& NTNU

Innovation and Creativity

User Interface for 3D Visualization with
Emphasis on Combined Voxel and

Surface Representation
Design Report

Runar Ylvisaker Lyngset

Master of Science in Computer Science
Submission date: June 2006
Supervisor: Ketil By, IDI

Norwegian University of Science and Technology
Department of Computer and Information Science

Problem Description

The objective of this work is to design an intuitive user interface for representing both voxel and
surface models in scientific visualizations.

Assignment given: 20. January 2006
Supervisor: Ketil Bg, IDI

Abstract

The thesis presents a user interface design aimed at the scenario where a
dual representation of a volume is desired in order to emphasize certain
parts of a volume using surface graphics while the rest of the volume is
rendered using direct volume rendering techniques. A typical situation in
which this configuration can prove useful is when studying images acquired
for medical purposes. Sometimes the user wants to identify and represent an
organ using an opaque surface in an otherwise partly opaque visualization of
the volume data set. The design is based on the visualization library VITK
along with Trolltech Qt, a GUI Toolkit in C++. The choice of using VTK
as a visualization library was made after evaluating similar systems. The
report includes a state of the art chapter, the requirements for the system,
the system design and the results achieved after implementing the design are
shown.

ii

Preface

This thesis is the result of the work of one student, Runar Ylvisaker Lyngset.
It was written during the spring of 2006 at Institutt for Datateknikk of In-
formasjonsvitenskap at NTNU in Trondheim, Norway. This constitutes the
final work of my Master of Science degree at NTNU. The system designed
was requested by Trollhetta AS and teaching supervisor was Ketil Bg.

Trondheim

Runar Ylvisaker Lyngset

iii

Contents

Introduction

1.1 Problem Description
1.2 Challenges o
1.3 Thesis Title and Description
1.4 Solution Strategies
1.5 Thesis Outline

Background theory

2.1 Volume Visualization
2.1.1 Direct Volume Rendering
2.1.2 Iso-surface Extraction
2.1.3 Bestof Both Worlds

State of the Art

3.1 Graphics libraries Lo oo
3.1.1 VGLo
3.1.2 Coin3D / SIM Voleon
3.1.3 OpenGL Volumizer
3.1.4 Visualization Toolkit (VTK)

3.2 Graphics Libraries Discussion

System Requirements

4.1 Functionality oo
4.1.1 Program Characteristics
4.1.2 Surface Graphics Functionality
4.1.3 Volume Rendering Functionality
4.14 3D View Navigation
4.1.5 VTK Module Editing

4.2 Performance oL

4.3 Attributes
4.3.1 Portability oo
4.3.2 Correctness
4.3.3 Maintainability 00000

v

4.4 Design Constraints

5 System Design
5.1 Choice of System Components
5.2 Conceptual Design
5.3 User Interface Features
5.4 Framework Created by Qt Designer
5.4.1 Window Framework
54.2 Qt VTK Interaction Widget
5.5 System Features 0.
5.5.1 Main View Functionality
552 VIKas XML
5.5.3 Import Data from XML-Structure
5.5.4 Instantiating VIK Modules
5.5.0 Pipeline Widget
5.5.6 Settings Widget L.
5.5.7 Help Browser Widget
5.6 System Class Design
5.6.1 Main View Class With VT'K-controls
5.6.2 Connecting Modules
5.6.3 VTK-Module Representation
5.6.4 Pipeline Widgeto
5.6.5 Settings Widget Class
5.6.6 DOM-node Model
5.6.7 Item for use in DOM-Node Model
5.7 Discussion

6 Results
6.1 User Interface Implementation
6.2 Example Visualizations.
6.3 Volume Visualizations
6.4 Project Details o0
6.5 Deployment Project0

7 Further Work
8 Conclusion
References

A User Manual
A.1 What is this Program?,
A2 How to Get Started,
A3 OpenaSceneFile
A4 Pipeline Widget o

21
21
23
23
24
25
26
27
28
28
29
29
32
34
36
41
41
44
44
44
46
48
48
49

51
o1
92
52
o7
o7

61

63

65

A41 Connect Modules 70

A.4.2 Disconnect Modules 70

A43 AddaNew Module. 72

A44 DeleteaModule, 72

A.5 Change a Module’s Settings 73
A.6 Walkthrough examples: Create visualizations from scratch . . 74
A.6.1 Simple File Loading 74

A.6.2 Volume Visualization Using Iso-surfaces 76

A.6.3 Volume Visualization using Ray Casting 78

B System Documentation 81

vi

vii

List of Figures

3.1
3.2

3.3

3.4

5.1
0.2
5.3
5.4

2.5

2.6

2.7
5.8

5.9

5.10
5.11

5.12
0.13
5.14

5.15

Mummy data set rendered using VGL 9
A volumetric data set of a human spine visualized using SIM
Voleon. 11

Figure shows the improvements when using hardware shading

in volume rendering as opposed to traditional volume rendering. 12
Head volume rendered using VTK. Skin rendered as iso-contour
with saggital cross slice view rendered with color lookup table. 14

System Conceptual Design 24
The user interface framework created using Qt Designer . . . 25
Dockable widget torn off the default dock area to the right of
the main window. oo oo 26
All dockable windows are closed and the main graphics view
now occupies the entire main window. 27

Example of XML format used to describe a simple VTK scene.
It consists of a file reader, a mapper to transform the input
from the reader into the graphical data used by the actor. The

scene created by this configuration can be seen in figure 6.4 . 30
The parsing of the different types of VIK modules sorted and
added to container-lists. oL 31

The pipeline widget showing the VTK visualization pipeline. 33
The direction of data flow in VTK starting with the source,

then filter, mapper and actor last. 33
Adding a new module to the pipeline using context menu ac-
tivated by clicking right mouse button. 34

A connection is made between a mapper and an actor module. 35
The Settings view showing the expanded view of a module’s

attributes. Lo L 36
Help system menu. L. 37
Help browser showing HTML User Manual. 38
Help Browser showing VTK Modules supported by the system

written in HTML. 38
VTK’s doxyGen HTML class documentation for vtkVolumel6Reader
shown in Help Browser. 39

5.16

0.17

5.18

5.19
5.20
0.21
5.22
5.23
0.24
5.25

6.1

6.2

6.3

6.4

6.5

6.6
6.7

6.8
6.9
6.10
6.11

6.12

The generated HTML project system design class documen-
tation shown in Help Browser.
A schematic view of the classes used in the system. The place-
ment of the classes is relative to where they initially appear
int the user interface. oL
The sequence of selecting a module in the Pipeline widget, en-
tering a new attribute value in the Settings widget and parsing
the XML-node and rendering the new scene.
VMainView class diagram
VConnection class diagram
VModule class diagram 0oL
VPipeline Class diagram
VSettings class diagram
VDomNodeModel class diagram
VDomNodeltem class diagram

Resulting user interface with CT head data set rendered using
Ray Casting.
User interface with help browser moved to left docking area to
better display more contents in the HITML documents. Sim-
ilarly the other two dockable windows may be relocated to
either the left, top or bottom of the main window.
The dockable windows are left floating over the main window.
This demonstrates the flexibility of a user interface imple-
mented with Qt. oo
A Dbasic polygonal model. Basic user interface configuration
without help browser.
CT data set visualization using iso-surfaces to show bone and
skin and cross slices showing saggital, coronal and axial views
of the volume. The applications’s help browser is shown at
the left of the screen. L.
Skull contour extracted from volume using iso-surfaces.
Both skin and bones are rendered using iso-surface represen-
tation. All tool windows are closed for main view to occupy
the entire screen. oo oo

Skull with skin and bone rendered using iso-surfaces contours.

Head volume rendered with ray casting showing brain.
The skull is rendered using ray casting while internal cavities
and skin are emphasized with an semi-transparent iso-surface.
Iron protein rendered with ray casting using custom opacity
and color transfer functions.
Volume visualization of iron protein using ray casting along
with a contour generated by iso-surface extraction.

X

o6
56

o7

A.1 Figure shows the user interface and it’s default configuration. 68

A.2 Pipeline execution order. 70
A.3 Connecting modules. L. 71
A .4 Before disconnecting. Input area is clicked. 71
A5 After disconnecting modules. 0L 71
A.6 Add a module using the context menu. 72
A.7 Delete a module from the context menu activated by right

clicking the module in Pipeline widget. 72
A.8 The Settings widget where a module’s attributes can be edited. 73
A9 Figure shows example configuration. 75
A.10 Figure shows result after connecting the modules. 7
A.11 Figure shows result after assigning color to the skin contour

and settings opacity value to 0.5. 7
A.12 Figure shows the data set rendered after connecting the modules. 79
A.13 Same scene after changing background color.. 79

Chapter 1

Introduction

Volume visualization has become an increasingly active research topic the
last decades and the result has been a number of groundbreaking volume
rendering algorithms and techniques for volume visualization. These algo-
rithms and techniques have since been subject to significant optimalization
in order to achieve interactive or, ideally, real-time performance. The main
improvement in frame rates has been through using special purpose hard-
ware and migrating the algorithms and techniques to take advantage of the
hardware available.

In the article "Volume Rendering in Medical Applications: We've got
pretty images, what’s left to do" a panel of key experts from well known vi-
sualization companies discusses what the challenges are in the field of volume
visualization in the near future. One of the panelists, Bill Lorensen from GE
Corporate Research states that although the core technology is well devel-
oped, volume rendering is still not used routinely in most hospitals. One of
the reasons for this is that for the most part, user interfaces are complicated
and not directly tied to the traditional techniques of the radiologist, such as
2D displays, filming and archiving.

Karen Zuiderveld states in the same article that radiologists are experts
in reading 2D images and the use of volume rendering does not necessarily
add to the diagnostic information unless the use of 3D techniques is fast and
easy. In order to achieve an efficient use of volume rendering the technology
needs to be seamlessly integrated into the diagnostic work flow[1].

1.1 Problem Description

Having a simple and intuitive user interface to volume visualization appli-
cations is vital for such systems to gain acceptance with a larger number of

user. This thesis seeks to design such a user interface that is easy to become
proficient with and is focused on the core functionality. The potential use of
the system is for making volume visualizations that are capable of displaying
both volumes rendered using direct volume rendering techniques and the use
of opaque surface geometry to emphasize internal structures of the volume
with a certain property.

1.2 Challenges

A crucial step in the process of designing such a system is to find the right
software libraries on which to base the design upon. Visualization libraries
are vast systems with a lot of functionality and development at this level is
beyond the scope of this project. The main goal of the design is to create
a way of utilizing an existing visualization library in order to interactively
create visualizations. A challenge of the design is to create user interface
features that are intuitive to the user by ensuring that the system behaves
the way the user thinks it will do.

1.3 Thesis Title and Description

The title of the thesis reads: "Design of User Interface for 3D Visualiza-
tion with Emphasis on Combined Volume and Surface Representation". An
attempt will be made to create a system for volume visualization which
is capable of rendering volumes with a dual representation which can uti-
lize well-established techniques for direct volume rendering as well as using
polygonal surface graphics to render parts of the volume which are to be
emphasized.

1.4 Solution Strategies

The work in this thesis has three major components, namely the process of
finding the right library toolkits to use, the system design and the imple-
mentation of the system. In order to establish a foundation on which the
design is created, different systems will be evaluated briefly to find good can-
didates for creating the system. The system will need two software libraries
in order to achieve the desired functionality of a visualization system with
a well designed user interface. Firstly, the visualization functionality of the
system will require a software library in order for the system to achieve its
primary goal. Secondly, the user interface needs to be based on a good GUI
toolkit library in order to successfully creating an easy to use and intuitive
user interface. The combination of the two libraries is dependent on com-
ponents for bridging the gap between the two libraries to fully utilize the
functionalities of the respective software libraries. Therefore, when different

systems are evaluated as candidates for the design, such a link between the
two needs to exist.

1.5 Thesis Outline

The structure of this thesis is based on the three main parts of work associ-
ated with the project.

e The Background Theory (chapter 2) and State of the Art (chapter 3)
chapters constitute the part of work related to the evaluation of differ-
ent systems that provide the functionality of the system.

e Chapter 4 specifies the requirements for the system while chapter 5,
System Design, presents the conceptual design and detailed system
design including class design used in the implementation of the system.

e Chapter 6 presents the resulting implementation of the design by giving
examples of uses and configurations for the finished system.

Chapter 2

Background theory

2.1 Volume Visualization

Volume rendering or volume graphics is a field in 3D computer graphics that
deals with the representation and visualization of discrete elements arranged
in a volume structure. This technique is very versatile and can thus represent
any object because it samples the entire volume as opposed to 3D surface
graphics which only represents points in space which are connected to form
surfaces.

Volume graphics are based on arranging volume elements called voxels
in a 3D array/structure. Voxels are popularly compared with pixels (abbre-
viation for "picture elements") as elements in a spatial representation while
voxels are elements that represent a component of a volume. Although the
"x" in the word "voxel" has no direct relation to the term "volume element"
it is rather the result of the notion of a volumetric pixel that has led to the
word "voxel".

A voxel can be represented in different ways and the fact that it is rep-
resented as a near cubic element does not imply that they are necessarily
stores as such. Voxel structures are often generated from other datasets i.e.
a stack of 2D images from a CT scan where the 2D image pixels form a single
3D voxel in order to create a volume structure.

2.1.1 Direct Volume Rendering

While other techniques such as iso-surface extraction pre-process the vol-
ume data set in order to produce images, direct volume rendering involves
the entire data set as the "direct"-word may suggest. Being a 3D rendering
technique implies that it is used to produce 2D images from a 3D data set.
One of the advantages of using direct volume rendering is that it has the po-
tential of displaying the complete data set. The technique relies upon color

and opacity transfer functions in order to map voxels with a certain intensity
to a given opacity and color value. This means that every voxel in the volume
is included in the process which implies that an obscured internal voxel may
contribute to the final result. A disadvantage with the technique is that im-
ages produced may become hard to interpret because of internal structures
obscured by other objects. It is therefore crucial to use carefully designed
transfer functions that emphasize the desired features while omitting unnec-
essary information. Direct volume rendering is a memory consumptive and
computationally intensive technique while dedicated hardware support has
improved the performance of the algorithms used dramatically [2].

2.1.2 Iso-surface Extraction

As the problem with direct volume rendering is to distinguish internal struc-
tures of a volume, this is the mere purpose of iso-surface extraction. The
technique involves connecting voxels of the same intensity and forming a
polygonal surface representation of the structure. The contours are displayed
as 3D opaque surface geometry which can be rendered on any hardware ac-
celerated computer very quickly. Once the surface is generated, it requires no
further processing, so it is a very fast and can display a large amount of data
quickly once generated. The techniques has several disadvantages compared
to direct volume rendering. Since the surface rendered is opaque at least to
some extent, internal structure of the volume is often lost when displaying
iso-surfaces. A possible way of solving this problem is to cut away parts of
the rendered volume in order to display hidden structures. The iso-surface
is generated from elements with similar densities inside the volume. It is
important to realize that a structure with similar density not necessarily is
a structure in the real world. Iso-surface can therefore be misleading and
should be used with great care. Because iso-surfaces are usually rendered
using a uniform material and color, it can be difficult to give them mean-
ingful colors. However, for the purpose of emphasizing structures inside a
volume, iso-surfaces have proved to be very useful [3].

2.1.3 Best of Both Worlds

For a system to fully take advantage of the two previous techniques, it should
be capable of combining the two for the best results. Using direct volume ren-
dering, the entire volume may be rendered given the opacity and color trans-
fer functions. To emphasize internal structures of the volume, iso-surfaces
can be generated to display the contours of similar densities. This approach
is very useful in for instance inspecting medical data sets where an organ
may be emphasized using surface geometry.

Chapter 3

State of the Art

This chapter gives a brief summary of the current state of the "art" of volume
visualization systems. Below, examples of system that have found a way of
approaching the visualization of volumes is presented briefly and a discussion
on the different systems is given at the end of the chapter.

3.1 Graphics libraries

There are several systems that provide the relevant functionality for the
system in design. The system will be implemented in C++ and among
the available software libraries, the following four visualization libraries are
evaluated.

3.1.1 VGL

VGL 3.2 is the latest release of the C++ Volume Graphics Library from
the German company Volume Graphics. Is provides a 3D graphics solution
for voxel data and the claim to have the industry’s leading solution to the
combination of voxel data representation and conventional 3D graphics rep-
resentation [4]. This implies that the systems uses the advantages associated
with using dedicated graphics hardware for higher rendering speeds.

VGL is a commercially licensed product and is used in the traditional
volume visualization field of medicine in addition to being used by high tech
branches like automobile and aerospace companies. VGL licenses are also
offered to academic and research and development institutions at a discount.

Being a C++ class graphics library, VGL includes an extensive API
which the company claims provides the most powerful set of features on the
market. VGL offers a unique resource management in order to access large
datasets on a consumer PC. It has a highly efficient memory access routines

and the system accesses the underlying data structures efficiently so that
they do not need to be duplicated in the application using the library [5].

VGL can render any type of volume dataset and has optimized support
for 8- and 16- bit voxel data types. It has no limits for how many datasets
that can be rendered simultaneously.

When it comes to rendering techniques, VGL supports both software and
hardware rendering algorithms. It claims to have ultra fast software render-
ers for both iso-surface generation, volumetric ray-tracing and MIP which
is a form of texture-based rendering. VGL supports hardware accelerated
rendering and both soft- and hardware rendered images can be shown in the
same scene. Using hardware rendering makes it possible to use hardware
shading features such as advanced material, lighting and shadow properties
on voxel data. Software volume rendering is generally slower that hardware
rendering and offers fewer possibilities. Using hardware accelerated graphics
enables the VGL user to keep up with the rapid changes is hardware and
take advantage of new technology for producing photo realistic images. VGL
uses native OpenGL and is therefore able to utilize OpenGL hardware fully
and incorporate its features with its system without being dependent upon
any other 3rd party system. Figure 3.1 shows a mummy data set visualized
using VGL demonstrating the high image quality obtained using the system.

VGL’s highly efficient memory management and rendering techniques
makes it possible to support time dependent visualization, so called 4D imag-
ing techniques. This enables the user to watch a sequence of rendered images
interactively to study processed rather that just a state of a system. This
feature is becoming increasingly important in medical application where it
can be used to study how an organ works by observing live images.

VGL is a native C++ library that can be used to develop applications in
Windows, Linux and MacOSX. Support for other operating systems is also
available upon request. VGL is designed to work on Windows with Microsoft
Visual C++ 6.0 and Visual C 7.0, Intel C++ 6.0 and 7.0. On Linux VGL
supports GCC 2.95.x or Intel C++ 6.0 and 7.0. On Mac VGL supports GCC
2.95.x. VGL can be developed using most GUI toolkits that are OpenGL
enabled. Examples of supported toolkits are Qt, MFC and X/Motif [5].

3.1.2 Coin3D / SIM Voleon

Coin3D is a C++ 3D graphics library from the Norwegian company Systems
In Motion. It is a collection of software libraries built to exploit the capabil-
ities of OpenGL. Coin3D is a high level library to simplify the development

www.volumegraphics.com

Figure 3.1: Mummy data set rendered using VGL

process for creating advanced graphics and visualization systems. The Li-
brary is a class library based on a scene graph originally designed in the Open
Inventor API from Silicon Graphics. Coin3D is based on the Open Inventor
2.1 API and is a retained mode system [6]. Retained mode is a programming
model for 3D graphics where the representation of objects, their spatial re-
lationships, their attributes and positions are held in memory and managed
by a library layer. This creates an abstraction useful for the programmer
creating a system not having to individually manage every object’s loading,
managing, culling or rendering [7]. Coin3D being a scene graph based library
means that it is based on an object-oriented data structure called a scene
graph. The concept of a scene graph it to arrange the logical structure of
a graphical scene and often spatial relations between objects according to a
predefined model or hierarchical tree structure. Nodes in a scene graph may
have many children but have usually only one parent node. This is a very
useful and efficient way of arranging objects in a scene for graphics systems.
When a change is made for a given node, the changes will affect every child
of the node because they have inherited its parent’s attributes. This also
works for geometrical transformations because all transformation matrices
for a given level in the scene graph may be concatenated for performing less
costly matrix multiplications for a given sub-tree in a scene graph [8].

SIM Voleon is an add on package for volume rendering to be used with
Coin3D. The package is easily integrated into a Coin3D application and is
built on the existing scene graph technology. The volume rendering tech-
niques used in SIM Voleon are texture based and cover both 3D- and 2D
textures. The 3D texture technique is done by using viewport aligned tex-
ture slices while the 2D texture uses object-aligned slicing to render the
volume. The 3D texture approach requires dedicated 3D graphics cards that
support 3D texture mapping and produces image with the best rendering
quality. By default the system will check whether the user’s graphics is ca-
pable of handling 3D textures. If not, the system will fall back to the slower
and more memory consuming 2D texture approach. To handle large data
sets the volume rendered is divided into optimal sub-cubes for higher render-
ings speeds of large data sets. The system has dynamic color lookup tables
for voxel coloring.

Since SIM Voleon is dependent on Coin3D to work, it also shares all
its properties and can be combined to form a dual representation of voxel
data along with polygonal surface graphics. It would therefore be a good
candidate for creating a system for volume visualization using both direct
volume rendering techniques along with iso-surface extracted surfaces. Since
the purpose of this thesis is to design a user interface for such a system, SIM
Voleon is a candidate for use as a base for the design. SIM Voleon supports
direct object picking in the 3D view interface through an interaction object

10

Figure 3.2: A volumetric data set of a human spine visualized using SIM
Voleon.

that maps the input from the user’s input device. This is very intuitive and
useful if the system will be used to model and edit the object’s transforma-
tions in the scene. Currently SIM Voleon only supports loading of the VOL
file format. Support for other formats can be achieved by extending a class
in the library called SoVolumeReader [9]. Figure 3.2 shows a spine data set
rendered using SIM Voleon.

3.1.3 OpenGL Volumizer

OpenGL Volumizer is a volume rendering API from Silicon Graphics to make
available advanced 3D graphics features for application developers such as 3D
texture mapping and hardware supported transfer functions. The purpose
of this library is to take advantage of features supported on OpenGL-based
system in addition to other components that are essential in designing ap-
plications for volume visualization [10]. It is a high level interface to volume
rendering technology which can be extended with other system to fully take
advantage of its capabilities. The system is highly flexible both when it
comes to low level services and utilities for high-level operations. One of the
most useful features that can be utilized in modern graphics hardware is 3D
texture mapping, a technology that enables hardware acceleration for volume
rendering in order to achieve real-time rendering speeds and high quality im-
ages. OpenGL Volumizer has support for combined representation of direct
volume rendering with opaque surface geometry. Volumizer can also ren-
der multiple volumes and utilize hardware enabled shading features such as
custom shaders through a high-level interface. For large datasets the sys-

11

tem uses data-paging, memory management and graphics resource control to
handle multiple resolutions in order to handle datasets that are too large to
fit in main memory. The system is scalable for parallel rendering on multiple
graphics pipes and the system is thread-safe which allows the system to run
on multiple processors [11].

While system performance it optimized for SGI Onyx (R) class systems,
OpenGL Volumizer can be used on both 32- and 64 bit Linux and Windows
OpenGL-based systems. Figure 3.3 shows a data set rendered using OpenGL
Volumizer and demonstrates the improvements of using hardware enabled
shading features in volume rendering.

Figure 3.3: Figure shows the improvements when using hardware shading in
volume rendering as opposed to traditional volume rendering.

3.1.4 Visualization Toolkit (VTK)

The Visualization Toolkit (VTK) from Kitware Inc. is an open source object-
oriented C++ library for computer graphics, visualization and image pro-
cessing. VTK is a large and complex system which involves a lot of func-
tionality and different techniques. Since it is an open source library, the
development of the system has been shared between hundreds of individual
contributors and Kitware. Although it is a huge system and hard to get an
overview the concept of building a visualization in VTK is easy to learn and
is consistent throughout the library. This enables the VITK user to use ad-
vanced functionality once he has learned the basics of making a program [12].

12

VTK can be used for development using the interpreted programming
languages Tcl, Python and Java. This is accomplished through "wrappers"
that enable the interpreted language to use VIK code compiled in C++.
This makes developing applications in VTK available to many developers
who master these programming languages. The VTK system can there-
fore be represented as to basic subsystems: the compiled C++ core and
the interpreted wrappers. The user can select which languages to include
wrappers for if he wishes to use this functionality. If the user is a proficient
C++ developer, there is no need to build support for other languages. The
VTK library can be built for several platforms and programming languages
using the open source cross-making tool CMake also from Kitware. Using
CMake, VTK can make projects for a range of compilers for both Unix and
Windows systems. Examples of supported compilers are: Borland, MinGW,
MSYS, NMake, Unix makefiles, Visual Studio 6, Visual Studio 7(2003), Vi-
sual Studio 8(2005) and Watcom WMake. After making the projects, the
VTK library files and assemblies can be built using the selected compiler.
There are also built in support for popular C++ GUI Toolkits that can be
selected before building the library. Examples of such toolkits are MFC and
Trolltech Qt [12].

The VTK system is based on two models, namely the Graphics Model
and the Visualization Model. The first of the two, the Graphics model is
responsible for different components necessary for creating the images in the
scene. Examples of such components are actors, props, lights, cameras, prop-
erties, mappers, renderers, render windows and render window interactors.
Props are the things which are seen in the scene. An vtkActor is a subclass
of vtkProp3D. Similarly, vtkVolume is also a subclass of vtkProp3D if we
are doing volume rendering. vtkLight object may be used to control the
illumination of the scene, but are not required to create a scene, because
default light sources are always defines implicitly if none is specified. Cam-
era objects control how an object in the scene is projected onto the screen
and can be positioned in the scene to render a 3D scene. 2D scenes do not
need a camera to specify its image projection. A renderer and render win-
dow object is also needed to produce an image on the user’s screen based on
the graphics engine. Interactor object are used in conjunction with a render
window to handle user input which corresponds with what is projected onto
the screen. While the Graphics Model is responsible for producing images
from graphical data, the Visualization Model’s responsibility is to transform
data sets or information into graphical data [12]. Figure 3.4 shows a scene
rendered from a head data set using VTK.

13

Figure 3.4: Head volume rendered using VTK. Skin rendered as iso-contour
with saggital cross slice view rendered with color lookup table.

14

3.2 Graphics Libraries Discussion

The four visualization libraries above are all well designed and acknowledged
systems. All systems support both Unix and Windows platforms and are all
implemented in C+-+. The benchmarking of performance and image quality
of the systems are out of the scope of this thesis, because of commercial
licenses and special hardware required. But judging from the information
provided by the companies that make them a notion of what their main focus
is can be found.

The most commercially oriented and system that focuses the most on
volume visualization in the industry is VGL from Volume Graphics. Their
vision is to provide the highest image quality with the best possible perfor-
mance for commercial use, which of course, comes at price. VGL utilizes
hardware features in order to generate photo realistic images with hardware
shading and lighting and this makes it a very competitive candidate if such
a system was planned. Volume Graphics’ showcase application, VGStudio
uses Trolltech Qt which will also be used as GUI Toolkit for the design in
this project.

VTK is an open source system which has a lot of functionality which is
partly provided by the VTK community and owned by Kitware. The system
is extensive and can create most known visualization techniques and is free
for commercial use as long as the copyright acknowledgments are provided
with the binaries and source code. VTK does not have the hardware spe-
cific features of VGL but has support for VolumePro hardware accelerated
graphics cards for volume rendering. VTK is easily integrated with Qt and
is a very good candidate for use in this design.

SIM Voleon does not provide a lot of functionality apart from basic vol-
ume rendering techniques and its support for file formats is very limited.
Since this is a young system when it comes to volume visualization it does
not compete with either VI'K or VGL.

OpenGL Volumizer is a commercially available system which requires a
commercial license for use. It is a technologically advanced system which
focuses on cutting edge hardware technology on mainly Silicon Graphics
systems but is also available on Linux and Windows platforms. The license
costs make it less interesting for this purpose.

15

16

Chapter 4

System Requirements

The requirements for an application of this nature are based on what is to be
expected of the system. A main criteria for a successful design of the system
is that the system performs and behaves in a way that is intuitive and at the
same time is capable of utilizing the underlying visualization engine.

As the title of the thesis suggests, the purpose of this system is to have a
dual representation of a volume data set of both direct volume rendering and
opaque surface rendering. By using a visualization library that is capable of
rendering both techniques, this can be accomplished by selecting the right
system components. In order to utilize the visualization library, however,
an approach that is flexible and able to handle the visualization components
regardless if they are voxel renderings or represent surfaces is suggested. The
challenge is therefore to use the right software libraries and find a way to
combine them to form a complete system that can utilize the capabilities
of the visualization library and give the user an intuitive way of interacting
with the system.

4.1 Functionality

The following specifies the functionality required in the system.

4.1.1 Program Characteristics

The program design is to consist of a visualization library with a visualization
pipeline structure in order to manually edit this structure for interaction
with the scene. The application’s user interface will be created using a
modern and efficient GUI Toolkit which can offer seamless integration with
the visualization library. The internal state of the system will be represented
using XML-files for easy editing, saving and loading of a pipeline network
representation which constitutes the visualization. Interactive GUI widgets

17

must be designed in order to change the state of the system.

4.1.2 Surface Graphics Functionality

The system must be able to read, filter and display a number of different file
types and polygonal data sets.

4.1.3 Volume Rendering Functionality

The system must be capable of applying common volume rendering tech-
niques. An example of such a technique is volumetric ray casting which is
performed on the volume using a color and opacity transfer function to map
a specific color and opacity to a given iso-value. The transfer function must
be editable in order to interactively specify the color and opacity values.
In addition the system must include functionality for iso-surface extraction
and display. The system must support the simultaneous display of both the
techniques above.

4.1.4 3D View Navigation

The rotation, panning and dollying of the scene is to be intuitively arranged
to perform in accordance with the user’s expectations. The following ar-
rangement is more or less standard in graphics and visualization systems.

e Rotation of the scene is accomplished through the use of the left mouse
button while moving the mouse cursor.

e Panning of the scene is done by holding the middle mouse button while
moving the mouse to move the view plane perpendicular to the view
vector.

e Dollying or moving the camera closer or further away from the scene
is accomplisher either by using the right mouse button while moving
the mouse up and down or using the scroll-wheel on a mouse that has
such a feature.

4.1.5 VTK Module Editing

e The system must have a feature that can represent the current state
of the visualization pipeline as a directed graph.

e The connections between the modules in the pipeline must be visible
to see the data flow in the visualization.

e The modules must be movable in order to arrange the graph in a vi-
sually satisfactory way.

18

e The modules represented as nodes in a graph must be selectable in
order to show and edit the attributes for each module.

e The user must be able to add new modules and delete existing modules

e The pipeline graph must house a function for connecting the modules
inside the widget as well as removing connections between modules.

e The attributes for a given module is to be represented in a way that is
easy to edit and update.

4.2 Performance

The visualization library used for this design will need OpenGL enabled
graphics card for rendering the scenes interactively. Modern visualization
libraries use hardware accelerated graphics in order to display the scenes
because of the speed this offers compared to 2D-rendered images. For the
user to interact with the geometry or images produced, a modern computer
with sufficient RAM and CPU will be required. The software should run
effortlessly on a 1.7 GHz PC with 512MB RAM with en OpenGL enabled
graphics card with a 64MB frame buffer.

4.3 Attributes

Satisfactory implementation of the following system attributes will be re-
quired in the design.

4.3.1 Portability

T order to cover the largest possible number of users and scenarios, the system
will need to be independent of operating system and machine architecture.
A system user is not to be forced to use a certain operating system in order
to use the application. This can be realized through using a platform inde-
pendent visualization library and GUI Toolkit. The code written for such
platform independent systems is universal to all compilers and the code only
needs to be compiled on the platform of interest using libraries built for the
platform.

4.3.2 Correctness

The representation of the visualization pipeline must at all times show the
real state of the system. In order to ensure this, all modules used in the
system will need to be built into the system by creating specific code required
for parsing the XML-document and instantiating the modules. This will in
some cases limit the number of combinations of modules to connect, but an

19

advantage is that the system can handle the supported modules efficiently
and not get a run-time error if an unsupported module is used.

4.3.3 Maintainability

The coding style used in the implementation must be consistent with the soft-
ware libraries used. All classes created for the system must have the same
prefix in order to identify them as members of the system. All attributes
and functions must be documented well and C+-+ documentation is to be
generated using the doxyGen system for creating HTML-documentation in-
cluding descriptive diagrams. A clear and unambiguous XML-format must
be used in order to easily add support for other visualization modules than
the ones included in the implementation.

4.4 Design Constraints

Since the purpose of this design is to show a way of building an application
around a visualization library, a limited set of features will be supported
in the system. The subset of visualization features supported will be suf-
ficient to show the idea behind the system and to create both simple and
examples of more advanced visualizations. The system’s focus will not be on
distributed computing or parallel processing. Such considerations will there-
fore not be included in the design. The system will be run locally on a single
processor and security issues are not taken into account as it is assumed that
the system is run on a sane and healthy platform. The system will be a high
level which will be based on the capabilities of the software libraries used.

To simplify the design in order to satisfy implementation time constraints
there will be no functionality for undo/redo operations in the system. When
a change is made and written to the XML-document there is no framework
for undoing the operations performed. This might be incorporated at a later
stage along with other advanced functionality.

20

Chapter 5

System Design

The systems used in the design are presented below and explanations why
the were selected are given. The conceptual design of the system is described
briefly with a more elaborate description of the system following below. To
fully describe the design, the class design is presented last to provide the
implementation details.

5.1 Choice of System Components

The design will be implemented in C++. Because visualization sometimes
includes heavy computations and interactive response times, C++ is a natu-
ral choice of language because of its nature being a fully compiled program-
ming language run from machine code. If a language such as Java would be
used, it would come at a cost of speed and interactivity. This is the reason
why most graphics libraries are written in C++. C++ is a object oriented
language which offers a lot of flexibility and robustness if used properly and
should therefore be a good choice for the implementation of this design.

The Visualization Toolkit (VTK) from Kitware will be used as the visu-
alization library in the design. Even though there are alternatives that can
better handle large data sets and have more advanced functionality, VTK
should make a solid base to an application of this type because it is an open
source library that is easy to use. It is a vast system and houses a lot of
functionality. It’s class library is very large and has support for most every
known visualization technique known. It is continually maintained and ex-
tended with new functionality all the time. By using this library the system
should be set for future updates and new functionality. The version of the
library used in this implementation is the latest release at the time of the
design which is VTK version 5.0.

Trolltech’s Qt GUI Toolkit has been chosen for creating the user inter-

21

face for the application. Qt is a C++ cross platform Toolkit which includes
a lot of functionality beyond the creation of windows and interaction. It
has is own set of data type in order to ensure safe and efficient memory
management and operation. Qt also includes a component for interacting
with XML-documents, a feature which is very important in the design of
this system. Since the system is designed around a visualization pipeline
defined in an XML-file easy and efficient XML interaction is vital. The Qt
XML sub-library includes two models for interacting with XML-documents,
namely SAX and DOM. SAX is an event-based faster way of dealing with
XML. DOM is a tree-based API which is more memory consumptive but
has advantages when it comes to structuring an ease of use. Since the XML-
documents used for the purpose of the design are of limited size, memory
is not an issue, and accessing an XML-file using the Qt XML-module has
shown to be both efficient and easy to accomplish.

A feature in Qt which simplifies the implementation of the user interface
is the Qt Designer. The Qt Designer is an application for interactively de-
signing windows by dragging components onto a canvas and specifying its
attributes. Along with the designer a compiler called UIC is used for com-
piling C++ source code from the patterns created by the Qt Designer. Qt
Designer files are XML-based files with .ui extension which are compiled into
C++ header files which need to be included in the project in order to use
the feature created in the Designer [13].

Another Qt-specific feature is the Meta Object Compiler which compiles
the header files in a Qt project that contain Qt specific class definitions into
robust working legal C++ code. The reason for this approach is that Qt
has its own way of object interaction called signals and slots. This paradigm
includes Qt-specific keyword included in the header files which need to be
translated into legal C++ code before it can be compiled by the C++ com-
piler. Signals and slots is a very useful concept which simplifies the com-
munication between objects. Signals can be emitted from any object that
is included in the Qt-system. Likewise any object can contain a slot which
then can be connected to a signal anywhere in the system. A slot can have
any number of signals connected to it and parameters can be passed as a
function call like normals function calls [13].

The components used to build a user interfaces in Qt are all derived from
the QWidget class which provides the basic interaction features like signals
and slots and the events and action handlers. When the term widget is
referred to throughout this report the meaning will be a component which
derives from QWidget and is used to provide functionality to a user interface
in a Qt-based application.

22

These features makes Qt a very flexible and attractive library for creating
applications with interacting windows and widgets. Qt is a cross platform
library which can be compiled on Linux as well Mac and Windows machines
and can along with VTK therefore be used by a larger number of users and
platforms.

5.2 Conceptual Design

The system is designed using two well known and renowned C++ libraries,
namely VTK from Kitware and Trolltech’s Qt library. At a conceptual level
the main features of this system is to utilize the existing VTK framework and
features through a graphical user interface made using the Qt library. The
purpose of the design is to create a paramount framework to manipulate the
VTK visualization pipeline interactively. In order to store and retrieving in-
formation about the objects and attributes of different object in a scene, the
system will use a simple XML-structure to represent objects in the pipeline
and connections and relations between the objects. Through the use of this
structure VI'K object will be instantiated and connected in order to create
the desired scene in the application’s main view implemented using Qt. The
main system components are shown in figure 5.1.

For the user to be able to edit the pipeline, a set of interactive widgets
are needed to register input and to show the contents of the VIK subsystem
in the window application.

The VTK visualization pipeline is created by instantiating object from
the large class library and connect the objects together to form a procedural
network to represent the pipeline.

5.3 User Interface Features

As most of the system will be coded, only the framework for housing the
widgets are built using Qt Designer. The main features in the user interface
are the following:

e Main Window: Main frame to house all functionality and widgets

e Main Menu: Menu from which files my be loaded and the visibility of
the sub-windows of the application may be toggled.

e VTK View widget: This feature is the main view which displays the
output of the VTK system and is included in the main window imple-
mented as a widget.

23

I{.-—"‘-'”lsuEllzialtil:wl.'*\pp -,

VTK 5.0

\
4 %

Qe 4.1 | &

Figure 5.1: System Conceptual Design

e Pipeline widget: This widget displays the visualization pipeline con-
sisting of VTK modules and the connections between them. It also
contains functionality for editing the pipeline such as connecting and
deleting modules.

e Settings widget: Shows the attributes of a selected module in a tree
structure based on the contents of the XML-document describing the
scene.

e Help browser: Provides a simple HT'ML-browser for a local help sys-
tem.

5.4 Framework Created by Qt Designer

The application requires a main window which houses the widgets that con-
tain the functionality. To ensure an easy to use system, the user interface
will be a simple and sleek main window which only includes the necessary
functions for the system to operate. The design is focused on making the
user interface simple because the purpose of the system is to display the
visualizations themselves and the other features merely tools in order to in-
teract with the system. After compiling the .ui-files to C++ code the objects

24

Settings 8 x

« [+ CF=]

Figure 5.2: The user interface framework created using Qt Designer

created in Qt Designer can be access in code through including the header
files generated by the UIC (User Interface Compiler).

5.4.1 Window Framework

Using Qt Designer the framework consists of the following

e Main window

e "Settings": dockable window to contain the functionality for altering
a module’s attributes.

e "Pipeline": dockable window for pipeline network widget.

e "Help": dockable help browser

The fact that all tool windows in the application are implemented as
QDockWidgets means that they can be torn off from their initial placement
inside the QMainWindow. When moved away from the sides of the main
window they appear as floating windows over the main application as shown
in figure 5.3. The dockable windows can be repositioned by the user on
any edge of the main window that constitutes a DockWidgetArea. This
feature makes the user interface highly flexible and user configurable. The
dock widgets may be closed either by clicking the dock window’s upper right

25

Figure 5.3: Dockable widget torn off the default dock area to the right of
the main window.

close-symbol or the widget’s visibility may be toggled from the main menu’s
"View" entry. The help window’s visibility can be toggled from the "Help"
menu item on the main menu.

When all dockable widgets are closed, the graphics view occupies the
entire main window automatically using layout objects to control the size of
the dockable widgets along with the graphics view which is also implemented
as a QWidget. Figure 5.4 shows the main window while all dock windows
have been closed. The size of the dockable windows are also resizable and
easily adjusted using the mouse cursor to drag the frames of the windows.

5.4.2 Qt VTK Interaction Widget

The basic interaction interface between the VIK and Qt libraries is provided
and distributed with the latest VI'K release which is VIK 5.0. In order to
use this feature in VTK, the library must be configured using the CMake
application in order to include GUI support for the Qt library. When VTK
is built, the necessary assemblies and library files are built and the pro-
gramming interface is provided in the header file qvtkwidget.h located in
the VTK file tree. The implementation of this VTK widget for Qt is created
and copyrighted by the Sandia Corporation in 2004 for the U.S. Government.

26

Ele Edt Vew Hep

Figure 5.4: All dockable windows are closed and the main graphics view now
occupies the entire main window.

Redistribution and use in source and binary forms are permitted provided
that the copyright notice in implementation and statement of authorship is
included in all copies of the code. The QVTK widget provides access to
the VIK "render window" and provides support for the "interactor" object
that is used in VTK for receiving input from the user’s mouse gestures. The
QVTKWidget is included in the user interface by adding it to the main win-
dow in Qt Designer because it is implemented as a QWidget and has the
basic Qt functionality built into it.

5.5 System Features

The conceptual design section explained the idea behind the system which
is further explained in this section. The state of the VTK system is stored
in a single XML-file which is formatted in a way that makes is easy to parse
the nodes in the XML-document. The VTK library consists of plugins or as
frequently referred to as modules in this report. There are four main types of
modules, namely sources, filter, mappers and actors. The VTK visualization
pipeline consists of such modules arranged in a certain sequence or parallel
to each other. Sources are modules that provide some kind of interface to
a data set and can only have another module connected to its output and
have no input-module. A filter is a processing module that can transform

27

an input object and provide a transformed output object. A filter can have
multiple inputs and outputs. A typical input to a filter is a source module
or another filter. A mapper module transforms data objects into graphics
data

5.5.1 Main View Functionality

The following items state the tasks of the main view class:

e User Interface setup including VTK view.

e Instantiate pipeline, settings and help widgets.
e VTK renderer and subsystem setup.

e Open scene files.

e Parse file contents and instantiate VI'K objects (modules) and set their
attributes.

e Connect the modules to form the visualization pipeline.

e Render the scene.

The task of the main view class is to include and instantiate the gener-
ated header file from the compiled Qt Designer file and also to handle all
interaction with the VTK subsystem. The generated user interface file is
included in the main view’s class declaration and by calling the function se-
tupUi() which is defined in the Designer-generated header file from within
the main view’s constructor the components are instantiated. In addition
to setting up the generated user interface components, the main menu is
created by defining the actions to take whenever an event connected to the
menu entry occurs.

5.5.2 VTK as XML

A special XML-format has been designed for use in this system. The dif-
ferent module types have been separated by using their names as identifiers
in their nodes in the XML-document. The XML-node’s tag name is the
type of module, namely "source", "filter", "mapper" or "actor". For further
identification, the following other attributes are included in the module’s

signature:

e Description: A textual brief descriptive name.
e ID: A unique number of the type of module for identification.

e Name: The class name of the VI'K module.

28

e yPos: The Y-position in the Pipeline widget.

e xPos: The X-position in the Pipeline widget.

To specify attributes and connections between modules two other type of
nodes are needed inside the module’s XML-structure. To specify attributes
for each module, the node "property" is used to specify what functions are
to be called on the object and the parameter passed in the function call.
The pipeline connections are specified using the "connection"-node which
is located in the node that is the input-node of the connection. The node
specifies what node the connection is made from and to uniquely identify
the node, the type of node and its ID is needed to define a connection. The
reason why the "connection" node is placed in the receiver module is that the
function call creating the object connections is performed on the receiver ob-
ject in code. The parsing of the structure only needs the information about
the type of module and its unique ID. For this operation it is vital that the
ID is unique and that the IDs in the scene are increments from 0 for each
of the four module types. The reason for this is that the ID is used directly
as and index in the main view class in order to retrieve the module-object
from its list when making a function call.

I addition to module nodes, a node named "renderer" holds information
for the renderer which is scene specific. In the XML-example presented, the
background color is specified in the "renderer"-node.

5.5.3 Import Data from XML-Structure

The main view class houses the functions that instantiate the VI'K modules.
The instantiation is accomplished through two basic functions that read and
parse the XML-file in order to instantiate the objects declared in the XML-
structure and calls the attribute functions and connect the modules together
to form the visualization pipeline.The four type of modules have their ded-
icated lists that hold the modules’ pointers in order to have a structure
to manage the objects and structure them for later use. The parsing of
the DOM-tree used to represent the XML-document is straight forward by
matching tag names in order to separate the different types of modules and
call the modules’ specific functions that are located in the parsing function.

5.5.4 Instantiating VITK Modules

This means that every function defined in the XML-document need to have
a corresponding function call somewhere in the parsing function in order for
the system to work. The implications of this way of organizing the system
are that when support for a new VI'K module is added to the system, it
needs to be included a number of different places in the code. The following

29

<pipeline>

<renderer>
<property name="background" argtype="double" argl="0" arg2="0" arg3="0.4" />
</renderer>

<source description="file" id="0" name="vtkDataSetReader" yPos="0.1" xPos="0.1">
<property name="fileName" url="Data/tensors.vtk" />
</source>

<mapper description="mapper" id="0" name="vtkDataSetMapper" yPos="0.3" xPos="0.1">
<connection type="vtkDataSetReader" id="0" />
</mapper>

<actor description="actor" id="0" name="vtkActor" yPos="0.6" xPos="0.1">
<property name="diffuseColor" argtype="double" argl="1" arg2="1" arg3="1" />
<property name="specular" argtype="double" argl=".5" />

<property name="specularPower" argtype="int" argl="20" />

<property name="opacity" argtype="double" argl=".8" />

<property name="visibility" state="true" />

<connection type="vtkDataSetMapper" id="0" />

</actor>

</pipeline>

Figure 5.5: Example of XML format used to describe a simple VTK scene. It
consists of a file reader, a mapper to transform the input from the reader into
the graphical data used by the actor. The scene created by this configuration
can be seen in figure 6.4

30

Sources

[«][=]

Filters

(] Parsing

Function

Mappers

Actors

Figure 5.6: The parsing of the different types of VI'K modules sorted and
added to container-lists.

explains where each module needs to be included in order to support it in
the system.

e The VTK module’s header file located in the VTK library file structure
needs to be #included in the main view’s class definition.

e [t needs to exist in the parsing function’s main cycle in order to instan-
tiate it and add it to the list of modules that represents its type. To be
able to receive a connection from another module, an entry is needed
in the section of the module from which the connection is received in
the parsing function. This entry adds a new connection to the list of
connections in the main view class. A connection is an object defined
in the class VConnection, which is described below.

e An XML-template for each module used in the system is located in
the file "template/ModuleTemplates.xml". This file is used when a
new module is added to the scene and to generate the menu which is
used when adding a new module. A new template entry for the new
module is needed for the system to support it.

e In the function which connects the different modules the module name
is needed in order to parse the contents of the list of connections. From
this list of connections, connections are created after all objects have
been instantiated to form the final visualization pipeline.

When the parsing of the modules is performed, the object that corre-
sponds to the current element of the DOM-tree is instantiated and added to

31

the list of pointer that represents the module type. The module’s attributes
are also defined in XML and their corresponding functions are called with
the arguments specified in XML.

5.5.5 Pipeline Widget

To represent the VTK visualization pipeline, a widget for accessing and de-
signing custom pipelines is needed. The pipeline widget is contained within
a dockable widget and is therefore very flexible when it comes to placement
and size inside the main window. The purpose of the widget is to show the
pipeline as a connected graph with the opportunity to select and move the
nodes within the widget and to connect the different nodes by dragging an
edge between two nodes. Each VTK module is represented as nodes in the
graph and the four types of modules, sources, filters, mappers and actors
are given a unique color in order to separate the modules’ functions. The
modules are represented as rectangular boxes with two areas at the top and
bottom that act as output and input areas for interconnecting the modules.
To indicate the direct of data flow in the network shown, arrows are drawn
in these input/output areas. The VTK system uses a lazy evaluation scheme
for updating the pipeline [12] and the updating of each module is cascaded
like shown in figure 5.8. This figure also demonstrates the direction of data
flow in the pipeline.

Tool tips are shown when the mouse cursor is left idle over a module to
show what type of module it is. This feature can be expanded to include
more information about the module like help information or detailed infor-
mation about the modules functionality.

32

Fipeline B X

vikMolumel EReader_0

wtk ContourFilter_0

vtk PolwD atakd apper_0

whkdictor_

Figure 5.7: The pipeline widget showing the VTK visualization pipeline.

Render()

Source :} Filter :{)1:}

Update() Update() Update()

Figure 5.8: The direction of data flow in VTK starting with the source, then
filter, mapper and actor last.

33

wtkWolurme16Reader_0

vtk ContourFilter_0

Delete
Sources » “‘:H ’
Fllh-r
Mappers 3
Ackars »

wtkDatasetReader
wtkiolume1 6Reader

wtkStruckuredPointsReader
wtkSLCReader
wkkdolumeRayCastCampositeFunction
vikPiecewiseFunction

wtkColorTransferFunction
£ m— 1

Figure 5.9: Adding a new module to the pipeline using context menu acti-
vated by clicking right mouse button.

To add a new module to the network the user needs to activate the add-
menu which can be found either in the menu or more intuitively as a context
menu which is activated by right clicking the mouse inside the pipeline wid-
get. This menu holds all available modules that are built into the system and
is generated from the XML-file "ModuleTemplates.xml" which is included
in the "template" folder in the project directory. The modules in the menu
are divided into sources, filter, mappers and actors to clearly indicate what
their function is and to avoid a large list of names that is difficult for the user
to grasp. The operation of adding a new module is shown in figure 5.9. To
delete a module, the context menu is activated by right clicking the module
the user wishes to remove and select "Delete" from the menu.

Connecting the modules is performed by dragging a link from a modules
output area to another modules input area. While the operation is in process,
the link between the modules is painted in red and a textual instruction is
given saying: "select input" at the position of the mouse cursor. Figure 5.10
shows the operation of connecting two modules in the pipeline widget in
process. If the user wishes to remove a connection to a module can click the
input module’s input area to remove the connection.

5.5.6 Settings Widget

The Settings widget is a display and input widget that shows the attributes
of each module activated in the Pipeline widget. It is an interface to the
XML-document which defines each widget and its attributes. It displays
each attribute or property in the XML-scheme as node in a tree. The user
can select the desired attribute and change its value by activating the text

34

FOUNCE

mapper

elect input

actar

Figure 5.10: A connection is made between a mapper and an actor module.

fields in the tree view and write the attribute’s new value. The new value
is then written to the XML-document which is then sent to the main view
to be parsed and the function call associated with the attribute is called.
The widget is implemented using Qt’s model /view programming paradigm
which is a simplification of the MVC (model /view /controller) paradigm used
to implement user interface components. It consists of two major parts. The
first part is an underlying model object which interact directly with the
data structure which in this case is the XML-file defining each module which
makes up the visualization pipeline. This model object makes use of helper
objects called "items" to define the model structure which is then made
available to the view object which is the second part of the paradigm and
the part of the widget the user interacts with. By using this programming
technique, the data structures holding the information can be presented in
an organized and intuitive way without having to create custom input boxes
and display labels for altering the information. It takes some effort to create
a good model for the view to use, but it limits the amount of code to create
which in turn makes the system easier to maintain and update. The view
used in the settings widget is a tree view which presents the attributes of
a module, along with the property and connection nodes as tree nodes in
the first column which are expandable and their different value items show
up in the second column where the user can select and alter them. When
a value is change the view passes the new value to the underlying model
which keeps track of the value and what item it belongs to. The model is
responsible for writing the new value to the data structure and perform the
changes necessary to update the visualization pipeline which produces the
new scene in the main view. In addition to the tree view displaying module

35

Settings q X

Mame: w16 Type: wikWolumelEReader |d: 0
Mame Walue

= fileM ame

+- il data‘headsqquarter
=I- datallimenzions

+- argl B4

+- arg? B4
= imageF ange

+- argtype int

+- argl 1

+- arg? 93
= dataSpacing

+- angtype double

+- argl 3.2

+- arg? 32

+- arg3 1.5
= dataByteQrder...

+- ztate true

[. Background Color

Figure 5.11: The Settings view showing the expanded view of a module’s
attributes.

information a button for setting the scene’s background color has been added
to the widget. In order to better represent a certain module property the
view can be extended to include custom widgets inside the tree view in order
to have a more intuitive and easier to use interface for the user not familiar
with the VTK system. An example of such a scenario is to represent a color
property as a button inside the tree view that activates a color picking widget
instead of manually entering the RGB-components of the color. Another
scenario closely related to volume visualization is the definition of a color
and opacity transfer function for use in direct volume rendering. It is much
more intuitive to define such a function using interactive widgets that display
the colors and function points rather than entering the function arguments
manually.

5.5.7 Help Browser Widget

The help browser is an HTML browser for displaying help documents inside
the application. The help system is made using HTML and consists of a
main page shown in figure 5.12 and hyper linked documents that define a
help scenario. In addition to the help system, the widget displays informa-
tion about every VTK module supported by the system along the generated
system documentation for the implementation of the design discussed in this

36

Help E

- Home | |

Vv

Wizualizationdpp Help System

o izualizationfpp User's banual
Y TE module information

& izualizationpp System Documentation

Figure 5.12: Help system menu.

report. The VTK information is retrieved from VTK’s web page’s doxyGen-
generated class documentation pages and saved locally for use in the help
browser. The doxyGen-generated class documentation for this project is also
saved locally for use in the help browser. The help browser has no network-
ing features, so it can only display files stored locally. All files displayed
in the help browser are store inside the "doc" folder in the project folder.
The help browser is fully implemented using the Qt Designer by adding the
necessary components to the form used for the widget and laying them out
using layout objects and component interactions defined by connecting sig-
nals and slots. This was done directly in the Qt Designer and demonstrates
the capabilities of the Qt Designer. The designer project was compiled using
the "uic" to generate C++ code which is included in the system project
and included in the implementation along with the rest of the Qt Designer-
created user interface features. Figure 5.13 shows the browser displaying
the system’s user manual. Figure 5.14 shows the VTK information overview
while figure 5.15 shows the documentation page of a VI'K module named
vtkVolumel6Reader. The system documentation for the implementation of
the system design is shown in the help browser on figure 5.16.

37

Help 3|
- Home PisuaIizationAppa’doc:a"htmla’manuala’getstarted.html|

VisuzalizationApp Uzer's Manual V

1. wihat iz this program?

2 How to get started.

3 Open a Scene file.

4. Edit Vigualization Pipeline.

5. Change a module’s Settings.

E. Wialkthrough Ewarnple: Create s Scene fram Seratch.

Figure 5.13: Help browser showing HTML User Manual.

Help |

-, Home | |

YTK Information

|2

Each module's description iz located in the module's class reference
document

Sources

wtkholume R eader
wtklookupT able

wthS ampleFunction

stk Quadric
wtkDataSetReader
wtkStructuredPointsHeades
wtkSL CReader

wtkPiecewizelF unction

vtk ColorTransferFunction e’

Figure 5.14: Help Browser showing VTK Modules supported by the system
written in HTML.

38

vtk Transform

vtkWolumeR eader

#Transform
&

vtkVolume1 6Read er

legend)]
List of all members.

Detailed Description

read 16 bit image files
vtk olumel ER eader iz a zource object that readz 16 bit image files.

Wolume1ER eader creates structured point datazets. The dimension of the datazet depends upon the number of files
read. Reading a single fils results in a 2D image, while reading maore than ane file results ina 30 volume.

Filz names are created using FilePattem and FilePrefis as follaws: sprivtf (flename, FilePattem, FilePrefis, number):
where number iz in the range ImageR ange(0] to ImageR ange[1]. If ImageR ange[1] <= ImageR ange[0], then slice
number ImageR ange[0] iz read. Thus to read an image set ImageRange[0] = ImageF ange[1] = slice number. The
default behavior iz to read a single file [i.e.. image slice 1),

The Datatdask instance variable iz used to read data files with imbedded connectivity or segmentation infarmation.
For example, some data has the high order bit set to indicate connected suface, The Databask allows you to select
thiz data. Other important ivars include HeaderSize, which allows you to skip over initial info, and SwapBytes, which
turhs ondoff byte swapping.

The Transform instance variable specifies a permutation transformation to map slice space into world space.
wtkimageR eader has replaced the functionality of this clasz and should be used instead.

~ '

Figure 5.15: VTK’s doxyGen HTML class documentation for vtkVol-

umel6Reader shown in Help Browser.

39

Help E E

=» Home | |

Main Page

Mamespaces
Classes

* Flles

Clags List

Clags Higrarchy
Class Members

VisualizationApp Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

YConnection Class represents the connection between VT K-modules
YDomMNodeltern Defines the item used for the YDomb odetodel

YDomM odetodel Model for modelling a DOM-node read from =ML for use in a QTreeView

W aintiew Main Yiew class represents the main windaw including the YTK. madule
intialization functions

Widodule Clazs reprezenting a % T K module read from #ML-document for uze in
WPipeling

VPipeling WPipeling is a clazz that represents the contents of the Pipeline widget in the
application

WSettings Thiz class iepresents the Settings widget that display information about an

active module and handles changes to this data

doxyaen

Famarafed on Fue Jun 13 713724 2006 for Visualzakiondop by T 4E0D

Figure 5.16: The generated HTML project system design class documenta-
tion shown in Help Browser.

40

5.6 System Class Design

The classes used in the implementation of the system design are named using
the same prefix v- to clearly indicate that they are parts of the project and
not to be confused with other libraries or implementations. The classes are
declared in a header files and the function definitions are placed in cpp-files.
The classes are organized in the classic C++ convention where the header
and implementation files have the same name except for its file extension.
The system is developed in Microsoft Visual Studio 8 (2005) downloaded
from the Microsoft Academic Alliance website. For Qt development the edu-
cational license for Qt 4.1 and Qt Visual Studio Integration obtained by the
project supervisor Ketil Bs was used. VTK 5.0 was downloaded from the
VTK web page and configured using CMake 2.3 and built using Microsoft
Visual Studio 8. The project is organized as a Visual Studio-solution project
with the necessary Qt-features for generating C++ code from the Qt-specific
class declarations in order to make use of Qt features such as signals and slots
and actions and events.

A schematic overview of the different classes used in the system is shown
in figure 5.17. The placement of the classes is relative to where the appear
in the initial arrangement of the user interface.

The interaction between the different objects which define the widgets in
the system is what defines the functionality of the application. In figure 5.18
a module is selected in the Pipeline widget which activates its property node
in the tree view in the Settings widget. When an attribute’s value is altered,
the new XML element is parsed in the main view object which produces a
new scene.

5.6.1 Main View Class With VTK-controls

The main view is implemented in the class VMainView which is a QMain-
Window subclass which inherits all necessary Qt functionality. In addition,
using multiple inheritance, it subclasses the class generated by the Qt De-
signer named Ui_MainWindow which defined the basic windows including
the dock widgets used for the pipeline, settings widgets and help browser.

The constructor initialized the main window by instantiating the ui-
features generated in Qt Designer and creates the main menu structure by
creating actions that are added to the menu and connecting them to the
slots to be activated when the menu item is selected.

The Pipeline and Settings widgets are instantiated and added to the dif-
ferent dockable widgets included in the Qt Designer generated code. The

41

VMainView : public QMail

indow, private Ui_MainWindow

VSettings : public QWidget

QVTKWidget : public QWidget

QTreeView

| VDOMNodeModel : public QAbstractitemModel ‘

VDOMNodeltem

VPipeline : public QWidget

I VModule ‘

VConnection

Figure 5.17: A schematic view of the classes used in the system. The place-
ment of the classes is relative to where they initially appear int the user

interface.

L WPipeling L Woettings

: buildwWidgets(y - void

: node Mode |2 setDatar)

: parse Ele me nt() : void

inithodule s() © void

crenderScene) void

H
|
|

Figure 5.18: The sequence of selecting a module in the Pipeline widget,
entering a new attribute value in the Settings widget and parsing the XML-
node and rendering the new scene.

42

VMainView
- props : vtkFropCollection®
- sources ;| Qlist< vikObject * =
-filters : QList= vikObject * =
- mappers : Qlist= vitkMapper * =
-actors | Qliste vikObject * =
- connections : QlListe YConnection * =
- currentFile name : Q5tring
-ren vikRenderer*

- interact : vikGe nericRe nde rWindowlInte ractor”

-culler :vitkFrustumCoverage Culler*

+ WMainView(parent : OWidget®)

+ =~ VMainView()

+ setHighlightedModule (module : const VModule &) : void
+getCurrentFilename () : QString &

+getSources() | Qlist< vikObject * =&

+getFilters() | Qlist< vtkObject * =&

+getMappers() | QlList< vikMapper * =&

+getActors() | QlListe vikObject * =&

+getConnections() : Qlist= VConnection * =&

+ fileCpeni) : void

+ file Exit() : woid

+create Modulzs() : void

+connectModules() : void

+clearScene() : void

+ printConnections() : void

+ renderScens() : void

+ remove Duplicate Connections(el : const QDomEle me nt&) : void
+ parseElement(e] : QDomEle ment&, update : bool) : void
update Pipeline() : void

Figure 5.19: VMainView class diagram

dockable widgets are organized using layout objects that put the stuff in the
right places.

The help browser’s start page is directed to point at the start file at
doc/html/help.html which is the start page for the help system.

The vtkRenderer object is instantiated and added to the vtkWidget used
for screen output in the Qt application. A vtkPropCollection is instantiated

for holding the VI'K-actors that are to be rendered in the scene.

The class diagram for VMainView is shown in figure 5.19 and shows all
member attributes and functions.

43

VConnection

-toType : QString

-fromType : QString

-told : unsigned im

-fromid : unsigned im

+ VConnection(totype | const QString &, fromtype : const QString &, toid : unsigned int, fromid : unsigned int)
+ =~ WConnection()

+getToType() : GString

+getFromType() : QString

+ getTold() : unsigned in

+getFromid() . unsigned in

+ setToType (string : const QString &) : void

+ setFromType (string : const GString &) : void
+ setTold(i : const unsigned int) : void

+ setFromidii : const unsignad int) : void

Figure 5.20: VConnection class diagram

5.6.2 Connecting Modules

A connection between two modules is implemented as a class called VConnec-
tion. It holds the type of the two modules being connected as strings along
with their IDs stored as an integers to uniquely identify them in the pipeline.
The connection object is created based in the connection-nodes in the mod-
ules stored in the XML-structure. They are instantiated in VMainView’s
function parseElement() and stored in the QList "connections" for later use
in the function connectModules(). As a result the function parseElement()
must be run first in order for the connections to first be stored in "connec-
tions". The class diagram for class VConnection is shown in figure 5.20.

5.6.3 VTK-Module Representation

To represent VI'K modules in the pipeline network graph in the Pipeline
widget a class for the representation of the modules as nodes in the graph
is needed. The class is named VModule and the attributes for this class
consists of information associated with a module which is available in the
widget. The attributes for the VModule class are shown in figure 5.21 and
in addition to information such as color and position in the widget the class
also contains information about the module’s type, name, ID, tool tip text
and textual description. It also contains some boolean flag attributes for use
in the widget’s paint-function.

5.6.4 Pipeline Widget

The Pipeline widget’s class is named VPipeline and inherits the QWidget
class which provides the basic Qt widget functionality. The object is instan-
tiated inside one of the main view’s dockable widgets to make available the
functionality for moving and resizing the widget. The Pipeline widget is a
graphical interface to the visualization pipeline and represents the modules as
node in the directed graph. The Pipeline graph contains four different types

44

VModule
- myFath : QFainterPath
- myPaosition : QPoini
- myCalor : QColor
- myToolTip : QString
- myType : QString
- myMame : Q5tring
- myDescription : Q5tring
- mylndex :im
- myQutputSelected : bool
- mylnputSelected : bool
- myOutputHighlighted : bool
- mylnputHighlighted : bool
+ VModule()
+ setPath{path : const QFainterPath&) : void
+ sefToolTip(toolTip : const Q5tring &) : void
+ setPosition(position : const QPoint&) : void
+ setColor{color : const QColor&) woid
+ setType(string : const QString &) : void
+ sethame (name : const Q5tring &) : void
+ setindex(i : const int&) : void
+ setOutputSe lected(b © bool) @ void
+ setinputSelected(b : bool) : void
+ setOutputHighlighted(b : bool) : void
+ setinputHighlighted(b : bool) : void
+ setDescription{desc : const QString &) : void
+ path() : QFainterPath
+ position() : QPoint
+color() : QColor
+toolTip() : QString
+ type () : QString
+ name() : QString
+description() : G5tring
+index() :in
+ outputSe lected() © bool
+ inputSelected() : bool
+ inputHighlighted() : boal
+ outputHighlighted|) : bool

Figure 5.21: VModule class diagram

45

of nodes: sources, filters, mappers and actors. This corresponds to the VTK
organization of objects that have different functions in the the visualization
pipeline. The nodes are drawn as rectangular boxes filled with a given color
according to its type. In addition, each module has both an output and input
field marked with an arrow. This arrow indicates the direction of the data
flow in the pipeline and with the a source module at the top of the graph, the
modules should be placed below the so that the data flow is shown to have
a direction pointing downwards. The nodes in the graph are objects of the
VModule class and are drawn based on the attributes given to such an ob-
ject. To clearly show that a source module can have no input, no input area
is created for the source-nodes. Similarly actor modules have no output and
actor-nodes are therefore not drawn with an output area in the graph. The
drawing of the nodes and edges is performed in the paintEvent()-function
of VPipeline and uses the VModule-objects as a base for drawing. It loops
through a QList of VModule objects to paint each object in the graph. By
checking the type of module in the loop the painting of the modules can be
customized to fit its properties. The descriptive name of the module is drawn
to the right of the module-node. To create the connections in the graph, the
list of connections located in the VMainView object is used to check against
each VModule-object’s position and the edge between the nodes are drawn
as simple black lines. The function initModules() parses the XML-document
and creates the VModule objects that are used for drawing the graph. The
class diagram for the VPipeline class is shown in figure 5.22. A much used
function is the moduleAt()-function which finds the VModule object that is
placed under the mouse cursor when a button is clicked. This is a vital func-
tion for manipulating the nodes, showing tool tips and in operations such as
connecting modules and deleting modules.

5.6.5 Settings Widget Class

The Settings widget class inherits the QWidget functionality and the main
functionality of the class is placed in the tree view which provides an interface
to the XML-document loaded by implementing the Model/View program-
ming paradigm. In this case the Model/View scheme involves a model for
representing an XML DOM-node as the data to be presented in the view
and handle user input from the view. The class that implements the model
is VDomNodeModel and will be discussed below. The view used to present
the data the model prepares to the user is a QTreeView with two columns
and simple text-cells to provide interaction with the model items. To set
the background color of the scene a button i displayed below the tree view.
The button has an icon showing the current background color. This button
activates a color picking dialog box when clicked and to change the back-
ground color, the user needs to pick a color from a standard color widget
and confirm to set the new color.

46

proa : (eBuuism 18U | uoduasap g BULST 15000 | BWEU Ul 1suoD : kapul " Bullsmsuea: add) 'RaoieoD 15U 40|00 'RluIodm 1suea : sod 'gBumsmiisuea: di] oo} g uyiE g SLE 4T 1SUoD yiEd)anpopy s el -
101000 | (10|00 8| NPOo W OpLIE -

10|00 : (1Mo|og Bnpopy B! -

od : (U004 8| Npoy LW opus) -

1047 (91U AL AT WD 15U | | 3lUoIIE0d 3NPo BN -

|oeq : (gllodT 1suca sad g a|npopA 15U | anpowinding apisul -

|ooq : (gulogmisuca: sad g anpo A 1suea | anpowiindu) apisu) -

|00 : (gIedTisuoa: sod 'y aNpol A 1SUGD | 2|NpeL) 8| Npojy apisu) -

plon (gluodD }suon: sodlo) a|npoy saoL -

i {guogDsuea : sodlpysnpoL -

proa: (g BuLSD 15U | awel "yu 1suoa xapul gBulslsuon : adf) plo|ooiD 151D 40|00 'RjuogiD suoa | sod 'gBunsoiisuon : di) oo ' yieddSiuEdT 1sUoa | yied) s|npoyy speaa -
proa (gusued : pl sBusm suca adA)sBumas aepdn ¢

plon ;{1 3npo ahowal -

plaa [UoNoYT | USIIE)USNaY SNBowBRY SIBUEY -

plon : [1s anpopyuLI -

plon | (ol M an e -

plon: (addepyman apeao -

plon: (8| 4map SEaa -

plon : [Jaunogmany aeaa -

(o e BUIISTD 15U | AWBUISUONI3UL 0D AqUWNU §#

proa: (u ;P e BULIST 1SU0D L AWENISUOIDSULODIES(D §

ploa (gIUaWE ZWoOD | JUaLl 8| alsp| aNpopMmau a ¢

ploac nuayaEu ¢

pros: {ul : pluwery BulsD 1sue | awepwer Ul plel ' BullsD 1suen | awEn o U I AUU O MaN SR 0 §
pIoA : [JLangNu apIx SUODD | U AR U aAgNU s AU eI §

ploa: (gUIogD 15Uea : wed gl 1sued xapu) "gBuusoisuoa: adijuonsogspum ¢
pIoA [ILBAT 3SNOWD | 1U A 3)IL 3] 35E8| a4 ASNoLW §#

plon [ILBAT 3sNOWD | 1U 3R 311 33 30l 35N0W #

ploa: {JUang asnowD | U analju ahss a4 asnow #

plon: LJUangiueds | uasaliuangiued ¢

ploa: (JUargazis agD [juanaliuangazisal ¢

|ooq : {Juan3Djuanaljuans §

lgmalauEy s jagman ' 1aBpiD | uared) auyadigs +

AZ|S7D ISUOD | 37| ANpoL -
JNUEnD Up3au adid -

LU BT U3 U oD -

Bumer: adh] ajnpoymau -

U plE|npey P es -

Busm : aWwep anpoypaas)es -
184D | UBIHEDJI08IND -

IodT | uopsedsnonad -

e JUIBLD | LIEJOI0E -

YTl AUIBLT | WEdd addew -

B AUIR ST | UIEdd 2l
UEJIBUIBST | YIE420N0s -
Ldnounuenoym : dnounuolay s npow -
< anpepwA S0 S2NpoLW -

auadiga

lagram

VPipeline Class d

gure 5.22

i

47

VSettings

-tree (QTreeView®

-namelabel : Qlabel*

- moduleMame : QlLine Edit*

- moduleld : Qlabel*

- moduleType : Qlabel*

- gridLayout : QGridLayout*

- backgroundColor : QColor

- backgroundColorButton : QToolButton
- bgPixmap : QFixmap

- buttonlcon : Qlcon

+ VEettings(parent : DWidget®, viewRef: VMainView&)
+~ WSettings()

+getView() : VMainView&

+getModuleMame() : QLine Edit&

+ gethodeMode () | VDomMode Mode |&

+ buildWidgets(type : const QString &, id : const int&) : void
+writeModuleMNamea () : void

+ setBackgroundColor() : void

¥ eventlevent . SEvent*) . bool

resizeEvent(event : QResizeEvent*) : void

paintEventievent : QPaintEvent®) : void

mousePressEvent(event : DMouse Event*) : void

mouseMove Event{eve nt : QMouse Eve nt*) : void

mouseReleaseEventievent : QMoussEvent®) : void

Figure 5.23: VSettings class diagram

5.6.6 DOM-node Model

The DOM-node model which is used to provide the tree’s view and function-
ality inherits the QAbstractltemModel class which has functions that define
how the XML DOM-node will be presented and changed according to the
user input. In order to present the nodes as items in a tree view an item class
is needed. In this case a class named VDomNodeltem is created to define
an item for the model to use with the view. The model creates QModelln-
dex objects which are used by the view and holds all necessary information
about a tree item in order to update the underlying data structure. The
model contains functions for both presenting the data and setting new val-
ues when it received input from the tree view. The function responsible for
arranging the data for the tree view is data() and the function that stores
the new values entered in the tree view is setData(). VDomNodeModel’s
class diagram is shown in figure 5.24.

5.6.7 Item for use in DOM-Node Model

The item used in VDomNodeModel is named VDomNodeltem provides func-
tionality related to the parent/child relationship in a hierarchical structure
for use in the tree view in the Settings widget. It resolves the structure of

48

VDomMNedeModel

- domMode | GDomMode

- attribute s : QDomMNamedMeode Map

- parentWidget : QObject”

parseElementSignal(e : QDomEle ment&, update : bool) : void

remove Duplicate ConnectionsSignal(gl : const QDomEle ment&) : void

update ConnectionsSignal() : void

+ VDomModeModel(node : QDomMode, parent : @0bject*)

+ =~ VDomMNode Mode ()

+datafindex : const OMode lIndex &, role @ int) : OWarian

+ flags(index : const QModelindex&) : Qt:lte mFlags

+ setData(index : const OMode|Index &, value : const QVariant&, role ;int) : bool
+ headerData(section : int, orientation : Gt:Crientation, role : int) : SVariani
+ index(row ; int, column : int, parent ; const QModelindex &) : OMode|Index
+ parent(child : const OModelindex &) : OModelindex

+ row Count(parent : const QModelindex &) : inl

+columnCount{parent ; const OModelindex&) : in

+ getDomMode() | const QDomMNode &

Figure 5.24: VDomNodeModel class diagram

the hierarchy based on a node’s attributes and arranges them in way that
is easier and more intuitive to the user. A DOM node can have multiple
attributes in the main tag, so the VDomNodeltems are arranged to present
an attribute as a single item in the tree. This structure is defined in the
child()-function and makes the data easier to work with while preserving the
compact format used for defining the nodes in the XML-scheme.

For detailed and complete class reference of the system design, see Ap-
pendix B.

5.7 Discussion

The most common use of the VTK library is to create custom scenes in code,
be it Python, Java, Tcl or C++. This approach leaves no room to change
the visualization pipeline during execution like the design suggested in this
thesis. By constructing a layer for instantiating VTK classes and connect-
ing the objects in run-time, the user suddenly has the choice of changing or
adjusting an object’s attributes interactively and the result is shown imme-
diately on the screen. Because of the focus of the design involving volume
rendering and the dual representation of opaque surfaces and direct volume
rendering, such a design feature is very useful for creating and adjusting
VTK modules in order to find the right values for iso-surfaces and in order
to create useful color and opacity transfer functions. Such a transfer func-
tion must be individually adjusted for each data set and the user’s chance
of seeing the results of his adjustments interactively is crucial for efficient
modeling of a certain part of the volume of interest.

49

<k -parentltem

VDomMNodeltem

-domMode : QDomMNode

-childitems : QHash= int, VDomMNodeltem * =

- domAttr : QDomAtt

- rowMumber :ind

+ VDomMode lte m{node : QDomMode &, row : int, parent: VDomMNode ltem*)
+~ VDomMNodelte m()

+child(i : int) : VDomMNode tem*

+ parent() : VDomMode Ite m*

+ node () : QDomMNode

+ row() @il

Figure 5.25: VDomNodeltem class diagram

Even though there is a certain overhead when it comes to code creation in
order to support the VI'K modules in the system, the intuitive user interface
design will utilize the existing VTK subsystem in order to interactively create
great visualizations. By having a sound structure to handle the components
of the system it is easier to create a working scene from components already
built into the system and easier to use and bring the capabilities of VTK out
to a larger number of users. The way this system is designed makes it more
generic and easier to add functionality and include support for other VTK
classes. An alternative way of using VTK for such a system would be to
build custom controls and widgets to control the properties of each module.
This severely increases the programming overhead and makes maintenance
and expanding the system harder than if it is organized in the generic way
suggested in this design report.

50

Chapter 6

Results

6.1 User Interface Implementation

The user interface implemented proves to be a dynamic and flexible base for
this system. The system design has led to the application presented in the
following figures starting with figure 6.1 which shows the default layout of
the user interface and a ray casted visualization of a human head. The user
interface consists of the main windows along with the three dockable win-
dows presented in the System Design chapter. The Settings widget is placed
at the top of the window while the Pipeline widget is in middle with the help
browser at the bottom. This is the default view, but the user interface is very
flexible and the dockable windows may be moved around in the main win-
dow and docked as shown in figure 6.2 or left floating over the application as
shown in figure 6.3. The dockable widgets may also be closed and reopened
by toggling their visibility from the View menu as shown in figure 6.4. Troll-
tech Qt offers a great platform for creating applications and together with
VTK the system works very well and should be a good platform for further
development on the system to achieve even greater performance and error-
proof design. Simplicity and minimalistic design has been an major goal
when designing the user interface. The expectations and plans to make a
simple and functional application has been achieved with this design. The
choice of using Qt for creating the GUI and the capabilities of VTK makes
this implementation a platform with great potential of being a successful
application. However the fact that the user interface utilizes VTK specific
components makes the system somewhat dependent of further knowledge
about VTK and its architecture. By creating an integrated help system and
by including VTK specific information in it, this issue has been taken into
account. The design is not intended to be a system to be run by someone
unfamiliar with volume visualization, but anyone who has some kind of pre-
vious knowledge about the techniques and concepts of volume visualization
should find this system useful.

o1

VisualizationApp - C:/Program Files/VisualizationApp/volumerendering. xml
Ele Edt Wew Help
Settings & x

Name: Type: wikColorT ransferFunction 1d: 3

Visuslizationapp Help System

Wisualizationtpp User's Manual
T module information
System

Figure 6.1: Resulting user interface with CT head data set rendered using
Ray Casting.

6.2 Example Visualizations

Using the module vtkDataSetReader, simple polygonal files can be read and
displayed in the scene using a simple network as shown in figure 6.4.

6.3 Volume Visualizations

Volumes may be rendered using either contours as iso-surfaces as in fig-
ure 6.5, 6.6, 6.7 and 6.8 or direct volume rendering using ray casting with
opacity and color transfer functions as shown in figure 6.9 and 6.11.

The two approaches can also be used together to obtain the dual repre-
sentation of voxel visualization and surface graphics aimed for in this project.
Figure 6.10 shows a head data set from 93 images with dimension 64 x 64
pixels stacked to form a volume. The skin contour is partly transparent and
also shows the internal cavities of the head that have the same density as the
outer skin after extracting the iso-surface from the volume. The volume is
also rendered using ray casting with opacity and color functions to emphasize
the head volume’s skull structure in white color. The transfer functions are

02

VisualizationApp - C:/Program Files/VisualizationApp/basic. xml

Satings 8x

Type: ikActer 16:0

Vale

Ws=igonicon

Piosine 8%

dataSetiapper

Figure 6.2: User interface with help browser moved to left docking area to
better display more contents in the HTML documents. Similarly the other
two dockable windows may be relocated to either the left, top or bottom of
the main window.

izationApp/1 6bitVolumeDatasSet xml

G}

Type: wikéctor I8 2

Vale

EiE

4 = [Hove | Vinslsatoripp/doc/imlindesin]

Figure 6.3: The dockable windows are left floating over the main window.
This demonstrates the flexibility of a user interface implemented with Qt.

93

VisualizationApp - C: /Program Files/Visualizationpp/basic.xml [BEE
Eo td Yew b

Setings 8x

Type: ikhctor 16:0

Vale

Piosine &%

dstaSetiapper

ector

Figure 6.4: A basic polygonal model. Basic user interface configuration
without help browser.

VisualizationApp - C:/Program Files/VisualizationApp/1 6bit¥olumeDataSetF ulL xml [@aEE
Ho £ Yew b

Heo 8x et ax
= Type: wkLookupTabe 12

Vale

VisualizationApp Class
List

Backgound Coler

Genessiad on Tue un 13 711724 2005 for

ygen

Visalzatiniop by 14600

Figure 6.5: CT data set visualization using iso-surfaces to show bone and
skin and cross slices showing saggital, coronal and axial views of the volume.
The applications’s help browser is shown at the left of the screen.

Y1

nApp/1 6bitVolumeDataetFull xmi

pp - C:/Program Files/VisualizationApp/1 6bit¥olumeDataSetFull.xml
o Edt vew tp

Figure 6.7: Both skin and bones are rendered using iso-surface representa-
tion. All tool windows are closed for main view to occupy the entire screen.

95

p - C:/Program Files/Vi

ationApp/16bitVolumeDataetFull xml X
&x Pipoine 8x

Type: vikActor 160

Value

VisualizationApp - C:/Program Files/VisualizationApp/SLC_yolume.xml
Ele ot Yew tep

Selings 8%

Neme: eion_2] Type: ikColoTransfeFunction 162

Figure 6.9: Head volume rendered with ray casting showing brain.

o6

Visualizationpp - C:/Program Files/VisualizationApp/volumerendering. xml

L
;‘i! .‘tl !‘\:'l\i‘i‘w\\\

Figure 6.10: The skull is rendered using ray casting while internal cavities
and skin are emphasized with an semi-transparent iso-surface.

manually defined in the pipeline and settings widgets and are implemented
as vtkPiecewiseFunction for the opacity function and vtkColorTransferFunc-
tion. These modules should have a custom widget in the settings view to
interactively define the functions to better fit the current volume in later
versions of the system. A dual visualization of an iron protein is shown in
figure 6.12 with both an iso-surface contour and direct volume rendering
while figure 6.11 shows the same data set rendered using ray casting.

6.4 Project Details

The project is generically named "‘VisualizationApp" and is a Microsoft
Visual Studio 2005 project and will not open in earlier versions of Visual
Studio. In order to build it, VTK libraries need to be installed locally in
C:/VTK and a commercial installation of Qt 4.1 must be present. The
application will work on any computer when installed using the installer
described below.

6.5 Deployment Project

The system installer project is built and made up from the system executable
along with the necessary resource files. The installer program is a Visual

o7

p - C:/Program Files/VisualizationApp/brain.xml

e Eat

Pipeine 8x

Figure 6.11: Iron protein rendered with ray casting using custom opacity
and color transfer functions.

VisualizationApp - C:/Program Files/VisualizationApp/brain.xml
Elo Edt view top
Setings 8x

Type: iolane 160

Vale

Piosine 8x

Figure 6.12: Volume visualization of iron protein using ray casting along
with a contour generated by iso-surface extraction.

o8

Studio 2005 deployment project which copies the files to the right folder
on a target computer so that the visualization application will work on any
PC running under Windows XP with an OpenGL enabled graphics card.
The project is named "VisualizationApplInstaller" and creates the executable
Microsoft Installer file names "Visualization Applnstaller.msi". The package
includes the VTK DLL-files necessary for executing the system. The DLLs
are places in the application root folder. System documentation is located in
the "doc" - folder along with the HTML user manual and HTML VTKInfo-
files. The package also includes example scene files and example data sets.

99

60

Chapter 7

Further Work

If further work is to be done on this project the following topics are suggested

e The system could be extended to support a range of new VITK modules
in order to create even more advanced visualizations. One way of
creating this support could be to create a code generator that scan the
VTK source code and generate C-+-+ parsing code and the necessary
XML-documents.

e Functionality for cutting a volume should be added by creating support
for modules in VTK in order to display internal structures of a volume.
Cutting geometry is very useful for inspecting a region of the volume
by removing all obscuring information.

e Customized widgets could be added to give the user more intuitive
control over the attributes in a given VITK module. An example of
such an attribute is a color or opacity transfer function which could be
associated with a graph widget that defined the transfer function. To
add such support, the system will need new code to define the widget
along with a more elaborate XML-scheme to define what actions are
to be taken when a certain attribute is accessed. A custom implemen-
tation of the QTreeView used for this project using custom widgets
activated from the tree cells is a possible solution.

e In order to improve the efficiency of the rendering of a scene when a
module is added, deleted or has had an attribute updated, the system
functionality can be further developed to work on the objects stored
in the system and not delete all objects and rebuild the scene as it is
done at present.

e Measures could also be taken to improve the performance of the VI'K
system when it comes to handling larger data sets. There is a descrip-
tion on the VTK web page how to improve its performance in order

61

to better handle larger data sets. This is especially relevant when it
comes to volume visualization and the ability to use the system to
inspect high resolution data sets.

More advanced functionality when it comes to loading and saving files
should be considered. There should be a backup version of the XML-
file loaded in case a run-time error occurs when executing the pipeline.
If there is no backup file, the user will not be able to load the file which
has an erroneous pipeline configuration. A way of implementing this
feature, could be to create a temporary version of the file which the
system to create the pipeline. The original file, however, should not be
written to unless the pipeline configuration is saved by choosing "Save
File" from the main menu.

An undo/redo system can be added in order to keep track of changes to
the open document and undo and redo changes to the open XML-file.

62

Chapter 8

Conclusion

The system designed and implemented during the course of this project meets
the expectations prior to taking on the task. The requirements specified have
been met and the system has proved to be both flexible and efficient. By
using VTK as visualization library, the desired volume visualization func-
tionality is also provided. The fusion of VITK with Qt as GUI toolkit also
proves to be a good match and the two prove to be good alternatives for
software based on an open source architecture. The system design presented
is a relatively novel design and uses modern approaches to solving the task
using XML and the latest versions of two cutting edge libraries, VIK and
Qt. These two libraries are the best cross platform open source libraries on
their own areas and the combination of the two is a powerful one. The sig-
nals and slots paradigm found in Qt makes creating advanced applications
easy and the fact that they can be compiled on Linux, Mac and Windows
platforms makes this a versatile system which could be further improved and
developed. The system created with the pipeline network graph and XML
structure edited in a settings widget is a simple and intuitive solution once
the user understands the structure behind the visualization system. It is not
expected that any untrained user can grasp the concept of a visualization
pipeline and the functions defined by the VIK modules. Therefore an exten-
sive help system is created to cater for new users getting to know the system.
Through exploring example scene files distributed with the system and sup-
port through the help system, the visualization application is an intuitive,
flexible and well performing solution that could potentially be a successful
application.

63

64

Bibliography

1]

2]

3]

[4]

[5]

(6]
[7]

8]

[9]
[10]

[11]

[12]

[13]

B. Lorensen, K. Suiderveld, V. Simha, R. Wegenkittl, and M. Meissner.
Volume rendering in medical applications: We've got pretty images,
whats’ left to do? 2002.

Kevin Pulo. Direct volume rendering (dvr), 1999. http://www.kev.
pulo.com.au/sv3/sv3_1999_assignmentl/node5.html.

Kevin Pulo. Isosurfaces, 1999. http://www.kev.pulo.com.au/sv3/
sv3_1999_assignmentl/node4.html.

Vgl 3.2 website. http://www.volumegraphics.com/products/vgl/
index.html.

Vgl 3.2 product flyer. http://www.volumegraphics.com/products/
vgl/vgl_32_flyer_nopr.pdf.

Systems in motion home page. http://www.sim.no.

Wikipedia: Retained mode. http://en.wikipedia.org/wiki/
Retained_mode.

Wikipedia: Scene graph. http://en.wikipedia.org/wiki/Scene_
graph.

SIMVoleon Documentation. http://doc.coin3d.org/SIMVoleon/.

OpenGL Volumizer 2.9 Release Notes. http://www.sgi.com/
products/software/volumizer/relnotes_2.9.pdf.

OpenGL Volumizer Tech Summary. http://www.sgi.com/products/
software/volumizer/techsum.html.

Lisa S. Avila, Sebastien Barre, Berk Geveci, Amy Henderson, William A.
Hoffman, Brad King, C. Charles Law, Kenneth M. Martin, and
William J. Schroeder. The VTK User’s Guider VTK 4.2. Kitware
Inc., 2003.

Matthias Kalle Dalheimer. Programming with Qt, 2nd Edition. O’Reilly
Verlag GmbH & Co, 2002.

65

66

Appendix A

User Manual

A.1 What is this Program?

This program provides a way of utilizing the Visualization Toolkit (VTK) in
order to dynamically create visualizations of a given data set. The way the
user creates the visualization is by manually editing the VTK visualization
pipeline. The user interface is shown in figure A.1

The VTK visualization pipeline is the system’s execution mechanism
and is the way a visualization is produced in VTK. The pipeline consists of
plugin-modules that each has a distinct function in the system. These plug-
ins are arranged into sources, filters, mappers and actors to form a pipeline
that is defined by these three types of plugins.

VisualizationApp provides an intuitive way of connecting these plugins
in a graphical pipeline widget, thereby altering the visualization pipeline in
order to dynamically create the visualizations the user wishes to create.

Another function of the system is to access each plugin-object and chang-

ing the settings for each component of the system through a widget which
is activated by selecting the desired plugin in the pipeline network widget.

67

ooty

Figure A.1: Figure shows the user interface and it’s default configuration.

68

A.2 How to Get Started

To make yourself familiar with the system, follow he next few steps to lean
how the user interface works and how you can use it to create your own
visualizations.

Study the *.xml files located in the application folder for example scenes
and tips on how to create your own custom scenes.

A.3 Open a Scene File

The Visualization scene is stored in an XML-file located in the application’s
root folder. The file contains information about each plugin-module and de-
fines the state of each scene.

To open a scene file, select from the main menu: "File" => "Open Scene

File" or use hotkey "Ctrl + O". Select one of the XML-files located in the
application’s root folder in order to load a scene.

69

FOLMCE

filker

=

achar

Figure A.2: Pipeline execution order.

A.4 Pipeline Widget

The pipeline network widget represents the visualization pipeline’s execu-
tion. The chart should be read top-down with the sources placed at the top
and the order order of execution read downwards from the top source.

In order to successfully create a visualization in the main view the pipeline
need to contain at least one source, one mapper and one actor. In order to
filter the data and create advanced visualizations a filter needs to be applied
the the data before the mapper is executed. An example pipeline configura-
tion is shown in figure A.2.

A.4.1 Connect Modules

To connect the modules, click the output field of the module you wish to
connect from. A red line is drawn between the originating module and the
mouse cursor as shown in figure A.3. Then select the input module by
clicking its input field in order to connect the two modules.

A.4.2 Disconnect Modules

To disconnect two modules, click the input modules input field. The connec-
tion to the module which the connection originates from will now be deleted.
Figure A.4 shows the network before the input area of the input modules is
clicked. Figure A.5 shows the network after disconnecting.

70

Mapper

elect input

Aul)

Figure A.3: Connecting modules.

mapper

—E achar

wtkAckar

Figure A.4: Before disconnecting. Input area is clicked.

% actor

vEkactar

Figure A.5: After disconnecting modules.

71

filker

mapper

Delete

Sources k

wtkContourFilker

wkkPalyDatakarmals Mappers »
wtkStripper Achors— »
wEkOutlineFiter

wkkImageMapToColors

Figure A.6: Add a module using the context menu.

mapper

Figure A.7: Delete a module from the context menu activated by right click-
ing the module in Pipeline widget.

A.4.3 Add a New Module

To add a new module to the pipeline, activate the pipeline network widget’s
context menu by right clicking inside the widget or use the identical menu
in the main menu bar. Select what type of module to add from the menu
structure by clicking the menu item. The corresponding module will now be
added to the pipeline. Remember to give the module a descriptive name in
the Settings widget in order to identify the module. Figure A.6 shows the
adding of a new module.

A.4.4 Delete a Module

If you want to remove one if the modules in the pipeline network, right
click the module in the pipeline network widget and select "Delete" from
the context menu. The module will now be permanently deleted from the
pipeline. The context menu is shown in figure A.7. Click "Delete" to remove
the current module.

72

Mame: |actor Type: wikdctor 1d 0

Mame Walue
=1 diffuzeColor
+- arghype double
+- argl 1
+- arg2 1
+- argd 1
+- specular
4 zpeculaiPower
=l opacity
1 argtype double
+- argl 1
= wizibility
+- shate true

+- connechion

I. B ackground Color

Figure A.8: The Settings widget where a module’s attributes can be edited.

A.5 Change a Module’s Settings

A plugin-module’s settings can be altered in the Settings widget. The tree
is activated by clicking one of the modules in the pipeline network widget.
The corresponding settings will the be shown in the widget’s tree structure.

In order to change a settings for a module, double click an item in the
tree which represents the module’s state. Enter a new value for an active
node in the tree and confirm by pressing enter. The setting will now be
changed and the scene will change correspondingly. The Settings widget is
shown in figure A.8.

73

A.6 Walkthrough examples: Create visualizations

from scratch

The following three examples show how to easily create both simple and
advanced visualizations.

A.6.1 Simple File Loading

1.

Add a vtkDataSetReader by right-clicking the Pipeline widget and
choosing Add->Sources->vtkDataSetReader. Specify the file to read
in the Settings widget by choosing fileName from the tree after acti-
vating the module in the Pipeline widget.

. Add a vtkDataSetMapper from the "Mappers" sub-menu as above.

Add a vtkActor from the "Actors" sub-menu

Create the connections in the Pipeline widget by dragging a link from
the output-area to the input-area of the receiving object:

vtkDataSetReader to vtkDataSetMapper
vtkDataSetMapper to vtkActor

The visualization should now appear in the main view.

74

Figure A.9: Figure shows example configuration.

A.6.2 Volume Visualization Using Iso-surfaces

1.

Add a vtkVolumel6Reader with the default file and attributes from
"Sources" menu.

Add a vtkContourFilter from "Filters" below the previous module.

Add a vtkPolyDataNormals from "Filters".

. Add a vtkPolyDataMapper from "Mappers".

Add a vtkActor module from "Actors".

Connect the modules in the order added to the pipeline. When the
actor is connected, a scene will be rendered showing the skin of a head
from images acquired by a CT scan as shown in figure A.10.

To correctly scale the model, select the reader module to activate its
settings. Expand the dataSpacing-item. Change the value of arg3 from
1 to .5.

Give the skin a more life-like color by selecting the actor module, then
change the values of diffuseColor to argl=1, arg2=0.49, arg3=0.25.
Select the opacity-node and set its value to 0.5 to make the skin partly
transparent as shown in figure A.11.

76

Figure A.10: Figure shows result after connecting the modules.

Figure A.11: Figure shows result after assigning color to the skin contour
and settings opacity value to 0.5.

7

A.6.3 Volume Visualization using Ray Casting

1.

Add a source vtkSLCReader. Change its attribute fileName from
"data/head.slc" to "data/lobster11.slc".

Add a source vtkPiecewiseFunction and place it in the network.

Add a source vtkColorTransferFunction and place it in the network.

. Add afilter vtkVolumeProperty and connect the vtkPiecewiseFunction

and vtkColorTransferFunction to this module.
Add a vtkVolumeRayCastCompositeFunction.

Add a vtkVolumeRayCastMapper and connect the vtkSLCReader and
vtkVolumeRayCast CompositeFunction to this.

Add a vtkVolume actor.

Connect the vtkVolumeRayCastMapper and vtkVolumeProperty to the
vtkVolume module. The main window will show the resulting visual-
ization as in figure A.12.

Click the button "Background Color" in the Settings widget and select
a background color that better shows the object visualized as shown
in figure A.13.

78

Figure A.12: Figure shows the data set rendered after connecting the mod-
ules.

Figure A.13: Same scene after changing background color.

79

80

Appendix B

System Documentation

81

82

VisualizationApp Reference Manual
v1.0

Generated by Doxygen 1.4.6-NO

Tue Jun 13 11:17:12 2006

83

84

Contents

1 VisualizationApp Hierarchical Index

1.1

VisualizationApp Class Hierarchy

2 VisualizationApp Class Index

21

VisualizationApp Class List o

3 VisualizationApp File Index

3.1

VisualizationApp File List L

4 VisualizationApp Class Documentation

4.1
4.2
4.3
44
4.5
4.6
4.7

VConnection Class Reference oo
VDomNodeltem Class Reference
VDomNodeModel Class Reference
VMainView Class Reference
VModule Class Reference
VPipeline Class Referenceo

VSettings Class Reference

5 VisualizationApp File Documentation

5.1

5.2

5.3

5.4

5.5

5.6

My Documents/Visual Studio 2005/Projects/Visualization App/main.cpp File Ref-
ETEICE .« + o o v v e e e e e

My Documents/Visual Studio 2005 /Projects/ Visualization App /resource.h File Ref-
BLEIICE « . v o v e e e e e e e e e

My Documents/Visual Studio 2005/Projects/VisualizationApp/vconnection.cpp
File Reference e e

My Documents/Visual Studio 2005/Projects/VisualizationApp/vconnection.h File
Reference L e

My Documents/Visual Studio 2005 /Projects/VisualizationApp /vdomnodeitem.cpp
File Reference« . . . o e

My Documents/Visual Studio 2005/Projects/Visualization App/vdomnodeitem.h
File Reference

85

12
16
23
31
42
59

67

ii

CONTENTS

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16

My Documents/Visual Studio 2005 /Projects/Visualization-
App/vdomnodemodel.cpp File Reference 74
My Documents/Visual Studio 2005/Projects/VisualizationApp/vdomnodemodel.h
File Reference« . . . o e 75
My Documents,/Visual Studio 2005 /Projects,/Visualization App /vmainview.cpp File
Reference o 76
My Documents/Visual Studio 2005/Projects/VisualizationApp/vmainview.h File
Reference 80
My Documents/Visual Studio 2005/Projects/VisualizationApp/vmodule.cpp File
Reference L 81
My Documents/Visual Studio 2005/Projects/VisualizationApp/vmodule.h File
Reference o e 82
My Documents/Visual Studio 2005/Projects/VisualizationApp /vpipeline.cpp File
Reference o 83
My Documents/Visual Studio 2005/Projects/VisualizationApp/vpipeline.h File
Reference 84
My Documents/Visual Studio 2005/Projects/VisualizationApp/vsettings.cpp File
Reference L 85
My Documents/Visual Studio 2005/Projects/VisualizationApp/vsettings.h File

Reference e 86

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

86

Chapter 1

VisualizationApp Hierarchical Index

1.1 VisualizationApp Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

VCOonnection e e
VDomNodeltem e e
VDomNodeModel e
VMainView e e e e e 23
VModule e 31
VPipeline L 42
VSettings o o o 59

87

Visualization App Hierarchical Index

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

88

Chapter 2

VisualizationApp Class Index

2.1 VisualizationApp Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

VConnection (Class represents the connection between VIK-modules)
VDomNodeltem (Defines the item used for the VDomNodeModel(p.16))
VDomNodeModel (Model for modelling a DOM-node read from XML for use in a
QTreeView) o oL
VMainView (Main View class represents the main window including the VTK module
intialization functions) Lo L
VModule (Class representing a VITK module read from XML-document for use in
VPipeline(p.42))
VPipeline (VPipeline(p.42) is a class that represents the contents of the Pipeline
widget in the application) L
VSettings (This class represents the Settings widget that display information about an
active module and handles changes to thisdata)

89

VisualizationApp Class Index

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

90

Chapter 3

VisualizationApp File Index

3.1 VisualizationApp File List

Here is a list of all files with brief descriptions:

My Documents/Visual Studio 2005/Projects/VisualizationApp/main.cpp
My Documents/Visual Studio 2005/Projects/VisualizationApp /resource.h
My Documents/Visual Studio 2005 /Projects/VisualizationApp/vconnection.cpp . . .
My Documents/Visual Studio 2005/Projects/VisualizationApp/vconnection.h

My Documents/Visual Studio 2005,/ Projects/VisualizationApp/vdomnodeitem.cpp
My Documents/Visual Studio 2005,/Projects/VisualizationApp/vdomnodeitem.h

My Documents/Visual Studio 2005 /Projects,/VisualizationApp/vdomnodemodel.cpp
My Documents/Visual Studio 2005/Projects/VisualizationApp/vdomnodemodel.h
My Documents/Visual Studio 2005 /Projects/VisualizationApp/vmainview.cpp

My Documents/Visual Studio 2005/Projects/VisualizationApp/vmainview.h
My Documents/Visual Studio 2005/Projects/VisualizationApp/vmodule.cpp
My Documents/Visual Studio 2005/Projects/VisualizationApp/vmodule.h
My Documents/Visual Studio 2005 /Projects/VisualizationApp/vpipeline.cpp .
My Documents/Visual Studio 2005/Projects/VisualizationApp/vpipelineh
My Documents/Visual Studio 2005/Projects/VisualizationApp/vsettings.cpp
My Documents/Visual Studio 2005/Projects/VisualizationApp/vsettings.h

91

VisualizationApp File Index

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

92

Chapter 4

VisualizationApp Class
Documentation

4.1 VConnection Class Reference

Class represents the connection between VTK-modules.

#include <vconnection.h>

Public Member Functions

e VConnection (const QString &totype, const QString &fromtype, unsigned int toid, un-
signed int fromid, QString &function)

A constructor.

¢ ~VConnection ()
o QString getToType ()

toType access function.

e QString getFromType ()

fromType access function.

e unsigned int getTold ()

told access function

e unsigned int getFromld ()

fromld access function.

e QString getFunction ()

function access function.

¢ void setToType (const QString &string)

toType assigment function.

¢ void setFromType (const QString &string)

93

8 VisualizationApp Class Documentation

fromType assigment function.

e void setTold (const unsigned int i)

told assigment function.

¢ void setFromld (const unsigned int i)

fromId assigment function.

¢ void setFunction (const QString &string)

function assignment function

Private Attributes

e QString toType
String holding the type of module to connect to.

QString fromType
String holding the type of module to connect from.

unsigned int told
Integer holding the ID of the module to connect to.

¢ unsigned int fromlId

Integer holding the ID of the module to connect from .

QString function

String holding the function to activate when connecting module.

4.1.1 Detailed Description

Class represents the connection between VTK-modules.
VConnection(p. 7) is used in VMainView(p. 23) to hold the connection between VTK-modules

Definition at line 20 of file vconnection.h.

4.1.2 Constructor & Destructor Documentation

4.1.2.1 VConnection::VConnection (const QString & totype, const QString &
fromtype, unsigned int toid, unsigned int fromid, QString & function)

A constructor.

Parameters:
totype Holds the type of module to connect to.

Sfromtype Holds the type of module to connect from.
toid Holds the ID of the module to connect to.

Jromid Holds the ID of the module to connect from.

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

94

4.1 VConnection Class Reference

Jromid Holds the name of the function to activate.

Definition at line 23 of file vconnection.cpp.

4.1.2.2 VConnection::~VConnection ()

4.1.3 Member Function Documentation
4.1.3.1 unsigned int VConnection::getFromld ()
fromld access function.

Returns:
The id of the module to connect from.

Definition at line 72 of file vconnection.cpp.
References fromld.
4.1.3.2 QString VConnection::getFromType ()

fromType access function.

Returns:
String holding the type of current to connect from.

Definition at line 48 of file vconnection.cpp.
References fromType.

4.1.3.3 QString VConnection::getFunction ()
function access function.

Returns:
The function to activate in the receiver module.

Definition at line 86 of file vconnection.cpp.
References function.

4.1.3.4 unsigned int VConnection::getTold ()
told access function

Returns:
The id of the module to connect to.

Definition at line 60 of file vconnection.cpp.

References told.

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

95

10 VisualizationApp Class Documentation

4.1.3.5 QString VConnection::getToType ()

toType access function.

Returns:
String holding the type of current to connect to.

Definition at line 36 of file vconnection.cpp.
References toType.
4.1.3.6 void VConnection::setFromId (const unsigned int %)

fromld assigment function.

Parameters:
7 Input int.

Definition at line 135 of file vconnection.cpp.
References fromld.
4.1.3.7 void VConnection::setFromType (const QString & string)

fromType assigment function.

Parameters:
string Input string.

Definition at line 111 of file vconnection.cpp.

References fromType.

4.1.3.8 void VConnection::setFunction (const QString & string)

function assignment function
Definition at line 145 of file vconnection.cpp.

References function.

4.1.3.9 void VConnection::setTold (const unsigned int i)

told assigment function.

Parameters:
7 Input int.

Definition at line 123 of file vconnection.cpp.

References told.

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

96

4.1 VConnection Class Reference 11

4.1.3.10 void VConnection::setToType (const QString & string)

toType assigment function.

Parameters:
string Input string.

Definition at line 99 of file vconnection.cpp.

References toType.

4.1.4 Member Data Documentation
4.1.4.1 unsigned int VConnection::fromlId [private]

Integer holding the ID of the module to connect from .
Definition at line 59 of file vconnection.h.

Referenced by getFromld(), and setFromId().

4.1.4.2 QString VConnection::fromType [private]

String holding the type of module to connect from.
Definition at line 49 of file vconnection.h.

Referenced by getFromType(), and setFromType().

4.1.4.3 QString VConnection::function [private]

String holding the function to activate when connecting module.
Definition at line 64 of file vconnection.h.

Referenced by getFunction(), and setFunction().

4.1.4.4 unsigned int VConnection::told [private]

Integer holding the ID of the module to connect to.
Definition at line 54 of file vconnection.h.

Referenced by getTold(), and setToId().

4.1.4.5 QString VConnection::toType [private]

String holding the type of module to connect to.

Definition at line 44 of file vconnection.h.

Referenced by getToType(), and setToType().

The documentation for this class was generated from the following files:

e My Documents/Visual Studio 2005/Projects/VisualizationApp/veconnection.h
e My Documents,/Visual Studio 2005/Projects/VisualizationApp/vconnection.cpp

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

97

12 VisualizationApp Class Documentation

4.2 VDomNodeltem Class Reference

The VDomNodeltem(p. 12) class defines the item used for the VDomNodeModel(p. 16).
#include <vdomnodeitem.h>

Collaboration diagram for VDomNodeltem:

VDomNodeltem [eEIERITEN]

Public Member Functions

¢ VDomNodeltem (QDomNode &node, int row, VDomNodeltem sparent=0)

A standard Constructor.

e ~VDomNodeltem ()

Desctructor which cleans the childItems in hash table.

VDomNodeltem * child (int i)
Function defines the child Items of the Item based on the DOM-node child nodes and attributes.

VDomNodeltem * parent ()

parentltem access function.

QDomNode node () const

domNode access function.

int row ()

rowNumber access function.

Private Attributes

¢ QDomNode domNode
The Node being modelled as an Item for the Model.

QHash< int, VDomNodeltem * > childItems
Hash table holding the children of the current Item.

VDomNodeltem * parentItem

The parent of the current Item.

QDomAttr domAttr
DOM-attribute for use in Model.

int rowNumber

Row Number assigned to Item for use in the Model.

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

98

4.2 VDomNodeltem Class Reference 13

4.2.1 Detailed Description

The VDomNodeltem(p. 12) class defines the item used for the VDomNodeModel(p. 16).

The VDomNodeltem(p. 12) class defines the item used for the VDomNodeModel(p. 16) used
for the TreeView used in the settings-widget. It represents a QDomNode read from an XML-file.

Definition at line 20 of file vdomnodeitem.h.

4.2.2 Constructor & Destructor Documentation

4.2.2.1 VDomNodeltem::VDomNodeItemn (QDomNode & node, int row,
VDomNodeltem * parent = 0)

A standard Constructor.

Parameters:
node The node which the Item is based on.

row The row of the Item in the Model structure.

parent The parent Item associated witht this Item.

Definition at line 23 of file vdomnodeitem.cpp.
References domNode, parent(), parentItem, and rowNumber.
Referenced by child().

Here is the call graph for this function:

VDomNodeltem::VDomNodeltem VDomNodeltem::parent

4.2.2.2 VDomNodeltem::~VDomNodeltem ()

Desctructor which cleans the childItems in hash table.
Definition at line 36 of file vdomnodeitem.cpp.

References childItems.

4.2.3 Member Function Documentation
4.2.3.1 VDomNodeltem * VDomNodeltem::child (int 7)
Function defines the child Items of the Item based on the DOM-node child nodes and attributes.

Parameters:
7 Index value.

Returns:
Returns the Item with the childItems included

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

99

14 VisualizationApp Class Documentation

This function examines the DOM node i order to create child items. If the DOM node has child
nodes they will be stored as children of this Items. If the node has attributes, theay will also be
stores as children in order to structure the elements in the XML-document in the desired way.

Definition at line 97 of file vdomnodeitem.cpp.
References childItems, domNode, and VDomNodeltem().
Referenced by VDomNodeModel::index().

Here is the call graph for this function:

VDomNodeltem::child —>| VDomNodeltem::VDomNodeltem |—>| VDomNodeltem::parent

4.2.3.2 QDomNode VDomNodeltem::node () const

domNode access function.

Returns:
The DOM-node used for Item

Definition at line 77 of file vdomnodeitem.cpp.
References domNode.

Referenced by VDomNodeModel::data(), and VDomNodeModel::rowCount().

4.2.3.3 VDomNodeltem * VDomNodeltem::parent ()

parentltem access function.

Returns:
The parent Item associated with this Item.

Definition at line 51 of file vdomnodeitem.cpp.

References parentItem.

Referenced by VDomNodeModel::parent(), and VDomNodeltem().

4.2.3.4 int VDomNodeltem::row ()

rowNumber access function.

Returns:
Row number for Model structure

Definition at line 64 of file vdomnodeitem.cpp.

References rowNumber.

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

100

4.2 VDomNodeltem Class Reference

15

4.2.4 Member Data Documentation
4.2.4.1 QHash<int,VDomNodeltem*> VDomNodeltem::childItems [private]

Hash table holding the children of the current Item.
Definition at line 43 of file vdomnodeitem.h.

Referenced by child(), and ~VDomNodeltem().

4.2.4.2 QDomAttr VDomNodeltem::domAttr [private]
DOM-attribute for use in Model.

Definition at line 55 of file vdomnodeitem.h.

4.2.4.3 QDomNode VDomNodeltem::domNode [private]

The Node being modelled as an Item for the Model.
Definition at line 36 of file vdomnodeitem.h.

Referenced by child(), node(), and VDomNodeItem().

4.2.4.4 VDomNodeltem+ VDomNodeltem::parentItem [private]

The parent of the current Item.
Definition at line 49 of file vdomnodeitem.h.

Referenced by parent(), and VDomNodeltem().

4.2.4.5 int VDomNodeltem::rowNumber [private]

Row Number assigned to Item for use in the Model.
Definition at line 61 of file vdomnodeitem.h.
Referenced by row(), and VDomNodeltem().

The documentation for this class was generated from the following files:

e My Documents/Visual Studio 2005/Projects/VisualizationApp/vdomnodeitem.h
e My Documents/Visual Studio 2005/Projects/VisualizationApp/vdomnodeitem.cpp

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

101

16 VisualizationApp Class Documentation

4.3 VDomNodeModel Class Reference

Model for modelling a DOM-node read from XML for use in a QTreeView.
#include <vdomnodemodel.h>
Collaboration diagram for VDomNodeModel:

~

VDomNodeltem Jparentitem

rootltem

VDomNodeModel

Signals

¢ void parseElementSignal (QDomElement &e, bool update)
e void removeDuplicateConnectionsSignal (const QDomElement &el)
¢ void updateConnectionsSignal ()

Public Member Functions

e VDomNodeModel (QDomNode node, QObject *parent=0)

VDomNodeModel(p. 16) Constructor. Initializes members and connects signals and slots.

¢ ~VDomNodeModel ()
Write brief comment for ~VDomNodeModel here. Destructor.

e (Variant data (const QModellndex &index, int role) const
Returna the data from each Item contained in the ()Modellnder object.

e Qt:TtemFlags flags (const QModellndex &index) const
Sets the flags associated with model.

¢ bool setData (const QModellndex &index, const QVariant &value, int role=Qt::EditRole)

Function for setting the values in the underlying data structure when editing the View.

e (QVariant headerData (int section, Qt::Orientation orientation, int role=Qt::DisplayRole)
const

Sets the Model header data for use in the associated View.

¢ QModellndex index (int row, int column, const QModellndex &parent=QModellndex())
const

Returning the QModellndex for a given Item after calling the child-functions of each Item.

e QModellndex parent (const QModelIndex &child) const
Returns the parent QModellndez for a child QModellndez.

e int rowCount (const QModelIndex &parent=QModelIndex()) const

Returns the number of rows in the model.

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

102

4.3 VDomNodeModel Class Reference 17

e int columnCount (const QModellndex &parent=QModellndex()) const

Returns the number of columns of the model.

e const QDomNode & getDomNode ()

domNode access function.

Private Attributes

¢ QDomNode domNode
The DOM node.

¢ QDomNamedNodeMap attributes
The attributes arranged in a QDomNamedNodeMap.

¢ VDomNodeltem * rootItem

The root item for the model.

e QODbject x parent Widget
The model’s parent widget.

4.3.1 Detailed Description

Model for modelling a DOM-node read from XML for use in a QTreeView.

Represents a Model for use in a QTreeView based on VDomNodeltems. This Model is one part of
the Qt Model/View programming paradigm. The other part used is this system is a QTreeView
which works together with this Model in order to display and edit the data.

Definition at line 25 of file vdomnodemodel.h.

4.3.2 Constructor & Destructor Documentation

4.3.2.1 VDomNodeModel::VDomNodeModel (QDomNode node, QObject * parent
=0)

VDomNodeModel(p. 16) Constructor. Initializes members and connects signals and slots.

Parameters:
node The base node for the model.

parent The parent object.

Definition at line 23 of file vdomnodemodel.cpp.

References domNode, parentWidget, parseElementSignal(), rootltem, and updateConnections-
Signal().

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

103

18 VisualizationApp Class Documentation

4.3.2.2 VDomNodeModel::~VDomNodeModel ()

Write brief comment for ~VDomNodeModel here. Destructor.
Definition at line 42 of file vdomnodemodel.cpp.

References rootItem.

4.3.3 Member Function Documentation

4.3.3.1 int VDomNodeModel::columnCount (const QModellndex & parent =
QModelIndex()) const

Returns the number of columns of the model.

Parameters:
parent The parent QModellndex.

Returns:
Returns the number of columns for the View to create.

Definition at line 58 of file vdomnodemodel.cpp.

4.3.3.2 QVariant VDomNodeModel::data (const QModellndex & index, int role)
const

Returna the data from each Item contained in the QModellndex object.

Parameters:

index The QModellndex object from which the DOM-node is accessed though.
role The role of the QModellndex.

Returns:
The data returned as QVariant.

Definition at line 219 of file vdomnodemodel.cpp.
References attributes, and VDomNodeltem::node().

Here is the call graph for this function:

VDomNodeModel::data VDomNodeltem::node

4.3.3.3 Qt::ItemFlags VDomNodeModel::flags (const QModellndex & index) const

Sets the flags associated with model.

Parameters:
index QModellndex holding the Item information.

Returns:
Qt::ItemFlags.

Definition at line 74 of file vdomnodemodel.cpp.

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

104

4.3 VDomNodeModel Class Reference 19

4.3.3.4 const QDomNode & VDomNodeModel::getDomNode ()
domNode access function.

Returns:
The member QDomNode.

Definition at line 337 of file vdomnodemodel.cpp.
References domNode.

Referenced by VSettings::writeModuleName().

4.3.3.5 QVariant VDomNodeModel::headerData (int section, Qt::Orientation
orientation, int role = Qt::DisplayRole) const

Sets the Model header data for use in the associated View.

Parameters:
section Section index value.

orientation Qt::Orientation value for View.

role Represents the role of each Item in the Model.

Returns:
QVariant representing any value set in the function.

Definition at line 99 of file vdomnodemodel.cpp.

4.3.3.6 QModellndex VDomNodeModel::index (int row, int column, const
QModellndex & parent = QModelIndex()) const

Returning the QModellndex for a given Item after calling the child-functions of each Item.

Parameters:
row Row value.

column Column value.

parent Parent of the Item to index.

Returns:
A QModelldex object holding the internal pointer representing the QDomNode.

Definition at line 133 of file vdomnodemodel.cpp.
References VDomNodeltem::child(), and rootItem.

Here is the call graph for this function:

VDomNodeModel::index —>| VDomNodeltem::child |—>| VDomNodeltem::VDomNodeltem |—>| VDomNodeltem::parent

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

105

20 VisualizationApp Class Documentation

4.3.3.7 QModellndex VDomNodeModel::parent (const QModellndex & child)

const

Returns the parent QModellndex for a child QModellndex.

Parameters:

child The child QModellndex.

Returns:
The parent QModellndex.

Definition at line 191 of file vdomnodemodel.cpp.
References VDomNodeltem::parent(), and rootItem.

Here is the call graph for this function:

VDomNodeModel::parent VDomNodeltem::parent

4.3.3.8 void VDomNodeModel::parseElementSignal (QDomElement & e, bool
update) [signall

Referenced by VDomNodeModel().

4.3.3.9 void VDomNodeModel::removeDuplicateConnectionsSignal (const
QDomElement & el) [signall

4.3.3.10 int VDomNodeModel::rowCount (const QModellndex & parent =
QModelIndex()) const

Returns the number of rows in the model.

Parameters:
parent The parent QModellndex.

Returns:
The number of rows.

Definition at line 161 of file vdomnodemodel.cpp.
References attributes, VDomNodeltem::mode(), and rootItem.

Here is the call graph for this function:

VDomNodeModel::rowCount VDomNodeltem::node

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

106

4.3 VDomNodeModel Class Reference 21

4.3.3.11 bool VDomNodeModel::setData (const QModellndex & inder, const
QVariant & wvalue, int role = Qt::EditRole)

Function for setting the values in the underlying data structure when editing the View.

Parameters:
index The QModellndex to be edited from View.

value The value received from the View.
role The role of the QModellndex to be edited.

Returns:
Boolean which states if the editing of the Item was successful.

Definition at line 266 of file vdomnodemodel.cpp.

4.3.3.12 void VDomNodeModel::updateConnectionsSignal () [signall

Referenced by VDomNodeModel().

4.3.4 Member Data Documentation
4.3.4.1 QDomNamedNodeMap VDomNodeModel::attributes [private]

The attributes arranged in a QDomNamedNodeMap.
Definition at line 63 of file vdomnodemodel.h.

Referenced by data(), and rowCount().

4.3.4.2 QDomNode VDomNodeModel::domNode [private]

The DOM node.
Definition at line 57 of file vdomnodemodel.h.

Referenced by getDomNode(), and VDomNodeModel().

4.3.4.3 QObjectx VDomNodeModel::parentWidget [private]

The model’s parent widget.
Definition at line 75 of file vdomnodemodel.h.

Referenced by VDomNodeModel().

4.3.4.4 VDomNodeltem+ VDomNodeModel::rootltem [private]

The root item for the model.
Definition at line 69 of file vdomnodemodel.h.
Referenced by index(), parent(), rowCount(), VDomNodeModel(), and ~VDomNodeModel().

The documentation for this class was generated from the following files:

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

107

22

VisualizationApp Class Documentation

e My Documents/Visual Studio 2005/Projects/VisualizationApp/vdomnodemodel.h
e My Documents/Visual Studio 2005 /Projects/VisualizationApp/vdomnodemodel.cpp

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

108

4.4 VMainView Class Reference 23

4.4 VMainView Class Reference

Main View class represents the main window including the VTK module intialization functions.

#include <vmainview.h>

Public Slots

e virtual void fileOpen ()

Defines actions to be taken upon file open .

e void fileNew ()
Create a new empty XML-file with the default contents.

e virtual void fileExit ()

Handles shutdown actions.

¢ void createModules ()

Function reads through the DOM-tree to find the module-element then passes the element to
function parseElement in order to create the VTK scene.

e void connectModules ()

Connect the different VTK modules stored in its respective lists based on the list of connections.

e void clearScene ()

Clears the scene of all VTK objects and connections.

¢ void printConnections ()

Prints the connections contained in the connections-list.

¢ void renderScene ()

VTK function calls to render all "Props" in the scene.

¢ void removeDuplicateConnections (const QDomElement &el)

Removes duplicate connections in XML DOM-element.

¢ void parseElement (QDomElement &el, bool update)

Function that parses each VTK module DOM-element in order to instantiate VTK objects and
call the property functions corresponding to the patterns defined in XML document.

Signals

e void updatePipeline ()

Public Member Functions

e VMainView (QWidget xparent=0)

Constructor for initializing the manu items and VTK sub-system.

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

109

24 VisualizationApp Class Documentation

¢ ~VMainView ()
Destructor deletes VTK objects.

void setHighlightedModule (const VModule &module)
QString & getCurrentFilename ()

currentFilename access function.

QList< vtkObject * > & getSources ()

Sources access function. Returns the list of instantiated sources.

QList< vtkObject * > & getFilters ()

Filters access function. Returns the list of instantiated filters.

QList< vtkObject * > & getMappers ()

Mappers access function. Returns the list of instantiated mappers.

QList< vtkObject * > & getActors ()

Actors access function. Returns the list of instantiated actors.

QList< VConnection * > & getConnections ()

Connections access function. Returns the list of instantiated connections.

Private Attributes

e vtkPropCollection * props
Collection of VTK "Props".

QList< vtkObject * > sources
List of VTK Sources.

QList< vtkObject = > filters
List of VTK Filters.

QList< vtkObject * > mappers
List of VTK Mappers.

QList< vtkObject * > actors
List of VTK Actors.

QList< VConnection * > connections

List of connection objects.

QString currentFilename

String holding the currently active file name to read the XML document from.

vtkRenderer * ren
The VTK renderer object.

vtkGenericRenderWindowlInteractor * interact

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

110

4.4 VMainView Class Reference 25

VTK render window interactor object.

e vtkFrustumCoverageCuller * culler
Used for culling VTK actors.

4.4.1 Detailed Description

Main View class represents the main window including the VTK module intialization functions.

Class represents the main window including menubar, statusbar and VTK functionality. The VTK
modules are intialized through functions parsing the XML-document that represents the scene and
visuaization pipeline.

Definition at line 42 of file vmainview.h.

4.4.2 Constructor & Destructor Documentation
4.4.2.1 VMainView::VMainView (QWidget * parent = 0)
Constructor for initializing the manu items and VTK sub-system.

Parameters:
parent Parent widget.

Definition at line 60 of file vmainview.cpp.

References connectModules(), createModules(), currentFilename, fileExit(), fileNew(), fileOpen(),
VSettings::getModuleName(), props, ren, renderScene(), and updatePipeline().

Here is the call graph for this function:

VMainView::VMainView —>| VSettings::getModuleName

4.4.2.2 VMainView::~VMainView ()

Destructor deletes VTK objects.
Definition at line 141 of file vmainview.cpp.

References clearScene(), props, and ren.

4.4.3 Member Function Documentation
4.4.3.1 void VMainView::clearScene () [slot]

Clears the scene of all VTK objects and connections.
Definition at line 508 of file vmainview.cpp.
References sources.

Referenced by createModules(), and ~VMainView().

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

111

26 VisualizationApp Class Documentation

4.4.3.2 void VMainView::connectModules () [slot]

Connect the different VTK modules stored in its respective lists based on the list of connections.
Definition at line 284 of file vmainview.cpp.
References connections, and sources.

Referenced by fileNew(), fileOpen(), and VMainView().

4.4.3.3 void VMainView::createModules () [slot]

Function reads through the DOM-tree to find the module-element then passes the element to
function parseElement in order to create the VTK scene.

Definition at line 245 of file vmainview.cpp.

References clearScene(), and currentFilename.

Referenced by fileNew(), fileOpen(), and VMainView().

4.4.3.4 void VMainView::fileExit () [virtual, slot]

Handles shutdown actions.
Definition at line 557 of file vmainview.cpp.

Referenced by VMainView().

4.4.3.5 void VMainView::fileNew () [slot]

Create a new empty XML-file with the default contents.
Definition at line 223 of file vmainview.cpp.

References connectModules(), createModules(), currentFilename, getCurrentFilename(), render-
Scene(), and updatePipeline().

Referenced by VMainView().

4.4.3.6 void VMainView::fileOpen () [virtual, slot]

Defines actions to be taken upon file open .
Definition at line 157 of file vmainview.cpp.

References connectModules(), createModules(), currentFilename, props, renderScene(), and
updatePipeline().

Referenced by VMainView().
4.4.3.7 QList< vtkObject * > & VMainView::get Actors ()
Actors access function. Returns the list of instantiated actors.

Returns:
The VTK "actor" objects.

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

112

4.4 VMainView Class Reference 27

Definition at line 1325 of file vmainview.cpp.

References actors.
4.4.3.8 QList< VConnection * > & VMainView::getConnections ()

Connections access function. Returns the list of instantiated connections.

Returns:
The list of VConnection(p.7) objects.

Definition at line 1336 of file vmainview.cpp.

References connections.

4.4.3.9 QString & VMainView::getCurrentFilename ()
currentFilename access function.

Returns:
The current filename of loaded XML-file.

Definition at line 1281 of file vmainview.cpp.
References currentFilename.

Referenced by VSettings::buildWidgets(), VPipeline::clearConnections(), VPipeline::create-
NewConnection(), fileNew(), VPipeline::initModules(), VPipeline::numberOfConnections(),
VPipeline::removeModule(), VSettings::setBackgroundColor(), VSettings::VSettings(),
VSettings::writeModuleName(), and VPipeline::writePosition().

4.4.3.10 QList< vtkObject * > & VMainView::getFilters ()
Filters access function. Returns the list of instantiated filters.

Returns:
The VTK "filter" objects.

Definition at line 1303 of file vmainview.cpp.

References filters.

4.4.3.11 QList< vtkObject * > & VMainView::getMappers ()

Mappers access function. Returns the list of instantiated mappers.

Returns:
The VTK "mapper" objects.

Definition at line 1314 of file vmainview.cpp.

References mappers.

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

113

28 VisualizationApp Class Documentation

4.4.3.12 QList< vtkObject * > & VMainView::getSources ()
Sources access function. Returns the list of instantiated sources.

Returns:

The VTK "source" objects.

Definition at line 1292 of file vmainview.cpp.

References sources.

4.4.3.13 void VMainView::parseElement (QDomElement & e, bool update) [slot]

Function that parses each VIK module DOM-element in order to instantiate VITK objects and
call the property functions corresponding to the patterns defined in XML document.

Parameters:
e The DOM-element to be parsed.

update States whether the element is to be instantiated or just updated if it already exists.

Definition at line 573 of file vmainview.cpp.

References sources.

4.4.3.14 void VMainView::printConnections () [slot]

Prints the connections contained in the connections-list.
Definition at line 473 of file vmainview.cpp.
References connections.

Referenced by removeDuplicateConnections().

4.4.3.15 void VMainView::removeDuplicateConnections (const QDomElement &
e) [slot]

Removes duplicate connections in XML DOM-element.

Parameters:
e DOM-element.

Definition at line 1249 of file vmainview.cpp.

References connections, and printConnections().

4.4.3.16 void VMainView::renderScene () [slot]

VTK function calls to render all "Props" in the scene.
Definition at line 490 of file vmainview.cpp.
References props.

Referenced by fileNew(), fileOpen(), and VMainView().

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

114

4.4 VMainView Class Reference 29

4.4.3.17 void VMainView::setHighlightedModule (const VModule & module)
4.4.3.18 void VMainView::updatePipeline () [signal]

Referenced by fileNew(), fileOpen(), and VMainView().

4.4.4 Member Data Documentation
4.4.4.1 QList<vtkObjectx> VMainView::actors [private]

List of VTK Actors.
Definition at line 103 of file vmainview.h.

Referenced by getActors().

4.4.4.2 QList<VConnectionx> VMainView::connections [private]

List of connection objects.
Definition at line 109 of file vmainview.h.

Referenced by connectModules(), getConnections(), printConnections(), and removeDuplicate-
Connections().

4.4.4.3 vtkFrustumCoverageCullers VMainView::culler [private]

Used for culling VTK actors.

Definition at line 135 of file vmainview.h.

4.4.4.4 QString VMainView::currentFilename [private]

String holding the currently active file name to read the XML document from.
Definition at line 116 of file vmainview.h.

Referenced by createModules(), fileNew(), fileOpen(), getCurrentFilename(), and VMainView().

4.4.4.5 QList<vtkObject+> VMainView:filters [private]

List of VTK Filters.
Definition at line 91 of file vmainview.h.

Referenced by getFilters().

4.4.4.6 vtkGenericRenderWindowlInteractorx VMainView::interact [private]

VTK render window interactor object.

Definition at line 129 of file vmainview.h.

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

115

30 VisualizationApp Class Documentation

4.4.4.7 QList<vtkObjectx> VMainView::mappers [private]

List of VTK Mappers.
Definition at line 97 of file vmainview.h.

Referenced by getMappers().

4.4.4.8 vtkPropCollectionx VMainView::props [private]

Collection of VTK "Props".
Definition at line 79 of file vmainview.h.

Referenced by fileOpen(), renderScene(), VMainView(), and ~VMainView().

4.4.4.9 vtkRendererx VMainView:iren [private]

The VTK renderer object.
Definition at line 123 of file vmainview.h.

Referenced by VMainView(), and ~VMainView().

4.4.4.10 QList<vtkObject*> VMainView::sources [private]

List of VIK Sources.
Definition at line 85 of file vmainview.h.
Referenced by clearScene(), connectModules(), getSources(), and parseElement().

The documentation for this class was generated from the following files:

e My Documents/Visual Studio 2005/Projects/VisualizationApp,/vmainview.h
e My Documents/Visual Studio 2005/Projects/VisualizationApp/vmainview.cpp

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

116

4.5 VModule Class Reference

31

4.5 VModule Class Reference

Class representing a VTK module read from XML-document for use in VPipeline(p. 42).

#include <vmodule.h>

Public Member Functions

¢ VModule ()

A constructor.

e void setPath (const QPainterPath &path)
Sets the QPainterPath associated with the module.

e void setToolTip (const QString &toolTip)

Sets the tooltip string associated with the module.

¢ void setPosition (const QPoint &position)

Sets the current position of the module in the Pipeline Widget.

¢ void setColor (const QColor &color)

Sets the color associated with the module.

e void setType (const QString &string)
Sets the attribute string myType.

e void setName (const QString &name)

Sets the attribute string myName.

e void setIndex (const int &i)

Sets the attribute int mylndex .

¢ void setOutputSelected (bool b)

myQutpusSelected assignment function.

e void setInputSelected (bool b)
Sets the attribute bool mylnputSelected.

¢ void setOutputHighlighted (bool b)
Sets the attribute bool myOutputHighlighted.

¢ void setInputHighlighted (bool b)
Sets the state of myInputHighlighted.

¢ void setDescription (const QString &desc)

Sets the attribute string myDescription.

QPainterPath path () const

myPath access function.

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

117

32 VisualizationApp Class Documentation

QPoint position () const

myPosition access funtion.

QColor color () const

myColor access function.

QString toolTip () const

myToolTip access function.

QString type () const

myType access function.

QString name () const

myName acccess function.

QString description () const

myDescription access function

int index () const

mylIndex access function.

bool outputSelected () const

myQutputSelected access function.

bool inputSelected () const

mylInputSelected access function.

bool inputHighlighted () const
myInputHighlighted access function

bool outputHighlighted () const
myQutputHighlighted access function

Private Attributes

¢ (QPainterPath myPath
The QPainterPath which is the graphical representation of a module.

QPoint myPosition

The point representing the position of the module.

QColor myColor
The color of the module.

QString myToolTip
The ToolTip string.

QString myType

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

118

4.5 VModule Class Reference 33

String representing the type of the current module.

QString myName

String representing the name of the current module.

QString myDescription

String representing the description of the current module.

int myIndex

Integer representing the module index.

bool myQOutputSelected

Boolean which states whether the module’s output is selected.

bool myInputSelected

Boolean which states whether the module’s inputs is selected.

bool myOutputHighlighted
Boolean which states whether the module’s output is highlighted.

bool myInputHighlighted
Boolean which states whether the module’s inputs is highlighted.

4.5.1 Detailed Description

Class representing a VTK module read from XML-document for use in VPipeline(p. 42).
This class holds the necessary information to represent the modules in the Pipeline widget

Definition at line 19 of file vinodule.h.

4.5.2 Constructor & Destructor Documentation

4.5.2.1 VModule::VModule ()

A constructor.

Definition at line 14 of file vinodule.cpp.

4.5.3 Member Function Documentation
4.5.3.1 QColor VModule::color () const

myColor access function.

Returns:

The color of the module
Definition at line 192 of file vmodule.cpp.
References myColor.

Referenced by VPipeline::paintEvent().

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

119

34

VisualizationApp Class Documentation

4.5.3.2 QString VModule::description () const

myDescription access function

Returns:
Decription of the module

Definition at line 249 of file vimodule.cpp.
References myDescription.

Referenced by VPipeline::paintEvent().

4.5.3.3 int VModule::index () const

mylIndex access function.

Returns:
Index of the current module

Definition at line 227 of file vmodule.cpp.

References mylIndex.

Referenced by VPipeline::mousePressEvent().

4.5.3.4 bool VModule::inputHighlighted () const

myInputHighlighted access function

Returns:

States whether the module’s input is highlighted

Definition at line 295 of file vimodule.cpp.
References myInputHighlighted.
Referenced by VPipeline::paintEvent().

4.5.3.5 bool VModule::inputSelected () const

mylInputSelected access function.

Returns:

States whether the module’s input is selected.

Definition at line 272 of file vmodule.cpp.
References myInputSelected.

Referenced by VPipeline::paintEvent().

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

120

4.5 VModule Class Reference

35

4.5.3.6 QString VModule::name () const

myName acccess function.

Returns:
String representing the name of the module.

Definition at line 238 of file vimodule.cpp.
References myName.

Referenced by VPipeline::mousePressEvent().

4.5.3.7 bool VModule::outputHighlighted () const

myQutputHighlighted access function

Returns:
States whehter the module’s output is highlighted

Definition at line 284 of file vmodule.cpp.
References myOutputHighlighted.
Referenced by VPipeline::paintEvent().

4.5.3.8 bool VModule::outputSelected () const

myOutputSelected access function.

Returns:
States whether the module’s output is selected.

Definition at line 260 of file vimodule.cpp.
References myQOutputSelected.
Referenced by VPipeline::mousePressEvent(), and VPipeline::paintEvent().

4.5.3.9 QPainterPath VModule::path () const

myPath access function.

Returns:
the QPainterPath myPath.

Definition at line 170 of file vmodule.cpp.
References myPath.

Referenced by VPipeline::paintEvent().

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

121

36 VisualizationApp Class Documentation

4.5.3.10 QPoint VModule::position () const

myPosition access funtion.

Returns:
The postition of the module.

Definition at line 181 of file vimodule.cpp.
References myPosition.

Referenced by VPipeline::insideInput(), VPipeline::insideModule(), VPipeline::insideOutput(),
VPipeline::moveModuleTo(), and VPipeline::paintEvent().

4.5.3.11 void VModule::setColor (const QColor & color)
Sets the color associated with the module.

Parameters:
color QColor associated with the module.

Definition at line 62 of file vimodule.cpp.
References myColor.

Referenced by VPipeline::createModule().

4.5.3.12 void VModule::setDescription (const QString & desc)

Sets the attribute string myDescription.

Parameters:
desc Input string.

Definition at line 110 of file vmodule.cpp.
References myDescription.

Referenced by VPipeline::createModule().

4.5.3.13 void VModule::setIndex (const int & 1)

Sets the attribute int myIndex .

Parameters:
7 Input int.

Definition at line 85 of file vimodule.cpp.
References mylIndex.

Referenced by VPipeline::createModule().

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

122

4.5 VModule Class Reference 37

4.5.3.14 void VModule::setInputHighlighted (bool b)

Sets the state of myInputHighlighted.

Parameters:
b Input boolean.

Definition at line 157 of file vmodule.cpp.
References myInputHighlighted.

4.5.3.15 void VModule::setInputSelected (bool b)

Sets the attribute bool myInputSelected.

Parameters:
b Input boolean.

Definition at line 133 of file vmodule.cpp.

References mylnputSelected.

4.5.3.16 void VModule::setName (const QString & string)

Sets the attribute string myName.

Parameters:
string Input string

Definition at line 98 of file vimodule.cpp.
References myName.

Referenced by VPipeline::createModule().

4.5.3.17 void VModule::setOutputHighlighted (bool b)

Sets the attribute bool myOutputHighlighted.

Parameters:
b Input boolean.

Definition at line 145 of file vimodule.cpp.
References myOutputHighlighted.

4.5.3.18 void VModule::setOutputSelected (bool b)

myQutpusSelected assignment function.

Parameters:
b Input boolean.

Definition at line 121 of file vimodule.cpp.
References myQutputSelected.

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

123

38 VisualizationApp Class Documentation

4.5.3.19 void VModule::setPath (const QPainterPath & path)

Sets the QPainterPath associated with the module.

Parameters:
path QPainter path associated with the module.

Definition at line 27 of file vmodule.cpp.
References myPath.
Referenced by VPipeline::createModule().

4.5.3.20 void VModule::setPosition (const QPoint & position)

Sets the current position of the module in the Pipeline Widget.

Parameters:
position Input position.

Definition at line 51 of file vimodule.cpp.
References myPosition.

Referenced by VPipeline::createModule(), and VPipeline::moveModuleTo().

4.5.3.21 void VModule::setToolTip (const QString & toolTip)

Sets the tooltip string associated with the module.

Parameters:
toolTip Tooltip string.

Definition at line 38 of file vmodule.cpp.
References myToolTip.
Referenced by VPipeline::createModule().

4.5.3.22 void VModule::setType (const QString & string)

Sets the attribute string myType.

Parameters:
string Input string.

Definition at line 74 of file vimodule.cpp.
References myType.
Referenced by VPipeline::createModule().

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

124

4.5 VModule Class Reference

39

4.5.3.23 QString VModule::toolTip () const
myToolTip access function.

Returns:
The module’s ToolTip string.

Definition at line 203 of file vimodule.cpp.
References myToolTip.

4.5.3.24 QString VModule::type () const
myType access function.

Returns:
String representing the type of the module.

Definition at line 215 of file vmodule.cpp.
References myType.

4.5.4 Member Data Documentation
4.5.4.1 QColor VModule::myColor [private]

The color of the module.
Definition at line 69 of file vinodule.h.

Referenced by color(), and setColor().

4.5.4.2 QString VModule::myDescription [private]

String representing the description of the current module.
Definition at line 89 of file vmodule.h.

Referenced by description(), and setDescription().

4.5.4.3 int VModule::myIndex [private]

Integer representing the module index.
Definition at line 94 of file vinodule.h.
Referenced by index(), and setIndex().

4.5.4.4 bool VModule::myInputHighlighted [private]

Boolean which states whether the module’s inputs is highlighted.
Definition at line 114 of file vimodule.h.
Referenced by inputHighlighted(), and setInputHighlighted().

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

125

40 VisualizationApp Class Documentation

4.5.4.5 bool VModule::myInputSelected [private]

Boolean which states whether the module’s inputs is selected.
Definition at line 104 of file vmodule.h.
Referenced by inputSelected(), and setInputSelected().

4.5.4.6 QString VModule::myName [private]

String representing the name of the current module.
Definition at line 84 of file vinodule.h.

Referenced by name(), and setName().

4.5.4.7 bool VModule::myOutputHighlighted [private]

Boolean which states whether the module’s output is highlighted.
Definition at line 109 of file vinodule.h.
Referenced by outputHighlighted(), and setOutputHighlighted().

4.5.4.8 bool VModule::myQOutputSelected [private]

Boolean which states whether the module’s output is selected.
Definition at line 99 of file vmodule.h.
Referenced by outputSelected(), and setOutputSelected().

4.5.4.9 QPainterPath VModule::myPath [private]

The QPainterPath which is the graphical representation of a module.
Definition at line 57 of file vinodule.h.
Referenced by path(), and setPath().

4.5.4.10 QPoint VModule::myPosition [private]

The point representing the position of the module.
Definition at line 63 of file vmodule.h.

Referenced by position(), and setPosition().

4.5.4.11 QString VModule::myToolTip [private]

The ToolTip string.
Definition at line 74 of file vmodule.h.
Referenced by setToolTip(), and toolTip().

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

126

4.5 VModule Class Reference

41

4.5.4.12 QString VModule::myType [private]

String representing the type of the current module.
Definition at line 79 of file vmodule.h.
Referenced by setType(), and type().

The documentation for this class was generated from the following files:

e My Documents/Visual Studio 2005/Projects/VisualizationApp,/vimodule.h
e My Documents/Visual Studio 2005/Projects/VisualizationApp/vimodule.cpp

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

127

42 VisualizationApp Class Documentation

4.6 VPipeline Class Reference

VPipeline(p. 42) is a class that represents the contents of the Pipeline widget in the application.
#include <vpipeline.h>

Collaboration diagram for VPipeline:

| VModule | | VMainView |

moduIeInMotion/view
\

N /

VPipeline

Signals

¢ void updateSettings (const QString &type, const int &id)

Public Member Functions

e VPipeline (QWidget *parent, VMainView &viewRef)

Cosntructor which sets attributes and creates the grapichal representations of the modules.

Protected Member Functions

¢ bool event (QEvent xevent)

Handles events.

¢ void resizeEvent (QResizeEvent xevent)

Handles the resize event.

¢ void paintEvent (QPaintEvent xevent)

Handles the paint event.

¢ void mousePressEvent (QMouseEvent xevent)

Handles the event when a mouse button is pressed.

e void mouseMoveEvent (QMouseEvent *event)

Handles the mouse move event.

¢ void mouseReleaseEvent (QMouseEvent xevent)

Handles the event when a mouse button is released.

¢ void writePosition (const QString &type, const int &index, const QPoint &point)

Function that records the position of a module and writes its coordinated to the XML-document.

¢ void contextMenuEvent (QContextMenuEvent xevent)

Context menu event handler.

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

128

4.6 VPipeline Class Reference 43

e void createNewConnection (const QString &toName, int told, const QString &from-
Name, int fromId)

A slot that is activated when a new connection is created in the Pipeline widget by dragging a
link between two modules.

¢ void createMenu ()

Generate the menu used as a contert menu and in the top menu bar in the main view. The menu
contains the actions for adding a new module based on existing templates for modules supported
by the system and an actiopn for deleting modules. The templates for adding a new module are
located in the file template/Module Templates.zml and the menu created is generated from this

file.

e void renewModulelds (QDomElement &element)

Function ezamines the DOM-structure to renew module IDs so that they are incremental for the
parsing function in VMainView(p. 23) to work.

¢ void clearConnections (const QString &name, int id)

Function which clears all connections stored in a module.

e int numberOfConnections (const QString &name, int id)

Function that returns the number of connections a module recieves.

Private Slots

e void createNewSource ()

A slot that is activated when a new source is created from the context menu. Calls the create-
Module function.

e void createNewFilter ()

A slot that is activated when a new filter is created from the context menu. Calls the createModule
function.

¢ void createNewMapper ()

A slot that is activated when a new mappers is created from the context menu. Calls the create-
Module function.

e void createNewActor ()

A slot that is activated when a new actor is created from the context menu. Calls the createModule
function.

e void initModules ()

This function examines the XML-document represented as a DOM tree in order to find the
modules and their positions so that they can be drawn in the widget.

¢ void handleAddModuleAction (QAction *action)

Function handles an action send when a menu item is selected in order to add a new Module.
When a new module of a given type is activated from the menu the function adds an element
with the new module in the XML representation.

¢ void removeModule ()

Function removes a module from the XML - document based on the delete action from the menu.

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

129

44

VisualizationApp Class Documentation

Private Member Functions

void createModule (const QPainterPath &path, const QString &toolTip, const QPoint
&pos, const QColor &color, const QString &type, const int &index, const QString &name,
const QString &description)

Function creates a graphical module representation in the Pipeline widget .

int moduleAt (const QPoint &pos)

Returns the index in the list of modules of the module found at the position passed as an argument
to this function.

void moveModuleTo (const QPoint &pos)

Function handling the moving of a module to a new position in the widget.

bool insideModule (const VModule &module, const QPoint &pos)

Function checks whether a given mouse position is inside the module or not.

bool insideInput (const VModule &module, const QPoint &pos)

Function checks if a position is inside a module input field or not.

bool insideOutput (const VModule &module, const QPoint &pos)

Function checks if a position is inside a module output field or not.

QPoint initialModulePosition (const QDomElement &el)
Function for placing the modules is the right place in the widget.

QPoint randomModulePosition ()

Returns a random position in the case of adding a new module or when the position has not yet
been written to file.

QColor initialModuleColor ()

Write brief comment for initialModuleColor here.

QColor randomModuleColor ()

Returns a random color for a module.

Private Attributes

QList< VModule > modules

List of modules.

QActionGroup * moduleActionGroup

Action group for actions with the same action handler slot.

QPainterPath sourcePath
The graphical source path pattern.

QPainterPath filterPath
The graphical filter path pattern.

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

130

4.6 VPipeline Class Reference 45

QPainterPath mapperPath
The graphical mapper path pattern.

QPainterPath actorPath
The graphical actor path pattern.

QPoint previousPosition

The previous position of a module.

QPoint cursorPosition

The cursor’s position.

VModule * moduleInMotion

Write brief comment for modules here.

QString selectedModuleName

The name of a selected module.

int selectedModuleld
The ID of a selected module.

QString newModuleType
The type of a new module.

QMenu * contextMenu

The context menu which is activated by clicking the right mouse button over the pipeline widget.

QMenu * pipelineEdit

Edit menu which is added to the main view’s menu bar.

VMainView & view

A reference to the main view object.

const QSize moduleSize

The Size of a module.

4.6.1 Detailed Description

VPipeline(p. 42) is a class that represents the contents of the Pipeline widget in the application.

The pipeline widget consists of a graphical network representation of the VTK visualization
pipeline. This includes functionality for connecting module and also delting and adding new
modules to the network

Definition at line 23 of file vpipeline.h.

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

131

46 VisualizationApp Class Documentation

4.6.2 Constructor & Destructor Documentation
4.6.2.1 VPipeline::VPipeline (QWidget * parent, VMainView & viewRef)
Cosntructor which sets attributes and creates the grapichal representations of the modules.

Parameters:
parent Parent Widget.

viewRef Reference to the main view.

Definition at line 23 of file vpipeline.cpp.

References actorPath, createMenu(), filterPath, mapperPath, moduleSize, selectedModuleld,
selectedModuleName, and sourcePath.

Here is the call graph for this function:

VPipeline::VPipeline VPipeline::createMenu

4.6.3 Member Function Documentation

4.6.3.1 void VPipeline::clearConnections (const QString & name, int id)
[protected]

Function which clears all connections stored in a module.

Parameters:
name Name of Module.

2d The module’s id.

Definition at line 1121 of file vpipeline.cpp.
References VMainView::getCurrentFilename(), and view.
Referenced by mousePressEvent().

Here is the call graph for this function:

VPipeline::clearConnections —>| VMainView::getCurrentFilename

4.6.3.2 void VPipeline::contextMenuEvent (QContextMenuEvent * event)
[protected]

Context menu event handler.

Parameters:
event The context menu event.

Definition at line 834 of file vpipeline.cpp.

References contextMenu.

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

132

4.6 VPipeline Class Reference 47

4.6.3.3 void VPipeline::createMenu () [protected]

Generate the menu used as a context menu and in the top menu bar in the main view. The menu
contains the actions for adding a new module based on existing templates for modules supported
by the system and an actiopn for deleting modules. The templates for adding a new module are
located in the file template/ModuleTemplates.xml and the menu created is generated from this
file.

Definition at line 702 of file vpipeline.cpp.
References contextMenu, moduleActionGroup, pipelineEdit, removeModule(), and view.

Referenced by VPipeline().

4.6.3.4 void VPipeline::createModule (const QPainterPath & path, const QString
& toolTip, const QPoint & pos, const QColor & color, const QString & type,
const int & index, const QString & name, const QString & description)
[private]

Function creates a graphical module representation in the Pipeline widget .

Parameters:
path QPainterPath used to paint the module in the widget.

toolTip Tooltip string associated with the module.
pos The module’s position.

color The module’s color.

type The module’s type.

tndex The module’s index number.

name The module’s name.

description A brief textual description of the module.

Definition at line 471 of file vpipeline.cpp.

References modules, VModule::setColor(), VModule::setDescription(), VModule::setIndex(),
VModule::setName(), VModule::setPath(), VModule::setPosition(), VModule::setToolTip(), and
VModule::set Type().

Referenced by createNewActor(), createNewFilter(), createNewMapper(), and createNewSource().

Here is the call graph for this function:

VModule::setColor

VModule::setDescription

VModule::setToolTip

VPipeline::createModule

VModule::setType

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

133

48 VisualizationApp Class Documentation

4.6.3.5 void VPipeline::createNewActor () [private, slot]

A slot that is activated when a new actor is created from the context menu. Calls the createModule
function.

Definition at line 381 of file vpipeline.cpp.

References actorPath, createModule(), and randomModulePosition().

4.6.3.6 void VPipeline::createNewConnection (const QString & toName, int told,
const QString & fromName, int fromlId) [protected]

A slot that is activated when a new connection is created in the Pipeline widget by dragging a
link between two modules.

The function adds a new connection in the XML representation based on the connecting of modules
in the Pipeline widget

Definition at line 393 of file vpipeline.cpp.
References VMainView::getCurrentFilename(), and view.
Referenced by mousePressEvent().

Here is the call graph for this function:

VPipeline::createNewConnection —>| VMainView::getCurrentFilename

4.6.3.7 void VPipeline::createNewFilter () [private, slot]

A slot that is activated when a new filter is created from the context menu. Calls the createModule
function.

Definition at line 362 of file vpipeline.cpp.

References createModule(), filterPath, and randomModulePosition().

4.6.3.8 void VPipeline::createNewMapper () [private, slot]

A slot that is activated when a new mappers is created from the context menu. Calls the create-
Module function.

Definition at line 372 of file vpipeline.cpp.

References createModule(), mapperPath, and randomModulePosition().

4.6.3.9 void VPipeline::createNewSource () [private, slot]

A slot that is activated when a new source is created from the context menu. Calls the create-
Module function.

Definition at line 351 of file vpipeline.cpp.

References createModule(), randomModulePosition(), and sourcePath.

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

134

4.6 VPipeline Class Reference 49

4.6.3.10 bool VPipeline::event (QEvent * event) [protected]
Handles events.

Parameters:
event The event received.

Returns:
Boolean value.

Definition at line 64 of file vpipeline.cpp.
References moduleAt(), and modules.

Here is the call graph for this function:

VPipeline::event VPipeline::moduleAt

4.6.3.11 void VPipeline::handleAddModuleAction (QAction * action) [private,
slot]

Function handles an action send when a menu item is selected in order to add a new Module.

When a new module of a given type is activated from the menu the function adds an element with
the new module in the XML representation.

Parameters:
action The action activated when a menu item is selected. Received from the action group
moduleActionGroup.

Definition at line 920 of file vpipeline.cpp.

4.6.3.12 QColor VPipeline::initialModuleColor () [private]
Write brief comment for initialModuleColor here.

Returns:
Write description of return value here.

Definition at line 567 of file vpipeline.cpp.

References modules.

4.6.3.13 QPoint VPipeline::initialModulePosition (const QDomElement & el)
[private]

Function for placing the modules is the right place in the widget.

Parameters:
el The DOM-element that contains the information of the position of the module.

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

135

50 VisualizationApp Class Documentation

Returns:
The position of the module as stored in XML-document.

Definition at line 534 of file vpipeline.cpp.
References randomModulePosition().

Here is the call graph for this function:

VPipeline::initialModulePosition —>| VPipeline::randomModulePosition

4.6.3.14 void VPipeline::initModules () [private, slot]

This function examines the XML-document represented as a DOM tree in order to find the modules
and their positions so that they can be drawn in the widget.

Definition at line 591 of file vpipeline.cpp.

References VMainView::getCurrentFilename(), and view.

Referenced by resizeEvent().

4.6.3.15 bool VPipeline::insideInput (const VModule & module, const QPoint &
pos) [private]

Function checks if a position is inside a module input field or not.

Parameters:
module The module to check against.

pos The position to check against.

Returns:
Boolean stating whether the position is inside a module’e input field or not.

Definition at line 875 of file vpipeline.cpp.
References moduleSize, and VModule::position().
Referenced by mousePressEvent().

Here is the call graph for this function:

VPipeline::insidelnput VModule::position

4.6.3.16 bool VPipeline::insideModule (const VModule & module, const QPoint &
pos) [private]

Function checks whether a given mouse position is inside the module or not.

Parameters:
module The module to check against.

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

136

4.6 VPipeline Class Reference 51

pos The postition to check against.

Returns:

Boolean stating whether the position is inside a module or not.
Definition at line 852 of file vpipeline.cpp.
References moduleSize, and VModule::position().

Here is the call graph for this function:

VPipeline::insideModule VModule::position

4.6.3.17 Dbool VPipeline::insideOutput (const VModule & module, const QPoint &
pos) [private]

Function checks if a position is inside a module output field or not.

Parameters:
module The module to check against.

pos The position to check against.

Returns:
Boolean stating whether the position is inside a module’e output field or not.
Definition at line 899 of file vpipeline.cpp.
References moduleSize, and VModule::position().
Referenced by mousePressEvent().

Here is the call graph for this function:

VPipeline::insideOutput VModule::position

4.6.3.18 int VPipeline::moduleAt (const QPoint & pos) [privatel

Returns the index in the list of modules of the module found at the position passed as an argument
to this function.

Parameters:
pos The position of the mouse pointer when pressing right mouse button

Returns:
The index of the module found at this mouse position. For use in the list of modules used in
Pipeline.

Definition at line 497 of file vpipeline.cpp.

References modules.

Referenced by event(), mousePressEvent(), and mouseReleaseEvent ().

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

137

52 VisualizationApp Class Documentation

4.6.3.19 void VPipeline::mouseMoveEvent (QMouseEvent * event) [protected]
Handles the mouse move event.

Parameters:
event The mouse event to be handled.

The funtcition control the motion of the modules in the Pipeline widget
Definition at line 296 of file vpipeline.cpp.
References cursorPosition, moduleInMotion, and moveModuleTo().

Here is the call graph for this function:

VModule::position

VPipeline::mouseMoveEvent —>| VPipeline::moveModuleTo

VModule::setPosition

4.6.3.20 void VPipeline::mousePressEvent (QMouseEvent * event) [protected]

Handles the event when a mouse button is pressed.

Parameters:
event The mouse event. The function handles the mouse event when a button is pressed. In
this case this involves setting the attributes used for moving the modules around in the
widget and connecting two widgets.

Definition at line 196 of file vpipeline.cpp.

References clearConnections(), createNewConnection(), VModule:index(), insideInput(),
insideOutput(), moduleAt(), modules, VModule:mame(), numberOfConnections(), and
VModule::outputSelected().

Here is the call graph for this function:

| VPipeline::clearConnections |

\

| VPipeline::createNewConnection |—>| VMainView::getCurrentFilename

/

| VPipeline::numberOfConnections |
VModule::outputSelected

VPipeline::mousePressEvent

VModule::position

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

138

4.6 VPipeline Class Reference 53

4.6.3.21 void VPipeline::mouseReleaseEvent (QMouseEvent * event) [protected]

Handles the event when a mouse button is released.

Parameters:
event The mouse event to be handled.

Definition at line 338 of file vpipeline.cpp.
References moduleAt(), moduleInMotion, modules, moveModuleTo(), and writePosition().

Here is the call graph for this function:

VPipeline::moduleAt VModule::position
—>| VPipeline::moveModuleTo VModule::setPosition

| VPipeline::writePosition |—>| VMainView::getCurrentFilename |

VPipeline::mouseReleaseEvent

4.6.3.22 void VPipeline::moveModuleTo (const QPoint & pos) [privatel
Function handling the moving of a module to a new position in the widget.

Parameters:
pos The new position of the module.

Definition at line 515 of file vpipeline.cpp.
References moduleInMotion, VModule::position(), previousPosition, and VModule::setPosition().
Referenced by mouseMoveEvent(), and mouseReleaseEvent().

Here is the call graph for this function:

VModule::position
VPipeline::moveModuleTo

VModule::setPosition

4.6.3.23 int VPipeline::numberOfConnections (const QString & name, int id)
[protected]

Function that returns the number of connections a module recieves.

Parameters:
name Name of Module.

2d The module’s id.

Definition at line 1183 of file vpipeline.cpp.
References VMainView::getCurrentFilename(), and view.

Referenced by mousePressEvent().

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

139

54 VisualizationApp Class Documentation

Here is the call graph for this function:

VPipeline::numberOfConnections —>| VMainView::getCurrentFilename

4.6.3.24 void VPipeline::paintEvent (QPaintEvent * event) [protected]
Handles the paint event.

Parameters:
event The paint event.

This is where the graphical painting takes place.
Definition at line 101 of file vpipeline.cpp.

References ~ VModule::color(), VModule::description(), VModule::inputHighlighted(),
VModule::inputSelected(), modules, moduleSize, VModule::outputHighlighted(),
VModule::outputSelected(), VModule::path(), and VModule::position().

Here is the call graph for this function:

VModule::color
VModule::description

|VModuIe::inputHighIighted |

VModule::inputSelected
\hl VModule::outputHighlighted |

| VModule::outputSelected |

VModule::path

VPipeline::paintEvent

VModule::position

4.6.3.25 QColor VPipeline::randomModuleColor () [privatel
Returns a random color for a module.

Returns:
A random color.

Definition at line 579 of file vpipeline.cpp.

4.6.3.26 QPoint VPipeline::randomModulePosition () [private]

Returns a random position in the case of adding a new module or when the position has not yet
been written to file.

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

140

4.6 VPipeline Class Reference 55

Returns:
A random position for the module.

Definition at line 554 of file vpipeline.cpp.

Referenced by createNewActor(), createNewFilter(), createNewMapper(), createNewSource(), and
initialModulePosition().

4.6.3.27 void VPipeline::removeModule () [private, slot]

Function removes a module from the XML - document based on the delete action from the menu.
Definition at line 1001 of file vpipeline.cpp.
References VMainView::getCurrentFilename(), and view.

Referenced by createMenul().

4.6.3.28 void VPipeline::renewModulelds (QDomElement & element) [protected]

Function examines the DOM-structure to renew module IDs so that they are incremental for the
parsing function in VMainView(p. 23) to work.

Parameters:
element The document element to assign new ids to.

Definition at line 1083 of file vpipeline.cpp.

4.6.3.29 void VPipeline::resizeEvent (QResizeEvent * event) [protected]
Handles the resize event.

Parameters:
event The resizing event.

Definition at line 83 of file vpipeline.cpp.

References initModules().

4.6.3.30 void VPipeline::updateSettings (const QString & type, const int & id)
[signal]

4.6.3.31 void VPipeline::writePosition (const QString & type, const int & index,
const QPoint & point) [protected]

Function that records the position of a module and writes its coordinated to the XML-document.

Parameters:
type The type of module (for identification).

index The module’s index (for identification).

point The position of the module which is to be written to file.

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

141

56 VisualizationApp Class Documentation

Definition at line 655 of file vpipeline.cpp.
References VMainView::getCurrentFilename(), and view.
Referenced by mouseReleaseEvent().

Here is the call graph for this function:

VPipeline::writePosition —>| VMainView::getCurrentFilename

4.6.4 Member Data Documentation
4.6.4.1 QPainterPath VPipeline::actorPath [private]

The graphical actor path pattern.
Definition at line 103 of file vpipeline.h.
Referenced by createNewActor(), and VPipeline().

4.6.4.2 QMenux VPipeline::contextMenu [private]

The context menu which is activated by clicking the right mouse button over the pipeline widget.
Definition at line 138 of file vpipeline.h.
Referenced by contextMenuEvent(), and createMenul().

4.6.4.3 QPoint VPipeline::cursorPosition [private]

The cursor’s position.
Definition at line 113 of file vpipeline.h.
Referenced by mouseMoveEvent().

4.6.4.4 QPainterPath VPipeline::filterPath [private]

The graphical filter path pattern.
Definition at line 93 of file vpipeline.h.
Referenced by createNewFilter(), and VPipeline().

4.6.4.5 QPainterPath VPipeline::mapperPath [privatel

The graphical mapper path pattern.
Definition at line 98 of file vpipeline.h.
Referenced by createNewMapper(), and VPipeline().

4.6.4.6 QActionGroup* VPipeline::moduleActionGroup [private]

Action group for actions with the same action handler slot.

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

142

4.6 VPipeline Class Reference 57

Definition at line 83 of file vpipeline.h.
Referenced by createMenul().
4.6.4.7 VModulex VPipeline::moduleInMotion [private]

Write brief comment for modules here.
Definition at line 118 of file vpipeline.h.

Referenced by mouseMoveEvent(), mouseReleaseEvent(), and moveModuleTo().

4.6.4.8 QList<VModule> VPipeline::modules [private]

List of modules.
Definition at line 78 of file vpipeline.h.

Referenced by createModule(), event(), initialModuleColor(), moduleAt(), mousePressEvent(),
mouseReleaseEvent(), and paintEvent().

4.6.4.9 const QSize VPipeline::moduleSize [private]

The Size of a module.
Definition at line 153 of file vpipeline.h.
Referenced by insideInput(), insideModule(), insideOutput(), paintEvent(), and VPipeline().

4.6.4.10 QString VPipeline::newModuleType [private]
The type of a new module.
Definition at line 133 of file vpipeline.h.

4.6.4.11 QMenux VPipeline::pipelineEdit [private]

Edit menu which is added to the main view’s menu bar.
Definition at line 143 of file vpipeline.h.
Referenced by createMenu().

4.6.4.12 QPoint VPipeline::previousPosition [private]

The previous position of a module.
Definition at line 108 of file vpipeline.h.
Referenced by moveModuleTo().

4.6.4.13 int VPipeline::selectedModuleld [private]

The 1D of a selected module.
Definition at line 128 of file vpipeline.h.

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

143

58 VisualizationApp Class Documentation

Referenced by VPipeline().

4.6.4.14 QString VPipeline::selectedModuleName [private]

The name of a selected module.
Definition at line 123 of file vpipeline.h.
Referenced by VPipeline().

4.6.4.15 QPainterPath VPipeline::sourcePath [private]

The graphical source path pattern.
Definition at line 88 of file vpipeline.h.
Referenced by createNewSource(), and VPipeline().

4.6.4.16 VMainView& VPipeline::view [private]

A reference to the main view object.
Definition at line 148 of file vpipeline.h.

Referenced by clearConnections(), createMenu(), createNewConnection(), initModules(), number-
OfConnections(), removeModule(), and writePosition().

The documentation for this class was generated from the following files:

¢ My Documents/Visual Studio 2005/Projects/VisualizationApp/vpipeline.h
¢ My Documents/Visual Studio 2005,/Projects/VisualizationApp/vpipeline.cpp

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

144

4.7 VSettings Class Reference 59

4.7 VSettings Class Reference

This class represents the Settings widget that display information about an active module and
handles changes to this data.

#include <vsettings.h>

Collaboration diagram for VSettings:

~

VDomNodeltem Jparentitem

rootltem

|VDomNodeModeI | | VMainView |

\nodeModel /view
~ /

VSettings

Public Slots

¢ void buildWidgets (const QString &type, const int &id)

This function generated the sub-widgets in VSettings(p. 59) based on the module. This includes
the tree view and the labels and line edit.

e void writeModuleName ()
Writes the module name fetched from the QLineEdit widget to the XML-file.

e void setBackgroundColor ()

Function sets the scene’s background color to the output of a QColorDialog.

Public Member Functions

e VSettings (QWidget xparent, VMainView &viewRef)

A constructor for initializing widget elements.

~VSettings ()

Destructor.

e VMainView & getView ()

view access function.

QLineEdit & getModuleName ()

moduleName access function

VDomNodeModel & getNodeModel ()

nodeModel access function.

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

145

60 VisualizationApp Class Documentation

Protected Member Functions

e bool event (QEvent xevent)
Event handler.

¢ void resizeEvent (QResizeEvent *event)

Handles the resize event.

e void paintEvent (QPaintEvent *event)

Handles the paint event.

¢ void mousePressEvent (QMouseEvent xevent)

Handles the mouse pressed event.

e void mouseMoveEvent (QMouseEvent *event)

Handles the mouse move event.

¢ void mouseReleaseEvent (QMouseEvent xevent)

Handles the mouse release event.

Private Attributes

¢ VDomNodeModel * nodeModel
The Model used as basis for the widget’s QTreeView.

¢ VMainView & view

A reference to the main view object.

QTreeView * tree

The tree view.

QLabel * nameLabel

A label showing the module name.

QLineEdit * moduleName
An editable text widget for editing the desciption of the module .

QLabel * moduleld
A label for showing the module’s ID.

QLabel * moduleType
A label for showing the module type.

QGridLayout * gridLayout
A grid layout used to lay out the different widgets.

QColor backgroundColor
A grid layout used to lay out the different widgets.

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

146

4.7 VSettings Class Reference 61

¢ QToolButton backgroundColorButton

Background color chooser button.

¢ QQPixmap bgPixmap

Pizmap for backgroundcolor button.

¢ QlIcon buttonIcon

Icon for backgroundcolor button.

4.7.1 Detailed Description

This class represents the Settings widget that display information about an active module and
handles changes to this data.

The VSettings(p.59) class consists of a QTreeView which is a part of the Model /View program-
ming paradigm used to make the tre representation of a module’s attribute. The class also includes
som simple QLineEdit and QLabels for displaying information about the module.

Definition at line 24 of file vsettings.h.

4.7.2 Constructor & Destructor Documentation
4.7.2.1 VSettings::VSettings (QWidget * parent, VMainView & viewRef)

A constructor for initializing widget elements.

Parameters:
parent DThe parent widget.

viewRef A reference to the main view object

Definition at line 22 of file vsettings.cpp.

References backgroundColor, backgroundColorButton, VMainView::getCurrentFilename(), grid-
Layout, moduleld, moduleName, moduleType, namelLabel, nodeModel, tree, and view.

Here is the call graph for this function:

VSettings::VSettings —>| VMainView::getCurrentFilename

4.7.2.2 VSettings::~VSettings ()

Destructor.

Definition at line 85 of file vsettings.cpp.

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

147

62 VisualizationApp Class Documentation

4.7.3 Member Function Documentation
4.7.3.1 void VSettings::buildWidgets (const QString & type, const int & id) [slot]

This function generated the sub-widgets in VSettings(p. 59) based on the module. This includes
the tree view and the labels and line edit.

Parameters:
type Module type string.

12d Module ID int.

Definition at line 171 of file vsettings.cpp.

References VMainView::getCurrentFilename(), moduleld, moduleName, moduleType, node-
Model, tree, and view.

4.7.3.2 bool VSettings::event (QEvent * event) [protected]
Event handler.

Parameters:
event The event.

Returns:
Boolean.

Definition at line 100 of file vsettings.cpp.

4.7.3.3 QLineEdit & VSettings::getModuleName ()
moduleName access function

Returns:
Line Edit reference

Definition at line 316 of file vsettings.cpp.
References moduleName.

Referenced by VMainView::VMainView().

4.7.3.4 VDomNodeModel & VSettings::getNodeModel ()
nodeModel access function.

Returns:
VDomNodeModel(p. 16) reference.

Definition at line 329 of file vsettings.cpp.

References nodeModel.

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

148

4.7 VSettings Class Reference 63

4.7.3.5 VMainView & VSettings::getView ()

view access function.

Returns:
View reference.

Definition at line 303 of file vsettings.cpp.

References view.

4.7.3.6 void VSettings::mouseMoveEvent (QMouseEvent * event) [protected]

Handles the mouse move event.

Parameters:
event The event to be handled.

Definition at line 145 of file vsettings.cpp.

4.7.3.7 void VSettings::mousePressEvent (QMouseEvent * event) [protected]

Handles the mouse pressed event.

Parameters:
event The event to be handled.

Definition at line 134 of file vsettings.cpp.

4.7.3.8 void VSettings::mouseReleaseEvent (QMouseEvent * event) [protected]

Handles the mouse release event.

Parameters:
event The event to be handled.

Definition at line 156 of file vsettings.cpp.

4.7.3.9 void VSettings::paintEvent (QPaintEvent * event) [protected]

Handles the paint event.

Parameters:
event The event to be handled.

Definition at line 123 of file vsettings.cpp.

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

149

64 VisualizationApp Class Documentation

4.7.3.10 void VSettings::resizeEvent (QResizeEvent * event) [protected]
Handles the resize event.

Parameters:
event The event to be handled.

Definition at line 112 of file vsettings.cpp.

4.7.3.11 void VSettings::setBackgroundColor () [slot]

Function sets the scene’s background color to the output of a QColorDialog.
Definition at line 248 of file vsettings.cpp.

References VMainView::getCurrentFilename(), and view.

4.7.3.12 void VSettings::writeModuleName () [slot]

Writes the module name fetched from the QLineEdit widget to the XML-file.
Definition at line 210 of file vsettings.cpp.

References VMainView::getCurrentFilename(), VDomNodeModel::getDomNode(), moduleName,
nodeModel, and view.

4.7.4 Member Data Documentation
4.7.4.1 QColor VSettings::backgroundColor [private]

A grid layout used to lay out the different widgets.
Definition at line 99 of file vsettings.h.
Referenced by VSettings().

4.7.4.2 QToolButton VSettings::backgroundColorButton [private]
Background color chooser button.

Definition at line 104 of file vsettings.h.

Referenced by VSettings().

4.7.4.3 QPixmap VSettings::bgPixmap [private]

Pixmap for backgroundcolor button.

Definition at line 109 of file vsettings.h.

4.7.4.4 Qlcon VSettings::buttonlcon [private]

Icon for backgroundcolor button.

Definition at line 114 of file vsettings.h.

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

150

4.7 VSettings Class Reference 65

4.7.4.5 QGridLayout* VSettings::gridLayout [private]

A grid layout used to lay out the different widgets.
Definition at line 94 of file vsettings.h.
Referenced by VSettings().

4.7.4.6 QLabelx VSettings::moduleld [private]

A label for showing the module’s ID.
Definition at line 84 of file vsettings.h.
Referenced by buildWidgets(), and VSettings().

4.7.4.7 QLineEdit* VSettings::moduleName [private]

An editable text widget for editing the desciption of the module .
Definition at line 79 of file vsettings.h.
Referenced by buildWidgets(), getModuleName(), VSettings(), and writeModuleName().

4.7.4.8 QLabelx VSettings::moduleType [privatel

A label for showing the module type.
Definition at line 89 of file vsettings.h.
Referenced by buildWidgets(), and VSettings().

4.7.4.9 QLabelx VSettings::nameLabel [private]

A label showing the module name.
Definition at line 74 of file vsettings.h.
Referenced by VSettings().

4.7.4.10 VDomNodeModelx VSettings::nodeModel [private]

The Model used as basis for the widget’s QTreeView.
Definition at line 59 of file vsettings.h.
Referenced by buildWidgets(), getNodeModel(), VSettings(), and writeModuleName().

4.7.4.11 QTreeView* VSettings::tree [private]

The tree view.
Definition at line 69 of file vsettings.h.
Referenced by buildWidgets(), and VSettings().

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

151

66 VisualizationApp Class Documentation

4.7.4.12 VMainView& VSettings::view [private]

A reference to the main view object.
Definition at line 64 of file vsettings.h.

Referenced by buildWidgets(), getView(), setBackgroundColor(), VSettings(), and writeModule-
Name().

The documentation for this class was generated from the following files:

e My Documents/Visual Studio 2005/Projects/VisualizationApp/vsettings.h
e My Documents/Visual Studio 2005 /Projects/VisualizationApp/vsettings.cpp

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

152

Chapter 5

VisualizationApp File
Documentation

5.1 My Documents/Visual Studio 2005/Projects/Visualization-
App/main.cpp File Reference

#include <qapplication.h>
#include "VMainView.h"

Include dependency graph for main.cpp:

gmainwindow.h

generatedfiles/ui_VisualizationApp.h
QDomDocument

vtkAlgorithm.h

gapplication.h

/
VMainView.h

vtkActor.h

My Documents/Visual Studio 2005/Projects/VisualizationApp/main.cpp

vtkMapper.h

vconnection.h
vmodule.h

vtkGenericRenderWindowlInteractor.h

QtGui

vtkFrustumCoverageCuller.h

Functions

e int main (int arge, char *xargv)

153

68 VisualizationApp File Documentation

5.1.1 Function Documentation
5.1.1.1 int main (int argc, char ** argv)

Definition at line 7 of file main.cpp.

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

154

5.2 My Documents/Visual Studio 2005 /Projects/VisualizationApp /resource.h File
Reference 69

5.2 My Documents/Visual Studio 2005 /Projects/Visualization-
App/resource.h File Reference

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

155

70 VisualizationApp File Documentation

5.3 My Documents/Visual Studio 2005 /Projects/Visualization-
App/vconnection.cpp File Reference

#include "vconnection.h"

Include dependency graph for vconnection.cpp:

My Documents/Visual Studio 2005/Projects/VisualizationApp/vconnection.cpp QtGui

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

156

5.4 My Documents/Visual Studio 2005/Projects/VisualizationApp/vconnection.h
File Reference 71

5.4 My Documents/Visual Studio 2005 /Projects/Visualization-
App/vconnection.h File Reference

#include <QtGui>

Include dependency graph for vconnection.h:

My Documents/Visual Studio 2005/Projects/VisualizationApp/vconnection.h s 6] {(e]l]]

This graph shows which files directly or indirectly include this file:

J My Documents/Visual Studio 2005/Projects/VisualizationApp/vmainview.h l

My Documents/Visual Studio 2005/Projects/VisualizationApp/vconnection.h
.

—l My Documents/Visual Studio 2005/Projects/VisualizationApp/vconnection.cpp |

Classes

e class VConnection

Class represents the connection between VTK-modules.

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

157

72 VisualizationApp File Documentation

5.5 My Documents/Visual Studio 2005/Projects/Visualization-
App/vdomnodeitem.cpp File Reference

#include "vdomnodeitem.h"

Include dependency graph for vdomnodeitem.cpp:

QHash

My Documents/Visual Studio 2005/Projects/VisualizationApp/vdomnodeitem.cpp

QDombDocument

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

158

5.6 My Documents/Visual Studio
2005 /Projects/VisualizationApp/vdomnodeitem.h File Reference 73

5.6 My Documents/Visual Studio 2005/Projects/Visualization-
App/vdomnodeitem.h File Reference

#include <QHash>
#include <QDomDocument>

Include dependency graph for vdomnodeitem.h:

QHash
My Documents/Visual Studio 2005/Projects/VisualizationApp/vdomnodeitem.h
QDomDocument

This graph shows which files directly or indirectly include this file:

J My Documents/Visual Studio 2005/Projects/VisualizationApp/vdomnodeitem.cpp |

-
My Documents/Visual Studio 2005/Projects/VisualizationApp/vdomnodeitem.h
-«

_1 My Documents/Visual Studio 2005/Projects/VisualizationApp/vdomnodemodel.h l

Classes

e class VDomNodeltem
The VDomNodeltem(p. 12) class defines the item used for the VDomNodeModel(p. 16).

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

159

74 VisualizationApp File Documentation

5.7 My Documents/Visual Studio 2005/Projects/Visualization-
App/vdomnodemodel.cpp File Reference

#include "vdomnodemodel.h"
#include "vsettings.h"
#include <QStringlList>
#include <QFile>

Include dependency graph for vdomnodemodel.cpp:

vdomnodemodel.h

My Documents/Visual Studio 2005/Projects/VisualizationApp/vdomnodemodel.cpp

QStringList

- OFile

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

160

5.8 My Documents/Visual Studio
2005 /Projects/VisualizationApp/vdomnodemodel.h File Reference 75

5.8 My Documents/Visual Studio 2005/Projects/Visualization-
App/vdomnodemodel.h File Reference

#include <QAbstractItemModel>
#include <QDomNode>

#include <QDomElement>
#include "vdomnodeitem.h"

Include dependency graph for vdomnodemodel.h:

QAbstractitemModel

QDomNode

My Documents/Visual Studio 2005/Projects/VisualizationApp/vdomnodemodel.h
QDomElement

vdomnodeitem.h

QHash

QDomDocument

This graph shows which files directly or indirectly include this file:

Studio

My Documents/Visual Studio 2005/Projects/VisualizationApp/vdomnodemodel.h 33

['my D
My D Studio 2005/Projects” ppivsettings.h

Classes

¢ class VDomNodeModel
Model for modelling a DOM-node read from XML for use in a QTreeView.

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

161

76 VisualizationApp File Documentation

5.9 My Documents/Visual Studio 2005/Projects/Visualization-
App/vmainview.cpp File Reference

#include <qapplication.h>

#include <qfiledialog.h>

#include "vpipeline.h"

#include "vsettings.h"

#include <QDomDocument>

#include <QTextStream>

#include "VMainView.h"

#include <vtkRenderer.h>

#include <vtkRenderWindow.h>
#include "vtkCylinderSource.h"
#include <vtkPolyDataMapper.h>
#include "vtkDataSetReader.h"
#include "vtkDataSetMapper.h"
#include "vtkPropCollection.h"
#include "vtkVolumeProperty.h"
#include "vtkStructuredPointsReader.h"
#include "vtkPiecewiseFunction.h"
#include "vtkColorTransferFunction.h"
#include "vtkVolumeRayCastCompositeFunction.h"
#include "vtkVolumeRayCastMapper.h"
#include "vtkFixedPointVolumeRayCastMapper.h"
#include "vtkQuadric.h"

#include "vtkSampleFunction.h"
#include "vtkProperty.h"

#include "vtkVolumel6Reader.h"
#include "vtkContourFilter.h"
#include "vtkPolyDataNormals.h"
#include "vtkOutlineFilter.h"
#include "vtkStripper.h"

#include "vtkImageMapToColors.h"
#include "vtkImageActor.h"

#include "vtkLookupTable.h"

#include "vtkBoxWidget.h"

#include "vtkInteractorStyleTrackballCamera.h"

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

162

5.9 My Documents/Visual Studio 2005 /Projects/Visualization App/vmainview.cpp
File Reference 77

#include "vtkVolumeTextureMapper2D.h"
#include "vtkVolumeTextureMapper.h"
#include "vtkVolumeShearWarpMapper.h"
#include "vtkSLCReader.h"

Include dependency graph for vmainview.cpp:

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

163

78

VisualizationApp File Documentation

My Documents/Visual Studio 2005/Projects/VisualizationApp/vmainview.cpp

qapplication.h

dfiledialog.h

vpipeline.h

QDombDocument

vsettings.h

QTextStream

vtkRenderer.h
vtkRenderWindow.h
vtkCylinderSource.h
vtkPolyDataMapper.h
vtkDataSetReader.h
vtkDataSetMapper.h
vtkPropCollection.h

vtkVolumeProperty.h

vtkStructuredPointsReader.h

vtkPiecewiseFunction.h

vtkColorTransferFunction.h

vtkVolumeRayCastCompositeFunction.h

vtkVolumeRayCastMapper.h

vtkFixedPointVolumeRayCastMapper.h

vtkQuadric.h

vtkSampleFunction.h

vtkProperty.h

vtkVolumel6Reader.h

vtkContourFilter.h

vtkPolyDataNormals.h

vtkOutlineFilter.h

vtkStripper.h

vtkimageMapToColors.h

vtkimageActor.h

vtkLookupTable.h

vtkBoxWidget.h

vtkinteractorStyleTrackballCamera.h

vtkVolumeTextureMapper2D.h

ue\‘m
vt

164

3 11:17:12 2096 for VisualizationApp by Doxygen

VolumeTextureMapper.

vtkVolumeShearWarpMapper.h

vtkSLCReader.h

5.9 My Documents/Visual Studio 2005 /Projects/Visualization App/vmainview.cpp
File Reference 79

Namespaces

¢ namespace std

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

165

80 VisualizationApp File Documentation

5.10 My Documents/Visual Studio 2005 /Projects/Visualization-
App/vmainview.h File Reference

#include "gmainwindow.h"

#include "generatedfiles/ui_VisualizationApp.h"
#include <QDomDocument>

#include "vtkAlgorithm.h"

#include "vtkActor.h"

#include "vtkMapper.h"

#include "vconnection.h"

#include "vmodule.h"

#include "vtkGenericRenderWindowInteractor.h'
#include "vtkFrustumCoverageCuller.h"

Include dependency graph for vmainview.h:
gmainwindow.h
generatedfiles/ui_VisualizationApp.h

QDomDocument

vtkAlgorithm.h

vtkActor.h

My Documents/Visual Studio 2005/Projects/VisualizationApp/vmainview.h

vtkMapper.h

vconnection.h
vmodule.h

vtkGenericRenderWindowInteractor.h

QtGui

vtkFrustumCoverageCuller.h

This graph shows which files directly or indirectly include this file:

‘ My D Studio 2005/Project cpp ‘

My D Studio 2005/Projects pp h ‘

My Documents/Visual Studio 2005/Projects/VisualizationApp/vmainview.h

My D isual Studio

My D Studio i pp/vpipeline.h ‘

Classes

e class VMainView

Main View class represents the main window including the VTK module intialization functions.

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

166

5.11 My Documents/Visual Studio 2005/Projects/VisualizationApp/vmodule.cpp
File Reference 81

5.11 My Documents/Visual Studio 2005 /Projects/Visualization-
App/vmodule.cpp File Reference

#include "vmodule.h"

Include dependency graph for vmodule.cpp:

My Documents/Visual Studio 2005/Projects/VisualizationApp/vmodule.cpp QtGui

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

167

82 VisualizationApp File Documentation

5.12 My Documents/Visual Studio 2005 /Projects/Visualization-
App/vmodule.h File Reference

#include <QtGui>

Include dependency graph for vmodule.h:

My Documents/Visual Studio 2005/Projects/VisualizationApp/vmodule.h sy —He)(ell]

This graph shows which files directly or indirectly include this file:

‘ My Documents/Visual Studio 2005/Project:

3l

My D Studio i ppivpipeline.h

My Documents/Visual Studio 2005/Projects/VisualizationApp/vmodule.h

[My Documents/Visual Studio 2005/Projects/VisualizationApp/vmodule.cpp]

Classes

e class VModule
Class representing a VTK module read from XML-document for use in VPipeline(p.42).

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

168

5.13 My Documents/Visual Studio 2005/Projects/VisualizationApp/vpipeline.cpp
File Reference 83

5.13 My Documents/Visual Studio 2005 /Projects/Visualization-
App/vpipeline.cpp File Reference

#include "vpipeline.h"
#include <QDomDocument>
#include <QPushButton>

Include dependency graph for vpipeline.cpp:

vpipeline.h

I QDombDocument

My Documents/Visual Studio 2005/Projects/VisualizationApp/vpipeline.cpp

QPushButton

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

169

VisualizationApp File Documentation

84
5.14 My Documents/Visual Studio 2005 /Projects/Visualization-
App/vpipeline.h File Reference

#include <QtGui>
#include <QDomDocument>
#include <QPainter>
#include "vmodule.h"
#include "vmainview.h"

Include dependency graph for vpipeline.h:

QDomDocument

generatedfiles/ui_VisualizationApp.h

vtkAlgorithm.h

vtkActor.h

vmainview.h

My Documents/Visual Studio 2005/Projects/VisualizationApp/vpipeline.h

vtkMapper.h

QPainter vtkGenericRenderWindowInteractor.h

vtkFrustumCoverageCuller.h

gmainwindow.h

This graph shows which files directly or indirectly include this file:

J My Documents/Visual Studio 2005/Projects/VisualizationApp/vmainview.cpp |

My Documents/Visual Studio 2005/Projects/VisualizationApp/vpipeline.h
My Documents/Visual Studio 2005/Projects/VisualizationApp/vpipeline.cpp |

Classes

e class VPipeline
VPipeline(p. 42) is a class that represents the contents of the Pipeline widget in the application.

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

170

5.15 My Documents/Visual Studio 2005/Projects/VisualizationApp/vsettings.cpp
File Reference 85

5.15 My Documents/Visual Studio 2005 /Projects/Visualization-
App/vsettings.cpp File Reference

#include "vsettings.h"
#include <QLabel>
#include <QPixmap>

Include dependency graph for vsettings.cpp:

QtGui

QTextStream

My Documents/Visual Studio 2005/Projects/VisualizationApp/vsettings.cpp s ZHIOJIEVC]

QDomDocument

vmainview.h
vdomnodemodel.h

QPixmap

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

171

86 VisualizationApp File Documentation

5.16 My Documents/Visual Studio 2005 /Projects/Visualization-
App/vsettings.h File Reference

#include <QtGui>
#include <QTextStream>
#include <QDomDocument>
#include "vmainview.h"
#include "vdomnodemodel.h"

Include dependency graph for vsettings.h:

QtGui

QTextStream

My Documents/Visual Studio 2005/Projects/VisualizationApp/vsettings.h

vdomnodemodel.h

This graph shows which files directly or indirectly include this file:

| My Documents/Visual Studio 2005/Projects/VisualizationApp/vdomnodemodel.cpp |

My Documents/Visual Studio 2005/Projects/VisualizationApp/vsettings.h <—| My Documents/Visual Studio 2005/Projects/VisualizationApp/vmainview.cpp |

| My Documents/Visual Studio 2005/Projects/VisualizationApp/vsettings.cpp |

Classes

e class VSettings

This class represents the Settings widget that display information about an active module and
handles changes to this data.

Generated on Tue Jun 13 11:17:12 2006 for VisualizationApp by Doxygen

172

