
June 2006
Magnus Lie Hetland, IDI

Master of Science in Informatics
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Using machine learning to balance
metric trees

Erling Hagen

Preface

This thesis is written for the Department of Computer and Information Sci-
ence (IDI) at the Norwegian University of Science and Technology (NTNU)
as part of a Master of Science in informatics program, with associate pro-
fessor Magnus Lie Hetland as the main adviser. The assignment this thesis
tries to answer is:

Metric indexing is one of the fundamental methods in the important area
of similarity search. Many tree structures have been proposed for indexing
metric spaces, most of which are static. The General Balanced Tree (GBT)
method of Arne Andersson (Journal of Algorithms 30, 1999) is designed for
index structures on ordered sets, but may be extended to other tree struc-
tures as well. This research task for this project is to combine the GBT
approach of Andersson with existing static index trees for metric spaces to
create new dynamic ones, and to compare these empirically with existing dy-
namic structures such as the M-tree (Proc. 23rd VLDB, 1997). A prototype
implementation will be a central part of the work.

1

Abstract

The emergence of complex data objects that must to be indexed and ac-
cessed in databases has created a need for access methods that are both
dynamic and efficient. Lately, metric tree structures have become a popu-
lar way of handling this because of the advantages they have compared to
traditional methods based on spatial indexing. The most common way to
handle indexing is to build tree structures and then prune out branches of
the trees during search, and for a dynamic indexing structure it is impor-
tant that these trees stay balanced in order to keep the worst case search
time as low as possible. Normally, this is done based on complex criteria
and reshuffling operations. Another way to handle balancing is General Bal-
anced Trees (GBT), proposed by Arne Andersson (Journal of Algorithms 30,
1999), which uses simple, global criteria for rebalancing binary search trees
by using total and partial rebuilding. This thesis explores if it is possible
to apply this to metric tree structures, and especially two static metric tree
structures called the Vantage Point Tree and the Multiple Vantage Point
Tree. It discusses how to best make these into dynamic tree structures and
how to apply balancing by using GBT paradigms on them. The results of
the performance of the new tree structures are analyzed, and the results are
compared against already existing structures. The results shows that this
works for balancing the trees, and that the structures perform reasonably
well compared to already existing structures.

3

Acknowledgments

First, I would like to thank my main adviser, associate professor Magnus
Lie Hetland, who has been the best adviser any student could ever hope for,
and given invaluable advice, guidance, feedback and support throughout
the process of writing this thesis. I would also like to thank the Faculty
of Information Technology, Mathematics and Electronics at NTNU, and
especially Femke Driessen, who helped me get this second chance and gave
me lots of support, and also the Department of Computer and Information
Science at NTNU, including their student tutor B̊ard Kjos, for giving a lot
of advice and support as well. Also, I would like to than Johan Høye who
helped me with the proof reading of this thesis, and finally I would like to
thank my friends and family for all the support they have given me.

5

Contents

1 Introducion 9

1.1 Motivation . 9

1.2 Objectives . 10

1.3 Contributions . 11

1.4 Outline . 11

2 Background Information 13

2.1 Traditional methods and problems 13

2.1.1 The curse of dimensionality 14

2.1.2 Disk I/O . 14

2.2 Metric space . 15

2.3 Distance Function . 16

2.4 Indexing Metric Spaces . 17

2.5 Similarity queries in metric spaces 18

2.5.1 Policies for avoiding distance computations 21

2.6 Previous work . 24

2.7 Different tree structures . 27

2.7.1 Vantage Point Tree . 27

2.7.2 Multiple Vantage Point Tree 30

2.7.3 M-tree . 34

2.7.4 Slim Trees . 38

2.8 General Balanced Trees . 38

3 Methods and and Solutions 41

3.1 General Balanced Metric Trees 41

3.2 General Balanced Vantage Point Tree 42

3.3 General Balanced Multiple Vantage Point Tree 45

3.4 Test Methods . 50

3.4.1 About The Experimental Design 50

3.4.2 Test Sets . 52

3.4.3 Distance Functions . 52

3.4.4 Searching . 53

3.4.5 Repetitions . 54

7

4 Implementation 57

4.1 Language . 57
4.2 Algorithms . 57

4.2.1 VP-tree . 57
4.2.2 MVP-tree . 58
4.2.3 M-tree . 58
4.2.4 Deletion in the M-tree 60

4.3 General Balanced Trees . 61
4.4 Counting of Distances and disk I/O 62
4.5 Test Sets . 63
4.6 Correctness . 64

5 Results 65

5.1 Test Set . 65
5.2 Vantage Point Tree . 66
5.3 Multiple Vantage Point Tree 70
5.4 M-tree . 79
5.5 General Balanced Vantage Point Tree 81
5.6 General Balanced Multiple Vantage Point Tree 88
5.7 Comparisons . 95

6 Discussion and Conclusion 101

6.1 Discussion . 101
6.2 Conclusion . 103
6.3 Future work . 104

Appendices 111

A Additional Results 111

A.1 M-tree . 111
A.1.1 MST vs. mMRAD . 111
A.1.2 Different Fan-Outs . 113

A.2 GBMVP-tree . 116
A.2.1 Rebuilding . 116
A.2.2 Different values for k 118
A.2.3 Different values for b and c 123

A.3 Comparisons . 126

8

Chapter 1

Introducion

1.1 Motivation

In database applications similarity search has become more and more com-
mon. Search in multimedia databases after sounds, images and video that
are similar to a query criteria, searching for similar text strings and searches
for DNA sequences are examples where similarity search is very useful. The
nature of similarity search is a bit different from exact search in that it
is more difficult to prune branches from the trees. This calls for special
algorithms and structures designed for this.

The emergence of multimedia (MM) databases also require different qual-
ities from normal database systems. Because calculating the similarity be-
tween different multimedia objects usually is much more expensive than
with traditional database objects, it is very important to reduce the num-
ber of unnecessary distance computations to a minimum. And because fast
retrieval of MM database objects is becoming increasingly important in sev-
eral fields, for example in medicine and science, and finding ways to speed
up the search by reducing the number of distance computations is therefore
an area well worth investigating.

While traditional databases uses the B+ [BM72] tree for searching, none
of the versions of the B+ trees are very good when dealing with multidimen-
sional data. Versions of the R-tree [Gut84] has been used instead to handle
the multidimensional data, and has gained a wide acceptance as the stan-
dard way of doing this. Sadly, the R-tree and it’s variants do not offer very
good results when the number of dimensions are high, due to what is called
the ”curse of dimensionality”, which says that as the dimensionality of the of
the data objects increases, the cost of retrieving data increases dramatically.
Metric trees have been proposed as another way to deal with this. Unlike
R-trees, which partitions the data in multidimensional rectangles based on
the position of the objects in the indexing space, the metric trees uses the
distance between the data objects to index them instead. Several of the

9

structures proposed for indexing the data in metric trees have greatly out-
performed the R-tree and its variations, and are therefore very interesting
alternatives for use in databases.

Traditional metric trees have been usually been static, which means that
the whole data set has to be given in advance, and therefore require a com-
plete rebuild once changes are made to the data set. This is a problem,
as many applications require dynamic insertion and deletions on a frequent
basis without having to wait for a long time while the indexing trees are
rebuilt from scratch. To counter this, several dynamic structures have been
proposed as well, like the M-tree and its family, but they are generally out-
performed by the static structures when it gets to build- and query time.

To improve query time, it is important that the trees stay balanced so
that the worst case number of node accesses needed are kept to a minimum.
Most dynamic metric trees uses complex rules to stay dynamically balanced,
but even then, they still perform much worse than a complete rebuild.

In [And99], Andersson proposed a way to rebalance binary search trees
without the need for complicated rules by using partial and complete re-
building to balance after insertions and deletions have made the tree too
unbalanced. This is done by using only very simple global criteria to deter-
mine when the partial rebuilds are to be done, and are shown to be able to
outperform the existing complex structures making the trees stay dynami-
cally balanced.

The question we try to answer in this thesis is if these simple criteria can
for deciding when to be rebuild the trees can be used to dynamically bal-
ance what is originally static metric structures and see if they can compete
with the existing dynamic structures. If they do, they could be a powerful
alternative to the currently existing ways to handle dynamic metric trees.
Well known structures are implemented and tested so that comparisons are
easy to other methods and research done. While more work should be done
into this problem, this thesis should give a good indication of whether this
theory really is worth further investigation.

1.2 Objectives

The objectives of this thesis is to find out whether dynamical balancing of
metric trees with the General Balanced Trees method given in [And99] is a
promising idea that should be explored further. This is done by implement-
ing and testing the method on two popular static metric tree structures:
The VP-tree and the MVP-tree. The results are then compare them with
the M-tree, another popular and also dynamic metric tree structure.

While none of these trees in themselves are considered state of the art
anymore, as all of these trees are well-known, these results should give a
good indication of what can be expected from this method.

10

1.3 Contributions

• Proposed two tree structures based on General Balanced Trees com-
bined with the VP-tree and the MVP-tree.

• Discussed how to best change the VP-tree and MVP-tree to work with
the General Balanced Trees paradigm.

• Made two typical static metric trees, the VP-tree and the MVP-tree,
dynamic, and implemented them.

• Tested different parameters with the VP-tree and MVP-tree to see
how they would best work in a dynamic environment.

• Developed and implemented a delete algorithm for the M-tree based
on the delete algorithms for R-trees.

• Added automatic inclusion of nodes for range search in MVP-trees and
M-trees to make them more suitable for range searches with a large
range, and tested how much it improves range searches.

1.4 Outline

Chapter 2 contains background information on the field of searching in met-
ric spaces, as well as describing what has already been done on in this
field, and detailed descriptions about the theoretical foundations of the al-
gorithms used in this project. Chapter 4 contains the details regarding the
implementations for this project. This includes more detailed descriptions
of the algorithms, specific details done for this project that differs from the
general versions, as well as information about the test sets used. Chapter 5
shows the results from the experiments, and is followed by discussions about
each of the results. The general discussions over the results, as well as the
conclusion for the project, is found in Chapter 6. This Chapter also contains
notes about what could be done in future works in the same field. Some
additional results for Chapter 5 are found in the appendix.

11

Chapter 2

Background Information

2.1 Traditional methods and problems

The traditional method for handling data in database systems has been
the family of B+-trees. The B+ tree [BM72] is an extension of the B-trees
[Bay71], where all the data objects are stored in the leaf nodes, while the
internal nodes of the tree are just routing objects to the leaf nodes. The B+

tree is primarily meant for alphanumeric data (i.e. one-dimensional), where
the data can be ordered according to some criterion. They are dynamic
trees that handle insertions and deletions in a balanced way, and grow in a
bottom-up fashion by splitting upwards in the tree when a leaf node is full.
It is a very powerful structure when dealing with the right sort of data, and
has been the standard for handling this sort of data in database systems for
a long time.

The problem with B+ trees is that they do not perform well on multi-
dimensional data where traditional sorting of the objects is difficult. This
became clear when developers began to see the need to handle more complex
data, like multimedia, geographical and medical data. Several versions of B-
trees were proposed to counter this problem, but none of them managed to
handle the requirements of the new application areas. To solve this, several
different methods were created to deal with this problem.

Out of the new methods proposed, the R-tree and its family were by
far the most successful. It was proposed as a way to deal with geometrical
data in [Gut84]. The R-tree is a spatial access method where the data is
structured in multi-dimensional rectangles, also called Minimum Bounding
Rectangles (MBR). Just like the B+-tree, the R-tree is dynamic and stores
all the data objects at leaf level, and grows bottom-up by splitting upwards
in the tree when the leaf nodes become full. Since the release of the R-tree,
there have been proposed a lot of modified versions of it, some having several
notable improvements. The R-tree has become more or less the standard
for databases that uses multi-dimensional data and is implemented in many

13

well-known database applications.

2.1.1 The curse of dimensionality

The curse of dimensionality occurs when data retrieved form index structures
have a large number of dimensions. The curse says that as the dimensionality
of the vectors increases, the cost of retrieving data increases dramatically.
The term was first used by Richard Bellman in [Bel61], and applied to how
the volume rapidly increases when adding extra dimensions to a space. In
similarity search, this means that as the number of dimensions increases,
the number of nodes having to be visited during a search also increases
dramatically. This in turn leads to more I/O operations and more distance
computations that have to be computed. In other words, as these are the two
things we try to avoid the most when searching, this can be a real problem.

Sadly, the R-tree does not scale well with respect to the number of di-
mensions. This is because of the fact that dimensionality increases the over-
lapping between intermediate nodes, therefore making pruning much less
effective. Additionally, the increased number of dimensions leads to an in-
crease in the storage space needed, which again leads to fewer object being
stored in each node and smaller fan-out. If a single feature vector requires
more storage space than the disk page can hold, it will be reduced to a
linked list. While both these problems are true for all access methods, the
R-trees are not good at handling this at all, and for a large number of di-
mensions the search performs no better than a sequential scan. According
to [BKK96], overlap (at least two subnodes have to be accessed for every
node) in a R∗-tree [NBS90], which has become the norm for testing the ca-
pabilities of R-trees, reaches 100% with only 10 dimensions for uniformly
distributed points, and with only 6 dimenions on real data. [LJF94] and
[NS] shows similar bad results for the R- and R∗-tree. As seen in section
2.1.2, this is very far from acceptable. Several new versions of the R-tree has
been proposed, with maybe the X-tree [BKK96] being the most successfull
according to [YMT96].

2.1.2 Disk I/O

If the database is large enough, the data needs to kept on disk instead of
in the main memory, something that brings up several problems. Because
reading from disk is a lot slower than reading from RAM, the number of
nodes that have to be accessed during the search is suddenly becoming very
important, because every node access means at least one I/O operation.
This has become more and more important over the years, and most access
methods now take this into account. The way to do this is usually by having
fixed size and small nodes, and by having a large fan-out so that a lot of
objects can be read at the same time.

14

One problem with search trees is that the data is not accessed in a
sequential order, so the read-write head on the disk has to move to find the
new data object on the disk. As reading this way is much slower than simply
reading the same data from the disk sequentially, the question is where the
threshold goes for when just reading all the data from a sequential scan is
faster than accessing just some of the data in a fragmented order. [BGRS99]
takes up the question for when a k-Nearest Neighbor (KNN, see Section 2.5)
search is actually useful. While most of the study is about when KNN-search
will actually result in good matches or not, which is not really the focus
here, they also take up how many node accesses should be made before a
sequential scan is a better alternative. According to them, when the number
of dimensions is 10 or above, a linear scan easily beats complicated indexing
structures. They do a closer study of this in [USB98]. It should be noted
that this does not take into account that the distance function can be very
heavy to compute, and in some applications this could be so significant that
the matter of I/O becomes secondary. In those cases, linear scan could still
perform much worse than complicated indexing structures, because a linear
scan will still have to compute the distance to every object, even if the time
used for disk access to find them is smaller.

2.2 Metric space

Formally, a metric space is a pair, M = (D, d) where D is a domain of feature
values that act as the indexing keys, and d is the total distance function.
The distance functiond : D × D 7→ ℜ in a metric space must have these
properties:

Symmetry: ∀x, y ∈ D, d(x, y) = d(y, x)

Positiveness: ∀x, y ∈ D, d(x, y) > 0|x 6= y

Reflexivity: ∀x ∈ D, d(x, x) = 0

Triangle inequality: ∀x, y, z ∈ D, d(x, y) ≤ d(x, z) + d(z, y)

There are several variations of metric spaces, and [PZB06] list a few. One
is pseudo-metric, where the positiveness-requirement does not hold. But as
long as the triangle inequality holds, pseudo-metric spaces can be considered
metric spaces when objects that have a distance of zero between them are
considered to be one single object. Quasi-metric spaces are spaces where
the symmetry does not hold, but there are ways to transform asymmetric
spaces into symmetric spaces. And finally, the super-metric, or ultra-metric,
is when the triangle inequality is a bit more strict, defined as ∀x, y, z ∈
D, d(x, z) ≤ max{d(x, y), d(y, z)}. This means that at least two of d(x,y),
d(x,z) and d(y,z) are the same, and these are used quite a bit in biology.

15

2.3 Distance Function

Unlike for the traditional spatial structures, where the cost of computing a
distance is usually very low, computing the distances in metric structures
could be much more computationally heavy because of the potentially added
complexity given by the requirements for the distance function in Section
2.2.

While any distance function will that satisfies the requirements can be
used, there are several types of distance functions that are commonly used.
Below is a brief description of them. See [PZB06] for a detailed descriptions
of each.

Minkowski: A family called the Lp metrics, and is defined

Lp[(x1, ..., xn)(y1, ..., yn)] = p

√

√

√

√

n
∑

i=1

|xi − yi|p

L2 is the Euclidean distance, and used for many of the tests in this
thesis. Has linear time complexity.

Quadratic Form Distance: From [HSE+95]. Can be adapted to more
specific situations than the Lp metrics, like color histograms. Defined

by the function dM (~x, ~y) =
√

(~x − ~y)T · M · (~x − ~y). Quite a bit slower
than the Lp metrics because of the matrix multiplications that have
to be done.

Edit Distance: Also called the Levenshtein distance, and used to check
the difference between strings, which can be useful for things like spell
checking and speech recognition. The general algorithm uses different
weights for how many insertions, deletions and substitutions that have
to be made to create two similar strings. However, for the function to
be metric, the weight for insertion and deletion have to be the same,
or the requirement of symmetry (Section 2.2) will be violated.

Tree Edit Distance: Used to find the similarity between different tree
structures. The algorithm has O(n4) time complexity, and hence is
quite slow. In the same way as the Edit Distance computes the mini-
mum cost of transforming one string into another, the Tree Edit Dis-
tance tries to find the minimal cost of transforming one graph into the
other, and counting the changes that have to be made.

Jaccard’s Coefficient: Measurement of asymmetric information on binary
and non-binary data. For binary data, the formula is

Sij =
p

p + q + r

16

where p is the number of variables that are positive for both objects,
q the number of objects positive in i and not in j, and r the opposite.

More interestingly, for non-binary data the similarity can be computed
using set relations by the formula

SAB =
|A ∩ B|

A ∪ B|

.

Hausdorff Distance: The Hausdorff distance between two given objects
A = {a1, ..., an} and B = {b1, ..., bn} is defined as

d(A,B) = max{maxa∈Aminb∈B |b − a|,maxb∈Bmina∈A|a − b|}

Named after Felix Hausdorff (1868-1942). Is more general than Jac-
card’s Coefficient, because objects don’t need to be in or out. More
details can be found in [Rot91].

Distance functions can be either discrete or continuous, and tree struc-
tures have been proposed for both. In fact, several tree structures will only
work as intended with discrete distance functions, and while most structures
proposed for continuous distance functions will work with discrete ones, they
probably will not do that as effectively because far more objects will have
the same distances. Several structures using both can be found in Section
2.6.

2.4 Indexing Metric Spaces

Indexing metric spaces can be done in one of two ways. The first one is
to use distance transformations to map the metric space into an Euclidean
space. If this is done, traditional spatial access methods like the R-tree
family (section 2.1) can be used. But, as discussed before, traditional spatial
access methods stop being effective when the number of dimensions is high.
A detailed discussion about how to transform into Euclidean space is beyond
this thesis, but it is important to note that several interesting domains it is
not possible or cost effective to use a distance transformation.

The other way, and the one that is the focus of this thesis, is using
distance-based indexing structures. Because distance-based structures are
not bound by the transformation from metric to Euclidean space, many of
them can index any metric space, and this method is therefore much more
flexible than relying on using spacial methods.

The traditional way to to create a metric indexing structure is by using a
tree-structure. There are two main ways to store objects in a tree structure
as well, which basically is if the objects should be stored in both the leaves
and the internal nodes, or in just in the leaves. Common for both is that

17

the internal nodes are used as routing objects to the nodes further down in
the trees. Storing all the nodes in the leaves generally leads to trees that
needs more disc space, because of the increase in nodes, but pruning usually
works better on leaf objects, which could reduce the number of distance
computations needed.

There two most common methods for constructing a metric tree are ball
decomposition and generalized hyperplane partitioning. These were both
named in [Uhl91], although ball decomposition was really only a slightly
modified version of a method proposed in [BK73]. Generalized Hyperplane
(GH) partitioning is more or less identical to bisector trees proposed in
[KM83]. Ball decomposition uses the median of the distances to a vantage
point in the node to partition the values. Once a vantage point is chosen,
the distance to it from every node is computed. The median of the distances
is then calculated, and the data set is split in two, where one part contains
the objects where the distances are below or equal to the median, and the
other where the distances are greater than or equal to the median. This
is then done recursively on each subpart, creating a tree structure. Many
variants of this exists, and versions with more than one vantage point have
been proposed, i.e. in [Yia93].

The generalized hyperplane method picks two or more pivot objects,
and then computes the distances from these pivot objects to the rest of the
objects in the set. The remaining objects are then partitioned into groups,
with the objects closest to the same pivot object in the same group. The
algorithm is then used recursively on each of the new sets belonging to the
pivot points. The original methods proposed by [KM83] and [Uhl91] used
only two pivot objects, but there have been proposed structures using the
same principles where more than two pivot objects have been used, i.e. in
the M-tree (see Section 2.7.3.

Metric trees have proven to be a very effective way to index data for
similarity search([CMN99]), and have shown to scale much better than the
spatial methods when the number of dimensions rises. This is not to say
that the curse of dimensionality does not apply for metric trees, and none
of the metric indexing structures have been immune to this yet.

2.5 Similarity queries in metric spaces

As described in the previous sections, the types of similarity searches in
metric spaces, which are the focus of this thesis, are entirely based around
the distances between the objects in the metric space. The way a search is
done in every metric tree-structure is by computing the distance to the root
of the tree, and from there, according to some criteria, proceeds downward
in the tree.

The two standard types of similarity search are range search and k-

18

Nearest Neighbor (KNN) search. A range search specifies a query object
and a given range, and then tries to find all the elements in the indexing
structure that are within the range of the query object. In other words, it
is checking whether distance(o, q) ≤ r, where range o is the object, q the
query object and r the range. If the object is within the range, the object is
included in the result of the search. When all data objects in the node are
checked, the algorithm then checks if any of the children can include objects
that are within the range of the search, and if so, it calls itself recursively
on these children. An example of a basic range search algorithm is shown
in Algorithm 2.5.1.

Algorithm 2.5.1: rangeSearch(n : TreeNode, q : QueryObject, r :
SearchRange) example of a range search algorithm

Data: A node in the tree, the query object and a range for the search
Result: A list containing the elements within the range of the search
begin1

forall doi ∈ n do //checking the data objects in the node2

di = distance(doi, q)3

if di ≤ r then //data object is within range4

results = results + {doi}5

end6

end7

forall cj ∈ n do //checking the children of the node8

dj = distance(cj , q)9

if dj ≤ r + cj .r then //distance is within range of search +10

range of the child
rangeSearch(cj , q, r)11

end12

end13

end14

K-nearest neighbor search (KNN search) also takes a query object as a
parameter, but instead of finding every object within a range, it finds the
k objects that are closest to the query object. First it just includes every
object until the result list contains k objects. But then, instead of checking
the distance between the data objects and the query node against a range,
it checks against the object in the result list that is the furthest away from
query node. If the new object checked is closer to the query object than the
object already in the list that is the furthest from the query object, the new
object is included and the other object is removed. If there is a tie, it does
not matter which one of them is in the list. Because the object furthest away
is changed out with a closer one once one is found, the search radius will
probably be constantly reduced as the search progresses. Other than that,

19

it functions basically the same as the range search, and calls itself down
the tree if any of the children could hold potential objects. An example of a
basic KNN search algorithm is given in Algorithm 2.5.2. A special version of
the KNN search is the nearest neighbor search, which basically KNN search
which just sets k to 1, but it is sometimes treated as a stand alone search
method. Sometimes, you also give a range with the KNN search to limit
the search, because objects far from the query object are not necessarily
interesting even if few other objects are closer. An example of a method to
improve KNN-search is given in [KS00], where a way to distinguish more
significant NNS from less significant ones is proposed.

One modification that can speed up KNN-searching is to implement a
priority for which branches to visit first. Because the range decreases when
new objects are included in the result, the goal should be to find these
objects as fast as possible so that range is decreased faster. This will in
turn lead to more pruning, and therefore less cost in distance computations
and I/O. A way to do this is to always go after the subtree with the lowest
bound first, and from there work upwards until the remaining trees can be
pruned out. Sadly, this will not work in many tree structures because they
have no knowledge of the lower bounds.

Algorithm 2.5.2: knnSearch(n : TreeNode, q : QueryObject, k :
NuberOfResults) example of a k-nearest neighbor algorithm

Data: A node in the tree, the query object and the k number of
elements to be included

Result: A list containing the k closest elements
begin1

forall doi ∈ n do //checking the data objects in the node2

di = distance(doi, q)3

if ∃ri|di < distance(ri, q) then //data object is within range4

results = results − {ri}5

results = results + {doi}6

end7

end8

forall cj ∈ n do //checking the children of the node9

dj = distance(cj , q)10

if ∃ri|di < distance(ri, q) + cj .r then //a child could be a11

better match
knnSearch(cj , q, r)12

end13

end14

end15

In this thesis we will only consider algorithms that returns the correct

20

result from a search. So a range search will always return the correct num-
ber of objects that are within range, and a KNN-search will always return
the k nearest objects. However, there have also been some research into ap-
proximation search algorithms that returns more or less the correct answers.
This is mostly done in order to speed up search retrieval and to break the
curse of dimensionality. Examples of this are [LCGMW02] and [CP00a].

2.5.1 Policies for avoiding distance computations

Because distance computations can be very expensive, computing any more
of these than absolutely necessary should be avoided. Thankfully, when
searching in metric spaces, there are several ways to avoid computing un-
necessary distance computations by using the properties of the metric space.
This is primarily because of the property of distance functions in metric
spaces called the triangle inequality (Section 2.2). [PZB06] gives especially
four ways of doing this. As you can see from some of them, several of these
methods could also be able to reduce the number of disk I/O as well, be-
cause, if implemented correctly, they prune out part of the trees that are
not interesting.

Object-Pivot Distance Constraint

The first constraint uses precomputed distances between the pivot objects
and the children to prune out the children without making any new distance
computations. As the distances have to be computed at build-time anyways,
this is more or less a free check and can reduce the number of distance
computations by quite a bit. The formula behind this is given in Lemma
2.5.1.

Lemma 2.5.1 Given a metric space M = (D, d), and arbitrary objects
q, p, o ∈ D, it is always guaranteed:

|d(q, p) − d(p, o)| ≤ d(q, o) ≤ d(q, p) ≤ d(q, p) + d(p, o)

First compute the distance between the query object q and the pivot
point p, which is probably already to check if the node should be entered.
As noted, the distance between p and the objects node are already computed
and stored. Because |d(q, p) − d(p, o)| ≤ d(q, o), we know that if |d(q, o) +
d(p, o)| > range, q can not possibly be close enough to o, because d(q, o) >
range. Therefore we do not need to compute the distance d(q, o), and one
distance computation is saved.

On the other hand, if d(q, p)+d(o, p) ≤ range the object can be directly
included, because it is certain that d(q, o) ≤ range, and again, one distance
computation is saved.

21

If none of these requirements are fulfilled, d(q, o) has to be computed,
because there is no way of knowing whether the distance is within the range.

While this basic version can only be used on leaves, it can also be ex-
tended to work on internal nodes if the maximum range to the leaves below
is known, by checking against range + range(o) instead of just range.

Range-Pivot Distance Constraint

Because storing the distance to each child is in some occurrences unaccept-
able because of space requirements, an alternative exists where only the
lowest and highest distance between the node and it’s children are stored.
While a bit weaker than the one in Section 2.5.1, this could save quite a
bit of distance computations as well. The formula behind this is showed in
Lemma 2.5.2. rl is the lower bound of r, that is the lowest range from p to
any object, and rh is the highest.

Lemma 2.5.2 Given a metric space M = (D, d), and objects o, p ∈ D such
that rl ≤ d(p, o) ≤ rh, and given some q ∈ D and an associated distance
d(q, p), the distance d(q, o) can be restricted by the range:

max{d(q, p) − rh, rl − d(q, p), 0} ≤ d(q, o) ≤ d(q, p) + rh

This works much in the same way as the previous constraint, but now we
know the node can be excluded if max{d(q, p)−rh, rl−d(q, p), 0} ≤ d(q, o) >
range, because we know that if this is true, d(q, o) can not possibly be in
range of the search. The 0 is there because no distance can be less than the
0 because of the positiveness requirement of a metric distance function (see
Section 2.2).

In the same way, d(q, p) + rh > range means that the object can be
included at once, because there is no way that d(q, o) can be longer than the
range of the search.

And as before, if none of these are true, the distance has to be computed
to make sure if d(q, o) is within range or not. This also only works on leaves,
but can be extended if the range of the furthest data object in the subtree
from the internal node is known.

Pivot-Pivot Distance Constraint

The next constraint is a bit weaker than both of the others, but can still
be useful. This again only uses the ranges of the nodes, so not all the
precomputed distances between nodes and subnodes and objects have to be
stored. See Lemma 2.5.3 for the formula this is built on. Here r is the range
of the node containing o, while r′ is the range of the parent node to p, called
p′.

22

Lemma 2.5.3 Given a metric space M = (D, d), and objects o, p, q ∈ D
such that rl ≤ d(p, o) ≤ rh and r′l ≤ d(q, p) ≤ r′h, the distance d(q, o) can be
bounded by the range:

max{r′l − rh, rl − r′h, 0} ≤ d(q, o) ≤ rh + r′h

As can be seen, if the maximum of r′l − rh and rl − r′h is larger than
the range of the search, the node can be excluded without doing a distance
computation. If the lower bound of r′ is larger than the higher bound of r,
then when now that r′l − rh will be a positive number, and will also be lesser
or equal to the d(q, o). This is because of Lemma 2.5.1, which we apply to
p in relation to p′. We therefore have an upper and a lower bound of d(q, p)
because we have d(q, p′), and we also know that d(q, p) ∈ [r′l, r

′

h]. For the
same reason, we also know that d(q, o) ∈ [rl, rh], and can from there say
that if r′l − rh > range, o can be pruned without the need for a distance
computation. And if rl instead is larger than r′h, the same applies for that.

On the other side, if the the sum of both nodes are greater than the
range, rh + r′h, the node can be automatically included. This is because the
sum of the upper bounds of the two nodes is the absolute maximum distance
for q can be from o, and again this is because Lemma 2.5.1 is applied.

As we can see, not only one, but two distance computations are saved
this way, because we do not need to compute the distance to either p or o
if any of these criteria are true. If not, however, you will at least need to
compute the distance to p, where you could try applying any of the previous
lemmas.

Double-Pivot Distance Constraint

The previous three constraints are for speeding up the search for nodes that
only use one pivot, like in ball partitioning. This method is, on the other
hand, used for generalized hyperplane partitioning. Unlike the other two,
here only the lower bound can be defined, and therefore only if the object
should be completely pruned out can be determined. The definition behind
this is given in Lemma 2.5.4.

Lemma 2.5.4 Assume a metric space M = (D, d), and objects o, p1, p2 ∈ D
such that d(o, p1) ≤ d(o, p2). Given a query object q ∈ D and the distances
d(q, p1) and d(q, p2), the distance d(q, o) is lower-bounded as follows:

max{
d(q, p1) − d(q, p2)

2
, 0} ≤ d(q, o)

As can be seen, the max{d(q,p1)−d(q,p2)
2 , 0} is the lower bound of d(q, o).

This is because d(p1, q) − d(o, p1) ≤ d(q, o) and d(o, p2) − d(p2, q) ≤ d(q, o).
When added together, this yields d(p1, q) − d(p2, q) + d(o, p2) − d(o, p1) ≤

23

2d(g, o), which divided on 2 is d(q,p1)−d(q,p2)
2 ≤ d(q, o). Again, a distance can

not be less than 0, so therefore the maximum of the answer and 0 used.
One nice thing about this constraint is that it does not need stored

information about the distances between the pivots and the pivot objects,
as it only needs to know which one it is closest to. But as the object will
be a child of the closest pivot in a generalized hyperplane partitioned tree
anyways, that is not a problem.

Pivot Filtering

Pivot filtering is a method where combining several pivot objects is used to
improve the pruning. The formal definition is given in Lemma 2.5.5. See
[Doh04] for a study of how to efficiently use pivot filtering.

Lemma 2.5.5 Assume a metric space M = (D, d), and a set of pivots
P = p1, ..., pn. We define a mapping function Ψ : (D, d) → (ℜn, L∞) as
follows:

Ψ(o) = (d(o, p1), d(o, p2), ..., d(o, pn))

Then, we can bound the distance d(q, o) from below:

L∞(Ψ(q),Ψ(o)) ≤ d(q, o)

Ψ in Lemma 2.5.5 is a mapping function that represents the precomputed
distances between pivots and objects. Pivot filtering needs the distance
between every pivot and the objects stored. But once this is done, the
filtering can be applied. The nice thing her is that if only one |d(q, pi) −
d(pi, o)| > range, the object can be excluded. As can be seen, this is simply
based on using Lemma 2.5.1 multiple times.

2.6 Previous work

Here we show a brief history in the work of similarity searching in metric
spaces. For a more detailed survey of this, [CNBYM01] and [PZB06] are
recommended.

While [BK73] was about similarity search in key words in files, and not
directly an attempt at indexing metric spaces, several of the methods given
there have been adapted later for use in metric spaces. Primarily, three
methods where proposed, all for discrete values. The first one was a hier-
archical tree structure where objects are put in chunks with other objects
at the same distance from some pivot object, which is arbitrarily chosen. It
is then called recursively on each of these chunks. This structure was later
named BK-trees. The second method partitions the data into a set number
of sets of objects. For each set a pivot, or center as it is called here, object is

24

arbitrary chosen, and the maximum distance from this object to any other
object in the set is stored. This is then done recursively on each set. But
no information about how to partition the objects into sets is given. The
last method relies on finding the maximal cliques at each level in the tree,
where each clique is a set that can not have a diameter larger than some max
diameter, which is dependent on the level in the tree. Because objects can
be in several different clique, the objects which appears in the most number
of cliques are chosen as pivot objects.

An attempt at minimizing the number of distance computations was
given in [SW90]. This method is meant for situations where the cost of
computing the distance between objects is very high, and uses a structure
called an Appropriate Distance Map (ADM), which is a n×n matrix where
they compute and store every distance in the data set. While this could be
good for small datasets with extreme distance computations cost, it is not
doable on large data sets.

In [Uhl91], two indexing structures where introduced. They were called
ball decomposition and generalized hyperplane partitioning, and are both
described in Section 2.4. [Yia93] gave the ball decomposition tree the name
Vantage Point Tree (VP-tree, see Section 2.7.1 for a detailed description),
and gave an analysis as well as suggesting ways to improve it, including ways
to find better vantage points. [Chi94] contains some more analyzes of the
VP-tree on image indexing, gives a few modifications for improvement, and
proposes a way to do dynamically adjusting KNN-searches.

A new version based on the KB-trees approach is given in [BYCMW94],
where Fixed-Queries Trees (FQ-trees) are proposed. The big difference here
is that all pivot objects on each level in the tree are the same, while all the
actual data objects are stored in the buckets in the leaves. This means that
if many nodes on the same level are visited, only one comparison is needed.
The disadvantage is that the trees are a bit higher. The idea of using a single
pivot per level has since been used in several other structures. A slightly
modified version of this is given in [BY97], where they use a fixed height for
the tree instead, that is, all leaf buckets are at the same level in the tree.
These trees are called Fixed Height FQTs, or FHFQT. While this makes
the path to some objects longer than it needs to be, they claim this can
actually improve the query time of the tree because of the one-object-per-
level rule. Another version of this principle was proposed in [CMN99], and
is called Fixed Queries Arrays (FQAs). This isn not exactly a tree, instead
it is more of an array implementation of the FHFQT. This structure reduces
the precision of the distances stored, and instead uses more pivot elements.

Back to the time line, Geometric Near-Neighbor Access Trees (GNATs)
where introduced in [Bri95]. The indexing here is quite much like the GH-
tree, and uses a k number of split points at the top level, where the value of
k is decided by the cardinality of the dataset, and then partitions the rest of
the data objects to whichever split point it is closes to. The distance to the

25

nearest and furthest of the objects associated with each split point is stored.
This is then done recursively on each set belonging to a split point to build
a tree. For searching it uses the triangle inequality to prune out searches
by checking against center objects and pruning out those where the bounds
exceed the range.

The M-tree was introduced in [PZR96], and later given more specific
implementation details in [CPRZ97]. The M-tree is described in detail in
Section 2.7.3. The most interesting thing about the M-tree was its dynamic
properties, and it has spawned a large number of variations, including the
Slim Tree [TTSF00] (described in more detail in Section 2.7.4).

In [BO97], the MVP-tree is introduced. This structure is described in
detail in Section 2.7.2. But briefly it makes some improvements over the
VP-tree by using previously computed distances to filter out nodes further
down in the tree, and by combining two levels in the tree in one node, and by
that reducing the number of distance computations needed to the vantage
points.

[FsCCM00] explores ways to make the VP-tree dynamic, as well as dis-
cussing KNN-search in the VP-tree. They also take some inspiration from
the node filtering of the leaves in the MVP-tree. It is tested against the R*
and the M-tree, and they get significant improvements for KNN-search for
both synthetic clustered data, uniform data and real data.

The M2-tree is a version of the M-tree, and was presented in [CP00b].
It makes the M-tree able to process complex similarity search over objects
represented by multiple features. This makes the M-tree objects able to
store several feature vectors, which can help with indexing and search in
many types of databases, for example in an image databases where nodes
now can store both color distribution and keywords.

An interesting method called a List of Clusters (LC) was proposed in
[CN00]. It is very simple, and works the way that it chooses one object from
the set of objects, and finds the m closest objects to it and creates a cluster of
them. It then does this recursively on the remaining objects until n/(m+1)
clusters have been created. During search, it just considers all clusters p and
checks if distance(q, pi) − r > cr(pi), where cr(pi) is the covering radius of
pi, q is the query object and r is the range of the search. If that is true, it
enters, if not it goes on. More interestingly, if distance(q, pi)+r < cr(pi) no
other clusters needs to be examined, because all objects that can be within
the range of the search has to be in this cluster. The authors show that this
method is much better than a lot of existing methods, especially for higher
dimensions.

Similarity search through hashing was first proposed in [CGZ01], where
the authors propose an access structure called Similarity Hashing (SH). It
is designed to reduce I/O costs by having objects in buckets and using pre-
computed distances to pivots for reducing distance computations. It uses a
ρ-split function to group objects from X into m + 1 disjoint subsets, and

26

it is made sure that the distance between objects in two different subsets is
at least 2ρ. The last of the subsets is called the exclusion bucket, and the
same process is used on the exclusion bucket to form a new level, but not
necessarily by using the same ρ-split function, though the same value for ρ
has to be used. The result is that it can be guaranteed that only one of the
m partitions of X can contain objects with a query range rx ≤ ρ. Then,
when searching, only one bucket at each level has to be accessed as long as
r ≤ ρ, as well as the exclusion bucket. This means only h+1 buckets has to
be accessed, where h is the number of levels. The authors then shows that
this methods needs a lot less distance computations than the MVP-tree.
This idea has later been improved into the D-Index [VDZ03], which also has
an extension called the eD-Index [DGZ03], and they have both shown very
impressive results.

The M+ tree, proposed in [XZY03] is another variation of the M-tree,
that takes some inspiration from MVP-trees as well. The authors show
results where the M+ has better query performance than the M-tree, but
because it uses spatial data to help the filtering of the nodes, it can not be
called true metric access structure. It uses the same principle to partition
the space as the M-tree does, but then it partitions the newly created sets
again, just like the MVP-tree does, according to a key dimension. But
unlike the MVP-tree, only the distance to one object needs to be computed
because there is no distance computations needed for the key dimension.
The authors later proposed the BM+ tree in [ZWZY05], which is a binary
version of the M+ tree. It uses a rotatable binary hyperplane tree to partition
the subspaces instead of using the key dimension. This is shown to be an
improvement over the M+ tree.

[Sko04] proposed the Pivoting M-Tree, which is another variation of the
M-tree from [CPRZ97], and which tries to reduce the volume of empty space
created by the hyper-spheres used by the M-tree. This is done by creating
a list of pivots pl, computing the distances between them and the routing
objects and storing them in an array, and then use pivot filtering to improve
the search. As this is created at build time, it can decrease the number
of distance computations that have to be done at query time because of
improved filtering, but it can significantly increase the disk I/O costs because
the pivot table must be read at query time.

2.7 Different tree structures

2.7.1 Vantage Point Tree

The Vantage Point Tree (VP-tree) was introduced in [Uhl91], but under the
name ball composition. This is the original ball composition method, and
it has spawned several similar variants using the same principles. It is a
static metric tree structure that constantly divides the dataset S in two by

27

finding the median element, called the pivot element, and then dividing the
set around it. It then recursively creates the tree by dividing the two parts
again creating new nodes until all sets are empty.

There are several ways to find the pivot element. The one proposed by
[Uhl91] is simply to select an arbitrary element from S as the pivot element.
Another method, presented in [Yia93], is to take a list of samples from S
and check which one gives the largest variance when comparing the distances
from it to nodes from another list of samples from S. It then sorts the list
using the distance to the pivot element as the ”sorting value”, and stores the
median distance in the node. It then divides the list in two, with the half of
the elements closest to the pivot in one list and the half furthest away in the
other list. So both the leaves and the internal nodes in the tree hold data
elements.

Algorithm 2.7.1: buildTree(S : dataObects) for constructing the
VP-tree

Data: A set of data objects S
Result: The root node to the VP-tree containing the objects in S
begin1

if |S| = 0 then //create an empty tree2

return Null3

end4

else //create a new node5

node = Node6

node.Svt = selectV antagePoint(S)7

S = S − {node.Svt}8

node.median = distance(node.Svt)9

S1 = ∀Si ∈ S | distance(node.Svt, Si) < node.median10

S2 = ∀Sj ∈ S | distance(node.Svt, Sj) ≥ node.median11

node.leftChild = buldTree(S1)12

node.rightChild = buildTree(S2)13

14

end15

Because the list of samples is always split in two, the tree is guaranteed
to be balanced. It also makes it easy to prune out unwanted branches of
the tree. When doing a range search the distance from the query object
to the pivot element needs to be computed. If the pivot element is inside
the range it is added to the result list. It then checks if the distance plus
the range is larger or smaller than the median stored in the node. If it is
smaller, it recursively searches down the path of the smaller distances, and
if it is bigger, it searches the other one. Sadly, if the search range is large, it
can therefore happen quite often that both subtrees have to be search and

28

Algorithm 2.7.2: selectV antagePoint(S : dataObects) as a way of
selecting a vantage point.

Data: A set of data objects S
Result: The root node to the VP-tree containing the objects in S
begin1

P = randomSample(S)2

bestSpread = 03

forall Pi ∈ P do4

D = randomSample(S)5

mu = median{∀Di distance(Pi,Di) | Di ∈ D}6

spread = variance{∀Di distance(Pi,Di) − mu | Di ∈ D}7

if spread > bestspread then8

bestspread = spread9

bestp = p10

end11

end12

end13

no pruning occurs.

Unfortunately, it does not take any advantage of pruning because of al-
ready calculated distances, which some of the of the search algorithms for
other tree structures do. This means that no checks for free are given, and
therefore the algorithm has to compute the distance to every object it is ex-
amining. However, if the distance from the pivot object to the query object
added to the median is less than the range, you can safely include every ob-
ject in the left subtree, that is, the subtree that includes distances below the
median. This is because of the Range-Pivot distance constraint, discussed
in 2.5.1, and can in theory reduce the number of distance computations a bit
if there are a lot of objects that are close together. However, this only works
for KNN-searches, as here the distances have to be computed anyways to
see if they fit into the list of k elements.

But possibly the largest problem with the VP-tree is disk IO. Because
the tree only stores a single data object in each node, the algorithm has to
make one disk access for each data object it examines, which makes the disk
I/O the same as, or even worse if Lemma 2.5.4 is used, than the number of
distance computations for search. To the VP-tree’s defense, this was not an
issue when it was designed, and [Uhl91] does not mention it at all, but it
could still be a big bottleneck if the tree is used on large databases where
the entries have to be stored on disk.

29

Algorithm 2.7.3: rangeSearch(Q : dataObject, r : range, node :
treeNode) which returns every object in the tree within the range of
the target data object Q

Data: Target object Q and search radius r
Result: The list of data objects within the range
begin1

d = distance(Q,node.Sv)2

if d ≤ r then //include the vantage point3

result+ = node.Sv4

end5

if d + r ≥ node.Median then //search the right subtree6

rangeSearch(node.rightChild)7

end8

if d + node.Median ≤ r then //every object from the left subtree9

can be included
includeAll(node.leftChild)10

end11

else if d − r ≤ node.Median then //search the left subtree12

rangeSearch(node.leftChild)13

end14

end15

2.7.2 Multiple Vantage Point Tree

The Multiple Vantage Point Tree (MVP-tree) [BO97] is similar to the VP-
tree in many ways, as they both use the median to find pivot elements
and partition the data around them based on the relative distances between
them. The main difference is that the MVP-tree uses precomputed distances
between the data objects the pivot objects to help prune out the data ele-
ments without computing the distances between them and the query object.

A node in a MVP-tree consists of two vantage points, and therefore each
level in the MVP-tree can be seen on as two levels in a VP-tree. This makes
it possible to have a much larger fan-out in the MVP-tree, which results
in more data objects in the leaf nodes and less in the internal nodes. The
fan-out of the node can be set to any number, and is called m2, where m is
the number of partitions created by each vantage point. In this thesis, only
the binary MVP-tree will be considered, which has a fan-out of 22.

There can be k data objects stored in any leaf node, and k is not bound
to the fan-out in the internal nodes. In fact, [BO97] shows that it can be
a good idea to use a larger number for k than for m2; because the filtering
based on the distances to parent objects can only be used in the leaf nodes,
it is a good idea to have as many of the data objects there.

The first vantage point, Sv1, divides, just like a vantage point in a VP-

30

tree, the space into two groups. This once again is done by sorting the
elements according to the distance to the vantage point, and then splitting
it into two groups, with the half closest to the vantage point in one and the
one furthest away in the other. It then finds another vantage point, Sv2,
from the list of objects that are furthest away from Sv1. It then computes
the distances between all the remaining elements to Sv2, and then sorts the
two lists according to that, and partitions the space into four groups based
around the medians.

The medians are stored in internal nodes. The median M1 is for the
partitions based on the first vantage point, and the medians M2[0] and M2[1]
are based on the second. In the leaf nodes the distances between each of the
data points and the vantage points of that leaf is stored, along with the first
p distances between each of the data points and the vantage points along
the path from the root node. The full pseudo code for the build procedure
is shown in Algorithm 2.7.4.

For range search in the MVP-tree, [BO97] proposes a recursive depth-
first search algorithm. For each node along the path, it first computes the
distances from the query object to the two vantage points, and adds them
to the result. It then checks the distances with the medians to see which
subtrees that can be pruned out from the search.

If it’s a leaf node, it uses the distance between the data objects and the
vantage points to filter out objects by using the properties of the triangle
inequality. The distance was stored in the node on creation time, so no
distance computations have to be made. If this check is passed, it then uses
the history of the distances stored in the node to do the same against the
p first vantage points from the root to see if it can do any more filtering.
As these distances were computed at creation time as well, no distance
computations have to be made here either.

If the data object in question can not be filtered out using this method,
the actual distance between the data object and the query object is com-
puted. If it is inside the range of the search, the object is added to the result.
The full pseudo code for the range search is shown in Algorithm 2.7.5.

The disk I/O problem is heavily reduced with MVP-tree compared to
the VP-tree. This is partly because of the fact that the MVP-tree stores
two or more vantage points instead of one, which reduces the number of
disk accesses needed to get all the relevant vantage points. But the biggest
improvement is that the MVP-tree preferably stores a large number of data
objects in the same leaf node. Therefore, all objects in a leaf node can
be retrieved with only one access, and the number of disk accesses needed
should be reduced considerably if using a large value for k, the number
of data objects in the leaves. This method has some similarities with the
LAESA algorithm (see [MOV94]).

31

Algorithm 2.7.4: buildTree(S : dataObjects, level) for building a
MVP-tree

Data: A set of data objects S
Result: A root node to a MVP-tree containing the data objects
begin1

if |S| = 0 then //create an empty tree2

return Null3

end4

else if |S| < k + 2 then //create a leaf node5

node = Node6

node.Sv1 = selectArbitrary(S)7

S = S − {Sv1}8

forall Si ∈ S do node.D1[i] = distance(Sv1, Si)9

node.Sv2 = Si ∈ S where max{D[i]}10

S = S − {Sv2}11

forall Sj ∈ S do node.D2[j] = distance(node.Sv2, Sj)12

return node13

end14

else //create an internal node15

node = Node16

node.Sv1 = selectArbitrary(S)17

S = S − {node.Sv1}18

foreach Si ∈ S do19

if level ≤ p then Si.PATH[level] = distance(Sv1, Si)20

end21

S = sort(distance(node.Svi, Si ∈ S))22

node.M1 = median(S)23

SS1 = ∀Si ∈ S where distance(node.Sv1, Si) < node.M124

SS2 = ∀Si ∈ S where distance(node.Sv1, Si) ≥ node.M125

node.Sv2 = selectArbitrary(SS2)26

SS2 = SS2 − {node.Sv2}27

foreach Si ∈ S do28

if level < p then Si.PATH[level + 1] = distance(Sv1, Si)29

end30

SS1 = sort(distance(node.Svi, Si ∈ S))31

node.M2[0] = median(SS1)32

CL[0] = ∀Si ∈ SS1 | distance(node.Sv2, Si) < node.M2[1]33

CL[1] = ∀Si ∈ SS1 | distance(node.Sv2, Si) ≥ node.M2[1]34

SS2 = sort(distance(node.Svi, Si ∈ S))35

node.M2[1] = median(SS2)36

CL[2] = ∀Si ∈ SS2 | distance(node.Sv2, Si) < node.M2[2]37

CL[3] = ∀Si ∈ SS1 | distance(node.Sv2, Si) ≥ node.M2[2]38

for noe do39

node.children[i] = buildTree(CL[i], level+ = 2)40

end41

return node42

43

end44

32

Algorithm 2.7.5: rangeSearch(Q : targetObject, node :
treeNode, r : range, level : levelInTree) for doing range search in
a MVP-tree

Data: A target object Q and the search range r
Result: A list containing the similar objects
begin1

dsv1 = distance(Q,node.Sv1)2

if dsv1 ≤ range then result+ = node.Sv13

dsv2 = distance(Q,node.Sv2)4

if dsv2 ≤ range then result+ = node.Sv25

if node is a leaf node then6

foreach Si ∈ node.dataObjects do7

d1 = D1[node.p]8

d2 = D2[node.p]9

if (dsv1 − r ≤ d1 ≤ dsv1 + r) and10

(dsv2 − r ≤ d2 ≤ dsv2 + r) then

forall i = 0..node.p do11

if ∀(PATH[i] − r ≤ Si ≤ PATH[i] + r) then12

if distance(Si, Q) ≤ range then result+ = Si13

end14

end15

end16

end17

else18

if l ≤ p then PATH[l] = dsv119

if l < p then PATH[l + 1] = dsv220

if dsv1 − r ≤ node.M1 then21

if dsv2 − r ≤ node.M2[0] then22

rangeSearch(Q,node.children[0], level + 2)
if dsv2 − r ≥ node.M2[1] then23

rangeSearch(Q,node.children[1], level + 2)
end24

if dsv1 + r ≥ node.M1 then25

if dsv2 − r ≤ node.M2[0] then26

rangeSearch(Q,node.children[2], level + 2)
if dsv2 − r ≥ node.M2[1] then27

rangeSearch(Q,node.children[3], level + 2)
end28

end29

end30

33

2.7.3 M-tree

In [PZR96] they give three main goals for the M-tree, which, at the time of
writing, no other metric index structure had accomplished. These were:

Paging: The tree consists of fixed-sized nodes for optimizing when trees are
on external memory devices.

Balancing: To speed up the search speed all of the nodes should be at the
same length from the root.

Dynamism: The tree should be able to deal with insertions and deletions
without degrading search and without rebalancing globally.

The main difference between the M-tree and the other trees discussed so
far is that the M-tree is a dynamic structure. While not as revolutionary
as the VP-tree, the M-tree has spawned several successors as well, and has
become a popular structure for testing for newer structures against. Like
all the other structures in this thesis, it structures the objects depending
on the distance between them, not because of position. The tree uses the
generalized hyperplane principle described in [Uhl91]. The objects are then
stored in fixed-sized nodes, so that the tree is paged. All the data objects
are stored at the leaf level of the tree, while the internal nodes store routing
objects, which are used to guide insertion, deletion and search. Each node
can potentially hold any number of objects, which is one of the strengths of
the M-tree, because a bigger fan-out improves both the number of distance
computations and the number of I/O accesses.

The M-tree uses the triangle inequality to prune out branches of the tree
from search without doing unnecessary distance calculations. It does this
by using the distance between the parent and the query object and between
the parent and the node. It then checks this against the range of the query
search plus the range of the node. As can be seen, this is the same as the
Range-Pivot Distance Constraint given in section 2.5.1, and the definition
in Lemma 2.5.2. See [CPRZ97] for a proof of this lemma.

This way, only the distance to the node only has to be computed if there
is a possibility that any objects of interest are within the subtree of the node.
According to [CPRZ97] this can save up to 40% distance computations.

Data objects in the original M-tree [CPZ97] are inserted one one by using
the insert-procedure (Algorithm 2.7.6). This is done by search downwards
from the top until you find the ideal leaf node, and try to insert the data
object there. The routing objects is found by examining all the routing
objects in the internal nodes and then choose the one that is closest to the
object you want to insert. The insert procedure is then recursively called
on these objects. When a leaf node is finally reached, it tries to insert the
object. If the leaf node is full, this can not be done, and the split procedure
is called, which handles the rest of the insert process.

34

Algorithm 2.7.6: insert(N : node,On : mTreeEntry) for inserting
a data object into the M-tree

Data: Root node and data object to insert
Result: The object is inserted in the tree
begin1

E = N.getEntries(); if Nisnotaleaf then2

forall Or ∈ N do3

if distance(Or, On) ≤ Or.range then Nin+ = Or4

end5

if Nin 6= ∅ then6

O*r ∈ Nin | min{distance(O*r, On)}7

else8

O*r ∈ N | min{distance(O*r) − Or.range}9

end10

insert(O*r.node), On)11

end12

else13

if Nisnotfull then N.store(On)14

else split(N,On)15

end16

end17

The split procedure (Algorithm 2.7.7) creates a new node so that more
objects can be stored. It then promotes two objects from the set of the
objects in the old node and the new object to be inserted, and these are
the routing objects for the new nodes. The way the promote algorithm
is implemented is completely independent from the rest of the tree, and
[CPZ97] proposes several different algorithms for doing this, and analyzes
the results. But the general point is to chose the two objects which the
data can be partitioned best around. It then partitions the objects, which
means assigning each of them to a node. [CPZ97] gives two examples for
doing this, a generalized hyperplane method and a balanced method, and
reports that the generalized hyperplane method gives the best results. Then
it replaces the original routing object in the parent node for the first node
with the new one, and tries to insert the second one as well. If this goes well,
the procedure returns, but if the parent is full as well, the split function is
again called on the the parent node with the second routing object as the
new object to be inserted. If it is the root that is full, this means a new root
is created and the two routing objects created by the split inserted into the
new root.

Searching in the M-tree is heavily dependent on Lemma 2.5.2 to prune
out nodes and therefore avoid unnecessary distance computations, and unlike

35

Algorithm 2.7.7: split(N : node,On : mTreeEntry) for splitting full
nodes to make room for new entries

Data: Entries in full node and entry to be inserted
Result: A tree where all the entries are inserted
begin1

E = ∀entries ∈ N ∪ On2

if notroot then3

Op = N.parent4

Np = Op.node5

end6

N ′ = newnode7

promote(E,Op1, Op2)8

partition(E,Op1, Op2,N1,N2)9

N.store(N1.entries)10

N ′.store(N1.entries)11

if Nisroot then12

Np = newnode13

root = Np14

Np.store(Op1)15

Np.store(Op2)16

end17

else18

Np.replace(Op, Op1)19

if Npisfull then split(Np, Op2)20

else Np.store(Op2)21

end22

end23

the MVP-tree, it can also do so before reaching the leaves. The algorithm
first checks whether it is a leaf node. If it is not, it goes through all the
routing objects in the node, and uses Lemma 2.5.2 to see if the object is
worth considering. Because the distance from the parent node to the query
object has already been computed, and the range from each node to its
parent is stored in the node at insertion time, this check is for free when
concerning distance computations. If the object is worth considering, the
distance is computed and a check if the distance from the object to the
parent is less than the range of the node added to the range of the query. If
the distance is within this range, the procedure is called recursively on the
node associated with the routing object, if not, the object is discarded from
the search.

If the node is a leaf node, more or less the same happens, but the check
is now only against the radius of the search, because a data object has no

36

range associated with it. If the free check is passed, it has to compute the
actual distance, and if it’s less than the range as well, the data object is
included in the search result. The pseudo code for the range search is shown
in Algorithm 2.7.8.

Algorithm 2.7.8: rangeSearch(N : node,Q : queryObject, r :
searchRadius) for finding the objects in the tree within the search
radius of the query object.

Data: node, query object and search radius
Result: A list containing the objects from the tree within the search

radius
begin1

Op = N.parent2

if Nnotleaf then3

forall Or ∈ N do4

if |distance(Op, Q) − distance(Or, Op)| ≤ Or.radius + r5

then

d = distance(Or, Q)6

if d ≤ r + Or.range then7

rangeSearch(Or .node,Q, r)8

end9

end10

end11

end12

else13

forall Oj ∈ N do14

if |distance(Op, Q) − distance(Or, Op)| ≤ r then15

d = distance(Oj , Q)16

if d ≤ r then17

result+ = Oj ;18

end19

end20

end21

end22

end23

Surprisingly, there exists no delete algorithm for the M-tree. [CPRZ97]
only says that the delete method is not described because of space limita-
tions, but to my knowledge, no deletion algorithm has been published so far.
Also, the authors implementation of the M-tree apparently does not have
a deletion procedure because of a bug in GIST [HNP95]. The way this is
solved in this thesis is shown in section 4.2.3.

37

Because inserting objects one by one can not guarantee an optimal tree,
the authors proposed a bulk loading algorithm in [CP98] to create a better
tree when a lot of the data objects are known in advance. But the biggest
advantage is that it drastically reduces the I/O costs when building the tree,
as well as reducing the number of distance computations down to the level
of the less advanced split policies.

2.7.4 Slim Trees

[TTSF00] has several interesting proposals, including an updated version of
the M-tree called the Slim Tree. Firstly they propose two new methods for
determining how good a tree is, called the fat-factor and the bloat-factor.
These are meant to show how much overlap a tree has. If the overlap between
nodes is large, the tree will have to search more nodes than it should, and
query time will go up. They then propose the Slim Tree as way to reduce
the bloat factor to fix this. The fact factor is about how many nodes that
must be visited when a search is done, while the bloat factor also takes into
consideration how efficient the nodes are at stored so that the volume of
wasted disk space can be reduced.

They also present a new splitting algorithm based on minimum spanning
trees. It creates a minimum spanning tree and then removes the longest edge,
so the result is two new trees. It then takes the objects from the two trees
and put them into their corresponding nodes, one for each tree. The objects
with the minimum distance to all the other objects in each tree are chosen
as the pivots for the nodes. But this will not guarantee that the node is
split in a balanced way, so another way is to chose the one from the longest
edges that results in the most balanced split.

The Slim Tree is s in [TTSF00] showed to be quite a bit better than
the M-tree, and is a very interesting tree structure. But the scope of this
thesis only allowed the GB-trees to be compared with the normal M-tree.
However, the MST algorithm from [TTSF00] is implemented. The details
about the MST algorithm can be found in Section 4.2.3.

2.8 General Balanced Trees

In [And99], Arne Andersson shows that a binary tree does not need any other
properties than being of logarithmic height in order to be kept maintenanced
as an efficient balanced search tree. The name general balanced tree is
given because no shape restrictions are made except that it needs to be of
logarithmic height. This is done by using partial rebuilding of the tree if
simple requirements are met. The normal way to keep a tree balanced in an
efficient manner is to use some more or less complex balance criterion. In the
binary search tree world, as Andersson discusses, this includes structures like
AVL-trees ([AVL62]), Symmetric binary B-trees ([Bay72]), Weight-balanced

38

trees ([NR72]) and several others. Because all of these structures are far
from trivial, the question Andersson asks is if we really need all this when
the only thing we really want is trees of logarithmic height.

To counter this, Andersson details a class of trees called general balanced
trees (GB-trees), which only uses a very weak global criteria which is the
relation between the size and the maximum height of the tree. This also
has the benefit that no extra information is needed in the nodes in the tree.
Partial rebuilding is then used on the tree to keep it balanced. This has
been used in balancing weight-balanced trees before, but Andersson shows
that the maintenance cost for general balanced trees are lower than those of
weight-balanced trees.

The main idea behind maintaining a general balanced tree is to let the
tree grow as it wants to as long has h(T) ≤ ⌈c ∗ log2(|T |)⌉. When this is
not true, the tree can be partially rebuilt to give a lower height at a low
amortized cost. This is done because of the observation given in Lemma
2.8.1, given and proven in [And99].

Lemma 2.8.1 Let T be a binary tree, h(T) > ⌈c ∗ log2(|T |)⌉. Let v be the
lowest node (any of) T’s longest path(s) such that h(v) > ⌈c ∗ log2(|v|)⌉.
Then

δ > (21−1/c − 1)|v| − 1

Just by using lemma 2.8.1, Andersson claims that it is possible to main-
tain a balanced tree efficiently during insertions, and states Theorem 2.8.1,
which he then proves.

Theorem 2.8.1 If no deletions are made, a binary search tree T with max-
imum height ⌈c ∗ log2(|T |)⌉ > 1, can be maintained at an amortized cost of
O(log2|T |) per insertion. No balance information is needed in the nodes,
only one global integer is needed.

As we can see from Theorem 2.8.1, Andersson claims that as long as the
tree follows his simple criteria, it can be maintained with only a amortized
cost of O(log2|T |) when it comes to insertions, and still be balanced. By cost
he means the number of internal nodes involved in the partial rebuilding.

He also gives a theorem for handling deletion in a general balanced tree
(Theorem 2.8.2), which is also proven in [And99].

Theorem 2.8.2 Given constants c > 1, and b > 0, a balanced tree T with
maximum height ⌈c ∗ log2(|T | + b)⌉ may be maintained without any balance
information stored in the nodes, using two global integers, at an amortized
cost of O(log2(T) per update.

39

The result of these theorems is that insertion and deletion are performed
as normal, and whether or not the balancing is to be done is defined by very
simple rules. For insertions, the point where the partial rebuild is going to
happen is found by traversing the insertion path until the lowest node v is
found where h(v) > ⌈c ∗ log2(|v|)⌉. When this node is found, the tree with
v as a root is rebuild and the new root is inserted where v was in the tree.

For deletions, nothing is done until d(T) ≥ (2b/c − 1)|T |, but when this
threshold is reached, the whole tree is rebuild for perfect balance. Just as
with c, nothing is said about how big b should be.

The complete analysis of the constant factor in rebuilding the tree is too
large to be shown here, see [And99] for the complete analysis. It also gives a
comparison with weight-balanced trees to show that general balanced trees
perform better. But the result is that the partial rebuilding using these
simple rules should indeed be a good idea.

It is worth noting that Andersson gives no implementation details at all,
just the theoretical basis, so how this compares on a more low-level scale is
never explored. This should not be a real issue though, as it works with all
existing algorithms for building a binary tree with logarithmic height.

40

Chapter 3

Methods and and Solutions

3.1 General Balanced Metric Trees

In theory, applying the GB-trees idea (Section 2.8) on a normal metric tree
should make it able to compete with the dynamic versions that which have
their own balancing criteria and ways to fulfill these. Just like [And99]
says that most binary search tree structures uses advanced techniques for
staying balanced, and using the the ideas given there could simplify the
balancing prospect of metric trees just like they do for binary search trees.
but there are a few problems that have to be overcome first. These include
that similarity search in metric spaces is more complex than normal binary
search and therefore require more advanced structures, and also because
metric trees that do not use complicated rebalancing rules are usually static
by nature.

Applying the GB-trees idea on metric trees is both similar and different
from applying them to normal binary trees. Most metric tree structures,
though some are based on having more than two siblings per node, can be
binary if the parameters are set that way, and some are only binary. So
in this respect, the ideas from [And99] can be implemented more or less
directly, and the calculations given there will work the same way.

However, most metric structures uses more than two siblings per node at
some level to allow pruning because of the principles given in section 2.5.1 to
be much more effective. Giving an analysis of how the the ideas in [And99]
will work on trees in more dimensions is beyond the scope of this thesis, so
we will only consider trees that are binary when it gets to internal nodes,
although one of the structures can have more than two data objects stored
in them at leaf level.

There are generally two types of metric trees: static and dynamic. Most
of the tree structures fall under static. The dynamic tree structures already
have complex systems for staying balanced, so applying the GB-tree ideas to
them is a bit useless. But one important fact is that dynamic trees generally

41

perform worse than static trees given the same input data. Even with the
bulk loading algorithm, the M-tree does not perform any better than the
old MVP-tree according to [CP98]. So the question is, can static metric
structures be made dynamic, and with the help of the GB-tree principles
become a better search tree than the existing dynamic structures using more
complex balancing criteria?

Two ways to adapt static metric structures to dynamic structures us-
ing the rebalancing principles from [And99] are described in section 3.2 and
3.3. Other tree structures faces more or less the same problems when being
adapted. Some of the problems occure because metric trees uses distances
while binary search trees normally uses positions. Both of these implemen-
tations uses the static building as a bulk loading algorithm, and then allows
for insertions and deletions of new and old objects.

To give an example, one problem with deletion is that it is probably much
more problematic finding the ideal node to replace the one being deleted if
it is an internal node. This is because the tree has much less knowledge
about how the subtree is partitioned below any point in the the tree, so the
node being the closest one in the subtree can not be found without doing a
much wider search which will include a many extra distance computations
and disk IO. But a potentially much worse problem is that how the nodes
are distributed could change if a different node is selected to replace it. The
closer the better, but it is impossible to guarantee that it will not happen
unless the new object is identical to the one deleted. In any way, the cost
of deleting an object is suddenly much higher than it would have been for a
binary search tree.

Another problem is finding a new pivot when inserting. Most metric
trees use some sort of pivot value to structure the objects around. Ball
composition methods use the median to the pivot object, while generalized
hyperplane methods use the distances from the nodes to the pivot objects
directly. But how is this done when there are no objects to calculate these
values from? In the original algorithms, this was not a problem, because
if this was a leaf node, those values were not needed because of the static
nature. However, this has suddenly become an issue because now more nodes
could be added underneath the leaf nodes from the static building. When
more objects are inserted, this must be dealt with, and the cost of inserting
objects is suddenly higher than it would be for a binary search tree.

3.2 General Balanced Vantage Point Tree

The first algorithm to be tested with the GB-tree paradigm is the Vantage
Point Tree (VP-tree), described in Section 2.7.1. As this in its original
structure is a binary tree with the same properties pretty much like normal
binary search trees, applying the methods described in [And99] to the VP-

42

tree should be easier than most other structures.
The first problem in applying the GB-tree paradigm to the VP-tree is

that the VP-tree is a static structure. There have been proposed ways to do
the VP-tree dynamic (see [FsCCM00]), but not by using such simple criteria
as the ones proposed by Andersson. Here follows a description of how the
dynamic VP-tree used in this thesis works.

The insertion algorithm works more or less the same as in a normal
binary search trees. To insert the object i, the algorithm traverses recursively
downwards the tree until an empty leaf is found, and the node is inserted
there. But of course, the node uses the distance between i and the pivots in
relation to median as the criteria for which subtree to traverse. If the other
child of the new parent node p to i is empty, the median in p is updated to
be the distance between i and p, or d(i, p). If not, the median in p is kept as
it is. When a object is inserted, v, that is the total number of empty leaves,
has to be updated. Because a new node will occupy one empty leaf but add
two, v is incremented by one. Along the way, the path to the inserted node
is recorded, to help with the rebuilding. The pseudo-code for the insertion
algorithm is found in Algorithm 3.2.1.

Sadly, this way could potentially lead to very unbalanced insertions, as
there is no guarantee that the chosen median will not be a very bad one,
leading to every node after that one being inserted in the opposite subtree.
But hopefully, the partial rebuilding will do that the tree is rebuilt and
therefore balanced with much better choices for medians.

Deletions are a bit more tricky. The problem is, as mentioned in Section
3.1 internal nodes. Unlike in binary search trees, where a perfect replacement
can be found and it is known where it is, this is not necessarily the case in
a VP-tree. First of all, the algorithm does not know exactly where the best
replacement could be, as there exists no information in the internal node
about how the data is partitioned further down in the tree, except for the
fact that the ones with the smaller distance than the median are to the
left and the larger to the right, of course. This means that the algorithm
could be required to perform quite a number of distance computations just
to find the best node. Second, once this node is actually found, there is no
guarantee that the internal one can just be removed and the leaf inserted
instead, because this could change which objects should be in the left and
right subtree. So in that case, all the distances between the new pivot
and the objects further down the tree would have to be computed, and the
necessary relocations must be made.

As this is not a very good solution, there are several ways this can be
handled. One is to simply mark the node as deleted, but not physically
delete it. Then, when the next rebalancing happens, the node will not be
included when the tree new tree that is created. This is sort of similar to
the way deletion is done in List Of Clusters (see [CN00]), and has several
benefits, as no costly distance computations needs to be made to remove

43

Algorithm 3.2.1: insert(node : treeNode, io : insertNode, path :
treeNodeList) for inserting an object into a GBVP-tree

Data: A tree node and the node to be inserted
Result: The root node to the VP-tree with the node deleted
begin1

path = path + {node}2

distance = d(node.pivot, io)3

if node.leftChild = ∅ and node.leftChild = ∅ then4

node.leftChild = io5

node.median = d6

v = v + 17

end8

else if distance < node.median then9

if node.leftChild = ∅ then10

node.leftChild = io11

v = v + 112

end13

else14

node.leftChild = insert(node.leftChild, io, path)15

end16

end17

else18

if node.rightChild = ∅ then19

node.rightChild = io20

v = v + 121

end22

else23

node.rightChild = insert(node.rightChild, io, path)24

end25

end26

return node27

end28

the object, and no rebalancing needs to be done. The tree will also hold its
original balance, as the originally chosen vantage point is hopefully a good
one. One thing that is not so good about this way though, is that that
the height of the tree will not decrease with deletions. This causes several
problems, one being that the search time in the tree will increase because
no nodes are removed, but this could probably be remedied by the partial
rebuilding because the height of the tree will increase faster, resulting in
an increased number of partial or complete rebuildings. A related problem
could be that the formulas in [And99] are based on the fact that deletions

44

will reduce the height of the tree, and therefore the number of complete
rebuilds could become too large considering that only partial rebuilds may
be necessary.

Another approach is to simply rebuild the subtree starting with the in-
ternal node due for deletion, and just exclude the node from the rebuilding.
This will cause a new balanced subtree with a new root, and therefore of
course be of perfect height. But the problem is clearly that it would require
a large bunch of partial rebuilding. Because the VP-tree has no containers
for leaf nodes, roughly half of the nodes inn the tree will be internal nodes,
which means that probably around half of the deletions would require some
partial rebuilding. On the other hand, as this will reduce the number of
partial rebuildings in relation to the global criteria of GB-trees, because the
tree will be kept in an overall better shape. But one important question
that should be asked is whether or not a deletion should be given the same
weight as it is done in [And99] if deletions are handled this way, because,
given that the tree has already been partially rebuilt, the importance of a
complete rebuild may be reduced.

If the node to be deleted is a child, it is just removed. And of course, v
has to be updated if any changes are made to the tree. Pseudo-code for the
delete algorithm using rebuilding is shown in Algorithm 3.2.2. Because the
algorithm using marking only needs very slight changes to this one, it is not
given here, but the only difference is that instead of rebuilding the tree and
returning it, it just returns the original node after marking it.

If it is determined that a partial rebuilding is to be done, according to
the criteria in [And99], the algorithm travels down the path given in the
insert, and checks where the partial rebuilding is to be done. When the
node is found, the algorithm simply uses the same algorithm for building
the tree which is used when the tree is first created, as described in Section
2.7.1. Pseudocode is given in Algorithm 3.2.3. When the whole tree has to
be rebuilt, all the objects in the trees are just collected and the rebuilding
from Section 2.7.1 and the root of the tree is set to the root returned from
the rebuilding.

3.3 General Balanced Multiple Vantage Point Tree

Applying the GB-tree paradigm to the MVP-tree (Section 2.7.2) is a bit
more difficult than with the VP-tree for a number of reasons. While there
are many similar characteristics between the VP-tree and the MVP-tree,
the MVP-tree also have several features that makes it more different from a
regular binary search tree than a VP-tree.

First of all, the MVP-tree uses buckets to store the leaf nodes in that
can be of variable size, which makes it a bit more difficult to make the tree
dynamic than with a VP-tree, because to be effective, the structure will need

45

Algorithm 3.2.2: delete(node : treeNode, do : deleteNode) for delet-
ing an object from a GBVP-tree using rebuilding

Data: The node in the tree and the object to be deleted
Result: The root node to the GBVP-tree with the node deleted
begin1

if node.vp = do then2

if node.leftChild = ∅ and node.rightChild = ∅ then3

return ∅4

end5

else6

nodes = getAllNodes(node.leftChild) +7

getAllNodes(node.rightChild)
return buildTree(nodes)8

end9

end10

else11

distance = d(node.vp = do)12

if distance < node.median then13

node.leftChild = delete(node.leftChild, do)14

end15

else16

node.rightChild = delete(node.rightChild, do)17

end18

return node19

end20

end21

some sort of split policy. One curious problem that rises is to actually define
what is an empty leaf node when a leaf can have n number of objects in a
bucket. Counting every free space in the bucket as an empty node would be
a bad idea, because then the number of empty nodes compared to the tree
height would become way off. So the best way to do it is probably to just
consider it empty if the whole bucket is empty, in other words if the leaf
node contains no data objects other than the pivot object(s). This should
not directly influence the criteria for balancing the tree, as the height of the
tree is unaffected.

As the MVP-tree combines two and two levels in the tree into one node,
and then shares the second vantage point between all four children, one node
can not be considered one level. This is because the tree then can not be
categorized as a binary tree when one node will have a fan-out of at least
four child nodes. So instead, each node in the GBMVP-tree is considered to
be two levels to make up for this.

46

Algorithm 3.2.3: partialRebuild(path : treeNodeList) for doing a
partial rebuilding of the tree

Data: The insertion path
Result: The root of the new subtree
begin1

i = 02

while i < path.length do3

if path.length − i ≤ ⌈c ∗ log2(path[i].v)⌉ then //This node is4

not too high
nodes = getAllNodes(path[i − 1])5

if path[i − 2].leftChild = path[i − 1] then6

path[i − 2].leftChild = buildTree(nodes)7

end8

else9

path[i − 2].rightChild = buildTree(nodes)10

end11

return12

end13

i = i + 114

end15

end16

Because of the buckets, insertion needs some sort of split function to
deal with what happens when a bucket is full. The one used in this project
simply uses the buildTree-algorithm for the MVP-tree (Algorithm 2.7.4). It
takes the two vantage points and the data objects in the node, adds the new
object to be inserted, and simply rebuilds them. This will create three new
nodes, where the root node of the new tree will replace the old leaf node.
In this way, the height of this branch of the tree should grow with two each
time a node is split. When a leaf node is reached and the bucket is not full,
the data object to be inserted is just put in the bucket. When a node is
inserted,the distances in the path to the node must also be recorded and
stored in the node so that filtering can be used on the node. The path of
the nodes must be recorded as well in case of a partial rebuild when the
insertion is complete. The pseudo code for the insertion algorithm can be
found in Algorithm 3.3.1, and the split algorithm can be found in Algorithm
3.3.2. It is to be noted that any split-algorithm can be used, as long as it
returns the node to a new subtree.

As can be seen in Algorithm 3.3.2, one problem is that the path to the
new nodes has to be updated. This means that the buildTree-algorithm
for the MVP-tree (Algorithm 2.7.4) must be modified to be able to take an
already created path downwards the tree. This is trivial though, as it is just

47

Algorithm 3.3.1: insert(node : treeNode, in : insertNode, level :
integer) inserting a node in a GBMVP-tree

Data: A tree node, the node to be inserted and the level in the tree
Result: The root of the new subtree with the inserted node
begin1

if node.children = ∅ then //node is leaf2

if node.dataObjects.length ≥ k then //list of dataobjects if3

full
node.children = node.children + split(node, in)4

node.dataObjects = ∅5

end6

else7

if level ≤ p then dsv1 = distance(in, node.Sv1)8

node.PATH[level] = dsv19

if level < p then dsv2 = distance(in, node.Sv1)10

node.PATH[level + 1] = dsv211

node.dataObjects = node.dataObjects + {io}12

end13

end14

else15

dsv1 = distance(in, node.Sv1)16

dsv2 = distance(in, node.Sv1)17

if level ≤ p then node.PATH[level] = dsv118

if level < p then node.PATH[level + 1] = dsv219

if dsv1 < node.M1 then20

if dsv2 < node.M2[0] then21

insert(node.children[0], in, level + 2)
else insert(node.children[1], in, level + 2)22

end23

else24

if dsv2 < node.M2[0] then25

insert(node.children[2], in, level + 2)
else insert(node.children[3], in, level + 2)26

end27

end28

end29

48

Algorithm 3.3.2: split(node : treeNode, in : insertNode) for doing
a simple split of a node

Data: A tree node and the node to be inserted
Result: The root of the new subtree after the split
begin1

nodes = getAllNodes(node) + {in}2

return rebuildTree(nodes, path, level)3

end4

to send the path as a parameter and then include it with the objects when
they are inserted into a node. When the tree is built from the ground, an
empty list is simply used as a parameter instead.

Deletion of internal nodes is done much in the same way as with the
GBVP-tree (Section 3.2), as the whole subtree is rebuilt when a pivot object
in an internal node is the one to be deleted. This will again result in more
rebuilding, but hopefully the fact that the subtree is now balanced will
reduce this penalty, as the number of rebuilds done because of the global
criteria will be reduced.

To better optimize the tree when deleting nodes from the buckets in the
leaves, some inspiration from the R-tree [Gut84] was considered, which is
also the basis for the deletions in M-trees (Section 2.7.3) that is used in this
thesis. This led to quite a few problems though, again because of the split
around the medians. The idea of the nodes deleting themselves upwards
in the tree if the nodes have less than a given number of objects in them
will also not work, because the objects will be inserted again at the exact
same spots unless the pivot objects are renewed. And if the pivot values are
renewed, the whole subtree has to be rebuilt because there is no way to be
sure if there are objects in lower branches that are now partitioned wrong.

Because of this, the implementation used here simply deletes the objects
if they are in the buckets in the leaves. The balancing criterion of the GB-
tree should make sure that the tree can not stay unbalanced for long, so
even if the query search right after the deletion could end up visiting more
nodes than needed, this should be fixed once the first partial rebuild for this
section is initiated.

Another point against implementing any extra balancing when nodes
are deleted is that implementing too many complicated ways to balance the
trees will actually work against one of the points presented in [And99], as
one of the main points there was that no complicated balancing criteria is
needed to keep a binary tree balanced.

One of the two delete algorithm for deleting objects from the GBMVP-
tree is showed in 3.3.3. However, there is one modification that can be done,
which was discussed in Section 3.2, and that is that the vantage points are

49

only marked as deleted and not actually removed from the tree at the point
of deletion. Instead, the vantage points are not included when the next
rebuild happens. As the modifications to Algorithm 3.3.3 that are needed
are very small, no pseudo code is included.

3.4 Test Methods

3.4.1 About The Experimental Design

In this thesis, mainly two things are the criteria for how a tree is judged.
These are the number of distance computations and the number of disk I/O
that has to be done to build, search and maintain the trees. As described
in Section 2.1.2 and Section 2.3, which one of these are the most impor-
tant depends on the problem domain; If the distance computation is heavy
enough to compute, the number of disk accesses will not matter that much
because, in the end, almost all the run time is used on the distance compu-
tations. However, if it is not very hard to do the computation, the number
of disk accesses will be much more important because reading and writing
to secondary memory is very slow.

In the end, the actual time it takes to run an algorithm is what matters.
However, there are several reasons for why only these two criteria are used,
and why not the actual running time is recorded and analyzed.

First of all, all implementations (see Chapter 4) are done in a high level
language. Therefore there is too much magic going on behind the scenes to
be sure exactly why an algorithm perform they way it does without some
serious knowledge and analysis of the programming language, and this is
beyond the scope of this thesis. As a result, it would be difficult to say
exactly why an algorithm does not perform as well as it theoretically should
have done and why another, in comparison, performs better.

Another reason is that it is difficult to say if the implementation is perfect
or not. This is partly linked to the previous reason, but it is more on the
personal level. Because tinkering with algorithms will always be able to
improve how they perform at runtime, it is hard to say exactly when it is
good enough to be tested against other algorithms.

Finally, and most importantly, the problems these algorithms are impor-
tant for are also the problems where the number of distance computations
and disk access is so important that they overshadow most other aspects.
While this does not need to be true for more than one of them, at least one
of them will require so much time to calculate that the rest of the running
time will be minimal compared to it.

This does not mean that the running time of algorithms are not impor-
tant, but it is the reasons why it is not the focus of this thesis. Of course,
actual implementation details should be considered if any of the structures
are to be used in a real system. As i.e. [MS94] shows, theoretically good

50

Algorithm 3.3.3: delete(node : treeNode, do : deleteNode) for delet-
ing an object from a GBMVP-tree using rebuilding

Data: The node in the tree and the object to be deleted
Result: The root node to the GBMVP-tree with the node deleted
begin1

if node.Sv1 = do then2

nodes = {node.Sv2}3

forall Ci ∈ node.Children do4

nodes = nodes + getAllObjects(Ci)5

return buildTree(nodes, node.Sv1.PATH)6

end7

end8

else if node.Sv2 = do then9

nodes = {node.Sv1}10

forall Ci ∈ node.Children do11

nodes = nodes + getAllObjects(Ci)12

return buildTree(nodes, node.Sv1.PATH)13

end14

end15

else16

if nodeisleaf then17

if ∃Oj ∈ node.dataObjects | Oj = do then18

node.dataObjects = node.dataObjects − {Oj}19

end20

end21

else22

if dsv1 ≤ node.M1 then23

if dsv2 < node.M2[0] then delete(node.children[0], do)24

else delete(node.children[1], do)25

end26

else27

if dsv2 < node.M2[0] then delete(node.children[2], do)28

else delete(node.children[3], do)29

end30

end31

end32

return node33

end34

51

does not necessarily mean good in practice. But [MS94] also discuss how
the results changed when the implementations got better, which backs up
why it is not considered here.

The counting of distance computations and disk I/O is done on a pure
logical level. See Section 4.4 for a description of how this is implemented.

3.4.2 Test Sets

For the tests done in this thesis data objects placed in a spatial domain
are used, and they are distributed after two different criteria. The first
one is clustered data, which means that the all the data objects belong
to one of potentially many clusters. The range between the center of the
cluster and the data objects that belong to it are random, but they are
required to be within a given distance determined by some criteria. So if D
is the set of data objects, C is the set of data clusters and X is the set of
random variables following these criteria and n is the number of dimensions,
∀di di0, ..., din = cj + xk | di ∈ D,Cj ∈ C, xk ∈ X.

The other one are uniformly distributed data that are simply given a
uniformly distributed random value for each dimension. There is some
range requirement so that the random variables can not be outside. So
if D is the set of data object and X is the unlimited set, all random uni-
formly distributed variables ∀xi minV alue ≤ xi ≤ maxV alue | xi ∈ X,
∀di di0, ..., din = xk|di ∈ D,xk ∈ X.

3.4.3 Distance Functions

Below follows a description of the two distance functions used in the tests in
this thesis. While they are briefly mentioned with the rest of the common
distance functions in Section 2.3, they are described in more detail here, as
well as details about how they are used in this thesis.

L2 metric

Because all the tree structures tested in this thesis are created to handle
continuous distance functions, most of the test in the in this thesis uses a
continuous distance function called The L2 metric, which is better known
as the Euclidean distance. The L2 metric distance function is given by
distance =

√

v2
1 + ... + v2

n where v is a feature vector consisting of numbers
and n is the number of dimensions. It is used for several reasons, mostly
because it is, as it can be computed in linear time, very fast to compute and
therefore very efficient when testing out the different algorithms. It is also
easily understood and because of that it is easy to see when the results are
the way they are. It is important to note that, although all the data objects
have spatial coordinates, all that is taken into consideration is the distance

52

function and no knowledge about the geometric properties of the objects are
presumed.

Edit Distance

The Edit Distance, or Levenshtein Distance, is used to test the trees on
discrete data. The Edit Distance, as described in Section 2.3, is an algorithm
for computing the distance between two text strings. It does this by counting
the minimum number of changes that has to be done in order to transform
one of the strings into the other. There are three possible ways to mutate a
string.

1. substitute a letter

2. insert a letter

3. delete a letter.

The general Edit Distance function lets the implementation decide the weights
individually for the three operations. However, in order for this to be a met-
ric distance function, insert and delete needs to have the same weights to
make sure that the symmetry requirement is in place. As an example, with
insert set to 2 and delete to 1, distance(”some”, ”something”) would be 5,
while distance(”something”, ”some”) would be 10. The most common way
to use the algorithm is to use 1 for each of the weights.

Sadly, the Edit Distance is far slower than the Lp metrics, and have a
time complexity of O(mn) where m is the length of the first word and n is
the length of the second word.

3.4.4 Searching

To give a good verdict of how the trees perform, both range search and
KNN-search will be done on all the trees discussed in this thesis. Although
they are linked in many ways, they can perform quite differently. This
is especially true for more advanced tree structures where more efficient
pruning is applied.

Range Search

For range search, different search ranges are used. For searches in the L2

metric, the range is scaled after how many dimensions are used. A range of
0.1, 0.2, 0.3, and 0.5 is used. As a search of range 0.5 should include at least
half of the objects in the tree, the search is scaled so that it is this way.
Therefore, for n dimensions, range =

√

range2
1 + range2

2 + ... + range2
n.

Without doing this, search in higher dimensions would give no results at

53

all, because the average distance will increase with the number of dimen-
sions.

Done this way, the search efficiency should vary a lot between clustered
and uniformly distributed data. As long as the search hits reasonably close
to a cluster, a lot of different search objects will be found. Of course, if it
does not, it could end up empty or close to, so the number of clusters will
have a lot to say.

For uniformly distributed data, the search will return more or less the
same amount of of hits each time, but the number will probably be less.
This should also increase a lot when dimensions grow, because there are no
centers, so the pivot objects will be much further away from their children
than with clustered data. An advantage of this is that the pruning of the
search could improve, while the number of actual hits will decrease.

K-Nearest Neighbor Search

No upper bound is given for the KNN-search used for the test in this thesis.
It is quite normal to set a maximum range for how far away an object in the
tree can be from the query object, which is because normally objects outside
of some range is not really interesting even though they are closer than most
other objects. While this can be be a good idea, the search becomes more
or less exactly like a normal range search if a maximum range is given no
k objects are inside of the given range. Therefore, in this thesis, the KNN-
search is a pure KNN-search where the result will always return k objects,
at least if there are that many objects in the tree. While the implementation
of the KNN-search for the different type of trees will be different, with some
tree structures optimizing more than others because they can guess where
the closest samples will be and therefore do prune better, they will all follow
this principle.

3.4.5 Repetitions

It is important to that the results from the searches are as general as possible.
One chosen query object could give a very different results from another, and
as there are a lot of random elements in the building of a tree, so could one
tree from another. So it is important to make sure that the results are as
representative as possible for the structures.

For each of the given number of objects to be included int he tree, several
trees are created to make sure that the searches are not to affected by some
very lucky or unlucky randomization. First, all trees are dependent on the
randomized nature of the test set. The randomized nature of the picking
of the vantage points is the biggest problem for the VP-tree and MVP-
tree, while the most important factor for the M-tree is the order in which
objects from the test sets are inserted and deleted. Both of these factors

54

are actually important for the GB-tree variants, as they are both vulnerable
to the choosing of vantage points and the order of insertion and deletion,
though the partial and complete rebuilding makes it much more dependent
on the former than the later.

Searching is done much in the same way. A large number of searches
has to be made on each of the tree structures in order for the search to
be able to give a generalized result, as the picking of the search object is
important. While a KNN-search can result in a very fast convergence toward
the optimal k objects, and therefore prune out most of the search branches
because of a low maximum range, the complete opposite could be true if the
query object is not right inside a cluster.

As an example, if 10 trees are chosen to be built for each number of
objects, and 100 searches are to be made on each of those for each range or
k, 10 ∗ 100 = 1000 searches are made for each number of objects for each
range and k.

When discussing the individual tree structures by themselves, a random
tree and random test set and random query objects are created individually
for them. However, when directly compare them against each other, the test
sets used are the same to make the comparing as fair as possible. The same
is done for the query objects, as the same query objects are used for each
of the trees to remove any chance that one tree structure got ”better” query
objects than another.

55

Chapter 4

Implementation

4.1 Language

All algorithms were implemented in Python. Python was chosen because it
is very fast to prototype algorithms in the language. As the purpose of this
thesis is only to test different methods for number of distance computations
and disk access, the runtime speed of the program was not a major prior-
ity. Because code written in Python is relatively slow compared to several
other languages, the algorithms should probably be implemented in a more
suitable language, like C++, to optimize more for speed.

For optimization of the running time, Psyco [Rig04] was used, which is a
kind of a just-in-time (JIT) compiler for Python, although the author claims
it more of a just-in-time specializer.

4.2 Algorithms

This sections describes the actual implementation of the algorithms used in
the tests. This includes what is actually implemented, what changes are
made from the theoretical versions, optimizations done to speed up search
and limitations of the implementations.

4.2.1 VP-tree

Both the version from [Uhl91] and [Yia93] are implemented to test if the
improvement in the later really have that much to say when compared to
other indexing structures. The first one just takes a random sample from
the list of data objects and uses it as a vantage point. The second one
uses a random function to decide which samples are to be included in the
sample sets (the getSamples(S) function), as seen in Algorithm 2.7.2. If the
random number is higher than the given threshold, the sample is included
in the list.

57

The lower the threshold, the better the vantage point should be, and
therefore, in theory, a more optimal tree should be built. But because of the
higher building cost because of the extra distance computations needed, the
question is if this is really worth it, and if so, where the threshold should be.

4.2.2 MVP-tree

The implementation done for the tests in this thesis follows the algorithm
described in [BO97] and [BO99], implementing all the optimization consid-
ering reductions in distance computations. This means that, except for the
necessary distance computations between the query object and each of the
vantage points in each node visited, no other distance computations are
made until it is made sure that the leaf nodes can not be filtered out by the
already computed distances.

There is one difference between the range search algorithm used here and
the one in [BO97], because the algorithm given there prunes out subtrees
that could hold potential nodes within the search range. This is because it
excludes all subtrees where the spherical cut made by the range around the
query object isn’t completely inside the space given by the vantage points
and medians. This has several problems, the most obvious being that a lot
of objects will be pruned out even if they are well within the range of the
search object. This results in the odd behavior that increasing the search
range will in several occurrences decrease the number of data objects found.
Therefore it will be used a slightly modified version here where all subtrees
containing potential subtrees will be searched. But it is to be noted that
the same algorithm is repeated in [BO99], this could be an error in the
interpretation of the algorithm

For some reason no version of the object-pivot constraint (see Section
2.5.1) is used in [BO97] for directly including nodes in the MVP-tree when
doing range searches. This was used in the original VP-tree in [Uhl91],
and could be able to save some distance computations there because the
nodes below the median can directly included if the criterion is satisfied
without actually computing the distances. Because this should work just
as well in the MVP-tree, the implementation used in this thesis includes it.
Therefore, if distance(p, q)+median ≤ range, the subtree below the median
is directly included. This is done when checking against both pivot nodes
in this implementation of the MVP-tree, and should be able to save some
distance computations, especially when the range is large and the nodes
clustered together.

4.2.3 M-tree

In [CPRZ97] they propose several promotion algorithms for picking new
pivot nodes when nodes have to be split because they are full. Out of the

58

ones discussed, the mMRAD algorithm gives the best results. This algorithm
considers all possible pairs of objects to check which pivots that minimizes
the maximum of the two radii. How the objects are partitioned amongst
the two pivots are determined by the partitioning algorithm, and here the
generalized hyperplane method gives the best results. While this way to
promote gives some very good results, it is also computationally expensive,
as the time complexity is O(n3). But because this algorithm was, according
to [CPRZ97], this is the only one of the originally proposed algorithms that
is implemented in this thesis, along with the random one used as reference.

As discussed in Section 2.7.4, [TTSF00] proposes another promoting al-
gorithm based on the well-known Minimum Spanning Tree (MST). Also as
noted, 2.7.4 shows that this gives almost as good results as the mMRAD
algorithm, but is much faster to compute thanks to the time complexity of
only O(n2 ∗ log(n)). Because of these good results, MST partitioning is also
implemented. There are a lot of different algorithms proposed for creating
MSTs, where the most commonly used are Prim’s and Kruskal’s algorithms.
In this implementation, Prim’s algorithm is used, but any algorithm that
produces a MST can be used. See [MS94] for a detailed discussion about
various types of MST algorithms and how effective they are, both in the-
ory and implementation. However, unless an extreme fan-out is used, this
should not have much to say.

It is to be noted that as we only look at the number of distance computa-
tions and disk I/O (see Section 3.4), the improved running time of the MST
algorithm will not be shown in our results. But as the MST algorithm also
needs O(n2) distance computations for building the graph, and according to
[TTSF00], does not partition the data quite as well as the mMRAD algo-
rithm, the MST algorithm will actually show up a bit worse in the results
here. Therefore it is important to remember the limitations of the test in
this thesis when considering a partitioning algorithm based on these results,
as the MST algorithm could be better in practice, analogous to the good old
quicksort vs. mergesort problem.

Just as with the MVP-tree, no reason was found why there is not any
automatic inclusion of objects on a pivot level when doing range search in the
M-tree. Because the upper bound of the objects beneath a routing object is
known, it is possible to check whether all nodes beneath the routing objects
have to be within search range by using Lemma 2.5.2 from the Pivot-Range
Distance Constraint (Section 2.5.1). This has been implemented, and should
be able to save some distance computations when the range grows because,
as the range grows, the number of nodes that can be directly included should
grow as well. As the algorithm in [CPRZ97] has no way of using the extended
range to make the search more effective, this could be of help. See Section
5.4 for a comparison between one using this improvement and one that does
not.

59

4.2.4 Deletion in the M-tree

As discussed in Section 2.7.3, the authors of the M-tree released no delete
algorithm for it. Because a delete algorithm was needed to make the proper
comparisons in this thesis, several options where considered for the imple-
mentation to make deletions possible.

The simplest version is to just delete the object from the leaf node and
leave everything as it is. This could result in trees with a lot of empty leaf
nodes, and this could result in slow tree traversal because the tree would
consist of more nodes than necessary, and could also result in unbalanced
trees.

A probably better method is the one used in the original R-tree [Gut84],
and also in some of the other versions of it like the R*-tree ([NBS90]), where
the entire node is deleted if there are less than M/2 objects left in it after a
deletion, where M is the maximum number of objects that can be stored in
a node. Then objects that where left in the deleted node are inserted into
a list R. After that, the algorithm proceeds all the way to the root node.
When the root node is reached, all objects in R are inserted into the tree
with the normal insert algorithm. The pseudo code for the slightly changed
version to suit the M-tree can be seen in procedure 4.2.1. This algorithm is
used in this implementation of the M-tree. The algorithm for the condense
operation is shown in procedure 4.2.2.

One problem with deletion is to actually find the desired node. The
split algorithm could do so that the closest node to the target object is no
longer the right path to traverse, because it changes the pivot objects in the
node after insertion. Therefore several branches may need to be searched.
Because of this, the algorithm traverses the subtree with the closest distance
first, and then tries the next one. If no subtree is found which the object
could be in according to Lemma 2.5.2, the algorithm backtracks. Sadly this
leads to increased delete time, and a more direct access method would have
been preferred.

To promote a new routing object in the condense algorithm, this thesis
uses a minimum radius function that chooses the object that gives the least
radius, or range, as the new pivot object. Just like the mMRAD algorithm,
this needs O(n2) distance computations, but the partitioning should be very
good considering the performance of the mMRAD algorithm in [CPRZ97].
To see how much this has to say, a random algorithm has also been imple-
mented. While this should lead to worse query performance, it does not
need any distance computations. And finally, the option of just ignoring to
update the routing object is given. Because the routing object is more or
less ideal in the first place, and the nodes are deleted once the number of
nodes is less than M/2, where M is the fan-out, constantly updating the
routing object could be a waste of distance computations. But if this is
done, the range is still adjusted to make sure it is not larger than it needs

60

Algorithm 4.2.1: delete(N : node,DO : deleteObject) for deleting
objects from the the M-tree.

Data: Node N and object to delete DO
Result: The tree without the object
begin1

if N is leaf then2

N = N − DO3

condenseTree(N)4

if N is root and N.numberOfChildren() == 1 then5

root = Oi.node | ∃Oi ∈ N6

end7

end8

else9

Op = N.parent10

O = ∀Oj ∈ N
∣

∣ |distance(Op,DO) − distance(Oj , Op)| ≤11

Oj .radius
sort(O)12

while notfound do13

Oj = next(O)14

delete(Oj .node,DO)15

end16

end17

end18

to be. As all the distances are stored already, this does not increase the
number of distance computations.

4.3 General Balanced Trees

The algorithms for the GBT variants are implemented more or less exactly
as they are described in Chapter 3.

One difference from the implementation and the theory is that [And99]
claims that no extra information has to be stored in the nodes, just the
global values for the height and the number of free nodes v. While this
is indeed possible, it has one very big disadvantage. When searching for
partial rebuilds, the height insertion path has to be checked against the v
of the nodes. The problem is that there is no way of knowing exactly how
many free nodes there are underneath the node in interest without doing an
exhaustive search if there is no information stored about it anywhere, which
in turn would cause a very large number of unnecessary disk I/O. Therefore,
in this implementation, the value v is stored in every node to make sure that
no extra searching has to be done. While this will increase the size of the

61

Algorithm 4.2.2: condenseTree(N : node) for removing underfilled
nodes.

Data: Node N
Result: A condensed tree
begin1

X = N2

R = ∅3

while X is not root do4

Op = X.parent5

Np = Op.parent6

if X contains less than M/2 entries then7

Np.children = Np.children − X8

R = R + {X}9

end10

else11

promote(Opn)12

Np.replace(Op, Opn)13

end14

X = Np15

end16

forall Ri ∈ R do17

insert(Ri)18

end19

end20

nodes, the reduce in disk I/O while searching will hopefully make up for
it. The value for v is updated when an insertion, deletion or rebuilding has
happened. The nodes in question are updated when the recursion is backing
up toward the root after the desired operation has been performed.

Both the delete methods described in Sections 3.2 and 3.3 are imple-
mented. While the algorithm that has automatic rebuild on deletion of
internal nodes does not have a lot of maintenance functions, it could still be
interesting to see the difference between a completely naive algorithm that
is completely dependent on the rebuilding by the GB criteria and one that
tries to reduce the problem to some extent on its own.

4.4 Counting of Distances and disk I/O

The number of distance computations are simply stored in a global variable,
and each time the distance function is called it is incremented by one. This
way the results will show the actual number of distance computations, not
the theoretical number. Therefore it is very important that no more distance

62

computations are made than what is absolutely required. The algorithms
have been tuned to reduce this number, but it could be that a few more are
done than the minimum possible.

Because the tree structures are implemented in such a high level language
as Python it is difficult to measure the number of disk accesses on a hardware
level. Therefore a simpler scheme is implemented here. Just like with the
distance computations a global counter is used. For each search the counter
is reset and whenever a node is visited for the first time, this counter is
incremented by one. When backtracking through an already visited node
the counter is not incremented because it is presumed that the object is now
in main memory as well as in secondary, and therefore no disk access has to
be made.

As can be seen, a big fan-out is very useful because reading a node will
include all the objects stored in it. In other words, the more objects stored
in the node, the more objects will be read for ”free” each time a node is
read. When determining the fan-out in practice it is important to scale the
number of nodes so that the node will stay paged. This means that the more
complex the keys for the data objects are, the more space they will occupy,
which again means that fewer objects can be stored in each node. The result
is that as the number of dimensions grow, the smaller the fan-out will be.

This is not directly taken into account here, so the numbers serve more
for testing than practical implementation. The maximum fan-out a node
can have will be determined by the implementation and the properties of
the data objects. For a discussion on about benchmarking of trees, see
[PZB06].

4.5 Test Sets

The synthetic feature vectors used for the L2 metric distance function all
have values 0 ≤ x ≤ 1 for each dimension. For the uniformly distributed
test sets, all variables are simply given a value determined by the random
function in Python for each dimension.

For the clustered data sets, a number of cluster centers are first randomly
generated, where the number of cluster centers are given in advance. Then
the actual data objects are created from these. This is done by randomly
assigning each data object to one of the clusters, and then adding a small
uniformly distributed variable between some range, like [−1, 1]. This method
takes inspiration from [BO99].

The data sets used for the edit distance function is taken from the the
International Ispell word list [Kue93]. Ispell is a spell-checker for Unix. The
list used here is the is contained in the file ’english.3’, and it contains 19708
different English words. The test sets are created by picking the preferred
number of random words from this list, and making sure that no word is

63

picked more than once.
When doing insertion in the static trees, just one data set is generated

and the tree is built from them. This is done a bit differently with the
dynamic trees. First, an initial set of data objects are generated using the
above method, and the trees are built using it, and stores a list containing
all the objects in the trees. Then, there is a random chance for there being
an insertion or a deletion. For insertion, a new data object is generated and
inserted into all the trees, and this data object is then added to the list of
the objects in the trees. When a deletion is done, a random sample is picked
from the list of data objects in the trees and is then deleted from all the trees
in the test. The object is also removed from the list. This is done a given
number of times. It is important that every tree in the test will contain the
same objects at any time.

4.6 Correctness

To make sure that the answers retrieved from the queries are indeed the the
correct ones, every algorithm has been tested against linear scan algorithms
for correctness, and are only used if they give the correct answer on every
test. That means that every range search should return every value within
range, and ever KNN-search should return the k nearest neighbors every
time. As well as being thoroughly tested in advance, most tests done where
the results are used in this thesis include a linear scan on every query to make
sure that there are no errors. However, some of the more computationally
heavy tests do not include this because of the extreme expense of doing a
linear scan on the set of data objects for every query, so these algorithms
have only been tested in advance on similar datasets.

64

Chapter 5

Results

5.1 Test Set

The test sets where created in the way described in Section 4.5. The results
of the distance distributions for clustered data sets are shown in Figure 5.1
for 10 dimensions and 5.2 for 30 dimensions, while uniformly distributed are
shown in Figure 5.3 and Figure 5.4. The slight skew is due to a rounding
error.

The clustered data sets have to spikes. The one with the smallest mean
distance is for the data objects within the cluster, while the one further away
are for the rest of the objects. Notice how the distances converges toward
the two means when the number of dimensions grows. This is related to the
curse of dimensionality (Section 2.1.1), and makes it harder to prune out
objects because the variance in distance decreases. This means that more
objects will have to be checked directly against, because the constraints for
using the parent-pivot distances (described in Section 2.5.1) will not work
as well. See [CNBYM01] for a detailed discussion of this problem. Also note
how the average distance grows along with the number of dimensions, which
also leads to reduced pruning.

More or less the same applies for the uniformly distributed data objects,
except that here there is only one spike because of the lack of clustered
objects. Also notice how the average distance is longer for uniformly dis-
tributed data than for the clustered data when using the same number of
dimensions. Just like with the change from 10 to 30 dimensions, this makes
search harder, because this will lead to increased size of ball regions around
the pivots which again leads to worse pruning.

If nothing else is mentioned, the sets used in the tests are clustered data
sets in 10 dimensions, with 1000 initial elements and 20000 either insert or
delete operations, where there is a 75% chance of insert and 25% chance of
delete.

65

−1 0 1 2 3 4

0

1 · 105

2 · 105

3 · 105

4 · 105

Figure 5.1: Distance distribution with 10 dimensions using 20 cluster centers.

−2 0 2 4 6

0

2 · 105

4 · 105

6 · 105

Figure 5.2: Distance distribution with 30 dimensions using 20 cluster centers.

5.2 Vantage Point Tree

The basic implementation of the VP-tree, described in [Uhl91], has a con-
stant number of distance computations needed to build the tree for each
set of objects. The implementation described in [Yia93], on the other side,
has one major factor that determines how many distance computations are
needed for building the tree, and that is the how many values you include
with the getSamples() function. Because you have to find the median for
each of the objects being picked by this function, there will be a lot of extra
distance computations used for finding the best possible vantage point if
a lot of samples are used. The higher the value, the better the chance of

66

−1 0 1 2 3 4

0

1 · 105

2 · 105

3 · 105

Figure 5.3: Distance distribution with 10 dimensions using uniformly dis-
tributed data objects.

−2 0 2 4 6

0

2 · 105

4 · 105

6 · 105

Figure 5.4: Distance distribution with 30 dimensions using uniformly dis-
tributed data objects.

finding the best vantage point, but the cost in building rises fast. Figures
5.5, 5.6, 5.7 and 5.8 shows the difference between random picking, 5% and
25%. Please note that, as this is ment more as a guidence for what is the
best choice rather than a real comparison, these where not tested on the
exact same datasets, just random datasets generated in the same way.

It is clear from Figures 5.5.1, 5.6.1, 5.7.1 and 5.8.1 that there are not
much to save on distance computations when using a high sampling rate for
finding a better vantage point than when just using the random method.
And, considering that this is a VP-tree, the same is of course true for the

67

0

100

200

300

400

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

0 5 · 103 1 · 104 1.5 · 104

Data objectsData objects

random

0.05

0.25

5.5.1: Distance computations

0

100

200

300

400

D
is

k
a
cc

es
se

s
D

is
k

a
cc

es
se

s

0 5 · 103 1 · 104 1.5 · 104

Data objectsData objects

random

0.05

0.25

5.5.2: Disk IO

Figure 5.5: Range search in a VP-tree with a range of 0.1 in 10 dimensions.

number of disk accesses. This is probably because, at least on clustered
data, there are very many good candidates to be chosen as good vantage
points. Therefore, it does not really matter that much which one is chosen.

But one very interesting thing that can bee seen in Figure 5.7.1 and
5.8.1 is that a range of 0.3 performs much worse than 0.5 when it comes to
distance computations, but much better when it comes to disk I/O. This
is because of the Range-Pivot Distance Constraint (see Section 2.5.1 and
Lemma 2.5.2), because, when the range is increased, the number of objects
directly included is increased as well. While this does not make up for the
number of nodes that must be searched between a range of 0.2 and 0.3, it

68

0

500

1000

1500

2000
D

is
ta

n
ce

co
m

p
u
ta

ti
o
n
s

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

0 5 · 103 1 · 104 1.5 · 104

Data objectsData objects

random

0.05

0.25

5.6.1: Distance computations

0

500

1000

1500

2000

D
is

k
a
cc

es
se

s
D

is
k

a
cc

es
se

s

0 5 · 103 1 · 104 1.5 · 104

Data objectsData objects

random

0.05

0.25

5.6.2: Disk IO

Figure 5.6: Range search in a VP-tree with a range of 0.2 in 10 dimensions.

certainly does between 0.3 and 0.5. However, as can be seen in Figure 5.8.2,
a range of 0.5 finds more or less every single object, and it can be argued
how interesting that is.

But what is really interesting here is the build cost, shown in Figure 5.9.
Note first that the cost of building a VP-tree has nothing to do with the
number of dimensions, which is because the list is just divided in two and
no search for a vantage point is done. Therefore the curse of dimensionality
has no effect on the build cost. But because the VP tree is going to be used
in a dynamic data structure where partial and complete rebuilding is used a
lot, the build time is very important in order to keep a functional dynamic

69

0

2000

4000

6000

8000

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

0 5 · 103 1 · 104 1.5 · 104

Data objectsData objects

random

0.05

0.25

5.7.1: Distance computations

0

2000

4000

6000

8000

D
is

k
a
cc

es
se

s
D

is
k

a
cc

es
se

s

0 5 · 103 1 · 104 1.5 · 104

Data objectsData objects

random

0.05

0.25

5.7.2: Disk IO

Figure 5.7: Range search in a VP-tree with a range of 0.3 in 10 dimensions.

tree. And, as can be seen in Figure 5.9, the rise in build cost is enormous. It
should therefore be safe to say that, considering that there is not even much
gain in search time between the three, the cost in actually maintaining a tree
is just too great to actually be of interest for the GBVP-tree. Therefore,
from here on, only the random selection method will be used.

5.3 Multiple Vantage Point Tree

As mentioned in section 4.2.2, an important property of the MVP-tree is
the ability to set the value k for how many data objects a leaf node will

70

0

1000

2000

3000

4000
D

is
ta

n
ce

co
m

p
u
ta

ti
o
n
s

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

0 5 · 103 1 · 104 1.5 · 104

Data objectsData objects

random

0.05

0.25

5.8.1: Distance computations

0

5 · 103

1 · 104

1.5 · 104

D
is

k
a
cc

es
se

s
D

is
k

a
cc

es
se

s

0 5 · 103 1 · 104 1.5 · 104

Data objectsData objects

random

0.05

0.25

5.8.2: Disk IO

Figure 5.8: Range search in a VP-tree with a range of 0.5 in 10 dimensions.

contain. While there are also options for increasing the fan-out of internal
node, as described in Section 4.2.2, is not used here. Using the algorithm
described in [BO97], the build cost is dependent on one thing, and that is
the number used for k. This is, first of all, because k determines the height
of the tree. The more objects that can be put in the buckets in the leaf
nodes, the shorter the tree will be, and therefore less partitioning must be
done. However, on the leaf level, the optimal second vantage point is found
compared to the first vantage point, so there is a little extra cost there.

The trees in Figure 5.10 shows the differences between the build time
with k = 10 and k = 80.

71

103

104

105

106

107

108

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

0 5 · 103 1 · 104 1.5 · 104

Data objectsData objects

random

0.05

0.25

Figure 5.9: Build costs for building VP-trees.

0

5 · 104

1 · 105

1.5 · 105

2 · 105

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

0 5 · 103 1 · 104 1.5 · 104

Data objectsData objects

k10

k80

Figure 5.10: Building the tree with k = 10 and k = 80.

As can seen, the number of distance computations for building the tree is
slightly better when using a higher value for k. This is because a high value
for k means more objects in the leaves and therefore the height is lower. This
means less distance computations used for dividing the data objects around
pivot objects, and therefore less distance computations. This is partly made
up for by the fact that it takes more distance computations to find the second
pivot object in a leaf node than in an internal node, but as we can see, there
still a slight difference.

Next up is the actual search for query objects. Figures 5.11, 5.12, 5.13

72

and 5.14 shows the range search for k = 10 and k = 80 and with the number
of dimensions set to 10 and 30. Figure 5.15 shows the KNN-search for the
same trees. Note again that the trees are not the same, and neither are the
search objects, but they have been randomly generated by the same method,
and the method described in Section 3.4.5 have been used to minimize the
random errors.

The results for a range of 0.1, as can be seen in Figure 5.11, are not very
interesting, because, as can be seen in Figure 5.11.3, hardly any objects are
found at all. What is worth noting, though, is that for 30 dimensions the
number of distance computations are quite a bit worse even when no objects
are found. But as the number of disk I/O stays the same, this is probably
because it is easier to filter out the leaf nodes using pivot filtering (Lemma
2.5.5) when the number of dimensions is small.

The results for a range of 0.2 (Figure 5.12) can be a bit surprising at
first, because for both distance computations (Figure 5.12.1), and to a lesser
extent, disk I/O (Figure 5.12.2), the tree using 10 dimensions performs worse
than the tree using 10 dimensions. But the explanation can be seen in
Figure 5.12.3, as the tree using 30 dimensions simply finds no objects here
either, which probably results in fewer sub-trees being investigated because
of filtering higher up in the tree. It is also becoming easy to see how a high
value for k can have an impact on disk I/O, as the higher number of objects
in the leaf nodes makes for few nodes that have to be accessed. A high value
for k could also have an impact on the number of disc accesses, but it is very
minimal.

The results for a range of 0.3 (Figure 5.13) are a bit different from that
found with a range of 0.2. The number of distance computations, as seen
in Figure 5.13.1, is still very similar between a k of 10 and 80, but now also
the number of distance computations for 30 dimensions is actually higher
for that of 10, even though the number of objects found (Figure 5.13.3) is
still very small for 30 dimensions with compared with 10, so it is evident
that the curse of dimensionality (Section 2.1.1) is beginning to show up. It
is also worth mentioning that k = 10 is now actually just edging out k = 80
when it gets to distance computations, which could be because more objects
are directly included from the pivot nodes because of the higher range. But,
as seen in Figure 5.13.2, the number of disk I/O is still quite a bit smaller
for k = 80 than for k = 10, again due to the fact that fewer nodes have to
be accessed.

As can be seen in Figure 5.14, the trend continues. The number of
distance computations (Figure 5.14.1 are now a lot smaller because of the
higher automatic inclusion in internal nodes because of Lemma 2.5.2. Be-
cause more or less every node is included in the search (Figure 5.14.3), the
curse of dimensionality does not show up here, as every node has to be ac-
cessed or directly included anyways. But the difference in disk I/O (Figure
5.14.2) becomes enormous when the number of objects gets close to 15000.

73

0

200

400

600

800

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

0 5 · 103 1 · 104 1.5 · 104

Data objectsData objects

d10k10

d30k10

d10k80

d30k80

5.11.1: Distance computations

0

100

200

300

400

D
is

k
a
cc

es
se

s
D

is
k

a
cc

es
se

s

0 5 · 103 1 · 104 1.5 · 104

Data objectsData objects

d10k10

d30k10

d10k80

d30k80

5.11.2: Disk I/O

0

0.2

0.4

0.6

O
b
je

ct
s

fo
u
n
d

O
b
je

ct
s

fo
u
n
d

0 5 · 103 1 · 104 1.5 · 104

Data objectsData objects

d10k10

d30k10

d10k80

d30k80

5.11.3: Objects found

Figure 5.11: Range search in MVP-trees with k = 10 and k = 80 in 10 and
30 dimensions with range 0.1.

74

0

200

400

600

800

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

0 5 · 103 1 · 104 1.5 · 104

Data objectsData objects

d10k10

d30k10

d10k80

d30k80

5.12.1: Distance computations

0

100

200

300

400

D
is

k
a
cc

es
se

s
D

is
k

a
cc

es
se

s

0 5 · 103 1 · 104 1.5 · 104

Data objectsData objects

d10k10

d30k10

d10k80

d30k80

5.12.2: Disk I/O

0

200

400

600

800

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

0 5 · 103 1 · 104 1.5 · 104

Data objectsData objects

d10k10

d30k10

d10k80

d30k80

5.12.3: Objects found

Figure 5.12: Range search in MVP-trees with k = 10 and k = 80 in 10 and
30 dimensions with range 0.2.

75

0

2000

4000

6000

8000

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

0 5 · 103 1 · 104 1.5 · 104

Data objectsData objects

d10k10

d30k10

d10k80

d30k80

5.13.1: Distance computations

0

1000

2000

3000

4000

D
is

k
a
cc

es
se

s
D

is
k

a
cc

es
se

s

0 5 · 103 1 · 104 1.5 · 104

Data objectsData objects

d10k10

d30k10

d10k80

d30k80

5.13.2: Disk I/O

0

1000

2000

3000

O
b
je

ct
s

fo
u
n
d

O
b
je

ct
s

fo
u
n
d

0 5 · 103 1 · 104 1.5 · 104

Data objectsData objects

d10k10

d30k10

d10k80

d30k80

5.13.3: Objects found

Figure 5.13: Range search in MVP-trees with k = 10 and k = 80 in 10 and
30 dimensions with range 0.3.

76

0

2000

4000

6000

8000

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

0 5 · 103 1 · 104 1.5 · 104

Data objectsData objects

d10k10

d30k10

d10k80

d30k80

5.14.1: Distance computations

0

2000

4000

6000

D
is

k
a
cc

es
se

s
D

is
k

a
cc

es
se

s

0 5 · 103 1 · 104 1.5 · 104

Data objectsData objects

d10k10

d30k10

d10k80

d30k80

5.14.2: Disk I/O

0

5 · 103

1 · 104

1.5 · 104

O
b
je

ct
s

fo
u
n
d

O
b
je

ct
s

fo
u
n
d

0 5 · 103 1 · 104 1.5 · 104

Data objectsData objects

d10k10

d30k10

d10k80

d30k80

5.14.3: Objects found

Figure 5.14: Range search in MVP-trees with k = 10 and k = 80 in 10 and
30 dimensions with range 0.5.

77

0

2000

4000

6000

8000

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

0 5 · 103 1 · 104 1.5 · 104

Data objectsData objects

d10k10

d30k10

d10k80

d30k80

5.15.1: Distance computations

0

1000

2000

3000

D
is

k
a
cc

es
se

s
D

is
k

a
cc

es
se

s

0 5 · 103 1 · 104 1.5 · 104

Data objectsData objects

d10k10

d30k10

d10k80

d30k80

5.15.2: Disk I/O

Figure 5.15: KNN-search in MVP-trees with k = 10 and k = 80 in 10 and
30 dimensions with a KNN value of 10.

The gigantic spike is because the number of nodes needed for a new level in
the tree is reached. Having 80 objects in the leaf means that the tree will
fill up a lot slower, and therefore the spike will happen a lot later. In other
words, this difference should just grow and grow as the number of objects
in the tree gets larger.

When looking at distance computations for the KNN-search (Figure
5.15), the curse of dimensionality becomes quickly apparent, as both the
tests running on 30 dimensions performs much worse than both the ones on
10 dimensions. Interestingly, the number of child nodes, being it k = 10 or
k = 80, has nothing to say at all. This probably means that it converges
toward the a close approximation of the best number of matches pretty fast.
It is also clear that the difference between 10 and 30 dimensions will grow
even more as the number of data objects grows. Sadly, this means that the
MVP does not scale very well when the number of dimensions grow, and
the number of distance computations needed will probably grow close to a
linear scan if the number of dimensions increases further. However, when
looking at disk I/O (Figure 5.15.2), it is clear that the number of objects a
child node can include have a huge impact on the number of disk accesses
needed for a KNN-search. It is also clear that the spikes are worse for 30
dimensions than they are for 10, so there can be raised questions about how
well the MVP-tree scales in this area as well.

The results of the tests are clearly that a higher value for k is a good
thing, as more data objects included with the child nodes leads to far less
disk I/O, while the number of distance computations is more or less equal for
anything but really large search ranges. However, there can be raised severe
questions about how well the MVP-tree scales as the number of dimensions
rises. While a higher k will delay the inevitable rise in disk I/O needed for
searches, this will sooner or later rise as well.

78

0

2.5 · 103

5 · 103

7.5 · 103

1 · 104

1.25 · 104
D

is
ta

n
ce

co
m

p
u
ta

ti
o
n
s

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

0.1 0.2 0.3 0.4 0.5

RangeRange

with

without

Figure 5.16: Range search in a M-tree showing the effect of the automatic
inclusion from the Pivot-Range Distance Constraint.

5.4 M-tree

The Pivot-Range Distance Constraint using Lemma 2.5.2, as described in
Section 4.2.2, was implemented for the M-tree. To see if it has any noticeable
effect at all on the M-tree, a test was performed to compare the the methods
against each other. This is done on the exact same trees, but using the
automatic inclusion in one of the range searches and not in the other. The
effect can be seen in Figure 5.16, and, while it is clear that it has not exactly
got an extreme effect on the performance of the M-tree, it does improve the
search by a noticeable amount when the search radius gets large. And as
the M-tree is not exactly known to scale too well when the range gets larger
(see [PZB06] for some results), the inclusion of Lemma 2.5.2 does at least
make the M-tree a bit more competitive in this area.

In section 4.2.2 it was also described that several different promote and
partition algorithms where implemented for the M-tree. As the random
selection of pivot objects during promotion did very badly on the initial tests,
the algorithm was dropped for the actual tests shown here. The mMRAD
algorithm and the MST algorithm where however used, and the results of
range search using the algorithms on clustered data can be seen in Figure
5.17, while the results from the building and KNN-search can be seen in
Table 5.1 and 5.2. As can be seen in Figure 5.17.2, the mMRAD partitioning
algorithm does indeed partition the elements quite a bit better than the MST
algorithm when it gets to distance computations, while disk I/O (Figure
5.17.2 is more even, with mMRAD being better on lower ranges and the
MST better on higher. The results from the uniformly distributed data is
shown in the appendix (Figure A.1), and even if the difference is not as

79

0

5 · 103

1 · 104

1.5 · 104

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

0.1 0.2 0.3 0.4 0.5

RangeRange

mst d10

mst d30

mmrad d10

mmrad d30

5.17.1: Distance computations

0

1000

2000

3000

D
is

k
a
cc

es
se

s
D

is
k

a
cc

es
se

s

0.1 0.2 0.3 0.4 0.5

RangeRange

mst d10

mst d30

mmrad d10

mmrad d30

5.17.2: Disk I/O

Figure 5.17: Range search in a M-tree using the MST and mMRAD promo-
tion algorithms in 10 and 30 dimensions on clustered data using a fan-out
of 10.

clear there, it is still notable. KNN-search was also notably better for the
mMRAD algorithm, both in distance computations and disk I/O. However,
the build cost is surprisingly lower for the MST algorithm, which could be
partly explained by the lower average tree height. This means that the MST
probably creates a more balanced tree than the mMRAD algorithm, but, as
[CPZ97] showed, balanced is not always better. While it is hard to say which
one is best, the mMRAD algorithm was chosen for use in the rest of the tests
because of the better search results.

To see how the fan-out of the M-tree have an impact on search perfor-
mance, a test was done using different fan-outs. Surprisingly, using a high
fan-out provided extremely slow running time, which prevented the test from

80

Algorithm Dimensions Distance computations Height

MST 10 16136566 5.0
MST 30 15779262 5.0
mMRAD 10 17447868 5.1
mMRAD 30 22913110 6.0

Table 5.1: Building cost of M-trees using the MST and mMRAD algorithms
using a fan-out of 10.

Algorithm Dimensions Distance computations Disk I/O

MST 10 3523.633 1289.366
MST 30 6259.925 1725.570
mMRAD 10 2618.120 617.809
mMRAD 30 5694.433 1323.319

Table 5.2: KNN-search in M-trees using the MST and mMRAD algorithms
using a fan-out of 10.

using high values on any meaningful number of data objects, but the results
seems to indicate some convergence, so it may not have a huge impact. But
a fan-out of 2, 10, 20 and 30 was tested, and the results of the range search
for 10 dimensions are shown in Figure 5.18, while the build cost are shown
in Table 5.3 and the KNN-search in Table 5.4. Not surprisingly, a fan-out of
only 2 did far worst, both in distance computations (Figure 5.18.1) and disk
I/O (Figure 5.18.2), while 20 does a bit better than 10 and 30 a little bit
better than 20. Surprisingly, a fan-out of 30 uses a few more distance com-
putation than a fan-out on 20 on the KNN-search, but it is notably better
in regards of disk I/O. The build costs are also lower for a higher fan-out.
The conclusion is that a higher fan-out, at least as high as has been tested
here, is indeed a good thing. But, considering how small the improvements
between a fan-out of 20 and 30 are, this probably converges. However, there
could be a more to gain when the fan-out is high enough for the height of
the tree to be reduced by one more often than with a fan-out of 30, which
with its average height of 3.9 is only 0.1 better than a fan-out of 20.

5.5 General Balanced Vantage Point Tree

As the General Balanced Vantage Point Tree (GBVP-tree) is a dynamic
structure, the main point was to try to test its dynamic capabilities. As
it was already concluded in Section 5.2 that only the randomized version
would be practical a dynamic structure, it is the only one used here. The
main test method was to first bulk load the tree with some initial elements,

81

0

1 · 104

2 · 104

3 · 104

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

0.1 0.2 0.3 0.4 0.5

RangeRange

fo2

fo10

fo20

fo30

5.18.1: Distance computations

0

1 · 104

2 · 104

3 · 104

D
is

k
a
cc

es
se

s
D

is
k

a
cc

es
se

s

0.1 0.2 0.3 0.4 0.5

RangeRange

fo2

fo10

fo20

fo30

5.18.2: Disk I/O

Figure 5.18: Range search in a M-tree for different fan-outs in 10 dimensions
on clustered data.

Fan-out Distance computations Height

2 155527828 23.3
10 17444112 5.3
20 11859002 4.0
30 11796590 3.9

Table 5.3: Building costs for M-trees using different fan-outs on clustered
data in 10 dimensions.

82

Fan-out Distance computations Disk I/O

2 10632.929 8132.106
10 2524.599 594.749
20 2199.902 276.510
30 2228.295 187.549

Table 5.4: KNN-search in M-trees using different fan-outs on clustered data
in 10 dimensions.

before starting to insert and delete objects as described in Section 4.5. After
a given number of insertions and deletions, range search and KNN-search is
performed on the tree.

First of all, some experimentation with different values of k was done.
While this should give more or less the same results as the tests on the
MVP-tree (Section 5.3),

Some experimentations was also done with the b and c values that in-
fluences when a GB-tree is rebuilt. Results where 75% insertions and 25%
deletetions are done are shown in Figures 5.19 and 5.20. Table 5.7 shows
the same results in a more readable format, while Table 5.5 shows the build
costs and heights and Table 5.6 shows the KNN-search. Determening what
values should be given to b and c is not trivial, especially c, as a high value
for c will mean many complete rebuilds but very few partial, while a low
value will give the opposite effeft. As b only influences on the number of
total rebuilds it is easier to dermine the value, but without some experimen-
tation it is hard to say what is the best balance between total and partial
rebuilds. Please not that the automatic inclusion of subnodes that have to
be within range was turned off for this particular test. While this shouldn
not have any impact on the results in this test, this means the results here
should not be directly compared against any other test in this thesis. This
also means that the values for distance computations and disk I/O will be
the same, and therefore only one is shown.

As can be seen from Figure 5.19, changing the value of b has got a slight
effect, but not by much. As seen in Table 5.7, it is the delete method using
marking that suffers the most as the value for b gets larger, even though,
as Table 5.5 shows, the numbers of partial rebuildings due to the GBT
criteria are far higher than for the one using rebuilding. But the fact that
the ones using rebuilding still have a lot more distance computations than
suggests that a lot of rebuilding is done because of the deletion of internal
nodes, and this in the end leads to both a better result but at the cost of
an increased number of distance computations during building. However,
both methods still use a large number of partial rebuildings, while hardly
any total rebuildings, which is because the value for c is so low. A larger
value for c would probably lead to a worse result for the mark method.

83

0

5 · 103

1 · 104

1.5 · 104

2 · 104

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

0.1 0.2 0.3 0.4 0.5

RangeRange

dm0b0.5c1.1

dm1b0.5c1.1

dm0b1.0c1.1

dm1b1.0c1.1

dm0b1.5c1.1

dm1b1.5c1.1

Figure 5.19: Range search in GBVP-trees with c = 1.1 and different values
for b. Initial number of objects was 1000 and 30000 was inserted/deleted.

0

5 · 103

1 · 104

1.5 · 104

2 · 104

2.5 · 104

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

0.1 0.2 0.3 0.4 0.5

RangeRange

dm0b1.0c1.1

dm1b1.0c1.1

dm0b1.0c1.6

dm1b1.0c1.6

dm0b1.0c2.0

dm1b1.0c2.0

Figure 5.20: Range search in GBVP-trees with b = 1.0 and values 1.1, 1.6
and 2.0 for c. Initial number of objects was 1000 and 30000 was insert-
ed/deleted.

More or less the same is true for Figure 5.20, where there, just like
with the changes of b, there is just a slight difference between the different
versions. However, there is a larger gap here, as the fact that as c gets
no partial rebuilding due to the GBT-criteria is done. As can be seen in
Table 5.5, the height difference between trees using the two different delete
methods gets much larger when the partial rebuildings stop. This shows
much better how the GBT rebuilding influences the trees than before, as it

84

DM b c Dist comp Tot reb Part reb Height

Rebuilding 0.5 1.1 3613100 1.6 766.3 16.0
Mark 0.5 1.1 3568020 1.2 1426.0 16.0
Rebuild 1.0 1.1 2301954 0.0 877.9 16.0
Mark 1.0 1.1 1768444 0.0 1962.1 16.6
Rebuild 1.5 1.1 2243548 0.0 890.4 16.0
Mark 1.5 1.1 1695818 0.0 1944.8 16.7
Rebuild 1.0 1.6 1710514 0.0 0.1 20.4
Mark 1.0 1.6 906040 0.0 29.7 24.0
Rebuild 1.0 2.0 2004332 1.0 0.0 19.7
Mark 1.0 2.0 902922 0.0 0.0 27.9

Table 5.5: Building cost of GBVP-trees with different values for b and c.
Initial number of objects was 1000 and 30000 was inserted/deleted.

DM b c Dist Comp/Disk I/O

Rebuilding 0.5 1.1 3756.714
Mark 0.5 1.1 3671.471
Rebuild 1.0 1.1 3628.518
Mark 1.0 1.1 3901.629
Rebuild 1.5 1.1 3553.222
Mark 1.5 1.1 3913.219
Rebuild 1.0 1.6 3587.378
Mark 1.0 1.6 4592.849
Rebuild 1.0 2.0 3763.263
Mark 1.0 2.0 4527.828

Table 5.6: KNN-search in GBVP-trees with different values for b and c.
Initial number of objects was 1000 and 30000 was inserted/deleted.

is clear that performance in the tree using marking decreases. However, it is
also indicated just how much the rebuilding due to internal deletion can say
for a tree, as the the ones using that delete method does not grow much in
height at all. The cost difference of building the trees also gets much larger,
and both are expectedly less expensive to build when GBT rebuilding no
longer happens. The fact that the trees using rebuilding on delete performs
just as well on the average range search when no GBT rebuilding happens is
quite interesting when considering the fact that it is less expensive to build.
The average height is a bit higher, but it does not seem to matter much.
As usual, the KNN-search follows more or less the exact same trend as the
range search did, with worse results for the trees using marking for larger
values of c.

85

DM b c r0.1 r0.2 r0.3 r0.4 r0.5

Rebuild 0.5 1.1 383.7 2021.9 8105.1 14686.7 16045.9
Mark 0.5 1.1 376.1 2022.5 8239.0 15008.9 16413.7
Rebuild 1.0 1.1 397.6 2056.2 8115.1 14682.6 16046.3
Mark 1.0 1.1 391.3 2093.7 8615.1 15711.6 17187.9
Rebuild 1.5 1.1 353.2 1932.7 8025.1 14671.3 16046.7
Mark 1.5 1.1 385.4 2115.1 8657.4 15781.7 17261.7
Rebuild 1.0 1.6 381.8 2033.7 8112.9 14681.9 16047.0
Mark 1.0 1.6 428.5 2403.0 10114.4 18677.6 20517.6
Rebuild 1.0 2.0 397.3 2039.4 8112.1 14692.1 16046.3
Mark 1.0 2.0 401.2 2335.4 10100.8 18742.6 20575.7

Table 5.7: Range search showing average values in GBVP-trees with different
values for b and c. The ranges are from 0.1-0.5 (marked r0.1-r0.5). Initial
number of objects was 1000 and 30000 was inserted/deleted.

DM b c r0.1 r0.2 r0.3 r0.4 r0.5

Rebuild 0.5 1.1 1642 8518 15956 16318 16318
Mark 0.5 1.1 1712 8736 17294 17729 17729
Rebuild 1.0 1.1 1873 8645 15914 16318 16318
Mark 1.0 1.1 1747 9678 17871 18226 18226
Rebuild 1.5 1.1 1415 8594 15921 16318 16318
Mark 1.5 1.1 1658 9827 17866 18248 18248
Rebuild 1.0 1.6 1607 8814 15942 16318 16318
Mark 1.0 1.6 2089 10851 20276 20761 20761
Rebuild 1.0 2.0 1669 8857 15847 16318 16318
Mark 1.0 2.0 1772 10757 20243 20796 20796

Table 5.8: Range search showing the worst values in GBVP-trees with dif-
ferent values for b and c. The ranges are from 0.1-0.5 (marked r0.1-r0.5).
Initial number of objects was 1000 and 30000 was inserted/deleted.

The worst case results of the same test is given in Table 5.8. This shows
more or less the same results as the ones for the average case, but again it is
interesting to see how close the trees with rebuilding on deletion of internal
nodes do when the value for c grows. It is also interesting to see how fast
they converge into an upper bound, which makes them even more even. This
do not happen for the trees using marking, where the worst case gets worse
along with the average results.

To get a closer look at how much the delete algorithm influences the
results, a test where only insertions were done was made. The results of
the building is shown in Table 5.9, while the results of the range search is

86

0

5 · 103

1 · 104

1.5 · 104
D

is
ta

n
ce

co
m

p
u
ta

ti
o
n
s

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

0.1 0.2 0.3 0.4 0.5

RangeRange

No rebuild

Rebuild

Figure 5.21: Range search in a GBVP-tree with c = 1.2 and values 1.0,
1.5 and 2.0 for b. Initial number of objects was 1000 and 20000 was insert-
ed/deleted.

Balanced Distance computations Total rb Partial rb Height

No 628464 0.0 0.0 27.7
Yes 914212 0.0 802.2 18.0

Table 5.9: Building cost of the GBVP-tree with and without rebuilding using
only insertions.

shown in Figure 5.21 and KNN-search in Table 5.10. As can be seen from
the results, the difference in height is there indeed, with the average of the
maximum height of the trees shrinking from 27.7 to 18.0 when rebuilding
is turned on. However, when looking at the average number of distance
computations, there is not any difference at all. However, the KNN-search
does improve a bit for the balanced tree compared to the unbalanced.

The result of the tests is that the trees are indeed more balanced when
using the GBT criteria. However, the results are not overly positive for the
GBVP-tree when it actually comes to query results, as there is hardly any

Balanced Distance computatations

No 4596.066
Yes 4196.411

Table 5.10: KNN-search of the GBVP-tree with and without rebuilding
using only insertions.

87

k Distance computations Total rebuilds Partial rebuilds Height

2 1254886 0.0 0.6 16.2
10 1232240 0.5 0.0 14.0
80 1819274 12.1 0.0 10.0

Table 5.11: Building cost of GBMVP-trees with different values for k with
1000 initial objects and 20000 insert/delete operations.

improvement at all. This was especially concerning for the last test, where
the trees using no rebuilding at all performs just as well as a trees using it.

5.6 General Balanced Multiple Vantage Point Tree

There is one initial problem with testing the GBMVP-tree, and that is set-
ting the right value for k. Because, if the number for k is large, it means
that a lot of objects are in each leaf node, and therefore the height of the
tree grows slower. That, in turn, means less use for partial rebuilds. Table
5.11 shows the build costs for building trees with k = 2, k = 10 and k = 80,
as well as information about rebuildings and the heights of the trees. The
number of distance computations and disk I/O using range search can be
seen in Figure 5.22. For this test was done on clustered data, and used
b = 1.0 and c = 1.2.

As can be seen in Figure 5.22.1, the number of distance computations
for the various values of k are very similar. k = 80 is quite a bit worse when
the range is high, which is probably due to the lower height giving less use
for the Object-Pivot Constraint, and k = 2 is slightly worse when the range
is low. However, as can be seen in Figure 5.22.2, the number of disk accesses
varies wildly, with k = 80 having the lowest number of disc accesses by far,
but this should not be surprising considering the results in Section 5.3.

While the figures in themselves do not give any particular new informa-
tion, it is interesting when looking at the build costs in table 5.11. As can be
seen, neither k = 2 or k = 10 used many rebuilds at all, and therefore gained
quite similar results as what can be seen in Section 5.3, where a higher value
for k gives a slight boost in build efficiency. k = 80, on the other side, used
many total rebuilds, which resulted in a very high average build cost. This
is probably because the tree grows so slow that the number of deletions gets
very high compared to the number of free children in the tree. This will lead
the formulas described in Section 2.8 to initiate a complete rebuild faster if
the growth of the tree is slow, although the number of partial rebuilds will
go down. This is an unfortunate property with the GBMVP-tree in this
regard, because it means it is more difficult to adapt a MVP-tree to the
GBT paradigm than a VP-tree. However, the fact that the increase in build

88

0

2.5 · 103

5 · 103

7.5 · 103

1 · 104

1.25 · 104

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

0.1 0.2 0.3 0.4 0.5

RangeRange

k2

k10

k80

5.22.1: Distance computations

0

2000

4000

6000

D
is

k
a
cc

es
se

s
D

is
k

a
cc

es
se

s

0.1 0.2 0.3 0.4 0.5

RangeRange

k2

k10

k80

5.22.2: Disk I/O

Figure 5.22: Range search in GBMVP-trees with k = 2, k = 10 and k = 80
in 30 dimensions with range 0.1 − 0.5.

time did not give it a better average search time was not a good sign for the
GBMVP-tree.

A similar test was done on 100000 samples on both clustered and uni-
formly distributed data, and the results are shown in Section A.2.2. In this
test, the higher values for k gave a bit more gain than when only using 20000,
suggesting that the difference will only grow as the number of objects do.
The two delete methods where also tested, but turned out to perform more
or less equal.

One interesting question is if the lack of improved search results when
regarding distance computations was because of the different values for k
or because the slight difference in height does not matter that much. Just

89

0

2000

4000

6000

8000

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

0.1 0.2 0.3 0.4 0.5

RangeRange

dm0b0.5c1.1

dm1b0.5c1.1

dm0b1.0c1.1

dm1b1.0c1.1

dm0b1.5c1.1

dm1b1.5c1.1

5.23.1: Distance computations

0

500

1000

1500

D
is

k
a
cc

es
se

s
D

is
k

a
cc

es
se

s

0.1 0.2 0.3 0.4 0.5

RangeRange

dm0b0.5c1.1

dm1b0.5c1.1

dm0b1.0c1.1

dm1b1.0c1.1

dm0b1.5c1.1

dm1b1.5c1.1

5.23.2: Disk I/O

Figure 5.23: Range search in GBMVP-trees for different values of b, with
c = 1.1. The data is clustered and in 10 dimensions.

like with the GBVP-tree, the GBMVP-tree was tested with several different
values for b and c to see if they could change the number of rebuilds, and
how this again can change the search costs. Table 5.14 shows the results of
building, and it is clear that the build cost rises heavily when the number
of rebuilds grows. Because of k = 25, the tree grew so slow that only total
rebuilds happened. Some height improvement is seen in the trees using
balancing, and the results of the range search in Figure 5.23 and Figure 5.24
shows that there is indeed some for some of the trees, but is only only visible
on high ranges. As expected, the KNN-search in Table 5.15 indicates that
the delete method using marking does best when the number of rebuilds are
high, while the method using rebuilding gets an advantage when b is higher,
which makes the tree make less total rebuilds.

90

0

2000

4000

6000

8000

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

0.1 0.2 0.3 0.4 0.5

RangeRange

dm0b1.0c1.1

dm1b1.0c1.1

dm0b1.0c1.5

dm1b1.0c1.5

dm0b1.0c2.0

dm1b1.0c2.0

5.24.1: Distance computations

0

500

1000

1500

D
is

k
a
cc

es
se

s
D

is
k

a
cc

es
se

s

0.1 0.2 0.3 0.4 0.5

RangeRange

dm0b1.0c1.1

dm1b1.0c1.1

dm0b1.0c1.5

dm1b1.0c1.5

dm0b1.0c2.0

dm1b1.0c2.0

5.24.2: Disk I/O

Figure 5.24: Range search in GBMVP-trees for different values of c, with
b = 1.0. The data is clustered and in 10 dimensions.

To test the importance of the delete algorithm, two trees using the two
different delete algorithms where tested against each other. As described in
Section 3.3, the first one of these two methods uses rebalancing when one
of the pivot objects (vantage points) are deleted, while the second one only
marks the the node as deleted. Included in the test are also two trees using
the two deletion algorithms, but these trees use no GB balancing at all. In
other words, the first of the two trees using no GBT balancing only receives
its balancing when internal nodes are deleted, while the second method has
no balancing at all. To get the tree high enough to see any real results, a
value for k as low as 2 was used. The result of the range search on clustered
data in 10 dimensions can be seen in Figure 5.25, while the building costs
and heights can be seen in Table 5.16 and the results of the KNN-search in

91

DM b c r0.1 r0.2 r0.3 r0.4 r0.5

Rebuild 0.5 1.1 267.2 1320.5 5055.1 7335.8 3590.0
Mark 0.5 1.1 244.6 1281.0 5014.1 7268.4 3482.3
Rebuild 1.0 1.1 255.5 1318.9 5186.8 7592.9 3756.7
Mark 1.0 1.1 259.3 1335.9 5203.8 7613.2 3798.4
Rebuild 1.5 1.1 248.8 1307.9 5213.7 7648.3 3825.6
Mark 1.5 1.1 262.0 1358.4 5254.8 7709.9 3921.9
Rebuild 1.0 1.5 270.4 1332.8 5156.5 7509.3 3683.0
Mark 1.0 1.5 272.7 1355.1 5219.7 7577.2 3772.5
Rebuild 1.0 2.0 265.7 1299.9 5004.5 7242.3 3521.9
Mark 1.0 2.0 276.218 1323.8 5015.9 7283.5 3613.1

Table 5.12: Range search showing average distance computation values in
GBMVP-trees with different values for b and c. The ranges are from 0.1-0.5
(marked r0.1-r0.5). Done on clustered data in 10 dimensions.

DM b c r0.1 r0.2 r0.3 r0.4 r0.5

Rebuild 0.5 1.1 901 5276 10068 10340 9134
Mark 1.0 1.1 810 5186 10126 10190 8974
Rebuild 1.0 1.1 998 5434 10465 10386 9322
Mark 1.0 1.1 865 5389 10542 10416 9135
Rebuild 1.5 1.1 868 5446 10451 10465 9236
Mark 1.5 1.1 977 5637 10535 10547 9345
Rebuild 1.0 1.5 909 5296 10563 10266 9152
Mark 1.0 1.5 954 5415 10531 10264 9270
Rebuild 1.0 2.0 953 5220 10027 9987 8899
Mark 1.0 2.0 804 5220 10449 9944 8988

Table 5.13: Range search showing the worst values in GBVP-trees with
different values for b and c. The ranges are from 0.1-0.5 (marked r0.1-r0.5).
Done on clustered data in 10 dimensions.

Table 5.17.

As can be seen, there is a very slight improvement for both the num-
ber of distance computations (Figure 5.25.1) and disk I/O (Figure 5.25.2)
for the trees using the GBT rebuilding, but the increase is not exactly dra-
matic. Expectedly, there is some rise in the cost of building the trees as
well, although, just like the distance computations, it is not dramatic either.
Surprisingly, the average height of the method using no rebalancing was ac-
tually lower than the one using it on delete. The same was also true when
running a test with k = 4 (Figure A.5, Table A.1 and Table A.2). However,
it does not apply for the trees using the GBT rebalancing, where the average

92

DM b c Dist comp Tot reb Part reb Height

0 0.5 1.1 989684 6.4 0.0 12.0
1 0.5 1.1 989824 6.3 0.0 12.0
0 1.0 1.1 559976 1.0 0.0 14.0
1 1.0 1.1 558308 1.0 0.0 14.0
0 1.5 1.1 494408 0.0 0.0 14.0
1 1.5 1.1 494854 0.0 0.0 14.0
0 1.0 1.5 672622 2.7 0.0 13.0
1 1.0 1.5 640208 2.6 0.0 13.8
0 1.0 2.0 951624 5.3 0.0 12.0
1 1.0 2.0 951624 5.3 0.0 12.0

Table 5.14: Building cost of GBMVP-trees showing how different values for
b andc can influence the build cost. Done on clustered data in 10 dimensions.

DM b c Dist comp Disk I/O

Rebuild 0.5 1.1 2236.944 509.323
Mark 0.5 1.1 2228.294 500.980
Rebuild 1.0 1.1 2233.220 480.472
Mark 1.0 1.1 2262.824 483.025
Rebuild 1.5 1.1 2291.732 455.578
Mark 1.5 1.1 2189.255 452.942
Rebuild 1.0 1.5 2165.155 481.652
Mark 1.0 1.5 2312.922 496.121
Rebuild 1.0 2.0 2191.281 500.384
Mark 1.0 2.0 2202.600 509.915

Table 5.15: KNN-search in GBMVP-trees showing how different values for b
andc can influence the build cost. Done on clustered data in 10 dimensions.

BT rebuild Delete method Dist comp Tot reb Part reb Height

No Rebuild 570846 0.0 0.0 22.0
No Mark 570930 0.0 0.0 21.2
Yes Rebuild 648976 0.0 15.6 18.4
Yes Mark 631952 0.0 10.2 19.2

Table 5.16: Building cost of GBMVP-trees showing how the General Bal-
anced Trees (BT) and delete methods can change the build cost and height
of the trees.

93

0

2.5 · 103

5 · 103

7.5 · 103

1 · 104

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

0.1 0.2 0.3 0.4 0.5

RangeRange

bt0dm0

bt0dm1

bt1dm0

bt1dm1

5.25.1: Distance computations

0

2000

4000

6000

8000

D
is

k
a
cc

es
se

s
D

is
k

a
cc

es
se

s

0.1 0.2 0.3 0.4 0.5

RangeRange

bt0dm0

bt0dm1

bt1dm0

bt1dm1

5.25.2: Disk I/O

Figure 5.25: Range search in GBMVP-trees on clustered data using GBT
rebuilding and no rebuilding (bt) and delete methods (dm, where 0 is with
rebuilding when deleting pivot objects and 1 is with marking) and k = 2.

BT rebuild Delete method Dist comp Disk I/O

No Rebuild 3369.632 1849.009
No Mark 3291.13 1800.374
Yes Rebuild 3149.643 1717.498
Yes Mark 3111.619 1702.302

Table 5.17: KNN search costs for GBMVP-trees showing how the General
Balanced Trees (BT) and delete methods can change the search costs.

94

height is slightly a little bit lower for the ones using rebalancing on delete.

5.7 Comparisons

Some tests where done where the three different dynamic structures where
set up against each other. All the three dynamic tree structures, the M-tree,
the GBVP-tree and the GBMVP-tree, were tested against each other using
the same datasets, insertions deletions and query objects. They where both
tested on tests using the L2 metric and the edit distance function. To make
each tree perform as well as it could, the parameters that were found to be
most impressive in the previous sections were used for each tree. However,
it is also important that the GBT rebuilding is actually used by any of the
trees in the test.

The GBVP-tree uses a random selection of vantage points to make sure
that the build costs stay within proportions. As a higher percentage did not
really give any advantage anyways, this should not have too much to say
on search performance. The GBMVP-tree was set to only k = 25. While a
higher value for k may have given better search performance, the value was
chosen for several reasons. Firstly, it is the value where most information
was known about how to set the b and c values. Secondly, it is because
k = 25 performed very well in the tests in Section 5.6 without having the
builds costs go through the roof.

Just like the GBMVP-tree, the M-tree uses a fan-out of 25, but here on
every level, not just the leaves. Considering the tests in Section 5.4, a the
results seemed to converge at around 25, so it should probably be a good
value while still have good run-time performance. It also uses the mMRAD
algorithm for promotion and generalized hyperplane for partitioning.

The results of the range search using the L2 metric is shown in Figure
5.26. As can be seen, the GBMVP-tree and the M-tree performs more
or less equal numbers of distance computations (Figure 5.26.1), while the
M-tree uses about half as much disk I/O. This is probably because the M-
tree uses a much larger fan-out on all levels, therefore reading many more
objects on each node access, which also results in a much lower tree (Table
5.18). According to Table 5.19, the KNN-search shows about the same, with
the M-tree having a slight lead in distance computations and under half as
many disk accesses, and the worst case (Table 5.20 follows the same trend).
The GBVP-tree performs just a little bit worse when looking at distance
computations, but, as expected, the disk I/O is much higher due to the fact
that only one object is read on each disk access and the fact that the tree is
much taller. However, when looking at the building costs (Table 5.18), the
M-tree is by far the most expensive, with the GBMVP-tree using over 10
times as few distance computations. That the difference was this big was
quite surprising.

95

0

2000

4000

6000

8000

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

0.1 0.2 0.3 0.4 0.5

RangeRange

MT

GBVPT

GBMVPT

5.26.1: Distance computations

0

5 · 103

1 · 104

1.5 · 104

D
is

k
a
cc

es
se

s
D

is
k

a
cc

es
se

s

0.1 0.2 0.3 0.4 0.5

RangeRange

MT

GBVPT

GBMVPT

5.26.2: Disk I/O

Figure 5.26: Range search using the L2 metric distance function on different
dynamic tree structures.

To see how much the delete algorithm for the M-tree influenced this,
a test using only inserts where done. The results of the building are seen
in Table 5.21, and while the M-tree does perform better compared to the
other structures, it still uses far more distance computations. Note that
the parameters for the GBVP-tree and GBMVP-tree where exactly not the
same as in Table 5.19, so a direct comparison can not be made. The rest of
the results from that test can be found in Appendix A.3.

Sadly, the edit distance search did not work very well, mostly due to the
fact that the using single words as keys turned out to not be discriminating
enough. As can be seen in Figure 5.27, when the search range increases, more
or less every object is checked and included in the search. The KNN-search

96

Tree Distance computations Height

M-tree 10193250 4.0
GBVPT 1432850 17.8
GBMVPT 986632 12.0

Table 5.18: Build costs and height for different dynamic trees using L2 metric
distance on clustered data in 10 dimensions.

Tree Distance computations Disk I/O

M-tree 2073.072 215.049
GBVPT 2962.537 2962.537
GBMVPT 2189.212 494.463

Table 5.19: KNN search for different dynamic trees using the L2 metric
distance on clustered data in 10 dimensions.

(Table 5.22) also confirms this. There is still some interesting results though,
as the GBMVP-tree beat the M-tree in the number of distance computations
when the range went up, with the GBVP-tree not far behind, and it also did
best in the KNN-search. This could however simply be from the fact that
the M-tree has more nodes than the other trees, which combined with the
fact that more or less every node in the tree is visited as no pruning is done,
means that the M-tree will do worse. Even so, the M-tree did best when
concerning disk I/O, but that could again be explained by the low height of
the tree. But, as can be seen in Table 5.22, the build costs for the M-tree
were once again extremely high compared to the other two trees.

Tree r0.1 r0.2 r0.3 r0.4 r0.5

M-tree 1157 6632 10269 10066 9500
GBVPT 1348 7425 9770 9786 8285
GBMVPT 1173 6732 9867 9802 9174

Table 5.20: Worst results for range search in different dynamic trees using
the L2 metric distance on clustered data in 10 dimensions.

97

Tree Distance computations Height

M-tree 2596576 4.0
GBVPT 639116 22.0
GBMVPT 568370 14.8

Table 5.21: Build costs and height for different dynamic trees using L2 metric
distance on clustered data in 10 dimensions.

6 · 103

7 · 103

8 · 103

9 · 103

1 · 104

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

3 3.5 4 4.5 5

RangeRange

M-tree

GBVP-tree

GBMVP-tree

5.27.1: Distance computations

0

2.5 · 103

5 · 103

7.5 · 103

1 · 104

D
is

k
a
cc

es
se

s
D

is
k

a
cc

es
se

s

3 3.5 4 4.5 5

RangeRange

M-tree

GBVP-tree

GBMVP-tree

5.27.2: Disk I/O

Figure 5.27: Range search using the edit distance function on different dy-
namic tree structures.

98

Tree Distance computations Height

M-tree 11161838 4.0
GBVPT 1500720 20.0
GBMVPT 610270 16.4

Table 5.22: Build costs and height for different dynamic trees using the edit
distance.

Tree Distance computations Disk I/O

M-tree 9301.2 879.2
GBVPT 9059.4 9059.4
GBMVPT 8973.8 978.2

Table 5.23: KNN search costs for GBMVP-trees showing how the General
Balanced Trees (BT) and delete methods can change the search costs.

99

Chapter 6

Discussion and Conclusion

6.1 Discussion

As can be seen from the results in Chapter 5, the results by using the
GB paradigm with standard metric trees had both promising and less than
promising results. While it is clear that the GB-paradigm do indeed reduce
the hight of the trees when used correctly, it is also clear that it is harder to
adapt the trees successfully to the new environment than initially thought,
and the actual improvements in search time were sadly minimal.

There are several reasons for why this does not work as good as expected,
and several runs down to the problems with similarity search. For a binary
search tree, the worst case search time for an exact search will always be the
maximum height of the tree. Therefore, it is very important for the tree to
stay balanced to reduce the worst case search. However, while determining
what the average search time is for a tree using both insertions and deletions
is far from trivial, [THCS01] gives a proof that the average search time of a
binary tree using only insertions will be log2(n), so the average search time
in a binary search tree will not be a good estimate of the effect of balancing
a binary search tree.

Similarity search in metric trees is a bit different. Because many of them,
including both the VP-tree and the MVP-tree includes a lot of randomization
during the building, and because of the branching during search due to
the nature of similarity search, determining what exactly is the worst case
search in a tree for a given range is a bit more difficult. While it is clear
that balancing is good, exactly how much impact does it have on both the
average search and the worst case performance?

The randomization has also got another disadvantage when it gets to
rebuilding, as there is no real way of knowing whether or not a rebuilt
tree will actually be better or not than the tree that was chosen for rebuild.
With a binary search tree, it can easily be made sure that, given the existing
objects, a perfect new tree can be made with little extra cost. This is not the

101

case with many metric tree structures, and especially trees like the VP-tree
which simply selects its vantage points on random. The tree could actually
go from having good vantage points to having really bad ones that do not
partition the data in any good way. But of course, as this is random, given
enough samples this should even out.

It is clear from the results in Chapter 5 that the GBT criteria do indeed
help to reduce the height of the trees, but no definite improvements were
found in either the average or the worst case performance. In this respect
the results where a failure. However, in theory, the worst case results were
indeed reduced, which is a success for the GBT paradigm.

The setting of the b and c variables turned out to be far from trivial as
well, and it looks like this must be adjusted for each tree structure. Also,
there is a question about how much a delete should count when the leaves can
have more than two data objects stored in them. Tests with the GBMVP-
tree (Section 5.6) showed that the number of total rebuildings got higher
along with k. This was because the tree grew very slow, and therefore the
criteria for total rebuilding is reached faster. However, this does not mean
that the tree needs the rebuilding more than a tree using a lower value for
k. In fact, it is the complete opposite, as a tree using the a lower value for k
will become unbalanced faster because it grows faster. For the same reason,
the number of partial rebuilds is reduced to nothing when k grows, which is
again due to the fact that the tree grows so slow compared to the number
of deletes. This could maybe be solved by giving the deletions a weight
dependent on the value of k, so a delete in tree where k is high should be
given a lesser weight than one where k is small. The same could also be
done for insertions, only in the opposite way.

One very interesting observation was how good the GBVP-tree and
GBMVP-tree performed compared to the M-tree. While the M-tree has
seen several improved versions over the years, it is still impressive for these
two experimental versions to perform almost just as well as this well-proven
tree. And, as the versions using no rebuilding did not perform much worse,
this may be an indication that even very simple dynamic versions of static
structures can perform almost as well as the more complicated originally
dynamic ones.

But finally, there is one very interesting question that is worth men-
tioning, and that is if these kinds of tree structures really are the best way
to structure a metric access method. First of all, non-tree based methods
like the hash based methods, including the SH [CGZ01], D-index [VDZ03]
and eD-index [DGZ03] have shown very promising results, and it is a bit
concerning when a simple structure like LC [CN00] can beat even the most
advanced of trees. Additionally, [CNBYM01] discusses how compact tree
structures probably is a better choice than pivot based tree structures when
the number of dimensions grows, which mean that the trees based on Gen-
eralized Hyperplane Partition will work better than the Ball Partitioning

102

methods like the VP and MVP-tree.

6.2 Conclusion

The General Balanced Trees paradigm [And99] was in this thesis tested out
on two different tree structures, the Vantage Point Tree and the Multiple
Vantage Point Tree, that are originally static metric tree structures. To
make this possible, the trees where extended to be dynamic trees with both
insert and delete methods. Instead of using complex criteria and methods
for how to balance these trees in a dynamic environment, the trees instead
used the simple global criteria from [And99], leading to total and partial
rebuilding of the trees when needed.

Creating dynamic trees from static structures proved to be non-trivial, as
several problems had to be overcome. The worst problem was how to handle
deletion, because internal nodes could not be removed or easily replaced in
neither the VP or the MVP-tree. Two different methods for deletion was
proposed and in this thesis, with one being more dependent on the rebuilding
by the GBT criteria than the other one. The result was that one one that
was heavily dependent performed when the parameters where set so that a
lot of rebuilding was done, while the other performed better when rebuilding
was less frequent.

Setting the b and c parameters also turned out to be a problem, as the
different trees had different characteristics, and the way the trees grow have a
large impact on how the parameters must be set. A property that especially
turned out to be a problem was the fan-out, because in trees growing slow
in height due to a high fan-out, either on every level or just in the leaves,
a delete will have a much greater impact on the global criteria than in one
growing fast. The result was that, even with c close to the minimum value 1,
some trees would more or less never do partial rebuilding. However, results
indicated that they did total rebuilds more often than needed.

Testing the trees showed that the trees did indeed become more balanced
when the GBT rebuilding was done. However, the tests also showed that
this did not improve search results by much. But a slight improvement was
found in several of the results, and this should improve even more if used
for large data sets than it was possible to use for this thesis.

After testing the GBVP-tree and GBMVP-tree to see how they per-
formed with different settings, the two trees where tested against the M-tree
to see how they were performed. Because the M-tree lacked a delete al-
gorithm, one based on the delete algorithm in R-trees was proposed and
implemented. The trees where tested on both vectors of real numbers using
the L2 metric distance function and English words using the edit distance
function under different conditions, testing both the abilities of performing
insertions and deletions. While the the GBVP-tree and the GBMVP-tree

103

did not perform any better than the M-tree, they did perform comparably
well, and the idea of how simple, global criteria can be used for rebalancing
metric trees instead of complex, local ones could be worth further investiga-
tion.

6.3 Future work

While the results from this thesis showed some promise for the GBT paradigm,
several problems needs to be solved for the paradigm to be used efficiently.
This including the problem with how to handle deletions, as the two ways
proposed in this thesis are probably not the optimal way to do it. Section
6.1 also implies that a Generalized Hyperplane based structure might be a
better idea than using ball partitioning, and it could be interesting to see
how one would perform.

There are several possibilities with the GBT paradigms that could be ex-
plored in order to create more efficient structures. First of all, the paradigms
in [And99] should be expanded into handle trees with a larger fan-out than
just binary trees. This should be able to improve the method by quite a bit,
because it has been shown that several metric tree structures can improve
when a larger fan-out is used. While the MVP-tree does quite a bit bet-
ter with a high value for k, [BO97] shows that a fan-out on internal nodes
improves the searching as well. The same is true for many other tree struc-
tures as well. Also, this could solve the problem encountered with the hybrid
MVP-tree used in this thesis.

Second, more state of the art structures should be joined with the GBT
paradigms to see if better dynamic tree structures can be created. While
the VP-tree and MVP-tree are structures that are frequently used as com-
parisons for other structures, and therefore gives a good indication of the
possibilities of a new structure, many other structures have later shown much
better results compared to them, with some of them mentioned in Section
2.6.

Finally, the values used for b and c, the two variables that affect when a
total and partial rebuild will happen, should be explored more. While some
experimentation has been done with different values in this thesis, it was
not very successful, and this is a matter which requires more investigation.

104

Bibliography

[And99] Andersson. General balanced trees. ALGORITHMS: Journal
of Algorithms, 30, 1999.

[AVL62] G. M. Adelson-Velskii and E. M. Landis. An algorithm for
the organization of information. 1962.

[Bay71] Rudolf Bayer. Binary b-trees for virtual memory. In E. F.
Codd and A. L. Dean, editors, Proceedings of 1971 ACM-
SIGFIDET Workshop on Data Description, Access and Con-
trol, San Diego, California, November 11-12, 1971, pages 219–
235. ACM, 1971.

[Bay72] Rudolf Bayer. Symmetric binary b-trees: Data structure and
maintenance algorithms. Acta Inf., 1:290–306, 1972.

[Bel61] Richard Bellman. Adaptive Control Processes : a Guided
Tour. Princeton University Press, 1961.

[BGRS99] Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and
Uri Shaft. When is “nearest neighbor” meaningful? Lecture
Notes in Computer Science, 1540:217–235, 1999.

[BK73] W. A. Burkhard and R. M. Keller. Some approaches to best-
match file searching. Communications of the ACM, 16(4):230–
236, April 1973.

[BKK96] Stefan Berchtold, Daniel A. Keim, and Hans-Peter Kriegel.
The X-tree: An index structure for high-dimensional data. In
T. M. Vijayaraman, Alejandro P. Buchmann, C. Mohan, and
Nandlal L. Sarda, editors, Proceedings of the 22nd Interna-
tional Conference on Very Large Databases, pages 28–39, San
Francisco, U.S.A., 1996. Morgan Kaufmann Publishers.

[BM72] Rudolf Bayer and Edward M. McCreight. Organization and
maintenance of large ordered indices. Acta Inf., 1:173–189,
1972.

105

[BO97] Tolga Bozkaya and Meral Ozsoyoglu. Distance-based indexing
for high-dimensional metric spaces. pages 357–368, 1997.

[BO99] Tolga Bozkaya and Meral Ozsoyoglu. Indexing large metric
spaces for similarity search queries. ACM Transactions on
Database Systems, 24(3):361–404, 1999.

[Bri95] Sergey Brin. Near neighbor search in large metric spaces. In
The VLDB Journal, pages 574–584, 1995.

[BY97] Ricardo Baeza-Yates. Searching: An algorithmic tour. In
Allen Kent and James G. William, editors, Encyclopedia of
Computer Science and Technology, volume 37, pages 331–359.
Marcel Dekker, Inc, 1997.

[BYCMW94] Ricardo A. Baeza-Yates, Walter Cunto, Udi Manber, and Sun
Wu. Proximity matching using fixed-queries trees. In CPM
’94: Proceedings of the 5th Annual Symposium on Combina-
torial Pattern Matching, pages 198–212, London, UK, 1994.
Springer-Verlag.

[CGZ01] Pasquale Savino Claudio Gennaro and Pavel Zezula. Similar-
ity search in metric databases through hashing. In Proceedings
of the 2001 ACM workshops on Multimedia: multimedia in-
formation retrieval, pages 1–5. ACM Press, 2001.

[Chi94] Tzi-cker Chiueh. Content-Based Image Indexing. In Proceed-
ings of the Twentieth International Conference on Very Large
Databases, pages 582–593, Santiago, Chile, 1994.

[CMN99] Edgar Chávez, José L. Marroqúın, and Gonzalo Navarro.
Overcoming the curse of dimensionality, 1999.

[CN00] E. Chávez and G. Navarro. An effective clustering algorithm
to index high dimensional metric spaces. In Proceedings of the
6th International Symposium on String Processing and Infor-
mation Retrieval (SPIRE’2000), pages 75–86. IEEE CS Press,
2000.

[CNBYM01] Edgar Chávez, Gonzalo Navarro, Ricardo Baeza-Yates, and
José Luis Marroqúın. Proximity searching in metric spaces.
ACM Computing Surveys, 2001. To appear.

[CP98] P. Ciaccia and M. Patella. Bulk loading the m-tree, 1998.

[CP00a] P. Ciaccia and M. Patella. Pac nearest neighbor queries: Ap-
proximate and controlled search in high-dimensional and met-
ric spaces. In Proceedings of the 16th International Conference
on Data Engineering (ICDE 2000), March 2000.

106

[CP00b] Paolo Ciaccia and Marco Patella. The m2-tree: Processing
complex multi-feature queries with just one index. In DELOS
Workshop: Information Seeking, Searching and Querying in
Digital Libraries, 2000.

[CPRZ97] Paolo Ciaccia, Marco Patella, Fausto Rabitti, and Pavel
Zezula. Indexing metric spaces with m-tree. In Sistemi Evolui
per Basi di Dati, pages 67–86, 1997.

[CPZ97] Paolo Ciaccia, Marco Patella, and Pavel Zezula. M-tree: An
efficient access method for similarity search in metric spaces.
In The VLDB Journal, pages 426–435, 1997.

[DGZ03] Vlastislav Dohnal, Claudio Gennaro, and Pavel Zezula. Sim-
ilarity join in metric spaces using ed-index. In DEXA, pages
484–493, 2003.

[Doh04] Vlastislav Dohnal. Indexing Structures for Searching in Metric
Spaces. PhD thesis, Masaryk University, February 2004.

[FsCCM00] Ada Wai-Chee Fu, Polly Mei shuen Chan, Yin-Ling Cheung,
and Yiu Sang Moon. Dynamic vp-tree indexing for n-nearest
neighbor search given pair-wise distances. VLDB Journal,
9(2):154–173, 2000.

[Gut84] Antonin Guttman. R-trees: A dynamic index structure for
spatial searching. In Proceedings of the 1984 ACM SIGMOD
international conference on Management of data, pages 47 –
57. ACM Press, 1984.

[HNP95] Joseph M. Hellerstein, Jeffrey F. Naughton, and Avi Pfeffer.
Generalized search trees for database systems. In Umeshwar
Dayal, Peter M. D. Gray, and Shojiro Nishio, editors, Proc.
21st Int. Conf. Very Large Data Bases, VLDB, pages 562–573.
Morgan Kaufmann, 11–15 1995.

[HSE+95] James Hafner, Harpreet S. Sawhney, Will Equitz, Myron
Flickner, and Wayne Niblack. Efficient color histogram in-
dexing for quadratic form distance functions. IEEE Trans.
Pattern Anal. Mach. Intell., 17(7):729–736, 1995.

[KM83] I. Kalantari and G. McDonald. A data structure and an algo-
rithm for the nearest point problem. IEEE Transactions on
Software Engineering, 9:631–634, 1983.

[KS00] Norio Katayama and Shin’ichi Satoh. Similarity image
retrieval with significance-sensitive nearest-neighbor search,
‘2000.

107

[Kue93] Geoff Kuenning. ispell-3.3.02.
http://www.lasr.cs.ucla.edu/geoff/ispell.html (Accessed
23.05.06), 1993.

[LCGMW02] C. Li, E. Chang, H. Garcia-Molina, and G. Wiederhold. Clus-
tering for approximate similarity search in high-dimensional
spaces, 2002.

[LJF94] King-Ip Lin, H. V. Jagadish, and Christos Faloutsos. The TV-
tree: An index structure for high-dimensional data. VLDB
Journal: Very Large Data Bases, 3(4):517–542, 1994.

[MOV94] Maria Luisa Micó, José Oncina, and Enrique Vidal. A new
version of the nearest-neighbour approximating and eliminat-
ing search algorithm (aesa) with linear preprocessing time
and memory requirements. Pattern Recogn. Lett., 15(1):9–17,
1994.

[MS94] B. Moret and H. Shapiro. An empirical assessment of algo-
rithms for constructing a minimum spanning tree, 1994.

[NBS90] Ralf Schneider Norbert Beckmann, Hans-Peter Kriegel and
Bernhard Seeger. The r*-tree: an efficient and robust access
method for points and rectangles. In Proceedings of the 1990
ACM SIGMOD international conference on Management of
data, pages 322 – 331. ACM Press, 1990.

[NR72] J. Nievergelt and E. M. Reingold. Binary search trees of
bounded balance. In Proceedings of the fourth annual ACM
symposium on Theory of computing, pages 137–142. ACM
Press, 1972.

[NS] Beomseok Nam and Alan Sussman. A comparative study
of spatial indexing techniques for multidimensional scientific
datasets.

[PZB06] Vlastislav Dohnal Pavel Zezula, Giuseppe Amato and Michal
Batko. Similarity Search - The Metric Space Approach.
Springer, 2006.

[PZR96] Paolo Ciaccia Pavel Zezula and Fausto Rabitti. M-tree: A
dynamic index for similarity queries in multimedia databases.
Technical report, Technical Report 7, HERMES ESPRIT LTR
Projects, 1996.

[Rig04] Armin Rigo. Representation-based just-in-time specialization
and the psyco prototype for python. In PEPM ’04: Pro-
ceedings of the 2004 ACM SIGPLAN symposium on Partial

108

evaluation and semantics-based program manipulation, pages
15–26, New York, NY, USA, 2004. ACM Press.

[Rot91] Gunter Rote. Computing the minimum hausdorff distance be-
tween two point sets on a line under translation. Information
Processing Letters, 38(3):123–127, 1991.

[Sko04] Tomas Skopal. Pivoting m-tree: A metric access method for
efficient similarity search, 2004.

[SW90] Dennis Shasha and Tsong-Li Wang. New techniques for best-
match retrieval, volume 8. ACM Press, April 1990.

[THCS01] Ronald L. Rivest Thomas H. Cormen, Charles E. Leiserson
and Clifford Stein. Introduction to Algorithms. The MIT
Press, 2nd edition, September 2001.

[TTSF00] Caetano Traina Jr., Agma Traina, Bernhard Seeger, and
Christos Faloutsos. Slim-Trees: High performance metric trees
minimizing overlap between nodes. Lecture Notes in Com-
puter Science, 1777:51–65, 2000.

[Uhl91] Jeffrey K. Uhlmann. Satisfying general proximity/similarity
queries with metric trees. Information Processing Letters,
40:175–179, 1991.

[USB98] J. Goldstein U. Shaft and K. Beyer. Nearest neighbors query
performance for unstable distributions. Technical report, Oc-
tober 1998.

[VDZ03] Pasquale Savino Vlastislav Dohnal, Claudio Gennaro and
Pavel Zezula. D-index: Distance searching index for metric
data sets. In Multimedia Tools and Applications, volume 21,
pages 9–33. Kluwer Academic Publishers, September 2003.

[XZY03] Jeffrey Xu Yu Xiangmin Zhou, Guoren Wang and Ge Yu.
M+-tree: a new dynamical multidimensional index for metric
spaces. In Proceedings of the Fourteenth Australasian database
conference on Database technologies 2003, volume 17, pages
161 – 168. Australian Computer Society, Inc., 2003.

[Yia93] Yianilos. Data structures and algorithms for nearest neighbor
search in general metric spaces. In SODA: ACM-SIAM Sym-
posium on Discrete Algorithms (A Conference on Theoretical
and Experimental Analysis of Discrete Algorithms), 1993.

[YMT96] Apostolos N. Papadopoulos Yannis Manolopoulos, Alexan-
der Nanopoulos and Yannis Theodoridis. R-Trees: Theory
and Application. Springer, 1996.

109

[ZWZY05] Xiangmin Zhou, Guoren Wang, Xiaofang Zhou, and Ge Yu.
Bm+-tree: A hyperplane-based index method for high-
dimensional metric spaces. In Lizhu Zhou, Beng C. Ooi, and
Xiaofeng Meng, editors, DASFAA, volume 3453, pages 398–
409. Springer, 2005.

110

Appendix A

Additional Results

This section contains results not included in Chapter 5 because they did
not add anything new to the table. Some are referred to for additional
information in Chapter 5, but many are here just for the interested reader
to be able to check more sides of the results of tests on the trees.

A.1 M-tree

A.1.1 MST vs. mMRAD

111

2.5 · 103

5 · 103

7.5 · 103

1 · 104

1.25 · 104

1.5 · 104

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

0.1 0.2 0.3 0.4 0.5

RangeRange

mst d10

mst d30

mmrad d10

mmrad d30

A.1.1: Distance computations

0

1000

2000

3000

4000

D
is

k
a
cc

es
se

s
D

is
k

a
cc

es
se

s

0.1 0.2 0.3 0.4 0.5

RangeRange

mst d10

mst d30

mmrad d10

mmrad d30

A.1.2: Disk I/O

Figure A.1: Range search in a M-tree using the MST and mMRAD promo-
tion algorithms in 10 and 30 dimensions on uniformly distributed data.

112

A.1.2 Different Fan-Outs

0

1 · 104

2 · 104

3 · 104

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

0.1 0.2 0.3 0.4 0.5

RangeRange

fo2

fo10

fo20

fo30

A.2.1: Distance computations

0

1 · 104

2 · 104

3 · 104

D
is

k
a
cc

es
se

s
D

is
k

a
cc

es
se

s

0.1 0.2 0.3 0.4 0.5

RangeRange

fo2

fo10

fo20

fo30

A.2.2: Disk I/O

Figure A.2: Range search in a M-tree for different fan-outs in 10 dimensions
on clustered data.

113

0

1 · 104

2 · 104

3 · 104

4 · 104

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

0.1 0.2 0.3 0.4 0.5

RangeRange

fo2

fo10

fo20

fo30

A.3.1: Distance computations

0

1 · 104

2 · 104

3 · 104

4 · 104

D
is

k
a
cc

es
se

s
D

is
k

a
cc

es
se

s

0.1 0.2 0.3 0.4 0.5

RangeRange

fo2

fo10

fo20

fo30

A.3.2: Disk I/O

Figure A.3: Range search in a M-tree for different fan-outs in 10 dimensions
on uniformly distributed data.

114

0

1 · 104

2 · 104

3 · 104

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

0.1 0.2 0.3 0.4 0.5

RangeRange

fo2

fo10

fo20

fo30

A.4.1: Distance computations

0

1 · 104

2 · 104

3 · 104

D
is

k
a
cc

es
se

s
D

is
k

a
cc

es
se

s

0.1 0.2 0.3 0.4 0.5

RangeRange

fo2

fo10

fo20

fo30

A.4.2: Disk I/O

Figure A.4: Range search in a M-tree for different fan-outs in 10 dimensions
on uniformly distributed data.

115

A.2 GBMVP-tree

A.2.1 Rebuilding

0

5 · 103

1 · 104

1.5 · 104

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

0.1 0.2 0.3 0.4 0.5

RangeRange

bt0dm0

bt1dm0

bt0dm1

bt1dm1

A.5.1: Distance computations

0

2.5 · 103

5 · 103

7.5 · 103

1 · 104

D
is

k
a
cc

es
se

s
D

is
k

a
cc

es
se

s

0.1 0.2 0.3 0.4 0.5

RangeRange

bt0dm0

bt1dm0

bt0dm1

bt1dm1

A.5.2: Disk I/O

Figure A.5: Range search in GBMVP-trees on clustered data using GBT
rebuilding and no rebuilding (bt) and delete methods (dm, where 0 is with
rebuilding when deleting pivot objects and 1 is with marking) and k = 4.

116

BT rebuild Delete method Dist comp Tot reb Part reb Height

No Rebuild 616024 0.0 0.0 21.0
No Mark 616718 0.0 0.0 20.2
Yes Rebuild 901990 0.0 2.2 17.4
Yes Mark 892500 0.0 2.1 17.6

Table A.1: Building cost of GBMVP-trees showing how the General Bal-
anced Trees (BT) and delete methods can change the build cost and height
of the trees.

BT rebuild Delete method Dist comp Disk I/O

No Rebuild 4046.34 1985.864
No Mark 3963.033 1948.41
Yes Rebuild 3827.003 1749.381
Yes Mark 3809.02 1752.832

Table A.2: KNN search costs for GBMVP-trees showing how the General
Balanced Trees (BT) and delete methods can change the search costs with
b = 0.5 and c = 1.2.

117

A.2.2 Different values for k

0

1 · 104

2 · 104

3 · 104

4 · 104

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

0.1 0.2 0.3 0.4 0.5

RangeRange

k2dm0

k2dm1

k10dm0

k10dm1

k25dm0

k25dm1

A.6.1: Distance computations

0

1 · 104

2 · 104

3 · 104

4 · 104

D
is

k
a
cc

es
se

s
D

is
k

a
cc

es
se

s

0.1 0.2 0.3 0.4 0.5

RangeRange

k2dm0

k2dm1

k10dm0

k10dm1

k25dm0

k25dm1

A.6.2: Disk I/O

Figure A.6: Range search in GBMVP-trees on clustered data in 10 dimen-
sions showing the difference between k = 2, k = 10 and k = 25 with the two
different delete methods.

118

k Delete method Dist comp Tot reb Part reb Height

2 Rebuild 3399264 0.0 50.1 23.4
2 Mark 3497070 0.0 37.6 22.4

10 Rebuild 3141390 0.1 1.0 19.6
10 Mark 3050950 0.0 0.0 20.4
25 Rebuild 3148720 2.0 0.0 16.0
25 Mark 3144748 2.0 0.0 16.0

Table A.3: Building cost of GBMVP-trees showing how the different val-
ues for k and delete methods can change the build cost and height of the
trees with b = 1.0 and c = 1.2. 1000 initial objects and 100000 objects
inserted/deleted and the number of dimensions is 10.

k Delete method Dist comp Disk I/O

2 Rebuild 8852.645 4874.354
2 Mark 8831.279 4857.166

10 Rebuild 6990.469 2248.051
10 Mark 7025.858 2257.199
25 Rebuild 5901.253 1164.662
25 Mark 5921.760 1169.121

Table A.4: KNN search costs for GBMVP-trees showing how the the differ-
ent values for k and delete methods can change the search costs with b = 1.0
and c = 1.2. 1000 initial objects and 100000 objects inserted/deleted and
the number of dimensions is 10.

k Delete method Dist comp Tot reb Part reb Height

2 Rebuild 3382508 0.0 105.5 24.4
2 Mark 3618810 0.0 70.0 22.4

10 Rebuild 3311586 0.1 0.8 20.0
10 Mark 3048420 0.0 0.1 20.2
25 Rebuild 3133380 2.0 0.0 16.0
25 Mark 3135446 2.0 0.0 16.0

Table A.5: Building cost of GBMVP-trees showing how the different val-
ues for k and delete methods can change the build cost and height of the
trees with b = 1.0 and c = 1.2. 1000 initial objects and 100000 objects
inserted/deleted and the number of dimensions is 30.

119

k Delete method Dist comp Disk I/O

2 Rebuild 24374.471 13100.876
2 Mark 23225.800 12102.937

10 Rebuild 20267.769 5102.676
10 Mark 20502.727 5224.53
25 Rebuild 18426.064 2427.647
25 Mark 18652.145 2470.522

Table A.6: KNN search costs for GBMVP-trees showing how the the differ-
ent values for k and delete methods can change the search costs with b = 1.0
and c = 1.2. 1000 initial objects and 100000 objects inserted/deleted and
the number of dimensions is 30.

k Delete method Dist comp Tot reb Part reb Height

2 Rebuild 3559784 0.0 94.8 23.0
2 Mark 3360336 0.0 81.8 23.6

10 Rebuild 3338250 1.8 1.3 19.4
10 Mark 3201248 1.6 1.4 19.6
25 Rebuild 3153868 10.1 0.0 16.0
25 Mark 3138070 9.8 0.0 16.0

Table A.7: Building cost of GBMVP-trees showing how the different values
for k and delete methods can change the build cost and height of the trees
with b = 1.0 and c = 1.2. 1000 initial objects and 100000 objects insert-
ed/deleted and the number of dimensions is 30 and the data is uniformly
distributed.

k Delete method Dist comp Disk I/O

2 Rebuild 24312.430 13225.097
2 Mark 25097.032 13966.604

10 Rebuild 18603.071 6010.079
10 Mark 18382.985 5998.635
25 Rebuild 16420.876 3093.605
25 Mark 16387.421 3087.385

Table A.8: KNN search costs for GBMVP-trees showing how the the differ-
ent values for k and delete methods can change the search costs with b = 1.0
and c = 1.2. 1000 initial objects and 100000 objects inserted/deleted and
the number of dimensions is 10 and the data is uniformly distributed.

120

0

2 · 104

4 · 104

6 · 104

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

0.1 0.2 0.3 0.4 0.5

RangeRange

k2dm0

k2dm1

k10dm0

k10dm1

k25dm0

k25dm1

A.7.1: Distance computations

0

1 · 104

2 · 104

3 · 104

4 · 104

D
is

k
a
cc

es
se

s
D

is
k

a
cc

es
se

s

0.1 0.2 0.3 0.4 0.5

RangeRange

k2dm0

k2dm1

k10dm0

k10dm1

k25dm0

k25dm1

A.7.2: Disk I/O

Figure A.7: Range search in GBMVP-trees on clustered data in 30 dimen-
sions showing the difference between k = 2, k = 10 and k = 25 with the two
different delete methods.

121

0

2 · 104

4 · 104

6 · 104

8 · 104

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

0.1 0.2 0.3 0.4 0.5

RangeRange

k2dm0

k2dm1

k10dm0

k10dm1

k25dm0

k25dm1

A.8.1: Distance computations

0

1 · 104

2 · 104

3 · 104

4 · 104

D
is

k
a
cc

es
se

s
D

is
k

a
cc

es
se

s

0.1 0.2 0.3 0.4 0.5

RangeRange

k2dm0

k2dm1

k10dm0

k10dm1

k25dm0

k25dm1

A.8.2: Disk I/O

Figure A.8: Range search in GBMVP-trees on uniformly distributed data
in 10 dimensions showing the difference between k = 2, k = 10 and k = 25
with the two different delete methods.

122

0

2.5 · 103

5 · 103

7.5 · 103

1 · 104

1.25 · 104

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

0.1 0.2 0.3 0.4 0.5

RangeRange

dm0b0.5c1.1

dm1b0.5c1.1

dm0b1.0c1.1

dm1b1.0c1.1

dm0b1.5c1.1

dm1b1.5c1.1

A.9.1: Distance computations

0

500

1000

1500

D
is

k
a
cc

es
se

s
D

is
k

a
cc

es
se

s

0.1 0.2 0.3 0.4 0.5

RangeRange

dm0b0.5c1.1

dm1b0.5c1.1

dm0b1.0c1.1

dm1b1.0c1.1

dm0b1.5c1.1

dm1b1.5c1.1

A.9.2: Disk I/O

Figure A.9: Range search in GBMVP-trees for different values of b, with
c = 1.1. The data is clustered and in 10 dimensions.

A.2.3 Different values for b and c

123

0

2.5 · 103

5 · 103

7.5 · 103

1 · 104

1.25 · 104

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

0.1 0.2 0.3 0.4 0.5

RangeRange

dm0b0.5c1.1

dm1b0.5c1.1

dm0b1.0c1.1

dm1b1.0c1.1

dm0b1.5c1.1

dm1b1.5c1.1

A.10.1: Distance computations

250

500

750

1000

1250

1500

D
is

k
a
cc

es
se

s
D

is
k

a
cc

es
se

s

0.1 0.2 0.3 0.4 0.5

RangeRange

dm0b0.5c1.1

dm1b0.5c1.1

dm0b1.0c1.1

dm1b1.0c1.1

dm0b1.5c1.1

dm1b1.5c1.1

A.10.2: Disk I/O

Figure A.10: Range search in GBMVP-trees for different values of b, with
c = 1.1. The data is clustered and in 10 dimensions.

124

0

2.5 · 103

5 · 103

7.5 · 103

1 · 104

1.25 · 104

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

0.1 0.2 0.3 0.4 0.5

RangeRange

dm0b0.5c1.1

dm1b0.5c1.1

dm0b1.0c0.1

dm1b1.0c0.1

dm0b1.5c0.1

dm1b1.5c0.1

A.11.1: Distance computations

0

500

1000

1500

D
is

k
a
cc

es
se

s
D

is
k

a
cc

es
se

s

0.1 0.2 0.3 0.4 0.5

RangeRange

dm0b0.5c1.1

dm1b0.5c1.1

dm0b1.0c1.1

dm1b1.0c1.1

dm0b1.5c1.1

dm1b1.5c1.1

A.11.2: Disk I/O

Figure A.11: Range search in GBMVP-trees for different values of b, with
c = 1.1. The data is clustered and in 10 dimensions.

125

0

2.5 · 103

5 · 103

7.5 · 103

1 · 104

1.25 · 104

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

0.1 0.2 0.3 0.4 0.5

RangeRange

MT

GBVPT

GBMVPT

A.12.1: Distance computations

0

5 · 103

1 · 104

1.5 · 104

D
is

k
a
cc

es
se

s
D

is
k

a
cc

es
se

s

0.1 0.2 0.3 0.4 0.5

RangeRange

MT

GBVPT

GBMVPT

A.12.2: Disk I/O

Figure A.12: Range search using the L2 metric distance function on different
dynamic tree structures on clustered data with 30 dimensions.

A.3 Comparisons

126

0

2.5 · 103

5 · 103

7.5 · 103

1 · 104

1.25 · 104

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

0.1 0.2 0.3 0.4 0.5

RangeRange

MT

GBVPT

GBMVPT

A.13.1: Distance computations

0

2.5 · 103

5 · 103

7.5 · 103

1 · 104

1.25 · 104

D
is

k
a
cc

es
se

s
D

is
k

a
cc

es
se

s

0.1 0.2 0.3 0.4 0.5

RangeRange

MT

GBVPT

GBMVPT

A.13.2: Disk I/O

Figure A.13: Range search using the L2 metric distance function on different
dynamic tree structures on uniformly distributed data with 10 dimensions.

127

0

5 · 103

1 · 104

1.5 · 104

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

0.1 0.2 0.3 0.4 0.5

RangeRange

MT

GBVPT

GBMVPT

A.14.1: Distance computations

0

5 · 103

1 · 104

1.5 · 104

2 · 104

2.5 · 104

D
is

k
a
cc

es
se

s
D

is
k

a
cc

es
se

s

0.1 0.2 0.3 0.4 0.5

RangeRange

MT

GBVPT

GBMVPT

A.14.2: Disk I/O

Figure A.14: Range search using the L2 metric distance function on differ-
ent dynamic tree structures on clustered data with 10 dimensions. Only
insertions were done.

128

0

5 · 103

1 · 104

1.5 · 104

2 · 104

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

0.1 0.2 0.3 0.4 0.5

RangeRange

MT

GBVPT

GBMVPT

A.15.1: Distance computations

0

5 · 103

1 · 104

1.5 · 104

2 · 104

2.5 · 104

D
is

k
a
cc

es
se

s
D

is
k

a
cc

es
se

s

0.1 0.2 0.3 0.4 0.5

RangeRange

MT

GBVPT

GBMVPT

A.15.2: Disk I/O

Figure A.15: Range search using the L2 metric distance function on differ-
ent dynamic tree structures on clustered data with 30 dimensions. Only
insertions were done.

129

0

5 · 103

1 · 104

1.5 · 104

2 · 104

2.5 · 104

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s

0.1 0.2 0.3 0.4 0.5

RangeRange

MT

GBVPT

GBMVPT

A.16.1: Distance computations

0

5 · 103

1 · 104

1.5 · 104

2 · 104

2.5 · 104

D
is

k
a
cc

es
se

s
D

is
k

a
cc

es
se

s

0.1 0.2 0.3 0.4 0.5

RangeRange

MT

GBVPT

GBMVPT

A.16.2: Disk I/O

Figure A.16: Range search using the L2 metric distance function on different
dynamic tree structures on uniformly distributed data with 10 dimensions.
Only insertions were done.

130

