
June 2006
Kjetil Nørvåg, IDI
Per Gunnar Auran, Yahoo! Technologies Norway AS

Master of Science in Computer Science
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

A generic and flexible Framework for
focusing Search at Yahoo! Shopping

Trond Øivind Eriksen
Anne Siri Korsen

Problem Description
Yahoo! Technologies Norway AS is developing a vertical search platform, Vespa, being used for
more than 40 of Yahoo!'s vertical search services. This thesis aims to improve the users'
perceived relevance when searching on Yahoo! Shopping. The proposed ideas should be
implemented as a Searcher plug-in in the Query-Result-Server (QRS) in Vespa. The QRS has a
chain of Java modules that modifies the query before it is sent to the search engine's back-end,
and the result set before it is sent to the front-end of the application.

The work includes a theoretic and a practical part:

Theoretic part
- General overview of ranking and relevance in search.
- Adjustment towards ranking of structured data and use of knowledge from database
environments.

Practical part
- Create a Searcher plug-in that analyses results from back-end and ranks the results in a way
that improves the user's perceived relevance.
- Document how the improved relevance is achieved.
- Describe if the implemented solution will scale to the most visited Yahoo! verticals.

Assignment given: 20. January 2006
Supervisor: Kjetil Nørvåg, IDI

Abstract

Information retrieval is concerned with extraction of documents from a collection, according to the
user’s information need. The ranking returned by a search engine is determined by the relevance
function in use. The amount of information stored digitally and being searched for on the Web,
grows every day. As the document bases grow, relevance has never been more important.

There is a trend towards domain-specific search solutions, vertical search services, in the case of
searching the Web. A vertical search service utilise semi-structured documents, i.e. documents
which contain metadata describing the content. Semi-structured information retrieval is a hybrid
between traditional information retrieval based on unstructured documents, and database retrieval
based on structured content. Semi-structured documents imply the use of multiple criteria for how
the returned documents should be ranked. This in turn arises questions like which criterion that
is more important, and how to combine the results produced by the different criteria. This thesis
addresses these challenges. We have studied relevance techniques for the purpose of identifying
an approach to improve the perceived relevance at the Yahoo! vertical search platform, Vespa. In
particular, Yahoo! Shopping has been the focus during problem elaboration, implementation, and
evalution.

A plug-in is implemented in Vespa, providing a generic and flexible framework for hybrid search.
Our solution allows for context queries, i.e. queries that include terms that describe the desired
context, with no specific knowledge about the query language or document structure needed.
Also, keyword and context terms in a query is treated differently, using the context terms only for
focusing the search.

5 experiments have been performed to test our proposed solution. The results indicate that:

• A considerable improvement in retrieval performance is achieved for context queries. Much
of the improvement is obtained by removing noisy hits from the result.

• The solution performs almost similar as the standard approach for non-context queries. How-
ever, these queries will suffer from a higher latency. The latency depends on the complexity
of the domain.

Most search engines today either return thousands of answers to a user query, or, in ∼ 20% of the
cases, none. Our solution may provide as a solution to these challenges and thus help to improve
the perceived relevance. It should be noted that the solution requires a reasonable labelling of the
documents, in addition to training of the users in order to make them use context words in their
queries.

The preliminary experiment results are positive, but are influenced by a reference collection some-
what adapted to our solution, and should therefore be complemented with experiments based on
a full system implementation and a well-defined reference collection. The first step is to choose
an appropriate labelling scheme for how the semantics of the documents and queries should be
captured. Next, it would be interesting to experiment with the ranking of the results. Finally, the
user interface should be extended in order to guide the user when submitting context queries.

Preface

This thesis is written by Trond Øivind Eriksen and Anne Siri Korsen as part of our master degrees
at the Department of Computer and Information Science (IDI), at the Norwegian University of
Science and Technology (NTNU) in Trondheim.

The intention of this thesis is to improve the users’ perceived relevance when searching on Yahoo!
Shopping. First, a survey of ranking and relevance in search will be conducted. Next, the task
aims to implement a flexible component, realised as a Java plug-in, that analyses results from
back-end and ranks the results in a way that improves the user’s perceived relevance.

During our work, we had the privilege to be supervised by Kjetil Nørv̊ag (Associate Professor)
and Per Gunnar Auran (Senior Research Scientist, Yahoo!). Without their valuable guidance and
feedback, this research and thesis would not have had the quality we are proud of presenting today.

Finally, we would like to thank Yngve T. Aasheim and Sigurd Gartmann, together with the other
Yahoo! employees at the Trondheim office, for their continuous support and valuable feedback.
Also, we are most grateful for the tasteful free lunch.

Trondheim, June 2006

Anne Siri Korsen Trond Øivind Eriksen

Contents

I Background 1

1 Introduction 3
1.1 Motivation . 3
1.2 Thesis Definition and Goals . 4
1.3 Thesis Scope . 4
1.4 Thesis Outline . 5

2 Problem Elaboration 7
2.1 Information Retrieval vs. Vertical Searching . 7
2.2 Searching on Yahoo! Shopping . 8
2.3 Known Challenges . 9

2.3.1 Treatment of Context Queries . 9
2.3.2 Focusing Search . 10
2.3.3 Utilising Semantics . 10

3 Research Method 13

II State-of-the-art 15

4 General View of Search 17
4.1 Information Retrieval Overview . 17
4.2 Document Fetching . 18
4.3 Text Operations . 19

4.3.1 Lexical Analysis . 19
4.3.2 Stopwords . 19
4.3.3 Stemming and Lemmatisation . 20

4.4 Query Operations . 21
4.5 Indexing . 21
4.6 Ranking . 22

4.6.1 The Boolean Model . 22
4.6.2 The Vector Model . 23
4.6.3 The Probabilistic Model . 27
4.6.4 Structural IR Models . 28
4.6.5 Web Search and Pagerank . 28

4.7 Retrieval Evaluation . 29

5 Searching the Vertical Web 33
5.1 XML Retrieval . 33

5.1.1 XML Query Languages . 35
5.1.2 XML Indexing . 38
5.1.3 XML Ranking . 41

5.2 Ranking Aggregation . 42
5.2.1 Expressing and combining Preferences . 42
5.2.2 Querying Preferences . 44

6 Vespa – The Yahoo Vertical Search Platform 51
6.1 Document Fetching . 53

iii

iv CONTENTS

6.2 Text Operations . 53
6.2.1 Stopwords . 53
6.2.2 Normalising . 55
6.2.3 Stemming/Lemmatisation . 55

6.3 Indexing . 55
6.4 Ranking . 56

6.4.1 Dynamic and Static Rank . 56
6.4.2 Sorting, Collapsing, and Aggregation . 57

6.5 Customised Query and Result Processing . 58

III Implementation and Experiments 61

7 Preliminary Ideas Regarding The Searcher 63
7.1 Focusing the Search towards Main Categories . 63

7.1.1 Approach . 63
7.1.2 Discussion . 64

7.2 Semantic Relations between Books, Music and Videos 65
7.2.1 Approach . 65
7.2.2 Discussion . 65

7.3 Boosting Hits with Match in Specific XML Fields 66
7.3.1 Approach . 66
7.3.2 Discussion . 67

8 The Searcher Plug-in 69
8.1 How the Searcher works . 69
8.2 Value added beyond Existing Functionality in Vespa 71
8.3 Implementation Details . 71
8.4 Generalisation of the Implementation . 76
8.5 Scaling to other Verticals . 77

9 Evaluation Principles 79
9.1 Effectiveness Measure . 79
9.2 Reference Collection . 79
9.3 Validity Assessments . 81

10 Experiments and Results 83
10.1 Experiment Setup . 83
10.2 Experiment Overview . 84
10.3 Experiment 1 – Tuning of Aggregation Function and Hits Parameter 84

10.3.1 Approach . 84
10.3.2 Results and Discussion . 85

10.4 Experiment 2 – Testing our Solution . 85
10.4.1 Approach . 85
10.4.2 Results and Discussion . 86

10.5 Experiment 3 – Elimination of Noise . 86
10.5.1 Approach . 87
10.5.2 Results and Discussion . 87

10.6 Experiment 4 – Searching without Context Words 87
10.6.1 Approach . 87
10.6.2 Results and Discussion . 88

10.7 Summary . 88

CONTENTS v

IV Conclusion and Further Work 89

11 Conclusion 91

12 Further Work 93
12.1 Document Labelling . 93
12.2 Ranking Experimentation . 94
12.3 User Interface Guidance . 94
12.4 Query Analysis . 96

V Appendix 97

A Test Queries 99

Bibliography 106

List of Figures

1.1 The Vertical Search Services at http://www.yahoo.com 3

2.1 A Search for the da vinci code on Yahoo! Shopping 8
2.2 Narrowing the Result Set . 10

3.1 The Phases of the Thesis . 13

4.1 Crawler-Indexer Architecture . 18
4.2 Inverted Index . 22
4.3 Taxonomy of Retrieval Models [4] . 23
4.4 Term-by-Document Matrix M . 26
4.5 Singular Value Decomposition . 26
4.6 The Matrix B and the Document Correlations Matrix BT B 27
4.7 Link Structure on the Web . 29
4.8 Precision and Recall . 30
4.9 Precision versus Recall Plot . 31

5.1 XML Tree . 34
5.2 Autocompletion . 37
5.3 Indexing Nodes . 39
5.4 Ctree . 39
5.5 Dewey Numbering . 40
5.6 Dewey Inverted List . 40
5.7 Preference Combination . 43
5.8 Better-Than Graph . 44

6.1 The Main Components in Vespa . 52
6.2 Vespa Search Core . 52
6.3 QRS Searcher Chain . 59

8.1 XML Tree for the Implemented Solution . 70
8.2 UML Class Diagram of the Implemented Solution 72
8.3 Message Diagram for the Query madonna music 74
8.4 XML Tree for the Electronics Domain . 76

12.1 XML Tree for the Query omen music . 94
12.2 Extended XML Tree for the Query omen music . 94
12.3 XML Tree for the Query john denver sunshine on my shoulders 95
12.4 User Guidance on Yahoo! Shopping . 95
12.5 User Guidance on AllTheWeb Livesearch . 95

vii

List of Tables

4.1 Challenges with Tokenization . 19
4.2 English and Norwegian Stopwords . 19
4.3 Stemming . 20
4.4 Lemmatisation . 20
4.5 Precision and Recall . 30

5.1 The XPath Query Language . 36
5.2 INEX CAS Queries . 36
5.3 Expressing Preferences . 43
5.4 Quantitative Preference 1 . 44
5.5 Quantitative Preference 2 . 44
5.6 Basic Concepts related to Ranking Aggregation . 45
5.7 The Kendall Tau Distance Generalization to Partial Lists 48

6.1 Normalising in Vespa . 55

7.1 Finding Main Categories for the Query madonna artist 64
7.2 Categories, Hit-Count, and Normalised Relevance for the Query madonna artist . 64

8.1 Search Approach . 70
8.2 Ontology . 71
8.3 Input Parameters . 72
8.4 The Methods in the XSearcher Class . 73
8.5 Sorted Lists to be Aggregated . 75
8.6 Latency Experiment . 78

9.1 Three Top-10 Lists for the Query q . 80
9.2 P@k Top Documents for the Query q . 80

10.1 Parameters used in Experiment 1 . 85
10.2 Experiment 1 - Tuning of Aggregation Function and Hits Parameter 85
10.3 Parameters used in Experiment 2 . 86
10.4 Experiment 2 - Using XSearch . 86
10.5 Experiment 2 - Using the Standard Approach . 86
10.6 Parameters used in Experiment 3 . 87
10.7 Experiment 3 - Elimination of Noise . 87
10.8 Parameters used in Experiment 4 . 88
10.9 Experiment 4 - Searching without Context Words 88

ix

Listings

2.1 An Unstructured Document . 7
2.2 A Semi-Structured Document . 8
5.1 XML Documents . 34
5.2 XML Fragment Query . 38
6.1 A Shopping Document in Vespa . 53
6.2 A Vespa XML Feed . 54
6.3 A Search Definition File . 56
6.4 Dynamic Boost in a Search Definition File . 57
6.5 A Searcher Plug-in . 59
7.1 Semantic Related Documents . 65
7.2 Labelled Semantic Related Documents . 66
7.3 Two Documents with the Term madonna . 67
8.1 The Content of a desc Field . 73
8.2 The Content of the category field . 76
8.3 An XML Structure capturing the Category Hierarchy 76
8.4 The Content of the Generic Fields . 77
8.5 An XML Structure capturing the Context of the Fields 77
A.1 The 42 Book Queries used in the Evaluation . 99
A.2 The 45 Music Queries used in the Evaluation . 100
A.3 The 46 Video Queries used in the Evaluation . 100

xi

Part I

Background

Chapter1
Introduction

”Attempt the end, and never stand to doubt; nothing’s so hard
but search will find it out.”

– Robert Herrick

This chapter gives an introduction to the thesis, and describes the motivation, task definition and
goals, thesis scope, and the thesis outline.

1.1 Motivation

Vast amounts of information are stored digitally and being searched for on the Web every day.
According to [48], which focuses on quantifying the influence of Web search in people’s daily Web
access, 13.6% of all Web traffic is under the direct or indirect influence of search engines. Search
engines also help users reach 20% more sites by presenting them in search results, which may be
otherwise unreachable by the users.

Information retrieval is concerned with extraction of documents from a collection, according to the
user’s information need. The ranking returned by a search engine is determined by the relevance
function in use. These functions define a set of features of the documents to assist the decision
process. The features may be query dependent or query independent. Examples of features are
freshness of the document, authority, i.e. a measure of a page’s importance and popularity deduced
from the link structure on the Web, and the weighted number of times the query terms occur in
the document.

In the case of generic web search engines, a heterogeneous document collection, and diverse users,
pose challenges in deciding which documents that are more relevant. Consider the query brown.
Is the user more interested in the colour, the university, or a person with the surname Brown?

There is a trend towards domain-specific search solutions, vertical search services, in the case of
searching the Web. Examples of vertical search engines at http://www.yahoo.com are Images,
Video, Audio, Directory, Local, News, and Shopping, as can be seen in Figure 1.1. By focusing on
one area of knowledge, with clear relationships between concepts and a limited document base,
domain-specific search solutions may provide far superior results to generic search engines [5].

Figure 1.1: The Vertical Search Engines at http://www.yahoo.com

3

4 Chapter 1. Introduction

A vertical search service relies on semi-structured documents. Semi-structured documents capture
the semantics as labelled fields usually represented as XML1. That is, we are moving from a pure
information retrieval view towards a database centric view, where the structure of the data is
known.

Traditional information retrieval techniques are based on a static document concept, that ignore
the document structure and do not support structured queries. This impose serious restrictions if
used for XML retrieval. Techniques originally used for database retrieval are neither appropriate,
since answers are either right or wrong, i.e. there is no concept of partially relevant answers. The
queries submitted are also very specific, requiring extensive knowledge of the structure of the data
to be searched in. Finally, semi-structured documents imply the use of multiple criteria for how
the returned documents should be ranked. This in turn arises questions like which criterion that
is more important, and how to combine the results produced by the different criteria. This thesis
addresses challenges related to semi-structured information retrieval.

1.2 Thesis Definition and Goals

Yahoo! Technologies Norway AS is developing a vertical search platform, Vespa, being used for
more than 40 of Yahoo!’s vertical search services. This thesis aims to improve the users’ perceived
relevance when searching on Yahoo! Shopping. The proposed ideas should be implemented as
a Searcher plug-in in the Query-Result-Server (QRS) in Vespa. The QRS has a chain of Java2

modules that modifies the query before it is sent to the search engine’s back-end, and the result
set before it is sent to the front-end of the application.

The work includes a theoretic and a practical part:

Theoretic part

• General overview of ranking and relevance in search.

• Adjustment towards ranking of structured data and use of knowledge from database envi-
ronments.

Practical part

• Create a Searcher plug-in that analyses results from back-end and ranks the results in a way
that improves the user’s perceived relevance.

• Document how the improved relevance is achieved.

• Describe if the implemented solution will scale to the most visited Yahoo! verticals.

1.3 Thesis Scope

This thesis is limited to studying search rankings for the Shopping vertical. Also, the main focus is
on the domain of books, music, and videos. This is due to several factors. First, only considering
a sub-domain made it easier to delve into the problem to be addressed. Further, a confined time
perspective and restrictions in Vespa causing a less general implementation, forced restrictions of
the task at hand. The domain of books, music, and videos were chosen due to a better structure
of these documents than for other domains. To describe how the implemented solution can be

1XML (Extensible Markup Language) is a W3C initiative that allows information and services to be encoded
with meaningful structure and semantics that computers and humans can understand, http://www.w3.org/XML/.

2Java is an object-oriented programming language created by Sun Microsystems, http://java.sun.com/

1.4. Thesis Outline 5

generalised to other domains, and if the proposed ideas will scale to the most visited Yahoo!
verticals, is however considered interesting for the thesis.

Two systems is used for implementation and testing, and evaluation, respectively. Due to factors
described in Chapter 10, it was not possible to obtain a perfect mirror of the real Shopping results.
However, the system used for evaluation was as close to the real world as possible.

Finally, the evaluation will only consider raw relevance, i.e. the difference in ranking values with
and without our solution. While user interface issues also contribute a great deal to perceived
relevance, we will only treat this subject from a theoretic point of view.

1.4 Thesis Outline

This section briefly describes the outline of the thesis. The thesis has been divided into four dif-
ferent parts, as presented below.

Part I Background

• Chapter 1 contains this introduction.

• Chapter 2 presents a motivation of the thesis, elaborating relevant topics and initial
thoughts about the challenges to be addressed.

• Chapter 3 describes the research method used in this thesis.

Part II State-of-the-art

• Chapter 4 introduces the most central concepts and techniques in the field of information
retrieval.

• Chapter 5 elaborates on concepts and techniques related to vertical searching, that is
specific domain search tools.

• Chapter 6 provides a short introduction to Yahoo’s vertical search platform, Vespa.

Part III Implementation and Experiments

• Chapter 7 discusses some of the preliminary ideas regarding the Searcher plug-in.

• Chapter 8 describes the implemented Searcher plug-in. The motivation for how the im-
proved relevance is achieved, and the value our solution adds beyond existing functionality
in Vespa, is discussed. Finally, scaling to more visited Yahoo verticals is explored.

• Chapter 9 presents the evaluation principles that are used in the experiments.

• Chapter 10 presents the various experiments performed in this thesis. A discussion of the
results is also provided.

Part IV Conclusion and Further Work

• Chapter 11 presents a summary of the findings of this research, and concludes the work.

• Chapter 12 outlines propositions for further work relevant to this thesis.

Chapter2
Problem Elaboration

”The only good is knowledge and the only evil is ignorance.”

–Socrates

This chapter elaborates on topics related to the thesis. First, a short introduction to the concepts
of information retrieval and vertical searching is given. Secondly, an example of a search on Yahoo!
Shopping is presented. Finally, some initial thoughts related to the problem to be addressed are
provided.

2.1 Information Retrieval vs. Vertical Searching

Information retrieval (IR) is a sub-field of computer science that deals with the automated storage
and retrieval of documents. While some users have a clearly defined objective with the searching
activity, others have a diffuse idea of what they are looking for. The concept of search is generally
used to cover both recovery of documents that we know exist, and discovery of information that
we intuit exist [5]. Information retrieval is further discussed in Chapter 4.

A vertical search application is a domain-specific search system to serve the information needs
of specific domains. Common for these services is that the documents to be searched are more
structured than ordinary web documents, i.e. they include labelled fields usually represented as
XML. Vertical searching is discussed more closely in Chapter 5.

In Listing 2.1 and 2.2, examples of an unstructured document and a semi-structured document are
shown. The documents illustrate two different ways of presenting the information about the book
and the video “The Da Vinci Code”. The first example presents the information in a standard
manner, without any specific form of structure. In the second example, the same document is
represented using XML labels. An advantage of having semi-structured documents is that it
makes it possible to utilise the information about the semantics, and thereby making the search
more precise. In the second example, it is possible to search within specific labels of the document.
This contributes to improve the retrieval precision (precision is explained in Chapter 4).� �

1 "The Da Vinci Code", a book by Dan Brown (2003)

2 Paperback

3 List price: $17.95

4 Note: A murder inside the Louvre and clues in Da Vinci paintings lead to the discovery of

5 a religious mystery protected by a secret society for two thousand years; which could

6 shake the foundations of Christianity.� �
Listing 2.1: An Unstructured Document

7

8 Chapter 2. Problem Elaboration

� �
1 <document type="book">

2 <title>The Da Vinci Code</title>

3 <author>Dan Brown</author>

4 <format>Paperback</format>

5 <price>17.95</price>

6 <year>2003</year>

7 <desc>A murder inside the Louvre and clues in Da Vinci paintings lead to the discovery

8 of a religious mystery protected by a secret society for two thousand years; which

9 could shake the foundations of Christianity.</desc>

10 </document>� �
Listing 2.2: A Semi-Structured Document

2.2 Searching on Yahoo! Shopping

In this section, an example of a search performed on Yahoo! Shopping is presented. Figure 2.1
shows the Shopping search front-end at http://shopping.yahoo.com. The front-end is divided into
three main panes; the Query Pane at the top, the Refine Results Pane to the left, and the Results
Pane in the middle. In what follows, we will describe the main functionalities in each pane.

Figure 2.1: A Search for the da vinci code on Yahoo! Shopping

Query pane

• The query field – the text field where the user defines the query.

• Department drop-down box – by selecting one of the values in the department drop-
down box, the user can search for products within the following categories: Bargains, Beauty,
Books, Clothing, Computers & Office, DVD & Video, Electronics, Flowers & Gifts, Jewelry
& Watches, Music, Sports & Outdoors, and Toys & Baby.

2.3. Known Challenges 9

Refine results pane

• Price – by defining values for Price from and Price to, the user can narrow the search to
only retrieve items that have a price that satisfies these values.

• Departments – by clicking on one of the departments (categories), the search is narrowed
to only search for products within the respective department.

• Store – by clicking on one of the stores, the search is narrowed to only search for products
within the respective store. Examples of stores are Amazon and Wal-Mart.

• Brand – by clicking on one of the brands, the search is narrowed to only search for products
of a specific brand. Examples of brands are Canon, Sony, and Dell.

• Group Products – by clicking on one of the two grouping options, the retrieved products
are either grouped by all products or one product per store.

Results pane

• Sort by – by clicking on one of the two sort by options, the retrieved products are either
sorted by top results, i.e. relevance (default) or price.

• View – by clicking on one of the two views, the retrieved products are either viewed as a
List (default) or as a Grid.

• Compare side by side – two or more products can be compared side by side by first
checking the checkbox left to the image of each retrieved product, and then clicking on the
compare-button.

2.3 Known Challenges

This section presents some initial thoughts regarding the problem to be addressed in the thesis.
The challenges that will be discussed in the following are treatment of context queries, focusing
search, and utilising semantic relations.

2.3.1 Treatment of Context Queries

One of the main challenges when searching on Yahoo! Shopping today is the treatment of context
queries. We define a context query as a query that includes two or more terms, where at least
one of the terms describes a certain context to focus the search within. Such a context can for
example be DVD, director, or artist.

Consider the query brad pitt movies. Searching for this query on Yahoo! Shopping retrieves
results that users may consider less relevant. Instead of retrieving movies with Brad Pitt, the
first page of results is dominated by posters, t-shirts, and other accessories. This is because the
query is treated as an AND-query, thus requiring that all query terms are found in the documents.
However, the users are not necessarily looking for every document that contains all the query
terms, rather documents that conceptually are movies of the Hollywood actor. Making a search
engine understand this, may greatly improve retrieval. To cope with this challenge, [5] proposes
to use cue words that tip the engine off to the context of a particular search. In this case, movies
is a concept and not just a word found in one of the indexed documents. The cue words are next
linked to clusters of results that might fulfil the concept of movie. These documents are found
using metadata, i.e. labels describing the semantics.

10 Chapter 2. Problem Elaboration

2.3.2 Focusing Search

When users search on Yahoo! Shopping today, a lot of noisy hits, i.e. hits that are considered
irrelevant to the query, are retrieved for many queries. If the top-k results contain several noisy
hits, this may contribute to ruining the users’ searching experience. The challenge of removing
noisy hits can be overcome by various approaches. One approach is to find the most relevant
category/categories to a specified query, and focusing the search towards this category.

Figure 2.2 visualises the effect of removing noisy hits. Here A is the result set before the search
has been narrowed, and A′ is after.

Figure 2.2: Narrowing the Result Set

Focusing search and thereby narrowing the result set, may have a large impact on perceived
relevance when sorting by price. Today, when performing the search canon digital camera and
sorting by price on Yahoo! Shopping, additional equipment to cameras like AC adaptors and
camera cases, are highest ranked. The reason is obvious; too much noisy hits in the result set
with low price. If the search could be focused, only retrieving digital cameras from Canon and
ignoring accessory products, the price sort would be performed only on the products that actually
are relevant given the query, yielding considerably improved perceived relevance.

2.3.3 Utilising Semantics

Semantics within and between XML documents should be exploited in order to improve perceived
relevance. Within a single XML document, this means to decide which features or XML elements
are most interesting. Between documents, the task is to determine semantic relations between
documents or parts of documents.

As to exploiting semantics within XML documents, this can be done at query-time. For example,
a user browsing for CDs by Madonna may use the search term madonna. When performing this
search, the result set may include music by Madonna, books about her, or even videos. It is quite
unlikely that the user is looking for all three. If the user in some way can identify whether she
only is interested in books, music or videos with Madonna, the search would be considerably more
precise. How context can be specified in the query, will be further discussed in Chapter 5.

Another approach of semantic exploitation is to boost hits where the query terms occur in the
more specific fields. The motivation is that information in more specific fields is considered more
descriptive of the documents. For the domain books, music, and videos, examples of specific fields
are author, artist, actor and director. A less specific field is desc (see Listing 2.2). For the
query madonna, this strategy will favour hits where Madonna occurs in the artist field. Note

2.3. Known Challenges 11

that the difference from the approach mentioned in the previous paragraph, is that the user does
not have to specify the desired context.

As to semantic relations between XML documents, it could be interesting to explore relations like:

• book ↔ film ↔ soundtrack.

• album → other albums of the same artist.

• film → other films of the same director or with the same actors.

• book → other books of the same author.

As an example, consider the query pride and prejudice. The result set contains various TV-
series, films, soundtracks, and the book of Jane Austen. These hits should be connected in order
to show their semantic relation. Often, only a subset of the first relation will be available, i.e. the
film has no soundtrack, or is not based on a book. The idea behind the three last relations, is that
a user that has shown interest in one item may also be interested in related items, i.e. items with
the same participants.

Chapter3
Research Method

”As an experimental scientist, it is important to stay inti-
mately connected with research methods, data acquisition, data
analysis and modeling.”

– Norbert Scherer

The main objectives of this thesis are to obtain a general overview of ranking and relevance in
vertical search, and implement a flexible component that aims to improve users’ perceived relevance
when searching on Yahoo! Shopping. In the following, we summarise the research methods used
in this thesis.

Research in software engineering can be based on several different methods, usually answering
empirical questions through controlled experiments. In [62], there are four general categories of
research methods: scientific method, engineering method, empirical method, and analytical method.
The scientific method builds a method based on observations. In the engineering method, current
solutions are studied and changed appropriately. The empirical method proposes and evaluates
a model through empirical studies. In the analytical method, a formal theory is developed, and
results derived from that theory is compared with empirical observations. This thesis will use a
hybrid approach between the engineering method and the analytical method. That is, the current
solution, i.e. Vespa, is examined first, then a formal model based on state-of-the-art research is
proposed and evaluated through empirical observations.

In Figure 3.1, the different phases of the thesis are visualised. These will be discussed in the
following.

Figure 3.1: The Phases of the Thesis

Literature study As a general rule of thumb for selection of literature to base our work on,
we decided to use articles from conferences and journals included in the DBLP1 (Digital Bibliog-
raphy & Library Project) server. The DBLP server provides bibliographic information on major

1http://www.informatik.uni-trier.de/%7Eley/db/index.html

13

http://www.informatik.uni-trier.de/~ley/db/index.html

14 Chapter 3. Research Method

computer science journals and proceedings. Examples of relevant and popular conferences that
can be found in the DBLP server is SIGIR (Special Interest Group on Information Retrieval) [53],
SIGMOD (Special Interest Group on Management of Data) [54], and VLDB (Very Large Data
Bases) [17]. In addition, most referred publications and publication date were used as selection
criteria. The most referred publications have been chosen in order to base the thesis on work that
are acknowledged and accepted among other researchers. Papers, articles, books, and web pages
with recent publication dates have been preferred to ensure that the research is up to date.

Finally, since we have no a priori knowledge of Vespa, a survey of this also needs to be carried out.

System development In system development, different models can be used based on the nature
of the system that is to be implemented. Three popular methods are the waterfall model [51],
iterative development [40], and agile methods [1]. The methods are often classified according to
their adaptability or predictability. While adaptive methods focus on adapting quickly to changing
realities, predictive methods, in contrast, focus on planning the future in detail. Agile methods are
the most adaptive methods, the waterfall model is the most predictive, and iterative development
is a mix of adaptive and predictive.

According to Boehm and Turner [8], agile methods should be used when there is low criticality,
high requirements change, small number of developers, and culture that thrives on chaos. Since
this research share many of the mentioned features, we will use agile methods in the development
process. Agile methods attempt to minimise risk, by having short iterations in the development
process. These iterations typically last one to four weeks. According to [7], agile methods also
emphasize direct person-to-person communication rather than the heavy written documentation
of the waterfall life-cycle.

Experiments A fundamental question concerning the results of an experiment is the validity
of the results. Possible threats may be classified as threats to the conclusion, internal, construct,
and external validity [62]. We will present the possible threats here. The validity of our results is
discussed in Chapter 9 .

The conclusion validity deals with the correctness of the inferences drawn from the observations.
Examples of threats are low statistical power, fishing, i.e. searching for a specific result, and
heterogeneity of subjects.

The internal validity is concerned with the relationship between the treatment and the outcome,
i.e. that the treatment causes the outcome.

The construct validity tries to discover if the experiment settings are able to reflect what is actually
evaluated. These threats relate to the design of the experiment.

The external validity is concerned with generalisation outside the scope of the study. The threats
to external validity is reduced by making the experimental environment as realistic as possible.
Examples of threats are homogeneity of subjects, and experiment setup.

Part II

State-of-the-art

Chapter4
General View of Search

”I don’t search, I find.”

– Pablo Picasso

The field of information retrieval (IR) is concerned with finding relevant documents in a large
collection of documents. The concept of relevance is related to a user information need, and is
consequently a subjective matter.

IR is not a new field of study. For approximately 4000 years, humans have organised information
for later retrieval. Many of the techniques presented in this chapter are based upon research
done in connection with IR in library systems. Lately, the field has got a lot of attention with
the development of the World Wide Web. IR is a broad interdisciplinary field that draws on
many other disciplines, such as cognitive psychology, information design, information architecture,
human information behaviour, linguistics, semiotics, information science, computer science and
librarianship. As a consequence of its broad nature, information retrieval is a domain of high
complexity.

This chapter introduces the most central concepts in the field of IR. The chapter is mostly based
upon [4].

4.1 Information Retrieval Overview

Most Web search engines today use the crawler-indexer architecture, shown in Figure 4.1. The
crawler-indexer model separates the tasks of searching and indexing. The user front-end consists
of the user interface and the query engine, and deals with searching. The Web front-end consists
of the crawler and the document engine, and is concerned with indexing of the documents.

In order to make documents searchable, they need to be fetched into the system. How documents
are fetched will be discussed closer in Section 4.2.

Text operations are performed in order to prepare the data for further analysis. Such operations
can include lexical analysis, removal of stopwords and stemming. Text operations will be further
elaborated in section 4.3.

The user specifies his needs for information through the user interface. The requirements are
usually formulated as a set of words describing the desired information. Additionally, most search
interfaces offer advanced search possibilities like proximity, phrase, and boolean search. Often, the
retrieval system performs some operations at the query before searching the document base. An
operation may be removal of unnecessary words, or addition of words to further specify the query.
Query operations are explained in section 4.4.

The next step is to search the document base for matches to the query. The documents are usually
represented by index terms. An index term can be any word appearing in the text. In that case,
a full text logical view of the documents is employed. For efficiency reasons, it is more common to

17

18 Chapter 4. General View of Search

User
interface

Query
engine

Index

Document
engine

Crawler

Web

Users

Figure 4.1: Crawler-Indexer Architecture [4]

use keywords which have some meaning of its own, or that have an important semantic meaning,
as index terms. Once the logical view of the documents is defined, an index of the text is built.
There are many index structures that can be used when searching over large volumes of data, the
most popular structure is the inverted index. Indexing is described in Section 4.5.

The result set of relevant documents is made out of the documents that best match the query.
Matches are ranked according to a ranking function, i.e. rules of relevance, specified in advance.
Different ranking functions are developed which use different criteria to decide if there is a match,
a partial match or not a match. In the consensus search, a single ranking function is utilised for
all queries. The routing task uses different ranking functions for each query. Ranking is further
investigated in Section 4.6.

Even though the information retrieval process can be a goal-oriented activity from the arise of
a need to the need is satisfied, the variations are many. The search process depends on many
factors; personal characteristics like knowledge and skills, the contents of the search task, the
search system, the information domain to be searched within, and the results that are achieved.

4.2 Document Fetching

Documents may be fetched into the system in various ways. In the case of Web search, the crawler
traverses the Web, sending new or updated pages to the search engine where they are indexed.
The general technique is to start with a set of URLs, follow links found on pages in a breadth-first
or depth-first manner, and fetch copies to forward to the search engine. The set of URLs initially
provided, may affect the overall content of the document base, and should thus be given careful
thought. Other common sources for fetching of documents are databases and file systems, e.g. for
enterprise and desktop search.

4.3. Text Operations 19

4.3 Text Operations

Not all words are equally significant for representing the semantics of a text. In the general
case, nouns are the single group of words which are most representative of the content of a text.
Therefore, the queries and documents are often pre-processed to determine the terms to be used as
query terms or index terms. This section covers three pre-processing operations; lexical analysis,
elimination of stopwords, and stemming and lemmatisation. Note that for query pre-processing,
operations like proper name and phrase recognition, and spell checking are also often performed.

4.3.1 Lexical Analysis

A lexical analysis is the process of converting a stream of characters (the text of documents) into
a stream of words (the candidate words to be adopted as index terms). This is called tokenization,
and includes among other factors the treatment of numbers, hyphens, punctuation marks, and the
case of letters. In Table 4.1, some examples of challenges related to tokenization are presented.
It is important that the converting process is performed in a correct manner, in order to avoid
indexing the tokens wrong. For example state-of-the-art could be extracted and indexed as one
token or four tokens (state of the art). If the tokens are not indexed correctly, it could cause
problems at retrieval.

Table 4.1: Challenges with Tokenization
Type Examples
Numbers 123,456.78
Case of letters Bush vs. bush, Bank vs. bank
Punctuation marks m.p.h, .NET
Hyphens state-of-the-art vs. state of the art

4.3.2 Stopwords

Stopwords are words that occur so frequently in documents that they are not useful for distinguish-
ing one document from another. Stopwords are therefore normally filtered out as index terms.
The benefit of removing stopwords is that it considerably reduces the index size. The drawback is
that it may reduce recall for the queries containing stopwords, for example for the query "to be
or not to be". Table 4.2 shows some English and Norwegian examples of stopwords.

Table 4.2: English and Norwegian Stopwords [49]
English stopwords Norwegian stopwords
I, a, about, an, are, a, at,
be, by, com, de, en, for,
from, how, in, is, it, la, of,
on, or, that, the, this, to,
was, what, when, where,
who, will, with, und, the,
www

av, begge, bra, da, denne,
der, deres, det, din, disse,
du, eller, en, for, fra, ha, i,
ikke, inn, kan, men, navn,
nei, ny, og, om, opp, oss,
part, rett, slik, som, til,
under, ut, var, vi

20 Chapter 4. General View of Search

4.3.3 Stemming and Lemmatisation

This section presents two approaches for converting words to their root forms, namely stemming
and lemmatisation.

Stemming

Stemming is an algorithmic method for reducing a word to its root form, or stem, by removing
typical suffixes of the word. The algorithm checks the ending of the word, and if this ending
corresponds with a typical ending in the given language, the ending is removed from the word.
Porter’s Stemming Algorithm, is an example of a stemmer. The stemmer uses different stemming
rules, which vary from one language to another. Below, two of the most used stemming rules for
the English language are presented:

sses −→ ss

s −→ φ

Table 4.3 presents some stemming examples. Stemming reduces the size of the document repre-
sentation, that is, the number of distinct terms needed for representing a set of documents. The
method also increases recall, as syntactic variations of words are removed from the documents.

Table 4.3: Stemming
Word Stemmed word
Streets Street
Cars Car
Caresses Caress
Attacking Attack

A negative aspect with stemming is that there may be situations where a part of a word gets
removed even if it is not a suffix as a consequence of inflection. For example, the word news is
stemmed to new by using Porter’s Stemming Algorithm. This is a clear weakness, but still most
words will be stemmed to a unique stem for this word, and the effect of the problem is therefore
reduced. One way to avoid such error situations, is to use a different method, called lemmatisation.

Lemmatisation

Lemmatisation is closely related to stemming, but instead of using an algorithmic approach, lem-
matisation uses a dictionary. By using lemmatisation, lists of inflected forms are used to map
words to their primary form. This method will always give the right primary form of the word
as long as the word and its inflected forms are found in the list. Table 4.4 presents examples of
lemmatisation.

A potential weakness with lemmatisation is that unusual words may not be in the list. This often
happens when a lemmatiser for a new language is implemented.

Table 4.4: Lemmatisation
Related words Lemmatised word
walk, walked, walks, walking walk
am, was, are, is, were, been be

4.4. Query Operations 21

4.4 Query Operations

Formulating a query for an information need is difficult and the users often need to reformulate
the queries for effective retrieval. This suggests that the initial query should be extended and
reweighed in order to focus the search towards the relevant documents. This section examines
three approaches for improving the initial query formulation, namely relevance feedback, local
analysis, and global analysis.

Relevance Feedback is a popular query reformulation strategy. The idea is to ask the user to
identify the relevant documents in the original result set. Important terms from these documents
are used in the new query formulation. In addition, the importance of these terms is enhanced.

A distinct approach is to create a description of the cluster of relevant documents automatically.
This includes identifying terms which are related to the original query terms. Such terms may
be synonyms, stemming variations, or terms which are close to the query terms in the text. The
analysis can be performed on the documents retrieved by a given query, or all documents in the
collection. The two approaches are named local and global analysis, respectively.

Local Analysis is based on expanding the query with terms from local clusters built from the
local document set, i.e. the documents initially retrieved for a given query. Three approaches for
building the local clusters are:

• co-occurrence of terms inside documents.

• distance, i.e. number of words, between co-occurring terms.

• the similarity of neighbourhoods, i.e. local clusters, between terms.

A term su, which belongs to a cluster associated to another term sv, is said to be a neighbour, or
a searchonym of su. Neighbour terms often represent keywords which can be used to extend the
query formulation in an unexpected direction, rather than merely complementing it with missing
synonyms.

Global Analysis is based on a similarity thesaurus which identifies term relationships based on
the whole document collection. A thesaurus consists of a set of terms used as indices, and for each
term, a set of related words, e.g. synonyms, or terms induced by patterns of co-occurrence within
documents. Here, a term is used in the sense of a concept. A term may be individual words, groups
of words, or phrases. Usually, small text windows of a fixed size are used to build the thesaurus,
instead of whole documents. Terms which are closest to the whole query, not individual query
terms, are selected for query expansion.

4.5 Indexing

The brute force method when searching for a query, is to scan the documents sequentially. Se-
quential, or online search, is appropriate when the document size is small, and it is the only choice
if the document collection is highly volatile, or the index space overhead cannot be afforded. A
second option is to build indices, i.e. data structures, over the documents to speed up the search.

The most common indexing technique is inverted indices. An inverted index consist of the vocab-
ulary, which is the set of all different words in the document, and for each word, a list which stores
all positions where the word appears. Figure 4.2 illustrates the concept of inverted indices.

The indices vary with respect to size and the information contained. The index scheme specifies
which document elements are to become searchable fields. Several index profiles may be built for
different purposes. For instance, it is common to build separate indices to support phrase search.

22 Chapter 4. General View of Search

blue
honey

red
rose

sweet
violet

1 7 11 15 19 27 31 37 43 46 53 57 61 64 70 73
Roses are red and violets are blue. Honey is sweet, but not as sweet as you.

31
37
11
1

46, 64
19

Vocabulary Occurrences

Figure 4.2: Inverted Index

The occurrences can refer to characters, words, or blocks of text. Block addressing reduces the
space required by the index. The text is divided into blocks, and the occurrences point to the
blocks where the words appear. This leads to smaller pointers because there are fewer blocks than
positions. Also, multiple occurrences of a word inside a single block are collapsed to one reference.
On the other hand, an online search over the qualifying blocks has to be performed if the exact
occurrence positions are required, for instance for a proximity query.

Searching in an inverted index consists of three steps. First, the terms in the query are separated
and independently searched for in the vocabulary. Second, the lists of occurrences for each term
are retrieved. Third, the occurrences are manipulated to solve phrases, proximity, or boolean
operations. The vocabulary is usually stored in lexicographical order, which is cheap in space and
can be binary searched in O(log n) cost for a single term.

The most time demanding operation in an inverted index search, is the merging or intersection
calculation of the lists of occurrences. Suffix arrays are more efficient in solving complex queries,
or if the text can not be seen as a sequence of words. Its main drawbacks are a costly construction
process, that the text must be available at query time, and that the results are not delivered in text
position order. Unless complex queries are important, inverted files perform better for word-based
applications [4].

4.6 Ranking

For searching and ranking of documents, the classic models, the boolean model, the vector model
and the probabilistic model, are commonly used. The main focus in this thesis will be on the vector
model, as this is the most used retrieval model today [43, 47]. A complete overview of a taxonomy
of retrieval models is visualised in Figure 4.3.

4.6.1 The Boolean Model

The boolean model is based on set theory. It uses boolean expressions to describe queries. A
document is modelled by a binary vector. The vector contains one element for each index word in
the document collection. Each element is set to 1 if the word is present in the document, and 0
otherwise.

The query is made up of terms, combined using the Boolean relations AND, OR, and NOT :

Q = ta ∧ (tb ∨ ¬tc)

4.6. Ranking 23

Figure 4.3: Taxonomy of Retrieval Models [4]

In order to decide if a document is relevant or not, the query is converted into its disjunctive
normal form:

Qdnf = (1, 1, 1) ∨ (1, 1, 0) ∨ (1, 0, 0)

If any of the conjunctive components (ta, tb, tc) of the query are present in the document, the
document is considered relevant to the query.

The boolean model is simple, and was popular in the early days of information retrieval. Two
major drawbacks have led to less attention lately. First, the model uses binary weights of the
terms, i.e. the model predicts the documents to be either relevant or non-relevant, with no notion
of partial match to the query conditions. Second, it is often difficult to describe an information
need as a boolean expression [4].

4.6.2 The Vector Model

The vector model is an algebraic model. Both the documents and queries are represented as
vectors of weights, one weight for each index term in the document collection. More formally, for
a collection with t index terms, a document D and a query Q are represented as:

D = (wd1, wd2, wd3, ..., wdt)

Q = (wq1, wq2, wq3, ..., wqt)

The similarity between a query and a document is usually calculated by the Cosine measure:

sim(dj , q) =
∑t

i=1 wi,j × wi,q√∑t
i=1(wi,j)2 ×

∑t
j=1(wi,q)2

24 Chapter 4. General View of Search

The most popular way to calculate the weights is to use some variation of the tf-idf weighting
scheme. The term frequency (tf) of a term ti for a document dj is given as

tfi,j =
freqi,j

maxlfreql,j

where the maximum is computed over all terms which appear in the document dj .

The inverse document frequency (idf) is defined as

idfi = log
N

ni

where N is the total number of documents in the collection, and ni is the number of documents
in which term ti appears.

Term frequency measures how well the term describes the document content, while inverse docu-
ment frequency is a measure of the term’s ability to distinguish the relevant documents from the
non-relevant documents. The intuitive idea is that a term which occurs many times in a document,
may provide as a good measure of how well the term describes the document content. On the other
hand, a term which occurs in many documents is not a good discriminator in order to separate
the relevant documents from the non-relevant ones. Despite its simplicity, the vector model yields
good retrieval performance with general collections [4].

Two extensions of the vector model, the generalized vector model and latent semantic indexing,
are presented next.

Generalized Vector Model

The generalized vector model is based on less restrictive interpretation of term-to-term indepen-
dence. In particular, the index terms vectors are assumed linearly independent1, but not pairwise
orthogonal2. In contrast, the classic model often interprets independence of index terms as pairwise
orthogonality. The generalized vector model was proposed by Wong, Ziarko and Wong [63].

Possible patterns of term co-occurence (inside documents) are represented by minterms. These
minterms are given by

m1 = (0, 0, . . . , 0)
m2 = (1, 0, . . . , 0)
m3 = (0, 1, . . . , 0)
m4 = (1, 1, . . . , 0)

...
m2t = (1, 1, . . . , 1)

The minterm m1 points to the documents containing none of the index terms. The minterm m2

points to the documents containing solely the index term k1. Further, the minterm m2t points to
the documents containing all the index terms. The central idea in the generalized vector space
model is to introduce a set of pairwise orthogonal vectors ~mi associated with the set of minterms,
and to adopt this set of vectors as the basis for the subspace of interest. The ~mi vectors are

1Linear independence: Let S = v1, v2, . . . , vn be a set of vectors in the vector space V . The set S is a linearly
independent set if none of the vectors v1, v2, . . . , vn is expressible as a linear combination of the other vectors in S.

2Pairwise orthogonality means that for each pair of index term vectors ~ki and ~kj , we have ~ki · ~kj = 0. For
example, the vectors (1, 0, 1) and (1, 0,−1) are pairwise orthogonal. As long as the vectors are not 0, pairwise
orthogonality implies linear independence.

4.6. Ranking 25

~m1 = (1, 0, . . . , 0, 0)
~m2 = (0, 1, . . . , 0, 0)

...
~m2t = (0, 0, . . . , 0, 1)

where each vector ~mi is associated with the respective minterm mi. Index terms are correlated
by the ~mi vectors. For instance, the vector ~m4 is associated with the minterm m4 = (1, 1, . . . , 0)
which points to the documents in the collection containing the index terms k1, k2, and no others.
If such documents do exist in the collection, the minterm m4 is active and a dependence between
the index terms k1 and k2 is induced.

To determine the index term vector ~ki associated with the index term ki, the vectors for all
minterms mr in which the term ki is in state 1 and normalise, are summed up. This gives

~ki =

∑
∀r, gi(mr)=1 ci,r ~mr√∑

∀r, gi(mr)=1 c2
i,r

where
ci,r =

∑
dj | gl(~dj)=gl(mr) for all l

wi,j

Notice that the internal product ~ki ·~kj can now be used to quantify a degree of correlation between
the index terms ki and kj :

~ki · ~kj =
∑

∀r | gi(mr)=1 ∧ gj(mr)=1

ci,r × cj, r

The usage of index terms dependencies to improve retrieval performance continues to be a con-
troversial issue. In fact, despite the introduction in the 1980s of more effective algorithms for
incorporating term dependencies, there is no consensus that incorporation of term dependencies
in the model yields effective improvement with general collections. Further, the generalized vector
model is more complex and computationally more expensive than the classic vector model [4].

Latent Semantic Indexing

Latent semantic indexing (LSI) seeks to reduce the term-document space, and attempts to solve the
synonomy3 and polysemy4 problems that plague automatic information retrieval systems. Where
the other retrieval models are based on index term matching, LSI is based on concept matching.
The advantage of concept matching is that documents could be retrieved even when they are not
indexed by the specified query terms. The main idea of LSI is to map each index term vector and
query vector into a lower dimensional space which is associated with concepts. The intention is
that retrieval in the lower dimensional space may be superior to retrieval in the space of index
terms. In [58], a simple example that describes LSI is presented. In the following this example
will be presented.

3The semantic relation that holds between two words that can (in a given context) express the same meaning/-
concept.

4The ambiguity of an individual word or phrase that can be used (in different contexts) to express two or more
different meanings/concepts.

26 Chapter 4. General View of Search

Figure 4.4: Term-by-Document Matrix M [58]

In Figure 4.4, an example of a term-by-document matrix M is visualised. The example shows
five different terms for six different documents, and if each term is represented (denoted by 1) in
the document or not (denoted by 0). If term vector similarity is used to compare the documents
in the example, there is a similarity between the documents 4, 5 and 6. This is because these
documents are about cars and/or trucks. However, for documents 2 and 3, the words “cosmonaut”
and “astronaut” would not be recognised as the same word. This semantic weakness is avoided by
using LSI.

LSI is a text application of the mathematical technique Singular Value Decomposition (SVD) [6].
SVD splits the matrix M into the product of three matrices by the least square method [6, 44].
The formula is given below, and further visualised in Figure 4.5,

M = TSDT

where T is a Term-by-m matrix, S is an m-by-m matrix, and D is an m-by-Document matrix.
The m rows and columns can be thought of as the concept space.

Figure 4.5: Singular Value Decomposition

The three matrices can be used as follows. Given some terms, the vectors of concepts from T can
be retrieved. Further, these vectors can be used to retrieve related concepts from S. Finally, the
concepts can be used to retrieve documents from D.

To visualise the documents in a two dimensional space, the document coordinates can be found
by calculating the matrix:

B = Sk×kDk×n

where k is the top rows, and n is the number of documents.

In Figure 4.6, the matrix B = S2×2D2×6 (top), and the document correlation matrix BT B (bot-
tom) are presented. The document correlation matrix shows how similar the documents in the
collection are. The closer to 1.00 the values are, the more similar are the documents. In the
example, there is a similarity between documents 2 and 3, since their BT B value 0.88 is close to
1.00. This similarity shows the strengths of LSI. Even though document 2 and 3 have no words in
common, there is a high possibility that both documents are about the same topic, namely space
travelling.

4.6. Ranking 27

Figure 4.6: The Matrix B and the Document Correlations Matrix BT B [58]

4.6.3 The Probabilistic Model

The probabilistic model attempts to determine the probability of a document being of interest to
the user, based on the user query.

The similarity measure is defined as the ratio between the probability of a document being relevant
to the query, and the probability that it is non-relevant:

sim(q, dj) =
P (R|dj)
P (R̄|dj)

Using Bayes’ rule, and noting that the prior probabilities for relevance and irrelevance are identical
for all documents in the collection, the expression can be reformulated as:

sim(q, dj) ∼
P (dj |R)
P (dj |R̄)

Assuming that the presence or absence of a term is the only indicator of relevance, as well as the
independence of index terms, P (dj |R) can be written as

P (dj |R) =
∏

kiappearsP (ki|R)
∏

kidoesnotappearP (k̄i|R)

where each ki represents an index term appearing in the query.

P (ki|R) is initially set to the same value, usually 0.5. The model assumes that the initial distri-
bution of index terms within non-relevant documents, initially is equal to the distribution of these
terms within all documents in the collection. This yields the initial estimates

P (ki|R) = 0.5

P (ki|R̄) =
ni

N

where ni is the total number of documents containing the term ti, and N is the total number of
documents.

The inital assumptions are refined each time a query is posed to the system:

P (ki|R) =
|ri|
|r|

28 Chapter 4. General View of Search

P (ki|R̄) =
ni − |ri|
N − |r|

Here, |ri| is the number of retrieved documents containing the term ti, and |r| is the total number
of retrieved documents.

In addition, user feedback may be used to decide which documents are relevant and non-relevant.

4.6.4 Structural IR Models

Structural IR models use information about the structure of the text, such as chapters, sections,
titles, bold text, and so on, combined with content information. The structure based models differ
in how they balance between model expressiveness and efficient query evaluation. This section
briefly mentions two structure based models.

Non-Overlapping Lists divides the text in non-overlapping regions, collected in a list. There
may be multiple ways to divide the text, for instance chapters and sections. In the case of HTML5

documents, the text may be divided according to the various HTML tags. The text regions are
split into separate lists, i.e. distinct lists for chapters and sections.

Proximal Nodes is based on a strict hierarchy composed of the document structure, in contrast
to the flat lists in the previous model. The consequence is that the model allows for queries taking
the relation between the structural parts into account.

4.6.5 Web Search and Pagerank

Even if each document available in the Web is fairly unstructured, the hyperlink structure between
the documents can be utilised to develop new ranking schemes. Algorithms exploiting the hyperlink
information show significantly increase in retrieval performance. In its most simple form, the
traditional ranking models are extended to also include pages that point to a page in the answer
set, and less usual, pages pointed to by a page in the answer set. Figure 4.7 illustrates this page
structure.

More sophisticated algorithms use the number of links that point to a page as a measure of its
popularity and quality. Also, links on a popular page should count more than links on random
pages. An algorithm taking this approach is Google’s6 PageRank [4, 46]. The PageRank of a page
a is defined as

PR(a) = q + (1− q)
n∑

i=1

PR(pi)/C(pi)

where page a is pointed to by pages pi to pn. C(a) is the number of outgoing links of a page a. q
is the probability that the user jumps to a random page. The probability for following a random
link at the current page is thus (1− q).

A drawback with PageRank is that it can easily get spammed up with sophisticated search engine
marketing techniques and click fraud. To cope with this, a search engine spam solution called
SNAP has been proposed [5]. SNAP is a new breed of search engine that ranks sites by, among
other things, how many times they have been clicked by prior searchers. The technique is for
example being used by Google today for advertising on the main page.

5HyperText Markup Language (HTML), is a coding language for publishing hypertext on the World Wide Web,
http://www.w3.org/MarkUp/

6http://www.google.com

4.7. Retrieval Evaluation 29

Answer set

A

B

C

D

E

F

Figure 4.7: Link Structure on the Web

4.7 Retrieval Evaluation

Even though the performance of an IR system often is a highly subjective matter, it is important
to evaluate the relevance of the retrieved documents. Recall and precision are the single two most
popular evaluation parameters. Let |R| be the number of relevant documents for a query, and |A|
be the number of documents in the answer set. |Ra| is the number of relevant documents in the
answer set. Figure 4.8 visualises the different sets.

Recall is the fraction of the relevant documents which has been retrieved:

Recall =
|Ra|
|R|

Precision is the fraction of retrieved documents which is relevant:

Precision =
|Ra|
|A|

As an example, consider the set Rq of relevant documents for query q:

Rq = {d3, d4, d5, d6, d11, d12, d16, d17, d18, d20}

Table 4.5 shows the recall and precision values for the retrieved documents. Figure 4.9 plots the
highest precision value for each recall level, known as the precision versus recall figure.

To evaluate retrieval performance for more than one query, the average precision at each recall
level is computed:

P̄ (r) =
Nq∑
i=1

Pi(r)
Nq

Here, P̄ (r) is the average precision at a given recall level r, Nq is the number of queries, and Pi(r)
is the precision at recall level r for the i-th query.

30 Chapter 4. General View of Search

Figure 4.8: Precision and Recall

Table 4.5: Precision and Recall
Rank Document Number Relevant Recall Precision

1 d11 Yes 10% 100%
2 d12 Yes 20% 100%
3 d13 No 20% 67%
4 d14 No 20% 50%
5 d9 No 20% 40%
6 d10 No 20% 33%
7 d7 No 20% 29%
8 d16 Yes 30% 38%
9 d8 No 30% 33%
10 d6 Yes 40% 40%
11 d17 Yes 50% 45%
12 d4 Yes 60% 50%
13 d15 No 60% 46%
14 d20 Yes 70% 50%

4.7. Retrieval Evaluation 31

Figure 4.9: Precision versus Recall Plot

Averaging the performance over a set of queries has the disadvantage of hiding anomalies for
distinct queries. To evaluate a retrieval algorithm for each query in an example set, single value
summaries of the precision versus recall figures are useful. Three approaches for calculating a
single value summary of a precision versus recall figure are examined next.

Average Precision at Seen Relevant Documents is calculated by averaging the precision
at each recall level. In the above example, after each new relevant document is observed, the
precision values are 100, 100, 38, 40, 45, 50 and 50. Thus, the average precision at seen relevant
documents is:

(100 + 100 + 38 + 40 + 45 + 50 + 50)/7 = 60.4

Precision-at-k (P@k) is the precision at k returned documents. In the example, P@3 is 67%,
because 2 among the first 3 documents in the ranking are relevant. A special case of P@k is R-
Precision, where k = R is the total number of relevant documents. The R-precision in the example
is 40%, because there are 10 relevant documents in Rq, and 4 among the first 10 documents in the
ranking are relevant. We will use P@k to evaluate of our solution.

Precision Histogram is used for comparison of two ranking models. The histogram is calcu-
lated by taking the difference between the P@k values of algorithm A and B for each query. If the
histogram shows a positive value for the i-th query, then algorithm A yields a better result than
algorithm B for query number i and vice versa.

Recall and precision require knowledge of the total number of relevant documents to be calcu-
lated. In large collections, information about this number is rare. To make it possible to perform
relevance evaluation using precision and recall, reference collections exist where experts manually
have selected the relevant documents.

Chapter5
Searching the Vertical Web

”Judge a man by his questions, rather than by his answers.”

- Voltaire

There is a trend towards more specific domain search tools, vertical searches, in the case of
searching the Web. Some examples are image search, news search and shopping search, which
are standard in every major search engine today. The advantage of splitting the different domains
is that the document base often will be more homogeneous and semi-structured. Even if the
structure of HTML-documents has been used for ranking purposes for a long time (as seen in
Section 4.6.4), semi-structured documents differ because they do not only capture the structure
of the documents, but also the semantics, usually represented as labelled XML fields. That is,
we are moving from a pure information retrieval view towards a database centric view, where the
structure of the data is known.

Traditional information retrieval techniques are based on a static document concept, ignore the
document structure, and do not support structured queries. This impose serious restrictions if
used for XML retrieval. Up to recently, most research regarding XML in search has taken the
database point of view [12]. This approach is not feasible when it comes to information retrieval,
since answers are either right or wrong, i.e. there is no concept of partially relevant answers. Also,
the queries submitted are very specific, requiring extensive knowledge of the structure of the data
to be searched in. Section 5.1 presents work regarding XML in the context of information retrieval
where queries typically are vague and the answers are more or less “right”.

Semi-structured documents generally lead to multiple criteria for how the returned documents
should be ranked. This in turn arises questions like which criterion that is more important, and
how to combine the results produced by different criteria. The latter task is named ranking
aggregation in the case of score-based rankings. Section 5.2 addresses these challenges.

5.1 XML Retrieval

Listing 5.1 shows three example XML documents representing shopping items at
http://shopping.yahoo.com. Note that the documents are not encoded exactly the same way
as Yahoo! Shopping does today. Anyway, they could be encoded this way, and we will use this
representation for presentation purposes. Figure 5.1 visualises the documents in the form of an
XML tree.

The ability to represent the semantics of data creates a great opportunity for better information
retrieval [23]:

• Documents may be categorised by scheme, and search limited to a particular XML scheme of
interest. For instance, a search for The Da Vinci Code may be limited to the video document
type in the example documents.

33

34 Chapter 5. Searching the Vertical Web

� �
1 <document type="book">

2 <year>2003</year>

3 <title>The Da Vinci Code</title>

4 <author>Dan Brown</author>

5 <desc>A murder in the Louvre...</desc>

6 <price>17.95</price>

7 </document>

8

9 <document type="music">

10 <title>Bad</title>

11 <song_list>

12 <title>Bad</title>

13 <title>The way you make me feel</title>

14 <title>Speed Demon</title>

15 </song_list>

16 <artist>Michael Jackson</artist>

17 </document>

18

19 <document type="video">

20 <title>The Da Vinci Code</title>

21 <desc>A murder in the Louvre...</desc>

22 <year>2006</year>

23 </document>

24

25 <document type="video">

26 <director>Peter Jackson</director>

27 <title>King Kong</title>

28 <format>DVD</format>

29 </document>� �
Listing 5.1: XML Documents

1: documents

2: books

3: book

6: author

5: title

4: year

8: price

7: desc

10: music

16: artist
12: song list

11: title

17: videos

18: video

20: desc

21: year19: title

9: music

260

The Da Vinci Code

Dan Brown

A murder in the Louvre...

$17.95

Bad Michael Jackson

2006

A murder in the Louvre...

The Da Vinci Code

13: title

14: title

15: title
Speed Demon

The way you make me feel

Bad

22: video

24: title

25: desc
23: director
Peter Jackson

...a giant ape...

King Kong

Figure 5.1: XML Tree

5.1. XML Retrieval 35

• Ambiguous words can be distinguished by the XML labels they appear in. For example, the
name Jackson can be either the artist or the director.

• Special data types like numeric attributes may be separated and treated appropriately. An
example is the price element, which should have other search predicates (like =, < and >)
than string fields.

• Relevance can be computed based on structural proximity rather than keyword proximity.
For instance, the nodes 19 and 20 are more structurally related than the nodes 5 and 20,
even though they are equally similar as to keyword proximity.

• Only the part of the document of interest may be returned. For example, in an article
document collection, only the relevant sections may be returned, instead of the whole article.

This section is divided into three parts, examining XML query languages, indexing, and ranking
respectively.

5.1.1 XML Query Languages

In order to benefit from a semi-structured document collection, a lot of research explore Content
and Structure queries (CAS) [19, 27, 50, 60, 61]. Such queries restrict the context of interest by
referring to the document structure. The ability of posing highly specific queries is however at the
cost of a complex query language and the need for knowledge about the document structure.

Due to its simplicity, Keyword-Only queries (Content-Only queries in INEX1), have become pop-
ular, especially in the case of search applications for common people. In contrast to structural
queries, where elements that match structural requirements in the query are identified and then
ranked, a part of keyword-only query processing is to determine semantics from syntax.

An approach somewhere in between is Keyword and Label queries. In this case, the user submits
keywords, and optionally, XML label names where the keywords are to be found.

The three mentioned query language paradigms are explored next in the context of XML retrieval.

Content and Structure Query Languages

Most work considering content and structure query languages are centred around the XQuery [61]
language proposed by the W3C group2. XQuery combines the features of two languages named
XQL [19] and XML-QL [50]. XQL represents a document-centric view, retrieving elements from
the original documents fulfilling the specified condition. On the other hand, XML-QL takes the
data-centric view, offering a number of operators for restructuring the result, similar to standard
database query languages. Yet another variation used in INEX, is XPath [60], a subset of XQuery,
with an addition of an about(path, string) predicate. The about predicate specifies a certain
context to be about a specific content. Table 5.1 illustrates some of the main operators of the
XPath language.

An INEX CAS query may take two possible forms [55]:

//A[B] : Return A labels about B.
//A[B]//C[D] : Return C descendants of A where A is about B and C is about D.

Some examples of INEX CAS queries applied on the example documents in Listing 5.1, are pre-
sented in Table 5.2.

1INitative for the Evaluation of XML retrieval, http://inex.is.informatik.uni-duisburg.de/
2The World Wide Web Consortium (W3C), http://www.w3.org

36 Chapter 5. Searching the Vertical Web

Table 5.1: The XPath Query Language
Operator Description
nodename Selects all child nodes of the node.
/ Selects from the root node.
// Selects nodes in the document from the current node that match the selection

no matter where they are.
. Selects the current node.
.. Selects the parent of the current node.
@ Selects attributes.
[] Selects a specific node or a node that contains a specific value, specified as a

predicate inside square brackets.
* Matches any element node.
@* Matches any attribute node.
node() Matches any node of any kind.
| Computes two node-sets.
+ Addition.
- Subtraction.
* Multiplication.
div Division.
= Equal.
!= Not equal.
< Less than.
<= Less than or equal to.
> Greater than.
>= Greater than or equal to.
or Boolean or.
and Boolean and.
mod Modulus.

Table 5.2: INEX CAS Queries

//book[about(., a murder in louvre)]
Returns book elements that mention a murder in Louvre.
//book[about(., a murder in louvre)]//title
Returns title elements of books that mention a murder in Louvre.
//*[about(., a murder in louvre]
The retrieval engine must deduce the most appropriate element about a murder in Louvre to
return.
//*[about(*//title, the way you make me feel)]
Returns any element containing a title element about the way you make me feel as a descendant.
//video[about(*//director, peter jackson) and year > 2000]//desc[about(., a
giant ape]
Returns description elements about a giant ape from videos directed by Peter Jackson after
year 2000.

5.1. XML Retrieval 37

The query language XIRQL [27] is based on XQL. XIRQL extends XQL by means of a number of
information retrieval related issues:

• Weighting of document and query terms. The weights are used to compute a retrieval status
value, yielding a ranked list of results.

• Relevance-oriented search, i.e. only content are requested, not the type of elements to be
retrieved. In this case, XIRQL relies on the structured document retrieval principle which
states that a system should always return the most specific part of a document answering a
query, unless otherwise stated [14].

• Vague predicates for various data types. Examples of vague predicates are “near” in the
context of locations, and “broader” and “narrower” in the context of a thesaurus.

• Semantic relativism, meaning that the query language should take into account that a par-
ticular information could be encoded in different ways, for instance may information be
encoded as either an XML element or an XML attribute.

The structure of a query may be applied in three ways [23]:

• Proactively structured queries are fully structured when first submitted by the user.

• Reactively structured queries are unstructured in the beginning and obtain structure by the
user in an interactive process.

• Automatically structured queries are annotated with structure automatically.

As easily seen by the above query examples, fully structured queries may be fairly complex. In
order to submit proactively structured queries, the user needs knowledge about the document
structure. This is oftentimes not the case.

Reactively structured queries may be obtained by means of special adapted user interfaces. [23]
suggests a multiple step interface where the user first chooses the appropriate structure and then
fills data into a form. Another approach towards helping the user to add structure to a query, is
autocompletion. Autocompletion may be used in a number of ways. Figure 5.2 shows an example
where the user interface shows the possible contexts in which the query terms exist in the index.
The user may then choose one of the suggested structured queries.

Figure 5.2: Autocompletion

Finally, the data may be explored in order to automatically produce a structured query from an
initially unstructured one. An approach is to analyse the query and the result set in order to boost
hits where the query terms appear in specific XML elements. For instance, the query jackson
director could boost hits where the keyword jackson appears in the director element. This
approach is user friendly, but could be distracting if the automatically added structure produces
unexpected results.

Keyword-Only Queries

Keyword querying has emerged as the main paradigm for information discovery, especially in
the Internet. The main advantage of keyword search is its simplicity. There has been several
proposals of keyword based XML retrieval systems. This includes among others Nearest Concepts
[52], XRANK [33] and XKSearch [64]. Schema-free XQuery [41] allows users to express queries

38 Chapter 5. Searching the Vertical Web

differently, depending on their knowledge of the document structure. The query expression may
range from keywords-only, to regular XQuery queries.

Keyword and Label Queries

Although the golden mean, there has been little work focusing on simple query languages based
on keywords, and optionally, XML label names and structure. However, there are a couple that
are worth mentioning.

[12, 16] presents query languages that utilise both keywords, and optionally, the XML labels. Both
proposals emphasize being simple.

[12] argues that XML documents should be searched via queries of the same nature, an idea from
traditional information retrieval. I.e. XML documents should be searched via XML fragments.
Listing 5.2 shows an example of an XML fragment query.� �

1 <document type="video">

2 <director>Peter Jackson</director>

3 </document>� �
Listing 5.2: XML Fragment Query

In XSEarch [16], a query term consists of a keyword, a label, or a combination of a label and a
keyword written in the form label:keyword. A query term may be required or optional.

We will explore keyword and label queries in our implementation. The queries will be annotated
with structure automatically.

5.1.2 XML Indexing

Structured retrieval makes it possible to focus the search towards specific contexts, and dynamically
adjust the granularity level of the returned documents. In order to achieve this, the index has to
store both content and structure information.

A naive approach is to treat each XML element as a document and apply traditional information
retrieval techniques. This solution has several drawbacks [33]. First, the inverted list would need
to store both the element that directly contains the keyword, and all of its ancestors. This leads to
space overhead. Additionally, if an element appears in the result set, all of its ancestors will also
appear. Finally, regular approaches do not take structural proximity into account. This section
presents several methods exploring properly indexing of XML documents.

A simple approach is taken in [12]. The authors suggest to use pairs of the form (term, context)
as indexing units, instead of single terms as in traditional information retrieval. However, the
answers returned consist of entire documents.

[27] proposes to use predefined XML elements as roots of index objects. Figure 5.1 shows the index
objects of the XML elements book, author, music, artist, video, and director in dashed boxes. The
index objects are disjoint, such that each term occurrence is considered only once. The main
drawback of the work of [27] is that the concept of index objects is static. [30] generalises the
model to support the retrieval of nodes at any granularity level. This is achieved by treating all
basic XML elements as indexing objects.

In [42], a compact indexing tree, Ctree, allows for efficient retrieval for queries with any structure
constraint and to retrieve nodes at any level. The Ctree construction consists of two steps. The

5.1. XML Retrieval 39

1: documents

2: books

3: book

6: author

5: title

4: year

8: price

7: desc

10: music

16: artist
12: song list

11: title

17: videos

18: video

20: desc

21: year19: title

9: music

260

The Da Vinci Code

Dan Brown

A murder in the Louvre...

$17.95

Bad Michael Jackson

2006

A murder in the Louvre...

The Da Vinci Code

13: title

14: title

15: title
Speed Demon

The way you make me feel

Bad

22: video

24: title

25: desc
23: director
Peter Jackson

...a giant ape...

King Kong

Figure 5.3: Indexing Nodes

first step is to cluster equivalent nodes from the XML tree, i.e. nodes with equal label paths (the
list of labels of the nodes on the path from the root to the node), into groups. There is an edge
from group A to group B if the label path of group A is the longest prefix of that of group B.
Next, each group is associated with an array where the array index represents a list of equivalent
nodes ordered by their preorder in the XML tree and the array values point to the corresponding
parent elements. The last step preserves the hierarchical relationships among the individual nodes
in the XML tree. Figure 5.4 shows the creation of a Ctree from the example XML tree in Figure
5.1.

1: documents (-1)

2: books (0)

3: book (0)

6: author (0)

5: title (0)

4: year (0)

8: price (0)

7: desc (0)
10: music (0)

16: artist (0)
12: song list (0)

11: title (0)

17: videos (0)

21: year (0)

9: music (0)

13,14,15: title (0,0,0)

18, 22: video (0,0)

19, 24: title (0,1)

20, 25: desc (0,1)
23: director (0)

Figure 5.4: Ctree

The mentioned work aims to support retrieval at any (or specific) levels in the XML tree. Addi-
tionally, there has been some research regarding indexing that attempts to speed up computation
of semantic relationships. The idea of semantic relationships is presented in the next section. We

40 Chapter 5. Searching the Vertical Web

will however cover the indexing theory here.

Most approaches take the Dewey numbering as a starting point. In Dewey numbering, each node is
assigned the number of its parent concatenated with a number that represents its position among
its siblings. Since the number of an ancestor is a prefix of the number of a descendant, anchor-
descendant relationships are implicitly captured in Dewey numbering. The Dewey numbering of
the nodes in our example document tree is shown in Figure 5.5.

0

0.1

0.1.0

0.1.0.2

0.1.0.1

0.1.0.0

0.1.0.4

0.1.0.3

0.2.0

0.2.0.2
0.2.0.1

0.2.0.0

0.3

0.3.0

0.3.0.2

0.3.0.30.3.0.1

0.2

0.2.0.1.0

0.2.0.1.1

0.2.0.1.2

0.3.1

0.3.0.1

0.3.0.2
0.3.0.0

260

The Da Vinci Code

Dan Brown

A murder in the Louvre...

$17.95

Bad Michael Jackson

2006

A murder in the Louvre...

The Da Vinci Code

Speed Demon

The way you make me feel

Bad

Peter Jackson
...a giant ape...

King Kong

Figure 5.5: Dewey Numbering

[33] propose several inverted lists based on the Dewey numbering. The Dewey Inverted List (DIL)
for a keyword, contains the Dewey number of all the XML elements that directly contain the
keyword. For each keyword, the DIL is sorted by the Dewey number. A part of the DIL for our
example is shown in Figure 5.6.

Louvre 0.1.0.3
0.1.0.2

85
38

32
89 91

Jackson 0.2.0.2
0.3.0.0

82
99

38
52

...

...

De
we

y n
r

Ra
nk

Po
sit

ion
 Li

st

Figure 5.6: Dewey Inverted List

In addition to a traditional merge-join of the query keyword inverted lists, the result elements have
to be inferred from the descendants. This is done by computing the longest common prefix, i.e. the
deepest common ancestor, of the Dewey numbers in the different lists. The algorithm works in one
single pass over the inverted lists. If the lists are long, this may be expensive, especially if the user
only wants the top few results. A Ranked Dewey Inverted List (RDIL) is ordered with respect to

5.1. XML Retrieval 41

the rank value instead of the Dewey number. This way, higher ranked results are likely to appear
first in the inverted lists, at the cost of more complex query processing. The performance of RDIL
strongly depends on the keyword correlation, because in the case of low correlation, one keyword
may appear in an element with high rank while another keyword may appear in an element with
low rank. Since the keyword correlation seldom is known a priori, the authors suggest a Hybrid
Dewey Inverted List (HDIL) that consists of the DIL and a small fraction of the RDIL. This is
reasonable because RDIL is likely to outperform DIL only if it scans a small fraction of the full
inverted list. The query evaluation uses RDIL until the estimated remaining time for RDIL is
more than the estimated remaining time for DIL, then the query processing switches to DIL. A
similar approach using B+-trees is presented in [64]. The problem of merging several ranked lists
is examined in section 5.2.

A different approach is taken in XSEarch [16]. For each keyword, the paths in the documents
that lead to that keyword are stored. Additionally, the set of nodes reachable by each path is
stored. Similarly, for each label, the paths in the documents that lead to that label and the nodes
reachable by those paths are stored. Finally, a path index is used to determine if the paths leading
to keywords or labels are interconnected, and if so, the size of their interconnection tree. This size
is used for ranking, as will be seen in the next section.

5.1.3 XML Ranking

As mentioned earlier, a structured document collection offers a new dimension when it comes to
ranking, namely structural proximity. As mentioned, the structured document retrieval principle,
states that a system should always retrieve the most specific part of a document answering the
query [14], in case the query does not specify what kind of element to retrieve.

Work considering XML ranking mainly take two different approaches. The first part of this section
covers work regarding adaption of the tf-idf weighting scheme to XML retrieval. The second part
focuses on how to interpret the degree of semantic relationship between potential result nodes.

Other suggestions for XML ranking are ElemRank [33], a hyperlink metric similar to PageRank
(see Section 4.6.5), extended to XML, and weighting of the different XML elements in order to
mark some elements as more important than others [42].

Extensions of the tf-idf weighting scheme

Traditional information retrieval precalculates the measures term frequency and inverse document
frequency, and stores them in the index. All documents in the base are considered when calculating
the values. In the case of structured documents however, it could be desirable to calculate term
frequency and inverse document frequency considering only the specific documents or parts of
documents of interest. This may have serious impact on the ranking produced, specifically if the
text statistics in the various domains differ to a high degree. For example, consider a document
base containing books covering various categories. A query which specify the category of interest
should return a ranking based on statistics from that category only.

A common method, explored in [27] among many others, is to associate each index object with
term statistics. Searching may be performed at the level of the indexing nodes and hierarchical
combinations of those. In the latter case, a technique named augmentation is used to downweight
term statistics when the terms are propagated upwards in the document tree. The motivation is
that content that is more distant in the document tree, is less important than content close to the
context node.

42 Chapter 5. Searching the Vertical Web

Semantic Relationship

In all of the mentioned keyword-only search approaches [33, 41, 52, 64], keywords and labels are
treated in the same way. Each query term is matched against every word of the document, even if
this is a label name. The document structure is utilised during query processing, by deciding the
degree of semantic relationship between the parts of the document that match the query. More
semantically related results are ranked higher.

In the case of label and keyword queries, the XSEarch system [16] decides that an interior node
satisfies a search term l : k if it is labelled with l and has a descendent that contains the keyword
k. Semanic relationship determines the ranking of the results. In [12], only approximate matching
between the query and the documents is required. There is no requirement of semantic relationship.

Semantic relationship is most common implemented as some variation of the Lowest Common
Ancestor (LCA). LCA is defined as the deepest node in a tree that is an ancestor of two given
leaves.

XSEarch [16] introduces the concept of interconnected nodes. Interconnected nodes are the set of
connected nodes, where no two internal nodes have the same label name, and the root node is the
LCA of leaf nodes. The size of the relationship tree is used as a factor in the ranking formula such
that smaller sets are ranked higher because nodes close together are likely to be more meaningfully
related. Interconnected nodes require that the same entities always have similar label names, and
that the document tree contains exactly one logical hierarchy.

XKSearch [64] relies on the Smallest Lowest Common Ancestor (SLCA) semantics. The set of
SLCAs is the set of nodes that contain the keywords either in their elements or in the elements
of their descendants, and have no descendant node that also contains all keywords. The same
variant is used in Schema-Free XQuery [41], although named as the Meaningful Lowest Common
Ancestor Structure (MLCAS).

The difference between the various approaches is easiest captured by some examples. Consider
nodes 19 and 25 in Figure 5.1. Their LCA is the node 17. The nodes 19 and 25 are not inter-
connected nodes because there are nodes in their relationship tree that have the same label name,
i.e. video. However, nodes 19 and 20 are interconnected nodes with node 18 as their LCA. Next,
consider the query da vinci code louvre. The set of SLCAs consists of the nodes 3 and 18,
which is the set of roots of all smallest answer subtrees.

5.2 Ranking Aggregation

Semi-structured documents generally lead to multiple criteria for how the returned documents
should be ranked. The user may be indifferent regarding which criterion is more important, or he
may prefer one criterion to another. This raises questions about expressing preferences, combining
preferences, and querying preferences. This section addresses these challenges.

5.2.1 Expressing and combining Preferences

Preference expressions may be either qualitative or quantitative. The qualitative approach specifies
preferences directly using relations, e.g. “I prefer X to Y”. In the quantitative approach, preferences
are specified indirectly using scoring functions, e.g. “I like X with score 0.5 and Y with score 0.3”
[15].

5.2. Ranking Aggregation 43

Note that the qualitative approach is more general than the quantitative one, since every scoring
function can be defined by preference relations. An example is provided in Table 5.3. The prefer-
ence “if the same ISBN, prefer lower price to higher price” gives the preferences “book 3 to book
1” and “book 1 to book 2”. There is no preference between the first three books and book 4. A
scoring function would have to assign equal score to book 4 and book 1-3, but this contradicts
the preferences between the first three books. Thus, the preference can not be represented as a
scoring function.

Table 5.3: Expressing Preferences
Book Nr ISBN Merchant Price
1 0618517650 amazon.com $63.00
2 0618517650 christianbook.com $74.99
3 0618517650 walmart.com $61.70
4 0739307312 www.fictionwise.com $6.99

Another advantage of the qualitative approach is that it represents a natural way of expressing
wishes. However, the qualitative approach suffers from tie resolution when multiple preferences
are to be combined. Consider the example in Figure 5.7. Preference 1 states that “book 1 and
book 2 are preferred over books 3-6”, while preference 2 says that “books 3, 4, 1 and 6 are not
preferred”. The pareto combination only preserves those orders in consensus, while the priority
combination emphasizes one of the preferences, in this case preference 1.

Book 4

Book 4

Book 1 Book 2

Book 3 Book 5 Book 6

Book 5 Book 2

Book 3 Book 1 Book 6

Preference 1:

Preference 2:

Book 4

Book 2

Book 3 Book 6

Pareto:

Book 4

Book 1

Book 2Book 3

Book 5 Book 6

Priority:

Figure 5.7: Preference Combination

44 Chapter 5. Searching the Vertical Web

In the case of quantitative preferences, combination is performed by means of a combining function
[2]. Table 5.4 and 5.5 show two preference functions, i.e. mapping from records to numeric scores.
An example combination function may state that “if price is higher than $70.00, then return max
of preference function 2, otherwise return max of preference function 1”. The record “(0618517650,
amazon.com, $63.00)” will then return 0.8, which is max of preference 1.

Table 5.4: Quantitative Preference 1
ISBN Merchant Price Score
* amazon.com * 0.8
0618517650 * <$70.00 0.7
0618517650 * >$90.00 0.3

Table 5.5: Quantitative Preference 2
ISBN Merchant Price Score
* walmart.com * 0.2
0618517650 * * 0.9

There exist efficient methods for computing the top-k answers, i.e. the k top hits with the highest
scores, as we will see in the next section. However, it is not obvious how to specify scores and
combining functions. Also, the total ordering of scores is not always reasonable. A solution may
be to let the user specify qualitative preferences, which are mapped to score-based preferences
that can be used for query processing.

5.2.2 Querying Preferences

[37] proposes the Best-Matches-Only (BMO) query model for processing of qualitative preferences.
The model is based on the better-than graph. A better-than graph contains an edge y → x if there
exists a preference x < y. Nodes in the graph without a predecessor are named maximal elements.
x and y are unranked if no directed path exists between x and y. The better-than graph for the
tuples in Table 5.3 is shown in Figure 5.8.

Book 4Book 1

Book 2

Book 3

Figure 5.8: Better-Than Graph

The BMO model retrieves perfect choices, i.e. the maximal elements, if present. These points
constitute what is called the skyline. If there are multiple criteria that have to be combined,
the pareto preferences are used as the basis for the better-than graph. Plenty of researchers
have addressed the problem of answering BMO without fully computing the pareto preferences
[10, 39, 56]. We will not examine this problem further, because both qualitative preferences and
best-matching only, are less relevant in the context of Web search. The rest of this section examines
the ranking aggregation problem, i.e. combination of several score-based orderings.

5.2. Ranking Aggregation 45

The ranking aggregation problem is heavily studied related to middleware scenarios, or meta
search. Meta search connects several databases or document collections in order to answer user
queries. Another application area is comparison of several ordered lists in order to obtain knowl-
edge of how the various ranking features contribute to the overall ranking. Typically, only the
top-k answers are of interest.

The algorithms are highly driven by minimising total access cost

ct = s · cs + r · cr

where ct is the total access cost, s and r are the number of sorted and random accesses, and cs

and cr are the cost of sorted and random access. The various algorithms specialise in different
scenarios, ranging from cheap sorted and random access cost, to sorted or random access not
possible. Some algorithms are presented in the following. Table 5.6 explains some basic notation
related to the task of ranking aggregation.

Table 5.6: Basic Concepts related to Ranking Aggregation
Notation Explanation
D Domain
τ An ordered list of a subset S ⊆ D.

A full list, permutation, contains all the elements in D.
A partial list contains a subset of the elements in D.
A top-k list contains the k top ranked elements in S.

τ(i) The rank of i ∈ D. Higher numbers indicate better ranks.
τT The projection of τ with respect to T ⊂ D.
σ � τ The extension σ of a top k list τ is a permutation such that σ(i) = τ(i) for all

i ∈ Dτ .

Borda’s Method

A naive algorithm for obtaining an aggregated list from several ordered lists, is to assign a score
to each item corresponding to the position in which the item appears in the ordered lists. The
aggregated list is sorted with respect to a total score of each item.

In particular, in the case of full lists τ1, τ2, ..., τm, Borda’s method [9] assigns a score Bi(c) equal
to the number of candidates ranked below c in τi. The total Borda score is defined as:

B(c) =
m∑

i=1

Bi(c)

Borda’s method may be thought of as assigning an m-element position vector to each item, and
sorting the items by the L1 norm of these vectors. In general, the items could be sorted by the Lp

norms, the median, or the geometric mean.

The naive algorithm has two main drawbacks; it is linear in database size, and it is not clear how
to extend it to partial lists.

Fagin’s Algorithm

Fagin [26] first proposed an algorithm to the ranking aggregation problem not needing to access
every item in the database. In this context, a database consists of m lists, each of length N which
is the number of items in the database. Each item is associated with m scores x1, x2, ..., xm where

46 Chapter 5. Searching the Vertical Web

xi ∈ [0, 1] for each i. The xi value may be interpreted as the degree of relevance for the i-th
dimension. The m lists are sorted in descending order by the xi fields.

Fagin’s algorithm consists of three steps:

1. Do sorted access to each of the m sorted lists until there is a set H of at least k items that
has been seen in each of the m lists.

2. For each item R in H, do random access to each of the lists to find the scores xi of R.

3. Apply an aggregation function t to compute the overall score t(R) = t(x1, x2, ..., xm) for each
item R in H. The output of the algorithm is an ordered list of the k items with the highest
scores.

Popular aggregation functions are min, max, and average. An aggregation function is monotone if
t(x1, x2, ..., xm) ≤ t(x

′

1, x
′

2, ..., x
′

m) whenever xi ≤ x
′

i for every i. An aggregation function is strict
if t(x1, x2, ..., xm) = 1 whenever xi = 1 for every i. All of the mentioned aggregation functions
are monotone, but only min and average are strict. Fagin’s algorithm is correct for monotone
aggregation functions, and optimal with high probability in the worst case if the aggregation
function is strict and the orderings in the sorted lists are probabilistically independent.

The Threshold Algorithm / Quick-Combine / Multi-Step

The threshold algorithm was suggested independently as The Threshold Algorithm [26], Quick-
Combine [31] and Multi-Step [45]. The algorithm is an improvement of Fagin’s algorithm, and
goes as follows:

1. Do sorted access to each of the m sorted lists. As an item R is seen in some list, do random
access to the other lists to find the scores xi of R. Apply an aggregation function t to
compute the overall score t(R) = t(x1, x2, ..., xm) of R. Remember item R and its score t(R)
if this score is one of the k highest scores seen.

2. Let x̂i be the score of the last item seen in list Li. Stop when at least k items have been
seen whose score is at least equal to the threshold value τ = t(x̂1, x̂2, ..., x̂m).

3. The output of the algorithm is an ordered list of the k items with the highest scores.

The threshold algorithm may be further improved by exploiting the distribution of scores relative
to the ranks on which they occur. The idea is to force the threshold value to decrease quickly,
increasing the probability of newly found items having a grade above the threshold value. This
is achieved by preferring lists showing a behaviour of declining scores most rapidly relative to the
ranks for evaluation. In the same way, lists that represent more important query terms may be
preferred.

The stopping rule for the threshold algorithm always occur at least as early as the stopping rule
for Fagin’s algorithm. The threshold algorithm is instance optimal for all monotone aggregation
functions. An algorithm B is instance optimal if cost(B,D) ≤ c ·cost(A,D)+c

′
for every algorithm

A, database D and constants c and c
′
. Finally, the threshold algorithm is cheap in space, only

requiring bounded buffers.

The threshold algorithm may be modified to a θ-approximation algorithm, θ > 1, by transforming
the stopping rule to halt when at least k items have been seen whose grade is at least equal to
τ/θ.

No Random Access / Stream-Combine

Both Fagin’s algorithm and the threshold algorithm rely on random accesses. In some scenarios,
random accesses are expensive or simply not possible. [26] presents algorithms for both cases,

5.2. Ranking Aggregation 47

named Combined Algorithm and No Random Access (NRA) respectively. A similar approach as
NRA is suggested as Stream-Combine in [32]. We will explore the case of no random accesses, as
this is true for text retrieval systems.

NRA is described in the following:

1. Do sorted access to each of the m sorted lists. As an item R is seen in some list, upper and
lower bounds are calculated. The upper bound is calculated by substituting the last value
obtained in list i, x̂i, for each missing score. In the same way, the lower bound is computed
by substituting each missing score with the value 0. The current top-k list contains the k
items with the largest lower bounds, ties are broken using the upper bounds.

2. Halt when at least k objects have been seen, which lower bounds are greater than the upper
bound scores of all unseen items, that is, the upper bound of the last values obtained in the
lists so far.

Note that the algorithm does not output the grades of the items. If the sorted order is of interest,
this has to be determined by computing the top-1 list, top-2 list, . . . , top-k. The cost of finding
the top-k items in sorted order is thus k×maxiCi, where Ci is the cost of finding the top-i items.
NRA is instance optimal for monotone aggregation functions.

MPro / Upper

The last scenario is the case when sorted access is not supported. MPro [13] and Upper [11]
provide solutions to this problem. We will not investigate this problem further as it is somewhat
outside the scope of this thesis.

Optimal Ranking Aggregation

The concept of optimal ranking aggregation depends on what distance measure that strives to
be optimised. In the following, a closer look at two approaches to optimal aggregation will be
examined, each optimal in the meaning of minimising two popular distance measures; the Kendall
tau distance and the Spearman footrule distance.

Optimal ranking aggregation is considered less relevant in the context of the thesis. The theory
discussing distance measures may however be useful as to further evaluation of our solution.

The Kendall Tau Distance In the case of measuring the distance between two permutations,
the Kendall tau distance is the number of times in which the two lists disagree regarding the
ordering of two items:

K(σ, τ) = |{(i, j) | i < j, σ(i) < σ(j) but τ(i) > τ(j)}|

The measure is normalised by dividing by the maximum possible value
(|S|

2

)
.

The Kendall tau distance of σ to several lists τ1, ..., τk is given by:

K(σ, τ1, ..., τk) =
1
k

k∑
i=1

K(σ, τi)

In order to generalise the Kendall tau distance measure to partial lists, [24] introduces the Kendall
tau distance with penalty parameter

K̄
(p)
i,j (τ1, τ2)

48 Chapter 5. Searching the Vertical Web

where 0 ≤ p ≤ 1. τ1 and τ2 are two top k lists, such that σ1 � τ1, σ2 � τ2, and σ1 and σ2 are
permutations of Dτ1 ∪Dτ2 . Table 5.7 describes the four possible cases in which i and j may appear
in the two lists, together with the penalty value for each case.

Table 5.7: The Kendall Tau Distance Generalization to Partial Lists
Case Penalty
Both i and j appear in both lists:

i and j are in the same order. 0
i and j are in the opposite order. 1

Both i and j appear in τ1, and i appears in the τ2:
τ1(i) > τ1(j). 0
τ1(i) < τ1(j). 1

Note that this case generalise to both i and j appear in one list, and one of i
or j appears in the other list.
i appears in one list, and j appears in the other list. 1
i and j appear in one list, but neither i nor j appears in the other list. p

The optimistic approach, p = 0, in the last case, gives the minimising Kendall distance:

Kmin(τ1, τ2) = min(K(σ1, σ2))

Similarly, the neutral approach p = 1/2, gives the average Kendall distance:

Kavg(τ1, τ2) = E(K(σ1, σ2))

The Kendall tau distance is also called the bubble sort distance because it corresponds to the
number of times two items are swapped by using bubble sort to transform one of the lists into the
other.

The Spearman Footrule Distance The Spearman footrule distance is the sum over all ele-
ments i ∈ S, of the absolute difference between the ranks of i in the two lists:

F (σ, τ) =
|S|∑
i=1

|σ(i)− τ(i)|

The measure is normalised by dividing by the maximum possible value |S|2
2 .

Like the Kendall tau distance, the Spearman footrule distance may be extended to several lists
and partial lists. In the case of partial lists, [24] replaces all missing elements in each of the lists
with a location parameter l. An intuitive choice for l is k + 1.

Kendall/Kemeny Optimal Aggregation A lot of research regarding finding the best consol-
idation of several ordered lists is carried out in the context of social choices [22]. The Condorcet
alternative was first proposed by Marie J. A. N. Caritat and Marquis de Condorcet in 1785 [18].
They stated that if there exists some alternative that defeats every other in pairwise simple ma-
jority voting, then this alternative should be ranked first. The extended Condorcet criterion, due
to Truchon [57], says that if there is a partition (C, C̄) of S such that for any x ∈ C and y ∈ C̄,
the majority prefers x to y, then x should be ranked above y.

A Kendall optimal aggregation of a collection of partial lists τ1, τ2, ..., τk, minimises K(π, τ1, τ2, ..., τk)
over all permutations π. The aggregation obtained by optimising the Kendall distance is also called
the Kemeny optimal aggregation after the person who first proposed it [35, 36]. Kemeny optimal
aggregations have the desired property of satisfying the extended Condorcet criterion.

5.2. Ranking Aggregation 49

Computing the Kendall optimal aggregation is NP-hard [21]. The authors therefore introduce the
concept of a locally Kendall optimal aggregation. A list π is a local Kendall optimal aggregation
if it is impossible to reduce the total Kendall distance by flipping an adjacent pair. Like the
Kendall optimal aggregation, also the local version satisfies the extended Condorcet criterion. A
local Kendall optimal aggregation can be computed in time O(kn log n) as this problem is similar
to finding a Hamilton path in a majority graph for τ1, τ2, ..., τk. A majority graph has an edge
(x, y) from x to y if a majority of the τ ’s that contain both x and y, rank x above y.

The researchers further propose that by applying the local Kemenization procedure to any initial
aggregation, a ranking is obtained that is maximally consistent with the initial aggregation, and
simultaneously satisfies the extended Condorcet criterion. This makes it possible to benefit from
the initial aggregation method. The local Kemenization procedure picks an element from the top
of the inital ranking, places it at the bottom of the local optimal ranking, and bubbles it up as
long as the majority of the τ ’s agree.

Footrule Optimal Aggregation The Kendall distance for full lists σ, τ , may be approximated
by the Spearman footrule distance [20]:

K(σ, τ) ≤ F (σ, τ) ≤ 2K(σ, τ)

It follows that if σ is a Kendall optimal aggregation of full lists τ1, ..., τm, and σ
′

is a footrule
optimal aggregation, then [21]:

K(σ′ , τ1, ..., τm) ≤ 2K(σ, τ1, ..., τm)

[25] proposes an algorithm, median rank aggregation, that gives an optimal solution for a notion
of distance similar to the footrule distance. Median rank aggregation sorts the items based on the
median of the ranks in each list. The algorithm can be summarised as follows: Access the ranked
lists from the m voters, one item of every list at a time, until some item is seen in more than
half of the lists - this is the winner. The procedure continues until k items are discovered. The
algorithm is instance optimal and uses no random accesses.

Chapter6
Vespa – The Yahoo Vertical Search

Platform

”Far better an approximate answer to the right question, than
the exact answer to the wrong question, which can always be
made precise.”

– John Tukey

In this chapter, a short introduction to Vespa, the Yahoo! vertical search platform, is provided.
The chapter is based on the Vespa documentation. Note that because of sensitivity matters, some
simplifications have been made in the description of Vespa.

Vespa is a generic, scalable platform, used in more than 40 of Yahoo! search applications. It
supports search applications with varying:

• data size - from data fitting on one machine to Web-scale.

• query load - from a single machine to clusters handling thousands of queries per second.

• query formality - from raw end user input to deeply nested logical combinations of terms
and conditions.

• data diversity - from one type to tens or hundreds of different kinds of data formats, each
processed in a unique way.

• data formality - from raw pages of text to hundreds of formal fields.

Figure 6.1 presents an overview of Vespa. The content module controls fetching of data into the
system. To search this content, Vespa creates an index structure from the input data (indexing).
Search results are served from this index as responses to incoming queries. The machines, processes,
and services involved in the entire pipeline are controlled from a single administration server.

In Figure 6.2, an overview of the search core in Vespa is presented. The search core is responsible
for:

• finding all documents matching an incoming query by using the indices. Indexing is covered
in Section 6.3.

• calculating the rank score (relevance) of each hit. Ranking will be examined in Section 6.4.1.

• performing database operations like aggregating information over all the hits using attributes,
and sorting, if requested in the query. These operations will be explained in section 6.4.2.

• selecting the subset of hits to return to the user.

• processing and returning the document summaries of the selected hits.

51

52 Chapter 6. Vespa – The Yahoo Vertical Search Platform

Figure 6.1: The Main Components in Vespa

Figure 6.2: Vespa Search Core

6.1. Document Fetching 53

6.1 Document Fetching

Data fed into Vespa is in the form of documents. Documents may be fetched from a number of
different sources, mainly using two different approaches. In the first approach, Yahoo! Shopping
gets product information from shops that pay money to get their products indexed. These records
end up in a database, and are next dumped to XML files that are fed into the Vespa feeder. An
example of the structure of the XML files is illustrated in Listing 6.1. In the second approach, a
crawler is used to fetch documents. The crawler extracts data from HTML pages on the Web, in
a similar way as presented in Section 4.2.� �

1 <document type="book">

2 <title>The Da Vinci Code</title>

3 <author>Dan Brown</author>

4 <desc>A murder in the Louvre...</desc>

5 <price>17.95</price>

6 <year>2003</year>

7 </document>� �
Listing 6.1: A Shopping Document in Vespa

The content system (see Figure 6.1) in Vespa is responsible for handling content until it is delivered
for indexing. Index structures are partitioned and duplicated by means of three dimensions. The
number of search clusters depends on the variety of document types. Typically, there is one search
cluster for each document type. Each search cluster consists of a number of rows and columns.
All machines at the same row are duplicates of each other. Thus, the number of rows needed
depends on the query load or redundancy requirements. The number of columns is determined
by the number of documents. The documents are routed to the appropriate search clusters via
dispatch nodes.

In Listing 6.2, a simple example of how Vespa XML documents are fed, is illustrated. Each label
directly contained in the vespafeed top-level label represents a command to be sent to the Vespa
distributor. In this case, a startoffeed message is sent first, then an add document message
(vespaadd), a remove message (vesparemove), and finally an endoffeed message. The labels
vespaadd and vesparemove may contain a number of documents to be added to the index. Each
document must have a specified document type, matching a search definition (explained in Section
6.3).

6.2 Text Operations

This section briefly presents some text operations in Vespa. The operations discussed in the
following are stopwords, normalising and stemming/lemmatisation.

6.2.1 Stopwords

Stopwords are not removed in Vespa. The most frequent words for different languages are rather
assigned lower ranks when indexing. Words that occur too frequently in documents can be ignored.

54 Chapter 6. Vespa – The Yahoo Vertical Search Platform

� �
1 <vespafeed>

2 <startoffeed>

3 <name>book</name>

4 </startoffeed>

5

6 <vespaadd>

7 <document type="book">

8 <title>The Da Vinci Code</title>

9 <author>Dan Brown</author>

10 <desc>A murder in the Louvre...</desc>

11 <price>17.95</price>

12 <year>2003</year>

13 </document>

14 </vespaadd>

15

16 <vesparemove>

17 <documentid type="book">

18 <title>Angels & Demons</title>

19 <author>Dan Brown</author>

20 <desc>High atop the steps...</desc>

21 <price>10.96</price>

22 <year>2001</year>

23 </documentid>

24 </vesparemove>

25

26 <endoffeed>

27 <name>book</name>

28 </endoffeed>

29 </vespafeed>� �
Listing 6.2: A Vespa XML Feed

6.3. Indexing 55

6.2.2 Normalising

Normalising in Vespa will cause accents and similar decorations which are often misspelled, to be
normalised the same way both in documents and queries. Table 6.1 provides examples of how
some special characters are normalised in Vespa.

Table 6.1: Normalising in Vespa
Normalising Examples

à → a ç → c ñ : n ù → u
â → a è → e ò → o ú → u
á → a é → e ó → o û → u
ã → a ê → e ô → o ü → u
ä → a ë → e õ → o ý → y
å→ a ı̀ → i ö : oe ÿ →y
æ→ a ı́ → i œ→ oe ß→ ss

ı̂ → i ø → oe þ→ th

6.2.3 Stemming/Lemmatisation

Both algorithmic methods and dictionary look-ups are currently in use for finding the root forms
of the words. Words are converted to stems both when indexing and searching.

There are three modes of stemming; none stems none of the words, nouns stems only the nouns,
and all stems all words. Stemming mode may be set on the level of fields, indices, or for all
searches.

6.3 Indexing

When documents are transmitted by the content system to the indexing nodes, Vespa builds an
index structure of the data. The index structure consists of three major parts:

• Indices - Inverted indices used to efficiently match queries to documents and calculate the
query dependent rank (see Section 6.4.1) of a document. Indices are stored on disk and
cached partially in memory.

• Attributes - Selected document fields whose values are stored in memory for each document.
Attributes are used to do hit sorting and aggregation (see Section 6.4.2).

• Document summaries - The document fields which should be included when a document
is returned to the front-end. Summaries are stored on disk.

The index structure to be built for a given document type, is described in the search definition
(SD) file. Search definitions describe the application’s document types, and how they should be
indexed, ranked, searched, and presented. All Vespa applications must create at least one search
definition that contains at least one document type. Each document type contains a list of all the
fields that make up the logical information units of the document, e.g. title and description.

In Listing 6.3, a simplified example of an SD file is provided. This search definition makes it
possible to feed documents having title, artist and popularity as field names. The search
definition can also define transformations of the document data to be done during indexing.

56 Chapter 6. Vespa – The Yahoo Vertical Search Platform

The indexing controller (see Figure 6.1) is responsible for receiving incoming documents from
the content system, initiating indexing, and controlling which revision of the index that should
be used for searching at any time. There are three modes for indexing; batch, incremental, and
real-time. In batch indexing, all documents have to be fed every time the index is updated. The
Shopping vertical currently uses batch indexing. Real-time indexing feeds documents as they
become available. News search is a typical real-time installation, as yesterday’s news is today’s
history. Incremental indexing supports partly updates, and yields better control than real-time
indexing because it provides index revision numbers.� �

1 # A basic search definition - called music, should be saved to music.sd

2 search music {

3

4 # It contains one document only - called music as well

5 document music {

6

7 field title type string {

8 indexing: summary | index # How this field should be indexed

9 index-to: title, default # Field is stored in two indices

10 rank-boost: 9000 # Ranking importance of this field

11 rank-type: about # Type of ranking settings to apply

12 }

13

14 field artist type string {

15 indexing: summary | attribute | index

16 index-to: artist, default

17 rank-boost: 7000

18 rank-type:about

19 }

20

21 # Increase rank score of popular documents regardless of query

22 field popularity type int {

23 indexing: summary | staticrank

24 }

25

26 }

27

28 }� �
Listing 6.3: A Search Definition File

6.4 Ranking

This section first describes how documents are ranked in Vespa. Next, the database operations
sorting, collapsing, and aggregation are presented.

6.4.1 Dynamic and Static Rank

Ranking is the calculation of a rank value per document that matches a query, used for ordering
the result set in the absence of sorting or other reordering operations. Ranking should be used
when the primary intent of the search is to find the documents that are most relevant to the query
terms.

6.4. Ranking 57

Document rank can either be based on the query, assigned preferences, or both. The two ap-
proaches are named dynamic rank and static rank, respectively.

• Dynamic rank is a summed score of how well the different parts of the document matches
the query. The rank value is based on tf-idf measures, as well as in what field of the document
the match occurs. Each field defined in the search definition file that participates in the
dynamic rank generation, may contribute with different strength in the dynamic ranking. In
the example in Listing 6.4, the title and the desc field are assigned a rank boost of 9200
and 8200, respectively. This will give the title field higher influence on the overall ranking
than the description field. In addition, the rank value is higher as earlier the query terms
occur in the document. For XML documents, this feature is calculated on a per field basis.
The dynamic rank is also based on the proximity of the query terms, phrasing, freshness,
and location.

• Static rank is a numerical value assigned to a document that is independent of the query
evaluation. Each document is assigned one or more static rank values. Static rank value(s)
to use for a document type is specified in the search definition file. These values are based on
document field values only, for example editor assigned priorities, connectivity (e.g. number
of inbound links), date modified, product popularity, or preferred provider.� �

1 field title type string {

2 ...

3 rank-boost: 9200 # Ranking importance of this field

4 ...

5 }

6

7 field desc type string {

8 ...

9 rank-boost: 8200 # Ranking importance of this field

10 ...

11 }� �
Listing 6.4: Dynamic Boost in a Search Definition File

The document rank is calculated as a function of the dynamic rank and static rank

R = f(rD, rS)

where R is the total rank, rD is the dynamic ranking and rS is the static rank value.

6.4.2 Sorting, Collapsing, and Aggregation

Sorting, collapsing and aggregation are traditional database operations that are implemented as a
part of Vespa. In this section, these techniques will be explained.

Sorting

Sorting is the explicit ordering of documents on a list of field values. Sorting should be used for
searches where the user would like to see a list of documents ordered by a field value or feature.
Note that ranking may be one of these values. Sorting may also be combined with ranking, for
example by sorting on price and then rank if price is equal.

58 Chapter 6. Vespa – The Yahoo Vertical Search Platform

Collapsing

Hits can be sorted into buckets by performing collapsing. Collapsing is a feature which sorts
hits into buckets and returns only the most relevant hit(s) in each bucket. Collapsing cannot
be combined with sorting, since both are reordering operations over the result set, and a sorting
operation would therefore break the collapsing or vice versa. A useful application of this operation
is to collapse on categories, displaying the most relevant hits for each category in the top-k result.

Aggregation

Aggregation is the process of collecting statistical information about the entire result set for a
given query, in addition to the regular hits. Unique aggregation gives a count for each of the
different values for a particular field. Bucket aggregation returns a count for the number of hits
in each bucket. The buckets may be either fixed width, or the desired number of buckets may be
specified. In the last case, the width of each bucket is adjusted so that the count of hits in each
bucket is distributed as evenly as possible. A useful application of this operation is to aggregate
on categories, and then in the front-end displaying the count of the hits within each category in
the result set.

6.5 Customised Query and Result Processing

The Query Result Server (QRS) accepts search requests on HTTP, and returns results in a Vespa
XML format, or at any format customised by the application. In addition, it is responsible for:

• parsing incoming queries.

• doing query transformations.

• sending queries to the dispatch nodes of multiple search clusters, and blending the results
returned into one final result.

• processing results.

• caching results.

These operations are by default carried out as specified in the search definitions and the query, but
can also relatively easily be customised by the application by writing Searcher plug-ins. Developing
such a plug-in will be the main focus in the practical part of this thesis.

Inside the QRS, all queries and their results pass through a search chain, visualised in Figure
6.3. The search chain consists of Searcher plug-ins which receive queries and return results. The
plug-in receives a query, processes it, sends the query to the next Searcher in the chain, receives
the result, processes it, and returns the results. Listing 6.5 shows an example of a Searcher plug-in
written in Java. The method call super.doSearch() sends the query to the next Searcher, and
returns the result. The example plug-in resorts the result by title.

6.5. Customised Query and Result Processing 59

Figure 6.3: QRS Searcher Chain

� �
1 package com.yahoo.example;

2

3 import java.util.List;

4 import java.util.Collections;

5

6 import com.yahoo.prelude.*; //The QRS API

7 import com.yahoo.prelude.searcher.HitOrderer;

8

9 public class TitleOrderingSearcher extends ChainedSearcher {

10

11 private TitleOrderer titleOrderer=new TitleOrderer();

12

13 public Result doSearch(Query query,int offset,int hits) {

14 Result result=super.doSearch(query,offset,hits);

15 result.setHitOrderer(titleOrderer); // Causes resort too

16 return result;

17 }

18

19 private static class TitleOrderer extends HitOrderer implements java.util.Comparator {

20

21 /** Called by result when a sort is needed */

22 public void order(List hits) {

23 Collections.sort(hits,this);

24 }

25

26 /** Called by Collections to carry out the sort */

27 public int compare(Object o1,Object o2) {

28 Hit hit1=(Hit)o1;

29 Hit hit2=(Hit)o2;

30 return (hit1.getProperty("title").compareTo(hit2.getProperty("title")));

31 }

32 }

33 }� �
Listing 6.5: A Searcher Plug-in

Part III

Implementation and Experiments

Chapter7
Preliminary Ideas Regarding The

Searcher

”The best way to have a good idea is to have lots of ideas.”

– Linus Pauling

In this chapter, we present the preliminary ideas we have had regarding the Searcher plug-in. In
the following sections, we present the various ideas, and provide a discussion of why we did not
implement them in our solution.

7.1 Focusing the Search towards Main Categories

In this section, we present the approach of focusing the search towards the categories that are
considered to be most relevant to the query. First, the approach is described, followed by its pros
and cons.

7.1.1 Approach

One of the first preliminary ideas we had was to focus the search towards the categories relevant
to the query. The motivation was to narrow the result set to the categories relevant to the query.
A positive aspect with this approach was to reduce the price sort problem previously discussed
in Section 2.3.2. By narrowing the search down to the main categories, the price sort would to a
higher degree be performed on the intended products. For example, when performing the search
canon digital camera, the main category would be digital cameras. Hence, products like AC
adaptors and camera cases (belonging to the accessories category) would not appear in the result
set, and thereby not be included when sorting on price.

The various approaches we examined were:

• Analysing the retrieved results. Two approaches for analysing the retrieved results to find
the main categories, is to consider the categories with the highest normalised relevance or
top hit count as the main categories. The normalised relevance is found by taking the total
relevance score within each category and dividing this by the number of hits within the
same category. The hit count is simply the number of hits in each category. That is, the
frequency of each category represented in the result set. The search is focused towards the
main category/categories, reducing possible noise of hits belonging to other categories that
are considered less relevant to the query.

Both normalised relevance and hit count can be computed at query time or pre-computed
from harvested data. Pre-computation yields better time performance. On the other hand,
computation at query time ensures that a result set to analyse exists for every query.

63

64 Chapter 7. Preliminary Ideas Regarding The Searcher

• Click-through logs. To find the main categories of different queries, click-through logs can be
used. Click-through data consist of the query, the ranking presented to the user, and the
set of links the user clicked on. Click-through logs may give precise results as the logs are
likely to include information based on users’ opinions, such as the relevant document(s) to
the specific search.

7.1.2 Discussion

Focusing the search towards main categories may have positive effects in that it is likely to reduce
the amount of noise in the result sets for different queries. However, the approach has one big
pitfall. If the search is focused towards categories that are not relevant to the query, this is likely to
result in a worsened perceived relevance for the user. This can easily be illustrated by an example.
In Table 7.1 we present the top-10 result set for the query madonna artist1. Table 7.2 shows
the hit counts and normalised relevance for each category. As shows from the two tables, Home
& Garden and Toys & Baby have the top hit count, and Clothing and Books have the highest
normalised relevance. However, the query madonna artist, indicate that the user is interested in
the music by the artist Madonna. Hence, the main category for this query should be Music. By
using highest normalised relevance or top hit count, we see that the search will be wrongly focused
for both approaches. Note that the user also could be interested in the painting Madonna. In this
case, the Home & Garden category found by top hit count is the correct main category.

Table 7.1: Finding Main Categories for the Query madonna artist
Rank Item Category
1 Various Artists - The Electronic Tribute To Madonna Music
2 Art Poster Print - Black Madonna Watercolor (Gic) Home & Garden
3 Tribute To Madonna: Virgin Voices / Various Music
4 Art Poster Print - Cowper Madonna Toys & Baby
5 Art Poster Print - Soft Madonna Toys & Baby
6 The Electronic Tribute To Madonna (Various Artists) Music
7 Raffaello Sanzio Canvas Art Madonna On Grass Home & Garden
8 Cavallucci, Antonio Prints - Madonna Home & Garden
9 Madonna Home & Garden
10 Madonna of Port Lligat Toys & Baby

Table 7.2: Categories, Hit-Count, and Normalised Relevance for the Query madonna artist
Category Count NormRel
Home & Garden 404 565
Toys & Baby 385 404
Music 311 691
DVD & Video 29 404
Books 16 696
Electronics 11 498
Clothing 4 878

Considering only the top-k when using the different approaches to focus the search, could give
better results as to improving the relevance of the result set. The reason for this is that the top-k
results are more likely to be more relevant to the query.

1The results used in the table were retrieved when performing a search for madonna artist at
http://shopping.yahoo.com, 19.05.2006.

7.2. Semantic Relations between Books, Music and Videos 65

We discarded this idea, even though the top-k approach could be a simple approach for improving
perceived relevance. One reason was that we found the approach to have too little academic depth
in order to make it constitute an entire thesis. The approach could also confuse the user if a
search was focused wrong. Hence, some additional information in the graphical user interface
could prove helpful with such an approach. The information should include a short motivation
for the retrieved results. Using click-through logs to focus the search towards the main categories
relevant to a query, could turn out to be a good solution. But since we did not have such click-
through logs to our disposal during the period when we worked with this thesis, the approach was
not investigated any further.

7.2 Semantic Relations between Books, Music and Videos

In this section, we present the approach of finding semantic relations between retrieved documents
for different queries. First, the approach is described, followed by its pros and cons.

7.2.1 Approach

Finding semantic relations between books, music, and videos, as described in Section 2.3.3, could
be approached in several ways. We initially investigated the use of text mining techniques. The
idea was to look for certain words occurring in specified XML fields. Examples of such words
could be [Soundtrack] or O.S.T. (Original SoundTrack) in the title field, or by Original
Soundtrack in the artist field. Listing 7.1 shows two documents that are semantic related when
performing a search for the da vinci code. The hits that are semantic related should be given
a boost, or in some way have their relation displayed in the front-end after the search has been
carried out.� �

1 <document type="music">

2 <title>The Da Vinci Code / O.S.T.</title>

3 <artist>Original Soundtrack</artist>

4 <format>CD</format>

5 <price>$11.99</price>

6 <song>Dies Mercurii I Martius; The Paschal Spiral...</song>

7 </document>

8

9 <document type="video">

10 <title>The Da Vinci Code</title>

11 <director>Ron Howard</director>

12 <format>DVD</format>

13 <desc>A murder in the Louvre...</desc>

14 <year>2006</year>

15 </document>� �
Listing 7.1: Semantic Related Documents

7.2.2 Discussion

The approach of finding semantic relations between books, music and videos could have a positive
effect for the user as to perceived relevance. However, this approach has clear weaknesses since the

66 Chapter 7. Preliminary Ideas Regarding The Searcher

task of mining the text for semantic relations is very difficult. The reasons for this are variations in
ways of saying that a document is a soundtrack, and also that oftentimes this information is simply
missing in the title or other relevant fields. This problem could be avoided by adding an extra
label to the documents, and thereby providing structure to potential semantic relations. Such a
label could include information about related documents. In Listing 7.2, we present an example of
how this could be realised. The first document is semantically related (semrel) to the second doc-
ument with id 456 (docid), and vice versa. If a document is semantically related to more than one
document, then this could be solved by using a comma notation, e.g <semrel>123,981</semrel>.
It is also possible to make the semantic relations more specific, and include a label for each relation,
e.g <soundtracksemrel>123</soundtracksemrel> and <booksemrel>981</booksemrel>.� �

1 <document type="music">

2 <docid>123</docid>

3 <title>The Da Vinci Code / O.S.T.</title>

4 <artist>Original Soundtrack</artist>

5 <format>CD</format>

6 <price>$11.99</price>

7 <song>Dies Mercurii I Martius; The Paschal Spiral...</song>

8 <semrel>456</semrel>

9 </document>

10

11 <document type="video">

12 <docid>456</docid>

13 <title>The Da Vinci Code</title>

14 <director>Ron Howard</director>

15 <format>DVD</format>

16 <desc>A murder in the Louvre...</desc>

17 <year>2006</year>

18 <semrel>123<semrel>

19 </document>� �
Listing 7.2: Labelled Semantic Related Documents

7.3 Boosting Hits with Match in Specific XML Fields

In this section we present the approach of boosting hits that match the query terms in specific
XML fields. Specific fields are considered to be fields containing a known type of information.
First, we describe the approach, and then its pros and cons are provided.

7.3.1 Approach

The approach of boosting hits with match in specific XML fields was as follows; the more specific
an XML field was considered, the more the hit should be boosted if one or more query terms
occurred in that field. The motivation is that information in more specific fields is considered
more descriptive of the documents. Examples of fields that are considered more specific are:

• author – The author of a book.

• artist – The artist of a music album.

• actor – The actor of a movie.

• director – The director of a movie.

7.3. Boosting Hits with Match in Specific XML Fields 67

Fields that are considered to be less specific are:

• title – The title describing the product.

• desc – A textual description of the product.

Consider the query madonna. In Listing 7.3, two of the retrieved documents relevant to the query
are presented. Both of these documents will be retrieved. The second document (Confessions On
A Dance Floor) will however be boosted and ranked higher than the first document, since the
query matches the content in the specific field artist.� �

1 <document type="book">

2 <title>Madonna: The Biography</title>

3 <author>Robert Matthew-Walker</author>

4 <format>Paperback</format>

5 <price>$9.74</price>

6 </document>

7

8 <document type="music">

9 <title>Confessions On A Dance Floor</title>

10 <artist>Madonna</artist>

11 <format>CD</format>

12 <price>$7.98</price>

13 <songs>Hung Up; Get Together; Sorry</songs>

14 </document>� �
Listing 7.3: Two Documents with the Term madonna

7.3.2 Discussion

The approach of boosting hits with match in specific XML fields could help improve perceived
relevance for several queries, but is to a great extent already supported in Vespa today. However,
this approach led us in the direction towards the idea we realised in the Searcher plug-in. In brief,
our solution analyses the query and focuses the search towards specific parts of the XML tree.
The solution will be more closely elaborated in the following chapter.

Chapter8
The Searcher Plug-in

”If Edison had a needle to find in a haystack, he would proceed
at once with the diligence of the bee to examine straw after
straw until he found the object of his search...
I was a sorry witness of such doings, knowing that a little
theory and calculation would have saved him ninety per cent
of his labor.”

- Nikola Tesla

This chapter describes the Searcher plug-in, XSearcher, which we developed in order to test some
of our proposed ideas. Section 8.1 describes its functionality and gives a demonstration of the
motivation behind the improved relevance of the solution. Next, section 8.2 focuses on the value
our solution adds beyond existing functionality in Vespa. Section 8.3 presents the technical details
concerning the implementation. Section 8.4 outlines how the implementation can be generalised to
other domains. Finally, section 8.5 elaborates on if the solution will scale to more visited Yahoo!
search verticals.

8.1 How the Searcher works

As seen in Chapter 5, there have been a lot of proposed solutions regarding an XML query language.
In the case of structured queries, these require too much knowledge about the document structure
and a complex query language. The keyword-only approaches do not allow for knowledge about
the structure at all. Some research exploit simple query languages that may include structure
constraints [12, 16, 41]. We will investigate this approach further.

Our method, in its most generic form, treats a query term as a context term, i.e. terms that
describe the desired context, if the term matches the name of an XML label in the document
structure. In that case, the search is focused towards the XML subtree having the relevant label
as the root node. For simplicity, and due to the fact that the Yahoo! Shopping users only submit
2.3 query terms on average1, we decided to consider maximum one context term per query. After
studying the query logs obtained from Yahoo! Shopping, it seems reasonable to consider the first
or the last term as a possible context term. In case both these terms are context terms, the last
term is preferred. This choice was done based on statistics from the query logs. Some examples
will help clarify the approach. Table 8.1 presents several queries along with an explanation of
what would be retrieved from the XML tree used in our implementation shown in Figure 8.1.

Our implementation is less generic than the approach described above, only considering XML
labels specified in advance as context terms. Particularly, we are not considering the title and

1Calculated from Yahoo! Shopping query logs.

69

70 Chapter 8. The Searcher Plug-in

Table 8.1: Search Approach
Query Search Approach
jackson director A search for the term jackson in the director field.
jackson video A search for occurrences of jackson in the subtree below the

video node, i.e. the actor, director, title, and desc fields.
jackson If no context terms are found in the query, the whole document

tree is used as search context.
the director movie Returns movies about The director. The fact that only the last

query term is considered to be a context term, makes it possible
to retrieve results with the title The director.

documents

book

title

author desc

music

title

artist desc

video

title
actor

desc

director

Figure 8.1: XML Tree for the Implemented Solution

desc fields due to the ambiguity of these.

Our solution has two premises:

• A reasonable XML labelling. According to [28], less than 20% of people choose the same
term for a single well-known object. The article also finds that word usage tends to follow
Zipf’s distribution. Zipf’s distribution states that a few words are used very frequently, the
vast majority only rarely [4]. The system may thus be made more robust by including an
ontology2, such that different terms may be mapped to the same label. Our implementation
makes use of a simple ontology, performing the mappings in Table 8.2, in addition to plural
to singular mappings. The labelling scheme of the documents to be searched in is one of the
most vital issues regarding our solution, and will be further explored in Chapter 12.

• That the users submit queries containing context queries. This requirement deals with train-
ing of the users. Among more than one million random user queries submitted at Yahoo!
Shopping, 0.67% contained one of our context words. In 2.00% of the queries, the user had
chosen the book, music, or video category in the department drop-down box. However, we
believe that in order to improve search, a minimal amount of information has to be submit-
ted. The users can be trained to use context words in their queries, by for instance getting
presented suggestions of such queries in the front-end. A similar approach is in use at Ya-
hoo! Shopping today, as Also try ... suggestions based on similar queries submitted by other
users. Also, the users are likely to continue to use context words if they experience good
results by utilising them when searching.

In case the search is performed at an intermediate node, the results from each leaf node have to
be aggregated to obtain the final result. The results are merged one level at a time, i.e. if the
whole document tree is used as the search context, the subresults for book, music, and video are
obtained first and then merged to a final result set. We will evaluate two aggregation functions,

2A controlled vocabulary that describes objects and the relations between them in a given domain.

8.2. Value added beyond Existing Functionality in Vespa 71

Table 8.2: Ontology
Alias Concept
dvd video
movie video
album music

namely average and max.

8.2 Value added beyond Existing Functionality in Vespa

Our solution extends the existing functionality in Vespa by means of two dimensions:

• Context queries. The first extension is about handling context queries. This is in fact possible
in Vespa today by the notation director:jackson, which focuses the search towards the
fields indexed to the director index. The search definition specifies in which indices the
different fields should be searchable. Today, there is a separate index for each XML field, in
addition to a full index covering most of the fields. The main drawback of today’s method
is that the user needs to know about both the query notation and the index structure. For
example, the query book:da vinci code will not return any results, because there is no
index named book.

In addition, our solution solves the problem of treating context words in the query as key-
words. Consider the query brad pitt actor. The user is not necessary interested in docu-
ments where all three query terms occur, but rather documents about the actor Brad Pitt.
That is, the term actor should be treated as a context term used for focusing the search,
greatly improving the retrieval.

XSearch uses a simple query language where no structure knowledge is required. However,
by submitting a reasonable amount of information describing the desired context, the user
may perceive greatly increased relevance. We believe that in order to further improve search,
and particularly in the direction of database retrieval, a minimum of information about the
user’s need has to be required. The importance of the specificity of the user query increases
as the document corpus grows. More experienced web users due to increased age of the Web,
also supports this choice of direction.

• Hybrid search. Vespa is developed from a platform used for web and enterprise search, and
is thus heavily influenced by techniques used in this context. A typical characteristic of web
search engines is that they return thousands or even millions of hits for each query. This
contrasts the fact that users normally only view the few top ranked hits. Also, ∼ 20%3 of the
queries are futile, i.e. queries that returns zero answers. Our solution provides a generic and
flexible framework for hybrid search, which also relies on methods originally used for data
retrieval. Focusing of search, and different treatment of context terms as keyword terms, may
provide as a solution to the mentioned challenges and thus improve the perceived relevance.

8.3 Implementation Details

A UML class diagram of the implemented solution is provided in Figure 8.2. XSearch is turned
on and configured by setting parameters in the search URL4. An example query URL is

3From Yahoo! research.
4Uniform Resource Locator, the global address of documents on the World Wide Web.

72 Chapter 8. The Searcher Plug-in

http://host/?query=madonna&xsearch&top-k=10&hits=50&aggrfunc=avg. The various param-
eters are explained in Table 8.3. Table 8.4 describes the methods of XSearcher in detail. Figure
8.3 shows, somewhat simplified, how the query changes and the results are retrieved and merged
for the query madonna music.

Figure 8.2: UML Class Diagram of the Implemented Solution

Table 8.3: Input Parameters
Method Description
xsearch Turns on XSearch.
top-k The desired number of returned results.
hits The number of hits requested in order to retrieve each subresult. Note

that this number may have impact on the ranking of the merged result.
aggrfunc Sets which aggregation function that should be used when merging the

subresults. The parameter may be set to either avg or max.

The rest of this section discusses two challenges as to Vespa, which we were facing during the
implementation. The first is concerned with inadequate labelling of the documents to be indexed.
The Shopping vertical uses six types of document schemes. Three of these; book, music, and video,
are labelled in an appropriate way. For example, the music document type contains separate fields
for artist and song. The rest of the document types; paidmerchant, freemerchant, and fastupdate,
have an inappropriate labelling scheme, only providing generic fields as txt and int. Book, music,
and video only constitute about 8% of the total number of documents. In order to have the
possibility to use the entire document base as a test collection, we implemented a workaround that
changed a search from actor:keywords to desc:keywords AND desc:actor for these document
types. This was also done for the fields author, actor, and director. Additionally, a department
filter was added to focus the search towards the desired category. In the case of the keywords
being proper names, the keywords were rewritten as a phrase. Listing 8.1 shows a typical example
of the content of a desc field.

8.3. Implementation Details 73

Table 8.4: The Methods in the XSearcher Class
Method Description
XSearcher() The constructor initiates the data structures. Three main data struc-

tures are used:
• A hash map storing mappings from context terms to their Dewey
numbers.

• A hash map that acts as an ontology, storing mappings from syn-
onyms or plural forms to the terms’ base form.

• A sorted hash map storing mappings from each Dewey number to
its XML label.

The first two mentioned hash maps are used during query analysis, in
order to recognise context terms and express the desired search context
by means of the Dewey number of its root node. The sorted hash map
is used to traverse the part of the XML tree to be searched in, retrieving
subresults, and merging these when appropriate.

doSearch() This method is called each time a search is performed. It determines the
values of the input parameters, and initiates query analysis and searching
by subcalls to analyseQuery() and doXmlSearch().

analyseQuery() The method recognises context terms.
doXmlSearch() Traverses the XML structure from the root context node found in analy-

seQuery(), performs a search by calling doXSearch() for each leaf node,
and merges the subresults by calling mergeResults().

doXSearch() This method is a workaround, caused by inadequate labelling of parts
of the document corpus. The problem will be further explained later
in this section. For the moment, this method only forwards the search
specifications to doSuperSearch().

doSuperSearch() Modifies the query by calling modifyQuery(), and sends it to the next
Searcher in the chain.

modifyQuery() The method traverses the query tree, and performs the following modi-
fications:

• Removal of a keyword recognised as a context term.
• Addition of the context term as index labels, e.g. music:madonna.
• Addition of a department filter, e.g. department=books. This is
a part of the above mentioned workaround.

mergeResults() Merges the subresults by performing the No Random Access algorithm
from Section 5.2. The top-k hits are sorted according to their lower
bound values. Objects of the NraHit class are kept in a hash map, sorted
according to NraHitOrderer, a static, private class inside XSearcher,
which first sorts by lower bound, then by upper bound. The method
uses the AggregationFunction as a common interface to the specific
aggregation functions.

� �
1 <desc>Visuals highlight this creature-fest based on Oscar-winning director Peter Jackson’s

2 remake of the classic movie. Captured in the wilds of Skull Island.</desc>� �
Listing 8.1: The Content of a desc Field

74 Chapter 8. The Searcher Plug-in

Figure 8.3: Message Diagram for the Query madonna music

8.3. Implementation Details 75

The second challenge is regarding aggregation of the merged results. Table 8.5 shows the titles
from the sorted lists returned from searching the director and desc nodes for the query jackson
video. The relevance returned for each hit is shown in parentheses. Note that items with similar
titles in the same list, represent similar items from different merchants. The max function works
more like a simple merge of the lists, returning one of the items having relevance equal to 1000
as the top item. Intuitively, the max function should perform well, as hits returned from search-
ing the director node would probably be more relevant and thus be assigned higher relevance.
Unfortunately, each returned ranking from Vespa is normalised so that the relevance values range
from 0 to 1000, and then balanced according to the field’s rank-boost value. Thus, even if the hits
returned from the desc node are less relevant, the relevance values will be about as high as the hits
returned from the director and actor nodes. Due to the challenges related to the max function,
we decided to also explore the average function. The average function rewards hits appearing in
several lists, returning “Pulp Fiction (UMD Mini For PSP)” as the top item (shown in italic style
in the table). Redundant data in the XML fields is necessary for the average function to work.
The desc node often duplicates the information from the other nodes. If redundant information
across XML fields is desired, is however a open question.

Note that the problems regarding aggregation makes it impossible to use the attractive median
rank aggregation algorithm from Chapter 5 since there is no guarantee that the same items will
be found in more than half of the lists.

Table 8.5: Sorted Lists to be Aggregated
Hit Nr director:jackson desc:jackson
1 Snow White and the Seven Dwarfs

(1000))
Peter Jackson’s King Kong: The Official
Game of the Movie (PSP) (894)

2 XXX: Vin Diesel - DVD (New) (1000) Peter Jackson’s King Kong: The Official
Game of the Movie (PSP) (894)

3 The Frighteners (1000) Peter Jackson’s King Kong: The Official
Game of the Movie (PSP) (894)

4 Stalked Movie (1000) GOSSIP (894)
5 Chattahoochee (1000) UMD Movies (various vendors) Cursed

PSP Movie (894)
6 The Lord of the Rings: The Motion Pic-

ture Trilogy (1000)
STAR WARS - EP. 6 REVENGE OF
THE SITH WALL CLOCK (894)

7 The Oscar odds (978) Wildstyle with Wil Power Break Dance
DVD (894)

8 The Lord of the Rings - The Motion
Picture Trilogy (Special Extended DVD
Edition (978)

Journey - Warren Miller DVD (894)

9 XXX: State Of The Union (978) Pulp Fiction (UMD Mini For PSP)
(894)

10 Basic (978) Awful Green Things From Space (Re-
vised Edition) (894)

11 Snow White and the Seven Dwarfs (Dis-
ney Special Platinum Edition) Movie
(978)

In Search of The Perfect Mountain, Tour
Edition - VHS (894)

12 Chattahoochee Movie (978) COOL HAND LUKE (894)
13 Pulp Fiction (UMD Mini For PSP)

(957)
COOL HAND LUKE (894)

14 Pulp Fiction (UMD Mini For PSP) (957) LORD OF THE RINGS - RETURN OF
KING (894)

15 S.W.A.T. / XXX (Full Screen Editions)
(DVD) (957)

1989 Baseball All Star Game Anaheim
CA 7/11/89 DVD (894)

76 Chapter 8. The Searcher Plug-in

8.4 Generalisation of the Implementation

There are several modifications to Vespa that should be done in order to extend our solution to
other domains. In this section, we will outline how the system could be generalised to not only
include books, music, and videos, but also other shopping items.

The first step is to apply a proper labelling to the XML documents which is the basis for a proper
index structure. Consider the domain of electronics. A subset of an XML tree based on the
category structure currently in use at Yahoo! Shopping is shown in Figure 8.4.

electronics

digital camera

canon digital cameras camera cases & bags

computers

printers

brand

megapixels optical zoom
installed memory

brand case type
canon printers inkjet printers

Figure 8.4: XML Tree for the Electronics Domain

The category structure is maintained as a list of category ids in the category field. The list
contains an id for each category the item belongs to, as shown in Listing 8.2. Consider the query
canon digital camera. The query terms digital camera should be treated as context terms,
thus focusing the search towards the digital camera node. This can be done by performing a
mapping from context term to category id, and filtering by category id. Alternatively, the XML
structure may be modified, in order to capture the category hierarchy. An example of how this
could be done is presented in Listing 8.3.� �

1 <document>

2 ...

3 <category>electronics digital camera</category>

4 ...

5 </document>� �
Listing 8.2: The Content of the category field

� �
1 <document>

2 <electronics>

3 <digital_camera>

4 ...

5 </digital_camera>

6 </electronics>

7 </document>� �
Listing 8.3: An XML Structure capturing the Category Hierarchy

The category field is only one example of a field that should be given special attention. Consider

8.5. Scaling to other Verticals 77

camera properties like brand, mega pixels, and zoom. Today, this information is contained in
generic fields like txt, int, and str, as shown in Listing 8.4. Similar to the category case, a
mapping from possible context term(s), e.g. brand, to the actual field containing this information,
needs to be performed. The solution may be made cleaner by always labelling the fields with the
corresponding context term(s), the same way as in the category example. The resulting XML
document is presented in Listing 8.5.� �

1 <document>

2 ...

3 <str1>Canon</str1>

4 <str2>PowerShot</str2>

5 <txt1>Secure Digital Card</txt1>

6 <int1>7100</int1>

7 ...

8 </document>� �
Listing 8.4: The Content of the Generic Fields

� �
1 <document>

2 ...

3 <brand>Canon</brand>

4 <product_line>PowerShot</product_line>

5 <memory_card>Secure Digital Card</memory_card>

6 <mega_pixels>7100</mega_pixels>

7 ...

8 </document>� �
Listing 8.5: An XML Structure capturing the Context of the Fields

The XML document representation needed for query analysis, may be built and maintained dy-
namically during indexing, either by treating all fields as searchable XML nodes, or by manually
deciding which fields that should be searchable and which that only should be included for pre-
sentation purposes or such, as suggested in [42]. Also, indices need to be built for each field that
should be searchable.

An important issue is how to decide which context term(s) that should be chosen to label each
field. This challenge is closely related to analysis of the query, in order to decide which terms that
are context terms and which that are not. We will elaborate more on these problems in Chapter
12.

8.5 Scaling to other Verticals

A last issue that should be considered is to which degree the solution will scale to more visited
Yahoo! verticals. The answer depends on the running time of our solution.

The time consuming part of the implementation is the traversal of the XML tree with retrieval
and merging of subresults. The traversal of the XML tree and merging of subresults depend on
the number of nodes to be traversed, and the number of hits to be merged. This part is thus
independent of the index size. The retrieval of subresults use the existing functionality of Vespa
and is outside the control of our implementation.

The worst case running time for the traversal of the XML tree and merging of subresults is

78 Chapter 8. The Searcher Plug-in

O(bf, levels, hits) =
bf levels−1 − 1

bf − 1
× hits×

hits∑
n=1

bf × n× log(bf × n)

where bf is the average branching factor, levels are the number of levels in the XML tree, and hits

are the number of hits to be merged. bf levels−1−1
bf−1 is the number of nodes in the XML tree. The

hits variable depends on how many hits that are retrieved for each subresult, and characteristics
such as the rank score distribution of these lists, which decide when the aggregation algorithm
breaks.

∑hits
n=1 bf × n× log(bf × n) is the cost of sorting the hits found so far.

Table 8.6 shows the average latency ratios between XSearch and the standard search. The first
column presents the ratio for non-context queries. The second column contains the ratio for
context queries where the context term is either book, music, or video. The last column shows the
ratio for context queries where the context term is author, artist, actor, or director. The queries
are the same as we used in the evaluation, and will be described in Chapter 9. Three runs were
performed, because latency varies depending on system load.

The results show that the ratio decreases when context words deeper down in the XML tree are
included in the query. This is reasonable as a more narrow search requires fewer subresults to
retrieve and merge. The running time confirms these findings.

An interesting observation is that the context words author, artist, actor, and director, give less
latency than the original search. Consider the query jackson director. The standard approach
will obtain lists for both query terms and merge these. XSearch reduces the query to jackson
and perform the search in the director index. Thus, both less query terms and a smaller index
contribute to less latency.

Table 8.6: Latency Experiment
Query Type Ratio
Non-Context Queries 10.5
Book, Music, Video 2.7
Author, Artist, Actor, Director 0.7

As elaborated in this section, the question if our solution will scale to more visited verticals depends
on the complexity of the domain, i.e. the size of the XML tree, rather than the number of queries
and index size.

Chapter9
Evaluation Principles

”All life is an experiment. The more experiments you make
the better.”

– Ralph Waldo Emerson

In order to determine if a search system is desirable, it is necessary to evaluate the system and
make comparative assessments. This chapter presents the evaluation principles that will be used
as a basis for the evaluation of our solution. Section 9.1 describes how the quality of the solution
is being measured. In Section 9.2, we elaborate what has been used as a reference collection.
Validity assessments regarding the evaluation principles are presented in Section 9.3.

9.1 Effectiveness Measure

To evaluate the quality of our solution, we used P@k returned documents as the effectiveness
measure. As described in Chapter 4, P@k is defined as the proportion of relevant documents in
the top k results (Tk). The formula for P@k is given below:

P@k = Tk/k

The main reason that we used P@k as effectiveness measure is that it is a well-defined way
to measure and compare search applications [4]. Also, users are usually more interested in the
precision of the results displayed in the first result page, rather than the overall precision [38].
According to [4], the technique is considered a useful parameter for observing the behaviour of an
algorithm for each individual query in an experiment. Additionally, it is possible to compute an
average P@k figure over all queries.

The rest of this section provides an example of calculating P@k. Table 9.1 shows three different
top-10 results for the query q; the reference set, the list retrieved for the standard search, and the
list retrieved when using XSearch. Finally, Table 9.2 presents the P@k for the k top documents,
both for the standard search and when using XSearch.

9.2 Reference Collection

To make comparative assessments, some kind of reference is needed to benchmark against. For
testing our solution, we made a reference collection constituting of the relevant documents for
different queries. The collection was used as a benchmark, or optimal set. Since our focus is on
the domain books, music, and videos, we selected queries where the user at query-time had focused
the search within one of these categories, i.e. selected one of these categories in the department
drop-down box. Of a total of 22427 queries related to our domain, 150 random queries were

79

80 Chapter 9. Evaluation Principles

Table 9.1: Three Top-10 Lists for the Query q
Reference set

Rank Document
1 d1

2 d2

3 d3

4 d4

5 d5

6 d6

7 d7

8 d8

9 d9

10 d10

Standard Search

Rank Document
1 d2

2 d1

3 d13

4 d25

5 d36

6 d5

7 d17

8 d12

9 d14

10 d33

Using XSearch

Rank Document
1 d1

2 d2

3 d3

4 d4

5 d6

6 d5

7 d17

8 d12

9 d14

10 d23

Table 9.2: P@k Top Documents for the Query q
Standard XSearch

P@1 0 % 100 %
P@5 40 % 80 %
P@10 30 % 60 %

extracted from a Yahoo! Shopping query log to be used as testing queries. 17 of these queries
were discarded, as they retrieved no results. Of the remaining queries, 42 queries were book
queries, 45 were music queries, and the last 46 queries were video queries. Appendix A lists all
the queries used for evaluating our solution.

Below we present some query examples. For the first query, the da vinci code, we see that
department=books is included in the query-string. This means that the user has focused the
search, by selecting that he only wants to search within the book department. For the two other
queries, the search is focused towards the videos and music departments.

?query=the+da+vinci+code+department=books
?query=brad+pitt+department=videos
?query=madonna+department=music

As presented in the previous section, we decided to use Precision-at-k (P@k) to evaluate the
quality of our solution. This measure does not take the ranking of documents into account, but
rather how many of the top-k retrieved documents that are relevant. As to our reference collection,
we first tried to manually remove irrelevant hits. We refrained from this because of the following
reasons:

• Underlying document structure. Irrelevant hits are often retrieved as a consequence of inad-
equate labelled documents. An example of inadequate labelling is forum posts where a book
has been discussed. Such forum posts should not be labelled as a book, and in fact never
be indexed. Further, we experienced inappropriate labelling for DVDs, as both computer
games, music videos, and videos were in the same category. These documents could profit by
being differentiated in some way, making them easier to separate. The inadequate labelled
documents often causes undesirable hits, but it can be argued that it is “algorithmically
correct” that they are retrieved. Therefore, we chose not to remove these hits.

Another group of hits that caused trouble is duplicates, i.e. identical products from differ-
ent merchants. It is not in our interest to distinguish different merchants. Thus, similar
items should be treated as the same product. However, since there is no product id in the
documents, it is impossible to automatically decide if two products actually are identical.

9.3. Validity Assessments 81

• Subjectivity. In addition, manually browsing through retrieved results constituting of hun-
dreds, or even thousands of hits, is a time consuming job. To obtain a best possible reference
collection, it is a great advantage having more than two persons to perform this task. This
to ensure that the subjectivity of individuals is reduced. Making a reference collection for
various queries is often a task that is outsourced, because of its high need of resources.

Our approach for making the reference collection was as follows:

• Use the extracted queries for our domain.

• Modify queries containing proper names to phrase-queries, and thereby removing as much
noise as possible.

• Add department filtering (department) to the queries in order to focus the search within
the relevant category.

• Store the top-100 retrieved results for the various queries, and define this as the optimal
result set. An exception is experiment 3 described in Chapter 10, where the optimal result
set contains all the retrieved results.

Note that a positive aspect with this approach, is the possibility of testing our solution for far
more queries. If we had chosen to manually remove noisy hits, the consequence would have been
a much lower statistical basis for our results. On the other hand, the reference set is somewhat
specially adapted to the solution to be tested, which should be taken into consideration when
analysing the results.

9.3 Validity Assessments

Possible threats to the validity of the experiment results may either be accepted, or tried to be
avoided. This section presents the relevant threats according to our evaluation principles. The
threats are categorised according to the four types of threats to the validity presented in Chapter
3.

A possible threat to the conclusion validity is low statistical power. 133 test queries should be
enough to give a good hint about the effect of our solution. However, the queries are chosen to
fit our domain and is thus not completely random. This restriction was necessary because it was
impossible to implement a general solution due to limitations in Vespa. A common method for
evaluating search systems is to first measure average change for a large set of queries, and then
inspect some hundreds of those that got their result set changed more closely.

Second, the subjectivity of measures influences the conclusion validity. In order to define a reference
set of optimal results to a query, we first tried to manually decide which documents that should
be considered relevant and not. Since we were only two persons in much the same circumstances
of life, this approach would have been a large threat, and was one of the reasons we rejected it.
Generally, subjectivity is a threat to every evaluation of search, as the concept of relevancy is a
subjective matter. The final reference set was made using objectively criteria, and is thus easy to
reproduce, assumed that a similar system, like the one we used, is available.

A final threat to the conclusion validity is the fishing threat, i.e. that the researchers may influence
the result by looking for a specific outcome. This threat is handled by treating the independent
variables, i.e. which queries that should be used as test queries, and how the reference set was
defined, as random and objectively as possible.

A possible threat to the construction validity is that the experiment construction does not reflect
what is actually going to be evaluated. This threat is handled by choosing an experiment setup
that is based on common practice in the field of information retrieval.

82 Chapter 9. Evaluation Principles

Last, the extent of the experiments is a threat to the external validity. The number of test queries
and choice of reference collection, are due to limited resources. Also, a full system implementation
should be available before too much effort are put into testing.

Chapter10
Experiments and Results

”There is no such thing as a failed experiment, only experi-
ments with unexpected outcomes.”

– Richard Buckminster Fuller

In this chapter, we describe the experiments performed in order to test our Searcher plug-in, along
with their results. As stated in the thesis goals, the thesis aims to improve the users’ perceived
relevance for the Yahoo! Shopping vertical. The experiments will shed light on this issue. The
main motivation of the experiments described in this chapter is therefore to investigate if our
solution yields better results than the standard search.

First, Section 10.1 describes the experiment setup. Next, Section 10.2 provides an overview of
the different experiments. Sections 10.3 to 10.6 elaborate the different experiments we conducted.
Finally, Section 10.7 gives a summary of the results.

10.1 Experiment Setup

This section includes the setup of the experiments conducted in this thesis. In the following, we
describe the system, the indices, and the configuration used when performing the experiments.

The experiments were run at a system using 52 Dell Poweredge 2650 boxes with the following
specifications:

• 2×2,8GHz processor (Intel Xeon)

• 2GB main memory (DIMM DDR)

• 336GB disk space

During our work, we used two different indices to test our system. The first index was mainly used
for testing the different modules of the system as they were implemented. The index, consisting
of 3 million documents, was a subset of the real index used at Yahoo! Shopping. The documents
were fetched from Yahoo! Shopping, using 10000 random queries from a Shopping query log. The
QRS does not return all elements of the XML documents. Missing static rank fields, and dissimilar
index size causing different term statistics, made it impossible to reproduce the same results as
Yahoo! Shopping.

We were given the opportunity to test our solution against a mirror of the complete Yahoo!
Shopping index at the end of the project. The index included ∼ 60 millions documents, similar
to the real index as of ultimo February, 2006. Even though the indices at that time were similar,
we experienced that getting identical results as Yahoo! Shopping was an impossible task. The
main reason for this is due to external systems on the top of Vespa at http://shopping.yahoo.com,
providing reordering of the results according to business objectives. In addition, we did not use all

83

84 Chapter 10. Experiments and Results

the QRS plug-ins that Yahoo! Shopping uses today. This was due to that these plug-ins handle
grouping tasks, an aspect not considered in this thesis.

In spite of all the challenges mentioned above, the configuration of the system and the index was
as identical to the Yahoo! Shopping setup as possible. The index is a large test collection in the
context of academic work, and although business objectives are important in the real world, it
is of minor interest in academic work. Even though it was impossible to perform the tests on a
system 100% identical to the “real world”, we ensured that we had a reference point, as good as
possible, to the real system.

10.2 Experiment Overview

This section presents an overview of the experiments, that is, which experiments that were chosen,
and why they were chosen. The different parameters used in the different experiments were
explained in Table 8.3. The combinations of the different parameters are infinite. In order to
curtail the number of combinations, we first performed an experiment to find the aggregation
function (aggrfunc) and the number of hits (hits) that gave the best results. Further, it was
desirable to see the effect of our solution, and compare the results with the standard search. In
addition, as the main task with our solution is to remove noisy hits, this had to be tested. Finally,
we wanted to ensure that the differences between the standard search and our solution should be
minimal when context words were not used in the queries. This was considered to be an important
aspect in order to deploy our system.

In the light of the above mentioned requirements, we defined the following experiments:

• Experiment 1 – Tuning of aggregation function and hits parameter.

• Experiment 2 – Testing our solution.

• Experiment 3 – Elimination of noise.

• Experiment 4 – Searching without context words.

The experiments will be further elaborated in the following sections.

10.3 Experiment 1 – Tuning of Aggregation Function and
Hits Parameter

In this section, the first experiment is described. The purpose of the experiment was to find the
optimal aggregation function and hits parameter to be used in the subsequent experiments.

10.3.1 Approach

In the first experiment, we varied with the two aggregation functions max and avg. For the
aggregation function max, only one run was performed with the hits parameter set to 10, since the
top-k results returned from the max function will not change for hits >= k. For the aggregation
function avg, the hits parameter was set to 10, 20, and 50. All 133 test queries were used in the
experiment. The other parameter values used in the experiment are presented in Table 10.1.

10.4. Experiment 2 – Testing our Solution 85

Table 10.1: Parameters used in Experiment 1
Parameter Value

top-k 10
xsearch true
hits 10|20|50

aggrfunc avg|max

10.3.2 Results and Discussion

In Table 10.2, test results for the first experiment are presented. The table shows the P@k values
for the book, music, and video queries. The last column shows the P@k values for all 133 queries.

The results show that the differences between the two aggregation functions are minimal. Also, the
avg function does not perform better as the hits parameter grows. This conclusion was surprising,
because we had expected that a higher hits parameter would yield better results, as the aggregation
algorithm would take more hits from each subresult into account. A likely explanation is that
duplication of information in XML fields described in Section 8.3, does not necessarily denote a
better hit.

It is worth noting that irregularities in the rankings possibly affect the experiments to a high
degree. Due to the configuration of the Shopping vertical, many hits are assigned a high and equal
relevance value. The ranking of hits with equal relevance value is affected by the order they are
returned from the back-end. The effect may be that a large part of the top-k results changes when
the same query is submitted twice, especially when k is small. This in turn affects the sorting in
the aggregation algorithm, as the sorting of hits with equal lower and upper bound is determined
by the sequence they are discovered.

The results show that the P@k values are somewhat higher for the aggregation function avg and
the hits parameter set to 10. We will therefore use these settings in subsequent experiments.

Table 10.2: Experiment 1 - Tuning of Aggregation Function and Hits Parameter
Aggregation Function Hits Books Music Video All

max 10 77.1% 82.7% 88.8% 82.9%
avg 10 77.1% 83.0% 88.8% 83.0%
avg 20 74.3% 75.9% 92.3% 80.8%
avg 50 76.2% 77.0% 90.0% 81.1%

10.4 Experiment 2 – Testing our Solution

The second experiment consisted in testing our solution. The purpose of the experiment was to
test the effect of our solution when utilising context words, and compare it with the standard
search.

10.4.1 Approach

In the second experiment, we varied with different top-k values, using k = 1, k = 3, and k = 10, to
compute the P@k. We performed 3 runs with the standard approach, and 3 runs using XSearch.

86 Chapter 10. Experiments and Results

Table 10.3: Parameters used in Experiment 2
Parameter Value

top-k 1|3|10
xsearch true|false
hits 10

aggrfunc avg

Each run included the 133 test queries. The parameter values used in the experiment are shown
in Table 10.3.

10.4.2 Results and Discussion

In Table 10.4, the results when using XSearch is presented. Table 10.5 shows the results from
the standard approach. The results clearly indicate that the P@k values are far better for our
solution, compared with the standard approach. The percentual improvements when considering
all queries, are 34.7% for k = 1, 29.2% for k = 3, and 25.7% for k = 10.

A contributing factor to the difference in the results is due to that the query terms are treated
as an AND-query in the standard search. Given the query the da vinci code video, XSearch
modifies the query to the following AND-query the da vinci code and focuses the search only
retrieving videos of “The da vinci code”. The standard approach does not modify the query. The
context word, video, is included as an AND-term, resulting in poor retrieval quality. Also note that
the reference collection described in Section 9.2, is somewhat adapted to favour this experiment.

Table 10.4: Experiment 2 - Using XSearch
Top-k Books Music Video All

1 78.6% 86.4% 90.7% 85.2%
3 77.0% 85.6% 89.1% 83.9%
10 77.1% 83.0% 88.8% 83.0%

Table 10.5: Experiment 2 - Using the Standard Approach
Top-k Books Music Video All

1 50.0% 36.4% 65.1% 50.5%
3 51.6% 41.7% 70.9% 54.7%
10 56.9% 43.7% 71.4% 57.3%

10.5 Experiment 3 – Elimination of Noise

The third experiment tested elimination of noise. The purpose of the experiment was to investigate
to which degree XSearch was able to remove noisy hits from the retrieved results.

10.6. Experiment 4 – Searching without Context Words 87

10.5.1 Approach

In order to test if XSearch eliminates noisy hits, we performed three different runs, calculating
the P@k for the 133 test queries. The value used for k for each query, was the number of hits in
the optimal result set (optreslength). In the first run, we used XSearch and context queries. For
the second run, we used standard search and swapped the context term with a department filter.
The department filter focuses the search within a desired category, and is the similar approach
to XSearch and context queries in Vespa today. In the third run, we used the standard approach
without the department filter. Table ?? shows the parameters used in experiment 3.

Table 10.6: Parameters used in Experiment 3
Parameter Value

top-k optreslength
xsearch true|false
hits optreslength

aggrfunc avg

10.5.2 Results and Discussion

In Table 10.7, the results from experiment 3 are presented. The results show that the P@k
values are far better for XSearch, compared with the two standard approaches. The percentual
improvements when considering all queries, are 22.3% between the first two runs, and 39.8%
between the first and the last run.

Table 10.7: Experiment 3 - Elimination of Noise
Search Approach Books Music Video All

context-words&xsearch 82.4% 90.8% 95.0% 89.4%
standard+department 59.3% 63.0% 79.1% 67.1%

standard 52.3% 51.3% 45.1% 49.6%

10.6 Experiment 4 – Searching without Context Words

The fourth, and final, experiment consisted in searching without context words. The purpose of
the experiment was to ensure that the retrieved results of the standard search and XSearch should
differ minimal when context words were not used in the queries. As earlier mentioned, this was
an aspect that was considered important in order to deploy our system.

10.6.1 Approach

In this experiment, we investigated if XSearch had the same effect as the standard approach when
context words were not utilised in the queries. We performed 3 runs with the standard approach,
and then 3 runs using XSearch. Each run included the 133 test queries. The parameters used in
the experiment are shown in Table 10.8.

88 Chapter 10. Experiments and Results

Table 10.8: Parameters used in Experiment 4
Parameter Value

top-k 10
xsearch true|false
hits 10

aggrfunc avg

10.6.2 Results and Discussion

In Table 10.9, the results when searching without context words are presented. The results show
that the differences between the standard search and XSearch are minimal when context words
are not utilised in the queries. This is promising for a later deployment of our solution. As seen
in Section 8.5 however, these queries suffer from a higher latency.

Table 10.9: Experiment 4 - Searching without Context Words
Queries Standard XSearch
Books 48.33% 47.22%
Music 43.63% 43.87%
Video 45.79% 44.68%
All 45.92% 45.26%

10.7 Summary

In this chapter, we have described the experiment setup and elaborated the different experiments.
The purposes of the experiments have been to find the best suited aggregation function and hits
parameter, testing the performance of XSearch in the case of context queries, and to which degree
noisy hits are eliminated. In addition, an experiment have been performed to ensure that the
retrieved results of the standard approach and XSearch differed minimal when context words were
not used in the queries.

In Section 2.3, some known challenges related to this thesis were described. The challenges included
focusing search and thereby removing noisy hits from the retrieved results, and the treatment of
context queries. Both of these problems relate to this thesis’ goal of implementing a Searcher
plug-in that should retrieve the results in a way that improves the user’s perceived relevance.
The results from the experiments 2 and 3, show that our solution to a great extent solve these
challenges.

It should be noted that it would have been better to use an own test collection to tune the
aggregation function and the hits parameter. This is because quality should not be measured from
the same data as was used to tune the system. However, since the choice of aggregation function
and hits parameter showed minor impact on the system, this have probably not influenced the
results to a large degree.

Part IV

Conclusion and Further Work

Chapter11
Conclusion

”A conclusion is the place where you get tired of thinking”

– Arthur Bloch

With billions of documents stored in today’s web indices [29, 65], the problem of finding the
relevant information is becoming more and more complex. The amount of digital information
increases with 1% every week [59]. As the indices grow, relevance – the ability to find the needle
in the haystack, rather than bury you in straw – has never been more important. Semantic search
is by many referred to as the new era in search [5, 59]. Semantic search is characterised by the
search engine being able to understand the meaning of both user queries and document content.
The straightforward approach is to label the queries and documents with metadata, i.e. data
describing the content, resulting in semi-structured data.

In this thesis, we have studied relevance techniques for the purpose of identifying an approach that
improves the perceived relevance at the Yahoo! vertical search platform, Vespa. A Searcher plug-
in has been implemented in Vespa for evaluating the suggested approach. The plug-in provides a
generic and flexible framework for hybrid search, based on techniques proposed for XML retrieval:

• A simple query language, optionally including context queries, i.e. queries that include terms
that describe the desired context [16, 33]. Keywords and context terms in a query is treated
differently, using the context terms only for focusing the search.

• Enabling retrieval at different levels in the XML document tree, where term statistics are
computed independently for each context [12, 27, 30, 42].

• An effective aggregation algorithm for merging subresults from various parts of the XML
tree [26].

5 experiments have been performed in order to test our proposed solution. The results indicate
that:

• A considerable improvement around 30% in retrieval performance is achieved for context
queries. Much of the improvement is obtained by removing noisy hits from the result. Note
that the solution also may reorder the results. The effect of this feature has however not
been evaluated.

• The solution performs almost similar as the standard approach for non-context queries. The
relative change is 0.66%.

• Latency is acceptable, reaching from about 10 times the standard than the standard latency
for the most specific context queries. The difference in latency for various queries is due to
that a more focused search requires fewer subresults to retrieve and merge.

It should be noted that the reference collection used for the evaluation is somewhat adapted to
favour our solution.

The solution requires a reasonable labelling of the documents, in addition to training of the users
in order to make them use context words in their queries. Even though research shows that

91

92 Chapter 11. Conclusion

the average query length does not increase [34], we believe that in order to improve search, and
in particular in the direction of database retrieval, a minimal amount of information has to be
submitted. At the time that this is written, only 2.67% of the total amount of queries is affected
by XSearch. This requires that the queries that already are focused towards the book, music, or
video category by selecting one of these categories in the department drop-down box, are rewritten
to fit our solution. The other queries will suffer from a higher latency. The latency depends on
the complexity of the domain.

Most search engines today either return thousands of answers to a user query, or, in ∼ 20%1

of the cases, none. Our solution may provide as a solution to these challenges and thus help to
improve the perceived relevance. The preliminary experiment results are positive, but should be
complemented with experiments based on a full system implementation.

1From Yahoo! research.

Chapter12
Further Work

”The Alchemists, in their search of gold, discovered many
things of greater value.”

– A. Schopenhauer

This chapter presents some thoughts regarding future work. Mainly three issues are discussed,
namely document labelling, ranking experimentation, and user interface guidance.

12.1 Document Labelling

As mentioned in Chapter 8, the implemented system includes several hacks caused by underlying
restrictions. The most precarious issue is improper labelling of the XML documents. In order to
provide semantic search, the label names need to capture the semantics of the documents’ content.
The ultimate question is how to choose which label name that best represents the meaning of the
content, e.g. should a movie be labelled as movie, DVD, or video? We will in the following examine
two different approaches to this problem.

[28] finds that armchair naming, i.e. the system designers personal favourite names, only succeeds
in 10-20% of the cases. By collecting term usage from a sample of potential users, the most frequent
word can be used as keyword. This method provides about two times better than armchair naming.
Using several aliases may increase the success rate to 50-100%, depending on the domain. The
authors argue that the problem should be viewed from the human-centred point of view. That is,
the starting point should not be a set of system objects needing names, rather the process should
be viewed as a set of user words needing system interpretations. This can be achieved either by
collecting a number of terms for each object from a number of representative users, or to construct
alias indices adaptively, on site, in use. Careful thought should be given to ambiguous terms, i.e.
terms that may have more than more semantic interpretation. A solution may be to return the
various choices to the user for further selection.

The second approach is presented in [5]. The labelling scheme technique proposed is to let anyone
label anything, exactly the way they want it. On the long view, some items will be returned using
any of the may possible aliases as a keyword. For example, movies will be labelled both as movies,
DVDs, and videos.

In case of the Shopping vertical, the second approach is less suitable as they probably would prefer
a uniform labelling scheme. A better solution would be to choose a labelling scheme, and put effort
into building extensive alias indices.

93

94 Chapter 12. Further Work

12.2 Ranking Experimentation

The first step will be to choose a labelling scheme, and extend the XSearcher to the generic
approach. This is necessary in order to obtain some more reliable test results.

Next, it would be interesting to experiment with ranking of the results. The choice of aggregation
function and weighting of nodes are factors that should be explored. For example, consider the
query omen music. As illustrated in Figure 12.1, the results consist of albums with omen in the
title and albums from the artist Omen. Which results should be considered more important?
Should for example hits from the artist node be considered more important than hits from the
title node as the artist node is more specific than the title node? Or should hits from the
artist node be considered less important since the artist node is treated as a context node and
the query context word is music? Further, should soundtracks of the Omen movies be included
in the results from the title node, or should the XML document tree be extended in order to
separate albums and soundtracks as shown in Figure 12.2? As should be obvious from the last
issue, the retrieval challenge is strongly connected with the labelling scheme chosen.

music

title artist

Figure 12.1: XML Tree for the Query omen music

music

album soundtrack

title artist title link to movie

Figure 12.2: Extended XML Tree for the Query omen music

Another example of the retrieval problem is visualised in Figure 12.3. The figure shows the XML
tree of the query john denver sunshine on my shoulders. In this case, “Sunshine On My
Shoulders” is both an album title and a song title (occuring at different albums), being retrieved
from different levels in the XML tree. Should the more specific song title or the less specific album
title be considered as most relevant? As mentioned in Chapter 5, [14] proposes that the system in
this case always should retrieve the most specific part of a document answering the query, known
as the structured document retrieval principle. However, the Shopping vertical differs at this point,
because the problem is not which part of the documents to retrieve, rather which documents to
retrieve.

12.3 User Interface Guidance

Regardless of which approaches that are chosen both regarding document labelling and ranking of
the results, it is important to be consistent. This is due to that the user always should experience
the same processes happening when he performs similar actions. Various approaches for guiding
the user through the user interface were presented in Chapter 5. The Also try . . . functionality

12.3. User Interface Guidance 95

title

album

artist song

title

Figure 12.3: XML Tree for the Query john denver sunshine on my shoulders

used in Yahoo! Shopping today, is shown in Figure 12.4. A similar approach is currently in use at
AllTheWeb Livesearch1 and can be seen in Figure 12.5. The recommendations in both approaches
are based on earlier user queries, but could easily be modified to mirror what can be retrieved in
different contexts. A site probably taking this approach is the BitTorrent2 source Seedler3.

Figure 12.4: User Guidance on Yahoo! Shopping

Figure 12.5: User Guidance on AllTheWeb Livesearch

1http://livesearch.alltheweb.com/
2BitTorrent is a peer-to-peer (P2P) file distribution tool.
3http://seedler.org

96 Chapter 12. Further Work

12.4 Query Analysis

In search, true success comes from understanding what the user’s information need. [3] classifies
query analysis along four dimensions:

• Orthographic – for example checking for typos and language.

• Morphologic – stemming/lemmatisation.

• Syntatic – for example entity or phrase extraction, anti-phrasing, and removing word-sense
ambiguity.

• Semantic – applying general and specific thesauri and ontologies.

The last mentioned dimension, semantics, is highly related to the labelling scheme and should be
explored in order to obtain additional improvement. This includes assessments of the rules used
for analysis, i.e. that only the first or last query term should be considered as context terms,
and the number of possible context terms. Also, in case keyword terms are recognised as proper
names, this should be utilised in the search.

In addition, it is possible to apply domain specific linguistic analysis. As an example, consider
the domain of books, music, and videos. Here, the XML elements author, artist, actor, and
director always contain proper names. If a user is interested in books by the author Dan Brown,
she could define the query brown author. For this query the search would be focused towards the
relevant leaf node (author), since “Brown” is a proper name. In the opposite case, the search is
focused towards the root node, just as in a standard search. This solves the problem of a focusing
the search wrong due to context words occuring in the title of an item, as for instance the movie
“The author”.

Part V

Appendix

AppendixA
Test Queries

In this Appendix we present the 150 queries that were used when evaluating our solution. Listing
A.1 shows the 42 book queries, Listing A.2 shows the 45 music queries, and Listing A.3 shows
the 46 video queries. How the reference collection constituting of the relevant documents for
different queries were made, is presented in Section 9.2. By following the steps described, the
reference collection can easily be reproduced, assumed that a similar system like the one we used,
is available.� �

1 naruto+1

2 barbie

3 gorden+west

4 managua

5 Microbiology+an+intro

6 midsummer+night+s+dream

7 oeuvre+zola

8 a+day+in+a+tropical+rainforest

9 Paradise+Lost

10 clown+fish

11 maxim+magazine

12 Geology

13 hurricane+rita

14 Yes%2c+you+can+still+retire+comfortably

15 Adult

16 Veterinary+Helminthology

17 vanity

18 food+calorie+counter

19 working+with+spoken+discourse

20 trumpets

21 grid+photos

22 The+Ezekiel+Option

23 differential+equations+by+polking

24 itzykson+field

25 Rita+Mulcahy

26 The+Guv’nor

27 top+ten+books

28 The+Phantom+Tollbooth

29 tsubasa

30 Books+for+Teens

31 battleships

32 Booty+magazines

33 overcoming+the+enemy

34 alexander+mccall+smith

35 green+gables

36 boston

37 women+with+attention+deficit+disorder

38 mathematical+quantization

99

100 Chapter A. Test Queries

39 ask+question

40 puma

41 performance+measurement+in+healthcare

42 semantic+web+owl� �
Listing A.1: The 42 Book Queries used in the Evaluation� �

1 reservoir+dogs+soundtrack

2 gloria+gaynor

3 I’d+Rather+Be+Alone

4 Rob+Zombie

5 babylon+by+bus

6 Bule+Bule

7 We+Will+Worship+by+Dennis+Jernigan+music

8 Van+Morrison

9 Die+Monster+Die

10 Satanic+Surfers

11 duke+of+earl+history

12 fabolous+ghetto

13 new+song

14 Wayne+Wonder

15 Nina+Sky

16 Alice+Cooper

17 mcqueen+street

18 Jonathan+Richman

19 gangster+records

20 GUITAR+STRINGS

21 DC+Talk

22 Tommy+Boy

23 forest+gump

24 Prince+-+Musicology

25 carlos+mata

26 now+18

27 Ry+Cooder

28 kalimba

29 magic+numbers

30 DMX

31 ethnic+instruments

32 polkas

33 Dave+Matthews

34 benabar

35 Mc+Magic

36 bone+thugs+n+harmony

37 creedence+clearwater

38 Music+for+Modern+Living+3

39 The+Green+Children

40 Get+rich+or+die+tryin+soundtrack

41 javed+akhtar

42 jack+johnson

43 Jonnie+Mitchell

44 linkin+park

45 come+closer� �
Listing A.2: The 45 Music Queries used in the Evaluation� �

1 andrew+keegan

2 john+lithgow

3 big+daddy

101

4 driver+education

5 the+incredible+mr+limpet

6 vanessa+angel

7 acrobat

8 greta+garbo

9 peter+jackson’s+king+kong+production+diaries

10 sophie+marceau

11 daddy+yankee

12 agua+chocolate

13 Ilocos+Sur

14 laura+kightlinger

15 priscilla+barnes

16 jake+weber

17 kohls

18 demon+inuyasha

19 donald+o+connor

20 placido+domingo

21 sylvia+sidney

22 Cousins

23 wil+wheaton

24 shirley+maclaine

25 woody+allen

26 Sanyo

27 jane+march

28 jason+flemyng

29 tara+subkoff

30 rene+russo

31 ebey

32 Along+Came+Polly

33 dave+chappelle

34 eliza+dushku

35 steve+zahn

36 jane+campion

37 what’s+up+doc

38 SEA+OF+LOVE

39 individuality

40 free+music

41 when+you+are+mine

42 daniel+auteuil

43 jean+louisa+kelly

44 liev+schreiber

45 ALICE+IN+WONDERLAND

46 digital+camcorder� �
Listing A.3: The 46 Video Queries used in the Evaluation

Bibliography

[1] Pekka Abrahamsson, Juhani Warsta, Mikko T. Siponen, and Jussi Ronkainen. New directions
on agile methods: A comparative analysis. In ICSE, pages 244–254, 2003.

[2] Rakesh Agrawal and Edward L. Wimmers. A framework for expressing and combining pref-
erences. In SIGMOD Conference, pages 297–306, 2000.

[3] Fast Search & Transfer ASA. Book of Search. 2006.

[4] Ricardo A. Baeza-Yates and Berthier A. Ribeiro-Neto. Modern Information Retrieval. ACM
Press / Addison-Wesley, 1999.

[5] John Battelle. The Search. Penguin Group, 2005.

[6] Michael W. Berry, Susan T. Dumais, and Todd A. Letsche. Computational methods for
intelligent information access. In SC, 1995.

[7] Konstantin Beznosov and Philippe Kruchten. Towards agile security assurance. In NSPW,
pages 47–54, 2004.

[8] Boehm and Richard Turner. Balancing Agility and Discipline: A Guide for the Perplexed.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.

[9] J. C. Borda. Memoire sur les elections au scrutin. Histoire de l’Academie Royale des Sciences,
1781.

[10] Stephan Börzsönyi, Donald Kossmann, and Konrad Stocker. The skyline operator. In ICDE,
pages 421–430, 2001.

[11] Nicolas Bruno, Luis Gravano, and Amélie Marian. Evaluating top-k queries over web-
accessible databases. In ICDE, pages 369–, 2002.

[12] David Carmel, Yoëlle S. Maarek, Matan Mandelbrod, Yosi Mass, and Aya Soffer. Searching
xml documents via xml fragments. In SIGIR, pages 151–158, 2003.

[13] Kevin Chen-Chuan Chang and Seung won Hwang. Minimal probing: supporting expensive
predicates for top-k queries. In SIGMOD Conference, pages 346–357, 2002.

[14] Y. Chiaramella, P. Mulhem, and F. Fourel. A model for multimedia information retrieval,
1996.

[15] Jan Chomicki. Preference formulas in relational queries. ACM Trans. Database Syst.,
28(4):427–466, 2003.

[16] Sara Cohen, Jonathan Mamou, Yaron Kanza, and Yehoshua Sagiv. Xsearch: A semantic
search engine for xml. In VLDB, pages 45–56, 2003.

[17] Very Large Databases. VLDB Endowment Inc. http://www.vldb.org.

[18] Marquis de Condorcet. Essai sur l’application de l’analyse a la probabilite des decisions
rendues a la pluralite des voix, 1785.

[19] A. Deutsch, M. F. Fernandez, D. Florescu, A. Y. Levy, and D. Suciu. Xml-ql: A query
language for xml. In WWW The Query Language Workshop (QL), http://www.w3.org/TR/
1998/NOTE-xml-ql-19980819/, 1998.

[20] P. Diaconis and R. Graham. Spearman’s footrule as a measure of disarray. J. of the Royal
Statistical Society, Series B, 39(2):262–268, 1977.

103

http://www.vldb.org
http://www.w3.org/TR/1998/NOTE-xml-ql-19980819/
http://www.w3.org/TR/1998/NOTE-xml-ql-19980819/

104 BIBLIOGRAPHY

[21] Cynthia Dwork, Ravi Kumar, Moni Naor, and D. Sivakumar. Rank aggregation methods for
the web. In WWW, pages 613–622, 2001.

[22] Cynthia Dwork, Ravi Kumar, Moni Naor, and D. Sivakumar. Rank aggregation revisited,
2001.

[23] Daniel Egnor and Robert Lord. Structured information retrieval using xml. Proceedings of
the ACM SIGIR 2000 Workshop on XML and Information Retrieval, 2000.

[24] Ronald Fagin, Ravi Kumar, and D. Sivakumar. Comparing top k lists. In SODA, pages
28–36, 2003.

[25] Ronald Fagin, Ravi Kumar, and D. Sivakumar. Efficient similarity search and classification
via rank aggregation. In SIGMOD Conference, pages 301–312, 2003.

[26] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms for middle-
ware. J. Comput. Syst. Sci., 66(4):614–656, 2003.

[27] Norbert Fuhr and Kai Großjohann. Xirql: A query language for information retrieval in xml
documents. In SIGIR, pages 172–180, 2001.

[28] George W. Furnas, Thomas K. Landauer, Louis M. Gomez, and Susan T. Dumais. The
vocabulary problem in human-system communication. Commun. ACM, 30(11):964–971, 1987.

[29] Google. * * - Google search. http://www.google.com/search?hl=en&q=%2A+%2A&btnG=
Google+Search. Accessed May 09 2006.

[30] Torsten Grabs and Hans-Jörg Schek. Generating vector spaces on-the-fly for flexible xml
retrieval. Proceedings of the ACM SIGIR Workshop on XML and Information Retrieval,
pages 4–13, 2002.

[31] Ulrich Güntzer, Wolf-Tilo Balke, and Werner Kießling. Optimizing multi-feature queries for
image databases. In VLDB, pages 419–428, 2000.

[32] Ulrich Güntzer, Wolf-Tilo Balke, and Werner Kießling. Towards efficient multi-feature queries
in heterogeneous environments. In ITCC, pages 622–628, 2001.

[33] Lin Guo, Feng Shao, Chavdar Botev, and Jayavel Shanmugasundaram. Xrank: Ranked
keyword search over xml documents. In SIGMOD Conference, pages 16–27, 2003.

[34] Bernard J. Jansen and Amanda Spink. How are we searching the world wide web? a com-
parison of nine search engine transaction logs. Inf. Process. Manage., 42(1):248–263, 2006.

[35] J. G. Kemeny and L. Snell. Mathematical Models in Social Sciences. Ginn, 1960.

[36] John G. Kemeny. Mathematics without numbers. Daedalus, 88:575–591, 1959.

[37] Werner Kießling. Foundations of preferences in database systems. In VLDB, pages 311–322,
2002.

[38] Mei Kobayashi and Koichi Takeda. Information retrieval on the web. ACM Comput. Surv.,
32(2):144–173, 2000.

[39] Donald Kossmann, Frank Ramsak, and Steffen Rost. Shooting stars in the sky: An online
algorithm for skyline queries. In VLDB, pages 275–286, 2002.

[40] Craig Larman and Victor R. Basili. Iterative and incremental development: A brief history.
IEEE Computer, 36(6):47–56, 2003.

[41] Yunyao Li, Cong Yu, and H. V. Jagadish. Schema-free xquery. In VLDB, pages 72–83, 2004.

[42] Shaorong Liu, Qinghua Zou, and Wesley W. Chu. Configurable indexing and ranking for xml
information retrieval. In SIGIR, pages 88–95, 2004.

http://www.google.com/search?hl=en&q=%2A+%2A&btnG=Google+Search
http://www.google.com/search?hl=en&q=%2A+%2A&btnG=Google+Search

BIBLIOGRAPHY 105

[43] J. Le Maitre. Indexing and querying content and structure of xml documents according to the
vector space model. In Proceedings of the IADIS International Conference WWW/Internet
2005, volume II, pages 353–358, Lisbon, Portugal, October 2005.

[44] Christopher D. Manning and Hinrich Schütze. Foundations of Statistical Natural Language
Processing. The MIT Press, Cambridge, Massachusetts, 1999.

[45] Surya Nepal and M. V. Ramakrishna. Query processing issues in image (multimedia)
databases. In ICDE, pages 22–29, 1999.

[46] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation
ranking: Bringing order to the web. Technical report, Stanford Digital Library Technologies
Project, 1998.

[47] Benoit Favre Patrice. Information retrieval on mixed written and spoken documents, 2004.

[48] Feng Qiu, Zhenyu Liu, and Junghoo Cho. Analysis of user web traffic with a focus on search
activities. In WebDB, pages 103–108, 2005.

[49] RANKS.NL. Stopwords in different languages. http://www.ranks.nl/stopwords/
norwegian.html.

[50] J. Robie, J. Lapp, and D. Schach. Xml query language (xql). In WWW The Query Language
Workshop (QL), http://www.w3.org/TandS/QL/QL98/pp/xql.html, 1998.

[51] W. W. Royce. Managing the development of large software systems: Concepts and techniques.
In ICSE, pages 328–339, 1987.

[52] Albrecht Schmidt, Martin L. Kersten, and Menzo Windhouwer. Querying xml documents
made easy: Nearest concept queries. In ICDE, pages 321–329, 2001.

[53] ACM SIGIR. ACM SIGIR Special Interest Group on Information Retrieval Home Page.
http://www.acm.org/sigir/. Accessed February 01 2006.

[54] ACM SIGMOD. ACM SIGMOD Online. http://www.sigmod.org/. Accessed February 01
2006.

[55] Börkur Sigurbjörnsson and Andrew Trotman. Queries: Inex 2003 working group report.

[56] Kian-Lee Tan, Pin-Kwang Eng, and Beng Chin Ooi. Efficient progressive skyline computation.
In VLDB, pages 301–310, 2001.

[57] M. Truchon. An extension of the condorcet criterion and kemeny orders. cahier 98-15 du
Centre de Recherche en Economie et Finance Appliquees, 1998.

[58] Henrik Tveit. Towards an automated procedure for annotation of gene products, 2004.

[59] Odd Richard Valmot. Søkemotoren overtar for databasen. Teknisk Ukeblad, (18):40–42, 2006.

[60] W3C. XML Path Language (XPath). http://www.w3.org/TR/xpath20/. Accessed April 28
2006.

[61] W3C. XQuery 1.0: An XML Query Language. http://www.w3.org/TR/xquery/. Accessed
March 17 2006.

[62] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, and A. Wesslén. Experimentation
in Software Engineering. Kluwer Academic Publishers, 2000.

[63] S. K. Michael Wong, Wojciech Ziarko, and P. C. N. Wong. Generalized vector space model
in information retrieval. In SIGIR, pages 18–25, 1985.

[64] Yu Xu and Yannis Papakonstantinou. Efficient keyword search for smallest lcas in xml
databases. In SIGMOD Conference, pages 537–538, 2005.

http://www.ranks.nl/stopwords/norwegian.html
http://www.ranks.nl/stopwords/norwegian.html
http://www.w3.org/TandS/QL/QL98/pp/xql.html
http://www.acm.org/sigir/
http://www.sigmod.org/
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xquery/

106 BIBLIOGRAPHY

[65] Yahoo! Yahoo! Search blog: Our blog is Growing up - And So Has Our Index. http:
//www.ysearchblog.com/archives/000172.html. Accessed May 09 2006.

http://www.ysearchblog.com/archives/000172.html
http://www.ysearchblog.com/archives/000172.html

