
June 2006
Magnus Lie Hetland, IDI

Master of Science in Computer Science
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Neighborhood Mining in Biological
Networks

Kristoffer Stenersen
Sverre Sundsdal

Problem Description
Mining biomolecular interaction networks may reveal so far unknown biological properties.

This thesis aims at creating a practical tool for a set of different tasks in one or more networks.
- Comparing proteins based on neighborhood information
- Finding a user specified interaction sub-pattern in an interaction network.
- Finding frequent sub-patterns in one or several networks.

The focus should be on the algorithms solving these problems. This will include finding literature
and improving existing work, but also designing new methods when needed.

Assignment given: 20. January 2006
Supervisor: Magnus Lie Hetland, IDI

Abstract

Biologists are constantly looking for new knowledge about biological prop-
erties and processes. Bio-molecular interaction networks model depen-
dencies among proteins and the processes they participate. By studying
patterns of interaction in these networks, it may be possible to discover
implicit information embedded in the network topology. In this thesis we
improve existing and develop new methods for investigating similarities
between proteins, and for discovering protein interaction sub-patterns.

Cytoscape (Shannon et al., 2003) is a tool for visualization and analysis
of interaction networks used by biologists. We have developed an exten-
sion to Cytoscape that lets biologists perform the following tasks:

• Compare proteins based on neighborhood information

• Find interaction sub pattern in an interaction network.

• Discover sub patterns in one or several networks.

Our main contributions are improvements to graph mining algorithms
gSpan by Yan and Han (2002) and Apriori by Inokuchi et al. (2003) whose
original task was the discovering of frequent sub-patterns in a very large
set of networks. We have enabled mining a single network and enabled
less exact matches.

The graph mining algorithm runs on labeled graphs, and we have used
various clustering techniques for this task. The clustering is done through
similarity measures between proteins, which we have based on Gene On-
tology annotations and experimental data obtained from a ChIP-chip ex-
periment. Our plug-in may easily be extended by adding other cluster
techniques or similarity measures.

We verify the results of our implementations and test them for speed.
We find that of the two mining algorithms gSpan shows the most promise
for mining biological graphs.

i

Preface

This thesis is a collaboration between Kristoffer Stenersen and Sverre Sunds-
dal submitted to the Norwegian University of Science and Technology in
fulfillment of the requirements for the degree Master of Science. It is writ-
ten in the period January 16th to June 16th 2006 at the Department of Com-
puter and Information Science.

We would like to thank Assoc. Prof. Magnus Lie Hetland and Prof.
Finn Drabløs for invaluable help throughout our project, and Chris Work-
man, a Cytoscape developer, for feedback on our plug-in.

Working with this project has been very giving. First of all, we have
had great times programming our plug-in, and found great value in pair-
programming. But also when playing Trackmania and flying our RC planes
outside (and over) the department buildings. The constant cheerful atmo-
sphere at Fiol, our computer lab, would not be possible without our good
friend Karine Småstuen and fellow students.

iii

Contents

Contents v

Figures ix

1 Introduction 1
1.1 Motivation and problem definition 1

1.1.1 Protein finder . 2
1.1.2 Finding network motifs 2
1.1.3 Frequent motif discovery 2

1.2 Our scientific approach . 3
1.3 Objectives . 3
1.4 Contributions . 3
1.5 Structure of the thesis . 4

2 Background 5
2.1 Graphs and sub-graphs . 5
2.2 Protein interaction graphs . 6
2.3 Gene Ontology . 8
2.4 Cytoscape . 9

2.4.1 Cytoscape graph data 10
2.4.2 Cytoscape and Gene Ontology data 10

2.5 Clustering . 11
2.6 Graph isomorphism . 11
2.7 Sub-graph data mining . 12
2.8 Related work . 14

2.8.1 Neighborhood mining 14
2.8.2 Biological sub-graph mining 14

3 Methods 15
3.1 Protein-Protein similarity measure 15

3.1.1 Gene Ontology . 16

v

3.1.2 TF binding . 18
3.1.3 Neighborhood similarity measure 19

3.2 Clustering . 19
3.2.1 Iterative clusterer . 20
3.2.2 Neighborhood similarity clustering 20
3.2.3 TF clusterer . 21

3.3 Neighborhood matching . 21
3.3.1 The Hungarian Method 22
3.3.2 The Cost Scaling Algorithm 24
3.3.3 Scoring bipartite matches 26

3.4 Motif matching . 26
3.4.1 Problem description 26
3.4.2 Our algorithm . 27

3.5 Apriori . 29
3.5.1 Representation of a sub-graph 29
3.5.2 Joining of sub-graphs 31
3.5.3 The algorithm . 33
3.5.4 Single graph mining 35
3.5.5 Nodes with multiple labels 36
3.5.6 Apriori mining example 37

3.6 gSpan . 39
3.6.1 Overview . 39
3.6.2 Motif representation 40
3.6.3 DFS code . 40
3.6.4 DFS edge order . 41
3.6.5 Motif order . 41
3.6.6 The DFS tree search . 42
3.6.7 An example . 43

4 Implementation and results 45
4.1 Protein comparers . 45
4.2 Clustering . 47
4.3 Neighborhood matching . 48

4.3.1 Timing the bipartite matchers 49
4.3.2 Weighting assignments 50

4.4 Apriori implementation . 51
4.4.1 Our first approach . 51
4.4.2 Limiting graph size . 51
4.4.3 BFS to DFS hybrid. 52

4.5 gSpan implementation . 53
4.5.1 Clustering, labeling, cleaning 53

4.5.2 Motif and instance representation 53
4.5.3 Mapping instances to motifs 54
4.5.4 Instance overlapping 54
4.5.5 Removing backward edges 55
4.5.6 The non-trivial M 6= min(M) test 55
4.5.7 Instance comparison 55

4.6 Comparing Apriori, gSpan and Motif Finder 56
4.6.1 Test setup . 57
4.6.2 A timed comparison 57

4.7 Validating the graph miners 59
4.7.1 Single network mining comparison 59
4.7.2 Multiple network mining 61

4.8 Comparing Motif Finder and gSpan 62
4.8.1 Test setup . 62
4.8.2 Test results . 62

5 Discussion & further work 65
5.1 Clustering and protein similarity 65
5.2 Neighborhood matching . 66
5.3 Apriori . 66
5.4 gSpan . 67

5.4.1 Improvements . 67
5.4.2 Overlapping motifs . 68
5.4.3 Instance similarity . 69
5.4.4 Near matches . 69
5.4.5 Further work . 70

5.5 About the development of NeMi 70

6 Summary and Conclusion 73

A Bibliography 75

B Users guide to NeMi 81
B.1 Installation . 81
B.2 History . 82
B.3 Protein similarity . 82
B.4 Motif Finder . 83

B.4.1 How to use . 83
B.5 Protein Finder . 84

B.5.1 How to use Protein Finder 84
B.6 gSpan graph miner . 85

B.6.1 How to use gSpan graph mining 87
B.7 Apriori graph miner . 88
B.8 Mining statistics . 88
B.9 Some final words . 88

C How-To 91
C.1 Add a similarity measure . 91
C.2 Add a clusterer . 93

List of Figures

2.1 A graph (a), and four representative sub-graphs (b) - (e) . . . 6
2.2 Protein interaction graph . 7
2.3 Gene Ontology for pheromone processing 8

3.1 Example GeneOntology DAG 16
3.2 Common parents of two proteins 17
3.3 An example bipartite matching instance. 22
3.4 A double-push operation. 25
3.5 An example motif, network and similarity matrix. 28
3.6 Finding the motif in the network. 29
3.7 Example graph (letters are node labels) 30
3.8 Graph used in normal form example 32
3.9 Transform into normal form. 33
3.10 Flowchart of the main part of the Apriori algorithm 34
3.11 Graph example used in frequency anti-monotone example . 35
3.12 Expansion of multiple labeled graph to single labeled graph 36
3.13 Apriori example data . 37
3.14 Apriori at level k= 2 . 38
3.15 Apriori at level k=3 . 38
3.16 A graph (a) and three different motifs (b)-(c) representing (a) 40
3.17 gSpan search space and pruning 42
3.18 gSpan example input data . 43
3.19 gSpan DFS tree search. 44

4.1 Frequency plot of similarity scores 46
4.2 Frequency plot for Transcription Factor similarity 47
4.3 Clustering statistics . 47
4.4 A run time comparison of bipartite matching algorithms. . . 49
4.5 Weighting assignment scores. 50
4.6 Apriori depth first version . 52
4.7 gSpan’s instance similarity. 56
4.8 A run-time comparison of using network size 40 nodes. . . 58

ix

4.9 A runtime comparison using network size 13 nodes. 58

B.1 ExampleNetwork and galFiltered in motif finder 84
B.2 The matching list . 85
B.3 protein Finder with results . 86
B.4 Gspan graph mining pane . 87
B.5 Clustering statistics after mining 89

Chapter 1

Introduction

The first section of this chapter give a brief presentation of the problem
cases studied in this report and the motivations behind them. Section 1.2
describes our scientific approach to this thesis, while section 1.3 states our
objectives. Section 1.4 outlines our main contributions and finally, section
1.5 presents the structure of the rest of this thesis.

1.1 Motivation and problem definition

Recently, large amounts of bio-molecular interaction data have become
available. Scientists all over the world contribute their experimental re-
sults, building large databases of genetic and physical molecular interac-
tions. Along with the growth of bio-molecular interaction databases, net-
works of interaction data are created, and the need to explore and analyze
these networks emerge. These needs were addressed by Cytoscape (Shan-
non et al., 2003), an open source software environment for visualization
and analysis of biological interaction networks.

This projects aims to implement and adapt methods solving three spe-
cific problems. They should be implemented as a plug-in in Cytoscape to
enable easy access by a biologist. All problems have some partial over-
lapping sub problems, and some methods will be reused. Our main input
data is biological networks, named graphs in terms of computer science.
Here we will give a brief introduction to our set of problems, and our
methods for solving them.

2 Chapter 1. Introduction

1.1.1 Protein finder

In the first problem, a single protein in a graph is given as input, and the
task is to find the most similar protein(s) in the same graph. We need to
introduce similarity measures based on protein-data external to the graph
to be able to compare the similarity between the different proteins. The
external data may not give a good classification of a single protein. Under
the assumption that a protein’s properties are dependent of its interacting
neighborhood, we therefore include neighborhoods when comparing pro-
teins. Instead of directly comparing all proteins in the graph to the given
protein directly, we thus compare their respective neighborhoods.

1.1.2 Finding network motifs

The second problem is discovering interesting motifs in a single biological
network. Given a motif, can a similar pattern be found in a larger graph?
A motif is a description of a graph topology or pattern which may or may
not include information specific to the nodes. It could simply be a sub-
graph or it could be some abstract way of representation, like a vector of
features.

Known methods solving this particular problem apply to labeled graphs.
In a labeled graph, equally labeled nodes are considered equal. Similar to
the first problem, external data must be used to be able to measure node
similarity. Similarity measures are only one step toward equality, cluster-
ing methods can be applied, and nodes occurring in the same clusters are
equally labeled.

For example, a large biological interaction network, a chain of proteins
and their corresponding links may represent a certain process or a chain
of reactions in an organism. For a biologist, it may be interesting to find
equal chains in other locations of the graph.

1.1.3 Frequent motif discovery

The third problem is finding patterns across multiple biological interac-
tion networks, but also within a single network. This type of discovery is
often solved by data mining which extracts patterns from large datasets.
The existing methods apply to labeled graphs, external data and clustering
methods must be applied.

For example, the networks may represent interaction networks from
different species, and the biologist wants to find similar interactions across
the species.

1.2. Our scientific approach 3

1.2 Our scientific approach

As we consider ourselves computer scientists, not biologists, our imple-
mentations and results should be categorized as proof of concept. Our
problems are stated by a biologist, and this thesis involves the details con-
cerning the methods we have chosen to apply, how we have improved
and adapted them to our test data. The analysis of our work describes the
performance and verifies the output of our implementations, but does not
discuss the biological usefulness. This is up to the end users of our appli-
cation. Hopefully, releasing our work as a free, open and easily extendable
plug-in to a well known tool for bio-molecular interaction network analy-
sis, our plug-in will prove to be useful by biologists.

1.3 Objectives

Our project aims to implement algorithms solving the described problems,
and make them available in a practical tool. Our goal is to customize algo-
rithms to be able to cope with noisy data, make robust implementations,
easily applicable for biological scientists. The work of comparing neigh-
borhood information was started by Braute and Rødsjø (2005), however
the problems involving finding sub-patterns raises a set of unanswered
questions which we aim to investigate:

• Can we use graph mining techniques?

• Does graph mining allow near matches?

• Which graph mining algorithm is best?

• If we can’t use graph mining techniques, are there alternatives?

We will describe our methods, adjustments and improvements thor-
oughly. Also we will test correctness and present performance evaluations
of our implementation.

1.4 Contributions

Our main contributions involve a proposed algorithm searching for opti-
mal matches of a given network, in another larger network. Moreover, we
have implemented, tested and verified two state of the art graph-mining

4 Chapter 1. Introduction

algorithms. Our implementations are adopted for bio-molecular interac-
tion networks, involving single network mining, clustering for node label-
ing and various protein similarity measures.

In addition to the underlying implementations, we have released our
work as a plug-in to a well known tool for visualization and analysis of
bio-molecular interaction data, Cytoscape. The plug-in is easily extended
with new similarity measures and clustering methods. Both Cytoscape
and our plug-in are freely available on the web. The webpage for the plug-
in is http://www.idi.ntnu.no/˜sundsdal/nemi.

1.5 Structure of the thesis

Chapter 2 presents background theory which is necessary to understand
our methods and implementations. The keyword for this chapter is graphs
and data mining, but some biological concepts are introduced as well.
Chapter 3 presents our methods for the given problems and in chapter
4 we present the implementations and the test results. In chapter 5 we
discuss our findings. A summary and our conclusions can be found in
chapter 6.

http://www.idi.ntnu.no/~sundsdal/nemi

Chapter 2

Background

In this chapter we will include some useful background material which is
necessary in order to understand the contexts of the methods presented in
the next chapter. Section 2.1 gives formal definitions of graphs, and sec-
tion 2.2 introduces biological interaction networks. Section 2.3 introduces
gene ontologies, and in section 2.4 we talk about Cytoscape, the software
environment our plug-in is written for. Before introducing the field of
graph mining in section 2.7, we discuss clustering in section 2.5 and graph
isomorphism in section 2.6. Section 2.8 reviews some related work.

2.1 Graphs and sub-graphs

Although this project concerns implementations adopted to biological data,
we have taken an algorithmic approach and focus on the abstract view.
Therefore it is essential to include some background on graph theory. A
graph is a pair of sets G = {V, E} where V is a set of N nodes and E is the
set of edges between the nodes. A node may be labeled, and an edges are
either directed or undirected.

A sub-graph Gs ⊂ G is a subset of nodes Vs ⊂ V and edges Es ⊂ E. An
induced sub-graph Gi is a sub-graph which consists of a subset of nodes
Vi ⊂ V and all edges (vi, vj) ∈ Ei ⊂ E if vi, vj ∈ Vi connecting those nodes.

A connected sub-graph is a sub-graph where all nodes are mutually
reachable through the edges of the sub-graph. A tree is a connected sub-
graph without cycles. Figure 2.1 (a) shows an instance of a graph, while
2.1 (b)-(e) shows examples of the different sub-graph categories.

6 Chapter 2. Background

a b

ac

(a) A graph

a

ac

(b) A general
subgraph

dd

b a

ac

(c) An induced
subgraph

d

a

ac

(d) A connected
subgraph

b a

ac

(e) A tree

b

Figure 2.1: A graph (a), and four representative sub-graphs (b) - (e)

2.2 Protein interaction graphs

Molecular biology involves the basic building constituents of species, as
well as structural and functional analysis of such. Species are classified
into two wide categories, prokaryotic (e.g. bacteria) and eukaryotic (e.g
yeast, cat, human). Prokaryotic organism does not keep the genetic mate-
rial within a nucleus, like the eukaryotic do. DNA (Deoxyribose Nucleic
Acid) is stored in the nucleus and contains the genetic material. All the
cells in an organism have the same genetic material, even if the cells dif-
fer greatly in form and function. An essential part of the DNA are the
genes. They encode proteins which are the functional building blocks for
cells. Proteins are the principal constituents of cellular material and serve
as enzymes, hormones, structural elements, and antibodies. A protein in-
teraction is a sub-process of these functions.

2.2. Protein interaction graphs 7

Figure 2.2: Protein interaction graph

Information about protein interactions are collected from published
material and stored in public large public databases, for example the Bio-
molecular Interaction Network Database (Bader et al., 2001). Other inter-
action networks exists between genes, DNA, RNA, small molecules and
complexes, but these are beyond the scope of this thesis. Figure 2.2 is an
example graph (red edges are protein – protein interaction, blue with ar-
row is protein → DNA) .

The information stored in such networks is constantly reviewed, cor-
rected and expanded. The information available today may not be the
same as tomorrow. Also the information is a simplified view of biology
and may not be a correct representation. In short, protein interaction net-
works are inaccurate and must be handled as such. But still, there is a lot
of information to extract from these networks. For example Deng et al.
(2004) shows how to use neighborhood information for determining Gene
Ontology categories. Sharan (2005) searches for similarities between yeast
and bacterial protein networks. The goal of their applied method is to find
two sets of proteins, one in yeast and one in bacteria, such that many of
the proteins in each set have orthologous counterpart; having the same or
similar function.

8 Chapter 2. Background

2.3 Gene Ontology

Gene Ontologies are central to several of our similarity measures pre-
sented in chapter 3. When the sequencing of the first genomic sequences
became available a surprisingly large fraction of the genes from different
species could be considered orthologs, or functionally equal. Information
from one species could be used on other species. Knowledge about genes
are incomplete and being updated on a daily basis. Some proteins we have
very specific information about, others not. An example: One protein is
known to be a transmembrane receptor serine/threonine kinase involved
in p53-induced apoptosis, the other is only known to be membrane bound.
Gene Ontology is designed to handle the problem of varying specificity of
information. Updated information can always be downloaded from The
Gene Ontology Consortium Website.

The Gene Ontology (Ashburner et al., 2000) consists of two parts. One
parts is a controlled vocabulary for describing roles of gene and gene prod-
ucts in cells. The other part is the annotations which maps genes and their
products to the gene ontology vocabulary (or categories).

Developmental process

Genetic exchange

Mating (sensu Fungi)

Mating (sensu Saccharomyces)

Pheromone processing

Biological process

Cell growth/maintenance

Metabolism

Protein metabolism & modification

Protein modification

Protein processing

Cell-cell fusion

Is-a

Is-a

Is-a
Is-a

Is-a

Is-a

Is-a

Is-a

Is-aPart-of

Is-a

Figure 2.3: Gene Ontology for pheromone processing

http://www.geneontology.org/
http://www.geneontology.org/

2.4. Cytoscape 9

The ontology is structured like a directed acyclic graph (DAG). A term
can have multiple parents, and it can either be a ’part-of’ relationship or
a ’is-a’ relationship. Figure 2.3 shows an example of the relationships be-
tween the parents of pheromone processing1. The term pheromone processing
is a step in (part-of relationship) the process mating (yeast), an example of
(is-a relationship) the process protein processing, and an example of the pro-
cess protein modification.

There are three main types of gene ontologies; biological process, molec-
ular function and cellular component. A biological process is a biological
object to which the the gene or gene product contributes. Molecular func-
tion is a biochemical activity and cellular component refers to where in the
cell a gene product is active.

2.4 Cytoscape

The choice of Cytoscape in this thesis is based on a request from Finn
Drabløs (Drabløs, 2006). Cytoscape (Shannon et al., 2003) is a software pro-
gram for visualising and analysis of bio-molecular interaction networks. It
allows interaction data, gene expression profiles and other data to be inte-
grated. Other features are available through plug-ins.

Experimental technologies for characterizing molecular interactions,
for example microarray experiments, produce considerable amounts of
data. Microarray experiments enable scientists to measure the level of
transcription activity of every gene withing a cell. Computer-aided tools
are crucial for processing and analysis of such data. Various specialized
tools already existed before Cytoscape, for clustering, classification and vi-
sualization. However, there was still a need for a more general tool able to
integrate more model parameters and other biological attributes (Shannon
et al., 2003). Cytoscape address these needs in a flexible general-purposed,
portable and open source environment for integration of bio-molecular in-
teraction networks and states.

An example plug-in for the Cytoscape environment is BiNGO by Maere
et al. (2005). BiNGO, the Biological Networks Gene Ontology tool, is an
open-source Java tool to determining which Gene Ontology terms are sig-
nificantly overrepresented in a set of genes. BiNGO maps frequent func-
tional themes of a given network on the GO hierarchy, and takes advan-
tage of Cytoscape’s visualization environment to produce a visual repre-
sentation of the results.

1Example taken from http://www.yeastgenome.org/

http://www.yeastgenome.org/

10 Chapter 2. Background

2.4.1 Cytoscape graph data

Cytoscape stores interaction graphs in two simple ASCII text formats, Sim-
ple Interaction File (sif) and Graph Markup Language (gml). The SIF for-
mat specifies in the following way:

nodeA <relationship type> nodeB
nodeD <relationship type> nodeB nodeC nodeE

A node is typically a protein identifier and the relationship can be of the
following types:

pp protein – protein interaction
pd protein → DNA (e.g. transcription factor binding upstream

of a regulating gene.)

These two are the most common but others are also possible:

pr protein → reaction
rc reaction → compound
cr compound → reaction
gl genetic lethal relationship
pm protein-metabolite interaction
mp metabolite-protein interaction

Graph Markup Language (gml) is simply the interaction data plus infor-
mation about how to view it (layout, colors, edge-ends).

2.4.2 Cytoscape and Gene Ontology data

Cytoscape from version 2.2 handles Gene Ontology natively. It reads gene
ontology files in ASCII format formatted like this.

0003673 = Gene_Ontology
0003674 = molecular_function [partof: 0003673]
0015643 = anti-toxin [isa: 0003674]
0015644 = lipoprotein anti-toxin [isa: 0015643]
...
0045174 = dehydroascorbate reductase [isa: 0009491

0015038 6209 0016672]
...

This defines an identifier for each term and its relation to a parent. The
annotation which describes a gene or gene product is defined as follows:

2.5. Clustering 11

(species=Saccharomyces cerevisiae)
(type=Biological Process)
(curator=GO)
YMR056C = 0006854
YBR085W = 0006854
YJR155W = 0006081
YNL331C = 0006081
...

Here all gene or gene products (left) are assigned a gene ontology (right).
This example is from species Saccharomyces cerevisiae.

2.5 Clustering

To be able to assign labels to nodes in a network, we apply clustering. The
goal of clustering is to simplify the data set. Initially all items in the data
may be distinct, then clustering divides data into different groups where
all items are considered identical. The goal is that all items in a group are
very similar to each other, while items from different groups are dissimilar.
Clustering techniques are based on knowledge of the data. Clustering is a
form of unsupervised learning.

There are two major types of clustering techniques. There is the bottom
up approach called hierarchical or agglomerative clustering which starts
of with each element in separate clusters and merge them. While top-
down partitional clusterers start with all items in one cluster and try to
split them up.

The agglomerative clusterer needs a user specified a distance metric
to join iteratively the two nearest clusters until a set number of clusters is
reached. The measuring of distance between clusters can be average, max,
min or Hausdorf distance between items of the two clusters or some other
measure like variance.

A well known a partitioning algorithm is the K-means algorithm which
randomly chooses or calculates a set of centers of for the clusters. Then it
adds the nearest items and recalculates the centers of the clusters. This
continues until some measure of quality is satisfied.

2.6 Graph isomorphism

A common problem when comparing graph information is the so called
graph and sub-graph isomorphism problems. Given two graphs G(V, E)

12 Chapter 2. Background

and G′(V ′, E ′), the sub-graph isomorphism problem is to find the sub-
graphs Gs, G′

s and a bijection mapping g between the nodes in E and E ′

such that the two sub-graphs Gs and G′
s are identical:

(vi, vj) ∈ E ⇔ (v′i, v
′
j) ∈ E ′ | v′i = g(vi) ∧ v′j = g(vj) (2.1)

The bijection mapping g is a one-to-one mapping from a set of nodes in
G to a set of nodes in G′. All edges connecting these nodes in G must have
corresponding edges in G′. The sub-graph isomorphism problem may be
extended to sets of graphs by finding a bijection mapping g between the
nodes in all sub-graph instances, and their corresponding edges. Also,
several sub-graph instances may be found in a single network. Then, g
maps nodes within the same network.

The graph isomorphism problem has an unknown computational com-
plexity. It is unknown whether the problem is NP-complete, and all at-
tempts to classify it as polynomial or NP-complete have so far failed. On
the other hand, the sub-graph isomorphism problem is known to be NP-
complete (Garey and Johnson, 1979). Time requirements of brute force
algorithms increase exponentially with the size of the input graphs, re-
stricting the applicability of graph based techniques to problems implying
graphs with a small number of nodes and edges.

2.7 Sub-graph data mining

Data mining is analysis technique for extracting patterns from large data
sets. These patterns can represent trends in the data that cannot be ex-
tracted with ordinary techniques. For example when mining receipt infor-
mation from a chain of stores one might find that beer and diapers were
often bought together, which enables the store to take advantage of that
fact.

Many graph mining algorithms take advantage of the frequency anti-
monotone principle. If a motif of size k has support s, an extension of the
motif to size k + 1 will never have more than s support.

Graphs are one of the best studied data structures in computer science.
Looking for common patterns in multiple graphs is the typical instance of
the sub-graph mining problem. Many ideas and algorithms are adopted
from the field of relational data mining, even though state of the art mining
techniques do not necessarily perform well on graph based data. Graph
based data are by nature more complex, than for example basket case item-
sets. The main objective of graph mining is to provide new and efficient

2.7. Sub-graph data mining 13

algorithms to mine topological substructures in graphs, while the main ob-
jective of multi-relational data mining is to mine relational patterns repre-
sented by logical languages. The former concerns the geometry and struc-
ture, the latter is more logic and relation oriented (Washio and Motoda,
2003).

The earliest studies to find sub-graph patterns from massive graph
data were conducted by Cook and Holder (1994). Their approach used
greedy search to avoid state explosions, and thus did not return the com-
plete set of frequent sub-graphs. They applied a beam search, an opti-
mization of a best-first search. The beam search only unfolds the m most
promising nodes at each depth, where m is a fixed number; the “beam
with”. After this pioneering study, the number of papers released in this
field has constantly accelerated.

Another similar approach, developed by the same group, is called graph
based induction Yoshida K and N (1994). Here similar groups of nodes
are replaced by a representative node, compressing groups of nodes into
chunks. Chunking can be nested, and the algorithm remembers the link
information and can reconstruct the original graph at any time. The chunk-
ing is repeated until the size of the graph reaches a local minimum. Sets of
equal chunks are returned as sub-graphs.

Kernel function techniques may also be applied to graph mining. The
graphs are transformed into feature vectors, a high dimensional feature
space characterizing the graphs. Various machine learning, data mining
and statistical approaches can be applied if the graph is transformed into
a feature vector. The similarity between the returned sub-graphs is de-
fined by the kernel function, and does not necessarily satisfy graph iso-
morphism.

Apriori-based graph mining techniques are algorithms used in tradi-
tional basket analysis. Starting from frequent graphs where each graph is
a single vertex, the frequent graphs having larger sizes are searched in bot-
tom up manner by generating candidates having an extra vertex. Apriori
applies a breath-first search on the networks. First, all frequent single node
networks are found, before expanding to two nodes, etc. Inokuchi et al.
(2003) did the initial work on Apriori-based graph mining techniques.
Similarly to Apriori, gSpan (Yan and Han, 2002) continuously grows sub-
graphs. gSpan performs a depth-first search for sub-graphs, and grows
candidate frequent sub-graph edge by edge.

Both Apriori and gSpan are designed to find small sub-graphs in a
large set of networks. Bio-molecular interaction networks are often large,
and mining such networks may not be done by a direct application of
any of the above mentioned methods. Biologists may be looking for sub-

14 Chapter 2. Background

graphs in a single network, or a few.

2.8 Related work

Research in experimental biology spans from in vivo approaches to in sil-
ico. In vivo involves research on living organisms, while in silico is research
performed on computers, for example simulations. Our work may be con-
sidered a tool for in silico research.

2.8.1 Neighborhood mining

Protein neighborhoods was explored last year by Braute and Rødsjø (2005),
our thesis continues the work they started. They focused on neighborhood
matching, introduced as Protein finder in this report, and concluded that
using protein neighborhoods are usable for protein classification. They
found that under certain conditions, their proposed neighborhood match-
ing yields a Spearman correlation coefficient of 0.7 with direct function
similarity measurements between proteins. We have implemented their
protein comparers and their analog to our Protein Finder. Our additions
and improvements will be presented in the methods chapter.

2.8.2 Biological sub-graph mining

CODENSE, an algorithm developed by Hu et al. (2005), mines frequent
sub-graphs across large numbers of massive graphs. They applied their
algorithm to a large set of co-expressed networks derived from microar-
ray experiments, and discovered large number of equally structured sub-
graphs across the networks. As opposed to our approaches, their algo-
rithm runs on already labeled networks.

An algorithm by Szpankowski and Grama (2005), called MULE, de-
tects frequently occurring patterns in biological networks. The proposed
algorithm is based on existing item-set mining algorithms, performing a
depth-first search for connected sub-graphs, expanding the candidate sub-
graphs edge by edge. The algorithm involves a pruning heuristic, making
it capable of mining large amount of networks in a short amount of time,
but is not able to retrieve all sub-graphs found by gSpan. The authors ar-
gue that gSpan is not capable of handling very large graphs, and that their
algorithm may works as a pruning step of the data, before running gSpan
or similar non-heuristic methods.

Chapter 3

Methods

In this chapter we will introduce the algorithms and methods used in this
thesis for solving our main three problems. The focus here is to describe
how they work and what improvements we have done on an abstract
level. First we will discuss how we make protein comparers in section 3.1
and utilize these for clustering in section 3.2. Then in section 3.3 we will
describe a method for matching neighborhoods of proteins which is the
first of our main problems stated in the introduction. Then in section 3.4
we will describe our straightforward implementation of a basic approach
for finding motifs in a network which address the second problem. Finally
in sections 3.5 and 3.6 we will describe the two graph mining algorithms
we have used to try to answer the last problem, motif discovery.

3.1 Protein-Protein similarity measure

In order to find similarity between sub-networks it is necessary to know
the similarity between the nodes. In our project we have used similarity
measures that returns a value in the range [0,1]. If two proteins have a
similarity of 1.0 they are considered equal. A similarity value of 0.0 means
they are dissimilar. This ensures that one measure can easily be replaced
by another measure, and we have also the added benefit of generating
new composite similarity measures based on a weighted sum. A good
similarity measure should be able to return similarity scores for as many
protein pairs as possible.

We have created four similarity measures. Three through the Gene
Ontology and one using data from a ChIP-chip experiment. Other sim-
ilarity measures, or comparers, meay easily be added. We have also im-
plemented a composite similarity measure.

16 Chapter 3. Methods

3.1.1 Gene Ontology

Most proteins have one or more classifications in the Gene Ontology (GO)
system (Ashburner et al., 2000). We use the annotations available from
Cytoscape to extract information about common parents. The difference
between ’is-a’ and ’part-of’ relationship is currently not used, after con-
sulting with biologist Finn Drabløs (Drabløs, 2006). The comparers pre-
sented in this subsection can be found in the masters thesis by Braute and
Rødsjø (2005).

Molecular function (1.0)

Binding (0,7)

Cofactor binding (0.5)Nucleotide binding (0.3)

Quintome binding (0.2)

Ubiquinone binding
(0.15)

Pyridoxal phosphate
binding (0.1) Coenzyme binding (0.4)

NADH binding (0.1)

Acyl binding (0.2)

Thiamin prophosphate
binding (0.1)

1

2

3

4

5

Figure 3.1: Example GeneOntology DAG

Deepest common parent

For each category a protein is annotated there exists one or more path(s)
from the root category. These paths are structured like a directed, acyclic
graph (DAG). Each step on this path represents an increasingly more spe-
cific category. The deeper into the GO a category is, the more information
is known about, as deeper GO categories are more specific. A way to uti-
lize this when making a similarity measure is to find all the common cat-
egories from these paths for two proteins and extract the deepest one (the
category furthest from the root). Call the depth of the deepest common
parent category ddcp, and the max depth for all the categories dmax. The
similarity sdcp is then given by:

sdcp =
dc

dmax
(3.1)

3.1. Protein-Protein similarity measure 17

Molecular function

Binding

Cofactor bindingNucleotide binding

Quintome binding

Ubiquinone binding

Molecular function

Binding

Cofactor binding

Pyridoxal phosphate
binding Coenzyme binding

NADH binding

Molecular function

Binding

Cofactor binding

Common
parents:

GO parents
protein 2

GO parents
protein 1

Figure 3.2: Common parents of two proteins

Two proteins are annotated with the example GO DAG in figure 3.1.
Protein 1 is classified as Nucleotide binding and Ubiquinone binding. Pro-
tein 2 is classified as Pyridoxal phosphate binding and NADH binding.
The common parents can be seen in figure 3.2. The score for this similarity
will be

sdcp =
3

5
= 0.6

Least likely parent

Instead of looking at the most specific common parent we can look at the
most unexpected common parent. The probability that a protein belongs
to a category α is defined as

P (α) =
number of proteins classified as α

total number of proteins
(3.2)

Of all the categories associated with the two proteins, call the probabil-
ity of the least likely category P (min parent). Call the probability for the
common parent with least probability (P (min common parent)). The sim-
ilarity sllp is given by

sllp =
P (min parent)

P (min common parent)
(3.3)

We also made a log-scaled version of sllp to ensure wider spread of
similarity measures. We call this “Log least likely parent”

slllp =
log P (min common parent)

log P (min parent)
(3.4)

18 Chapter 3. Methods

A high similarity value signifies an unlikely common parent. A very
likely common parent like the root node will give the value 0.0. Given the
example in figure 3.2 we have the following results:

sllp =
0.1

0.5
= 0.2

and

slllp =
(log 0.5)

(log 0.1)
= 0.3

3.1.2 TF binding

Another approach for measuring protein similarities is using results from
a ChIP-chip experiment (Heyer et al., 1999). ChIP-chip experiments are
able to estimate the probability that a given transcription factor binds to a
given genomic region.

A similarity measure can be created by considering proteins regulated
by the same transcription factor(s) more equal than others. By including
the probability value, the measures get more graded. A lower p-value
indicates a higher probability of interaction.

Example of the input data for this measure:

Pid TFid Pval
YAL002W MBP1_YPD 0.0014
YAL002W PHD1_YPD 0.0085
YAL002W SIP3_YPD 0.0016
YAL064W PHD1_YPD 0.00042
YAL064W SIP3_YPD 0.0031

We propose a similarity measure based on the p-values Pvali, Pvalj
for the two proteins Pida, Pidb to be compared activated by the same tran-
scription factor(s) TFidai

= TFidbj
:

stf (Pida, P idb) = ∀TFid
∑

Pval(Pida, TF id) · Pval(Pidb, TF id) (3.5)

Where the function Pval returns a p-value if the entry is found for the
given Pid and TFid, and 1 if not found. Given the example data above,
the similarity between the two TFs regulating the genes producing the
proteins YAL002W and YAL064W is calculated by (1−0.0085)·(1−0.00042)+
(1− 0.0016) · (1− 0.0031) = 1.99. Similarity is normalized against the best

3.2. Clustering 19

match as our clustering methods in the next chapter runs on normalized
similarity values. The normalization is calculated by

s
′

tf (Pida, P idb) =
stf (Pida, P idb)−minscore

maxscore−minscore

where maxscore is the highest score found, and minscore minimum. This
ensures that all similarity values are kept in the [0,1] range.

3.1.3 Neighborhood similarity measure

Using one or a combination of the described protein-protein similarity
measures described above, we are able to create a similarity measure based
on the proteins’ neighborhoods. This matching finds the best mutual pro-
tein to protein assignment in the two nodes’ neighborhoods, and scores
the match according to the given single-protein similarity measure.

For example, using GO as a similarity measure when comparing two
proteins, the two proteins may only occur in very general GO-categories.
General GO-categories are not good classifiers for proteins as they con-
tain too many proteins. But, by also including the two proteins’ neighbor-
hoods, more information is added when measuring similarity. Take for
example two proteins with a slightly poor similarity, when comparing to
one another directly. The two proteins may both only be found in general
GO-annotations. But if it shows that the two protein’s neighborhoods are
very similar, every node of the two node’s neighborhoods finds a good
match in the opposite neighborhood, it is reasonable to believe that the
two proteins could have been given a higher score.

Finding the best node to node matching of two neighborhoods involves
the problem of finding the maximum bipartite matching. A more thor-
ough presentation of the problem, and two algorithms solving it, will be
presented in section 3.3.

3.2 Clustering

In a protein-protein interaction network all nodes are unique. This means
that all sub-graphs occur exactly once in the graph. Applying data min-
ing to such a network will find no new frequent sub-graphs. But if we
treat similar proteins as identical we are able to find frequently occurring
patterns in the interactions that could be interesting to a biologist.

For some of our algorithms the graph is preprocessed using cluster-
ing before starting the data mining. Clustering divides the data into a

20 Chapter 3. Methods

set of categories in which all elements are considered equal. The com-
mon approach is to generate disjoint categories, but in protein interaction
networks this is not the best approach. Consider this example, protein A
and B share property x which means in some protein interactions A can
be exchanged with protein B and the organism would function properly.
Protein B and C share property y and can also be interchanged in certain
interactions. However in such interactions they cannot be exchanged with
protein A. If the clustering puts B in the same category as A but not in the
same category as C much information is lost in the interaction network.

A protein therefore should not belong to only one category, but a set of
categories. The goal of the clustering should generate categories similar to
the the properties mentioned.

3.2.1 Iterative clusterer

The similarity metrics discussed in section 3.1 are non-metric by their na-
ture. The Iterative clusterer handles this very straight forward. The user
specifies the tolerance of a cluster, which is the minimum similarity be-
tween any two nodes in a cluster.

The iterative clustering algorithm simply starts with a node and adds
as many nodes as possible that satisfies the criteria above. Then it finds a
node that is in no cluster and repeats the process until all nodes are clus-
tered.

The proteins classified in a single cluster will never be investigated by a
graph miner because the support is less than 2. In order to not penalize less
studied proteins. Clusters with only one node can be joined to generate a
“wild-card” cluster.

3.2.2 Neighborhood similarity clustering

We also propose another version of the iterative clusterer, using the neigh-
borhood similarity measure described in the previous section. When clus-
tering, instead of performing clustering based on direct node similarities,
we obtain similarity scores from the nodes’ neighborhoods. Again, using
neighborhoods for measuring node similarities is motivated by the belief
that a protein’s neighborhood may give better classifications between sin-
gle nodes.

3.3. Neighborhood matching 21

3.2.3 TF clusterer

By using the transcription factor regulation data described in section 3.1.2,
we are able to create a clusterer independent of similarity measures. A
transcription factor regulates a set of proteins with a p-value p. All pro-
teins activated by a transcription factor with p smaller than a preset limit1

are added to the cluster. In this way the implicit similarity of the TF data
is preserved in the cluster.

Clusters that are completely contained within another cluster are re-
moved. Proteins that have no transcription factors associated to it can be
added to a single wild-card cluster or separate clusters. This will influence
how the algorithms treat proteins with no similarity to any other protein.
If a “wild card” cluster is selected, all these proteins will be considered
equal by the mining algorithm. If the wild card clustered is not enabled,
all these proteins will not contribute to any patterns, as they do not share
any similarity with any other node. The wild-card cluster is presented as
a check-box in the user-interface.

3.3 Neighborhood matching

To be able to measure the similarity of two nodes by their neighborhoods,
we need to find an optimal matching of the two nodes’ neighbors.

This task can be modeled as the assignment problem, a special case of
the transportation problem. The transportation problem has a set of nodes
called sources, and a set of nodes called destinations. All arcs go from
a source to a destination, and there is a per-unit cost on each arc. Each
source has a supply of material, and each destination has a demand. The
task is to maximize the sum of flows from sources to the destinations; that
is maximizing delivery of material, or meet as much demand as possible
at the destination nodes.

In our version of the transportation problem, the assignment problem,
there are still two sets of nodes. All arcs go from the source nodes to the
destination nodes, but now, every source has a supply of 1, and every des-
tination has a demand of 1 flow unit. In our case, flows are integers, and
every supplier will be assigned exactly one destination, and every des-
tination will have one supplier. The solution is enabling the flows giving
minimal cost. Figure 3.3 (a) shows an example bipartite matching instance,
the cost matrix between the source and the destination nodes (b) and an

1The limit is 0.01 in NeMi

22 Chapter 3. Methods

c0,0

c2,3

(b)

s1

s3

s2

d1

d2

d3

d4

c1,3

c3,4

(a) (c)

c2,1
s1

s3

s2

d1

d2

d3

d4

Figure 3.3: An example bipartite matching instance.

optimal/maximal matching (c). Every edge has a weight, a cost, and solv-
ing the assignment problem is finding the match with the maximal sum of
edge weights or the optimal matching between the two sets of nodes.

Using similarity measures, we are able to assign a protein similarity
measure between the two sets of neighborhood nodes. Then, by model-
ing the source and destination nodes as the two nodes’ neighborhoods,
finding the optimal match is solving the assignment problem. We imple-
mented and compared two approaches solving this problem; one tradi-
tional approach based on Gaussian elimination, and another using a tech-
nique of push-relabel techniques. Since this problem is an essential part of
the neighborhood mining problem, we will here give a short description
to the two methods and make a comparison on realistic data.

3.3.1 The Hungarian Method

This algorithm (Kuhn, 1955) developed by Kuhn was largely based on
earlier works of two Hungarian mathematicians, Denes König and Jenö
Egerváry. The algorithm performs minimization of the elements in a square
cost matrix, and can be easily understood by looking at how it obtain it’s
final solution: The algorithm performs minimization on the elements of
the given cost matrix obtaining a new matrix containing exactly one zero
in each row and column. If all other values of this matrix are larger than
zero, the zeros then represent the minimal matching of the nodes.

The Hungarian method finds the minimal matching, and we want to
find the maximal. Thus, the similarity matrix S is transformed into the
cost matrix C by cij = max(S)− sij . An example follows:

3.3. Neighborhood matching 23

S =

 .7 .8 1.0
.8 .5 .6
.7 .7 .9


max(S) evaluates to 1.0 and we obtain the following cost matrix:

C =

 .3 .2 .0
.2 .5 .4
.3 .3 .1


To find the minimal matrix, the algorithm performs Gaussian elimi-

nation to make zeros appear (at least one zero per line and per column).
First, the row minimum is found and subtracted from all entries on that
row. Then, the column minimum is found and subtracted from all entries
on that column. The following illustrates the calculations:

C ′ =

 .3− 0 .2− 0 0− 0
.2− .2 .5− .2 .4− .2
.3− .1 .3− .1 .1− .1

 =

 .3 .2 0
0 .3 .2
.2 .2 0



C ′′ =

 .3− 0 .2− .2 0− 0
0− 0 .3− .2 .2− 0
.2− 0 .2− .2 0− 0

 =

 .3 0 0
0 .1 .2
.2 0 0


Now, lines are drawn across rows and columns in such a way that all

zeros are covered and that the minimum number of lines have been used.
In this case, there are several solutions, for example one line per row and
one per column.

The solution is tested for optimality. If the number of lines just drawn is
equal to n (number of rows in the cost matrix), we are done. If the number
of lines are smaller than n, a further operation must be done. The smallest
entry not covered by the lines is found. This entry’s value is subtracted
from all other entries in the same row and column, not already covered by
lines. Then, a new zero is obtained and one more line is added. Finally,
the zeros represents the solution.

In our example, all all zeros are covered by three lines, and the result
is returned. There are two possible solutions: [1, 2, 0] (i0 connected to j1, i1
connected to j2 and i2 connected to j0), and [2, 0, 1]. Both solutions have a
score of 0.5 in the cost matrix C, or 2.5 in the similarity matrix S.

The Hungarian algorithm has a polynomial time bound of O(n2log(n))
for square matrices.

24 Chapter 3. Methods

3.3.2 The Cost Scaling Algorithm

The cost scaling algorithm by Goldberg and Kennedy (1995) extends the
minimum-cost flow problem using push-relabel operations and scaling.

The operations are probably best understood in terms of fluid flows.
The nodes are now pipe junctions, and the edges are the pipes. Pipes have
a flow limit, a maximum capacity between any two nodes u and w. In ad-
dition to the two neighborhood sets of nodes, we also add a source and
a drain node. The source node is connected to all nodes in one neighbor-
hood set X and the drain all nodes in the other neighborhood set Y . All
pipe junctions have a arbitrarily large reservoir that can accumulate fluid.
If a junction has more incoming fluid than outgoing, the overflow is col-
lected in the reservoir. We call the net flow into a vertex v the excess flow of
v, given by e(v). Nodes with e(v) > 0 are defined active.

The algorithm is given the costs matrix for the edges C, and the goal
is to find the matching giving the minimum cost. Similarly with the Hun-
garian method, the similarity matrix has to be switched as the CSA finds
the minimal matching. Also, the CSA takes integer values only as in-
put. The algorithm’s performance depends on the largest absolute matrix
value; a higher value should increase the running time as more iterations
are expected before termination. Thus, an additional parameter F must
be given, denoting the scaling factor of the input data. Given the similar-
ity matrix S containing float values between 0.0 and 1.0, the elements of
the cost matrix is calculated by cij = bF − 2F · sijc. For example, given a
scale factor F of 500, all values of C will be in the range [−500, 500]. Since,
in our case, there are only two possible flow values f(v, w) between any
two nodes v and w, 1 or 0, the cost of an edge is cij for an active edge, 0
otherwise.

The cost scaling algorithm works by continuously pushing and relabel-
ing active nodes, explained in the next paragraph. The operations modi-
fies the current flow f and a price function p : V → R such that f is an
ε-optimal flow with respect to p. That is, for all flows, c(v, w)− p(w) has to
be in the range [0, ε]. ε is a constant decreasing for every iteration of the al-
gorithm. This gives a successive approximation of a solution, terminating
when ε is smaller than 1/n. The algorithm’s performance slightly depends
on how fast the ε is scaled down. Supported by the authors of (Goldberg
and Kennedy, 1995), we found that decreasing by dividing by 10 in each
iteration gave the best overall results in average for a set of realistic data.
ε is initially set to F , also as suggested by the authors.

A push operation sends a unit of flow from v to w, by increasing f(v, w)
and e(w) by one, while decreasing e(v) by one. The relabel operation ap-

3.3. Neighborhood matching 25

plies to a node v. The operation sets p(v) = c(v, w) − p(w) to the smallest
value allowed by the ε-optimality constraint. That is, finding the node w
that minimizes c(v, w)+ p(v)− p(w) in the [0, ε] range. The article also sug-
gest a sequential, modified version of the traditional push and relabel op-
erations, a double-push operation. As their experimental results showed
that this version was best in average, we chose to implement this.

The double-push operation chooses the two nodes with the small-
est and second-smallest reduced costs according to the ε-optimality con-
straint, w and z. Figure 3.4 shows an example of a double-push opera-
tion. First, a push operation is applied to (v, w) and p(v) is updated to
p(z)− c(v, z). Now, if w becomes active, some other node already had flow
to w, another push operation is applied pushing one unit of flow back into
that node. Finally, p(w) is updated by p(w) = p(v) + c(v, w)− ε. For proofs
and details about the double-push operation, please see (Goldberg and
Kennedy, 1995).

v

zc(v,z)=1

p(w)=2.2
e(w)=0c(v,w)=3

p(z)=1.1
e(z)=0

p(v)=0.9
e(v)=-1

v

zc(v,z)=1

p(w)=2.2
e(w)=1c(v,w)=3

p(z)=1.1
e(z)=0

w

w

1. w and z found

2. (v,w) pushed,
p(v)=p(z)-c(v,z)
w becomes active

p(v)=0.1
e(v)=0

v

zc(v,z)=1

p(w)=p(v)+c(v,w)-ε
e(w)=0c(v,w)=3

p(z)=1.1
e(z)=0

w

3. w pushes old source,
p(w) updated

p(v)=0.1
e(v)=0

Figure 3.4: A double-push operation.

26 Chapter 3. Methods

3.3.3 Scoring bipartite matches

When one of the methods above have found the optimal matching be-
tween two node’s neighborhoods, a scoring strategy is needed to rank the
results. A trivial approach is to sum the scores for each node to node
assignment. Using this approach, large neighborhoods are likely to get
higher scores. We here propose an approach for weighting assignment
scores.

This function uses resampling to score how good a particular assign-
ment is, compared to the score of randomly generated neighborhoods. The
source node’s neighbors are run against target sets of randomly selected
nodes chosen uniformly from the current network. The target sets have
equal size to the source’s set of neighbors. The weighted assignment score
sw is calculated by

sw =
nr>s

trials
(3.6)

where nr are the number of random runs scoring equal or higher than
the initial assignment score s, and trials are the number of random runs.
Different random assignment should be run as many times as possible to
give a good estimate of the underlying distribution , but this becomes time
consuming for large neighborhoods.

3.4 Motif matching

The second problem we wanted to solve, was the problem of finding the
best match of a given graph, a motif M , in another graph, a network N .
In this section a the term motif is a sub-graph, believed to have matches
in the larger network. The following sections describes a straight forward
algorithm solving the this specific problem. Even though this implemen-
tation is a brute forced attempt including some simple heuristics, this im-
plementation proves to be valuable when comparing to the more complex
Apriori and gSpan implementations. Our proposed method does not in-
volve clustering, and it is expected that its output will differ from the other
algorithms. Our implementation and results in chapter 4 follows this up.

3.4.1 Problem description

We assume that the number of motif nodes are less than the network nodes
|M | ≤ |N |, which makes our problem similar to the sub-graph isomor-
phism problem.

3.4. Motif matching 27

Our similarity scores give floating values for the similarities between
two nodes. This actually makes our version of the sub-graph isomorphism
problem even harder to cope with, as we are not only looking for a similar
or equal graph structure of the motif in the network, but we also want to
find the best match.

We wanted to implement an algorithm capable of solving problems of
any size. Considering the intractability of the sub-graph isomorphism, we
needed to sacrifice accuracy to input data size. Also, it is probably not
reasonable to require exact motif matches in the network. The creators of
the graphs might have missed out some information, and the graphs may
lack some nodes or edges. Also, it is reasonable to consider a good node
to node match with a small structural difference between the motif and
a specific network sub-graph more interesting than a lower node to node
match with a perfect structural matching. Our algorithm does not require
perfect structural matches.

3.4.2 Our algorithm

We hereby propose a depth first search for the described problem. Our
approach is based on a complete node to node scan between the motif
and the network, where the best match is returned. To make the search
tractable for larger motifs, we added a branch and bound factor B to the
algorithm. We also allowed for edge inequalities between the motif and
network by searching spanning trees.

Figure 3.5 shows an example motif, network and a similarity matrix for
every node in both networks. The algorithm starts by selecting one node
m1 from the motif, and one node n1 from the network. It then searches all
matches of m1 and n1’s neighbors. Note that m1’s neighborhood has to be
smaller than n1’s, to be able to continue.

By finding good solutions early, the branch and bounding will be more
efficient as more branches can be pruned. Match quality is measured by
summing similarity for each mi node to nj node match in the neighbor-
hood. For example, a motif neighborhood of two nodes will have a match
score of maximum two. Then, another node in the network is tried against
m. When all network nodes are tried, m is replaced by a new motif node,
and the search continues. The algorithm returns a list the best solutions
found.

The algorithm also keeps track of the best score found (max) which is
used by the branch and bounding. The user can specify the branching fac-
tor B. By counting the number of unmatched nodes for a partly assigned

28 Chapter 3. Methods

m1

m3

n1

n2

n3

n4

n5m4

Motif Network

Similarity matrix

m2

Figure 3.5: An example motif, network and similarity matrix.

motif, the maximal possible score value is calculated as the current match
score plus the number of reminding nodes. If this score is less than max
·B, the current branch is aborted and the search continues.

Example input data for the Motif Finder algorithm is shown in figure
3.6. Assume the user has set a branching factor to 0.9. The algorithm starts
the first branch by matching m1 and n1, giving a match score of .6 at this
point. The search continues matching n1’s neighbors to m1’s neighbors:
{m2, m3} to {n2, n3, n4}. The first match, m2 to n2 and m3 to n3 gives a
score contribution of .2, resulting in a total score of .8. The last motif node
m4 can only be matched with n5, giving a total score of 1.6.

The next branch matches first m2 to n4, m3 to n2. The branch is not
pruned as the highest possible score including the last node is now 3.2
which is larger than max ·B. Finally m4 is matched to n5. A new maximum
score of 3.0 is recorded. Now consider yet another match, m2 to n4 and m3

to n3, contributing 0.8 to the total score of 1.4. This branch will now be
pruned as 2.4 < max ·B, and the search continues.

Note that the edge connecting m2 and m3 was not considered in this
example, searching for matches with m1 as the initial node. This is because
our approach searches span trees, and does not consider other edges. This
makes the algorithm capable of for example finding more motif matches
in the network than approaches allowing perfect topological matches only.

3.5. Apriori 29

{}:0->0

{m1n2}:0.4

{m2n4,m3n2}:1.6->2.2

max = 3.0

{m2n2,m3n3}:0.2->0.8

{m4n5}:0.8->3.0

X
2.4 < B·max

{m1n1}=0.6->0.6

{m2n4,m3n3}:0.8->1.4

{m4n5}:0.8->1.6

max = 1.6

Figure 3.6: Finding the motif in the network.

3.5 Apriori

The problem of finding frequently co-occurring item sets in large data sets
is a problem of data mining. One data mining algorithm is called Apriori.
Here k + 1 item set becomes a candidate frequent item set only if all the
k sub item sets are confirmed to be frequent. The infrequent k item sets
are pruned from the data set, and then the whole data set is scanned to
determine frequent item sets among the candidates.

Using an alteration of the Apriori algorithm as suggested by Inokuchi
et al. (2003) we are able to discover frequently occurring sub-graphs. In
this section we will describe the method and include any alterations we
have done to current published material in graph mining in order to make
is more suited to our needs. In the rest of this chapter, a motif is not an ac-
tual sub-graph instance, as in the Motif finder. Now, the pattern to search
in unknown, and hence the term motif is used about a general sub-graph
pattern, believed to occur frequent in a graph.

3.5.1 Representation of a sub-graph

The heart of the data mining process is counting frequent sub-graphs.
Counting sub-graphs can be very difficult because there are many ways
of representing the same graph topology. In an adjacency matrix for ex-
ample the rows and columns may be permuted to form a new equivalent
representation of the graph.

30 Chapter 3. Methods

cb

bba

Figure 3.7: Example graph (letters are node labels)

X5 =



b c b a b

b 0 1 1 1 1
c 1 0 1 0 0
b 1 1 0 0 0
a 1 0 0 0 0
b 1 0 0 0 0

, Y5 =



a b b b c

a 0 1 0 0 0
b 1 0 1 1 1
b 0 1 0 0 1
b 0 1 0 0 0
c 0 1 1 0 0



The matrices X5 and Y5 both represent the same graph in figure 3.7. But as
you can see they have different matrix representation and counting them
as different graph structures will be clearly wrong.

To make counting possible, the graph representation for isomorphic
sub-graphs need to be equal. Using the approach proposed by Inokuchi
et al. (2003) we find a unique representation of a sub-graph. First the nodes
of the adjacency matrix will be sorted according to label like in Y5.

M5 =



a b b b c

a 0 0 0 1 0
b 0 0 0 1 0
b 0 0 0 1 1
b 1 1 1 0 1
c 0 0 1 1 0



Simply ordering the matrix according to label is clearly not enough. Ma-
trix M5 represents the same graph as the ordered matrix Y5. Then we use
a special code form for representing the matrix. This code is a simple bi-
nary code form that uses less memory. The code is created by scanning the
upper triangle elements of the the matrix.

3.5. Apriori 31

Xk =



0 x1,2 ↓ x1,3 | . . . x1,k|
x2,1 0 x2,3 ↓ . . . x2,k|
x3,1 x3,2 0 . . . x3,k|

...
...

... ↓
xk,1 xk,2 xk,3 . . . 0

 (3.7)

code(Xk) = x1,2x1,3x2,3x1,4 . . . xk−2,kxk−1,k

For the adjacency matrices Y5 and M5 the codes are

code(X5) = 1010100110

code(M5) = 0001110011

The code for M5 is lexicographically less than Y5. In order to not check for
isomorphism between two graphs we transform the matrix to a least code
form, and use this least code form when counting support. The method to
find the least code form is defined through the join procedure described
in subsection 3.5.2.

The code form is concatenated with the corresponding labels of the
nodes which gives the full code form. The full “canonical code” for graph
3.7 is abbbc : 0001110011. “Canonical code” is explained in next subsection.

3.5.2 Joining of sub-graphs

Joining of sub-graphs is used when generating new motifs, finding a least
code form and counting frequency. The matrices Xk and Yk are joined to
form Zk + 1 if the following conditions are met.

Xk =

(
Xk−1 x1

xT
2 0

)
, Yk =

(
Xk−1 y1

yT
2 0

)
,

Zk+1 =

 Xk−1 x1 y1

xT
2 0 zk,k+1

yT
2 zk+1,k 0

 =

 Xk
y1

zk,k+1

yT
2 zk+1,k 0


where Xk−1 represents the the sub-graph of size k−1 and xi and yi(i = 1, 2)
are the last column vectors of Xk and Yk respectively. The labels of the
nodes needs to be sorted, and labels 0 to k − 1 must be equal for matrix
Xk and Yk. Label k (the last label) of Xk must be lexicographically less or
equal to label k of Yk. There are two cases of merging:

32 Chapter 3. Methods

• When merging two sub-graphs there is an additional constraint that
all nodes must be equal, and the values of zk,k+1 and zk+1,k can be
found in the complete graph.

• When generating motifs the value of zk,k+1 and zk+1,k correspond to
edges not represented by the two matrices and therefore all varia-
tions must be generated in order to have all possible motifs.

We call Xk the “first matrix” and Yk the “second matrix”. The matrices
Xk and Yk could easily be switched, but this would produce a different
adjacency matrix. The last constraint that must be satisfied before merging
is that

code(first matrix) ≤ code(the second matrix)

An adjacency matrix constructed by using these rules is called a “nor-
mal form” matrix. Any such matrix can be transformed into normal form
by reconstructing it. The code for the graph in figure 3.8 (numbers are
node identifiers, all nodes same label) is 1101000001, which is not a nor-
mal form. Figure 3.9 shows a part of the process to transform this matrix
to normal form. Notice that the numbers inside the nodes in the figure are
not labels but a unique id for each node. In this example all nodes have
same label. It shows how the transform generates normal forms by choos-
ing a least code on each level. Arrow with full line means matrix is chosen
as “left matrix” while dotted arrow is “right matrix”. Only the first part of
the process (for nodes 1 and 2) is shown.

Initially the adjacency matrix is split into sub matrices of size 1. Using
the rules above all nodes can be chosen as the ”first matrix”. On the left
side of the figure node 1 is chosen as the first ”first matrix” and merged
with the rest. This is an arbitrary choice and the right hand side of the

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

01000
10001
00001
00001
01110

5
4
3
2
1

54321

1

4

2 5

3

Figure 3.8: Graph used in normal form example

3.5. Apriori 33

0 0 0 0
1 2 3 4

0 1
1 0

0 0 1
0 0 0
1 0 0

0 1
1 0

0 0 1
0 0 0
1 0 0

0 1
1 0

0 0 1 1
0 0 0 0
1 0 0 0
1 0 0 0

0 1
1 0

0 1
1 0

0 1
1 0

1,2 1,3 1,4

1,5,2 1,5,3

1,5,2,3

2,1 2,3 2,4

0
5

0 0
0 0

1,5

0 0 1
0 0 1
1 1 0

1,5,4

0 0 1 1
0 0 0 1
1 0 0 0
1 1 0 0

1,5,2,4

1 1 1 0

010 010 011

010100 010110

0 0 1 1 1
0 0 0 0 1
1 0 0 0 0
1 0 0 0 0
1 1 0 0 0

1,5,2,3,4

0101001100

1 1 1

0 0
0 0

2,5

0

0 0 1
0 0 0
1 0 0

2,5,1

010

0 0 0
0 0 0
0 0 0

2,5,3

000

0 0 0
0 0 1
0 1 0

2,5,4

001

0 0 0 1
0 0 0 0
0 0 0 1
1 0 1 0

2,5,3,1

000101

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

2,5,3,4

000010

0 0 0 0 1
0 0 0 1 0
0 0 0 0 1
0 1 0 0 1
1 0 1 1 0

2,5,3,4,1

0000101011

k=1

k=2

k=3

k=4

k=5

Figure 3.9: Transform into normal form.

figure shows node 2 chosen as the first “first matrix”2. Both 0101001100
and 0000101011 are normal forms. But 0000101011 is smaller and indeed
even if all possible “first matrices” was completed in this example this
would be the smallest. Therefore we call this the canonical form.

Finding a least code form is equivalent to the isomorphism problem.
Optimizations in the Apriori algorithm allows the use of memoization to
speed up this problem. Also when using labeled nodes the number of
isomorphisms is greatly reduced.

3.5.3 The algorithm

Figure 3.10 shows how the main part of the Apriori algorithm works. The
confirmed frequent motifs of size k are merged to form motifs of size k +
1. Only motifs where all sub motifs of size k are confirmed frequent is

2On the left side on level k = 3 two matrices have equal code. Here too, an arbitrary
choice was made

34 Chapter 3. Methods

Motif operations

Merge all possible size k subgraphs
to form k+1 subgraphs

Generate k+1
subgraph motifs candiates

from motifs of size k

Find normal form of k+1 subgraps

Generate all normal forms and
normal-form canonical form

mapping for motifs

Count k+1 canonical form motifs
using mapping

Normal forms

Delete motifs and subgraphs with support less than threshold

Increase k

Graph operations

Figure 3.10: Flowchart of the main part of the Apriori algorithm

accepted as new candidates. Then all normal forms for these motifs are
generated to create a normal form ⇒ canonical form mapping.

The frequent sub-graphs of size k are then merged to sub-graphs of
size k + 1. The sub-graphs are sorted lexicographically by labels and code,
and then they are merged in the following manner. The sub-graph list is
traversed sequentially, the sub-graphs are merged with all the sub-graphs
which are lexicographically larger.

The normal form of each k + 1 sub-graph is found and using the map-
ping generated previously the canonical form count is updated. All motifs
and sub-graphs with support < minsup are then deleted, k is increased and
the process repeats until the desired graph-size is reached. When the min-
ing is done the unconnected sub-graphs are removed.

3.5. Apriori 35

3.5.4 Single graph mining

The Apriori graph mining algorithm was designed to find frequent sub-
graph motifs in a large set (thousands) of small graphs. Our goal was to
find frequent sub-graphs in a small set (two or three) of large graphs or
just one. With Apriori we decided to focus on finding frequent motifs in
one large graph.

In the work by Inokuchi et al. (2003) a graph Gk in the set of graphs G
is represented by the adjacency matrix Xk. This matrix is not of normal
form and must be normalized. During this normalization all induced sub-
graphs of Gk are generated and the normal forms are found and counted.

Generating the normal form of a large graph is not possible because
of the time complexity. When working on one graph the switching be-
tween “motif” space and “graph space” in figure 3.10 will not result in a
pruning of the sub-graph motifs. Instead we generate all possible size 2
induced sub-graphs, add them to a hash map for canonical form ⇒ sub-
graph instances list. Then we count only non-overlapping instances, as dis-
cussed below. These are pruned by minimum support and are now the
canonical forms with count higher than minsup confirmed motifs. Then all
sub-graphs of size 2 are merged to size 3 and the process repeats.

In a large single graph many sub-graphs for a given motif will exist.
Counting all sub-graphs which map to the same canonical sub-graph mo-
tif yields a state explosion very early.

The reason for this is that the frequency anti-monotone described in
subsection 2.7 is invalid for single graph mining. To illustrate this con-
sider figure 3.11. We start with a motif like ab:1, two nodes labeled ’a’
and ’b’ with edge between them. This motif has a support of 2, instances
{a1, b2} and {a4, b5}. Now we add the node ’c’ to this motif and get the fol-
lowing motif abc:101 with support 3, instances {a1, b2, c3}, {a4, b5, c6} and
{a4, b5, c7}, contrary to the frequency anti-monotone.

a1

c7

graph
b2

b5

c3

a4

c6

Figure 3.11: Graph example used in frequency anti-monotone example

36 Chapter 3. Methods

In reality there are still only 2 “places”3 in the graph where the motif
occurs, not 3. These 3 instances represent two disjoint set of nodes. The
counting method should find the maximal number of disjoint sets, or a
maximal set packing. Maximum set packing is an NP-complete problem
according to Skiena (1998, page. 401). We use a heuristic counting rou-
tine which is exact enough for our needs and faster than a more accurate
maximal set packing routine.

The counting routine maintains a set of “seen” nodes and for each in-
stance in the graph it counts the seen nodes. If the number of previously
seen nodes is less than a set overlap limit, then all nodes from the instance
are added to the “seen” set and the counting increments by one.

This counting can result in different values based on which instance it
encounters first. This counting is done very often in the graph mining and
it is essential that it is efficient. We find this method exact enough for our
needs and we will review the effects of this method in section 4.

3.5.5 Nodes with multiple labels

In the complete graph all nodes can have several labels, but in Apriori the
nodes can only have one label. To make these representation compatible
each node in the complete graph is expanded to several nodes so that each
node only has one label. All the edges from the original node are preserved
in the expansion.

ba,b

a

a,c

bb

a

c

a

a

Figure 3.12: Expansion of multiple labeled graph to single labeled graph

3Or neighborhoods, not to be confused with the neighborhood matching

3.5. Apriori 37

The graph is chopped up so that one node is contained in only one sub-
graph, then this list of sub-graphs is sorted according to label and node-ID.
The candidate motifs are initially all possible labels, with no code (there
are no edges yet). The labels are counted and the infrequent labels are
removed and the nodes corresponding to that node as well. This is level
k = 1.

3.5.6 Apriori mining example

n3

n2

n4

n1

n6

n5

(a) Unlabeled graph (b) Similarity matrix

n3

n2

n4

n1

n6

n5

(c) Clustering

a5

c1

c3 a6

b4

b2

(d) Labeled graph

Figure 3.13: Apriori example data

In order to better explain the Apriori algorithm we here include an ex-
ample. Figures 3.13(a) to 3.13(d) show the transformation of a unlabeled
graph into a labeled graph. Through one of our comparers described in
section 3.1, a similarity-matrix 3.13(b) is built for all nodes in the given
graph. The matrix is reflexive as our comparers do not consider the com-
paring nodes’ mutual ordering. Then, the nodes are clustered using one

38 Chapter 3. Methods

c1 c3b2 b4

5,6 5,2 5,4 5,1 5,3 6,2

6,4 6,1 6,3

aa:0 ab:0 ab:1 ac:0 ac:1 ab:0

ab:0 ac:0 ac:0

cb cba

a5 b6

a

4,3 1,3

bc:0 cc:0

2,4 2,1 2,3

4,1

bb:0 bc:0 bc:1

bc:0

(a) Sub-graphs

aa:0
aa:1
ab:0
ab:1
ac:0
ac:1

1
0
3
1
2
2

bb:0
bb:1
bc:0
bc:1
cc:0
cc:1

0
1
2
2
1
0

(b) Candidate motifs with
count

Figure 3.14: Apriori at level k= 2

5,2,3

abc:011

5,2,1

abc:000

5,1,3

acc:010

6,2,4

abc:001

6,2,3

abc:001

6,2,1

abc:010

6,4,3

abc:000

6,4,1

abc:011

6,1,3

acc:010

2,1,3

bcc:001

4,1,3

bcc:001

(a) Sub-graphs

abc:001
abc:000
abc:011
abc:010
bcc:011
bcc:001

2
2
2
1
0
2

(b) Candidate motifs with
count

Figure 3.15: Apriori at level k=3

of the methods described in section 3.2. The cluster id is used for label-
ing the node and we obtain the labeled graph 3.13(d). In this example, no
nodes belong to more than one cluster, and the resulting graph thus have
the same number of nodes as the original.

Now, let figure 3.13(d) represent the input data for the Apriori algo-
rithm. This graph contains a frequent motif abc:011, representing sub-
graphs {5, 3, 2} and {6, 1, 4}. Here we will show how the Apriori algo-
rithm would find this motif. That is, we are searching for a motif of size 3
and support 2.

Because all motifs of size 1 are frequent, all possible motifs of size 2
are generated, as shown on the left side of the table in figure 3.14(b). The
sub-graphs of size 1 start out sorted as shown in figure 3.14(a). Each sub-
graph is merged with the succeeding sub-graphs. Then, the counting of
the motifs is performed and the count can be seen on the right hand on the
table in figure 3.14(b). Frequent motifs and sub-graphs are emphasized.

Merging of all the frequent motifs of size 2 will yield the motifs shown

3.6. gSpan 39

on the left hand side of the table in figure 3.15(b). These are shown in
canonical form motifs for illustrative purposes. The sub-graphs of size 2
are merged to size 3, and transformed to normal form shown in figure
3.15(a). Now, the count is computed.

We now have 4 motifs of size 3 that are frequent: abc:001, abc:000,
abc:011, bcc:001. Of these only abc:011 is connected, and hence this is the
only valid frequent motif.

3.6 gSpan

gSpan, an algorithm proposed by Yan and Han (2002) investigates another
approach to sub-graph mining than the Apriori-like algorithms. Apriori
has two nontrivial problems: The algorithm suffers from too much mem-
ory consumption from candidate set generation. Also, Apriori grows the
motifs breadth-first, potentially consuming very large amounts of mem-
ory.

gSpan avoids candidate generation and introduces a new canonical
graph representation and a lexicographic ordering among sub-graphs. Tak-
ing advantage of the lexicographic ordering gSpan also avoids the costly
sub-graph isomorphism test. While Apriori needed to transform each sub-
graph to canonical form, gSpan ensures that only canonical form motifs
are generated. Finally, we modified the gSpan algorithm to better cope
with our data sets. gSpan was originally designed to find small sub-graphs
in a large set of networks, but we wanted it to find large sub-graphs in one
or a few networks. Also, we made a small change in the candidate sub-
graph representation.

First, we introduce gSpan’s sub-graph representation and the lexico-
graphic ordering among sub-graphs, before describing the algorithm and
our modifications.

3.6.1 Overview

The algorithm works similarly to Apriori by first creating small motifs be-
fore growing them. Each motif is represented by a tree-like representa-
tion, and new edges are only added if the new motif represents a frequent
sub-graph in the given graph data set. But instead of merging motifs of-
ten representing disconnected sub-graphs, gSpan only grows connected
motifs. This restriction reduces the complexity of the problem. A motif
may grow into several new motifs, depending on which edge is added.
Thus, the search builds a tree of motifs where a node’s parent represents a

40 Chapter 3. Methods

smaller motif (one edge smaller), and a node’s children represents larger
motifs (one edge larger). gSpan builds this tree, returning the largest mo-
tifs representing frequent sub-graphs. The algorithm ensures that motifs
representing the same sub-graph never are built twice; an important prop-
erty concerning search tree size.

3.6.2 Motif representation

(a)

b b

c

(b)

b

c

(c)

b

c

(d)

b

a

c

b b

a a

a

c

Figure 3.16: A graph (a) and three different motifs (b)-(c) representing (a)

Figure 3.16 shows three motifs (b) - (d), all representing the same graph
(a). The motifs consists of two kinds of edges, forward edges and backward
edges. The forward edges are all edges defining the tree structure of a
motif, the spanning tree. When growing motifs, every edge connecting a
new node to the tree is a forward edge. All other edges, edges that con-
nects between two already discovered nodes, are the backward edges. The
rightmost node is the latest discovered node, and the rightmost path is the
straight path from the root to the rightmost node. In figure 3.16 forward
edges are filled lines while the backward edges are dotted lines.

3.6.3 DFS code

A DFS code is a code representing a motif, i.e (b) - (d) of figure 3.16. In the
original article, the DFS code was designed for labeled edges. We made a
slight change in this code to match our problem as we did not have any
labeled edges. Our code consists of a list of four-tuples, consisting of two
integers and two labels (i, j, li, lj). The integers i and j corresponds to the
discovery order of the two nodes and li and lj the labels of the nodes when
traversing the motif tree. For example, when creating a motif with one
edge, the discovery order of the two nodes will always be 0 and 1. Table

3.6. gSpan 41

3.1 shows the DFS codes for the three motifs of figure 3.16. The article’s
code also added the edge’s label lij . Our modification does not change the
algorithm’s correctness nor performance, as the original gSpan algorithm
copes with graphs containing only one distinct edge label.

Edge (b) (c) (d)
0 (0,1,a,b) (0,1,a,b) (0,1,b,a)
1 (1,2,b,c) (0,2,a,b) (1,2,a,c)
2 (2,0,c,a) (2,3,b,c) (1,3,a,c)
3 (0,3,a,b) (3,0,c,a) (3,0,c,a)

Table 3.1: DFS codes for the motifs (b) - (d)

3.6.4 DFS edge order

To ensure a one to one mapping between the motifs and the DFS codes,
an edge sequence ordering is necessary. That is, the mutual arrangement
of the DFS code rows. Given two arbitrary DFS edges e1 = (i1, j1) and
e2 = (i2, j2), e1 precedes e2 if one of the conditions of table 3.2 holds. For
forward edges f(e), i < j, for backward edges b(e), j > i. We name this
linear order to ≺E . ≺E follows the pre-order depth-first search of a motif,
where backward edges are searched before the forward edges. The nodes
with the smallest labels, sorted alphabetically, are searched first. For ex-
ample, when creating a DFS code of motif (b) of figure 3.16, the left branch
is traversed first. According to the pre-order traversal, edges are emitted
to the code as they are visited. If more forward edges were connected to
node c, the backward edge (c, a) would be emitted before their traversal.
Finally, the search returns to the first node and emits the last edge from
node a to b.

b(e2) f(e2)
b(e1) (i1 < i2) ∨ (i1 = i2) ∧ (j1 < j2) (i1 < j2)
f(e1) (j1 ≤ i1) (j1 < j2) ∨ (i1 > i2) ∧ (j1 = j2)

Table 3.2: Edge ordering ≺E for DFS edges.

3.6.5 Motif order

As seen in figure 3.16 and table 3.1, several DFS codes may represent the
same sub-graph. One of these need to be chosen as the canonical form.

42 Chapter 3. Methods

Creating a rule for comparing DFS codes, one is able to choose the smallest
as the canonical representation. The following defines the DFS lexicograph-
ical ordering ≺L among motifs: ≺E take the first priority, the node label li
takes second and lj the third. Two motifs are compared row by row. If the
discovery numbers i and j are equal, the node’s labels breaks the tie. For
example, comparing three one-edged motifs gives the following ordering:
(0, 1, a, b) ≺L (1, 2, a, b) ≺L (1, 2, b, b).

Comparing all possible motifs describing the same sub-graph, the small-
est, according to the DFS lexicographic ordering defines the canonical mo-
tif representation of the sub-graph.

3.6.6 The DFS tree search

1-edge

2-edge

3-edge
M M’

Pruned

Figure 3.17: gSpan search space and pruning

Figure 3.17 shows an example of a gSpan search tree; a DFS tree. Each
node represents a motif, and a node’s children are motifs grown one edge.
The tree is built depth-first, and whenever expanding a node, the lexico-
graphical ordering ≺L is applied to the node’s children. That is, a node’s
leftmost child (arranged according to precM) is always the smallest, and is
searched first. This ensures that the smallest, and thus canonical, motifs
always are visited first.

Whenever a new motif is created and its code is not minimal, we can
safely discard the motif and all of its successors. In figure 3.17 M ′ is pruned

3.6. gSpan 43

as M represents the same motif, but M ≺L M ′. Now, discovering two
motifs representing the same instances, is the problem of sub-graph iso-
morphism. In general, this is a computationally hard problem, but gSpan
handles this efficiently. The key issue is to ensure that at all times, only
minimal motifs are searched. There are two cases concerning edge growth.
First, if the first edge of a motif M is e0, a potential child of M does not con-
tain any edge which is smaller than e0. If such an edge exists, we know
that another motif has been searched before containing this edge, that did
eventually grow to be equal to M , only smaller. Second and similarly,
whenever growing M with a backward edge into M ′, if M ′ ≺L M , M ′ can
be discarded for the exact same reason.

3.6.7 An example

a5

c1

c3 a6

b4

b2

(a) Labeled graph

a5

c1

c3 a6

b4

b2

(b) Cleaned graph

Figure 3.18: gSpan example input data

To sum up the algorithm, we will here go through an example. Con-
sider the labeled graph in figure 3.18(a), equal to the example run for Apri-
ori in section 3.5.6.

Let minsup = 2, we want all frequent sub-graphs with 2 or more graph
occurrences. First, all single edge DFS-motifs are created, and their cor-
responding instances are recorded. All edges occurring less than minsup
times are removed from the network, see figure 3.18(b). In this case, two
motifs and four instances are found:
(0, 1, a, c) → {(a5, c3), (a6, c1)}
(0, 1, b, c) → {(b2, c3), (b4, c1)}
These nodes define the first level of the DFS search tree of figure 3.19, and

44 Chapter 3. Methods

according to the DFS lexicographical ordering, (0,1,a,c) ≺L (0,1,b,c). Thus
the search continues searching motif (0,1,a,c). All instances are searched
to find the smallest (using ≺E) frequent additional edge. The first edge
found constitutes the next motif at the next level of the DFS search tree.
In our case, there’s only one edge remaining for the motif, and the motif
grows to
(0, 1, a, c), (1, 2, c, b) → {(a5, c3, b2), (a6, c1, b4)} .
Since no more edges can be added to this motif, the sub-graphs instances
are saved. Then the search backtracks and finds that no other edges can
be added to the previous motif (0,1,a,c) either. Returning to the root of the
DFS search three, the initial motif (0,1,b,c) still remains. When trying to
extend this motif by the edge (1,2,c,a), the search breaks. As explained in
the previous section, since the potential edge (0,1,a,c) would constitute an
edge smaller than this motif’s first edge (0,1,b,c), and this new edge is a
forward edge, we know that the edge (0,1,a,c) has been searched before.
The returning list of frequent sub-graphs contains the instances (a5, c3, b2)
and (a6, c1, b4).

a

c

b

(0,1,a,c) (0,1,b,c)

(0,1,a,c),(1,2,c,b) (0,1,b,c),(1,2,c,a)

Figure 3.19: gSpan DFS tree search.

Chapter 4

Implementation and results

In this chapter we focus on our implementation of the algorithms and their
results. The results are evaluated according to speed and correctness. We
also describe some implementation specific improvements. An overview
of our implementation of the protein comparers can be found in section
4.1 and clustering algorithms in section 4.2. Section 4.3 goes through the
neighborhood matching implementations, reviews our improvements and
present the results. Sections 4.4 and 4.5 discuss our implementation of the
graph miners. Then section 4.6 shows the speed of the motif matcher and
mining algorithms. In section 4.7 we test the mining algorithms for cor-
rectness. And finally in 4.8 we compare the Motif Finder with the results
from gSpan.

4.1 Protein comparers

The focus of this thesis is mining a few or just one single protein interaction
graph and making it available in Cytoscape. To do this we needed a way
to compare proteins and cluster proteins based on this. Finding out which
compare method is best or which clusterers gives the most meaningful re-
sults to a biologist is reserved for future work. However we have included
some comparers and one clustering method as a proof-of-concept and for
our testing.

The protein comparers are inspired by Braute and Rødsjø (2005) and
have been used throughout this project, except from the TF comparer. In
figure 4.1 we show a statistical plot of similarities when comparing all-to-
all nodes in galFiltered using Biological Process Gene Ontology. galFiltered
is a sample network included by default in Cytoscape. galFiltered consists
of 331 nodes and 326 edges.

46 Chapter 4. Implementation and results

For most protein pairs the common parent is less than halfway down
the GO DAG, as shown in figure 4.1(a). When looking at the least likely
parent, we find that the score declines rapidly and reaches zero at about 20
percent similarity, see figure 4.1(b). More information about this similarity
could be extracted as is done with the log factor. Basically it gives a boost
to the lower values, but it is essentially the same similarity measure. See
figure 4.1(c).

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9S i m i l a r i t y0 . 0 0
0 . 0 5
0 . 1 0
0 . 1 5
0 . 2 0
0 . 2 5
0 . 3 0

F req uenc y

(a) Deepest common parent

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0S i m i l a r i t y0 . 00 . 10 . 20 . 30 . 40 . 50 . 60 . 70 . 80 . 9

F req uenc y

(b) Least likely parent

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0S i m i l a r i t y0 . 0
0 . 1
0 . 2
0 . 3

0 . 4
0 . 5

F req uenc y

(c) Log Least likely parent

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0S i m i l a r i t y0 . 0 00 . 0 50 . 1 00 . 1 50 . 2 00 . 2 50 . 3 00 . 3 50 . 4 00 . 4 5

F req uenc y

(d) Composite of the three

Figure 4.1: Frequency plot of similarity scores

These generic comparers might not give a biologist enough freedom so
we added the composite comparer shown in 4.1(d). The frequency plot for
the Transcription Factor similarity measure is shown in figure 4.2.

A biologist can not only combine different methodologies, but also dif-
ferent GO DAGs in one composite comparer. This allows fine-tuning in
Protein Finder, Motif Finder and the graph mining algorithms.

4.2. Clustering 47

0.0 0.2 0.4 0.6 0.8 1.0

Similarity

100

101

102

103

104

105

F
re
q
u
e
n
c
y

Figure 4.2: Frequency plot for Transcription Factor similarity

4.2 Clustering

The iterative clustering algorithms based on the similarity measures gives
us a set of clusters. It’s main properties are that all nodes within a cluster
are similar to each other within a certain tolerance. The lower similarity
limit is set to 1.0−tolerance, where tolerance is a value between 1.0 and 0.0
given by the user. In addition there are no clusters which completely over-
laps another cluster.

Clusterer statistics

0.0 0.2 0.4 0.6 0.8 1.0

Cluster tolerance

0

50

100

150

200

250

300

350

Clustercount Join
Clustercount No-join

Nodes per cluster Join

Nodes per cluster No-join

Figure 4.3: Clustering statistics

We noticed that many clusters contained one single protein. That pro-
tein was dissimilar (exceeding the tolerance) all clusters. A reason for this
could be that there is no available information in the Gene Ontology (or
TF database) about that particular protein and hence totally dissimilar to
all other proteins. If no information is known about a protein it would
be much more useful to consider it a “wild-card”. So we decided to add
a feature that joined all single clusters. Figure 4.3 shows the impact of

48 Chapter 4. Implementation and results

this feature. As mentioned in the methods chapter, enabling a “wild-card”
cluster will make the mining algorithm consider these nodes equal.

A problem when comparing runs of the graph miners was that the clus-
ters altered between each run. The label of a protein could vary from run
to run making comparisons impossible. When building clusters it always
started with a random protein which was not currently in any clusters. We
fixed this problem by selecting proteins in sorted order based on identifier.
It is important to note that this scheme for selecting nodes is arbitrary and
has no meaning biologically. After consulting with Finn Drabløs (Drabløs,
2006) we decided to include both approaches for selecting a protein. This
was done so that the user can compare results from different clustering
runs. Further information of a cluster can be found in the statistics win-
dow of NeMi.

The Transcription Factors clusterer however does not have this prob-
lem. For each transcription factor we have a cluster. If two transcription
factors activate the same proteins the clusterer always creates the largest
cluster. On galFiltered the Transcription factor clusterer gave 7,46 nodes per
cluster on average, and a node was on average in 3,36 clusters. Disabling
this reduced it to 5,46 nodes per cluster, but the cluster per node average
stayed at 3,26.

Our neighborhood similarity clusterer use the Cost Scaling Algorithm
presented in section 3.3.2 for evaluating any two nodes’ similarity, based
on the two nodes’ neighborhoods. The user composes the single node
comparer to be used for the bipartite weights, and select the CSA neighbor-
hood clusterer in the clustering method dropdown. As argued by Braute and
Rødsjø (2005), there is a correlation between single node-to-node similar-
ity, and similarity obtained by matching the two nodes’ neighbors. This of
course depends on the single node-to-node comparer in the neighborhood
matching, and they concentrated on GO annotations for their similarity
measures. New similarity measures and clusters may easily be added im-
plementing our ProteinCompare interface, as described in appendix C.

4.3 Neighborhood matching

Our Hungarian method (Kuhn, 1955) and CSA Goldberg and Kennedy
(1995) implementations were straight forward implementations, even though
the article by Goldberg and Kennedy (1995) initially was slightly cryp-
tic and hard to grasp. To ensure that our implementations were correct,
we ran series of small test cases on both algorithms and manually veri-
fied the results. We also created a Java test class, timing the two imple-

4.3. Neighborhood matching 49

Figure 4.4: A run time comparison of bipartite matching algorithms.

mentations and compared their results. The tester found that both algo-
rithms returned equal results for larger test cases, and the following sec-
tion presents the timed comparison.

4.3.1 Timing the bipartite matchers

The Hungarian method soon turned out to be too slow for our needs. For
smaller neighborhoods, it did not slow down the Protein finder’s perfor-
mance, but for larger networks with larger neighborhoods, and when us-
ing the weighting method (3.3.3), the Protein finder became too slow. Fig-
ure 4.4 shows a timed comparison between the Cost Scaling Algorithm
and the traditional Hungarian method.

The two algorithms ran on a series of randomly generated problem
instances. As CSA’s performance depends on the input data’s range, we
randomly chose integers according to the uniform distribution in two dif-
ferent ranges, [−500, 500] and [−50, 50]. The number of nodes n are the
number of nodes in one of the two equally sized neighborhoods. The num-
ber of edges are thus n2.

CSA outperforms the Hungarian method on both data sets, actually
showing less sensitivity to change in the data range, than the Hungarian
method. As seen in figure 4.4, the scale factor did not impact CSA’s per-
formance in our tests.

50 Chapter 4. Implementation and results

4.3.2 Weighting assignments

As our tests demonstrated, our CSA-implementation performed very well
on large networks, returning the best assignments in seconds for a whole
network. Also pointed out by Braute and Rødsjø (2005), using the sum
of all node-matches to rank the results may not be a reasonable solution.
Large neighborhoods get higher scores because they are more likely to
contain good matches by chance.

The method presented in section 3.3.3 penalizes large target neighbor-
hoods by comparing the score of an assignment against a large set of ran-
dom equally sized assignment. The number of random trials should be as
high a possible to return an accurate estimate, but as the bipartite match-
ing is a costly operation, the number of runs must thus be chosen carefully
in order to keep the method useful.

By manual testing we found that the number of random trials set to
1000/neighborhoodsize gave reasonable run times. Figure 4.5(a) and 4.5(b)
shows plots from a test run on the galF iltered network. The Protein YMR043W
was chosen as source node with 18 neighbors. Figure 4.5(a) shows the
increasing initial unweighted score increases as the target neighborhoods
grow. Figure 4.5(b) shows how the mutual arrangement has changed from
the initial unweighted score to the weighted. For example, the two initial
highest scoring assignments with a score of 1.6 will now be preceded by
many other assignments, ranking from top to bottom.

Randomly created neighborhoods disregards any node dependencies,

(a) Initial assignment score vs target
nodes’ neighborhood size.

(b) Initial assignment score vs weighted
assignment score.

Figure 4.5: Weighting assignment scores.

4.4. Apriori implementation 51

and the function should thus be considered experimental.

4.4 Apriori implementation

Section 3.5 describes the Apriori graph mining algorithm and alterations
enabling it to mine frequent sub-graphs in one graph. In this section we
will describe difficulties encountered while implementing it and improve-
ments made because of this.

4.4.1 Our first approach

Transforming the code into a code form was easily implemented using a
String object. We did some performance tests and found that compar-
ing strings was very efficient in Java. Each sub-graph instance was repre-
sented by a SubGraph class with a a vector of Node and Clusters. From
this we created the code and stored a stringCode. This stringCode
was the concatenation of the labels of the node plus the code.

The most important part of this algorithm is the join operation. Our
first implementation of it returned a canonical code, it was very slow so
we added the normal form to canonical form map. Initially we counted the
frequency of each canonical form code and the frequent sub-graphs con-
tinued to the next level, and there were noe check for overlapping nodes.

This implementation didn’t perform very well. We could find frequent
sub-graphs of size 2, but size 3 took up to an hour for galFiltered. Now the
process of improving the algorithm started.

4.4.2 Limiting graph size

The example given in subsection 3.5.6 shows that the amount of sub-graphs
generated in each level of the search is high. And for bigger graphs it ex-
plodes rapidly. In a graph of n nodes the number of sub-graphs of size 2
is n · (n− 1) and size 3 will be n · (n− 1) · (n− 2) in the worst case (if every
one of these sub-graphs have enough support). In our case we are looking
for a frequent sub-graph which is connected and of max size k. Therefore
when counting we can disregard sub-graphs where nodes are further than
k − 1 links away. In the example above, sub-graphs {5,6}, {6,2}, {6,3},
{1,3} can be removed in figure 3.14(a).

This made the algorithm perform much better, but the user often does
not know what an appropriate sub-graph limit should be, and overesti-

52 Chapter 4. Implementation and results

mation of graph size can still lead to memory overflow and poor perfor-
mance.

4.4.3 BFS to DFS hybrid.

Still we encountered some memory problems when running the algorithm
on a graphs with 100 nodes. Therefore we found another way of counting
sub-graphs. The standard algorithm is a breadth first algorithm. This is
necesseary to ensure that every k−1 sub-motif is confirmed frequent when
looking for the k size motif. However, beacause there is no pruning when
switching between “motif space” and “graph space” as outlined in section
3.5.4 we can take advantage of that fact,and be able do a depth first search
in order to save memory. It will give the same results but use less memory
and less time.

5 6 2 4 1 3

5,6 5,2 5,4 5,1 5,3 6,2 6,4 6,1 6,3 2,4 2,1 2,3 4,1 4,3 1,3

a a b b c c

aa:0 ab:0 ab:1 ac:0 ac:1 ab:0 ab:0 ac:1 ac:0

5,2 5,36,4 6,1
ab:0 ac:1ab:0 ac:1

5,2,3

abc:011

6,4,1

abc:011

bb:0
bc:0
bc:1

1
3
1

bc:0 cc:0bb:0 bc:0 bc:1 bc:0

2,1 4,1 4,3
bc:0bc:0 bc:0

ab:0
ab:1
ac:0
ac:1

2
1
1
2

Total:

abc:011 2

4,1,3

bcc:010

C
ounting

Prune on size, count support
sort sbgraphs

C
ounting

Prune on size, count support
sort sbgraphs

Figure 4.6: Apriori depth first version

Figure 4.6 shows the depth first version of the algorithm. On level k = 2
all sub-graphs of size 1 are merged in the standard fashion. The merging
starts with the leftmost sub-graph of size k = 1 and merges with all sub-
graphs to the right to form k = 2 sub-graphs. The sub-graphs drawn with
dotted borders are pruned because of the size constraint, bold signifies
that it is a confirmed frequent motif.

When all sub-graphs with label ’a’ have been chosen as first matrix we
have generated all k = 2 sub-graphs that start with label ’a’. First we

4.5. gSpan implementation 53

prune sub-graphs {5,6}, {6,2}, {6,3}, {1,3} because of the size constraint,
then we count for support and remove the infrequent sub-graphs. Then
the subgraphs are sorted. We have now reduced the number of sub-graphs
starting with ’a’ from 9 to 4. Then we start merging the sub-graphs from
the left to the right. When all the sub-graphs starting with ’ab’ are created
we stop and repeat. We now count the pattern “abc:011” and save it. We
can now safely remove all sub-graphs starting with “ab”. Further merging
are not possible. We can now remove all sub-graphs of size k = 2 with
labels starting with “a”. This process now repeats with all sub-graphs
starting with ’b’ as shown in the figure.

Our speed improvements over the basic algorithm can be seen in sub-
section 4.6

4.5 gSpan implementation

Apriori graph mining proved to slow and had too high memory consump-
tion, our experiences was useful when exploring another graph mining
algorihm, gSpan. For example we learned that limiting the motif size in-
creased the speed of the algorithm. Therefore we added a the possibility
to limit how large a motif can grow in gSpan. In addition we ofcourse
included the counting method used when mining single graphs. In this
section we will describe some implementation details, difficulties encoun-
tered and speedups.

4.5.1 Clustering, labeling, cleaning

gSpan runs on labeled networks, and the user specifies one of the clus-
tering methods presented in 3.2 and its parameters. One or more net-
works are chosen for mining, and after clustering, the chosen network(s)
are rebuilt with with labels according to the node’s cluster(s). If a node is
found in several clusters, the node is duplicated and accordingly labeled.
Then all edges are cleaned for support. If an edge has frequency less than
minsup, the edge is removed from the network(s). Support is the number
of occurrences when ran on a single network, and the number of network
the edge is in for multiple networks.

4.5.2 Motif and instance representation

A node in the DFS search tree consists of a motif and a set of sub-graph
instances. A motif consist of a list of edges, while the instances only has a

54 Chapter 4. Implementation and results

reference to the last network node, the parent sub-graph instance and its
corresponding network. By only saving a reference to the instance’s last
node and its parent instance, we were able to save considerable memory,
but still be able to rebuild the complete list of nodes through the ancestors.
Whenever a closed sub-graph instance is found, the sub-graph instance
is rebuilt through the ancestors and stored along with the corresponding
motif. This way all DFS tree branches can be safely removed from memory
when finished traversing them.

4.5.3 Mapping instances to motifs

To be able to quickly determine whether two motifs were equal, we im-
plemented an hash function based on the motif’s edge order. For exam-
ple, when counting sub-graph instances, it is important to quickly be able
to retrieve the correct motif and add the instance to its instance collec-
tion. Motifs are kept in sets using the motif’s hash function as keys. Our
hash function builds unique string based on the ordered collection of DFS
edges. For example, the two DFS edges (0, 1, a, b) and (0, 2, b, c) is concate-
nated to the string ′′0, 1ab0, 2bc′′. Then, Java’s default string hash method
is used to return the hash code. This way, we were able to quickly find any
sub-graph instance’s corresponding motif.

4.5.4 Instance overlapping

As with Apriori, we found during the initial testing of our implementation
that very many sub-graph instances returned from the algorithm were un-
interesting due to overlaps. For example, consider a 10-edged motif with
5 different instances, where 9 of the edges actually are the same in all 5
instances, only the last edge differ. This made much of the results difficult
to interpret.

We included the counting method described in 3.5.4 which only count
non-overlapping instances. This made made a considerable speed-up to
the algorithm, by bounding branches consisting of less than minsup non-
overlapping instances. A parameter overlapCount was added to deter-
mine how many overlapping nodes the instances may have to be consid-
ered interesting.

Even if only non-overlapping instances are counted during search, gSpan
will still return overlapping instances. gSpan runs on exploded networks,
where nodes are clustered and duplicated if contained in several clus-
ters. Before gSpan returns its results, we map all gSpan instances in the

4.5. gSpan implementation 55

exploded net back to its corresponding instance in the original network.
Again, we check for overlaps, and remove instances which correspond to
the same “place” in the original network.

In the 10-edge motif above we chose one instance which will be shown.
This makes the data easier to interpret. The choice is random, but we only
highlight places in the graph where a motif occurs. When the data is saved
to file all instances are included.

4.5.5 Removing backward edges

When mining biological data we are not that interested in exact matches.
In our Motif Finder algorithm we only searched for a matching spanning
tree not an exact topological match. This was not possible in Apriori be-
cause its motif representation was induced graphs, however gSpan can
allow this very easily. By only expanding the DFS tree with forward edges
we ensure that the motifs corresponds to a tree. The result of this is that
gSpan will run faster because a lot of branches are never explored. There
will be less results in the result table which makes it easier to read. In
addition, we have not lost any of the “places” in the graph which are in-
teresting for further stidy.

4.5.6 The non-trivial M 6= min(M) test

Section 3.6.6 of the methods chapter outlined the tree that the gSpan algo-
rithm searches; all DFS nodes in this DFS tree must be minimal.

When only growing forward edges the heuristic for ensuring minimal-
ity is not as effictive. We had to implement a procedure for determination
of a motif’s minimality. The procedure made a DFS pre-order depth first
search on the motif M , retuning the smallest DFS motif min(M) according
to ≺E described in section 3.6.4. If this procedure returns a motif min(M)
smaller than M , M can safely be discarded according to the rule of only
searching minimal DFS nodes.

4.5.7 Instance comparison

To be able to say something more about the quality of a motif’s subgraph
instances, we implemented a method for subgraph instance comparison.
This method use the same comparer that the clusterer used prior to search,
and the calculated instance comparison score will say something about the
mutual similarity between the subgraph instances. All subgraph instances

56 Chapter 4. Implementation and results

in the labeled network are equally sized for a given motif. By comparing
all nodes to all other nodes in every position of a DFS-code, every node
in the motif get assigned a average score for all instances. The average
of these values are shown as score in the user interface. In the following
section we will make a experimental comparison of gSpan’s results.

Figure 4.7 shows a histogram of a gSpan run on the galFiltered and sam-
pleNetwork networks, cluster limit 0.8 and using the log least likely parent
comparer through the GO annotation. As expected, the most frequent mo-
tifs found was exact matches, as the smapleNetwork actually is a subgraph
of the galFiltered network. The reason for the high frequency is the over-
lapping motifs, discussed above.

Figure 4.7: gSpan’s instance similarity.

This test showed that gSpan’s instances actually do have high similar-
ity score, when comparing their mutual nodes using the same comparer
as used through clustering. It does not say anything about whether gSpan
has left out instances in the original network. This will be investigated in
section 4.8.

4.6 Comparing Apriori, gSpan and Motif Finder

To show the actual performance of our methods, we will in this section
make a run-time comparison of the Apriori, gSpan and Motif Finder algo-
rithms, ran on the same data sets.

4.6. Comparing Apriori, gSpan and Motif Finder 57

4.6.1 Test setup

The Apriori and gSpan algorithms run on labeled networks, while the Mo-
tif finder compares the nodes directly through the chosen comparer. Our
Apriori implementations discovers motifs in a single network, gSpan may
run on both single and multiple networks, and the Motif Finder runs on
exactly two networks. We timed two versions of the Apriori algorithm.
Both the original implementation and the improved DFS hybrid approach.

We manually created two data sets. Both sets had a connected network,
and a connected motif. We wanted to compare how the algorithms com-
pared on growing data sets. In every iteration of the test, we grew the
motif by one node. The two data sets’ networks consisted initially of 13
and 40 nodes, and the motif’s two nodes only; both sub-graphs of the gal-
Filtered sample graph. In every iteration of the test, all algorithms were
ran on the data set ten times, before the motif was grown with a single
node and it’s connecting edge.

A log least likely parent comparer (through the molecular function GO)
was used for the clustering, resulting in an expanded motif of two labeled
nodes and an expanded network of 64 labeled nodes for the largest net-
work, and 20 labeled nodes for the smaller network.

The when doing a multiple graph mining involving a small and a large
network it is comparable to what Motif Finder does. Motif Finder and
gSpan were run on both motif and network. To make the comparison as
fair as possible, the maximum motif size was set to the size of the motif
graph. Since Apriori only runs on a single graph, and we used the same
value for the maximum motif size parameter.

4.6.2 A timed comparison

Figure 4.8 and figure 4.9 shows the timings of series of runs on the two
data sets. On the larger network, Apriori quickly became too slow because
of the exhaustive candidate generation. But on the small networks, it did
actually run faster than gSpan. Our improved implementation did make a
significant effect, even though the algorithm still was intractable for larger
sub-graphs in larger networks. gSpan has a greater start-up cost because it
explicitly creates the labeled networks, while Apriori runs directly on the
clustered data.

Motif Finder used two seconds on the size 10 motif when ran on the
largest network. This algorithm’s performance greatly depends on the size
of the motif. Our test shows that the run time roughly doubles for every
node added to the motif, for this network. On more dense networks, the

58 Chapter 4. Implementation and results

Figure 4.8: A run-time comparison of using network size 40 nodes.

number of possible motif assignments will increase.

gSpan’s run-times did not seem to vary much for these input data. In
our test, gSpan has advantage to Apriori as it counts support in two net-
works. gSpan’s DFS tree will not grow bigger than the relatively small
motif.

Figure 4.9: A runtime comparison using network size 13 nodes.

4.7. Validating the graph miners 59

4.7 Validating the graph miners

To validate the results our graph mining algorithms we look at two central
aspects:

Correctness : Are all the returned sub patterns frequent?.

Completeness : Are there more frequent sub-graphs than the ones re-
turned by the algorithm?

To test for correctness we implemented a verifier in Java that went
through the list of sub-patterns and investigated each item in its instance
list. An instance list is a set of lists of nodes that the algorithm reports
matches the motif. We checked that all the edges in the motifs was present
in all node lists, also verifying that the order of the nodes was correct. Both
gSpan and Apriori were verified for correctness in several different large
and small networks and with different similarity measures and clusterers.
They both performed flawless.

The completeness of graph mining run is more difficult. We did this
in two parts. First by comparing results of gSpan and Apriori on real
graphs, then by inserting some motifs into graphs and testing whether
gSpan found them all.

4.7.1 Single network mining comparison

The main problem when comparing the two algorithms is the difference in
motif representation. The motifs of Apriori represent induced sub-graphs
which are more specific than our gSpan motifs which represent any con-
nected sub-graph. Comparing such motifs would be difficult because we
would have to find the possible induced sub-graphs from the gSpan mo-
tifs.

In our implementation of gSpan we have removed backward edges
which makes the motifs represent a spanning tree. We will therefore have
less possible gSpan motifs that represents the spanning tree of an induced
Apriori sub-graph. gSpan will have more resulting motifs because of the
less specific nature of its motif.

Test setup

We implemented a tool in Python that compares the saved results of gSpan
and Apriori. It converts the Apriori motif into one or several minimal DFS
codes. Then it compares the instances found by the two algorithms.

60 Chapter 4. Implementation and results

We compared equal sized motifs and enforced the same instance over-
lapping restrictions when counting. All tests were performed on galFiltered
from the sample data included in Cytoscape. Support was set to 2 and 5
and “join single clusters” turned on. Tests was run with transcription fac-
tor clusterer and iterative clusterer with tolerance was set to 0.4 and 0.7
Protein comparers were chosen randomly.

After each run the results was checked with the Python tool and all
differences was examined manually.

Results

We started our testing with a simple goal, finding edges in the graph that
are frequent. Since the motifs of Apriori and gSpan represent the same
sub-graph (one edge) we expect here to find that all motifs match.

Using the transcription factor clusterer the motifs matched for support
2 and support 5. Running the iterative clusterer with support 5 showed a
complete match between gSpan and Apriori for both cluster tolerance 0.4
and 0.7. First run with the iterative clustering with support 2 and tolerance
set to 0.4 showed a discrepancy between the two algorithms. gSpan found
the motif 0, 17C not found by Apriori. It’s instances were

[’YLR197W’, ’YDL014W’], [’YOR310C’, ’YDL014W’],
[’YDL014W’, ’YOR310C’], [’YLR197W’, ’YOR310C’],
[’YDL014W’, ’YLR197W’], [’YOR310C’, ’YLR197W’]

Looking at the instance set shows that all proteins YOR310C, YDL014W
and YLR197W are in both clusters ’C’ and ’7’. The reason for the discrep-
ancy is the counting method described in section 3.5.4. The post-pruning
of gSpan would have removed this. All other motifs matched. For toler-
ance 0.7 there were 4 motifs in gSpan not in Apriori. All 4 discrepancies
can be attributed to the counting method.

Testing with size 3 motifs using gSpan and Apriori we expected to find
all motifs from Apriori with gSpan. If we find a fully connected sub-
graph motif with Apriori (code form 111), we expect that gSpan will re-
turn two minimal DFS codes for that sub-graph excluding one edge. For
a co-occurring motif gSpan should find more instances in the graph than
Apriori because gSpan uses a more general form of motif.

First we tested with support level 5 using the transcription factor clus-
terer. This resulted in 2 motifs with support 5 in both Apriori and gSpan.
One motif was a connected string of proteins labeled “0”. gSpan reported
99 occurrences in the graph and Apriori reported 69. gSpan found all the
69 Apriori found plus 30 others. After examining the graph it was found

4.7. Validating the graph miners 61

that all 30 occurrences found by gSpan were connected in circle and hence
not found by Apriori.

Using all combinations of clusterers and tolerance as for size 2 we man-
ually checked all differences between Apriori and gSpan. Often gSpan
found extra instances, but they were always connected in a circle and
would not have been found with Apriori. All other differences in results
could be attributed to the differences in counting.

For size 4 motif the same occurred. When testing with support 2, the
TF clusterer found 29 common motifs, in 8 of these gSpan found more in-
stances. 14 motifs was only found gSpan and 1 only by Apriori. Using the
iterative clusterer set to 0.4 the scores were 20 common, 2 Apriori only, 7
gSpan only. For 3 motifs gSpan found more instances than Apriori. When
the iterative clusterer was set to 0.7 the scores were 41 common, 23 gSpan,
1 Apriori. In 10 of the common motifs gSpan found more instances. With
support 5 only the iterative clusterer with tolerance 0.7 returned an an-
swer. There was one common motif and one extra found by gSpan.

Discussion

Because of the random element involved in counting both algorithms can
report some false positives. This is a false positive in the sense that the
instances might not represent truly separate “places” in the graph.

This will be discovered by the human operator and should not be a
problem, when the number is so low. In all tests gSpan scored better than
Apriori finding more motifs and more instances for each motif.

4.7.2 Multiple network mining

gSpan is designed to mine sub-graphs in multiple networks. Our gSpan
implementation supports both single and multiple network mining, and
in this section, we will validate gSpan mining multiple networks. By cre-
ating a large set of random networks and insert a certain sub-graph into
a subset of them, we will be able to verify that gSpan actually find motifs
covering at least all inserted sub-graphs. Probably, gSpan will also return
other sub-graph instances. These instances’ presence will also be verified.

We wrote a tester in Java for the creation of the random networks, and
the insertion of a predefined sub-graph. To first ensure that our tester was
correct, we ran gSpan on four randomly generated networks with sam-
pleMotif randomly inserted in two of them. The test results showed that
gSpan did find our inserted motifs among the results, and we manually
successfully verified the results.

62 Chapter 4. Implementation and results

4.8 Comparing Motif Finder and gSpan

Our own Motif Finder algorithm was initially a brute force attempt for
finding a given motif in a larger network. We applied branching, which
eventually did make the algorithm efficient even for medium sized mo-
tifs. When motifs and networks grow large, Motif Finder will suffer from
the explosion of neighborhood permutation possibilities between the mo-
tif and the network. gSpan avoids this massive candidate generation and
evaluation by only searching minimal motifs according to the lexicographic
ordering, but as it only runs on labeled networks, it is reasonable to believe
that some matches will be lost.

In this section we will see what the effects of this is by running Motif
Finder and gSpan on the same data-set. Section 4.8.1 gives the details on
the test setup, and section 4.8.2 reviews the results.

4.8.1 Test setup

We created a small sub-graph of three fully connected nodes, a subset
of the galF iltered data-set, containing the nodes (YDR142C, YGL153W,
YDR244W). Our test network was also a small sub-graph of galF iltered
named sampleNetwork, containing the smaller sub-graph. A log least
likely parent comparer (through the molecular function GO) was used as
comparer, both for gSpan’s clustering and Motif Finder’s node to node
comparer. The cluster limit was set to 0.5, and Motif Finder was run with
a branch factor 0 for ensuring all matches found is outputted. After the ini-
tial test we ran Motif Finder with a branch factor 0.5 to ensure that it finds
the best results when pruning the search space with branch & bound.

4.8.2 Test results

We wrote a small Python script for result analysis. The script was given
all instances found by the Motif Finder and gSpan, and returned a list of
instances found by gSpan, Motif Finder, and both. As expected, both algo-
rithms found our three-node sub-graph in sampleNetwork. Motif Finder
gave a score of 3.0 for this assignment; each node returned a full match.
The comparer used does not consider nodes’ networks, so this only con-
firms that a node is equal to itself according to the protein comparer.

Both algorithms also found 6 other matches in the network. Motif
Finder gave these matches full score, 3.0. This implies that the used com-
parer gave full score also for these matches, meaning that the iterative

4.8. Comparing Motif Finder and gSpan 63

clusterer inevitably grouped the assigned pairs of nodes in the same clus-
ters. That is, any pair of nodes considered equal by a comparer will be
equally clustered and labeled prior to mining.

gSpan found no other full matches other than those given full score by
the Motif Finder, while Motif Finder returned 12 other assignments scored
in a range from 1.7 to 2.3. But, gSpan did find 8 smaller versions of these
matches; only one node missing. This is because of Motif Finders strength
in partial matching and the loss of information during clustering gSpan’s
data. By running the same test lowering the clustering limit, we found that
gSpan did find more full-sized sub-graphs; equal to the sub-graph, but it
also found many other matches because of duplicate relabeling. These
matches can hardly be considered interesting, as they really just are du-
plicate node extensions to the original matches (that Motif Finder discov-
ered).

When running the Motif Finder with branching factor 0.5 we verified
that it returned all the results with score above 1, 5.

These test showed that two independent algorithms found the correct
sub-graph instance in a larger network. The validity of the tests’ results
were inspected manually, as the motif and network was small enough to
be manually verified.

64 Chapter 4. Implementation and results

Chapter 5

Discussion & further work

Now we have implemented and tested algorithms for investigating the
link structures of protein networks. In this chapter we discuss our work
and our contributions to the algorithms. In each discussion section we
include suggestions for future improvements. First we talk briefly about
the protein similarity measures and clustering in section 5.1. In section 5.2
we discuss our neighborhood matcher. Our improvements to the graph
miners and their results are discussed in sections 5.3 and 5.4. Lastly in
section 5.5, we briefly discuss the process of developing NeMi.

5.1 Clustering and protein similarity

As noted earlier, the similarity measures and clustering methods are not
the focus of this thesis. The similarity measures we have constructed from
the Gene Ontolgy are based on the work by Braute and Rødsjø (2005), ex-
cept from the TF comparer. Many more protein similarities exists and they
may be easily integrated into our application. The Transcription Factor
data provided to us by Finn Drabløs were easily added both as a similar-
ity measure and clusterer.

The clusters output by the Iterative Clustere,as mentioned in section
4.2, require further study by a biologist. This clusterer is quite time con-
suming on large networks and we decided not to implement more com-
plex clusterers. However there are a numerous clusterers that are designed
to this data type, for example the quality threshold clusterer by Heyer et al.
(1999).

When implementing the NeMi plugin we have kept in mind that it
should be easy to add new similarity measures and clusterers. Therefore
we have included some short descriptions on how to add similarity mea-

66 Chapter 5. Discussion & further work

sures and clusterers in appendix C.

5.2 Neighborhood matching

Our Protein Finder implementation was inspired by Braute and Rødsjø
(2005). In addition to implement the CSA algorithm, we also introduced
a procedure for weighting an assignment by comparing to a set of ran-
dom assignments, as large neighborhoods tend to get high scores. In ad-
dition to use the neighborhood matching for finding similar proteins to a
given protein in the Protein Finder, we also created a clusterer based on
the neighborhood matcher. This clusterer takes an arbitrary comparer as
input, and use the CSA bipartite matcher on the comparing nodes’ neigh-
bors for scoring node similarities through the clustering.

Further work on the neighborhood matching, may be to investigate
larger neighborhoods. Our implementation considers neighbors one step
away from the source node. By including more steps, the matching will
become more computationally expensive.

5.3 Apriori

Adapting Apriori to biological graphs served as an introduction to the
field of graph mining and near matching. In subsections 3.5 and 4.4 we
introduced some essential features to the algorithm to increase speed and
adapt it to the biological graphs.

The speedups added to Apriori allowed us to mine for slightly bigger
motifs. On a network with 40 nodes we increased the motif size from 4
to 6. On larger networks like galFiltered the original algorithm ran out of
memory when looking for size 3 motifs. We have now confirmed that the
improved algorithm works for up to size 4 motifs on galFiltered.

Near matching was achieved with the loose clustering methods. But
Apriori is designed to look for induced subgraphs. Tweaking the imple-
mentation of the algorithm may give speed increases and memory reduc-
tion. This is a fundamental feature of the algorithm and together it per-
suaded us to explore for a new approach to graph mining, namely gSpan.

However, there are some improvements that can be still possible with
Apirori. Work could be done on the motifs to reduce the problem of in-
duced graph like introducing a “2” or “3” in the code to signify distance
2 or 3 between the nodes. The counting procedure could be changed to a
better approximation algorithm for the maximum set packing. Set packing

5.4. gSpan 67

is NP-hard and even an approximation algorithm will be time consuming
since it is performed often. Since we often are interested in finding com-
pletely separate subgraph motifs, we don’t consider this a problem.

5.4 gSpan

gSpan was described in section 3.6 and some implmentation details was
discussed in section 4.5. Here we will discuss our experiences with gSpan.
gSpan’s canonical motif representation ensures search efficiency by enu-
merating the search space in a depth-first manner. The original algorithm
is designed for mining large sets of smaller graphs, and we have made
additions making the algorithm able to cope with larger graphs. Also, we
have adapted the algorithm to also be able to search single graphs only.

5.4.1 Improvements

The preprocessing of the input data was similar to Apriori when prepar-
ing unlabeled networks to the gSpan algorithm. gSpans user interface lets
the user decide which comparer and which clusterer technique should be
used as well as the different parameters tuning the search. These parame-
ters makes our gSpan implementation able to cope with larger networks.
Under the final testing of our implementation, we did experience heap
space overflow in large graphs. An example of such is yeastHighQuality,
a default sample network in the Cytoscape environment. This network
contains 3025 nodes and 6886 edges. When motifs grow large, the ac-
tive DFS tree branch will become too deep. Similar to the Apriori algo-
rithm, an iterative implementation could solve the heap space problem.
Also, increasing Java’s heap space by adding the parameter -Xmx512M or
-Xmx1024M when invoking the virtual machine will make the algorithm
cope with larger graphs.

Still, we have implemented routines and parameters restricting and
making the search more efficient. Tuning these parameters makes Java’s
virtual machine’s default heap space configuration sufficient in most cases.

First, as discussed in the previous sections, adjusting the clustering tol-
erance will affect the graph miners’ performance. A low tolerance will
produce small clusters and few node duplications when labeling the nodes
prior to mining. gSpan does not consider any edges or node-pairs with
lower support than minsup, and by creating small clusters, many edges
will be pruned away prior to mining. These nodes are the least similar

68 Chapter 5. Discussion & further work

nodes to all others in the network, and adjusting the cluster tolerance is
thus a pre-pruning using similarity threshold through the given comparer.

Second, another important feature concerning pre-pruning of the search
space is joining single clusters. Single clusters are nodes considered dis-
similar all other nodes in the network by the comparer. If the user chooses
to disable this option, all these nodes and their belonging edges will be
pruned as they does not satisfy minsup.

Third, we added a max size parameter to the user interface. This pa-
rameter defines the maximum motif size during the search. If the user
knows he is looking for frequent subgraphs not larger than 15 nodes, he
may use this parameter to speed up the search and avoid the mentioned
heap space problems.

Fourth, yet another important addition to the gSpan algorithm is our
overlap implementation, described in section 4.5.4. The user may choose
how many subgraph instance overlaps that should be tolerated during
the search. By allowing zero overlaps, the search will be able to prune all
motifs representing subgraphs containing any overlaps. The minsup or
minimum support parameter is an important parameter. At high minsup
values, gSpan will return smaller sub-graphs than using a low minsup
value.

Fifth, our mutual instance comparison from section 4.5.7 makes a com-
parison of all subgraph instances for a motif. This enables the user to re-
order the gSpan’s result. By default, results are ordered by motif size, but
this ordering is based on the degree of similarity between the subgraph
instances found.

5.4.2 Overlapping motifs

There is an important difference between overlapping subgraph instances
and overlapping motifs. Our gSpan implementation does not return over-
lapping instances if not decided by the user, but the algorithm returns
overlapping motifs.

It is harder to find a way to remove motif overlaps; the problem is to
decide which to remove. One approach could be to find a set of overlap-
ping motifs; and only keep the motif(s) representing most subgraph in-
stances. Another could be to keep the largest motif(s), counting nodes or
edges. The problem with such approaches is that all resulting motifs may
overlap some other motif. If one decides to return, say, the best motif only
according to one of the mentioned measures, the algorithm would only
return one single motif. As our graphical user interface makes browsing

5.4. gSpan 69

through gSpan’s results quite efficient; we did not investigate the problem
of overlapping motifs any further.

Removing overlapping motifs at runtime may also give a potential
speedup to graph miners at runtime. Again, the problem is to decide
which motifs to discard according to the arguments above. Also, one does
not know the potential of a growing motif until the algorithm completes
the DFS search on this motif.

5.4.3 Instance similarity

The crux of subgraph mining is the complex topological structure of graphs.
In addition, all nodes of a biomolecular interaction graphs are unique; only
through our supplemental similarity measures are we able to give similar-
ity score between the mutual network nodes. We have looked into two
distinct approaches solving the problem of subgraph mining. The Motif
finder, comparing nodes to each other directly, and the graph miner, run-
ning on clustered graphs.

In section 4.8 we made a experimental comparison of Motif finder and
gSpan’s output, searching for a small subgraph in another, larger graph.
We have argued that clustering does affect the level of subgraph instance
looseness, in terms of exact matching. Our tests also confirmed this. Motif
finder scores the matches in floating values, being able to rank small but
similar matches higher than larger matches, with poor scores. Our graph
miners returns motifs sorted on descending size; while our Motif finder
use the sum of node-to-node score for all nodes in the match. Therefore,
we have implemented a method for comparing a motif’s instances to each
other. This enables the user to sort the results in a different manner, not
only by subgraph size (default), but also by subgraph instance similarity.

5.4.4 Near matches

Inspired by our own Motif finder, we wanted to relax gSpan’s exact sub-
graph matching. Biological data may be noisy and incomplete, and some
level of incomplete matches between the instances should be tolerated.
Our modification to gSpan was to only search forward edges, according to
the DFS codes presented in section 3.6.3. In effect, subgraph instances now
may not have all edges present, between the nodes. It is only required that
the set of nodes is connected as a tree.

Furthermore, clustering partially influences the non-exact matching is-
sue. Our cluster limit parameter, a slider in gSpan’s user interface, decides

70 Chapter 5. Discussion & further work

the width of a cluster. If the user decides to set a low cluster limit, only
nodes with high similarity according to the chosen similarity measure will
be put in the same clusters. This will again generate few node duplicates,
and the miner will find fewer, but more specific motifs. On the other hand,
if the cluster limit is set high, many nodes will occur in several clusters, get
several labels and thus duplicated. The miner will more easily find more
and larger motifs. This way, the level of matching tolerance may be ad-
justed through the user interface.

5.4.5 Further work

As the number of tuning parameters grow, the usability of a tool is harder
to ensure. A future improvement to our gSpan implementation may be to
include a analysis of the input data, to be able to propose a set of parame-
ters making the search tractable by the current computer.

Removing motif overlaps may also give a potential speedup to the
search. As argued, this is not trivial and needs further investigation.

We also included a method comparing subgraph instances to each other,
for every motif. gSpan considers all subgraph instances equal, and score
tells something about the similarity between the instances and may be us-
able for the user during result analysis. Further improvements to this im-
plementation may be to include instance similarity tests during a search,
pruning away motifs representing less similar instance sets.

5.5 About the development of NeMi

This project was developed jointly by two programmers. The whole project
was developed in Java using both Eclipse and IntelliJ, we used Subversion
for source control. Cytoscape version 2.2 was the target for our plugin.
The testing code was written in Python and proved effective for parsing
output files and plotting data.

We developed the basic features of the plugin very early in the process.
Iterativley adding new features and improving on previous versions. The
core of the algorithms was developed using pair programming. This en-
abled us to work much faster on the complex parts of the code. The code
base now contains over 10000 lines of code, all commented using Javadoc.

When programming we often encountered the problem of state explo-
sion. This led to lots of memory allocation. To counter this problem we
have inserted code that enables the mining algorithms and motif finder
to fail gracefully in case of memory allocation errors. Also we have used

http://java.sun.com
http://www.eclipse.org
http://www.intellij.com
http://subversion.tigris.org
http://www.cytoscape.org
http://www.python.org

5.5. About the development of NeMi 71

some tricks for saving memory and to cut recursions early (like the DFS
Apriori). We have used a lot of recursive calls in our code. A way to reduce
memory load is to convert the recursions to iterations. This is reserved for
future work.

Another problem we often encountered was the badly documented
Cytoscape API. Some of the API is documented, and some isn’t. Some
documentataion of the graph API is available on the GINY1 webpage, but
it is sparsely documented. Some of the functions in Cytoscape didn’t op-
erate as expected, for example we had to design our own functions for
finding neighbors of nodes.

Most of the rest we had to look through the source code of Cytoscape
itself to find solutions. The Gene Ontology annotation API is not docu-
mented at all, and we had to figure it out by trial and error. The GUI of the
plugin was developed in SWING, and we spent a lot of time debugging
the GUI code. The reason the CSA Neighborhood Matching protein simi-
larity measure is implemented as a clusterer is a limitation in the GUI for
configuring our similarity measures. More work could be done to make
the GUI better and more understandable. Especially more work could be
done to enable investigation of the clusters.

It was our hope that the plugin could be included on the Cytoscape
plugin page. We posted our plugin on the cytoscape-discuss mail-
inglist. Chris Workman, who is a developer of Cytoscape, responded with
some bug reports and asked for more info. The plugin isn’t on the plugin
page as of June 9th 2006, it is still in “beta” state. We hope that if biologists
find this tool useful that it can be included on the Cytoscap plugin page in
the future.

1GINY is the graph API incorporated into Cytoscape

http://chianti.ucsd.edu/Cyto-2_2/javadoc/
http://csbi.sourceforge.net/
http://cytoscape.org/plugins2.php
http://cytoscape.org/plugins2.php

72 Chapter 5. Discussion & further work

Chapter 6

Summary and Conclusion

The work presented in this report has introduced ways of investigating
link structure data in biological networks. We have looked at 3 problems
and proposed solutions to them. Comparing proteins based on neighbor-
hood information, finding frequent sub-patterns in a network and finding
common patterns in several networks. We have developed similarity mea-
sures, clusterers and algorithms to achieve this goal and made it available
in an freely available plugin to Cytoscape.

We have continued the work of Braute and Rødsjø (2005) and added
a better ranking of the neighborhoods. The central part of the Protein
Finder is finding the maximum bipartite matching between two nodes’
neighborhoods. We have implemented the high-performing Cost Scaling
Algorithm in Java to enable platform independence. A set of similarity
measures have been implemented, both through the Gene Ontology pro-
tein annotations, and Transcription Factor data.

Our proposed algorithm for finding a given motif in a larger network,
Motif finder, searches for near-isomorphic topology match using node sim-
ilarity matrices for the scoring of a match. It searches depth first and in-
cludes a user specified branch & bound factor. The algorithm proved to be
of great value throughout testing and analysis of the graph miners.

We implemented two distinct approaches mining sub-graph patterns
in biological interaction networks. First, we implemented the Apriori al-
gorithm, a general mining technique adopted to graphs. By preprocess-
ing the data using our similarity measure implementations, we clustered
the nodes in order to assign node labels. Near matching is accomplished
by allowing nodes to occur in multiple clusters. We improved the Apri-
ori algorithm allowing mining single graphs, and improved its speed by
converting it to a depth-first hybrid. However, Apriori can only discover
induced subgraphs and also it became too slow mining larger subgraphs.

74 Chapter 6. Summary and Conclusion

gSpan mines subgraphs in a depth first manner, searching for con-
nected subgraphs only, avoiding the massive candidate generation explo-
sion. Benefiting our experience from the Apriori implementation, we en-
able single graph mining and near matching using clustering. We added
several parameters to the algorithm involving restrictions in instance over-
lapping and maximum sub-graph size. To reduce search space and lower
the motif’s specificity, we removed backward edges. This made the algo-
rithm faster and more adapted for biological searches.

We have compared the speed and verified our implementations cor-
rectness. By comparing the Motif finder and the graph miners, we show
that our using clustering through similarity measures give the expected
output in our experiments. All our implementations are freely available
online as NeMi, a plug-in for Cytoscape, a well known tool for visualiza-
tion and analysis of bio-molecular interaction data.

We have found that graph mining indeed can give interesting results
for the problems presented to us. Comparing Apriori with gSpan we con-
clude that gSpan is both faster and gives better results than Apriori. It still
remains to investigate the biological interestingness of our approaches.
This was out of scope for our thesis. Such investigation may demand more
sofisticated clustering techniques or similarity measures, which may eas-
ily be added to our plug-in.

Appendix A

Bibliography

76 Chapter A. Bibliography

Bibliography

Michael Ashburner, Catherine A. Ball, Judith A. Blake, David Botstein,
Heather Butler, J. Michael Cherry, Allan P. Davis, Kara Dolinski,
Selina S. Dwight, Janan T. Eppig, Midori A. Harris, David P. Hill, Laurie
Issel-Tarver, Andrew Kasarskis, Suzanna Lewis, John C. Matese, Joel E.
Richardson, Martin Ringwald, Gerald M. Rubin, and Gavin Sherlock.
Gene ontology: tool for the unification of biology. Nature Genetics, 25:
25–29, 2000.

G. Bader, I. Donaldson, C. Wolting, B. Ouellette, T. Pawson, and C. Hogue.
Bind - the biomolecular interaction network database, 2001. URL
citeseer.ist.psu.edu/bader01bind.html.

Petter Braute and Jorg Rødsjø. Protein function prediction using annotated
protein-protein interaction networks. Master’s thesis, Norwegian Uni-
versity of Science and Technology, 2005. URL neoplex.org/school/
uni/master_braute_og_rodsjo.pdf.

Diane J. Cook and Lawrence B. Holder. Substructure discovery using mini-
mum description length and background knowledge. Journal of Artificial
Intelligence Research, 1:231–255, 1994. URL citeseer.ist.psu.edu/
article/cook94substructure.html.

Minghua Deng, Zhidong Tu, Fengzhu Sun, and Ting Chen. Mapping gene
ontology to proteins based on protein–protein interaction data. Bioinfor-
matics, 20(6):895–902, 2004. ISSN 1367-4803. doi: dx.doi.org/10.1093/
bioinformatics/btg500.

Finn Drabløs. Personal communication. Several meetings in the period
from 16th of January up to the 12th of June., 2006.

Michael R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York,
NY, USA, 1979. ISBN 0716710447.

citeseer.ist.psu.edu/bader01bind.html
neoplex.org/school/uni/master_braute_og_rodsjo.pdf
neoplex.org/school/uni/master_braute_og_rodsjo.pdf
citeseer.ist.psu.edu/article/cook94substructure.html
citeseer.ist.psu.edu/article/cook94substructure.html

78 Bibliography

Andrew V. Goldberg and Robert Kennedy. An efficient cost scaling algo-
rithm for the assignment problem. Math. Program., 71(2):153–177, 1995.
ISSN 0025-5610. doi: http://dx.doi.org/10.1007/BF01585996.

Laurie J. Heyer, Semyon Kruglyak, and Shibu Yooseph. Exploring Expres-
sion Data: Identification and Analysis of Coexpressed Genes. Genome
Res., 9(11):1106–1115, 1999. doi: 10.1101/gr.9.11.1106. URL http:
//www.genome.org/cgi/content/abstract/9/11/1106.

Haiyan Hu, Xifeng Yan, Yu Huang, Jiawei Han, and Xianghong Jas-
mine Zhou. Mining coherent dense subgraphs across mas-
sive biological networks for functional discovery. Bioinformat-
ics, 21(1):213–221, 2005. doi: 10.1093/bioinformatics/bti1049.
URL http://bioinformatics.oxfordjournals.org/cgi/
content/abstract/21/suppl_1/i213.

Akihiro Inokuchi, Takashi Washio, and Hiroshi Motoda. Complete mining
of frequent patterns from graphs: Mining graph data. Mach. Learn., 50
(3):321–354, 2003. ISSN 0885-6125. doi: http://dx.doi.org/10.1023/A:
1021726221443.

Harold W. Kuhn. The hungarian method for the assignment problem.
Naval Research Logistic Quarterly, 2:83–97, 1955.

Steven Maere, Karel Heymans, and Martin Kuiper. Bingo: a cy-
toscape plugin to assess overrepresentation of gene ontology cate-
gories in biological networks. Bioinformatics, 21(16):3448–3449, 2005.
doi: 10.1093/bioinformatics/bti551. URL http://bioinformatics.
oxfordjournals.org/cgi/content/abstract/21/16/3448.

Paul Shannon, Andrew Markiel, Owen Ozier, Nitin S. Baliga, Jonathan T.
Wang, Daniel Ramage, Nada Amin, Benno Schwikowski, and Trey
Ideker. Cytoscape: A Software Environment for Integrated Models
of Biomolecular Interaction Networks. Genome Res., 13(11):2498–2504,
2003. doi: 10.1101/gr.1239303. URL http://www.genome.org/cgi/
content/abstract/13/11/2498.

Roded Sharan. Identification of protein complexes by comparative
analysis of yeast and bacterial protein interaction data. Journal
of Computational Biology, 12(6):835–846, 2005. URL http://www.
liebertonline.com/doi/abs/10.1089/cmb.2005.12.835.

Steven S. Skiena. The algorithm design manual. Springer-Verlag New York,
Inc., New York, NY, USA, 1998. ISBN 0-387-94860-0.

http://www.genome.org/cgi/content/abstract/9/11/1106
http://www.genome.org/cgi/content/abstract/9/11/1106
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/21/suppl_1/i213
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/21/suppl_1/i213
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/21/16/3448
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/21/16/3448
http://www.genome.org/cgi/content/abstract/13/11/2498
http://www.genome.org/cgi/content/abstract/13/11/2498
http://www.liebertonline.com/doi/abs/10.1089/cmb.2005.12.835
http://www.liebertonline.com/doi/abs/10.1089/cmb.2005.12.835

BIBLIOGRAPHY 79

Mehmet Koyuturk Yohan Kim Shankar Subramaniam Wojciech Sz-
pankowski and Ananth Grama. An efficient algorithm for detecting
frequent subgraphs in biological networks, (with m. koyuturk, and a.
grama). Bioinformatics, pages 200–207, 2005. URL http://www.cs.
purdue.edu/homes/spa/papers/mining.pdf.

Takashi Washio and Hiroshi Motoda. State of the art of graph-based data
mining. SIGKDD Explor. Newsl., 5(1):59–68, 2003. ISSN 1931-0145. doi:
http://doi.acm.org/10.1145/959242.959249.

Xifeng Yan and Jiawei Han. gspan: Graph-based substructure pattern min-
ing. In ICDM ’02: Proceedings of the 2002 IEEE International Conference on
Data Mining (ICDM’02), page 721, Washington, DC, USA, 2002. IEEE
Computer Society. ISBN 0-7695-1754-4.

Motoda H Yoshida K and Indurkhya N. Graphbased induction as a unified
learning framework. J. of Applied Intelligence, 4(3):297–328, 1994.

http://www.cs.purdue.edu/homes/spa/papers/mining.pdf
http://www.cs.purdue.edu/homes/spa/papers/mining.pdf

80 Bibliography

Appendix B

Users guide to NeMi

NeMi is short for “Neighborhood mining” and is plug-in for Cytoscape
for investigating the link relations protein-protein interaction networks.
NeMi has three major components; Protein Finder, Motif Finder and gSpan
network mining. Here is a rough overview of these components. The most
recent version of NeMi can be found on the web page http://www.idi.
ntnu.no/˜sundsdal/nemi/.

B.1 Installation

To install the plug-in download nemi.zip from http://www.idi.ntnu.
no/˜sundsdal/nemi/nemi.zip and unzip to the “plugin” sub-folder
in your Cytoscape program folder1. The plug-in will appear in the plug-
ins list in Cytoscape upon restart. The zip also contains bindings.txt,

1Usually C:\Program Files\Cytoscape-v2.2

http://www.idi.ntnu.no/~sundsdal/nemi/
http://www.idi.ntnu.no/~sundsdal/nemi/
http://www.idi.ntnu.no/~sundsdal/nemi/nemi.zip
http://www.idi.ntnu.no/~sundsdal/nemi/nemi.zip

82 Chapter B. Users guide to NeMi

the ChIP-chip data from (Heyer et al., 1999), used by the TF-clusterer and
the TF-comparer. This file must be placed in the Cytoscape program folder.

B.2 History

June 12th - Release • Added stable and randomized iterative clusterer

• gSpan scores results

• All tools show status info.

• Memory heap space errors are now less frequent.

May 6th - Beta 3 • Added CSA neighborhood clusterer

• Added memory heap space full dialog

• Added help menu items

• Removed Apriori graph miner. Outperformed by gSpan on all
tests.

May 27th - Beta 2 • Added transcription factor comparer and clusterer.

• Statistics now show GO info.

May 25th - Beta 1 • Added Apriori graph miner

• Made statistics for miners available after each run

• GUI now has status info

May 18th - Alpha 3 • Protein Finder scores with p-value from resam-
pling test

May 12th - Alpha 2 • Updated release to include Motif Finder.

May 7th - Alpha 1 • Initial release

B.3 Protein similarity

All tools in this plugin utilize protein similarity measures. A protein is
usually annotated by the Gene Ontology categories. A GO category can
have parent categories and subcategories. A protein annotated with a GO
category will therefore have a set of parent categories. When comparing
two proteins their common parent categories are found. The common par-
ents indicate how similar the two proteins are. If a they have common

B.4. Motif Finder 83

parents high up in the GO hierarchy this means that they have lower sim-
ilarity than if they have common parents far down in the hierarchy. Also
if many proteins have the same parents they may not be as similar if only
two proteins share the same parent category. Therefore there are two ways
of utilizing the GO annotation for protein similarity. Either using the deep-
est common parent or the least likely common parent.

We have also included a Transcription Factor comparer with data from
(Heyer et al., 1999). For flexibility the user can mix and match as much as
he/she pleases using a weighted sum of the similarity scores.

The “Protein comparer” pane lets you select a node in a network and
see the calculated similarity.

B.4 Motif Finder

Motif Finder lets you search for one network (motif) in another network.
Start Cytoscape and open two networks, one representing the motif and
another where you want to search for this motif. It is based on a depth first
search for a matching spanning tree. In this module no clustering is done.
The score of a match is the sum of the similarity measures for the protein
matching.

B.4.1 How to use

You need to open two networks in Cytoscape before starting the plug-in.
One motif network and one network where you wish to search for that
network, see figure B.1

Select the kind of protein similarity measure you wish to use. Then
select annotation information. You can add as many similarity measures
as you like and assign weights to each measure.

Then click “run”. The results will appear at the bottom of the screen as
seen in figure B.2. Clicking on the line will highlight (select) the matched
nodes in the network. If the comparison runs slowly the the branch-and-
bound should be tighter. Adjusting the branch factor up will yield less
results, but should be faster. Results can be saved to file by clicking “Save
results”.

84 Chapter B. Users guide to NeMi

Figure B.1: ExampleNetwork and galFiltered in motif finder

B.5 Protein Finder

The Protein Finder is based on the principle that the function of a protein
may be induced by the proteins it interacts(Deng et al., 2004). If two pro-
teins have similar neighborhoods, then there is a high probability that the
two share similar functionality.

The Protein Finder lets you select a protein and find other proteins with
similar “neighborhoods”. It returns proteins with scores listed in descend-
ing order. The score is based on an optimal matching between the neigh-
bor set of the two proteins. A neighbor set of a protein is all proteins
interacting with that protein. The proteins in the two neighbor sets are
compared all to all and a similarity score is obtained for each pair. An op-
timal matching has a maximal sum of scores. The score may be replaced
with a p-value for statistical relevance using re-sampling statistics.

B.5.1 How to use Protein Finder

Before starting the plug-in you must open a network in Cytoscape. After
starting the plug-in switch to the “Protein Finder” tab. Now you can se-
lect a protein in the network to do neighborhood matching. Create your

B.6. gSpan graph miner 85

Figure B.2: The matching list

own compare method by using the compare method table. If you wish to
weight the score by re-sampling the neighborhoods select “weight results”
toggle-box.

Now click run for the matching to proceed. This can take some time,
the progress bar shows the current activity. The results will show up in
the left bottom panel as shown in figure B.3. Selecting a result will show
a textual description of the match to the right, and the protein will also
be highlighted(selected) in the network. If you wish to save the matching
data to file click “Save results”

B.6 gSpan graph miner

gSpan is a graph mining algorithm by Yan and Han (2002) that we have
implemented for protein interaction graphs. It finds frequent sub-graphs
in one or several networks. It is designed to look for protein interaction
patterns that are common to a set of networks (different species) or a pat-
tern that reoccurs frequently in one network.

86 Chapter B. Users guide to NeMi

Figure B.3: protein Finder with results

A protein interaction network consists of unique proteins. To find pat-
terns using data mining some proteins have to be considered equal. This is
done through clustering. Proteins with similarity over a certain threshold
are assigned a cluster. The threshold is called the tolerance of the cluster.
Note that high clustering tolerance will result in less clusters, and there
is a higher probablility that a node exists in more clusters which makes
the search space larger. Searching large networks, the clustering tolerance
may be set to a low value to ensure high performance. The support level
defines how many matches a pattern 2 must have for inclusion in the result
set.

After the clustering a new interaction network is created behind the
scenes. The identifier for the nodes in the new network is cluster label
+ protein identifier. A protein contained in several clusters will result in
several nodes in the new network, one for each cluster. Nodes starting
with the same cluster label are treated as equal. The mining will result
in a code or motif which has the same structure as a spanning tree. The
matches of this motif can be viewed by clicking on the list of results.

2A pattern is the same as a motif in the plug-in.

B.6. gSpan graph miner 87

B.6.1 How to use gSpan graph mining

Open a network or a set of networks in Cytoscape before starting the plug-
in. Switch to “gSpan graph miner” and select the networks. If you select
more than one network the graph mining will ensure that a pattern at least
exists in all networks. Create your similarity measure by using the com-
pare method table. Cluster tolerance decides how similar a set of nodes
must be to be included in the same cluster. Minimum support is set by the
slider.If you wish to restrict the size of the network motif to increase mo-
tif it can be done with the “Max size” combobox. Adjusting the allowed
number of nodes overlapping can be done with the “Overlaps” combobox.
See figure B.4.

Figure B.4: Gspan graph mining pane

Press “Start” to commence graph mining. When graph mining is done
a new network will appear in Cytoscape with prefix “NeMitemp” and
postfix “(nemi)”.Mining results will appear in bottom half of the window.
Selecting a match line will highlight the match in the two networks. This
can be seen by bringing the main Cytoscape window to front. All sub-

88 Chapter B. Users guide to NeMi

graph instances will appear in the middle, and clicking an instance will
highlight it in its corresponding network. Detailed instance information is
given in the rightmost panel.

B.7 Apriori graph miner

Apriori is a graph mining algorithm by Inokuchi et al. (2003) that we have
implemented for protein interaction graphs. It finds frequent sub-graphs
in one network.

Apriori does almost the same as gSpan only it finds connected induced
sub-graphs, while gSpan finds connected sub-graphs. In most applica-
tions gSpan will be faster and better. Apriori is included mainly for com-
parison. It can be found in the “Apriori graph miner” panel.

B.8 Mining statistics

After a mining run is finished, a statistic window for the clustering can be
found by the “Statistics” button. See figure B.5.

The graph is a frequency plot the comparer. It shows the similarity
distribution. Lower left is a list of clusters. Clicking them gives a list
of nodes in the cluster. In the lower right you can the Gene Ontology
categories associated with the nodes in the cluster.

B.9 Some final words

This plug-in is a product of a Master thesis by Kristoffer Stenersen and
Sverre Sundsdal. We are computers scientist, not biologists and we need
input. Please contact us if you find this plug-in interesting or if you want
more information. Feature requests, bug reports and usage reports are
greatly appreciated. NeMi, Neighborhood Mining in biological networks
is also a name of a norwegian comic strip, Nemi.

• Kristoffer Stenersen - kristoffer.stenersen@gmail.com

• Sverre Sundsdal - sundsdal@gmail.com

June 16th 2006

http://spray.nettavisen.no/kultur/tegneserie/nemi/
mailto:kristoffer.stenersen@gmail.com
mailto:sundsdal@gmail.com

B.9. Some final words 89

Figure B.5: Clustering statistics after mining

90 Chapter B. Users guide to NeMi

Appendix C

How-To

In this appendix we will describe how to add a similarity measure and a
new clustering algorithm to NeMi. In order to add code to the project you
need Java 5.0 SDK, a text editor and the libraries and source code to NeMi.
This should be available together with this thesis. If you make changes to
NeMi source code it needs to be recompiled and packed into a .jar file. To
compile a nemi.jar file we recommend you run the ant jar command.
The file basic.properties must be available. Example files for Linux
and Windows are included in the source distribution. To copy the jar to
Cytoscape run ant deploy.

C.1 Add a similarity measure

Protein comparers should be put in the package nemi.compare. It should
extend the abstract class ProteinCompare and then be inserted into the
ProteinComparerTable in nemi.compare.gui.

First we show the interface of the comparer:
public a b s t r a c t c l a s s ProteinCompare {

/∗ ∗
∗ Returns a v a l u e f o r t h e s i m i l a r i t y be tween two
∗ p r o t e i n s . A s i m i l a r i t y s c o r e o f 1 . 0 means t h e y a r e
∗ e q u a l (o r max s i m i l a r) , and 0 . 0 means t o t a l
∗ d i s s i m i l a r i t y .
∗
∗ @return s i m i l a r i t y be tween 0 and 1 .
∗ ∗ /

a b s t r a c t public double s i m i l a r i t y (NetNode nn1 ,
NetNode nn2) ;

http://java.sun.com

92 Chapter C. How-To

/∗ ∗
∗ Thi s method i s h e r e so t h a t i m p l e m e n t e r s s h o u l d
∗ remember t o add a s t a t i c f i e l d ”name” f o r t h e GUI .
∗ ∗ /

a b s t r a c t public S t r i n g getName () ;
}

The NetNode objects are a combination of Cytoscape network and a node:

public c l a s s NetNode {
public CyNetwork net ;
public Node node ;

public NetNode (CyNetwork net , Node node) {
t h i s . net = net ;
t h i s . node = node ;

}
[snip]
}

It is important that all ProteinComparer has a static String field name that
contains its name. This is used in the GUI. As an example we here in-
clude a fictional similarity measure based on the String edit-distance of
the identifier:

public c l a s s EditdistanceComparer extends ProteinCompare {
public s t a t i c S t r i n g name= ’ ’ Edi t d i s t a n c e comparer ’ ’ ;
public double s i m i l a r i t y (NetNode nn1 ,

NetNode nn2){
i n t maxlength = nn1 . node . g e t I d e n t i f i e r () . length () ;
maxlength = Math . max(maxlength ,

nn2 . node . g e t I d e n t i f i e r () . length ()) ;
i n t e d i t d i s t a n c e = computeEditdi ts tance (

nn1 . node . g e t I d e n t i f i e r () ,
nn2 . node . g e t I d e n t i f i e r ()) ;

return (double) e d i t d i s t a n c e /(double) maxlength ;

}
public S t r i n g getName () {

return name ;
}

}

The method int computeEditDistance(String, String)
(not shown) gives a number for the number of edits necessary to convert
one string to another . This will always be 0 or above. Then we nor-

C.2. Add a clusterer 93

malize each score by maxlength to make certain that the result is less
than 1.0. Saving/Caching the result between runs to increase speed later
on is not necessary because it is taken care of outside the comparer (in
CompositeComparer). Other examples of comparers can be found in
the package nemi.compare.

To include a comparer in the GUI it needs to be included in the
ProteinComparerTable. First it needs to be included in the static list
of classes, comparers. We add it to the end of the list like this:

public s t a t i c f i n a l Class [] comparers =
new Class [] {

nemi . compare . TransFacCompare . c lass ,
nemi . compare . DeepestCommonGOCategory . c lass ,
nemi . compare . LeastLikelyGOParent . c lass ,
nemi . compare . LogLeastLikelyGOParent . c lass ,
nemi . compare . EditDistanceComparer . c l a s s

} ;

Then we need to include code to add initiate this comparer in
getComparer. Add this code to the end of the ifs and else ifs in the for
loop:

[snip]
} e lse i f (model . comparer . get (i) . equals (

EditDistanceComparer . c l a s s)) {
EditDistanceComparer c = new EditDistanceComparer () ;
comps . add (c) ;

}
[snip]

Now your comparer should be ready to go. If your comparer requires
Gene Ontology data this is available in the table model. We refer to the
source code on how to accomplish this.

C.2 Add a clusterer

The clustering code is found in package nemi.cluster. First you should
familiarize yourself with the Cluster class. Here we show the central
methods:

public c l a s s Cluster implements Comparable<Cluster> {
/∗ a c o u n t e r t o e n s u r e t h a t by d e f a u l t a l l

c l u s t e r s have a d i f f e r e n t i d ∗ /
private s t a t i c char counter = ’ 0 ’ ;

94 Chapter C. How-To

public char id = counter ++;
L i s t <NetNode> r e p s e t ;

/∗ ∗
∗ I n i t i a l i z e a c l u s t e r wi th a r e p r e s e n t a t i v e l i s t
∗ /
public Cluster (L i s t <NetNode> nodes) {

r e p s e t = new Vector<NetNode>(nodes) ;
}
/∗ ∗
∗ g e t a copy o f t h i s c l u s t e r
∗ /
public Cluster c lone () {

return new Cluster (r e p s e t) ;
}
/∗ ∗
∗ Get t h e r e p r e s e n t a t i v e s f o r t h i s c l u s t e r
∗ /
public Col lec t ion <NetNode> getRepNetNodes () {

return t h i s . r e p s e t ;
}
/∗ ∗
∗ Count t h e number o f nodes in t h i s c l u s t e r .
∗ /
public i n t s i z e () {

return r e p s e t . s i z e () ;
}
public void merge (Clus ter w) {

r e p s e t . addAll (w. r e p s e t) ;
}
/∗ ∗
∗ Compare c l u s t e r by i d on ly .
∗ /
public i n t compareTo (Clus ter o) {

return t h i s . id − o . id ;
}
/∗ ∗
∗ add a node t o t h e c l u s t e r .
∗ /
public void add (NetNode netNode) {

r e p s e t . add (netNode) ;
}

}

C.2. Add a clusterer 95

Notice that all a cluster really is is a collection of Nodes and the id of a
cluster. Comparisons between clusters here are only based on id. Many
clustering algorithm represents clusters with a “center”. If this is to be
done the Cluster class must be sub classed. Some methods for mea-
suring quality, similarity to nodes and other clusters are available in the
QualityAssesser class.

As an example we include a fictional clusterer that clusters nodes in
groups with the size based on the Fibonacci sequence:

1 public c l a s s F i b o n a c c i C l u s t e r e r implements C l u s t e r e r {
public Lis t <Cluster> c l u s t e r (Col lec t ion <CyNetwork>

3 networks , boolean j o i n S i n g l e C l u s t e r s){
Lis t <Cluster> c l u s t e r s = new Vector<Clusters > () ;

5 i n t f1 = 0 ;
i n t f2 = 1 ;

7 i n t i = 0 ;
Clus ter c ;

9 for (CyNetwork net : networks) {
for (I t e r a t o r <Node> nodeI ter = net . n o d e s I t e r a t o r () ;

11 nodeI ter . hasNext () ;) {
i f (++ i == f2){

13 i n t temp = f2 ;
f2 = f1+f2 ;

15 f1 = temp ;
c = new Cluster (new Vector<Node> ()) ;

17 c l u s t e r s . add (c) ;
}

19 Node n = nodeI ter . next ()
c . add (new NetNode (net , n)) ;

21 }
}

23 char maxChar = 0 ;
i = 0 ;

25 for (C lus ter c l u s t : c l u s t e r s){
i f (i < readableCharacters . length) {

27 c l u s t . id = readableCharacters [i ++] ;
i f (c l u s t . id > maxChar) maxChar = c l u s t . id ;

29 } e lse {
c l u s t . id = ++maxChar ;

31 }
i f (j o i n S i n g l e C l u s t e r s){

33 Cluster s i n g l e = new Cluster (new Vector<Node> ()) ;
s i n g l e . id= ’ ? ’ ;

96 Chapter C. How-To

35 for (I t e r a t o r <Cluster> c I t e r = c l u s t e r s . i t e r a t o r () ;
c I t e r . hasNext ()) {

37 Cluster c l u s t = c I t e r . next () ;
i f (c l u s t . s i z e () ! = 1) continue ;

39 s i n g l e . merge (c l u s t) ;
c I t e r . remove () ;

41 }
c l u s t e r s . add (s i n g l e) ;

43 }
return c l u s t e r s ;

45 }
}

This example clusterer goes through the basic steps of clustering. In line
8-21 clusters are created according to some measure. In line 22-31 the clus-
ters are relabeled to ensure that they use the readableCharacters de-
fined in the parent class Cluster. If not, some extra characters are added
by incrementing maxChar. In lines 32-42 single clusters are joined to a
wild-card cluster with label “?”.

Then the code to activate this clusterer must be included in the
ClustererList class. Insert a static variable to include the name of the
clusterer:

public s t a t i c S t r i n g f i b C l u s t e r = ” Fibonacc i c l u s t e r e r ” ;

and also add it as an element in the list:

public C l u s t e r e r L i s t () {
t h i s . addElement (i t C l u s t) ;
t h i s . addElement (r I t C l u s t) ;
t h i s . addElement (t f C l u s t e r) ;
t h i s . addElement (c s a C l u s t e r) ;
t h i s . addElement (f i b C l u s t e r) ;

}

And then it needs to be added in the cluster method in the if and else if
statements:

[snip]
} e lse i f ((ge tSe lec tedI tem () . equals (

C l u s t e r e r L i s t . f i b C l u s t e r)) {
F i b o n a c c i C l u s t e r e r c l u s t = new F i b o n a c c i C l u s t e r e r () ;
c l u s t e r s = c l u s t . c l u s t e r (networks , j o i n S i n g l e) ;

} e lse {
[snip]

C.2. Add a clusterer 97

Now you have created a clusterer. We encourage you to look closer at the
other clusterers for ideas.

