
June 2006
Alf Inge Wang, IDI

Master of Science in Computer Science
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Redesign and optimalization of the
Peer2Me Framework
A Framework for developing Applications supporting mobile
collaboration using J2ME

Steinar A. Hestnes
Torbjørn Vatn

Problem Description
The main goal of the project is to redesign the Peer2Me framework originally developed by Sars
Norum and Wolf Lund in their master thesis from spring 2005. Peer2Me is a framework for
developing mobile collaborative applications on mobile phones utilizing Personal Area Networks
(PANs). The framework is developed using J2ME technology and currently supports Bluetooth
communication.

The Peer2Me framework has been tested and analyzed in two separate depth study projects, and
several possible improvements have been discovered. This includes improving
the architecture, simplifying the interface presented to the developer, and decrease its footprint.

To decide whether the improvements have been successful, the original and the redesigned
Peer2Me framework will be thoroughly compared at the end of the project. The results of this
comparison will be used to evaluate the quality of the redesigned framework.

Assignment given: 20. January 2006
Supervisor: Alf Inge Wang, IDI

Abstract

This project was started to develop a new improved version of the Peer2Me framework. After having
evaluated the first version of the Peer2Me framework in our depth study project in the fall of 2005, quite a
few possible improvements came up.

This report starts with an introduction to Computer Supported Cooperative Work (CSCW), wireless
networking, Peer-to-Peer (P2P) computing, and mobile ad hoc networking. It also introduces some central
concepts concerning design of a software architecture, and technology relevant to the development of the
Peer2Me framework.

The redesign of the framework was started by eliciting a set of new requirements, constituting the basis
for designing the new Peer2Me architecture. Through an iterative and incremental development process,
Peer2Me framework v2.0 was developed with several new features. An instant messenger application has
been developed using both versions of the framework, in order to compare them.

A thorough comparison of Peer2Me v1.0 and Peer2Me v2.0 shows that the redesign has resulted in a reduced
framework footprint and complexity, a simplified interface towards the MIDlets, and a considerably increase
in transfer rate.

i

Preface
This master thesis within Software Engineering was written by Torbjørn Vatn and Steinar A. Hestnes in the
period from January 2006 to June 2006. It documents the work contributed to the Peer2Me project which is
related to the MOWAHS (MObile Work Across Heterogeneous Systems) project run by the Department of
Computer and Information Science (IDI) at the Norwegian University of Science and Technology (NTNU).

Acknowledgements

We would like to give credit to Alf Inge Wang for assigning us to this project and for his help and guidance.
We would also like to thank Carl-Henrik Wolf Lund and Michael Sars Norum for their work on the Peer2Me
framework through their depth study and master thesis.

Trondheim, 16.06.2006

Torbjørn Vatn Steinar A. Hestnes

v

Contents

I Introduction 1

1 Introduction 3
1.1 Motivation . 4
1.2 Problem Definition . 4
1.3 Project context and limitation of scope . 5
1.4 Reader’s Guide . 5

1.4.1 Which Chapters to Read . 7

2 Research Questions and Method 9
2.1 Research Questions . 9
2.2 Research Method . 11

2.2.1 The engineering approach . 12
2.2.2 The empirical approach . 15
2.2.3 Evaluation . 17

II Prestudy 19

3 Central Concepts 21
3.1 Cooperative Work . 21

3.1.1 Computer Supported Cooperative Work . 22
3.1.2 Mobile Computer Supported Cooperative Work . 23

3.2 Wireless Networking . 24
3.2.1 Wireless Wide Area Networks (WWANs) . 24
3.2.2 Wireless Metropolitan Area Networks (WMANs) . 24
3.2.3 Wireless Local Area Networks (WLANs) . 24
3.2.4 Wireless Personal Area Networks (WPANs) . 24

3.3 Peer-to-Peer Computing . 25
3.3.1 Pure or hybrid peer-to-peer . 26

3.4 Mobile Ad Hoc Networking . 27

4 Software Architecture 29
4.1 What is Software Architecture? . 29
4.2 Creating an Architecture . 30
4.3 Quality Attributes . 31

ix

4.3.1 Usability . 31
4.3.2 Performance . 31
4.3.3 Modifiability . 31
4.3.4 Availability . 32
4.3.5 Security . 32
4.3.6 Testability . 32

5 Technology 33
5.1 Java2 Micro Edition . 33

5.1.1 J2ME Architecture . 33
5.2 Bluetooth . 35

5.2.1 What is Bluetooth? . 36
5.2.2 Origin of the name . 36
5.2.3 Communicating via Radio Waves . 36
5.2.4 Bluetooth Transfer Rate . 37
5.2.5 Bluetooth Security . 38
5.2.6 Piconets and Scatternets . 38

6 The Original Peer2Me Framework 41
6.1 Peer2Me v1.0 Domain Concepts . 41
6.2 Peer2Me v1.0 Functional Requirements . 42
6.3 Peer2Me v1.0 Non-functional Requirements . 42
6.4 Peer2Me v1.0 Design . 42
6.5 Known Problems . 44

7 Related Work 47
7.1 JXTA . 47

7.1.1 JXTA-J2ME (JXME) . 48
7.1.2 Jadabs-CLDC . 48

7.2 Ergon - J2ME Wireless Application Framework . 48
7.3 BEDD . 49
7.4 JSR-259: Ad Hoc Networking API . 49
7.5 Conclusion . 50

III Redesigning the Peer2Me Framework v1.0 51

8 Requirements 53
8.1 Functional Requirements . 53

8.1.1 Use Cases . 55
8.2 Non-functional Requirements . 64

8.2.1 Usability . 64
8.2.2 Performance . 65
8.2.3 Modifiability . 65
8.2.4 Availability . 65
8.2.5 Security . 66
8.2.6 Testability . 66

8.3 Environmental Requirements . 67

x

9 Design 69
9.1 High Level Architecture . 69
9.2 Detailed description . 71

9.2.1 Framework package . 74
9.2.2 Domain package . 74
9.2.3 Network package . 75
9.2.4 Util package . 75

9.3 Design Patterns . 76

10 Implementation 77
10.1 Implementation Method . 77
10.2 Implementation tools . 78
10.3 Source Code Examples . 80

10.3.1 The Framework interface . 81
10.3.2 The initFramework() method in FrameworkFrontEnd.java 84
10.3.3 The getInstance() method in Network.java . 86
10.3.4 The addParticipant() method in Group.java . 88
10.3.5 The init() method in BluetoothNetwork.java . 89
10.3.6 The doDeviceDiscovery() method in BluetoothServiceDiscovery.java 91
10.3.7 The notifyAboutFoundNode() method in FrameworkFrontEnd.java 92
10.3.8 The connectToNodes() method in FrameworkFrontEnd.java 93
10.3.9 The synchronizeGroups() method in FrameworkFrontEnd.java 94
10.3.10The sendTextPackage() method in FrameworkFrontEnd.java 96
10.3.11The sendDataPackage() method in BluetoothNetwork.java 97
10.3.12The processSendQueue() method in NodeConnection.java 99
10.3.13The processIncomingData() method in NodeConnection.java 103
10.3.14The notifyAboutReceivedTextPackage() method in FrameworkFrontEnd.java 107

IV A Developers Guide to the Peer2Me Framework v2.0 109

11 Getting Started with the Peer2Me Framework v2.0 111
11.1 Peer2Me v2.0 Domain Concepts . 111
11.2 Required Resources . 112

12 Developing a Peer2Me v2.0 MIDlet 115
12.1 Initiating the Framework . 115
12.2 Setting Up a Connection . 116
12.3 Sending a Data Package . 116
12.4 Using the Log . 117

13 Deploying a Peer2Me MIDlet 119
13.1 Creating a MIDlet package . 119
13.2 How to run a MIDlet . 119

V Peer2Me v1.0 vs. Peer2Me v2.0 121

14 Comparison of Framework Functionality 123
14.1 Peer2Me v2.0 Functionality . 123

14.1.1 Pure peer-to-peer computing . 124
14.1.2 Sending text . 124
14.1.3 Sending files . 124

xi

14.1.4 Logging . 125
14.1.5 Detection of lost nodes . 125
14.1.6 Clean exit . 125

15 Comparison of Code Structure 127
15.1 Code Samples . 127

15.1.1 Initiation of the framework . 128
15.1.2 Variable Comments . 129
15.1.3 Javadoc Comments . 130
15.1.4 Method and variable names . 131
15.1.5 Tidy Code . 132

15.2 Summary . 133

16 Comparison of Framework Properties 135
16.1 The Goal/Question/Metric Approach . 135
16.2 Comparing the Framework Properties . 136

VI Evaluation 139

17 Technology Evaluation 141
17.1 Mobile Phones and J2ME . 141

17.1.1 General Evaluation of Mobile Phones and J2ME . 141
17.1.2 Strengths of Mobile Phones and J2ME . 142
17.1.3 Weaknesses of Mobile Phones and J2ME . 142

17.2 Bluetooth . 143
17.2.1 General Evaluation of Bluetooth . 143
17.2.2 Strengths of Bluetooth . 143
17.2.3 Weaknesses of Bluetooth . 144

17.3 Development Tools . 144
17.3.1 General Evaluation of the Development Tools . 145
17.3.2 Strengths of the Development Tools . 145
17.3.3 Weaknesses of the Development Tools . 145

18 Evaluating the Redesign 147
18.1 General Evaluation of the Peer2Me Framework v2.0 . 147
18.2 Strengths of the Peer2Me Framework v2.0 . 148
18.3 Weaknesses of the Peer2Me Framework v2.0 . 148

19 GQM; Analysis and Interpretation 151
19.1 Evaluating Goal 1 . 151
19.2 Evaluating Goal 2 . 153

VII Conclusion 155

20 Conclusion 157

21 Further Work 159
21.1 Short Term Goals . 159
21.2 Long Term Goals . 159

xii

VIII Appendices 161

A Glossary 163
Glossary . 163

B Demo MIDlets 165
B.1 Peer2MeDemoMIDlet . 165
B.2 Peer2Messenger . 183

C Peer2Me v2.0 Javadoc 197
C.1 Package peer2me.domain . 197

C.1.1 Class DataPackage . 198
C.1.2 Class FilePackage . 200
C.1.3 Class Group . 202
C.1.4 Class GroupSyncPackage . 205
C.1.5 Class Node . 206
C.1.6 Class TextPackage . 209

C.2 Package peer2me.framework . 211
C.2.1 Interface Framework . 211
C.2.2 Interface FrameworkListener . 214
C.2.3 Class FrameworkFrontEnd . 216

C.3 Package peer2me.network.bluetooth . 221
C.3.1 Interface BluetoothServiceDiscoveryListener . 221
C.3.2 Class BluetoothNetwork . 222
C.3.3 Class BluetoothServiceDiscovery . 225

C.4 Package peer2me.network . 228
C.4.1 Class ConnectionListener . 228
C.4.2 Class Network . 229
C.4.3 Class NodeConnection . 233

C.5 Package peer2me.util . 236
C.5.1 Class ASCIIToHexConvert . 236
C.5.2 Class FileHandler . 237
C.5.3 Class Log . 239

D Peer2Me v2.0 Source code 243
D.1 Package peer2me.framework . 243

D.1.1 Interface Framework . 243
D.1.2 Interface FrameworkListener . 246
D.1.3 Class FrameworkFrontEnd . 248

D.2 Package peer2me.domain . 258
D.2.1 Class DataPackage . 258
D.2.2 Class TextPackage . 262
D.2.3 Class FilePackage . 266
D.2.4 Class GroupSyncPackage . 270
D.2.5 Class Group . 274
D.2.6 Class Node . 278

D.3 Package peer2me.util . 282
D.3.1 Class Log . 282
D.3.2 Class FileHandler . 287
D.3.3 Class ASCIIToHexConvert . 296

D.4 Package peer2me.network . 298
D.4.1 Class Network . 298

xiii

D.4.2 Class NodeConnection . 304
D.4.3 Class ConnectionListener . 318

D.5 Package peer2me.network.bluetooth . 322
D.5.1 Class BluetoothNetwork . 322
D.5.2 Interface BluetoothServiceDiscoveryListener . 331
D.5.3 Class BluetoothServiceDiscovery . 332

Bibliography . 340

xiv

List of Tables

2.1 The Disciplines and artifacts of the RUP lifecycle . 15

6.1 Peer2Me v1.0 Functional Requirements . 43
6.2 Peer2Me v1.0 Non-Functional Properties . 43

8.1 Peer2Me Functional Requirements . 54
8.2 Use Case 1 . 57
8.3 Use Case 2 . 58
8.4 Use Case 3 . 59
8.5 Use Case 4 . 60
8.6 Use Case 5 . 61
8.7 Use Case 6 . 62
8.8 Use Case 7 . 63
8.9 Peer2Me v1.0 Non-Functional Requirements . 64

16.1 Framework Properties . 137

xv

List of Figures

2.1 Iterative Development in the RUP . 13
2.2 GQM Hierarchical structure . 16
2.3 Overview of the experiment process . 18

3.1 Classifying groupware with the time-place matrix . 23
3.2 Taxonomy of computer systems . 25
3.3 Pure peer-to-peer model . 26
3.4 Hybrid peer-to-peer model . 27
3.5 A digital sphere around the user . 28

5.1 J2ME Architecture . 34
5.2 The Bluetooth logo . 36
5.3 A piconet comprising four nodes . 38
5.4 A scatternet comprising three piconets . 39

6.1 Architectural overview of the Peer2Me framework . 44
6.2 A logical view showing the main packages in the Peer2Me framework v1.0 45

8.1 Use Case 0 model . 56

9.1 Module Decomposition View . 70
9.2 Peer2Me Architecture . 72
9.3 Class Diagram . 73

10.1 Sequence Diagram . 80

11.1 Peer2Me conceptual model . 112

xvii

Part I

Introduction

1

CHAPTER 1

Introduction

SSB, Statistics Norway’s Statistical Yearbook 2005 [37] shows us that the number of mobile telephony
subscriptions (4 716 090 in 2004) is steadily increasing, and hence is the number of mobile phones also
growing. New mobile phone models pours out on the marked and the technology that was considered ”high
end” last year have become ”low end” already. Recreation and entertainment is the largest area of innovation
at the moment, but also mobile ad-hoc communication and collaboration are important features of these
new devices.

Today Java 2 Platform, Micro Edition (J2ME) [26] is by far the most common used programming platform for
mobile devices like mobile phones. The technology is supported widely among electronics manufacturers and
software developers. With the constant development and implementation of new technology leading to more
powerful and better equipped phones, the potential for developing more ”useful” applications grows. The
introduction of means of communication directly between phones, such as Bluetooth, adds a new dimension
to this type of applications. This gives the software engineers the ability to develop systems that allows
collaboration and exchange of information between users.

Michael Sars Norum and Carl-Henrik Wolf Lund developed the Peer2Me framework as a part of their depth
study [30] and master thesis [31]. The J2ME-based framework aims to aid the development of collaborative
mobile applications using ad-hoc networking. Peer2Me gives developers the ability to program applications
for mobile devices without considering the underlying network technology and how data is sent over this
network.

3

1.1 Motivation

After working with the Peer2Me framework for a whole semester through our depth study [39], we have
experienced some issues and come up with quite a few suggestions for improvements. We are under the
impression that the Peer2Me framework have to undergo a serious revision to advance into a product with a
practical application among developers. The revision involves several areas and properties of the Peer2Me:

Easy to learn The framework has to become easier to start using for the developers. Many programmers
will experience the framework somewhat cumbersome to start using and even continue using after the
initial learning phase.

Lightweight The framework has to keep and preferably improve it’s lightweight structure. Considering the
range of devices this framework is intended for this is important.

Peer-to-peer computing The Peer2Me framework is, as the name implies, based on the concept of peer-
to-peer computing. But the current version of the system does not support this to full extent.

Transfer data To have more practical applications, the Peer2Me framework needs to support sending of
more than just text, e.g. files.

Separate network layer To be totally network independent, the framework has to have a completely
separate network layer architecture. This is not the case in the original framework.

The wish to improve these issues mentioned above is what motivates us to undertake this project. We
believe that if these initial problems of the framework are overcome, it can turn out to be an interesting
system with many employments.

1.2 Problem Definition

The title of this master thesis is:

Redesign and optimalization of the Peer2Me Framework

- A framework for developing Applications supporting mobile collaboration using J2ME

The main goal of the project is to redesign the Peer2Me framework, originally developed by Sars Norum
and Wolf Lund in their master thesis from spring 2005. Peer2Me is a framework for developing mobile
collaborative applications on mobile phones utilizing Personal Area Networks (PANs). The framework is
developed using J2ME technology and currently supports Bluetooth communication.

The Peer2Me framework has thoroughly been tested and analyzed in two separate depth study projects, and
several possible improvements have been discovered. This includes improving the architecture, simplifying
the interface presented to the developer and decrease its footprint.

To decide whether the improvements have been successful, the original and redesigned Peer2Me frameworks

4

will be compared with regard to size, complexity, architecture and user experience for the developers. The
results will be analyzed to determine the quality of the redesigned framework.

1.3 Project context and limitation of scope

As our depth study from 2005 [39] this master thesis project is a part of the Mobile Work Across
Heterogeneous Systems (MOWAHS) Project. As mentioned in the depth study, MOWAHS is a basic research
project performed in cooperation between the IDI’s groups for software engineering and database technology.
The project is supported by the Norwegian Research Council through the IKT-2010 program with a budget
of 5 million NOK over four years.

The founders of MOWAHS have stated three goals for the project:

G1) Helping to understand and to continuously assess and improve work processes in virtual organizations.

G2) Providing a flexible, common work environment to execute and share real work processes and their
artifacts, applicable on a variety of electronic devices (from big servers to small PDAs).

G3) Disseminating the results to colleagues, students, companies, and the community at large.

The original developers of the Peer2Me framework wrote in their depth study [30], that the creation of
the framework was contributing to the second of the three MOWAHS goals. As we are improving and
optimizing the Peer2Me framework, this project supports the second goal as well. Our redesign will take the
Peer2Me framework further towards fulfilling the goal.

As in the depth study this project is more of a software engineering character, rather than focusing
on collaborative work. The collaborative concept is described in the section about Computer Supported
Collaborative Work (CSCW) in Chapter 3, Central Concepts.

1.4 Reader’s Guide

The reader’s guide is meant to describe the different parts of this document, as it is rather large and divided
into both parts and chapters. We list each chapter with a short summary of the content.

Part I Introduction This part contains the introduction and the research questions and method.

Chapter 1 Introduction The first chapter consists of the motivation, the definition of the problem,
project context, limitation of scope and this reader’s guide.

Chapter 2 Research Questions and Method The motivation and problem definition gives us
some research questions we need to answer. To do this we need a research method and a
development method.

Part II Prestudy In this part the prestudy is described.

5

Chapter 3 Central Concepts Describes the central concepts that affect the project.

Chapter 4 Software Architecture This chapter contains an introduction to quality driven software
architecture.

Chapter 5 Technology Here we will explain the latest aspects of the technology we use in the
development face of the project.

Chapter 6 The Original Peer2Me Framework This chapter contains a short description of the
first version of the Peer2Me framework and it’s concepts.

Chapter 7 Related work Here we will look into related work in the research field.

Part III Redesigning the Peer2Me Framework v1.0 This covers the design and implementation of
the redesigned Peer2Me framework as well as the elicitation of the requirements.

Chapter 8 Requirements Using Use Cases we will elicit the systems functional requirements. The
non-functional and environmental requirements will be discussed as well.

Chapter 9 Design In this chapter the high level architecture of the system is described. We will also
briefly explain the architectural patterns used in the design and give a short introduction to the
individual classes of the framework.

Chapter 10 Implementation Here the implementation method and tools are described. Some code
samples from the application is also provided.

Part IV A Developers Guide to the Peer2ME Framework v2.0 This part contains all the informa-
tion a developer needs to start programming a Peer2Me application.

Chapter 11 Getting Started with the Peer2Me Framework v2.0 This chapter contains an in-
troduction to the new version of the Peer2Me Framework.

Chapter 12 Developing a Peer2Me MIDlet Includes a description of how to develop a function-
ing Peer2Me MIDlet from scratch.

Chapter 13 Deploying a Peer2Me MIDlet Describes how the finished MIDlet could be deployed
to a portable J2ME device.

Part V Peer2Me v1.0 vs. Peer2Me v2.0 Contains a comparison of the previous and the new Peer2Me
version.

Chapter 14 Comparison of Framework Functionality This chapter contains a comparison of
functionality found in Peer2Me v1.0 and Peer2Me v2.0.

Chapter 15 Comparison of Code Structure In this chapter we describe the improvements made
to the code structure of the redesigned Peer2Me by comparing it to the structure of similar code
found in the original framework.

Chapter 16 Comparison of Framework Properties In this chapter we compare the properties of
Peer2Me v1.0 with the properties of Peer2Me v2.0. The properties we compare are; footprint of
framework and MIDlets, size of interface, complexity and transfer rate.

6

Part VI Evaluation Based on the test result we will evaluate the Peer2Me framework and discus usability,
strengths and weaknesses.

Chapter 17 Technology evaluation This chapter contains an evaluation of the technology used
throughout this project. Strengths and weaknesses of the technologies are presented.

Chapter 18 Evaluating the Redesign Evaluating the redesign of the framework from a developer
point of view.

Chapter 19 GQM; Analysis and interpretation This is the last phase of the Goal/Question/-
Metric approach. It answers the questions raised and evaluates whether the goals are reached or
not.

Part VII Conclusion The Conclusion of the project.

Chapter 20 Conclusion Here we summarize and find answers for our research questions.

Chapter 21 Further work If there is parts of our work we are not satisfied with we will suggest
further work in this chapter.

Part VII Appendices The Bibliography and the Glossary.

1.4.1 Which Chapters to Read

Readers that just want to read about the main results of this report, we advice to read Part VI Evaluation,
and the conclusion in Chapter 20.

If you want to read about the limitations of mobile phones and Bluetooth, please read Chapter 17 Technology
evaluation.

For information about how the redesigned Peer2Me framework performed as a framework for developing
applications for mobile collaborative work we advice you to read Chapter 18.

If you are a developer interested in how to develop a Peer2Me application, please read Part IV A Developers
Guide to the Peer2Me Framework.

7

8

CHAPTER 2

Research Questions and Method

The questions that we hope to answer in our research and testing in this project are outlined in this
chapter. We also describe the methodologies we choose to use to perform the research and to develop
the test application. The last chapter is about the test environment we will carry out our tests in.

2.1 Research Questions

The original version of the Peer2Me framework has proven to be a useful tool for developers creating J2ME
applications. However, some shortcomings has been discovered. This has resulted in several questions arising
from the motivation and problem definition, and these questions are formalized in the following. This report
will lead to the answers of these questions.

1. Does a redesign of the Peer2Me framework improve developers ability to produce J2ME

based applications for mobile collaboration?

∗ After we have completed our redesign of the Peer2Me framework, we will perform a comparison
of the original and the redesigned framework to point out the differences and improvements we
have achieved.

(a) Is the documentation and the code, with regards to structure and comments, improved sufficiently
to decrease the degree of difficulty developing a new application?

∗ We will thoroughly compare the documentation and the code, with regards to structure and
comments, of both the original and redesign versions of the framework.

(b) Does the redesigned architecture increase the developers understanding of the framework’s
structure, and by this simplify the process of developing a working application?

9

∗ The architectures of the original and the redesigned Peer2Me framework will be evaluated
with regard to complexity and structure. To evaluate this we will use comprehension of
the architecture, use of patterns and best practices and the coupling between the different
modules of the framework as criteria.

2. Does a redesign of the Peer2Me framework reduce the footprint and the complexity of

the applications developed as well as the framework itself?

∗ The redesign will aim to improve the quality of both the framework and the finished applications
with regards to size and structure. Data concerning this properties will be collected through a
comparison of the original and redesigned framework.

(a) Will the redesign of the architecture reduce the footprint of the framework?

∗ By reducing the number of classes and relations in the framework the size will be reduced
considerably.

(b) Will improving the interface between the Peer2Me framework and the applications reduce the
number of code lines required to develop a working application?

∗ If the number of code lines are reduced by an improved architecture the development time as
well as the footprint of the applications will be reduced. This enables the developer to create
better applications more efficiently.

(c) Will the redesign of the architecture reduce the coupling between the Peer2Me framework and
the applications?

∗ By reducing the number of relations connecting the framework and an application the
complexity of development will be reduced.

3. Will a redesign of the Peer2Me framework increase the performance and decrease the

error rate of the applications developed?

∗ The redesign will address many of the problems found in Peer2Me applications developed upon
the original version of the framework.

(a) Does the redesigned Peer2Me framework perform better, with respect to transfer rate, than the
original framework?

∗ The original Peer2Me framework transfer rate was measured during the scenario testing of
out depth study [39].

(b) Does a revision of the code remove the errors experienced during testing of the original framework?

∗ The original Peer2Me framework contains some errors that force the users to do operations
in a certain order and to restart the application or the mobile phone.

(c) Will the introduction of a system for logging the errors as they occur improve the developers
ability to correct these errors?

∗ If the errors of the application is written to a log the developers have a better chance of
locating and correcting these errors.

10

2.2 Research Method

This chapter is a revision of the Research Method chapter found in our depth study [39]. The content and
structure of the chapter is basically unchanged, but some sections have been altered to suite this project.

According to Basili in [4], software engineering:

”...can be defined as the disciplined development and evolution of software systems based upon
a set of principles, technologies, and processes.”

The discipline of software engineering is fairly new in a scientific perspective. There is quite a lot of
research going on in the field, but unlike other sciences the development of models for components like
processes and resources have been neglected. How these models should be integrated, evaluated and used
in projects are not satisfactory described either. Basili [4] describes three experimental models for software
engineering research. The models are quite similar, but focus on different areas and are parts of two distinct
paradigms; the scientific- and the analytical paradigms. The first consisting of the engineering approach and
the empirical approach and the latter of the mathematical approach.

The three approaches in short:

The engineering approach (scientific) In this approach one have to perform iterations of observing the
existing system, suggesting improvements and building and analyzing the new system. This continues
until no more improvements can be found.

The approach is strictly evolutionary and implies access to existing models of processes, products
and the environment in which the software is developed.

The empirical approach (scientific) Based on a model of the domain a set of statistical and qualitative
methods are proposed. Then these models are applied to case studies, measured and analyzed, and
the result is a validation of the model.

This distinct the approach from the previous one since a new model is proposed. It is also more
reliable to validate the model through the use of case studies. This approach is widely used in all fields
of research.

The mathematical approach (analytical) A formal theory or a set of axioms is presented, the theory
are developed and a result is derived from it. It’s preferable to have this results compared to empirical
observations.

The two approaches of the scientific paradigm, engineering and empirical, will constitute the base for Parts
III, V and VI of this project. The engineering approach will be utilized through the redesign of the Peer2Me
framework described in Part III. In the comparison of the original and the redesigned Peer2Me framework
outlined in part V, we will collect empirical data that will be used in the evaluation in Part VI.

11

2.2.1 The engineering approach

In Chapter 2.2 above we described the engineering approach as; observing, suggesting improvements,
analyzing and building. The observation phase consists of the Prestudy, Part II, where we will look into
central concepts, aspects about the Peer2ME framework that we discovered through the work performed in
our depth study [39] and new technology as well.

Since the main focus of this project is to redesign and improve the Peer2Me framework we will incorporate
the last three phases of the engineering approach into the requirements, design and implementation chapters
of Part III, Redesigning the Peer2Me Framework v1.0.

When we stared the depth study we considered using the Rational Unified Process (RUP) [22] as a
development process for the project. However, we soon realized that the RUP would be a bit to heavy
weight for a project of this scale, so we opted for an adapted process still using the principles of UP1

development. The iterative and incremental process of analyzing and building described in the Engineering
approach, is a significant part of UP. The use of this approach turned out to be perfect for this type of
project and we will continue to use it in our current process.

Prestudy

In our Prestudy we will look into and describe the central concepts that concerns our domain. We will also
make a summary of and outline the essentials of the Peer2Me framework and review the newest technology
in the field. This will give us an overview of what we have to work with and what challenges we have to
overcome in our redesign.

The Unified Process

As described above we have chosen to continue with our adapted UP approach for this project, so we will
keep many of the elements found in the RUP. In the following we describe the elements we kept and their
role in the RUP.

In [22] the Rational Unified Process (RUP) is defined as:

”...a software development process that is iterative, architecture-centric, and use-case-driven.”

The process is intended to be tailored to select the most appropriate development processes for a software
project and is based upon using proven techniques to develop software effectively. The RUP uses and
iterative approach that consists of a sequence of incremental steps or iterations. Figure 2.1 shows how
a typical iterative development with RUP is carried out. It starts with Business Modeling and Planning
before it enters a loop of iterations. Each iteration consists, more or less, of this parts; Requirements
elicitation, Analysis & Design, Implementation, Testing and Evaluation. Each iteration is based upon the
work performed in the previous iterations and the result is one step closer to deployment.

1Unified Process

12

Figure 2.1: Iterative Development in the RUP

Here is a description of how we intend to perform the different tasks of the Iterative Development model
during the development of our Peer2MeAnalyzer application.

∗ Business Modeling and Planning is covered by our prestudy where we investigate the Peer2Me
framework and familiarize with the central concepts and new technology of the domain.

The tasks in the iterative loop:

◦ Requirements are specified through Use Cases and Use Case models. In addition we will specify
non-functional requirements textually.

◦ Analysis and Design will imply analysis of the elicited requirements and choosing a software
architecture with the desired properties.

◦ Implementation will be performed in parallel with some development testing using an iterative
approach.

13

◦ In addition to test simultaneously with the implementation we will perform a more thorough test
when the framework is ready to use. This is to ensure that it fulfils all the requirements and has a
low fault rate. The test will be performed as a workshop with developers performing given tasks.

◦ Evaluation will be done at the end of each iteration to decide whether the framework has reach
a satisfactory level of quality or if another iteration is necessary.

◦ Configuration & Change Management will be supported by the use of CVS2 to keep track
of the different versions of the application during development.

◦ The base of the development environment will be the Eclipse3 software framework. In addition
we will make use of the SUN Java Wireless Toolkit4 for J2ME specific functionality. The
documentation is written in LATEX using a plugin for Eclipse.

∗ At deployment we will have the redesigned and improved the Peer2Me framework ready for developers
to use.

The RUP architecture is divided into two dimensions, often presented in a diagram with the two dimensions
along the vertical (Static) and horizontal (Dynamic) axis.

Dynamic structure This is the time dimension and describes the cycles, phases, iterations and milestones
of the process. It illustrates the lifecycle of a project.

Static structure Describes the elements involved in the process and how they are grouped into process
disciplines. The elements can be activities, disciplines, artifacts and roles.

We will now describe the four lifecycle phases of RUP.

Inception Phase This phase consists of understanding the scope of the project, build a business case and
get stakeholder approval. This leads up to the Lifecycle Objective Milestone.

Elaboration Phase Here one will try to reduce major technical risks, create the outline of an architecture
and find out what is required to build the system. In this phase the milestone is the Lifecycle
Architecture.

Construction Phase To build the first operational version of the product is the goal of this phase and it
ends in the Initial Operational Capability Milestone.

Transition Phase Lastly the final version is built and delivered to the customer. The milestone of this
phase is Product Release.

Each of this phases contains one or more iterations and there will be as many iterations as it takes to
fulfill the objectives of the phase. In Table 2.1 we have described what disciplines and artifacts we worked
with in each of the four phases of the lifecycle.

2Concurrent Versions System
3www.eclipse.org
4http://java.sun.com/products/sjwtoolkit/index.html

14

Disciplines Artifacts Inception Elaboration Construction Transition
Requirements Use Cases Start Refine

Non-functional
Requirements

Start Refine Refine

Environmental
Requirements

Start Refine Refine

Glossary Start Refine Refine
Analysis and Design Model Decom-

position View
Start Refine

Class/Uses
View

Start Refine

Implementation Source Code Start Refine Refine
Test GQM Start Refine

Scenarios Start Refine
Evaluation Technology Start Refine Refine Refine

Peer2Me frame-
work

Start Refine Refine

Peer2MeAnalyzer Start Refine

Table 2.1: The Disciplines and artifacts of the RUP lifecycle

2.2.2 The empirical approach

In ”An Empirical Methodology for Introducing Software Processes”[34], Shull et al. describes some important
aspects of empirical studies in software engineering.

First and foremost it’s important to separate between qualitative and quantitative data:

Quantitative data ...can be used for measuring a particular aspect of a process, e.g. ”number of nodes
detected”. In other words this is numerical data that can be measurement and statistics.

Qualitative data ...is expressed in words and gives a richer understanding of the gathered information.
This describes the perceived quality of the results.

Both data types are important in testing, since quantitative data is useful when performance is evaluated
and qualitative data can say something about the usefulness and quality of a system.

The Research Questions in Chapter 2.1 are of both quantitative and qualitative form. The qualitative
data will be collected through a comparison of the original and the redesigned Peer2Me framework. This
comparison is found in Part V Peer2Me v1.0 vs. Peer2Me v2.0. To find answers for the quantitative related
questions we will have to do empirical experiments in form of a comparison of the framework properties.
This comparison is described in Chapter 16. To perform and document these experiments we choose to use
of the Goal/Question/Metric paradigm as described in the following.

15

The Goal/Question/Metric paradigm

In this section we will describe the methodology we intend to use in our empirical study of the redesigned
Peer2Me framework, and also how we will adapt the methodology to best fit our project.

The Goal/Question/Metrics (GQM) approach, proposed by Basili [41], assumes that an organization must
fulfill three conditions to be able to measure results from experiments in a purposeful way:

1. Specify the goals for itself and its projects.

2. Trace those goals to the data that is intended to define those goals operationally.

3. Provide a framework for interpreting the data with respect to the stated goals.

The application of the GQM results in a measurement model specification targeting a set of issues and
rules. These are issues and rules for the interpretation of measured data. The resulting model (see Figure
2.2) includes these three levels:

1. Conceptual level This is the Goal part of the model. A goal is defined for an object, for a variety of
reasons, with respect to various models of quality, from various points of view, relative to a particular
environment. Object of measurement are products, processes, and resources.

2. Operational level The Question part of the model. A set of questions is used to characterize the way
the assessment/achievement of a specific goal is going to be performed based on some characterization
model. Questions try to characterize the objects of measurement (product, process and resource) with
respect to a selected quality issue and to determine its quality from the selected viewpoint.

3. Quantitative level The Metric. A set of data is associated with every question in order to answer it
in a quantitative way (either objectively or subjectively).

Figure 2.2: GQM Hierarchical structure

16

The definition of the Goal definition template can be found in [43]. The template is used to make sure
that none of the important aspects of the goal are forgotten when the goal is defined in the description. The
template is:

Analyze Object(s) of study
for the purpose of Purpose

with respect to their Quality focus
from the point of view of the Perspective

in the context of Context.

In Experimentation in software engineering: an introduction [43], the main activities (see Figure 2.3) of
the experimentation process are defined as:

Definition is the first step. Here the experiment is defined in terms of problem, objective and goals.

Planning is the next step, where the design of the experiment is laid down. The instrumentation is
considered and the threats are evaluated.

Operation of the experiments consists of measurement collection.

Analysis and interpretation In this activity the measurements from Operation is analyzed and evaluated.

Presentation and package This is the final results.

The model is not to be interpreted as a ”true”waterfall model because one activity is not necessarily finished
before the next activity is started.

We will make use of the GQM approach in part V, ”Peer2Mev1.0 vs. Peer2Mev2.0”, where we will describe
how we perform empirical experiments in our framework properties comparison to gather quantitative data
about the redesigned framework.

2.2.3 Evaluation

The Evaluation will be based on the results found when comparing the original and the redesigned framework
(qualitative data), and the quantitative data gathered during the framework properties comparison.

Technology evaluation A subjective evaluation of the technologies used in the project. The evaluation
will include; Mobile Phones and J2ME, Bluetooth and Development tools. For each category strengths
and weaknesses will be presented as well as a general evaluation.

Evaluating the redesigned Peer2Me framework This chapter will be a summary of the results
gathered from both the code structural and framework properties comparison.

17

Figure 2.3: Overview of the experiment process

The Analysis and Interpretation phase of GQM The final phase of the GQM aims at answering the
questions raised in Chapter 16.1. When all the answers are found one can conclude whether or not the
goals are reached. The result of this can be used to determine if the redesigned Peer2Me framework
fulfills it’s purpose.

18

Part II

Prestudy

19

CHAPTER 3

Central Concepts

During the last few years’ consumer electronics industries have continually introduced new mobile devices
offering new features. A demand to be supported in the way we live and do things, has triggered an evolution
which has provided a considerable amount of new benefits to today’s users of mobile devices [28]. Among the
exciting new features of today’s mobile devices is the support for Peer-to-Peer (P2P) computing and Mobile
Ad Hoc Networking (MANETs). Seen in relation with Computer Supported Cooperative Work (CSCW),
these concepts have constituted a basis from which the Peer2Me framework has arisen.

In this chapter, we will present central concepts related to the Peer2Me framework. Since this master
thesis basically is a continuance of our depth study, central concepts presented in this chapter will be the
same as the ones presented in the Central Concepts chapter in our depth study report [39]. The content of
the chapter is mainly unchanged, but some sections have been added to suite this project.

3.1 Cooperative Work

Cooperative work, literally, refers to the practice of people working together with commonly agreed upon
goals. In other words, a cooperative work relationship is constituted by the fact that several workers are
interdependent in their work. The cooperation is based upon interaction through changing the state of a
common field of work.

Generally speaking, cooperative work relations are formed as a consequence of the limited capabilities of
single individuals, that is, because the work could not be done otherwise, or at least not as efficiently, clever
or quickly as if it was carried out by a single person. A general trend in modern work settings has been, and
still is, that work becomes more and more complex. Demands for more complex products leads to demands
for flexibility, shorter production time, increased quality etc. To accomplish such tasks, there is a need

21

for experts having different competence and backgrounds to work together towards the same goal. When
the number of workers exceeds the limit of a few, and/or workers are located at different places working
at different times, they will need a way to communicate and to coordinate their activities [6]. To develop
successful methods/tools supporting collaboration between people, it is essential to understand the nature
of human interaction. Human communication is very complex and involves a combination of:

Verbal communication: Communication between persons with the use of words. Includes both oral
communication and written messages.

Nonverbal communication: Defined as communication between persons without using words. Most
people use gestures and body language in addition to words when they speak. These gestures include
acts such as pointing as well as using the hands and body to keep time with the rhythms of speech and
emphasize certain words or phrases.

Formal communication: Communication between people in a formal setting, e.g. people communicating
in well planned meetings.

Informal communication: Communication between people in an informal setting, e.g. people stopping
and communicating as they accidentally meet in the corridors.

The combination of these aspects makes the natural human communication very complex.

3.1.1 Computer Supported Cooperative Work

Computer Supported Cooperative Work (CSCW) is a research field that focuses on how computer-based
systems can support multiple people working on related tasks. The term CSCW was introduced by Irene
Greif and Paul Cashman in 1984 at a conference attended by researchers and developers examining how
people work together in groups and how technology can support them [14]. Since 1984, researchers have put
a vast effort in into the area of CSCW. In spite of this, researchers and developers still struggle to come up
with tools able to replace the value of being collocated while cooperating. To understand their problems, we
have to consider the complexity of supporting collaboration in all the CSCW dimensions. One of the most
cited classifications of CSCW systems, also called groupware, is the time-place matrix [20] shown in Figure
3.1.

In one dimension, the matrix distinguishes same time (synchronous) cooperative work from different time
(asynchronous) cooperative work. In the other dimension, it distinguishes same place cooperative work from
different place cooperative work. With this matrix, groupware systems can be classified by placing them in
the quadrant(s) they support. The most complex challenges lies in developing groupware supporting workers
who are not collocated (different places and/or different time). The reason for this is that the groupware
becomes the only available communication channel between the workers. In these cases, the groupware has
to address the complexity of human communication including support for awareness, verbal-, nonverbal-,
formal- and informal communication. When it comes to workers who are located at the same place at the
same time, other types of requirements will become relevant as these users might want to use computers to
enrich the natural communication instead of replacing the natural communication between users [6] [15].

22

Figure 3.1: Classifying groupware with the time-place matrix

According to Lund and Norums master thesis [31], the Peer2Me framework covers both synchronous (same
time) and asynchronous (different time) applications in the ”same place” category. As the framework is based
upon peer-to-peer networking (no infrastructure) and supports sharing of data (communication) between
users, it is fairly obvious that it supports communication between users located at the same place at the
same time. To understand how the framework can cover the same place, different time category, we have to
focus on the users rather than the devices. Seen from the device’s perspective, the framework requires the
devices to be located at the same place at the same time for data exchanging to happened. But seen from
the user’s perspective, users are allowed to communicate asynchronously because sending of data does not
require the recipient to be present. However, our opinion is that the Peer2Me framework mainly addresses
the same place same time quadrant. This because the devices used in peer-to-peer networking usually are
personal property that users constantly carry around with them.

3.1.2 Mobile Computer Supported Cooperative Work

Mobile Computer Supported Cooperative Work (MCSCW) is, as the name indicates, a research field that
focuses on how mobile computers can support multiple people working on related tasks. The last years
progress in technology when it comes to mobile devices has been amazing and the possibilities for using
computers to support cooperative work is no longer limited to stationary devices. The extreme mobility and
support for different kinds of wireless networks allows users to collaborate whenever they want, wherever
they want. This includes both planned communication and ad hoc communication. Central concepts within
MCSCW, such as mobile ad hoc networking and different types of wireless networks are thoroughly treated
in respectively Chapter 3.4 and Chapter 3.2.

23

3.2 Wireless Networking

In general, wireless networking refers to the use of infrared or radio frequency signals to share information and
resources between devices. Rapid advances in wireless technologies have changed the wireless communication
landscape dramatically during the past years. Today, we have many types of wireless networks. These types
can mainly be divided into two categories; telephone networks and computer networks. In the following we
will focus on computer networks, and try to classify and describe their characteristics.

3.2.1 Wireless Wide Area Networks (WWANs)

Wireless Wide Area Networks, from now on referred to as WWANs, are infrastructure-based networks built
up by a set of base stations broadcasting radio signals to mobile users. WWANs addresses the need to
stay connected while traveling across large geographical areas as the reach range of the wireless signals are
wide. Connections can typically be made over cities or even countries. Today, the networks we use to make
such connections are actually cellular telephone networks. Networks like GSM (2G) and UMTS (3G) enable
wireless computer connectivity almost worldwide and support transmission of both speach and raw data. [2]
[3]

3.2.2 Wireless Metropolitan Area Networks (WMANs)

Wireless Metropolitan Area Networks, hereby abbreviated as WMANs, are also infrastructure-based networks
built up by a set of base stations. These networks connect users within metropolitan areas such as multiple
buildings on a university campus or multiple office buildings. WMANs can be realized by a number of
interconnected WiFi transmitters located in a way that covers the desirable area with radio signals. Otherwise
it can be realized by using WiMAX that provides wireless coverage over many square kilometers, much greater
than WiFi. WiMAX has the potential to allow wireless mobility over an entire metropolitan area. [3]

3.2.3 Wireless Local Area Networks (WLANs)

Wireless Local Area Networks (WLANs) are networks, which allows users to establish wireless connections
within local areas as e.g. buildings. WLANs can operate in both infrastructure-based and ad hoc mode.
In the infrastructure mode, wireless stations connect to wireless access points that define a finite region of
coverage. These access points bridges the wireless stations and the existing network backbone. The other
alternative, the ad hoc mode, let users connect to each other without having a fixed infrastructure with
access points. Instead the wireless stations connect to each other directly. This mode is only supported
within very a limited area such as a room. Examples of typical WLAN protocols include the IEE 802.11
series (a,b,g), HomeRF and HiperLAN2. Today, the leading WLAN protocol in the consumer market is the
IEEE 802.11g, which has a theoretical maximum data rate of 54Mbps. [2] [3]

3.2.4 Wireless Personal Area Networks (WPANs)

Wireless Personal Area Networks (WPANs) are networks connecting users within a personal operating space,
typically supporting up to a ten meter range. This is the type of network the Peer2Me framework addresses.
The emphasis is on instant connectivity between devices that manage personal data or which facilitate data

24

sharing between small groups of individuals. An example might be spontaneous sharing of documents and
music files between two or more individuals. Another example might be synchronizing data (e.g. a calendar)
between a mobile phone and a computer. The nature of these types of data sharing scenarios is that they
are ad hoc and often spontaneous. The most relevant technologies suitable for WPANs today are Bluetooth,
ZigBee and infrared light. Whereas infrared light demands clear vision between two peers and a maximum
range (distance) of about one meter, Bluetooth is often more suitable due to the use of radio waves instead
of light as transmission medium. Bluetooth uses the unregulated 2.4GHz band, has a maximum data rate of
1Mbps and a signal range of about ten meters. As the Peer2Me framework addresses WPANs and per today
only supports Bluetooth, we will write more about mobile ad hoc networking and the Bluetooth technology
in the following sections. [2] [3]

3.3 Peer-to-Peer Computing

The term ”peer-to-peer computing”, refers to the use of computer networks that relies in the computing
power and bandwidth of the participants (peers) in the network rather than fixed servers offering resources
and services. Peer-to-peer is all about sharing; giving to, and obtaining from a peer community. Peers
typically depend on each other for getting computing resources and information, which are essential for the
system as a whole. Each peer gives some resources and obtains other resources in return [29].

In Figure 3.2 from [29], Milojicic et al. show how all computer systems can be classified as centralized
or distributed. While centralized systems represent single unit solutions, distributed systems consist of
components located at networked computers which communicate and coordinate their actions by passing
messages. Distributed systems can further be classified into a client-server model or a peer-to-peer model.
The difference between these models is that the central unit in the client-server model is a server providing
all services and resources, while the peer-to-peer model has no central unit. Each peer gives some resources
and obtains other resources in return [29].

Figure 3.2: Taxonomy of computer systems

25

3.3.1 Pure or hybrid peer-to-peer

The peer-to-peer model can either be pure or hybrid. According to Lund and Norum [31], the Peer2Me
framework they developed offers a combination of a pure and hybrid P2P architecture. In a pure P2P
model it does not exist any central unit (server) responsible for managing or coordinating the services and
the resources among the peers in the network. All peers are equal and have the same responsibility in the
network. This pure P2P model allows peers to join and leave the network as they wish without affecting the
connection between other peers. An example of a system using the pure P2P model is Gnutella, a system
that offers peer-to-peer sharing of data between computers [29]. The pure P2P model is viewed in Figure
3.3.

Figure 3.3: Pure peer-to-peer model

In a hybrid P2P model there are also connections between each peer, but a central unit (server) provides
certain services to the peers. Figure 3.4 contains the P2P hybrid model. In this model, the peers first contact
a server to obtain meta-information, such as the identity of the peer on which some information is stored,
or to verify access to a specific peer. From then on, the communication between the peers is carried out.
Examples of computer systems using hybrid P2P are file sharing systems such as Napster and iMesh [29].

Selecting a peer-to-peer architecture is often driven by goals such as cost reduction, need for improved
performance, improved scalability, dynamism and ad hoc communication. As earlier mentioned in this
chapter, all peers in a peer-to-peer network provide resources, including bandwidth, storage space, and
computing power. Thus, as nodes arrive and demand on the system increases, the total capacity of the
system also increases. This is not true in a client-server model with a fixed set of servers, in which adding
more clients could mean slower data transfer for all users. The distributed nature of peer-to-peer networks
also increases robustness in case of failures by replicating data over multiple peers and enabling the peers to

26

Figure 3.4: Hybrid peer-to-peer model

find data without relying on a centralized server. With a pure peer-to-peer architecture, there is no single
point of failure in the system [29].

P2P networks are typically used for connecting nodes via largely ad hoc connections. Such networks are
useful for many purposes. Sharing content files, audio files, video files or anything in digital format is very
common. The P2P model is also widely used within instant messaging applications and is well suited for
real time communication since it does not rely on a central server to collect and relay data [29].

3.4 Mobile Ad Hoc Networking

Mobile ad hoc networks, abbreviated MANETs, are networks formed dynamically by an autonomous system
of mobile nodes that are connected via wireless links without using an existing network infrastructure.
MANETs allows users to connect spontaneously with other users within the range of the wireless network
signals [3]. This signal range can be seen on as a digital sphere surrounding the user (see Figure 3.5). When
a user carrying a mobile device acting as a node moves out of the sphere, the connection between this node
and the nodes inside the sphere is broken.

No infrastructure needed and quick deployment make mobile ad hoc networks perfect for supporting ad hoc
communication between people and very suitable for emergency situations like natural or human induced
disasters, military conflicts, emergency medical situations etc.

Network technologies supporting mobile ad hoc networking can mainly be found within the Wireless Personal

27

Figure 3.5: A digital sphere around the user

Area Network (WPAN) category described in Chapter 3.2.4. Examples of WPAN technologies would be
Bluetooth, ZigBee and infrared light. A WPAN can either be a piconet or a scatternet. As the Peer2Me
framework for the time being only supports Bluetooth, we will focus on Bluetooth while explaining the
differences between a piconet and a scatternet. The explanation can be read in Chapter 5.2.

28

CHAPTER 4

Software Architecture

This chapter contains an introduction to software architecture. First, we will try to explain what software
architecture is, and then present factors that are motivating when creating an architecture. The theory in
this chapter will constitute a basis for understanding the architectural decisions we present in Chapter 9,
Design.

4.1 What is Software Architecture?

An architectural view of a system is abstract and distills away details of implementation. The focus is on
the behavior and interaction of the system elements. In Software Architecture in Practice [5], the following
definition of software architecture is provided:

”The software architecture of a program or computing system is the structure or structures of
the system, which comprise software elements, the externally visible properties of those elements,
and the relationships among them.”

Architecture is a crucial part of the software design process. This because deciding the software architecture
is the first step toward designing a system with the desired qualities and properties. Depending on the
desired qualities, different architectural patterns can be used to achieve these goals. Architectural patterns
can be thought of as general repeatable solutions to common problems, describing elements and relation
types together with a set of constraints on how they may be used. A common architectural pattern is the
client-server pattern. Here, client and server are element types, and the relation is described by the protocol
they use to communicate [5] [27]. A description of the patterns used in the design of the Peer2Me framework
we are about to present in Part III, Redesigning the Peer2Me Framework v1.0, can be read in Chapter 9.3,
Design Patterns.

29

4.2 Creating an Architecture

There is no such thing as an inherently good or bad architecture. Architectures are either more or less fit.
An architecture is the result of several business and technical decisions. Usually, several people are interested
in the construction of a software system. These people are called stakeholders, and often includes both the
project manager, the developers, the maintainers, the customer and the end users. As these stakeholders
have different concerns depending on which properties and qualities they consider most important, they
will try to influence the decisions taken in the design process in a way that protects their own interests.
Besides influence by stakeholders, architecture can also be influenced by the developing organization, by the
background and experience of the architects, and by the technical environment. If the organization and/or
the developers have positive experiences using a specific architecture, chances are good they will choose the
same architecture again.

In Software Architecture in Practice [5], some general rules of thumb to follow when designing an architecture
are presented. The essence of these recommendations are presented in the following.

Process recommendations:

∗ The architecture should be developed by a single architect or a small group of architects with a leader.

∗ The architect should have the functional requirements that the system (and architecture) must satisfy.

∗ The architecture should be well documented in several views.

∗ The architecture should be reviewed by all stakeholders.

∗ The architecture should be analyzed and evaluated in an early phase, before it is too late to change it.

∗ The implementation of the architecture should be incremental, starting with the creation of a ”skeleton”,
and adding functionality through several increments.

Structural recommendations:

∗ The architecture should consist of well defined modules built on the principles of information hiding
and separation of concerns.

∗ Each module should have a well defined interface, hiding changes and allowing developers to work
independently of each other.

∗ Quality attributes should be achieved using known tactics.

∗ The architecture should not depend on a specific version of a tool.

∗ Modules producing data and modules consuming data should be separated.

30

4.3 Quality Attributes

Achievement of desired quality attributes is critical to the success of a system. Desired qualities can be
extracted from both system requirements and the interests of the stakeholders. Achieving quality attributes
does not depend on the design alone, nor the implementation or the deployment, but the entire development
process. It is however critical to the realization of many qualities that they already become designed in at
the architectural level. There are usually more than one quality attribute involved in a system. A set of
well-known quality attributes are listed in the book Software Architecture in Practice [5] and we will present
these attributes in the following where we also mention some architectural tactics that can be used to achieve
them.

4.3.1 Usability

The definition of Usability:

”Usability is concerned with how easy it is for the user to accomplish a desired task and the kind
of user support the system provides.”

Usability is usually desirable from both a developer/maintainer perspective and an end-user perspective.
Tactics to achieve good usability from a developers/maintainers perspective, are typically separation of user
interfaces from the rest of the application and to provide a solid, easily understood documentation of the
architecture and the source code. An end-user would typically focus on the quality of the feedback given
by the system, giving information about what the system is doing. To provide good usability, the system
should support user initiative based on the feedback, e.g. choose ”cancel” or ”undo” [5].

4.3.2 Performance

Performance:

”Performance is about timing. Events (interrupts, messages, requests from users, or the passage
of time) occur, and the system must respond to them.”

To achieve high performance, decreasing resource demand and managing resources effectively is crucial.
Optimizing algorithms, reducing computational overhead and reducing the number of events processed will
contribute to decrease the resources demanded of a system. Other tactics increasing the performance are
introduction of concurrency (threading), use of caching, and an increase of available resources (e.g. faster
CPU, more RAM, faster network etc.) [5].

4.3.3 Modifiability

A definition of Modifiability:

”Modifiability is about the cost of change. It brings up two concerns; What can change (the
artifact)? - When is the change made and who makes it (the environment).”

31

The goal of modifiability tactics is to control the time and cost to implement, test, and deploy changes.
To achieve this goal semantic coherence between modules should be maintained and modules should be
generalized. To prevent ripple effects when modifying modules in a system, information should be hided
within the modules, and communication paths between modules reduced to a minimum. Other tactics
contributing to great modifiability are use of configuration files and polymorphism [5].

4.3.4 Availability

This is said about Availability:

”All approaches to maintaining availability involve some type of redundancy, some type of health
monitoring to detect a failure, and some type of recovery when a failure is detected.”

To achieve good availability, tactics detecting faults, recovering from faults and tactics that prevents failures
are needed. Three widely used tactics for detecting faults are ping/echo, heartbeat and exceptions. To
recover from faults, tactics like voting, use of redundancy and support for rollback could be used. Fault
prevention can be achieved by using transactions, a process monitor and/or removal from service [5].

4.3.5 Security

Tactics for achieving security can be divided into three different categories; resisting attacks, detecting attacks
and recovering from attacks. In Software Architecture in Practice [5] we find this analogy:

”Putting a lock on your door is a form of resisting an attack, having a motion sensor inside of
your house is a form of detecting an attack, and having insurance is a form of recovering from
an attack.”

To resist attacks, tactics like authentication and authorization of users could be used. Maintaining data
confidentiality and integrity, and limit exposure and access are also well-known tactics to achieve better
security. To detect attacks, systems should have an intrusion detection system consisting of sensors able to
detect attacks. Recovering from attacks could be made possible by using e.g. redundancy and/or support
for rollback [5].

4.3.6 Testability

The goal of Testability as a quality attribute is:

”Allow easier testing when an increment of software development is completed.”

Being able to manage input and output data is essential to achieve good testability. A well-known tactic
is Record/playback where both input and output data could be recorded and compared each time the
system is tested. Another tactic is to separate interface from implementation. This allows substitution of
implementations and could be very useful [5].

32

CHAPTER 5

Technology

This chapter reviews and updates the technology review performed in our depth study [39]. This includes
Java 2 Micro Edition which is the development platform the framework is built upon, and Bluetooth which
is the wireless network medium the framework supports.

5.1 Java2 Micro Edition

Java 2 Micro Edition (J2ME) is Sun Microsystems’ contribution to small mobile devices with limited CPU
power, memory size and storage capacity. J2ME was introduced in June 1999, and is basically a platform
which provides a robust, flexible environment for applications running on mobile phones, PDAs and other
mobile devices [17]. The platform delivers the power and benefits of Java technology, and includes a broad
range of built-in network protocols. The J2ME platform is supported by leading electronics vendors and
used by companies all over the world. Today the platform is deployed on millions of mobile devices. Due to
the diversity among devices, the J2ME architecture also comprises a variety of optional packages that can
be added and used to construct a runtime environment that perfectly fits the requirements of a particular
assortment of devices [26]. Such optional packages can for example add support for database connectivity,
wireless messaging, multimedia, Bluetooth, or web services. Because the packages are modular, developers
can avoid carrying the overhead of unnecessary functionality by including only the packages an application
really needs [26]. The Peer2Me framework [31] is currently implemented with a Bluetooth [16] network
module, and uses an optional package called JSR-82 which adds support for Bluetooth to the J2ME platform.

5.1.1 J2ME Architecture

The J2ME architecture is composed of three scalable layers; Java Virtual Machine (JVM), Configurations,
and Profiles [17]. The architecture is viewed in Figure 5.1.

33

Figure 5.1: J2ME Architecture

Java Virtual Machine

The Java Virtual Machine layer is an implementation of a Java virtual machine that is customized for a
particular devices host operating system and supports a particular J2ME configuration [25] [17].

The Java Virtual Machine (JVM) supporting small mobile devices with slow processors and limited memory
is called the Kilobyte Virtual Machine (KVM). This virtual machine is in the range of 40 to 80 Kbytes - hence
the name Kilobyte Virtual Machine. Devices targeted by the KVM have typically 16- or 32-bit processors
and a minimum total memory of 128 kilobytes. To launch an application on top of KVM, a Java Application
Manager (JAM) serves as an interface between the native operating system on the device and the KVM [25]
[17].

Configurations

The Configuration layer defines the minimum set of Java Virtual Machine features and core Java class
libraries available on a particular category of devices. This category of devices represent a particular market
segment and can be thought of as the lowest common denominator of Java platform features that a developer
can assume will be available on all devices [25] [17].

Currently, there exists two J2ME configurations; the Connected Limited Device Configuration (CLDC),
and the Connected Device Configuration (CDC). CLDC is the smaller of the two configurations, designed
for devices with slow processors and limited memory. This would typically be mobile phones, pagers and

34

PDAs [32]. Such devices usually have either 16- or 32-bit CPUs, and a minimum of 128 KB to 512 KB of
memory available for the Java platform implementation and associated applications. The other configuration
available, CDC, is a superset of CLDC and designed for devices that have more memory, faster processors,
and greater network bandwidth, such as TV set-top boxes, in-vehicle telematics systems, and high-end
PDAs. CDC includes a full-featured Java virtual machine, and a much larger subset of the J2SE platform
than CLDC. Most CDC-targeted devices have 32-bit CPUs and a minimum of 2MB of memory available for
the Java platform and associated applications [25] [17].

Profiles

The Profile layer defines the minimum set of Application Programming Interfaces (APIs) available on a
particular group of devices. Profiles are implemented upon a particular configuration. The idea is that a
category would include several different groups of devices. Devices that are members of the same category
have fundamental features in common, while devices that are members of the same category and the same
group offers equal functionality to the developer. When implementing applications in J2ME, applications
are written for a particular profile and are thus portable to any device that supports that profile, i.e. devices
that can be classified into the same category and group. A device can however support multiple profiles [25]
[17].

The only profile currently developed for the CLDC configuration is the Mobile Information Device Profile
(MIDP). It is designed for mobile phones and entry-level PDAs and offers core application functionality
required by mobile applications. This includes API classes related to interface, persistence storage,
networking, and application management. Together with the CLDC, MIDP provides a complete J2ME
runtime environment. For the CDC configuration there are developed several profiles. The Foundation
Profile, the Personal Profile and the Personal Basis Profile all adds different functionality for different types
of devices supporting CDC [25] [17].

MIDlets

A Java application intended for a CLDC device is called a MIDlet [32], and must be formatted into a
Java Archive (a JAR file) to run on the device. To enable distribution of third party MIDlets, developers
must generate metadata files associated with each JAR file. This metadata files are called Java Application
Descriptor files (JAD files) and contains information that the Java Application Manager (JAM) uses to verify
and configure the MIDlet at loading time [17].

5.2 Bluetooth

This chapter gives a brief introduction to the Bluetooth technology. As the Peer2Me framework currently
only uses Bluetooth as wireless network medium, a deeper understanding of how Bluetooth works will be
useful to perform our redesign of the framework.

35

5.2.1 What is Bluetooth?

Bluetooth is a low cost, low power, short-range radio technology intended to replace cable connections
between mobile phones, PDAs and other mobile devices. It can clean up your desk considerably, making
wires between your workstation, mouse, laptop computer etc. obsolete. The idea that resulted in the
Bluetooth technology was born in 1994 when the Swedish company Ericsson Mobile Communications decided
to investigate the feasibility of a low-power, low-cost radio interface between mobile phones and their
accessories. Ericsson soon realized that for the technology to succeed, there must be a critical mass of mobile
devices using their new short-range radio technology, so in 1997 they decided to give the technology away for
free. Only a year later, the five companies Ericsson, IBM, Intel, Nokia and Toshiba held simultaneous press
conferences in England, USA and Japan announcing that the companies would join to develop a free, open
specification for short-range wireless connectivity. The new specification was named ”Bluetooth”, and the
five companies created a ”Bluetooth Special Interest Group” (SIG) that would be responsible for developing
the new specification [28]. Today, the Bluetooth SIG promoter members include: Agere, Ericsson, IBM,
Intel, Microsoft, Motorola, Nokia, and Toshiba. Promoter companies are highly engaged in the strategic and
technical development of Bluetooth wireless technology [36].

5.2.2 Origin of the name

The Bluetooth technology is named after a tenth-century Danish Viking King, Harald Bl̊atand (english;
Harald Bluetooth), who united and controlled Norway and Denmark. Bl̊atand was King of Denmark and
Norway from 935 and 936 respectively, to 940, and contributed greatly to the unification of warring tribes from
Denmark (including Sk̊ane, present-day Sweden, where the Bluetooth technology was invented) and Norway.
The name Bluetooth was chosen because of Harald’s ability to unite. The developers of Bluetooth hoped that
the Bluetooth technology would unite the world as Harald Bluetooth united Norway and Denmark. Bluetooth
likewise was intended to unify different technologies like computers and mobile phones. The Bluetooth logo
merges the Nordic runes analogous to the modern Latin H for ”Harald” and B for ”Bluetooth”. The logo can
be seen in Figure 5.2

Figure 5.2: The Bluetooth logo

5.2.3 Communicating via Radio Waves

A radio wave is a pulse of electromagnetic energy. Radio waves are generated when a transmitter oscillates
at a specific frequency, and the faster it oscillates, the higher the frequency gets. To amplify and broadcast

36

the radio waves, an antenna is used, and to receive the radio signals a radio receiver is needed. Because
different frequency ranges are used for different types om communications, the receiver must be tuned to a
specific frequency.

Bluetooth operates in the license-free Industrial Scientific Medical (ISM) band at 2.4GHz [28]. This band is
currently used by a wide range of devices such as:

∗ 2.4GHz cordless house telephones

∗ 802.11 wireless computer networks

∗ Baby guards/monitors

∗ Garage-door openers

∗ Some emergency radios

∗ Microwave ovens

In order to avoid interfering with other protocols using the 2.4GHz band, the Bluetooth protocol utilize
a technique called ”spread spectrum frequency hopping”. This means that the Bluetooth radio signals hops
among 79 frequencies between 2.402GHz and 2.480GHz (at 1MHz intervals), up to 1600 times per second.

Bluetooth devices are available in three different power classes [28]:

∗ Class 1 (100 mW): A range at up to 100 meters.

∗ Class 2 (2.5 mW): The most common used class. A range up to 10 meters.

∗ Class 3 (1 mW): A range up to a maximum of 1 meter. Rarely used.

5.2.4 Bluetooth Transfer Rate

In theory, implementations with the Bluetooth 1.0 Specification should be able to reach a maximum speed
of 1 Mbps. This is however the gross data transfer rate (including the overhead), so the perceived rates are
some lower. Bluetooth supports both symmetric and asymmetric transmission. At symmetric transmission
(same speed in both directions), the maximum speed is 432.6Kbps. At asymmetric transmission (high speed
in one direction, low speed in the other), the maximum speed are 721Kbps out and 56Kbps back. These
speeds applies however just to data transmission. Voice signals are transferred with a maximum rate of
64Kbps in both directions [28].

The Bluetooth 2.0 Specification is backwards compatible with version 1.0. The main enhancement is the
introduction of Enhanced Data Rate (EDR) of 2.1 Mbit/s. Technically devices supporting version 2.0 have a
higher power consumption, but the three times faster rate reduces the transmission times, effectively reducing
power consumption to half that of 1.0 devices [35].

37

5.2.5 Bluetooth Security

Bluetooth uses the SAFER+ 1 [33] algorithm for authentication and key generation. The E0 2 [23] stream
cipher is used for encrypting packets. This makes eavesdropping on Bluetooth-enabled devices more difficult.

5.2.6 Piconets and Scatternets

When two or more Bluetooth devices establish a connection all within the same signal range, we say that they
have created a special type of personal area network (PAN) called a piconet (see Figure 5.3). Theoretically,
a Bluetooth piconet can consist of up to a maximum of eight interconnected Bluetooth devices. While one
device acts as a master node, the rest act as slaves [28].

Figure 5.3: A piconet comprising four nodes

A device in one piconet can also communicate with another device in another piconet. This would
interconnect the piconets into a scatternet shown in Figure 5.4. To establish communication between piconets
in a scatternet, some nodes will have to get the responsibility for forwarding packets between piconets on
behalf of other nodes. This would require advanced routing algorithms [28] [40].

1SAFER+ (Massey et al, 1998) was submitted as a candidate for the Advanced Encryption Standard and has a block size
of 128 bits. The cipher was not selected as a finalist. SAFER+ was included in the Bluetooth standard as an algorithm for
authentication and key generation.

2The E0 stream cipher generates a sequence of pseudorandom numbers and combines it with the data using the XOR
operator. The key length may vary, but is generally 128 bits.

38

Figure 5.4: A scatternet comprising three piconets

39

40

CHAPTER 6

The Original Peer2Me Framework

Peer2Me is the name of a framework for developing mobile collaborative applications on mobile phones
utilizing Personal Area Networks (PANs). The first version of the Peer2Me framework, which we will redesign
and optimize in this master thesis, is the result of a depth study [30] and a master thesis [31] written by
Lund and Norum during their studies at the Norwegian University of Science and Technology (NTNU). The
framework is developed using J2ME technology [26] and currently supports Bluetooth as wireless network
medium. Hereby we will refer to the original version of the Peer2Me framework as Peer2Me version 1.0
(v1.0), and the new improved version will be named Peer2Me version 2.0 (v2.0).

This chapter contains an overview of the requirements specified for Peer2Me v1.0. It also contains an
explanation of essential domain concepts and a description of the Peer2Me v1.0 architecture. Later in this
report, we will present a new set of requirements and a modified architecture, documenting Peer2Me v2.0.
The original requirements, concepts and the design can be read in detail in the Peer2Me depth study from
2004 [30] and the Peer2Me master thesis from 2005 [31].

6.1 Peer2Me v1.0 Domain Concepts

Before we present Peer2Me v1.0 [31] with its properties and design, we will in this chapter explain some
central concepts used in v1.0 of the framework. These concepts and the relations between them are essential
for understanding the framework [21]:

Framework: ”A framework is a set of classes that embodies an abstract design for solutions to a family of
related problems.”

Node: A node is a logical representation of a peer.

41

Network: The network module in the framework is an abstraction of the network layer. Applications
built upon the Peer2Me framework will not use the network layer directly, but access it through the
framework instance.

Service: A service is provided by an application and supported by zero or more nodes.

Group: A group is a collection of nodes providing the same service and communicating using a homogenous
network. Every group must have a master node administering the group. Once the group has a master
node, remaining nodes will act as slaves using the master node to communicate with each other.

Message: A message is the entity that can be exchanged between nodes connected in a group.

Application: An application is the software running on a mobile device using the Peer2Me framework.

6.2 Peer2Me v1.0 Functional Requirements

When eliciting the requirements for the Peer2Me framework, Lund and Norum chose the requirements
composed by Sveen and Kirkhus in [38] as a basis. Sveen and Kirkhus had, however, set out to design and
implement a full scale peer-to-peer framework for mobile collaboration. This included interconnection of
several Bluetooth piconets requiring advanced routing protocols for sending messages using multiple hops to
reach their destinations. To ensure that the framework could be realized, Lund and Norum chose to remove
some of the requirements specified by Sveen and Kirkhus [38]. As a result of the work done by Lund and
Norum, an implemented version of the Peer2Me framework is available, and according to their master thesis
[31], the framework has functional requirements as listed in Table 8.1.

6.3 Peer2Me v1.0 Non-functional Requirements

The non-functional requirements for the Peer2Me framework are listed in Table 6.2.

6.4 Peer2Me v1.0 Design

This chapter contains a brief overview of the design of Peer2Me v1.0. A more detailed explanation of the
design can be read in Lund and Norums master thesis [31]. In the following, we will present the Peer2Me
v1.0 packages and explain the functionality in the framework.

When designing the Peer2Me framework, Lund and Norum chose to focus on developing a flexible framework
highly independent of network technology. The intention was to reduce the work needed to migrate the
framework to other network mediums such as Bluetooth, ZigBee, WLAN and others. To achieve this, a
layered architectural model as viewed in Figure 6.1 was chosen.

The leftmost part of the figure shows the layers of the Peer2Me framework. Applications are strictly restricted
to use an interface (layer) provided by core functionality offered from underlying layers. Further, this layer
(named ”Framework” in Figure 6.1) uses a generic network interface to control technology specific Network

42

Peer2Me v1.0 Functional
Requirements

Description

FR 1 The framework supports mobile phones.
FR 2 The framework supports creation of ad hoc networks.
FR 3 The framework supports connection to an existing ad hoc network.
FR 4 Nodes in a network are able to exchange messages.
FR 5 The framework can create groups of nodes related to a specific

application.
FR 6 The framework supports multicasting and broadcasting of

messages within a group.
FR 7 The framework can search for other mobile phones supporting the

same service.
FR 8 The framework supports creation of groups as closed or open.
FR 9 The framework allows a node to try to join a closed group.
FR 10 The framework allows users in a closed group to reject other nodes

to join the group.
FR 11 The framework allows a node to join an open group.
FR 12 The framework is able to present decision messages to the user.
FR 13 The framework is able to present information to the user about

framework related events.
FR 14 The framework supports different kinds of network mediums.
FR 15 The framework offers an interface which makes the applications

independent of the underlying network medium that is in use
within the system. Because of this interface, the applications that
are using the system do not need to make any kinds of adjustments
to fit a specific network implementation.

FR 16 The framework is able to identify where a transfer originated from.
The purpose is to be able to send direct replies to a given device.

FR 17 The framework includes mechanisms for storing objects.
FR 18 The framework includes mechanisms for retrieving stored objects.

Table 6.1: Peer2Me v1.0 Functional Requirements

Non-Functional
Requirements

Description

Non-FR 1 The framework is able to transfer messages fast enough for
real time interaction. It is said to be ’fast enough’ as long as
normal length text messages give the impression of appearing
instantly on the remote phones.

Non-FR 2 The framework is able to detect the disconnection of nodes
within a group and notify relevant applications and nodes
about this.

Non-FR 3 The framework adapts to errors that arise due to the unstable
nature of wireless networks.

Non-FR 4 The framework prevents applications from getting access to
messages not addressed to them.

Table 6.2: Peer2Me v1.0 Non-Functional Properties

43

modules. It is this module/layer that easily can be substituted and implemented with technologies such as
Bluetooth, ZigBee or WLAN. The bottom layer is J2ME itself along with the specific network technology
APIs. The rightmost part of the figure labeled ”Domain” contains the abstractions of the domain concepts
Node, Group, Service and Message defined in Chapter 6.1.

Each layer in the architectural overview in Figure 6.1 is related to a specific package in the Peer2Me framework
v1.0. A logical view of these packages is shown in Figure 6.2.

Figure 6.1: Architectural overview of the Peer2Me framework

The framework package contains the functionality offered to the applications using the Peer2Me framework
v1.0. The domain package relates directly to the box labeled domain in the overview in Figure 6.1. The
package named network contains the network interface that the framework uses to communicate with the
network module. The Bluetooth package is a specific implementation of the network module layer, and
can, as earlier mentioned, be easily replaced by network packages supporting other network technologies. In
addition to the packages related to the layers in Figure 6.1, a package named util is added. This package
contains different kinds of utilities and provides support functionality for the applications using the Peer2Me
framework v1.0. For a throughout description of all classes in each of the packages, read Chapter 8.4 in Lund
and Norums master thesis [31].

6.5 Known Problems

In our depth study from 2005 [39], we analyzed and evaluated Peer2Me framework v1.0 thoroughly and came
up with quite a few suggestions for improvements. These were the main problems with Peer2Me v1.0:

44

Figure 6.2: A logical view showing the main packages in the Peer2Me framework v1.0

∗ We found both the documentation and the commenting in the code to be inadequate and this caused
us to spend too much time investigating how the different parts of the Peer2Me v1.0 work together
and how to integrate an application with the framework.

∗ We found the architecture of Peer2Me v1.0 somewhat cumbersome and this caused us to spend the
first couple of weeks trying to figure out how to develop our application. In order to use the framework,
one must create a group, a service, set listeners, messagesubscribers, exceptionhandlers, monitors etc.
Finding out how to do this was very time-consuming.

∗ We also discovered some bugs in Peer2Me v1.0. The search for other devices failes sometimes and the
framework does not discover that other devices become disconneted. Sending a text containing \n from
one node to another does not work. The transfer of the text is ended when \n occur.

∗ The framework uses the Debug MIDlet implemented along with the development of Peer2Me v1.0,
therefore it cannot be compiled without this MIDlet.

∗ The bluetooth network layer is not entirely separated from the rest of the framework. According to
Lund and Norum [31], the specific network layer can easily be replaced without affecting the framework
itself. This is not the case at all, since many of the framework classes that don’t belong to the network
layer contains Bluetooth specific code. Even the MIDlets are required to choose to act as a master or
a slave, which is specific for the Bluetooth protocol.

∗ Exceptions that occur in the framework are not thrown by the methods causing the errors. Instead,
a single method is called every time an exception occur. This is a bad solution, because doing it this
way prevents the MIDlet developers from taking action at the point where the exception occurred.

45

In addition to find smart solutions to the problems stated above, the Peer2Me framework v1.0 lacks important
functionality like the possibility to send files of any kind over the network.

46

CHAPTER 7

Related Work

In this chapter we will look into projects that are similar to Peer2Me in technology and intention. The
concept must include peer-to-peer topography, some sort of collaboration and be intended for use on mobile
devices.

7.1 JXTA

JXTA is short for Juxtapose, that means side by side. It draws a parallel between peer-to-peer and
client/server, web based computing - the two are juxtapose.

The JXTA project [24] was started by some researchers at Sun Microsystems. It’s goal is to explore a
vision of distributed network computing using peer-to-peer topology, and to develop basic building blocks
and services that would enable innovative applications for peer groups. It is now a open source project under
the Apache Software License and has the following three objectives:

∗ Interoperability - across different peer-to-peer systems and communities.

∗ Platform independence - multiple/diverse languages, systems, and networks.

∗ Ubiquity - every device with a digital heartbeat.

JXTA is defined to be independent of programming languages, so that it can be implemented in C/C++,
Java, Perl, and numerous other languages. The Java binding, JXTA2SE, is the most mature of these. The
protocol is specified as a set of XML messages. This means heterogeneous devices with completely different
software stacks can interoperate with the JXTA protocols. The Peers in a JXTA based network can advertise
and discover other resources, communicate with each other via ”pipes” and cooperate dynamically to form
peer groups.

47

Many of these features resembles those of the Peer2Me framework, but there are some differences:

∗ The Java binding of JXTA, JXTA Java SE, requires Java 2 Standard Edition (J2SE) to run. This
makes it unsuited for most mobile devices on the market.

∗ There is no support for Bluetooth as a network medium, which also makes it unsuited for mobile
devices since Bluetooth is the most common means of communication on such devices.

7.1.1 JXTA-J2ME (JXME)

To overcome this limitations a side project called JXTA-J2ME (JXME) is started [7]. The purpose of
JXTA-J2ME is to provide a JXTA compatible functionalities on devices using the Connected Limited Device
Configuration (CLDC) and the Mobile Information Device Profile 2.0 (MIDP), typically a mobile phone or
a PDA.

The JXME was first designed as a proxy based peer-to-peer solution, relying on a central device acting
as a proxy between the peers. This prevents ”real” peer-to-peer operated, ad hoc networks. In the newest
version however, this proxy is removed. The main disadvantage with both solutions is the lack of Bluetooth
support.

7.1.2 Jadabs-CLDC

Jadabs-CLDC was developed during the semester work JXME-Bluetooth for a Mobile Phone (J2ME/CLDC)
by René Müller at the Information and Communication System Group of the Swiss Federal Institute of
Technology (ETH) Zurich [10]. Jadabs is a dynamic lightweight container for small devices. Combined with
the JXME messaging system it can be used to build applications and service for a dynamical environment.
The original Jadabs version could not run on a CLDC/MIDP based system, but Jadabs-CLDC is ported to
cope with this limitation.

Jadabs-JXME-BT is a component for Jadabs-CLDC that implements a Bluetooth Transport Layer using
the JSR-82 API for controlling the Bluetooth device. A peer in a JXME-BT initiated peer-to-peer network
can operate in two different modes; normal peer and rendezvous peer. Normal peers can typically be a
mobile phone, while more power devices like notebooks are used as rendezvous peers. A rendezvous peer can
communicate via several interfaces simultaneously, e.g. Bluetooth and TCP/IP.

7.2 Ergon - J2ME Wireless Application Framework

The J2ME Wireless Application Framework is developed by Ergon Informatik AG, Zuurich. The framework,
as described on their webpage [9], offers a complete set of client side and server side technologies, components
and tools for building end to end Java based Wireless Business solutions and services. Some of the features
include client and server components for encryption, authentication, user interface, data communication
and server side data management. It supplements the standard CLDC and MIDP libraries with a set of

48

additional classes and development tools and supports open standards like SSL, HTTP and TCP/IP for
communication.

7.3 BEDD

BEDD is a software package containing several applications supporting mobile collobaration and commu-
nication. BEDD is developed and maintained by the BEDD Corporation [8] and is currently implemented
for the Symbian Series 60 OS. BEDD was first introduced in Singapore in May 2004, but is now introduced
worldwide.

BEDD utilize Bluetooth as transport medium for message exchange between connected devices. There
exists little information about how BEDD is actually implemented. This is due to the commercial nature
of the software. Anyhow the structure is a typical framework with a central core module with separate
applications implementing different types of functionality.

We have included a description of some of the applications below:

BEDDmates BEDDmates features a short profile describing yourself that is shared with all BEDD enabled
phones in the proximity. A match analysis is performed and the user is alerted when the criteria of a
match is met. When these ”BEDDmates” are registered one can use all the other BEDD applications
to communicate and interact with them.

BEDDbuddies Users that are added to the BEDDbuddies list will generate a notification when they come
within range of you. They can then be contacted via BEDDtalk, BEDDchat, SMS, MMS, Call or
E-mail.

BEDDshare Allows users to share software and files with other connected users. The application uses the
recipients SMS inbox and built in Bluetooth to transfer the selected data.

7.4 JSR-259: Ad Hoc Networking API

The JSR-259 Ad Hoc Networking API [13] is a Java Community Process (JCP) started as a joint effort of
several mobile phone vendors. These include BenQ/Siemens, Motorola, Panasonic and Nokia. In addition
Sun Microsystems also participates in the development. The API will support communication between nodes
in an ad hoc network implemented on mobile devices with J2ME support. The idea is that the API will
enable developers to create peer-to-peer applications running on mobile devices.

Some of the features of the completed API is described in the JSR-259 Early Draft Review [13] as:

∗ Service Discovery

∗ Service Registration

∗ Service Availability Alert

49

∗ Service Capability Inquiry

∗ Remote Service Consumption

7.5 Conclusion

There are not many active projects in this research field and very few of them are similar enough to
be compared with Peer2Me. The Jadabs-CLDC project stands put as the solution most similar in both
technology and usage with Bluetooth as communication medium and J2ME implementation platform. Our
challenge will be to create a improved user experience and enhance the Usability for the developers using
the Peer2ME framework in comparison with the Jadabs solution.

50

Part III

Redesigning the Peer2Me Framework

v1.0

51

CHAPTER 8

Requirements

In this chapter we will describe the requirements we have elicited for this project. The requirements are
divided into three types; functional, non-functional and environmental.

8.1 Functional Requirements

As the intent of this project is to redesign and optimize the Peer2Me framework, rather than creating a new
framework from scratch, we will try to use as many of the functional requirements described in Lund and
Norum’s master thesis [31] as possible. This is because we want to keep most of the framework’s properties
and concentrate on improving the usability for developers. The functional requirements specified in Lund
and Norum’s master thesis [31] are shown in Table 8.1.

In Chapter 7.1 of Lund- and Norum’s master thesis [31] the Peer2Me framework’s Functional Requirements
are presented in Table 7.1. Since we are using an adapted UP development process, we will present these
requirements in the form of Use Cases in the following. If necessary we will remove and add requirements
to best suite our vision for the redesigned framework.

In our depth study [39] we gave a short description of the Use Case concept and we will now repeat this
before we present the Use Cases of this project.

Use Cases are used to capture and document the potential requirements of the system [1]. A typical Use
Case Modeling process proceeds as this:

∗ Find the system boundary - What is part of the system and what is external to the system. The
boundary is drawn as a box in the diagram, with the actors outside the box and the Use Cases inside
the box.

53

Functional
Requirements

Description

FR 1 The framework must support mobile phones.
FR 2 The framework must support creation of ad hoc networks.
FR 3 The framework must be able to connect to an existing ad hoc network.
FR 4 Nodes in a network must be able to exchange messages.
FR 5 The framework must be able to create a group of nodes related to a specific

application.
FR 6 The framework must support multicasting and broadcasting of messages within

a group.
FR 7 The framework must be able to search for other phones supporting the same

service.
FR 8 The framework must support the creation of groups as closed or open.
FR 9 The framework must support to allow a node to try to join a closed group.
FR 10 The framework must allow users in a closed group to reject other nodes to join

the group.
FR 11 The framework must support to allow a node to join an open group.
FR 12 The framework must be able to present decision messages to the user.
FR 13 The framework must be able to present information to the user about

framework related events.
FR 14 The framework must be able to support different kinds of network mediums.
FR 15 The applications must be independent of what network medium that is

currently in use within the system. The application that is using the system to
handle network traffic should not have to know what kind of network medium
that is used by the device or make any kinds of adjustment to fit a specific
network implementation.

FR 16 The framework must be able to identify where a transfer originated from. To
be able to send direct replies to a given device, it must be possible to see where
a transfer originated from.

FR 17 The framework must include a mechanism for storing objects.
FR 18 The framework must include a mechanism for retrieving stored objects.

Table 8.1: Peer2Me Functional Requirements

∗ Find the actors - An actor specifies a role that some external entity adopts when interacting with the
system directly. It may be either a user or another system.

∗ Find the Use Cases:

◦ Specify the Use Case - After creating a Use Case diagram and identifying the actors and main
Use Cases, each of the Use Cases must be specified. We have chosen to create only one top level
Use Case diagram for the system, namely Use Case 0 (see Figure 8.1). Then we specify the Use
Cases found in Chapter 8.1.1.

◦ Create scenarios - For complex Use Cases one can choose to make scenarios based on the Use Case.
A scenario represents one specific path through a Use Case. We will not produce any scenarios
for any of our Use Cases.

∗ In addition a Use Case model contains several relationships between actors and the Use Cases.

54

Identifying actors To identify the actors we have to consider who or what are going to use the system,
and what roles they have in connection to the system. Some of the questions one can ask that helps
identifying actors:

∗ Who or what uses the system?

∗ What roles do they play?

∗ Who installs the system?

∗ Who maintains the system?

Actors are always external to the system and they interact directly with the system. Furthermore they
represent roles related to the system and not actual persons or objects, but one person or thing may
play many roles simultaneously. The actors of a Use Case ought to have a short and descriptive name
that clearly states the actors’ role or function.

Use Case specification There are no UML standard for specifying Use Cases, but the template we will
use for our Use Cases (e.g. Use Case 1 in Table 8.2) is in common use. In addition to a name and a
description the Use Cases consist of several elements:

∗ Actors - A list of the actors involved.

∗ Preconditions - What must be true before the Use Case can start? Constraints on the state of
the system

∗ Flow of events - The steps of the Use Case under normal circumstances.

∗ Alternative flow of events - If something goes wrong in the normal flow of events this flow come
into use.

∗ Postconditions - These conditions must be true at the end of the Use Case.

The top level Use Case diagram for the Peer2Me framework is illustrated in Figure 8.1.

8.1.1 Use Cases

In this chapter all the Use Cases representing the functional requirements of the Peer2Me framework are
presented using the template described above.

55

Figure 8.1: Use Case 0 model

56

Use Case : Establish a connection

ID: UC1
Actors:

∗ MIDlet A...n

Preconditions

1. The Peer2Me framework has to be installed on a mobile device with network support.

Flow of events

1. The MIDlet starts.

2. The MIDlet makes an ”initiate connection” call on the Peer2Me framework.

3. The Peer2Me framework initiates a search for other devices.

4. A list of discovered devices running the Peer2Me framework is presented to the MIDlet.

5. One or several devices are selected, and the MIDlet asks the Peer2Me framework to connect
to the selected device(s).

Postconditions

1. The ad-hoc network is established.

Alternative flow 1

1. The MIDlet starts.

2. The MIDlet makes an ”initiate connection” call on the Peer2Me framework.

3. The Peer2Me framework initiates a search for other devices.

4. No devices are found.

Postconditions

1. No ad-hoc network is established.

Table 8.2: Use Case 1

57

Use Case : Create group

ID: UC2
Actors:

∗ The Peer2Me framework

Preconditions

1. The Peer2Me framework has to be initiated on a mobile device with network support.

Flow of events

1. The MIDlet makes an ”initiate” call on the Peer2Me framework.

2. The framework creates a group and adds a representation of the local device.

Postconditions

1. A group is created.

Table 8.3: Use Case 2

58

Use Case : Synchronize groups

ID: UC3
Actors:

∗ The Peer2Me framework

∗ MIDlet A...n

Preconditions

1. The Peer2Me framework has to be initiated on a mobile device with network support.

2. A connection between two or more devices must be established (8.2).

3. A group with two or more participants have been created (8.3).

Flow of events

1. The framework sends a synchronize message to all the participants in the group.

2. Each participant receives the synchronize message and updates the local representation of
the group.

Postconditions

1. All participants have updated their local representation of the group.

Table 8.4: Use Case 3

59

Use Case : Exchange data

ID: UC4
Actors:

∗ MIDlet A...n

Preconditions

1. The Peer2Me framework has to be initiated on a mobile device with network support.

2. A connection between two or more devices must be established (8.2).

3. A group with two or more participants have been created (8.3).

4. The groups must be synchronized (8.4).

Flow of events

1. MIDlet A wants to send some data via the framework.

2. The framework wraps the data into a data package and sends it over the connection to the
recipient(s).

3. MIDlet n receives the data via an event notification (8.6).

Postconditions

1. Some data is exchanged.

Alternative flow 1

1. MIDlet A wants to send some data via the framework.

2. The framework wraps the data into a data package and sends it over the connection to the
recipient(s).

3. The data could not be sent over the connection.

Postconditions

1. No data has been exchanged.

Table 8.5: Use Case 4

60

Use Case : Notify about events

ID: UC5
Actors:

∗ The Peer2Me framework

∗ MIDlet A

Preconditions

1. The Peer2Me framework has to be initiated on a mobile device with network support.

2. A connection between two or more devices must be established (8.2).

3. A group with two or more participants have been created (8.3).

4. The groups must be synchronized (8.4)

Flow of events

1. An event occurs in the framework.

2. The MIDlet is notified about the event.

Postconditions

1. The MIDlet is notified about the framework event.

Table 8.6: Use Case 5

61

Use Case : Select network medium

ID: UC6
Actors:

∗ MIDlet A

Preconditions

1. The Peer2Me framework has to be installed on a mobile device with network support.

2. The Peer2Me framework must support the desirable network medium.

Flow of events

1. The network medium is specified by the MIDlet.

2. The MIDlet initiates the framework with the specified network medium.

Postconditions

1. The framework is initiated with the specified network medium.

Table 8.7: Use Case 6

62

Use Case : Retrieve log

ID: UC7
Actors:

∗ MIDlet A

Preconditions

1. The Peer2Me framework has to be initiated on a mobile device with network support.

Flow of events

1. The MIDlet retrieves a log from the framework.

Postconditions

1. A log is available to the MIDlet.

Table 8.8: Use Case 7

The following functional requirements described in Lund- and Norums master thesis [31] are not converted
into Use Cases in the above; 1, 7, 8, 9, 10, 11, 13, 15, 16 and 18. They are either removed or merged into a
Use Case covering another functional requirement.

63

8.2 Non-functional Requirements

Non-functional requirements are requirements of a slightly more diffuse character than the functional
requirements described in the Use Cases above. They are often not so clearly stated by the users and
stakeholders of a system, but are nonetheless very important for the user satisfaction and the architecture
[1]. These requirements are unsuited for Use Case representation and in Lund- and Norums master thesis
[31] the Non-functional requirements are presented in a table. The content of this table is presented in Table
6.2. We will adapt these requirements, refine them and finally present them as ways to achieve these quality
attributes; Usability, Performance, Modifiability, Availability, Security and Testability. To easily understand
our choices of non-functional requirements, the definitions of the different quality attributes also found in
Chapter 4 is repeated.

Non −
Functional
Requirements

Description

NFR 1 The framework must be able to transfer messages fast enough for real time
interaction. By fast enough, we mean that normal length text messages should
give the impression of appear- ing instantly on the remote phones.

NFR 2 The framework must be able to detect the disconnection of nodes within a
group and notify relevant applications and nodes about this

NFR 3 The framework must adapt to errors that arise due to the unstable nature of
wireless net- works.

NFR 4 The framework must prevent applications from getting access to messages not
addressed to them.

Table 8.9: Peer2Me v1.0 Non-Functional Requirements

8.2.1 Usability

The definition of Usability:

”Usability is concerned with how easy it is for the user to accomplish a desired task and the kind
of user support the system provides.”

In the problem definition found in Chapter 1.2 we have stated that we will improve the architecture and
simplify the interface of the Peer2Me framework. Both of these statements are connected to the Usability
quality attribute. An improved architecture and interface will increase the developer’s ability to make full
use of the framework. These are the factors to achieve this quality:

∗ Simple and intuitive interface between the framework and the applications.

∗ Well documented and commented code.

∗ Descriptive naming conventions for methods, variables and objects.

64

8.2.2 Performance

Performance is described as:

”Performance is about timing. Events (interrupts, messages, requests from users, or the passage
of time) occur, and the system must respond to them.”

Applications built upon the Peer2Me framework are intended to run on different types of mobile devices,
performance is a considerably factor. Many of these devices have limited resources, like memory and CPU
power, and this can affect the performance of the developed applications in a negative way. The first non-
functional requirement found in Table 6.2 concerns this quality attribute:

∗ The framework must be able to support real time interaction. This means that data packages must be
transferred with a rate of at least 10kB/s (NFR 1 made more precise).

∗ The framework must support pure peer-to-peer communication. By excluding a centralized routing
node a potential bottleneck is avoided.

8.2.3 Modifiability

The definition of Modifiability:

”Modifiability is about the cost of change. It brings up two concerns; What can change (the
artifact)? - When is the change made and who makes it (the environment).”

The Peer2Me framework needs a large degree of modifiability for several reasons. The consept of a
independent network layer demands a simple method of adding new network modules. This process must
be as simple as possible and have little impact on the parts of the framework not related to the network.
The framework itself is a work in progress and will be subject of further change in the future. To simplify
the work of those who are to continue our work we will take precautions to make the Peer2Me framework as
intuitive and modifiable as possible. It is important that:

∗ The network layer is completely independent from the rest of the framework and that there is a interface
between them that ensures the possibility to replace the network module in the future.

∗ We use known patterns and best practices in our architecture to simplify future modifications. To
further increase this quality the characteristics of documentation and code described in the Usability
section are useful (see Chapter 8.2.1).

8.2.4 Availability

This is said about Availability:

”All approaches to maintaining availability involve some type of redundancy, some type of health
monitoring to detect a failure, and some type of recovery when a failure is detected.”

65

The second and third non-functional requirements of the Peer2Me framework found in Table 6.2 focus on
Availability. We wish to continue these two requirements into our project, and also add another requirement
making the network less vulnerable.

∗ The framework must be able to detect the disconnection of nodes within a group and notify applications
and nodes about this (NFR 2). The possibility to detect whether or not the other nodes in the ad
hoc network is present is crucial for the applications running the Peer2Me framework. This creates
awareness between the users.

∗ The framework must adapt to errors that arise due to the unstable nature of wireless networks (NFR
3).

∗ The framework must support pure peer-to-peer communication. By excluding a centralized routing
node, the network is less vulnerable to errors.

8.2.5 Security

Tactics for achieving security can be divided into three different categories; resisting attacks, detecting attacks
and recovering from attacks. In Software Architecture in Practice [5] we find this analogy:

”Putting a lock on your door is a form of resisting an attack, having a motion sensor inside of
your house is a form of detecting an attack, and having insurance is a form of recovering from
an attack.”

The last of the non-functional requirements found in Table 6.2 is a Security requirement:

∗ The framework must prevent applications from getting access to messages not addressed to them (NFR
4).

To ensure the integrity and confidentiality of the messages sent between nodes in an ad hoc network it
is important that a message reaches only the designated receiver(s). These two mechanisms contribute to
the achievement of this goal:

∗ Authenticate - The nodes unique network address can be used for this purpose.

∗ Authorize - The Peer2Me framework has to support the concept of closed groups were authorization
is done by a password.

8.2.6 Testability

The goal of Testability as a quality attribute is:

”Allow easier testing when an increment of software development is completed.”

66

A well known tactic to achieve Testability is ”Record/Playback”. This includes using a log to catch
information in runtime and display this information for testing purposes. Testing can become useful and
necessary in several scenarios:

∗ Testing to locate flaws in the design during redesign of the Peer2Me framework.

∗ Good testability is important to ease further development of the framework in the future.

∗ Developers using the finished Peer2Me framework will need to do testing when creating applications
based upon the framework.

8.3 Environmental Requirements

In this section will describe in short the environment that is needed by the application to execute properly.

J2ME - MIDP 2.0 Both the Peer2Me framework and Peer2Me applications are implemented in Java and
therefore depend on J2ME [26] and MIDP 2.0 support.

Operative System (OS) As long as the mobile device that is to run the application implements the
technologies mentioned in the previous point, the Operative System is irrelevant. This is achieved with
the platform independence of the Java programming language.

Memory The size of the Peer2Me framework, and with it the need for memory, will vary with the number
of included applications in the JAR archive.

Display The applications GUI should be operational and functional on any type of display on any mobile
device that fulfills the previous requirements of this list.

Bluetooth The mobile device must have support for Bluetooth [16] as this is the only network medium
currently implemented in the Peer2Me framework. In addition the J2ME API JSR-82 must also be
implemented to allow the access to Bluetooth functionality by a J2ME application running on the
mobile device.

67

68

CHAPTER 9

Design

This chapter will focus on the design and architecture of the redesigned Peer2Me framework. We will begin
describing the high level architecture and the architectural patterns we have incorporated into our design.
Subsequently a more detailed description of the different classes of the framework is provides.

The Design phase is part of the Analysis and Design task of RUP’s iterative development loop (see Figure 2.1),
and we have based our design on the requirements elicited from the Use Cases as well as the non-functional-
and environmental requirements (see Chapters 8.1, 8.2 and 8.3).

9.1 High Level Architecture

The architecture of Peer2Me framework v2.0 is strictly module based with a seperate package for each major
type of classes. The top level structure of the architecture can be seen in Figure 9.1. This model represents a
Module-Decomposition view where the modules are related to each other by the ”is a sub module of” relation
[5], e.g. all the packages are sub modules of the entire system and the bluetoothNetwork package is a sub
module of network.

One of the main features of the architecture is that all the Bluetooth specific code are located in a sub-
package of the network package which in turn means that the rest of the code are completely network
independent. In that way a future conversion of the framework to an alternative network technology will not
affect the ”non network” classes of the framework. It will be possible to incorporate a new network module
directly into the current system without any changes. This has been one of the main goals of this redesign
from the start (see Chapter 1.2).

We will now describe shortly the main concepts of the different packages of the Peer2Me v2.0 framework.

69

Figure 9.1: Module Decomposition View

Framework This package contains the FrameworkFrontEnd class which is the core of the system. All
communication between the user interface of the MIDlet and the functionality of the framework are
done through this class. Two interfaces connects the MIDlet with the FrameworkFrontEnd. Due to
this design the rest of the framework is hidden for the developers using it.

Domain This package consists of the classes based on the conceptual domain of the framework that
represents ”real time” objects. Group, Node and DataPackage are some of the classes of the domain
package.

Network The network package holds the classes concerning all network communication. The Connection-
Listener listens for incoming connections from other devices and the NodeConnection class represent

70

a connection to each of the remote nodes whitin the same group.

BluetoothNetwork This sub package of the network package is, as the name reveals, responsible for all
network operations that are specific to the Bluetooth technology that the Peer2Me framework is
currently using. By replacing this package with another network module, the framework could
communicate over e.g. a WLAN network.

Util The classes of the Util package contains helpful functionality used by the other classes of the framework.
The classes of the Util package can be used from any other class in any package of the Peer2Me.

Midlets This is the actual MIDlets running upon the framework. They contain the functionality and user
interface that is unique for every application. The MIDlets can take advantage of all of Peer2Me’s
functionality through the framework interface.

9.2 Detailed description

Figure 9.2 is a high level illustration of all the classes in the framework and the relations between them,
while Figure 9.3 shows the full class diagram of the Peer2Me framework v2.0. The Log class is deliberately
left out in Figure 9.3 because it has reference to almost all the other classes and interfere with the empirical
quality of the diagram.

In this chapter we will briefly discuss the function of each of the classes and how they interact.

71

Figure 9.2: Peer2Me Architecture

72

Figure 9.3: Class Diagram

73

9.2.1 Framework package

This package contains the core of the Peer2Me framework v2.0 and the interfaces used by the MIDlets.

FrameworkFrontEnd This is the main class of the Peer2Me framework. It manages and connects the
resources and functions of the framework. It also handles all communication and interaction with the
individual MIDlets running the framework.

Framework � interface � The Framework interface acts as a ”facade” for the entire Peer2Me framework
as the methods in this interface is the only methods the MIDlets running the framework needs access
to. The MIDlets receive a reference to the FrameworkFrontEnd class casted into this interface when
the getInstance() method is called to get an instance of the framework. See Chapter 9.3 for more
information about the facade pattern.

FrameworkListener � interface � The FrameworkListener interface must be implemented by all MI-
Dlets running the framework. It ensures that the Framework can access a set of methods in the MIDlet
in order to notify the MIDlet about various events.

9.2.2 Domain package

The classes of this package represents the conceptual domain objects that affects the framework. Each class
is based on a ”real” object found in the domain, and contains the properties of that object.

Group Holds the information related to the Group object. The connected nodes in the ad hoc network are
participants in the Group. Through methods participants can be added and removed, and a list of all
the participants can be retrieved.

Node The Node class represents a node in the ad hoc network, i.e., a mobile device running the framework.
Contains information about the name of the Node and network address.

DataPackage This class is the super class of the different type of packages that can be sent between nodes
in the network. The address of the sender and the recipients of the DataPackage is stored in the
super class, along with the type of package. There are currently three types of packages and they are
described below.

GroupSyncPackage This type of Datapackage is a package used internally in the framework to synchronize
the groups containing the participants. The participant performing the groupsync uses its own group
as content of the package. All the receivers synchronizes their groups based on the information found
in the GroupSyncPackage.

FilePackage A FilePackage is sent between two or more participants as a part of a file transfer. The package
contains the file path and length of the file to transfer, so that the receiver can handle the incoming
stream of data and transform it back into a copy of the file.

TextPackage To send text between participants one can use the TextPackage. It contains some length of
text that the recipient(s) can retreive and present to the user of the MIDlet.

74

9.2.3 Network package

The Network package is made up of the networking classes of the Peer2Me framework. A sub package of this
package is created for each new network technology that is implemented. For now the BluetoothNetwork
package is the only sub package.

Network This is the super class of the technology specific network classes. Methods that are equal for
all the sub classes are located in this super class, and there are abstact methods that the sub classes
have to implement. The getInstance() method of the Network class returns a reference to the preferred
network sub class.

NodeConnection Each Node has a NodeConnection that holds the data streams to and from the remote
device that the Node object represents. These data streams are used to transfer Datapackages between
the devices.

ConnectionListener When a MIDlet initiates the Peer2Me framework a ConnectionListener is started.
Its task is to listen for incoming connection attempts from other devices running the same MIDlet
built upon the framework. When a incoming connection is detected, a Node representation is created
representing the connecting device.

The following classes are part of the bluetoothNetwork package which is a subpackage of network.

BluetoothNetwork This class is a Bluetooth specific sub class of the Network class and implements all the
abstract methods of it’s parent class in a Bluetooth context. It uses the Bluetooth Java API1, JSR-82,
to perform operations on the Bluetooth hardware of the mobile device.

BluetoothServiceDiscovery To discover, identify and connect to other bluetooth enabled devices the
BluetoothNetwork class uses methods located here. A DiscoveryAgent is called to perform the discovery
process and the result is returned through method calls to this class.

BluetoothServiceDiscoveryListener � interface � To ensure that the BluetoothServiceDiscovery class
can return it’s results to the BluetoothNetwork class, the BluetoothNetwork class have to implement
the BluetoothServiceDiscoveryListener interface.

9.2.4 Util package

All classes that have some kind of a ”helper” function is located in the Util package. All the classes of the
framework can use them.

Log The Log contains four different kinds of logs, an exception log, a connection log, a data package log
and a debug log. They can be used to log events from anywhere in the framework, and the logs can
be retrieved later to get information about the execution of the MIDlet. This is particularly useful on
mobile devices as they do not have a console to display runtime and debug information.

FileHandler The FileHandler is used to read, write and create files on the local file system of the device.
1Application Programming interface

75

ASCIIToHexConverter This small class converts a ASCII string into a hexadecimal number. It is used
by the BluetoothNetwork class to create a unique UUID2.

9.3 Design Patterns

This section contains a description of the design patterns used in our architecture. A pattern is a general
solution to a common problem in software design and is useful to create high quality code. It is not a
finished design though, but a kind of template for solving that problem as it occurs in different situations
and applications. Typically the pattern outlines the relationships and interactions between objects on a high
level. No finished classes or implementations are specified [12].

Singleton Pattern The singleton pattern is used in object oriented programming to avoid more than one
instantiation of a class. This is necessary when exactly one object is needed to coordinate actions
across the system and when the number of objects should be limited due to efficiency. The pattern
is implemented by creating a class with a method that creates a new instance of the class if one does
not exists. To force other classes to use this method of instantiation the constructor of the class is
made private or protected. In cases with multithreading the singleton pattern is vulnerable because the
instantiation method could be called simultaneously by two threads. This is often solved by making
the getInstance() method synchronized, thereby introducing mutual exclusion.

We have taken advantage of this pattern in our Log-, FrameworkFrontEnd- and Network classes to be
certain that there exists one and only one instance of each of the classes. This is important to ensure
that all method calls is performed on the intended

Facade Pattern This pattern is based on the idea that a facade provides a simplified interface to a large
portion of code. This is useful to make e.g. a large library of classes easier to use, since the facade
provides a set of simple methods that allows the user to perform common operations. It also reduces
dependencies between the code on opposite sides of the facade, that in turn makes it more straight
forward to make alterations to the library classes.

The Framework interface of the Peer2Me framework is designed using this pattern. A MIDlet running
the framework has access only to the methods of this interface and it acts as a facade hiding the rest
of the framework.

Observer Pattern All J2Me GUI classes make use of a CommandListener to listen for command actions
invoked by the user. These actions are performed when a ”soft button” is pressed in a MIDlet. The
listener detects what ”soft button” is pressed and starts an operation based on this.

2Universally Unique Identifier

76

CHAPTER 10

Implementation

In this chapter we will describe the implementation method used during implementation of the Peer2Me
framework v2.0. To illustrate the main concepts of our design and architecture we have included a selection
of code sniplets from out implementation. The code samples will present a typical flow of events within the
framework when a certain operation is performed and there will be thorough explanations of each example.

10.1 Implementation Method

In our depth study [39] we used the concept of Pair Programming with great success and have chosen to use
this as our main implementation method in this project as well. We will now repeat the definition of and
introduction to Pair Programming.

This definition of Pair Programming is found at pairprogramming.com1.

Two programmers working side-by-side, collaborating on the same design, algorithm, code or
test. One programmer, the driver, has control of the keyboard/mouse and actively implements
the program. The other programmer, the observer, continuously observes the work of the driver to
identify tactical (syntactic, spelling, etc.) defects and also thinks strategically about the direction
of the work. On demand, the two programmers can brainstorm any challenging problem. Because
the two programmers periodically switch roles, they work together as equals to develop software.

According to All I really need to know about pair programming I learned in kindergarten [42], pair
programming is a powerful technique for productively code high quality software. By working together
in pairs, the developers tackle the complexities of software development and the continuously inspections of

1www.pairprogramming.com

77

each others code ensures early and efficient removal of errors. In addition, they keep each other focused on
the task and how to solve it in the most effective manner. Surveys show that programmers working in pairs
are more confident in their solutions than those who work alone [42].

The article lists a number of ”rules” that leads to successful pair programming. Some of the most important
of these rules are:

Share everything Two programmers jointly produces one product and it is important that they see
themselves as team and that they feel equally responsible for the result.

Play fair Although it is a good chance the two programmers have different levels of competence it is very
important that they take turns as driver and observer respectively.

Drive your partner forward When one of the two are losing concentration it is easier to get encouraged
and keep going when you work in pairs.

Stay positive Negative thoughts easily transfers to your partner.

Clean up Remove errors when they are detected.

Review independent work If one of some reason have to produce code independently it is efficient to
review each others work. This way many defects are identified on an early stage.

Take breaks Working in pairs like this, demands a lot of concentration and it is important to take breaks
to clear the mind every now and then.

We will try to follow these rules when it is time for us to start programming and this will hopefully give us
the opportunity to code more and reduce error searching.

10.2 Implementation tools

The implementation of all Java source code along with deployment of the Peer2Me framework v2.0 was
performed using the Eclipse IDE2 in combination with the SUN Java Wireless Toolkit3 and the EclipseME4

Eclipse plugin. To be able to emulate file access we had to use a emulator found in the Sony Ericsson SDK
2.2.3 for the Java ME Platform5. Our choice of tools is based on experiences gained in earlier projects.

As we used both Windows and Mac OSX as platforms for development during this project, the Eclipse
IDE was a obvious choice as implementation environment. Eclipse is Java based and with that it supports
multiple operative systems. The SUN Java Wireless Toolkit however had to be modified slightly to run
under Mac OSX as SUN does not offer a toolkit native to OSX. Using the SUN Java Wireless Toolkit for
Linux combined with the preverifier from mpowerplayer6 gave us the same programming capabilities on both

2www.eclipse.org
3http://java.sun.com/products/sjwtoolkit/index.html
4www.elipseme.org
5developer.sonyericsson.com
6http://mpowerplayer.com/for developers.php

78

platforms. The only drawback is that the emulator functionality on Mac OSX is reduced and do not support
Bluetooth emulations.

To keep track of all our work and all the changes in the source code we took advantage of the features
offered by the Concurrent Versions System (CVS)7. It gave us the possibility to collaborate and work on
the same files simultaneously regardless of our location. It also keep track of changes and updates our local
copies so no data is lost and we could be certain that the code we are working with are the right one. Eclipse
features a CVS client that makes updating and committing an entire project possible through the push of a
single button.

7http://www.nongnu.org/cvs/

79

10.3 Source Code Examples

To present some of the main features of our architecture we will highlight some code sniplets and explain
how the different parts interact. The examples are of code that represents and illustrates the architectural
solutions and important aspects of our design. The code represents a typical flow of events from the initiation
of the framework by the MIDlet, via the discovery process and synchronization of groups, to the sending and
receiving of a text package. The whole process is described in the sequence diagram found in Figure 10.1.
The ”bubbles” containing numbers like 10.3.x refers to which sub chapter contains details about this specific
method. We strongly recommend that this Sequence Diagram is read in parallel with the code examples to
increase the understanding. In addition, the Peer2Me v2.0 Javadoc (Appendix C) can with advantage be
used as a reference while reading the code.

Figure 10.1: Sequence Diagram

80

10.3.1 The Framework interface

This first listing illustrates the Framework interface between the MIDlet and the rest of the Peer2Me
framework. The methods of this interface is use by the MIDlet to make use of all the features of the
framework. When the FrameworkFrontEnd.getInstance() method is called, a reference of type Framework
is returned. When a MIDlet is run, the initFramework() method has to be called to initiate the framework
before anything else can be done. The initFramework() method is described in the next chapter (10.3.2).

Listing 10.1: The Framework interface

1 package peer2me.framework;

2

3 import java.io .IOException;

4 import java. util .Enumeration;

5

6 /∗∗
7 ∗
8 ∗ This interface acts as a ”facade” for the entire Peer2Me framework as the

9 ∗ methods in this interface is the only methods the MIDlets running the

10 ∗ framework needs access to. To use the Peer2Me framework, the MIDlets should

11 ∗ run the FrameworkFrontEnd.getInstance() which returns a

12 ∗ reference of type Framework. All framework services is then available

13 ∗ through this reference .

14 ∗
15 ∗ @author Torbjørn Vatn & Steinar A. Hestnes

16 ∗/
17 public interface Framework{
18

19 /∗∗
20 ∗
21 ∗ This method initiates the framework, and is the first method that should

22 ∗ be run after getting a instance of the framework. It initiates the

23 ∗ fundamental services offered by the framework.

24 ∗
25 ∗ @param nodeName The name of the user of the MIDlet.

26 ∗ @param midletName The name of the MIDlet, eventually translated into a ServiceID

27 ∗ used to find other devices running the same MIDlet.

28 ∗ @param preferredNetwork Deciding which network implementation to use.

29 ∗
30 ∗ @throws ClassNotFoundException The input preferredNetwork is invalid

31 ∗ @throws IllegalAccessException The input preferredNetwork is invalid

32 ∗ @throws InstantiationException The input preferredNetwork is invalid

33 ∗ @throws IOException Error initiating framework

34 ∗ @throws Exception Error initiating framework

35 ∗/
36 public void initFramework(String nodeName, String midletName, String preferredNetwork) throws ClassNotFoundException,

81

37 IllegalAccessException, InstantiationException, IOException, Exception;

38

39

40 /∗∗
41 ∗
42 ∗ This method shuts down the framework and closes all the open network connections and streams.

43 ∗ It should be called before closing the MIDlet to clean up the network connections.

44 ∗
45 ∗/
46 public void shutdownFramework();

47

48

49 /∗∗
50 ∗
51 ∗ This method starts a search for devices running the same MIDlet.

52 ∗ When such a device is found, the notifyAboutFoundNode() method

53 ∗ specified by the FrameworkListener interface is called .

54 ∗
55 ∗ @throws IOException Thrown if the search crashes

56 ∗/
57 public void startNodeSearch() throws IOException;

58

59

60 /∗∗
61 ∗
62 ∗ This method connects multiple devices in a network.

63 ∗ When a connection is established, the notifyAboutParticipants()

64 ∗ method specified by the FrameworkListener interface is called .

65 ∗
66 ∗ @param addresses The addresses of the devices to connect to.

67 ∗/
68 public void connectToNodes(String[] addresses);

69

70

71 /∗∗
72 ∗
73 ∗ This method sends a text package over the network. When the package

74 ∗ terminates to the recipients , they are alerted by the

75 ∗ notifyAboutReceivedTextPackage() method specified by the

76 ∗ FrameworkListener interface.

77 ∗
78 ∗ @param recipients A list containing the addresses of the recipient nodes

79 ∗ @param textMessage The text message to be sent

80 ∗
81 ∗/

82

82 public void sendTextPackage(String[] recipients , String textMessage);

83

84

85 /∗∗
86 ∗
87 ∗ This method sends a file package over the network. When the package

88 ∗ terminates to the recipients , they are alerted by the

89 ∗ notifyAboutReceivedFilePackage() method specified by the

90 ∗ FrameworkListener interface.

91 ∗
92 ∗ @param recipients A list containing the addresses of the recipient nodes

93 ∗ @param filePath The path of the file to be sent

94 ∗
95 ∗/
96 public void sendFilePackage(String[] recipients , String filePath);

97

98

99 /∗∗
100 ∗
101 ∗ This method returns a list of the files in the given root directory on the device

102 ∗
103 ∗ @param root The path to the root directory

104 ∗ @return An enumeration containing the names of the files in the root directory

105 ∗/
106 public Enumeration getFileList(String root);

107

108

109

110 }

83

10.3.2 The initFramework() method in FrameworkFrontEnd.java

This method is vital to the execution of a MIDlet because the framework must be properly initiated before
any calls can be made to it. The initFramework() method does a number of operations:

1. Creates a ”currentNetwork” instance using the getInstance() method in Network. The getInstance()
method is described in the next chapter (10.3.3).

2. Sets the MIDlet name on the ”currentNetwork”. The name of the MIDlet is used to find other devices
running the same MIDlet, hence to be able to connect in a network.

3. Creates a new Group and adds itself as a participant using the addParticipant() method in class Group.
This method is listed in Chapter 10.3.4.

4. Calls the init() method on the ”currentNetwork” to initiate the network layer. The init() method is
listed in Chapter 10.3.5.

Listing 10.2: The initFramework() method in FrameworkFrontEnd.java

80 /∗∗
81 ∗
82 ∗ This method initiates the framework, and is the first method that should

83 ∗ be run after getting a instance of the framework. It initiates the

84 ∗ fundamental services offered by the framework.

85 ∗
86 ∗ @param nodeName The name of the user of the MIDlet.

87 ∗ @param midletName The name of the MIDlet, eventually translated into a ServiceID used to find other devices

88 ∗ running the same MIDlet.

89 ∗ @param preferredNetwork Deciding which network implementation to use.

90 ∗
91 ∗ @throws ClassNotFoundException The input preferredNetwork is invalid

92 ∗ @throws IllegalAccessException The input preferredNetwork is invalid

93 ∗ @throws InstantiationException The input preferredNetwork is invalid

94 ∗ @throws IOException Error initiating framework

95 ∗ @throws Exception Error initiating framework

96 ∗/
97 public void initFramework(String nodeName, String midletName, String preferredNetwork) throws ClassNotFoundException,

98 IllegalAccessException, InstantiationException, IOException, Exception{
99

100 // Creates a Network instance

101 currentNetwork = Network.getInstance(preferredNetwork);

102 // Sets a reference to this class to be used in the Network class

103 currentNetwork.setFrameworkFrontEnd(this);

104 // Sets the applicationId to be used by the Network class

105 currentNetwork.setApplicationId(midletName);

106 // Creates a group that will be filled with nodes running the same application

84

107 group = new Group();

108 // Adds a representation of this (the local) node to the group.

109 localNode = new Node(nodeName,currentNetwork.getNodeAddress(”localnode”));

110 group.addParticipant(localNode);

111 // Initiates the currentNetwork

112 currentNetwork.init ();

113 // Creates the foundNodes Hashtable

114 foundNodes = new Hashtable();

115 }

85

10.3.3 The getInstance() method in Network.java

This method returns a reference to a subclass of Network, based on the preferredNetwork input parameter.
In the current implementation the only network module available is BluetoothNetwork.

Listing 10.3: The getInstance() method in Network.java

34 /∗∗
35 ∗
36 ∗ This method returns an instance of the preferred network.

37 ∗ It is called from FrameworkFrontEnd.initFramework().

38 ∗
39 ∗ @param preferredNetwork Indicating which network implementation to use.

40 ∗ @throws ClassNotFoundException The input preferredNetwork is invalid

41 ∗ @throws IllegalAccessException The input preferredNetwork is invalid

42 ∗ @throws InstantiationException The input preferredNetwork is invalid

43 ∗ @return The Network instance

44 ∗/
45 public static synchronized Network getInstance(String preferredNetwork) throws ClassNotFoundException,

46 IllegalAccessException, InstantiationException{
47

48 // A log instance

49 log = Log.getInstance();

50

51 if (singleton != null){
52 return singleton ;

53 }else{
54 try{
55 // Fetching a instance of the preferred network class

56 singleton = (Network)Class.forName(preferredNetwork).newInstance();

57

58 }catch(ClassNotFoundException cnfe){
59 log .logException(”Network.getInstance()”,cnfe, false);

60 throw cnfe;

61 }catch(IllegalAccessException iae){
62 log .logException(”Network.getInstance()”,iae, false);

63 throw iae;

64 }catch(InstantiationException ie){
65 log .logException(”Network.getInstance()”,ie , false);

66 throw ie;

67 }
68

69 // Returning the singleton instance

70 return singleton ;

71 }
72 }

86

87

10.3.4 The addParticipant() method in Group.java

This method adds a Node as a participant to the Group. If the Node is not a participant already it is simply
added, while existing participants are updated with the new data. This is used during a synchronization of
the groups. The Node objects are stored in a HashTable with the network address as the key.

Listing 10.4: The addParticipant() method in Group.java

56 /∗∗
57 ∗
58 ∗ This method adds a node to the group as a participant.

59 ∗
60 ∗ @param node The node to add as a participant.

61 ∗/
62 public void addParticipant(Node node){
63 // Adds the node only if it is not added already.

64

65 // This test is necessary during groupsync

66 if (!participatingNodes.containsKey(node.getAddress())){
67 participatingNodes.put(node.getAddress(),node);

68 }else{
69 // If the node already exists in the participant list , this is the node that

70 // initially discovered this node and was saved only with address and connection

71 // Name is still missing and we have to add it

72 if (node.getNodeName() != null){
73 ((Node)participatingNodes.get(node.getAddress())).setNodeName(node.getNodeName());

74 }
75

76 if (node.getNodeConnection() != null){
77 if (node.getNodeConnection().getConnection() != null){
78 // Important to start the connection!

79 ((Node)participatingNodes.get(node.getAddress())).startNodeConnection();

80 ((Node)participatingNodes.get(node.getAddress())).getNodeConnection().setConnection(

81 node.getNodeConnection().getConnection());

82 }
83 }
84 }
85 }

88

10.3.5 The init() method in BluetoothNetwork.java

When the Network.getInstance() method is called the init() method of the new ”currentNetwork” is also
called. It initiates the network module through several steps:

1. Creates a connectionURL to use in the connection process. The URL consists of some Bluetooth
specific variables and a UUID8 that indicates what MIDlet is running on this device.

2. Sets the local Bluetooth device discoverable, so it can be discovered by other devices searching.

3. Creates a new BluetoothServiceDiscovery instance that can perform a device discovery. The
doDeviceDiscovery() method is listed in Chapter 10.3.6.

4. Creates and sets a new ConnectionListener that is listening for incoming connections from other devices
performing a device discovery.

Listing 10.5: The init() method in BluetoothNetwork.java

69 /∗∗
70 ∗ Initiates the network instance.

71 ∗ It is called from the FrameworkFrontEnd.initFramework()

72 ∗
73 ∗ @throws BluetoothStateException Failed to initiate the network

74 ∗/
75 public void init () throws BluetoothStateException{
76

77 isConnected = false;

78 serviceSearchCompleted = false;

79 serviceSearchFailed = false ;

80

81

82 // Sets the connectionURL used by the ConnectionListener

83 String localNodeName = getFrameworkFrontEnd().getLocalNode().getNodeName();

84 connectionURL = ”btspp://localhost:”+getUUIDString()+”;authenticate=false;encrypt=false;name=”+localNodeName;

85

86 // Have to set the local device discoverable

87 try {
88 LocalDevice.getLocalDevice().setDiscoverable(javax.bluetooth.DiscoveryAgent.GIAC);

89 } catch (BluetoothStateException bse) {
90 log .logException(”ConnectionListener.ConnectionListener()”,bse,false);

91 throw bse;

92 }
93

94 foundNodes = new Hashtable();

95 // Creates the class that contains low level Bluetooth discovery operations.

8Universally Unique Identifier

89

96 bluetoothServiceDiscovery = new BluetoothServiceDiscovery();

97

98 /∗ The ConnectionListener instance that listens for incoming requests from

99 ∗ other nodes in discovery mode. When this node is discovered the ”discoverer”

100 ∗ can choose to create a connection between the two, and the remote node is

101 ∗ represented by a node object localy on this node.

102 ∗/
103 setConnectionListener(new ConnectionListener(connectionURL));

104 }

90

10.3.6 The doDeviceDiscovery() method in BluetoothServiceDiscovery.java

This method starts a discovery process using the DiscoveryAgent of the local Bluetooth device. This is a
regular search for Bluetooth devices in the proximity and takes between 20 - 30 seconds to complete. Other
methods of the BluetoothServiceDiscovery class (deviceDiscovered() and serviceDiscovered()) are called by
the DiscoveryAgent whenever a device running the same MIDlet is discovered.

Listing 10.6: The doDeviceDiscovery() method in BluetoothServiceDiscovery.java

64 /∗∗
65 ∗
66 ∗ This method starts the discovery process.

67 ∗ It is called from BluetoothNetwork.searchForNodes().

68 ∗
69 ∗ @throws BluetoothStateException Error getting reference to LocalDevice

70 ∗/
71 public void doDeviceDiscovery() throws BluetoothStateException{
72

73 uuids[0] = new UUID(uuidString, false);

74 servicesFound = new Vector();

75 devicesFound = new Vector();

76

77 try{
78 localDevice = LocalDevice.getLocalDevice();

79 }catch(BluetoothStateException bse) {
80 log .logException(”BluetoothServiceDiscovery.doDeviceDiscovery()”,bse, false);

81 throw bse;

82 }
83

84 //Fetches the discovery agent of the local device

85 agent = localDevice.getDiscoveryAgent();

86

87 try {
88 // The discovery agent starts the inquiry for other devices

89 agent.startInquiry(DiscoveryAgent.GIAC,this);

90 }
91 catch(BluetoothStateException bse) {
92 log .logException(”BluetoothServiceDiscovery.doDeviceDiscovery()”,bse, false);

93 throw bse;

94 }
95 }

91

10.3.7 The notifyAboutFoundNode() method in FrameworkFrontEnd.java

When the DiscoveryAgent is finished searching for other devices the serviceSearchCompleted() method of the
BluetoothServiceDiscovery class is called. Then the notifyAboutFoundNode() in class FrameworkFrontEnd
is used to notify the framework of every found device. The found Nodes are stored in the foundNodes
HashTable with their network addresses as keys, and if two or more Nodes has identical names, the names
are modified by adding a number at the end. In this way every Node gets a unique name. The MIDlet is
also notified about the found Node.

Listing 10.7: The notifyAboutFoundNode() method in FrameworkFrontEnd.java

315 /∗∗
316 ∗
317 ∗ This method is called from the nodeFound() method in the Network class whenever a node is found

318 ∗
319 ∗ @param address The network address of the node

320 ∗ @param remoteNodeName The name of the found remote node

321 ∗/
322 public void notifyAboutFoundNode(String address, String remoteNodeName){
323

324 // Here we add a number after equal node names to make them unique

325 // We do this so we can set the node names as keys and the node addresses as values

326 // The reason for doing this is that the node names will be displayed in the midlet

327 // and after selecting a node name, the address should be sent to the framework.

328 if (foundNodes.contains(remoteNodeName) || remoteNodeName.equals(localNode.getNodeName())){
329 for(int i=−1;i<foundNodes.size();i++){
330 if (! foundNodes.contains(remoteNodeName+” ”+(i+2))){
331 remoteNodeName = remoteNodeName+” ”+(i+2);

332 i = foundNodes.size();

333 }
334 }
335 }
336

337 // Stores the address and the name of the node in the foundnodes table

338 foundNodes.put(address, remoteNodeName);

339 midlet.notifyAboutFoundNode(address,remoteNodeName);

340 }

92

10.3.8 The connectToNodes() method in FrameworkFrontEnd.java

When the user of the MIDlet has chosen the Nodes he/she wants to connect to, this method in class
FrameworkFrontEnd is called. It simply adds the selected Nodes to the Group and uses the syncronizeGroup()
method to broadcast the Group to all the participants of the Group. This way all the selected Nodes gets
connected and the groups on every node gets synchronized in one operation. Now, every Node in the Group
can send data packages to all the other participants.

Listing 10.8: The connectToNodes() method in FrameworkFrontEnd.java

157 /∗∗
158 ∗
159 ∗ This method establishes a connection to the chosen nodes.

160 ∗ After updating the local group, it synchronizes the groups on

161 ∗ all other participating nodes.

162 ∗ The method should be called from the MIDlet.

163 ∗
164 ∗ @param addresses The addresses to the nodes to connect to.

165 ∗/
166 public void connectToNodes(String[] addresses){
167 // Creates Node objects based on the Vectors nodeNames and nodeAddresses

168 for(int i=0; i<addresses.length; i++){
169 getGroup().addParticipant(new Node((String)foundNodes.get(addresses[i]),addresses[i]));

170 }
171 // Synchronizes the groups on all connected nodes

172 synchronizeGroups();

173 }

93

10.3.9 The synchronizeGroups() method in FrameworkFrontEnd.java

When the user of the MIDlet has chosen which Nodes to connect to through the connectToNodes()
method, this method is called to synchronize the Groups of all the participating Nodes. It sends a special
GroupSyncPackage to all the participants found in the local Group, containing all the other Nodes. This
way all participants have the means to synchronize their own Group.

Listing 10.9: The synchronizeGroups() method in FrameworkFrontEnd.java

176 /∗∗
177 ∗
178 ∗ This method is used to make the Framework syncronize the Groups on all the

179 ∗ connected nodes. The result of running this method is that the method

180 ∗ notifyAboutParticipants() is called on the MIDlet.

181 ∗ It is called from the methods connectToNodes() and

182 ∗ notifyAboutLostNode() in this class.

183 ∗
184 ∗/
185 private synchronized void synchronizeGroups(){
186

187 // Creates a string table with the recipient addresses

188 Hashtable participatingNodes = group.getParticipatingNodes();

189

190 String [] recipients = new String[0];

191 // Only do this if there is more than this node in the group

192 if (participatingNodes. size()>1){
193 recipients = new String[participatingNodes.size()−1];

194 // Need a list of nodes to run a groupsync

195 Node[] nodes = new Node[participatingNodes.size()];

196 // Adds the local Node to the nodes[]

197 nodes[0] = localNode;

198 // Removes the local Node from the participatingNodes[]

199 participatingNodes.remove(localNode.getAddress());

200

201 Enumeration addresses = participatingNodes.keys();

202 int counter = 0;

203

204 while(addresses.hasMoreElements()){
205 String address = (String)addresses.nextElement();

206 // Does not add the local node

207 recipients [counter] = address;

208 // Fetches the Node objects from participatingNodes

209 nodes[counter+1] = (Node)participatingNodes.get(address);

210 counter++;

211 }
212

94

213 // Sends a networkpackage to all participants to synchronize the group on all nodes

214 if (recipients .length!=0){
215 currentNetwork.sendDataPackage(new GroupSyncPackage(localNode,recipients,nodes),recipients);

216 }
217 // Adds the local Node to the group again

218 participatingNodes.put(localNode.getAddress(),localNode);

219 }
220

221 // Notifies the MIDlet about the participants of the group

222 notifyAboutParticipants();

223

224 // Logs the sending of the data package

225 String recipientNames = ””;

226 for(int i=0; i<recipients.length; i++){
227 if (group.getNode(recipients[i])!=null){
228 recipientNames +=”− ”+group.getNode(recipients[i]).getNodeName()+” (”+recipients[i]+”) \n”;

229 }
230 }
231

232 if (recipients .length>0)log.logDataPackage(”Sent a group sync package to:\n ”+recipientNames);

233 }

95

10.3.10 The sendTextPackage() method in FrameworkFrontEnd.java

When all of the connecting and synchronizing are finished the framework are ready to perform other tasks
on behalf of the MIDlet. Sending a text package could be such a task. By calling this method through the
Framework interface, and applying the message to send, the MIDlet can send text to other MIDlets running
on other Nodes. As long the text and a list of receivers is provided by the MIDlet, the Peer2Me framework
performs the nessesary tasks to send the text package.

Listing 10.10: The sendTextPackage() method in FrameworkFrontEnd.java

246 /∗∗
247 ∗
248 ∗ This method is used by the MIDlet to send a text package over the network.

249 ∗ When the package terminates to the recipients, the

250 ∗ notifyAboutReceivedTextPackage() method in this class is run.

251 ∗
252 ∗ @param recipients A list containing the addresses of the recipient nodes

253 ∗ @param textMessage The text to be sent

254 ∗
255 ∗/
256 public void sendTextPackage(String[] recipients , String textMessage){
257

258 // Logs the sending of the text package

259 String recipientNames = ””;

260 for(int i=0; i<recipients.length; i++){
261 recipientNames +=”− ”+group.getNode(recipients[i]).getNodeName()+” (”+recipients[i]+”) \n”;

262 }
263 log .logDataPackage(”Sending textpackage to:\n”+recipientNames);

264

265 TextPackage textPackage = new TextPackage(localNode,recipients,textMessage);

266 // Passes the task of sending the data package over to the network

267 if (recipients .length!=0)currentNetwork.sendDataPackage(textPackage, recipients);

268 }

96

10.3.11 The sendDataPackage() method in BluetoothNetwork.java

When the sendTextPackage() method or the sendFilePackage() in the FrameworkFrontEnd class is called,
they in turn call on this method to have the network layer perform the actual sending of the data package.
It reconnects to each of the receiving Nodes to establish a data stream and places the data package in an
outgoing que using the sendDataPackage() method of the NodeConnection.

Listing 10.11: The sendDataPackage() method in BluetoothNetwork.java

297 /∗∗
298 ∗
299 ∗ This method is used by the FrameworkFrontEnd to send a data package of

300 ∗ any sort to a remote node.

301 ∗
302 ∗ @param dataPackage The data package to be sent

303 ∗ @param recipients A list containing addresses to the recipient nodes

304 ∗
305 ∗/
306 public void sendDataPackage(DataPackage dataPackage, String[] recipients){
307

308 // A Vector containing the addresses to the nodes that could not be reached

309 Vector addressesToLostNodes = new Vector();

310

311 for(int i=0; i<recipients.length; i++){
312 // If the node has been removed/disconnected in the meantime

313 if (getFrameworkFrontEnd().getGroup().getNode(recipients[i])==null){
314 // do nothing

315 }else{
316

317 // Connects to the remote node if the connection never has been opened or if it has been closed

318 NodeConnection nodeConnection = getFrameworkFrontEnd().getGroup().getNode(recipients[i]).getNodeConnection();

319 if (nodeConnection!=null){
320 if (nodeConnection.getConnection()==null){
321 // Establishes a connection to the recipient

322 // This method waits until the new connection is ready (or not)

323 connectToNode(recipients[i]);

324 }else if (nodeConnection.getSendQueueSize() == 0){
325 // If the que is empty, the connection has been closed, and we need a new one

326 nodeConnection.setConnection(null);

327 // Establishes a connection to the recipient

328 // This method waits until the new connection is ready (or not)

329 connectToNode(recipients[i]);

330 }
331 }else{
332 // Establishes a connection to the recipient

333 // This method waits until the new connection is ready (or not)

97

334 connectToNode(recipients[i]);

335 }
336

337 // Sends the data package to the recipient

338 if (! serviceSearchFailed){
339 getFrameworkFrontEnd().getGroup().getNode(recipients[i]).getNodeConnection().sendDataPackage(dataPackage);

340 }else{
341 // If the serviceSearch failed , the node must be removed from the group, and groups become synchronized

342 addressesToLostNodes.addElement(recipients[i]);

343 }
344 }
345 }
346 // Removes the nodes that could not be reached to remove these from the group by running a groupsync

347 for(int i=0; i<addressesToLostNodes.size();i++){
348 // Notifies only if the node is not already removed from the local group.

349 // This because a node could have been removed when sending the previous data package and this

350 // package is sent right after the first one (as in text first and then sync package)

351 if (getFrameworkFrontEnd().getGroup().getNode((String)addressesToLostNodes.elementAt(i))!=null){
352 getFrameworkFrontEnd().notifyAboutLostNode((String)addressesToLostNodes.elementAt(i));

353 }
354 }
355 }

98

10.3.12 The processSendQueue() method in NodeConnection.java

This method is called by a constantly running separate Thread and sends the first element of the outgoing
queue until there are no more data packages to send. The data is sent as bytes over a stream to the recipient.

1. The first step is to transfer an Integer representing the type of the data package so the receiver knows
how to treat the incoming data stream.

2. Next an Integer telling the length of the data package’s content is sendt. This way the recipient knows
how many bytes to read from the incoming data stream.

3. Then the actual content of the data package is transferred byte by byte. When the outgoing queue is
empty, a Boolean value (false) is sent to the recipient. In the special case of sending a FilePackage, a
FileHandler is used to stream the content of the desired file onto the outgoing stream.

Listing 10.12: The processSendQue() method in NodeConnection.java

254 /∗∗
255 ∗
256 ∗ This method sends datapackages to remote nodes.

257 ∗ It processes the que of unsent datapackages.

258 ∗ It is called in an infinite loop in the private class OutputThread

259 ∗ in this class .

260 ∗
261 ∗/
262 public synchronized void processSendQueue(){
263 if (connection != null){
264 if (sendQueue.size() > 0){
265 // Retriving the data packages to send from the sendQue

266 DataPackage dataPackage = (DataPackage)sendQueue.firstElement();

267 sendQueue.removeElement(dataPackage);

268 // A byte table holding the data to send

269 byte [] data = dataPackage.toSendableFormat();

270

271 try{
272 // Opening the output stream if it is not allready open

273 if (outputStream == null){
274 outputStream = connection.openDataOutputStream();

275 }
276

277 // Saves a timestamp used to estimate the transfer rate

278 long startTime = new Date().getTime();

279

280 // Sending the type of the data package over the steam

281 outputStream.writeInt(dataPackage.getType());

282

99

283 // Sending the length of the data package over the steam

284 outputStream.writeInt(data.length);

285

286 // Sends the data package in blocks over the stream

287 // Sending blocks instead of single bytes increases the transfer rate considerably

288 boolean finishedWriting = false ;

289 int blockSize = 200;

290 int totalWritten = 0;

291 while(! finishedWriting){
292 // If whats left is less than one blockSize

293 if (data.length − totalWritten < blockSize) blockSize = data.length−totalWritten;

294 byte [] block = new byte[blockSize];

295 // Fills the byte array to be sent

296 for(int i=0; i<blockSize; i++){
297 block[i] = data[totalWritten];

298 totalWritten++;

299 }
300 outputStream.write(block);

301

302 if (totalWritten == data.length) finishedWriting = true;

303 }
304

305 // If the datapackage is a FilePackage we have to send the content

306 // of the file

307 long fileSize = 0;

308 if (dataPackage.getType() == DataPackage.FILE PACKAGE){
309 // Opens the file handler

310 FileHandler fileHandler = new FileHandler(((FilePackage)dataPackage).getFilePath());

311

312 // Flushes the output stream

313 outputStream.flush();

314

315 boolean endOfFile = false;

316 while(!endOfFile){
317 try{
318 byte [] theBytes = fileHandler.readFile ();

319 outputStream.write(theBytes);

320 }catch(EOFException eofe){
321 endOfFile = true;

322 fileHandler . closeFile ();

323 }
324 }
325 fileSize = ((FilePackage)dataPackage).getFileSize();

326 }
327

100

328

329 // Logs a message if the text package was sent successfully

330 if (dataPackage.getType() == DataPackage.TEXT PACKAGE ||
331 dataPackage.getType() == DataPackage.FILE PACKAGE){
332 // Estimates the transfer rate of the file

333 long endTime = new Date().getTime();

334 long transferTime = (endTime−startTime)/1000;

335 if (transferTime==0) transferTime = 1;

336 double kBps = ((double)(data.length+fileSize)/1024)/(double)transferTime;

337

338 //the code below calculates and rounds off the transfer rate with three decimals

339 String rate = Double.toString(kBps);

340 int commaIndex = rate.indexOf(”.”);

341 int decimal3 = Integer.parseInt(””+rate.charAt(commaIndex+3)+””);

342 int decimal4 = Integer.parseInt(””+rate.charAt(commaIndex+4)+””);

343 rate = rate.substring(0,commaIndex+4);

344 if (decimal4>=5){
345 if (decimal3 == 9){
346 decimal3 = decimal3+1;

347 rate = rate.substring(0,commaIndex+2);

348 rate += decimal3;

349 }
350 else{
351 decimal3 = decimal3+1;

352 rate = rate.substring(0,commaIndex+3);

353 rate += decimal3;

354 }
355 }
356

357 log .logDataPackage(”Finished transfering data to ”+

358 node.getNodeName()+”. (Transfer rate was ”+rate+”kB/s)”);

359 }
360

361 }catch(IOException ioe){
362 // Because this method is called from within a run() the log has to noitfy the MIDLet of the exception

363 log .logException(”NodeConnection.processSendQue()”,ioe,true);

364 closeConnection();

365 // Tries to send the datapackage once more

366 currentNetwork.sendDataPackage(dataPackage,dataPackage.getRecipients());

367 }
368 }
369

370

371 // If the queue is not empty, the processing continues

372 try {

101

373 Thread.sleep(500);

374 } catch (InterruptedException ie) {
375 // do nothing

376 }
377 try{
378 // Closes the outputstream if the sendQueue is empty

379 // The connections are re−established when a new datapackage is sent

380 if (sendQueue.size() == 0){
381 // Notifies the remote recipient that we are closing the stream

382 outputStream.writeBoolean(true);

383 openOutputStream = false;

384 // Flushes the output stream

385 outputStream.flush();

386 }else{
387 outputStream.writeBoolean(false);

388 // Flushes the output stream

389 outputStream.flush();

390 // Must process the next package

391 processSendQueue();

392 }
393 }catch(IOException ioe){
394 // Because this method is called from within a run() the log has to noitfy the MIDLet of the exception

395 log .logException(”NodeConnection.processSendQue()2”,ioe,true);

396 closeConnection();

397 }
398 }
399 }

102

10.3.13 The processIncomingData() method in NodeConnection.java

This method is the counterpart of the processSendQueue() on the recipient side. It runs in a Thread and
continuously checks whether or not a connection to another Node is established. As soon as a connection
is present, a stream is opened and it starts listening for incoming data. When some data is received it
is decoded into the variables sent from the remote Node. If the received data package is a FilePackage a
FileHandler is used to stream the content of the file down to the local file system of the device.

Listing 10.13: The processIncomingData() method in NodeConnection.java

96 /∗∗
97 ∗
98 ∗ This method receives incoming datapackages from remote nodes.

99 ∗ It is called in an infinite loop in the private class InputThread

100 ∗ in this class .

101 ∗
102 ∗/
103 public void processIncomingData(){
104 if (connection != null){
105 boolean connectionFailed = false;

106 try{
107 if (inputStream == null){
108 inputStream = connection.openDataInputStream();

109 }
110 }catch(IOException ioe1){
111 connectionFailed = true;

112 log .logException(”NodeConnection.processIncomingData()1”,ioe1,true);

113 // Opening of streams failed, ergo connection lost

114 // Close connection and inform the NodeListener

115 try {
116 connection.close ();

117 // The connection must be set to null to stop the thread running

118 // this method when the connection has closed

119 connection = null;

120 } catch (IOException ioe2){
121 log .logException(”NodeConnection.processIncomingData()2”,ioe2,true);

122 }
123 }
124

125 // If an inputstream and an outputstream was successfully opened, a infinite loop starts

126 if (! connectionFailed){
127 try {
128 while(inputStream != null && connection != null && !connectionFailed){
129 int type = −1;

130 try{
131 // Reads the type of the data package

103

132 type = inputStream.readInt();

133 }catch(IOException ioe){
134 connectionFailed = true;

135 }
136 // The type of the package determines what should be done with the package

137 switch(type){
138

139 case(DataPackage.GROUP SYNC PACKAGE):

140 // Reads the length of the incoming package

141 int byteLength1 = inputStream.readInt();

142 byte [] bytes1 = new byte[byteLength1];

143 // Reads the incoming bytes

144 for(int i=0;i<bytes1.length;i++){
145 bytes1[i] = inputStream.readByte();

146 }
147

148 // Checks if the sendQue on the sender side is empty

149 if (inputStream.readBoolean()){
150 // Closes the connection if the remote node is finished sending all its datapackages

151 openInputStream = false;

152 }
153

154 GroupSyncPackage groupSyncPackage = new GroupSyncPackage();

155

156 // Interprets the content and sets the variables in the groupSyncPackage object

157 groupSyncPackage.parseBytes(bytes1);

158

159 // Notifies the midlet via the frontEnd about the received message.

160 currentNetwork.getFrameworkFrontEnd().notifyAboutReceivedGroupSyncPackage(groupSyncPackage);

161 break;

162

163 case(DataPackage.TEXT PACKAGE):

164 // Reads the length of the incoming package

165 int byteLength2 = inputStream.readInt();

166 byte [] bytes2 = new byte[byteLength2];

167

168 // Reads the incoming bytes in blocks

169 // Reading blocks increases the transfer rate considerably

170 boolean finishedReading = false;

171 int blockSize = 200;

172 int totalRead = 0;

173 while(!finishedReading){
174 // If whats left is less than one blockSize

175 if (byteLength2 − totalRead < blockSize) blockSize = byteLength2−totalRead;

176 byte [] block = new byte[blockSize];

104

177 int numberRead = inputStream.read(block,0,blockSize);

178 // Stores whats read in an array large enough for the whole package

179 for(int i=0; i<numberRead; i++){
180 bytes2[totalRead] = block[i];

181 totalRead++;

182 }
183 if (totalRead == byteLength2) finishedReading = true;

184 }
185

186 // Checks if the sendQue on the sender side is empty

187 if (inputStream.readBoolean()){
188 // Closes the connection if the remote node is finished sending all its datapackages

189 openInputStream = false;

190 }
191

192 // Notifies the midlet via the frontEnd about the received message.

193 TextPackage textPackage = new TextPackage();

194 textPackage.parseBytes(bytes2);

195

196 currentNetwork.getFrameworkFrontEnd().notifyAboutReceivedTextPackage(textPackage);

197 break;

198

199 case(DataPackage.FILE PACKAGE):

200 // Reads the length of the incoming package

201 int byteLength3 = inputStream.readInt();

202 byte [] bytes3 = new byte[byteLength3];

203 // Reads the incoming bytes

204 for(int i=0;i<bytes3.length;i++){
205 bytes3[i] = inputStream.readByte();

206 }
207

208 // Creates a filePackage based on the received data

209 FilePackage filePackage = new FilePackage();

210 filePackage .parseBytes(bytes3);

211 // Reads the file and writes it to the filesystem

212 FileHandler fileHandler = new FileHandler(filePackage.getFilePath());

213 // Fetches the size of the file and sets it in the fileHandler

214 fileHandler . setFileSize (filePackage . getFileSize ());

215

216 // Checks if the sendQue on the sender side is empty

217 if (inputStream.readBoolean()){
218 // Closes the connection if the remote node is finished sending all its datapackages

219 openInputStream = false;

220 }
221

105

222 boolean endOfFile= false;

223 while(!endOfFile){
224 try{
225 byte [] theBytes = new byte[fileHandler.getBlockSize()];

226 // Reads data from the inputStream into a byte table

227 int numberOfBytesRead = inputStream.read(theBytes, 0, fileHandler.getBlockSize());

228 // Writes the bytes to file

229 fileHandler . writeFile (theBytes, numberOfBytesRead);

230

231 }catch(EOFException eofe){
232 endOfFile = true;

233 fileHandler . closeFile ();

234 }
235 }
236

237 currentNetwork.getFrameworkFrontEnd().notifyAboutReceivedFilePackage(filePackage);

238 break;

239

240 default :

241 break;

242 }
243 }
244

245 }catch(IOException ioe) {
246 log .logException(”NodeConnection.processIncomingData()3”, ioe, true);

247 }
248 }
249 }
250 }

106

10.3.14 The notifyAboutReceivedTextPackage() method in FrameworkFron-

tEnd.java

When the processIncomingData() method has finished receiving a text package, the framework is notified
through this method, which in turn notifies the MIDlet. The MIDlet can now display the text message and
the name of the sender.

Listing 10.14: The notifyAboutReceivedTextPackage() method in FrameworkFrontEnd.java

398 /∗∗
399 ∗
400 ∗ This method is called from NodeConnection.processIncomingData()

401 ∗ whenever a text package is received from a remote node.

402 ∗ It processes the package, logs the event, and notifies the midlet.

403 ∗
404 ∗ @param textPackage The received text package.

405 ∗/
406 public void notifyAboutReceivedTextPackage(TextPackage textPackage){
407 log .logDataPackage(”Received text package from ”+textPackage.getSender().getNodeName()+”.”);

408 midlet.notifyAboutReceivedTextPackage(textPackage.getSender().getNodeName(), textPackage.getContent());

409 }

107

108

Part IV

A Developers Guide to the Peer2Me

Framework v2.0

109

CHAPTER 11

Getting Started with the Peer2Me Framework v2.0

Before providing a user guide to Peer2Me v2.0, we will in this chapter present some central concepts used in
this version of the framework. We will also explain how to get started, i.e. which resources that is needed
to develop a MIDlet upon Peer2Me v2.0.

11.1 Peer2Me v2.0 Domain Concepts

Knowing the domain concepts is important to be able to understand how Peer2Me v2.0 actually works.
Most of the concepts presented here are the same as those presented as central concepts in Peer2Me v1.0
(see Chapter 6.1).

Framework: ”A framework is a set of classes that embodies an abstract design for solutions to a family of
related problems.”

MIDlet: A Java application intended for a CLDC device is called a MIDlet.

Node: A node is a logical representation of a peer.

Group: A group is a collection of nodes running the same MIDlet and communicating using a homogenous
network. Every node has a group containing all the nodes it is connected to. Each time a node connects
or disconnects, the groups become syncronized on all nodes.

DataPackage: A data package is the entity that can be exchanged between nodes connected in a group.
The framework has built in support for three types of data packages; a text package to transfer text, a
file package to transfer a file and a group synch package used to synchronize the content of the groups
on all nodes.

111

Figure 11.1 on the next page illustrates a conceptual model of Peer2Me v2.0.

Figure 11.1: Peer2Me conceptual model

11.2 Required Resources

To be able to develop a MIDlet using Peer2Me v2.0, the following resources are needed:

112

Peer2Me JAR-file: The Peer2Me JAR-file contains the complete framework. Adding this file to the build
path in the MIDlet development tool is necessary in order to be able to compile the source code of the
MIDlet. In addition, the J2SE Software Development Kit (SDK) must be installed on the computer.
This because the jar.exe file is needed to read the JAR-file during compilation.

Java2 Standard Edition Software Development Kit (J2SE SDK): The J2SE Software Development
Kit (SDK) supports creating J2SE applications. The only reason that this kit is needed, is to get access
to the jar.exe file in order to read the JAR-file that contains the Peer2Me framework. Alternatively
only the jar.exe file can be copied and added to the path on the computer.

Java2 Micro edition (J2ME): J2ME is a java edition especially designed for mobile phones, PDAs and
other mobile devices. J2ME provides a subset of classes and methods available in the Java2 Standard
Edition (J2SE). The Java2 Micro Edition is well described in Chapter 5.1,earlier in this report.

Having the Peer2Me JAR-file, J2SE SDK and J2ME installed on the computer, it should be possible to
compile any MIDlet using the Peer2Me framework. The only exception would be if the MIDlet makes use
of any special functionality that requires an additional API.

113

114

CHAPTER 12

Developing a Peer2Me v2.0 MIDlet

In this chapter we will provide a guide on how to write a MIDlet utilizing the Peer2Me framework. The guide
focuses on the Peer2Me specific functions, and leaves out the development of a graphical user interface (GUI).
The complete source code of two MIDlets using the Peer2Me framework v2.0 can be found as appendices
at the end of this report (Appendix B). While reading this chapter we strongly recommend looking up the
methods in the Peer2Me v2.0 Javadoc as they get introduced. The Javadoc can be found as Appendix C
and contains useful supplementary information about the classes and the methods.

12.1 Initiating the Framework

To get access to the functionality provided by the framework, an instance of the framework must be fetched.
To get this instance and to initiate the framework, do the following in the main MIDlet class:

1. Let the main MIDlet class extend class javax.microedition.midlet.MIDlet.

2. Import peer2me.framework.*

3. Let it implement the peer2me.framework.FrameworkListener interface. This interface enforces the
MIDlet to implement methods used of the framework to send data back to the MIDlet.

4. Run the static method getInstance in class FrameworkFrontEnd to get a reference of type Framework.
This can typically be done already in the constructor of the main MIDlet class, and the received
reference should be saved globally in the MIDlet as this reference is the one and only reference to the
framework from the MIDlet. The input type to FrameworkFrontEnd.getInstance() must be a reference
to the class implementing the peer2me.framework.FrameworkListener interface.

115

5. When all required inputs are ready, it is time to run the initFramework method on the reference fetched
in the previous step. This method initiates the framework and causes all internal threads running the
different network functionality to start.

12.2 Setting Up a Connection

To search for other devices and to set up a connection, do the following:

1. Run method startNodeSearch on the available reference to the framework. This method starts a search
for devices running the same MIDlet.

2. If such a device is found, the notifyAboutFoundNode method specified by the FrameworkListener
interface is called to notify the MIDlet. The method notifyAboutFoundNode implemented in the MIDlet
should display the names of the found nodes in a choice group.

3. After selecting which nodes to connect to from the choice group, the method connectToNodes should be
called with the addresses of the chosen nodes as input. This method connects the devices in a network.

4. Once a connection is established, the notifyAboutParticipants method specified by the FrameworkLis-
tener interface is called on every connected device to notify the MIDlets about the network participants.
The names of the participants should typically become added to a choice group and displayed on each
device.

12.3 Sending a Data Package

Sending a data package using Peer2Me v2.0 has become very simple:

1. To send simple text, use the sendTextPackage method. This method sends some text over the network.
Required input is a list containing the addresses to the recipient nodes, and the text to be sent.

2. When the text package terminates to the recipients, they are alerted by the notifyAboutReceived-
TextPackage method specified by the FrameworkListener interface. The local MIDlet on each recipient
should then typically display the received text.

3. To send any kind of file, use the sendFilePackage method. This method sends a file over the network.
Required input is a list containing the addresses to the recipient nodes, and the path of the file to be
sent.

4. When the file package terminates to the recipients, they are alerted by the notifyAboutReceivedFilePack-
age method specified by the FrameworkListener interface. The local MIDlet on each recipient should
then typically display a text saying that a file has been received.

116

12.4 Using the Log

The framework has a built-in log that could be very useful during development and testing. The log is used
throughout the whole framework, and is filled with different types of status messages informing the user
(and/or developer) about what happens during run time. To use the log, do the following:

1. Import peer2me.util.Log

2. Fetch the logs by running the static getLog method. It is generally very useful to fetch the logs and
offer a console containing the content of the logs.

3. New entries can also be added to the log from the MIDlet by using for example the logDebugInfo
method.

117

118

CHAPTER 13

Deploying a Peer2Me MIDlet

This chapter contains a simple guide on how to deploy the MIDlet on a mobile device.

13.1 Creating a MIDlet package

As written in Chapter 5.1.1, a Java application intended for a CLDC device must be formatted into a Java
Archive (a JAR-file) to run on the device. JAR files are Java’s version of ZIP files, and can in fact be opened
with WinZip or WinRar. Usually, a function for creating a JAR-file containing the MIDlet is provided by the
development tool, but it can also be created manually using the jar.exe file that comes with Java2 Standard
Edition Software Development Kit (J2SE SDK). The jar utility program can be run from the command line
(DOS prompt or bash for example, depending on your OS). Here is how to create a compressed JAR-file:

jar -cf archiveName.jar file-names-separated-by-space

For additional information on how to use the jar utility program, just type jar.exe from the command
line, and push the ”enter” key.

13.2 How to run a MIDlet

To run the MIDlet on a mobile device, the JAR-file containing the compiled MIDlet must be transferred
to the device. This can be done using a cable between the computer and the device, or by Bluetooth or
IR. Using Bluetooth or IR requires of course that both devices (computer and mobile device) supports the
respective wireless network mediums. When the transfer is complete, the JAR-file can be executed and the
MIDlet will be installed on the device. The MIDlet is then ready to be run.

119

120

Part V

Peer2Me v1.0 vs. Peer2Me v2.0

121

CHAPTER 14

Comparison of Framework Functionality

In this part we will describe the tests we performed on the Peer2Me v2.0 framework after it was completed.
The tests consisted of comparing the redesigned framework with the original one. These tests gave us both
quantitative and qualitative data which in turn was used to evaluate the redesign of the Peer2Me framework
(see Chapter 18, Evaluating the Redesign) and to answer the Research Questions raised in Chapter 2.1.

The actual testing process was divided into three different parts; a comparison of main functionality (found in
the following chapter), a architectural and structural comparison of the original and the redesigned versions
of the Peer2Me framework (found in Chapter 15), and comparison of the framework properties (found in
Chapter 3).

This chapter contains a presentation of important functionality found in the Peer2Me framework v2.0. If
similar functionality also could be found in Peer2Me v1.0 a comparison of the implementation will be made.

14.1 Peer2Me v2.0 Functionality

In the following we will present and describe a selection of functionality found in the Peer2Me framework
v2.0;

∗ Pure peer-to-peer computing, see Chapter 3.3.1.

∗ Sending text

∗ Sending files

∗ Logging

∗ Detection of lost nodes

123

∗ Clean exit

14.1.1 Pure peer-to-peer computing

In Chapter 3.3.1 pure peer-to-peer is defined as:

” In a pure P2P model it does not exist any central unit (server) responsible for managing or
coordinating the services and the resources among the peers in the network.”

In Peer2Me v1.0 this is not the case as one of the nodes in the network has to act as a Master handling all
the communication between its Slave nodes. This form of peer-to-peer computing is referred to as a hybrid
model.

In Peer2Me v2.0 this solution is discarded and replaced with a pure peer-to-peer model. A device running a
Peer2Me based MIDlet performs a discovery operation and locates and connects to all or a selection of the
discovered devices also running the same MIDlet. Simultaneously all the connected devices are synchronized
so they possess knowledge of all the other devices, now acting as nodes in the ad-hoc network. When some
data is to be sent, a connection can be established directly between the sender and the recipient(s) rather
than through a Master node. This eliminates the Master/Slave concept of Peer2Me v1.0 and removes the
potential bottleneck and single point of failure problems of the original framework.

14.1.2 Sending text

Sending of text is the only applicable function of the original Peer2Me framework, but we find the process
quite complicated and tedious. In the redesigned version, the text sending is somewhat simplified, but yet
very useful. To send a text message the MIDlet needs to call the sendTextMessage() method of the Framework
interface. The recipients’ network addresses and the actual messages are given as input parameters and the
framework handles the rest of the sending process. In Peer2Me v1.0, a message and message parts have to
be created, and the entire process is much more time consuming, more complicated and requires several lines
of code.

Incoming text is also presented to the MIDlet in a simple way by the Peer2Me v2.0. The notifyAboutRe-
ceivedTextPackage() method have to be implemented by all MIDlets due to the implementation of the
FrameworkListener interface, and this method is used by the framework to notify the MIDlet about a
received text package. The sender’s address and the text itself is given as input parameters.

With some additional implementation the text sending can be utilized to serialize and send objects between
nodes.

14.1.3 Sending files

This is a completely new feature of the Peer2Me framework v2.0 that allow sending a any kind of files between
nodes. The files are fetched from and stored on the local file system of the device running the framework.
The files are broken down into blocks of bytes, sent to the receiver(s) and put back together again. The size
of the byte blocks are tuned to achieve the highest possible transfer rate.

124

14.1.4 Logging

The logging functionality is an important feature to allow debugging as there is no console displaying
information on this kind of devices. The log also contains a history of all communication and connections
established between nodes. The Peer2Me v1.0 has no logging functionality, but features a exception handler
and a debug application. There is no consistency in which is used in what situation, whereas Peer2Me v2.0
gathers all information in one location in a readable and descriptive format.

14.1.5 Detection of lost nodes

In a ad-hoc network based on peer-to-peer computing, such as the networks created using the Peer2Me
framework, it is crucial to detect cases where one or more nodes are lost. If this is neglected text- and file
packages will be lost when one node tries to send to a node that is no longer there. In Peer2Me v2.0 lost
nodes are detected by the sender, and if a retry is unsuccessful the lost node is removed from the group. The
other nodes of the group is also informed about the event by a synchronization of their groups.

The original Peer2Me framework have no such detection and can only remove a node from a group when it
leaves in a controlled way.

14.1.6 Clean exit

When a MIDlet based on the Peer2Me framework shuts down it is important that the framework ”cleans
up” as well. All connections and data streams must be closed and removed before the application itself
terminates. This way no ”loose threads” are left behind that can compromise the next execution of the
same MIDlet. The Peer2Me framework v2.0 has gotten rid of the problems concerning the discovery process
experienced in Peer2Me v1.0 when a MIDlet is terminated ungracefully.

125

126

CHAPTER 15

Comparison of Code Structure

In this chapter we will describe the improvements we have made to the code structure of the redesigned
Peer2Me by comparing it to the structure of similar code found in the original framework. The comparison
will consist of code listings of how a particular portion of code is constructed in both the original and the
redesigned framework. A description of the listings will point out the improvements and changes we have
performed. The last sub chapter will summarize the most important changes and other positive properties
of the code.

15.1 Code Samples

The code samples are taken from methods that particularly illustrates how we have redesigned the code
to improve the quality and structure. We emphasizes the use of comments, comprehensible variable and
method names and generally tidy coding.

127

15.1.1 Initiation of the framework

These two listings illustrates how the framework is initiated in MIDlets using the original and the redesigned
framework.

Listing 15.1: Initiation in Peer2Me v1.0

119 public void init (){
120 while(role==null){};
121

122 if (role .equals(”Slave”)) chatForm = new ChatForm(”PAN IM”,this,”Slave”);

123

124 if (role .equals(”Master”)) chatForm = new ChatForm(”PAN IM”,this,”Master”);

125

126 service = new Service(”PanIm”);

127

128 framework = Framework.getInstance(personalProfile.getNickname(), personalProfile.getFirstname()+” ”+

129 personalProfile .getLastname(), ” bluetooth.network.BluetoothNetwork”);

130 framework.init();

131 framework.setGroupDiscoveryListener(this);

132 framework.setMessageSubscriber(this);

133 framework.setExceptionHandler(this);

134

135 if (role .equals(”Master”)){
136 group = new Group();

137 group.setMaster(framework.getLocalNode());

138 group.setMonitor(this);

139 service .setGroup(group);

140 group.setClosed(true);

141 group.setService(service);

142 foundNodes = new Hashtable();

143 }
144 framework.registerService(service);

145 showWelcomeMessage();

128

Listing 15.2: Initiation in Peer2Me v2.0

1 // Fetches an instance of the Framework

2 framework = FrameworkFrontEnd.getInstance(this);

3 // Initiates the framework

4 try{
5 framework.initFramework(nodeName, midletName, preferredNetwork);

6 }catch(Exception e){
7 append(”Error initiating the framework. Please try again.”);

8 }

In the MIDlet developed upon the original Peer2Me framework one have to perform a large number of
task to initiate the framework, see Listing 15.1. References to a number of classes had to be made, like
Framework, Service, Group, and several methods were called.

In the redesigned framework only two lines of code are needed, a instance of the Framework interface is
fetched and an initiation is run with user name, MIDlet name and preferred network as input, see Listing
15.2.

15.1.2 Variable Comments

Descriptive and well written comments are important to make the code easy to understand and maintain.

Listing 15.3: Variables in Framework.java (v1.0)

60 //debug variables

61 private boolean debug = false;

62 private boolean debug2 = false;

63

64 private Hashtable services = new Hashtable();

65 private GroupDiscoveryListener groupDiscoveryListener;

66 private Vector messageSubscribers = null;

67 private Vector messageQueue;

68 private String nodename;

69 private String description ;

70 private Network currentNetwork;

71 private Hashtable groups;

72 private boolean running;

73 private String preferredNetwork;

74 private ExceptionHandler exceptionHandler;

129

Listing 15.4: Variables in FrameworkFrontEnd.java (v2.0)

28 // The instance of the FrameworkFrontEnd returned by the getInstance() method, will be casted to Framework upon return

29 private static FrameworkFrontEnd singleton;

30 // The midlet that initiated the framework represented by a FrameworkListener instance

31 private FrameworkListener midlet;

32 // The Network instance of the preferred network

33 private Network currentNetwork;

34 // The group containing all connected nodes running the same application

35 private Group group;

36 // The local node

37 private Node localNode;

38 // A Hastable containing the addresses(key) and names(value) of the nodes found in the discovery process

39 private Hashtable foundNodes;

40

41 // A Log instance

42 private Log log = Log.getInstance();

These code sniplets illustrates how variables are declared and commented in the main framework class
of the two versions of the Peer2Me framework. In the redesigned version, every variable has a comment
describing the function and use. This is continued throughout all the classes.

15.1.3 Javadoc Comments

To have a complete and good Javadoc of the code is a must for developers using the framework.

Listing 15.5: Javadoc in Framework.java (v1.0)

388 /∗∗
389 ∗ Used for dosconnecting a node.

390 ∗
391 ∗ @param node The node to disconnect.

392 ∗/
393 public void disconnectNode(Node node){

130

Listing 15.6: Javadoc in FrameworkFrontEnd.java (v2.0)

132 /∗∗
133 ∗
134 ∗ This method returns the local representation of the group. It is called from

135 ∗ ConnectionListener.run() or Network.nodeFound() when a remote node is found

136 ∗ and should be added to the group.

137 ∗
138 ∗ @return The local representation of the group

139 ∗/
140 public Group getGroup(){

Every method of the redesigned Peer2Me framework has got a Javadoc comment describing the usage,
parameters, exceptions and return values. In some cases the Javadoc also describes where the method is
called from. The original framework has some shortcomings of the Javadoc, and quite a few methods lack
comments all together.

15.1.4 Method and variable names

Descriptive and well formulated names on methods and variables increases the understanding of their
function. This is important for developers creating MIDlets using the framework as well as further
development of Peer2Me.

Listing 15.7: allowJoin() method in the GroupMoinitor interface (v1.0)

21 /∗∗
22 ∗ Called when a node wishes to join a closed group. Only called if

23 ∗ on the master node.

24 ∗
25 ∗ @param group The group associated with the join request.

26 ∗ @param node The node sending the request.

27 ∗ @return True if the join is accepted, false otherwise.

28 ∗/
29 public void allowJoin(Group group, Node node);

Listing 15.8: sendTextPackage() method in the Framework interface (v2.0)

71 /∗∗
72 ∗
73 ∗ This method sends a text package over the network. When the package

74 ∗ terminates to the recipients , they are alerted by the

75 ∗ notifyAboutReceivedTextPackage() method specified by the

76 ∗ FrameworkListener interface.

77 ∗
78 ∗ @param recipients A list containing the addresses of the recipient nodes

131

79 ∗ @param textMessage The text message to be sent

80 ∗
81 ∗/
82 public void sendTextPackage(String[] recipients , String textMessage);

The allowJoin() method is a good example on how the comments and method names of the original framework
are somewhat vague, see Listing 15.7.

* Called when a node wishes to join a closed group. Only called if on the master node.

This description do not explain how the method is supposed work when implemented and where it should
be called from. The name of the method is also a bit misleading. Is the method called to allow a remote
node to join the group or is it called to attempt to join the group of another node?

In the method sendTextMessage() of the redesigned version of the framework seen in Listing 15.8 the name
is descriptive and the input parameters are quite self explaining. The Javadoc comment tells us where the
method is called from and what function it serves. The input parameters are also further described in this
comment.

15.1.5 Tidy Code

Tidy coding is important to maintain readability and to ensure easy maintenance in the future.

Listing 15.9: The constructor of the RemoteBluetoothNode class (v1.0)

1 public RemoteBluetoothNode(BluetoothNetwork listener, StreamConnection connection) throws BluetoothNodeException{
2 this . listener = listener ;

3 conn = connection;

4 try {
5 remoteDevice = RemoteDevice.getRemoteDevice(connection);

6 } catch (IOException e) {
7

8

9 throw new BluetoothNodeException(”Failed to initialize RemoteBluetoothNode:” + e.toString());

10

11

12 }
13 address = remoteDevice.getBluetoothAddress();

14

15

16

17 listener .registerNode(this);

18

19 thread = new Thread(this);

20 thread.start ();

132

21

22 if (debug) Debugger.debug(”started thread on this node”);

23

24

25 }

Listing 15.10: The constructor of the NodeConnection class (v2.0)

1 public NodeConnection(StreamConnection connection, Node node){
2

3 // Fetches a instance of the Log

4 log = Log.getInstance();

5 // Sets the connection to connect to and fetches an instance of the currentNetwork

6 this .connection = connection;

7 this .node = node;

8 currentNetwork = Network.getInstance();

9 // Creates the sendQue

10 sendQueue = new Vector();

11

12 // The Input− and OutputStreams shall not do anything before the node is connected

13 // These values are toggled from ConnectionListener.run() and NodeConnection.sendDataPackage()

14 openInputStream = false;

15 openOutputStream = false;

16 // Starts a thread that processes the sendQue

17 outputThread = new OutputThread();

18 outputThread.setPriority(Thread.MAX PRIORITY);

19 outputThread.start();

20 // Starts a thread constantly listening for incoming datapackages

21 inputThread = new InputThread();

22 inputThread.setPriority(Thread.MAX PRIORITY);

23 inputThread.start();

24 }

The code of the NodeConnection constructor found in the redesigned Peer2Me framework are divided into
logical blocks, are compact and has descriptive comments. This eases the work of developers trying to
understand the framework with the intention to further improve it.

15.2 Summary

We will now summarize the code structure comparison and point out the improvements we have achieved
through the redesign of the Peer2Me framework.

Compact and tidy code The code have been revised to tidy it up and make it more readable. The
interface towards the MIDlets is made simpler, located in only one java file and have few methods with
descriptive names.

133

Variable- and Javadoc Comments Comments has been used throughout the entire redesigned frame-
work to describe the usage of variables and methods, and to add Javadoc entries of all methods and
classes. The extensive use of comments makes the code easier to comprehend and start using.

Method and Variable Names When using the framework it is crucial that the names of the methods and
variables available are self explaining so no confusion about their function occurs. It is time consuming
to browse through the code to try and figure out how to use it.

134

CHAPTER 16

Comparison of Framework Properties

This chapter will aim to describe the comparison of the redesigned as well as the original Peer2Me framework’s
properties to retrieve the quantitative data needed to evaluate the redesign of the framework (see Chapter
18). The properties we want to compare are; footprint of framework and MIDlets, interface size, complexity,
and transfer rate.

Our comparison will be performed with base in the PAN-IM instant messenger MIDlet found in Lund
and Norum’s master thesis [31] and the Peer2Messenger MIDlet developed by us for the purpose. These two
MIDlets will feature the same functionality to ensure a correct comparison. The transfer rate of the original
framework was found in the tests performed as a part of our depth study [39].

16.1 The Goal/Question/Metric Approach

These are the goals we stated based on Research Questions 2 and parts of Research Questions 3 in Chapter 2.1
using the the goal definition template found in Chapter 2.2.2. These goals are further refined into questions
and metrics used to answer the Research Questions.

Goal 1: Analyze the the redesigned Peer2Me framework

for the purpose of Evaluating the framework and the MIDlets

with respect to its footprint and complexity

from the point of view of the Developers

in the context of Mobile collaborative application development.

Question 1: Has the redesigned Peer2Me framework got a smaller footprint than the original
framework?

Metric: Measure framework footprint.

135

Question 2: Has a MIDlet built upon the redesign Peer2Me framework got a smaller footprint than a
MIDlet built upon the original framework?

Metric: Measure MIDlet footprint.

Question 3: Has the redesigned Peer2Me framework got a smaller interface towards the MIDlets than
the original framework?

Metric: Measure the number of relations between a MIDlet and the framework.

Question 4: Is the redesigned Peer2Me framework less complex than the original framework?

Metric: Measure number of packages, number of classes and average class size.

Goal 2: Analyze the the redesigned Peer2Me framework

for the purpose of Evaluating an application built upon the framework

with respect to its stability, performance and error rate

from the point of view of the Developers

in the context of Mobile collaborative application development.

Question 1: Does the redesigned Peer2Me framework perform better, with respect to transfer rate,
than the original framework?

Metric: Measure transfer rate.

16.2 Comparing the Framework Properties

To compare the properties of the redesigned vs. the original framework as well as MIDlets built upon them,
we created a Peer2Messenger similar to the PAN-IM presented in the master thesis of Lund and Norum [31].
The two MIDlets had to have the same functionality and GUI to get a correct comparison. To achieve this
we had to make some modifications to the PAN-IM MIDlet because it uses persistence to store information
about the user. The Modified version of the PAN-IM and the Peer2Messenger have the same functionality
and hence they are comparable. The properties we compared in this experiment was:

Framework footprint This property is a factor that can tell us something about the complexity of the
frameworks. The idea is that the footprint somewhat reflects the complexity, as a large number of
classes will increase the size deployed file containing the framework. A small footprint is also, to some
extent, important due to the limited memory available for runtime operations on mobile devices.

MIDlet footprint and interface complexity As in the previous point we presume a connection between
the MIDlet size and the complexity. A simplified framework interface will decrease the amount of code
needed in the MIDlet to initiate and use the Peer2Me framework. It will also reduce the time a
developer needs to start developing working MIDlets.

Framework complexity To make the Peer2Me framework easier to comprehend for developers we have
tried to reduce the total number of classes and keep the functionality basic, yet complete. We have
also gathered all the methods ”visible” to the developers in one interface.

136

Transfer rate The transfer rate is a crucial property for the framework, as the main focus is communications
between two or more portable devices. A limited transfer rate will restrict the possibilities of realtime
communication and sending of large files.

Framework Properties
Properties Peer2ME v1.0 Peer2Me v2.0 Improvements
Framework Footprint (code lines) 1875 1621 254
Framework Footprint (kB) 47,2kB 37,5kB 9,7kB
Framework Packages 18 6 12
Framework Classes 29 18 11
Framework avg. Class Size (code lines) 65 85 -20
MIDlet Footprint (code lines) 402 321 81
MIDlet Footprint (kB) 9,7kB 9,8kB -0,1kB
MIDlet Framework Interfaces 4 1 3
MIDlet Framework Interface Methods 8 5 3
MIDlet Framework Class References 6 1 5
Transfer Rate in kB/s 7kB/s 18kB/s 11kB/s

Table 16.1: Framework Properties

We will now review the properties viewed in Table 16.1 to compare the original and the redesigned Peer2Me
framework. Each property will be discussed separately and evaluated to determine whether or not the
redesign of the framework has improved the specific property.

Framework Footprint The footprint of the framework specific classes has been reduced with about 20.6%
(9,7kB), which is significant on small devices like the ones this framework is intended for.

Framework packages The number of packages in the Architecture is reduced to a third of the original.
This contributes to reduced complexity and makes the structure easier to comprehend.

Framework classes and average class size Almost 40% reduction in classes shows that redesign has
fulfilled the goal of simplifying the framework. The less classes a developer has to relate to and
understand the function of, the easier the task of using and further expand the framework will be. The
average size of each class has increased with 20 code lines, but this is a natural consequence of the
reduction in classes and the classes are still small enough to maintain the developers overview.

MIDlet Footprint The size of the Peer2Messenger MIDlet is not noticeably reduced compared to the
PAN-IM MIDlet, although the total size of the deployable JAR file is reduced. This is mainly caused
by poor optimization of the code representing the GUI1 in Peer2Messenger. The actual framework
related code of the MIDlet has been minimized.

MIDlet Framework Interfaces and Interface Methods The number of interfaces that has to be
implemented by a MIDlet to make use of the framework has been cut from 4 in the original to 1 in
the redesigned one. The number of methods that has to be implemented as a result of these interfaces

1Graphical User Interface

137

is reduced from 8 to 5. This means that the job of developing a MIDlet upon the Peer2Me framework
has been simplified and easier to comprehend.

MIDlet Framework Class References The number of class references gives an indication of how many
classes from the framework a MIDlet has to have a reference to. We have reduced this number from
6 to 1 which reduces the coupling between the Peer2Me framework and the MIDlet. It also eases the
task of developing a MIDlet upon the framework because no more than two lines of code is needed to
initiate and get a reference to the framework.

Transfer Rate The transfer rate was measured sending a string consisting of the alphabet written out 700
times and we experienced a 157% improvement from the original framework. We also found that the
transfer rate increased to more than 30 kB/s when larger amounts of data was transferred (for example
a MP3 file of several megagytes). The original framework could not transfer larger data packages, so
we can not determine if this increase will occur here as well.

These results and properties will be further discussed in the Evaluation chapter, Chapter 18.

138

Part VI

Evaluation

139

CHAPTER 17

Technology Evaluation

In this chapter we will evaluate the technologies utilized in the redesign of the Peer2Me framework and the
development tools used in the process. This evaluation will not answer any specific Research Questions, but
is provided to give a better overall view of the Peer2Me framework v2.0.

17.1 Mobile Phones and J2ME

The following will evaluate the technology of the mobile phones used in testing during this project, as well
as J2ME as a programming platform on such mobile devices.

17.1.1 General Evaluation of Mobile Phones and J2ME

The redesign of the Peer2Me framework is based on SUN Java Wireless Toolkit (WTK) 2.21 just as the
original is. This version of the toolkit has a wide range of capabilities like support for MIDP 2.0, CLDC 1.1,
Bluetooth (JSR-82), FileConnection (JSR-75), Web Services (JSR-172) and 3D graphic (JSR-184). We have
kept our focus on MIDP 2.0 and Bluetooth since this are important aspects of the Peer2ME framework. We
have also taken advantage of the functionality found in the FileConnection API to enable file sending. The
toolkit has performed in a satisfactory way, not causing us any major problems. The mobile phone emulator
that comes with the WTK and the emulator found in the Sony Ericsson SDK 2.2.32 has also been a helpful
tool for testing and debugging. The J2ME implementations of the different mobile phone vendors on the
other hand, is still causing a lot of problems. This will be described more thoroughly in the Weaknesses
chapter (Chapter 17.1.3).

In this project we have used Sony Ericsson K750 mobile phones as test devices. This phone has proved

1http://java.sun.com/products/sjwtoolkit/index.html
2developer.sonyericsson.com

141

itself to be the most satisfactory to develop for and test with, and has only caused minor problems. It is
fast, stable and has plenty free memory. The J2ME Bluetooth implementation is also of high quality.

17.1.2 Strengths of Mobile Phones and J2ME

Portability is the main advantage of a combination of technologies like Java in the form of J2ME and portable
computing devices, e.g. mobile phones. This portability along with the ability to program fairly powerful
applications opens for a wide range of utilizations of this kind of setup. Interaction and collaboration is such
a area that is becoming more and more interesting due to the high density of Java enabled mobile devices
in affluent countries in the western world.

J2ME is a platform that specially addresses the requirements for program development on small devices
like mobile phones and PDAs. This specialization together with the widespread acceptance of J2ME in the
consumer electronics has made J2ME one of the leading technologies in this area. This results in a large
selection of APIs and available resources that helps developers creating better and more diverse applications.
As with all SUN Java platforms J2ME is available for research and development purposes via the Sun
Community Source Licensing model which makes it affordable to develop applications on this platform [26].

Bluetooth is becoming more and more widespread as the short range wireless medium of mobile devices.
Via the Bluetooth API (JSR-82) the J2ME applications can use the Bluetooth unit of the mobile device
to communicate with other devices in the proximity. This opens for the creation of ad hoc networks
between devices running the same application, which in turn can be utilized for entertainment, collaboration
and awareness purposes. Bluetooth can be used for mobile-to-computer communication as well. J2ME
applications can be used to remotely control certain operations on the computer and data can be transferred
and synchronized. More about Bluetooth in Chapter 17.2.

With support for file browsing through the FileConnection API (JSR-75) the possibility of sharing files
between participants in an ad-hoc network adds a new dimention to the Peer2Me framework v2.0. Accessing
and sending files opens for whole new features in the MIDlets developed using the framework.

17.1.3 Weaknesses of Mobile Phones and J2ME

Although the gap between portable and stationary computational devices has shrunk the last few years,
there are still several limitations to what can be done on a mobile phone. The relatively low CPU power
available restricts the number of calculations per second and hence the possibility to solve complex tasks.
The result is that the J2ME applications must be rather lightweight. The limited CPU power is tightly
related to the insufficient battery capacity of the devices [11]. This has become one of the biggest challenges
for the industry trying to include ever more functionality in smaller and smaller devices.

The means of interaction with the users is still the most restrictive characteristic of portable devices. Both
the keyboards and displays are limited in size and degrade the user experience compared to a traditional
computer system. Input is often done on numeric keyboards with a multiple key press approach to make
writing of text possible. The introduction of a function for predictive text input, like T9 [19], has improved

142

writing speed for most users, but it is still inferior to a normal QWERTY-keyboard. The display of a typical
mobile device3 features a TFT-screen with 262 144 colors and a 176x220 pixel size. This limits the amount
of information that can be presented for the user at one time. Graphics must be kept at a minimum and the
focus has to be on the what is important for the usability and usefulness of the application.

J2ME is a stripped down version of J2SE, and because of this it lacks several possibilities that an experienced
Java programmer will miss. This makes the transition between the to platforms a bit challenging, but
not insuperable. Many of the problems we experienced during development and testing of our Peer2Me
application could have been avoided if we could have reviewed some kind of log or console after an error has
occurred. This was added as a feature of the Peer2Me framework v2.0 and has proven to be a great help
during development and testing.

Another major problem one encounters when developing J2ME applications is that the different mobile
device vendors do not implement J2ME uniformly in all devices. The graphical user interface of the different
devices is a good example of this with several differences among devices [18]. These differences are mainly
connected to grouping and priority of commands, along with layout of forms.

17.2 Bluetooth

We will now evaluate Bluetooth as a wireless medium for communication between two or more mobile devices.

17.2.1 General Evaluation of Bluetooth

The redesigned Peer2Me is intended to support any type of network layer as long as it exists J2ME support
and APIs for it. The network layer is kept invisible for the MIDlet running the framework. This way
the developer does not have to focus on implementing specific methods to communicate over the network,
but rather use available network interfaces. As of today there is only one network layer implemented for
the Peer2Me framework, Bluetooth. This is because Bluetooth is the only network technology commonly
available in mobile devices at the moment. More details about the Bluetooth technology can be found in
Chapter 5.2, Bluetooth.

17.2.2 Strengths of Bluetooth

With exception of WLAN on a few PDA’s and Smart Phones, Bluetooth is the only wireless technology
commonly available on portable devices like mobile phones today. The use of Bluetooth in wireless hands
free units further increase the implementation of the technology into new equipment. The technology is also
on its way to become standard on most computers, which opens for wireless communication between mobile
and more stationary devices.

To be able to take advantage of Bluetooth’s network capabilities in a J2ME application running on a mobile
device the JSR-82 Bluetooth API must be present. This API is included on many of the new mobile phones

3Sony Ericsson K750

143

with MIDP 2.0 support. The API enables the J2ME application to communicate with other applications
running on other devices via Bluetooth. This gives the possibility to create ad hoc networks, as is the case
with the applications based upon the Peer2Me framework.

The experiments we performed concerning range in our depth study [39] proved that the transmitting range of
the Bluetooth units in mobile phones is considerably higher than the 10 meters described to be the limitation
for Class 2 Bluetooth devices [28]. We were able to sustain a connection between two devices for distances
up to about 70 meters both outdoors and indoors and these ranges will make it possible to develop useful
applications based upon the Peer2Me framework using Bluetooth as a network layer.

Bluetooth is using a technique called ”Frequency Hopping”to increase the quality of the signal. This technique
reduces interference and noise, makes the signals harder to intercept and enables higher bandwidth for data
transmission. These factors make Bluetooth a relatively stable medium and well suited to be used with the
Peer2Me framework v2.0.

17.2.3 Weaknesses of Bluetooth

Through our use and testing of Bluetooth as a wireless network medium we have found the relatively long
discovery time to be the main disadvantage. This limits the possibility to create ad hoc networks as the
mobile devices have to been in proximity of each other for a long enough period of time before the ad hoc
network can be established. The discovery of devices worn by persons passing each other in a corridor is for
instance not very likely. A successful creation of an ad hoc network relies on the participants to more or less
stationary in range of each other.

The Bluetooth technology has got a theoretical limit of 8 simultaneous connections and this number is quite
lower than that on most devices. We have hower overcome this limitation by creating a pure peer-to-peer
architecture where the devices are connected only as they send data to each other.

In our depth study [39] we were able to acheive transfer rates of approximately 7kB/s. Although we have
increased this to about 20kB/s (see Table 16.1), it is not very high. This restricts the amount of data it is
practical to transfer from one device to another and it is mostly suited for transfer of textual messages and
small files like images.

As described in Chapter 17.1.3 there are some problems with different mobile device vendors implementing
J2ME in a proprietary manner. This affects the Bluetooth API as well; especially in the way the applications
are allowed to create a Bluetooth connection. In turn this leads to problems establishing spontaneous as hoc
networks as the user has to authenticate any attempt to connect.

17.3 Development Tools

This chapter contains an evaluation of the development tools used in this project.

144

17.3.1 General Evaluation of the Development Tools

The Eclipse IDE4 is our preferred environment for writing both code and LATEX documents as this
documentation. To be able to develop J2ME applications we have extended Eclipse with the EclipseME5

plug-in and SUN’s Java Wireless Toolkit6. This solutions gives us an easy way of packaging and deploying
finished MIDlets as a JAR file ready to execute on J2ME compatible devices. To make this configuration
work in Mac OSX we had to do some modifications to the preverifier using elements from a SDK called
mpowerplayer7.

17.3.2 Strengths of the Development Tools

As the Eclipse IDE is Java based and hence is platform independent it is an ideal development environment
for this project because of the mix of Windows PCs and Mac OSX macs used. By using this multi platform
IDE we eliminated problems that might have occurred if we had used a heterogeneous and OS specific
environment.

The EclipseME plug-in gives us several advantages for developing J2ME applications. Combined with the
wireless toolkit it has a very useful code assist that makes coding easier and faster. It also features an
automatic packaging function that crates a JAR package containing the MIDlet and all the necessary class
files. This is far more elegant than the manual approach that includes writing and running an Ant8 script.
The EclipseME have a graphical interface for creating JAD files as well, another helpful element.

Since we are two contributors in this project the built in CVS9 client found in Eclipse is a very useful
tool. I allows to collaborate and work as a team even though we often work from physical different locations.
By using CVS to keep track of changes in our code and documentation we can always be sure that we are
working with the latest version and we do not have to worry about compromising each other’s code. The
fact that CVS is using a repository on a remote server also adds an extra level of security against loss of
code.

17.3.3 Weaknesses of the Development Tools

The main weakness we have discovered using Eclipse is some stability problems. Eclipse functions can
suddenly cease to work and unchanged code that is compiled a minute ago fails to compile. The errors can
often be fixed using a combination of restarting, cleaning projects and refreshing form CVS repository.

Another problem we have encountered is incompatibility between the text encoding formats in Mac OSX
and Windows (MacRoman and ISO-8859-1). This is resolved by forcing the Mac version of Eclipse to use
ISO- 8859-1 for this project.

4www.eclipse.org
5www.eclipseme.org
6http://java.sun.com/products/sjwtoolkit/index.html
7mpowerplayer.com
8http://ant.apache.org/
9http://www.nongnu.org/cvs/

145

146

CHAPTER 18

Evaluating the Redesign

In this chapter we will evaluate Peer2Me v2.0 and try to point out strengths and weaknesses of the framework.
The evaluation will have a qualitative and subjective character and represents the perceived quality of the
redesigned Peer2Me framework. Qualitative data is, as described in Chapter 2.2, expressed in words and
gives a richer understanding of the subject in question. This evaluation is used to answer Research Question
1 and the part of Research Question 3 not answered by the results of GQM; Analysis and Interpretation
found in Chapter 19. In Research Question 1, we asked:

1. Does a redesign of the Peer2Me framework improve developers ability to produce J2ME

based applications for mobile collaboration?

18.1 General Evaluation of the Peer2Me Framework v2.0

As the for the original Peer2Me framework is the main purpose for the redesigned version to support
development of collaborative mobile applications based on J2ME and any available network protocols. We
are still limited to the use of Bluetooth as network medium because this is the only implemented network
API for J2ME. Bluetooth is however becoming a widespread technology present on a large range of mobile
phones and with recent upgrades it performs quite good as well.

Overall we are satisfied with v2.0 of the framework. We have fulfil out main goals of improving the
architecture, simplifying the interface and decreasing the footprint. Our impression is that Peer2Me
framework v2.0 is simpler to both learn and use than the original version. Many of the underlying problems
and errors are also removed, and the framework appears to be a more reliable and versatile.

147

18.2 Strengths of the Peer2Me Framework v2.0

The main strength of the redesigned version of the Peer2Me framework is the fact that it now uses a
pure peer-to-peer topology in the creation of and communication over ad-hoc networks. This eliminates the
bottleneck and single point of failure problem associated with the Master/Slave topology of the Peer2Me
v1.0. This solution utilizes the full bandwidth of the network technology and even overcomes the theoretical
limitations of simultaneously connected nodes.

As described in Chapter 16, the transfer rate is considerably higher in Peer2Me v2.0 than Peer2Me v1.0.
While the perceived transfer rate in v2.0 in a specific case is 18kB/s, it is 7kB/s in v1.0. This is most likely
a result of an optimalization of the way bytes are sent and read. In Peer2Me v2.0 bytes a written and read
in blocks of a certain size, while in Peer2Me v1.0 bytes are read one by one.

The Peer2Me framework v2.0 encapsulates all network related classes and presents a generic interface towards
the MIDlets developed. This approach reduces the time and code required to develop a new MIDlet and
does not demand any knowledge of the network technology. New network modules can be added without
altering the MIDlet interface at all or having to change the code of existing applications.

A new feature of Peer2Me v2.0 is the inclusion of the FileConnection API (JSR-75). This allow the MIDlets
to access the local file system of the device it is executing on. The methods for performing this type of file
access are encapsulated by the framework that presents methods for file sending and file list navigation to
the MIDlets.

Another new feature of the framework is the detection of lost nodes. If a node in the network tries to
send some data to another node that for some reason have disconnected in an irregular manner action is
taken. The lost node is removed from the group and all the other participants are synchronized. This way
no data is lost or presumed received when this is not the case.

The communication between the Peer2Me framework and the Peer2Me MIDlets is considerably simplified
and features two interfaces only, one for MIDlet-to-framework method calls and one for calls in the opposite
direction. These interfaces contain only the most basic methods and all non relevant functionality is hidden
behind the framework.

The frameworks code are structured and well written with descriptive comments and intuitive method/-
variable names. This combined with the developers guide found in Part IV makes the task of creating a new
Peer2Me MIDlet manageable to most Java developers.

18.3 Weaknesses of the Peer2Me Framework v2.0

The major weakness of the Peer2Me framework v2.0 is the lack of scatternet support (see Chapter 5.2.6,

148

Piconets and Scatternets). By adding this kind of network abilities devices that are not in direct network
range of each other can communicate via other devices in their individual piconets.

Another drawback is the limited testing we have been able to perform on the finished framework. With
more extensive testing we could have eliminated even more potential errors and bugs from the program.

149

150

CHAPTER 19

GQM; Analysis and Interpretation

This chapter will be used to answer Research Question 2 and parts of Research Question 3 found in Chapter
2.1:

2. Does a redesign of the Peer2Me framework reduce the footprint and the complexity of

the applications developed as well as the framework itself?

3. Will a redesign of the Peer2Me framework increase the performance and decrease the

error rate of the applications developed?

In Chapter 16.1, The Goal/Question/Metric Approach, we have stated two goals that will help us answer
question number 2 and some of question 3 found above. We used the Goal Question Metric method to break
the goals down into questions and metrics and in this final Analysis and interpretation phase the questions
will be answered. Both Goals have entirely quantitative metrics and the data have been gathered through
the Comparison of Framework Properties found in Chapter 16.2. When all the answers where found they
where used to evaluate if the two main goals have been fulfilled.

19.1 Evaluating Goal 1

This is the first of the goals from the GQM approach found in Chapter 16.1. Created using the GQM
template for goals it states:

Goal 1: Analyze the the redesigned Peer2Me framework

for the purpose of Evaluating the framework and the MIDlets

151

with respect to its footprint and complexity

from the point of view of the Developers

in the context of Mobile collaborative application development.

We will now answer and evaluate the four questions related to this goal. Based on the answers a conclusion
to whether or not the goal is reach will be given.

Question 1: Has the redesigned Peer2Me framework got a smaller footprint
than the original framework?

Metric Measure framework footprint.

Peer2Me framework v1.0 footprint 1875 code lines - 47,2kB

Peer2Me framework v2.0 footprint 1531 code lines - 36,1kB

The footprint of the framework specific classes has been reduced with about 16% (11kB). This must be
considered a considerably improvement.

Answer The footprint of the framework have been reduced noticeably by the redesign.

Question 2: Has a MIDlet built upon the redesign Peer2Me framework got
a smaller footprint than a MIDlet built upon the original framework?

Metric Measure MIDlet footprint.

Peer2Me framework v1.0 MIDlet footprint 402 code lines - 9,7kB

Peer2Me framework v2.0 MIDlet footprint 321 code lines - 9,8kB

The footprint of the MIDlet has been reduced by about 80 code lines, but the size in kB has gotten 0,1kB
larger. This could be due to the way the JAR file is packages and the result for a larger MIDlet could have
turn out to be different.

Answer The footprint of a MIDlet built upon the Peer2Me framework is slightly reduced.

Question 3: Has the redesigned Peer2Me framework got a smaller interface
towards the MIDlets than the original framework?

Metric Measure the number of relations between a MIDlet and the framework.

Peer2Me framework v1.0 relations Interfaces:4 - Class references:6

Peer2Me framework v2.0 relations Interfaces:1 - Class references:1

152

We have managed to reduce the number of interfaces and class references to one of each. This is the
minimal coupling one can achieve and still ensure communication both ways between the framework and the
MIDlet.

Answer The coupling between the Peer2Me framework and the MIDlets have decreased considerably from
v1.0 to v2.0.

Question 4: Is the redesigned Peer2Me framework less complex than the original
framework?

Metric Measure number of packages, number of classes and average class size.

Peer2Me framework v1.0 MIDlet complexity Packages:18 - Classes:29 - Avg. class size: 65 code lines

Peer2Me framework v2.0 MIDlet complexity Packages:6 - Classes:18 - Avg. class size: 85 code lines

Few packages and classes combined with a relatively small average class size indicates that the framework is
not very complex.

Answer The numbers tells us that the number of packages is reduced to a third and the number of classes
is almost down 40%. The redesigned framework must be considered less complex than the original one.

Conclusion

The answers to Goal1 given above leads us to the conclusion that the goal is reached. The evaluation
has shown that the redesign has made the Peer2Me framework both smaller and less complex than it was in
it’s original form.

19.2 Evaluating Goal 2

This is the evaluation of the second and last goal from the GQM approach found in Chapter 16.1. The goal
is:

Goal 2: Analyze the the redesigned Peer2Me framework

for the purpose of Evaluating an application built upon the framework

with respect to its stability, performance and error rate

from the point of view of the Developers

in the context of Mobile collaborative application development.

The only question of this goal can be read bellow.

Question 1: Does the redesigned Peer2Me framework perform better, with
respect to transfer rate, than the original framework?

153

Metric Measure transfer rate.

Peer2Me framework v1.0 transfer rate 7kB/s

Peer2Me framework v2.0 transfer rate 18kB/s

A high as possible transfer rate is important to ensure practical applications of the framework. High network
traffic between multiple devices demands a quite high bandwidth.

Answer The transfer rate of v2.0 of Peer2Me is nearly tripled in comparison with that of the original
framework. It is still not a high value, but considering the theoretical limit it is quite satisfactory.

Conclusion

The transfer rate is almost tripled and the goal is absolutely reached.

154

Part VII

Conclusion

155

CHAPTER 20

Conclusion

In Chapter 2.1 we stated three research questions. We wanted to find out if a redesign of the Peer2Me
framework could improve its usability, performance, modifiability, availability and testability. Throughout
this project we have worked according to the methods described in Chapter 2.2, and designed and
implemented a new improved version of the Peer2Me framework.

In this chapter we summarize the project results by answering the research questions. The content of
Chapter 18 and 19 constitutes a basis for answering these questions.

1. Does a redesign of the Peer2Me framework improve developers ability to produce J2ME

based applications for mobile collaboration?

∗ Yes, our opinion is that Peer2Me v2.0 is considerably easier to make use of than Peer2Me v1.0.
This is based on the following improvements in Peer2Me v2.0:

◦ Compact and tidy code.

◦ Descriptive naming of variables and methods.

◦ Well commented code and a comprehensive Javadoc.

◦ A simple and intuitive framework interface.

(a) Is the documentation and the code, with regards to structure and comments, improved sufficiently
to decrease the degree of difficulty developing a new application?

∗ Yes. The code is made compact and tidy to achieve readability. Comments have been used
throughout the entire Peer2Me v2.0 to describe the usage of variables and methods. All
methods and classes are well described in a Javadoc to increase developers’ ability to quickly
comprehend and start using the framework. Methods and variables also have self explaining
names, so no confusion about their function occurs.

157

(b) Does the redesigned architecture increase the developers understanding of the framework’s
structure, and by this simplify the process of developing a working application?

∗ Yes. The new architecture hides the internal structure of the framework for the MIDlet
developer. This combined with a simplified framework interface, has made the process of
developing a working application considerably easier.

2. Does a redesign of the Peer2Me framework reduce the footprint and the complexity of

the applications developed as well as the framework itself?

∗ Yes. Comparing Peer2Me v1.0 and Peer2Me v2.0 shows a reduction in both footprint and
complexity of the developed applications from v1.0 to v2.0.

(a) Will the redesign of the architecture reduce the footprint of the framework?

∗ Yes. The footprint of the framework specific classes has been reduced with about 20%.

(b) Will improving the interface between the Peer2Me framework and the applications reduce the
number of code lines required to develop a working application?

∗ Yes. A comparison of two simple instant messenger applications using respectively Peer2Me
v1.0 and Peer2Me v2.0, shows a reduction of about 20% in number of code lines.

(c) Will the the redesign of the architecture reduce the coupling between the Peer2Me framework and
the applications?

∗ Yes. While MIDlets using Peer2Me v1.0 has to make use four interfaces and six framework
classes, MIDlets built upon Peer2Me v2.0 only utilize one interface and one class. This
contributes to a reduction of complexity in the MIDlets developed.

3. Will a redesign of the Peer2Me framework increase the performance and decrease the

error rate of the applications developed?

∗ Yes. Experiments have shown that the performance, with regards to transfer rate has improved.
The errors discovered in Peer2Me v1.0 are no longer present in Peer2Me v2.0.

(a) Does the redesigned Peer2Me framework perform better, with respect to transfer rate, than the
original framework?

∗ Yes. Experiments using a given set of data, shows an improvement of transfer rate by 158%
from Peer2Me v1.0 to Peer2Me v2.0.

(b) Does a revision of the code remove the errors experienced during testing of the original framework?

∗ Yes. To our knowledge, all the errors experienced in Peer2Me v1.0 has been eliminated in
Peer2Me v2.0.

(c) Will the introduction of a system for logging the errors as they occur improve the developers
ability to correct these errors?

∗ Yes, definitively. We experienced that the logging function in Peer2Me v2.0 was very useful
during development and testing of MIDlets. We were able to locate and remove errors much
faster than we were using Peer2Me v1.0.

158

CHAPTER 21

Further Work

Although we have announced that Peer2Me v2.0 is robust and simple to use, there are still some work left
to do. This chapter contains some short term and long term goals.

21.1 Short Term Goals

To validate the usability of Peer2Me v2.0, it should be tested and evaluated by a group of software developers.
This could typically be done by gathering a group of developers to a MIDlet development session. The ideal
would be just to give them access to this report and the relevant Javadocs, including the Peer2Me Javadoc,
and see if they are able to use the framework as intended. In addition to evaluating the MIDlets developed,
it could be useful to make the developers fill out a questionnaire, mapping out things like the level of their
skills and their opinions about the Peer2Me framework v2.0.

21.2 Long Term Goals

One long term goal is to add support for other network protocols. Currently, Peer2Me v2.0 only supports
Bluetooth as network medium, but support for other network mediums can easily be added as Peer2Me v2.0
already is prepared for this.

Another long term goal is to add support for scatternets. The current mobile phones do not support
scatternets at hardware level, which limits the area it is possible to interconnect devices within. Implementing
support for scatternets requires a rather complicated dynamic routing algorithm, and is a quite large project
in itself.

To evaluate the value of mobile collaborative applications, applications that are stable and easy to use

159

should be distributed to a large amount of people. By doing this, it would be possible to study how mobile
collaborative applications can affect the way people collaborate and communicate.

160

Part VIII

Appendices

161

APPENDIX A

Glossary

API An application programming interface is the interface that a computer system or application provides
in order to allow requests for service to be made of it by other computer programs, and/or to allow
data to be exchanged between them.

CDC The Connected Device Configuration is a framework for J2ME applications targeted at devices with
limited resources.

CLDC The Connected Limited Device Configuration is even smaller than the CDC mentioned above and
is used for pagers and mobile phones.

CSCW Computer Supported Cooperative Work, a research field that focuses on how computer-based
systems can support multiple people working on related tasks.

IEEE The Institute of Electrical and Electronics Engineer is an international non-profit, professional
organization for the advancement of technology related to electricity. Consists of 360,000 members
in around 175 countries.

GQM Goal Question Metric. The GQM is a method of taking the goals of an empirical study and brake
them down into questions and measurement metrics. The GQM method forces scientists to decide
upon and define what they actually want to measure before doing it.

J2ME Java 2 Micro Edition, a collection of Java API’s targeting smaller consumer electronics like mobile
phones, PDA’s and so on.

J2SE Java 2 Platform, Standard Edition. J2SE is a complete collection of API’s that enables development
of Java applications on several platforms of personal computers.

JABWT Java APIs for Bluetooth Wireless Technology. JABWT is a set of standard Java APIs that enable
the development of applications in Java conforming to the Bluetooth Specification 1.1.

163

JSR-82 Java Specification Request 82. A Java API that allows MIDlets to make use of Bluetooth hardware
on the device.

MANET Mobile Ad Hoc Networks, a self-configuring network of mobile routers (and associated hosts)
connected by wireless links. The routers move at random and organize themselves arbitrarily.

MIDlet A Java program specialized to run on the J2ME virtual machine, often on mobile phones. The
main class of the MIDlet has to be a subclass of javax.microedition.midlet.MIDlet and the MIDlet
classes have to packaged in a JAR-package. To be runnable the JAR-package has to be preverified by
a preverifier.

MIDP Mobile Information Device Profile. The J2ME architecture consists of the Virtual Machine, the
CLDC and a so-called profile. MIDP is the only available profile and has reached version 2.0. The
profile contains a collection of API’s that offers IO-functionality and gaming among other things.

MOWAHS MObile Work Across Heterogeneous Systems. The MOWAHS project is a joint re- search effort
by the software engineering and the database technology groups at the Depart- ment of Computer and
Information Science (IDI) at the Norwegian University of Science and Technology (NTNU).

NTNU The Norwegian University of Science and Technology.

PAN Personal Area Networks are networks connecting users within a personal operating space, typically
supporting up to a ten meter range.

P2P The term ”peer-to-peer computing” (P2P), refers to the use of computer networks that relies in the
computing power and bandwidth of the participants (peers) in the network rather than fixed servers
offering resources and services.

Peer2Me Peer2Me is the name of a framework for developing mobile collaborative applications on mobile
phones utilizing Personal Area Networks (PANs).

Piconet A piconet is an ad-hoc computer network of devices using Bluetooth technology protocols to allow
one master device to interconnect with up to seven active slave devices.

Scatternet When several piconets interconnect a scatternet is created.

WPAN Wireless Personal Area Networks are the wireless equivalent to a PAN.

164

APPENDIX B

Demo MIDlets

The source code of two MIDlets built upon Peer2Me v2.0.

B.1 Peer2MeDemoMIDlet

1 package midlets;

2

3

4 import javax.microedition.midlet.MIDlet;

5 import javax.microedition.midlet.MIDletStateChangeException;

6 import javax.microedition. lcdui .CommandListener;

7 import javax.microedition. lcdui .Command;

8 import javax.microedition. lcdui .Display;

9 import javax.microedition. lcdui .Displayable;

10 import javax.microedition. lcdui .Form;

11 import javax.microedition. lcdui .List ;

12 import javax.microedition. lcdui .TextField;

13 import javax.microedition. lcdui .ChoiceGroup;

14 import javax.microedition. lcdui .Choice;

15

16 import java. util .Enumeration;

17 import java. util .Vector;

18 import java. util .Hashtable;

19

20 import peer2me.framework.∗;
21 import peer2me.util.Log;

22

165

23

24 /∗∗
25 ∗
26 ∗ This class contains a MIDlet using the Peer2Me framework v2.0.

27 ∗ It has a simple GUI and supports sending of both text and files .

28 ∗
29 ∗ @author Torbjørn Vatn & Steinar A. Hestnes

30 ∗/
31

32 public class Peer2MeDemoMIDlet extends MIDlet implements FrameworkListener{
33

34 // A Log instance

35 Log log = Log.getInstance();

36

37 // The Main GUI of the MIDlet

38 private MainGui mainGui;

39

40 // The Log GUI of the MIDlet

41 private LogGui logGui;

42

43 // The Connect GUI of the MIDlet

44 private ConnectGui connectGui;

45

46 // The Send GUI of the MIDlet

47 private SendGui sendGui;

48

49 // The Send GUI of the MIDlet

50 private FileGui fileGui ;

51

52 // A reference to the last displayed gui. Is used to go back.

53 private Displayable lastGui;

54

55 // The Framework instance

56 Framework framework;

57

58 // The variables retrived from the input fields of the GUI

59 private String nodeName;

60

61 // The preferred network of the MIDlet

62 private final String preferredNetwork = ”peer2me.network.bluetooth.BluetoothNetwork”;

63

64 // The name of the MIDlet

65 private String midletName;

66

67 // A list containing the addresses to the nodes added in the ConnectGui choicegroup

166

68 private Hashtable nodeAddressList;

69

70 // A hashtable containing the addresses and names to each connected node.

71 // The names is the keys, and the values is the addresses

72 private Hashtable participatingNodeNames;

73

74

75 /∗∗
76 ∗
77 ∗ Constructor

78 ∗/
79 public Peer2MeDemoMIDlet(){}
80

81 protected void startApp() throws MIDletStateChangeException{
82 mainGui = new MainGui();

83 logGui = new LogGui();

84 connectGui = new ConnectGui();

85 sendGui = new SendGui();

86 fileGui = new FileGui();

87 // Sets the main gui as the current Displayable

88 showGui(mainGui);

89 // Gets an instance of the Framework

90 framework = FrameworkFrontEnd.getInstance(this);

91 // Setting the name of the MIDlet

92 midletName = ”TestMidlet”;

93 }
94

95 protected void pauseApp() {}
96

97 /∗∗
98 ∗
99 ∗ This method is called when the MIDLet is shut down

100 ∗
101 ∗/
102 protected void destroyApp(boolean arg0) throws MIDletStateChangeException{
103 // Shuts down the framework

104 framework.shutdownFramework();

105 notifyDestroyed();

106 }
107

108 public void notifyAboutException(String location, Exception exception){}
109

110 /∗∗
111 ∗
112 ∗ This method displays the desired GUI class

167

113 ∗
114 ∗ @param gui

115 ∗/
116 public void showGui(Displayable gui){
117 // Saves a reference to the last displayed gui

118 lastGui = Display.getDisplay(this).getCurrent();

119 // Sets the new gui

120 Display.getDisplay(this). setCurrent(gui);

121 gui.setCommandListener((CommandListener)gui);

122 }
123

124

125 /∗∗
126 ∗
127 ∗ This method is called by the framework when a node is found. These nodes

128 ∗ are not yet connected in a network. To do this, use the

129 ∗ Framework.connectToNodes() method.

130 ∗
131 ∗ @param address The network adress of the node

132 ∗ @param remoteNodeName The name of the found remote name

133 ∗/
134 public void notifyAboutFoundNode(String nodeAddress, String remoteNodeName){
135 connectGui.addNode(nodeAddress,remoteNodeName);

136 showGui(connectGui);

137 }
138

139

140 /∗∗
141 ∗
142 ∗ This method is called from from the framework to notify the midlet about

143 ∗ the participating devices .

144 ∗
145 ∗ @param participants A hashtable that contains the names of the participants as unique keys and

146 ∗ the network addresses as values .

147 ∗
148 ∗/
149 public void notifyAboutParticipants(Hashtable participants){
150 this .participatingNodeNames = participants;

151 sendGui.removeParticipants();

152 sendGui.addParticipants();

153

154 // Shows the gui where we can send datapackages

155 if (participatingNodeNames.size()>0)showGui(sendGui);

156 }
157

168

158

159 /∗∗
160 ∗
161 ∗ This method is called from the framework whenever a text package is

162 ∗ received from a remote node.

163 ∗
164 ∗ @param senderName The name of the sender

165 ∗ @param textMessage The received text message.

166 ∗/
167 public void notifyAboutReceivedTextPackage(String senderName, String textMessage){
168 String message = senderName+” sent : \n”+textMessage.length()+” characters.\n”;

169 sendGui.append(message);

170 }
171

172 /∗∗
173 ∗
174 ∗ This method is called from the framework whenever a file package is

175 ∗ received from a remote node.

176 ∗
177 ∗ @param senderName The name of the sender

178 ∗ @param filePath The path to the received file

179 ∗/
180 public void notifyAboutReceivedFilePackage(String senderName, String fileName){
181 String message = senderName+” sent : \n”+fileName+”\n”;

182 sendGui.append(message);

183 }
184

185 /∗∗
186 ∗
187 ∗ This class is a private GUI class used to display GUI elements for this

188 ∗ MIDlet

189 ∗
190 ∗ @author Torbjørn Vatn & Steinar A. Hestnes

191 ∗/
192 private class MainGui extends Form implements CommandListener{
193

194

195 // The OK Command

196 private Command ok;

197 private Command displayLog;

198 private Command search;

199 private Command exit;

200

201

202 // The text filed use to input a name

169

203 TextField text;

204

205 /∗∗
206 ∗
207 ∗ Constructor Extends Form to be able to display different GUI elements

208 ∗
209 ∗/
210 public MainGui(){
211 super(midletName);

212 ok = new Command(”Ok”, Command.OK, 0);

213 displayLog = new Command(”View Log”, Command.OK, 4);

214 search = new Command(”Search”, Command.OK, 1);

215 exit = new Command(”Exit”, Command.EXIT,0);

216 text = new TextField(”Name”, ”Per Tome”, 30, TextField.ANY);

217

218 append(text);

219

220 addCommand(ok);

221 addCommand(displayLog);

222 addCommand(exit);

223 }
224

225

226 /∗∗
227 ∗ This method is called when the CommandListener detects the use of a Command

228 ∗
229 ∗ @param command The command used

230 ∗ @param disp The displayable

231 ∗
232 ∗/
233 public void commandAction(Command command, Displayable disp){
234

235 if (command == ok){
236 // Fetches the input from the gui

237 nodeName = text.getString();

238 deleteAll ();

239 removeCommand(ok);

240 append(”Your name is ”+nodeName+”. \n\nPress Search if you want to discover other devices.\n\n”);

241 addCommand(search);

242

243 try{
244 framework.initFramework(nodeName, midletName, preferredNetwork);

245 }catch(Exception e){
246 append(”Error initiating the framework. Please try again.” +e);

247 }

170

248

249

250 }else if (command == search){
251 try{
252 framework.startNodeSearch();

253 append(”Searching for devices running Peer2MeDemoMIDlet\n”);

254 }catch(Exception e){
255 append(”Could not start a search for other devices . Please try again.”+e);

256 }
257

258 }else if (command == displayLog){
259 logGui.append(”Exception log:\n”);

260 logGui.append(log.getLog(Log.EXCEPTION LOG));

261 logGui.append(”\n∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n”);

262

263 logGui.append(”Data package log:\n”);

264 logGui.append(log.getLog(Log.DATA PACKAGE LOG));

265 logGui.append(”\n∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n”);

266

267 logGui.append(”Connection log:\n”);

268 logGui.append(log.getLog(Log.CONNECTION LOG));

269 logGui.append(”\n∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n”);

270

271 logGui.append(”Debug log:\n”);

272 logGui.append(log.getLog(Log.DEBUG LOG));

273 logGui.append(”\n∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n”);

274 showGui(logGui);

275 }
276

277 else if (command == exit){
278 try{
279 destroyApp(true);

280 }catch (MIDletStateChangeException msce) {
281 // This exception is ignored because the unconditional attribute of the

282 // destroyApp() method is true.

283 }
284 }
285

286 }
287

288 }
289

290 /∗∗
291 ∗
292 ∗ This class is a private GUI class to display Log elements for this MIDlet

171

293 ∗
294 ∗ @author Torbjørn Vatn & Steinar A. Hestnes

295 ∗/
296 private class LogGui extends Form implements CommandListener{
297

298 // The log menu Commands

299 private Command showExceptionLog;

300 private Command showConnectionLog;

301 private Command showDataPackageLog;

302 private Command showDebugLog;

303 private Command displayLog;

304 private Command hide;

305 private Command exit;

306

307

308 public LogGui(){
309 super(”Log”);

310 // The log menu Commands

311 showExceptionLog = new Command(”Exception log”, Command.ITEM, 4);

312 showConnectionLog = new Command(”Connection log”, Command.ITEM, 4);

313 showDataPackageLog = new Command(”Data package log”, Command.ITEM, 4);

314 showDebugLog = new Command(”Debug log”, Command.ITEM, 4);

315 displayLog = new Command(”Full log”, Command.ITEM, 1);

316 hide = new Command(”Hide log”, Command.OK, 0);

317 exit = new Command(”Exit”, Command.EXIT,0);

318

319 addCommand(showExceptionLog);

320 addCommand(showDataPackageLog);

321 addCommand(showConnectionLog);

322 addCommand(showDebugLog);

323 addCommand(displayLog);

324 addCommand(hide);

325 addCommand(exit);

326 }
327

328 /∗∗
329 ∗ This method is called when the CommandListener detects the use of a Command

330 ∗
331 ∗ @param command The command used

332 ∗ @param disp The displayable

333 ∗
334 ∗/
335 public void commandAction(Command command, Displayable disp){
336 if (command == showExceptionLog){
337 this . deleteAll ();

172

338 append(log.getLog(Log.EXCEPTION LOG));

339 }
340

341 else if (command == showConnectionLog){
342 deleteAll ();

343 append(log.getLog(Log.CONNECTION LOG));

344 }
345

346 else if (command == showDataPackageLog){
347 deleteAll ();

348 append(log.getLog(Log.DATA PACKAGE LOG));

349 }
350

351 else if (command == showDebugLog){
352 deleteAll ();

353 append(log.getLog(Log.DEBUG LOG));

354 }
355

356 else if (command == displayLog){
357 deleteAll ();

358 logGui.append(”Exception log:\n”);

359 logGui.append(log.getLog(Log.EXCEPTION LOG));

360 logGui.append(”\n∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n”);

361

362 logGui.append(”Data package log:\n”);

363 logGui.append(log.getLog(Log.DATA PACKAGE LOG));

364 logGui.append(”\n∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n”);

365

366 logGui.append(”Connection log:\n”);

367 logGui.append(log.getLog(Log.CONNECTION LOG));

368 logGui.append(”\n∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n”);

369

370 logGui.append(”Debug log:\n”);

371 logGui.append(log.getLog(Log.DEBUG LOG));

372 logGui.append(”\n∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n”);

373 }
374

375 else if (command == hide){
376 deleteAll ();

377 showGui(lastGui);

378 }
379

380 else if (command == exit){
381 try{
382 destroyApp(true);

173

383 }catch (MIDletStateChangeException msce) {
384 // This exception is ignored because the unconditional attribute of the

385 // destroyApp() method is true.

386 }
387 }
388 }
389 }
390 /∗∗
391 ∗
392 ∗ This class is a private GUI class to display Connect elements for this MIDlet

393 ∗
394 ∗ @author Torbjørn Vatn & Steinar A. Hestnes

395 ∗/
396 private class ConnectGui extends Form implements CommandListener{
397

398 // The commands

399 private Command back;

400 private Command displayLog;

401 private Command connect;

402 private Command exit;

403

404 //The ChoiceGroup of

405 private ChoiceGroup nodes;

406

407

408 /∗∗
409 ∗
410 ∗ Constructor

411 ∗/
412 public ConnectGui(){
413 super(”Nodes”);

414

415 // The ChoiceGroup

416 nodes = new ChoiceGroup(”Choose the node(s) to connect to”,Choice.MULTIPLE);

417

418 nodeAddressList = new Hashtable();

419

420 // The Commands

421 back = new Command(”Back”,Command.BACK,1);

422 displayLog = new Command(”Display log”,Command.ITEM,4);

423 connect = new Command(”Connect”,Command.ITEM,0);

424 exit = new Command(”Exit”, Command.EXIT,0);

425

426 addCommand(back);

427 addCommand(connect);

174

428 addCommand(displayLog);

429 addCommand(exit);

430 // Adds the ChoiceGroup

431 append(nodes);

432

433 }
434

435 /∗∗
436 ∗
437 ∗ This method adds a node name to the ChoiceGroup

438 ∗
439 ∗ @param address The address of the remote node

440 ∗ @param remoteNodeName The name of the remote node

441 ∗/
442 public void addNode(String nodeAddress, String remoteNodeName){
443 nodeAddressList.put(remoteNodeName,nodeAddress);

444 nodes.append(remoteNodeName,null);

445 }
446

447 /∗∗
448 ∗ This method is called when the CommandListener detects the use of a Command

449 ∗
450 ∗ @param command The command used

451 ∗ @param disp The displayable

452 ∗
453 ∗/
454 public void commandAction(Command command, Displayable disp) {
455

456 if (command == back){
457 showGui(lastGui);

458 }
459

460 else if (command == displayLog){
461 logGui.append(”Exception log:\n”);

462 logGui.append(log.getLog(Log.EXCEPTION LOG));

463 logGui.append(”\n∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n”);

464

465 logGui.append(”Data package log:\n”);

466 logGui.append(log.getLog(Log.DATA PACKAGE LOG));

467 logGui.append(”\n∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n”);

468

469 logGui.append(”Connection log:\n”);

470 logGui.append(log.getLog(Log.CONNECTION LOG));

471 logGui.append(”\n∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n”);

472

175

473 logGui.append(”Debug log:\n”);

474 logGui.append(log.getLog(Log.DEBUG LOG));

475 logGui.append(”\n∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n”);

476 showGui(logGui);

477 }
478

479 else if (command == connect){
480 // Fetches all the selected elements in the ChoiceGroup

481 Vector addressVector = new Vector();

482 for(int i=0; i<nodes.size(); i++){
483 if (nodes. isSelected (i)){
484 addressVector.addElement((String)nodeAddressList.get(nodes.getString(i)));

485 }
486 }
487 String [] addresses = new String[addressVector.size ()];

488 addressVector.copyInto(addresses);

489 if (addresses.length == 0) append(”Please chose a recipient!”);

490 else framework.connectToNodes(addresses);

491 }
492

493 else if (command == exit){
494 try{
495 destroyApp(true);

496 }catch (MIDletStateChangeException msce) {
497 // This exception is ignored because the unconditional attribute of the

498 // destroyApp() method is true.

499 }
500 }
501

502 }
503

504 }
505 /∗∗
506 ∗
507 ∗ This class is a private GUI class to display Send elements for this MIDlet

508 ∗
509 ∗ @author Torbjørn Vatn & Steinar A. Hestnes

510 ∗/
511 private class SendGui extends Form implements CommandListener{
512

513 // The commands

514 private Command displayLog;

515 private Command sendTextPackage;

516 private Command sendFilePackage;

517 private Command clearScreen;

176

518 private Command exit;

519

520 // The ChoiceGroup

521 private ChoiceGroup connectedNodes;

522 private TextField factor ;

523

524 /∗∗
525 ∗
526 ∗ Constructor

527 ∗/
528 public SendGui(){
529 super(”Send datapackage”);

530

531 // Creating the Commands

532 sendTextPackage = new Command(”SendTextPackage”,Command.ITEM,1);

533 sendFilePackage = new Command(”SendFilePackage”,Command.ITEM,2);

534 displayLog = new Command(”View log”,Command.ITEM,3);

535 clearScreen = new Command(”Clear screen”,Command.ITEM,4);

536 exit = new Command(”Exit”, Command.EXIT,0);

537

538 // The ChoiceGroup containing the connected Nodes

539 connectedNodes = new ChoiceGroup(”Choose recipients”, Choice.MULTIPLE);

540 factor = new TextField(”Alphabet factor”,”700”,5,TextField.ANY);

541

542 // Adding the elements

543 addCommand(sendTextPackage);

544 addCommand(sendFilePackage);

545 addCommand(displayLog);

546 addCommand(clearScreen);

547 addCommand(exit);

548 append(connectedNodes);

549 append(factor);

550 }
551

552 /∗∗
553 ∗
554 ∗ This method add the connected participants to the connected ChoiceGroup

555 ∗
556 ∗/
557 public void addParticipants(){
558 Enumeration names = participatingNodeNames.keys();

559 while(names.hasMoreElements()){
560 connectedNodes.append((String)names.nextElement(),null);

561 }
562 }

177

563

564 /∗∗
565 ∗
566 ∗ This method removes all connected participants to the connected ChoiceGroup

567 ∗
568 ∗/
569 public void removeParticipants(){
570 connectedNodes.deleteAll();

571 }
572

573 /∗∗
574 ∗ This method is called when the CommandListener detects the use of a Command

575 ∗
576 ∗ @param command The command used

577 ∗ @param disp The displayable

578 ∗
579 ∗/
580 public void commandAction(Command command, Displayable disp){
581

582 if (command == sendTextPackage){
583 Vector recipientNodes = new Vector();

584 for(int i=0; i<connectedNodes.size(); i++){
585 if (connectedNodes.isSelected(i)){
586 // Gets the address to the recipient node

587 recipientNodes.addElement((String)participatingNodeNames.get(connectedNodes.getString(i)));

588 }
589 }
590 String [] recipientAddresses = new String[recipientNodes.size ()];

591 recipientNodes.copyInto(recipientAddresses);

592

593 String alfa = ”abcdefghijklmnopqrstuvwxyz”;

594 String message = ””;

595 for(int i=0;i<Integer.parseInt(factor .getString ()); i++){
596 message += alfa;

597 }
598

599 if (recipientAddresses.length!=0)framework.sendTextPackage(recipientAddresses,message);

600 else append(”Please choose a recipient!\n”);

601

602 }else if (command == sendFilePackage){
603

604 Vector recipientNodes = new Vector();

605 for(int i=0; i<connectedNodes.size(); i++){
606 if (connectedNodes.isSelected(i)){
607 // Gets the address to the recipient node

178

608 recipientNodes.addElement((String)participatingNodeNames.get(connectedNodes.getString(i)));

609 }
610 }
611 String [] recipientAddresses = new String[recipientNodes.size ()];

612 recipientNodes.copyInto(recipientAddresses);

613

614 if (recipientAddresses.length!=0){
615 // Sets the recipents and switches GUI

616 fileGui . setRecipients(recipientAddresses);

617 fileGui . fillList ();

618 showGui(fileGui);

619 }else append(”Please choose a recipient!\n”);

620

621 }else if (command == displayLog){
622 logGui.append(”Exception log:\n”);

623 logGui.append(log.getLog(Log.EXCEPTION LOG));

624 logGui.append(”\n∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n”);

625

626 logGui.append(”Data package log:\n”);

627 logGui.append(log.getLog(Log.DATA PACKAGE LOG));

628 logGui.append(”\n∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n”);

629

630 logGui.append(”Connection log:\n”);

631 logGui.append(log.getLog(Log.CONNECTION LOG));

632 logGui.append(”\n∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n”);

633

634 logGui.append(”Debug log:\n”);

635 logGui.append(log.getLog(Log.DEBUG LOG));

636 logGui.append(”\n∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n”);

637 showGui(logGui);

638

639 }else if (command == clearScreen){
640 sendGui.deleteAll ();

641 // Creates a clean SendGui

642 sendGui = new SendGui();

643 sendGui.addParticipants();

644 // Displays it

645 showGui(sendGui);

646

647 }else if (command == exit){
648 try{
649 destroyApp(true);

650 }catch (MIDletStateChangeException msce) {
651 // This exception is ignored because the unconditional attribute of the

652 // destroyApp() method is true.

179

653 }
654 }
655 }
656 }
657

658 /∗∗
659 ∗
660 ∗ This class is a private GUI class to display FileSend elements for this MIDlet

661 ∗
662 ∗ @author Torbjørn Vatn & Steinar A. Hestnes

663 ∗/
664 private class FileGui extends List implements CommandListener{
665

666 // The commands

667 private Command displayLog;

668 private Command sendFilePackage;

669 private Command updateList;

670 private Command exit;

671

672 // The root of the file system on the SE K750/W800

673 private String root = ”c:/other/Peer2Me/”;

674

675 // The root of the file system on the SE Emulator

676 //private String root = ”peer2me/”;

677

678 // A Enumeration containing the files in the root directory

679 Enumeration files;

680

681 // The addresses of the recipients of the chosen file

682 String [] recipientAddresses;

683

684 /∗∗
685 ∗
686 ∗ Constructor

687 ∗
688 ∗/
689 public FileGui(){
690 super(”Send filePackage”, List .EXCLUSIVE);

691

692 // Creating the elements

693 displayLog = new Command(”View log”,Command.ITEM,4);

694 sendFilePackage = new Command(”Send File”,Command.ITEM,2);

695 updateList = new Command(”Update List”,Command.ITEM,2);

696 exit = new Command(”Exit”, Command.EXIT,0);

697

180

698 // Adds the commands

699 addCommand(displayLog);

700 addCommand(sendFilePackage);

701 addCommand(updateList);

702 addCommand(exit);

703 }
704

705 /∗∗
706 ∗
707 ∗ This method fills the fileList List with the names of the files

708 ∗ located in root.

709 ∗
710 ∗/
711 public void fillList (){
712 // Fills the files Enumeration

713 files = framework.getFileList(root);

714

715 if (files != null){
716 // Fills the filesList List

717 while (files .hasMoreElements()) {
718 append((String) files .nextElement(), null);

719 }
720 }
721 }
722

723 /∗∗
724 ∗
725 ∗ This method sets the recipientAddresses

726 ∗
727 ∗ @param recipientAddresses The recipientAddresses to set

728 ∗/
729 public void setRecipients(String [] recipientAddresses){
730 this .recipientAddresses = recipientAddresses;

731 }
732

733 /∗∗
734 ∗ This method is called when the CommandListener detects the use of a Command

735 ∗
736 ∗ @param command The command used

737 ∗ @param disp The displayable

738 ∗
739 ∗/
740 public void commandAction(Command command, Displayable disp){
741

742 if (command == sendFilePackage){

181

743

744 framework.sendFilePackage(recipientAddresses,root+getString(getSelectedIndex()));

745 fileGui . deleteAll ();

746 showGui(sendGui);

747

748 }
749

750 else if (command == updateList){
751 fillList ();

752 }
753

754

755 else if (command == displayLog){
756 logGui.append(”Exception log:\n”);

757 logGui.append(log.getLog(Log.EXCEPTION LOG));

758 logGui.append(”\n∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n”);

759

760 logGui.append(”Data package log:\n”);

761 logGui.append(log.getLog(Log.DATA PACKAGE LOG));

762 logGui.append(”\n∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n”);

763

764 logGui.append(”Connection log:\n”);

765 logGui.append(log.getLog(Log.CONNECTION LOG));

766 logGui.append(”\n∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n”);

767

768 logGui.append(”Debug log:\n”);

769 logGui.append(log.getLog(Log.DEBUG LOG));

770 logGui.append(”\n∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n”);

771 showGui(logGui);

772 }
773

774 else if (command == exit){
775 try{
776 destroyApp(true);

777 }catch (MIDletStateChangeException msce) {
778 // This exception is ignored because the unconditional attribute of the

779 // destroyApp() method is true.

780 }
781 }
782

783 }
784 }
785 }

182

B.2 Peer2Messenger

1 package peer2Messenger;

2

3

4 import javax.microedition.midlet.MIDlet;

5 import javax.microedition.midlet.MIDletStateChangeException;

6 import javax.microedition. lcdui .CommandListener;

7 import javax.microedition. lcdui .Command;

8 import javax.microedition. lcdui .Display;

9 import javax.microedition. lcdui .Displayable;

10 import javax.microedition. lcdui .Form;

11 import javax.microedition. lcdui .TextField;

12 import javax.microedition. lcdui .ChoiceGroup;

13 import javax.microedition. lcdui .Choice;

14

15 import java. util .Enumeration;

16 import java. util .Vector;

17 import java. util .Hashtable;

18

19 import peer2me.framework.∗;
20 import peer2me.util.Log;

21

22

23

24 /∗∗
25 ∗
26 ∗ This class contains a MIDlet built upon Peer2Me v2.0.

27 ∗ The MIDlet is a basic chat application .

28 ∗
29 ∗ @author Torbjørn Vatn & Steinar A. Hestnes

30 ∗/
31

32 public class Peer2Messenger extends MIDlet implements FrameworkListener{
33

34 // A Log instance

35 Log log = Log.getInstance();

36

37 // The Main GUI of the MIDlet

38 private MainGui mainGui;

39

40 // The Log GUI of the MIDlet

41 private LogGui logGui;

42

43 // The Connect GUI of the MIDlet

183

44 private ConnectGui connectGui;

45

46 // The Send GUI of the MIDlet

47 private SendGui sendGui;

48

49 // A reference to the last displayed gui. Is used to go back.

50 private Displayable lastGui;

51

52 // The Framework instance

53 Framework framework;

54

55 // The variables retrived from the input fields of the GUI

56 private String nodeName;

57

58 // The preferred network of the MIDlet

59 private final String preferredNetwork = ”peer2me.network.bluetooth.BluetoothNetwork”;

60

61 // The name of the MIDlet

62 private String midletName;

63

64 // A list containing the addresses to the nodes added in the ConnectGui choicegroup

65 private Hashtable nodeAddressList;

66

67 // A hashtable containing the addresses and names to each connected node.

68 // The names is the keys, and the values is the addresses

69 private Hashtable participatingNodeNames;

70

71

72 /∗∗
73 ∗
74 ∗ Constructor

75 ∗/
76 public Peer2Messenger(){}
77

78 protected void startApp() throws MIDletStateChangeException{
79 mainGui = new MainGui();

80 logGui = new LogGui();

81 connectGui = new ConnectGui();

82 sendGui = new SendGui();

83 // Sets the main gui as the current Displayable

84 showGui(mainGui);

85 // Gets an instance of the Framework

86 framework = FrameworkFrontEnd.getInstance(this);

87 // Setting the name of the MIDlet

88 midletName = ”TestMidlet”;

184

89

90 }
91

92 protected void pauseApp() {}
93

94 /∗∗
95 ∗
96 ∗ This method is called when the MIDLet is shut down

97 ∗
98 ∗/
99 protected void destroyApp(boolean arg0) throws MIDletStateChangeException{

100

101 // Shuts down the framework

102 framework.shutdownFramework();

103

104 notifyDestroyed();

105 }
106

107 public void notifyAboutException(String location, Exception exception){}
108

109 /∗∗
110 ∗
111 ∗ This method displays the desired GUI class

112 ∗
113 ∗ @param gui

114 ∗/
115 public void showGui(Displayable gui){
116 // Saves a reference to the last displayed gui

117 lastGui = Display.getDisplay(this).getCurrent();

118 // Sets the new gui

119 Display.getDisplay(this). setCurrent(gui);

120 gui.setCommandListener((CommandListener)gui);

121 }
122

123

124 /∗∗
125 ∗
126 ∗ This method is called by the framework when a node is found. These nodes

127 ∗ are not yet connected in a network. To do this, use the

128 ∗ Framework.connectToNodes() method.

129 ∗
130 ∗ @param address The network adress of the node

131 ∗ @param remoteNodeName The name of the found remote name

132 ∗/
133 public void notifyAboutFoundNode(String nodeAddress, String remoteNodeName){

185

134 connectGui.addNode(nodeAddress,remoteNodeName);

135 showGui(connectGui);

136 }
137

138

139

140 /∗∗
141 ∗
142 ∗ This method is called from from the framework to notify the midlet about

143 ∗ the participating devices .

144 ∗
145 ∗ @param participants A hashtable that contains the names of the participants as unique keys and

146 ∗ the network addresses as values .

147 ∗
148 ∗/
149 public void notifyAboutParticipants(Hashtable participants){
150 this .participatingNodeNames = participants;

151 sendGui.removeParticipants();

152 sendGui.addParticipants();

153

154 // Shows the gui where we can send datapackages

155 if (participatingNodeNames.size()>0)showGui(sendGui);

156 }
157

158

159 /∗∗
160 ∗
161 ∗ This method is called from the framework whenever a text package is

162 ∗ received from a remote node.

163 ∗
164 ∗ @param senderName The name of the sender

165 ∗ @param textMessage The received text message.

166 ∗/
167 public void notifyAboutReceivedTextPackage(String senderName, String textMessage){
168 String message = ”\n”+senderName+” says: \n”+textMessage;

169 sendGui.append(message);

170 }
171

172 /∗∗
173 ∗
174 ∗ This method is called from the framework whenever a file package is

175 ∗ received from a remote node.

176 ∗
177 ∗ @param senderName The name of the sender

178 ∗ @param filePath The path to the received file

186

179 ∗/
180 public void notifyAboutReceivedFilePackage(String senderName, String fileName){}
181

182 /∗∗
183 ∗
184 ∗ This class is a private GUI class used to display GUI elements for this

185 ∗ MIDlet

186 ∗
187 ∗ @author Torbjørn Vatn & Steinar A. Hestnes

188 ∗/
189 private class MainGui extends Form implements CommandListener{
190

191

192 // The OK Command

193 private Command ok;

194 private Command displayLog;

195 private Command search;

196 private Command exit;

197

198

199 // The text filed use to input a name

200 TextField text;

201

202 /∗∗
203 ∗
204 ∗ Constructor Extends Form to be able to display different GUI elements

205 ∗
206 ∗/
207 public MainGui(){
208 super(midletName);

209 ok = new Command(”Ok”, Command.OK, 0);

210 displayLog = new Command(”View Log”, Command.OK, 4);

211 search = new Command(”Search”, Command.OK, 1);

212 exit = new Command(”Exit”, Command.EXIT,0);

213 text = new TextField(”Name”, ”Per Tome”, 30, TextField.ANY);

214

215 append(text);

216

217 addCommand(ok);

218 addCommand(displayLog);

219 addCommand(exit);

220 }
221

222

223 /∗∗

187

224 ∗ This method is called when the CommandListener detects the use of a Command

225 ∗
226 ∗ @param command The command used

227 ∗ @param disp The displayable

228 ∗
229 ∗/
230 public void commandAction(Command command, Displayable disp){
231

232 if (command == ok){
233 // Fetches the input from the gui

234 nodeName = text.getString();

235 deleteAll ();

236 removeCommand(ok);

237 append(”Your name is ”+nodeName+”. \n\nPress Search if you want to discover other devices.\n\n”);

238 addCommand(search);

239

240 try{
241 framework.initFramework(nodeName, midletName, preferredNetwork);

242 }catch(Exception e){
243 append(”Error initiating the framework. Please try again.”);

244 }
245

246

247 }else if (command == search){
248 try{
249 framework.startNodeSearch();

250 append(”Searching for devices running Peer2Messenger\n”);

251 }catch(Exception e){
252 append(”Could not start a search for other devices . Please try again.”+e);

253 }
254

255 }else if (command == displayLog){
256 logGui.append(”Exception log:\n”);

257 logGui.append(log.getLog(Log.EXCEPTION LOG));

258 logGui.append(”\n∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n”);

259

260 logGui.append(”Data package log:\n”);

261 logGui.append(log.getLog(Log.DATA PACKAGE LOG));

262 logGui.append(”\n∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n”);

263

264 logGui.append(”Connection log:\n”);

265 logGui.append(log.getLog(Log.CONNECTION LOG));

266 logGui.append(”\n∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n”);

267

268 logGui.append(”Debug log:\n”);

188

269 logGui.append(log.getLog(Log.DEBUG LOG));

270 logGui.append(”\n∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n”);

271 showGui(logGui);

272 }
273

274 else if (command == exit){
275 try{
276 destroyApp(true);

277 }catch (MIDletStateChangeException msce) {
278 // This exception is ignored because the unconditional attribute of the

279 // destroyApp() method is true.

280 }
281 }
282

283 }
284

285 }
286

287 /∗∗
288 ∗
289 ∗ This class is a private GUI class to display Log elements for this MIDlet

290 ∗
291 ∗ @author Torbjørn Vatn & Steinar A. Hestnes

292 ∗/
293 private class LogGui extends Form implements CommandListener{
294

295 // The log menu Commands

296 private Command showExceptionLog;

297 private Command showConnectionLog;

298 private Command showDataPackageLog;

299 private Command showDebugLog;

300 private Command displayLog;

301 private Command hide;

302 private Command exit;

303

304

305 public LogGui(){
306 super(”Log”);

307 // The log menu Commands

308 showExceptionLog = new Command(”Exception log”, Command.ITEM, 4);

309 showConnectionLog = new Command(”Connection log”, Command.ITEM, 4);

310 showDataPackageLog = new Command(”Data package log”, Command.ITEM, 4);

311 showDebugLog = new Command(”Debug log”, Command.ITEM, 4);

312 displayLog = new Command(”Full log”, Command.ITEM, 1);

313 hide = new Command(”Hide log”, Command.OK, 0);

189

314 exit = new Command(”Exit”, Command.EXIT,0);

315

316 addCommand(showExceptionLog);

317 addCommand(showDataPackageLog);

318 addCommand(showConnectionLog);

319 addCommand(showDebugLog);

320 addCommand(displayLog);

321 addCommand(hide);

322 addCommand(exit);

323 }
324

325 /∗∗
326 ∗ This method is called when the CommandListener detects the use of a Command

327 ∗
328 ∗ @param command The command used

329 ∗ @param disp The displayable

330 ∗
331 ∗/
332 public void commandAction(Command command, Displayable disp){
333 if (command == showExceptionLog){
334 this . deleteAll ();

335 append(log.getLog(Log.EXCEPTION LOG));

336 }
337

338 else if (command == showConnectionLog){
339 deleteAll ();

340 append(log.getLog(Log.CONNECTION LOG));

341 }
342

343 else if (command == showDataPackageLog){
344 deleteAll ();

345 append(log.getLog(Log.DATA PACKAGE LOG));

346 }
347

348 else if (command == showDebugLog){
349 deleteAll ();

350 append(log.getLog(Log.DEBUG LOG));

351 }
352

353 else if (command == displayLog){
354 deleteAll ();

355 logGui.append(”Exception log:\n”);

356 logGui.append(log.getLog(Log.EXCEPTION LOG));

357 logGui.append(”\n∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n”);

358

190

359 logGui.append(”Data package log:\n”);

360 logGui.append(log.getLog(Log.DATA PACKAGE LOG));

361 logGui.append(”\n∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n”);

362

363 logGui.append(”Connection log:\n”);

364 logGui.append(log.getLog(Log.CONNECTION LOG));

365 logGui.append(”\n∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n”);

366

367 logGui.append(”Debug log:\n”);

368 logGui.append(log.getLog(Log.DEBUG LOG));

369 logGui.append(”\n∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n”);

370 }
371

372 else if (command == hide){
373 deleteAll ();

374 showGui(lastGui);

375 }
376

377 else if (command == exit){
378 try{
379 destroyApp(true);

380 }catch (MIDletStateChangeException msce) {
381 // This exception is ignored because the unconditional attribute of the

382 // destroyApp() method is true.

383 }
384 }
385 }
386 }
387 /∗∗
388 ∗
389 ∗ This class is a private GUI class to display Connect elements for this MIDlet

390 ∗
391 ∗ @author Torbjørn Vatn & Steinar A. Hestnes

392 ∗/
393 private class ConnectGui extends Form implements CommandListener{
394

395 // The commands

396 private Command back;

397 private Command displayLog;

398 private Command connect;

399 private Command exit;

400

401 //The ChoiceGroup of

402 private ChoiceGroup nodes;

403

191

404

405 /∗∗
406 ∗
407 ∗ Constructor

408 ∗/
409 public ConnectGui(){
410 super(”Nodes”);

411

412 // The ChoiceGroup

413 nodes = new ChoiceGroup(”Choose the node(s) to connect to”,Choice.MULTIPLE);

414

415 nodeAddressList = new Hashtable();

416

417 // The Commands

418 back = new Command(”Back”,Command.BACK,1);

419 displayLog = new Command(”Display log”,Command.ITEM,4);

420 connect = new Command(”Connect”,Command.ITEM,0);

421 exit = new Command(”Exit”, Command.EXIT,0);

422

423 addCommand(back);

424 addCommand(connect);

425 addCommand(displayLog);

426 addCommand(exit);

427 // Adds the ChoiceGroup

428 append(nodes);

429

430 }
431

432 /∗∗
433 ∗
434 ∗ This method adds a node name to the ChoiceGroup

435 ∗
436 ∗ @param address The address of the remote node

437 ∗ @param remoteNodeName The name of the remote node

438 ∗/
439 public void addNode(String nodeAddress, String remoteNodeName){
440 nodeAddressList.put(remoteNodeName,nodeAddress);

441 nodes.append(remoteNodeName,null);

442 }
443

444 /∗∗
445 ∗ This method is called when the CommandListener detects the use of a Command

446 ∗
447 ∗ @param command The command used

448 ∗ @param disp The displayable

192

449 ∗
450 ∗/
451 public void commandAction(Command command, Displayable disp) {
452

453 if (command == back){
454 showGui(lastGui);

455 }
456

457 else if (command == displayLog){
458 logGui.append(”Exception log:\n”);

459 logGui.append(log.getLog(Log.EXCEPTION LOG));

460 logGui.append(”\n∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n”);

461

462 logGui.append(”Data package log:\n”);

463 logGui.append(log.getLog(Log.DATA PACKAGE LOG));

464 logGui.append(”\n∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n”);

465

466 logGui.append(”Connection log:\n”);

467 logGui.append(log.getLog(Log.CONNECTION LOG));

468 logGui.append(”\n∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n”);

469

470 logGui.append(”Debug log:\n”);

471 logGui.append(log.getLog(Log.DEBUG LOG));

472 logGui.append(”\n∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n”);

473 showGui(logGui);

474 }
475

476 else if (command == connect){
477 // Fetches all the selected elements in the ChoiceGroup

478 Vector addressVector = new Vector();

479 for(int i=0; i<nodes.size(); i++){
480 if (nodes. isSelected (i)){
481 addressVector.addElement((String)nodeAddressList.get(nodes.getString(i)));

482 }
483 }
484 String [] addresses = new String[addressVector.size ()];

485 addressVector.copyInto(addresses);

486 if (addresses.length == 0) append(”Please chose a recipient!”);

487 else framework.connectToNodes(addresses);

488 }
489

490 else if (command == exit){
491 try{
492 destroyApp(true);

493 }catch (MIDletStateChangeException msce) {

193

494 // This exception is ignored because the unconditional attribute of the

495 // destroyApp() method is true.

496 }
497 }
498

499 }
500

501 }
502 /∗∗
503 ∗
504 ∗ This class is a private GUI class to display Send elements for this MIDlet

505 ∗
506 ∗ @author Torbjørn Vatn & Steinar A. Hestnes

507 ∗/
508 private class SendGui extends Form implements CommandListener{
509

510 // The commands

511 private Command displayLog;

512 private Command sendTextPackage;

513 private Command exit;

514

515 // The ChoiceGroup

516 private ChoiceGroup connectedNodes;

517

518 private TextField input;

519

520 /∗∗
521 ∗
522 ∗ Constructor

523 ∗/
524 public SendGui(){
525 super(”Write a message”);

526

527 // Creating the Commands

528 sendTextPackage = new Command(”Send”,Command.ITEM,1);

529 displayLog = new Command(”View log”,Command.ITEM,4);

530 exit = new Command(”Exit”, Command.EXIT,0);

531 input = new TextField(”Message”,””,200,TextField.ANY);

532

533 // The ChoiceGroup containing the connected Nodes

534 connectedNodes = new ChoiceGroup(”Choose recipients”, Choice.MULTIPLE);

535

536 // Adding the elements

537 addCommand(sendTextPackage);

538 addCommand(displayLog);

194

539 addCommand(exit);

540 append(connectedNodes);

541 append(input);

542 }
543

544 /∗∗
545 ∗
546 ∗ This method add the connected participants to the connected ChoiceGroup

547 ∗
548 ∗/
549 public void addParticipants(){
550 Enumeration names = participatingNodeNames.keys();

551 while(names.hasMoreElements()){
552 connectedNodes.append((String)names.nextElement(),null);

553 }
554 }
555

556 /∗∗
557 ∗
558 ∗ This method removes all connected participants to the connected ChoiceGroup

559 ∗
560 ∗/
561 public void removeParticipants(){
562 connectedNodes.deleteAll();

563 }
564

565 /∗∗
566 ∗ This method is called when the CommandListener detects the use of a Command

567 ∗
568 ∗ @param command The command used

569 ∗ @param disp The displayable

570 ∗
571 ∗/
572 public void commandAction(Command command, Displayable disp){
573

574 if (command == sendTextPackage){
575 Vector recipientNodes = new Vector();

576 for(int i=0; i<connectedNodes.size(); i++){
577 if (connectedNodes.isSelected(i)){
578 // Gets the address to the recipient node

579 recipientNodes.addElement((String)participatingNodeNames.get(connectedNodes.getString(i)));

580 }
581 }
582 String [] recipientAddresses = new String[recipientNodes.size ()];

583 recipientNodes.copyInto(recipientAddresses);

195

584

585 if (recipientAddresses.length!=0)framework.sendTextPackage(recipientAddresses,input.getString());

586 else append(”Please choose a recipient!\n”);

587

588

589 }else if (command == displayLog){
590 logGui.append(”Exception log:\n”);

591 logGui.append(log.getLog(Log.EXCEPTION LOG));

592 logGui.append(”\n∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n”);

593

594 logGui.append(”Data package log:\n”);

595 logGui.append(log.getLog(Log.DATA PACKAGE LOG));

596 logGui.append(”\n∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n”);

597

598 logGui.append(”Connection log:\n”);

599 logGui.append(log.getLog(Log.CONNECTION LOG));

600 logGui.append(”\n∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n”);

601

602 logGui.append(”Debug log:\n”);

603 logGui.append(log.getLog(Log.DEBUG LOG));

604 logGui.append(”\n∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n”);

605 showGui(logGui);

606 }
607

608 else if (command == exit){
609 try{
610 destroyApp(true);

611 }catch (MIDletStateChangeException msce) {
612 // This exception is ignored because the unconditional attribute of the

613 // destroyApp() method is true.

614 }
615 }
616 }
617 }
618 }

196

APPENDIX C

Peer2Me v2.0 Javadoc

The Javadoc on Peer2Me v2.0. Due to limited support for generating Javadoc in LATEX format, the readability
is not optimal in this appendix. For maximum readability, we recommend the digital version of the Peer2Me
v2.0 Javadoc which is bundled with the Peer2Me v2.0 JAR file.

C.1 Package peer2me.domain

Package Contents

Classes

DataPackage . 198
This class is the super class of the different type of packages that can be sent between
nodes in the network.

FilePackage . 200
This class represents a data package containing metadata about a file of some sort
that should be sent over the network.

Group . 202
This class represents a group of nodes running the same service (MIDlet).

GroupSyncPackage . 205
A GroupSyncPackage is a package used internally in the framework to synchronize
the groups containing the participants.

Node. .206
This class represents a node in the network.

TextPackage . 209
This class represents a data package containing text that should be sent over the
network.

197

C.1.1 Class DataPackage

This class is the super class of the different type of packages that can be sent between nodes in the network.
It contains the attributes that are common for all types of data packages. These are the address of the
sender and the address(es) to the recipiant(s) of the DataPackage. Currently, there exists three types of data
packages.

Declaration

public abstract class DataPackage

extends java.lang.Object java.lang.Object

All known subclasses

TextPackagepeer2me.domain.TextPackage, GroupSyncPackagepeer2me.domain.GroupSyncPackage,

FilePackagepeer2me.domain.FilePackage

Field summary

FILE PACKAGE

GROUP SYNC PACKAGE

log

TEXT PACKAGE

Constructor summary

DataPackage(int) Constructor used to create an empty DataPackage object to fill with the
parseBytes() method

DataPackage(int, Node, String[]) Constructor

Method summary

getRecipients() This method returns all the recipients of this data package
getSender() This method returns the sender of this data package
getType() This method returns an int indicating the type of data package
parseBytes(byte[]) This method parses the content of the byte array (byte[]) back into a

DataPackage object
setRecipients(String[]) This method sets the nodes to receive this package
setSender(Node) This method sets the sender of this data package
toSendableFormat() This method transforms this data package into a byte array (byte[]) that

is possible to send over a network stream

Fields

∗ public peer2me.util.Log log

198

∗ public static final int GROUP SYNC PACKAGE

∗ public static final int TEXT PACKAGE

∗ public static final int FILE PACKAGE

Constructors

∗ DataPackage

public DataPackage(int type)

◦ Description

Constructor used to create an empty DataPackage object to fill with the parseBytes() method

◦ Parameters

∗ type – The type of the DataPackage

∗ DataPackage

public DataPackage(int type, Node sender, java.lang.String[] recipients)

◦ Description

Constructor

◦ Parameters

∗ type – The type specifying the type of data package

∗ sender – A node object representing the sender node

∗ recipients – The addresses to the recipients of the data package

Methods

∗ getRecipients

public java.lang.String[] getRecipients()

◦ Description

This method returns all the recipients of this data package

◦ Returns – recipients The addresses to the recipients of this package

∗ getSender

public Node getSender()

◦ Description

This method returns the sender of this data package

◦ Returns – sender The node that sends this package

∗ getType

public int getType()

199

◦ Description

This method returns an int indicating the type of data package

◦ Returns – type An int indicating the type of data package

∗ parseBytes

public abstract void parseBytes(byte[] data)

◦ Description

This method parses the content of the byte array (byte[]) back into a DataPackage object

◦ Parameters

∗ data – The byte[] containing the data representing the DataPackage object

∗ setRecipients

public void setRecipients(java.lang.String[] recipients)

◦ Description

This method sets the nodes to receive this package

◦ Parameters

∗ recipients – The addresses to the nodes that shall receive this package

∗ setSender

public void setSender(Node sender)

◦ Description

This method sets the sender of this data package

◦ Parameters

∗ sender – The node that sends this package

∗ toSendableFormat

public abstract byte[] toSendableFormat()

◦ Description

This method transforms this data package into a byte array (byte[]) that is possible to send over
a network stream

◦ Returns – The byte[] representation of the data package

C.1.2 Class FilePackage

This class represents a data package containing metadata about a file of some sort that should be sent over
the network. The package contains the file path and length of the file to transfer, so that the receiver can
handle the incoming stream of data and transform it back into a copy of the file.

200

Declaration

public class FilePackage

extends peer2me.domain.DataPackage peer2me.domain.DataPackage

Constructor summary

FilePackage() Constructor used to create an empty FilePackage object to fill with the
parseBytes() method

FilePackage(Node, String[], String) Constructor

Method summary

getFilePath() This method returns the file path of this FilePackage
getFileSize() This method returns the file size of this FilePackage
parseBytes(byte[]) This method parses the content of the byte array (byte[]) back into a

FilePackage object
toSendableFormat() This method transforms this file package into a byte array (byte[]) that

is possible to send over a network stream

Constructors

∗ FilePackage

public FilePackage()

◦ Description

Constructor used to create an empty FilePackage object to fill with the parseBytes() method

∗ FilePackage

public FilePackage(Node sender, java.lang.String[] recipients, java.lang.String filePath

)

◦ Description

Constructor

◦ Parameters

∗ sender – A node object representing the sender node

∗ recipients – The addresses to the recipients of the file package

∗ filePath – The path of the file to be sent

Methods

∗ getFilePath

public java.lang.String getFilePath()

◦ Description

This method returns the file path of this FilePackage

201

◦ Returns – The file path

∗ getFileSize

public long getFileSize()

◦ Description

This method returns the file size of this FilePackage

◦ Returns – The file size

∗ parseBytes

public void parseBytes(byte[] data)

◦ Description

This method parses the content of the byte array (byte[]) back into a FilePackage object

◦ Parameters

∗ data – The byte[] containing the data representing the FilePackage object

∗ toSendableFormat

public byte[] toSendableFormat()

◦ Description

This method transforms this file package into a byte array (byte[]) that is possible to send over a
network stream

◦ Returns – The byte[] representation of the file package

Members inherited from class peer2me.domain.DataPackage peer2me.domain.DataPackage

∗ public static final FILE PACKAGE

∗ public String getRecipients()

∗ public Node getSender()

∗ public int getType()

∗ public static final GROUP SYNC PACKAGE

∗ public log

∗ public abstract void parseBytes(byte[] data)

∗ public void setRecipients(java.lang.String[] recipients)

∗ public void setSender(Node sender)

∗ public static final TEXT PACKAGE

∗ public abstract byte toSendableFormat()

C.1.3 Class Group

This class represents a group of nodes running the same service (MIDlet). All connected nodes in the ad
hoc network are participants in the group. Participants can be added and removed, and a list of all the
participants can be retreived.

202

Declaration

public class Group

extends java.lang.Object java.lang.Object

Constructor summary

Group() Constructor.

Method summary

addParticipant(Node) This method adds a node to the group as a participant.
getNode(String) This method returns a node with the address specified as input
getParticipatingNodeNames(FrameworkFrontEnd) This method returns a list containg

the names (as keys) of the nodes participating in this group.
getParticipatingNodes() This method returns a list containing the nodes participating in this

group.
removeAllParticipants() This method removes all participating nodes.
removeParticipant(String) This method removes a participating node.
shutdownGroup() This method closes the NodeConnection of all the participating nodes, and

removes all nodes from the group.

Constructors

∗ Group

public Group()

◦ Description

Constructor. Creates a new Group. A group is created in FrameworkFrontEnd.initFramework().

Methods

∗ addParticipant

public void addParticipant(Node node)

◦ Description

This method adds a node to the group as a participant.

◦ Parameters

∗ node – The node to add as a participant.

∗ getNode

public Node getNode(java.lang.String address)

◦ Description

This method returns a node with the address specified as input

◦ Parameters

203

∗ address – The address of the node to get

◦ Returns – A node with the address specified as input

∗ getParticipatingNodeNames

public java.util.Hashtable getParticipatingNodeNames(peer2me.framework.FrameworkFrontEnd

frameworkFrontEnd)

◦ Description

This method returns a list containg the names (as keys) of the nodes participating in this group.
The addresses are stored as values. It is called from FrameworkFrontEnd.notifyAboutParticipants().

◦ Returns – A list containing the nodes participating in this group. The node name is the key and
the address is the value

∗ getParticipatingNodes

public java.util.Hashtable getParticipatingNodes()

◦ Description

This method returns a list containing the nodes participating in this group. The address is the
key to find the Node.

◦ Returns – A list containing the nodes participating in this group. The address is the key and
the node name is the value

∗ removeAllParticipants

public void removeAllParticipants()

◦ Description

This method removes all participating nodes. It is used to clear the group before it is updated by
a groupSyncPackage received from a remote node.

∗ removeParticipant

public void removeParticipant(java.lang.String address)

◦ Description

This method removes a participating node.

◦ Parameters

∗ address – The address of the node to remove from this group

∗ shutdownGroup

public void shutdownGroup()

◦ Description

This method closes the NodeConnection of all the participating nodes, and removes all nodes from
the group. It is called from the MIDlet via FrameworkFrontEnd.shutdownFramework() when all
network connections should be closed.

204

C.1.4 Class GroupSyncPackage

A GroupSyncPackage is a package used internally in the framework to synchronize the groups containing
the participants. The participant performing the groupsync uses its own group as content of the package.
All the receivers synchronizes their groups based on the information found in the GroupSyncPackage.

Declaration

public class GroupSyncPackage

extends peer2me.domain.DataPackage peer2me.domain.DataPackage

Constructor summary

GroupSyncPackage() Constructor used to create an empty GroupSyncPackage object to fill
with the parseBytes() method

GroupSyncPackage(Node, String[], Node[]) Constructor

Method summary

getParticipants() This method returns a list of the nodes that are participating in the network
(group)

parseBytes(byte[]) This method parses the content of the byte array (byte[]) back into a
GroupSyncPackage object

toSendableFormat() This method transforms this groupsync package into a byte array (byte[])
that is possible to send over a network stream

Constructors

∗ GroupSyncPackage

public GroupSyncPackage()

◦ Description

Constructor used to create an empty GroupSyncPackage object to fill with the parseBytes()
method

∗ GroupSyncPackage

public GroupSyncPackage(Node sender, java.lang.String[] recipients, Node[] participat-

ingNodes)

◦ Description

Constructor

◦ Parameters

∗ sender – A node object representing the sender node

∗ recipients – The addresses to the recipients of the groupsync package

∗ participatingNodes – A hashtable with node addresses as keys and names as values

205

Methods

∗ getParticipants

public Node[] getParticipants()

◦ Description

This method returns a list of the nodes that are participating in the network (group)

◦ Returns – A list of participating nodes

∗ parseBytes

public void parseBytes(byte[] data)

◦ Description

This method parses the content of the byte array (byte[]) back into a GroupSyncPackage object

◦ Parameters

∗ data – The byte[] containing the data representing the GroupSyncPackage object

∗ toSendableFormat

public byte[] toSendableFormat()

◦ Description

This method transforms this groupsync package into a byte array (byte[]) that is possible to send
over a network stream

◦ Returns – The byte[] representation of the groupsync package

Members inherited from class peer2me.domain.DataPackage peer2me.domain.DataPackage

∗ public static final FILE PACKAGE

∗ public String getRecipients()

∗ public Node getSender()

∗ public int getType()

∗ public static final GROUP SYNC PACKAGE

∗ public log

∗ public abstract void parseBytes(byte[] data)

∗ public void setRecipients(java.lang.String[] recipients)

∗ public void setSender(Node sender)

∗ public static final TEXT PACKAGE

∗ public abstract byte toSendableFormat()

C.1.5 Class Node

This class represents a node in the network. It contains information like the name of the node and its network
address. A node also owns a nodeConnection object listening for- and processing incoming and outgoing
data packages.

206

Declaration

public class Node

extends java.lang.Object java.lang.Object

Constructor summary

Node(String, StreamConnection) Constructor.
Node(String, String) Constructor.
Node(String, String, StreamConnection) Constructor.

Method summary

getAddress() This method returns the node address
getNodeConnection() This method returns the NodeConnection owned by this node
getNodeName() This method returns the name of the node
restoreNode(String) This method restores a node with the properties specified in the given

input string.
setNodeConnection(StreamConnection) This method sets the connection to this remote

node.
setNodeName(String) This method sets the name of the node
startNodeConnection() This method creates a nodeConnection running two threads.

Constructors

∗ Node

public Node(java.lang.String address, javax.microedition.io.StreamConnection connec-

tion)

◦ Description

Constructor. Creates a new Node. This constructor is used when a node is created to represent
a remote device on the node which was DISCOVERED during a search. In this case, only the
address is known. In addition, a StreamConnection object containing a connection to this remote
device exists. The constructor is called from the run() method in ConnectionListener.

◦ Parameters

∗ address – The node network address

∗ connection – The connection to this remote node

∗ Node

public Node(java.lang.String nodeName, java.lang.String address)

◦ Description

Constructor. Creates a new Node. This constructor is used when a node is created to represent
the LOCAL device. In this case, nodeName and address are known. The constructor is called
from FrameworkFrontEnd.initFramework().

207

◦ Parameters

∗ nodeName – The name of the node

∗ address – The node network address

∗ Node

public Node(java.lang.String nodeName, java.lang.String address,

javax.microedition.io.StreamConnection connection)

◦ Description

Constructor. Creates a new Node. This constructor is used when a node is created to represent
a remote device on the node which INITIATED the search. In this case, name and address is
known. In addition, a StreamConnection object containing a connection to this remote device
exists. The constructor is called from the nodeFound() method in the Network subclass.

◦ Parameters

∗ nodeName – The name of the node

∗ address – The node network address

∗ connection – The connection to this remote node

Methods

∗ getAddress

public java.lang.String getAddress()

◦ Description

This method returns the node address

◦ Returns – The node network address

∗ getNodeConnection

public peer2me.network.NodeConnection getNodeConnection()

◦ Description

This method returns the NodeConnection owned by this node

◦ Returns – nodeConnection This nodes NodeConnection

∗ getNodeName

public java.lang.String getNodeName()

◦ Description

This method returns the name of the node

◦ Returns – The nodeName

∗ restoreNode

public static Node restoreNode(java.lang.String nodeString)

208

◦ Description

This method restores a node with the properties specified in the given input string.

◦ Parameters

∗ nodeString – A string containing node properties (name:address)

∗ setNodeConnection

public void setNodeConnection(javax.microedition.io.StreamConnection connection)

◦ Description

This method sets the connection to this remote node. It is called from Network.nodeFound().

◦ Parameters

∗ connection – The connection to this remote node

∗ setNodeName

public void setNodeName(java.lang.String nodeName)

◦ Description

This method sets the name of the node

◦ Parameters

∗ nodeName – The name of the node

∗ startNodeConnection

public void startNodeConnection()

◦ Description

This method creates a nodeConnection running two threads. One of the threads listens for
incoming data packages, and the other processes outgoing data packages. It is only used when
this node object represents a remote node.

C.1.6 Class TextPackage

This class represents a data package containing text that should be sent over the network.

Declaration

public class TextPackage

extends peer2me.domain.DataPackage peer2me.domain.DataPackage

Constructor summary

TextPackage() Constructor used to create an empty TextPackage object to fill with the
parseBytes() method

TextPackage(Node, String[], String) Constructor

209

Method summary

getContent() This method returns the text content of this TextPackage
parseBytes(byte[]) This method parses the content of the byte array (byte[]) back into a

TextPackage object
toSendableFormat() This method transforms this text package into a byte array (byte[]) that

is possible to send over a network stream

Constructors

∗ TextPackage

public TextPackage()

◦ Description

Constructor used to create an empty TextPackage object to fill with the parseBytes() method

∗ TextPackage

public TextPackage(Node sender, java.lang.String[] recipients, java.lang.String con-

tent)

◦ Description

Constructor

◦ Parameters

∗ sender – A node object representing the sender node

∗ recipients – The addresses to the recipients of the text package

∗ content – The String to be sent

Methods

∗ getContent

public java.lang.String getContent()

◦ Description

This method returns the text content of this TextPackage

◦ Returns – The content

∗ parseBytes

public void parseBytes(byte[] data)

◦ Description

This method parses the content of the byte array (byte[]) back into a TextPackage object

◦ Parameters

∗ data – The byte[] containing the data representing the TextPackage object

210

∗ toSendableFormat

public byte[] toSendableFormat()

◦ Description

This method transforms this text package into a byte array (byte[]) that is possible to send over
a network stream

◦ Returns – The byte[] representation of the text package

Members inherited from class peer2me.domain.DataPackage peer2me.domain.DataPackage

∗ public static final FILE PACKAGE

∗ public String getRecipients()

∗ public Node getSender()

∗ public int getType()

∗ public static final GROUP SYNC PACKAGE

∗ public log

∗ public abstract void parseBytes(byte[] data)

∗ public void setRecipients(java.lang.String[] recipients)

∗ public void setSender(Node sender)

∗ public static final TEXT PACKAGE

∗ public abstract byte toSendableFormat()

C.2 Package peer2me.framework

Package Contents

Interfaces

Framework . 211
This interface acts as a ”facade” for the entire Peer2Me framework as the methods in
this interface is the only methods the MIDlets running the framework needs access
to.

FrameworkListener .214
This interface must be implemented by all Peer2Me MIDlets.

Classes

FrameworkFrontEnd . 216
This is the main class of the Peer2Me framework.

C.2.1 Interface Framework

This interface acts as a ”facade” for the entire Peer2Me framework as the methods in this interface is the
only methods the MIDlets running the framework needs access to. To use the Peer2Me framework, the
MIDlets should run the FrameworkFrontEnd.getInstance() which returns a reference of type Framework. All
framework services is then available through this reference.

211

Declaration

public interface Framework

All known subinterfaces

FrameworkFrontEndpeer2me.framework.FrameworkFrontEnd

All classes known to implement interface

FrameworkFrontEndpeer2me.framework.FrameworkFrontEnd

Method summary

connectToNodes(String[]) This method connects multiple devices in a network.
getFileList(String) This method returns a list of the files in the given root directory on the

device
initFramework(String, String, String) This method initiates the framework, and is the first

method that should be run after getting a instance of the framework.
sendFilePackage(String[], String) This method sends a file package over the network.
sendTextPackage(String[], String) This method sends a text package over the network.
shutdownFramework() This method shuts down the framework and closes all the open network

connections and streams.
startNodeSearch() This method starts a search for devices running the same MIDlet.

Methods

∗ connectToNodes

void connectToNodes(java.lang.String[] addresses)

◦ Description

This method connects multiple devices in a network. When a connection is established, the
notifyAboutParticipants() method specified by the FrameworkListener interface is called.

◦ Parameters

∗ addresses – The addresses of the devices to connect to.

∗ getFileList

java.util.Enumeration getFileList(java.lang.String root)

◦ Description

This method returns a list of the files in the given root directory on the device

◦ Parameters

∗ root – The path to the root directory

◦ Returns – An enumeration containing the names of the files in the root directory

212

∗ initFramework

void initFramework(java.lang.String nodeName, java.lang.String midletName, java.lang.String

preferredNetwork) throws java.lang.ClassNotFoundException,

java.lang.IllegalAccessException, java.lang.InstantiationException,

java.io.IOException, java.lang.Exception

◦ Description

This method initiates the framework, and is the first method that should be run after getting a
instance of the framework. It initiates the fundamental services offered by the framework.

◦ Parameters

∗ nodeName – The name of the user of the MIDlet.

∗ midletName – The name of the MIDlet, eventually translated into a ServiceID used to find
other devices running the same MIDlet.

∗ preferredNetwork – Deciding which network implementation to use.

◦ Throws

∗ java.lang.ClassNotFoundException – The input preferredNetwork is invalid
∗ java.lang.IllegalAccessException – The input preferredNetwork is invalid
∗ java.lang.InstantiationException – The input preferredNetwork is invalid
∗ java.io.IOException – Error initiating framework
∗ java.lang.Exception – Error initiating framework

∗ sendFilePackage

void sendFilePackage(java.lang.String[] recipients, java.lang.String filePath)

◦ Description

This method sends a file package over the network. When the package terminates to the
recipients, they are alerted by the notifyAboutReceivedFilePackage() method specified by the
FrameworkListener interface.

◦ Parameters

∗ recipients – A list containing the addresses of the recipient nodes

∗ filePath – The path of the file to be sent

∗ sendTextPackage

void sendTextPackage(java.lang.String[] recipients, java.lang.String textMessage)

◦ Description

This method sends a text package over the network. When the package terminates to the
recipients, they are alerted by the notifyAboutReceivedTextPackage() method specified by the
FrameworkListener interface.

◦ Parameters

∗ recipients – A list containing the addresses of the recipient nodes

∗ textMessage – The text message to be sent

213

∗ shutdownFramework

void shutdownFramework()

◦ Description

This method shuts down the framework and closes all the open network connections and streams.
It should be called before closing the MIDlet to clean up the network connections.

∗ startNodeSearch

void startNodeSearch() throws java.io.IOException

◦ Description

This method starts a search for devices running the same MIDlet. When such a device is found,
the notifyAboutFoundNode() method specified by the FrameworkListener interface is called.

◦ Throws

∗ java.io.IOException – Thrown if the search crashes

C.2.2 Interface FrameworkListener

This interface must be implemented by all Peer2Me MIDlets. It ensures that the Framework can access a
set of methods in the MIDlet in order to notify the MIDlet about various events.

Declaration

public interface FrameworkListener

Method summary

notifyAboutException(String, Exception) This method is called by the framework when-
ever an exception notice is given by the log.

notifyAboutFoundNode(String, String) This method is called by the framework when a
node is found.

notifyAboutParticipants(Hashtable) This method is called from from the framework to
notify the midlet about the participants of the ad hoc network.

notifyAboutReceivedFilePackage(String, String) This method is called from the frame-
work whenever a file package is received from a remote node.

notifyAboutReceivedTextPackage(String, String) This method is called from the frame-
work whenever a text package is received from a remote node.

Methods

∗ notifyAboutException

void notifyAboutException(java.lang.String location, java.lang.Exception exception)

214

◦ Description

This method is called by the framework whenever an exception notice is given by the log. This
will be done in cases where exceptions occure in threads and cannot be thrown in the usual way.

◦ Parameters

∗ location – The location where the Exception occured

∗ exception – The actual Exception

∗ notifyAboutFoundNode

void notifyAboutFoundNode(java.lang.String nodeAddress, java.lang.String remoteN-

odeName)

◦ Description

This method is called by the framework when a node is found. These nodes are not yet connected
in a network. To do this, use the Framework.connectToNodes() method.

◦ Parameters

∗ nodeAddress – The network address of the node

∗ remoteNodeName – The name of the found remote node

∗ notifyAboutParticipants

void notifyAboutParticipants(java.util.Hashtable participants)

◦ Description

This method is called from from the framework to notify the midlet about the participants of the
ad hoc network.

◦ Parameters

∗ participants – A hashtable that contains the names of the participants as unique keys and
the network addresses as values.

∗ notifyAboutReceivedFilePackage

void notifyAboutReceivedFilePackage(java.lang.String senderName, java.lang.String

filePath)

◦ Description

This method is called from the framework whenever a file package is received from a remote node.

◦ Parameters

∗ senderName – The name of the sender

∗ filePath – The path to the received file

∗ notifyAboutReceivedTextPackage

void notifyAboutReceivedTextPackage(java.lang.String senderName, java.lang.String

textMessage)

215

◦ Description

This method is called from the framework whenever a text package is received from a remote
node.

◦ Parameters

∗ senderName – The name of the sender

∗ textMessage – The received text message

C.2.3 Class FrameworkFrontEnd

This is the main class of the Peer2Me framework. It manages and connects the resources and functions of
the framework. It also handles all communication and interaction with the MIDlets running the framework.

Declaration

public class FrameworkFrontEnd

extends java.lang.Object java.lang.Object

implements Framework

Method summary

connectToNodes(String[]) This method establishes a connection to the chosen nodes.
getFileList(String) This method returns a list of the files in the given root directory on the

device
getGroup() This method returns the local representation of the group.
getInstance(FrameworkListener) This method creates an instance of FrameworkFrontEnd

and returns it as a reference of type Framework.
getLocalNode() This method returns a reference to the local node.
initFramework(String, String, String) This method initiates the framework, and is the first

method that should be run after getting a instance of the framework.
notifyAboutException(String, Exception) This method passes on the Exception notice from

the Log to the MIDlet.
notifyAboutFoundNode(String, String) This method is called from the nodeFound()

method in the Network class whenever a node is found
notifyAboutLostNode(String) This method removes a lost node from the group.
notifyAboutReceivedFilePackage(FilePackage) This method is called from NodeConnec-

tion.processIncomingData() whenever a file package is received from a remote node.
notifyAboutReceivedGroupSyncPackage(GroupSyncPackage) This method is called from

NodeConnection.processIncomingData() whenever a groupSyncPackage is received from a
remote node.

notifyAboutReceivedTextPackage(TextPackage) This method is called from NodeConnec-
tion.processIncomingData() whenever a text package is received from a remote node.

216

sendFilePackage(String[], String) This method is used by the MIDlet to send a file package
over the network.

sendTextPackage(String[], String) This method is used by the MIDlet to send a text package
over the network.

shutdownFramework() This method shuts down the framework and closes all the open network
connections and streams.

startNodeSearch() This method starts a search for devices running the same MIDlet.

Methods

∗ connectToNodes

public void connectToNodes(java.lang.String[] addresses)

◦ Description

This method establishes a connection to the chosen nodes. After updating the local group, it
synchronizes the groups on all other participating nodes. The method should be called from the
MIDlet.

◦ Parameters

∗ addresses – The addresses to the nodes to connect to.

∗ getFileList

public java.util.Enumeration getFileList(java.lang.String root)

◦ Description

This method returns a list of the files in the given root directory on the device

◦ Parameters

∗ root – The path to the root directory

◦ Returns – A Enumeration containing the names of the files in the root directory

∗ getGroup

public peer2me.domain.Group getGroup()

◦ Description

This method returns the local representation of the group. It is called from ConnectionLis-
tener.run() or Network.nodeFound() when a remote node is found and should be added to the
group.

◦ Returns – The local representation of the group

∗ getInstance

public static synchronized Framework getInstance(FrameworkListener midlet)

◦ Description

This method creates an instance of FrameworkFrontEnd and returns it as a reference of type
Framework. This is the only method that can be called directly from the MIDlet on the

217

FrameworkFrontEnd. The MIDlet is restricted to only use the methods specified in the Framework
interface.

◦ Parameters

∗ midlet – A reference to the MIDlet (The MIDlet must implement the FrameworkListener
interface).

◦ Returns – A reference to the Framework

∗ getLocalNode

public peer2me.domain.Node getLocalNode()

◦ Description

This method returns a reference to the local node.

◦ Returns – An object representing the local node

∗ initFramework

public void initFramework(java.lang.String nodeName, java.lang.String midletName,

java.lang.String preferredNetwork) throws java.lang.ClassNotFoundException,

java.lang.IllegalAccessException, java.lang.InstantiationException,

java.io.IOException, java.lang.Exception

◦ Description

This method initiates the framework, and is the first method that should be run after getting a
instance of the framework. It initiates the fundamental services offered by the framework.

◦ Parameters

∗ nodeName – The name of the user of the MIDlet.

∗ midletName – The name of the MIDlet, eventually translated into a ServiceID used to find
other devices running the same MIDlet.

∗ preferredNetwork – Deciding which network implementation to use.

◦ Throws

∗ java.lang.ClassNotFoundException – The input preferredNetwork is invalid
∗ java.lang.IllegalAccessException – The input preferredNetwork is invalid
∗ java.lang.InstantiationException – The input preferredNetwork is invalid
∗ java.io.IOException – Error initiating framework
∗ java.lang.Exception – Error initiating framework

∗ notifyAboutException

public void notifyAboutException(java.lang.String location, java.lang.Exception excep-

tion)

◦ Description

This method passes on the Exception notice from the Log to the MIDlet. This will be done in
cases where exceptions occure in threads and cannot be thrown in the usual way.

218

◦ Parameters

∗ location – The location (class and method) where the Exception occured

∗ exception – The actual Exception

∗ notifyAboutFoundNode

public void notifyAboutFoundNode(java.lang.String address, java.lang.String remoteN-

odeName)

◦ Description

This method is called from the nodeFound() method in the Network class whenever a node is
found

◦ Parameters

∗ address – The network address of the node

∗ remoteNodeName – The name of the found remote node

∗ notifyAboutLostNode

public synchronized void notifyAboutLostNode(java.lang.String address)

◦ Description

This method removes a lost node from the group. It is called from Network.sendDataPackage() if a
node is unreachable. After removing the node, the groups on all other nodes become synchronized.

◦ Parameters

∗ address – The address to the lost node

∗ notifyAboutReceivedFilePackage

public void notifyAboutReceivedFilePackage(peer2me.domain.FilePackage filePackage)

◦ Description

This method is called from NodeConnection.processIncomingData() whenever a file package is
received from a remote node. It processes the package, logs the event, and notifies the midlet.

◦ Parameters

∗ filePackage – The received file package.

∗ notifyAboutReceivedGroupSyncPackage

public void notifyAboutReceivedGroupSyncPackage(peer2me.domain.GroupSyncPackage group-

SyncPackage)

◦ Description

This method is called from NodeConnection.processIncomingData() whenever a groupSyncPack-
age is received from a remote node. The method processes the package, logs the event, and
updates the group.

◦ Parameters

219

∗ groupSyncPackage – The received groupSyncPackage.

∗ notifyAboutReceivedTextPackage

public void notifyAboutReceivedTextPackage(peer2me.domain.TextPackage textPackage)

◦ Description

This method is called from NodeConnection.processIncomingData() whenever a text package is
received from a remote node. It processes the package, logs the event, and notifies the midlet.

◦ Parameters

∗ textPackage – The received text package.

∗ sendFilePackage

public void sendFilePackage(java.lang.String[] recipients, java.lang.String filePath)

◦ Description

This method is used by the MIDlet to send a file package over the network. When the package
terminates to the recipients, the notifyAboutReceivedFilePackage() method in this class is run.

◦ Parameters

∗ recipients – A list containing the addresses of the recipient nodes

∗ filePath – The path of the file to send

∗ sendTextPackage

public void sendTextPackage(java.lang.String[] recipients, java.lang.String textMes-

sage)

◦ Description

This method is used by the MIDlet to send a text package over the network. When the package
terminates to the recipients, the notifyAboutReceivedTextPackage() method in this class is run.

◦ Parameters

∗ recipients – A list containing the addresses of the recipient nodes

∗ textMessage – The text to be sent

∗ shutdownFramework

public void shutdownFramework()

◦ Description

This method shuts down the framework and closes all the open network connections and streams.
It should be called from the MIDlet before closing, to clean up the network connections.

∗ startNodeSearch

public void startNodeSearch() throws java.io.IOException

220

◦ Description

This method starts a search for devices running the same MIDlet. When such a device is found,
the notifyAboutFoundNode() method in this class is called.

◦ Throws

∗ java.io.IOException – Thrown if the search crashes

C.3 Package peer2me.network.bluetooth

Package Contents

Interfaces

BluetoothServiceDiscoveryListener .221
This interface has to be implemented by classes that wants to do a Bluetooth service
discovery using the BluetoothServiceDiscovery class, and receive callbacks from this
class.

Classes

BluetoothNetwork . 222
This class is a bluetooth specific sub class of the Network class and implements all
the abstract methods of it’s parent class in a bluetooth context.

BluetoothServiceDiscovery . 225
This class is responsible for doing the low level Bluetooth discovery operations.

C.3.1 Interface BluetoothServiceDiscoveryListener

This interface has to be implemented by classes that wants to do a Bluetooth service discovery using
the BluetoothServiceDiscovery class, and receive callbacks from this class. In this case, the class
BluetoothNetwork implements this interface.

Declaration

public interface BluetoothServiceDiscoveryListener

All known subinterfaces

BluetoothNetworkpeer2me.network.bluetooth.BluetoothNetwork

All classes known to implement interface

BluetoothNetworkpeer2me.network.bluetooth.BluetoothNetwork

Method summary

serviceDiscoveryError() What to do when something went wrong during servicediscovery
serviceSearchCompleted() What to do when serviceSearch is completed

221

Methods

∗ serviceDiscoveryError

void serviceDiscoveryError()

◦ Description

What to do when something went wrong during servicediscovery

∗ serviceSearchCompleted

void serviceSearchCompleted()

◦ Description

What to do when serviceSearch is completed

C.3.2 Class BluetoothNetwork

This class is a bluetooth specific sub class of the Network class and implements all the abstract methods of
it’s parent class in a bluetooth context. It uses the bluetooth Java API, JSR-82, to perform operations on
the bluetooth hardware of the mobile device.

Declaration

public class BluetoothNetwork

extends peer2me.network.Network peer2me.network.Network

implements BluetoothServiceDiscoveryListener

Constructor summary

BluetoothNetwork() Constructor.

Method summary

connectionEstablished() This method is called from the ConnectionListener.run() when the
acceptAndOpen() method in ConnectionListener.run() is done.

connectToNode(String) This method establishes a connection to the chosen node.
getNodeAddress(Object) This method returns the node address.
getRemoteNodeName(Object) This method fetches the name of the remote node.
getUUIDString() This method returns the UUID string used as an identifier in the discovery

process.
init() Initiates the network instance.
nodeFound(Object) Called when the same MIDlet is found on a remote device.
searchForNodes() Starts a search for devices running the same MIDlet
sendDataPackage(DataPackage, String[]) This method is used by the FrameworkFrontEnd

to send a data package of any sort to a remote node.
serviceDiscoveryError() What to do when something went wrong during servicediscovery.
serviceSearchCompleted() Sets the boolean serviceSearchCompleted = true.

222

Constructors

∗ BluetoothNetwork

public BluetoothNetwork()

◦ Description

Constructor. Protected to ensure singleton pattern.

Methods

∗ connectionEstablished

public void connectionEstablished()

◦ Description

This method is called from the ConnectionListener.run() when the acceptAndOpen() method in
ConnectionListener.run() is done.

∗ connectToNode

public void connectToNode(java.lang.String nodeAddress)

◦ Description

This method establishes a connection to the chosen node. It is run from the BluetoothNet-
work.sendDataPackage().

◦ Parameters

∗ nodeAddress – The address to the node to connect to

∗ getNodeAddress

public java.lang.String getNodeAddress(java.lang.Object input) throws java.io.IOException

◦ Description

This method returns the node address.

◦ Parameters

∗ input – String ”localNode” to retreive the address of the local device. A ServiceRecord or
StreamConnection object to retreive the address of a remote device.

◦ Returns – The node network address.

◦ Throws

∗ java.io.IOException –

∗ getRemoteNodeName

public java.lang.String getRemoteNodeName(java.lang.Object input)

◦ Description

This method fetches the name of the remote node.

223

◦ Parameters

∗ input – An object representing the connection to the found node.

◦ Returns – The name of the remote node.

∗ getUUIDString

public java.lang.String getUUIDString()

◦ Description

This method returns the UUID string used as an identifier in the discovery process. The UUID
string is generated based on the application ID given by the application running the framework.
The UUID must be used to ensure that all nodes joining the network are running the same
application.

◦ Returns – uuidString

∗ init

public void init() throws javax.bluetooth.BluetoothStateException

◦ Description

Initiates the network instance. It is called from the FrameworkFrontEnd.initFramework()

◦ Throws

∗ javax.bluetooth.BluetoothStateException – Failed to initiate the network

∗ nodeFound

public void nodeFound(java.lang.Object input)

◦ Description

Called when the same MIDlet is found on a remote device. It is called from BluetoothServiceDis-
covery.serviceSearchCompleted().

◦ Parameters

∗ input – Either a ServiceRecord or a StreamConnection that describes the characteristics of
the Bluetooth service found

∗ searchForNodes

public void searchForNodes() throws java.io.IOException

◦ Description

Starts a search for devices running the same MIDlet

◦ Throws

∗ java.io.IOException – Error during the search

∗ sendDataPackage

public void sendDataPackage(peer2me.domain.DataPackage dataPackage, java.lang.String[]

recipients)

224

◦ Description

This method is used by the FrameworkFrontEnd to send a data package of any sort to a remote
node.

◦ Parameters

∗ dataPackage – The data package to be sent

∗ recipients – A list containing addresses to the recipient nodes

∗ serviceDiscoveryError

public void serviceDiscoveryError()

◦ Description

What to do when something went wrong during servicediscovery. The method is called from
BluetoothServiceDiscovery.serviceSearchCompleted().

∗ serviceSearchCompleted

public void serviceSearchCompleted()

◦ Description

Sets the boolean serviceSearchCompleted = true. This value will interrupt the while-loop in
sendDataPackage. This because the serviceSearch must be completed before we try to send a
package. The method is called from BluetoothServiceDiscovery.serviceSearchCompleted().

Members inherited from class peer2me.network.Network peer2me.network.Network

∗ public abstract void connectionEstablished()

∗ public abstract void connectToNode(java.lang.String nodeAddress)

∗ public String getApplicationId()

∗ public ConnectionListener getConnectionListener()

∗ public FrameworkFrontEnd getFrameworkFrontEnd()

∗ public static synchronized Network getInstance()

∗ public static synchronized Network getInstance(java.lang.String preferredNetwork)

throws java.lang.ClassNotFoundException, java.lang.IllegalAccessException,

java.lang.InstantiationException

∗ public abstract String getNodeAddress(java.lang.Object input) throws java.io.IOException

∗ public abstract String getRemoteNodeName(java.lang.Object input)

∗ public abstract void init() throws java.lang.Exception

∗ public abstract void nodeFound(java.lang.Object input) throws java.io.IOException

∗ public abstract void searchForNodes() throws java.io.IOException

∗ public abstract void sendDataPackage(peer2me.domain.DataPackage dataPackage, java.lang.String[]

recipients)

∗ public void setApplicationId(java.lang.String applicationID)

∗ public void setConnectionListener(ConnectionListener connectionListener)

∗ public void setFrameworkFrontEnd(peer2me.framework.FrameworkFrontEnd frameworkFrontEnd)

C.3.3 Class BluetoothServiceDiscovery

This class is responsible for doing the low level Bluetooth discovery operations. The class initializes seqential
device discovery, and searches for services (the same MIDlet built upon the Peer2Me framework) on each of
the found devices.

225

Declaration

public class BluetoothServiceDiscovery

extends java.lang.Object java.lang.Object

implements javax.bluetooth.DiscoveryListener

Constructor summary

BluetoothServiceDiscovery() Constructor.

Method summary

deviceDiscovered(RemoteDevice, DeviceClass) This method is called by the javax.bluetooth.DiscoveryAgent
(agent) whenever a bluetooth device is discovered

doDeviceDiscovery() This method starts the discovery process.
inquiryCompleted(int) This method is called by the javax.bluetooth.DiscoveryAgent (agent)

when the discovery process is completed
servicesDiscovered(int, ServiceRecord[]) This method is called by the javax.bluetooth.DiscoveryAgent

(agent) whenever one or more services (read: Peer2Me framework) are found on a remote
device

serviceSearchCompleted(int, int) This method is called by the javax.bluetooth.DiscoveryAgent
(agent) when the search for services (read: Peer2Me framework) is completed

startServiceSearch(String) This method is used to re-establish a connection to a device when
we have the address.

Constructors

∗ BluetoothServiceDiscovery

public BluetoothServiceDiscovery()

◦ Description

Constructor. Called from BluetoothNetwork.init().

Methods

∗ deviceDiscovered

public void deviceDiscovered(javax.bluetooth.RemoteDevice remoteDevice,

javax.bluetooth.DeviceClass deviceClass)

◦ Description

This method is called by the javax.bluetooth.DiscoveryAgent (agent) whenever a bluetooth device
is discovered

◦ Parameters

∗ remoteDevice – The device discovered

∗ deviceClass – The device class of the discovered device

226

∗ doDeviceDiscovery

public void doDeviceDiscovery() throws javax.bluetooth.BluetoothStateException

◦ Description

This method starts the discovery process. It is called from BluetoothNetwork.searchForNodes().

◦ Throws
∗ javax.bluetooth.BluetoothStateException – Error getting reference to LocalDevice

∗ inquiryCompleted

public void inquiryCompleted(int discType)

◦ Description

This method is called by the javax.bluetooth.DiscoveryAgent (agent) when the discovery process
is completed

◦ Parameters

∗ discType – The type of request that was completed; either INQUIRY COMPLETED,
INQUIRY TERMINATED, or INQUIRY ERROR

∗ servicesDiscovered

public void servicesDiscovered(int transId, javax.bluetooth.ServiceRecord[] serviceRe-

cord)

◦ Description

This method is called by the javax.bluetooth.DiscoveryAgent (agent) whenever one or more
services (read: Peer2Me framework) are found on a remote device

◦ Parameters

∗ transId – The transaction ID of the service search that is posting the result

∗ serviceRecord – A list of services found during the search request

∗ serviceSearchCompleted

public void serviceSearchCompleted(int transID, int respCode)

◦ Description

This method is called by the javax.bluetooth.DiscoveryAgent (agent) when the search for services
(read: Peer2Me framework) is completed

◦ Parameters

∗ transID – The transaction ID of the service search that is posting the result

∗ respCode – The response code that indicates the status of the transaction

∗ startServiceSearch

public void startServiceSearch(java.lang.String address)

◦ Description

This method is used to re-establish a connection to a device when we have the address.

◦ Parameters

∗ address – The address to the device

227

C.4 Package peer2me.network

Package Contents

Classes

ConnectionListener . 228
This class contains a ConnectionListener thread listening for incoming connection
attempts from other devices running the same MIDlet built upon the framework.

Network . 229
This is the super class of the technology specific network classes.

NodeConnection .233
This class contains a thread that runs on each connected node and listens for
incoming data packages and sends data packages out.

C.4.1 Class ConnectionListener

This class contains a ConnectionListener thread listening for incoming connection attempts from other
devices running the same MIDlet built upon the framework. When a incomming connection is detected, a
Node representation is created representing the connecting device. A ConnectionListener thread is created
in Network.init().

Declaration

public class ConnectionListener

extends java.lang.Object java.lang.Object

implements java.lang.Runnable

Constructor summary

ConnectionListener(String) Constructor.

Method summary

run() This method is called when the ConnectionListener thread is started in the constructor.
shutdown() This method shuts down this thread and closes the connection to clean up.

Constructors

∗ ConnectionListener

public ConnectionListener(java.lang.String connectionURL)

◦ Description

Constructor. A ConnectionListener is created in the Network.init() method.

◦ Parameters

∗ connectionURL – The ConnectionURL to listen to

228

Methods

∗ run

public void run()

◦ Description

This method is called when the ConnectionListener thread is started in the constructor. It
continously listens for incoming connections matching the serviceID of the peer2me framework.
The listener is ”passive”and opens a connection waiting for a device to take contact. If an incoming
connetion occurs, information is abstracted from the remote node, and a node object containing
this connection is created and added to the group on the local node.

∗ shutdown

public void shutdown()

◦ Description

This method shuts down this thread and closes the connection to clean up. It is called from
FrameworkFrontEnd.shutdownFramework().

C.4.2 Class Network

This is the super class of the technology specific network classes. Methods that are equal for all the sub
classes are located in this super class, and there are abstact methods that the sub classes have to implement.
The getInstance() method in this class returns a reference to the preferred network sub class.

Declaration

public abstract class Network

extends java.lang.Object java.lang.Object

All known subclasses

BluetoothNetworkpeer2me.network.bluetooth.BluetoothNetwork

Constructor summary

Network()

Method summary

connectionEstablished() This method is called from the ConnectionListener.run() when the
acceptAndOpen() method in ConnectionListener.run() is done.

connectToNode(String) This method establishes a connection to the chosen node.
getApplicationId() This method returns the applicationId
getConnectionListener() This method returns the ConnectionListener reference
getFrameworkFrontEnd() This method returns the FrameworkFrontEnd reference

229

getInstance() This method returns a reference to the instance of the preferred network.
getInstance(String) This method returns an instance of the preferred network.
getNodeAddress(Object) This method returns the node address.
getRemoteNodeName(Object) This method fetches the name of the remote node.
init() Initiates the network instance.
nodeFound(Object) Called when the same MIDlet is found on a remote device
searchForNodes() Starts a search for devices running the same MIDlet
sendDataPackage(DataPackage, String[]) This method is used by the FrameworkFrontEnd

to send a data package of any sort to a remote node.
setApplicationId(String) This method sets the applicationID.
setConnectionListener(ConnectionListener) This method sets a reference to the Connec-

tionListener
setFrameworkFrontEnd(FrameworkFrontEnd) This method sets a reference to the Frame-

workFrontEnd

Constructors

∗ Network

public Network()

Methods

∗ connectionEstablished

public abstract void connectionEstablished()

◦ Description

This method is called from the ConnectionListener.run() when the acceptAndOpen() method in
ConnectionListener.run() is done.

∗ connectToNode

public abstract void connectToNode(java.lang.String nodeAddress)

◦ Description

This method establishes a connection to the chosen node. It could e.g. be run from the
Network.sendDataPackage() to connect before sending a package.

◦ Parameters

∗ nodeAddress – The address to the node to connect to

∗ getApplicationId

public java.lang.String getApplicationId()

◦ Description

This method returns the applicationId

◦ Returns – applicationID The ID of the MIDlet

230

∗ getConnectionListener

public ConnectionListener getConnectionListener()

◦ Description

This method returns the ConnectionListener reference

◦ Returns – connectionListener A reference to the ConnectionListener

∗ getFrameworkFrontEnd

public peer2me.framework.FrameworkFrontEnd getFrameworkFrontEnd()

◦ Description

This method returns the FrameworkFrontEnd reference

◦ Returns – frameworkFrontEnd A reference to the FrameworkFrontEnd

∗ getInstance

public static synchronized Network getInstance()

◦ Description

This method returns a reference to the instance of the preferred network. It is used when an
instance already is created and a reference to this instance is needed.

◦ Returns – The Network instance

◦ Throws

∗ java.lang.ClassNotFoundException – The input preferredNetwork is invalid
∗ java.lang.IllegalAccessException – The input preferredNetwork is invalid
∗ java.lang.InstantiationException – The input preferredNetwork is invalid

∗ getInstance

public static synchronized Network getInstance(java.lang.String preferredNetwork) throws

java.lang.ClassNotFoundException, java.lang.IllegalAccessException,

java.lang.InstantiationException

◦ Description

This method returns an instance of the preferred network. It is called from FrameworkFron-
tEnd.initFramework().

◦ Parameters

∗ preferredNetwork – Indicating which network implementation to use. *

◦ Returns – The Network instance

◦ Throws

∗ java.lang.ClassNotFoundException – The input preferredNetwork is invalid
∗ java.lang.IllegalAccessException – The input preferredNetwork is invalid
∗ java.lang.InstantiationException – The input preferredNetwork is invalid

231

∗ getNodeAddress

public abstract java.lang.String getNodeAddress(java.lang.Object input)

throws java.io.IOException

◦ Description

This method returns the node address.

◦ Parameters

∗ input – String ”localNode” to retreive the address of the local device. A object representing
the connection to the remote node to retreive the address of a remote device.

◦ Returns – The node network address.

◦ Throws

∗ java.io.IOException –

∗ getRemoteNodeName

public abstract java.lang.String getRemoteNodeName(java.lang.Object input)

◦ Description

This method fetches the name of the remote node.

◦ Parameters

∗ input – An object representing the connection to the found node.

◦ Returns – The name of the remote node.

∗ init

public abstract void init() throws java.lang.Exception

◦ Description

Initiates the network instance. It is called from the FrameworkFrontEnd.initFramework()

◦ Throws

∗ java.lang.Exception – Failed to initiate the network

∗ nodeFound

public abstract void nodeFound(java.lang.Object input) throws java.io.IOException

◦ Description

Called when the same MIDlet is found on a remote device

◦ Parameters

∗ input – An object representing the connection to the found node.

∗ searchForNodes

public abstract void searchForNodes() throws java.io.IOException

◦ Description

Starts a search for devices running the same MIDlet

232

◦ Throws

∗ java.io.IOException – Error during the search

∗ sendDataPackage

public abstract void sendDataPackage(peer2me.domain.DataPackage dataPackage, java.lang.String[]

recipients)

◦ Description

This method is used by the FrameworkFrontEnd to send a data package of any sort to a remote
node.

◦ Parameters

∗ dataPackage – The data package to be sent

∗ recipients – A list containing addresses to the recipient nodes

∗ setApplicationId

public void setApplicationId(java.lang.String applicationID)

◦ Description

This method sets the applicationID. The application ID must be used to ensure that all nodes
joining the network are running the same MIDlet.

◦ Parameters

∗ applicationID – The ID of the MIDlet (e.g. the MIDlet name)

∗ setConnectionListener

public void setConnectionListener(ConnectionListener connectionListener)

◦ Description

This method sets a reference to the ConnectionListener

◦ Parameters

∗ connectionListener – A reference to the ConnectionListener

∗ setFrameworkFrontEnd

public void setFrameworkFrontEnd(peer2me.framework.FrameworkFrontEnd frameworkFron-

tEnd)

◦ Description

This method sets a reference to the FrameworkFrontEnd

◦ Parameters

∗ frameworkFrontEnd – A reference to the FrameworkFrontEnd

C.4.3 Class NodeConnection

This class contains a thread that runs on each connected node and listens for incoming data packages and
sends data packages out. It is created and started in NodeConnection.startNodeConnection().

233

Declaration

public class NodeConnection

extends java.lang.Object java.lang.Object

Constructor summary

NodeConnection(StreamConnection, Node) Constructor.

Method summary

closeConnection() This method closes the input- and output streams and the connection.
getConnection() This method returns the connection object.
getSendQueueSize() This method return the size of the sendQue.
openInputStream() This method sets a boolean that controls whether or not the InputStream

are allowed to listen for incoming data.
openOutputStream() This method sets a boolean that controls whether or not the Output-

Stream are allowed to send data.
processIncomingData() This method receives incoming datapackages from remote nodes.
processSendQueue() This method sends datapackages to remote nodes.
sendDataPackage(DataPackage) This method is called by the sendMessage() method in the

Network class when a data package is sent to the Node associated with this NodeConnection.
setConnection(StreamConnection) This method updates the connection object.

Constructors

∗ NodeConnection

public NodeConnection(javax.microedition.io.StreamConnection connection, peer2me.domain.Node

node)

◦ Description

Constructor. This constructor is called from the constructor in class Node.

◦ Parameters

∗ connection – The connection to the node

∗ node – The node that owns this NodeConnection

Methods

∗ closeConnection

public void closeConnection()

◦ Description

This method closes the input- and output streams and the connection. It is called from
Group.shutdownGroup() to clean up during shutdown.

234

∗ getConnection

public javax.microedition.io.StreamConnection getConnection()

◦ Description

This method returns the connection object.

◦ Returns – An object representing the connection to the remote node

∗ getSendQueueSize

public int getSendQueueSize()

◦ Description

This method return the size of the sendQue.

◦ Returns – The size of the sendQue

∗ openInputStream

public void openInputStream()

◦ Description

This method sets a boolean that controls whether or not the InputStream are allowed to listen
for incoming data. The value is toggled from ConnectionListener.run().

∗ openOutputStream

public void openOutputStream()

◦ Description

This method sets a boolean that controls whether or not the OutputStream are allowed to send
data. The value is toggled from NodeConnection.sendDataPackage()

∗ processIncomingData

public void processIncomingData()

◦ Description

This method receives incoming datapackages from remote nodes. It is called in an infinite loop in
the private class InputThread in this class.

∗ processSendQueue

public synchronized void processSendQueue()

◦ Description

This method sends datapackages to remote nodes. It processes the que of unsent datapackages.
It is called in an infinite loop in the private class OutputThread in this class.

∗ sendDataPackage

public synchronized void sendDataPackage(peer2me.domain.DataPackage dataPackage)

◦ Description

This method is called by the sendMessage() method in the Network class when a data package is
sent to the Node associated with this NodeConnection.

235

◦ Parameters

∗ dataPackage – The DataPackage to send

∗ setConnection

public void setConnection(javax.microedition.io.StreamConnection connection)

◦ Description

This method updates the connection object. It is used when the existing connection is closed and
a new open connection is needed.

◦ Parameters

∗ connection – The connection to the remote node

C.5 Package peer2me.util

Package Contents

Classes

ASCIIToHexConvert .236
This class converts ASCII letters into hexadecimal numbers

FileHandler . 237
This class contains functionality for reading and writing all kinds of files to and
from the device file system.

Log . 239
This class contains functionality to create and maintain a log of events and
exceptions.

C.5.1 Class ASCIIToHexConvert

This class converts ASCII letters into hexadecimal numbers

Declaration

public class ASCIIToHexConvert

extends java.lang.Object java.lang.Object

Constructor summary

ASCIIToHexConvert() Constructor

Method summary

convertASCIIToHex(String) This method returns a String with hex representations of each
character in the provided String

236

Constructors

∗ ASCIIToHexConvert

public ASCIIToHexConvert()

◦ Description

Constructor

Methods

∗ convertASCIIToHex

public java.lang.String convertASCIIToHex(java.lang.String ascii)

◦ Description

This method returns a String with hex representations of each character in the provided String

◦ Parameters

∗ ascii – The String to convert

◦ Returns – A String with hex representations

C.5.2 Class FileHandler

This class contains functionality for reading and writing all kinds of files to and from the device file system.

Declaration

public class FileHandler

extends java.lang.Object java.lang.Object

Constructor summary

FileHandler(String) Constructor.

Method summary

closeFile() This method closes and nullifies the input- and ouput streams, and the file connection
getBlockSize() This method fetches the size of the blocks to read and write
getFileList() This method returns a list of the files in the given file path on the device
getFileSize() This method returns the size of the this file
readFile() This method reads the next byte in the file and returns it
setFileSize(long) This method sets the size of the this file
writeFile(byte) This method writes the incoming byte to the file
writeFile(byte[], int) This method writes the incoming byte block to the file

237

Constructors

∗ FileHandler

public FileHandler(java.lang.String filePath)

◦ Description

Constructor.

◦ Parameters

∗ filePath – The path to the file to be handled

Methods

∗ closeFile

public void closeFile()

◦ Description

This method closes and nullifies the input- and ouput streams, and the file connection

∗ getBlockSize

public int getBlockSize()

◦ Description

This method fetches the size of the blocks to read and write

◦ Returns – The blocksize

∗ getFileList

public java.util.Enumeration getFileList()

◦ Description

This method returns a list of the files in the given file path on the device

◦ Returns – A Enumeration containing the names of the files in the root directory

∗ getFileSize

public long getFileSize()

◦ Description

This method returns the size of the this file

◦ Returns – The size as a long

∗ readFile

public synchronized byte[] readFile() throws java.io.IOException

◦ Description

This method reads the next byte in the file and returns it

◦ Returns – The next block of bytes

238

◦ Throws

∗ java.io.IOException – This exception is thrown when the reading has failed

∗ setFileSize

public void setFileSize(long fileSize)

◦ Description

This method sets the size of the this file

◦ Parameters

∗ fileSize – The size to set

∗ writeFile

public synchronized void writeFile(byte theByte) throws java.io.IOException

◦ Description

This method writes the incoming byte to the file

◦ Parameters

∗ theByte – The next byte to write

◦ Throws

∗ java.io.IOException – This exception is thrown when the writing has failed

∗ writeFile

public synchronized void writeFile(byte[] theBytes, int numberOfBytesRead) throws

java.io.IOException

◦ Description

This method writes the incoming byte block to the file

◦ Parameters

∗ theBytes – The next byte block to write

∗ numberOfBytesRead – The number of bytes in the theBytes[] array

◦ Throws

∗ java.io.IOException – This exception is thrown when the writing has failed

C.5.3 Class Log

This class contains functionality to create and maintain a log of events and exceptions. The Log contains
four differnet kinds of logs, an exception log, a connection log, a data package log and a debug log. They can
be used to log events from anywhere in the framework, and the logs can be retreived later to get information
about the execution of the MIDlet.

Declaration

public class Log

extends java.lang.Object java.lang.Object

239

Field summary

CONNECTION LOG

DATA PACKAGE LOG

DEBUG LOG

EXCEPTION LOG

Method summary

getInstance() This method returns the only existing instance of the Log class
getLog(int) This method returns the desired log in a displayable format.
logConnection(String) This method adds a Connection entry to the Connection log
logDataPackage(String) This method adds a data package entry to the data package log
logDebugInfo(String, String) This method adds a Debug entry to the Debug log
logException(String, Exception, boolean) This method adds an Exception entry to the

Exception log
setFramework(FrameworkFrontEnd) This method is called by the FrameworkFrontEnd to

reveal itself to the Log

Fields

∗ public static final int EXCEPTION LOG

∗ public static final int CONNECTION LOG

∗ public static final int DATA PACKAGE LOG

∗ public static final int DEBUG LOG

Methods

∗ getInstance

public static synchronized Log getInstance()

◦ Description

This method returns the only existing instance of the Log class

◦ Returns – The singleton instance of the Log class

∗ getLog

public java.lang.String getLog(int log)

◦ Description

This method returns the desired log in a displayable format. It must be called by activating a
soft button in the application. Due to multithreading and interuptions there can be some delay
in the creation of the log.

◦ Parameters

240

∗ log – The Log.FIELD representing the desired log

◦ Returns – The desired log as a String

∗ logConnection

public void logConnection(java.lang.String connectionStatus)

◦ Description

This method adds a Connection entry to the Connection log

◦ Parameters

∗ connectionStatus – A textual description of the connection status

∗ logDataPackage

public void logDataPackage(java.lang.String packageStatus)

◦ Description

This method adds a data package entry to the data package log

◦ Parameters

∗ packageStatus – A textual description of the data package status

∗ logDebugInfo

public void logDebugInfo(java.lang.String location, java.lang.String debugInfo)

◦ Description

This method adds a Debug entry to the Debug log

◦ Parameters

∗ location – The location (class and method) where the debuginfo was logged

∗ debugInfo – A textual description of the debug information

∗ logException

public void logException(java.lang.String location, java.lang.Exception exception, boolean

notify)

◦ Description

This method adds an Exception entry to the Exception log

◦ Parameters

∗ location – The location (class and method) where the Exception occured

∗ exception – The actual Exception

∗ notify – This boolean decides whether or not to notify the Framework about the Exception
that occured

∗ setFramework

public void setFramework(peer2me.framework.FrameworkFrontEnd framework)

241

◦ Description

This method is called by the FrameworkFrontEnd to reveal itself to the Log

◦ Parameters

∗ framework – The FrameworkFrontEnd refrence sent by the FrameworkFrontEnd itself

242

APPENDIX D

Peer2Me v2.0 Source code

The full source code of Peer2Me v2.0.

D.1 Package peer2me.framework

D.1.1 Interface Framework

1 package peer2me.framework;

2

3 import java.io .IOException;

4 import java. util .Enumeration;

5

6 /∗∗
7 ∗
8 ∗ This interface acts as a ”facade” for the entire Peer2Me framework as the

9 ∗ methods in this interface is the only methods the MIDlets running the

10 ∗ framework needs access to. To use the Peer2Me framework, the MIDlets should

11 ∗ run the FrameworkFrontEnd.getInstance() which returns a

12 ∗ reference of type Framework. All framework services is then available

13 ∗ through this reference .

14 ∗
15 ∗ @author Torbjørn Vatn & Steinar A. Hestnes

16 ∗/
17 public interface Framework{
18

19 /∗∗
20 ∗

243

21 ∗ This method initiates the framework, and is the first method that should

22 ∗ be run after getting a instance of the framework. It initiates the

23 ∗ fundamental services offered by the framework.

24 ∗
25 ∗ @param nodeName The name of the user of the MIDlet.

26 ∗ @param midletName The name of the MIDlet, eventually translated into a ServiceID

27 ∗ used to find other devices running the same MIDlet.

28 ∗ @param preferredNetwork Deciding which network implementation to use.

29 ∗
30 ∗ @throws ClassNotFoundException The input preferredNetwork is invalid

31 ∗ @throws IllegalAccessException The input preferredNetwork is invalid

32 ∗ @throws InstantiationException The input preferredNetwork is invalid

33 ∗ @throws IOException Error initiating framework

34 ∗ @throws Exception Error initiating framework

35 ∗/
36 public void initFramework(String nodeName, String midletName, String preferredNetwork) throws ClassNotFoundException,

37 IllegalAccessException, InstantiationException, IOException, Exception;

38

39

40 /∗∗
41 ∗
42 ∗ This method shuts down the framework and closes all the open network connections and streams.

43 ∗ It should be called before closing the MIDlet to clean up the network connections.

44 ∗
45 ∗/
46 public void shutdownFramework();

47

48

49 /∗∗
50 ∗
51 ∗ This method starts a search for devices running the same MIDlet.

52 ∗ When such a device is found, the notifyAboutFoundNode() method

53 ∗ specified by the FrameworkListener interface is called .

54 ∗
55 ∗ @throws IOException Thrown if the search crashes

56 ∗/
57 public void startNodeSearch() throws IOException;

58

59

60 /∗∗
61 ∗
62 ∗ This method connects multiple devices in a network.

63 ∗ When a connection is established, the notifyAboutParticipants()

64 ∗ method specified by the FrameworkListener interface is called .

65 ∗

244

66 ∗ @param addresses The addresses of the devices to connect to.

67 ∗/
68 public void connectToNodes(String[] addresses);

69

70

71 /∗∗
72 ∗
73 ∗ This method sends a text package over the network. When the package

74 ∗ terminates to the recipients , they are alerted by the

75 ∗ notifyAboutReceivedTextPackage() method specified by the

76 ∗ FrameworkListener interface.

77 ∗
78 ∗ @param recipients A list containing the addresses of the recipient nodes

79 ∗ @param textMessage The text message to be sent

80 ∗
81 ∗/
82 public void sendTextPackage(String[] recipients , String textMessage);

83

84

85 /∗∗
86 ∗
87 ∗ This method sends a file package over the network. When the package

88 ∗ terminates to the recipients , they are alerted by the

89 ∗ notifyAboutReceivedFilePackage() method specified by the

90 ∗ FrameworkListener interface.

91 ∗
92 ∗ @param recipients A list containing the addresses of the recipient nodes

93 ∗ @param filePath The path of the file to be sent

94 ∗
95 ∗/
96 public void sendFilePackage(String[] recipients , String filePath);

97

98

99 /∗∗
100 ∗
101 ∗ This method returns a list of the files in the given root directory on the device

102 ∗
103 ∗ @param root The path to the root directory

104 ∗ @return An enumeration containing the names of the files in the root directory

105 ∗/
106 public Enumeration getFileList(String root);

107

108

109

110 }

245

D.1.2 Interface FrameworkListener

1 package peer2me.framework;

2

3 import java. util .Hashtable;

4

5

6 /∗∗
7 ∗ This interface must be implemented by all Peer2Me MIDlets.

8 ∗ It ensures that the Framework can access a set of methods in the MIDlet in order

9 ∗ to notify the MIDlet about various events.

10 ∗
11 ∗ @author Torbjørn Vatn & Steinar A. Hestnes

12 ∗/
13 public interface FrameworkListener {
14

15 /∗∗
16 ∗
17 ∗ This method is called by the framework whenever an exception notice is

18 ∗ given by the log . This will be done in cases where exceptions occure

19 ∗ in threads and cannot be thrown in the usual way.

20 ∗
21 ∗ @param location The location where the Exception occured

22 ∗ @param exception The actual Exception

23 ∗/
24 public void notifyAboutException(String location, Exception exception);

25

26

27 /∗∗
28 ∗
29 ∗ This method is called by the framework when a node is found.

30 ∗ These nodes are not yet connected in a network.

31 ∗ To do this, use the Framework.connectToNodes() method.

32 ∗
33 ∗ @param nodeAddress The network address of the node

34 ∗ @param remoteNodeName The name of the found remote node

35 ∗/
36 public void notifyAboutFoundNode(String nodeAddress, String remoteNodeName);

37

38

39 /∗∗
40 ∗
41 ∗ This method is called from the framework whenever a text package is

42 ∗ received from a remote node.

43 ∗

246

44 ∗ @param senderName The name of the sender

45 ∗ @param textMessage The received text message

46 ∗/
47 public void notifyAboutReceivedTextPackage(String senderName, String textMessage);

48

49

50 /∗∗
51 ∗
52 ∗ This method is called from the framework whenever a file package is

53 ∗ received from a remote node.

54 ∗
55 ∗ @param senderName The name of the sender

56 ∗ @param filePath The path to the received file

57 ∗/
58 public void notifyAboutReceivedFilePackage(String senderName, String filePath);

59

60

61 /∗∗
62 ∗
63 ∗ This method is called from from the framework to notify the midlet about

64 ∗ the participants of the ad hoc network.

65 ∗
66 ∗ @param participants A hashtable that contains the names of the participants as unique keys and

67 ∗ the network addresses as values .

68 ∗/
69 public void notifyAboutParticipants(Hashtable participants);

70

71

72

73 }

247

D.1.3 Class FrameworkFrontEnd

1 package peer2me.framework;

2

3 import peer2me.network.Network;

4 import peer2me.util.FileHandler;

5 import peer2me.util.Log;

6 import peer2me.domain.FilePackage;

7 import peer2me.domain.Group;

8 import peer2me.domain.GroupSyncPackage;

9 import peer2me.domain.Node;

10 import peer2me.domain.TextPackage;

11

12 import java.io .IOException;

13 import java. util .Enumeration;

14 import java. util .Hashtable;

15

16

17 /∗∗
18 ∗
19 ∗ This is the main class of the Peer2Me framework. It manages

20 ∗ and connects the resources and functions of the framework.

21 ∗ It also handles all communication and interaction with the

22 ∗ MIDlets running the framework.

23 ∗
24 ∗ @author Torbjørn Vatn & Steinar A. Hestnes

25 ∗/
26 public class FrameworkFrontEnd implements Framework{
27

28 // The instance of the FrameworkFrontEnd returned by the getInstance() method, will be casted to Framework upon return

29 private static FrameworkFrontEnd singleton;

30 // The midlet that initiated the framework represented by a FrameworkListener instance

31 private FrameworkListener midlet;

32 // The Network instance of the preferred network

33 private Network currentNetwork;

34 // The group containing all connected nodes running the same application

35 private Group group;

36 // The local node

37 private Node localNode;

38 // A Hastable containing the addresses(key) and names(value) of the nodes found in the discovery process

39 private Hashtable foundNodes;

40

41 // A Log instance

42 private Log log = Log.getInstance();

43

248

44

45 /∗∗
46 ∗
47 ∗ This method creates an instance of FrameworkFrontEnd and returns it as

48 ∗ a reference of type Framework. This is the only method that can

49 ∗ be called directly from the MIDlet on the FrameworkFrontEnd.

50 ∗ The MIDlet is restricted to only use the methods specified in the

51 ∗ Framework interface.

52 ∗
53 ∗ @param midlet A reference to the MIDlet (The MIDlet must implement the FrameworkListener interface).

54 ∗ @return A reference to the Framework

55 ∗/
56 public static synchronized Framework getInstance(FrameworkListener midlet){
57 if (singleton == null){
58 singleton = new FrameworkFrontEnd();

59

60 // Creates a instance of the Log class and set self as framework

61 Log.getInstance().setFramework(singleton);

62

63 // Sets the midlet variable

64 singleton .midlet = midlet;

65 }
66

67 // The FrameworkFrontEnd instance are casted to Framework to avoid access to unwanted methods

68 Framework framework = singleton;

69 return framework;

70 }
71

72

73 /∗∗
74 ∗ Constructor. Made private to ensure singleton pattern.

75 ∗/
76 private FrameworkFrontEnd(){}
77

78

79

80 /∗∗
81 ∗
82 ∗ This method initiates the framework, and is the first method that should

83 ∗ be run after getting a instance of the framework. It initiates the

84 ∗ fundamental services offered by the framework.

85 ∗
86 ∗ @param nodeName The name of the user of the MIDlet.

87 ∗ @param midletName The name of the MIDlet, eventually translated into a ServiceID used to find other devices

88 ∗ running the same MIDlet.

249

89 ∗ @param preferredNetwork Deciding which network implementation to use.

90 ∗
91 ∗ @throws ClassNotFoundException The input preferredNetwork is invalid

92 ∗ @throws IllegalAccessException The input preferredNetwork is invalid

93 ∗ @throws InstantiationException The input preferredNetwork is invalid

94 ∗ @throws IOException Error initiating framework

95 ∗ @throws Exception Error initiating framework

96 ∗/
97 public void initFramework(String nodeName, String midletName, String preferredNetwork) throws ClassNotFoundException,

98 IllegalAccessException, InstantiationException, IOException, Exception{
99

100 // Creates a Network instance

101 currentNetwork = Network.getInstance(preferredNetwork);

102 // Sets a reference to this class to be used in the Network class

103 currentNetwork.setFrameworkFrontEnd(this);

104 // Sets the applicationId to be used by the Network class

105 currentNetwork.setApplicationId(midletName);

106 // Creates a group that will be filled with nodes running the same application

107 group = new Group();

108 // Adds a representation of this (the local) node to the group.

109 localNode = new Node(nodeName,currentNetwork.getNodeAddress(”localnode”));

110 group.addParticipant(localNode);

111 // Initiates the currentNetwork

112 currentNetwork.init ();

113 // Creates the foundNodes Hashtable

114 foundNodes = new Hashtable();

115 }
116

117

118 /∗∗
119 ∗
120 ∗ This method shuts down the framework and closes all the open network connections and streams.

121 ∗ It should be called from the MIDlet before closing, to clean up the network connections.

122 ∗
123 ∗/
124 public void shutdownFramework(){
125 // Shuts down and closes the Group

126 group.shutdownGroup();

127 // Shuts down the ConnectionListener

128 currentNetwork.getConnectionListener().shutdown();

129 }
130

131

132 /∗∗
133 ∗

250

134 ∗ This method returns the local representation of the group. It is called from

135 ∗ ConnectionListener.run() or Network.nodeFound() when a remote node is found

136 ∗ and should be added to the group.

137 ∗
138 ∗ @return The local representation of the group

139 ∗/
140 public Group getGroup(){
141 return group;

142 }
143

144 /∗∗
145 ∗
146 ∗ This method starts a search for devices running the same MIDlet.

147 ∗ When such a device is found, the notifyAboutFoundNode() method

148 ∗ in this class is called .

149 ∗
150 ∗ @throws IOException Thrown if the search crashes

151 ∗/
152 public void startNodeSearch() throws IOException{
153 currentNetwork.searchForNodes();

154 }
155

156

157 /∗∗
158 ∗
159 ∗ This method establishes a connection to the chosen nodes.

160 ∗ After updating the local group, it synchronizes the groups on

161 ∗ all other participating nodes.

162 ∗ The method should be called from the MIDlet.

163 ∗
164 ∗ @param addresses The addresses to the nodes to connect to.

165 ∗/
166 public void connectToNodes(String[] addresses){
167 // Creates Node objects based on the Vectors nodeNames and nodeAddresses

168 for(int i=0; i<addresses.length; i++){
169 getGroup().addParticipant(new Node((String)foundNodes.get(addresses[i]),addresses[i]));

170 }
171 // Synchronizes the groups on all connected nodes

172 synchronizeGroups();

173 }
174

175

176 /∗∗
177 ∗
178 ∗ This method is used to make the Framework syncronize the Groups on all the

251

179 ∗ connected nodes. The result of running this method is that the method

180 ∗ notifyAboutParticipants() is called on the MIDlet.

181 ∗ It is called from the methods connectToNodes() and

182 ∗ notifyAboutLostNode() in this class.

183 ∗
184 ∗/
185 private synchronized void synchronizeGroups(){
186

187 // Creates a string table with the recipient addresses

188 Hashtable participatingNodes = group.getParticipatingNodes();

189

190 String [] recipients = new String[0];

191 // Only do this if there is more than this node in the group

192 if (participatingNodes. size()>1){
193 recipients = new String[participatingNodes.size()−1];

194 // Need a list of nodes to run a groupsync

195 Node[] nodes = new Node[participatingNodes.size()];

196 // Adds the local Node to the nodes[]

197 nodes[0] = localNode;

198 // Removes the local Node from the participatingNodes[]

199 participatingNodes.remove(localNode.getAddress());

200

201 Enumeration addresses = participatingNodes.keys();

202 int counter = 0;

203

204 while(addresses.hasMoreElements()){
205 String address = (String)addresses.nextElement();

206 // Does not add the local node

207 recipients [counter] = address;

208 // Fetches the Node objects from participatingNodes

209 nodes[counter+1] = (Node)participatingNodes.get(address);

210 counter++;

211 }
212

213 // Sends a networkpackage to all participants to synchronize the group on all nodes

214 if (recipients .length!=0){
215 currentNetwork.sendDataPackage(new GroupSyncPackage(localNode,recipients,nodes),recipients);

216 }
217 // Adds the local Node to the group again

218 participatingNodes.put(localNode.getAddress(),localNode);

219 }
220

221 // Notifies the MIDlet about the participants of the group

222 notifyAboutParticipants();

223

252

224 // Logs the sending of the data package

225 String recipientNames = ””;

226 for(int i=0; i<recipients.length; i++){
227 if (group.getNode(recipients[i])!=null){
228 recipientNames +=”− ”+group.getNode(recipients[i]).getNodeName()+” (”+recipients[i]+”) \n”;

229 }
230 }
231

232 if (recipients .length>0)log.logDataPackage(”Sent a group sync package to:\n ”+recipientNames);

233 }
234

235

236 /∗∗
237 ∗
238 ∗ This method returns a reference to the local node.

239 ∗
240 ∗ @return An object representing the local node

241 ∗/
242 public Node getLocalNode(){
243 return localNode;

244 }
245

246 /∗∗
247 ∗
248 ∗ This method is used by the MIDlet to send a text package over the network.

249 ∗ When the package terminates to the recipients, the

250 ∗ notifyAboutReceivedTextPackage() method in this class is run.

251 ∗
252 ∗ @param recipients A list containing the addresses of the recipient nodes

253 ∗ @param textMessage The text to be sent

254 ∗
255 ∗/
256 public void sendTextPackage(String[] recipients , String textMessage){
257

258 // Logs the sending of the text package

259 String recipientNames = ””;

260 for(int i=0; i<recipients.length; i++){
261 recipientNames +=”− ”+group.getNode(recipients[i]).getNodeName()+” (”+recipients[i]+”) \n”;

262 }
263 log .logDataPackage(”Sending textpackage to:\n”+recipientNames);

264

265 TextPackage textPackage = new TextPackage(localNode,recipients,textMessage);

266 // Passes the task of sending the data package over to the network

267 if (recipients .length!=0)currentNetwork.sendDataPackage(textPackage, recipients);

268 }

253

269

270

271 /∗∗
272 ∗
273 ∗ This method is used by the MIDlet to send a file package over the network.

274 ∗ When the package terminates to the recipients, the

275 ∗ notifyAboutReceivedFilePackage() method in this class is run.

276 ∗
277 ∗ @param recipients A list containing the addresses of the recipient nodes

278 ∗ @param filePath The path of the file to send

279 ∗
280 ∗/
281 public void sendFilePackage(String[] recipients , String filePath){
282 FilePackage filePackage = new FilePackage(localNode,recipients,filePath);

283 // Passes the task of sending the data package over to the network

284 if (recipients .length!=0)currentNetwork.sendDataPackage(filePackage, recipients);

285

286 // Logs the sending of the file package

287 String recipientNames = ””;

288 for(int i=0; i<recipients.length; i++){
289 recipientNames += group.getNode(recipients[i]).getNodeName()+” (”+recipients[i]+”) \n”;

290 }
291 log .logDataPackage(”Sending file to: ”+recipientNames);

292 }
293

294

295 /∗∗
296 ∗
297 ∗ This method returns a list of the files in the given root directory on the device

298 ∗
299 ∗ @param root The path to the root directory

300 ∗ @return A Enumeration containing the names of the files in the root directory

301 ∗/
302 public Enumeration getFileList(String root){
303 // Creates a FileHandler representing the root

304 FileHandler fileHandler = new FileHandler(root);

305 // Returns the file list of the root

306 Enumeration list = fileHandler. getFileList ();

307 return list ;

308 }
309

310

311 /∗∗∗/
312 // The notify methods used to notify the midlet about various events

313 /∗∗∗/

254

314

315 /∗∗
316 ∗
317 ∗ This method is called from the nodeFound() method in the Network class whenever a node is found

318 ∗
319 ∗ @param address The network address of the node

320 ∗ @param remoteNodeName The name of the found remote node

321 ∗/
322 public void notifyAboutFoundNode(String address, String remoteNodeName){
323

324 // Here we add a number after equal node names to make them unique

325 // We do this so we can set the node names as keys and the node addresses as values

326 // The reason for doing this is that the node names will be displayed in the midlet

327 // and after selecting a node name, the address should be sent to the framework.

328 if (foundNodes.contains(remoteNodeName) || remoteNodeName.equals(localNode.getNodeName())){
329 for(int i=−1;i<foundNodes.size();i++){
330 if (! foundNodes.contains(remoteNodeName+” ”+(i+2))){
331 remoteNodeName = remoteNodeName+” ”+(i+2);

332 i = foundNodes.size();

333 }
334 }
335 }
336

337 // Stores the address and the name of the node in the foundnodes table

338 foundNodes.put(address, remoteNodeName);

339 midlet.notifyAboutFoundNode(address,remoteNodeName);

340 }
341

342

343 /∗∗
344 ∗ This method removes a lost node from the group.

345 ∗ It is called from Network.sendDataPackage() if a node is unreachable.

346 ∗ After removing the node, the groups on all other nodes become

347 ∗ synchronized.

348 ∗
349 ∗ @param address The address to the lost node

350 ∗/
351 public synchronized void notifyAboutLostNode(String address){
352 log .logDataPackage(getGroup().getNode(address).getNodeName()+” (”+address+”) not reachable”);

353 log .logConnection(”Disconnected ”+getGroup().getNode(address).getNodeName()+” (”+address+”)”);

354 getGroup().removeParticipant(address);

355 // Synchronizes the groups on the connected devices

356 synchronizeGroups();

357 }
358

255

359 /∗∗
360 ∗
361 ∗ This method passes on the Exception notice from the Log to the MIDlet.

362 ∗ This will be done in cases where exceptions occure in threads and

363 ∗ cannot be thrown in the usual way.

364 ∗
365 ∗ @param location The location (class and method) where the Exception occured

366 ∗ @param exception The actual Exception

367 ∗/
368 public void notifyAboutException(String location, Exception exception){
369 midlet.notifyAboutException(location, exception);

370 }
371

372 /∗∗
373 ∗
374 ∗ This method is called from NodeConnection.processIncomingData()

375 ∗ whenever a groupSyncPackage is received from a remote node.

376 ∗ The method processes the package, logs the event, and updates the group.

377 ∗
378 ∗ @param groupSyncPackage The received groupSyncPackage.

379 ∗/
380 public void notifyAboutReceivedGroupSyncPackage(GroupSyncPackage groupSyncPackage){
381

382 // Resets the group before synch

383 group.removeAllParticipants();

384

385 // Uses the content of the package to update the group on this device

386 Node[] participants = groupSyncPackage.getParticipants();

387

388 for(int i=0; i<participants.length; i++){
389 group.addParticipant(participants[i]);

390 }
391 notifyAboutParticipants();

392

393 String sender = groupSyncPackage.getSender().getAddress();

394 log .logDataPackage(”Received group sync package from ”+sender);

395 }
396

397

398 /∗∗
399 ∗
400 ∗ This method is called from NodeConnection.processIncomingData()

401 ∗ whenever a text package is received from a remote node.

402 ∗ It processes the package, logs the event, and notifies the midlet.

403 ∗

256

404 ∗ @param textPackage The received text package.

405 ∗/
406 public void notifyAboutReceivedTextPackage(TextPackage textPackage){
407 log .logDataPackage(”Received text package from ”+textPackage.getSender().getNodeName()+”.”);

408 midlet.notifyAboutReceivedTextPackage(textPackage.getSender().getNodeName(), textPackage.getContent());

409 }
410

411 /∗∗
412 ∗
413 ∗ This method is called from NodeConnection.processIncomingData()

414 ∗ whenever a file package is received from a remote node.

415 ∗ It processes the package, logs the event, and notifies the midlet.

416 ∗
417 ∗ @param filePackage The received file package.

418 ∗/
419 public void notifyAboutReceivedFilePackage(FilePackage filePackage){
420 log .logDataPackage(”Received file (”+filePackage.getFilePath()+”) from ”+filePackage.getSender().getNodeName());

421 midlet.notifyAboutReceivedFilePackage(filePackage.getSender().getNodeName(), filePackage.getFilePath());

422 }
423

424 /∗∗
425 ∗
426 ∗ This method notifies the midlet about the current group by running the

427 ∗ notifyAboutParticipants method. It is e.g. called from

428 ∗ FrameworkFrontEnd.synchronizeGroups().

429 ∗
430 ∗/
431 private void notifyAboutParticipants(){
432 // Fetches all the participating Nodes

433 midlet.notifyAboutParticipants(getGroup().getParticipatingNodeNames(this));

434 }
435

436 }

257

D.2 Package peer2me.domain

D.2.1 Class DataPackage

1 package peer2me.domain;

2

3 import peer2me.util.Log;

4

5

6 /∗∗
7 ∗
8 ∗ This class is the super class of the different type of packages that can be

9 ∗ sent between nodes in the network. It contains the attributes that are common

10 ∗ for all types of data packages. These are the address of the sender and the

11 ∗ address(es) to the recipiant (s) of the DataPackage. Currently, there exists

12 ∗ three types of data packages.

13 ∗
14 ∗ @author Torbjørn Vatn & Steinar A. Hestnes

15 ∗/
16 public abstract class DataPackage {
17

18 // A Log instance

19 public Log log = Log.getInstance();

20

21 // The type of package

22 private int type;

23 // The Node that sendt the data package

24 private Node sender;

25 // The addresses of the nodes that are the recipients of the data package

26 private String [] recipients ;

27

28 /∗ The constants representing the different types of data packages used

29 in node connection to determine the type of package recived ∗/
30 public final static int GROUP SYNC PACKAGE = 0;

31 public final static int TEXT PACKAGE = 1;

32 public final static int FILE PACKAGE = 2;

33

34 /∗∗
35 ∗
36 ∗ Constructor

37 ∗
38 ∗ @param type The type specifying the type of data package

39 ∗ @param sender A node object representing the sender node

40 ∗ @param recipients The addresses to the recipients of the data package

41 ∗

258

42 ∗/
43 public DataPackage(int type, Node sender, String[] recipients){
44 this .type = type;

45 this .sender = sender;

46 this . recipients = recipients ;

47 }
48

49 /∗∗
50 ∗
51 ∗ Constructor used to create an empty DataPackage object to fill with the

52 ∗ parseBytes() method

53 ∗
54 ∗ @param type The type of the DataPackage

55 ∗/
56 public DataPackage(int type){
57 this .type = type;

58 }
59

60

61 /∗∗
62 ∗
63 ∗ This method returns an int indicating the type of data package

64 ∗
65 ∗ @return type An int indicating the type of data package

66 ∗/
67 public int getType(){
68 return type;

69 }
70

71

72 /∗∗
73 ∗
74 ∗ This method returns the sender of this data package

75 ∗
76 ∗ @return sender The node that sends this package

77 ∗/
78 public Node getSender(){
79 return sender;

80 }
81

82

83 /∗∗
84 ∗
85 ∗ This method sets the sender of this data package

86 ∗

259

87 ∗ @param sender The node that sends this package

88 ∗/
89 public void setSender(Node sender){
90 this .sender = sender;

91 }
92

93

94

95 /∗∗
96 ∗
97 ∗ This method returns all the recipients of this data package

98 ∗
99 ∗ @return recipients The addresses to the recipients of this package

100 ∗/
101 public String [] getRecipients(){
102 return recipients ;

103 }
104

105

106 /∗∗
107 ∗
108 ∗ This method sets the nodes to receive this package

109 ∗
110 ∗ @param recipients The addresses to the nodes that shall receive this package

111 ∗/
112 public void setRecipients(String [] recipients){
113 this . recipients = recipients ;

114 }
115

116

117 /∗∗∗/
118 // The abstract methods inherited and overridden by the sub data package classes

119 /∗∗∗/
120

121 /∗∗
122 ∗
123 ∗ This method transforms this data package into a byte array (byte []) that

124 ∗ is possible to send over a network stream

125 ∗
126 ∗ @return The byte[] representation of the data package

127 ∗/
128 public abstract byte [] toSendableFormat();

129

130 /∗∗
131 ∗

260

132 ∗ This method parses the content of the byte array (byte []) back into a DataPackage object

133 ∗
134 ∗ @param data The byte[] containing the data representing the DataPackage object

135 ∗
136 ∗/
137 public abstract void parseBytes(byte[] data);

138

139 }

261

D.2.2 Class TextPackage

1 package peer2me.domain;

2

3 import java. util .Vector;

4

5 /∗∗
6 ∗
7 ∗ This class represents a data package containing text that should be

8 ∗ sent over the network.

9 ∗
10 ∗ @author Torbjørn Vatn & Steinar A. Hestnes

11 ∗/
12 public class TextPackage extends DataPackage {
13

14 // The String content of this TextPackage

15 private String content;

16

17

18 /∗∗
19 ∗
20 ∗ Constructor

21 ∗
22 ∗ @param sender A node object representing the sender node

23 ∗ @param recipients The addresses to the recipients of the text package

24 ∗ @param content The String to be sent

25 ∗/
26 public TextPackage(Node sender, String[] recipients , String content){
27 super(TEXT PACKAGE, sender, recipients);

28 this .content = content;

29 }
30

31 /∗∗
32 ∗
33 ∗ Constructor used to create an empty TextPackage object to fill with the

34 ∗ parseBytes() method

35 ∗/
36 public TextPackage(){
37 super(TEXT PACKAGE);

38 }
39

40 /∗∗
41 ∗
42 ∗ This method returns the text content of this TextPackage

43 ∗

262

44 ∗ @return The content

45 ∗/
46 public String getContent(){
47 return content;

48 }
49

50 /∗∗
51 ∗
52 ∗ This method transforms this text package into a byte array (byte []) that

53 ∗ is possible to send over a network stream

54 ∗
55 ∗ @return The byte[] representation of the text package

56 ∗
57 ∗/
58 public byte [] toSendableFormat() {
59

60 // The String to send

61 String sendableFormat = ””;

62

63 // Setting the sender in the sendableFormat String

64 // The format of the String is :

65 // −> from:”address−of−the−sender”:”name−of−the−sender”

66 //

67 sendableFormat += ”from:”+getSender().getNodeName()+”:”+getSender().getAddress()+”\n”;

68

69 // Setting the recipients in the sendableFormat String

70 // The format of the String is :

71 // −> to:”address−of−the−recipient”

72 //

73 String [] recipients = getRecipients();

74 for(int i=0; i<recipients.length; i++){
75 sendableFormat += ”to:”+recipients[i]+”\n”;

76 }
77

78 // Setting the content in the sendableFormat String

79 // The format of the String is :

80 // −> content:”content”

81 //

82 sendableFormat += ”content:”+content+”\n”;

83

84 return sendableFormat.getBytes();

85 }
86

87

88 /∗∗

263

89 ∗
90 ∗ This method parses the content of the byte array (byte []) back into a TextPackage object

91 ∗
92 ∗ @param data The byte[] containing the data representing the TextPackage object

93 ∗/
94 public void parseBytes(byte[] data){
95 // Counter that keeps track of how many bytes are converted

96 int processed = 0;

97 // The node addresses found in the ”to” section of the String

98 Vector recipients = new Vector();

99 char newLine = ’\n’;

100 // The loop processing the bytes

101 while(processed < data.length){
102 // The StringBuffer temporary holding the content of the byte []

103 StringBuffer buffer = new StringBuffer();

104 // Fetches the content of the byte [], stops for every new line (marked with a ”\n”)

105 while(data[processed] != newLine){
106 buffer .append((char)data[processed]);

107 processed++;

108 }
109

110 // Retrives the sender, marked by ”from”

111 if (buffer .toString (). startsWith(”from”)){
112 int fromStart = buffer.toString (). indexOf(”:”)+1;

113 try{
114 Node from = Node.restoreNode(buffer.toString().substring(fromStart));

115 setSender(from);

116 }catch(Exception e){
117 log .logException(”TextPackage.parseBytes()”,e,false);

118 }
119 }else

120

121 if (buffer .toString (). startsWith(”to”)){
122 int toStart = buffer.toString (). indexOf(”:”)+1;

123 try{
124 recipients .addElement(buffer.toString().substring(toStart));

125 }catch(Exception e){
126 log .logException(”TextPackage.parseBytes()”,e,false);

127 }
128 }else

129 if (buffer .toString (). startsWith(”content”)){
130 int contentStart = buffer.toString (). indexOf(”:”)+1;

131 content = buffer.toString (). substring(contentStart);

132 }
133 // Adds 1 to the counter that keeps track of the bytes processed,

264

134 // this is added due to the \n
135 processed++;

136

137 // Sets the recipients in the super class DataPackage

138 String [] recipientAddreses = new String[recipients . size ()];

139 recipients .copyInto(recipientAddreses);

140 setRecipients(recipientAddreses);

141

142 }
143 }
144

145 }

265

D.2.3 Class FilePackage

1 package peer2me.domain;

2

3 import java. util .Vector;

4 import peer2me.util.FileHandler;

5

6 /∗∗
7 ∗ This class represents a data package containing metadata about a file of some

8 ∗ sort that should be sent over the network. The package contains the file path

9 ∗ and length of the file to transfer , so that the receiver can handle the incoming

10 ∗ stream of data and transform it back into a copy of the file .

11 ∗
12 ∗ @author Torbjørn Vatn & Steinar A. Hestnes

13 ∗/
14 public class FilePackage extends DataPackage {
15

16 // The file path of the file to transfer

17 private String filePath ;

18

19 // The size of the file

20 private long fileSize ;

21

22

23 /∗∗
24 ∗
25 ∗ Constructor

26 ∗
27 ∗ @param sender A node object representing the sender node

28 ∗ @param recipients The addresses to the recipients of the file package

29 ∗ @param filePath The path of the file to be sent

30 ∗/
31 public FilePackage(Node sender, String[] recipients , String filePath){
32 super(FILE PACKAGE,sender,recipients);

33 this . filePath = filePath;

34 this . fileSize = new FileHandler(filePath).getFileSize ();

35 }
36

37 /∗∗
38 ∗
39 ∗ Constructor used to create an empty FilePackage object to fill with the

40 ∗ parseBytes() method

41 ∗
42 ∗/
43 public FilePackage(){

266

44 super(FILE PACKAGE);

45 }
46

47 /∗∗
48 ∗
49 ∗ This method returns the file path of this FilePackage

50 ∗
51 ∗ @return The file path

52 ∗/
53 public String getFilePath(){
54 return filePath ;

55 }
56

57 /∗∗
58 ∗
59 ∗ This method returns the file size of this FilePackage

60 ∗
61 ∗ @return The file size

62 ∗/
63 public long getFileSize (){
64 return fileSize ;

65 }
66

67

68

69 /∗∗
70 ∗
71 ∗ This method transforms this file package into a byte array (byte []) that

72 ∗ is possible to send over a network stream

73 ∗
74 ∗ @return The byte[] representation of the file package

75 ∗
76 ∗/
77 public byte [] toSendableFormat() {
78

79 // The String to send

80 String sendableFormat = ””;

81

82 // Seting the sender in the sendableFormat String

83 // The format of the String is :

84 // −> from:”address−of−the−sender”:”name−of−the−sender”

85 //

86 sendableFormat += ”from:”+getSender().getNodeName()+”:”+getSender().getAddress()+”\n”;

87

88 // Setting the recipients in the sendableFormat String

267

89 // The format of the String is :

90 // −> to:”address−of−the−recipient”

91 //

92 String [] recipients = getRecipients();

93 for(int i=0; i<recipients.length; i++){
94 sendableFormat += ”to:”+recipients[i]+”\n”;

95 }
96

97 // Setting the filePath in the sendableFormat String

98 // The format of the String is :

99 // −> filePath:”filePath”

100 //

101 sendableFormat += ”filePath:”+filePath+”\n”;

102

103 // Setting the fileSize in the sendableFormat String

104 // The format of the String is :

105 // −> fileSize :” fileSize ”

106 //

107 sendableFormat += ”fileSize:”+fileSize+”\n”;

108

109 return sendableFormat.getBytes();

110 }
111

112 /∗∗
113 ∗
114 ∗ This method parses the content of the byte array (byte []) back into a FilePackage object

115 ∗
116 ∗ @param data The byte[] containing the data representing the FilePackage object

117 ∗/
118 public void parseBytes(byte[] data){
119 // Counter that keeps track of how many bytes are converted

120 int processed = 0;

121 // The node addresses found in the ”to” section of the String

122 Vector recipients = new Vector();

123 char newLine = ’\n’;

124 // The loop processing the bytes

125 while(processed < data.length){
126 // The StringBuffer temporary holding the content of the byte []

127 StringBuffer buffer = new StringBuffer();

128 // Fetches the content of the byte [], stops for every new line (marked with a ”\n”)

129 while(data[processed] != newLine){
130 buffer .append((char)data[processed]);

131 processed++;

132 }
133

268

134 // Retrives the sender, marked by ”from”

135 if (buffer .toString (). startsWith(”from”)){
136 int fromStart = buffer.toString (). indexOf(”:”)+1;

137 try{
138 Node from = Node.restoreNode(buffer.toString().substring(fromStart));

139 setSender(from);

140 }catch(Exception e){
141 log .logException(”FilePackage.parseBytes()”,e, false);

142 }
143 }else

144

145 if (buffer .toString (). startsWith(”to”)){
146 int toStart = buffer.toString (). indexOf(”:”)+1;

147 try{
148 recipients .addElement(buffer.toString().substring(toStart));

149 }catch(Exception e){
150 log .logException(”FilePackage.parseBytes()”,e, false);

151 }
152 }else

153

154 if (buffer .toString (). startsWith(”filePath”)){
155 int contentStart = buffer.toString (). indexOf(”:”)+1;

156 filePath = buffer.toString (). substring(contentStart);

157 }else

158

159 if (buffer .toString (). startsWith(”fileSize ”)){
160 int contentStart = buffer.toString (). indexOf(”:”)+1;

161 fileSize = Long.parseLong(buffer.toString().substring(contentStart));

162 }
163 // Adds 1 to the counter that keeps track of the bytes processed,

164 // this is added due to the \n
165 processed++;

166

167 // Sets the recipients in the super class DataPackage

168 String [] recipientAddreses = new String[recipients . size ()];

169 recipients .copyInto(recipientAddreses);

170 setRecipients(recipientAddreses);

171

172 }
173 }
174 }

269

D.2.4 Class GroupSyncPackage

1 package peer2me.domain;

2

3 import java. util .Vector;

4

5 /∗∗
6 ∗
7 ∗ A GroupSyncPackage is a package used internally in the

8 ∗ framework to synchronize the groups containing the participants . The participant performing

9 ∗ the groupsync uses its own group as content of the package. All the receivers synchronizes

10 ∗ their groups based on the information found in the GroupSyncPackage.

11 ∗
12 ∗ @author Torbjørn Vatn & Steinar A. Hestnes

13 ∗/
14 public class GroupSyncPackage extends DataPackage {
15

16 // The participating nodes

17 private Node[] participatingNodes;

18

19

20 /∗∗
21 ∗
22 ∗ Constructor

23 ∗
24 ∗ @param sender A node object representing the sender node

25 ∗ @param recipients The addresses to the recipients of the groupsync package

26 ∗ @param participatingNodes A hashtable with node addresses as keys and names as values

27 ∗
28 ∗/
29 public GroupSyncPackage(Node sender, String[] recipients, Node[] participatingNodes){
30 super(GROUP SYNC PACKAGE, sender, recipients);

31 this .participatingNodes = participatingNodes;

32 }
33

34

35 /∗∗
36 ∗
37 ∗ Constructor used to create an empty GroupSyncPackage object to fill

38 ∗ with the parseBytes() method

39 ∗/
40 public GroupSyncPackage(){
41 super(GROUP SYNC PACKAGE);

42 }
43

270

44

45 /∗∗
46 ∗
47 ∗ This method returns a list of the nodes that are participating in the network (group)

48 ∗
49 ∗ @return A list of participating nodes

50 ∗/
51 public Node[] getParticipants(){
52 return participatingNodes;

53 }
54

55 /∗∗
56 ∗
57 ∗ This method transforms this groupsync package into a byte array (byte[])

58 ∗ that is possible to send over a network stream

59 ∗
60 ∗ @return The byte[] representation of the groupsync package

61 ∗
62 ∗/
63 public byte [] toSendableFormat() {
64

65 // The String to send

66 String sendableFormat = ””;

67

68 // Setting the sender in the sendableFormat String

69 // The format of the String is :

70 // −> from:”address−of−the−sender”:”name−of−the−sender”

71 //

72 Node sender = getSender();

73 sendableFormat += ”from:”+sender.getNodeName()+”:”+sender.getAddress()+”\n”;

74

75 // Setting the recipients in the sendableFormat String

76 // The format of the String is :

77 // −> to:”address−of−the−recipient”

78 //

79 String [] recipients = getRecipients();

80 for(int i=0; i<recipients.length; i++){
81 sendableFormat += ”to:”+recipients[i]+”\n”;

82 }
83

84 // Setting the content in the sendableFormat String

85 // The format of the String is :

86 // −> participant:”name−of−a−participant”:”address−of−a−participant”

87 //

88 for(int i=0; i<participatingNodes.length; i++){

271

89 sendableFormat += ”participant:”+participatingNodes[i].getNodeName()+”:”+participatingNodes[i].getAddress()+”\n”;

90 }
91

92 return sendableFormat.getBytes();

93 }
94

95 /∗∗
96 ∗
97 ∗ This method parses the content of the byte array (byte []) back into a

98 ∗ GroupSyncPackage object

99 ∗
100 ∗ @param data The byte[] containing the data representing the GroupSyncPackage object

101 ∗/
102 public void parseBytes(byte[] data) {
103 // Counter that keeps track of how many bytes are converted

104 int processed = 0;

105 // The node addresses used in the ”to” section of the package

106 Vector recipients = new Vector();

107 // The node addresses used in the ”participant” section of the package

108 Vector participants = new Vector();

109

110 char newLine = ’\n’;

111 // The loop processing the bytes

112 while(processed < data.length){
113 // The StringBuffer temporary holding the content of the byte []

114 StringBuffer buffer = new StringBuffer();

115 // Fetches the content of the byte [], stops for every new line (marked with a ”\n”)

116 while(data[processed] != newLine){
117 buffer .append((char)data[processed]);

118 processed++;

119 }
120

121 // Adds 1 to the counter that keeps track of the bytes processed,

122 // this is added due to the \n (new line)

123 processed++;

124

125 // Runs the toString() on the buffer

126 String line = buffer.toString ();

127

128 // Retrives the sender, marked by ”from”

129 if (line .startsWith(”from”)){
130 int fromStart = line.indexOf(”:”)+1;

131 try{
132 Node from = Node.restoreNode(line.substring(fromStart));

133 setSender(from);

272

134 }catch(Exception e){
135 log .logException(”NetworkPackage.parseBytes()1”,e,false);

136 }
137 }else

138

139 // Retrives the recipients , marked by ”to”

140 if (line .startsWith(”to”)){
141 int toStart = line.indexOf(”:”)+1;

142 try{
143 recipients .addElement(line.substring(toStart));

144 }catch(Exception e){
145 log .logException(”NetworkPackage.parseBytes()2”,e,false);

146 }
147 // Sets the recipients in the super class DataPackage

148 String [] recipientAddresses = new String[recipients . size ()];

149 recipients .copyInto(recipientAddresses);

150 setRecipients(recipientAddresses);

151 }else

152

153 // Retrives the participants , marked by ”participant” on each line

154 if (line .startsWith(”participant”)){
155 int participantStart = line.indexOf(”:”)+1;

156 try{
157 Node participant = Node.restoreNode(line.substring(participantStart));

158 participants .addElement(participant);

159 }catch(Exception e){
160 log .logException(”NetworkPackage.parseBytes()3”,e,false);

161 }
162 }
163 }
164 // End of package (while−loop). Adds the found participants to a list that can be read from the package object

165 participatingNodes = new Node[participants.size ()];

166 participants .copyInto(participatingNodes);

167 }
168 }

273

D.2.5 Class Group

1 package peer2me.domain;

2

3 import java. util .Hashtable;

4 import java. util .Enumeration;

5 import peer2me.framework.FrameworkFrontEnd;

6 import peer2me.network.NodeConnection;

7

8

9 /∗∗
10 ∗ This class represents a group of nodes running the same service (MIDlet).

11 ∗ All connected nodes in the ad hoc network are participants in the group.

12 ∗ Participants can be added and removed, and a list of all the

13 ∗ participants can be retreived .

14 ∗
15 ∗ @author Torbjørn Vatn & Steinar A. Hestnes

16 ∗/
17

18 public class Group {
19

20 // A list containing participating nodes

21 private Hashtable participatingNodes;

22

23

24 /∗∗
25 ∗
26 ∗ Constructor.

27 ∗
28 ∗ Creates a new Group.

29 ∗ A group is created in FrameworkFrontEnd.initFramework().

30 ∗/
31 public Group(){
32 participatingNodes = new Hashtable();

33 }
34

35 /∗∗
36 ∗
37 ∗ This method closes the NodeConnection of all the participating nodes, and

38 ∗ removes all nodes from the group.

39 ∗ It is called from the MIDlet via FrameworkFrontEnd.shutdownFramework()

40 ∗ when all network connections should be closed.

41 ∗
42 ∗/
43 public void shutdownGroup(){

274

44 Enumeration nodes = participatingNodes.elements();

45 while(nodes.hasMoreElements()){
46 Node node = (Node)nodes.nextElement();

47 // Closes the connection

48 NodeConnection connection = node.getNodeConnection();

49 if (connection != null)connection.closeConnection();

50 // Removes the node from the Group

51 participatingNodes.remove(node.getAddress());

52 }
53 }
54

55

56 /∗∗
57 ∗
58 ∗ This method adds a node to the group as a participant.

59 ∗
60 ∗ @param node The node to add as a participant.

61 ∗/
62 public void addParticipant(Node node){
63 // Adds the node only if it is not added already.

64

65 // This test is necessary during groupsync

66 if (!participatingNodes.containsKey(node.getAddress())){
67 participatingNodes.put(node.getAddress(),node);

68 }else{
69 // If the node already exists in the participant list , this is the node that

70 // initially discovered this node and was saved only with address and connection

71 // Name is still missing and we have to add it

72 if (node.getNodeName() != null){
73 ((Node)participatingNodes.get(node.getAddress())).setNodeName(node.getNodeName());

74 }
75

76 if (node.getNodeConnection() != null){
77 if (node.getNodeConnection().getConnection() != null){
78 // Important to start the connection!

79 ((Node)participatingNodes.get(node.getAddress())).startNodeConnection();

80 ((Node)participatingNodes.get(node.getAddress())).getNodeConnection().setConnection(

81 node.getNodeConnection().getConnection());

82 }
83 }
84 }
85 }
86

87

88 /∗∗

275

89 ∗
90 ∗ This method removes a participating node.

91 ∗
92 ∗ @param address The address of the node to remove from this group

93 ∗/
94 public void removeParticipant(String address){
95 participatingNodes.remove(address);

96 }
97

98

99 /∗∗
100 ∗ This method removes all participating nodes.

101 ∗ It is used to clear the group before it is updated by a

102 ∗ groupSyncPackage received from a remote node.

103 ∗
104 ∗/
105 public void removeAllParticipants(){
106 participatingNodes.clear ();

107 }
108

109

110 /∗∗
111 ∗
112 ∗ This method returns a list containing the nodes participating in this group.

113 ∗ The address is the key to find the Node.

114 ∗
115 ∗ @return A list containing the nodes participating in this group. The address is

116 ∗ the key and the node name is the value

117 ∗/
118 public Hashtable getParticipatingNodes(){
119 return participatingNodes;

120 }
121

122 /∗∗
123 ∗
124 ∗ This method returns a list containg the names (as keys) of the nodes participating in this group.

125 ∗ The addresses are stored as values .

126 ∗ It is called from FrameworkFrontEnd.notifyAboutParticipants().

127 ∗
128 ∗ @return A list containing the nodes participating in this group. The node name is

129 ∗ the key and the address is the value

130 ∗/
131 public Hashtable getParticipatingNodeNames(FrameworkFrontEnd frameworkFrontEnd){
132

133 // An enum containing the node addresses

276

134 Enumeration addresses = participatingNodes.keys();

135

136 // Makes a hashtable with names as keys and addresses as values

137 Hashtable names = new Hashtable();

138

139 while(addresses.hasMoreElements()){
140 String address = (String)addresses.nextElement();

141 // The local node should not be added because a user should not send datapackages to him/her−self

142 if (!address.equals(frameworkFrontEnd.getLocalNode().getAddress())){
143 Node node = (Node)participatingNodes.get(address);

144 String name = node.getNodeName();

145 names.put(name,address);

146 }
147 }
148 return names;

149 }
150

151

152 /∗∗
153 ∗
154 ∗ This method returns a node with the address specified as input

155 ∗
156 ∗ @param address The address of the node to get

157 ∗ @return A node with the address specified as input

158 ∗/
159 public Node getNode(String address){
160 Object node = participatingNodes.get(address);

161 if (node != null) return (Node)participatingNodes.get(address);

162 else return null ;

163 }
164

165

166 }

277

D.2.6 Class Node

1 package peer2me.domain;

2

3 import peer2me.network.NodeConnection;

4 import javax.microedition. io .StreamConnection;

5

6

7 /∗∗
8 ∗ This class represents a node in the network.

9 ∗ It contains information like the name of the node and its network address.

10 ∗ A node also owns a nodeConnection object listening for− and processing

11 ∗ incoming and outgoing data packages.

12 ∗
13 ∗ @author Torbjørn Vatn & Steinar A. Hestnes

14 ∗/
15 public class Node {
16

17 // Object variables relevant for a node

18 private String nodeName;

19 private String address;

20 // The connection to the remote node

21 private StreamConnection connection;

22 // The NodeConnection holding the connection to the remote node

23 private NodeConnection nodeConnection;

24

25

26 /∗∗
27 ∗
28 ∗ Constructor. Creates a new Node.

29 ∗ This constructor is used when a node is created to represent the LOCAL

30 ∗ device. In this case, nodeName and address are known.

31 ∗ The constructor is called from FrameworkFrontEnd.initFramework().

32 ∗
33 ∗ @param nodeName The name of the node

34 ∗ @param address The node network address

35 ∗/
36 public Node(String nodeName, String address){
37 this .nodeName = nodeName;

38 this .address = address;

39 }
40

41

42 /∗∗
43 ∗

278

44 ∗ Constructor. Creates a new Node.

45 ∗ This constructor is used when a node is created to represent a remote

46 ∗ device on the node which INITIATED the search.

47 ∗ In this case, name and address is known. In addition, a

48 ∗ StreamConnection object containing a connection to this remote device

49 ∗ exists .

50 ∗ The constructor is called from the nodeFound() method in the Network subclass.

51 ∗
52 ∗ @param nodeName The name of the node

53 ∗ @param address The node network address

54 ∗ @param connection The connection to this remote node

55 ∗
56 ∗/
57 public Node(String nodeName, String address, StreamConnection connection){
58 this .nodeName = nodeName;

59 this .address = address;

60 this .connection = connection;

61 // Starts the connection thread on the remote node

62 startNodeConnection();

63 }
64

65

66 /∗∗
67 ∗
68 ∗ Constructor. Creates a new Node.

69 ∗ This constructor is used when a node is created to represent a remote

70 ∗ device on the node which was DISCOVERED during a search.

71 ∗ In this case, only the address is known. In addition, a

72 ∗ StreamConnection object containing a connection to this remote device

73 ∗ exists .

74 ∗ The constructor is called from the run() method in ConnectionListener.

75 ∗
76 ∗ @param address The node network address

77 ∗ @param connection The connection to this remote node

78 ∗/
79 public Node(String address, StreamConnection connection){
80 this .address = address;

81 this .connection = connection;

82 // Starts the connection thread on the remote node

83 startNodeConnection();

84 }
85

86

87 /∗∗
88 ∗

279

89 ∗ This method creates a nodeConnection running two threads.

90 ∗ One of the threads listens for incoming data packages, and the other

91 ∗ processes outgoing data packages.

92 ∗ It is only used when this node object represents a remote node.

93 ∗
94 ∗/
95 public void startNodeConnection(){
96 // Starts a thread that listens for incoming and outgoing messages from/to this node

97 if (nodeConnection == null) nodeConnection = new NodeConnection(connection, this);

98 }
99

100 /∗∗
101 ∗
102 ∗ This method returns the NodeConnection owned by this node

103 ∗
104 ∗ @return nodeConnection This nodes NodeConnection

105 ∗/
106 public NodeConnection getNodeConnection(){
107 return nodeConnection;

108 }
109

110 /∗∗
111 ∗ This method sets the connection to this remote node.

112 ∗ It is called from Network.nodeFound().

113 ∗
114 ∗ @param connection The connection to this remote node

115 ∗/
116 public void setNodeConnection(StreamConnection connection){
117 this .connection = connection;

118 if (nodeConnection != null) nodeConnection.setConnection(connection);

119 }
120

121 /∗∗
122 ∗
123 ∗ This method returns the name of the node

124 ∗
125 ∗ @return The nodeName

126 ∗/
127 public String getNodeName() {
128 return nodeName;

129 }
130

131

132 /∗∗
133 ∗

280

134 ∗ This method sets the name of the node

135 ∗
136 ∗ @param nodeName The name of the node

137 ∗/
138 public void setNodeName(String nodeName){
139 this .nodeName = nodeName;

140 }
141

142

143 /∗∗
144 ∗
145 ∗ This method returns the node address

146 ∗
147 ∗ @return The node network address

148 ∗/
149 public String getAddress() {
150 return address;

151 }
152

153

154 /∗∗
155 ∗
156 ∗ This method restores a node with the properties specified in the given input string .

157 ∗
158 ∗ @param nodeString A string containing node properties (name:address)

159 ∗
160 ∗/
161 public static Node restoreNode(String nodeString){
162 int separator = nodeString.indexOf(”:”);

163 return new Node(nodeString.substring(0, separator),nodeString.substring(separator+1, nodeString.length()));

164 }
165

166

167 }

281

D.3 Package peer2me.util

D.3.1 Class Log

1 package peer2me.util;

2

3 import peer2me.framework.FrameworkFrontEnd;

4 import java. util .Vector;

5

6

7

8 /∗∗
9 ∗ This class contains functionality to create and maintain a log of events

10 ∗ and exceptions.

11 ∗ The Log contains four differnet kinds of logs , an exception log , a connection

12 ∗ log , a data package log and a debug log. They can be used to log events from anywhere in

13 ∗ the framework, and the logs can be retreived later to get information about the execution

14 ∗ of the MIDlet.

15 ∗
16 ∗ @author Torbjørn Vatn & Steinar A. Hestnes

17 ∗/
18 public class Log {
19

20 // The singleton instance of this class

21 private static Log singleton;

22 // This FrameworkFrontEnd instance enables the Log to notify the Framework of exceptions

23 FrameworkFrontEnd framework;

24

25

26 // These Vectors are used to store the different elements we want to log

27 /∗∗/
28 // The Vector containing the logged Exceptions

29 private Vector exceptionLog = new Vector();

30 // The Vector containing the opened Connections

31 private Vector connectionLog = new Vector();

32 // The Vector containing information about exchanged data packages

33 private Vector dataPackageLog = new Vector();

34 // The Vector containing debug information

35 private Vector debugLog = new Vector();

36

37 // These static variables represent the different Log Vectors

38 /∗∗∗/
39 public static final int EXCEPTION LOG = 1;

40 public static final int CONNECTION LOG = 2;

41 public static final int DATA PACKAGE LOG = 3;

282

42 public static final int DEBUG LOG = 4;

43

44

45 /∗∗
46 ∗
47 ∗ This method returns the only existing instance of the Log class

48 ∗
49 ∗ @return The singleton instance of the Log class

50 ∗/
51 public static synchronized Log getInstance(){
52 if (singleton == null){
53 singleton = new Log();

54 }
55 return singleton ;

56 }
57

58 /∗∗
59 ∗
60 ∗ Constructor. Made private to ensure singleton pattern.

61 ∗
62 ∗/
63 private Log(){};
64

65 /∗∗
66 ∗
67 ∗ This method is called by the FrameworkFrontEnd to reveal itself to the Log

68 ∗
69 ∗ @param framework The FrameworkFrontEnd refrence sent by the FrameworkFrontEnd itself

70 ∗/
71 public void setFramework(FrameworkFrontEnd framework){
72 this .framework = framework;

73 }
74

75 /∗∗
76 ∗
77 ∗ This method adds an Exception entry to the Exception log

78 ∗
79 ∗ @param location The location (class and method) where the Exception occured

80 ∗ @param exception The actual Exception

81 ∗ @param notify This boolean decides whether or not to notify the Framework about the Exception that occured

82 ∗/
83 public void logException(String location , Exception exception, boolean notify){
84

85 // The actual String stored in the log

86 String logString = exception.getMessage()+” @ ”+location;

283

87

88 // Adding the exception message to the log

89 exceptionLog.addElement(logString);

90

91 // Notifying the Framework of the Exception if requested

92 if (notify) framework.notifyAboutException(location, exception);

93 }
94

95

96 /∗∗
97 ∗
98 ∗ This method adds a Connection entry to the Connection log

99 ∗
100 ∗ @param connectionStatus A textual description of the connection status

101 ∗/
102 public void logConnection(String connectionStatus){
103 connectionLog.addElement(connectionStatus);

104 }
105

106

107 /∗∗
108 ∗
109 ∗ This method adds a data package entry to the data package log

110 ∗
111 ∗ @param packageStatus A textual description of the data package status

112 ∗/
113 public void logDataPackage(String packageStatus){
114 dataPackageLog.addElement(packageStatus);

115 }
116

117 /∗∗
118 ∗
119 ∗ This method adds a Debug entry to the Debug log

120 ∗
121 ∗ @param location The location (class and method) where the debuginfo was logged

122 ∗ @param debugInfo A textual description of the debug information

123 ∗/
124 public void logDebugInfo(String location, String debugInfo){
125

126 // The actual String stored in the log

127 String logString = debugInfo+” @ ”+location;

128

129 debugLog.addElement(logString);

130 }
131

284

132 /∗∗
133 ∗
134 ∗ This method returns the desired log in a displayable format.

135 ∗ It must be called by activating a soft button in the application .

136 ∗ Due to multithreading and interuptions there can be some delay in the creation of the log .

137 ∗
138 ∗ @param log The Log.FIELD representing the desired log

139 ∗ @return The desired log as a String

140 ∗/
141 public String getLog(int log){
142

143 switch(log){
144

145 case EXCEPTION LOG: return formatLog(exceptionLog);

146

147 case CONNECTION LOG: return formatLog(connectionLog);

148

149 case DATA PACKAGE LOG: return formatLog(dataPackageLog);

150

151 case DEBUG LOG: return formatLog(debugLog);

152

153 default : return ”No such log”;

154

155 }
156 }
157

158 /∗∗
159 ∗
160 ∗ This method extract the elements from the vector parameter

161 ∗
162 ∗ @param log The Vector to extract elements from

163 ∗ @return The contents of the Vector presented as a String

164 ∗/
165 private String formatLog(Vector log){
166 String returnString = ””;

167

168 // Runs through the vector and adds the elements to the returnString

169 for(int i = 0; i<log.size (); i++){
170 String element = (String)log.elementAt(i);

171 if (element != null) returnString += element+” \n−−−−−−−−−−\n ”;

172 // = ””+element;

173 }
174 return returnString;

175 }
176

285

177

178 }

286

D.3.2 Class FileHandler

1 package peer2me.util;

2

3 import java.io .DataInputStream;

4 import java.io .DataOutputStream;

5 import java.io .EOFException;

6 import java.io .IOException;

7 import java. util .Enumeration;

8 import javax.microedition. io .Connector;

9 import javax.microedition. io . file .FileConnection;

10

11 /∗∗
12 ∗ This class contains functionality for reading and writing all kinds of

13 ∗ files to and from the device file system.

14 ∗
15 ∗ @author Torbjørn Vatn & Steinar A. Hestnes

16 ∗/
17 public class FileHandler{
18

19 // The path to the file

20 private String filePath ;

21

22 // The streams related to the file

23 private DataInputStream inputStream;

24 private DataOutputStream outputStream;

25

26 // The connection to the file

27 private FileConnection fileConnection;

28

29 // How long to sleep from opening the stream to start reading/writing

30 private final int sleepTime = 20;

31

32 // The size of the blocks to read and write

33 private int blockSize = 1024∗50;
34

35 // The total size of the file

36 private long fileSize ;

37

38 // The number of written and read bytes

39 private int readBytes;

40 private int writtenBytes;

41

42 // The byte[] temporary holding the bytes read and written to the file

43 private byte [] readByteBlock;

287

44 private byte [] writeByteBlock;

45

46

47 /∗∗
48 ∗
49 ∗ Constructor.

50 ∗
51 ∗ @param filePath The path to the file to be handled

52 ∗/
53 public FileHandler(String filePath){
54 this . filePath = filePath;

55 this .readBytes = 0;

56 this .writtenBytes = 0;

57 this . fileSize = 0;

58 }
59

60

61 /∗∗
62 ∗
63 ∗ This method returns a list of the files in the given file path on the device

64 ∗
65 ∗ @return A Enumeration containing the names of the files in the root directory

66 ∗/
67 public Enumeration getFileList(){
68 Enumeration list = null;

69

70 try{
71 // Connects to the file

72 if (fileConnection == null){
73 fileConnection = (FileConnection) Connector.open(”file:///”+filePath);

74 // Pauses the Thread for a while before using the fileConnection

75 try {
76 Thread.sleep(sleepTime);

77 } catch (InterruptedException ie) {
78 //This exception is irrelevant for the excecution

79 }
80 }
81 // Fetches the file list

82 list = fileConnection . list ();

83 try {
84 // Pauses the Thread for a while before using the fileConnection

85 Thread.sleep(sleepTime);

86 } catch (InterruptedException ie) {
87 //This exception is irrelevant for the excecution

88 }

288

89

90 }catch(IOException ioe){
91 Log.getInstance().logException(”FileHandler.getFileList ()”, ioe , false);

92 }
93

94 // Returns the list

95 return list ;

96

97 }
98

99

100 /∗∗
101 ∗
102 ∗ This method returns the size of the this file

103 ∗
104 ∗ @return The size as a long

105 ∗/
106 public long getFileSize (){
107

108 try{
109 // Connects to the file

110 if (fileConnection == null){
111 fileConnection = (FileConnection) Connector.open(”file:///”+filePath);

112 // Pauses the Thread for a while before using the fileConnection

113 try {
114 Thread.sleep(sleepTime);

115 } catch (InterruptedException ie) {
116 //This exception is irrelevant for the excecution

117 }
118 }
119 // Fetches the file size

120 fileSize = fileConnection . fileSize ();

121 // Pauses the Thread for a while before using the fileConnection

122 try {
123 Thread.sleep(sleepTime);

124 } catch (InterruptedException ie) {
125 //This exception is irrelevant for the excecution

126 }
127 }catch(IOException ioe){
128 Log.getInstance().logException(”FileHandler.FileHandler()”,ioe , false);

129 }
130

131 // Returns the file size

132 return fileSize ;

133 }

289

134

135 /∗∗
136 ∗
137 ∗ This method fetches the size of the blocks to read and write

138 ∗
139 ∗ @return The blocksize

140 ∗/
141 public int getBlockSize(){
142 return blockSize;

143 }
144

145 /∗∗
146 ∗
147 ∗ This method sets the size of the this file

148 ∗
149 ∗ @param fileSize The size to set

150 ∗/
151 public void setFileSize (long fileSize){
152 this . fileSize = fileSize ;

153 }
154

155 /∗∗
156 ∗
157 ∗ This method reads the next byte in the file and returns it

158 ∗
159 ∗ @return The next block of bytes

160 ∗ @throws IOException This exception is thrown when the reading has failed

161 ∗/
162 public synchronized byte[] readFile() throws IOException{
163

164 try{
165 // Connects to the file

166 if (fileConnection == null){
167 fileConnection = (FileConnection) Connector.open(”file:///”+filePath);

168 // Pauses the Thread for a while before using the fileConnection

169 try {
170 Thread.sleep(sleepTime);

171 } catch (InterruptedException ie) {
172 //This exception is irrelevant for the excecution

173 }
174 }
175 }catch(IOException ioe){
176 Log.getInstance().logException(”FileHandler.FileHandler()”,ioe , false);

177 }
178

290

179 // Checks if the end of the file is reached

180 if (readBytes == fileConnection.fileSize ())throw new EOFException();

181

182 try{
183 if (inputStream == null){
184 inputStream = fileConnection.openDataInputStream();

185 // Pauses the Thread for a while before using the inputStream

186 try {
187 Thread.sleep(sleepTime);

188 } catch (InterruptedException ie) {
189 //This exception is irrelevant for the excecution

190 }
191 }
192 // Reads the next block of bytes from the stream

193

194 // Checks if the file is smaller than the block size

195 if (fileSize == 0)fileSize = fileConnection. fileSize ();

196 if (fileSize < blockSize) blockSize = (int) fileSize ;

197

198 // Checks if the remaining unread bytes are less than block size

199 if (fileSize − readBytes < blockSize){
200 blockSize = (int)(fileSize − readBytes);

201 }
202

203 readByteBlock = new byte[blockSize];

204 inputStream.read(readByteBlock, 0, blockSize);

205 readBytes += blockSize;

206 return readByteBlock;

207

208 }catch(IOException ioe){
209 closeFile ();

210 throw ioe;

211 }
212

213 }
214

215

216 /∗∗
217 ∗
218 ∗ This method writes the incoming byte block to the file

219 ∗
220 ∗ @param theBytes The next byte block to write

221 ∗ @param numberOfBytesRead The number of bytes in the theBytes[] array

222 ∗ @throws IOException This exception is thrown when the writing has failed

223 ∗

291

224 ∗/
225 public synchronized void writeFile(byte [] theBytes, int numberOfBytesRead) throws IOException{
226

227 // If input numberOfBytesRead == −1, the end of the file is reached

228 if (numberOfBytesRead == −1){
229 closeFile ();

230 throw new EOFException();

231 }
232

233 try{
234 // Connects to the file

235 if (fileConnection == null){
236 fileConnection = (FileConnection) Connector.open(”file:///”+filePath);

237 // Pauses the Thread for a while before using the fileConnection

238 try {
239 Thread.sleep(sleepTime);

240 } catch (InterruptedException ie) {
241 //This exception is irrelevant for the excecution

242 }
243

244 // Checks whether or not the file exists , if not create else delete and create

245 if (fileConnection . exists ()){
246 // Deletes the existing file

247 fileConnection . delete ();

248 // Creates a new file to write to

249 fileConnection . create ();

250 }else{
251 // Creates a new file to write to

252 fileConnection . create ();

253 }
254 }
255

256 }catch(IOException ioe){
257 Log.getInstance().logException(”FileHandler.FileHandler()”,ioe , false);

258 }
259

260 try{
261 if (outputStream == null){
262 outputStream = fileConnection.openDataOutputStream();

263 // Pauses the Thread for a while before using the outpuStream

264 try {
265 Thread.sleep(sleepTime);

266 } catch (InterruptedException ie) {
267 //This exception is irrelevant for the excecution

268 }

292

269 }
270

271 // Trims the last block of bytes

272 byte [] bytesToWrite = new byte[numberOfBytesRead];

273 // Copies the remaining bytes into a temporary byte[]

274 for(int i=0; i<numberOfBytesRead; i++){
275 bytesToWrite[i] = theBytes[i];

276 }
277 outputStream.write(bytesToWrite);

278

279 }catch(IOException ioe){
280 closeFile ();

281 throw ioe;

282 }
283

284 }
285

286 /∗∗
287 ∗
288 ∗ This method writes the incoming byte to the file

289 ∗
290 ∗ @param theByte The next byte to write

291 ∗ @throws IOException This exception is thrown when the writing has failed

292 ∗
293 ∗ @deprecated The method is substituted by writeFile(byte[] theBytes, int numberOfBytesRead)

294 ∗/
295 public synchronized void writeFile(byte theByte) throws IOException{
296 try{
297 // Connects to the file

298 if (fileConnection == null){
299 fileConnection = (FileConnection) Connector.open(”file:///”+filePath);

300 // Pauses the Thread for a while before using the fileConnection

301 try {
302 Thread.sleep(sleepTime);

303 } catch (InterruptedException ie) {
304 //This exception is irrelevant for the excecution

305 }
306

307 // Checks whether or not the file exists , if not create else delete and create

308 if (fileConnection . exists ()){
309 // Deletes the existing file

310 fileConnection . delete ();

311 // Creates a new file to write to

312 fileConnection . create ();

313 }else{

293

314 // Creates a new file to write to

315 fileConnection . create ();

316 }
317 }
318

319 }catch(IOException ioe){
320 Log.getInstance().logException(”FileHandler.FileHandler()”,ioe , false);

321 }
322

323 try{
324 if (outputStream == null){
325 outputStream = fileConnection.openDataOutputStream();

326 // Pauses the Thread for a while before using the outpuStream

327 try {
328 Thread.sleep(sleepTime);

329 } catch (InterruptedException ie) {
330 //This exception is irrelevant for the excecution

331 }
332 }
333

334 // Checks if the file size is less than the block size

335 if (fileSize < blockSize) blockSize = (int) fileSize ;

336

337 // Calculates the index to write the byte to

338 double numberOfBlocksWrittenDouble = (double)writtenBytes/(double)blockSize;

339 int numberOfBlocksWrittenInt = (int)(writtenBytes/blockSize);

340 int index = (int)((numberOfBlocksWrittenDouble−numberOfBlocksWrittenInt)∗blockSize);

341

342

343

344 // Have to create a new writeByteBlock every time it is empty

345 if (writeByteBlock == null)writeByteBlock = new byte[blockSize];

346

347 writeByteBlock[index] = theByte;

348 writtenBytes++;

349

350 // Every time writeByteBlock is full it is written to file

351 if (index==(writeByteBlock.length−1) || writtenBytes == fileSize){
352 outputStream.write(writeByteBlock);

353 writeByteBlock = null;

354 // Checks if the remaining unread bytes are less than block size

355 if (fileSize − writtenBytes < blockSize){
356 writeByteBlock = new byte[((int)(fileSize − writtenBytes))];

357 }
358 if (writtenBytes == fileSize) throw new EOFException();

294

359 }
360

361 }catch(IOException ioe){
362 closeFile ();

363 throw ioe;

364 }
365 }
366

367 /∗∗
368 ∗
369 ∗ This method closes and nullifies the input− and ouput streams,

370 ∗ and the file connection

371 ∗
372 ∗/
373 public void closeFile (){
374 try{
375 // Pauses the Thread for a while before closing the streams and fileConnection

376 try {
377 Thread.sleep(sleepTime);

378 } catch (InterruptedException ie) {
379 //This exception is irrelevant for the excecution

380 }
381

382 if (inputStream != null)inputStream.close();

383 inputStream = null;

384 if (outputStream != null) outputStream.close();

385 outputStream = null;

386 if (fileConnection != null) fileConnection . close ();

387 fileConnection = null;

388 }catch (IOException ioe) {
389 Log.getInstance().logException(”FileHandler.closeFile ()”, ioe , false);

390 }
391 }
392

393

394 }

295

D.3.3 Class ASCIIToHexConvert

1 package peer2me.util;

2

3 /∗∗
4 ∗
5 ∗ This class converts ASCII letters into hexadecimal numbers

6 ∗
7 ∗ @author Torbjørn Vatn & Steinar A. Hestnes

8 ∗/
9 public class ASCIIToHexConvert {

10

11 /∗∗
12 ∗ Constructor

13 ∗
14 ∗/
15 public ASCIIToHexConvert(){
16 }
17

18 /∗∗
19 ∗
20 ∗ This method returns a String with hex representations of each character in the provided String

21 ∗
22 ∗ @param ascii The String to convert

23 ∗ @return A String with hex representations

24 ∗/
25 public String convertASCIIToHex(String ascii){
26 String hexString = ””;

27

28 for(int i=0; i<ascii .length (); i++){
29 hexString += findHexValue(ascii.charAt(i));

30 }
31 return hexString;

32 }
33

34 /∗∗
35 ∗
36 ∗ This method has a switch case structure that contains the hex values for the symbols:

37 ∗ 0−9, A−Z and a−z

38 ∗
39 ∗ @param input The char to convert to hex

40 ∗ @return The retrived hex value, ”00” is returned in cases where no value is found in the switch

41 ∗/
42 private String findHexValue(char input){
43

296

44 String hex = ””;

45

46 switch(input){
47 case ’0’ : hex = ”30”; break; case ’V’ : hex = ”56”; break;

48 case ’1’ : hex = ”31”; break; case ’W’ : hex = ”57”; break;

49 case ’2’ : hex = ”32”; break; case ’X’ : hex = ”58”; break;

50 case ’3’ : hex = ”33”; break; case ’Y’ : hex = ”59”; break;

51 case ’4’ : hex = ”34”; break; case ’Z’ : hex = ”5A”; break;

52 case ’5’ : hex = ”35”; break; case ’a’ : hex = ”61”; break;

53 case ’6’ : hex = ”36”; break; case ’b’ : hex = ”62”; break;

54 case ’7’ : hex = ”37”; break; case ’c’ : hex = ”63”; break;

55 case ’8’ : hex = ”38”; break; case ’d’ : hex = ”64”; break;

56 case ’9’ : hex = ”39”; break; case ’e’ : hex = ”65”; break;

57 case ’A’ : hex = ”41”; break; case ’ f ’ : hex = ”66”; break;

58 case ’B’ : hex = ”42”; break; case ’g’ : hex = ”67”; break;

59 case ’C’ : hex = ”43”; break; case ’h’ : hex = ”68”; break;

60 case ’D’ : hex = ”44”; break; case ’ i ’ : hex = ”69”; break;

61 case ’E’ : hex = ”45”; break; case ’ j ’ : hex = ”6A”; break;

62 case ’F’ : hex = ”46”; break; case ’k’ : hex = ”6B”; break;

63 case ’G’ : hex = ”47”; break; case ’ l ’ : hex = ”6C”; break;

64 case ’H’ : hex = ”48”; break; case ’m’ : hex = ”6D”; break;

65 case ’ I ’ : hex = ”49”; break; case ’n’ : hex = ”6E”; break;

66 case ’J’ : hex = ”4A”; break; case ’o’ : hex = ”6F”; break;

67 case ’K’ : hex = ”4B”; break; case ’p’ : hex = ”70”; break;

68 case ’L’ : hex = ”4C”; break; case ’q’ : hex = ”71”; break;

69 case ’M’ : hex = ”4D”; break; case ’ r ’ : hex = ”72”; break;

70 case ’N’ : hex = ”4E”; break; case ’ s ’ : hex = ”73”; break;

71 case ’O’ : hex = ”4F”; break; case ’ t ’ : hex = ”74”; break;

72 case ’P’ : hex = ”50”; break; case ’u’ : hex = ”75”; break;

73 case ’Q’ : hex = ”51”; break; case ’v’ : hex = ”76”; break;

74 case ’R’ : hex = ”52”; break; case ’w’ : hex = ”77”; break;

75 case ’S’ : hex = ”53”; break; case ’x’ : hex = ”78”; break;

76 case ’T’ : hex = ”54”; break; case ’y’ : hex = ”79”; break;

77 case ’U’ : hex = ”55”; break; case ’z’ : hex = ”7A”; break;

78

79 default :

80 hex = ”00”;

81

82 }
83

84 // the retrived hex value

85 return hex;

86 }
87 }

297

D.4 Package peer2me.network

D.4.1 Class Network

1 package peer2me.network;

2

3 import java.io .IOException;

4

5 import peer2me.util.Log;

6 import peer2me.domain.DataPackage;

7 import peer2me.framework.FrameworkFrontEnd;

8

9 /∗∗
10 ∗ This is the super class of the technology specific network classes . Methods

11 ∗ that are equal for all the sub classes are located in this super class , and there are

12 ∗ abstact methods that the sub classes have to implement. The getInstance() method

13 ∗ in this class returns a reference to the preferred network sub class.

14 ∗
15 ∗ @author Torbjørn Vatn & Steinar A. Hestnes

16 ∗/
17 public abstract class Network{
18

19 // The Log instance

20 private static Log log;

21

22 // The Network instance returned by the getInstance() method

23 private static Network singleton;

24

25 // A reference to the FrameworkFrontEnd

26 private FrameworkFrontEnd frameworkFrontEnd;

27

28 // The applicationId of the MIDlet

29 private String applicationID;

30

31 // The ConnectionListener of the Network

32 private ConnectionListener connectionListener;

33

34 /∗∗
35 ∗
36 ∗ This method returns an instance of the preferred network.

37 ∗ It is called from FrameworkFrontEnd.initFramework().

38 ∗
39 ∗ @param preferredNetwork Indicating which network implementation to use.

40 ∗ @throws ClassNotFoundException The input preferredNetwork is invalid

41 ∗ @throws IllegalAccessException The input preferredNetwork is invalid

298

42 ∗ @throws InstantiationException The input preferredNetwork is invalid

43 ∗ @return The Network instance

44 ∗/
45 public static synchronized Network getInstance(String preferredNetwork) throws ClassNotFoundException,

46 IllegalAccessException, InstantiationException{
47

48 // A log instance

49 log = Log.getInstance();

50

51 if (singleton != null){
52 return singleton ;

53 }else{
54 try{
55 // Fetching a instance of the preferred network class

56 singleton = (Network)Class.forName(preferredNetwork).newInstance();

57

58 }catch(ClassNotFoundException cnfe){
59 log .logException(”Network.getInstance()”,cnfe, false);

60 throw cnfe;

61 }catch(IllegalAccessException iae){
62 log .logException(”Network.getInstance()”,iae, false);

63 throw iae;

64 }catch(InstantiationException ie){
65 log .logException(”Network.getInstance()”,ie , false);

66 throw ie;

67 }
68

69 // Returning the singleton instance

70 return singleton ;

71 }
72 }
73

74

75 /∗∗
76 ∗
77 ∗ This method returns a reference to the instance of the preferred network.

78 ∗ It is used when an instance already is created and a reference to

79 ∗ this instance is needed.

80 ∗
81 ∗ @throws ClassNotFoundException The input preferredNetwork is invalid

82 ∗ @throws IllegalAccessException The input preferredNetwork is invalid

83 ∗ @throws InstantiationException The input preferredNetwork is invalid

84 ∗ @return The Network instance

85 ∗/
86 public static synchronized Network getInstance(){

299

87 // Checks whether the other getInstance method has already been run

88 if (singleton==null){
89 log .logDebugInfo(”Network.getInstance()”,”No Network instance found!”);

90 return null ;

91 }
92 return singleton ;

93 }
94

95

96 /∗∗
97 ∗
98 ∗ This method sets a reference to the ConnectionListener

99 ∗
100 ∗ @param connectionListener A reference to the ConnectionListener

101 ∗/
102 public void setConnectionListener(ConnectionListener connectionListener){
103 this .connectionListener = connectionListener;

104 }
105

106 /∗∗
107 ∗
108 ∗ This method returns the ConnectionListener reference

109 ∗
110 ∗ @return connectionListener A reference to the ConnectionListener

111 ∗/
112 public ConnectionListener getConnectionListener(){
113 return connectionListener;

114 }
115

116 /∗∗
117 ∗
118 ∗ This method sets a reference to the FrameworkFrontEnd

119 ∗
120 ∗ @param frameworkFrontEnd A reference to the FrameworkFrontEnd

121 ∗/
122 public void setFrameworkFrontEnd(FrameworkFrontEnd frameworkFrontEnd){
123 this .frameworkFrontEnd = frameworkFrontEnd;

124 }
125

126 /∗∗
127 ∗
128 ∗ This method returns the FrameworkFrontEnd reference

129 ∗
130 ∗ @return frameworkFrontEnd A reference to the FrameworkFrontEnd

131 ∗/

300

132 public FrameworkFrontEnd getFrameworkFrontEnd(){
133 return frameworkFrontEnd;

134 }
135

136 /∗∗
137 ∗
138 ∗ This method sets the applicationID.

139 ∗ The application ID must be used to ensure that all nodes joining

140 ∗ the network are running the same MIDlet.

141 ∗
142 ∗ @param applicationID The ID of the MIDlet (e.g. the MIDlet name)

143 ∗/
144 public void setApplicationId(String applicationID){
145 this .applicationID = applicationID;

146 }
147

148 /∗∗
149 ∗
150 ∗ This method returns the applicationId

151 ∗
152 ∗ @return applicationID The ID of the MIDlet

153 ∗/
154 public String getApplicationId(){
155 return applicationID;

156 }
157

158

159 /∗∗∗/
160 // The abstract methods inherited and overridden by the sub network classes

161 /∗∗∗/
162

163 /∗∗
164 ∗ Initiates the network instance.

165 ∗ It is called from the FrameworkFrontEnd.initFramework()

166 ∗
167 ∗ @throws Exception Failed to initiate the network

168 ∗/
169 public abstract void init () throws Exception;

170

171 /∗∗
172 ∗ Starts a search for devices running the same MIDlet

173 ∗
174 ∗ @throws IOException Error during the search

175 ∗/
176 public abstract void searchForNodes() throws IOException;

301

177

178 /∗∗
179 ∗
180 ∗ Called when the same MIDlet is found on a remote device

181 ∗
182 ∗ @param input An object representing the connection to the found node.

183 ∗/
184 public abstract void nodeFound(Object input) throws IOException;

185

186 /∗∗
187 ∗
188 ∗ This method fetches the name of the remote node.

189 ∗
190 ∗ @param input An object representing the connection to the found node.

191 ∗ @return The name of the remote node.

192 ∗/
193 public abstract String getRemoteNodeName(Object input);

194

195 /∗∗
196 ∗
197 ∗ This method establishes a connection to the chosen node.

198 ∗ It could e.g. be run from the Network.sendDataPackage() to connect

199 ∗ before sending a package.

200 ∗
201 ∗ @param nodeAddress The address to the node to connect to

202 ∗
203 ∗/
204 public abstract void connectToNode(String nodeAddress);

205

206 /∗∗
207 ∗
208 ∗ This method is called from the ConnectionListener.run() when

209 ∗ the acceptAndOpen() method in ConnectionListener.run() is done.

210 ∗
211 ∗/
212 public abstract void connectionEstablished();

213

214 /∗∗
215 ∗
216 ∗ This method returns the node address.

217 ∗
218 ∗ @param input String ”localNode” to retreive the address of the local device.

219 ∗ A object representing the connection to the remote node to retreive the

220 ∗ address of a remote device.

221 ∗

302

222 ∗ @return The node network address.

223 ∗ @throws IOException

224 ∗
225 ∗/
226 public abstract String getNodeAddress(Object input) throws IOException;

227

228

229 /∗∗
230 ∗
231 ∗ This method is used by the FrameworkFrontEnd to send a data package of

232 ∗ any sort to a remote node.

233 ∗
234 ∗ @param dataPackage The data package to be sent

235 ∗ @param recipients A list containing addresses to the recipient nodes

236 ∗
237 ∗/
238 public abstract void sendDataPackage(DataPackage dataPackage, String[] recipients);

239

240

241 }

303

D.4.2 Class NodeConnection

1 package peer2me.network;

2

3 import peer2me.util.FileHandler;

4 import peer2me.util.Log;

5 import peer2me.domain.DataPackage;

6 import peer2me.domain.FilePackage;

7 import peer2me.domain.GroupSyncPackage;

8 import peer2me.domain.Node;

9 import peer2me.domain.TextPackage;

10 import java.io .DataInputStream;

11 import java.io .DataOutputStream;

12 import java.io .EOFException;

13 import java.io .IOException;

14 import java. util .Date;

15 import java. util .Vector;

16 import javax.microedition. io .StreamConnection;

17

18

19 /∗∗
20 ∗
21 ∗ This class contains a thread that runs on each connected node and listens for

22 ∗ incoming data packages and sends data packages out.

23 ∗ It is created and started in NodeConnection.startNodeConnection().

24 ∗
25 ∗ @author Torbjørn Vatn & Steinar A. Hestnes

26 ∗/
27 public class NodeConnection{
28

29 // The Log instance

30 private Log log;

31

32 // The Network instance of the preferred network

33 private Network currentNetwork;

34

35 // The different variables concerning the in− and out streams

36 private DataInputStream inputStream;

37 private DataOutputStream outputStream;

38 private StreamConnection connection;

39 private Node node;

40

41 // The queue holding the data packages to send

42 private Vector sendQueue;

43

304

44 // Boolean values that controls whether or not the Input− and OutputStreams are allowed to perform their tasks

45 private boolean openInputStream;

46 private boolean openOutputStream;

47

48 // The threads running whenever a connection is open.

49 private InputThread inputThread;

50 private OutputThread outputThread;

51

52 /∗∗
53 ∗
54 ∗ Constructor.

55 ∗ This constructor is called from the constructor in class Node.

56 ∗
57 ∗ @param connection The connection to the node

58 ∗ @param node The node that owns this NodeConnection

59 ∗/
60 public NodeConnection(StreamConnection connection, Node node){
61

62 // Fetches a instance of the Log

63 log = Log.getInstance();

64 // Sets the connection to connect to and fetches an instance of the currentNetwork

65 this .connection = connection;

66 this .node = node;

67 currentNetwork = Network.getInstance();

68 // Creates the sendQue

69 sendQueue = new Vector();

70

71 // The Input− and OutputStreams shall not do anything before the node is connected

72 // These values are toggled from ConnectionListener.run() and NodeConnection.sendDataPackage()

73 openInputStream = false;

74 openOutputStream = false;

75 // Starts a thread that processes the sendQue

76 outputThread = new OutputThread();

77 outputThread.setPriority(Thread.MAX PRIORITY);

78 outputThread.start();

79 // Starts a thread constantly listening for incoming datapackages

80 inputThread = new InputThread();

81 inputThread.setPriority(Thread.MAX PRIORITY);

82 inputThread.start();

83 }
84

85 /∗∗
86 ∗
87 ∗ This method return the size of the sendQue.

88 ∗

305

89 ∗ @return The size of the sendQue

90 ∗/
91 public int getSendQueueSize(){
92 return sendQueue.size();

93 }
94

95

96 /∗∗
97 ∗
98 ∗ This method receives incoming datapackages from remote nodes.

99 ∗ It is called in an infinite loop in the private class InputThread

100 ∗ in this class .

101 ∗
102 ∗/
103 public void processIncomingData(){
104 if (connection != null){
105 boolean connectionFailed = false;

106 try{
107 if (inputStream == null){
108 inputStream = connection.openDataInputStream();

109 }
110 }catch(IOException ioe1){
111 connectionFailed = true;

112 log .logException(”NodeConnection.processIncomingData()1”,ioe1,true);

113 // Opening of streams failed, ergo connection lost

114 // Close connection and inform the NodeListener

115 try {
116 connection.close ();

117 // The connection must be set to null to stop the thread running

118 // this method when the connection has closed

119 connection = null;

120 } catch (IOException ioe2){
121 log .logException(”NodeConnection.processIncomingData()2”,ioe2,true);

122 }
123 }
124

125 // If an inputstream and an outputstream was successfully opened, a infinite loop starts

126 if (! connectionFailed){
127 try {
128 while(inputStream != null && connection != null && !connectionFailed){
129 int type = −1;

130 try{
131 // Reads the type of the data package

132 type = inputStream.readInt();

133 }catch(IOException ioe){

306

134 connectionFailed = true;

135 }
136 // The type of the package determines what should be done with the package

137 switch(type){
138

139 case(DataPackage.GROUP SYNC PACKAGE):

140 // Reads the length of the incoming package

141 int byteLength1 = inputStream.readInt();

142 byte [] bytes1 = new byte[byteLength1];

143 // Reads the incoming bytes

144 for(int i=0;i<bytes1.length;i++){
145 bytes1[i] = inputStream.readByte();

146 }
147

148 // Checks if the sendQue on the sender side is empty

149 if (inputStream.readBoolean()){
150 // Closes the connection if the remote node is finished sending all its datapackages

151 openInputStream = false;

152 }
153

154 GroupSyncPackage groupSyncPackage = new GroupSyncPackage();

155

156 // Interprets the content and sets the variables in the groupSyncPackage object

157 groupSyncPackage.parseBytes(bytes1);

158

159 // Notifies the midlet via the frontEnd about the received message.

160 currentNetwork.getFrameworkFrontEnd().notifyAboutReceivedGroupSyncPackage(groupSyncPackage);

161 break;

162

163 case(DataPackage.TEXT PACKAGE):

164 // Reads the length of the incoming package

165 int byteLength2 = inputStream.readInt();

166 byte [] bytes2 = new byte[byteLength2];

167

168 // Reads the incoming bytes in blocks

169 // Reading blocks increases the transfer rate considerably

170 boolean finishedReading = false;

171 int blockSize = 200;

172 int totalRead = 0;

173 while(!finishedReading){
174 // If whats left is less than one blockSize

175 if (byteLength2 − totalRead < blockSize) blockSize = byteLength2−totalRead;

176 byte [] block = new byte[blockSize];

177 int numberRead = inputStream.read(block,0,blockSize);

178 // Stores whats read in an array large enough for the whole package

307

179 for(int i=0; i<numberRead; i++){
180 bytes2[totalRead] = block[i];

181 totalRead++;

182 }
183 if (totalRead == byteLength2) finishedReading = true;

184 }
185

186 // Checks if the sendQue on the sender side is empty

187 if (inputStream.readBoolean()){
188 // Closes the connection if the remote node is finished sending all its datapackages

189 openInputStream = false;

190 }
191

192 // Notifies the midlet via the frontEnd about the received message.

193 TextPackage textPackage = new TextPackage();

194 textPackage.parseBytes(bytes2);

195

196 currentNetwork.getFrameworkFrontEnd().notifyAboutReceivedTextPackage(textPackage);

197 break;

198

199 case(DataPackage.FILE PACKAGE):

200 // Reads the length of the incoming package

201 int byteLength3 = inputStream.readInt();

202 byte [] bytes3 = new byte[byteLength3];

203 // Reads the incoming bytes

204 for(int i=0;i<bytes3.length;i++){
205 bytes3[i] = inputStream.readByte();

206 }
207

208 // Creates a filePackage based on the received data

209 FilePackage filePackage = new FilePackage();

210 filePackage .parseBytes(bytes3);

211 // Reads the file and writes it to the filesystem

212 FileHandler fileHandler = new FileHandler(filePackage.getFilePath());

213 // Fetches the size of the file and sets it in the fileHandler

214 fileHandler . setFileSize (filePackage . getFileSize ());

215

216 // Checks if the sendQue on the sender side is empty

217 if (inputStream.readBoolean()){
218 // Closes the connection if the remote node is finished sending all its datapackages

219 openInputStream = false;

220 }
221

222 boolean endOfFile= false;

223 while(!endOfFile){

308

224 try{
225 byte [] theBytes = new byte[fileHandler.getBlockSize()];

226 // Reads data from the inputStream into a byte table

227 int numberOfBytesRead = inputStream.read(theBytes, 0, fileHandler.getBlockSize());

228 // Writes the bytes to file

229 fileHandler . writeFile (theBytes, numberOfBytesRead);

230

231 }catch(EOFException eofe){
232 endOfFile = true;

233 fileHandler . closeFile ();

234 }
235 }
236

237 currentNetwork.getFrameworkFrontEnd().notifyAboutReceivedFilePackage(filePackage);

238 break;

239

240 default :

241 break;

242 }
243 }
244

245 }catch(IOException ioe) {
246 log .logException(”NodeConnection.processIncomingData()3”, ioe, true);

247 }
248 }
249 }
250 }
251

252

253

254 /∗∗
255 ∗
256 ∗ This method sends datapackages to remote nodes.

257 ∗ It processes the que of unsent datapackages.

258 ∗ It is called in an infinite loop in the private class OutputThread

259 ∗ in this class .

260 ∗
261 ∗/
262 public synchronized void processSendQueue(){
263 if (connection != null){
264 if (sendQueue.size() > 0){
265 // Retriving the data packages to send from the sendQue

266 DataPackage dataPackage = (DataPackage)sendQueue.firstElement();

267 sendQueue.removeElement(dataPackage);

268 // A byte table holding the data to send

309

269 byte [] data = dataPackage.toSendableFormat();

270

271 try{
272 // Opening the output stream if it is not allready open

273 if (outputStream == null){
274 outputStream = connection.openDataOutputStream();

275 }
276

277 // Saves a timestamp used to estimate the transfer rate

278 long startTime = new Date().getTime();

279

280 // Sending the type of the data package over the steam

281 outputStream.writeInt(dataPackage.getType());

282

283 // Sending the length of the data package over the steam

284 outputStream.writeInt(data.length);

285

286 // Sends the data package in blocks over the stream

287 // Sending blocks instead of single bytes increases the transfer rate considerably

288 boolean finishedWriting = false ;

289 int blockSize = 200;

290 int totalWritten = 0;

291 while(! finishedWriting){
292 // If whats left is less than one blockSize

293 if (data.length − totalWritten < blockSize) blockSize = data.length−totalWritten;

294 byte [] block = new byte[blockSize];

295 // Fills the byte array to be sent

296 for(int i=0; i<blockSize; i++){
297 block[i] = data[totalWritten];

298 totalWritten++;

299 }
300 outputStream.write(block);

301

302 if (totalWritten == data.length) finishedWriting = true;

303 }
304

305 // If the datapackage is a FilePackage we have to send the content

306 // of the file

307 long fileSize = 0;

308 if (dataPackage.getType() == DataPackage.FILE PACKAGE){
309 // Opens the file handler

310 FileHandler fileHandler = new FileHandler(((FilePackage)dataPackage).getFilePath());

311

312 // Flushes the output stream

313 outputStream.flush();

310

314

315 boolean endOfFile = false;

316 while(!endOfFile){
317 try{
318 byte [] theBytes = fileHandler.readFile ();

319 outputStream.write(theBytes);

320 }catch(EOFException eofe){
321 endOfFile = true;

322 fileHandler . closeFile ();

323 }
324 }
325 fileSize = ((FilePackage)dataPackage).getFileSize();

326 }
327

328

329 // Logs a message if the text package was sent successfully

330 if (dataPackage.getType() == DataPackage.TEXT PACKAGE ||
331 dataPackage.getType() == DataPackage.FILE PACKAGE){
332 // Estimates the transfer rate of the file

333 long endTime = new Date().getTime();

334 long transferTime = (endTime−startTime)/1000;

335 if (transferTime==0) transferTime = 1;

336 double kBps = ((double)(data.length+fileSize)/1024)/(double)transferTime;

337

338 //the code below calculates and rounds off the transfer rate with three decimals

339 String rate = Double.toString(kBps);

340 int commaIndex = rate.indexOf(”.”);

341 int decimal3 = Integer.parseInt(””+rate.charAt(commaIndex+3)+””);

342 int decimal4 = Integer.parseInt(””+rate.charAt(commaIndex+4)+””);

343 rate = rate.substring(0,commaIndex+4);

344 if (decimal4>=5){
345 if (decimal3 == 9){
346 decimal3 = decimal3+1;

347 rate = rate.substring(0,commaIndex+2);

348 rate += decimal3;

349 }
350 else{
351 decimal3 = decimal3+1;

352 rate = rate.substring(0,commaIndex+3);

353 rate += decimal3;

354 }
355 }
356

357 log .logDataPackage(”Finished transfering data to ”+

358 node.getNodeName()+”. (Transfer rate was ”+rate+”kB/s)”);

311

359 }
360

361 }catch(IOException ioe){
362 // Because this method is called from within a run() the log has to noitfy the MIDLet of the exception

363 log .logException(”NodeConnection.processSendQue()”,ioe,true);

364 closeConnection();

365 // Tries to send the datapackage once more

366 currentNetwork.sendDataPackage(dataPackage,dataPackage.getRecipients());

367 }
368 }
369

370

371 // If the queue is not empty, the processing continues

372 try {
373 Thread.sleep(500);

374 } catch (InterruptedException ie) {
375 // do nothing

376 }
377 try{
378 // Closes the outputstream if the sendQueue is empty

379 // The connections are re−established when a new datapackage is sent

380 if (sendQueue.size() == 0){
381 // Notifies the remote recipient that we are closing the stream

382 outputStream.writeBoolean(true);

383 openOutputStream = false;

384 // Flushes the output stream

385 outputStream.flush();

386 }else{
387 outputStream.writeBoolean(false);

388 // Flushes the output stream

389 outputStream.flush();

390 // Must process the next package

391 processSendQueue();

392 }
393 }catch(IOException ioe){
394 // Because this method is called from within a run() the log has to noitfy the MIDLet of the exception

395 log .logException(”NodeConnection.processSendQue()2”,ioe,true);

396 closeConnection();

397 }
398 }
399 }
400

401

402 /∗∗
403 ∗

312

404 ∗ This method is called by the sendMessage() method in the Network class

405 ∗ when a data package is sent to the Node associated with this

406 ∗ NodeConnection.

407 ∗
408 ∗ @param dataPackage The DataPackage to send

409 ∗/
410 public synchronized void sendDataPackage(DataPackage dataPackage){
411 sendQueue.addElement(dataPackage);

412 // Continues to run the Input− and OutputStreams on the

413 // representation of the remote recipient node

414 openOutputStream();

415 }
416

417

418 /∗∗
419 ∗
420 ∗ This method returns the connection object.

421 ∗
422 ∗ @return An object representing the connection to the remote node

423 ∗/
424 public StreamConnection getConnection(){
425 return connection;

426 }
427

428 /∗∗
429 ∗
430 ∗ This method updates the connection object. It is used when the existing

431 ∗ connection is closed and a new open connection is needed.

432 ∗
433 ∗ @param connection The connection to the remote node

434 ∗/
435 public void setConnection(StreamConnection connection){
436 this .connection = connection;

437 }
438

439 /∗∗
440 ∗
441 ∗ This method sets a boolean that controls whether or not the InputStream

442 ∗ are allowed to listen for incoming data.

443 ∗ The value is toggled from ConnectionListener.run().

444 ∗
445 ∗/
446 public void openInputStream(){
447 this .openInputStream = true;

448 // Starts the steams again

313

449 inputThread.restartThread();

450 }
451

452 /∗∗
453 ∗
454 ∗ This method sets a boolean that controls whether or not the OutputStream

455 ∗ are allowed to send data.

456 ∗ The value is toggled from NodeConnection.sendDataPackage()

457 ∗
458 ∗/
459 public void openOutputStream(){
460 this .openOutputStream = true;

461 // Starts the steams again

462 outputThread.restartThread();

463 }
464

465 /∗∗
466 ∗
467 ∗ This method closes the input− and output streams and the connection.

468 ∗ It is called from Group.shutdownGroup() to clean up during shutdown.

469 ∗
470 ∗/
471 public void closeConnection(){
472 try{
473 if (outputStream != null) this.outputStream.close();

474 this .outputStream = null;

475 if (inputStream != null) this .inputStream.close();

476 this .inputStream = null;

477 if (connection != null) this .connection.close ();

478 this .connection = null;

479 }catch(IOException ioe){
480 // Because this method is called from within a run() the log has to noitfy the MIDLet of the exception

481 log .logException(”NodeConnection.closeConnection()”,ioe,true);

482 }
483 }
484

485

486 /∗∗
487 ∗
488 ∗ This class is a thread listening for incoming datapackages from remote nodes.

489 ∗ The thread is started from the constructor in class NodeConnection.

490 ∗
491 ∗ @author Torbjørn Vatn & Steinar A. Hestnes

492 ∗/
493 private class InputThread extends Thread{

314

494

495 /∗∗
496 ∗ Constantly running. It is run from the constructor in class NodeConnection.

497 ∗ Constantly listening for incoming datapackages.

498 ∗
499 ∗/
500 public void run(){
501 while(true){
502 if (openInputStream){
503 try{
504 // Sleeps the thread to ensure that the connection is open

505 sleep (500);

506 }catch(InterruptedException ie){
507 // This exception is irrelevant for the excecution

508 }
509 // Calls the processIncomingData() method to receive data packages from remote nodes

510 processIncomingData();

511

512 if (!openInputStream){
513 try{
514 // Sleeps the thread to ensure that the connection is ready to be closed

515 sleep (500);

516 }catch(InterruptedException ie){
517 // This exception is irrelevant for the excecution

518 }
519 closeConnection();

520 }
521 }
522 // Pauses the thread until it is notified again

523 this .pauseThread();

524 }
525 }
526

527 /∗∗
528 ∗ This method pauses this thread

529 ∗
530 ∗/
531 private synchronized void pauseThread(){
532 try{
533 this .wait();

534 }catch(InterruptedException ie){
535 // This exception is irrelevant for the excecution

536 }
537 }
538

315

539 /∗∗
540 ∗ This method notifies this thread

541 ∗
542 ∗/
543 public synchronized void restartThread(){
544 this . notify ();

545 }
546 }
547

548

549 /∗∗
550 ∗
551 ∗ This class is a thread sending datapackages to remote nodes.

552 ∗ The thread is started from the constructor in class NodeConnection.

553 ∗
554 ∗ @author Torbjørn Vatn & Steinar A. Hestnes

555 ∗/
556 private class OutputThread extends Thread{
557

558 /∗∗
559 ∗ Constantly running. It is run from the constructor in class NodeConnection.

560 ∗ Processes the sendQue.

561 ∗
562 ∗/
563 public void run(){
564 while(true){
565 if (openOutputStream){
566 try{
567 // Sleeps the thread to ensure that the connection is open

568 sleep (500);

569 }catch(InterruptedException ie){
570 // This exception is irrelevant for the excecution

571 }
572 // Calls the processSendQue() method to send any unsendt data packages

573 processSendQueue();

574

575 if (!openOutputStream){
576 try{
577 // Sleeps the thread to ensure that the connection is ready to be closed

578 sleep (100);

579 }catch(InterruptedException ie){
580 // This exception is irrelevant for the excecution

581 }
582 closeConnection();

583 }

316

584 }
585 // Pauses the thread until it is notified again

586 this .pauseThread();

587 }
588 }
589

590

591 /∗∗
592 ∗ This method pauses this thread

593 ∗
594 ∗/
595 private synchronized void pauseThread(){
596 try{
597 this .wait();

598 }catch(InterruptedException ie){
599 // This exception is irrelevant for the excecution

600 }
601 }
602

603 /∗∗
604 ∗ This method notifies this thread

605 ∗
606 ∗/
607 public synchronized void restartThread(){
608 this . notify ();

609 }
610 }
611

612

613 }

317

D.4.3 Class ConnectionListener

1 package peer2me.network;

2

3 import peer2me.util.Log;

4 import peer2me.domain.Node;

5 import java.io .IOException;

6 import javax.microedition. io .Connector;

7 import javax.microedition. io .StreamConnection;

8 import javax.microedition. io .StreamConnectionNotifier;

9

10

11 /∗∗
12 ∗ This class contains a ConnectionListener thread listening for

13 ∗ incoming connection attempts from other devices running

14 ∗ the same MIDlet built upon the framework.

15 ∗ When a incomming connection is detected, a Node representation is created

16 ∗ representing the connecting device.

17 ∗ A ConnectionListener thread is created in Network.init ().

18 ∗
19 ∗ @author Torbjørn Vatn & Steinar A. Hestnes

20 ∗/
21 public class ConnectionListener implements Runnable{
22

23 // The Log instance

24 private Log log;

25

26 // The network instance related to this ConnectionService

27 private Network currentNetwork;

28 // The ConnectionURL that the ConnectionService should listen to

29 private String connectionURL;

30 // The StreamConnectionNotifier that creates a StreamConnection that

31 // represents a server side socket connection

32 private StreamConnectionNotifier connectionNotifier = null;

33 // The StreamConnection representing the open connection

34 private StreamConnection connection = null;

35 // This ConnectionService thread

36 private Thread localThread;

37 // Whether or not the Thread should shut down

38 private boolean shutdown = false;

39 // Whether or not the connection has failed

40 private boolean failed = false ;

41

42 /∗∗
43 ∗ Constructor.

318

44 ∗ A ConnectionListener is created in the Network.init() method.

45 ∗
46 ∗ @param connectionURL The ConnectionURL to listen to

47 ∗/
48 public ConnectionListener(String connectionURL){
49

50 this .currentNetwork = Network.getInstance();

51 this .connectionURL = connectionURL;

52

53 // Fetches a instance of the Log

54 log = Log.getInstance();

55

56 // Starts a ConnectionListener thread listening for a connection

57 localThread = new Thread(this);

58 localThread.start ();

59 }
60

61 /∗∗
62 ∗ This method is called when the ConnectionListener thread is started in the

63 ∗ constructor.

64 ∗
65 ∗ It continously listens for incoming connections matching the

66 ∗ serviceID of the peer2me framework. The listener is ”passive” and opens a

67 ∗ connection waiting for a device to take contact.

68 ∗ If an incoming connetion occurs, information is abstracted from the remote

69 ∗ node, and a node object containing this connection is created and added

70 ∗ to the group on the local node.

71 ∗
72 ∗/
73 public void run(){
74 try{
75 // Opens the stream

76 connectionNotifier = (StreamConnectionNotifier) Connector.open(connectionURL);

77

78 while(true){//(! failed || !shutdown){
79

80 // Returns a StreamConnection that represents a server side socket connection.

81 connection = (StreamConnection)connectionNotifier.acceptAndOpen();

82

83 // If the connection is successful a representation of the remote node is created

84 if (! failed || !shutdown){
85

86 // Creates the node who found ”me” (as a participant) and opens a connection

87 String address = Network.getInstance().getNodeAddress(connection);

88

319

89 Node remoteNode = new Node(address,connection);

90

91 // Starts the InputThread in NodeConnection again since we have a connection

92 remoteNode.getNodeConnection().openInputStream();

93

94 // Adds the node who found ”me” to the group containing all found nodes

95 currentNetwork.getFrameworkFrontEnd().getGroup().addParticipant(remoteNode);

96

97 // This Node is discovered and connected by another Node the currentNetwork is notified

98 currentNetwork.connectionEstablished();

99

100 log .logConnection(”Connected successfully to a node with address: ”+address);

101 }
102 }
103

104 }catch(IOException ioe) {
105 log .logException(”ConnectionListener.run()”,ioe, true);

106 failed = true;

107 }catch(SecurityException se) {
108 log .logException(”ConnectionListener.run()”,se, true);

109 failed = true;

110 }catch(IllegalArgumentException iae){
111 log .logException(”ConnectionListener.run()”,iae, true);

112 failed = true;

113 }
114 }
115

116 /∗∗
117 ∗
118 ∗ This method shuts down this thread and closes the connection to clean up.

119 ∗ It is called from FrameworkFrontEnd.shutdownFramework().

120 ∗
121 ∗/
122 public void shutdown(){
123 // Have to shut down

124 shutdown = true;

125 // Closes the connection to clean

126 try{
127 connectionNotifier . close ();

128 }catch (IOException ioe) {
129 log .logException(”ConnectionListener.shutdown()”,ioe,false);

130 }
131 }
132

133

320

134 }

321

D.5 Package peer2me.network.bluetooth

D.5.1 Class BluetoothNetwork

1 package peer2me.network.bluetooth;

2

3 import java.io .IOException;

4 import java. util .Hashtable;

5 import java. util .Vector;

6

7 import javax.bluetooth.BluetoothStateException;

8 import javax.bluetooth.LocalDevice;

9 import javax.bluetooth.RemoteDevice;

10 import javax.bluetooth.ServiceRecord;

11 import javax.bluetooth.DataElement;

12 import javax.microedition. io .Connector;

13 import javax.microedition. io .StreamConnection;

14 import peer2me.util.ASCIIToHexConvert;

15 import peer2me.util.Log;

16 import peer2me.network.ConnectionListener;

17 import peer2me.network.Network;

18 import peer2me.network.NodeConnection;

19 import peer2me.domain.DataPackage;

20 import peer2me.framework.FrameworkFrontEnd;

21

22

23 /∗∗
24 ∗ This class is a bluetooth specific sub class of the Network class

25 ∗ and implements all the abstract methods of it’ s parent class in a bluetooth

26 ∗ context. It uses the bluetooth Java API, JSR−82, to perform operations on

27 ∗ the bluetooth hardware of the mobile device.

28 ∗
29 ∗ @author Torbjørn Vatn & Steinar A. Hestnes

30 ∗/
31 public class BluetoothNetwork extends Network implements BluetoothServiceDiscoveryListener{
32

33 // The Log instance

34 private Log log;

35

36 // The connectionURL used by the ConnectionService created in the init() methood

37 private String connectionURL;

38

39 // The UUID number generated using the tool found at http://kruithof.xs4all.nl/uuid/uuidgen

40 private String generatedUuid = ”0ade9c80bb2b11daa94d0800200c9a66”;

41

322

42 // A reference to BluetoothServiceDiscovery

43 private BluetoothServiceDiscovery bluetoothServiceDiscovery;

44

45 // A list containing addresses and serviceRecords of all found nodes

46 // (nodes who are running the same application but not connected yet)

47 private Hashtable foundNodes;

48

49 // This boolean decides whether or not this Node is connected to another node.

50 private boolean isConnected;

51

52 // A boolean indicating whether the serviceSearch is completed or not

53 private boolean serviceSearchCompleted;

54

55 // A boolean indicating whether the serviceSearch failed or not

56 private boolean serviceSearchFailed;

57

58

59 /∗∗
60 ∗
61 ∗ Constructor. Protected to ensure singleton pattern.

62 ∗
63 ∗/
64 public BluetoothNetwork(){
65 // Fetches a instance of the Log

66 log = Log.getInstance();

67 }
68

69 /∗∗
70 ∗ Initiates the network instance.

71 ∗ It is called from the FrameworkFrontEnd.initFramework()

72 ∗
73 ∗ @throws BluetoothStateException Failed to initiate the network

74 ∗/
75 public void init () throws BluetoothStateException{
76

77 isConnected = false;

78 serviceSearchCompleted = false;

79 serviceSearchFailed = false ;

80

81

82 // Sets the connectionURL used by the ConnectionListener

83 String localNodeName = getFrameworkFrontEnd().getLocalNode().getNodeName();

84 connectionURL = ”btspp://localhost:”+getUUIDString()+”;authenticate=false;encrypt=false;name=”+localNodeName;

85

86 // Have to set the local device discoverable

323

87 try {
88 LocalDevice.getLocalDevice().setDiscoverable(javax.bluetooth.DiscoveryAgent.GIAC);

89 } catch (BluetoothStateException bse) {
90 log .logException(”ConnectionListener.ConnectionListener()”,bse,false);

91 throw bse;

92 }
93

94 foundNodes = new Hashtable();

95 // Creates the class that contains low level Bluetooth discovery operations.

96 bluetoothServiceDiscovery = new BluetoothServiceDiscovery();

97

98 /∗ The ConnectionListener instance that listens for incoming requests from

99 ∗ other nodes in discovery mode. When this node is discovered the ”discoverer”

100 ∗ can choose to create a connection between the two, and the remote node is

101 ∗ represented by a node object localy on this node.

102 ∗/
103 setConnectionListener(new ConnectionListener(connectionURL));

104 }
105

106

107 /∗∗
108 ∗
109 ∗ This method is called from the ConnectionListener.run() when

110 ∗ the acceptAndOpen() method in ConnectionListener.run() is done.

111 ∗
112 ∗/
113 public void connectionEstablished(){
114 // Indicates that this node was connected (contacted) by another node

115 isConnected = true;

116 }
117

118 /∗∗
119 ∗ Starts a search for devices running the same MIDlet

120 ∗
121 ∗ @throws IOException Error during the search

122 ∗
123 ∗/
124 public void searchForNodes() throws IOException{
125 // This initiates the discovery process

126 if (! isConnected) bluetoothServiceDiscovery.doDeviceDiscovery();

127 }
128

129

130 /∗∗
131 ∗ Called when the same MIDlet is found on a remote device.

324

132 ∗ It is called from BluetoothServiceDiscovery.serviceSearchCompleted().

133 ∗
134 ∗ @param input Either a ServiceRecord or a StreamConnection that describes the characteristics

135 ∗ of the Bluetooth service found

136 ∗/
137 public void nodeFound(Object input){
138

139 // Input type is object because superclass cannot relate to ServiceRecord which is a bluetooth specific class .

140 ServiceRecord serviceRecord = (ServiceRecord)input;

141

142 // Retrives the name of the found node

143 String remoteNodeName = getRemoteNodeName(serviceRecord);

144

145 // The bluetooth address of the node ”I” ”as owner” found

146 String address = serviceRecord.getHostDevice().getBluetoothAddress();

147

148 // If the node is not already connected, the MIDlet is notified via the frontEnd

149 // and the user is asked whether he/she wants to connect to it or not.

150 if (getFrameworkFrontEnd().getGroup().getNode(address) == null){
151 // Alerts the FrameworkFrontEnd about the found (participating) node

152 getFrameworkFrontEnd().notifyAboutFoundNode(address,remoteNodeName);

153

154 // Saves the found node so a connection can be established later by running the connectToNodes() method.

155 foundNodes.put(address,serviceRecord);

156

157 }else{
158 // This code is run if the node has been disconnected temporarily or lacks

159 // a connection. This method (nodeFound) is then called as a result from a

160 // new serviceSearch on a given address (see BluetoothServiceDiscovery.startServiceSearch()).

161 // It re−opens a connection to a node that has been disconnected temporarily.

162 StreamConnection connection = null;

163 try{
164 // Re−opens a connection to a (participating) node.

165 connection = (StreamConnection) Connector.open(serviceRecord.getConnectionURL(

166 ServiceRecord.NOAUTHENTICATE NOENCRYPT,false));

167 }catch(IOException ioe){
168 // The connection could not be established

169 log .logException(”BluetoothNetwork.nodeFound()”, ioe, false);

170 }
171

172 getFrameworkFrontEnd().getGroup().getNode(address).setNodeConnection(connection);

173 getFrameworkFrontEnd().getGroup().getNode(address).startNodeConnection();

174 }
175 }
176

325

177 /∗∗
178 ∗
179 ∗ This method fetches the name of the remote node.

180 ∗
181 ∗ @param input An object representing the connection to the found node.

182 ∗ @return The name of the remote node.

183 ∗/
184 public String getRemoteNodeName(Object input){
185 DataElement data = ((ServiceRecord)input).getAttributeValue(0x0100);

186 return (String)data.getValue();

187 }
188

189

190 /∗∗
191 ∗
192 ∗ This method establishes a connection to the chosen node.

193 ∗ It is run from the BluetoothNetwork.sendDataPackage().

194 ∗
195 ∗ @param nodeAddress The address to the node to connect to

196 ∗
197 ∗/
198 public void connectToNode(String nodeAddress){
199

200 // Connects to the recipient

201 bluetoothServiceDiscovery.startServiceSearch(nodeAddress);

202

203 serviceSearchCompleted = false;

204 while(!serviceSearchCompleted){
205 // Waiting for the agent to set serviceSearchCompleted = true in

206 // the BluetoothNetwork.serviceSearchCompleted() method.

207 // This because we dont want to send the package before the search is completed

208 try{
209 Thread.sleep(300);

210 }catch(InterruptedException ie){
211 // Do nothing

212 }
213 }
214 // Resets the value

215 serviceSearchCompleted = false;

216

217 if (! serviceSearchFailed){
218 log .logConnection(”Successfully connected to ”+getFrameworkFrontEnd().getGroup().getNode(

219 nodeAddress).getNodeName()+”(”+nodeAddress+”)”);

220 }
221 }

326

222

223

224 /∗∗
225 ∗
226 ∗ Sets the boolean serviceSearchCompleted = true.

227 ∗ This value will interrupt the while−loop in sendDataPackage.

228 ∗ This because the serviceSearch must be completed before we

229 ∗ try to send a package.

230 ∗ The method is called from

231 ∗ BluetoothServiceDiscovery.serviceSearchCompleted().

232 ∗
233 ∗/
234 public void serviceSearchCompleted(){
235 // Resets the serviceSearchFailed in case an earlier search has failed

236 serviceSearchFailed = false ;

237 serviceSearchCompleted = true;

238 }
239

240

241 /∗∗
242 ∗ What to do when something went wrong during servicediscovery.

243 ∗ The method is called from

244 ∗ BluetoothServiceDiscovery.serviceSearchCompleted().

245 ∗
246 ∗/
247 public void serviceDiscoveryError(){
248 // Stops the sending of the datapackage in sendDatapackage()

249 serviceSearchFailed = true;

250 serviceSearchCompleted = true;

251 }
252

253 /∗∗
254 ∗
255 ∗ This method returns the node address.

256 ∗
257 ∗ @param input String ”localNode” to retreive the address of the local device.

258 ∗ A ServiceRecord or StreamConnection object to retreive the address of a

259 ∗ remote device.

260 ∗
261 ∗ @return The node network address.

262 ∗ @throws IOException

263 ∗/
264 public String getNodeAddress(Object input) throws IOException{
265

266 // Checks whether the input is a String and the String equals ”localnode”.

327

267 // If so the address of the LocalDevice is returned.

268 if (input.getClass (). isInstance(new String())){
269 String inputString = (String)input;

270 // Make sure that we won’t get any UPPER/lower case problems

271 inputString.toLowerCase();

272 if (inputString.equals(”localnode”))return LocalDevice.getLocalDevice().getBluetoothAddress();

273 }
274

275 // Input type is object because superclass cannot relate to ServiceRecord which is a bluetooth specific class .

276 // This method is valid either the input type is ServiceRecord or StreamConnection.

277 RemoteDevice remoteDevice = null;

278 try{
279 ServiceRecord serviceRecord = (ServiceRecord) input;

280 remoteDevice = serviceRecord.getHostDevice();

281 }catch(ClassCastException cce1){
282 // Could not cast the input object to ServiceRecord. Trying streamConnection instead ;−)

283 try{
284 StreamConnection streamConnection = (StreamConnection) input;

285 remoteDevice = RemoteDevice.getRemoteDevice(streamConnection);

286 }catch(ClassCastException cce2){
287 //This will only happen if the input object type is wrong

288 log .logException(”BluetoothNetwork.getNodeAddress()”,cce2,false);

289 }catch(IOException ioe){
290 log .logException(”BluetoothNetwork.getNodeAddress()”,ioe,false);

291 throw ioe;

292 }
293 }
294 return remoteDevice.getBluetoothAddress();

295 }
296

297 /∗∗
298 ∗
299 ∗ This method is used by the FrameworkFrontEnd to send a data package of

300 ∗ any sort to a remote node.

301 ∗
302 ∗ @param dataPackage The data package to be sent

303 ∗ @param recipients A list containing addresses to the recipient nodes

304 ∗
305 ∗/
306 public void sendDataPackage(DataPackage dataPackage, String[] recipients){
307

308 // A Vector containing the addresses to the nodes that could not be reached

309 Vector addressesToLostNodes = new Vector();

310

311 for(int i=0; i<recipients.length; i++){

328

312 // If the node has been removed/disconnected in the meantime

313 if (getFrameworkFrontEnd().getGroup().getNode(recipients[i])==null){
314 // do nothing

315 }else{
316

317 // Connects to the remote node if the connection never has been opened or if it has been closed

318 NodeConnection nodeConnection = getFrameworkFrontEnd().getGroup().getNode(recipients[i]).getNodeConnection();

319 if (nodeConnection!=null){
320 if (nodeConnection.getConnection()==null){
321 // Establishes a connection to the recipient

322 // This method waits until the new connection is ready (or not)

323 connectToNode(recipients[i]);

324 }else if (nodeConnection.getSendQueueSize() == 0){
325 // If the que is empty, the connection has been closed, and we need a new one

326 nodeConnection.setConnection(null);

327 // Establishes a connection to the recipient

328 // This method waits until the new connection is ready (or not)

329 connectToNode(recipients[i]);

330 }
331 }else{
332 // Establishes a connection to the recipient

333 // This method waits until the new connection is ready (or not)

334 connectToNode(recipients[i]);

335 }
336

337 // Sends the data package to the recipient

338 if (! serviceSearchFailed){
339 getFrameworkFrontEnd().getGroup().getNode(recipients[i]).getNodeConnection().sendDataPackage(dataPackage);

340 }else{
341 // If the serviceSearch failed , the node must be removed from the group, and groups become synchronized

342 addressesToLostNodes.addElement(recipients[i]);

343 }
344 }
345 }
346 // Removes the nodes that could not be reached to remove these from the group by running a groupsync

347 for(int i=0; i<addressesToLostNodes.size();i++){
348 // Notifies only if the node is not already removed from the local group.

349 // This because a node could have been removed when sending the previous data package and this

350 // package is sent right after the first one (as in text first and then sync package)

351 if (getFrameworkFrontEnd().getGroup().getNode((String)addressesToLostNodes.elementAt(i))!=null){
352 getFrameworkFrontEnd().notifyAboutLostNode((String)addressesToLostNodes.elementAt(i));

353 }
354 }
355 }
356

329

357

358 /∗∗
359 ∗
360 ∗ This method returns the UUID string used as an identifier in the discovery process.

361 ∗ The UUID string is generated based on the application ID given by the application

362 ∗ running the framework. The UUID must be used to ensure that all nodes

363 ∗ joining the network are running the same application.

364 ∗
365 ∗ @return uuidString

366 ∗/
367 public String getUUIDString(){
368

369 // The ASCII to Hex converter

370 ASCIIToHexConvert convert = new ASCIIToHexConvert();

371 // The String to convert to hex

372 String toConvert = ””;

373 // The UUID consists of 16 hex values so the String to be converted must not exceed 16 chartacters

374 if (super.getApplicationId().length() > 16){
375 toConvert = super.getApplicationId().substring(0, 15);

376 } else {
377 toConvert = super.getApplicationId();

378 }
379 // The converted hex String

380 String convertedString = convert.convertASCIIToHex(toConvert);

381 // The length of convertedString

382 int convertedLength = convertedString.length();

383

384 // The String to return

385 String uuidString = ””;

386 if (convertedLength < 32){
387 uuidString = generatedUuid.substring(0 , (32−convertedLength)) + convertedString;

388 } else if (convertedLength == 32){
389 uuidString = convertedString;

390 }
391 return uuidString;

392 }
393

394

395 }

330

D.5.2 Interface BluetoothServiceDiscoveryListener

1 package peer2me.network.bluetooth;

2

3

4

5 /∗∗
6 ∗ This interface has to be implemented by classes that wants to do a

7 ∗ Bluetooth service discovery using the BluetoothServiceDiscovery class,

8 ∗ and receive callbacks from this class . In this case, the class

9 ∗ BluetoothNetwork implements this interface.

10 ∗
11 ∗ @author Torbjørn Vatn & Steinar A. Hestnes

12 ∗/
13 public interface BluetoothServiceDiscoveryListener {
14

15

16 /∗∗
17 ∗
18 ∗ What to do when serviceSearch is completed

19 ∗
20 ∗/
21 public void serviceSearchCompleted();

22

23

24 /∗∗
25 ∗ What to do when something went wrong during servicediscovery

26 ∗
27 ∗/
28 public void serviceDiscoveryError ();

29

30 }

331

D.5.3 Class BluetoothServiceDiscovery

1 package peer2me.network.bluetooth;

2

3 import java. util .Vector;

4 import javax.bluetooth.BluetoothStateException;

5 import javax.bluetooth.DeviceClass;

6 import javax.bluetooth.DiscoveryAgent;

7 import javax.bluetooth.DiscoveryListener;

8 import javax.bluetooth.LocalDevice;

9 import javax.bluetooth.RemoteDevice;

10 import javax.bluetooth.ServiceRecord;

11 import javax.bluetooth.UUID;

12

13 import peer2me.network.Network;

14 import peer2me.util.Log;

15

16 /∗∗
17 ∗ This class is responsible for doing the low level Bluetooth discovery operations.

18 ∗ The class initializes seqential device discovery, and searches for services

19 ∗ (the same MIDlet built upon the Peer2Me framework) on each of the found devices.

20 ∗
21 ∗ @author Torbjørn Vatn & Steinar A. Hestnes

22 ∗/
23 public class BluetoothServiceDiscovery implements DiscoveryListener{
24

25 // A Log instance

26 Log log = Log.getInstance();

27

28 // The current network

29 private BluetoothNetwork currentNetwork;

30

31 // A table containing the UUIDs (Universally Unique Identifier) use to perform the discovery process

32 private UUID[] uuids = new UUID[1];

33 // The UUID String fetched from currentNetwork

34 private String uuidString;

35

36 // Vector containing the devices found during discovery

37 private Vector devicesFound = null;

38 // Vector containing the services (read; running the Peer2Me framework) found on the discovered devices

39 private Vector servicesFound = null;

40

41 // An instance representing the local bluetooth device

42 private LocalDevice localDevice;

43 // The discovery agent of the local device

332

44 private DiscoveryAgent agent;

45

46 // An identifier used on mobile phone bluetooth devices

47 private int mobileDeviceClassCode = 0x200;

48 // The attributes to include in the agent.searchServices () method

49 private int [] attributes = {0x100,0x101,0x102};
50

51

52 /∗∗
53 ∗
54 ∗ Constructor.

55 ∗ Called from BluetoothNetwork.init().

56 ∗
57 ∗/
58 public BluetoothServiceDiscovery(){
59 this .currentNetwork =(BluetoothNetwork)Network.getInstance();

60 // Fetches the UUID string from currentNetwork

61 this .uuidString = currentNetwork.getUUIDString();

62 }
63

64 /∗∗
65 ∗
66 ∗ This method starts the discovery process.

67 ∗ It is called from BluetoothNetwork.searchForNodes().

68 ∗
69 ∗ @throws BluetoothStateException Error getting reference to LocalDevice

70 ∗/
71 public void doDeviceDiscovery() throws BluetoothStateException{
72

73 uuids[0] = new UUID(uuidString, false);

74 servicesFound = new Vector();

75 devicesFound = new Vector();

76

77 try{
78 localDevice = LocalDevice.getLocalDevice();

79 }catch(BluetoothStateException bse) {
80 log .logException(”BluetoothServiceDiscovery.doDeviceDiscovery()”,bse, false);

81 throw bse;

82 }
83

84 //Fetches the discovery agent of the local device

85 agent = localDevice.getDiscoveryAgent();

86

87 try {
88 // The discovery agent starts the inquiry for other devices

333

89 agent.startInquiry(DiscoveryAgent.GIAC,this);

90 }
91 catch(BluetoothStateException bse) {
92 log .logException(”BluetoothServiceDiscovery.doDeviceDiscovery()”,bse, false);

93 throw bse;

94 }
95 }
96

97 /∗∗
98 ∗
99 ∗ This method is called by the javax.bluetooth.DiscoveryAgent (agent) whenever a bluetooth device is discovered

100 ∗
101 ∗ @param remoteDevice The device discovered

102 ∗ @param deviceClass The device class of the discovered device

103 ∗
104 ∗/
105 public void deviceDiscovered(RemoteDevice remoteDevice,DeviceClass deviceClass){
106

107 // The device class of the discovered device

108 int deviceclass = deviceClass.getMajorDeviceClass();

109

110 if (deviceclass==mobileDeviceClassCode){
111 // Adds the discovered device to the devicesFound Vector

112 devicesFound.addElement(remoteDevice);

113 }
114 }
115

116 /∗∗
117 ∗
118 ∗ This method is called by the javax.bluetooth.DiscoveryAgent (agent) whenever one or more

119 ∗ services (read: Peer2Me framework) are found on a remote device

120 ∗
121 ∗ @param transId The transaction ID of the service search that is posting the result

122 ∗ @param serviceRecord A list of services found during the search request

123 ∗
124 ∗/
125 public void servicesDiscovered(int transId, ServiceRecord[] serviceRecord) {
126

127 // Checks whether the service already exists in servicesFound. This because the

128 // DiscoveryAgent sometimes finds the same service several times :−(STUPID!!!

129 boolean alreadyAdded = false;

130

131 for(int i=0;i<serviceRecord.length;i++){
132 if (servicesFound.size()==0){
133 // Adds the retrived ServiceRecord to the servicesFound Vector

334

134 servicesFound.addElement(serviceRecord[i]);

135 log .logDebugInfo(”BluetoothServiceDiscovery.servicesDiscovered()”,”Found a node with address: ”+

136 serviceRecord[i]. getHostDevice().getBluetoothAddress()+” running the same application”);

137 }else{
138 for(int j=0;j<servicesFound.size(); j++){
139 // Must compare the addresses of the devices to avoid adding the same service on the same device twice or more :−P

140 String addressServiceFound = ((ServiceRecord) servicesFound.elementAt(j)).getHostDevice().getBluetoothAddress();

141 String addressServiceRecord = serviceRecord[i].getHostDevice().getBluetoothAddress();

142

143 if (addressServiceFound.equals(addressServiceRecord)){
144 alreadyAdded = true;

145 }
146 }
147 if (!alreadyAdded){
148 // Adds the retrived ServiceRecord to the servicesFound Vector

149 servicesFound.addElement(serviceRecord[i]);

150 log .logDebugInfo(”BluetoothServiceDiscovery.servicesDiscovered()”,”Found a node with address: ”+

151 serviceRecord[i]. getHostDevice().getBluetoothAddress()+” running the same application”);

152 }
153 }
154 }
155 }
156

157

158 /∗∗
159 ∗
160 ∗ This method is called by the javax.bluetooth.DiscoveryAgent (agent) when the search for

161 ∗ services (read: Peer2Me framework) is completed

162 ∗
163 ∗ @param transID The transaction ID of the service search that is posting the result

164 ∗ @param respCode The response code that indicates the status of the transaction

165 ∗
166 ∗/
167 public void serviceSearchCompleted(int transID, int respCode){
168

169 switch(respCode) {
170

171 case DiscoveryListener.SERVICE SEARCH COMPLETED:

172 log .logDebugInfo(”BluetoothServiceDiscovery.serviceSearchCompleted()”,”Service search completed”);

173 break;

174

175 case DiscoveryListener.SERVICE SEARCH DEVICE NOT REACHABLE:

176 log .logDebugInfo(”BluetoothServiceDiscovery.serviceSearchCompleted()”,”Service search device not reachable”);

177 // If a searchServices () call is made on a specific device, the devices found table will contain no devices

178 // In this case the network must be notified about the error .

335

179 // In the initial doDeviceDiscovery() these errors are ignored because devices not running the framework

180 // can interfere the discovery process.

181 if (devicesFound.size()==0) currentNetwork.serviceDiscoveryError();

182 break;

183

184 case DiscoveryListener.SERVICE SEARCH ERROR:

185 log .logDebugInfo(”BluetoothServiceDiscovery.serviceSearchCompleted()”,”Service search error”);

186 if (devicesFound.size()==0) currentNetwork.serviceDiscoveryError();

187 break;

188

189 case DiscoveryListener.SERVICE SEARCH NO RECORDS:

190 log .logDebugInfo(”BluetoothServiceDiscovery.serviceSearchCompleted()”,

191 ”No bluetooth devices running the same service (application) found”);

192 if (devicesFound.size()==0) currentNetwork.serviceDiscoveryError();

193 break;

194

195 case DiscoveryListener.SERVICE SEARCH TERMINATED:

196 log .logDebugInfo(”BluetoothServiceDiscovery.serviceSearchCompleted()”,”Service search terminated”);

197 if (devicesFound.size()==0) currentNetwork.serviceDiscoveryError();

198 break;

199 }
200

201 // Searches further on the next device

202 if (devicesFound.size()>0){
203 try {
204 // The discovery agent searches for services on the next device stored in the devicesFound Vector

205 agent.searchServices(attributes ,uuids,(RemoteDevice)devicesFound.firstElement(),this);

206 devicesFound.removeElementAt(0);

207 } catch (BluetoothStateException bse) {
208 log .logException(”BluetoothServiceDiscovery.serviceSearchCompleted”, bse, true);

209 currentNetwork.serviceDiscoveryError();

210 }
211 }
212

213 else{
214 if (servicesFound.size()==0){
215 log .logDebugInfo(”BluetoothServiceDiscovery.serviceSearchCompleted()”,”No services found”);

216 }else{
217 log .logDebugInfo(”BluetoothServiceDiscovery.serviceSearchCompleted()”,

218 ”Found the desired service running on one or more nodes”);

219 // For each element in servicesFound the serviceFound method is called on currentNetwork

220 for(int i=0;i<servicesFound.size(); i++){
221 currentNetwork.nodeFound((ServiceRecord)servicesFound.elementAt(i));

222 }
223 currentNetwork.serviceSearchCompleted();

336

224 }
225 }
226 }
227

228

229 /∗∗
230 ∗
231 ∗ This method is called by the javax.bluetooth.DiscoveryAgent (agent) when the discovery process is completed

232 ∗
233 ∗ @param discType The type of request that was completed; either

234 ∗ INQUIRY COMPLETED, INQUIRY TERMINATED, or INQUIRY ERROR

235 ∗
236 ∗/
237 public void inquiryCompleted(int discType) {
238

239 switch (discType) {
240

241 case DiscoveryListener.INQUIRY COMPLETED:

242 if (devicesFound.size()==0){
243 log .logDebugInfo(”BluetoothServiceDiscovery.inquiryCompleted()”,”No devices found”);

244 // Send a message to the midlet

245 currentNetwork.serviceSearchCompleted();

246 }else{
247 try {
248 log .logDebugInfo(”BluetoothServiceDiscovery.inquiryCompleted()”,”Found one or more devices”);

249 // The discovery agent searches for services on the first device stored in the devicesFound Vector

250 agent.searchServices(attributes ,uuids,(RemoteDevice)devicesFound.firstElement(),this);

251 devicesFound.removeElementAt(0);

252 } catch (BluetoothStateException bse) {
253 log .logException(”BluetoothServiceDiscovery.serviceSearchCompleted”, bse, true);

254 }
255 }
256 log .logDebugInfo(”BluetoothServiceDiscovery.inquiryCompleted()”,”Device inquiry completed”);

257 break;

258

259 case DiscoveryListener.INQUIRY ERROR:

260

261 log .logDebugInfo(”BluetoothServiceDiscovery.inquiryCompleted()”,”Device inquiry error”);

262 break;

263

264 case DiscoveryListener.INQUIRY TERMINATED:

265

266 log .logDebugInfo(”BluetoothServiceDiscovery.inquiryCompleted()”,”Device inquiry terminated”);

267 break;

268 }

337

269 }
270

271

272 /∗∗
273 ∗
274 ∗ This method is used to re−establish a connection to a device when we have the address.

275 ∗
276 ∗ @param address The address to the device

277 ∗/
278 public void startServiceSearch(String address){
279 // Connects to a remote device with the given address

280 RemoteDeviceInstance remoteDevice = new RemoteDeviceInstance(address);

281 try{
282 localDevice = LocalDevice.getLocalDevice();

283 agent = localDevice.getDiscoveryAgent();

284 uuids[0] = new UUID(uuidString, false);

285 servicesFound = new Vector();

286 devicesFound = new Vector();

287 agent.searchServices(attributes ,uuids,remoteDevice,this);

288 }catch(BluetoothStateException bse) {
289 log .logException(”BluetoothServiceDiscovery.startServiceSearch()”,bse, false);

290 // throw bse;

291 }
292 }
293

294

295 /∗∗
296 ∗
297 ∗ This private class creates a RemoteDevice based on the address.

298 ∗ It is used during the re−establishment of a connection to a device in

299 ∗ the startServiceSearch() method in this class .

300 ∗
301 ∗ @author Torbjørn Vatn & Steinar A. Hestnes

302 ∗/
303 private class RemoteDeviceInstance extends RemoteDevice{
304

305 /∗∗
306 ∗
307 ∗ Constructor. Forwarding the address to the superclass .

308 ∗
309 ∗ @param address The address of the device

310 ∗/
311 public RemoteDeviceInstance(String address){
312 super(address);

313 }

338

314 }
315

316

317 }

339

340

Bibliography

[1] Jim Arlow and Ila Neustadt. UML and the Unified Process. Addison-Wesley, 2002.

[2] Roy L. Ashok and Dharma P. Agrawal. Next-generation wearable networks. IEEE Computing Practices
Magazine, pages 31–39, nov 2003.

[3] Stefano Basagni, Marco Conti, Silvia Giordano, and Ivan Stojmenovic. Mobile ad hoc Networking. IEEE,
2004.

[4] V.R. Basili. The Experimental Paradigm in Software Engineering. Experimental Software Engineering
Issues: Critical Assessment and Future Directions, pages 3–12, 1992.

[5] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice, second edition. Addison
Wesley, 2003.

[6] Peter H. Carstensen and Kjeld Schmidt. Computer supported cooperative work: New challenges to
systems design. Handbook of Human Factors, 2002.

[7] JXTA Community. JXTA.org. http://www.jxta.org. 03.03.2006.

[8] BEDD Corporation. BEDD Corporation. http://www.bedd.com/. 06.03.2006.

[9] Zürich Ergon Informatik AG. Ergon. http://ergon.ch/. 05.03.2006.

[10] ETH. Jadabs. http://jadabs.berlios.de/. 03.03.2006.

[11] George H. Forman and John Zahorjan. The challenges of mobile computing. Computer, 27(4):38–47,
1994.

[12] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns: elements of reusable
object-oriented software. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1995.

[13] JSR259 Expert Group. JSR259 Ad Hoc Networking API Early Draft Review. review 1, BenQ Mobile
GmbH, 2006.

341

http://www.jxta.org
http://www.bedd.com/
http://ergon.ch/
http://jadabs.berlios.de/

[14] Jonathan Grudin. Cscw. Commun. ACM, 34(12):30–34, 1991.

[15] Jonathan Grudin. Computer-supported cooperative work: History and focus. Computer, 27(5):19–26,
1994.

[16] Jaap C. Haarsten. The Bluetooth Radio System. IEEE Personal Communications, 2000.

[17] Sumi Helal. Pervasive java. IEEE Pervasive Computing, 1(1):82–85, 2002.

[18] Little Spring Design Inc. Mobile Style Guides - Multiple-Device Platforms. http://www.

littlespringsdesign.com/design/styleguides/sampleguide/sampleguide2/. 12.12.2005.

[19] Christina L. James and Kelly M. Reischel. Text input for mobile devices: comparing model prediction to
actual performance. In CHI ’01: Proceedings of the SIGCHI conference on Human factors in computing
systems, pages 365–371, New York, NY, USA, 2001. ACM Press.

[20] R. Johansen. Current user approaches to groupware. In R. Johansen (ed.), Groupware : Computer
support for business teams., pages 12–44, 1988.

[21] Ralph E. Johnson and Brian Foote. Designing Reuseable Classes. review 1, Department of Computer
Science, University of Illinois, 1991.

[22] Per Kroll and Phillippe Kruchten. The Rational Unified Process Made Easy. Addison-Wesley, 2003.

[23] Yi Lu and Serge Vaudenay. Faster correlation attack on bluetooth keystream generator e0. In Advances
in Cryptology ? CRYPTO 2004: 24th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 15-19, 2004., page 407. Springer Berlin / Heidelberg, 2004.

[24] Nico Maibaum and Thomas Mundt. Jxta: A technology facilitating mobile peer-to-peer networks. In
MOBIWAC ’02: Proceedings of the International Workshop on Mobility and Wireless Access, page 7,
Washington, DC, USA, 2002. IEEE Computer Society.

[25] Sun Microsystems. J2ME Building Blocks for Mobile Devices - White Paper on KVM and the
Connected, Limited Device Configuration (CLDC). http://java.sun.com/products/cldc/wp/KVMwp.
pdf. 02.12.2005.

[26] SUN Microsystems. Java 2 Platform, Micro Edition (J2ME); JSR 68 Overview. http://java.sun.

com/j2me/overview.html. 15.09.2005.

[27] Claes Wohlin Mikael Svahnberg. An investigation of a method for identifying a software architecture
candidate with respect to quality attributes. Empirical Software Engineering, 10:149–181, apr 2005.

[28] Michael Miller. Discovering Bluetooth, Learn What You Can Do with Bluetooth Today - and What
You’ll Be Able to Do Tomorrow . SYBEX, 2001.

[29] Dejan S. Milojicic, Vana Kalogeraki, Rajan Lukose, Kiran Nagaraja, Jim Pruyne, Bruno Richard, Sami
Rollins, and Zhichen Xu. Peer-to-peer computing. Technical report, HP Laboratories Palo Alto, 2002.

342

http://www.littlespringsdesign.com/design/styleguides/sampleguide/sampleguide2/
http://www.littlespringsdesign.com/design/styleguides/sampleguide/sampleguide2/
http://java.sun.com/products/cldc/wp/KVMwp.pdf
http://java.sun.com/products/cldc/wp/KVMwp.pdf
http://java.sun.com/j2me/overview.html
http://java.sun.com/j2me/overview.html

[30] Michael Sars Norum and Carl-Henrik Wolf Lund. A Framework for Mobile Collaborative Applications
on Mobile Phones. Depth study, IDI, NTNU, 2004. This is the depth study that was the base for the
master thesis.

[31] Michael Sars Norum and Carl-Henrik Wolf Lund. The Peer2Me Framework; A Framework for Mobile
Collaboration on Mobile Phones. Master’s thesis, IDI, NTNU, 2005.

[32] Kris Read and Frank Maurer. Developing mobile wireless applications. IEEE Internet Computing
Magazine, pages 81–86, jan-feb 2003.

[33] Yaniv Shaked and Avishai Wool. Cracking the bluetooth pin. In MobiSys ’05: Proceedings of the 3rd
international conference on Mobile systems, applications, and services, pages 39–50, New York, NY,
USA, 2005. ACM Press.

[34] Forrest Shull, Jeffrey Carver, and Guilherme H. Travassos. An empirical methodology for introducing
software processes. In ESEC/FSE-9: Proceedings of the 8th European software engineering conference
held jointly with 9th ACM SIGSOFT international symposium on Foundations of software engineering,
pages 288–296, New York, NY, USA, 2001. ACM Press.

[35] Bluetooth Special Interest Group (SIG). Bluetooth 2.0 Facts and Features. https://www.bluetooth.
org/info/edr/edr_facts.php. 15.12.2005.

[36] Bluetooth Special Interest Group (SIG). Bluetooth SIG promoter members. https://www.bluetooth.
org/foundry/sitecontent/document/member_directory. 15.12.2005.

[37] Statistics Norway SSB. Telecommunication services. 31 December 2005. http://www.ssb.no/english/
yearbook/tab/tab-439.html. 08.02.2006.

[38] Anders Rene Sveen and Lars Kirkhus. MOWAHS - Mobile Collaboration Framework, 2004.

[39] Torbjørn Vatn and Steinar Hestnes. The Peer2Me Framework; An Analysis of the Peer2Me Framework.
Depth study, IDI, NTNU, 2005. This is our own depth study.

[40] E. Vergetis, R. Guerin, S. Sarkar, and J. Rank. Can Bluetooth succeed as a large-scale ad hoc networking
technology? Selected Areas in Communications, IEEE Journal on, 23:644– 656, 3 2005.

[41] G. Caldiera V.R. Basili and H.D. Rombach. Goal Question Metrics Paradigm, volume 1. Wiley, 1994.

[42] Laurie A. Williams and Robert R. Kessler. All i really need to know about pair programming i learned
in kindergarten. Commun. ACM, 43(5):108–114, 2000.

[43] Claes Wohlin, Per Runeson, Martin Host, Magnus C. Ohlsson, Björn Regnell, and Anders Wesslen.
Experimentation in software engineering: an introduction. Kluwer Academic Publishers, Norwell, MA,
USA, 2000.

343

https://www.bluetooth.org/info/edr/edr_facts.php
https://www.bluetooth.org/info/edr/edr_facts.php
https://www.bluetooth.org/foundry/sitecontent/document/member_directory
https://www.bluetooth.org/foundry/sitecontent/document/member_directory
http://www.ssb.no/english/yearbook/tab/tab-439.html
http://www.ssb.no/english/yearbook/tab/tab-439.html

