
Malware detection through opcode sequence
analysis using machine learning

Simen Rune Bragen

Master’s Thesis
Master of Science in Information Security

30 ECTS
Department of Computer Science and Media Technology

Gjøvik University College, 2015

Avdeling for
informatikk og medieteknikk
Høgskolen i Gjøvik
Postboks 191
2802 Gjøvik

Department of Computer Science
and Media Technology
Gjøvik University College
Box 191
N-2802 Gjøvik
Norway

Malware detection through opcode sequence analysis
using machine learning

Simen Rune Bragen

2015/06/01

Malware detection through opcode sequence analysis using machine learning

Abstract

To identify malware, most antivirus scanners use a combination of signature matching and
heuristic-based detection. Signature matching compares only to previously known files, while
heuristic-based detection looks for known system artifacts and previously known bad code pat-
terns in a file. The obvious problem with this is that only known and partially known samples will
be recognized. In this thesis we use reverse engineering to extract the assembly instructions from
a given executable file. We chose to use only the opcodes, which are the part of the instruction
that specifies the operation to be performed, in example mov.

By performing statistical analysis on the datasets, a significant difference between the op-
codes in malware and benign files was found. Due to this, supervised and unsupervised machine
learning approaches like artificial neural network, support vector machine, bayes net, random
forest, k nearest neighbours, and self organizing map was used to look at the sequences of these
instructions. The unknown files were classified as either malware or benign depending on the
presence of, and number of occurrences of different sequences.

We show that by using only opcodes without operands (the rest of the instruction), malware
can be distinguished from benign files. By using a sequence length of up to four opcodes, a
classification accuracy of 95,58% was achieved. Our work contributes to the research field by
proving that also obfuscated malware due to the use of packers is detected through this method.
By using different classifiers and longer sequences than previous work, we also provide empirical
evidence that the n-gram length has little influence on the performance. We used a sequence
length of four, compared to previous work that focused on only one and two sequences.

i

Malware detection through opcode sequence analysis using machine learning

Sammendrag

Antivirusprogrammer gjenkjenner vanligvis skadevare på to måter: Ved å sammenligne signa-
turen til en fil med andre kjente signaturer, eller ved å kjenne igjen skadelig kode i filen. Prob-
lemet med disse metodene er at bare kjente og delvis kjente filer blir oppdaget. I denne opp-
gaven bruker vi "reverse engineering" for å hente ut assembly-instruksjonene til en gitt fil. Vi ser
på "opcodene", altså den delen av instruksjonen som sier hva slags oppgave som skal utføres. Et
eksempel er mov.

Ved hjelp av analyse av dataene fant vi en signifikant forskjell mellom opcodene som blir brukt
av skadevare og de som blir brukt av vanlige programmer. Videre brukte vi flere forskjellige
maskinlæringsalgoritmer for å lære av sekvensene av disse opcodene. Nye filer ble klassifisert
som enten skadevare eller vennligsinnet programmer.

Ved å bruke sekvenser opptil 4 i lengden viser vi at en nøyaktighet på 95,58 % kan oppnås.
Vi viderefører tidligere arbeid innen samme fagfelt ved å vise at også obfuskert skadevare kan
gjenkjennes på denne måten, og vi bruker lengre sekvenser enn det er gjort tidligere.

ii

Malware detection through opcode sequence analysis using machine learning

Preface

I would like to thank my supervisor, Professor Katrin Franke for providing excellent guidance
and valuable input throughout the whole project. Further, I would like to thank my classmates
Roar, Xiongwei and Lars for discussions and company during the hours at the lab. Thank you to
everyone at the Testimon Forensics Group for valuable feedback during our monthly meetings as
well. Finally, I would like to thank my family for always challenging me and encouraging me to
keep learning more.

iii

Malware detection through opcode sequence analysis using machine learning

Contents

Abstract . i
Sammendrag . ii
Preface . iii
Contents . iv
List of Figures . vii
List of Tables . viii
1 Introduction . 1

1.1 Keywords . 1
1.2 Topic covered by the project . 1
1.3 Problem description . 1
1.4 Justification, motivation and benefits . 1
1.5 Research questions . 2
1.6 Scope and Contributions . 2
1.7 Thesis outline . 3

2 Malware identification . 4
2.1 Different types of malware . 4

2.1.1 Virus . 5
2.1.2 Worm . 5
2.1.3 Bot . 6
2.1.4 Rootkit . 6
2.1.5 Backdoor . 6
2.1.6 Trojan horse . 6

2.2 Obfuscation techniques . 7
2.2.1 Encryption . 7
2.2.2 Packers . 8
2.2.3 Polymorphic . 8
2.2.4 Metamorphic . 9
2.2.5 General obfuscation techniques . 9

2.3 Malware Analysis . 10
2.3.1 Static methods . 10
2.3.2 Dynamic methods . 11
2.3.3 Malware features for Machine Learning 11

3 Related work . 13
3.1 Opcodes as indicator for malware . 13
3.2 The influence of packers . 14

4 Methods . 15

iv

Malware detection through opcode sequence analysis using machine learning

4.1 Choice of methods . 15
4.2 Data collection . 15
4.3 Data preprocessing . 17
4.4 Reverse Engineering . 17

4.4.1 Disassembly . 17
4.4.2 Debugging . 18
4.4.3 x86/x64 architecture . 18

4.5 Machine Learning . 20
4.5.1 Feature selection . 21
4.5.2 Classifiers . 22

4.6 Data analysis . 24
5 Experiments, results and discussion . 27

5.1 Experimental environment . 27
5.1.1 System . 27
5.1.2 Dataset . 28

5.2 Experimental design . 29
5.2.1 Empirical analysis . 29
5.2.2 Computational analysis . 32

5.3 Results . 37
5.3.1 Reliability of opcodes . 37
5.3.2 Influence of packers . 37
5.3.3 N-gram lengths . 38

5.4 Discussion . 39
5.4.1 Methodology . 39
5.4.2 Datasets . 39
5.4.3 Robustness . 40
5.4.4 Source code and computational complexity 40
5.4.5 Limitations . 40

6 Conclusion and further work . 42
6.1 Theoretical implications . 42
6.2 Practical considerations . 42
6.3 Further research . 43

Bibliography . 45
A Computational results . 50
B Datasets . 54

B.1 Asm file example . 54
B.2 N-gram example . 57
B.3 Distribution example . 59
B.4 Arff file example . 60

C Source code . 62
C.1 createArff4gram . 62
C.2 copyAllExe . 65

v

Malware detection through opcode sequence analysis using machine learning

C.3 createBatAllBenign . 65
C.4 getInstructionsFromAsm . 66

vi

Malware detection through opcode sequence analysis using machine learning

List of Figures

1 Obfuscation arms race [1] . 7
2 A simplified polymorphic engine [1] . 8
3 PE-file format [2]. 16
4 Data movement . 20
5 Support Vector Machine [3] . 23
6 ROC curve [4]. 26
7 Datasets . 29
8 Top 18 opcodes. 31
9 Experimental Design . 33
10 ROC curve 1-gram all - RF from Weka. 35
11 ROC curve 2-gram SymmetricalUncert - RF from Weka. 35
12 ROC curve 3-gram SymmetricalUncert - RF from Weka. 36
13 ROC curve 4-gram SymmetricalUncert - RF from Weka. 36
14 Influence of packers on the classification accuracy 38
15 Classification accuracy using different sequence lengths 39
16 Classifier accuracies for 1-gram . 52
17 Classifier accuracies for 2-gram . 52
18 Classifier accuracies for 3-gram . 53
19 Classifier accuracies for 4-gram . 53

vii

Malware detection through opcode sequence analysis using machine learning

List of Tables

1 Opcode n-grams . 2
2 Top 18 instructions found in the files . 30
3 Top 15 opcodes used exclusively used by malware 31
4 Top rated features . 34
5 Number of features . 35
6 Accuracy for Symmetrical Uncertainty . 36

viii

Malware detection through opcode sequence analysis using machine learning

1 Introduction

In this chapter the purpose and idea behind the project is presented, and an introduction of the
subject is given. We state the current problem and the research questions that will be attempted
answered. The scope, contributions and limitations of the thesis is discussed. Finally, an outline
of the different chapters is provided.

1.1 Keywords

Malware detection, machine learning, opcode sequences, assembly instructions, data mining.

1.2 Topic covered by the project

Malware is used by both criminals and governments for a range of purposes. This can be to steal
information, surveillance activity, sabotage, or remote control computers in a botnet. Accord-
ing to Symantec, 1 in 566 web sites scanned by their Web-site Vulnerability Assessment Service
in 2013 contained malware [5]. As malware authors have started to create more sophisticated
software, the identification of these malicious samples have become more difficult. Various ob-
fuscation techniques like the use of packers, encryption and poly-/metamorphic code are huge
challenges for those trying to understand what the code does.

The analysis of malware is usually divided in static and dynamic approaches. In addition there
is a content based method. Previous master theses at HiG have taken all approaches. Flaglien
used a static approach [6], Sand a dynamic approach [7] and Berg a pseudo-dynamic approach
[8]. Borg used a content based approach [9]. This project will take a static approach, but with
the help of automation.

1.3 Problem description

To identify malware, most antivirus scanners use a combination of signature matching and
heuristic-based detection. The obvious problem with this is that only known and partially known
samples based on the artifacts extracted by malware analysis will be recognized. Because of the
rapid growth in malware samples over the last years, this is no longer sufficient.

In this thesis we use reverse engineering to extract the assembly instructions from a given
file. Further, different machine learning approaches are used to look at the sequences of these
instructions. The file is classified as either malware or benign depending on the sequences.

1.4 Justification, motivation and benefits

As malware is a big threat to not only individuals, but also critical infrastructure, businesses and
governments, it is important to develop new and efficient ways to detect the malicious content.
Some malware variants are now so advanced that they can even cause physical damage in an
industrial infrastructure seemingly isolated from the online world [10].

1

Malware detection through opcode sequence analysis using machine learning

1.5 Research questions

To understand if it is possible to develop a method to identify malware based on the opcode
sequences in a file, the goal of the thesis is to answer these three questions:

1. What is the reliability of opcodes as an indicator for malware?

2. What is the influence of packers in regards to malware identification using opcodes?

3. Which n-gram lengths provide best accuracy?

As stated in the research questions, n-grams are used as representation for the data. N-grams
are created by a sliding window n characters long across a document and recording the unique
strings found [11]. In example, the 2-grams for the text ’virus’ are ’vi’, ’ir’, ’ru’, and ’us’. When it
comes to malware classification, members of the IBM TJ Watson Research Center were the first
to introduce the use of n-grams [11]. In table 1 an example of opcode n-grams is provided.

Opcodes 2-gram 3-gram
mov
add
push
add

mov, add
add, push
push, add

mov, add, push
add, push, add

Table 1: Opcode n-grams

1.6 Scope and Contributions

Since this is a project with a relatively short time frame, some limitations have to be set. IDA
Pro 1 has an option to extract de-obfuscated code from memory to get a more accurate opcode
representation of the packed malware [12][p. 542]. This will not be done, since the method pro-
posed will focus on a static approach. Further, it has been shown that packed Windows system
files may be classified as malware [13]. We are aware of this, but will not take this into consider-
ation in this work. In relation to this, a question is raised in regard to whether the file classified
gets the ’malware label’ because it is packed or because it is malware. Again, this is not taken
into consideration.

According to Moskovitch et al, the ratio in real-life scenarios is approximately 10 % malware
and 90 % benign files [14]. They state that it is unclear what the percentage split should be in the
training set, so we will keep it close to 50 / 50 like previous work. Since this is an experimental
setup, little time will be spent on optimizing the code developed for multi thread processing,
thus we will not focus on the computational efficiency.

In this thesis we seek to include packed malware in the dataset, since this is not yet done [15].
By utilizing unpackers in the feature extraction phase, we believe this is feasible. Also, the length
of the n-grams will be increased, and different machine learning algorithms than previous work
utilized to test the reliability of the extracted features.

1https://www.hex-rays.com/products/ida/

2

https://www.hex-rays.com/products/ida/

Malware detection through opcode sequence analysis using machine learning

1.7 Thesis outline

The thesis is divided into six chapters. By using a top down approach, the idea is to introduce the
reader to the different disciplines involved, before explaining how they are used in the research.

Next is a short outline for the following chapters.

• Chapter 2 states what malware is, and why it is a relevant research area. Different types of
malware and the methods used to obfuscate them are presented. At last different malware
detection techniques are discussed.

• Chapter 3 provides an overview of literature related to the thesis’ research questions. First
work on opcodes as an indicator for malware is presented, then papers on the influence of
packers.

• Chapter 4 describes the methods used to conduct the thesis research. Data collection, data
preprocessing, reverse engineering and machine learning are described. Further the meth-
ods for data analysis are described.

• Chapter 5 focuses on how the experiments were performed, and the results achieved. The
experimental environment, the experimental design and the results are presented. After
this, a discussion on the results follows.

• Chapter 6 concludes the thesis by discussing theoretical implications and practical consid-
erations. At last we suggest possibilities for further work.

3

Malware detection through opcode sequence analysis using machine learning

2 Malware identification

According to Symantec’s last threat report, it was detected far more malware in 2014 than in
previous years [5]. There were more than 317 million new pieces of malware created last year,
meaning nearly one million new threats were released into the wild each day.

In this chapter we state what malware is, and why it is a relevant research area. Different types
of malware are explained, and obfuscation techniques described. Further the different methods
for malware analysis are introduced.

2.1 Different types of malware
Malware is short for malicious software. Various definitions exists, in example this from Skoudis
et al [16]:

Malware is a set of instructions that run on your computer and make your system do something
that an attacker wants it to do.

Based on this definition, it does not have to be executables like we are using in this thesis. It
doesn’t even have to be software, as it may be implemented in hardware. The second part of the
definition may refer to a wide variety of scenarios. An attacker may simply want to cause harm,
in example deleting a lot of valuable files on the system. Or, the goal may be money, so the files
are encrypted and the victim is asked to pay for the decryption key. Further, the reason for an
attack might be espionage or theft of information like credit card numbers.

A similar and more recent definition is provided by Srakew et al:

Malware is malicious code or software which can be vulnerable to the system in many aspects.

Unlike the earliest types of malware that were created as pranks or for vandalism, today’s mal-
ware is very different. Now malware is part of a big underground economy, and is a tool used by
underground organizations to earn money, and by governments for espionage and attacks [11].

Several types of malware exists. To make it easier to share information, malware should be
categorized. This would also make it easier to "clean up" after a security breach in example at
a company. If the malware found was a rootkit different procedures must be followed than if
it was a worm. Unfortunately no true industry standard exists [17]. The Computer Antivirus
Researcher’s Organization (CARO) have developed a naming standard for malware, but this only
serves as a general guide. Vendors are not required to follow the standard which contains the
subcategories virus, dropper, trojan, PWS (Password stealer) and backdoor.

Microsoft have their own list which is longer and more detailed. It consists of the follow-
ing [18]: Adware, Backdoor, Behavior, BrowserModifier, Constructor, DDoS, Dialer, DoS, Exploit,
HackTool, Joke, Misleading, MonitoringTool, Program, PWS, Ransom, RemoteAccess, Rogue,
SettingsModifier, SoftwareBundler, Spammer, Spoofer, Spyware, Tool, Trojan, TrojanClicker, Tro-
janDownloader, TrojanDropper, TrojanNotifier, TrojanProxy, TrojanSpy, VirTool, Virus and Worm.

4

Malware detection through opcode sequence analysis using machine learning

As a higher level of distinction, malware can be divided into two main categories: Parasitic
malware that needs a host program, like virus and backdoors, and self-contained programs that
can operate independently like worms and bots [19][p. 216].

Next follows a description of some of the most used malware types.

2.1.1 Virus

The term virus in regards to computers was first introduced by Cohen in 1987 [20]. A virus is a
piece of software that can infect other programs by modifying them [19][p. 220]. They attach
themselves to other programs and execute in the background while the host program does what
it is supposed to do. It consists of three parts: The infection mechanism, the trigger and a payload.
The first is the way the virus "reproduces" or spread. The second is the condition on which the
virus activates or delivers its payload. The last is the malicious activity it performs.

Several types of viruses exists. In addition to classify it by targets, like boot sector, file and
macro, we can differentiate on how the virus tries to hide itself [19][p. 224]:

• Encrypted virus: With this type of virus, the virus itself encrypts the rest of its code with a
random key. When it duplicates it uses a different key, so that no constant pattern can be
observed by investigators.

• Stealth virus: The main key is that it tries to hide itself from detection. It can in example
be by being the same length as a benign program. By interrupting the I/O routines, it may
detect when someone is reading the portion of the disk used by itself, and then present
itself as the original uninfected program.

• Polymorphic virus: By changing its bit patterns, the virus will create different signatures
for every version. Like the stealth virus, the purpose is to avoid detection.

• Metamorphic virus: Same as the polymorphic, but both the behaviour and appearance is
changed. This makes it even more difficult to detect the new version.

2.1.2 Worm

Stallings et al states that "a worm is a program that can replicate itself and send copies from
computer to computer across network connections. Upon arrival the worm may be activated
to replicate and propagate again" [19][p. 231]. This is typically done in one of two ways: By
exploiting vulnerabilities in a network service, or by email [11]. Although without any sources
to back up the statement, it would be safe to assume that different social media sites now serves
as a third option.

Much like a virus, the worm consists of three phases [19][p. 231]:

1. Search for other systems to infect.

2. Establish a connection with the remote system.

3. Copy itself to the remote system, and make the copy run on the new system.

In addition it may try to figure out if the new system is already infected before infecting it
itself.

5

Malware detection through opcode sequence analysis using machine learning

2.1.3 Bot

A bot is a program that secretly takes control over a computer. It is short for robot, and was
originally called remote access trojan horse [21]. A computer that is infected is also called a
bot, or a zombie [22]. Attackers usually aim to get hundreds or thousands computers infected at
the same time. This way all the infected computers can be controlled and used in a coordinated
manner. This is called a botnet [19][p. 240].

The botnets are controlled using Command and Control servers (C&C). The communication
can go over different protocols. Some use IRC, both via channels and private messages, some
use HTTP and interpret the response messages as commands, while some use peer-to-peer (p2p)
based communication [22].

There are several reasons for a malware author to use bots. The most common are distributed
denial-of-service (DDoS) attacks, spamming, traffic sniffing, keylogging, spreading new malware
and installing adware [19][p. 240-241]. In the recent years botnets have also been used for
bitcoin mining [23].

2.1.4 Rootkit

A rootkit is a set of programs that gives the attacker administrator access to the system, and at
the same time hides its presence. The name is originally from the administrator account root in
Unix/Linux, and a set of tools that provided this level of access. These included ps, netstat, ls and
passwd [24].

Due to the administrator privileges, rootkits can be very difficult to detect. They can intercept
calls to APIs and alter the responses. This way the process monitor, file lists and registers may
display wrong information [19][p. 242].

2.1.5 Backdoor

A backdoor is a secret way into a program that bypasses the normal security procedures. This
way it allows unauthorized access into the system. It can be triggered by a special series of input
or being run with a special user id [19][p. 216].

2.1.6 Trojan horse

A trojan horse is something that appears useful or harmless, but does more than what it pretends
to. Typical examples are fake antivirus programs that pretend to scan for malware, but instead
does something else in the background [11]. It got its name from the Trojan horse in Greek
mythology.

It should be mentioned that these types of malware are often combined. In example a trojan
horse may be used to install a rootkit on the attacked system.

6

Malware detection through opcode sequence analysis using machine learning

2.2 Obfuscation techniques

To make the programs harder to understand, malware authors use different obfuscation tech-
niques. This is done to avoid being detected by antivisrus programs, and to make it more dif-
ficult for reverse engineers to understand what the program is doing [25]. It is also used by
legit companies and developers to protect their intellectual property (source code). An obfus-
cated program will do the same as the original code, but the new code will be more difficult to
understand.

Since malware authors strive to make it more difficult to detect their malware, antivirus
creators on the other hand, have had to follow up with new detection methods [1]. Figure 1
shows a simplified overview of the arms race.

Figure 1: Obfuscation arms race [1]

Next we present different methods used to obfuscate malware.

2.2.1 Encryption

To hide the malicious part of the code, this part is often encrypted [26]. As stated previously, a
new, random key is used for every infection. This way the signature of the file will be different
every time. The encrypted part of the code will be decrypted only when the file is run.

The drawback with this method is that the part of the code that performs the decryption will
be the same in all versions. Because of this, the virus can still be recognised based on the pattern
of the decryption code [26].

7

Malware detection through opcode sequence analysis using machine learning

2.2.2 Packers

In addition to encryption, packers can be used to change the signature of a file and avoid de-
tection. Despite the fact that packers were originally created to decrease the file size due to
limitations on disk space and bandwidth, they are now frequently used by malware authors [1].
Packers are known as good obfuscation tools because a small change in one of the files being
packed will result in a very different signature. It is also easy to pack the same malware with
several different packers, again to get different signatures [1].

2.2.3 Polymorphic

Polymorphism goes a step further. Instead of changing the runtime code like packers, the static
binary code is changed [1]. Again, the purpose is to change the signature of the file.

Figure 2: A simplified polymorphic engine [1]

Figure 2, taken from OKane et al [1] shows a simplified polymorphic engine.

(a) First the malware gets it turn on the processor.

(b) The mutated malware is deciphered into machine instructions.

(c) These machine instructions is written to memory.

(d) The deciphered malware is run.

8

Malware detection through opcode sequence analysis using machine learning

(e) The malicious activity is done.

(f) A new key is generated.

(g) The machine instructions are transformed back with the new key.

Note that the machine instructions loaded in memory are the same for every version of the
malware. As a result of this, the signature may be recognised when running the code in a sand-
box [26].

2.2.4 Metamorphic

While the machine instructions in memory are the same in every version of mutated malware
using a polymorphic approach, this is not the case with the metamorphic approach. With this
approach, the instructions loaded in memory is changed, and this is written back to the infected
file [1].

2.2.5 General obfuscation techniques

The following obfuscation techniques are often used in the previously described polymorphic
and metamorphic categories of malware.

String obfuscation

String obfuscation is used to make it more difficult to understand the content of the variables in
the code. It may be achieved by splitting the strings into smaller parts or by encoding them.

Name randomization

The variables themselves and the function names can also be obfuscated. By using randomized
names, it does not give away information on what it is used for, thus it have to be understood
from the context which require a higher skill level by the examiner.

Dead code insertion

Dead code insertion means to add code that do not change the abilities of the program. The
code is just there to confuse anyone looking into it, or to change the signature of the file. It
can be simple instructions that does nothing like the nop instruction, or it can be a series of
instructions that ends up at the starting point. Some authors also add complex code that is never
executed [27].

Register reassignment

With register reassignment, the registers used is switched in the new version of the malware [28].
In example the EAX register can be reassigned to the EBX register. It does not introduce any time
delay [29].

Subroutine reordering

By changing the order of the subroutines in the code, the signature of the file is easily changed.
With n subroutines, it can be generated n! different variants of the file [28].

Instruction substitution

Yet another technique is instruction substitution. The idea is to use different instructions which
give the same results. An example is to substitute mov with push and pop [28].

9

Malware detection through opcode sequence analysis using machine learning

Code transposition

By changing the order of the sequences, further confusion can be created. One can either shuffle
the instructions and use jumps to get the correct execution order, or one can analyse which
instructions are dependent on each other, and switch the ones that are not [28].

Anti debugging

To complicate the debugging process different anti debugging techniques can be used. Branco et
al [30] provides a thorough review of several possible techniques. This is outside the scope of
this thesis, but for completeness we list a few of them in this section.

• PEB NtGlobalFlag
The presence of a value in this field might indicate a debugger.

• IsDebuggerPresent
A kernel32 function that uses the BeingDebugged field in PEB (Process Environment Block)
to detect a debugger.

• Heap Flags
Several heap flags indicate the presence of a debugger.

• Self debugging
The process can create a copy of itself and attach the copy to itself as a debugger. This way
a real debugger can not attach to it, since only one debugger can be attached to a process
at once.

2.3 Malware Analysis

In this section different methods for identifying malware is presented. There are two main ap-
proaches for analysing malware: static and dynamic [31]. During static analysis the malware
sample is not run, while during dynamic it is.

2.3.1 Static methods

Static analysis is usually performed first when dealing with an unknown file. The first step is
to scan the file manually with the installed antivirus program on the host [32]. If the file is
already known, there is no point in spending hours trying to figure it out by yourself. (Except
for the learning experience.) In addition to the systems antivirus program, the file can be ran
through a site like VirusTotal which scans the file using 43 different antivirus programs. It may
also be useful to calculate the hash of the file, and search for it on-line to see if anyone else has
encountered the same file.

String analysis is a simple way to get hints about the file. By listing all strings in the file in-
formation like command line options, user dialogue, passwords, URLs e-mail addresses, libraries
and function calls can be found [32].

Disassembly is a vital part of the static analysis. By retrieving the assembly instructions from a
binary, one can investigate the source code to understand what the program does. To understand
it though, one will have to have deep knowledge in the (in our case) x86 and x86-64 architecture
and Windows internals. Disassembly is discussed further in section 4.4.1. To make the code easier

10

Malware detection through opcode sequence analysis using machine learning

to understand, it can be decompiled as well. This way the code is represented in a higher-level
language. Although the code will not be just like the original, it will ease the task for the one
examining the code.

2.3.2 Dynamic methods

The simplest way to perform dynamic analysis is to run the sample and monitor what happens.
It is important to only run it in an isolated environment like a sandbox, or an off-line lab. The dy-
namic approach should always be taken after static analysis has been performed. When executing
a malware sample, there are several aspects that should be monitored [32][p. 597-612]:

• File activity
Malware may read files to gather information, start other programs or load DLLs. To alter
other programs, files may be written or changed. A good tool to record all activity on the
file system is Diskmon [33].

• Processes
To register processes, Process Explorer [34] can be used. With this tool, all files, registry
keys and DLLs the process has loaded are logged. Also, the processes are organized in a
tree-structure, so it is easy to see if the process has spawned any new processes.

• Network activity
Since a lot of malware use the network connection to receive commands and/or send
information, the network activity should be monitored. TCPView [35] is a tool to investigate
which ports are listening for incoming traffic. To gather all information sent and received
through the network Wireshark [36] can be used.

• Registry access
The registry on Windows is a database containing configuration keys for the operating
system and several of the programs installed. Changing a registry key can have huge impact
on the security on the system. Again, Process Monitor can be used to monitor the register
changes.

Debugging is another way to perform dynamic analysis. This method is explained in section
4.4.2.

2.3.3 Malware features for Machine Learning

Executable files contain several characteristics that can be used in combination with machine
learning to perform classifying. They can be grouped in five categories [11]. The first is binary
based features. This is features that can be obtained from the binary file directly. In this group
we have n-grams of the byte code, information from the PE-header, and the previous mentioned
strings.

The second category is disassembly based features. In this category opcodes, which are used
in this work, and operands, which are the remainder of the instruction are found.

The third group is control flow based features. The control flow of a program is the order
of which the different parts of the code is executed. Subgroups in this category are call graphs

11

Malware detection through opcode sequence analysis using machine learning

and control flow graphs. The difference between them is that the former represents the relation-
ship between the procedures, while the latter represents the control flow within one of these
procedures.

The fourth category is semantic based features. This kind of features focus on what the code
is doing rather than the code itself. Subcategories are state change, which is about changes in
the registry and memory, and API calls which are the calls a program executes to use a provided
library.

The fifth and last is hybrid features. To increase the performance of a classifier several of the
previous features or feature groups are combined.

12

Malware detection through opcode sequence analysis using machine learning

3 Related work

This chapter contains an overview of related literature that is already published. The focus is on
the literature related to the research questions, so dynamic approaches are not mentioned. The
first section presents work related to the first and the third questions, while the second section is
on the second question.

3.1 Opcodes as indicator for malware

To deal with unknown malware which classic signature-based methods can not handle, there
have been developed two different approaches: anomaly detectors and data mining-based detec-
tors [15]. Anomaly detectors create a profile based on benign software, and when a file deviates
from the profile it is flagged as suspicious. Data mining-based looks at characteristics from both
datasets and classifies a file based on these characteristics.

In 2005, Li et al [37] proposed to use 1-gram representation of normalised byte value distri-
bution of a file to identify the file type. This proved to be highly accurate on both exe, gif, jpg,
pdf and doc files with an average accuracy of 98.9 % when using the K-means algorithm. Yu et
al have done similar experiments [28].

From Bilar [38], we know that the opcode distribution is different in malware and benign
software. On a data set of 67 malicious and 20 benign samples, about one third of the opcodes
had the same frequency, one third higher, and one third lower in malware versus benign. Also,
malware contains a higher rate of rare opcodes.

Moskovitch et al [39] conducted an experiment using byte sequence n-grams on a data set
with more than 30,000 files. They took into account the imbalance problem: that there are
significantly more instances of one class compared to another. With only 15 % malicious files in
the dataset they achieved an accuracy of 99 %. The Weka implementations of artificial neural
networks, decision trees and naive bayes were used. To reduce the complexity of the n-grams,
term frequency was used to select only the top 1,000 byte codes. By doing this, n-grams of up to
n=6 could be used. Interestingly n=2 gave the best results, possibly due to the small number of
malware used compared to benign files.

By comparing malware detection through assembly and Application Programming Interface
(API) call sequences Shankarapani et al [29] discovered that opcodes had a higher accuracy, but
was more computationally expensive. They also found that packers were used by both classes of
files, while encryption was only used by malware.

Santos et al [15] used the following method: NewBasic Assembler was used to disassemble
the files. Then, an opcode profile was generated. This was a list of how many times the differ-
ent opcodes were used in the malicious and benign dataset. Further, the opcode relevance was
computed. This was done by using mutual information to measure the statistical dependence
between the variables. The opcodes were grouped in n-grams of lenght n=1 and n=2. The clas-
sification algorithms used were decision trees, support vector machines, k-nearest neighbours

13

Malware detection through opcode sequence analysis using machine learning

and Bayesian networks. Support vector machines with a normalised polynomial kernel, and n-
gram length of n=2 gave the best result (95.9 %).

The most recent study we have found was conducted by Zolothukin et al [40]. They used a
clustering algorithm based on iterative support vector machines to identify malware. N-grams of
length n=1 and n=2 were used. An accuracy of 97 % was achieved with n=2 and ReliefF as a
dimensionality reduction method.

3.2 The influence of packers

A packer is a software program that compress and encrypt other executable files and restore the
original file when the packed file is loaded into memory [2].

Several researchers have published papers on detecting whether a packer has been used on a
specific file. However, it seems to be little published research on detecting whether a packed file
is malware or benign.

Jacob et al [41] presented a way to determine if a given malware sample is similar to a
previous seen example, even if the new file was packed. This is done without unpacking the
code, thus operating directly on the packed files. Their approach is also capable of determining
if a file is unpacked, compressed, encrypted or multi-layered encrypted.

With PE-Probe, Shafiq et al [42] extracts features from the headers of all major portions of
a PE file. The file is first classified as packed or unpacked by feeding the info to a multi-layer
perceptron. If the file is classified as packed, a subset of features that are robust to packing are
compared with the features of the file.

14

Malware detection through opcode sequence analysis using machine learning

4 Methods

This section describes the methods that will be used to conduct the research. The research ques-
tions and the way of evaluating the answers are discussed. Further the data collection and data
preprocessing is presented. We propose how to obtain the datasets, and what have to be done in
order to use them correctly. After this, reverse engineering and machine learning is introduced.
Both disciplines are central for the thesis. The feature selection methods and classifiers to be used
are explained. At last the data analysis will be discussed. This includes both empirical analysis,
and computational analysis.

4.1 Choice of methods

Research in general is characterized by quantitative and qualitative approaches [43]. While quan-
titative research focus on numbers, descriptive statistics, figures and illustrations to show results
of the study, qualitative research deal with descriptions of concepts and perceptions mainly by
interpretations. To answer the three research questions, quantitative methods will be used.

• Question 1: What is the reliability of opcodes as an indicator for malware?

When answering this question, it is natural to measure the accuracy and false positive rate of
the classification. The numbers will be compared to the results of previous studies, like Santos et
al [15].

• Question 2: What is the influence of packers in regards to malware identification using
opcodes?

Again, accuracy and false positive rate will be measured. The experiments will be ran both with
and without the use of unpackers, and the results compared. Examples of unpackers are PolyUn-
pack [44], Renovo [45] and OmniUnpack [46].

• Question 3: Which n-gram lengths provide best accuracy?

The results from the different n-gram lengths using each of the different machine learning algo-
rithms and feature selections will be compared.

4.2 Data collection

It is important to use high quality and representative data sets when conducting research. Exe-
cutable files exists for all three main operating systems. These include Portable Executable files
(PE-files) on Windows, Executable and Linkable Format (ELF-files) on Linux, and Mach Object
(Mach-O) on Mac [2]. Since Windows is the most used, and the most attacked system [39], we
decided to focus on the files on this system.

PE-files are used not only for executables, but also libraries and drivers. The filename exten-
sions are .cpl, .exe, .dll, .ocx, .sys, .scr, .drv, .efi, and .fon. The file consists of several parts. First

15

Malware detection through opcode sequence analysis using machine learning

the MS-DOS header, then the prefix "PE" and the PE-header. This contains information on how
many sections the file consists of, the machine type and a time stamp. Next is the optional header
with "most of the meaningful information about the executable image, such as initial stack size,
program entry point location, preferred base address, operating system version, section align-
ment information, and so forth" [47]. Next is the section table header where information on
each section is stored. This information includes raw size, virtual size and name for all the sec-
tions. Last is the section data. Here the original entry point (OEP) is located. The OEP dictates
where the execution of the file begins. A figure of the PE-file format can be seen in Figure 3.

Figure 3: PE-file format [2].

There are two ways of collecting malware: setting up your own honey-pot, or downloading
the files from online collections provided by others. Several such sites exist, like VX Heaven [48],
PacketStorm [49] and VirusShare [50]. In this project, the malware samples will be downloaded
from VirusShare 1. The reasons for this is because gathering with a honey-pot will acquire too
much time, and second, from VirusShare the samples are already grouped in collections. This
makes it easier to get a relatively large collection of x86 and x86-64 PE-files.

When it comes to the benign files, the authors have not come across any available dataset on-
line. Previous work have mainly used dll and exe system files from Windows XP [38, 39]. Santos
included "text processors, drawing tools, windows games, internet browsers and PDF viewers" as
well [15]. To create our dataset, we will use a combination of exe files from a clean installation
of Windows Vista, and a set of popular programs. The set of programs is acquired using Ninite
[51], which is an automated installer that can install a range of programs at once. Our set will
include web browsers, messaging apps, media players, runtime environments, image processors,
document readers, file sharing software, developer tools, online storage, compression software
and others.

1http://www.http://virusshare.com/

16

http://www.http://virusshare.com/

Malware detection through opcode sequence analysis using machine learning

4.3 Data preprocessing

To acquire the data we are interested in, we need to perform preprocessing on the PE files. All
the files have to be disassembled to convert them to asm files. These files contains the assembly
code for the PE file. To do the disassembling, a combination of IDA Pro [52] and automation by
scripting with Python is used. For every file, a file with the same name but with the ending .asm
is created. Further, these files are stripped for everything but the opcodes. To make sure only
valid opcodes are kept, they are compared to a reference list based on Intel and AMD’s processor
manuals [53]. After this, the n-gram files are created. One file per n-gram per PE-file is created.
Hopefully longer n-grams than previously used will be created, depending on the processing
time.

To use the data with Weka, arff files 2 have to be created. Instead of using all possible combina-
tions of opcodes in the n-grams (which is a very large number, e.g. 4-gram = 225.360.027.841),
just the combinations present in the complete dataset is used.

A PE-file can in our case be represented as a vector. Like Santos et al, we define a program
p as a series of instructions I. We then have P = (I1, I2, I3, ..., In−1, In) where n is the number
of instructions in the file. Since we only care about the opcodes, and the sequences of them,
in our case the representation of a program becomes P = (S1, S2, S3, ..., Sn−1, Sn) where S is a
sequence of instructions I. n in this case is the number of sequences in the file.

For the arff files, this means the following: Each unique sequence present in the datasets
becomes a feature. For every file, it is counted how many occurrences there are for every such
sequence. The vector representation of a file then becomes the number of occurrences for every
sequence.

4.4 Reverse Engineering
To understand what a specific file of malicious software does, reverse engineering is used. Chikof-
sky et al defines reverse engineering in the following way [54]:

Reverse engineering is the process of analysing a subject system to identify the system’s com-
ponents and their interrelationships and create representations of the system in another form
or at a higher level of abstraction.

Although the term was originally used in the context of analysing hardware to be able to copy
it [55], it is now widely used in regards to software as well. Within the area of software, which
is the field of this thesis, reverse engineering can be divided in two subgroups: disassembly and
decompiling. A disassembler gives you the assembly instructions of a program, while decompiling
tries to recreate the program in a higher level language, in example C.

4.4.1 Disassembly

Programming languages is usually divided in different generations [12][p. 4]:

• First generation languages.
This is the machine language, consisting of only ones and zeroes, or hexadecimal. It is very
difficult for humans to interpret, as data and instructions is very similar. It is also referred
to as binary code.

2https://weka.wikispaces.com/ARFF

17

https://weka.wikispaces.com/ARFF

Malware detection through opcode sequence analysis using machine learning

• Second generation languages.
The next level is the assembly languages. At this level, the program is represented as op-
codes and operands. A disassembler is used to get from the lower level binary to assembly
language.

• Third generation languages.
This is the languages normally used by programmers. C and Java are common examples.
Easier abstractions like keywords and constructs are available for the programmers. A de-
compiler may be used to reach this level during reverse engineering.

The literature differs slightly in the definition of opcodes. In this work, we define it as the
part of the instruction that is to be performed. In example in the instruction pop ebp, pop is the
opcode. In example Santos et al use this definition [15], while Sikorski et al defines it as the
byte-code version of the same [31].

To disassembly a binary, there are several tools available. Dumpbin, objdump and otool can
be used to produce assembly from binaries [12]. Most debuggers as well will have the same
capabilities. Debuggers are listed in the next section.

The disassemble process itself can be divided in four steps [12]:

1. Identify the entry points to the parts of the file that contains the code to be disassembled.

2. Read the values and map the binary to assembly language.

3. Output the desired syntax, usually AT&T or Intel.

4. Repeat the process for the remaining code.

4.4.2 Debugging

While disassembling provides the assembly code of a program, a debugger lets you execute a
program instruction by instruction [56][p. 395]. This way it is possible to get full control of the
registers, memory and stack content. It is also possible to execute only the parts of the program
you need to inspect. The last part is useful to bypass anti-debugging parts of the code.

To start debugging, the analyst has mainly two options: To attach debugging to a running
process or to open a process in the debugger. The benefits with the former method is that the
initial actions can observed, and the process stops when the debugger is closed. With the latter,
the debugging can be stopped without killing the process being examined [56].

On Windows, debuggers include SoftICE, WinDbg, IDA Pro, OllyDbg and Immunity Debug-
ger [57]. On Linux gdb, lldb, emacs, ddd, strace, ltrace, xtrace, valgrind and NLKD are popular
tools [57].

4.4.3 x86/x64 architecture

To understand basic assembly code there are a few aspects one must be familiar with. These are
registers, data types, the instruction set and Windows fundamentals [25]. This thesis will not go
into depth on these aspects, but we will provide a very limited introduction to the first three of
them.

18

Malware detection through opcode sequence analysis using machine learning

Registers

There are eight general purpose registers (GPRs) on the architecture. We list the registers and
what they are normally used for:

• EAX - Arithmetic operations.

• EBX - Data pointer.

• ECX - Counter in loops.

• EDX - Source in string/memory operations.

• EDI - Destination in string/memory operations.

• ESI - Pointer to source in stream operations.

• EBP - Base frame pointer. This points to frames within the stack. Frames store data for
functions.

• ESP - Stack pointer. This points to the top of the process stack.

All of these can be further divided. In example EAX -> AX -> AH and AL. In addition to the GPRs,
there are EIP (Extended Instruction pointer) which points to points to the memory address of the
next instruction to be executed, and the EFLAGS which stores the status of memory operations
and other execution states.

Data types

The common data types are

• Bytes - 8 bits, in example stored in AL, BL and CL.

• Word - 16 bits, in example stored in AX, BX and CX.

• Double word - 32 bits, in example stored in EAX, EBX and ECX.

Quad words may also be used. They are created by combining two registers to get 64 bit.

Instruction Set

Data can be moved and stored in five ways. It can be stored immediately to register, immediately
to memory, moved from register to register, moved between register and memory, and moved
from memory to memory. When moving data, the syntax consists of an opcode, the destination
and a source operand. See figure 4.

The arithmetic operations are performed using

• ADD – adds a given value.

• SUB – subtracts a given value.

• INC – adds 1.

• DEC – subtracts 1.

19

Malware detection through opcode sequence analysis using machine learning

Figure 4: Data movement

and a set of logical instructions:

• AND – ands a given value.

• OR – ors a given value.

• XOR – xors a given value.

• NOT – reverses the bits in a given value.

The stack should also be mentioned. The stack is a last-in first-out data structure which sup-
ports push and pop. Push puts something on the top of the stack and pop removes something
from the top of the stack. It is a contiguous memory region pointed to by ESP, and it grows
downwards.

When it comes to control flow, high level constructs like if/else, switch/case and while/for are
implemented through

• CMP – Compares two operands by subtracting one from the other

• TEST – Compares two operands by using AND between them

• JMP – Updates ESP with a given address

• JCC – A collection of jump commands

• EFLAGS

4.5 Machine Learning

Another central field in regards to the thesis, is machine learning. Machine learning is a sub-
field of artificial intelligence, and there have been made huge advances within the field during
the last two decades [58]. The main objective of machine learning is to learn from data to be
able to classify objects into different categories or classes. The outcome of the learning results
in "rules, functions, relations, equation systems, probability distributions and other knowledge
representations like decision rules, decision trees and regression trees" [58].

The learning process is usually divided in two main groups: supervised and unsupervised. In
supervised learning, the target labels are provided in a training set. A subgroup of the supervised
group is classification. The point of a classifier is to label an object based on a set of different
features. The label can be either exactly one class, or a set of possible classes. In our case, the
problem is binary, so based on the features the file is classified as either malware or benign.

20

Malware detection through opcode sequence analysis using machine learning

When it comes to unsupervised learning, the target label is not provided. The most popular
unsupervised method is clustering [58]. In this method the objects are grouped into several
clusters. The number of cluster may or may not be known in advance. To perform the clustering,
the similarity of the features in the different objects are taken into account.

There is no golden rule that states which classifier is the best. Quite the opposite, the No Free
Lunch theorem states that "no classifier is to be preferred over another when no information of
the problem is known" [59][p. 563]. Further, for every classifier that solves a problem well, a
new problem can be created on which the classifier is useless.

Machine learning is now heavily used in the field of malware detection. It is a good fit
since malware contains specific patterns and similarities because of code reuse and similar func-
tions [11]. We will now present the feature selection methods and classifiers used in this project.
The methods are chosen based on several reasons. Some of them are chosen to easily compare
our work to previous, some are suggested as future work by related papers, and some are chosen
because they have shown good results in other types of malware detection.

4.5.1 Feature selection
For the classifier to perform well, a high quality set of features have to be selected. The ugly
duckling theorem states [59][p. 526]:

Given that we use a infinite set of predicates that enables us to distinguish any two patterns
under consideration, the number of predicates shared by any two such patterns is constant and
independent of the choice of those patterns. Furthermore, if pattern similarity is based on the
total number of predicates shared by two patterns, then any two patterns are equally similar.

The point is that it is no use with a thousand features if they do not distinguish between the
classes. The process of removing irrelevant and redundant features from the data is called feature
selection.

To select the features to use, there are two general methods: filter methods and wrapper
methods. A third is a combination of the two, called embedded models [60]. Filter methods are
the fastest, and consider statistical characteristics of the data. The feature are ranked, and the
top features are selected based on either a predefined number of desired features, or everyone
above a certain threshold is chosen. Wrapper methods are slower and use a classifier to choose
the optimal features. In this thesis we utilize five different feature selection models, which are
CFS, ChiSquared, InfoGain, ReliefF and SymmetricalUncert. We will now present the basic of
each of them.

• Correlation-based Feature Selection (CFS)
This is a wrapper model which assumes that "good feature sets contain features that are
highly correlated with the class, yet uncorrelated with each other" [61]. For discrete fea-
tures the correlation is based on normalised Information Gain.

• ChiSquared
The ChiSquared attribute evaluator is a filter method that uses a statistical approach. The
worth of a feature is is evaluated by computing the value of the chi-squared statistic with
respect to the class [62].

21

Malware detection through opcode sequence analysis using machine learning

• InfoGain
Information Gain is another ranker method. It uses entropy to measure impurity in a group
of objects [63].

• ReliefF
This method is an extension of the statistical filter method Relief. The idea of the method
is to rank a feature on how well its value distinguishes among instances that are near each
other [40].

• SymmetricalUncert
According to the Weka documentation this feature selection "evaluates the worth of a
set attributes by measuring the symmetrical uncertainty with respect to another set of
attributes" [64].

4.5.2 Classifiers

After a relevant set of features have been selected, the classifiers can be used. Especially the
binary classifiers are applicable since we have two classes, "malware" and "benign". In this section
we introduce the different machine learning methods used in the experiments.

• Bagging
Bagging is a method to reduce variance. With n learning samples, several training sets are
created by choosing n samples randomly from the pool. This way some of the samples may
be selected multiple times, or no times at all [58]. It is used in combination with other
classifiers, in our case Decision Trees. Further, a Decision Tree is a special kind of decision
rules where the internal nodes are attributes, and the leaf nodes are class labels. The edges
are subsets of attribute values.

• Random Forest
A Random Forest consists as the name suggests of several decision trees. Usually at least
100 [58]. All trees use only a small subset of the available features. Each tree contributes
with votes on which class the sample is. This makes up a probability distribution, and the
class with highest probability is chosen.

• C4.5
C4.5 is a previously mentioned decision tree. What is special about it is that it utilizes
Information Gain (see previous subsection) to split the training data. The J48 implementa-
tion in Weka used in our experiments use a pruned decision tree [65]. This means that the
tree is reduced in size when expected classification error in the sub tree is larger than the
expected classification error in the current node.

• Naive Bayes
With a Naive Bayes classifier, conditional independence of the features is assumed [58].
The classifier is based on Bayes Rule combined with decision rules.

• Bayes Net
A Bayes Net, or Bayesian belief network, can be thought of as a Directed Acyclic Graph

22

Malware detection through opcode sequence analysis using machine learning

(DAG) that represents the dependencies between the features [59][p. 133]. It can be im-
plemented with several different search algorithms. In our case, the search method used is
hill climbing. This is very fast, but does not guarantee the optimal solution.

• Support Vector Machines (SVM)
Support Vector Machines are among the most accurate approaches to discriminant function
classification [58]. They are successful on both regression and classification problems. The
generalization is good, as the classifier is nearly as good with test samples as with training
samples. The general idea is to maximize the margin. The margin is the distance between
the support vectors in the two classes. Support vectors are the training examples closest to a
hyperplane that separates the two classes. The hyperplane can be described as w∗x+b = 0

where w is the weight vector, normal to the hyperplane, x is the feature vector, and b is the
bias.

Figure 5: Support Vector Machine [3]

When the data is not linearly separable, the kernel trick is used. The idea is to represent
the feature vector in a higher dimension. In the higher dimensional space, the vectors
become linearly separable. For a multi class problem, the problem is divided into several
sub problems. Each class is separated from the rest. To get good results, it’s important to
use the correct kernel function, and set the correct values to the kernel parameters. I.e.
in Gaussian kernel, the sigma must be set correctly, and in polynomial kernel, the degree
must be set right.

• Artificial Neural Networks (ANN)
Artificial neural networks (ANN) are simplified mathematical models based on the human
brain [66]. The usual ANN consists of several neurons. These neurons can be divided in
three groups: input, hidden and output [67]. The neurons are connected by weighted con-
nections, and they produce an output based on the weighted sum of the input signals,

23

Malware detection through opcode sequence analysis using machine learning

and a given transfer function. ANNs have to be trained, where the training is achieved by
adjusting the connection weights.

• K-Nearest Neighbours (KNN)
This method stores all the training examples, and looks at the distance between the object
to be classified and the nearest training examples. The number of neighbours, k to be taken
into consideration is determined by the user. In datasets with some noise, it will help to
increase the k, as the wrong samples will not count as much [58]. In our experiments we
use a number of k ranging from one to ten.

• Self Organizing Map (SOM)
A SOM can be viewed as a way of dimensionality reduction. A set of high dimensional input
vectors are represented in a (typically) two-dimensional map. The map consists of several
nodes into which the input vectors are mapped. Each node also contain a weight-vector,
which in the case of neuro-fuzzy can be viewed as a rule.

The SOM training algorithm is as follows [68]:

1. Each node’s weights are initialized.

2. A vector is chosen at random from the set of training data and presented to the lattice.

3. Every node is examined to calculate which one’s weights are most like the input vector.
The winning node is commonly known as the Best Matching Unit (BMU).

4. The radius of the neighbourhood of the BMU is now calculated. This is a value that
starts large, typically set to the ’radius’ of the lattice, but diminishes each time-step.
Any nodes found within this radius are deemed to be inside the BMU’s neighbourhood.

5. Each neighbouring node’s (the nodes found in step 4) weights are adjusted to make
them more like the input vector. The closer a node is to the BMU, the more its weights
get altered.

6. Repeat step 2 for N iterations.

When it comes to the map size, several a general rule is that the map size should be
S = 5 ∗

√
N were N is the number of features in the data [69].

4.6 Data analysis

The data analysis will consist of two parts. After the creation of the n-grams, we will first look at
the statistics of the data. Areas of interest will be the following:

• How many of the files in the different datasets are packed?

• What are the most frequent opcodes used?

• How many features are in the datasets?

• Is it any difference in opcodes used between the datasets?

24

Malware detection through opcode sequence analysis using machine learning

Next, the computational experiments will be run, and the results analysed. Since we have a
binary classification problem (malware vs benign software), the following performance measure-
ments will be used: sensitivity, specificity, accuracy and ROC curve. They are defined as [58][p.
70-75]:

• Sensitivity:
The relative frequency of correctly classified positive examples.

Sens =
true class1

true class1+ false class2

• Specificity:
The relative frequency of correctly classified negative examples.

Spec =
true class2

true class2+ false class1

• Accuracy:
The relative frequency of correct classifications.

Acc =
true class1+ true class2

all classified

• Receiver Operating Curve (ROC curve):
Shows the trade off between sensitivity and specificity. The area under the curve is a mea-
sure for accuracy [4]. An example can be seen in Figure 6.

25

Malware detection through opcode sequence analysis using machine learning

Figure 6: ROC curve [4].

In addition to the performance measures, it is interesting to evaluate the computational com-
plexity. Although we state in the introduction that the code will not be optimized, in example to
utilize multiple processor cores, the time and file size aspects are still relevant. The time spent
on creating n-grams and feature selection is interesting in a online-offline point of view. To be
used, the method should not be too slow. Also, the file sizes have to be reasonable.

26

Malware detection through opcode sequence analysis using machine learning

5 Experiments, results and discussion

In this chapter the focus is on how the experiments were performed, and the results achieved.
First the experimental environment is presented. Here the software, hardware and dataset is
presented. This is important if someone wish to duplicate our results. Then the experimental
design, including both the empirical and the computational analysis presented. At last the results
are shown, and a discussion is provided.

5.1 Experimental environment

This section describes the hardware and software used, as well as the dataset obtained. Since
malware is a large part of the dataset, it was given extra attention to keeping the environment
sandboxed, so no hosts would be infected.

5.1.1 System

To conduct the experiments, two different machines were used. The main workstation had the
following specifications:

• Processor: 6 core Intel i7 @ 3,47 GHz

• Memory: 16 GB DDR4

• Hard drive: 240 GB SSD

• Operating system: Windows 8.1

This machine was used for all tasks except the feature selection for 3- and 4-gram. Because of the
extreme memory consumption due to the high number of features (up to 110 GB memory used),
a virtual machine from Microsoft Azure was used for this. It had the following specifications:

• Processor: 8 core Intel Xeon E3 @ 2,4 GHz

• Memory: 112 GB DDR4

• Hard drive: 1.536 GB SSD

• Operating system: Windows Server 2012 R2

At the main workstation several virtual machines were run. To build the benign dataset, and
to create the .asm files for that dataset, Windows Vista was used. A different Vista machine was
used to create the .asm files for the malicious dataset.

For convenience, the rest of the work was done directly on the host operating system on the
main workstation, since the files used at this point could not cause any harm.

When it comes to the software, the following scripting tools, platforms and libraries were
used:

27

Malware detection through opcode sequence analysis using machine learning

• Protection ID 6.6.7 [70]

• Python 2.7.9 [71]

• SciPy Python library [72]

• LibSVM [73]

• WEKA Classification Algorithms [74]

• Windows command line interface

• Java VM 1.7

• Weka 3.6 (Explorer and API) [75]

• VMWare Workstation 11

5.1.2 Dataset

As stated in section 4.2, the malware samples were downloaded from VirusShare [50]. The col-
lection contained 992 different x86 and x64 malicious PE-files. According to Protection ID [70],
293 of them were packed. ProtectionID is able to detect 228 different free and commercial pack-
ers and installers [76]. The version used was last updated in December 2014.

Initially, the plan was to use unpackers to get the ’real’ assembly code from the packed files.
However, the unpackers in previous work [44, 45, 46] seemed not to be publicly accessible. We
decided therefore to split the dataset in two: One set containing all the files (packed and not
packed), and one set without the packed files.

The benign dataset, created from Windows Vista system exe files and a set of popular appli-
cations consists of 771 samples. Of them, 14 were packed. The same was done for this set, they
were split in a full set, and a set without packed files.

28

Malware detection through opcode sequence analysis using machine learning

Figure 7: Datasets

5.2 Experimental design

This section explains the experimental process, and how the results were analysed. It consists of
two parts: the empirical analysis and the computational analysis. The first is the initial analysis
were the statistics of the raw data is examined. We show the distribution of opcodes for both
malware and benign. It is shown how some opcodes are used exclusively by malware, and the
most used opcodes are described. The empirical analysis helps as a guide to further run the
computational experiments. In the latter, the use of feature selection and classifiers is presented.
We show that most of the features selected reoccur in several of the selection methods.

5.2.1 Empirical analysis

After the creation of the n-gram files, we had some interesting data. In total there were 529
different instructions used. The top 18 of them made up 92,5 % of all the occurrences of instruc-
tions. These are shown in table 2. Of these again, mov accounted for 73.86 %. Mov was pretty
equally represented in both malware and benign with 36.88 and 36.98 % of the total instruc-
tions. This is also the case in Bilar’s dataset [38]. There mov was the most used instruction as
well, with 30 % in the malware files, and 25 % in the benign. The next instructions differ in his
and our work.

29

Malware detection through opcode sequence analysis using machine learning

Opcode Description Malware % Benign %
mov
call
lea
cmp
push
jz
test
jmp
add
jnz
pop
xor
sub
retn
movzx
and
or
inc

Move
Call Procedure
Load Effective Address
Compare Two Operands
Push Word/DW/QW Onto the Stack
Jump short if zero/equal (ZF=0)
Logical Compare
Jump
Add
Jump short if not zero/not equal
Pop a Value from the Stack
Logical Exclusive OR
Subtract
Return from procedure
Move with Zero-Extend
Logical AND
Logical Inclusive OR
Increment by 1

36,88
8,89
7,76
5,94
2,16
4,41
3,27
3,59
3,34
2,81
2,15
3,24
2,57
1,68
1,33
1,13
0,68
0,50

36,98
8,02
4,37
5,30
8,49
4,58
3,97
3,06
3,08
2,89
3,52
2,05
1,55
1,66
1,06
0,95
0,51
0,54

Table 2: Top 18 instructions found in the files

The malware samples contained 62 assembly instructions that were not present in the benign
samples, and vice versa. Among these were several virtual machine operations. It is natural to
assume that this has to do with the fact that many malware authors make their malware check
whether or not their malware is being run in a sandboxed environment. If that is the case,
the payload is not delivered, to avoid detection of whoever is inspecting the sample. This has
previous been stated by antivirus companies like Symantec [77]. Fast system calls were also
exclusively in the malware samples. The 15 most frequent of the opcodes exclusively used by
malware can be seen in table 3.

All together there were 54.3 million benign and 33.9 million malware opcodes in the dataset.

30

Malware detection through opcode sequence analysis using machine learning

Opcode Description
stosq
syscall
setno
cvtsd2si
movmskpd
prefetcht1
fprem
cmpsq
lodsq
scasq
cvtss2si
fnsave
orpd
fxsave
movmskps

Store String
Fast System Call
Set Byte on Condition - not overflow (OF=0)
Convert Scalar Double-FP Value to DW Integer
Extract Packed Double-FP Sign Mask
Prefetch Data Into Caches
Partial Remainder (for,compatibility with i8087 and i287)
Compare String Operands
Load String
Scan String
Convert Scalar Single-FP Value to DW Integer
Store x87 FPU State
Bitwise Logical OR of Double-FP Values
Save x87 FPU, MMX, XMM, and,MXCSR State
Extract Packed Single-FP Sign Mask

Table 3: Top 15 opcodes used exclusively used by malware

Figure 8: Top 18 opcodes.

When it comes to the 2-, 3- and 4-grams, the number of sequences rise exponentially. 2-
gram contains 24,715 different sequences, 3-gram 195,993 and 4-gram 714,389. A lot of these
sequences occur only one time.

• On 2-gram, the three top sequences are similar. These are [’mov’, ’mov’], [’mov’, ’call’] and
[’call’, ’mov’]. After these, most of the sequences differ in order. The next two in benign is

31

Malware detection through opcode sequence analysis using machine learning

[’push’, ’push’] and [’test’, ’jz’], while for malware it is [’lea’, ’mov’] and [’mov’, ’lea’].

• On 3-gram, top four are similar. These are [’mov’, ’mov’, ’mov’], [’mov’, ’mov’, ’call’], [’mov’,
’call’, ’mov’] and [’call’, ’mov’, ’mov’]. Next follows [’push’, ’push’, ’push’] for benign and
[’lea’, ’mov’, ’mov’] for malware.

• On 4-gram, four of the top five sequences are the same, but not in the same order. Be-
nign has [’mov’, ’mov’, ’mov’, ’mov’], [’mov’, ’mov’, ’mov’, ’call’], [’mov’, ’mov’, ’call’, ’mov’],
[’mov’, ’call’, ’mov’, ’mov’] and [’call’, ’mov’, ’mov’, ’mov’]. Malware has [’mov’, ’mov’, ’mov’,
’mov’], [’mov’, ’mov’, ’call’, ’mov’], [’mov’, ’mov’, ’mov’, ’call’], [’mov’, ’call’, ’mov’, ’mov’]
and [’lea’, ’mov’, ’mov’, ’mov’].

On 2-gram there were 7,067 sequences exclusively used by malware. On 3-gram the number
was 71,355, and on 4-gram 229,988.

5.2.2 Computational analysis

After the empirical study of the data, the automated experiments were conducted. First the .arff
files were created. This is the file type required by the Weka collection, and consists of the name
and type of all features, as well as an entry for every file and the number of the different n-grams
present in that specific file.

Further the feature selection was performed, both to decrease the computational complex-
ity and to increase the performance, as stated in the ugly duckling theorem. Several methods
were used, as explained in section 4.5.1. The following parameters were chosen for the different
feature selection methods:

• For Correlation-based Feature Subset Selection (CFS), the BestFirst search method was
used. This method uses greedy hill climbing, which always selects the neighbour with the
higher fitness. It is fast, but has no guarantee the local maximum found is the global max-
imum as well. The default values of 5 non-improving nodes to consider before search
termination was used. This method is very slow and uses a lot of memory. It was only used
on 1- and 2-gram since it used more than the maximum amount of memory available on
longer sequences.

• For the ChiSquared method, the Ranker search method was used. This method ranks the
attributes individually. On 1- and 2-gram a threshold of 0 was used. On longer n-grams, it
was in addition set a maximum number of attributes (8,000).

• The Ranker method was used with the same options on the InfoGain, ReliefF and Symmet-
ricalUsert methods as well. Since the feature selection with ReliefF took too long (more
than 4 days, not completed) on 4-grams, the method was skipped on this value of n.

In addition, the classification was run for the whole attribute set with n-gram lengths of one and
two. This was done to make sure that no performance was lost during the feature selection, and
to see if the ugly duckling theorem (section 4.5.1) applied to our dataset.

32

Malware detection through opcode sequence analysis using machine learning

Figure 9: Experimental Design

The feature selection was the most time consuming part of the experiments. This was due to
the large number of features in the full feature sets. As examples, the arff file for 1-gram was
1.90 MB, 2-gram was 84.1 MB, 3-gram was 666 MB and 4-gram was 2.37 GB in size. Since the
feature selection methods work differently, the time spent by each of them also differed. While
ChiSquared and InfoGain were fast - using only 30 minutes on 4-gram, CFS and ReliefF were
very slow. ReliefF used two days on 3-gram. SymmetricalUncert was in between the two groups.
It is important to remember that Weka in its normal form only utilizes one processor core, so the
computing power was not utilized as well as it could have been.

All the classifiers in section 4.5.2 was used for n-grams with lengths 1 to 4. The full experi-
mental design can be seen in figure 9.

For the Self Organizing Map, a map size of 14x14 was chosen. This was because of the rule

33

Malware detection through opcode sequence analysis using machine learning

of thumb which states that the map size should be S = 5 ∗
√
N were N is the number of features

in the data [69].
For our method to be worth anything, it at least had to beat the ZeroR classifer. This is a

classifier that labels every sample with the label of the class with most instances in it. In our case,
there were more samples in the malware class, so all samples would be labelled as malware. The
accuracy of this classifier is 56.27 %.

After performing attribute selection, it is interesting to see if the attributes selected by the dif-
ferent selection methods reoccur. All the 19 attributes from CFS on 1-gram reoccur in ChiSquared,
InfoGain, ReliefF and SymmetrivalUcert. These attributes are listed in table 4, and can be con-
sidered the most significant features in the datasets.

movsxd
nop
movnti
cmovb
bt
bts
cmova
in
ror
repe
movups
leave
stosd
cld
prefetcht1
movsw
stosw
pushf
fldz

Table 4: Top rated features

The same goes for 1-gram not packed, though with slightly different attributes. On 2-gram
all it is also the same, with the exception of pop-rdtsc on ReliefF. Without having checked all of
them, it should be safe to assume there is a pattern, and that the same goes for the rest of the
samples.

The number of features for each n-gram and feature selection can be seen in table 5. Since
a maximum of 8,000 features was defined before running the selection methods, the datasets
without packed files have the same number of features as those with packed files for 3- and
4-gram.

After the feature selection, the classifiers were run with the different created datasets. To best
measure the performance, k-fold cross validation was used. This is a widely used method to test
classifiers when the number of learning examples is relatively low [58][p. 83]. The idea is to split
the samples in k, or in our case 10, roughly equal groups. For each of the subsets the classifier

34

Malware detection through opcode sequence analysis using machine learning

Attribute set 1-gram 1-gram NP 2-gram 2-gram NP 3-gram 4-gram
Full feature set 530 530 24716 24716 195994 714390
CFS 19 16 30 33 - -
ChiSquared 254 238 5008 4633 8001 8001
InfoGain 254 238 5008 4633 8001 8001
ReliefF 356 346 8074 6403 8001 8001
SymmetricalUncert 254 238 5008 4633 8001 8001

Table 5: Number of features

is trained with the other nine, and tested with the tenth. The average result of all ten test runs
forms the final result.

For 1-gram including packed files, the highest achieved accuracy was 94.67 %. The classifier
used was Random Forest on the full feature set. The sensitivity was 94,54 %, and the specificity
94.83 %. The true positive rate was 0.961 and the false positive rate 0.071. This gives an area
under ROC curve of 0.988. Previous work [15] had an accuracy of 91.43 % using the same
classifier and mutual information as feature selection method on a dataset without packed files.

Figure 10: ROC curve 1-gram all - RF from Weka.

Figure 11: ROC curve 2-gram SymmetricalUncert - RF
from Weka.

For 1-gram without the packed files, the highest accuracy was achieved with Symmetrical
Uncertainty feature selection and Random Forest classifier. The accuracy was 93.06 %, the sen-
sitivity 92.98 % and the specificity 95.03%.

For 2-gram including packed files, the highest accuracy was 95.41 %. Again the feature se-
lection method was Symmetrical Uncertainty and the classifier Random Forest. The true positive
rate was 0,968 and the false positive rate 0.064. This gives a sensitivity of 96.77% and specificity
of 93.64 %. The area under ROC curve is 0.991.

For 3-gram including packed files, the highest accuracy was 95.58 % which is the highest
in the performed experiment. This was also with Symmetrical Uncertainty and Random Forest.

35

Malware detection through opcode sequence analysis using machine learning

Figure 12: ROC curve 3-gram SymmetricalUncert - RF
from Weka.

Figure 13: ROC curve 4-gram SymmetricalUncert - RF
from Weka.

The true positive rate was 0.968 and the false positive rate 0.06. The sensitivity 96.77% and
specificity 94.03%. The area under ROC curve is 0.991.

For 4-gram including packed, the accuracy was 95.12 %. The true positive rate 0.958 and the
false positive rate 0.057. The sensitivity was 95.77 % and the specificity 94.29 %. The area under
ROC curve was 0.99.

Classifier 1-gram 2-gram 3-gram 4-gram
Random Forest 94,55 % 95,41 % 95,58 % 95,12 %
J48 (C4.5) 92,57 % 93,53 % 94,61 % 93,59 %
Bagging 93,19 % 94,21 % 94,27 % 94,50 %
Naïve Bayes 63,58 % 66,59 % 70,28 % 72,26 %
Bayes Net 77,71 % 75,78 % 75,44 % 76,80 %
SVM: RBF 74,93 % 79,64 % 81,23 % 82,64 %
ANN: ML BP 1,30 % 43,39 % 34,77 % 70,79 %
SOM: 14x14 77,25 % 77,82 % 76,91 % 78,16 %
KNN: K=1 91,32 % 94,50 % 93,87 % 92,63 %
KNN: K=2 89,51 % 93,48 % 92,68 % 91,72 %
KNN: K=3 90,13 % 94,04 % 92,40 % 91,89 %
KNN: K=4 89,96 % 93,65 % 92,12 % 91,83 %
KNN: K=5 88,88 % 92,68 % 91,61 % 91,21 %
KNN: K=6 88,83 % 92,85 % 91,66 % 90,70 %
KNN: K=7 88,54 % 92,29 % 91,09 % 90,30 %
KNN: K=8 88,71 % 92,46 % 91,04 % 89,68 %
KNN: K=9 87,92 % 92,17 % 90,87 % 89,51 %
KNN: K=10 87,41 % 91,95 % 90,58 % 88,71 %

Table 6: Accuracy for Symmetrical Uncertainty

36

Malware detection through opcode sequence analysis using machine learning

The accuracy for all classifiers, sequence lengths and datasets can be seen in the appendix.

5.3 Results

In this section we present the results of the experiments, and try to conclude in regards to the
three research questions. First the reliability of opcodes in regards to malware identification is
discussed in light of the results. Second, we look at the influence of packers on the results. Last,
the accuracies achieved with different sequence lengths are compared.

5.3.1 Reliability of opcodes

Bilar has previously shown that there is a significant difference in the distribution of opcodes
in malware and benign files. However, this was a while ago, and the evolution of obfuscation
techniques has come a long way since then. In addition, the dataset used was relatively small.

In our empirical study we show that it still is a significant difference between the two classes
of software. Not only is the distribution among the top opcodes different, but there are several
rare opcodes used exclusively by one class.

When it comes to the computational experiments, we show that combined with the correct
feature selection method and the appropriate classifier, the accuracy is high, and false positive
rate low. The highest accuracy achieved with a sequence length of one was 94.67 % using the
full feature set and Random Forest as algorithm. The next highest was 94.55 % using the Sym-
metricalUncert feature selection, also this with Random Forest.

We are aware however, that even though promising results are achieved in our experiments,
there may be other factors that should be taken into account. The virus collection used was cre-
ated and published in July 2013. A lot has probably happened in the malware author community
since then. New zero day vulnerabilities arise, and new obfuscation techniques are created.

5.3.2 Influence of packers

The second research question was regarding the influence of packers on the results. We wanted
to figure out if packed malware could be identified as well, without first performing unpacking.

To answer this, it is natural to compare the results on the dataset with packed files, to the
results on the dataset without packed files.

37

Malware detection through opcode sequence analysis using machine learning

Figure 14: Influence of packers on the classification accuracy

As seen in figure 14, the difference between the two datasets is virtually non-existing. On a
sequence length of one, SymmetricalUncert as feature selection method, and Random Forest as
the algorithm, the accuracies were 94.55 % and 94.02 %. The dataset that included packed files
performed slightly better than the one without. The difference is similar for longer sequences.

Although the influence of packers seems very small in our experiments, the results may have
looked different if a larger number of packed benign files were present in the datasets. Previous
work by Sarvam, has showed that 70 % of Windows system files are classified as malware by
Virustotal if they are packed before inspection [13]. On the other hand, since the tool used to
check if a file is packed is not guaranteed to detect all packers, there might be a slightly higher
number of packed files.

5.3.3 N-gram lengths

The final research question was "which n-gram lengths provide best accuracy?" Since previous
work had used a maximum sequence length of two, it was interesting to see if there was any
correlation between sequence length and accuracy.

38

Malware detection through opcode sequence analysis using machine learning

Figure 15: Classification accuracy using different sequence lengths

As seen in figure 15, the sequence length had little influence on the results. One reason for
the fact that longer n-grams do not seem to be significantly more accurate, may be that longer
sequences are more easily obfuscated. Seen from a forensics viewpoint though, the fact that
1- and 2-grams gives equally good results is good news. Since the computational complexity
increases exponentially with longer sequences, shorter n-grams are preferred.

5.4 Discussion

This section provides a discussion on the experiments conducted, and the results achieved. The
methodology, datasets and robustness of the method is discussed. At last, the limitations of the
thesis are listed.

5.4.1 Methodology

The methods of using reverse engineering to extract the opcodes, and machine learning to pro-
cess them was chosen to keep a static approach to the problem. By never running the program,
it is made sure that the host system is not infected. As newer malware is created to detect, and
some even escape a sandbox, it can be argued that a static approach is the safer way to go. The
drawback is that some obfuscated code never is revealed.

When it comes to the way the performance is measured, this is the standard way for a binary
classification problem. Although the main focus has been on the accuracy, the false positive rate
may be just as important. It would be very frustrating for someone about to open a file they knew
was benign, only to see the antivirus has flagged it as malware and quarantined it.

5.4.2 Datasets

The malicious dataset used was downloaded from Virusshare. To validate it, AVG antivirus was
used to scan the files and confirm that they were in fact malicious. Optimally, it would be in-
teresting to have the samples grouped by the types introduced in section 2.1, but this was not

39

Malware detection through opcode sequence analysis using machine learning

done. For now, we only have the hash-sums and whether or not it is packed by a known packer.
Another point regarding the malware dataset is that it is from July 2013. It most certainly has
been some advancement in the field of malware writing since then.

The benign dataset was scanned by AVG antivirus as well, tom make sure all files were benign.
The dataset consists of a very low number of packed files. To our knowledge no statistics on the
number of packed benign files is available, so it might be that packers are mostly utilized by
malware authors, since the file size and bandwidth is no longer an issue. A positive point on the
dataset is that it consists of a lot of frequently used programs. Previous work on PE-files seem
mostly to use files from the system32 folders. An example of this is Saini et al from 2014 [78].

5.4.3 Robustness

Robustness can be seen as the methods ability to detect malware that is obfuscated. In terms of
obfuscated by the use of packers, the method performs well. Previous work has achieved 95.90
% accuracy with sequence length 2 on a dataset without packed files. We show that close to the
same result is achieved also with packed files.

Another definition of robustness is how well the classifier performs on new test data. If it is
overfitted to the training data available, it may perform poor on slightly different data. That is
why noise/extreme values should be filtered out during the feature selection process.

5.4.4 Source code and computational complexity

For the automatic task, scripts were written in Pyhton and Java. In addition a few bat scripts
were used, although these were in turn generated by the Python scripts. The bat scripts were
used to locate all exe files on the system when creating the benign dataset. They were also used
to run IDA Pro in batch mode when creating the asm files. The creation of the n-gram files went
relatively fast. The benign dataset consisted of the largest files, and the time spent on 2-gram was
11 minutes, 3-gram was 80 minutes and 4-gram was approximately 13.5 hours. As a one-time
operation to create a reference dataset this is acceptable. Further, the creation of the arff files to
be used with Weka was done in a few hours.

5.4.5 Limitations

The thesis has the following limitations:

• The developed method is tested on Windows PE-files only. Given a disassembler which is
able to extract the assembly code from Linux elf files, it might work on this kind of files as
well, since the underlying architecture (x86/x86-64) is the same.

• The malware dataset is almost two years old. A lot has happened the last two years, so the
method should be tested on newer samples.

• All opcodes in the asm files are listed regardless of which procedure they are in. The result is
that there will be a sequence in example of the last opcode in one procedure combined with
the first opcode in the following procedure, even though they are not executed sequentially.

• The size of the Self Organizing Map is not optimized after feature selection.

• On Support Vector Machines only the default kernel for non-linear problems was used.

40

Malware detection through opcode sequence analysis using machine learning

• Several n-gram lengths was not merged and used in combination. This might have im-
proved the accuracy.

41

Malware detection through opcode sequence analysis using machine learning

6 Conclusion and further work

The goal of this thesis was to contribute to the research field by advancing on the work by Santos
et al in [15]. By attempting to answer three research questions, we believe this was done. In
the following sections the theoretical implications, which includes the new knowledge gained
is presented. Further practical considerations, which includes important information for anyone
seeking to redo the work, is presented. At last, we suggest topics to focus on in further research.

6.1 Theoretical implications

In this section the theoretical implications of the research are presented. Through the work in
this thesis malware was detected using a static approach. By extracting only the opcodes from
PE-files, we show that sequences of these can be used for classification. From an empirical study
of the extracted opcodes, we showed that n-grams are worth considering as a further research
field because malware and benign files differ on the assembly level. Malware use several opcodes
which are not common in benign files, and the distribution is also different.

Through the experiments it was found that it is no point in using longer sequences than 2-
gram, since the accuracy does not improve noteworthy on 3- and 4-grams. As stated previously,
this may be because longer sequences are more easy to obfuscate, and they may differ depending
on compiler and/or packer used.

Further, our research proved that also malware obfuscated by the use of packers is recognised
using this method, as long as it is present in the training set. An accuracy of 95,58 % was
achieved.

As the no free lunch theorem states, no solution fits all problems. During the experiments the
performance of the classifiers differed a lot. Different versions of decision trees: Random Forest,
C4.5 and Bagging, in addition to k-nearest neighbours had the best performance on the datasets
used. According to the ugly duckling theorem irrelevant and redundant features should be re-
moved. After feature selection using Symmetrical Uncertainty, there were 254 features instead
of 529 on 1-gram, and 5,008 instead of 24,716 on two-gram. Overall, except for 1-gram, this
feature set outperformed both the full feature set and the other selection methods. Minimum
description length (MDL) is also relevant in regards to this. We seek to find a trade off between
the number of features and the performance. Even though fewer features may lead to lower
accuracy, the computational complexity will decrease enough to justify a small loss.

6.2 Practical considerations

For someone who wish to repeat the experiments, the following is of interest. The malicious part
of the dataset was obtained from Virusshare. One have to apply for membership to the site, so it
may take some time before the access is granted. The benign dataset was created from Windows
Vista system files and a set of popular applications. These were collected using Ninite.

The feature selection uses a lot of resources on the machine, especially memory. Since the

42

Malware detection through opcode sequence analysis using machine learning

input vectors consists of a huge number of features (up to 714,390 on 4-gram) the memory
usage reaches above 110 GB in some cases.

Almost none of the benign files were detected as packed, so this is something to be aware of
when doing a similar experiment later. The same goes for the compiler used, as this may have an
impact on the results as well.

In our experiments the same size of the self organizing maps was used for all feature subsets
and sequence lengths. It may improve the results of this classifier by adjusting the size to each
subset individually. As mentioned in section 4.5.2 we used the rule of thumb to determine the
size. Recent work has shown improved accuracy by using a new way to determine the size [69].
On the support vector machine a radial basis function kernel was used. This kernel maps the
input vector to a higher dimension.

A real life implementation of a system like this would probably have to be on-line. This is
because of the large amount of training data, and the resources needed to create the sequences.
Alternatively, the asm-file could be created locally, and the on-line part of the system could do
the rest. This way the file to be transferred would be relatively small, and the resource use on
the consumer’s computer kept low.

6.3 Further research

In relation to this thesis, there are several areas that should be researched further. Since a master
thesis only has limited time available, the following interesting topics were not investigated.

• Include packed benign
The experiments should be run with a dataset containing a higher number of packed benign
files. Our experiment only had 14 packed benign files, so there it would be interesting to
see if this has any influence on the results. (Although only a bit higher than one third of
the malware was identified as packed).

• Dynamic unpacking
To get a more precise representation of malware which are obfuscated trough encryption
other methods like encryption, dynamic unpacking should be used. By running the malware
in a sandboxed environment and extracting the opcodes from memory, even better results
might be acquired.

• Scaling
Since malware databases are huge, some testing of the scalability of this kind of method
should be performed. It is a big difference between performing feature selection on two
thousand files and on several million.

• Include operands
Even though opcodes are indicators of malware by themselves, the method could be com-
bined with other data. API calls have proved to be effective in malware detection, so a
static approach where the two are combined might be a good match.

• Opcode hexvalues
Instead of using the opcodes as done in this work, the hexvalue of the opcodes could be

43

Malware detection through opcode sequence analysis using machine learning

used in stead. This way there will be more crisp data, as several hexvalues maps to one
opcode.

44

Malware detection through opcode sequence analysis using machine learning

Bibliography

[1] OKane, P., Sezer, S., & McLaughlin, K. 2011. Obfuscation: The hidden malware. IEE
Security and Privacy Magazine, 9.

[2] Yan, W., Zhang, Z., & Ansari, N. 2008. Revealing packed malware. IEEE Security and
privacy magazine.

[3] Wikipedia. Accessed may 2015. Support vector machine. http://en.wikipedia.org/

wiki/Support_vector_machine.

[4] Franke, K. & Chanda, S. 2011. Performance evaluation of classifiers. Lecture notes.

[5] Symantec. Accessed april 2015. 2014 internet security threat report, vol-
ume 19. http://www.symantec.com/content/en/us/enterprise/other_resources/

b-istr_main_report_v19_21291018.en-us.pdf.

[6] Flaglien, A. O. 2010. Cross-computer malware detection in digital forensics. HiG master
thesis.

[7] Sand, L. A. 2012. Information-based dependency matching for behavioral malware analy-
sis. HiG master thesis.

[8] Berg, P. E. 2011. Behavior-based classification of botnet malware. HiG master thesis.

[9] Borg, K. 2013. Real time detection and analysis of pdf-files. HiG master thesis.

[10] Bencsath, B., Pek, G., Buttyan, L., & Felegyhazi, M. 2012. The cousins of stuxnet: Duqu,
flame, and gauss. Future Internet.

[11] LeDoux, C. & Lakhoita, A. 2015. Malware and machine learning. Intelligent Methods for
Cyber Warfare.

[12] Eagle, C. 2011. The ida pro book.

[13] Sarvam Blog. Accessed april 2015. Nearly 70% of packed windows sys-
tem files are labeled as malware. http://sarvamblog.blogspot.no/2013/05/

nearly-70-of-packed-windows-system.html.

[14] Moskovitch, R., Stopel, D., Feher, C., Nissim, N., Japkowicz, N., & Elovici, Y. 2009. Un-
known malcode detection and the imbalance problem. Journal in Computer Virology.

[15] Santos, I., Brezo, F., Ugarte-Pedrero, X., & Bringas, P. 2013. Opcode sequences as repre-
sentation of executables for data-mining-based unknown malware detection. Information
Sciences.

45

http://en.wikipedia.org/wiki/Support_vector_machine
http://en.wikipedia.org/wiki/Support_vector_machine
http://www.symantec.com/content/en/us/enterprise/other_resources/b-istr_main_report_v19_21291018.en-us.pdf
http://www.symantec.com/content/en/us/enterprise/other_resources/b-istr_main_report_v19_21291018.en-us.pdf
http://sarvamblog.blogspot.no/2013/05/nearly-70-of-packed-windows-system.html
http://sarvamblog.blogspot.no/2013/05/nearly-70-of-packed-windows-system.html

Malware detection through opcode sequence analysis using machine learning

[16] Skoudis, E. & Zeltser, L. 2010. Malware: Fighting malicious code.

[17] Dube, T., Raines, R., Peterson, B., Bauer, K., & Rogers, S. 2010. An investigation of malware
type classification. Proceeding of the 5th International Conference Information Warfare and
Security.

[18] Microsoft Malware Protection Center. Accessed may 2015. Naming malware. http://www.
microsoft.com/security/portal/mmpc/shared/malwarenaming.aspx.

[19] Stallings, W. & Brown, L. 2008. Computer security principle and practise. Pearson Educa-
tion.

[20] Cohen, F. 1987. Computer viruses: theory and experiments. Computers and security.

[21] McLaughlin, L. 2004. Bot software spreads, causes new worries. IEEE Computer Society,
5(6).

[22] Goebel, J. & Holz, T. 2007. Rishi: Identify bot contaminated hosts by irc nickname evalua-
tion.

[23] Plohmann, D. & Gerhards-Padilla, E. 2012. Case study of the miner botnet. International
Conference on Cyber Confl ict, 4.

[24] McAfee. 2006. Rootkits, part 1 of 3: The growing threat. Whitepaper.

[25] Dang, B., Gazet, A., & Bachaalany, E. 2014. Practical reverse engineering. Wiley.

[26] You, I. & Yim, K. 2010. Malware obfuscation techniques: A brief survey. International
Conference on Broadband, Wireless Computing Communications and Applications.

[27] Borello, J.-M. & Mé, L. 2008. Code obfuscation techniques for metamorphic viruses. Jour-
nal in Computer Virology, 4(3), 211–220.

[28] Yu, S., Zhou, S., Liu, L., & Yang, R. 2010. Malware variants identification based on byte
frequency. Second international conference on networks security, wireless communications
and trusted computing.

[29] Shankarapani, M. & Ramamoorthy, S. 2010. Malware detection using assembly and api
call sequences. Springer-Verlag France.

[30] Branco, R. R., Barbosa, G. N., & Neto, P. D. 2012. Scientific but not academical overview
of malware anti-debugging, anti-disassembly and anti-vm technologies. Black Hat USA.

[31] Sikorski, M. & Honig, A. 2012. Practical Malware Analysis: The Hands-On Guide to Dissecting
Malicious Software. No Starch Press.

[32] Skoudis, E. 2004. Malware: Fighting malicious code. Prentice Hall Professional.

[33] Microsoft Technet. Accessed may 2015. Diskmon for windows v2.01. https://technet.

microsoft.com/en-us/sysinternals/bb896646.

46

http://www.microsoft.com/security/portal/mmpc/shared/malwarenaming.aspx
http://www.microsoft.com/security/portal/mmpc/shared/malwarenaming.aspx
https://technet.microsoft.com/en-us/sysinternals/bb896646
https://technet.microsoft.com/en-us/sysinternals/bb896646

Malware detection through opcode sequence analysis using machine learning

[34] Microsoft Technet. Accessed may 2015. Process explorer v16.05. https://technet.

microsoft.com/en-us/sysinternals/bb896653.

[35] Microsoft Technet. Accessed may 2015. Tcpview v3.05. https://technet.microsoft.

com/en-us/sysinternals/bb897437.

[36] Wireshark Foundation. Accessed may 2015. Wireshark homepage. https://www.

wireshark.org/.

[37] Li, W.-J., Wang, K., Stolfo, S., & Herzog, B. 2005. Fileprints: Identifying file types by n-gram
analysis. Proceedings of the 2005 IEE Workshop on Assurance and Security.

[38] Bilar, D. 2007. Opcodes as predictor for malware. Int. J. Electronic Security and Digital
Forensics, Vol 1, No. 2.

[39] Moskovitch, R., Feher, C., Tzachar, N., Berger, E., Gitelman, M., Dolev, S., & Elovici, Y.
2008. Unknown malcode detection using opcode representation. Springer-Verlag Berlin
Heidelberg.

[40] Zolotukhin, M. & Hamalainen, T. 2014. Detection of zero-day malware based on the
analysis of opcode sequences. The 11th Annual IEEE SSNC - Security, Privacy and Content
Protection.

[41] Jacob, G., Comparetti, P. M., Neugschwandtner, M., Kruegel, C., & Vigna, G. 2013. A static,
packer-agnostic filter to detect similar malware samples. Springer-Verlag Berlin Heidelberg.

[42] Shafiq, Tabish, & Farooq. 2009. Pe-probe: Leveraging packer detection and structural
information to detect malicious portable executables. Virus Bulletin Conference.

[43] Moghaddam, G. G. & Moballeghi, M. 2008. How do we measure use of scientific journals?
a note on research methodologies. Scientometrics.

[44] Royal, P., Halpin, M., Dagon, D., Edmonds, R., & Lee, W. 2006. Polyunpack: Automating
the hidden-code extraction of unpack-executing malware. Computer Security Applications
Conference, 2006. ACSAC ’06. 22nd Annual.

[45] Kang, M. G., Poosankam, P., & Yin, H. 2007. Renovo: A hidden code extractor for packed
executables. WORM 07.

[46] Kang, M. G., Poosankam, P., & Yin, H. 2007. Omniunpack: Fast, generic, and safe unpacking
of malware. 23rd Annual Computer Security Applications Conference.

[47] Kath, R. 1997. The portable executable file format from top to bottom.

[48] VX Heaven. Accessed dec 2014. Vx heaven. http://vxheaven.org/.

[49] Packet Storm Security. Accessed dec 2014. Packet storm security. http://

packetstormsecurity.com/.

47

https://technet.microsoft.com/en-us/sysinternals/bb896653
https://technet.microsoft.com/en-us/sysinternals/bb896653
https://technet.microsoft.com/en-us/sysinternals/bb897437
https://technet.microsoft.com/en-us/sysinternals/bb897437
https://www.wireshark.org/
https://www.wireshark.org/
http://vxheaven.org/
http://packetstormsecurity.com/
http://packetstormsecurity.com/

Malware detection through opcode sequence analysis using machine learning

[50] VirusShare. Accessed may 2015. Virusshare. http://virusshare.com/.

[51] Secure By Design Inc. Accessed may 2015. Ninite. http://ninite.com/.

[52] Hex-Rays. Accessed dec 2014. Ida pro. https://www.hex-rays.com/products/ida/.

[53] x86asm.net. Accessed may 2015. X86 opcode and instruction reference. http://ref.

x86asm.net/coder-abc.html.

[54] Chikofsky, E. J., Cross, J. H., et al. 1990. Reverse engineering and design recovery: A
taxonomy. Software, IEEE, 7(1), 13–17.

[55] Rekoff, M. 1985. On reverse engineering. Systems, Man and Cybernetics, IEEE Transactions
on, (2), 244–252.

[56] Ligh, M., Adair, S., Hartstein, B., & Richard, M. 2010. Malware analyst’s cookbook and DVD:
tools and techniques for fighting malicious code. Wiley Publishing.

[57] Wikibooks. Accessed may 2015. x86 disassembly/analysis tools. http://en.wikibooks.

org/wiki/X86_Disassembly/Analysis_Tools.

[58] Kononenko, I. & Matjazkukar, M. 2007. Machine learning and data mining. Woodhead
Publishing.

[59] Duda, R. O., Hart, P. E., & Stork, D. G. 2012. Pattern classification. John Wiley & Sons.

[60] Liu, H. & Motoda, H. 2007. Computational methods of feature selection. CRC Press.

[61] Hall, M. A. Correlation-based Feature Subset Selection for Machine Learning. PhD thesis,
University of Waikato, Hamilton, New Zealand, 1998.

[62] Frank, E. Accessed may 2015. Weka class chisquaredattributeeval. http://weka.

sourceforge.net/doc.stable/weka/attributeSelection/ChiSquaredAttributeEval.

html.

[63] Shapiro, L. Accessed may 2015. Information gain. http://homes.cs.washington.edu/

~shapiro/EE596/notes/InfoGain.pdf.

[64] Zhao, Z. Accessed may 2015. Weka class symmetricaluncertattributesete-
val. http://weka.sourceforge.net/doc.packages/fastCorrBasedFS/weka/

attributeSelection/SymmetricalUncertAttributeSetEval.html.

[65] Frank, E. Accessed may 2015. Weka class j48. http://weka.sourceforge.net/doc.dev/
weka/classifiers/trees/J48.html.

[66] Fullér, R. 1995. Neural fuzzy systems.

[67] Abraham, A. 2005. Artificial neural networks. handbook of measuring system design.

[68] Buckland. Accessed may 2015. Kohonen’s self organizing feature maps. http://

ai-junkie.com.

48

http://virusshare.com/
http://ninite.com/
https://www.hex-rays.com/products/ida/
http://ref.x86asm.net/coder-abc.html
http://ref.x86asm.net/coder-abc.html
http://en.wikibooks.org/wiki/X86_Disassembly/Analysis_Tools
http://en.wikibooks.org/wiki/X86_Disassembly/Analysis_Tools
http://weka.sourceforge.net/doc.stable/weka/attributeSelection/ChiSquaredAttributeEval.html
http://weka.sourceforge.net/doc.stable/weka/attributeSelection/ChiSquaredAttributeEval.html
http://weka.sourceforge.net/doc.stable/weka/attributeSelection/ChiSquaredAttributeEval.html
http://homes.cs.washington.edu/~shapiro/EE596/notes/InfoGain.pdf
http://homes.cs.washington.edu/~shapiro/EE596/notes/InfoGain.pdf
http://weka.sourceforge.net/doc.packages/fastCorrBasedFS/weka/attributeSelection/SymmetricalUncertAttributeSetEval.html
http://weka.sourceforge.net/doc.packages/fastCorrBasedFS/weka/attributeSelection/SymmetricalUncertAttributeSetEval.html
http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/J48.html
http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/J48.html
http://ai-junkie.com
http://ai-junkie.com

Malware detection through opcode sequence analysis using machine learning

[69] Shalaginov, A. & Franke, K. 2015. A new method for an optimal som size determination
in neuro-fuzzy for the digital forensics applications. 13th International Work-Conference on
Artificial Neural Networks, IWANN 2015, Palma de Mallorca, Spain, 13(2).

[70] CDKiLLER & TippeX. Accessed may 2015. Protectionid homepage. http://pid.

gamecopyworld.com/.

[71] Python Software Foundation. Accessed may 2015. Python homepage. https://www.

python.org/.

[72] Jones, E., Oliphant, T., Peterson, P., et al. 2001–. SciPy: Open source scientific tools for
Python. [Online; accessed 2015-05-19].

[73] Chang, C.-C. & Lin, C.-J. 2011. LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2, 27:1–27:27. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[74] Brownlee, J. Accessed may 2015. Weka classification algorithms. http://

wekaclassalgos.sourceforge.net/.

[75] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. 2009. The
weka data mining software: An update. SIGKDD Explorations. http://www.cs.waikato.

ac.nz/ml/weka/.

[76] Tool Library, C. Accessed may 2015. Packer identifiers. http://www.woodmann.com/

collaborative/tools/index.php/Category:Packer_Identifiers.

[77] Wueest, C. Accessed may 2015. Symantec official blog. http://www.symantec.com/

connect/blogs/does-malware-still-detect-virtual-machines.

[78] Saini, A., Gandotra, E., Bansal, D., & Sofat, S. 2014. Classification of pe files using static
analysis. In Proceedings of the 7th International Conference on Security of Information and
Networks, 429. ACM.

49

http://pid.gamecopyworld.com/
http://pid.gamecopyworld.com/
https://www.python.org/
https://www.python.org/
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://wekaclassalgos.sourceforge.net/
http://wekaclassalgos.sourceforge.net/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.woodmann.com/collaborative/tools/index.php/Category:Packer_Identifiers
http://www.woodmann.com/collaborative/tools/index.php/Category:Packer_Identifiers
http://www.symantec.com/connect/blogs/does-malware-still-detect-virtual-machines
http://www.symantec.com/connect/blogs/does-malware-still-detect-virtual-machines

Malware detection through opcode sequence analysis using machine learning

A Computational results

This spreadsheet contains all the classification accuracies for all sequence lengths, feature subsets
and classifiers. It also includes additional graphs.

50

D
ata se

t
A

ttrib
u

te
 Selectio

n
R

an
d

o
m

 Fo
rest

J4
8 (C

4.5)
B

a
ggin

g
N

aïve B
a

yes
B

a
yes N

et
SV

M
 (Lib

SV
M

)
A

N
N

 (M
L B

P
)

SO
M

 14x14
IB

k (K
N

N
) K

=1
K

=2
K

=3
K

=4
K

=5
K

=6
K

=7
K

=8
K

=9
K

=1
0

N
u

m
b

er o
f attrib

u
tes

1-gram
Fu

ll featu
re set

94,67 %
92,57 %

93,19 %
63,81 %

77,71 %
76,06 %

45,55 %
77,14 %

91,32 %
89,56 %

90,19 %
89,68 %

88,66 %
88,60 %

88,66 %
88,77 %

88,20 %
88,09 %

530

C
FS

91,15 %
89,51 %

89,05 %
66,53 %

82,19 %
79,92 %

76,52 %
79,30 %

89,28 %
89,22 %

88,49 %
88,66 %

88,43 %
87,92 %

88,20 %
87,69 %

87,86 %
88,43 %

20

C
h

iSq
u

ared
94,38 %

92,51 %
93,31 %

63,58 %
77,71 %

74,93 %
56,15 %

77,25 %
91,32 %

89,51 %
90,13 %

89,96 %
88,88 %

88,83 %
88,54 %

88,71 %
87,92 %

87,41 %
254

In
fo

G
ain

93,36 %
92,51 %

93,36 %
63,58 %

77,71 %
74,93 %

56,15 %
77,25 %

91,32 %
89,51 %

90,13 %
89,96 %

88,88 %
88,83 %

88,54 %
88,71 %

87,92 %
87,41 %

254

R
eliefF

93,70 %
92,51 %

93,25 %
63,76 %

77,71 %
75,50 %

6,92 %
77,14 %

91,44 %
89,68 %

90,30 %
89,68 %

88,77 %
88,71 %

88,77 %
88,77 %

88,20 %
87,92 %

356

Sym
m

etricalU
n

cert
94,55 %

92,57 %
93,19 %

63,58 %
77,71 %

74,93 %
1,30 %

77,25 %
91,32 %

89,51 %
90,13 %

89,96 %
88,88 %

88,83 %
88,54 %

88,71 %
87,92 %

87,41 %
254

1-gram
 n

o
t p

acked
Fu

ll featu
re set

93,68 %
91,28 %

92,17 %
57,07 %

83,10 %
71,63 %

43,54 %
73,15 %

89,29 %
87,77 %

88,60 %
87,64 %

87,16 %
86,33 %

85,92 %
85,71 %

85,58 %
85,30 %

530

C
FS

89,49 %
87,50 %

87,98 %
60,23 %

80,77 %
79,33 %

76,10 %
80,01 %

88,05 %
87,43 %

86,61 %
86,54 %

86,68 %
86,61 %

86,54 %
86,13 %

86,47 %
86,47 %

16

C
h

iSq
u

ared
94,02 %

90,52 %
92,65 %

57,07 %
83,10 %

70,40 %
35,16 %

73,70 %
89,29 %

87,57 %
88,12 %

87,57 %
87,23 %

86,74 %
86,54 %

85,92 %
85,71 %

85,71 %
238

In
fo

G
ain

92,51 %
90,45 %

92,58 %
57,07 %

83,10 %
70,40 %

8,24 %
73,70 %

89,29 %
87,57 %

88,12 %
87,57 %

87,23 %
86,74 %

86,54 %
85,92 %

85,71 %
85,71 %

238

R
eliefF

91,76 %
91,14 %

92,38 %
57,01 %

83,10 %
71,09 %

7,83 %
73,15 %

89,56 %
87,98 %

88,74 %
87,71 %

87,16 %
86,47 %

86,06 %
85,78 %

85,78 %
85,44 %

346

Sym
m

etricalU
n

cert
94,02 %

90,52 %
92,51 %

57,07 %
83,10 %

70,40 %
51,99 %

73,70 %
89,29 %

87,57 %
88,12 %

87,57 %
87,23 %

86,74 %
86,54 %

85,92 %
85,71 %

85,71 %
238

2-gram
Fu

ll featu
re set

94,10 %
93,25 %

94,27 %
64,61 %

-
82,19 %

57,40 %
77,65 %

92,91 %
91,78 %

92,29 %
91,78 %

90,92 %
90,92 %

90,47 %
90,36 %

90,19 %
90,47 %

24716

C
FS

93,53 %
92,00 %

92,00 %
64,38 %

86,78 %
82,53 %

78,90 %
79,01 %

93,25 %
92,63 %

92,34 %
92,06 %

91,89 %
92,00 %

92,17 %
92,12 %

92,29 %
92,17 %

30

C
h

iSq
u

ared
94,50 %

93,59 %
94,38 %

66,08 %
75,78 %

79,64 %
40,39 %

77,82 %
94,50 %

93,48 %
94,04 %

93,65 %
92,68 %

92,85 %
92,29 %

92,46 %
92,17 %

91,95 %
5008

In
fo

G
ain

93,99 %
93,53 %

94,33 %
66,14 %

75,78 %
79,64 %

51,79 %
77,82 %

94,50 %
93,48 %

94,04 %
93,65 %

92,68 %
92,85 %

92,29 %
92,46 %

92,17 %
91,95 %

5008

R
eliefF

93,82 %
93,14 %

94,27 %
66,19 %

75,72 %
80,26 %

12,08 %
77,54 %

93,65 %
92,63 %

92,80 %
92,29 %

91,61 %
91,38 %

91,21 %
91,49 %

90,87 %
90,75 %

8074

Sym
m

etricalU
n

cert
95,41 %

93,53 %
94,21 %

66,59 %
75,78 %

79,64 %
43,39 %

77,82 %
94,50 %

93,48 %
94,04 %

93,65 %
92,68 %

92,85 %
92,29 %

92,46 %
92,17 %

91,95 %
5008

2-gram
 n

o
t p

acked
Fu

ll featu
re set

92,99 %
92,24 %

93,75 %
57,35 %

-
78,98 %

49,24 %
74,79 %

92,38 %
90,87 %

91,35 %
91,07 %

90,11 %
90,11 %

88,87 %
89,01 %

88,53 %
88,74 %

24716

C
FS

92,65 %
91,21 %

91,69 %
58,10 %

85,37 %
79,74 %

77,54 %
76,51 %

93,06 %
91,90 %

91,21 %
91,55 %

91,14 %
90,80 %

90,73 %
90,38 %

90,38 %
90,45 %

33

C
h

iSq
u

ared
93,06 %

92,72 %
93,48 %

59,82 %
80,77 %

75,55 %
51,99 %

75,00 %
93,61 %

92,38 %
92,79 %

92,38 %
91,41 %

91,55 %
91,00 %

90,87 %
90,87 %

90,52 %
4633

In
fo

G
ain

93,75 %
92,72 %

93,41 %
59,89 %

80,77 %
75,55 %

12,77 %
75,00 %

93,61 %
92,38 %

92,79 %
92,38 %

91,41 %
91,55 %

91,00 %
90,87 %

90,87 %
90,52 %

4633

R
eliefF

93,68 %
92,51 %

93,54 %
59,13 %

80,63 %
75,82 %

47,18 %
74,38 %

93,20 %
91,55 %

92,03 %
92,03 %

90,80 %
90,66 %

89,70 %
90,04 %

89,42 %
89,35 %

6403

Sym
m

etricalU
n

cert
93,68 %

92,72 %
93,48 %

60,30 %
80,77 %

75,55 %
42,93 %

75,00 %
93,61 %

92,38 %
92,79 %

92,38 %
91,41 %

91,55 %
91,00 %

90,87 %
90,87 %

90,52 %
4633

3-gram
Fu

ll featu
re set

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

195994

C
FS

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

C
h

iSq
u

ared
94,55 %

94,33 %
94,16 %

69,77 %
75,38 %

81,28 %
25,75 %

76,97 %
93,70 %

92,51 %
92,46 %

91,66 %
91,44 %

90,75 %
90,75 %

90,47 %
90,30 %

90,13 %
8001

In
fo

G
ain

94,04 %
94,50 %

94,21 %
69,77 %

75,38 %
81,23 %

62,45 %
76,86 %

93,99 %
92,46 %

92,46 %
91,95 %

91,49 %
91,21 %

90,70 %
90,41 %

90,13 %
90,07 %

8001

R
eliefF

93,59 %
93,48 %

94,21 %
78,50 %

73,28 %
80,71 %

44,36 %
73,96 %

93,87 %
92,80 %

93,48 %
92,74 %

92,00 %
91,15 %

91,09 %
90,53 %

90,07 %
89,90 %

8001

Sym
m

etricalU
n

cert
95,58 %

94,61 %
94,27 %

70,28 %
75,44 %

81,23 %
34,77 %

76,91 %
93,87 %

92,68 %
92,40 %

92,12 %
91,61 %

91,66 %
91,09 %

91,04 %
90,87 %

90,58 %
8001

3-gram
 n

o
t p

acked
Fu

ll featu
re set

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

195994

C
FS

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

C
h

iSq
u

ared
94,44 %

93,48 %
93,06 %

64,42 %
79,81 %

77,82 %
51,03 %

74,04 %
93,06 %

91,41 %
91,35 %

90,73 %
89,97 %

89,70 %
90,18 %

89,35 %
89,08 %

88,80 %
8001

In
fo

G
ain

93,61 %
93,48 %

93,13 %
64,70 %

80,01 %
77,82 %

13,46 %
73,70 %

93,75 %
92,24 %

91,41 %
90,87 %

90,38 %
90,04 %

90,11 %
89,63 %

89,35 %
88,94 %

8001

R
eliefF

92,86 %
93,06 %

92,99 %
62,23 %

78,98 %
80,56 %

3,23 %
70,12 %

94,02 %
91,96 %

92,51 %
91,14 %

90,45 %
90,45 %

89,63 %
89,29 %

88,46 %
88,05 %

8001

Sym
m

etricalU
n

cert
94,37 %

93,96 %
93,20 %

64,15 %
80,77 %

77,75 %
28,09 %

73,49 %
93,75 %

92,51 %
91,90 %

91,35 %
90,87 %

90,18 %
90,04 %

89,97 %
89,90 %

89,15 %
8001

4-gram
Fu

ll featu
re set

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

714390

C
FS

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

C
h

iSq
u

ared
94,38 %

93,93 %
94,16 %

71,70 %
75,95 %

82,47 %
33,29 %

77,99 %
93,25 %

91,66 %
92,00 %

91,72 %
90,92 %

90,36 %
90,07 %

90,13 %
89,34 %

89,22 %
8001

In
fo

G
ain

94,95 %
93,76 %

94,33 %
71,75 %

76,06 %
82,47 %

71,53 %
77,82 %

93,31 %
91,72 %

91,83 %
91,38 %

90,36 %
90,19 %

89,96 %
89,73 %

89,28 %
89,05 %

8001

R
eliefF

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

Sym
m

etricalU
n

cert
95,12 %

93,59 %
94,50 %

72,26 %
76,80 %

82,64 %
70,79 %

78,16 %
92,63 %

91,72 %
91,89 %

91,83 %
91,21 %

90,70 %
90,30 %

89,68 %
89,51 %

88,71 %
8001

4-gram
 n

o
t p

acked
Fu

ll featu
re set

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

714390

C
FS

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

C
h

iSq
u

ared
94,02 %

92,38 %
93,06 %

66,35 %
80,70 %

79,81 %
61,95 %

73,90 %
93,75 %

92,38 %
92,65 %

92,24 %
91,07 %

90,66 %
90,04 %

89,49 %
89,08 %

88,87 %
8001

In
fo

G
ain

93,48 %
92,24 %

92,93 %
66,41 %

80,77 %
78,81 %

49,24 %
71,91 %

93,89 %
92,65 %

92,58 %
92,10 %

91,48 %
90,80 %

90,87 %
90,25 %

89,97 %
89,56 %

8001

R
eliefF

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

Sym
m

etricalU
n

cert
93,68 %

92,10 %
93,06 %

66,62 %
82,55 %

80,01 %
55,63 %

73,21 %
93,68 %

92,17 %
92,65 %

92,58 %
91,62 %

90,80 %
90,87 %

90,11 %
90,18 %

89,35 %
8001

Zero
R

 (alle I stø
rste klassen

) = 5
6

.2677 %
C

lassifiers

Malware detection through opcode sequence analysis using machine learning

Figure 16: Classifier accuracies for 1-gram

Figure 17: Classifier accuracies for 2-gram

52

Malware detection through opcode sequence analysis using machine learning

Figure 18: Classifier accuracies for 3-gram

Figure 19: Classifier accuracies for 4-gram

53

Malware detection through opcode sequence analysis using machine learning

B Datasets

This is examples of the different stages of the data used.

B.1 Asm file example

Asm files contain all extracted assembly code.

; PDB File Name : AcroRd32Info.pdb

; OS type : MS Windows

; Application type: Executable 32bit

include uni.inc ; see unicode subdir of ida for info on unicode

.686p

.mmx

.model flat

; ===

; Segment type: Pure code

; Segment permissions: Read/Execute

_text segment para public 'CODE' use32

assume cs:_text

;org 401000h

assume es:nothing, ss:nothing, ds:_data, fs:nothing, gs:nothing

; =============== S U B R O U T I N E =======================================

; Attributes: bp-based frame

; int __cdecl sub_401000(wchar_t *Src, wchar_t *Dst, rsize_t SizeInWords)

sub_401000 proc near ; CODE XREF: sub_40164D+30p

Src = dword ptr 8

Dst = dword ptr 0Ch

SizeInWords = dword ptr 10h

push ebp

mov ebp, esp

54

Malware detection through opcode sequence analysis using machine learning

push edi

xor edi, edi

cmp [ebp+Src], edi

jnz short loc_401012

xor eax, eax

jmp loc_4010B7

; ---

loc_401012: ; CODE XREF: sub_401000+9

push esi

cmp Memory,edi

jnz short loc_401069

push 208h ; Size

call ds:malloc

pop ecx

mov Memory,eax

cmp eax, edi

jz short loc_401084

mov esi, 104h

push esi ; nSize

push eax ; lpFilename

push edi ; hModule

call ds:GetModuleFileNameW

cmp eax, 3

jbe short loc_401088

cmp eax, esi

jz short loc_401088

push 5Ch ; Ch

push Memory ; Str

call ds:wcsrchr

pop ecx

pop ecx

cmp eax, edi

jz short loc_401088

xor ecx, ecx

mov [eax+2], cx

cmp Memory,edi

jz short loc_401084

loc_401069: ; CODE XREF: sub_401000+19

push 0FFFFFFFFh ; MaxCount

push Memory ; Src

55

Malware detection through opcode sequence analysis using machine learning

push [ebp+SizeInWords] ; SizeInWords

push [ebp+Dst] ; Dst

call ds:wcsncpy_s

add esp, 10h

test eax, eax

jz short loc_40109D

loc_401084: ; CODE XREF: sub_401000+2E

; sub_401000+67j ...

xor eax, eax

jmp short loc_4010B6

56

Malware detection through opcode sequence analysis using machine learning

B.2 N-gram example

This is an example of a 4-gram file.

push mov push xor

mov push xor cmp

push xor cmp jnz

xor cmp jnz xor

cmp jnz xor jmp

jnz xor jmp push

xor jmp push cmp

jmp push cmp jnz

push cmp jnz push

cmp jnz push call

jnz push call pop

push call pop mov

call pop mov cmp

pop mov cmp jz

mov cmp jz mov

cmp jz mov push

jz mov push push

mov push push push

push push push call

push push call cmp

push call cmp jbe

call cmp jbe cmp

cmp jbe cmp jz

jbe cmp jz push

cmp jz push push

jz push push call

push push call pop

push call pop pop

call pop pop cmp

pop pop cmp jz

pop cmp jz xor

cmp jz xor mov

jz xor mov cmp

xor mov cmp jz

mov cmp jz push

cmp jz push push

jz push push push

push push push push

push push push call

57

Malware detection through opcode sequence analysis using machine learning

push push call add

push call add test

call add test jz

add test jz xor

test jz xor jmp

jz xor jmp push

xor jmp push call

jmp push call pop

push call pop mov

call pop mov jmp

pop mov jmp push

58

Malware detection through opcode sequence analysis using machine learning

B.3 Distribution example

An example of the opcode distribution in benign and malicious files.

4-gram Malware Benign

['mov', 'mov', 'mov', 'mov'] 1711324 3249554

['mov', 'mov', 'call', 'mov'] 434662 914133

['mov', 'mov', 'mov', 'call'] 434459 1067418

['mov', 'call', 'mov', 'mov'] 373213 790247

['lea', 'mov', 'mov', 'mov'] 232871 177003

['call', 'mov', 'mov', 'mov'] 231107 600093

['mov', 'lea', 'mov', 'mov'] 209694 161836

['push', 'sub', 'mov', 'mov'] 171528 134236

['mov', 'mov', 'lea', 'mov'] 171506 149430

['mov', 'mov', 'mov', 'lea'] 153913 139216

['mov', 'add', 'pop', 'retn'] 141715 38411

['mov', 'mov', 'call', 'test'] 137472 234319

['lea', 'mov', 'mov', 'call'] 137086 74515

['mov', 'mov', 'mov', 'add'] 135989 127476

['sub', 'mov', 'mov', 'mov'] 131318 116573

['mov', 'mov', 'add', 'pop'] 131216 75818

['push', 'push', 'push', 'push'] 123183 315753

['mov', 'call', 'test', 'jz'] 122967 181671

['pop', 'pop', 'pop', 'pop'] 121890 89260

['add', 'pop', 'retn', 'mov'] 118492 39179

['mov', 'jmp', 'mov', 'mov'] 117549 219344

['call', 'mov', 'mov', 'call'] 110186 112394

['cmp', 'jz', 'cmp', 'jz'] 109344 149707

['pop', 'retn', 'mov', 'mov'] 109202 54215

['lea', 'mov', 'call', 'mov'] 107716 76589

['mov', 'call', 'mov', 'call'] 107599 90487

['xor', 'mov', 'mov', 'mov'] 105984 61840

['jmp', 'mov', 'mov', 'mov'] 105721 222397

['test', 'jz', 'mov', 'mov'] 104906 260306

['mov', 'cmp', 'jz', 'mov'] 102761 142307

['mov', 'test', 'jz', 'mov'] 101745 352089

['cmp', 'jz', 'mov', 'mov'] 97918 152609

['mov', 'mov', 'mov', 'cmp'] 97281 140735

['mov', 'mov', 'call', 'lea'] 95882 46472

['mov', 'push', 'sub', 'mov'] 95382 41343

['retn', 'push', 'sub', 'mov'] 94775 81142

['pop', 'retn', 'push', 'sub'] 93440 81539

59

Malware detection through opcode sequence analysis using machine learning

B.4 Arff file example

Example of an arff file used with Weka.

@relation '1gram_all-weka.filters.CfsSubsetEval-Sweka.attributeSelection.BestFirst -D 1 -N 5'

@attribute movsxd numeric

@attribute nop numeric

@attribute movnti numeric

@attribute cmovb numeric

@attribute bt numeric

@attribute bts numeric

@attribute cmova numeric

@attribute in numeric

@attribute ror numeric

@attribute repe numeric

@attribute movups numeric

@attribute leave numeric

@attribute stosd numeric

@attribute cld numeric

@attribute prefetcht1 numeric

@attribute movsw numeric

@attribute stosw numeric

@attribute pushf numeric

@attribute fldz numeric

@attribute CLASS {MALWARE,BENIGN}

@data

234,156,24,8,22,25,4,1,1,0,0,0,0,0,0,0,0,0,0,MALWARE

9,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,MALWARE

80,2,0,1,3,7,1,0,1,0,0,0,0,0,0,0,0,0,0,MALWARE

0,8,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,MALWARE

38,80,0,2,32,3,0,0,0,0,0,0,0,0,0,0,0,0,0,MALWARE

29,45,24,10,4,3,2,0,0,0,0,0,0,0,0,0,0,0,0,MALWARE

833,1874,24,52,53,74,9,0,1,0,902,0,0,0,0,0,0,0,0,MALWARE

26,265,0,59,107,10,10,0,1,0,0,0,0,0,0,0,0,0,0,MALWARE

95,172,0,8,7,5,0,0,0,0,0,0,0,0,0,0,0,0,0,MALWARE

88,1,0,1,9,7,1,0,1,0,0,0,0,0,0,0,0,0,0,MALWARE

200,0,0,3,5,7,3,0,3,0,0,0,0,0,0,0,0,0,0,MALWARE

39,741,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,MALWARE

88,1,0,1,9,7,1,0,1,0,0,0,0,0,0,0,0,0,0,MALWARE

1444,320,24,19,160,135,17,2,21,0,0,0,0,0,0,0,0,0,0,MALWARE

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,MALWARE

60

Malware detection through opcode sequence analysis using machine learning

0,223,0,0,0,0,0,0,0,0,0,245,0,0,0,0,0,0,0,MALWARE

55,0,0,0,4,3,0,0,0,0,0,0,0,0,0,0,0,0,0,MALWARE

12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,MALWARE

94,154,0,1,34,0,0,0,3,20,0,4,1,0,0,0,0,0,0,MALWARE

652,908,24,11,175,43,8,0,1,4,0,0,1,3,0,0,0,0,0,MALWARE

130,177,0,0,4,4,5,1,0,1,0,1,0,0,0,0,0,0,0,MALWARE

206,128,24,1,34,43,4,0,1,4,0,0,0,0,0,0,0,0,0,MALWARE

88,1,0,1,9,7,1,0,1,0,0,0,0,0,0,0,0,0,0,MALWARE

54,94,0,1,6,3,1,0,1,0,0,0,0,0,1,0,0,0,0,MALWARE

88,1,0,1,9,7,1,0,1,0,0,0,0,0,0,0,0,0,0,MALWARE

3,9,0,0,0,0,0,0,1,0,3,0,0,0,0,0,0,0,0,MALWARE

3,0,0,0,0,0,0,0,0,0,0,1,2,2,0,0,0,0,0,MALWARE

25,108,0,3,80,90,8,8,5,0,0,5,0,1,0,0,0,0,0,MALWARE

50,66,24,1,2,3,3,0,1,0,0,1,0,2,0,0,0,0,0,MALWARE

921,24,0,26,165,74,6,2,20,0,0,0,0,0,0,0,0,0,0,MALWARE

5,62,0,6,4,0,0,0,1,0,0,0,0,0,1,0,0,0,0,MALWARE

30,28,24,1,0,1,3,0,1,0,1,0,0,0,0,0,0,0,0,MALWARE

8,4,8,9,17,4,11,3,1,0,2,0,0,0,0,0,0,0,0,MALWARE

162,128,0,4,11,17,2,0,0,0,2,0,0,0,0,0,0,0,0,MALWARE

61

Malware detection through opcode sequence analysis using machine learning

C Source code

The source code from selected scripts are included in this section. The list is not exhaustive.

C.1 createArff4gram

This script creates the 4-gram files.

from os import l i s t d i r
from os . path import i s f i l e , j o i n
import time

s t a r t = time . time ()

Allowed i n s t r u c t i o n s
a l l o w e d I n s t r u c t i o n s = []

F i l e names
packedMalware = []
packedBenign = []

cleanMalware = []
cleanBenign = []

I n s t r u c t i o n s used by a l l f i l e s in t o t a l
a l l I n s t r u c t i o n s = []
numberOf Ins t ruc t ions InTota l = []

numberOfInstructionsMalwareClean = []
numberOfInstruct ionsMalwareTotal = []

numberOfInstruct ionsBenignClean = []
numberOfInst ruct ionsBenignTota l = []

Read which f i l e s are packed from f i l e
def read_packed (f r o m _ f i l e) :

vars = []
f i l e = open(f r o m _ f i l e , ’ r ’)
for l i n e in f i l e :

S p l i t on ,
var = l i n e . s p l i t (’ , ’)
Remove path , keep only f i l e name
vars . append (var [1] [8 :])

return vars

62

Malware detection through opcode sequence analysis using machine learning

Read from f i l e
def r ead_ f rom_f i l e (f r o m _ f i l e) :

f i l e = open(f r o m _ f i l e , ’ r ’)
f i l e c o n t e n t = [l i n e . s t r i p () for l i n e in f i l e]
return f i l e c o n t e n t

Read from n−gram f i l e
def read_ngram (path , f r o m _ f i l e) :

f i l e = open(path + " \\ " + f r o m _ f i l e , ’ r ’)
f i l e c o n t e n t = [l i n e . s t r i p () for l i n e in f i l e]
for ngram in f i l e c o n t e n t :

i f ngram not in a l l I n s t r u c t i o n s :
a l l I n s t r u c t i o n s . append (ngram)
numberOf Ins t ruc t ions InTota l . append (1)

else :
numberOf Ins t ruc t ions InTota l [a l l I n s t r u c t i o n s .

index (ngram)] += 1

Read from n−gram f i l e
def read_ngram_2 (path , f rom_f i l e , t o _ f i l e , type) :

a t t r i b u t e s = []
for x in xrange (0 , len (a l l I n s t r u c t i o n s)) :

a t t r i b u t e s . append (0)
f i l e = open(path + " \\ " + f r o m _ f i l e , ’ r ’)
f i l e c o n t e n t = [l i n e . s t r i p () for l i n e in f i l e]
for ngram in f i l e c o n t e n t :

a t t r i b u t e s [a l l I n s t r u c t i o n s . index (ngram)] += 1
f i l e 2 = open(t o _ f i l e , ’ a ’)
f i l e 2 . wr i te (type)
for x in xrange (0 , len (a l l I n s t r u c t i o n s)) :

f i l e 2 . wr i te (" , " + s t r (a t t r i b u t e s [x]))
f i l e 2 . wr i te (" \n ")
f i l e 2 . c l o s e ()

i f f r o m _ f i l e [:−4] not in packedMalware :
f rom_ f i l e2 = f r o m _ f i l e [:−3]
f rom_ f i l e2 += " exe "
i f f r om_ f i l e2 not in packedBenign :

f i l e 3 = open(" 4gram_not_packed . a r f f " , ’ a ’)
f i l e 3 . wr i te (type)
for x in xrange (0 , len (a l l I n s t r u c t i o n s)) :

f i l e 3 . wr i te (" , " + s t r (a t t r i b u t e s [x]))
f i l e 3 . wr i te (" \n ")
f i l e 3 . c l o s e ()

Read al lowed i n s t r u c t i o n s
a l l o w e d I n s t r u c t i o n s = read_ f rom_f i l e (" a l l o w e d _ i n s t r u c t i o n s . t x t ")

Read which malware f i l e s are packed

63

Malware detection through opcode sequence analysis using machine learning

packedMalware = read_packed (" packed_malware . csv ")
Read which benign f i l e s are packed
packedBenign = read_packed (" packed_benign . csv ")

Read malware f i l e s
malwarePath = " . . \ \ ngrams\\malware\\4−gram "
malwareFi les = [f for f in l i s t d i r (malwarePath) i f i s f i l e (j o i n (

malwarePath , f))]
for malwareFi le in malwareFi les :

read_ngram (malwarePath , malwareFi le)

Read benign f i l e s
benignPath = " . . \ \ ngrams\\ benign\\4−gram "
ben ignF i l e s = [f for f in l i s t d i r (benignPath) i f i s f i l e (j o i n (

benignPath , f))]
for ben ignF i l e in ben ignF i l e s :

read_ngram (benignPath , ben ignF i l e)

P r i n t to f i l e
f i l e 2 = open(" 4gram_al l . a r f f " , ’w ’)
f i l e 2 . wr i te ("@RELATION 4gram_al l " + " \n\n ")
f i l e 2 . wr i te ("@ATTRIBUTE CLASS {MALWARE, BENIGN} " + " \n ")
for x in xrange (0 , len (a l l I n s t r u c t i o n s)) :

f i l e 2 . wr i te ("@ATTRIBUTE " + s t r (a l l I n s t r u c t i o n s [x] . r ep lace (" \
t " , "−")) + " NUMERIC" + " \n ")

f i l e 2 . wr i te (" \n " + "@DATA" + " \n ")
f i l e 2 . c l o s e ()

P r i n t to f i l e
f i l e 3 = open(" 4gram_not_packed . a r f f " , ’w ’)
f i l e 3 . wr i te ("@RELATION 4gram_not_packed " + " \n\n ")
f i l e 3 . wr i te ("@ATTRIBUTE CLASS {MALWARE, BENIGN} " + " \n ")
for x in xrange (0 , len (a l l I n s t r u c t i o n s)) :

f i l e 3 . wr i te ("@ATTRIBUTE " + s t r (a l l I n s t r u c t i o n s [x] . r ep lace (" \
t " , "−")) + " NUMERIC" + " \n ")

f i l e 3 . wr i te (" \n " + "@DATA" + " \n ")
f i l e 3 . c l o s e ()

Get the f u l l a t t r i b u t e s e t
for malwareFi le in malwareFi les :

read_ngram_2 (malwarePath , malwareFile , " 4gram_al l . a r f f " , "
MALWARE")

for ben ignF i l e in ben ignF i l e s :
read_ngram_2 (benignPath , benignF i le , " 4gram_al l . a r f f " , "

BENIGN")

end = time . time ()
print end − s t a r t

64

Malware detection through opcode sequence analysis using machine learning

C.2 copyAllExe

This script creates a bat file that finds and copies all exe files.

Thi s s c r i p t c r e a t e s a bat f i l e tha t c o p i e s a l l exe f i l e s on the C :\
d r i v e to C :\ exe

import os
The bat f i l e we are c r e a t i n g
f i l e = open("C:/ Users /Simen/Documents/ copyAl lExe . bat " , "w")
n=1
R e c u r s i v e l y go ing through a l l f i l e s and f o l d e r s
for (dir , _ , f i l e s) in os . walk ("C:\\ ") :

for f in f i l e s :
i f len (f) > 3:

I f exe f i l e
i f f [−4:] == ’ . exe ’ :

path = os . path . j o i n (dir , f)
P r i n t command f o r copy ing to

d e s t i n a t i o n
idaPath = "COPY " + path + " C:\\ exe "
n += 1
f i l e . wr i te (idaPath)
f i l e . wr i te (" \n ")

print n

C.3 createBatAllBenign

This script creates a bat file that contains the IDA commands for creating asm files for all the files
in a given folder.

Thi s s c r i p t c r e a t e s a bat f i l e tha t c o n t a i n s the IDA commands f o r
c r e a t i n g asm f i l e s f o r a l l the f i l e s in a g i v en f o l d e r

I s used f o r the benign samples
from os import l i s t d i r
from os . path import i s f i l e , j o i n
from os import popen
import subprocess

mypath = "C:\\ exe "
print mypath
Go through a l l the f i l e s in the f o l d e r
o n l y f i l e s = [f for f in l i s t d i r (mypath) i f i s f i l e (j o i n (mypath , f))]

print o n l y f i l e s
The bat f i l e we are c r e a t i n g
f i l e = open("C:/ Users /Simen/Documents/ a l lBen ign . bat " , "w")
n=1
for e v e r y f i l e in o n l y f i l e s :

Add the IDA command and f i l e
path = " idaw64 −B C:\\ exe \\ " + e v e r y f i l e
print path

65

Malware detection through opcode sequence analysis using machine learning

f i l e . wr i te (path)
f i l e . wr i te (" \n ")
i f n%10 == 0:

Add echo f o r e v e r y t en th to s e e the p r o g r e s s when
running the bat

f i l e . wr i te (" echo " + s t r (n) + " \n ")
n += 1

f i l e . c l o s e

C.4 getInstructionsFromAsm

This script reads a list of allowed instructions from file. It then prints all instructions from all asm
files in a given folder to a file.

Thi s s c r i p t r eads a l i s t o f a l lowed i n s t r u c t i o n s from f i l e .
I t then p r i n t s a l l i n s t r u c t i o n s from a l l asm f i l e s in a g i v en

f o l d e r to a f i l e .
from os import l i s t d i r
from os . path import i s f i l e , j o i n

a l l o w e d _ i n s t r u c t i o n s = []

def r e a d _ i n s t r u c t i o n s _ f i l e (f r o m _ f i l e) :
f i l e = open(f r o m _ f i l e , ’ r ’)
f i l e c o n t e n t = [l i n e . s t r i p () for l i n e in f i l e]

for l i n e in f i l e c o n t e n t :
i f l i n e not in a l l o w e d _ i n s t r u c t i o n s :

a l l o w e d _ i n s t r u c t i o n s . append (l i n e . lower ())

r e a d _ i n s t r u c t i o n s _ f i l e (" i n s t r u c t i o n s −a . t x t ")
print a l l o w e d _ i n s t r u c t i o n s

i n s t r u c t i o n s = []

def r ead_ f rom_f i l e (f r o m _ f i l e) :
r e a d _ l i s t = []
f i l e = open(f r o m _ f i l e , ’ r ’)
f i l e c o n t e n t = [l i n e . s t r i p () for l i n e in f i l e]

for l i n e in f i l e c o n t e n t :
l i n e _ a r g s = l i n e . s p l i t ()
r e a d _ l i s t . append (l i n e _ a r g s)

return r e a d _ l i s t

mypath = "C:\\ t e s t \\asm "
o n l y f i l e s = [f for f in l i s t d i r (mypath) i f i s f i l e (j o i n (mypath , f))]

for e v e r y f i l e in o n l y f i l e s :

66

Malware detection through opcode sequence analysis using machine learning

path = "C:\\ t e s t \\asm\\ " + e v e r y f i l e
a sm_f i l e = read_ f rom_f i l e (path)

for x in asm_f i l e :
i f len (x) > 0:

i f len (x [0]) > 1:
i f x [0] . lower () in

a l l o w e d _ i n s t r u c t i o n s :
i f x [0] . lower () not in

i n s t r u c t i o n s :
print x [0]
i n s t r u c t i o n s . append (x

[0] . lower ())

print len (i n s t r u c t i o n s)

f i l e 2 = open(" a l lMa lware In s t ruc t i on s . t x t " , "w")
for i n s t in i n s t r u c t i o n s :

f i l e 2 . wr i te (i n s t)
f i l e 2 . wr i te (" \n ")

f i l e 2 . c l o s e

print " done "

67

	Abstract
	Sammendrag
	Preface
	Contents
	List of Figures
	List of Tables
	Introduction
	Keywords
	Topic covered by the project
	Problem description
	Justification, motivation and benefits
	Research questions
	Scope and Contributions
	Thesis outline

	Malware identification
	Different types of malware
	Virus
	Worm
	Bot
	Rootkit
	Backdoor
	Trojan horse

	Obfuscation techniques
	Encryption
	Packers
	Polymorphic
	Metamorphic
	General obfuscation techniques

	Malware Analysis
	Static methods
	Dynamic methods
	Malware features for Machine Learning

	Related work
	Opcodes as indicator for malware
	The influence of packers

	Methods
	Choice of methods
	Data collection
	Data preprocessing
	Reverse Engineering
	Disassembly
	Debugging
	x86/x64 architecture

	Machine Learning
	Feature selection
	Classifiers

	Data analysis

	Experiments, results and discussion
	Experimental environment
	System
	Dataset

	Experimental design
	Empirical analysis
	Computational analysis

	Results
	Reliability of opcodes
	Influence of packers
	N-gram lengths

	Discussion
	Methodology
	Datasets
	Robustness
	Source code and computational complexity
	Limitations

	Conclusion and further work
	Theoretical implications
	Practical considerations
	Further research

	Bibliography
	Computational results
	Datasets
	Asm file example
	N-gram example
	Distribution example
	Arff file example

	Source code
	createArff4gram
	copyAllExe
	createBatAllBenign
	getInstructionsFromAsm

