus that solving these problems will not tell if a solution
is applicable on real-world problems. He also argues against more complex
artificial problems: No artificial problem can be certain to resemble any
real-world situation, so even if a network can achieve good performance on a
complex artificial dataset, it provides no guarantees on how it will perform in
any real-world situation. Using real-world problems on the other hand will
at least guarantee good performance in some situations.

An argument against using only real-world problems, and one that Prechelt
briefly mentions, is that using artificial problems one can choose specific
issues or features in a dataset to test a solution on. This can not guarantee
that a solution will work well on real-world problems, but it can show that a
solution will not work well, and at the same time give a strong indication as to
why it will not work well. This will require the researchers to provide datasets
that have been properly analyzed for features that can cause challenges for
an ANN solution.

2.3 DELVE

DELVE - Data for Evaluating Learning in Valid Experiments - is a package
consisting of three major parts to aid machine learning researchers. DELVE
is not currently under development though, and the last updates were done
in 2003. DELVE is still available from the project website3 hosted by the
University of Toronto.

The three parts of DELVE are:

1. A software environment for analyzing and manipulating datasets.

2. A package of datasets to use. The datasets are either regression or clas-
sification datasets. The datasets are divided into three categories: De-
velopment datasets to tune the learning algorithms, assessment datasets
to use for testing, and historical datasets used previously in the litera-
ture.

3http://www.cs.toronto.edu/ delve/
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3. A repository of existing learning methods that can be used to test
datasets or to compare new learning methods against.

The goal of DELVE is, according to the user manual[8],

[...]to help researchers and potential users to assess learning meth-
ods in a way that is relevant to real-world problems and that
allows for statistically-valid comparisons of different methods.

The last part of this goal statement is important as the DELVE manual also
provides a chapter on how to analyze and report results in such a way that
they are statistically valid.

The datasets of DELVE are available from the project website and is di-
vided into the above mentioned categories. Most of the datasets are from
the UCI repository and has been reformatted to fit the DELVE data format.
The only reported features of the datasets are simple features: number of
attributes and the number of cases in addition to previously conducted ex-
periments done using each dataset. In is unclear what further analysis the
DELVE developers performed before selecting each dataset for inclusion into
the DELVE package.

As mentioned, most of the datasets in DELVE are real-world data from the
UCI repository, but they will allow submissions of artificial datasets as well.
These artificial datasets are mostly datasets resembling real-world examples,
such as movement data from a robot arm. There is no artificial datasets
that pose specific a priori challenges to the learning methods. In the DELVE
manual they argue that such artificial datasets can be used to answer specific
questions though, for example what the effect is of adding extra noise or
irrelevant attributes is.

The software part of DELVE will has not been studied and will not be dis-
cussed in this thesis.

2.4 ELENA

ELENA, Enhanced Learning for Evolutive Neural Architecture4, is a research
project that was run as part of the ESPRIT5 programme. One of the goals of

4Online at the website http://www.elena-project.org
5European Strategic Program on Research in Information Technology, a research pro-

gram funded by the European Union
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the project was to produce a benchmarking solution to use for experiments.
The results from this part of the project is given in a technical report from
1995[9].

ELENA contains a database of benchmarking problems, and a research report
which covers data analysis, performance evaluation as well as a comparison
between both existing classifiers such as K-nearest-neighbor and Learning
Vector Quantizer, as well as new classifiers introduced during the ELENA
project, such as Piecewise Linear Separation. The ELENA database is di-
vided into two parts: a part with artificial datasets and a part with real world
problems.

Three artificial classification problems were generated for “rapid test pur-
poses”, and with the following requirements:

1. Varied dimension of the input vectors

2. Only two classes in each problem

3. High degree of intersection between the classes the vectors were to be
classified as

4. Highly non-linear boundaries between these classes

5. Already published results on these problems

The second of these requirements for the problem sets is perhaps the most
interesting: The ELENA researchers believe that two-class problems will
“yield answers to the most essential questions” They don’t provide an argu-
ment for this, but refer to a 1988 paper by Kohonen, Barna and Chrisley[10].
In this paper no proper argument is given for this statement either, as they
also “[...]believed it[two-class problems] yields answers to the most essential
questions”.

When benchmarking for catastrophic forgetting though, it is more desirable
with three or more classes in the benchmark problems. The reasoning for
this is explained in section 5.1.

The real-world problems used in ELENA were all selected from the UCI
research database. For the real-world problems, having more than two classes
were a desired property in at least one dataset to identify possible problems
the artificial two-class problems would not have.

12
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3 Dataset Analysis

In this chapter I will look at various ways to analyze the datasets used for
training neural networks. Such analysis help researchers identify features in
the data, which are essential when one is to select datasets for evaulating the
performance of neural networks.

In addition to presenting some some well know features, based on the work of
Zijian Zheng[7] and partly on that of Lutz Prechelt in his work on the Proben1
package[6], I will introduce two new measurements that can be particularly
useful when researchers are concerned with testing for catastrophic forgetting:
Input Overlap(IO) and Grouped Input Overlap(GIO).

Information is a highly ambiguous term, which got different meaning for dif-
ferent groups of people, and that is often used undefined. In the context of
data set analysis I use data to mean raw data, and information to mean data
that is shaped to a form where it got meaning for humans. These definitions
are in accordance with common usage in information science literature, such
as [11] and [12]. For the datasets that this project is concerned with, the
raw numbers and bits stored in the vectors and neural network weights are
typically data, while the properly formatted inputs and outputs from the net-
work, the analyzed dataset features, and the stored dataset are all considered
information.

This chapter will provide foundations for my answer to both the second and
third question from the introduction. The real-world datasets will be selected
based on the information provided here, and IO and GIO are meant to be
used as measurements to check how liable datasets are to be forgotten.

3.1 Zheng’s Benchmark

Zijian Zheng introduced in the paper “A benchmark for classifier learning”[7]
a taxonomy of 16 features that serve to describe datasets. These features are
split into three categories:

• Features that look at the attributes of the dataset. In the terminology
of this report, this means looking at the items of the input patterns.
For instance will the first of item of each input pattern be the same
attribute for different instances. Figure 2 shows the concept.

• Features that look at the instances of the dataset. This means exam-
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Figure 2: A two-instance dataset with 5 attributes.

ining the input and output vectors of the individual instances, but not
viewing the classification of the whole dataset.

• Features that examine the classes. These include the most advanced
and computationally expensive features.

All the 16 identified features are normalized into nominal values. Zheng does
this by introducing terms such as “low”, “high” and “medium” where these
refer to the first, fourth and second, and third quadrants of all the values for
that attribute respectively. The reason for doing this is to make it possible to
later select an adequate set of test cases from the UCI repository such that
all of these nominal values are covered. The problem with this approach
will of course present itself when one introduces a new problem set into the
benchmarking suite at a later stage. If this problem set causes features of
existing problems to be in a different quadrant, the one does no longer have
the wanted coverage and the selection of datasets might have to be repeated
again from start.

As mentioned above, the benchmark problems Zheng selected were all from
the UCI repository. He selected this using a coverage algorithm to have at
least two problems with each possible feature value, and the problems were
only selected from datasets recently used in published literature.

In the following sections, a quick introduction to the 16 features presented
by Zheng is given.
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3.1.1 Attribute Features

• Type of attributes
This relates to how the attributes, or elements in the data vectors,
are encoded. For instance boolean attributes, 1-of-C outputs6, integral
attributes or real-valued attributes. How one encodes the input to
and output from a neural network is of vital importance for how well
the network will perform. If for instance the output in a three-class
problem is encoded as an integer in the range [0-,2] one is likely to see
more mis-classifications than if one uses 1-of-3 encoding. Consider the
case where an instance between class C1 and class C2 is presented to
the network. One is likely to see the network trying to classify it as
both, leading to class C3(1+2) which is obviously wrong. With a 1-of-3
encoding, one would instead have it classified as either C1 or C2, or
perhaps both. In any case it is closer to the expected behavior than
C3. Even when it is not clear what the best way to encode a problem
is, performance can change significantly if it is changed, so explicitly
identifying the encoding it is of vital importance.

• Number of attributes
Related to the encoding of the inputs and outputs is the size of the
input and output layers in the network. The performance of a given
network architecture or training algorithm will depend on the topology
of the network. Changing the size of the layers interfacing with the
outside of the network will often have great impact on this topology,
and thus also be a deciding factor in the overall performance.

• Number of different nominal attribute values
If the attributes are encoded nominally, this will typically be quite low,
but if the attributes are of continuous or integral type, the number of
nominal values can be high.

• Number of irrelevant attributes
This is a boolean attribute: Are there one or more attributes that
are irrelevant to the correct classification of all examples? Usually
information about this is provided as part of the problem description
as it is impossible to accurately extract irrelevant attributes from a
random sample of instances and be certain one correctly generalizes
over the entire population.

61-of-C is a commonly used way to encode the output in a classification problem: Each
output is boolean valued and the target output is a “true” or 1 for the correct class and
“false”, -1 or 0 for all others
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3.1.2 Instance Features

• Presence of noise in attribute values
Boolean value: Does one or more attributes have noise in them or are
they all accurate?

• Presence of noise in class memberships
Boolean value: Are all instances classified accurately or does one or
more have noise?

• Frequency of missing attribute values
How often does instances have missing attributes?

• Data-set size
The number of different data items in the dataset is important as it
will help determine how different any two test runs on the dataset will
be. When testing the network, the dataset must be split into two or
more subsets. One must be used as training set and one as test set.
It is also not uncommon to use a third subset as validation set. This
will work as a test set during training, but not to test the performance
once the stopping criterion is reached.

• Dataset density
The dataset density is a measurement for the average “distance” be-
tween each input example in the dataset. It does not look at the actual
values of the examples however except to calculate the size of each di-
mension in the input space, so this measurement is a only an indication
about how “full” the input space in fact is.

It is calculated as

Density =
Number-of-examples∏n

i=1 Ni

(1)

where n is the number of attributes and Ni is the number of values the
attribute at position i can have. If an attribute is continuous Ni is the
number of different values it got in the dataset.

3.1.3 Class Features

• Number of classes
How many classes are there in total for the dataset?
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• Default accuracy
The default accuracy is obtained by calculating the relative frequency
of the most common class in the dataset. For instance if a dataset
contains 100 examples in classes C1, C2 and C3 with 60 examples being
in class C1, 30 in class C2 and 10 in class C3, the default accuracy is
60
100

100% = 60%.
This number tells us how well the most naïve classifier, one that will
classify every given example as the class that had the highest frequency,
will work. This default classifier is often used to benchmark new algo-
rithms against.

• Predictive accuracy
This is the highest previously achieved accuracy for the given dataset
and is a measurement for how hard a given dataset is to correctly
classify. Zheng retrieves this from the UCI repository which includes
information about how well published algorithms have performed on
every dataset.
The problem with using this feature is that it will give a bias toward
the more used datasets when looking for hard problems (and similarly
toward lesser used datasets when looking for easy problems). Problems
that have been studied extensively and tested with many algorithms
are more likely to have a best reported result that is relatively higher
to a theoretical maximum than problem sets that are not studied as
extensively. Due to this, I recommend against using this feature to
determine the difficulty of a problem as Zheng has done.
A better approach would be to apply a common set of known classi-
fiers on the datasets and select the best from these instead of the best
reported. The obvious problem with this is the resources necessary to
tune and test all the algorithms for each problem, something which is
out of scope for this thesis.

• Relative accuracy
The relative accuracy is a measurement of how well the default accuracy
is when one relates it to the best known accuracy of the problem and
is given as

Relative accuracy =
Predictive Accuracy − Default Accuracy

100% − Default Accuracy
· 100%

Since this depends on the predictive accuracy it is subject to the same
problems as described in the previous section, and I advise against
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using this as a measurement of the difficulty of the domain as Zheng
suggests.

• Entropy
Entropy, or more specifically information entropy or Shannon’s En-
tropy, is a common measure that is used to describe the purity of a
signal. It is used in telecommunications when dealing with noisy trans-
mission lines, and also in machine learning[13] where it is very useful
when analyzing data sets to see how much information is really stored.

If we have a set S of training instances for the neural network, and
each of these has an expected output of one of c possible values, the
entropy of S is given as

Entropy(S) =
c∑

i=1

−pi log2 pi (2)

pi here is the probability that a random sample from S is classified as
class i. Formula 2 gives the minimum number of bits required encode
the classification for each data item. For datasets used for benchmark-
ing neural networks, this is very useful as it shows how much infor-
mation that’s provided by each data item. For instance if all the data
items in the dataset are of the same class, Entropy(S) will be 0: No
bits, or no data at all, is required to be transmitted to tell a receiver
the class of a given data item.

• Average Information Score
The information score is a measurement introduced by Kononenko and
Bratko[14](not read) to take into account the distribution of the differ-
ent classes in a dataset.

The definition uses Iej
as the information score of a given classifier on

test example ej. This is defined as:

Iej
=

{
−log2P (Cej

) + log2P (Cej
) if P ′(Cej

) ≥ P (Cej
)

−(−log2P (1 − Cej
) + log2P (1 − Cej

)) if P ′(Cej
) < P (Cej

)

where P (Cej
) is the prior probability, or relative frequency, of class Cej

and P ′(Cej
) is the posterior probability of the same class as calculated

by a chosen classifier, for instance an ANN or a decision tree algorith.
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The average information score is then defined as

Iaverage =
1

n

n∑
j=1

Iej

Since an existing classifier must be used, this attribute is again subject
to the costs related to tuning and experimentation and inductive biases
in the classifier used, and results must interpreted with that in mind.

• Relative Information Score
The relative information score is calculated simply by seeing how much
the average information score is compared to the entropy of the test
set:

Irelative =
Iaverage

Entropytest

100%

3.2 Input Overlap Measurement

In this section I will introduce the Input Overlap Measurement. The purpose
of this measurement is to provide a tool for neural network researchers to
use when analyzing datasets for training and testing. As Frean and Robins
pointed out[15] and that was discussed in the 2005 project by myself and
Stranden[1], orthogonality of the input data and the level of catastrophic
forgetting to expect from a network has a clear relationship. If a level of
internal orthogonality can be determined for a dataset, analyzing the results
will be easier for researchers.

I will begin this section by reproducing some of the information on orthog-
onality that was written for the 2005 project mentioned above. Then I will
use this information to create two measurements with basis in the geometric
interpretation of the input vectors: The Input Overlap Measurement (this
section) and the Grouped Input Overlap Measurement (next section).

3.2.1 Orthogonality

In mathematics, orthogonal means perpendicular, or to be at right angles.
Two vectors are orthogonal to each others if their dot product is zero. The
definition of the dot product - or scalar product - of two vectors a and b is:

a · b =
n∑

i=1

aibi
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where ai is the ith element of a and bi the ith element of b. In euclidean
space it can be expressed as.

a · b = |a||b| cos θ (3)

In neural networks this is an important concept because orthogonality is a
measure of the representational overlap of the n-dimensional input vectors
in the n-dimensional euclidean input space. Two vectors that are orthogonal
to each others are represented in different parts of the input space. As an
example are the three input vectors (1,0,0), (0,1,0), and (0,0,1) all orthogonal
to each others. What we can say is that the more orthogonal the inputs are,
the more localized are each of the input patters. They are all represented in
different regions of the input space.

From the definition in equation 3 it is also clear that if we keep the length
of the two vectors constant and change the angle θ between them, the dot
product will have the form of a sine wave with zero when the vectors are
orthogonal to each other.

When measuring the orthogonality of two vectors, it is important to keep
all vectors normalized. Considering the three vectors (1,0), (2,0) and (3,0)
in the 2-dimensional space, it is clear that they are all represented in one
dimension only. Since we are only concerned with the orthogonality and not
the distance between the vectors, the level of orthogonality between any two
of these three vectors should be the same. The way to achieve this is to
normalize the vectors (reduce the length of the vector to one while keeping
the same direction) before calculation the orthogonality.

Since the length of both vectors are one, 3 is reduced to a simple cosine
calculation. This is also the measurement that will be used to measure the
orthogonality between two vectors a and b:

Orthab = cos θ (4)

3.2.2 Input Overlap

Before defining the input overlap, the total orthogonality of an input set
must be defined as well. In equation 5 below this is shown as the summed
orthogonality between all elements in the set of vectors in.

TotOrthin =
n−1∑
i=1

n∑
j=i+1

(Orthin[i]in[j]) (5)
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Using this, we can now define, in equation 6, the input overlap of a set of
input vectors to be the averaged orthogonality measurement per input vector:

InOverlapin =
TotOrthin

n
(6)

Some interesting results from this formula are:

• InOverlap will be in the range [0, 1
2
(n − 1)].

Proof: The lowest possible orthogonality for any two vectors is 0, so
it follows that the lowest possible sum of orthogonalities is 0 as well.
The number of terms in the sum in equation 5 is given by

(n − 1) + (n − 2) + (n − 3)...1

=
n−1∑
i=1

i

=
1

2
((n − 1)2 + (n − 1))

=
1

2
(n2 − n)

Each of these terms got a maximum value of 1, so the highest total
value for TotOrth is 1

2
(n2 − n) as well. It then follows that the highest

value that InOverlap can have is

Max(InOverlap) =
1
2
(n2 − n)

n

=
1

2
(n − 1)

• An overlap of 0 is only possible if the size of the input set is lower than
or equal to the number of dimensions of the input vectors.
Proof: When the overlap is 0, we got:

InOverlapin = 0
TotOrthin

n
= 0

TotOrthin = 0

For TortOrthin to be 0 all of the vectors in in must be mutually orthog-
onal. In any space Rn, at most n vectors can be mutually orthogonal.
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From this follows that the input set can be at most the same size as
the number of dimensions the vectors are represented in if the overlap
is to be 0.

• An overlap of 1
2
(n − 1) is only possible if for any two vectors v1 and

v2 in in, a scalar c exists such that v1 = cv2. The geometrical inter-
pretation of this is that a straight line can be drawn through all the
points expressed by the vectors. For neural networks it means that all
the data is stored in one dimension only (even if that dimension is a
linear combination of other dimensions). This is the highest possible
overlap of data.

• If InOverlapin is calculated to be I and a new input vector, new is
added to in, InOverlap{in,new} will have the same scalar relationship
to I as

∑n
i=1 Orthin[i]new has to I. In other words: if the summed

orthogonality between a new vector to all existing vectors is higher
than the existing overlap, the overlap will increase, if it is lower the
overlap will decrease and if it is the same, the overlap will stay the
same as well.

3.2.3 Relative Information Overlap

When comparing the overlap in different datasets, a possible useful measure-
ment is the relative overlap. This is calculated by simply dividing the overlap
by its theoretical max:

RelInOverlapin =
InOverlapin

max(InOverlapin)

= 2
InOverlapin

n − 1

3.2.4 Usefulness of the Input Overlap Method

An obvious limitation of the IO method is that it does not account for clus-
tering of data in the training set. It is only concerned with how many data
vectors one tries to store and how high the overlap is between these vectors.
When the goal is generalization, as it often is, this overlap can be be desirable
to classify new exemplars that are close in Euclidean space as the same class.
The goal of the method though is that it can give an indication of how well
the input data is distributed in the input space.
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3.3 Grouped Input Overlap

A major flaw in the input overlap measurement introduced in the last section
is that it does not account for which patterns that have already been learned
and which are being learned afterward. To attempt to create a method that
takes this into account, i suggest another measurement, termed Grouped
Input Overlap(GIO). Instead of measuring the overlap between all input
vectors, the GIO method only measures the overlap between vectors that are
not in the same training group. For example if a network is supposed to train
vectors belonging to class C1 and C2 first, and those belonging to class C3

afterward, GIO would group all C1 and C2 vectors together in one set and
all C3 vectors in another, and measure the overlap between these two sets.

More formally, we divide the input set in into two disjoint sets A and B such
that A

⋃
B = in. Then the total grouped orthogonality is given as:

TotGrOrthA,B =
n∑

i=1

m∑
j=1

(OrthA[i]B[j]) (7)

where n is the number of vectors in set A and m is the number of vectors in
set B.

The GIO is then defined as:

GrInOverlapA,B =
TotGrOrthA,B

n + m
(8)

where again n is the number of vectors in set A and m is the number of
vectors in set B.

This time the range of the measurement is give as [0, n·m
n+m

].

Proof: For minimum value, the proof is the same as in the previous section.
The maximum value of each of the terms in equation 7 is again 1. The number
of terms is obviously n · m, so it follows that max(TotGrOrth) = n · m and
that:

Max(GrInOverlapA,B) =
n ·m
n + m
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4 Measuring Catastrophic Forgetting

The empirical approach to measuring catastrophic forgetting is to create a
test set and measure how good the network performs on that set at vari-
ous stages. There are other approaches as well, like measuring the internal
overlap in the network, but the empirical studies remains the most common.
In this chapter I will look primarly at empirical methods, but also at one
analytical.

Placing this chapter in context of the original four questions from the intro-
duction, it is meant as an aid to answering the first. If one is to test for
catastrophic forgetting, it is necessary to have one or more methods to use
when seeing how much information is retained or forgotten.

4.1 Empirical Measurements

When studying how good the network performs, the typical experiment goes
something like this:

1. Train the network using a training set until it performs satisfactory on
a test set.

2. Train the network to learn a second training set

3. Test the network on the same test set as during the first training.

There can be variations of this, like the experiments performed by Robins
in his pseudorehearsal experiments[16] where he did not provide all new in-
stances at once in a second set, but instead fed them one at a time. Or
French that instead of measuring how quickly one forgot the first test set
measured how quickly one would relearn the first set after having trained on
the second to acceptance.

The test described above is the simplest and the most intuitive when one
wants to answer the question “How much of the old information does the
network forget?”

The white box of the solution one can change is then how to do the perfor-
mance test itself. This test is often called a loss function.
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4.1.1 Binary loss functions

The most obvious approach is to simply count the number of test examples
that produce the correct output. This is called a 0-1 loss. 0-1 loss is a
good empirical measurement as in a practical application the only interesting
question is: “is the network doing what it is supposed to do”. Even though it is
good to test the real-world applicability of an algorithm, it is not necessarily
the best lost function to use when developing new algorithms as it does not
discriminate between an algorithm that is almost correct and one that is far
off from being correct. A variant of the 0-1 loss that can be used in certain
cases is to count the number of correct outputs for each test example and
give a score based on this. For instance if a network got five outputs and for
a given test three of these were correct, it would get the a score of 0.6. This
will better discriminate between an algorithm that is almost correct (say 4/5
or 0.8 and one that is far away from being correct (like 1/5 or 0.2) than a
simple 0-1 loss function.

4.1.2 Averaged squared error

Another commonly used loss function, is the averaged squared error. This is
calculated by taking the squared difference between the expected output and
the actual output for each element in the output vector, then summing them
for the entire output vector and taking the average as shown in formula 9.

e =
1

n

n∑
i=1

(oi − di)
2 (9)

e is then the average squared error for a single pattern.

4.1.3 Averaged squared error delta

In the study done this fall by myself and Stranden, we suggested using a
slightly altered version of the averaged squared error measurement for mea-
suring how the error changes. I will now term this the Averaged squared
error delta. When using this loss function both the output after the initial
training, oiold and the output after a second training step has been done, oi

is used. The averaged squared error delta is shown in formula 10.
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e∆ =
1

n

n∑
i=1

[
(oi − di)

2 − (oiold
− di)

2
]

(10)

4.2 Analytical Measurements

Empirical testing can be time consuming and prone to experiments not cov-
ering all wanted variables. As mentioned earlier the complexity is so high
when dealing with neural networks though, that it is very hard to analytically
analyze neural network solutions in regards to performance. The same holds
true for the catastrophic forgetting aspect of neural networks, so advances in
this direction is very few so far. One attempt was made by Robert French
when studying Activation Sharpening. He introduced the concept of Acti-
vation Overlap. This measurement looks at the lowest activation for each
hidden node over a set of patterns, and calculates the average of these. I.e
for a network with k nodes in the hidden layer, the activation overlap when
testing with a pattern set of size n is:

Activation Overlap =
1

n

k∑
i=1

[min (oi(I1), oi(I2), ...oi(In))]

This measurement is not strictly analytical, but it attempts to evaluate catas-
trophic forgetting without measuring it. However when testing this at the
project I did with Stranden last fall, we failed to find any correlation between
activation overlap and the rate of forgetting.

When studying the measurement, it is revealed that it is unlikely to give
a good indication of the CF performance of a network. For instance will a
network where the information is very distributed and nodes only activate on
one class each and then with a high output (like the wanted behavior from
activation sharpening), the Activation Overlap will still be high even if there
is obviously low overlap of activation.
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5 Benchmarking Catastrophic Forgetting

In this chapter I will present a set of rules, guidelines and measurement
methods for benchmarking catastrophic forgetting based on the analysis and
existing work presented in chapters 2, 3, and 4. Together, these chapters
form my answer to question one posed in the introduction.

5.1 Dataset selection

When selecting datasets for benchmarking catastrophic forgetting, one is
faced with an additional challenge compared to benchmarking of the per-
formance of networks with monolithic training: The data must be dividable
into at least three distinct groups that contain different pieces of informa-
tion. Two groups must be used for the first training step, and a third for the
second training step. The simplest approach: to create two subsets of the
training set and train one after another is likely to fail if there is redundancy
in the training instances. Then one cannot be certain that the second sub-
set contains the desirable amount of new information, and the test will then
obviously be flawed.

Creating the desired three groups of input data can be done in two ways:

1. Dividing the data in such a way that new classes are introduced at each
step in the training sequence. This is illustrated in Figure 3a. At the
first step the network is trained to classify input data in two classes
and at the second step a third class is introduced. 2+1 classes is the
simplest way to do this, but of course more classes can be introduced
at each step, and/or more training steps can be performed.

2. Dividing the data in such a way that the same classes cover different
areas of the input space at each step in the training sequence. This is
illustrated in Figure 3b and c. In 3b the data for the first and second
training steps aren’t properly divided so the network will classify the
data introduced at the second step even before any training has been
performed with those input examples and thus no changes will happen
in the network weights during the training of the second set of input
data. In 3c the data is properly segmented and the network is likely
change during the second training step.

If the first approach is used, the datasets must contain at least three classes:
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Figure 3: Each dot illustrates a training instance, with x and y coordinates being
the two input attributes and the color its class. The lines illustrate how the network
discriminates between classes. The top row shows the input space after training of
the first input set is complete, the second row shows the input space after having
new training examples introduced. The three columns illustrate having different
classes introduced at each step(a), dividing the first and second training sets in
such a way that new examples are prematurely classified correctly(b) and dividing
the first and second training sets in such a way that the network must adapt its
hyperplanes to the new information(c).

Two for an initial training and a third to introduce after the initial training
is complete. If the dataset contains only two classes, the initial training is
useless as it will train a network to classify the input the same way no matter
what input it is given.

If the second approach is used, it is desirable that the examples of a class
that is split are in areas of the input space that are far apart. This is to
reduce the chance that the network classifies the examples in the second set
correctly even before they are presented as training examples.

The problem with the second approach is that it is increasingly difficult
to compile distinct groups as the number of dimensions in the input space
increase and the intersection between the classes go up. Due to this and the
simplicity of the first approach, I suggest using training data with three or
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more classes if possible and segmenting the data as mentioned above when
creating training sets for each training step.

5.1.1 Artificial and Real-World datasets

There has been several approaches on how to select to use either artificial
data or real-world data. Proben1 contains only real-world problems (see 2.2,
DELVE contains mostly real-world problems, but they argue that artificial
data can be used to shed light on specific problems (see 2.3), ELENA contains
both artificial and real-world problems (see 2.4), and Salzberg argues that
“the use of artificial data should always be considered a way to test more
precisely the strengths and weaknesses of a new algorithm”[17].

Based on these arguments and approaches, I suggest using an approach close
to that chosen by Salzberg. First features must be identified as it was done
by Zheng (see 3.1) in real-world data. There is no substitute for actual data,
but one should make an informed choice when choosing datasets. Second
additional problems one wants to address should be identified, and artificial
problems created to examine these in particular. For instance with regards to
catastrophic forgetting, examining different degrees of overlaps in the input
space, various noise levels, degree of class intersection, etc are all features
that one can expect to affect performance and would thus want particularly
tailored datasets to test for.

I suggest using all features from chapter 3 except predictive and relative
accuracy. These both depend on how extensively the datasets have been
used in the past and will therefore not give information that can be used in
an objective selection. It is also important to carefully review the inductive
bias of the classifier used if the the Information Score measurements are to
be used.

5.2 Measurement Methods

When measuring catastrophic forgetting one selects a test set and records
performance after training a training set covering the same input and output
space and again after training with new information. Performance can also
be recording during training of the new information if one is interested in
seeing how it develops.

When making a qualitative comparison between methods or parameters, at
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least two general methods can be chosen:

• One can select a measurement level, set at a percentage of the best
performance and see how many training epochs the network manages
to stay above that level.

• One can attempt to fit the performance-epoch plot to a curve and look
for a relationship where f = kh with k being a constant and f and h
are the fitted graphs of two different plots.

The “performance” can be measured in several ways as described in sec-
tion 4.1. There is no best-way to do this measurement, as different setups,
datasets and networks can work with different loss functions. What is impor-
tant to remember though, is that it is possible to work with different error
functions for training and testing. It can be suitable to have more detailed
error information during training (and such use MSE), but to want a binary
correct/wrong answer during testing and thus use a binary loss function then.

5.3 Statistical Guidelines

In addition to what is already mentioned, a few words of caution regarding
statistics is in order. It has been pointed out that the reporting of results has
been lacking when it comes to statistical accuracy. It is out of scope for this
thesis to more than scratch the surface of this issue, and many others can and
have done that very well already. For the interested readers, I want to refer
to the excellent 1997 article “On Comparing Classifiers: Pitfalls to Avoid and
a Recommended Approach” by Steven Salzberb[17]. Here he points out some
very important things to remember. Very briefly some of these are:

• The multiplicity effect
Many of the statistical tools that are available were not designed for
computational experiments. The number of runs and experimental
treatments are often much larger than one would perform using conven-
tional means. As an example, consider a comparative study of fourteen
classification algorithms using eleven different datasets. This leads to
154 variations, which were all compared to a default classifier using a
two-tailed, paired t-test using a 0.05 level of significance. The multi-
plicity effect emerges here as this leads to an expected 154 · 0.05 = 7.7
“significant” results. This is probably not what the researchers wanted.
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It is important to be aware of this, and choose significance levels and
test methods accordingly before drawing conclusions.

• Parameter Tuning
As everyone that has worked with neural networks are aware of, chang-
ing the parameters of the training algorithm (such as the learning rate
and momentum of back-propagation) or network topology (such as the
degree of connectivity if one is not using a fully connected network)
is likely to greatly affect the performance of the neural network. Due
to this, researchers frequently tune such parameters before performing
tests. What is not always done though, is to make sure that a separate
subset of the training data is used for this parameter tuning, and that
it is not reused for training or testing later.

• Valid Generalization
A wanted step for researchers when performing comparative studies, is
to draw general conclusions based on a limited set of test cases. When
doing this, it is important to have a few things in mind. First, one must
realize that even if the selection of test problems is made a random from
the increasingly popular UCI repository, one cannot draw conclusions
that extend beyond the UCI repository itself as the UCI repository
is not a random selection of all possible problems solvable by neural
networks. For instance are many of the problems in the repository
almost linearly solvable.

Again I refer to Salzberg’s article for more details on these topics.

5.4 Reporting

As has been said earlier, accurate reporting is central when one is to do
useful benchmarking. It is important that the results are reproducible, and a
detailed description of the experiment is thus necessary. I recommend using
the setup described for Proben1 in section 2.2, but where one remembers to
add details on how the CF testing has been done to the algorithm and/or
experiment parameter sections.
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6 Implementation

In this chapter I will describe the implementational work done. This isn’t
directly related to the questions I seek to answer with the thesis, but for
me to be able to perform experiments to validate or invalidate my claims, I
needed to implement some code in Matlab.

I also provide a section with some examples on how to use the source code
at the end of the chapter.

6.1 Design Choices

When creating the source code needed to perform my experiments it was
important that the code would be re-usable by others. At the same time I
had to adjust to two important restrictions:

• The datasets would be from the UCI repository

• The back-end ANN code was the one made at IDI by Diego Federici
and Axel Tidemann.

Due to this, the datasets are in one part of the code adjusted to the UCI
repository, and stays that way until they are ready to be handled by the neu-
ral networks. Then they are transformed to the format used in the existing
ANN implementation.

The location of each source file is based on its function. The root of the
source code tree contains the directories ann, datasets, dataset_analysis,
experiments and results. More information in each of these is provided in
the next few sections.

6.2 Datasets

The datasets used were all from the UCI repository and is available in the
datasets subdirectory. In these directories are the generated datasets used
as well as the programs used for generation. The source code for these
programs are in section B.3.
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6.3 Dataset Analysis

In chapter 3 I provided an overview of 16 attributes in datasets, and an addi-
tional two proposed measures (Input Overlap and Grouped Input Overlap).
For all of the 16 attributes that could be analyzed automatically, provided
the data was presented in the uniform UCI format, I have implemented code
for this. In section B.1 the Matlab source code developed for extracting those
attributes is presented. All of this source code is in the dataset_analysis
subdirectory.

6.4 Artificial Neural Networks

For the ANN implementation, I have been fortunate enough to use existing
code developed at IDI by Diego Federici and Axel Tidemann. This code was
developed to work with recurrent artificial neural networks7, so I made some
minor additions to adapt the algorithms to non-recurrent networks.

The two earlier proposed solutions to catastrophic forgetting, pseudorehearsal
and activation sharpening has also been implemented. This was for two rea-
sons: (1) to use together with regular back-propagation as a way to evaluate
the Input Overlap and Grouped Input Overlap measurements, and (2) to
further analyze their performance, this time with real-world data from the
UCI repository.

In section B.2 of the appendix is the source code for the neural network
implementation and the algorithms used reproduced.

6.5 Running and testing

For this master thesis more than hundred different neural network tests has
been run, often taking several hours per run. With the limited time alloted
to the work, it was essential to provide proper tools for running these tests
and analyzing the results. In sections B.4 and B.5 of the appendix is the
source code used for running the experiments and for analyzing the results
produced.

7A RANN is a network where temporal information can be stored by providing con-
nections from the output layer to the input layer, thereby creating a network capable of
storing temporal information and relational information between different data instances.
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6.5.1 Activation Sharpening

I have implemented the code for running activation sharpening experiments
like those described by French[18]. The source code is attached in appendix
B.4.2. The idea of the activation sharpening algorithm is to differentiate
more between different activations. In effect French wishes to reduce the
distribution of knowledge such that the data needed to recognize each pattern
is stored in fewer nodes that in a regular ANN. This is done by adding an
extra training step before the usual back-propagation. During this extra
training step, a new activation given by the formulas in equations 11 and 12 is
calculated for each of the hidden layer nodes. The selection between equation
11 (to increase the activation) and equation 12 (to reduce the activation) is
done by adjusting the number of nodes to sharpen. If there are n nodes in
the hidden layer, k are getting increased activations and n − k are getting
reduced activations.

The error between this new activation and the actual activation is the back-
propagated through the weights connecting the hidden layer to the input
layer.

Anew = Aold + α(1 − Aold) (11)
Anew = Aold − αAold (12)

In pseudo code the activation sharpening algorithm is reproduced in listing
1.

Listing 1: Activation sharpening algorithm
function ac t iva t i onSharpen ing ( alpha ) :

nodes := hidden l ay e r nodes

# Sort nodes by output va lue
s o r t ( nodes )

# Increase the a c t i v a t i o n f o r the k nodes wi th
# h i g h e s t a c t i v a t i o n
for i in 1 to k :

nodes [ i ] . newAct := nodes [ i ] . oldAct +
alpha∗(1−nodes [ i ] . oldAct )

end
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# Decrease the va lue o f the o ther n−k nodes
for i in k+1 to n :

nodes [ i ] . newAct := nodes [ i ] . oldAct −
alpha∗nodes [ i ] . oldAct

# Propagate the d i f f e r e n c e between new and
# o ld a c t i v a t i o n to the we i gh t s between the
# input and hidden l a y e r . WeightUpdate i s
# the common update r u l e wi th l e a rn ing ra t e
# used in backprop
for i in 1 to n :

for each weight where weight . to==nodes [ i ] :
dw := weightUpdate ( weight )
weight := weight + dw

# Perform usua l back−propagat ion
backprop ( )

6.5.2 Pseudorehearsal

The idea for pseudorehearsal followed from the thought that one should re-
hearse on old information to make sure it was remembered. But instead of
storing old patterns to use together with the new ones when training, random
patterns were generated. This would remove the requirement to store the old
patterns while - in theory - making sure the old information was kept.

In the original pseudorehearsal experiment a pool of 8, 32 or 128 patterns
were generated and selected three patterns from this pool at random each
time a new instance was being learned. However my experiments used the
commonly used batch training method where a larger set of training instances
are being learned at the same time. To adapt the pseudorehearsal algorithm
to this, I used the entire pool for training. When training a second set of
instances, a pool of patterns were generated and added to the training and
testing sets. Simple pseudo code for the implemented code, leaving details
for logging and testing out, is in listing 2. The complete source code is in
appendix B.4.1.
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Listing 2: Pseudorehearsal pseudo code

function pseudoRehearsal ( poo lS i ze , maxEpoch ) :

# Learn i n i t i a l t r a i n i n g s e t
epoch = 0
while ( test ( i n i t i a l T e s t S e t )==f a i l e d or epoch>maxEpoch)

t r a i n ( i n i t i a l T r a i n i n g S e t )
epoch := epoch+1

end

# Generate a poo l o f 8 , 32 , or 128 ( and in some cases
# more) pseudo pa t t e rn s
pseudoSet := generatePseudo ( poo lS i z e )

# Combine the pseudo poo l t o g e t h e r wi th the second
# t r a i n i n g and t e s t s e t s
t r a i n i n gS e t := secondTra in ingSet + pseduoSet
t e s t S e t := secondTestSet + pseudoSet

# Learn the combined second s e t
epoch = 0
while ( test ( t e s t S e t ))== f a i l e d or epoch>maxEpoch)

t r a i n ( t r a i n i n gS e t )
epoch := epoch+1

end
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6.6 Usage

The first thing to do when using the code is to change working directory to
the root of the source code tree and add paths recursively:
» addpath(genpath(pwd))

Then all functions should be added and ready to be used.

The tests are run by the functions called run_X_Y_test where X is the
dataset and Y is the test type. For instance will run_led_pseudo_test
run the pseudorehearsal experiment with the LED dataset. The test files
only take a file name as input parameter, while the rest of the information is
edited when the experimental settings changes. In many ways they are more
configuration files just holding variable data than programs themselves.

To run a test more than once and get the averaged results, the function
run_averaged_experiment is used. This takes a function reference, a base
file name and a number of runs as parameters in addition to a parameter
telling the program if all runs are to use the same filename or not. For
instance will the following run 20 pseudorehearsal experiments with the LED7
data without irrelevant attributes or noise and with 300 instances:

>> runs = run_averaged_experiment(’led7_300_0noise’,
0, @run_led_test, 20)

Here runs will be a structure containing both complete data for each of the
20 runs as well as statistical data like mean and standard deviation from the
mean. The structures called first, second and third are data for the first
training batch (initial training), second training batch and the performance
on the first test set while training the second training set.

This will use the datasets led7_300_0noise1.data , led7_300_0noise2.data
, ... led7_300_0noise20.data . The datasets must be generated before run-
ning the experiments from Matlab. This can be done with the Unix bash
script makecustom.sh . To generate the datasets in the above example, the
command

./makecustom.sh 20 300 0 0

would have been executed.

For analyzing the data, some functions are available. The function used
during experiment 1 in the next chapter analyzes one set of data from the
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pseudo pattern experiments and one back-propagation data (all averaged).
The data in the pseudopattern experiment must be saved with the names
log_N where N is the number of pseudo patterns used. Likewise the data
in back-propagation tests must be saved with the name runs. The analysis
function takes a base filename to use when searching for the back-propagation
and pseudorehearsal log files. For instance:

>> runs = run_averaged_experiment(’led7_300_10noise’, 0, ...
@run_led_pseudo_test, 20);

>> log_8 = runs.avg.third.mean;
>> save pseudo_led7 log_8
>> runs = run_averaged_experiment(’led7_300_10noise’, 0, ...

@run_led_test, 20);
>> save cf_led7
>> [normal_best, pseudo_best] = analyze_cf_results(’led7’)

will run a test where the configuration is 8 pseudo patterns (the configuration
file run_led_pseudo_test must have been edited first), save this, run a
back-propagation test, save that as well, and then analyze to see when they
fall below 50% performance (for details on this see next chapter).

The dataset analysis part of the source code works on datasets loaded from
their UCI repository data files through one of the load_X where X is dataset
type like waveform or LED. These return the input and output in two dif-
ferent matrices, such that the input attributes for instance one is in row one
of the input matrix and the output class for that is in row one of the output
matrix. Some analysis method requires one of these and some both. For
instance can the entropy and input overlap of a LED dataset be checked
with:

>> [input, output] = read_led(’led7_300_10noise1.data’);
>> entropy(output)

ans =

3.2856
>> input_overlap(input)

ans =

105.4585
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For IO and GIO, there is also functions that average results using a number
of datasets much like the neural network tests. For instance to calculate the
average input overlap for all the 20 datasets used above:

>> io = average_input_overlap(’led7_300_10noise’, @read_led, 20)

io =

mean: 100.6291
std: 1.9641

theoretical_max: 149.5000
percent: 67.3105
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7 Experiments

In this chapter I will describe the experiments performed for this thesis,
report the results and discuss these.

To aid in answering the questions asked at the beginning of this thesis, there
were three issues I wanted to study by experimentation:

1. Can the Input Overlap and Grouped Input Overlap be used to predict
Catastrophic Forgetting? Does a correlation between these measure-
ments and the rate of forgetting exist?

2. How does different attributes in the dataset affect the rate of forgetting?

3. How well does the studied solutions work with datasets expressing real
knowledge?

The first issue was important as it could give researchers and engineers infor-
mation before training their networks on how much information the networks
would expect to forget.

Answering the second question could help them improve performance as they
would have more information on how to change the datasets if they experi-
enced high rate of forgetting.

The third question is interesting as the two proposed solutions had, to my
knowledge, not previously been tested using real-world datasets, but only
with randomly generated artificial data.

To select datasets for these experiments, I used the selection Zheng made in
his report, but with the added requirement that the data had to contain at
least three classes. This requirement was added so the datasets would follow
the requirement set out in section 5.1. This left five datasets. One (The
Lymphography set) was discarded as it contained four classes, but in two
of these were only two and four instances which left little room for training
and testing with three different classes. Another (the NetTalk dataset) was
no longer available from the repository and could not be used. That left
only three suitable data sets: The LED problems LED-7 and LED-24 and
the Waveform problem (all described in detail later in the chapter). After
expanding these datasets into a total of six problems they were tested using
the following setup from chapter 5:
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1. Divide the dataset into two disjunct subsets: The first set A containing
all instances falling in all but one output class and the second set B
containing the rest of the instances.

2. Train the network using A (dividing it into training and test sets first)

3. Use the network that performed best on A, and train that to learn B.
During this second training, measure the network’s performance on the
test subset of A.

4. Repeat step 1 to 3 20 times and record average results.

7.1 Problem Descriptions

This section describes in details the experiments and problem domains in
accordance to the setup in section 2.2. In table 1 are the results from Zheng’s
analysis on the three datasets used, expanded to the six experiments

7.1.1 LED 7

1. Problem: This problem is the “LED display domain” from the UCI
repository, found in the “led-display-creator” directory. It contains
seven boolean attributes signaling if each of seven diodes is on or off,
and ten output classes, each being one of the ten decimal digits. The
dataset was used without noise and with 10% noise.

2. Datasets: 20 datasets of 300 instances each were generated from the
program available from the UCI repository. For each experiment, one
dataset was used, and one output class in this dataset selected at ran-
dom for the second training batch. The instances falling into one of the
remaining nine classes were used for the first training batch. For both
the first and second training batch, 70% of the instances were used for
training and 30% for testing. Tuning the parameters was done with a
separately generated dataset.

3. Network: The network used was a 7-40-10 fully-connected feed-forward
network. Each of the ten output nodes were interpreted as binary sig-
nals with a one signaling that the network classified the input being in
that output class and a zero as the network not being in that output
class. The sigmoidal activation function was used in all nodes.
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4. Initialization: All initial weight values were selected from a normal
distribution with mean at 0 and with a standard deviation of 0.2.

5. Algorithm: Different training algorithms were used for the different
tests. The details about these can be found in section 6. For the back-
propagation tests, the learning rate was set to 0.9, and no momentum
term was used.

6. Termination: Training was done until a 100% classifaction rate was
achieved, or training had been done for the maximum number of epochs.
Once perfect classification rate or max epoch was reached, training
moved on to the next set were the same training and testing was done,
this time on the second training set. Once this was terminated in the
same way, the experiment was concluded.

7. Error Function: For each of the ten output nodes the node was
considered correct if it was within 0.49 from the target output (0 or 1).
MSE was calculated for training, and binary loss was used when testing
for acceptance. A training instance was considered correctly classified
if all output nodes were correct, and considered as incorrect if one or
more nodes were incorrect.

8. Experimentation Parameters: 3000 epochs in each training run, 20
runs with reported results taken as the average of these. All runs were
used for reporting, even if the network did not converge during the first
training run.

7.1.2 LED-24

1. Problem: This problem is the “LED display domain” from the UCI
repository, found in the “led-display-creator” directory. It contains 24
boolean attributes encoding the status of 24 diodes (on or off), and ten
output classes, each being one of the ten decimal digits. The problem
is the same as the LED-7 problem, but with an additional 17 irrelevant
attributes added. The dataset was used without noise and with 10%
noise.

2. Datasets: 20 datasets of 300 instances each were generated from the
program available from the UCI repository. For each experiment, one
dataset was used, and one output class in this dataset selected at ran-
dom for the second training batch. The instances falling into one of the
remaining nine classes were used for the first training batch. For both
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the first and second training batch, 70% of the instances were used for
training and 30% for testing. Tuning the parameters was done with a
separately generated dataset.

3. Network: The network used was a 24-40-10 fully-connected feed-
forward network. Each of the ten output nodes were interpreted as
binary signals with a one signaling that the network classified the in-
put being in that output class and a zero as the network not being in
that output class. The sigmoidal activation function was used in all
nodes.

4. Initialization: All initial weight values were selected from a normal
distribution with mean at 0 and with a standard deviation of 0.2.

5. Algorithm: Different training algorithms were used for the different
tests. The details about these can be found in chapter 6. For the back-
propagation tests, the learning rate was set to 0.9, and no momentum
term was used.

6. Termination: Training was done until a 100% classifaction rate was
achieved, or training had been done for the maximum number of epochs.
Once perfect classification rate or max epoch was reached, training
moved on to the next set were the same training and testing was done,
this time on the second training set. Once this was terminated in the
same way, the experiment was concluded.

7. Error Function: For each of the ten output nodes the node was
considered correct if it was within 0.49 from the target output (0 or 1).
MSE was calculated for training, and binary loss was used when testing
for acceptance. A training instance was considered correctly classified
if all output nodes were correct, and considered as incorrect if one or
more nodes were incorrect.

8. Experimentation Parameters: 3000 epochs in each training run, 20
runs with reported results taken as the average of these. All runs were
used for reporting, even if the network did not converge during the first
training run.

7.1.3 Waveform

1. Problem: This problem is the “waveform” problem from the UCI
repository. The problem consists of a C program that generates waves.
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Each wave is constructed from one of three base forms (that acts as
output classes), and 21 input attributes. All of these attributes got
noise added from a normal distribution with mean 0 and variance 1.

2. Datasets: The waveform tests were done using the dataset provided on
the UCI repository that contains 5000 instances. Due to the generator
program’s dependency on an old statistical tool, it was not possible to
generate more instances.

One test was run with all 5000 instances using the first two thirds for
training and the last third for testing. One of the three output classes
were selected for the second training batch at random, and the last two
used for the first training batch.

The second test was run using 500 instances. These were selected at
random from the population of 5000. Again two thirds were used for
training and one third for testing. Selecting instances for the second
training batch was also done in the same way.

Tuning the parameteres for the tests was done by a similar subset of
500 different from those used in the 500 tests.

3. Network: The network used was a 21-40-3 fully-connected feed-forward
network. Each of the three output nodes were interpreted as binary sig-
nals with a one signaling that the network classified the input being in
that output class and a zero as the network not being in that output
class. The sigmoidal activation function was used in all nodes.

4. Initialization: All initial weight values were selected from a normal
distribution with mean at 0 and with a standard deviation of 0.2.

5. Algorithm: Different training algorithms were used for the different
tests. The details about these can be found in chapter 6. For the back-
propagation tests, the learning rate was set to 0.2, and no momentum
term was used.

6. Termination: Training was done until a 100% classifaction rate was
achieved, or training had been done for the maximum number of epochs.
Once perfect classification rate or max epoch was reached, training
moved on to the next set were the same training and testing was done,
this time on the second training set. Once this was terminated in the
same way, the experiment was concluded.

7. Error Function: For each of the ten output nodes the node was
considered correct if it was within 0.49 from the target output (0 or 1).
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MSE was calculated for training, and binary loss was used when testing
for acceptance. A training instance was considered correctly classified
if all output nodes were correct, and considered as incorrect if one or
more nodes were incorrect.

8. Experimentation Parameters: 1000 epochs in each training run, 20
runs with reported results taken as the average of these. All runs were
used for reporting, even if the network did not converge during the first
training run.
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Feature LED-7 LED-24 LED-7 LED-24 Waveform Waveform
no noise no noise 10% noise 10% noise 500 5000

Type of Binary Continuous
Attributes
Size 300 500 5000
# of 7 24 7 24 21 21
Attributes
Missing 0
Attributes
# Nominal 2 per N/A
Values attribute
# Irrelevant 0 17 0 17 0 0
Attributes
Attribute No Yes
Noise
Class Noise No
Missing No
Attributes
Dataset size 300 500 5000
Dataset 2.34 1.79 · 10−5 2.34 1.79 · 10−5 7.25 · 10−517.68 · 10−57
density
# Classes 10 3
Default 10.0 33.9
Accuracy
Predictive 100 70.0 71.0 86.0
Accuracy
Relative 100 66.7 77.8 78.8
Accuracy
Entropy 3.29 1.58
Information Needs runs from other classifying methods, and is not used
Score

Table 1: The table shows the attributes for the different datasets used in exper-
iment 1. For predictive (and relative) accuracy the values reported by Zheng is
used. For the other attributes, calculations has been done with the datasets used
in the experiments.
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7.2 Experimental setup

I this section I describe the experiments run using the artificial neural nNet-
works setup in Matlab. I first describe the originally planned tests, how they
were performed, why one of them failed and why more experiments were
needed. Then I describe the expanded LED tests that were run to get more
data for drawing conclusions regarding the input overlap measurements.

7.2.1 Experiment 1 - Testing original datasets

For testing the input overlap measurement, I used the datasets selected by
Zheng from the UCI repository, with the additional requirement that each
dataset also contained three or more output classes. This was to ensure
that the test for catastrophic forgetting could be performed according to the
guidelines in section 5.1.

The datasets fulfilling these requirements were the LED-7, LED-24 and
Waveform datasets described in the previous section. For all experiments,
20 equal runs with different random seeds were performed, and the averaged
results reported in the next sections.

The following three tests for catastrophic forgetting were planned:

1. How quickly is 50% of the original knowledge lost when tested with a
regular back-propagation network. I.e for how many training epochs
does the network contain half or more of the original knowledge?

2. How quickly is 50% of the original knowledge lost with the best-performing
pseudo-rehearsal experiment. For each dataset, 3-5 pool sizes were used
for pseudo-rehearsal. This was 8, 32 and 128 as used in the original
experiment by Robins as well as pool sizes relative to the size of the
second training set: equal the size and half the size. If the size of the
second training set was less than 256, only the equal-sized pool was
tested, and if it was less than 128 only the original three pool sizes
were tested.

3. How quickly is 50% of the original knowledge lost when using the acti-
vation sharpening algorithm? However, this test was discarded during
experimentation as networks trained with activation sharpening failed
to classify even the first training set properly. Without the network
remembering first training, measuring forgetting would be impossible.
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50% was chosen rather arbitrarily, but with a few restrictions: The selected
level should show a significant drop in performance, but not too low to be
subject to acceptance due to patterns being recognized as a result of noise.

As described in the problem description, 40 hidden nodes were used in all
the tests. This was chosen as hidden layers sizes at that magnitude has been
successful for many problems. The fact that the number of hidden nodes
are kept constant between the experiments and the number of inputs and
outputs are varied means that there will be a difference in how much storage
space is available to the different tests. It is not possible to keep both these
variables constant at the same though and one can only speculate as to what
differences varying either of these will have. Considering these conditions the
simplest solution (keeping the number of hidden nodes constant) was chosen.
For reference the number of total weights is in table 7.2.1

Experiment Inputs Hidden size Outputs Total weights
LED-7 7 40 10 730
LED-24 24 40 10 1410
Waveform 21 40 3 1003

Table 2: The total number of weights for the networks in experiment 1. The
calculation is (input + 1) ∗ hidden + (hidden + 1) ∗ output. The extra added nodes
are bias nodes.

7.2.2 Experiment 2 - Expanded LED tests

Since only six experiments were run as a result of the datasets selected from
the Zheng sets, further testing was needed. These new experiments were all
done using the LED dataset. Since the LED dataset was generated from a
C program available from the UCI repository, three variables could be tuned
freely: The number of instances, the percentage of noise and the number of
irrelevant attributes. By changing these attributes, I hoped to be able to see
further connections between the input overlap and the rate of forgetting.

The Waveform dataset was also provided with a generator, but as that source
code was dependent on external programs no longer available and thus new
instances could not be generated, only the LED problem was chosen for
further study.

The new tests performed were the following:
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• Keep the number of inputs constant at 7 and the number of instances
constant at 300, while varying the noise from 0 to 25%.

• Keep the number of inputs constant at 7 and the noise constant at 0%,
while varying the number of instances from 100 to 2000.

• Keep the level of noise constant at 0% and the number of inputs con-
stant at 300, while varying the number of irrelevant attributes between
0 and 17 (and thus the number of inputs from 7 to 24).

In all tests, the questions I wanted answer to were

How does the input overlap measurements change with the chang-
ing variables? How does the rate of forgetting change? Is it a
relation between the two?

Except for the changes described above, the experiments were equal to those
described in section 7.1.1.

This time, a level of 75% recognition was chosen as a check-point. The reason
for this was that with the very noisy datasets, performance was so low (going
as low as 45% after training the first set) that it would never go below 50%
recognition.

49



7 EXPERIMENTS

7.3 Results

In this section I describe and analyze the results from the two experiments
run.

7.3.1 Experiment 1

In table 3 are the summarized results from those tests from the first exper-
iment that were not dropped, as well as the calculated Input Overlap and
Grouped Input Overlap for the datasets. In table 4 are the same results and
the calculated Grouped Input Overlap. In appendix A are more detailed
results from these experiments.

To be able to visually look for a relationship between how quickly the network
forgets and these measurements, plots of the observations can be seen in
figures 4(Input Overlap) and 5(Grouped Input Overlap). From these plots
and the results in the tables I observed the following:

• Measured in percentage of maximum, all datasets are roughly between
55 and 80% for both IO and GIO.

• Measured in percentage of maximum, both IO and GIO are virtually
equal for the two different-sized waveform tests.

• Measured in percentage of maximum, GIO is significantly lower for the
waveform datasets than for the led datasets.

• Isolating the LED tests (the four observations with highest epoch), the
LED-24 test with noise deviates from a linear relationship in both GIO
and IO tests.

• Regarding pseudorehearsal, performance is a lot better for the LED
tests than for the waveform tests.
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Figure 4: The figure shows the relationship between the Input overlap and the
number of epochs before a network trained with back-propagation had forgotten
50% of the originally learned data
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7 EXPERIMENTS

Figure 5: The figure shows the relationship between the Grouped Input Overlap
and the number of epochs before a network trained with back-propagation had
forgotten 50% of the originally learned data
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7.3.2 Experiment 2

The results from experiment 2, are shown in tables 5 (varied noise), 6 (varied
number of irrelevant attributes), and 7 (varied number of instances used for
training and testing). In all of these tables the relative Input Overlap and
Grouped Input Overlap has been measured and is recorded. In figures 6
and 7 are plots with all the tests. In these the number of epochs until 25%
knowledge was forgotten is plotted against either the IO or the GIO.

For the experiment with varied noise (table 5), it is unclear if a relationship
exists. The slowest forgetting occurs with between 3% and 15% noise, while
both the high and low ends of the test exhibit high rate of forgetting. It
is worth mentioning that in the tests with noise above 15%, performance
dropped drasticly when training the first set of instances compared to noise-
free sets. This means that less patterns needs to be forgotten before the 25%
limit is reached.

Noise IO % GIO % Epochs until
Percent of max of max 75% performance
0 72.7 69.7 8
3 71.3 67.2 24
5 69.7 64.9 19
10 67.3 64.0 22
15 64.5 64.1 24
20 62.1 62.8 10
25 59.8 60.3 10

Table 5: The table shows the results from the LED tests with noise varied between
0 and 25 per cent. Input Overlap and Grouped Input Overlap was calculated
and the measured overlap in percentage of the theoretical max is reported in the
above table. The last column shows the epoch in which the basic back-propagation
network fell first below 75% recognition rate on the first test set.

For the test with varied number of irrelevant attributes (table 6), a relation
between the rate of forgetting and the overlap measurements seems appar-
ent. With 0 irrelevant attributes, both IO and GIO is at its highest while
forgetting is occurs fastest and with the maximum number of 17 irrelevant
attributes, IO and GIO is at its lowest while the network forgets the slowest.

Table 7 shows the results from varying the number of instances. The inter-
esting part of this is that both the relative IO and relative GIO stays the
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Irrelevant IO % GIO % Epochs until
Attributes of max of max 75% performance
0 72.7 70.5 8
1 70.5 66.1 9
2 68.6 67.0 9
4 65.9 65.8 16
6 63.7 61.5 16
8 62.4 60.1 15
10 61.1 59.8 18
12 60.2 59.8 17
14 59.2 57.5 18
16 58.4 56.8 22
17 58.4 56.4 22

Table 6: The table shows the results from the LED tests with the number of
irrelevant attributes varied between 0 and 14. Input Overlap and Grouped Input
Overlap was measured and are reported in percentage of their theoretical maximum
in the table. The last column shows the epoch in which the basic back-propagation
network first had less than 75% recognition rate.

same while the number of epochs until 75% performance is reached varies
between 5 and 11. Both of these numbers are within the low 50% percentile
of all the measurements while the IO and GIO is in the high 50% percentile.
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Total IO % GIO % Epochs until
Instances of max of max 75% performance
100 72.6 68.7 11
300 72.7 69.7 8
500 73.0 69.7 7
750 72.9 69.5 5
1000 72.6 71.4 6
1500 72.7 72.1 11
2000 72.9 67.6 8

Table 7: The table shows the results from the LED tests with the number of
instances varied between 100 and 2000. Input Overlap and Grouped Input Overlap
was measured and are reported in percentage of their theoretical maximum in
the table. The last column shows the epoch in which the basic back-propagation
network first had less than 75% recognition rate.
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Figure 6: The figure shows the relationship between the Input Overlap and the
number of epochs before a network trained with back-propagation had forgotten
25% of the originally learned data. The plot shows all the tests done in experiment
2.

58



7 EXPERIMENTS

Figure 7: The figure shows the relationship between the Grouped Input Overlap
and the number of epochs before a network trained with back-propagation had
forgotten 25% of the originally learned data. The plot shows all the test done
experiment 2.
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7.4 Discussion

In this section I will attempt to answer the questions posed at the start of
this chapter.

7.4.1 Relevancy of Input Overlap Measurements

Looking at the limited data from experiment one in figures 4 and 5, there
seems to be a lack of connection between the Input Overlap measurements
and the rate of forgetting when looking at all datasets at once. When
one looks at the data from the second experiment, relations are more clear
though. Looking at the plots, there is a connection, but with high variance,
that shows that higher overlap leads to fewer epochs until the set level of
recognition is reached. The connection is stronger for the Grouped Input
Overlap measurement than for the Input Overlap measurement. The differ-
ence between GIO and IO is small though, and before running the experi-
ments, I expected that GIO would exhibit better results than IO. A probable
reason for this is that the classes in the experiments performed are quite uni-
formly distributed in the input space (due to how they are being generated)
and thus there will be little change if overlap is measured against all other
instances or only a subset of them.

Due to the limited data used, it is not possible to find a connection between
GIO/IO and forgetting across different datasets, so by simply measuring
the relative overlap one cannot with this data conclude about the datasets
proneness to forgetting. At least can no such recommendations be given
without further study.

7.4.2 Other attributes’ relation to forgetting

The 16 attributes identified by Zheng and their values for the datasets used in
experiment 1 is listed in table 1. From the experimental results, the following
observations can be seen when looking for relations between these attributes
and the rate of forgetting:

• Higher input dimensionality consistently leads to less forgetting. This
is seen both in the difference between the waveform and LED tests in
experiment 1, and when changing the number of irrelevant attributes
(and thus the number of dimensions in the input space). This is a
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natural consequence of increasing the storage space available without
increasing the amount of information to store.

• A related observation can be made when the number of instances are
varied. As the information these instances store (how to divide the
input space for classification) is not changed much when increasing the
number of instances, we cannot see a significant change in the rate of
forgetting either. Between the Waveform 500 and Waveform 5000 tests
there is a small difference where the 500 instances tests exhibit a bit
higher rate of forgetting (16 vs 22 epochs). For the expanded LED
tests with varied number of instances in experiment 2, it seems that
the number of instances to learn has no effect on the rate of forgetting.

• It is unclear how noise affects forgetting as it reduced the performance
of the regular training greatly in the LED tests performed.

• From the available data, it is not possible to see a connection between
entropy and forgetting. Since the entropy is unchanged in most of the
tests done, it is not enough data to conclude in any direciton though.

7.4.3 Performance of implemented solutions

Analyzing pseudorehearsal first, it is clear from the tests that more pseu-
dopatterns leads to better recognition rate. This is not surprising. What is
interesting though, is that one needs to provide quite a few pseudopatterns
before performance is considerably better than a regular back-propagation
trained network. When viewing the results table, remember that for the
LED tests only 300 instances were used, and as such only (300/10)∗0.7 = 21
instances were used for training. Using half the amount of pseudopatterns
as regular patterns for training, the performance is very close to that of
back-propagation. Only when having an order of magnitude more patterns
can major differences be seen, and even then will the network quickly forget
a lot of the original information. Clearly the pseudorehearsal solution can
perform better than backprop, but still not well enough to be applicable for
most engineering issues where one wants to retain the old information.

There is also a noticeable difference between how it performs on the waveform
problem with a much larger domain of possible inputs (inputs being real-
valued between approximately -10 and 10) then the LED problems with
inputs being binary valued. The faster forgetting on the waveform problem
can be due to several issues:
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• The datasets are larger. Larger datasets could lead to more training
per epoch and more overfitting, thus also faster forgetting per epoch.
This is refuted by the results from the LED test with varied number of
instances. Here there is no connection between the number of instances
and the rate of forgetting.

• There are only three classes in the waveform problem as opposed to ten
in the LED problem. This leads to the first training only discriminating
between two classes. Fewer classes means that it is likely to be a larger
area the hyperplanes created by the neurons’ activation function can
operate in and still classify the problem correctly. Then when learning
a second set, the hyperplanes aren’t fitted very well and is quick to
change away from correct classification.

• A higher learning rate had to be used during training in order to get the
network to converge properly. This means that each epoch will change
the network more away from the it’s starting point at the beginning of
the epoch than if it was trained with a lower learning rate.

Regarding activation sharpening, it is hard to say why it did not work well
with the datasets used. It can be that the intersection between the classes
were too high, and thus dividing the hyperspace became harder when fewer
nodes were allowed too high activation. Since further studies into why the
activation sharpening method failed has not been done, no conclusions can
be made.
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8 Conclusions

At the beginning of this thesis I forumlated four questions that I wanted
answers to. Throughout the rest of the thesis I’ve provided answers to those,
and I will now sum up my conclusions.

Question one was to see if a set of rules and guidelines could be set up to
test for catastrophic forgetting. This question has been answered primarily
by researching previous work for neural network testing and presenting that
work here. It has also been answered by providing concrete ways to test for
forgetting. One of those methods has also been used in other experiments
in this thesis. The conclusion is that such guidelines can be provided, and
I have given some of them. With further study there will without doubt be
more ways to perform testing and probably better ways as well, but I have
provided a uniform way to test such that one can compare results between
different network architectures, algorithms and datasets.

The second question was to look for real-world datasets to aid testing and
to make sure the tests done were more reliable. Here I found the selection
done by Zheng, but due to additional restrictions for testing for catastrophic
forgetting, the selection had to be more limited and thus the number and
variety of the datasets became very low. I have not found a general set of
datasets that without doubt covers all attributes in such a way that a test
can be said to be “general” if it performs well on all those datasets.

The third question, and the one which most of the experimental work for
this thesis has been done for, was regarding the analysis of datasets. My
conclusion here is that there is a connection between forgetting and the two
measurements I designed to measure overlap in the input space: Input Over-
lap and Grouped Input Overlap. When there is a significant change in either
of these due to the alteration of one or more dataset parameters, the net-
works trained with backpropagation will also show a change in the speed
which information is lost. It is also clear that the interesting way to com-
pare IO and GIO is to compare their values relative to the maximum and
not their absolutes. However if either of these are to be used as an attribute
when selecting datasets or as an indication prior to training as to how it is
expected that the network will perform, one must perform more tests with
datasets that have relative IO and GIO that are both higher and lower than
what’s been used for the experiments in this thesis.

The fourth and final question was related to the Activation Sharpening and
Pseudorehearsal algorithms studied and how well they performed on datasets
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other than the artificial ones that were produced for the original papers.
Here I saw that performance for Activation Sharpening was very poor, in
fact so poor that the algorithm could not be used for further studies. The
pseudorehearsal solution proved to work better than back-propagation, but
significantly better only if a large number of pseudo patterns were generated.
This leads to practical problems with the solution since the generation and
storage of these patterns can be expensive in terms of memory of computa-
tion. Since the pseudoerehearsal solution never removed the forgetting, but
only delayed it, many potential applications will also find it unsuitable.

8.1 Future Work

The main direction to take the work done here further, is by expanding
the experiments done in Matlab. Due to the problems encountered when
selecting datasets, the variation in the dataset attributes was not as good as
wanted. By selecting more datasets with variations in the attributes from
the ones used, better conclusions can be drawn. To be able to make such
a selection though, more datasets must first be analyzed so one can choose
which to select to use as a benchmark set.

Another direction to continue this work, is to expand the network architec-
tures and training algorithms. All the tests run in this thesis has been with
setups very close to the standard fully-connected one-layered feed-forward
back-propagation network. There has been many advances into architec-
tures better suited for particular problems, and also some with CF in mind.
Especially dual-network architectures are interesting in that regard.

I would also have liked to test the network developed by Axel Tidemann in
his master’s thesis [19], but unfortunately I did not have the time available
to do so.

Further work can also be done with specific dataset attributes in mind, par-
ticularily entropy.
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A Results

This appendix contains complete results from the experiments run, as well
as complete descriptions of the problems.

A.1 Led-7 tests

The results from the Led-7 tests without noise is in table 8, and performance
plots are in figure 8. In table 9 are the results from the Led-7 tests with 10%
noise, while the plots from these experiments are in figure 9.

Test First epoch with ≤ 50% recognition rate
Backpropagation 21
Pseudorehearsal, pool size 8 25
Pseudorehearsal, pool size 32 74
Pseudorehearsal, pool size 128 Never

Table 8: R
esults from the Led test without noise and without irrelevant attributes.
Table shows regular backpropagation, and pseudorehearsal with 8, 32 and
128 pseudo patterns. Results are from tests on 20 different datasets and are
averaged.

Test First epoch with ≤ 50% recognition rate
Backpropagation 31
Pseudorehearsal, pool size 8 39
Pseudorehearsal, pool size 32 104
Pseudorehearsal, pool size 128 469

Table 9: Led-7 (10% noise) results

Dataset Measurement Theoretical Value % of max Standard
Max max Deviation

Led-7 No noise Input Overlap 149.5 108.7 72.7% 1.272
Led-7 10% noise Input Overlap 149.5 100.6 67.3% 1.964
Led-7 No noise Grouped Input Overlap 28.6 20.8 72.6% 3.28
Led-7 10% noise Grouped Input Overlap 26.7 17.4 65.1% 2.89

Table 10: Led-7 input overlap analysis results
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Figure 8: Led7 no-noise performance plot
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Figure 9: Led7 10% noise performance plot
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A.2 Led-24 tests

The results from the Led-24 tests without noise is in table 11, with perfor-
mance plots in figure 10. The results from the Led-24 tests with 10% noise
are in table 12 and plots from those tests in figure 11.

Test First epoch with ≤ 50% recognition rate
Backpropagation 50
Pseudorehearsal, pool size 8 44
Pseudorehearsal, pool size 32 144
Pseudorehearsal, pool size 128 401

Table 11: Led-24 (no noise) results

Figure 10: Led24 no-noise performance plot
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Test First epoch with ≤ 50% recognition rate
Backpropagation 37
Pseudorehearsal, pool size 8 42
Pseudorehearsal, pool size 32 99
Pseudorehearsal, pool size 128 362

Table 12: Led-24 (10% noise) catastrophic forgetting results

Dataset Measurement Theoretical Value % of Std
Max max Dev

Led-24 No noise Input Overlap 149.5 87.32 58.4% 0.667
Led-24 10% noise Input Overlap 149.5 83.69 56.0% 0.934
Led-24 No noise Grouped Input Overlap 26.6 15.5 58.2% 1.93
Led-24 10% noise Grouped Input Overlap 26.1 14.2 54.2% 1.59

Table 13: Led-24 input overlap analysis results

Figure 11: Led24 10% noise performance plot
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A.3 Waveform tests

The results from the Waveform tests with 5000 instances is in table 14 and
from the tests with 500 instances in table 15. Figures 12 and 13 show the
performance plots for backpropagation and pseudorehearsal for the waveform
data with 500 and 5000 instances respectfully.

Test First epoch with ≤ 50% recognition rate
Backpropagation 22
Pseudorehearsal, pool size 8 4
Pseudorehearsal, pool size 32 5
Pseudorehearsal, pool size 128 5
Pseudorehearsal, pool size 500 7

Table 14: Waveform with 5000 instances forgetting results

Test First epoch with ≤ 50% recognition rate
Backpropagation 16
Pseudorehearsal, pool size 8 11
Pseudorehearsal, pool size 32 17
Pseudorehearsal, pool size 128 34

Table 15: Waveform with 500 instances

Dataset Measurement Theoretical Value % of Std
Max max Dev

Waveform 500 Input Overlap 159.8 249.5 64.0% 1.02
Waveform 5000 Input Overlap 1598.3 2499.5 63.9% 0.00
Waveform 500 Grouped Input Overlap 64.75 112.83 57.4% 1.83
Waveform 5000 Grouped Input Overlap 652.8 1111 58.8% 15.6

Table 16: Waveform input overlap analysis results
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Figure 12: Waveform with 500 instances performance plot
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Figure 13: Waveform with 500 instances performance plot
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B Implemented Code

In this appendix important parts of the source code for this thesis will be
reproduced. More information about the implementation can be found in
chapter 6.
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B.1 Dataset Analysis

This section contains source code used to analyse datasets.

Listing 3: entropy.m: Source code for calculating entropy of a dataset
% Calcu la t e the entropy o f a da ta s e t .
% func t ion E = entropy ( outputs )
%
% Inputs : A vec tor conta in ing a l l the output c l a s s va lue s f o r the da ta s e t .
% Each element in the vec to r shou ld be the output o f one ins tance in the
% da ta s e t .
%
% Output : The c a l c u l a t e d entropy
function E = entropy ( output )

E = 0 ;
for i = 1 : s ize ( output , 2 )

num = s ize ( output ( output ( : , i )==1) ,1);
p = num/ s ize ( output , 1 ) ;
E = E−(p∗ log2 (p ) ) ;

end

Listing 4: density.m: Source code for calculating the density of a dataset
%Ca lcu l a t e s the da ta s e t d ens i t y as de f ined by Zheng
% func t ion dens = dens i t y ( da ta s e t )
%
% Inputs : A da ta s e t matrix with each row be ing the input vec to r o f one
% ins tance
%
% Output : The da ta s e t d ens i t y
function [ dens ] = dens i ty ( datase t )

dse t_s i ze = s ize ( datase t ) ;
n = dset_s i ze ( 2 ) ;

prod = 1 ;
for i = 1 : n

prod = prod∗ s ize ( unique ( datase t ( : , i ) ) , 1 ) ;
end

dens = dset_s i ze (1 ) / prod ;

Listing 5: default_accuracy.m: Source code for calculating the default accuracy
of a dataset
% Ca lcu l a t e s the d e f a u l t accuracy o f a da ta s e t as de f ined my Zheng
% This i s the r e l a t i v e f requency o f the most common output c l a s s
%
% func t ion acc = defau l t_accuracy ( output )
%
% Input : A matrix conta in ing one row fo r each ins tance and one binary
% column fo r each output c l a s s
%
% Output : The d e f a u l t accuracy
function acc = defaul t_accuracy ( output )

maxval = 0 ;
for i = s ize ( output , 2 )

va l = s ize ( output ( output ( : , i )==1) ,1);
i f ( val>maxval )
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maxval = va l ;
end

end
acc=maxval/ s ize ( output , 1 ) ;

Listing 6: relative_accuracy.m: Source code for calculating the relative accuracy
of a dataset
% Ca lcu l a t e s the r e l a t i v e accuracy as the how good the d e f a u l t accuracy i s
% in r e l a t i o n to the b e s t recorded accuracy on the domain .
%
% func t ion r e l = re la t i ve_accuracy ( p r ed i c t i v e , d e f a u l t )
%
% Inputs :
% pr ed i c i v e : The b e s t recorded accuracy
% de f a u l t : The d e f a u l t accuracy
%
% Output : The r e l a t i v e accuracy
function r e l = re l a t i ve_accuracy ( p r ed i c t i v e , d e f au l t )

r e l = 100∗ ( ( p r ed i c t i v e−de f au l t )/(1− de f au l t ) ) ;

B.1.1 Input Overlap Measurement

For calculating the input overlap measurement, the functions in listings 7, 8
and 9 were used. For calculating the grouped input overlap, the source code
in listings 10 and11 were used.

Listing 7: input_overlap.m: Source code for calculating the input overlap of a
dataset
% Calcu la t e the input over lap f o r a g iven matrix o f input v e c t o r s .
%
% func t ion over lap = input_over lap ( input )
%
% Inputs :
% input : A matrix conta in ing the input v e c t o r s to c a l c u l a t e the over lap f o r
% Each row of the vec to r shou ld contain one input vec to r .
%
% Outputs :
% over lap : The t o t a l input over lap f o r the da ta s e t

function over lap = input_overlap ( input )
n = s ize ( input , 1 ) ;
over lap = to ta l_or thogona l i t y ( input )/n ;

Listing 8: total_orthogonality.m: Source code for calculating the total orthogo-
nality of a set of vectors
% Calcu la t e the t o t a l o r t h o gona l i t y o f a s e t o f v e c t o r s as the summed
% cos ine o f the ang le between any two vec t o r s .
%
% Inputs :
% vec t s : A MxN matrix where each o f the M rows conta ins an vec tor in
% N−dimensional space .
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%
% Output : The summed o r t ho gona l i t y
function ans = tota l_or thogona l i t y ( vec t s )

n = s ize ( vects , 1 ) ;
ans = 0 ;
%TODO: Two nested for−l oops i s very f a r from being opt imal in Matlab .
%Some in t e r na l f unc t i on s might he lp on g e t t i n g t h i s done f a s t e r .
for i = 1 : n−1

irow = vec t s ( i , : ) ;
for j = i+1 : n

jrow = vec t s ( j , : ) ;
ans = ans+or thogona l i t y ( irow , jrow ) ;

end
end

Listing 9: orthogonality.m: Source code for calculating the orthogonality between
two vectors
% Calcu la t e the l e v e l o f o r t ho gona l i t y between vec t o r s a and b . This i s
% de f ined as the cos ine o f the ang le between them/
%
% func t ion ans = or t ho gona l i t y (a , b )
%
% Inputs :
% a , b : Two vec t o r s . l en g t h (a ) must be equa l to l eng t h ( b )
%
% Output : cos ( ang le (norm(a ) ,norm( b ) ) )
function ans = or thogona l i t y ( a , b )

norm_a = norm( a ) ;
i f (norm_a==0)

norm_a = 1 ;
end

norm_b = norm(b ) ;
i f (norm_b==0)

norm_b = 1 ;
end

ans = dot ( a/norm_a , b/norm_b ) ;

Listing 10: grouped_input_overlap.m: Source code for calculating the grouped
input overlap of a dataset
% Calcu la t e the grouped input over lap f o r two s e t s o f input v e c t o r s .
%
% func t ion over lap = grouped_input_overlap ( input )
%
% Inputs :
% f i r s t_ s e t : A matrix conta in ing the input v e c t o r s in one t r a i n in g s e t .
% Each row of the vec to r shou ld contain one input vec to r .
% second_set : A matrix conta in ing the input v e c t o r s f o r the second t r a i n i n g
% se t . This s e t shou ld have the same format as f i r s t_ s e t
%
% Outputs :
% over lap : The t o t a l input over lap f o r the da ta s e t

function over lap = grouped_input_overlap ( f i r s t_ s e t , second_set )
n = s ize ( f i r s t_ s e t ,1)+ s ize ( second_set , 1 ) ;
over lap = tota l_grouped_orthogonal i ty ( f i r s t_ s e t , second_set )/n ;
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Listing 11: total_orthogonality.m: Source code for calculating the total grouped
orthogonality for two sets of vectors
% Calcu la t e the t o t a l o r t h o gona l i t y o f a s e t o f v e c t o r s as the summed
% cos ine o f the ang le between any two vec t o r s .
%
% Inputs :
% vec t s : A MxN matrix where each o f the M rows conta ins an vec tor in
% N−dimensional space .
%
% Output : The summed o r t ho gona l i t y
function ans = tota l_or thogona l i t y ( vec t s )

n = s ize ( vects , 1 ) ;
ans = 0 ;
%TODO: Two nested for−l oops i s very f a r from being opt imal in Matlab .
%Some in t e r na l f unc t i on s might he lp on g e t t i n g t h i s done f a s t e r .
for i = 1 : n−1

irow = vec t s ( i , : ) ;
for j = i+1 : n

jrow = vec t s ( j , : ) ;
ans = ans+or thogona l i t y ( irow , jrow ) ;

end
end
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B.2 Neural Network Testbench

The source code presented in this section is used to extend the neural net-
work code provided by other researchers (former and present) at IDI (Axel
Tidemann and Diego Federici) to work with the networks wanted for this
thesis.

Listing 12: test_ann.m: Source code for how network performance was tested
during the experiments
% Function fo r t e s t i n g the performance o f a neura l network
%
% func t ion cor r ec t = test_ann ( net , in , out , c r i t e r i o n )
%
% Inputs :
% net : The network to t e s t
% in : An array o f input pa t t e rn s to use as t e s t in s tance s .
% out : An array o f output pa t t e rn s to use as t e s t in s tance s . in and out
% shou ld be arranged in such as way tha t in ( : , I ) i s the input pa t t e rn fo r
% out ( : , I ) f o r a l l I .
% c r i t e r i o n : How much the ac tua l output can d i v e r ge from the de s i r ed output
% whi l e s t i l l be ing counted as a co r r ec t c l a s s i f i c a t i o n .
%
% Outputs :
% The number o f pa t t e rns where a l l ou tputs where wi th in the c r i t e r i o n o f
% the de s i r ed outputs .
function c o r r e c t = test_ann ( net , in , out , c r i t e r i o n )

c o r r e c t = 0 ;
num_test_patts = s ize ( in , 2 ) ;
for j = 1 : num_test_patts

tnet = ann_activate ( net , in ( : , j ) ) ;
e r r = out ( : , j ) − tnet . L{3} ;
i f (abs ( e r r )< c r i t e r i o n )

c o r r e c t = co r r e c t +1;
end

end

Listing 13: ann_activate.m: Source code for activating a regular ANN without
recurrent connections
function net = ann_activate ( net , X)

net . L{1}( net . s ize (1)+1:end) = 0 ;
net . L{2} = 0 ;
net . context ( 1 :end) = 0 ;
net = rnn_act ivate ( net ,X) ;
net . L{1}( net . s ize (1)+1:end) = 0 ;

Listing 14: train_epoch.m: Source code for training a neural network for a com-
plete epoch
function net = train_epoch ( net , in , out )

%Get a random order to t r a in the exemplars in
order = randperm( s ize ( in , 2 ) ) ;

for j = 1 : s ize ( order )
n = order ( j ) ;

80



B IMPLEMENTED CODE

net = ann_activate ( net , in ( : , n ) ) ;
e r r = out ( : , n ) − net . L{3} ;
net = rnn_train ( net , err , 1 ) ;

end
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B.3 Datasets

This section contains the source code created to manipulate or generate the
datasets used for the experiments.

Listing 15: make20.sh: Source code for generating the data patterns for the LED
tests
for i in ‘ seq 1 20 ‘ ;
do

. / l ed24 300 $RANDOM l ed24no i s e $ i . data 10

. / led24 300 $RANDOM led24nono i s e $ i . data 0

. / l ed 300 $RANDOM l ed 7n o i s e $ i . data 10

. / l ed 300 $RANDOM led7nono i s e $ i . data 0
done

Listing 16: make500s.sh: Source code for making the datasets for the Waveform
tests with 500 instances
# Scr i p t f o r genera t ing 20 da t a s e t s with 500 in s tance s from an o r i g i n a l da ta s e t
# with 5000. The s c r i p t c r ea t e s the d a t a f i l e s waveform500_1 . data to
# waveform500_20 . data . Each f i l e conta ins 500 in s tance s s t a r t i n g at a random
# poin t in the o r i g i n a l f i l e and moving forward .
for i in ‘ seq 1 20 ‘ ;
do

#Generate a random number between 500 and 5000
RAN_NUM=‘echo "500+($RANDOM/32767)∗4500 " | bc − l | awk −F" . " ’{ p r i n t $1 } ’ ‘

#Se l e c t the in s tance s from RAN_NUM−500 to RAN_NUM
cat waveform . data | t a i l −n $RAN_NUM | head −n 500 > waveform500_$i . data

done

B.4 Experiments

This section contains source code produced explicitly for the experiements
performed for this thesis and the datasets used in these experiments.

Listing 17: average_input_overlap.m: Source code for calculating the average
IO of a group of datasets
% Calcu la t e the average input over lap from a s e t o f data f i l e s
%
% func t ion avg_io = input_overlap_averaged ( f i l e_p r e f i x , load_fun , num)
%
% Inputs :
% f i l e_ p r e f i x : The p r e f i x o f the data f i l e s . The f i l e names must be
% <f i l e_p r e f i x ><id >.data where id i s in the range [1 ,num]
% load_fun : The da ta s e t l oad ing func t i on to use f o r l oad ing each data s e t .
% This func t i on must accept one parameter ( the f i l e name) and return two
% va lue s : The input and output data as matr ixes with one ins tance per
% row .
% num: The number o f data f i l e s to use f o r the c a l c u l a t i o n
%
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% Output : A data s t r u c t u r e conta in ing the mean , standard , t h e o r e t i c a l
% maximum, and percentage o f t h e o r e t i c a l maximum of the c a l c u l a t e d input
% over l ap s
function avg_io = input_overlap_averaged ( f i l e_p r e f i x , load_fun , num)

i o s = zeros (1 , num) ;
max_ios = zeros (1 , num) ;
nominal_ios = zeros (1 ,num) ;
for i = 1 :num

[ input , output ] = load_fun ( s t r c a t ( f i l e_p r e f i x , int2str ( i ) , . . .
’ . data ’ ) ) ;

i o s ( i ) = input_overlap ( input ) ;
max_ios ( i ) = max_io ( input ) ;
nominal_ios ( i ) = i o s ( i )/max_ios ( i ) ;
%Calcu la t e average grouped input over lap f o r each
for j =1: s ize ( output , 2 )

end
avg_io .mean = mean( i o s ) ;
avg_io . std = std ( i o s ) ;
avg_io . theoret ica l_max = mean(max_ios ) ;
avg_io . percent = 100∗( avg_io .mean/avg_io . theoret ica l_max ) ;

end

Listing 18: grouped_input_overlap_averaged.m: Source code for calculating the
average GIO of a group of datasets
% Calcu la t e the average input over lap from a s e t o f data f i l e s
%
% func t ion avg_io = input_overlap_averaged ( f i l e_p r e f i x , load_fun , num)
%
% Inputs :
% f i l e_ p r e f i x : The p r e f i x o f the data f i l e s . The f i l e names must be
% <f i l e_p r e f i x ><id >.data where id i s in the range [1 ,num]
% load_fun : The da ta s e t l oad ing func t i on to use f o r l oad ing each data s e t .
% This func t i on must accept one parameter ( the f i l e name) and return two
% va lue s : The input and output data as matr ixes with one ins tance per
% row .
% num: The number o f data f i l e s to use f o r the c a l c u l a t i o n
%
% Output : A data s t r u c t u r e conta in ing the mean , standard , t h e o r e t i c a l
% maximum, and percentage o f t h e o r e t i c a l maximum of the c a l c u l a t e d input
% over l ap s
function avg_gio = grouped_input_overlap_averaged ( f i l e_p r e f i x , load_fun , . . .

num)
g i o s = zeros (1 , num) ;
max_gios = zeros (1 , num) ;
nominal_gios = zeros (1 ,num) ;
for i = 1 :num

[ input , output ] = load_fun ( s t r c a t ( f i l e_p r e f i x , int2str ( i ) , . . .
’ . data ’ ) ) ;

%Se l e c t a random c l a s s f o r second s e t
second_class = f loor (rand∗ s ize ( output , 2 ) )+1 ;

%Create F i r s t and Second s e t
i ndexes = output ( : , second_class )==0;
f i r s t_ s e t = submatrix ( input , i ndexes ) ;
indexes = output ( : , second_class )==1;
second_set = submatrix ( input , i ndexes ) ;

%Calcu la t e over lap and max
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g i o s ( i ) = grouped_input_overlap ( f i r s t_ s e t , second_set ) ;
max_gios ( i ) = max_gio ( f i r s t_ s e t , second_set ) ;
nominal_gios ( i ) = g i o s ( i )/max_gios ( i ) ;

end
avg_gio .mean = mean( g i o s ) ;
avg_gio . std = std ( g i o s ) ;
avg_gio . theoret ica l_max = mean(max_gios ) ;
avg_gio . percent = 100∗( avg_gio .mean/avg_gio . theoret ica l_max ) ;

Listing 19: average_grouped_input_overlap.m: Source code for calculating the
average GIO of a dataset
% Ca lcu l a t e s the average grouped input over lap with each o f the d i f f e r e n t
% output c l a s s e s be ing in a separa te sub s e t in each sample .
%
% func t ion avg_gio = average_grouped_input_overlap ( input , output )
%
% Inputs :
% input : A matrix conta in ing an input pa t t e rn at each row
% output : A matrix conta in ing an output pa t t e rn at each row . The output
% must be with 1−of−C encoding where each column i s a d i f f e r e n t c l a s s with
% a 1 i f the ins tance i s in t ha t c l a s s and a 0 o therwi se
%
% Output : An average GIO s t r u c t u r e conta in ing the mean , max , mean r e l a t i v e
% to max and standard dev i a t i on
function avg_gio = average_grouped_input_overlap ( input , output )

c l a s s e s = s ize ( output , 2 ) ;
ove r l ap s = zeros (1 , c l a s s e s ) ;
max_gios = zeros (1 , c l a s s e s ) ;
for i = 1 : c l a s s e s

indexes = output ( : , i )==0;
f i r s t_ s e t = submatrix ( input , i ndexes ) ;
indexes = output ( : , i )==1;
second_set = submatrix ( input , i ndexes ) ;
ove r l ap s ( i ) = grouped_input_overlap ( f i r s t_ s e t , second_set ) ;
max_gios ( i ) = max_gio ( f i r s t_ s e t , second_set ) ;

end
avg_gio .mean = mean( ove r l ap s ) ;
avg_gio . std = std ( ove r l ap s ) ;
avg_gio . theoret ica l_max = mean(max_gios ) ;
avg_gio . percent = 100∗( avg_gio .mean/avg_gio . theoret ica l_max ) ;

Listing 20: run_cf_experiment.m: Source code for running a catatsrophic for-
getting experiement using regular backpropagation
% Function used to run an experiment to t e s t f o r ca t a s t r oph i c f o r g e t t i n g
% using a regu l a r f u l l y −connected feed−forward network t ra ined with
% backpropagat ion .
%
%func t ion [ f i r s t , second , t h i r d ] = run_cf_experiment ( f i r s t , second ,
% train_percentage , tes t_percentage , epochs , learning_rate ,
% hidden_size , c r i t e r i o n )
%
% Inputs :
% f i r s t : A data s t r u c t u r e s e t with da ta s e t to use f o r the f i r s t batch o f
% t r a in i n g and t e s t i n g . This shou ld be s e t in f i r s t . a l l . in and
% f i r s t . a l l . out
% second A data s t r u c t u r e conta in ing the da ta s e t to use f o r the second
% batch o f t r a i n in g . S im i l i a r s t r u c t u r e as f o r f i r s t
% train_percentage : How much o f the da ta s e t to use f o r t ra in ing , in the
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% range [0 −1]. This w i l l be taken from the beg inning o f the da ta s e t
% vec to r s
% tes t_percentage : How much of the da ta s e t to use f o r t ra in ing , in the
% range [0 −1]. This w i l l be taken from the end o f the datase vec to r . So
% i f tra in_percentage+test_percentage >1, there w i l l be over lap in the
% t ra in i n g and t e s t i n g s e t s
% epochs : In t e ge r determining the number o f epochs the experiment w i l l run
% for
% learning_rate : The l ea rn ing ra te to use f o r the backprop t r a i n i n g
% hidden_size : The number o f nodes in the hidden l aye r
% c r i t e r i o n : A va lue k such tha t i f t<=o+k and t>=o−k , the output o
% c l a s s i f i e s as the t a r g e t t . This va lue i s used when t e s t i n g the network
% to see i f i t c l a s s i f i e s t e s t pa t t e rn s c o r r e c t l y .
%
% Outputs :
% Al l the outputs have had an add i t i ona l f i e l d t e s t l o g added . This
% conta ins a number denot ing how b i g propor t ion o f the t e s t in s tance s t ha t
% were c o r r e c t l y c l a s s i f i e d in each run . These are padded so they are
% conta ins e lements equa l to the number o f epochs even i f the network
% converges e a r l i e r . f i r s t and second conta ins in add i t i on f i e l d s X. t r a in
% and X. t e s t conta in ing the t r a i n i n g and t e s t i n g in s tance s used .
% f i r s t : Data f o r the f i r s t t r a i n i n g batch performed
% second : Data f o r the second t r a i n in g batch performed
% th i r d : Data f o r t e s t i n g the f i r s t t e s t batch during the second t r a i n i n g .
function [ f i r s t , second , th i rd ] = run_cf_experiment ( f i r s t , second , . . .

t ra in_percentage , test_percentage , epochs , l earn ing_rate , . . .
hidden_size , c r i t e r i o n )

%Calcu la t e number o f in s tance s to use f o r t r a i n i n g and t e s t i n g
train_num = round( s ize ( f i r s t . a l l . in , 1 )∗ t ra in_percentage ) ;
test_num = round( s ize ( f i r s t . a l l . in , 1 )∗ tes t_percentage ) ;

%Create input and output s e t s proper l y s t ruc tu r ed fo r the neura l
%network
f i r s t . t r a i n . in = permute ( f i r s t . a l l . in ( 1 : train_num , : ) , [ 2 , 1 ] ) ;
f i r s t . t r a i n . out = permute ( f i r s t . a l l . out ( 1 : train_num , : ) , [ 2 , 1 ] ) ;
f i r s t . t e s t . in = permute ( f i r s t . a l l . in (end−test_num : end , : ) , [ 2 1 ] ) ;
f i r s t . t e s t . out = permute ( f i r s t . a l l . out (end−test_num : end , : ) , [ 2 1 ] ) ;
f i r s t . t e s t l o g = [ ] ;

%Repeat f o r second t r a i n i n g per iod
train_num = round( s ize ( second . a l l . in , 1 )∗ t ra in_percentage ) ;
test_num = round( s ize ( second . a l l . in , 1 )∗ tes t_percentage ) ;
second . t r a i n . in = permute ( second . a l l . in ( 1 : train_num , : ) , [ 2 1 ] ) ;
second . t r a i n . out = permute ( second . a l l . out ( 1 : train_num , : ) , [ 2 1 ] ) ;
second . t e s t . in = permute ( second . a l l . in (end−test_num : end , : ) , [ 2 1 ] ) ;
second . t e s t . out = permute ( second . a l l . out (end−test_num : end , : ) , [ 2 1 ] ) ;
second . t e s t l o g = [ ] ;

%Keep a l o g o f how we l l the performance on the f i r s t da ta s e t deve l ops
%whi l e l ea rn ing the second
th i rd . t e s t l o g = [ ] ;

%Create a new network with one hidden l aye r
network_size = [ s ize ( f i r s t . t r a i n . in , 1 ) , hidden_size , . . .

s ize ( f i r s t . t r a i n . out , 1 ) ] ;
net = rnn ( network_size , l ea rn ing_rate ) ;

%Star t t r a i n i n g f i r s t batch , s t o r i n g the b e s t net f o r l a t e r use
bes tnet = net ;
for i = 1 : epochs

net = train_epoch ( net , f i r s t . t r a i n . in , f i r s t . t r a i n . out ) ;
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%Test the network and c a l c u l a t e percentage
c o r r e c t = test_ann ( net , f i r s t . t e s t . in , f i r s t . t e s t . out , c r i t e r i o n ) ;
percentage = co r r e c t / s ize ( f i r s t . t e s t . in , 2 ) ;

%Store the b e s t net so f a r
i f ( percentage>max( f i r s t . t e s t l o g ) ) ;

be s tne t = net ;
end
f i r s t . t e s t l o g ( i ) = percentage ;

%I f 100% accuracy , s top t r a i n in g and s e t the t e s t l o g f o r the
%remaining epochs to be 100% as we l l
i f ( c o r r e c t==s ize ( f i r s t . t e s t . out , 2 ) )

f i r s t . t e s t l o g ( i : epochs )=1;
break

end
end
disp ( sprintf ( ’%s ␣Best ␣network␣ c l a s s i f i e d ␣%d%%␣ c o r r e c t l y ’ , . . .
’ Tra in ing ␣ o f ␣ f i r s t ␣batch␣ complete . ’ , max( f i r s t . t e s t l o g ) ∗ 1 0 0 ) ) ;

% Now the network i s t ra ined as good as p o s s i b l e ( or as good as we want
% i t ) . The next s t ep i s to t r a in i t to l earn new information , t h i s i s
% s tored in second . a l l . in and second . a l l . out
net = bes tne t ;

for i = 1 : epochs
net = train_epoch ( net , second . t r a i n . in , second . t r a i n . out ) ;

c o r r e c t = test_ann ( net , second . t e s t . in , second . t e s t . out , c r i t e r i o n ) ;
percentage = co r r e c t / s ize ( second . t e s t . in , 2 ) ;

i f ( percentage > max( second . t e s t l o g ) )
bes tne t = net ;

end
second . t e s t l o g ( i ) = percentage ;

%t e s t again with the f i r s t t e s t s e t to see how i t performs
th i rd . t e s t l o g ( i ) = test_ann ( net , f i r s t . t e s t . in , . . .

f i r s t . t e s t . out , c r i t e r i o n )/ s ize ( f i r s t . t e s t . in , 2 ) ;

i f ( c o r r e c t==s ize ( second . t e s t . out , 2 ) )
second . t e s t l o g ( i +1: epochs )=1;
th i rd . t e s t l o g ( i +1: epochs)= th i rd . t e s t l o g ( i ) ;
break

end
end

disp ( sprintf ( ’%s ␣Best ␣network␣ c l a s s i f i e d ␣%d%%␣ c o r r e c t l y ’ , . . .
’ Tra in ing ␣ o f ␣ second␣batch␣ complete . ’ , max( second . t e s t l o g ) ∗ 1 0 0 ) ) ;

disp ( sprintf ( ’%s ␣ o f ␣ i n i t i a l ␣ datase t ␣ i s ␣%d%%␣ c o r r e c t l y ’ , . . .
’ Experiment␣ complete . ␣ Fina l ␣ performance ’ , t h i rd . t e s t l o g (end ) ∗ 1 0 0 ) ) ;

B.4.1 Pseudo rehearsal

Listing 21: run_pseudo_patt_experiment.m: Source code for running a catat-
srophic forgetting experiement using pseudopattern training
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% Function used to run an experiment to t e s t f o r ca t a s t r oph i c f o r g e t t i n g
% using a regu l a r f u l l y −connected feed−forward network t ra ined with pseudo
% rehea r sa l and backpropagat ion
%
% func t ion [ f i r s t , second , t h i r d ] = run_pseudo_patt_experiment ( f i r s t , second , . . .
% train_percentage , tes t_percentage , epochs , learning_rate , . . .
% hidden_size , c r i t e r i on , pseudo_pool )
%
% Inputs :
% f i r s t : A data s t r u c t u r e s e t with da ta s e t to use f o r the f i r s t batch o f
% t r a in i n g and t e s t i n g . This shou ld be s e t in f i r s t . a l l . in and
% f i r s t . a l l . out
% second A data s t r u c t u r e conta in ing the da ta s e t to use f o r the second
% batch o f t r a i n in g . S im i l i a r s t r u c t u r e as f o r f i r s t
% train_percentage : How much o f the da ta s e t to use f o r t ra in ing , in the
% range [0 −1]. This w i l l be taken from the beg inning o f the da ta s e t
% vec to r s
% tes t_percentage : How much of the da ta s e t to use f o r t ra in ing , in the
% range [0 −1]. This w i l l be taken from the end o f the datase vec to r . So
% i f tra in_percentage+test_percentage >1, there w i l l be over lap in the
% t ra in i n g and t e s t i n g s e t s
% epochs : In t e ge r determining the number o f epochs the experiment w i l l run
% for
% learning_rate : The l ea rn ing ra te to use f o r the backprop t r a i n i n g
% hidden_size : The number o f nodes in the hidden l aye r
% c r i t e r i o n : A va lue k such tha t i f t<=o+k and t>=o−k , the output o
% c l a s s i f i e s as the t a r g e t t . This va lue i s used when t e s t i n g the network
% to see i f i t c l a s s i f i e s t e s t pa t t e rn s c o r r e c t l y .
% pseudo_pool : How many pseudo pa t t e rn s to l earn along s i d e the second
% t ra in i n g s e t
%
% Outputs :
% Al l the outputs have had an add i t i ona l f i e l d t e s t l o g added . This
% conta ins a number denot ing how b i g propor t ion o f the t e s t in s tance s t ha t
% were c o r r e c t l y c l a s s i f i e d in each run . These are padded so they are
% conta ins e lements equa l to the number o f epochs even i f the network
% converges e a r l i e r . f i r s t and second conta ins in add i t i on f i e l d s X. t r a in
% and X. t e s t conta in ing the t r a i n i n g and t e s t i n g in s tance s used .
% f i r s t : Data f o r the f i r s t t r a i n i n g batch performed
% second : Data f o r the second t r a i n in g batch performed
% th i r d : Data f o r t e s t i n g the f i r s t t e s t batch during the second t r a i n i n g .

function [ f i r s t , second , th i rd ] = run_pseudo_patt_experiment ( f i r s t , second , . . .
t ra in_percentage , test_percentage , epochs , l earn ing_rate , . . .
hidden_size , c r i t e r i o n , pseudo_pool )

%Calcu la t e number o f in s tance s to use f o r t r a i n i n g and t e s t i n g
train_num = round( s ize ( f i r s t . a l l . in , 1 )∗ t ra in_percentage ) ;
test_num = round( s ize ( f i r s t . a l l . in , 1 )∗ tes t_percentage ) ;

%Create input and output s e t s proper l y s t ruc tu r ed fo r the neura l
%network
f i r s t . t r a i n . in = permute ( f i r s t . a l l . in ( 1 : train_num , : ) , [ 2 , 1 ] ) ;
f i r s t . t r a i n . out = permute ( f i r s t . a l l . out ( 1 : train_num , : ) , [ 2 , 1 ] ) ;
f i r s t . t e s t . in = permute ( f i r s t . a l l . in (end−test_num : end , : ) , [ 2 1 ] ) ;
f i r s t . t e s t . out = permute ( f i r s t . a l l . out (end−test_num : end , : ) , [ 2 1 ] ) ;
f i r s t . t e s t l o g = [ ] ;

%Repeat f o r second t r a i n i n g per iod
train_num = round( s ize ( second . a l l . in , 1 )∗ t ra in_percentage ) ;
test_num = round( s ize ( second . a l l . in , 1 )∗ tes t_percentage ) ;
second . t r a i n . in = permute ( second . a l l . in ( 1 : train_num , : ) , [ 2 1 ] ) ;
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second . t r a i n . out = permute ( second . a l l . out ( 1 : train_num , : ) , [ 2 1 ] ) ;
second . t e s t . in = permute ( second . a l l . in (end−test_num : end , : ) , [ 2 1 ] ) ;
second . t e s t . out = permute ( second . a l l . out (end−test_num : end , : ) , [ 2 1 ] ) ;
second . t e s t l o g = [ ] ;

%Keep a l o g o f how we l l the performance on the f i r s t da ta s e t deve l ops
%whi l e l ea rn ing the second
th i rd . t e s t l o g = [ ] ;

%Create a new network with one hidden l aye r
network_size = [ s ize ( f i r s t . t r a i n . in , 1 ) , hidden_size , . . .

s ize ( f i r s t . t r a i n . out , 1 ) ] ;
net = rnn ( network_size , l ea rn ing_rate ) ;

%Star t t r a i n i n g f i r s t batch , s t o r i n g the b e s t net f o r l a t e r use
bes tnet = net ;
for i = 1 : epochs

net = train_epoch ( net , f i r s t . t r a i n . in , f i r s t . t r a i n . out ) ;

%Test the network and c a l c u l a t e percentage
c o r r e c t = test_ann ( net , f i r s t . t e s t . in , f i r s t . t e s t . out , c r i t e r i o n ) ;
percentage = co r r e c t / s ize ( f i r s t . t e s t . in , 2 ) ;

%Store the b e s t net so f a r
i f ( percentage>max( f i r s t . t e s t l o g ) ) ;

be s tne t = net ;
end
f i r s t . t e s t l o g ( i ) = percentage ;

%I f 100% accuracy , s top t r a i n in g and s e t the t e s t l o g f o r the
%remaining epochs to be 100% as we l l
i f ( c o r r e c t==s ize ( f i r s t . t e s t . out , 2 ) )

f i r s t . t e s t l o g ( i : epochs )=1;
break

end
end
disp ( sprintf ( ’%s ␣Best ␣network␣ c l a s s i f i e d ␣%d%%␣ c o r r e c t l y ’ , . . .
’ Tra in ing ␣ o f ␣ f i r s t ␣batch␣ complete . ’ , max( f i r s t . t e s t l o g ) ∗ 1 0 0 ) ) ;
net = bes tne t ;

% Now the network i s t ra ined as good as p o s s i b l e ( or as good as we want
% i t ) . The next s t ep i s to t r a in i t to l earn new information , t h i s i s
% s tored in second . a l l . in and second . a l l . out . Since we are doing
% pseudo rehea r sa l we ’ l l a l s o generate a s e t o f pseudo pa t t e rns to use
% for t r a i n i n g a l ong s i d e the new pa t t e rns

% The pseudo pa t t e rn s o l u t i on here d i f f e r s somewhat from the one
% presented by Robins . While he was l ea rn ing one new pat t e rn at a time
% whi l e t e s t i n g h i s networks , I am learn ing a l l the new pa t t e rn s at
% once ( as i t i s u s ua l l y done during ANN t ra in in g ) . To adapt the
% pseudo rehea r sa l s o l u t i on to t h i s t ra in ing , I am adding the en t i r e
% poo l o f pseudo pa t t e rn s to the l i s t o f pa t t e rns to be learned ,
% ins t ead o f randomly s e l e c t i n g th ree .

% Generate a poo l o f psuedopat terns
for i = 1 : pseudo_pool

item . in = [ ] ;
for j = 1 : s ize ( f i r s t . t r a i n . in , 1 )

item . in = [ item . in rand∗20−10];
end
item . in = permute ( item . in , [ 2 1 ] ) ;
net = ann_activate ( net , item . in ) ;
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item . out = net . L{3} ;
second . t r a i n . in = [ second . t r a i n . in item . in ] ;
second . t r a i n . out = [ second . t r a i n . out item . out ] ;

second . t e s t . in = [ second . t e s t . in item . in ] ;
second . t e s t . out = [ second . t e s t . out item . out ] ;

end

% Train the second batch o f pa t t e rn s t o g e t h e r with the pseudo poo l (now
% added to second . t r a in )
for i = 1 : epochs

net = train_epoch ( net , second . t r a i n . in , second . t r a i n . out ) ;

c o r r e c t = test_ann ( net , second . t e s t . in , second . t e s t . out , c r i t e r i o n ) ;
percentage = co r r e c t / s ize ( second . t e s t . in , 2 ) ;

i f ( percentage > max( second . t e s t l o g ) )
bes tne t = net ;

end
second . t e s t l o g ( i ) = percentage ;

%t e s t again with the f i r s t t e s t s e t to see how i t performs
th i rd . t e s t l o g ( i ) = test_ann ( net , f i r s t . t e s t . in , . . .

f i r s t . t e s t . out , c r i t e r i o n )/ s ize ( f i r s t . t e s t . in , 2 ) ;

i f ( c o r r e c t==s ize ( second . t e s t . out , 2 ) )
second . t e s t l o g ( i +1: epochs )=1;
th i rd . t e s t l o g ( i +1: epochs)= th i rd . t e s t l o g ( i ) ;
break

end
end

disp ( sprintf ( ’%s ␣Best ␣network␣ c l a s s i f i e d ␣%d%%␣ c o r r e c t l y ’ , . . .
’ Tra in ing ␣ o f ␣ second␣batch␣ complete . ’ , max( second . t e s t l o g ) ∗ 1 0 0 ) ) ;

disp ( sprintf ( ’%s ␣ o f ␣ i n i t i a l ␣ datase t ␣ i s ␣%d%%␣ c o r r e c t l y ’ , . . .
’ Experiment␣ complete . ␣ Fina l ␣ performance ’ , t h i rd . t e s t l o g (end ) ∗ 1 0 0 ) ) ;

B.4.2 Activation Sharpening

Listing 22: train_actsharp_epoch.m: Source code for training an epoch using the
activation sharpening algorithm. Replaces the regular “train_epoch.m”. training
function net = train_actsharp_epoch ( net , in , out , k , sharp_factor )

%Get a random order to t r a in the exemplars in
order = randperm( s ize ( in , 2 ) ) ;

for j = 1 : s ize ( order )
n = order ( j ) ;
net = ann_activate ( net , in ( : , n ) ) ;

net = act ivat ion_sharpen ing ( net , k , sharp_factor ) ;

net = ann_activate ( net , in ( : , n ) ) ;
e r r = out ( : , n ) − net . L{3} ;
net = rnn_train ( net , err , 1 ) ;

end
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Listing 23: activation_sharpening.m: Source code for performing the activation
sharpening algorithm. training
% Peform the a c t i v a t i o n sharpening a lgor i thm on an array o f nodes .
% These nodes are assumed to be the output va lue s o f the hidden l ay e r in a
% 3− l a ye red neura l network .
%
% func t ion hidden_layer = act iva t ion_sharpening ( hidden_layer , k ,
% sharpening_factor )
%
% Inputs :
% net : A network a l ready a c t i v a t e d ( us ing ann_activate / rnn_activate )
% k : The number o f nodes to increase the output va lue o f . n−k nodes w i l l be
% reduced
% sharpening_factor : How much to ’ sharpen ’ the outputs . A high f a c t o r w i l l
% lead to g r ea t e r d i f f e r e n c e s between the hidden l aye r prov ided as input
% and the hidden l ay e r produced as output .
%
% Outputs :
% A network with sharpened nodes .
function net = act ivat ion_sharpen ing ( net , k , sharpen ing_factor )

% Sharpen a va lue .
% Inputs :
% va l : The va lue to sharpen . This i s assumed to be between 0 and 1
% apply_sharpening : Boolean va lue determining say ing i f the va lue i s
% among the k h i g h e s t ( and shou ld be increased ) or among the k l owes t
% and shou ld be lowered
%
% Output :
% ans : The sharpened va lue
function ans = sharpen ( val , apply_sharpening )

i f apply_sharpening
ans = val + sharpen ing_factor ∗(1− va l ) ;

else
ans = val − sharpen ing_factor ∗ va l ;

end
end

hidden_layer = net . L{2} ;
so r t ed = sort ( hidden_layer , ’ descend ’ ) ;
border_val = sor t ed (k+1);
sharpen_nodes = hidden_layer>border_val ;
hidden_layer = arrayfun (@sharpen , hidden_layer , sharpen_nodes ) ;
h idden_errors = net . L{2}−hidden_layer ;

%Updating w1 . Adding 1 fo r the input b i a s . Backpropagating error from
%the hidden l aye r .
for i =1: length ( h idden_errors )

net .w{1}( i , : ) = net .w{1}( i , : ) + net . l r .∗ hidden_errors ( i ) .∗ [ net . L{1} ’ 1 ] ;
end

end

Listing 24: run_actsharp_experiment.m: Source code for running a catatsrophic
forgetting experiement using activation sharpening training
% Function used to run an experiment to t e s t f o r CF
% Datas t ruc tures with t r a i n i n g and t e s t data s e t are passed
% in , and the same da t a s t r u c t u r e s with an exper imenta l l o g i s re turned back
function [ f i r s t , second , th i rd ] = run_actsharp_experiment ( f i r s t , second , . . .

t ra in_percentage , test_percentage , epochs , l earn ing_rate , . . .

90



B IMPLEMENTED CODE

hidden_size , c r i t e r i o n , actsharp_k , actsharp_factor )

%Calcu la t e number o f in s tance s to use f o r t r a i n i n g and t e s t i n g
train_num = round( s ize ( f i r s t . a l l . in , 1 )∗ t ra in_percentage ) ;
test_num = round( s ize ( f i r s t . a l l . in , 1 )∗ tes t_percentage ) ;

%Create input and output s e t s proper l y s t ruc tu r ed fo r the neura l
%network
f i r s t . t r a i n . in = permute ( f i r s t . a l l . in ( 1 : train_num , : ) , [ 2 , 1 ] ) ;
f i r s t . t r a i n . out = permute ( f i r s t . a l l . out ( 1 : train_num , : ) , [ 2 , 1 ] ) ;
f i r s t . t e s t . in = permute ( f i r s t . a l l . in (end−test_num : end , : ) , [ 2 1 ] ) ;
f i r s t . t e s t . out = permute ( f i r s t . a l l . out (end−test_num : end , : ) , [ 2 1 ] ) ;
f i r s t . t e s t l o g = [ ] ;

%Repeat f o r second t r a i n i n g per iod
train_num = round( s ize ( second . a l l . in , 1 )∗ t ra in_percentage ) ;
test_num = round( s ize ( second . a l l . in , 1 )∗ tes t_percentage ) ;
second . t r a i n . in = permute ( second . a l l . in ( 1 : train_num , : ) , [ 2 1 ] ) ;
second . t r a i n . out = permute ( second . a l l . out ( 1 : train_num , : ) , [ 2 1 ] ) ;
second . t e s t . in = permute ( second . a l l . in (end−test_num : end , : ) , [ 2 1 ] ) ;
second . t e s t . out = permute ( second . a l l . out (end−test_num : end , : ) , [ 2 1 ] ) ;
second . t e s t l o g = [ ] ;

%Keep a l o g o f how we l l the performance on the f i r s t da ta s e t deve l ops
%whi l e l ea rn ing the second
th i rd . t e s t l o g = [ ] ;

%Create a new network with one hidden l aye r
network_size = [ s ize ( f i r s t . t r a i n . in , 1 ) , hidden_size , . . .

s ize ( f i r s t . t r a i n . out , 1 ) ] ;
net = rnn ( network_size , l ea rn ing_rate ) ;

% Train f i r s t batch , and s t o r e the b e s t net f o r the next t r a i n i n g
% batch .
bes tnet = net ;
for i = 1 : epochs

net = train_actsharp_epoch ( net , f i r s t . t r a i n . in , . . .
f i r s t . t r a i n . out , actsharp_k , actsharp_factor ) ;

%Test the network on a separa te t e s t s e t
c o r r e c t = test_ann ( net , f i r s t . t e s t . in , f i r s t . t e s t . out , c r i t e r i o n ) ;
percentage = co r r e c t / s ize ( f i r s t . t e s t . in , 2 ) ;

%Store the b e s t net so f a r
i f ( percentage>max( f i r s t . t e s t l o g ) ) ;

be s tne t = net ;
end
f i r s t . t e s t l o g ( i ) = percentage ;

%I f 100% accuracy , s top t r a i n in g and s e t the t e s t l o g f o r the
%remaining epochs to be 100% as we l l
i f ( c o r r e c t==s ize ( f i r s t . t e s t . out , 2 ) )

f i r s t . t e s t l o g ( i : epochs )=1;
break

end
end
disp ( sprintf ( ’%s ␣Best ␣network␣ c l a s s i f i e d ␣%d%%␣ c o r r e c t l y ’ , . . .
’ Tra in ing ␣ o f ␣ f i r s t ␣batch␣ complete . ’ , max( f i r s t . t e s t l o g ) ∗ 1 0 0 ) ) ;

% Now the network i s t ra ined as good as p o s s i b l e ( or as good as we want
% i t ) . The next s t ep i s to t r a in i t to l earn new information , t h i s i s
% s tored in second . a l l . in and second . a l l . out
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net = bes tne t ;

for i = 1 : epochs
net = train_actsharp_epoch ( net , second . t r a i n . in , . . .

second . t r a i n . out , actsharp_k , act sharp_factor ) ;

c o r r e c t = test_ann ( net , second . t e s t . in , second . t e s t . out , c r i t e r i o n ) ;
percentage = co r r e c t / s ize ( second . t e s t . in , 2 ) ;

i f ( percentage > max( second . t e s t l o g ) )
bes tne t = net ;

end
second . t e s t l o g ( i ) = percentage ;

%t e s t again with the f i r s t t e s t s e t to see how i t performs
th i rd . t e s t l o g ( i ) = test_ann ( net , f i r s t . t e s t . in , . . .

f i r s t . t e s t . out , c r i t e r i o n )/ s ize ( f i r s t . t e s t . in , 2 ) ;

i f ( c o r r e c t==s ize ( second . t e s t . out , 2 ) )
second . t e s t l o g ( i +1: epochs )=1;
th i rd . t e s t l o g ( i +1: epochs)= th i rd . t e s t l o g ( i ) ;
break

end
end

disp ( sprintf ( ’%s ␣Best ␣network␣ c l a s s i f i e d ␣%d%%␣ c o r r e c t l y ’ , . . .
’ Tra in ing ␣ o f ␣ second␣batch␣ complete . ’ , max( second . t e s t l o g ) ∗ 1 0 0 ) ) ;

disp ( sprintf ( ’%s ␣ o f ␣ i n i t i a l ␣ datase t ␣ i s ␣%d%%␣ c o r r e c t l y ’ , . . .
’ Experiment␣ complete . ␣ Fina l ␣ performance ’ , t h i rd . t e s t l o g (end ) ∗ 1 0 0 ) ) ;
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B.5 Analysis

This section contains the source code used to analyze the results from the
experiments.

Listing 25: analyze_cf_results.m: Source code for analyzing the results produced
from backpropagation and pseudo rehearsal training in experiment 1
function [ normal_best , pseudo_res ] = ana lyze_c f_resu l t s ( testname )

% A he lpe r func t i on fo r conver t ing the data s t r u c t u r e names
% in to names s u i t a b l e f o r d i s p l a y in a p l o t
function ans = replace_name ( inp )

i f strcmp ( inp , ’ log_8 ’ )
ans = ’ 8␣Psuedo␣ pat t e rn s ’ ;

e l s e i f strcmp ( inp , ’ log_32 ’ )
ans = ’ 32␣Pseudo␣ pat t e rns ’ ;

e l s e i f strcmp ( inp , ’ log_128 ’ )
ans = ’ 128␣Pseudo␣ pat t e rn s ’ ;

e l s e i f strcmp ( inp , ’ log_500 ’ )
ans = ’ 500␣Pseudo␣ pat t e rn s ’ ;

else
ans = inp ;

end
end

normal = load ( s t r c a t ( ’ cf_ ’ , testname , ’ . mat ’ ) ) ;
pseudo = load ( s t r c a t ( ’ pseudo_ ’ , testname , ’ . mat ’ ) ) ;

hold o f f ;
pseudo = o r d e r f i e l d s ( pseudo ) ;
names = f i e ldnames ( pseudo ) ;
minlen = s ize ( normal . runs . avg . th i rd .mean, 2 ) ;
h a l f v a l = max( normal . runs . avg . f i r s t .mean) / 2 ;

normal_best = find ( normal . runs . avg . th i rd .mean<ha l f va l , 1 , ’ f i r s t ’ ) ;
pseudo_res . bes t = −1;

%Keep an array o f names f o r the p l o t .
plotnames = s t r v c a t ( ’ Backpropagation ’ , ’50%␣Performance ’ ) ;

%Loop fo r f i nd in g the b e s t pseudo s o l u t i on and fo r f i nd i n g
for i =1: s ize ( names )

p = pseudo . ( char ( names ( i ) ) ) ;
plotnames = s t r v c a t ( plotnames , replace_name ( char ( names ( i ) ) ) ) ;
l = s ize (p , 2 ) ;
i f l<minlen ;

minlen = l ;
end
ha l f_th i s = find (p<ha l f va l , 1 , ’ f i r s t ’ ) ;

%Store the ha l f−po in t f o r t h i s pseudo t e s t
pseudo_res . ( char ( names ( i ) ) ) = ha l f_th i s ;

%I f the ha l f−po in t was not found , the b e s t p o s s i b l e performance
%was achieved , so update t ha t
i f s ize ( ha l f_th i s ,2)==0

pseudo_res . bes t = zeros ( 1 , 0 ) ;
end
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%Otherwise i f the ha l f−po in t i s a f t e r the current bes t , update
%current b e s t as we l l
i f s ize ( pseudo_res . best ,2)~=0

i f ha l f_th i s>pseudo_res . bes t
pseudo_res . bes t = ha l f_th i s ;

end
end

end

%Create the l i n e t ha t w i l l show the 50% performance po in t
ha l f = zeros (1 , minlen ) ;
h a l f ( : , : ) = ha l f v a l ;

%Star t p l o t t i n g
hold on ;
plot ( normal . runs . avg . th i rd .mean( 1 : minlen ) , ’ k ’ ) ;
plot ( ha l f , ’ k−− ’ ) ;

graphtypes = s t r v c a t ( ’− ’ , ’−− ’ , ’ : ’ , ’ r− ’ , ’ r−. ’ , ’ r−− ’ , ’ r : ’ ) ;
for i =1: s ize ( names )

p = pseudo . ( char ( names ( i ) ) ) ;
plot (p ( 1 : minlen ) , graphtypes ( i , : ) ) ;

end

legend ( plotnames ) ;
xlabel ( ’ Epochs ’ ) ;
ylabel ( ’ Test ␣ pat t e rn s ␣ c o r r e c t l y ␣ c l a s s i f i e d ’ ) ;
hold o f f ;

end

Listing 26: analyze_varied_led_results.m: Source code for analysing the results
from experiment 2.
function [ out ] = ana lyze_c f_resu l t s ( in_data , io_data , gio_data , . . .

check_point , p lo t l ength , i n f o_s t r )

% A he lpe r func t i on fo r conver t ing the data s t r u c t u r e names
% in to names s u i t a b l e f o r d i s p l a y in a p l o t
function ans = replace_name ( inp )

i f strcmp ( inp , ’ log_8 ’ )
ans = ’ 8␣Psuedo␣ pat t e rn s ’ ;

e l s e i f strcmp ( inp , ’ log_32 ’ )
ans = ’ 32␣Pseudo␣ pat t e rns ’ ;

e l s e i f strcmp ( inp , ’ log_128 ’ )
ans = ’ 128␣Pseudo␣ pat t e rn s ’ ;

e l s e i f strcmp ( inp , ’ log_500 ’ )
ans = ’ 500␣Pseudo␣ pat t e rn s ’ ;

else
ans = inp ;

end
end

hold o f f ;
data = o r d e r f i e l d s ( in_data ) ;
names = f i e ldnames ( data ) ;
check_val= check_point ;

% normal_best = f ind ( normal . runs . avg . t h i r d .mean<ha l f v a l , 1 , ’ f i r s t ’ ) ;
% pseudo_res . b e s t = −1;

%Keep an array o f names f o r the p l o t .
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% plotnames = s t r v c a t ( ’ Backpropagation ’ , ’50% Performance ’ ) ;

%Loop fo r f i nd in g the b e s t pseudo s o l u t i on and fo r f i nd i n g
x_io = zeros ( s ize ( names ) ) ;
x_gio = zeros ( s ize ( names ) ) ;
epocs = zeros ( s ize ( names ) ) ;
x_irr = zeros ( s ize ( names ) ) ;
disp ( sprintf ( ’%s&IO&GIO&Epochs␣ un t i l ␣75%␣performance \\ ’ , i n f o_s t r ) ) ;
for i =1: s ize ( names )

this_item = data . ( char ( names ( i ) ) ) . avg . th i rd .mean ;
t e s t_id = strrep ( char ( names ( i ) ) , ’ log_ ’ , ’ ’ ) ;
test_name = cat (2 , ’ test_ ’ , te s t_id ) ;
out . ( test_name ) . i o = io_data . ( cat (2 , ’ io_ ’ , te s t_id ) ) . percent ;
out . ( test_name ) . g i o = gio_data . ( cat (2 , ’ gio_ ’ , te s t_id ) ) . percent ;

%plotnames = s t r v c a t ( plotnames , replace_name ( char (names( i ) ) ) ) ;
check_val = data . ( char ( names ( i ) ) ) . avg . f i r s t .mean(end)∗ check_point ;
at_checkpoint = find ( this_item<check_val , 1 , ’ f i r s t ’ ) ;

%Store where t h i s t e s t reached the check po in t
out . ( test_name ) . epoch = at_checkpoint ;

disp ( sprintf ( ’%s&%2.1 f&%2.1 f&%d\\\\ ’ , test_id , out . ( test_name ) . io , . . .
out . ( test_name ) . gio , out . ( test_name ) . epoch ) ) ;

x_irr ( i ) = str2num( tes t_id ) ;
x_io ( i ) = out . ( test_name ) . i o ;
x_gio ( i ) = out . ( test_name ) . g i o ;
epochs ( i ) = out . ( test_name ) . epoch ;

end
end
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