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Problem Description

The main goal of the project is to redesign the Peer2Me framework originally developed by Sars
Norum and Wolf Lund in their master thesis from spring 2005. Peer2Me is a framework for
developing mobile collaborative applications on mobile phones utilizing Personal Area Networks
(PANSs). The framework is developed using J2ME technology and currently supports Bluetooth
communication.

The Peer2Me framework has been tested and analyzed in two separate depth study projects, and
several possible improvements have been discovered. This includes improving
the architecture, simplifying the interface presented to the developer, and decrease its footprint.

To decide whether the improvements have been successful, the original and the redesigned
Peer2Me framework will be thoroughly compared at the end of the project. The results of this
comparison will be used to evaluate the quality of the redesigned framework.
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Abstract

This project was started to develop a new improved version of the Peer2Me framework. After having
evaluated the first version of the Peer2Me framework in our depth study project in the fall of 2005, quite a
few possible improvements came up.

This report starts with an introduction to Computer Supported Cooperative Work (CSCW), wireless
networking, Peer-to-Peer (P2P) computing, and mobile ad hoc networking. It also introduces some central
concepts concerning design of a software architecture, and technology relevant to the development of the
Peer2Me framework.

The redesign of the framework was started by eliciting a set of new requirements, constituting the basis
for designing the new Peer2Me architecture. Through an iterative and incremental development process,
Peer2Me framework v2.0 was developed with several new features. An instant messenger application has
been developed using both versions of the framework, in order to compare them.

A thorough comparison of Peer2Me v1.0 and Peer2Me v2.0 shows that the redesign has resulted in a reduced
framework footprint and complexity, a simplified interface towards the MIDlets, and a considerably increase
in transfer rate.
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CHAPTER 1

Introduction

SSB, Statistics Norway’s Statistical Yearbook 2005 [37] shows us that the number of mobile telephony
subscriptions (4 716 090 in 2004) is steadily increasing, and hence is the number of mobile phones also
growing. New mobile phone models pours out on the marked and the technology that was considered "high
end” last year have become "low end” already. Recreation and entertainment is the largest area of innovation
at the moment, but also mobile ad-hoc communication and collaboration are important features of these

new devices.

Today Java 2 Platform, Micro Edition (J2ME) [26] is by far the most common used programming platform for
mobile devices like mobile phones. The technology is supported widely among electronics manufacturers and
software developers. With the constant development and implementation of new technology leading to more
powerful and better equipped phones, the potential for developing more "useful” applications grows. The
introduction of means of communication directly between phones, such as Bluetooth, adds a new dimension
to this type of applications. This gives the software engineers the ability to develop systems that allows

collaboration and exchange of information between users.

Michael Sars Norum and Carl-Henrik Wolf Lund developed the Peer2Me framework as a part of their depth
study [30] and master thesis [31]. The J2ME-based framework aims to aid the development of collaborative
mobile applications using ad-hoc networking. Peer2Me gives developers the ability to program applications
for mobile devices without considering the underlying network technology and how data is sent over this

network.



1.1 Motivation

After working with the Peer2Me framework for a whole semester through our depth study [39], we have
experienced some issues and come up with quite a few suggestions for improvements. We are under the
impression that the Peer2Me framework have to undergo a serious revision to advance into a product with a

practical application among developers. The revision involves several areas and properties of the Peer2Me:

Easy to learn The framework has to become easier to start using for the developers. Many programmers
will experience the framework somewhat cumbersome to start using and even continue using after the

initial learning phase.

Lightweight The framework has to keep and preferably improve it’s lightweight structure. Considering the

range of devices this framework is intended for this is important.

Peer-to-peer computing The Peer2Me framework is, as the name implies, based on the concept of peer-

to-peer computing. But the current version of the system does not support this to full extent.

Transfer data To have more practical applications, the Peer2Me framework needs to support sending of

more than just text, e.g. files.

Separate network layer To be totally network independent, the framework has to have a completely

separate network layer architecture. This is not the case in the original framework.

The wish to improve these issues mentioned above is what motivates us to undertake this project. We
believe that if these initial problems of the framework are overcome, it can turn out to be an interesting

system with many employments.

1.2 Problem Definition

The title of this master thesis is:

Redesign and optimalization of the Peer2Me Framework

- A framework for developing Applications supporting mobile collaboration using J2ME

The main goal of the project is to redesign the Peer2Me framework, originally developed by Sars Norum
and Wolf Lund in their master thesis from spring 2005. Peer2Me is a framework for developing mobile
collaborative applications on mobile phones utilizing Personal Area Networks (PANs). The framework is

developed using J2ME technology and currently supports Bluetooth communication.

The Peer2Me framework has thoroughly been tested and analyzed in two separate depth study projects, and
several possible improvements have been discovered. This includes improving the architecture, simplifying

the interface presented to the developer and decrease its footprint.

To decide whether the improvements have been successful, the original and redesigned Peer2Me frameworks

4



will be compared with regard to size, complexity, architecture and user experience for the developers. The

results will be analyzed to determine the quality of the redesigned framework.

1.3 Project context and limitation of scope

As our depth study from 2005 [39] this master thesis project is a part of the Mobile Work Across
Heterogeneous Systems (MOWAHS) Project. As mentioned in the depth study, MOWAHS is a basic research
project performed in cooperation between the IDI’s groups for software engineering and database technology.
The project is supported by the Norwegian Research Council through the IKT-2010 program with a budget

of 5 million NOK over four years.

The founders of MOWAHS have stated three goals for the project:

G1) Helping to understand and to continuously assess and improve work processes in virtual organizations.

G2) Providing a flexible, common work environment to execute and share real work processes and their

artifacts, applicable on a variety of electronic devices (from big servers to small PDAs).

G3) Disseminating the results to colleagues, students, companies, and the community at large.

The original developers of the Peer2Me framework wrote in their depth study [30], that the creation of
the framework was contributing to the second of the three MOWAHS goals. As we are improving and
optimizing the Peer2Me framework, this project supports the second goal as well. Our redesign will take the
Peer2Me framework further towards fulfilling the goal.

As in the depth study this project is more of a software engineering character, rather than focusing
on collaborative work. The collaborative concept is described in the section about Computer Supported
Collaborative Work (CSCW) in Chapter 3, Central Concepts.

1.4 Reader’s Guide

The reader’s guide is meant to describe the different parts of this document, as it is rather large and divided

into both parts and chapters. We list each chapter with a short summary of the content.

Part I Introduction This part contains the introduction and the research questions and method.

Chapter 1 Introduction The first chapter consists of the motivation, the definition of the problem,

project context, limitation of scope and this reader’s guide.

Chapter 2 Research Questions and Method The motivation and problem definition gives us
some research questions we need to answer. To do this we need a research method and a

development method.
Part IT Prestudy In this part the prestudy is described.

5



Chapter 3 Central Concepts Describes the central concepts that affect the project.

Chapter 4 Software Architecture This chapter contains an introduction to quality driven software

architecture.

Chapter 5 Technology Here we will explain the latest aspects of the technology we use in the

development face of the project.

Chapter 6 The Original Peer2Me Framework This chapter contains a short description of the

first version of the Peer2Me framework and it’s concepts.

Chapter 7 Related work Here we will look into related work in the research field.

Part IITI Redesigning the Peer2Me Framework v1.0 This covers the design and implementation of
the redesigned Peer2Me framework as well as the elicitation of the requirements.

Chapter 8 Requirements Using Use Cases we will elicit the systems functional requirements. The

non-functional and environmental requirements will be discussed as well.

Chapter 9 Design In this chapter the high level architecture of the system is described. We will also
briefly explain the architectural patterns used in the design and give a short introduction to the

individual classes of the framework.

Chapter 10 Implementation Here the implementation method and tools are described. Some code

samples from the application is also provided.

Part IV A Developers Guide to the Peer2ME Framework v2.0 This part contains all the informa-

tion a developer needs to start programming a Peer2Me application.

Chapter 11 Getting Started with the Peer2Me Framework v2.0 This chapter contains an in-
troduction to the new version of the Peer2Me Framework.

Chapter 12 Developing a Peer2Me MIDlet Includes a description of how to develop a function-
ing Peer2Me MIDlet from scratch.

Chapter 13 Deploying a Peer2Me MIDlet Describes how the finished MIDlet could be deployed
to a portable J2ME device.

Part V Peer2Me v1.0 vs. Peer2Me v2.0 Contains a comparison of the previous and the new Peer2Me

version.

Chapter 14 Comparison of Framework Functionality This chapter contains a comparison of
functionality found in Peer2Me v1.0 and Peer2Me v2.0.

Chapter 15 Comparison of Code Structure In this chapter we describe the improvements made
to the code structure of the redesigned Peer2Me by comparing it to the structure of similar code

found in the original framework.

Chapter 16 Comparison of Framework Properties In this chapter we compare the properties of
Peer2Me v1.0 with the properties of Peer2Me v2.0. The properties we compare are; footprint of

framework and MIDlets, size of interface, complexity and transfer rate.



Part VI Evaluation Based on the test result we will evaluate the Peer2Me framework and discus usability,

strengths and weaknesses.
Chapter 17 Technology evaluation This chapter contains an evaluation of the technology used
throughout this project. Strengths and weaknesses of the technologies are presented.

Chapter 18 Evaluating the Redesign Evaluating the redesign of the framework from a developer

point of view.

Chapter 19 GQM; Analysis and interpretation This is the last phase of the Goal/Question/-
Metric approach. It answers the questions raised and evaluates whether the goals are reached or

not.

Part VII Conclusion The Conclusion of the project.

Chapter 20 Conclusion Here we summarize and find answers for our research questions.

Chapter 21 Further work If there is parts of our work we are not satisfied with we will suggest

further work in this chapter.

Part VII Appendices The Bibliography and the Glossary.

1.4.1 Which Chapters to Read

Readers that just want to read about the main results of this report, we advice to read Part VI Evaluation,

and the conclusion in Chapter 20.

If you want to read about the limitations of mobile phones and Bluetooth, please read Chapter 17 Technology

evaluation.

For information about how the redesigned Peer2Me framework performed as a framework for developing

applications for mobile collaborative work we advice you to read Chapter 18.

If you are a developer interested in how to develop a Peer2Me application, please read Part IV A Developers
Guide to the Peer2Me Framework.






CHAPTER 2

Research Questions and Method

The questions that we hope to answer in our research and testing in this project are outlined in this
chapter. We also describe the methodologies we choose to use to perform the research and to develop

the test application. The last chapter is about the test environment we will carry out our tests in.

2.1 Research Questions

The original version of the Peer2Me framework has proven to be a useful tool for developers creating J2ME
applications. However, some shortcomings has been discovered. This has resulted in several questions arising
from the motivation and problem definition, and these questions are formalized in the following. This report

will lead to the answers of these questions.

1. Does a redesign of the Peer2Me framework improve developers ability to produce J2ME

based applications for mobile collaboration?

* After we have completed our redesign of the Peer2Me framework, we will perform a comparison
of the original and the redesigned framework to point out the differences and improvements we

have achieved.

(a) Is the documentation and the code, with regards to structure and comments, improved sufficiently

to decrease the degree of difficulty developing a new application?

* We will thoroughly compare the documentation and the code, with regards to structure and

comments, of both the original and redesign versions of the framework.

(b) Does the redesigned architecture increase the developers understanding of the framework’s

structure, and by this simplify the process of developing a working application?
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x The architectures of the original and the redesigned Peer2Me framework will be evaluated
with regard to complexity and structure. To evaluate this we will use comprehension of
the architecture, use of patterns and best practices and the coupling between the different

modules of the framework as criteria.

2. Does a redesign of the Peer2Me framework reduce the footprint and the complexity of

the applications developed as well as the framework itself?

ES

(a)

(b)

(c)

The redesign will aim to improve the quality of both the framework and the finished applications
with regards to size and structure. Data concerning this properties will be collected through a

comparison of the original and redesigned framework.

Will the redesign of the architecture reduce the footprint of the framework?

* By reducing the number of classes and relations in the framework the size will be reduced

considerably.

Will improving the interface between the Peer2Me framework and the applications reduce the

number of code lines required to develop a working application?

* If the number of code lines are reduced by an improved architecture the development time as
well as the footprint of the applications will be reduced. This enables the developer to create

better applications more efficiently.

Will the redesign of the architecture reduce the coupling between the Peer2Me framework and

the applications?

* By reducing the number of relations connecting the framework and an application the

complexity of development will be reduced.

3. Will a redesign of the Peer2Me framework increase the performance and decrease the

error rate of the applications developed?

The redesign will address many of the problems found in Peer2Me applications developed upon

the original version of the framework.

Does the redesigned Peer2Me framework perform better, with respect to transfer rate, than the

original framework?

* The original Peer2Me framework transfer rate was measured during the scenario testing of
out depth study [39].

Does a revision of the code remove the errors experienced during testing of the original framework?

x The original Peer2Me framework contains some errors that force the users to do operations

in a certain order and to restart the application or the mobile phone.

Will the introduction of a system for logging the errors as they occur improve the developers

ability to correct these errors?

x If the errors of the application is written to a log the developers have a better chance of

locating and correcting these errors.
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2.2 Research Method

This chapter is a revision of the Research Method chapter found in our depth study [39]. The content and

structure of the chapter is basically unchanged, but some sections have been altered to suite this project.

According to Basili in [4], software engineering;:

7...can be defined as the disciplined development and evolution of software systems based upon

a set of principles, technologies, and processes.”

The discipline of software engineering is fairly new in a scientific perspective. There is quite a lot of
research going on in the field, but unlike other sciences the development of models for components like
processes and resources have been neglected. How these models should be integrated, evaluated and used
in projects are not satisfactory described either. Basili [4] describes three experimental models for software
engineering research. The models are quite similar, but focus on different areas and are parts of two distinct
paradigms; the scientific- and the analytical paradigms. The first consisting of the engineering approach and

the empirical approach and the latter of the mathematical approach.

The three approaches in short:

The engineering approach (scientific) In this approach one have to perform iterations of observing the
existing system, suggesting improvements and building and analyzing the new system. This continues

until no more improvements can be found.

The approach is strictly evolutionary and implies access to existing models of processes, products

and the environment in which the software is developed.

The empirical approach (scientific) Based on a model of the domain a set of statistical and qualitative
methods are proposed. Then these models are applied to case studies, measured and analyzed, and

the result is a validation of the model.

This distinct the approach from the previous one since a new model is proposed. It is also more
reliable to validate the model through the use of case studies. This approach is widely used in all fields

of research.

The mathematical approach (analytical) A formal theory or a set of axioms is presented, the theory
are developed and a result is derived from it. It’s preferable to have this results compared to empirical

observations.

The two approaches of the scientific paradigm, engineering and empirical, will constitute the base for Parts
II1, V and VI of this project. The engineering approach will be utilized through the redesign of the Peer2Me
framework described in Part III. In the comparison of the original and the redesigned Peer2Me framework

outlined in part V, we will collect empirical data that will be used in the evaluation in Part VI.
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2.2.1 The engineering approach

In Chapter 2.2 above we described the engineering approach as; observing, suggesting improvements,
analyzing and building. The observation phase consists of the Prestudy, Part II, where we will look into
central concepts, aspects about the Peer2ME framework that we discovered through the work performed in

our depth study [39] and new technology as well.

Since the main focus of this project is to redesign and improve the Peer2Me framework we will incorporate
the last three phases of the engineering approach into the requirements, design and implementation chapters
of Part III, Redesigning the Peer2Me Framework v1.0.

When we stared the depth study we considered using the Rational Unified Process (RUP) [22] as a
development process for the project. However, we soon realized that the RUP would be a bit to heavy
weight for a project of this scale, so we opted for an adapted process still using the principles of UP!
development. The iterative and incremental process of analyzing and building described in the Engineering
approach, is a significant part of UP. The use of this approach turned out to be perfect for this type of

project and we will continue to use it in our current process.

Prestudy

In our Prestudy we will look into and describe the central concepts that concerns our domain. We will also
make a summary of and outline the essentials of the Peer2Me framework and review the newest technology
in the field. This will give us an overview of what we have to work with and what challenges we have to

overcome in our redesign.

The Unified Process

As described above we have chosen to continue with our adapted UP approach for this project, so we will
keep many of the elements found in the RUP. In the following we describe the elements we kept and their
role in the RUP.

In [22] the Rational Unified Process (RUP) is defined as:

”...a software development process that is iterative, architecture-centric, and use-case-driven.”

The process is intended to be tailored to select the most appropriate development processes for a software
project and is based upon using proven techniques to develop software effectively. The RUP uses and
iterative approach that consists of a sequence of incremental steps or iterations. Figure 2.1 shows how
a typical iterative development with RUP is carried out. It starts with Business Modeling and Planning
before it enters a loop of iterations. Each iteration consists, more or less, of this parts; Requirements
elicitation, Analysis & Design, Implementation, Testing and Evaluation. Each iteration is based upon the

work performed in the previous iterations and the result is one step closer to deployment.

1 Unified Process

12



Analysis &
Design

Requirements

Business
Modelling
Configuration & Implementation
Change
Manage ment

Planning

Environment Test

Initial
Planning

Evaluation

Deployment

Figure 2.1: Iterative Development in the RUP

Here is a description of how we intend to perform the different tasks of the Iterative Development model

during the development of our Peer2MeAnalyzer application.

+ Business Modeling and Planning is covered by our prestudy where we investigate the Peer2Me

framework and familiarize with the central concepts and new technology of the domain.

The tasks in the iterative loop:

o Requirements are specified through Use Cases and Use Case models. In addition we will specify

non-functional requirements textually.

o Analysis and Design will imply analysis of the elicited requirements and choosing a software

architecture with the desired properties.

o Implementation will be performed in parallel with some development testing using an iterative

approach.
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o In addition to test simultaneously with the implementation we will perform a more thorough test
when the framework is ready to use. This is to ensure that it fulfils all the requirements and has a

low fault rate. The test will be performed as a workshop with developers performing given tasks.

o Evaluation will be done at the end of each iteration to decide whether the framework has reach
a satisfactory level of quality or if another iteration is necessary.

o Configuration & Change Management will be supported by the use of CVS? to keep track
of the different versions of the application during development.

o The base of the development environment will be the Eclipse® software framework. In addition

we will make use of the SUN Java Wireless Toolkit? for J2ME specific functionality. The

documentation is written in I TEX using a plugin for Eclipse.

x At deployment we will have the redesigned and improved the Peer2Me framework ready for developers

to use.

The RUP architecture is divided into two dimensions, often presented in a diagram with the two dimensions

along the vertical (Static) and horizontal (Dynamic) axis.

Dynamic structure This is the time dimension and describes the cycles, phases, iterations and milestones

of the process. It illustrates the lifecycle of a project.

Static structure Describes the elements involved in the process and how they are grouped into process

disciplines. The elements can be activities, disciplines, artifacts and roles.

We will now describe the four lifecycle phases of RUP.

Inception Phase This phase consists of understanding the scope of the project, build a business case and

get stakeholder approval. This leads up to the Lifecycle Objective Milestone.

Elaboration Phase Here one will try to reduce major technical risks, create the outline of an architecture
and find out what is required to build the system. In this phase the milestone is the Lifecycle
Architecture.

Construction Phase To build the first operational version of the product is the goal of this phase and it

ends in the Initial Operational Capability Milestone.

Transition Phase Lastly the final version is built and delivered to the customer. The milestone of this

phase is Product Release.

Each of this phases contains one or more iterations and there will be as many iterations as it takes to
fulfill the objectives of the phase. In Table 2.1 we have described what disciplines and artifacts we worked
with in each of the four phases of the lifecycle.

2Concurrent Versions System
S3www.eclipse.org
4http://java.sun.com /products/sjwtoolkit /index.html
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Disciplines \ Artifacts \ Inception | Elaboration | Construction | Transition
Requirements Use Cases Start Refine
Non-functional | Start Refine Refine
Requirements
Environmental Start Refine Refine
Requirements
Glossary Start Refine Refine
Analysis and Design | Model Decom- Start Refine
position View
Class/Uses Start Refine
View
’ Implementation \ Source Code \ \ Start \ Refine \ Refine ‘
Test GQM Start Refine
Scenarios Start Refine
Evaluation Technology Start Refine Refine Refine
Peer2Me frame- Start Refine Refine
work
Peer2MeAnalyzer Start Refine

Table 2.1: The Disciplines and artifacts of the RUP lifecycle

2.2.2 The empirical approach

In ”An Empirical Methodology for Introducing Software Processes”[34], Shull et al. describes some important

aspects of empirical studies in software engineering.
First and foremost it’s important to separate between qualitative and quantitative data:

Quantitative data ...can be used for measuring a particular aspect of a process, e.g. "number of nodes

detected”. In other words this is numerical data that can be measurement and statistics.

Qualitative data ...is expressed in words and gives a richer understanding of the gathered information.

This describes the perceived quality of the results.

Both data types are important in testing, since quantitative data is useful when performance is evaluated

and qualitative data can say something about the usefulness and quality of a system.

The Research Questions in Chapter 2.1 are of both quantitative and qualitative form. The qualitative
data will be collected through a comparison of the original and the redesigned Peer2Me framework. This
comparison is found in Part V Peer2Me v1.0 vs. Peer2Me v2.0. To find answers for the quantitative related
questions we will have to do empirical experiments in form of a comparison of the framework properties.
This comparison is described in Chapter 16. To perform and document these experiments we choose to use

of the Goal/Question/Metric paradigm as described in the following.
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The Goal/Question/Metric paradigm

In this section we will describe the methodology we intend to use in our empirical study of the redesigned

Peer2Me framework, and also how we will adapt the methodology to best fit our project.

The Goal/Question/Metrics (GQM) approach, proposed by Basili [41], assumes that an organization must
fulfill three conditions to be able to measure results from experiments in a purposeful way:

1. Specify the goals for itself and its projects.
2. Trace those goals to the data that is intended to define those goals operationally.

3. Provide a framework for interpreting the data with respect to the stated goals.

The application of the GQM results in a measurement model specification targeting a set of issues and
rules. These are issues and rules for the interpretation of measured data. The resulting model (see Figure

2.2) includes these three levels:

1. Conceptual level This is the Goal part of the model. A goal is defined for an object, for a variety of
reasons, with respect to various models of quality, from various points of view, relative to a particular

environment. Object of measurement are products, processes, and resources.

2. Operational level The Question part of the model. A set of questions is used to characterize the way
the assessment/achievement of a specific goal is going to be performed based on some characterization
model. Questions try to characterize the objects of measurement (product, process and resource) with

respect to a selected quality issue and to determine its quality from the selected viewpoint.

3. Quantitative level The Metric. A set of data is associated with every question in order to answer it

in a quantitative way (either objectively or subjectively).

Conceptual
level

Operational

level Question

Question Question Question Question

E:::mm““ Metric | | Metric | | Metric | Metric i Metric | | Metric |

Figure 2.2: GQM Hierarchical structure

16



The definition of the Goal definition template can be found in [43]. The template is used to make sure
that none of the important aspects of the goal are forgotten when the goal is defined in the description. The

template is:

Analyze Object(s) of study

for the purpose of Purpose

with respect to their Quality focus

from the point of view of the Perspective

in the context of Context.

In Ezperimentation in software engineering: an introduction [43], the main activities (see Figure 2.3) of

the experimentation process are defined as:

Definition is the first step. Here the experiment is defined in terms of problem, objective and goals.

Planning is the next step, where the design of the experiment is laid down. The instrumentation is

considered and the threats are evaluated.
Operation of the experiments consists of measurement collection.
Analysis and interpretation In this activity the measurements from Operation is analyzed and evaluated.

Presentation and package This is the final results.

The model is not to be interpreted as a "true” waterfall model because one activity is not necessarily finished

before the next activity is started.

We will make use of the GQM approach in part V, "Peer2Mev1.0 vs. Peer2Mev2.0”, where we will describe
how we perform empirical experiments in our framework properties comparison to gather quantitative data

about the redesigned framework.

2.2.3 Evaluation

The Evaluation will be based on the results found when comparing the original and the redesigned framework

(qualitative data), and the quantitative data gathered during the framework properties comparison.

Technology evaluation A subjective evaluation of the technologies used in the project. The evaluation
will include; Mobile Phones and J2ME, Bluetooth and Development tools. For each category strengths

and weaknesses will be presented as well as a general evaluation.

Evaluating the redesigned Peer2Me framework This chapter will be a summary of the results

gathered from both the code structural and framework properties comparison.
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Experiment
Idea

Experiment Process

Experiment
Planning

Experiment
Operation
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Interpretation

Presentation &
Package

Figure 2.3: Overview of the experiment process

The Analysis and Interpretation phase of GQM The final phase of the GQM aims at answering the
questions raised in Chapter 16.1. When all the answers are found one can conclude whether or not the
goals are reached. The result of this can be used to determine if the redesigned Peer2Me framework

fulfills it’s purpose.
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CHAPTER 3

Central Concepts

During the last few years’ consumer electronics industries have continually introduced new mobile devices
offering new features. A demand to be supported in the way we live and do things, has triggered an evolution
which has provided a considerable amount of new benefits to today’s users of mobile devices [28]. Among the
exciting new features of today’s mobile devices is the support for Peer-to-Peer (P2P) computing and Mobile
Ad Hoc Networking (MANETS). Seen in relation with Computer Supported Cooperative Work (CSCW),

these concepts have constituted a basis from which the Peer2Me framework has arisen.

In this chapter, we will present central concepts related to the Peer2Me framework. Since this master
thesis basically is a continuance of our depth study, central concepts presented in this chapter will be the
same as the ones presented in the Central Concepts chapter in our depth study report [39]. The content of

the chapter is mainly unchanged, but some sections have been added to suite this project.

3.1 Cooperative Work

Cooperative work, literally, refers to the practice of people working together with commonly agreed upon
goals. In other words, a cooperative work relationship is constituted by the fact that several workers are
interdependent in their work. The cooperation is based upon interaction through changing the state of a

common field of work.

Generally speaking, cooperative work relations are formed as a consequence of the limited capabilities of
single individuals, that is, because the work could not be done otherwise, or at least not as efficiently, clever
or quickly as if it was carried out by a single person. A general trend in modern work settings has been, and
still is, that work becomes more and more complex. Demands for more complex products leads to demands

for flexibility, shorter production time, increased quality etc. To accomplish such tasks, there is a need
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for experts having different competence and backgrounds to work together towards the same goal. When
the number of workers exceeds the limit of a few, and/or workers are located at different places working
at different times, they will need a way to communicate and to coordinate their activities [6]. To develop
successful methods/tools supporting collaboration between people, it is essential to understand the nature

of human interaction. Human communication is very complex and involves a combination of:

Verbal communication: Communication between persons with the use of words. Includes both oral

communication and written messages.

Nonverbal communication: Defined as communication between persons without using words. Most
people use gestures and body language in addition to words when they speak. These gestures include
acts such as pointing as well as using the hands and body to keep time with the rhythms of speech and

emphasize certain words or phrases.

Formal communication: Communication between people in a formal setting, e.g. people communicating

in well planned meetings.

Informal communication: Communication between people in an informal setting, e.g. people stopping

and communicating as they accidentally meet in the corridors.

The combination of these aspects makes the natural human communication very complex.

3.1.1 Computer Supported Cooperative Work

Computer Supported Cooperative Work (CSCW) is a research field that focuses on how computer-based
systems can support multiple people working on related tasks. The term CSCW was introduced by Irene
Greif and Paul Cashman in 1984 at a conference attended by researchers and developers examining how
people work together in groups and how technology can support them [14]. Since 1984, researchers have put
a vast effort in into the area of CSCW. In spite of this, researchers and developers still struggle to come up
with tools able to replace the value of being collocated while cooperating. To understand their problems, we
have to consider the complexity of supporting collaboration in all the CSCW dimensions. One of the most
cited classifications of CSCW systems, also called groupware, is the time-place matrix [20] shown in Figure
3.1.

In one dimension, the matrix distinguishes same time (synchronous) cooperative work from different time
(asynchronous) cooperative work. In the other dimension, it distinguishes same place cooperative work from
different place cooperative work. With this matrix, groupware systems can be classified by placing them in
the quadrant(s) they support. The most complex challenges lies in developing groupware supporting workers
who are not collocated (different places and/or different time). The reason for this is that the groupware
becomes the only available communication channel between the workers. In these cases, the groupware has
to address the complexity of human communication including support for awareness, verbal-, nonverbal-,
formal- and informal communication. When it comes to workers who are located at the same place at the
same time, other types of requirements will become relevant as these users might want to use computers to

enrich the natural communication instead of replacing the natural communication between users [6] [15].
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Figure 3.1: Classifying groupware with the time-place matrix

According to Lund and Norums master thesis [31], the Peer2Me framework covers both synchronous (same
time) and asynchronous (different time) applications in the "same place” category. As the framework is based
upon peer-to-peer networking (no infrastructure) and supports sharing of data (communication) between
users, it is fairly obvious that it supports communication between users located at the same place at the
same time. To understand how the framework can cover the same place, different time category, we have to
focus on the users rather than the devices. Seen from the device’s perspective, the framework requires the
devices to be located at the same place at the same time for data exchanging to happened. But seen from
the user’s perspective, users are allowed to communicate asynchronously because sending of data does not
require the recipient to be present. However, our opinion is that the Peer2Me framework mainly addresses
the same place same time quadrant. This because the devices used in peer-to-peer networking usually are

personal property that users constantly carry around with them.

3.1.2 Mobile Computer Supported Cooperative Work

Mobile Computer Supported Cooperative Work (MCSCW) is, as the name indicates, a research field that
focuses on how mobile computers can support multiple people working on related tasks. The last years
progress in technology when it comes to mobile devices has been amazing and the possibilities for using
computers to support cooperative work is no longer limited to stationary devices. The extreme mobility and
support for different kinds of wireless networks allows users to collaborate whenever they want, wherever
they want. This includes both planned communication and ad hoc communication. Central concepts within
MCSCW, such as mobile ad hoc networking and different types of wireless networks are thoroughly treated
in respectively Chapter 3.4 and Chapter 3.2.
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3.2 Wireless Networking

In general, wireless networking refers to the use of infrared or radio frequency signals to share information and
resources between devices. Rapid advances in wireless technologies have changed the wireless communication
landscape dramatically during the past years. Today, we have many types of wireless networks. These types
can mainly be divided into two categories; telephone networks and computer networks. In the following we

will focus on computer networks, and try to classify and describe their characteristics.

3.2.1 Wireless Wide Area Networks (WWANSs)

Wireless Wide Area Networks, from now on referred to as WWANSs, are infrastructure-based networks built
up by a set of base stations broadcasting radio signals to mobile users. WWANs addresses the need to
stay connected while traveling across large geographical areas as the reach range of the wireless signals are
wide. Connections can typically be made over cities or even countries. Today, the networks we use to make
such connections are actually cellular telephone networks. Networks like GSM (2G) and UMTS (3G) enable
wireless computer connectivity almost worldwide and support transmission of both speach and raw data. [2]
3]

3.2.2 Wireless Metropolitan Area Networks (WMANS)

Wireless Metropolitan Area Networks, hereby abbreviated as WMANS, are also infrastructure-based networks
built up by a set of base stations. These networks connect users within metropolitan areas such as multiple
buildings on a university campus or multiple office buildings. WMANSs can be realized by a number of
interconnected WiF1i transmitters located in a way that covers the desirable area with radio signals. Otherwise
it can be realized by using WiMAX that provides wireless coverage over many square kilometers, much greater

than WiFi. WiMAX has the potential to allow wireless mobility over an entire metropolitan area. [3]

3.2.3 Wireless Local Area Networks (WLANS)

Wireless Local Area Networks (WLANSs) are networks, which allows users to establish wireless connections
within local areas as e.g. buildings. WLANSs can operate in both infrastructure-based and ad hoc mode.
In the infrastructure mode, wireless stations connect to wireless access points that define a finite region of
coverage. These access points bridges the wireless stations and the existing network backbone. The other
alternative, the ad hoc mode, let users connect to each other without having a fixed infrastructure with
access points. Instead the wireless stations connect to each other directly. This mode is only supported
within very a limited area such as a room. Examples of typical WLAN protocols include the IEE 802.11
series (a,b,g), HomeRF and HiperLAN2. Today, the leading WLAN protocol in the consumer market is the
IEEE 802.11g, which has a theoretical maximum data rate of 54Mbps. [2] [3]

3.2.4 Wireless Personal Area Networks (WPANS)

Wireless Personal Area Networks (WPANS) are networks connecting users within a personal operating space,
typically supporting up to a ten meter range. This is the type of network the Peer2Me framework addresses.

The emphasis is on instant connectivity between devices that manage personal data or which facilitate data
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sharing between small groups of individuals. An example might be spontaneous sharing of documents and
music files between two or more individuals. Another example might be synchronizing data (e.g. a calendar)
between a mobile phone and a computer. The nature of these types of data sharing scenarios is that they
are ad hoc and often spontaneous. The most relevant technologies suitable for WPANSs today are Bluetooth,
ZigBee and infrared light. Whereas infrared light demands clear vision between two peers and a maximum
range (distance) of about one meter, Bluetooth is often more suitable due to the use of radio waves instead
of light as transmission medium. Bluetooth uses the unregulated 2.4GHz band, has a maximum data rate of
1Mbps and a signal range of about ten meters. As the Peer2Me framework addresses WPANs and per today
only supports Bluetooth, we will write more about mobile ad hoc networking and the Bluetooth technology

in the following sections. [2] [3]

3.3 Peer-to-Peer Computing

The term "peer-to-peer computing”, refers to the use of computer networks that relies in the computing
power and bandwidth of the participants (peers) in the network rather than fixed servers offering resources
and services. Peer-to-peer is all about sharing; giving to, and obtaining from a peer community. Peers
typically depend on each other for getting computing resources and information, which are essential for the

system as a whole. Each peer gives some resources and obtains other resources in return [29].

In Figure 3.2 from [29], Milojicic et al. show how all computer systems can be classified as centralized
or distributed. While centralized systems represent single unit solutions, distributed systems consist of
components located at networked computers which communicate and coordinate their actions by passing
messages. Distributed systems can further be classified into a client-server model or a peer-to-peer model.
The difference between these models is that the central unit in the client-server model is a server providing
all services and resources, while the peer-to-peer model has no central unit. Each peer gives some resources

and obtains other resources in return [29].

Computer Systems

PN

Centralized Systems Distributed Systems
(mainframes, SMPs, workstations) / \
Clent-Server Peer-to-Peer
Flat Hierarchical Pure Hybrid

Figure 3.2: Taxonomy of computer systems
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3.3.1 Pure or hybrid peer-to-peer

The peer-to-peer model can either be pure or hybrid. According to Lund and Norum [31], the Peer2Me
framework they developed offers a combination of a pure and hybrid P2P architecture. In a pure P2P
model it does not exist any central unit (server) responsible for managing or coordinating the services and
the resources among the peers in the network. All peers are equal and have the same responsibility in the
network. This pure P2P model allows peers to join and leave the network as they wish without affecting the
connection between other peers. An example of a system using the pure P2P model is Gnutella, a system
that offers peer-to-peer sharing of data between computers [29]. The pure P2P model is viewed in Figure
3.3.

<3

Peer Peer

Figure 3.3: Pure peer-to-peer model

In a hybrid P2P model there are also connections between each peer, but a central unit (server) provides
certain services to the peers. Figure 3.4 contains the P2P hybrid model. In this model, the peers first contact
a server to obtain meta-information, such as the identity of the peer on which some information is stored,
or to verify access to a specific peer. From then on, the communication between the peers is carried out.

Examples of computer systems using hybrid P2P are file sharing systems such as Napster and iMesh [29].

Selecting a peer-to-peer architecture is often driven by goals such as cost reduction, need for improved
performance, improved scalability, dynamism and ad hoc communication. As earlier mentioned in this
chapter, all peers in a peer-to-peer network provide resources, including bandwidth, storage space, and
computing power. Thus, as nodes arrive and demand on the system increases, the total capacity of the
system also increases. This is not true in a client-server model with a fixed set of servers, in which adding
more clients could mean slower data transfer for all users. The distributed nature of peer-to-peer networks

also increases robustness in case of failures by replicating data over multiple peers and enabling the peers to
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Figure 3.4: Hybrid peer-to-peer model

find data without relying on a centralized server. With a pure peer-to-peer architecture, there is no single

point of failure in the system [29].

P2P networks are typically used for connecting nodes via largely ad hoc connections. Such networks are
useful for many purposes. Sharing content files, audio files, video files or anything in digital format is very
common. The P2P model is also widely used within instant messaging applications and is well suited for

real time communication since it does not rely on a central server to collect and relay data [29].

3.4 Mobile Ad Hoc Networking

Mobile ad hoc networks, abbreviated MANETS, are networks formed dynamically by an autonomous system
of mobile nodes that are connected via wireless links without using an existing network infrastructure.
MANETSs allows users to connect spontaneously with other users within the range of the wireless network
signals [3]. This signal range can be seen on as a digital sphere surrounding the user (see Figure 3.5). When
a user carrying a mobile device acting as a node moves out of the sphere, the connection between this node

and the nodes inside the sphere is broken.

No infrastructure needed and quick deployment make mobile ad hoc networks perfect for supporting ad hoc
communication between people and very suitable for emergency situations like natural or human induced

disasters, military conflicts, emergency medical situations etc.

Network technologies supporting mobile ad hoc networking can mainly be found within the Wireless Personal
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Figure 3.5: A digital sphere around the user

Area Network (WPAN) category described in Chapter 3.2.4. Examples of WPAN technologies would be
Bluetooth, ZigBee and infrared light. A WPAN can either be a piconet or a scatternet. As the Peer2Me
framework for the time being only supports Bluetooth, we will focus on Bluetooth while explaining the

differences between a piconet and a scatternet. The explanation can be read in Chapter 5.2.
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CHAPTER 4

Software Architecture

This chapter contains an introduction to software architecture. First, we will try to explain what software
architecture is, and then present factors that are motivating when creating an architecture. The theory in
this chapter will constitute a basis for understanding the architectural decisions we present in Chapter 9,

Design.

4.1 What is Software Architecture?

An architectural view of a system is abstract and distills away details of implementation. The focus is on
the behavior and interaction of the system elements. In Software Architecture in Practice [5], the following

definition of software architecture is provided:

"The software architecture of a program or computing system is the structure or structures of
the system, which comprise software elements, the externally visible properties of those elements,

and the relationships among them.”

Architecture is a crucial part of the software design process. This because deciding the software architecture
is the first step toward designing a system with the desired qualities and properties. Depending on the
desired qualities, different architectural patterns can be used to achieve these goals. Architectural patterns
can be thought of as general repeatable solutions to common problems, describing elements and relation
types together with a set of constraints on how they may be used. A common architectural pattern is the
client-server pattern. Here, client and server are element types, and the relation is described by the protocol
they use to communicate [5] [27]. A description of the patterns used in the design of the Peer2Me framework
we are about to present in Part III, Redesigning the Peer2Me Framework v1.0, can be read in Chapter 9.3,

Design Patterns.
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4.2 Creating an Architecture

There is no such thing as an inherently good or bad architecture. Architectures are either more or less fit.
An architecture is the result of several business and technical decisions. Usually, several people are interested
in the construction of a software system. These people are called stakeholders, and often includes both the
project manager, the developers, the maintainers, the customer and the end users. As these stakeholders
have different concerns depending on which properties and qualities they consider most important, they
will try to influence the decisions taken in the design process in a way that protects their own interests.
Besides influence by stakeholders, architecture can also be influenced by the developing organization, by the
background and experience of the architects, and by the technical environment. If the organization and/or
the developers have positive experiences using a specific architecture, chances are good they will choose the

same architecture again.

In Software Architecture in Practice [5], some general rules of thumb to follow when designing an architecture

are presented. The essence of these recommendations are presented in the following.

Process recommendations:
x The architecture should be developed by a single architect or a small group of architects with a leader.
* The architect should have the functional requirements that the system (and architecture) must satisfy.
* The architecture should be well documented in several views.
* The architecture should be reviewed by all stakeholders.
* The architecture should be analyzed and evaluated in an early phase, before it is too late to change it.

* The implementation of the architecture should be incremental, starting with the creation of a "skeleton”,

and adding functionality through several increments.

Structural recommendations:

* The architecture should consist of well defined modules built on the principles of information hiding

and separation of concerns.

* Each module should have a well defined interface, hiding changes and allowing developers to work

independently of each other.

*

Quality attributes should be achieved using known tactics.
* The architecture should not depend on a specific version of a tool.
* Modules producing data and modules consuming data should be separated.
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4.3 Quality Attributes

Achievement of desired quality attributes is critical to the success of a system. Desired qualities can be
extracted from both system requirements and the interests of the stakeholders. Achieving quality attributes
does not depend on the design alone, nor the implementation or the deployment, but the entire development
process. It is however critical to the realization of many qualities that they already become designed in at
the architectural level. There are usually more than one quality attribute involved in a system. A set of
well-known quality attributes are listed in the book Software Architecture in Practice [5] and we will present
these attributes in the following where we also mention some architectural tactics that can be used to achieve

them.

4.3.1 Usability

The definition of Usability:

"Usability is concerned with how easy it is for the user to accomplish a desired task and the kind

of user support the system provides.”

Usability is usually desirable from both a developer/maintainer perspective and an end-user perspective.
Tactics to achieve good usability from a developers/maintainers perspective, are typically separation of user
interfaces from the rest of the application and to provide a solid, easily understood documentation of the
architecture and the source code. An end-user would typically focus on the quality of the feedback given
by the system, giving information about what the system is doing. To provide good usability, the system

should support user initiative based on the feedback, e.g. choose "cancel” or "undo” [5].

4.3.2 Performance

Performance:

"Performance is about timing. Events (interrupts, messages, requests from users, or the passage

of time) occur, and the system must respond to them.”

To achieve high performance, decreasing resource demand and managing resources effectively is crucial.
Optimizing algorithms, reducing computational overhead and reducing the number of events processed will
contribute to decrease the resources demanded of a system. Other tactics increasing the performance are
introduction of concurrency (threading), use of caching, and an increase of available resources (e.g. faster
CPU, more RAM, faster network etc.) [5].

4.3.3 Modifiability

A definition of Modifiability:

"Modifiability is about the cost of change. It brings up two concerns; What can change (the

artifact)? - When is the change made and who makes it (the environment).”
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The goal of modifiability tactics is to control the time and cost to implement, test, and deploy changes.
To achieve this goal semantic coherence between modules should be maintained and modules should be
generalized. To prevent ripple effects when modifying modules in a system, information should be hided
within the modules, and communication paths between modules reduced to a minimum. Other tactics

contributing to great modifiability are use of configuration files and polymorphism [5].

4.3.4 Availability
This is said about Availability:

”All approaches to maintaining availability involve some type of redundancy, some type of health

monitoring to detect a failure, and some type of recovery when a failure is detected.”

To achieve good availability, tactics detecting faults, recovering from faults and tactics that prevents failures
are needed. Three widely used tactics for detecting faults are ping/echo, heartbeat and exceptions. To
recover from faults, tactics like voting, use of redundancy and support for rollback could be used. Fault

prevention can be achieved by using transactions, a process monitor and/or removal from service [5].

4.3.5 Security

Tactics for achieving security can be divided into three different categories; resisting attacks, detecting attacks

and recovering from attacks. In Software Architecture in Practice [5] we find this analogy:

"Putting a lock on your door is a form of resisting an attack, having a motion sensor inside of
your house is a form of detecting an attack, and having insurance is a form of recovering from

an attack.”

To resist attacks, tactics like authentication and authorization of users could be used. Maintaining data
confidentiality and integrity, and limit exposure and access are also well-known tactics to achieve better
security. To detect attacks, systems should have an intrusion detection system consisting of sensors able to
detect attacks. Recovering from attacks could be made possible by using e.g. redundancy and/or support
for rollback [5].

4.3.6 Testability

The goal of Testability as a quality attribute is:

”Allow easier testing when an increment of software development is completed.”

Being able to manage input and output data is essential to achieve good testability. A well-known tactic
is Record/playback where both input and output data could be recorded and compared each time the
system is tested. Another tactic is to separate interface from implementation. This allows substitution of

implementations and could be very useful [5].
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CHAPTER b

Technology

This chapter reviews and updates the technology review performed in our depth study [39]. This includes
Java 2 Micro Edition which is the development platform the framework is built upon, and Bluetooth which

is the wireless network medium the framework supports.

5.1 Java2 Micro Edition

Java 2 Micro Edition (J2ME) is Sun Microsystems’ contribution to small mobile devices with limited CPU
power, memory size and storage capacity. J2ME was introduced in June 1999, and is basically a platform
which provides a robust, flexible environment for applications running on mobile phones, PDAs and other
mobile devices [17]. The platform delivers the power and benefits of Java technology, and includes a broad
range of built-in network protocols. The J2ME platform is supported by leading electronics vendors and
used by companies all over the world. Today the platform is deployed on millions of mobile devices. Due to
the diversity among devices, the J2ME architecture also comprises a variety of optional packages that can
be added and used to construct a runtime environment that perfectly fits the requirements of a particular
assortment of devices [26]. Such optional packages can for example add support for database connectivity,
wireless messaging, multimedia, Bluetooth, or web services. Because the packages are modular, developers
can avoid carrying the overhead of unnecessary functionality by including only the packages an application
really needs [26]. The Peer2Me framework [31] is currently implemented with a Bluetooth [16] network
module, and uses an optional package called JSR-82 which adds support for Bluetooth to the J2ME platform.

5.1.1 J2ME Architecture

The J2ME architecture is composed of three scalable layers; Java Virtual Machine (JVM), Configurations,
and Profiles [17]. The architecture is viewed in Figure 5.1.
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Figure 5.1: J2ME Architecture

Java Virtual Machine

The Java Virtual Machine layer is an implementation of a Java virtual machine that is customized for a

particular devices host operating system and supports a particular J2ME configuration [25] [17].

The Java Virtual Machine (JVM) supporting small mobile devices with slow processors and limited memory
is called the Kilobyte Virtual Machine (KVM). This virtual machine is in the range of 40 to 80 Kbytes - hence
the name Kilobyte Virtual Machine. Devices targeted by the KVM have typically 16- or 32-bit processors
and a minimum total memory of 128 kilobytes. To launch an application on top of KVM, a Java Application
Manager (JAM) serves as an interface between the native operating system on the device and the KVM [25]

7).

Configurations

The Configuration layer defines the minimum set of Java Virtual Machine features and core Java class
libraries available on a particular category of devices. This category of devices represent a particular market
segment and can be thought of as the lowest common denominator of Java platform features that a developer

can assume will be available on all devices [25] [17].

Currently, there exists two J2ME configurations; the Connected Limited Device Configuration (CLDC),
and the Connected Device Configuration (CDC). CLDC is the smaller of the two configurations, designed
for devices with slow processors and limited memory. This would typically be mobile phones, pagers and
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PDAs [32]. Such devices usually have either 16- or 32-bit CPUs, and a minimum of 128 KB to 512 KB of
memory available for the Java platform implementation and associated applications. The other configuration
available, CDC, is a superset of CLDC and designed for devices that have more memory, faster processors,
and greater network bandwidth, such as TV set-top boxes, in-vehicle telematics systems, and high-end
PDAs. CDC includes a full-featured Java virtual machine, and a much larger subset of the J2SE platform
than CLDC. Most CDC-targeted devices have 32-bit CPUs and a minimum of 2MB of memory available for
the Java platform and associated applications [25] [17].

Profiles

The Profile layer defines the minimum set of Application Programming Interfaces (APIs) available on a
particular group of devices. Profiles are implemented upon a particular configuration. The idea is that a
category would include several different groups of devices. Devices that are members of the same category
have fundamental features in common, while devices that are members of the same category and the same
group offers equal functionality to the developer. When implementing applications in J2ME, applications
are written for a particular profile and are thus portable to any device that supports that profile, i.e. devices
that can be classified into the same category and group. A device can however support multiple profiles [25]
[17].

The only profile currently developed for the CLDC configuration is the Mobile Information Device Profile
(MIDP). It is designed for mobile phones and entry-level PDAs and offers core application functionality
required by mobile applications. This includes API classes related to interface, persistence storage,
networking, and application management. Together with the CLDC, MIDP provides a complete J2ME
runtime environment. For the CDC configuration there are developed several profiles. The Foundation
Profile, the Personal Profile and the Personal Basis Profile all adds different functionality for different types
of devices supporting CDC [25] [17].

MIDlets

A Java application intended for a CLDC device is called a MIDlet [32], and must be formatted into a
Java Archive (a JAR file) to run on the device. To enable distribution of third party MIDlets, developers
must generate metadata files associated with each JAR file. This metadata files are called Java Application
Descriptor files (JAD files) and contains information that the Java Application Manager (JAM) uses to verify
and configure the MIDlet at loading time [17].

5.2 Bluetooth

This chapter gives a brief introduction to the Bluetooth technology. As the Peer2Me framework currently
only uses Bluetooth as wireless network medium, a deeper understanding of how Bluetooth works will be

useful to perform our redesign of the framework.
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5.2.1 What is Bluetooth?

Bluetooth is a low cost, low power, short-range radio technology intended to replace cable connections
between mobile phones, PDAs and other mobile devices. It can clean up your desk considerably, making
wires between your workstation, mouse, laptop computer etc. obsolete. The idea that resulted in the
Bluetooth technology was born in 1994 when the Swedish company Ericsson Mobile Communications decided
to investigate the feasibility of a low-power, low-cost radio interface between mobile phones and their
accessories. Ericsson soon realized that for the technology to succeed, there must be a critical mass of mobile
devices using their new short-range radio technology, so in 1997 they decided to give the technology away for
free. Only a year later, the five companies Ericsson, IBM, Intel, Nokia and Toshiba held simultaneous press
conferences in England, USA and Japan announcing that the companies would join to develop a free, open
specification for short-range wireless connectivity. The new specification was named "Bluetooth”, and the
five companies created a "Bluetooth Special Interest Group” (SIG) that would be responsible for developing
the new specification [28]. Today, the Bluetooth SIG promoter members include: Agere, Ericsson, IBM,
Intel, Microsoft, Motorola, Nokia, and Toshiba. Promoter companies are highly engaged in the strategic and

technical development of Bluetooth wireless technology [36].

5.2.2 Origin of the name

The Bluetooth technology is named after a tenth-century Danish Viking King, Harald Blatand (english;
Harald Bluetooth), who united and controlled Norway and Denmark. Blatand was King of Denmark and
Norway from 935 and 936 respectively, to 940, and contributed greatly to the unification of warring tribes from
Denmark (including Skane, present-day Sweden, where the Bluetooth technology was invented) and Norway.
The name Bluetooth was chosen because of Harald’s ability to unite. The developers of Bluetooth hoped that
the Bluetooth technology would unite the world as Harald Bluetooth united Norway and Denmark. Bluetooth
likewise was intended to unify different technologies like computers and mobile phones. The Bluetooth logo
merges the Nordic runes analogous to the modern Latin H for "Harald” and B for "Bluetooth”. The logo can

be seen in Figure 5.2

Figure 5.2: The Bluetooth logo

5.2.3 Communicating via Radio Waves

A radio wave is a pulse of electromagnetic energy. Radio waves are generated when a transmitter oscillates

at a specific frequency, and the faster it oscillates, the higher the frequency gets. To amplify and broadcast
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the radio waves, an antenna is used, and to receive the radio signals a radio receiver is needed. Because
different frequency ranges are used for different types om communications, the receiver must be tuned to a

specific frequency.

Bluetooth operates in the license-free Industrial Scientific Medical (ISM) band at 2.4GHz [28]. This band is

currently used by a wide range of devices such as:

x 2.4GHz cordless house telephones

* 802.11 wireless computer networks

*

Baby guards/monitors

*

Garage-door openers
* Some emergency radios

* Microwave ovens

In order to avoid interfering with other protocols using the 2.4GHz band, the Bluetooth protocol utilize
a technique called "spread spectrum frequency hopping”. This means that the Bluetooth radio signals hops
among 79 frequencies between 2.402GHz and 2.480GHz (at 1MHz intervals), up to 1600 times per second.

Bluetooth devices are available in three different power classes [28]:

* Class 1 (100 mW): A range at up to 100 meters.
% Class 2 (2.5 mW): The most common used class. A range up to 10 meters.

* Class 3 (1 mW): A range up to a maximum of 1 meter. Rarely used.

5.2.4 Bluetooth Transfer Rate

In theory, implementations with the Bluetooth 1.0 Specification should be able to reach a maximum speed
of 1 Mbps. This is however the gross data transfer rate (including the overhead), so the perceived rates are
some lower. Bluetooth supports both symmetric and asymmetric transmission. At symmetric transmission
(same speed in both directions), the maximum speed is 432.6Kbps. At asymmetric transmission (high speed
in one direction, low speed in the other), the maximum speed are 721Kbps out and 56Kbps back. These
speeds applies however just to data transmission. Voice signals are transferred with a maximum rate of
64Kbps in both directions [28].

The Bluetooth 2.0 Specification is backwards compatible with version 1.0. The main enhancement is the
introduction of Enhanced Data Rate (EDR) of 2.1 Mbit/s. Technically devices supporting version 2.0 have a
higher power consumption, but the three times faster rate reduces the transmission times, effectively reducing

power consumption to half that of 1.0 devices [35].
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5.2.5 Bluetooth Security

Bluetooth uses the SAFER+ ! [33] algorithm for authentication and key generation. The E0 2 [23] stream

cipher is used for encrypting packets. This makes eavesdropping on Bluetooth-enabled devices more difficult.

5.2.6 Piconets and Scatternets

When two or more Bluetooth devices establish a connection all within the same signal range, we say that they
have created a special type of personal area network (PAN) called a piconet (see Figure 5.3). Theoretically,
a Bluetooth piconet can consist of up to a maximum of eight interconnected Bluetooth devices. While one

device acts as a master node, the rest act as slaves [28].

slave slave

slave H

Figure 5.3: A piconet comprising four nodes

A device in one piconet can also communicate with another device in another piconet. This would
interconnect the piconets into a scatternet shown in Figure 5.4. To establish communication between piconets
in a scatternet, some nodes will have to get the responsibility for forwarding packets between piconets on

behalf of other nodes. This would require advanced routing algorithms [28] [40].

ISAFER+ (Massey et al, 1998) was submitted as a candidate for the Advanced Encryption Standard and has a block size
of 128 bits. The cipher was not selected as a finalist. SAFER+ was included in the Bluetooth standard as an algorithm for
authentication and key generation.

2The EO stream cipher generates a sequence of pseudorandom numbers and combines it with the data using the XOR
operator. The key length may vary, but is generally 128 bits.
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Figure 5.4: A scatternet comprising three piconets
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CHAPTER O

The Original Peer2Me Framework

Peer2Me is the name of a framework for developing mobile collaborative applications on mobile phones
utilizing Personal Area Networks (PANs). The first version of the Peer2Me framework, which we will redesign
and optimize in this master thesis, is the result of a depth study [30] and a master thesis [31] written by
Lund and Norum during their studies at the Norwegian University of Science and Technology (NTNU). The
framework is developed using J2ME technology [26] and currently supports Bluetooth as wireless network
medium. Hereby we will refer to the original version of the Peer2Me framework as Peer2Me version 1.0

(v1.0), and the new improved version will be named Peer2Me version 2.0 (v2.0).

This chapter contains an overview of the requirements specified for Peer2Me v1.0. It also contains an
explanation of essential domain concepts and a description of the Peer2Me v1.0 architecture. Later in this
report, we will present a new set of requirements and a modified architecture, documenting Peer2Me v2.0.
The original requirements, concepts and the design can be read in detail in the Peer2Me depth study from
2004 [30] and the Peer2Me master thesis from 2005 [31].

6.1 Peer2Me v1.0 Domain Concepts

Before we present Peer2Me v1.0 [31] with its properties and design, we will in this chapter explain some
central concepts used in v1.0 of the framework. These concepts and the relations between them are essential

for understanding the framework [21]:

Framework: "A framework is a set of classes that embodies an abstract design for solutions to a family of

related problems.”

Node: A node is a logical representation of a peer.
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Network: The network module in the framework is an abstraction of the network layer. Applications
built upon the Peer2Me framework will not use the network layer directly, but access it through the

framework instance.
Service: A service is provided by an application and supported by zero or more nodes.

Group: A group is a collection of nodes providing the same service and communicating using a homogenous
network. Every group must have a master node administering the group. Once the group has a master

node, remaining nodes will act as slaves using the master node to communicate with each other.
Message: A message is the entity that can be exchanged between nodes connected in a group.

Application: An application is the software running on a mobile device using the Peer2Me framework.

6.2 Peer2Me v1.0 Functional Requirements

When eliciting the requirements for the Peer2Me framework, Lund and Norum chose the requirements
composed by Sveen and Kirkhus in [38] as a basis. Sveen and Kirkhus had, however, set out to design and
implement a full scale peer-to-peer framework for mobile collaboration. This included interconnection of
several Bluetooth piconets requiring advanced routing protocols for sending messages using multiple hops to
reach their destinations. To ensure that the framework could be realized, Lund and Norum chose to remove
some of the requirements specified by Sveen and Kirkhus [38]. As a result of the work done by Lund and
Norum, an implemented version of the Peer2Me framework is available, and according to their master thesis

[31], the framework has functional requirements as listed in Table 8.1.

6.3 Peer2Me v1.0 Non-functional Requirements

The non-functional requirements for the Peer2Me framework are listed in Table 6.2.

6.4 Peer2Me v1.0 Design

This chapter contains a brief overview of the design of Peer2Me v1.0. A more detailed explanation of the
design can be read in Lund and Norums master thesis [31]. In the following, we will present the Peer2Me

v1.0 packages and explain the functionality in the framework.

When designing the Peer2Me framework, Lund and Norum chose to focus on developing a flexible framework
highly independent of network technology. The intention was to reduce the work needed to migrate the
framework to other network mediums such as Bluetooth, ZigBee, WLAN and others. To achieve this, a

layered architectural model as viewed in Figure 6.1 was chosen.

The leftmost part of the figure shows the layers of the Peer2Me framework. Applications are strictly restricted
to use an interface (layer) provided by core functionality offered from underlying layers. Further, this layer

(named "Framework” in Figure 6.1) uses a generic network interface to control technology specific Network
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Peer2Me v1.0 Functional | Description

Requirements

FR 1 The framework supports mobile phones.

FR 2 The framework supports creation of ad hoc networks.

FR 3 The framework supports connection to an existing ad hoc network.

FR 4 Nodes in a network are able to exchange messages.

FR 5 The framework can create groups of nodes related to a specific
application.

FR 6 The framework supports multicasting and broadcasting of
messages within a group.

FR 7 The framework can search for other mobile phones supporting the
same service.

FR 8 The framework supports creation of groups as closed or open.

FR 9 The framework allows a node to try to join a closed group.

FR 10 The framework allows users in a closed group to reject other nodes
to join the group.

FR 11 The framework allows a node to join an open group.

FR 12 The framework is able to present decision messages to the user.

FR 13 The framework is able to present information to the user about
framework related events.

FR 14 The framework supports different kinds of network mediums.

FR 15 The framework offers an interface which makes the applications
independent of the underlying network medium that is in use
within the system. Because of this interface, the applications that
are using the system do not need to make any kinds of adjustments
to fit a specific network implementation.

FR 16 The framework is able to identify where a transfer originated from.
The purpose is to be able to send direct replies to a given device.

FR 17 The framework includes mechanisms for storing objects.

FR 18 The framework includes mechanisms for retrieving stored objects.

Table 6.1: Peer2Me v1.0 Functional Requirements

Non-Functional Description

Requirements

Non-FR 1 The framework is able to transfer messages fast enough for
real time interaction. It is said to be ’fast enough’ as long as
normal length text messages give the impression of appearing
instantly on the remote phones.

Non-FR 2 The framework is able to detect the disconnection of nodes
within a group and notify relevant applications and nodes
about this.

Non-FR 3 The framework adapts to errors that arise due to the unstable
nature of wireless networks.

Non-FR 4 The framework prevents applications from getting access to

messages not addressed to them.

Table 6.2: Peer2Me v1.0 Non-Functional Properties
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modules. It is this module/layer that easily can be substituted and implemented with technologies such as
Bluetooth, ZigBee or WLAN. The bottom layer is J2ME itself along with the specific network technology
APIs. The rightmost part of the figure labeled "Domain” contains the abstractions of the domain concepts

Node, Group, Service and Message defined in Chapter 6.1.

Each layer in the architectural overview in Figure 6.1 is related to a specific package in the Peer2Me framework

v1.0. A logical view of these packages is shown in Figure 6.2.

Application

Framework

Metwork Interface

Network Module

J2ZME +

Figure 6.1: Architectural overview of the Peer2Me framework

The framework package contains the functionality offered to the applications using the Peer2Me framework
v1.0. The domain package relates directly to the box labeled domain in the overview in Figure 6.1. The
package named network contains the network interface that the framework uses to communicate with the
network module. The Bluetooth package is a specific implementation of the network module layer, and
can, as earlier mentioned, be easily replaced by network packages supporting other network technologies. In
addition to the packages related to the layers in Figure 6.1, a package named util is added. This package
contains different kinds of utilities and provides support functionality for the applications using the Peer2Me
framework v1.0. For a throughout description of all classes in each of the packages, read Chapter 8.4 in Lund

and Norums master thesis [31].

6.5 Known Problems

In our depth study from 2005 [39], we analyzed and evaluated Peer2Me framework v1.0 thoroughly and came
up with quite a few suggestions for improvements. These were the main problems with Peer2Me v1.0:
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Figure 6.2: A logical view showing the main packages in the Peer2Me framework v1.0

We found both the documentation and the commenting in the code to be inadequate and this caused
us to spend too much time investigating how the different parts of the Peer2Me v1.0 work together

and how to integrate an application with the framework.

We found the architecture of Peer2Me v1.0 somewhat cumbersome and this caused us to spend the
first couple of weeks trying to figure out how to develop our application. In order to use the framework,
one must create a group, a service, set listeners, messagesubscribers, exceptionhandlers, monitors etc.

Finding out how to do this was very time-consuming.

We also discovered some bugs in Peer2Me v1.0. The search for other devices failes sometimes and the
framework does not discover that other devices become disconneted. Sending a text containing \n from

one node to another does not work. The transfer of the text is ended when \n occur.

The framework uses the Debug MIDlet implemented along with the development of Peer2Me v1.0,
therefore it cannot be compiled without this MIDlet.

The bluetooth network layer is not entirely separated from the rest of the framework. According to
Lund and Norum [31], the specific network layer can easily be replaced without affecting the framework
itself. This is not the case at all, since many of the framework classes that don’t belong to the network
layer contains Bluetooth specific code. Even the MIDlets are required to choose to act as a master or

a slave, which is specific for the Bluetooth protocol.

Exceptions that occur in the framework are not thrown by the methods causing the errors. Instead,
a single method is called every time an exception occur. This is a bad solution, because doing it this

way prevents the MIDlet developers from taking action at the point where the exception occurred.
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In addition to find smart solutions to the problems stated above, the Peer2Me framework v1.0 lacks important

functionality like the possibility to send files of any kind over the network.
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CHAPTER [

Related Work

In this chapter we will look into projects that are similar to Peer2Me in technology and intention. The
concept must include peer-to-peer topography, some sort of collaboration and be intended for use on mobile

devices.

7.1 JXTA

JXTA is short for Juxtapose, that means side by side. It draws a parallel between peer-to-peer and

client /server, web based computing - the two are juxtapose.

The JXTA project [24] was started by some researchers at Sun Microsystems. It’s goal is to explore a
vision of distributed network computing using peer-to-peer topology, and to develop basic building blocks
and services that would enable innovative applications for peer groups. It is now a open source project under

the Apache Software License and has the following three objectives:
x Interoperability - across different peer-to-peer systems and communities.
* Platform independence - multiple/diverse languages, systems, and networks.

*x Ubiquity - every device with a digital heartbeat.

JXTA is defined to be independent of programming languages, so that it can be implemented in C/C++,
Java, Perl, and numerous other languages. The Java binding, JXTA2SE, is the most mature of these. The
protocol is specified as a set of XML messages. This means heterogeneous devices with completely different
software stacks can interoperate with the JXTA protocols. The Peers in a JXTA based network can advertise
and discover other resources, communicate with each other via "pipes” and cooperate dynamically to form

peer groups.
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Many of these features resembles those of the Peer2Me framework, but there are some differences:

* The Java binding of JXTA, JXTA Java SE, requires Java 2 Standard Edition (J2SE) to run. This

makes it unsuited for most mobile devices on the market.

x There is no support for Bluetooth as a network medium, which also makes it unsuited for mobile

devices since Bluetooth is the most common means of communication on such devices.

7.1.1 JXTA-J2ME (JXME)

To overcome this limitations a side project called JXTA-J2ME (JXME) is started [7]. The purpose of
JXTA-J2ME is to provide a JXTA compatible functionalities on devices using the Connected Limited Device
Configuration (CLDC) and the Mobile Information Device Profile 2.0 (MIDP), typically a mobile phone or
a PDA.

The JXME was first designed as a proxy based peer-to-peer solution, relying on a central device acting
as a proxy between the peers. This prevents "real” peer-to-peer operated, ad hoc networks. In the newest
version however, this proxy is removed. The main disadvantage with both solutions is the lack of Bluetooth

support.

7.1.2 Jadabs-CLDC

Jadabs-CLDC was developed during the semester work JXME-Bluetooth for a Mobile Phone (J2ME/CLDC)
by René Miiller at the Information and Communication System Group of the Swiss Federal Institute of
Technology (ETH) Zurich [10]. Jadabs is a dynamic lightweight container for small devices. Combined with
the JXME messaging system it can be used to build applications and service for a dynamical environment.
The original Jadabs version could not run on a CLDC/MIDP based system, but Jadabs-CLDC is ported to
cope with this limitation.

Jadabs-JXME-BT is a component for Jadabs-CLDC that implements a Bluetooth Transport Layer using
the JSR-82 API for controlling the Bluetooth device. A peer in a JXME-BT initiated peer-to-peer network
can operate in two different modes; normal peer and rendezvous peer. Normal peers can typically be a
mobile phone, while more power devices like notebooks are used as rendezvous peers. A rendezvous peer can

communicate via several interfaces simultaneously, e.g. Bluetooth and TCP /IP.

7.2 Ergon - J2ME Wireless Application Framework

The J2ME Wireless Application Framework is developed by Ergon Informatik AG, Zuurich. The framework,
as described on their webpage [9], offers a complete set of client side and server side technologies, components
and tools for building end to end Java based Wireless Business solutions and services. Some of the features
include client and server components for encryption, authentication, user interface, data communication

and server side data management. It supplements the standard CLDC and MIDP libraries with a set of
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additional classes and development tools and supports open standards like SSL, HTTP and TCP/IP for

communication.

7.3 BEDD

BEDD is a software package containing several applications supporting mobile collobaration and commu-
nication. BEDD is developed and maintained by the BEDD Corporation [8] and is currently implemented
for the Symbian Series 60 OS. BEDD was first introduced in Singapore in May 2004, but is now introduced

worldwide.

BEDD utilize Bluetooth as transport medium for message exchange between connected devices. There
exists little information about how BEDD is actually implemented. This is due to the commercial nature
of the software. Anyhow the structure is a typical framework with a central core module with separate

applications implementing different types of functionality.

We have included a description of some of the applications below:

BEDDmates BEDDmates features a short profile describing yourself that is shared with all BEDD enabled
phones in the proximity. A match analysis is performed and the user is alerted when the criteria of a
match is met. When these "BEDDmates” are registered one can use all the other BEDD applications

to communicate and interact with them.

BEDDbuddies Users that are added to the BEDDbuddies list will generate a notification when they come
within range of you. They can then be contacted via BEDDtalk, BEDDchat, SMS, MMS, Call or

E-mail.

BEDDshare Allows users to share software and files with other connected users. The application uses the

recipients SMS inbox and built in Bluetooth to transfer the selected data.

7.4 JSR-259: Ad Hoc Networking API

The JSR-259 Ad Hoc Networking APT [13] is a Java Community Process (JCP) started as a joint effort of
several mobile phone vendors. These include Ben(Q/Siemens, Motorola, Panasonic and Nokia. In addition
Sun Microsystems also participates in the development. The API will support communication between nodes
in an ad hoc network implemented on mobile devices with J2ME support. The idea is that the API will

enable developers to create peer-to-peer applications running on mobile devices.

Some of the features of the completed API is described in the JSR-259 Early Draft Review [13] as:
x Service Discovery
* Service Registration
% Service Availability Alert
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x Service Capability Inquiry

* Remote Service Consumption

7.5 Conclusion

There are not many active projects in this research field and very few of them are similar enough to
be compared with Peer2Me. The Jadabs-CLDC project stands put as the solution most similar in both
technology and usage with Bluetooth as communication medium and J2ME implementation platform. Our
challenge will be to create a improved user experience and enhance the Usability for the developers using

the Peer2ME framework in comparison with the Jadabs solution.
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CHAPTER 8

Requirements

In this chapter we will describe the requirements we have elicited for this project. The requirements are

divided into three types; functional, non-functional and environmental.

8.1 Functional Requirements

As the intent of this project is to redesign and optimize the Peer2Me framework, rather than creating a new
framework from scratch, we will try to use as many of the functional requirements described in Lund and
Norum’s master thesis [31] as possible. This is because we want to keep most of the framework’s properties
and concentrate on improving the usability for developers. The functional requirements specified in Lund

and Norum’s master thesis [31] are shown in Table 8.1.

In Chapter 7.1 of Lund- and Norum’s master thesis [31] the Peer2Me framework’s Functional Requirements
are presented in Table 7.1. Since we are using an adapted UP development process, we will present these
requirements in the form of Use Cases in the following. If necessary we will remove and add requirements

to best suite our vision for the redesigned framework.

In our depth study [39] we gave a short description of the Use Case concept and we will now repeat this

before we present the Use Cases of this project.

Use Cases are used to capture and document the potential requirements of the system [1]. A typical Use

Case Modeling process proceeds as this:

x Find the system boundary - What is part of the system and what is external to the system. The
boundary is drawn as a box in the diagram, with the actors outside the box and the Use Cases inside
the box.
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Functional Description

Requirements

FR 1 The framework must support mobile phones.

FR 2 The framework must support creation of ad hoc networks.

FR 3 The framework must be able to connect to an existing ad hoc network.

FR 4 Nodes in a network must be able to exchange messages.

FR 5 The framework must be able to create a group of nodes related to a specific
application.

FR 6 The framework must support multicasting and broadcasting of messages within
a group.

FR 7 The framework must be able to search for other phones supporting the same
service.

FR 8 The framework must support the creation of groups as closed or open.

FR 9 The framework must support to allow a node to try to join a closed group.

FR 10 The framework must allow users in a closed group to reject other nodes to join
the group.

FR 11 The framework must support to allow a node to join an open group.

FR 12 The framework must be able to present decision messages to the user.

FR 13 The framework must be able to present information to the user about
framework related events.

FR 14 The framework must be able to support different kinds of network mediums.

FR 15 The applications must be independent of what network medium that is
currently in use within the system. The application that is using the system to
handle network traffic should not have to know what kind of network medium
that is used by the device or make any kinds of adjustment to fit a specific
network implementation.

FR 16 The framework must be able to identify where a transfer originated from. To
be able to send direct replies to a given device, it must be possible to see where
a transfer originated from.

FR 17 The framework must include a mechanism for storing objects.

FR 18 The framework must include a mechanism for retrieving stored objects.

Table 8.1: Peer2Me Functional Requirements

x Find the actors - An actor specifies a role that some external entity adopts when interacting with the

system directly. It may be either a user or another system.
* Find the Use Cases:

o Specify the Use Case - After creating a Use Case diagram and identifying the actors and main
Use Cases, each of the Use Cases must be specified. We have chosen to create only one top level
Use Case diagram for the system, namely Use Case 0 (see Figure 8.1). Then we specify the Use
Cases found in Chapter 8.1.1.

o Create scenarios - For complex Use Cases one can choose to make scenarios based on the Use Case.
A scenario represents one specific path through a Use Case. We will not produce any scenarios

for any of our Use Cases.

* In addition a Use Case model contains several relationships between actors and the Use Cases.
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Identifying actors To identify the actors we have to consider who or what are going to use the system,
and what roles they have in connection to the system. Some of the questions one can ask that helps
identifying actors:

* Who or what uses the system?

* What roles do they play?

* Who installs the system?

* Who maintains the system?
Actors are always external to the system and they interact directly with the system. Furthermore they
represent roles related to the system and not actual persons or objects, but one person or thing may

play many roles simultaneously. The actors of a Use Case ought to have a short and descriptive name

that clearly states the actors’ role or function.

Use Case specification There are no UML standard for specifying Use Cases, but the template we will
use for our Use Cases (e.g. Use Case 1 in Table 8.2) is in common use. In addition to a name and a
description the Use Cases consist of several elements:

* Actors - A list of the actors involved.

* Preconditions - What must be true before the Use Case can start? Constraints on the state of

the system
* Flow of events - The steps of the Use Case under normal circumstances.

x Alternative flow of events - If something goes wrong in the normal flow of events this flow come

into use.

* Postconditions - These conditions must be true at the end of the Use Case.

The top level Use Case diagram for the Peer2Me framework is illustrated in Figure 8.1.

8.1.1 Use Cases

In this chapter all the Use Cases representing the functional requirements of the Peer2Me framework are

presented using the template described above.
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Figure 8.1: Use Case 0 model
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Use Case : Establish a connection

ID: UC1

Actors:

x MIDlet A...n

Preconditions

1. The Peer2Me framework has to be installed on a mobile device with network support.

Flow of events

1. The MIDlet starts.
2. The MIDlet makes an ”initiate connection” call on the Peer2Me framework.
The Peer2Me framework initiates a search for other devices.

A list of discovered devices running the Peer2Me framework is presented to the MIDlet.

ook W

One or several devices are selected, and the MIDlet asks the Peer2Me framework to connect
to the selected device(s).

Postconditions

1. The ad-hoc network is established.

Alternative flow 1

1. The MIDlet starts.
2. The MIDlet makes an "initiate connection” call on the Peer2Me framework.
3. The Peer2Me framework initiates a search for other devices.

4. No devices are found.

Postconditions

1. No ad-hoc network is established.

Table 8.2: Use Case 1
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Use Case : Create group

ID: UC2

Actors:

x The Peer2Me framework

Preconditions

1. The Peer2Me framework has to be initiated on a mobile device with network support.

Flow of events

1. The MIDlet makes an "initiate” call on the Peer2Me framework.

2. The framework creates a group and adds a representation of the local device.

Postconditions

1. A group is created.

Table 8.3: Use Case 2
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Use Case : Synchronize groups

ID: UC3

Actors:
x The Peer2Me framework
x MIDlet A...n

Preconditions

1. The Peer2Me framework has to be initiated on a mobile device with network support.
2. A connection between two or more devices must be established (8.2).

3. A group with two or more participants have been created (8.3).

Flow of events

1. The framework sends a synchronize message to all the participants in the group.

2. Each participant receives the synchronize message and updates the local representation of
the group.

Postconditions

1. All participants have updated their local representation of the group.

Table 8.4: Use Case 3
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Use Case : Exchange data

ID: UC4

Actors:

x MIDlet A...n

Preconditions

1. The Peer2Me framework has to be initiated on a mobile device with network support.
2. A connection between two or more devices must be established (8.2).
3. A group with two or more participants have been created (8.3).

4. The groups must be synchronized (8.4).

Flow of events

1. MIDlet A wants to send some data via the framework.

2. The framework wraps the data into a data package and sends it over the connection to the
recipient(s).

3. MIDlet n receives the data via an event notification (8.6).

Postconditions

1. Some data is exchanged.

Alternative flow 1

1. MIDlet A wants to send some data via the framework.

2. The framework wraps the data into a data package and sends it over the connection to the
recipient(s).

3. The data could not be sent over the connection.

Postconditions

1. No data has been exchanged.

Table 8.5: Use Case 4
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Use Case : Notify about events

ID: UC5

Actors:

x The Peer2Me framework

* MIDlet A
Preconditions
1. The Peer2Me framework has to be initiated on a mobile device with network support.
2. A connection between two or more devices must be established (8.2).
3. A group with two or more participants have been created (8.3).
4. The groups must be synchronized (8.4)

Flow of events

1.
2.

An event occurs in the framework.

The MIDIlet is notified about the event.

Postconditions

1.

The MIDlet is notified about the framework event.

Table 8.6: Use Case 5
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Use Case : Select network medium

ID: UCe6

Actors:

* MIDlet A

Preconditions

1. The Peer2Me framework has to be installed on a mobile device with network support.

2. The Peer2Me framework must support the desirable network medium.

Flow of events

1. The network medium is specified by the MIDlet.

2. The MIDlet initiates the framework with the specified network medium.

Postconditions

1. The framework is initiated with the specified network medium.

Table 8.7: Use Case 6
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Use Case : Retrieve log

ID: UC7Y
Actors:

* MIDlet A

Preconditions

1. The Peer2Me framework has to be initiated on a mobile device with network support.

Flow of events

1. The MIDIlet retrieves a log from the framework.

Postconditions

1. A log is available to the MIDlet.

Table 8.8: Use Case 7

The following functional requirements described in Lund- and Norums master thesis [31] are not converted
into Use Cases in the above; 1, 7, 8,9, 10, 11, 13, 15, 16 and 18. They are either removed or merged into a

Use Case covering another functional requirement.
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8.2 Non-functional Requirements

Non-functional requirements are requirements of a slightly more diffuse character than the functional
requirements described in the Use Cases above. They are often not so clearly stated by the users and
stakeholders of a system, but are nonetheless very important for the user satisfaction and the architecture
[1]. These requirements are unsuited for Use Case representation and in Lund- and Norums master thesis
[31] the Non-functional requirements are presented in a table. The content of this table is presented in Table
6.2. We will adapt these requirements, refine them and finally present them as ways to achieve these quality
attributes; Usability, Performance, Modifiability, Availability, Security and Testability. To easily understand
our choices of non-functional requirements, the definitions of the different quality attributes also found in

Chapter 4 is repeated.

Non — | Description

Functional

Requirements

NFR 1 The framework must be able to transfer messages fast enough for real time

interaction. By fast enough, we mean that normal length text messages should
give the impression of appear- ing instantly on the remote phones.

NFR 2 The framework must be able to detect the disconnection of nodes within a
group and notify relevant applications and nodes about this

NFR 3 The framework must adapt to errors that arise due to the unstable nature of
wireless net- works.

NFR 4 The framework must prevent applications from getting access to messages not

addressed to them.

Table 8.9: Peer2Me v1.0 Non-Functional Requirements

8.2.1 Usability

The definition of Usability:

"Usability is concerned with how easy it is for the user to accomplish a desired task and the kind

of user support the system provides.”

In the problem definition found in Chapter 1.2 we have stated that we will improve the architecture and
simplify the interface of the Peer2Me framework. Both of these statements are connected to the Usability
quality attribute. An improved architecture and interface will increase the developer’s ability to make full

use of the framework. These are the factors to achieve this quality:

x Simple and intuitive interface between the framework and the applications.
* Well documented and commented code.

* Descriptive naming conventions for methods, variables and objects.
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8.2.2 Performance

Performance is described as:

"Performance is about timing. Events (interrupts, messages, requests from users, or the passage

of time) occur, and the system must respond to them.”

Applications built upon the Peer2Me framework are intended to run on different types of mobile devices,
performance is a considerably factor. Many of these devices have limited resources, like memory and CPU
power, and this can affect the performance of the developed applications in a negative way. The first non-

functional requirement found in Table 6.2 concerns this quality attribute:

x The framework must be able to support real time interaction. This means that data packages must be

transferred with a rate of at least 10kB/s (NFR 1 made more precise).

x The framework must support pure peer-to-peer communication. By excluding a centralized routing

node a potential bottleneck is avoided.

8.2.3 Modifiability

The definition of Modifiability:

"Modifiability is about the cost of change. It brings up two concerns; What can change (the

artifact)? - When is the change made and who makes it (the environment).”

The Peer2Me framework needs a large degree of modifiability for several reasons. The consept of a
independent network layer demands a simple method of adding new network modules. This process must
be as simple as possible and have little impact on the parts of the framework not related to the network.
The framework itself is a work in progress and will be subject of further change in the future. To simplify
the work of those who are to continue our work we will take precautions to make the Peer2Me framework as

intuitive and modifiable as possible. It is important that:

x The network layer is completely independent from the rest of the framework and that there is a interface

between them that ensures the possibility to replace the network module in the future.

x We use known patterns and best practices in our architecture to simplify future modifications. To
further increase this quality the characteristics of documentation and code described in the Usability

section are useful (see Chapter 8.2.1).

8.2.4 Availability

This is said about Availability:

”All approaches to maintaining availability involve some type of redundancy, some type of health

monitoring to detect a failure, and some type of recovery when a failure is detected.”
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The second and third non-functional requirements of the Peer2Me framework found in Table 6.2 focus on
Availability. We wish to continue these two requirements into our project, and also add another requirement

making the network less vulnerable.

* The framework must be able to detect the disconnection of nodes within a group and notify applications
and nodes about this (NFR 2). The possibility to detect whether or not the other nodes in the ad
hoc network is present is crucial for the applications running the Peer2Me framework. This creates

awareness between the users.

* The framework must adapt to errors that arise due to the unstable nature of wireless networks (NFR
3).

x The framework must support pure peer-to-peer communication. By excluding a centralized routing

node, the network is less vulnerable to errors.

8.2.5 Security

Tactics for achieving security can be divided into three different categories; resisting attacks, detecting attacks

and recovering from attacks. In Software Architecture in Practice [5] we find this analogy:

"Putting a lock on your door is a form of resisting an attack, having a motion sensor inside of
your house is a form of detecting an attack, and having insurance is a form of recovering from

an attack.”

The last of the non-functional requirements found in Table 6.2 is a Security requirement:

* The framework must prevent applications from getting access to messages not addressed to them (NFR
4).

To ensure the integrity and confidentiality of the messages sent between nodes in an ad hoc network it
is important that a message reaches only the designated receiver(s). These two mechanisms contribute to

the achievement of this goal:

x Authenticate - The nodes unique network address can be used for this purpose.

x Authorize - The Peer2Me framework has to support the concept of closed groups were authorization

is done by a password.

8.2.6 Testability

The goal of Testability as a quality attribute is:
”Allow easier testing when an increment of software development is completed.”
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A well known tactic to achieve Testability is "Record/Playback”. This includes using a log to catch
information in runtime and display this information for testing purposes. Testing can become useful and

necessary in several scenarios:

* Testing to locate flaws in the design during redesign of the Peer2Me framework.
x Good testability is important to ease further development of the framework in the future.

* Developers using the finished Peer2Me framework will need to do testing when creating applications

based upon the framework.

8.3 Environmental Requirements
In this section will describe in short the environment that is needed by the application to execute properly.

J2ME - MIDP 2.0 Both the Peer2Me framework and Peer2Me applications are implemented in Java and
therefore depend on J2ME [26] and MIDP 2.0 support.

Operative System (OS) As long as the mobile device that is to run the application implements the
technologies mentioned in the previous point, the Operative System is irrelevant. This is achieved with

the platform independence of the Java programming language.

Memory The size of the Peer2Me framework, and with it the need for memory, will vary with the number
of included applications in the JAR archive.

Display The applications GUI should be operational and functional on any type of display on any mobile

device that fulfills the previous requirements of this list.

Bluetooth The mobile device must have support for Bluetooth [16] as this is the only network medium
currently implemented in the Peer2Me framework. In addition the J2ME API JSR-82 must also be
implemented to allow the access to Bluetooth functionality by a J2ME application running on the

mobile device.
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CHAPTER 9

Design

This chapter will focus on the design and architecture of the redesigned Peer2Me framework. We will begin
describing the high level architecture and the architectural patterns we have incorporated into our design.

Subsequently a more detailed description of the different classes of the framework is provides.

The Design phase is part of the Analysis and Design task of RUP’s iterative development loop (see Figure 2.1),
and we have based our design on the requirements elicited from the Use Cases as well as the non-functional-

and environmental requirements (see Chapters 8.1, 8.2 and 8.3).

9.1 High Level Architecture

The architecture of Peer2Me framework v2.0 is strictly module based with a seperate package for each major
type of classes. The top level structure of the architecture can be seen in Figure 9.1. This model represents a
Module-Decomposition view where the modules are related to each other by the ”is a sub module of” relation
[5], e.g. all the packages are sub modules of the entire system and the bluetoothNetwork package is a sub

module of network.

One of the main features of the architecture is that all the Bluetooth specific code are located in a sub-
package of the network package which in turn means that the rest of the code are completely network
independent. In that way a future conversion of the framework to an alternative network technology will not
affect the "non network” classes of the framework. It will be possible to incorporate a new network module
directly into the current system without any changes. This has been one of the main goals of this redesign
from the start (see Chapter 1.2).

We will now describe shortly the main concepts of the different packages of the Peer2Me v2.0 framework.
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Figure 9.1: Module Decomposition View

Framework This package contains the FrameworkFrontEnd class which is the core of the system. All
communication between the user interface of the MIDlet and the functionality of the framework are
done through this class. Two interfaces connects the MIDlet with the FrameworkFrontEnd. Due to

this design the rest of the framework is hidden for the developers using it.

Domain This package consists of the classes based on the conceptual domain of the framework that
represents "real time” objects. Group, Node and DataPackage are some of the classes of the domain

package.

Network The network package holds the classes concerning all network communication. The Connection-

Listener listens for incoming connections from other devices and the NodeConnection class represent
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a connection to each of the remote nodes whitin the same group.

BluetoothNetwork This sub package of the network package is, as the name reveals, responsible for all
network operations that are specific to the Bluetooth technology that the Peer2Me framework is
currently using. By replacing this package with another network module, the framework could

communicate over e.g. a WLAN network.

Util The classes of the Util package contains helpful functionality used by the other classes of the framework.

The classes of the Util package can be used from any other class in any package of the Peer2Me.

Midlets This is the actual MIDlets running upon the framework. They contain the functionality and user
interface that is unique for every application. The MIDlets can take advantage of all of Peer2Me’s

functionality through the framework interface.

9.2 Detailed description

Figure 9.2 is a high level illustration of all the classes in the framework and the relations between them,
while Figure 9.3 shows the full class diagram of the Peer2Me framework v2.0. The Log class is deliberately
left out in Figure 9.3 because it has reference to almost all the other classes and interfere with the empirical

quality of the diagram.

In this chapter we will briefly discuss the function of each of the classes and how they interact.
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9.2.1 Framework package

This package contains the core of the Peer2Me framework v2.0 and the interfaces used by the MIDlets.

FrameworkFrontEnd This is the main class of the Peer2Me framework. It manages and connects the
resources and functions of the framework. It also handles all communication and interaction with the

individual MIDlets running the framework.

Framework < interface > The Framework interface acts as a "facade” for the entire Peer2Me framework
as the methods in this interface is the only methods the MIDlets running the framework needs access
to. The MIDlets receive a reference to the FrameworkFrontEnd class casted into this interface when
the getInstance() method is called to get an instance of the framework. See Chapter 9.3 for more

information about the facade pattern.

FrameworkListener < inter face > The FrameworkListener interface must be implemented by all MI-
Dlets running the framework. It ensures that the Framework can access a set of methods in the MIDlet

in order to notify the MIDlet about various events.

9.2.2 Domain package

The classes of this package represents the conceptual domain objects that affects the framework. Each class

is based on a "real” object found in the domain, and contains the properties of that object.

Group Holds the information related to the Group object. The connected nodes in the ad hoc network are
participants in the Group. Through methods participants can be added and removed, and a list of all

the participants can be retrieved.

Node The Node class represents a node in the ad hoc network, i.e., a mobile device running the framework.

Contains information about the name of the Node and network address.

DataPackage This class is the super class of the different type of packages that can be sent between nodes
in the network. The address of the sender and the recipients of the DataPackage is stored in the
super class, along with the type of package. There are currently three types of packages and they are
described below.

GroupSyncPackage This type of Datapackage is a package used internally in the framework to synchronize
the groups containing the participants. The participant performing the groupsync uses its own group
as content of the package. All the receivers synchronizes their groups based on the information found

in the GroupSyncPackage.

FilePackage A FilePackage is sent between two or more participants as a part of a file transfer. The package
contains the file path and length of the file to transfer, so that the receiver can handle the incoming

stream of data and transform it back into a copy of the file.

TextPackage To send text between participants one can use the TextPackage. It contains some length of

text that the recipient(s) can retreive and present to the user of the MIDlet.
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9.2.3 Network package

The Network package is made up of the networking classes of the Peer2Me framework. A sub package of this
package is created for each new network technology that is implemented. For now the BluetoothNetwork

package is the only sub package.

Network This is the super class of the technology specific network classes. Methods that are equal for
all the sub classes are located in this super class, and there are abstact methods that the sub classes
have to implement. The getInstance() method of the Network class returns a reference to the preferred

network sub class.

NodeConnection Each Node has a NodeConnection that holds the data streams to and from the remote
device that the Node object represents. These data streams are used to transfer Datapackages between

the devices.

ConnectionListener When a MIDlet initiates the Peer2Me framework a ConnectionListener is started.
Its task is to listen for incoming connection attempts from other devices running the same MIDlet
built upon the framework. When a incoming connection is detected, a Node representation is created

representing the connecting device.

The following classes are part of the bluetoothNetwork package which is a subpackage of network.

BluetoothNetwork This class is a Bluetooth specific sub class of the Network class and implements all the
abstract methods of it’s parent class in a Bluetooth context. It uses the Bluetooth Java API', JSR-82,

to perform operations on the Bluetooth hardware of the mobile device.

BluetoothServiceDiscovery To discover, identify and connect to other bluetooth enabled devices the
BluetoothNetwork class uses methods located here. A DiscoveryAgent is called to perform the discovery

process and the result is returned through method calls to this class.

BluetoothServiceDiscoveryListener < inter face > To ensure that the BluetoothServiceDiscovery class
can return it’s results to the BluetoothNetwork class, the BluetoothNetwork class have to implement

the BluetoothServiceDiscoveryListener interface.

9.2.4 Util package

All classes that have some kind of a "helper” function is located in the Util package. All the classes of the

framework can use them.

Log The Log contains four different kinds of logs, an exception log, a connection log, a data package log
and a debug log. They can be used to log events from anywhere in the framework, and the logs can
be retrieved later to get information about the execution of the MIDlet. This is particularly useful on

mobile devices as they do not have a console to display runtime and debug information.

FileHandler The FileHandler is used to read, write and create files on the local file system of the device.

1 Application Programming interface
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ASCIIToHexConverter This small class converts a ASCII string into a hexadecimal number. It is used
by the BluetoothNetwork class to create a unique UUID?.

9.3 Design Patterns

This section contains a description of the design patterns used in our architecture. A pattern is a general
solution to a common problem in software design and is useful to create high quality code. It is not a
finished design though, but a kind of template for solving that problem as it occurs in different situations
and applications. Typically the pattern outlines the relationships and interactions between objects on a high

level. No finished classes or implementations are specified [12].

Singleton Pattern The singleton pattern is used in object oriented programming to avoid more than one
instantiation of a class. This is necessary when exactly one object is needed to coordinate actions
across the system and when the number of objects should be limited due to efficiency. The pattern
is implemented by creating a class with a method that creates a new instance of the class if one does
not exists. To force other classes to use this method of instantiation the constructor of the class is
made private or protected. In cases with multithreading the singleton pattern is vulnerable because the
instantiation method could be called simultaneously by two threads. This is often solved by making

the getInstance() method synchronized, thereby introducing mutual exclusion.

We have taken advantage of this pattern in our Log-, FrameworkFrontEnd- and Network classes to be
certain that there exists one and only one instance of each of the classes. This is important to ensure

that all method calls is performed on the intended

Facade Pattern This pattern is based on the idea that a facade provides a simplified interface to a large
portion of code. This is useful to make e.g. a large library of classes easier to use, since the facade
provides a set of simple methods that allows the user to perform common operations. It also reduces
dependencies between the code on opposite sides of the facade, that in turn makes it more straight

forward to make alterations to the library classes.

The Framework interface of the Peer2Me framework is designed using this pattern. A MIDlet running
the framework has access only to the methods of this interface and it acts as a facade hiding the rest

of the framework.

Observer Pattern All J2Me GUI classes make use of a CommandListener to listen for command actions
invoked by the user. These actions are performed when a ”soft button” is pressed in a MIDlet. The

listener detects what ”soft button” is pressed and starts an operation based on this.

2Universally Unique Identifier
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cHAPTER 10

Implementation

In this chapter we will describe the implementation method used during implementation of the Peer2Me
framework v2.0. To illustrate the main concepts of our design and architecture we have included a selection
of code sniplets from out implementation. The code samples will present a typical flow of events within the

framework when a certain operation is performed and there will be thorough explanations of each example.

10.1 Implementation Method

In our depth study [39] we used the concept of Pair Programming with great success and have chosen to use
this as our main implementation method in this project as well. We will now repeat the definition of and
introduction to Pair Programming.

This definition of Pair Programming is found at pairprogramming.com?.

Two programmers working side-by-side, collaborating on the same design, algorithm, code or
test. One programmer, the driver, has control of the keyboard/mouse and actively implements
the program. The other programmer, the observer, continuously observes the work of the driver to
identify tactical (syntactic, spelling, etc.) defects and also thinks strategically about the direction
of the work. On demand, the two programmers can brainstorm any challenging problem. Because

the two programmers periodically switch roles, they work together as equals to develop software.

According to All I really need to know about pair programming I learned in kindergarten [42], pair
programming is a powerful technique for productively code high quality software. By working together

in pairs, the developers tackle the complexities of software development and the continuously inspections of

lwww.pairprogramming.com
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each others code ensures early and efficient removal of errors. In addition, they keep each other focused on
the task and how to solve it in the most effective manner. Surveys show that programmers working in pairs

are more confident in their solutions than those who work alone [42].

The article lists a number of "rules” that leads to successful pair programming. Some of the most important

of these rules are:

Share everything Two programmers jointly produces one product and it is important that they see

themselves as team and that they feel equally responsible for the result.

Play fair Although it is a good chance the two programmers have different levels of competence it is very

important that they take turns as driver and observer respectively.

Drive your partner forward When one of the two are losing concentration it is easier to get encouraged

and keep going when you work in pairs.
Stay positive Negative thoughts easily transfers to your partner.
Clean up Remove errors when they are detected.

Review independent work If one of some reason have to produce code independently it is efficient to

review each others work. This way many defects are identified on an early stage.

Take breaks Working in pairs like this, demands a lot of concentration and it is important to take breaks

to clear the mind every now and then.

We will try to follow these rules when it is time for us to start programming and this will hopefully give us

the opportunity to code more and reduce error searching.

10.2 Implementation tools

The implementation of all Java source code along with deployment of the Peer2Me framework v2.0 was
performed using the Eclipse IDE? in combination with the SUN Java Wireless Toolkit® and the EclipseME?*
Eclipse plugin. To be able to emulate file access we had to use a emulator found in the Sony Ericsson SDK

2.2.3 for the Java ME Platform®. Our choice of tools is based on experiences gained in earlier projects.

As we used both Windows and Mac OSX as platforms for development during this project, the Eclipse
IDE was a obvious choice as implementation environment. Eclipse is Java based and with that it supports
multiple operative systems. The SUN Java Wireless Toolkit however had to be modified slightly to run
under Mac OSX as SUN does not offer a toolkit native to OSX. Using the SUN Java Wireless Toolkit for

Linux combined with the preverifier from mpowerplayer® gave us the same programming capabilities on both

2www.eclipse.org

3http://java.sun.com/products/sjwtoolkit/index.html
4www.elipseme.org

5developer.sonyericsson.com

6http:/ /mpowerplayer.com /for_developers.php
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platforms. The only drawback is that the emulator functionality on Mac OSX is reduced and do not support

Bluetooth emulations.

To keep track of all our work and all the changes in the source code we took advantage of the features
offered by the Concurrent Versions System (CVS)7. It gave us the possibility to collaborate and work on
the same files simultaneously regardless of our location. It also keep track of changes and updates our local
copies so no data is lost and we could be certain that the code we are working with are the right one. Eclipse
features a CVS client that makes updating and committing an entire project possible through the push of a

single button.

"http://www.nongnu.org/cvs/
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10.3 Source Code Examples

To present some of the main features of our architecture we will highlight some code sniplets and explain
how the different parts interact. The examples are of code that represents and illustrates the architectural
solutions and important aspects of our design. The code represents a typical flow of events from the initiation
of the framework by the MIDlet, via the discovery process and synchronization of groups, to the sending and
receiving of a text package. The whole process is described in the sequence diagram found in Figure 10.1.
The "bubbles” containing numbers like 10.3.x refers to which sub chapter contains details about this specific
method. We strongly recommend that this Sequence Diagram is read in parallel with the code examples to
increase the understanding. In addition, the Peer2Me v2.0 Javadoc (Appendix C) can with advantage be

used as a reference while reading the code.
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10.3.1 The Framework interface

This first listing illustrates the Framework interface between the MIDlet and the rest of the Peer2Me
framework. The methods of this interface is use by the MIDlet to make use of all the features of the
framework. When the FrameworkFrontEnd.getInstance() method is called, a reference of type Framework
is returned. When a MIDlet is run, the initFramework() method has to be called to initiate the framework

before anything else can be done. The initFramework() method is described in the next chapter (10.3.2).

Listing 10.1: The Framework interface

package peer2me.framework;

import java.io.IOException;

import java. util . Enumeration;

/x%

*

+ This interface acts as a "facade” for the entire Peer2Me framework as the

+ methods in this interface is the only methods the MIDlets running the

* framework needs access to. To use the Peer2Me framework, the MIDlets should
* run the FrameworkFrontEnd.getInstance() which returns a

x reference of type Framework. All framework services is then available

* through this reference.

* @author Torbjgrn Vatn & Steinar A. Hestnes
*/

public interface Framework{

/x5

*

x This method initiates the framework, and is the first method that should
x be run after getting a instance of the framework. It initiates the

+ fundamental services offered by the framework.

# @param nodeName The name of the user of the MIDlet.
* @param midletName The name of the MIDlet, eventually translated into a ServicelD
* used to find other devices running the same MIDlet.

* @param preferredNetwork Deciding which network implementation to use.

* @throws ClassNotFoundException The input preferredNetwork is invalid
x @throws Illegal AccessException The input preferredNetwork is invalid

* @throws InstantiationException The input preferredNetwork is invalid

*x @throws IOException Error initiating framework

x @throws Exception Error initiating framework

/

public void initFramework(String nodeName, String midletName, String preferredNetwork) throws ClassNotFoundException,
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IllegalAccessException, InstantiationException, IOException, Exception;

VeSS
*
# This method shuts down the framework and closes all the open network connections and streams.
* It should be called before closing the MIDlet to clean up the network connections.
*
*/

public void shutdownFramework();

/x%

* This method starts a search for devices running the same MIDlet.
* When such a device is found, the notify AboutFoundNode() method

% specified by the FrameworkListener interface is called .

* @throws [OException Thrown if the search crashes

*/

public void startNodeSearch() throws IOException;

JEE

* This method connects multiple devices in a network.

* When a connection is established, the notify AboutParticipants()
+x method specified by the FrameworkListener interface is called .
*

x @param addresses The addresses of the devices to connect to.

*/

public void connectToNodes(String[] addresses);

JEE

*
* This method sends a text package over the network. When the package

* terminates to the recipients, they are alerted by the

* notify AboutReceived TextPackage() method specified by the

* FrameworkListener interface.

*

x @param recipients A list containing the addresses of the recipient nodes
x @param textMessage The text message to be sent

*

*/
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public void sendTextPackage(String[] recipients, String textMessage);

[x%

*

This method sends a file package over the network. When the package
* terminates to the recipients, they are alerted by the
notify AboutReceivedFilePackage() method specified by the

FrameworkListener interface.

*

*

* @param recipients A list containing the addresses of the recipient nodes
* @param filePath The path of the file to be sent

*

*/

public void sendFilePackage(String[] recipients, String filePath );

/x%

* This method returns a list of the files in the given root directory on the device

* @param root The path to the root directory
* @return An enumeration containing the names of the files in the root directory
*/

public Enumeration getFileList(String root);
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10.3.2 The initFramework() method in FrameworkFrontEnd.java

This method is vital to the execution of a MIDlet because the framework must be properly initiated before

any calls can be made to it. The initFramework() method does a number of operations:

1. Creates a "currentNetwork” instance using the getInstance() method in Network. The getInstance()
method is described in the next chapter (10.3.3).

2. Sets the MIDlet name on the “currentNetwork”. The name of the MIDlet is used to find other devices

running the same MIDlet, hence to be able to connect in a network.

3. Creates a new Group and adds itself as a participant using the addParticipant() method in class Group.
This method is listed in Chapter 10.3.4.

4. Calls the init() method on the "currentNetwork” to initiate the network layer. The init() method is
listed in Chapter 10.3.5.

Listing 10.2: The initFramework() method in FrameworkFrontEnd.java

VeSS

# This method initiates the framework, and is the first method that should
* be run after getting a instance of the framework. It initiates the

* fundamental services offered by the framework.

* @param nodeName The name of the user of the MIDlet.
* @param midletName The name of the MIDlet, eventually translated into a ServicelD used to find other devices
* running the same MIDlet.

* @param preferredNetwork Deciding which network implementation to use.

* @throws ClassNotFoundException The input preferredNetwork is invalid
x Q@Qthrows Illegal AccessException The input preferredNetwork is invalid

x @throws InstantiationException The input preferredNetwork is invalid

* @throws IOException Error initiating framework

* @throws Exception Error initiating framework

*/

public void initFramework(String nodeName, String midletName, String preferredNetwork) throws ClassNotFoundException,

Illegal AccessException, InstantiationException, IOException, Exception{

// Creates a Network instance

currentNetwork = Network.getInstance(preferredNetwork);
// Sets a reference to this class to be used in the Network class
currentNetwork.setFrameworkFrontEnd (this);
// Sets the applicationld to be used by the Network class
currentNetwork.set ApplicationId(midletName);

// Creates a group that will be filled with nodes running the same application
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group = new Group();
// Adds a representation of this (the local) node to the group.
localNode = new Node(nodeName,currentNetwork.getNodeAddress("localnode”));
group.addParticipant(localNode);
// Initiates the currentNetwork
currentNetwork.init ();
// Creates the foundNodes Hashtable
foundNodes = new Hashtable();
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10.

3.3 The getlnstance() method in Network.java

This method returns a reference to a subclass of Network, based on the preferredNetwork input parameter.

In the current implementation the only network module available is BluetoothNetwork.

Listing 10.3: The getInstance() method in Network.java

/x%

*

*

This method returns an instance of the preferred network.

It is called from FrameworkFrontEnd.initFramework().

@param preferredNetwork Indicating which network implementation to use.
@throws ClassNotFoundException The input preferredNetwork is invalid
@throws Illegal AccessException The input preferredNetwork is invalid
@throws InstantiationException The input preferredNetwork is invalid

@return The Network instance

/

public static synchronized Network getInstance(String preferredNetwork) throws ClassNotFoundException,

}

Illegal AccessException, InstantiationException{

// A log instance
log = Log.getInstance();

if (singleton != null){
return singleton ;
Yelse{

try{
// Fetching a instance of the preferred network class

singleton = (Network)Class.forName(preferredNetwork).newInstance();

}catch(ClassNotFoundException cnfe){
log .logException("Network.getInstance()”,enfe, false );
throw cnfe;

}catch(Illegal AccessException iae){
log .logException("Network.getInstance()”iae, false );
throw iae;

}catch(InstantiationException ie){
log.logException("Network.getInstance()”,ie, false );

throw ie;

}

// Returning the singleton instance

return singleton;

}
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10.3.4 The addParticipant() method in Group.java

This method adds a Node as a participant to the Group. If the Node is not a participant already it is simply
added, while existing participants are updated with the new data. This is used during a synchronization of
the groups. The Node objects are stored in a HashTable with the network address as the key.

Listing 10.4: The addParticipant() method in Group.java

JETS
*
+ This method adds a node to the group as a participant.
*
* @param node The node to add as a participant.
o
public void addParticipant(Node node){

// Adds the node only if it is not added already.

// This test is necessary during groupsync
if (! participatingNodes.containsKey(node.get Address())){
participatingNodes.put(node.get Address(),node);
Yelse{
// If the node already exists in the participant list , this is the node that
// initially discovered this node and was saved only with address and connection
// Name is still missing and we have to add it
if (node.getNodeName() != null){
((Node)participatingNodes.get(node.get Address())).setNodeName(node.getNodeName());

}

if (node.getNodeConnection() != null){
if (node.getNodeConnection().getConnection() != null){
// Important to start the connection!
((Node)participatingNodes.get(node.get Address())).startNodeConnection();
((Node)participatingNodes.get(node.get Address())).getNodeConnection().setConnection(
node.getNodeConnection().getConnection());
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10.3.5 The init() method in BluetoothNetwork.java

When the Network.getInstance() method is called the init() method of the new ”currentNetwork” is also

called. It initiates the network module through several steps:

1. Creates a connectionURL to use in the connection process. The URL consists of some Bluetooth

specific variables and a UUID® that indicates what MIDlet is running on this device.
2. Sets the local Bluetooth device discoverable, so it can be discovered by other devices searching.

3. Creates a new BluetoothServiceDiscovery instance that can perform a device discovery. The
doDeviceDiscovery() method is listed in Chapter 10.3.6.

4. Creates and sets a new ConnectionListener that is listening for incoming connections from other devices

performing a device discovery.

Listing 10.5: The init() method in BluetoothNetwork.java

VeSS

x Initiates the network instance.

« It is called from the FrameworkFrontEnd.initFramework()

*

x @throws BluetoothStateException Failed to initiate the network
*/

public void init () throws BluetoothStateException{

isConnected = false;
serviceSearchCompleted = false;

serviceSearchFailed = false;

// Sets the connectionURL used by the ConnectionListener
String localNodeName = getFrameworkFrontEnd().getLocalNode().getNodeName();
connectionURL = "btspp://localhost:"+getUUIDString()+";authenticate=false;encrypt=false;name="+localNodeName;

// Have to set the local device discoverable
try {
LocalDevice.getLocalDevice().setDiscoverable(javax.bluetooth. Discovery Agent. GIAC);
} catch (BluetoothStateException bse) {
log.logException(’ConnectionListener. ConnectionListener()”,bse, false );

throw bse;

foundNodes = new Hashtable();

// Creates the class that contains low level Bluetooth discovery operations.

8 Universally Unique Identifier
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bluetoothServiceDiscovery = new BluetoothServiceDiscovery();

/# The ConnectionListener instance that listens for incoming requests from
* other nodes in discovery mode. When this node is discovered the ”discoverer”
* can choose to create a connection between the two, and the remote node is
* represented by a node object localy on this node.
*/

setConnectionListener(new ConnectionListener(connectionURL));
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10.3.6 The doDeviceDiscovery() method in BluetoothServiceDiscovery.java

This method starts a discovery process using the DiscoveryAgent of the local Bluetooth device. This is a
regular search for Bluetooth devices in the proximity and takes between 20 - 30 seconds to complete. Other
methods of the BluetoothServiceDiscovery class (deviceDiscovered() and serviceDiscovered()) are called by

the DiscoveryAgent whenever a device running the same MIDlet is discovered.

Listing 10.6: The doDeviceDiscovery() method in BluetoothServiceDiscovery.java

VeSS

*
+ This method starts the discovery process.
* It is called from BluetoothNetwork.searchForNodes().
*
x @throws BluetoothStateException Error getting reference to LocalDevice
*/

public void doDeviceDiscovery() throws BluetoothStateException{

uuids [0] = new UUID(uuidString, false);
servicesFound = new Vector();

devicesFound = new Vector();

try{
localDevice = LocalDevice.getLocalDevice();

}catch(BluetoothStateException bse) {
log .logException("BluctoothServiceDiscovery.doDeviceDiscovery()”,bse, false );

throw bse;

//Fetches the discovery agent of the local device

agent = localDevice.getDiscoveryAgent();

try {
// The discovery agent starts the inquiry for other devices
agent. startInquiry (Discovery Agent. GIAC,this);
}
catch(BluetoothStateException bse) {
log . logException("BluetoothServiceDiscovery.doDeviceDiscovery()”,bse, false );
throw bse;

}
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10.3.7 The notifyAboutFoundNode() method in FrameworkFrontEnd.java

When the DiscoveryAgent is finished searching for other devices the serviceSearchCompleted() method of the
BluetoothServiceDiscovery class is called. Then the notify AboutFoundNode() in class FrameworkFrontEnd
is used to notify the framework of every found device. The found Nodes are stored in the foundNodes
HashTable with their network addresses as keys, and if two or more Nodes has identical names, the names
are modified by adding a number at the end. In this way every Node gets a unique name. The MIDlet is
also notified about the found Node.

Listing 10.7: The notify AboutFoundNode() method in FrameworkFrontEnd.java

VeSS

*
* This method is called from the nodeFound() method in the Network class whenever a node is found
*
x @param address The network address of the node

* @param remoteNodeName The name of the found remote node
*/

public void notify AboutFoundNode(String address, String remoteNodeName){

// Here we add a number after equal node names to make them unique

// We do this so we can set the node names as keys and the node addresses as values

// The reason for doing this is that the node names will be displayed in the midlet

// and after selecting a node name, the address should be sent to the framework.

if (foundNodes.contains(remoteNodeName) || remoteNodeName.equals(localNode.getNodeName())){

for (int i=—1;i<foundNodes.size();i++){
if (!foundNodes.contains(remoteNodeName+" "+ (i+2))){
remoteNodeName = remoteNodeName+" "+ (i+2);

i = foundNodes.size();

}
}

// Stores the address and the name of the node in the foundnodes table
foundNodes.put(address, remoteNodeName);
midlet.notify AboutFoundNode(address,remoteNodeName);

}

92



10.3.8 The connectToNodes() method in FrameworkFrontEnd.java

When the user of the MIDlet has chosen the Nodes he/she wants to connect to, this method in class
FrameworkFrontEnd is called. It simply adds the selected Nodes to the Group and uses the syncronizeGroup()
method to broadcast the Group to all the participants of the Group. This way all the selected Nodes gets
connected and the groups on every node gets synchronized in one operation. Now, every Node in the Group

can send data packages to all the other participants.

Listing 10.8: The connectToNodes() method in FrameworkFrontEnd.java

VESS

+ This method establishes a connection to the chosen nodes.
x After updating the local group, it synchronizes the groups on
* all other participating nodes.

* The method should be called from the MIDlet.

* @param addresses The addresses to the nodes to connect to.
*/
public void connectToNodes(String[] addresses){
// Creates Node objects based on the Vectors nodeNames and nodeAddresses
for (int i=0; i<addresses.length; i+4){
getGroup().addParticipant(new Node((String)foundNodes.get(addresses[i]),addresses][i]));

}

// Synchronizes the groups on all connected nodes

synchronizeGroups();

}
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10.3.9 The synchronizeGroups() method in FrameworkFrontEnd.java

When the user of the MIDlet has chosen which Nodes to connect to through the connectToNodes()
method, this method is called to synchronize the Groups of all the participating Nodes. It sends a special
GroupSyncPackage to all the participants found in the local Group, containing all the other Nodes. This

way all participants have the means to synchronize their own Group.

Listing 10.9: The synchronizeGroups() method in FrameworkFrontEnd.java

/%

*

This method is used to make the Framework syncronize the Groups on all the

*

connected nodes. The result of running this method is that the method

notify AboutParticipants() is called on the MIDlet.

*

*

It is called from the methods connectToNodes() and

*

notify AboutLostNode() in this class.
*
*/

private synchronized void synchronizeGroups(){

// Creates a string table with the recipient addresses

Hashtable participatingNodes = group.getParticipatingNodes();

String [] recipients = new String[0];
// Only do this if there is more than this node in the group
if (participatingNodes. size ()>1){
recipients = new String[participatingNodes.size()—1];
// Need a list of nodes to run a groupsync
Node]] nodes = new Node[participatingNodes.size()];
// Adds the local Node to the nodes]]
nodes[0] = localNode;
// Removes the local Node from the participatingNodes|]

participatingNodes.remove(localNode.get Address());

Enumeration addresses = participatingNodes.keys();

int counter = 0;

while(addresses. hasMoreElements()){
String address = (String)addresses.nextElement();
// Does not add the local node
recipients [counter] = address;
// Fetches the Node objects from participatingNodes
nodes[counter+1] = (Node)participatingNodes.get(address);

counter-+-;
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// Sends a networkpackage to all participants to synchronize the group on all nodes
if (recipients .length!=0){
currentNetwork.sendDataPackage(new GroupSyncPackage(localNode,recipients,nodes),recipients);

}

// Adds the local Node to the group again
participatingNodes.put(localNode.get Address(),localNode);

// Notifies the MIDlet about the participants of the group
notify AboutParticipants();

// Logs the sending of the data package
String recipientNames = "”;
for (int 1=0; i<recipients.length; i++){
if (group.getNode(recipients[i])!=null){
recipientNames +="— "+group.getNode(recipients|[i]).getNodeName()+" ("+recipients[i]+”) \n”;

}

if ( recipients .length>0)log.logDataPackage("Sent a group sync package to:\n "4recipientNames);
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10.3.10 The sendTextPackage() method in FrameworkFrontEnd.java

When all of the connecting and synchronizing are finished the framework are ready to perform other tasks
on behalf of the MIDlet. Sending a text package could be such a task. By calling this method through the
Framework interface, and applying the message to send, the MIDlet can send text to other MIDlets running
on other Nodes. As long the text and a list of receivers is provided by the MIDlet, the Peer2Me framework

performs the nessesary tasks to send the text package.

Listing 10.10: The sendTextPackage() method in FrameworkFrontEnd.java

VESS

*

*

This method is used by the MIDlet to send a text package over the network.

*

When the package terminates to the recipients, the

notify AboutReceived TextPackage() method in this class is run.

*

x @param recipients A list containing the addresses of the recipient nodes
* @param textMessage The text to be sent

*

*/

public void sendTextPackage(String[] recipients, String textMessage){

// Logs the sending of the text package
String recipientNames = ";
for (int 1=0; i<recipients.length; i++){
recipientNames +="— "+group.getNode(recipients]i]).getNodeName()+" ("+recipients[i]+”) \n”;
}

log .logDataPackage("Sending textpackage to:\n"+recipientNames);

TextPackage textPackage = new TextPackage(localNode,recipients,textMessage);
// Passes the task of sending the data package over to the network

if ( recipients .length!=0)currentNetwork.sendDataPackage(textPackage, recipients);
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10.3.11 The sendDataPackage() method in BluetoothNetwork.java

When the sendTextPackage() method or the sendFilePackage() in the FrameworkFrontEnd class is called,
they in turn call on this method to have the network layer perform the actual sending of the data package.
It reconnects to each of the receiving Nodes to establish a data stream and places the data package in an

outgoing que using the sendDataPackage() method of the NodeConnection.

Listing 10.11: The sendDataPackage() method in BluetoothNetwork.java

/%

* This method is used by the FrameworkFrontEnd to send a data package of

* any sort to a remote node.

* @param dataPackage The data package to be sent

* @param recipients A list containing addresses to the recipient nodes
*

/

public void sendDataPackage(DataPackage dataPackage, String|[] recipients){

// A Vector containing the addresses to the nodes that could not be reached

Vector addressesToLostNodes = new Vector();

for (int i=0; i<recipients.length; i++){
// If the node has been removed/disconnected in the meantime
if (getFrameworkFrontEnd().getGroup().getNode(recipients|i] )==null){
// do nothing

Yelse{

// Connects to the remote node if the connection never has been opened or if it has been closed
NodeConnection nodeConnection = getFrameworkFrontEnd().getGroup().getNode(recipients[i]).getNodeConnection();
if (nodeConnection!=null){
if (nodeConnection.getConnection()==null){
// Establishes a connection to the recipient
// This method waits until the new connection is ready (or not)
connectToNode(recipients[i]);
}else if (nodeConnection.getSendQueueSize() == 0){
// If the que is empty, the connection has been closed, and we need a new one
nodeConnection.setConnection (null);
// Establishes a connection to the recipient
// This method waits until the new connection is ready (or not)

connectToNode(recipients[i]);

}
}else{

// Establishes a connection to the recipient

// This method waits until the new connection is ready (or not)
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connectToNode(recipients[i]);

}

// Sends the data package to the recipient

if (! serviceSearchFailed ){
getFrameworkFrontEnd().getGroup().getNode(recipients|i]).getNodeConnection().sendDataPackage(dataPackage);
Yelse{
// If the serviceSearch failed, the node must be removed from the group, and groups become synchronized

addressesToLostNodes.addElement (recipientsii]);

}
}
}

// Removes the nodes that could not be reached to remove these from the group by running a groupsync
for (int 1=0; i<addressesToLostNodes.size();i++){
// Notifies only if the node is not already removed from the local group.
// This because a node could have been removed when sending the previous data package and this
// package is sent right after the first one (as in text first and then sync package)
if (getFrameworkFrontEnd().getGroup().getNode((String)addressesToLostNodes.element At (i) )!=null){
getFrameworkFrontEnd().notify AboutLostNode((String)addressesToLostNodes.element At(i));

}
}
}
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10.3.12 The processSendQueue() method in NodeConnection.java

This method is called by a constantly running separate Thread and sends the first element of the outgoing

queue until there are no more data packages to send. The data is sent as bytes over a stream to the recipient.

1. The first step is to transfer an Integer representing the type of the data package so the receiver knows

how to treat the incoming data stream.

2. Next an Integer telling the length of the data package’s content is sendt. This way the recipient knows

how many bytes to read from the incoming data stream.

3. Then the actual content of the data package is transferred byte by byte. When the outgoing queue is
empty, a Boolean value (false) is sent to the recipient. In the special case of sending a FilePackage, a

FileHandler is used to stream the content of the desired file onto the outgoing stream.

Listing 10.12: The processSendQue() method in NodeConnection.java

/xx

*

*

This method sends datapackages to remote nodes.
x It processes the que of unsent datapackages.
% It is called in an infinite loop in the private class OutputThread
* in this class.
o

public synchronized void processSendQueue(){

if (connection != null){

if (sendQueue.size() > 0){
// Retriving the data packages to send from the sendQue
DataPackage dataPackage = (DataPackage)sendQueue.firstElement();
sendQueue.removeElement(dataPackage);
// A byte table holding the data to send
byte[] data = dataPackage.toSendableFormat();

try{
// Opening the output stream if it is not allready open
if (outputStream == null){

outputStream = connection.openDataOutputStream();

// Saves a timestamp used to estimate the transfer rate

long startTime = new Date().getTime();

// Sending the type of the data package over the steam

outputStream.writelnt(dataPackage.get Type());
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// Sending the length of the data package over the steam

outputStream.writelnt(data.length);

// Sends the data package in blocks over the stream
// Sending blocks instead of single bytes increases the transfer rate considerably
boolean finishedWriting = false;
int blockSize = 200;
int totalWritten = 0;
while (! finished Writing){
// If whats left is less than one blockSize
if (data.length — totalWritten < blockSize) blockSize = data.length—totalWritten;
byte[] block = new byte[blockSize];
// Fills the byte array to be sent
for (int 1=0; i<blockSize; i++){
block[i] = data[totalWritten];
totalWritten++;

}

outputStream.write(block);

if (totalWritten == data.length) finishedWriting = true;

// If the datapackage is a FilePackage we have to send the content
// of the file
long fileSize = 0;
if (dataPackage.getType() == DataPackage. FILE_PACKAGE){
// Opens the file handler
FileHandler fileHandler = new FileHandler(((FilePackage)dataPackage).getFilePath());

// Flushes the output stream

outputStream.flush();

boolean endOfFile = false;
while (! endOfFile){
try{
byte[] theBytes = fileHandler.readFile ();
outputStream.write(theBytes);
}catch(EOFException eofe){
endOfFile = true;
fileHandler . closeFile ();
}

}
fileSize = ((FilePackage)dataPackage).getFileSize();
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// Logs a message if the text package was sent successfully
if (dataPackage.getType() == DataPackage. TEXT_PACKAGE ||
dataPackage.getType() == DataPackage. FILE_PACKAGE){

// Estimates the transfer rate of the file

long endTime = new Date().get Time();

long transferTime = (endTime—startTime)/1000;

if (transferTime==0) transferTime = 1;

double kBps = ((double)(data.length+fileSize)/1024)/(double)transferTime;

//the code below calculates and rounds off the transfer rate with three decimals
String rate = Double.toString(kBps);
int commalndex = rate.indexOf(".”);
int decimal3 = Integer.parselnt(””+rate.char At(commalndex+3)+"");
int decimal4 = Integer.parselnt(””+rate.charAt(commalndex+4)+"");
rate = rate.substring (0,commalndex+4);
if (decimal4>=5){
if (decimal3 == 9){
decimal3 = decimal3+1;
rate = rate.substring (0,commalndex+2);
rate += decimal3;
}
else{
decimal3 = decimal3+1;
rate = rate.substring (0,commalndex+3);

rate += decimal3;

log .logDataPackage("Finished transfering data to "+
node.getNodeName()+". (Transfer rate was "+rate+7kB/s)”);

}catch(IOException ioe){
// Because this method is called from within a run() the log has to noitfy the MIDLet of the exception
log .logException("NodeConnection.processSendQue()”,ioe,true);
closeConnection();
// Tries to send the datapackage once more

currentNetwork.sendDataPackage(dataPackage,dataPackage.getRecipients());

// If the queue is not empty, the processing continues
try {
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Thread.sleep(500);
} catch (InterruptedException ie) {
// do nothing
}
try{
// Closes the outputstream if the sendQueue is empty
// The connections are re—established when a new datapackage is sent
if (sendQueue.size() == 0){
// Notifies the remote recipient that we are closing the stream
outputStream.writeBoolean(true);
openOutputStream = false;
// Flushes the output stream
outputStream.flush();
Yelse{
outputStream.writeBoolean(false);
// Flushes the output stream
outputStream.flush();
// Must process the next package
processSendQueue();
}
}catch(IOException ioe){
// Because this method is called from within a run() the log has to noitfy the MIDLet of the exception
log .logException("NodeConnection.processSendQue()27,ioe,true);

closeConnection();
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10.3.13 The processIncomingData() method in NodeConnection.java

This method is the counterpart of the processSendQueue() on the recipient side. It runs in a Thread and
continuously checks whether or not a connection to another Node is established. As soon as a connection
is present, a stream is opened and it starts listening for incoming data. When some data is received it
is decoded into the variables sent from the remote Node. If the received data package is a FilePackage a

FileHandler is used to stream the content of the file down to the local file system of the device.

Listing 10.13: The processIncomingData() method in NodeConnection.java

/o

*

This method receives incoming datapackages from remote nodes.

*

It is called in an infinite loop in the private class InputThread

in this class.

*

*
*/
public void processIncomingData(){
if (connection != null){
boolean connectionFailed = false;
try{

if (inputStream == null){
inputStream = connection.openDatalnputStream();

}

}catch(IOException ioel){

connectionFailed = true;

log .logException("NodeConnection.processIncomingData()1”ioel,true);

// Opening of streams failed, ergo connection lost

// Close connection and inform the NodeListener

try {
connection. close ();
// The connection must be set to null to stop the thread running
// this method when the connection has closed
connection = null;

} catch (IOException ioe2){
log .logException("NodeConnection.processIncomingData()2”ioe2,true);

// If an inputstream and an outputstream was successfully opened, a infinite loop starts
if (! connectionFailed){
try {
while(inputStream != null && connection != null && !connectionFailed){
int type = —1;
try{
// Reads the type of the data package
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type = inputStream.readInt();
}eatch(IOException ioe){
connectionFailed = true;
}
// The type of the package determines what should be done with the package
switch(type){

case(DataPackage. GROUP_SYNC_PACKAGE):
// Reads the length of the incoming package
int byteLengthl = inputStream.readInt();
byte[] bytesl = new byte[byteLengthl];
// Reads the incoming bytes
for (int i=0;i<bytesl.length;i++){
bytesl[i] = inputStream.readByte();

}

// Checks if the sendQue on the sender side is empty

if (inputStream.readBoolean()){
// Closes the connection if the remote node is finished sending all its datapackages
openlnputStream = false;

}

GroupSyncPackage groupSyncPackage = new GroupSyncPackage();

// Interprets the content and sets the variables in the groupSyncPackage object

groupSyncPackage.parseBytes(bytesl);

// Notifies the midlet via the frontEnd about the received message.
currentNetwork.getFrameworkFrontEnd().notify AboutReceived GroupSyncPackage(groupSyncPackage);
break;

case(DataPackage. TEXT_PACKAGE):
// Reads the length of the incoming package
int byteLength2 = inputStream.readInt();
byte[] bytes2 = new byte[byteLength2];

// Reads the incoming bytes in blocks
// Reading blocks increases the transfer rate considerably
boolean finishedReading = false;
int blockSize = 200;
int totalRead = 0;
while (! finishedReading){
// If whats left is less than one blockSize
if (byteLength2 — totalRead < blockSize) blockSize = byteLength2—totalRead;
byte[] block = new byte[blockSizel;
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int numberRead = inputStream.read(block,0,blockSize);
// Stores whats read in an array large enough for the whole package
for (int i=0; i<numberRead; i++){

bytes2[totalRead] = block]i];

totalRead++;

}

if (totalRead == byteLength2) finishedReading = true;

// Checks if the sendQue on the sender side is empty
if (inputStream.read Boolean()){
// Closes the connection if the remote node is finished sending all its datapackages

openlnputStream = false;

}

// Notifies the midlet via the frontEnd about the received message.
TextPackage textPackage = new TextPackage();
textPackage.parseBytes(bytes2);

currentNetwork.getFrameworkFrontEnd().notify AboutReceived TextPackage(textPackage);
break;

case(DataPackage. FILE_PACKAGE):

// Reads the length of the incoming package
int byteLength3 = inputStream.readInt();
byte[] bytes3 = new byte[byteLength3];
// Reads the incoming bytes
for (int i=0;i<bytes3.length;i++){

bytes3[i] = inputStream.readByte();

// Creates a filePackage based on the received data

FilePackage filePackage = new FilePackage();

filePackage . parseBytes(bytes3);

// Reads the file and writes it to the filesystem

FileHandler fileHandler = new FileHandler(filePackage.getFilePath());
// Fetches the size of the file and sets it in the fileHandler
fileHandler . setFileSize ( filePackage . getFileSize ());

// Checks if the sendQue on the sender side is empty
if (inputStream.readBoolean()){
// Closes the connection if the remote node is finished sending all its datapackages

openlnputStream = false;

}
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boolean endOfFile= false;
while (!endOfFile){
try{
byte[] theBytes = new byte[fileHandler.getBlockSize ()];
// Reads data from the inputStream into a byte table
int numberOfBytesRead = inputStream.read(theBytes, 0, fileHandler.getBlockSize());
// Writes the bytes to file
fileHandler . writeFile (theBytes, numberOfBytesRead);

}catch(EOFException eofe){
endOfFile = true;
fileHandler . closeFile ();

}

}

currentNetwork.getFrameworkFrontEnd().notify AboutReceivedFilePackage(filePackage);
break;

default :
break;

}catch(IOException ioe) {

log .logException("NodeConnection.processIncomingData()3”, ioe, true);
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10.3.14 The notifyAboutReceivedTextPackage() method in FrameworkFron-
tEnd.java

When the processIncomingData() method has finished receiving a text package, the framework is notified
through this method, which in turn notifies the MIDlet. The MIDlet can now display the text message and

the name of the sender.

Listing 10.14: The notify AboutReceived TextPackage() method in FrameworkFrontEnd.java
/o

* This method is called from NodeConnection.processIncomingData()

* whenever a text package is received from a remote node.

x It processes the package, logs the event, and notifies the midlet.

*

+x @param textPackage The received text package.

*/

public void notify AboutReceived TextPackage(TextPackage textPackage){
log .logDataPackage("Received text package from "+textPackage.getSender().getNodeName()+7.”);
midlet.notify AboutReceived TextPackage(textPackage.getSender().getNodeName(), textPackage.getContent());
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cHAPTER 11

Getting Started with the Peer2Me Framework v2.0

Before providing a user guide to Peer2Me v2.0, we will in this chapter present some central concepts used in
this version of the framework. We will also explain how to get started, i.e. which resources that is needed
to develop a MIDlet upon Peer2Me v2.0.

11.1 Peer2Me v2.0 Domain Concepts

Knowing the domain concepts is important to be able to understand how Peer2Me v2.0 actually works.
Most of the concepts presented here are the same as those presented as central concepts in Peer2Me v1.0
(see Chapter 6.1).

Framework: "A framework is a set of classes that embodies an abstract design for solutions to a family of

related problems.”
MIDlet: A Java application intended for a CLDC device is called a MIDlet.
Node: A node is a logical representation of a peer.

Group: A group is a collection of nodes running the same MIDlet and communicating using a homogenous
network. Every node has a group containing all the nodes it is connected to. Each time a node connects

or disconnects, the groups become syncronized on all nodes.

DataPackage: A data package is the entity that can be exchanged between nodes connected in a group.
The framework has built in support for three types of data packages; a text package to transfer text, a
file package to transfer a file and a group synch package used to synchronize the content of the groups

on all nodes.
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Figure 11.1 on the next page illustrates a conceptual model of Peer2Me v2.0.

MNetwork (Bluetooth)

Peer2Me Framework

VAN

DataPackage DataPackage
(outgoing) (incoming)

Group

Figure 11.1: Peer2Me conceptual model

11.2 Required Resources

To be able to develop a MIDlet using Peer2Me v2.0, the following resources are needed:

112



Peer2Me JAR-file: The Peer2Me JAR-file contains the complete framework. Adding this file to the build
path in the MIDlet development tool is necessary in order to be able to compile the source code of the
MIDlet. In addition, the J2SE Software Development Kit (SDK) must be installed on the computer.
This because the jar.exe file is needed to read the JAR-file during compilation.

Java2 Standard Edition Software Development Kit (J2SE SDK): The J2SE Software Development
Kit (SDK) supports creating J2SE applications. The only reason that this kit is needed, is to get access
to the jar.exe file in order to read the JAR-file that contains the Peer2Me framework. Alternatively
only the jar.exe file can be copied and added to the path on the computer.

Java2 Micro edition (J2ME): J2ME is a java edition especially designed for mobile phones, PDAs and
other mobile devices. J2ME provides a subset of classes and methods available in the Java2 Standard
Edition (J2SE). The Java2 Micro Edition is well described in Chapter 5.1,earlier in this report.

Having the Peer2Me JAR-file, J2SE SDK and J2ME installed on the computer, it should be possible to
compile any MIDlet using the Peer2Me framework. The only exception would be if the MIDlet makes use

of any special functionality that requires an additional API.
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CHAPTER 12

Developing a Peer2Me v2.0 MIDlet

In this chapter we will provide a guide on how to write a MIDlet utilizing the Peer2Me framework. The guide
focuses on the Peer2Me specific functions, and leaves out the development of a graphical user interface (GUI).
The complete source code of two MIDlets using the Peer2Me framework v2.0 can be found as appendices
at the end of this report (Appendix B). While reading this chapter we strongly recommend looking up the
methods in the Peer2Me v2.0 Javadoc as they get introduced. The Javadoc can be found as Appendix C

and contains useful supplementary information about the classes and the methods.

12.1 Initiating the Framework

To get access to the functionality provided by the framework, an instance of the framework must be fetched.

To get this instance and to initiate the framework, do the following in the main MIDlet class:

1. Let the main MIDlet class extend class javaz.microedition.midlet. MIDlet.
2. Import peer2me.framework. *

3. Let it implement the peer2me.framework. FrameworkListener interface. This interface enforces the
MIDIet to implement methods used of the framework to send data back to the MIDlet.

4. Run the static method getInstance in class FrameworkFrontEnd to get a reference of type Framework.
This can typically be done already in the constructor of the main MIDlet class, and the received
reference should be saved globally in the MIDlet as this reference is the one and only reference to the
framework from the MIDlet. The input type to FrameworkFrontEnd.getInstance() must be a reference

to the class implementing the peer2me.framework. FrameworkListener interface.
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5. When all required inputs are ready, it is time to run the initFramework method on the reference fetched
in the previous step. This method initiates the framework and causes all internal threads running the

different network functionality to start.

12.2 Setting Up a Connection

To search for other devices and to set up a connection, do the following:

1. Run method startNodeSearch on the available reference to the framework. This method starts a search

for devices running the same MIDlet.

2. If such a device is found, the notifyAboutFoundNode method specified by the FrameworkListener
interface is called to notify the MIDlet. The method notifyAboutFoundNode implemented in the MIDlet

should display the names of the found nodes in a choice group.

3. After selecting which nodes to connect to from the choice group, the method connectToNodes should be

called with the addresses of the chosen nodes as input. This method connects the devices in a network.

4. Once a connection is established, the notifyAboutParticipants method specified by the FrameworkLis-
tener interface is called on every connected device to notify the MIDlets about the network participants.
The names of the participants should typically become added to a choice group and displayed on each

device.

12.3 Sending a Data Package

Sending a data package using Peer2Me v2.0 has become very simple:

1. To send simple text, use the sendTextPackage method. This method sends some text over the network.

Required input is a list containing the addresses to the recipient nodes, and the text to be sent.

2. When the text package terminates to the recipients, they are alerted by the notifyAboutReceived-
TextPackage method specified by the FrameworkListener interface. The local MIDlet on each recipient
should then typically display the received text.

3. To send any kind of file, use the sendFilePackage method. This method sends a file over the network.
Required input is a list containing the addresses to the recipient nodes, and the path of the file to be

sent.

4. When the file package terminates to the recipients, they are alerted by the notifyAboutReceived File Pack-
age method specified by the FrameworkListener interface. The local MIDlet on each recipient should
then typically display a text saying that a file has been received.
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12.4 Using the Log

The framework has a built-in log that could be very useful during development and testing. The log is used
throughout the whole framework, and is filled with different types of status messages informing the user

(and/or developer) about what happens during run time. To use the log, do the following:

1. Import peer2me.util. Log

2. Fetch the logs by running the static getLog method. It is generally very useful to fetch the logs and

offer a console containing the content of the logs.

3. New entries can also be added to the log from the MIDlet by using for example the logDebuglnfo
method.
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CHAPTER 13

Deploying a Peer2Me MIDlet

This chapter contains a simple guide on how to deploy the MIDlet on a mobile device.

13.1 Creating a MIDlet package

As written in Chapter 5.1.1, a Java application intended for a CLDC device must be formatted into a Java
Archive (a JARAfile) to run on the device. JAR files are Java’s version of ZIP files, and can in fact be opened
with WinZip or WinRar. Usually, a function for creating a JARfile containing the MIDlet is provided by the
development tool, but it can also be created manually using the jar.exe file that comes with Java2 Standard
Edition Software Development Kit (J2SE SDK). The jar utility program can be run from the command line
(DOS prompt or bash for example, depending on your OS). Here is how to create a compressed JAR-file:

jar -cf archiveName.jar file-names-separated-by-space

For additional information on how to use the jar utility program, just type jar.exe from the command

line, and push the ”enter” key.

13.2 How to run a MIDlet

To run the MIDlet on a mobile device, the JAR-file containing the compiled MIDlet must be transferred
to the device. This can be done using a cable between the computer and the device, or by Bluetooth or
IR. Using Bluetooth or IR requires of course that both devices (computer and mobile device) supports the
respective wireless network mediums. When the transfer is complete, the JAR-file can be executed and the
MIDlet will be installed on the device. The MIDlet is then ready to be run.
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Part V

Peer2Me v1.0 vs. Peer2Me v2.0
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CHAPTER 14

Comparison of Framework Functionality

In this part we will describe the tests we performed on the Peer2Me v2.0 framework after it was completed.
The tests consisted of comparing the redesigned framework with the original one. These tests gave us both
quantitative and qualitative data which in turn was used to evaluate the redesign of the Peer2Me framework

(see Chapter 18, Evaluating the Redesign) and to answer the Research Questions raised in Chapter 2.1.

The actual testing process was divided into three different parts; a comparison of main functionality (found in
the following chapter), a architectural and structural comparison of the original and the redesigned versions
of the Peer2Me framework (found in Chapter 15), and comparison of the framework properties (found in
Chapter 3).

This chapter contains a presentation of important functionality found in the Peer2Me framework v2.0. If

similar functionality also could be found in Peer2Me v1.0 a comparison of the implementation will be made.

14.1 Peer2Me v2.0 Functionality

In the following we will present and describe a selection of functionality found in the Peer2Me framework
v2.0;

x Pure peer-to-peer computing, see Chapter 3.3.1.

*

Sending text

*

Sending files
* Logging

Detection of lost nodes

*
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* Clean exit

14.1.1 Pure peer-to-peer computing

In Chapter 3.3.1 pure peer-to-peer is defined as:

” In a pure P2P model it does not exist any central unit (server) responsible for managing or

coordinating the services and the resources among the peers in the network.”

In Peer2Me v1.0 this is not the case as one of the nodes in the network has to act as a Master handling all
the communication between its Slave nodes. This form of peer-to-peer computing is referred to as a hybrid

model.

In Peer2Me v2.0 this solution is discarded and replaced with a pure peer-to-peer model. A device running a
Peer2Me based MIDlet performs a discovery operation and locates and connects to all or a selection of the
discovered devices also running the same MIDlet. Simultaneously all the connected devices are synchronized
so they possess knowledge of all the other devices, now acting as nodes in the ad-hoc network. When some
data is to be sent, a connection can be established directly between the sender and the recipient(s) rather
than through a Master node. This eliminates the Master/Slave concept of Peer2Me v1.0 and removes the

potential bottleneck and single point of failure problems of the original framework.

14.1.2 Sending text

Sending of text is the only applicable function of the original Peer2Me framework, but we find the process
quite complicated and tedious. In the redesigned version, the text sending is somewhat simplified, but yet
very useful. To send a text message the MIDlet needs to call the sendTextMessage() method of the Framework
interface. The recipients’ network addresses and the actual messages are given as input parameters and the
framework handles the rest of the sending process. In Peer2Me v1.0, a message and message parts have to
be created, and the entire process is much more time consuming, more complicated and requires several lines

of code.

Incoming text is also presented to the MIDlet in a simple way by the Peer2Me v2.0. The notify AboutRe-
ceivedTextPackage() method have to be implemented by all MIDlets due to the implementation of the
FrameworkListener interface, and this method is used by the framework to notify the MIDlet about a

received text package. The sender’s address and the text itself is given as input parameters.

With some additional implementation the text sending can be utilized to serialize and send objects between

nodes.

14.1.3 Sending files

This is a completely new feature of the Peer2Me framework v2.0 that allow sending a any kind of files between
nodes. The files are fetched from and stored on the local file system of the device running the framework.
The files are broken down into blocks of bytes, sent to the receiver(s) and put back together again. The size

of the byte blocks are tuned to achieve the highest possible transfer rate.
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14.1.4 Logging

The logging functionality is an important feature to allow debugging as there is no console displaying
information on this kind of devices. The log also contains a history of all communication and connections
established between nodes. The Peer2Me v1.0 has no logging functionality, but features a exception handler
and a debug application. There is no consistency in which is used in what situation, whereas Peer2Me v2.0

gathers all information in one location in a readable and descriptive format.

14.1.5 Detection of lost nodes

In a ad-hoc network based on peer-to-peer computing, such as the networks created using the Peer2Me
framework, it is crucial to detect cases where one or more nodes are lost. If this is neglected text- and file
packages will be lost when one node tries to send to a node that is no longer there. In Peer2Me v2.0 lost
nodes are detected by the sender, and if a retry is unsuccessful the lost node is removed from the group. The

other nodes of the group is also informed about the event by a synchronization of their groups.

The original Peer2Me framework have no such detection and can only remove a node from a group when it

leaves in a controlled way.

14.1.6 Clean exit

When a MIDlet based on the Peer2Me framework shuts down it is important that the framework ”cleans
up” as well. All connections and data streams must be closed and removed before the application itself
terminates. This way no "loose threads” are left behind that can compromise the next execution of the
same MIDlet. The Peer2Me framework v2.0 has gotten rid of the problems concerning the discovery process

experienced in Peer2Me v1.0 when a MIDlet is terminated ungracefully.
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CHAPTER 15

Comparison of Code Structure

In this chapter we will describe the improvements we have made to the code structure of the redesigned
Peer2Me by comparing it to the structure of similar code found in the original framework. The comparison
will consist of code listings of how a particular portion of code is constructed in both the original and the
redesigned framework. A description of the listings will point out the improvements and changes we have
performed. The last sub chapter will summarize the most important changes and other positive properties
of the code.

15.1 Code Samples

The code samples are taken from methods that particularly illustrates how we have redesigned the code
to improve the quality and structure. We emphasizes the use of comments, comprehensible variable and

method names and generally tidy coding.
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15.1.1 Initiation of the framework

These two listings illustrates how the framework is initiated in MIDlets using the original and the redesigned

framework.

Listing 15.1: Initiation in Peer2Me v1.0

public void init (){
while(role==null){};

if (role .equals(”Slave”)) chatForm = new ChatForm("PAN IM” this,”Slave”);
if (role .equals(”"Master”)) chatForm = new ChatForm("PAN IM”, this,”Master”);
service = new Service("Panlm”);

framework = Framework.getInstance(personalProfile.getNickname(), personalProfile.getFirstname()+" "+

personalProfile . getLastname(), ” bluetooth.network.BluetoothNetwork”);
framework.init ();

framework.set GroupDiscoveryListener(this);

framework.setMessageSubscriber(this);

framework.setExceptionHandler(this);

if (role .equals(”"Master”)){
group = new Group();
group.setMaster(framework.getLocalNode());
group.setMonitor(this);
service .setGroup(group);
group.setClosed(true);
group.setService ( service );
foundNodes = new Hashtable();

}

framework.registerService ( service );

showWelcomeMessage();
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Listing 15.2: Initiation in Peer2Me v2.0

// Fetches an instance of the Framework
framework = FrameworkFrontEnd.getInstance(this);
// Initiates the framework
try{
framework.initFramework(nodeName, midletName, preferredNetwork);
}catch(Exception e){

append("Error initiating the framework. Please try again.”);

In the MIDIlet developed upon the original Peer2Me framework one have to perform a large number of
task to initiate the framework, see Listing 15.1. References to a number of classes had to be made, like

Framework, Service, Group, and several methods were called.
In the redesigned framework only two lines of code are needed, a instance of the Framework interface is
fetched and an initiation is run with user name, MIDlet name and preferred network as input, see Listing

15.2.

15.1.2 Variable Comments

Descriptive and well written comments are important to make the code easy to understand and maintain.

Listing 15.3: Variables in Framework.java (v1.0)

//debug variables
private boolean debug = false;

private boolean debug2 = false;

private Hashtable services = new Hashtable();

private GroupDiscoveryListener groupDiscoveryListener;
private Vector messageSubscribers = null;

private Vector messageQueue;

private String nodename;

private String description;

private Network currentNetwork;

private Hashtable groups;

private boolean running;

private String preferredNetwork;

private ExceptionHandler exceptionHandler;
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Listing 15.4: Variables in FrameworkFrontEnd.java (v2.0)

// The instance of the FrameworkFrontEnd returned by the getInstance() method, will be casted to Framework upon return
private static FrameworkFrontEnd singleton;

// The midlet that initiated the framework represented by a FrameworkListener instance

private FrameworkListener midlet;

// The Network instance of the preferred network

private Network currentNetwork;

// The group containing all connected nodes running the same application

private Group group;

// The local node

private Node localNode;

// A Hastable containing the addresses(key) and names(value) of the nodes found in the discovery process
private Hashtable foundNodes;

// A Log instance
private Log log = Log.getInstance();

These code sniplets illustrates how variables are declared and commented in the main framework class
of the two versions of the Peer2Me framework. In the redesigned version, every variable has a comment

describing the function and use. This is continued throughout all the classes.

15.1.3 Javadoc Comments

To have a complete and good Javadoc of the code is a must for developers using the framework.

Listing 15.5: Javadoc in Framework.java (v1.0)

VeSS
x Used for dosconnecting a node.
*
* @param node The node to disconnect.
*/
public void disconnectNode(Node node){
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Listing 15.6: Javadoc in FrameworkFrontEnd.java (v2.0)

VES:

This method returns the local representation of the group. It is called from

*

*

ConnectionListener.run() or Network.nodeFound() when a remote node is found

*

and should be added to the group.

*

+ @return The local representation of the group
*/

public Group getGroup(){

Every method of the redesigned Peer2Me framework has got a Javadoc comment describing the usage,
parameters, exceptions and return values. In some cases the Javadoc also describes where the method is
called from. The original framework has some shortcomings of the Javadoc, and quite a few methods lack

comments all together.

15.1.4 Method and variable names

Descriptive and well formulated names on methods and variables increases the understanding of their
function. This is important for developers creating MIDlets using the framework as well as further

development of Peer2Me.

Listing 15.7: allowJoin() method in the GroupMoinitor interface (v1.0)

VeSS

x Called when a node wishes to join a closed group. Only called if
* on the master node.

*

* @param group The group associated with the join request.

* @param node The node sending the request.

% @return True if the join is accepted, false otherwise.

*/

public void allowJoin(Group group, Node node);

Listing 15.8: sendTextPackage() method in the Framework interface (v2.0)

VES:

*

This method sends a text package over the network. When the package

* terminates to the recipients, they are alerted by the

*

notify AboutReceived TextPackage() method specified by the

FrameworkListener interface.

*

x @param recipients A list containing the addresses of the recipient nodes
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* @param textMessage The text message to be sent

*

of

public void sendTextPackage(String[] recipients, String textMessage);

The allowJoin() method is a good example on how the comments and method names of the original framework

are somewhat vague, see Listing 15.7.
* Called when a node wishes to join a closed group. Only called if on the master node.

This description do not explain how the method is supposed work when implemented and where it should
be called from. The name of the method is also a bit misleading. Is the method called to allow a remote

node to join the group or is it called to attempt to join the group of another node?

In the method sendTextMessage() of the redesigned version of the framework seen in Listing 15.8 the name
is descriptive and the input parameters are quite self explaining. The Javadoc comment tells us where the
method is called from and what function it serves. The input parameters are also further described in this

comment.

15.1.5 Tidy Code

Tidy coding is important to maintain readability and to ensure easy maintenance in the future.

Listing 15.9: The constructor of the RemoteBluetoothNode class (v1.0)

public RemoteBluetoothNode(BluetoothNetwork listener, StreamConnection connection) throws BluetoothNodeException{
this. listener = listener;

conn = connection,;

try {
remoteDevice = RemoteDevice.getRemoteDevice(connection);
} catch (IOException e) {

throw new BluetoothNodeException("Failed to initialize RemoteBluetoothNode:” 4+ e.toString());

}

address = remoteDevice.getBluetoothAddress();

listener .registerNode(this );

thread = new Thread(this);
thread. start ();
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if (debug) Debugger.debug(’started thread on this node”);

Listing 15.10: The constructor of the NodeConnection class (v2.0)

public NodeConnection(StreamConnection connection, Node node){

// Fetches a instance of the Log

log = Log.getInstance();

// Sets the connection to connect to and fetches an instance of the currentNetwork
this .connection = connection;

this .node = node;

currentNetwork = Network.getInstance();

// Creates the sendQue

sendQueue = new Vector();

// The Input— and OutputStreams shall not do anything before the node is connected
// These values are toggled from ConnectionListener.run() and NodeConnection.sendDataPackage()
openlnputStream = false;

openOutputStream = false;

// Starts a thread that processes the sendQue

outputThread = new OutputThread();

outputThread.setPriority(Thread. MAX_PRIORITY);

outputThread.start();

// Starts a thread constantly listening for incoming datapackages

inputThread = new InputThread();

inputThread.setPriority (Thread. MAX_PRIORITY);

input Thread.start();

The code of the NodeConnection constructor found in the redesigned Peer2Me framework are divided into
logical blocks, are compact and has descriptive comments. This eases the work of developers trying to

understand the framework with the intention to further improve it.

15.2 Summary

We will now summarize the code structure comparison and point out the improvements we have achieved

through the redesign of the Peer2Me framework.

Compact and tidy code The code have been revised to tidy it up and make it more readable. The
interface towards the MIDlets is made simpler, located in only one java file and have few methods with

descriptive names.
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Variable- and Javadoc Comments Comments has been used throughout the entire redesigned frame-
work to describe the usage of variables and methods, and to add Javadoc entries of all methods and

classes. The extensive use of comments makes the code easier to comprehend and start using.

Method and Variable Names When using the framework it is crucial that the names of the methods and
variables available are self explaining so no confusion about their function occurs. It is time consuming

to browse through the code to try and figure out how to use it.
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CHAPTER 16

Comparison of Framework Properties

This chapter will aim to describe the comparison of the redesigned as well as the original Peer2Me framework’s
properties to retrieve the quantitative data needed to evaluate the redesign of the framework (see Chapter
18). The properties we want to compare are; footprint of framework and MIDlets, interface size, complexity,

and transfer rate.

Our comparison will be performed with base in the PAN-IM instant messenger MIDlet found in Lund
and Norum’s master thesis [31] and the Peer2Messenger MIDlet developed by us for the purpose. These two
MIDlets will feature the same functionality to ensure a correct comparison. The transfer rate of the original

framework was found in the tests performed as a part of our depth study [39].

16.1 The Goal/Question/Metric Approach

These are the goals we stated based on Research Questions 2 and parts of Research Questions 3 in Chapter 2.1
using the the goal definition template found in Chapter 2.2.2. These goals are further refined into questions

and metrics used to answer the Research Questions.

Goal 1: Analyze the the redesigned Peer2Me framework
for the purpose of Evaluating the framework and the MIDlets
with respect to its footprint and complexity
from the point of view of the Developers

in the context of Mobile collaborative application development.

Question 1: Has the redesigned Peer2Me framework got a smaller footprint than the original

framework?

Metric: Measure framework footprint.
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Question 2: Has a MIDlet built upon the redesign Peer2Me framework got a smaller footprint than a
MIDlet built upon the original framework?

Metric: Measure MIDlet footprint.

Question 3: Has the redesigned Peer2Me framework got a smaller interface towards the MIDlets than

the original framework?
Metric: Measure the number of relations between a MIDlet and the framework.
Question 4: Is the redesigned Peer2Me framework less complex than the original framework?

Metric: Measure number of packages, number of classes and average class size.

Goal 2: Analyze the the redesigned Peer2Me framework
for the purpose of Evaluating an application built upon the framework
with respect to its stability, performance and error rate
from the point of view of the Developers

in the context of Mobile collaborative application development.

Question 1: Does the redesigned Peer2Me framework perform better, with respect to transfer rate,

than the original framework?

Metric: Measure transfer rate.

16.2 Comparing the Framework Properties

To compare the properties of the redesigned vs. the original framework as well as MIDlets built upon them,
we created a Peer2Messenger similar to the PAN-IM presented in the master thesis of Lund and Norum [31].
The two MIDlets had to have the same functionality and GUI to get a correct comparison. To achieve this
we had to make some modifications to the PAN-IM MIDlet because it uses persistence to store information
about the user. The Modified version of the PAN-IM and the Peer2Messenger have the same functionality

and hence they are comparable. The properties we compared in this experiment was:

Framework footprint This property is a factor that can tell us something about the complexity of the
frameworks. The idea is that the footprint somewhat reflects the complexity, as a large number of
classes will increase the size deployed file containing the framework. A small footprint is also, to some

extent, important due to the limited memory available for runtime operations on mobile devices.

MIDIlet footprint and interface complexity As in the previous point we presume a connection between
the MIDlet size and the complexity. A simplified framework interface will decrease the amount of code
needed in the MIDlet to initiate and use the Peer2Me framework. It will also reduce the time a

developer needs to start developing working MIDlets.

Framework complexity To make the Peer2Me framework easier to comprehend for developers we have
tried to reduce the total number of classes and keep the functionality basic, yet complete. We have

also gathered all the methods "visible” to the developers in one interface.
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between two or more portable devices. A limited transfer rate will restrict the possibilities of realtime

communication and sending of large files.

Transfer rate The transfer rate is a crucial property for the framework, as the main focus is communications

Framework Properties
Properties \ Peer2ME v1.0 | Peer2Me v2.0 | Improvements
Framework Footprint (code lines) 1875 1621 254
Framework Footprint (kB) 47,2kB 37,5kB 9,7kB
Framework Packages 18 6 12
Framework Classes 29 18 11
Framework avg. Class Size (code lines) 65 85 -20
MIDlet Footprint (code lines) 402 321 81
MIDlet Footprint (kB) 9,7kB 9,8kB -0,1kB
MIDIlet Framework Interfaces 4 1 3
MIDlet Framework Interface Methods 8 ) 3
MIDlet Framework Class References 6 1 5
Transfer Rate in kB/s 7kB/s 18kB/s 11kB/s

Table 16.1: Framework Properties

We will now review the properties viewed in Table 16.1 to compare the original and the redesigned Peer2Me
framework. FEach property will be discussed separately and evaluated to determine whether or not the

redesign of the framework has improved the specific property.

Framework Footprint The footprint of the framework specific classes has been reduced with about 20.6%

(9,7kB), which is significant on small devices like the ones this framework is intended for.

Framework packages The number of packages in the Architecture is reduced to a third of the original.

This contributes to reduced complexity and makes the structure easier to comprehend.

Framework classes and average class size Almost 40% reduction in classes shows that redesign has
fulfilled the goal of simplifying the framework. The less classes a developer has to relate to and
understand the function of, the easier the task of using and further expand the framework will be. The
average size of each class has increased with 20 code lines, but this is a natural consequence of the

reduction in classes and the classes are still small enough to maintain the developers overview.

MIDIlet Footprint The size of the Peer2Messenger MIDlet is not noticeably reduced compared to the
PAN-IM MIDIet, although the total size of the deployable JAR file is reduced. This is mainly caused
by poor optimization of the code representing the GUI' in Peer2Messenger. The actual framework
related code of the MIDlet has been minimized.

MIDlet Framework Interfaces and Interface Methods The number of interfaces that has to be
implemented by a MIDlet to make use of the framework has been cut from 4 in the original to 1 in

the redesigned one. The number of methods that has to be implemented as a result of these interfaces

1Graphical User Interface
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is reduced from 8 to 5. This means that the job of developing a MIDlet upon the Peer2Me framework

has been simplified and easier to comprehend.

MIDlet Framework Class References The number of class references gives an indication of how many
classes from the framework a MIDlet has to have a reference to. We have reduced this number from
6 to 1 which reduces the coupling between the Peer2Me framework and the MIDlet. It also eases the
task of developing a MIDlet upon the framework because no more than two lines of code is needed to

initiate and get a reference to the framework.

Transfer Rate The transfer rate was measured sending a string consisting of the alphabet written out 700
times and we experienced a 157% improvement from the original framework. We also found that the
transfer rate increased to more than 30 kB/s when larger amounts of data was transferred (for example
a MP3 file of several megagytes). The original framework could not transfer larger data packages, so

we can not determine if this increase will occur here as well.

These results and properties will be further discussed in the Evaluation chapter, Chapter 18.
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CHAPTER 17

Technology Evaluation

In this chapter we will evaluate the technologies utilized in the redesign of the Peer2Me framework and the
development tools used in the process. This evaluation will not answer any specific Research Questions, but

is provided to give a better overall view of the Peer2Me framework v2.0.

17.1 Mobile Phones and J2ME

The following will evaluate the technology of the mobile phones used in testing during this project, as well

as J2ME as a programming platform on such mobile devices.

17.1.1 General Evaluation of Mobile Phones and J2ME

The redesign of the Peer2Me framework is based on SUN Java Wireless Toolkit (WTK) 2.2! just as the
original is. This version of the toolkit has a wide range of capabilities like support for MIDP 2.0, CLDC 1.1,
Bluetooth (JSR-82), FileConnection (JSR-75), Web Services (JSR-172) and 3D graphic (JSR-184). We have
kept our focus on MIDP 2.0 and Bluetooth since this are important aspects of the Peer2ME framework. We
have also taken advantage of the functionality found in the FileConnection API to enable file sending. The
toolkit has performed in a satisfactory way, not causing us any major problems. The mobile phone emulator
that comes with the WTK and the emulator found in the Sony Ericsson SDK 2.2.32 has also been a helpful
tool for testing and debugging. The J2ME implementations of the different mobile phone vendors on the
other hand, is still causing a lot of problems. This will be described more thoroughly in the Weaknesses
chapter (Chapter 17.1.3).

In this project we have used Sony FEricsson K750 mobile phones as test devices. This phone has proved

Lhttp://java.sun.com/products/sjwtoolkit /index.html
2developer.sonyericsson.com
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itself to be the most satisfactory to develop for and test with, and has only caused minor problems. It is

fast, stable and has plenty free memory. The J2ME Bluetooth implementation is also of high quality.

17.1.2 Strengths of Mobile Phones and J2ME

Portability is the main advantage of a combination of technologies like Java in the form of J2ME and portable
computing devices, e.g. mobile phones. This portability along with the ability to program fairly powerful
applications opens for a wide range of utilizations of this kind of setup. Interaction and collaboration is such
a area that is becoming more and more interesting due to the high density of Java enabled mobile devices

in affluent countries in the western world.

J2ME is a platform that specially addresses the requirements for program development on small devices
like mobile phones and PDAs. This specialization together with the widespread acceptance of J2ME in the
consumer electronics has made J2ME one of the leading technologies in this area. This results in a large
selection of APIs and available resources that helps developers creating better and more diverse applications.
As with all SUN Java platforms J2ME is available for research and development purposes via the Sun

Community Source Licensing model which makes it affordable to develop applications on this platform [26].

Bluetooth is becoming more and more widespread as the short range wireless medium of mobile devices.
Via the Bluetooth API (JSR-82) the J2ME applications can use the Bluetooth unit of the mobile device
to communicate with other devices in the proximity. This opens for the creation of ad hoc networks
between devices running the same application, which in turn can be utilized for entertainment, collaboration
and awareness purposes. Bluetooth can be used for mobile-to-computer communication as well. J2ME
applications can be used to remotely control certain operations on the computer and data can be transferred

and synchronized. More about Bluetooth in Chapter 17.2.

With support for file browsing through the FileConnection API (JSR-75) the possibility of sharing files
between participants in an ad-hoc network adds a new dimention to the Peer2Me framework v2.0. Accessing

and sending files opens for whole new features in the MIDlets developed using the framework.

17.1.3 Weaknesses of Mobile Phones and J2ME

Although the gap between portable and stationary computational devices has shrunk the last few years,
there are still several limitations to what can be done on a mobile phone. The relatively low CPU power
available restricts the number of calculations per second and hence the possibility to solve complex tasks.
The result is that the J2ME applications must be rather lightweight. The limited CPU power is tightly
related to the insufficient battery capacity of the devices [11]. This has become one of the biggest challenges

for the industry trying to include ever more functionality in smaller and smaller devices.

The means of interaction with the users is still the most restrictive characteristic of portable devices. Both
the keyboards and displays are limited in size and degrade the user experience compared to a traditional
computer system. Input is often done on numeric keyboards with a multiple key press approach to make

writing of text possible. The introduction of a function for predictive text input, like T9 [19], has improved
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writing speed for most users, but it is still inferior to a normal QWERTY-keyboard. The display of a typical
mobile device? features a TFT-screen with 262 144 colors and a 176x220 pixel size. This limits the amount
of information that can be presented for the user at one time. Graphics must be kept at a minimum and the

focus has to be on the what is important for the usability and usefulness of the application.

J2ME is a stripped down version of J2SE, and because of this it lacks several possibilities that an experienced
Java programmer will miss. This makes the transition between the to platforms a bit challenging, but
not insuperable. Many of the problems we experienced during development and testing of our Peer2Me
application could have been avoided if we could have reviewed some kind of log or console after an error has
occurred. This was added as a feature of the Peer2Me framework v2.0 and has proven to be a great help

during development and testing.

Another major problem one encounters when developing J2ME applications is that the different mobile
device vendors do not implement J2ME uniformly in all devices. The graphical user interface of the different
devices is a good example of this with several differences among devices [18]. These differences are mainly

connected to grouping and priority of commands, along with layout of forms.

17.2 Bluetooth

We will now evaluate Bluetooth as a wireless medium for communication between two or more mobile devices.

17.2.1 General Evaluation of Bluetooth

The redesigned Peer2Me is intended to support any type of network layer as long as it exists J2ME support
and APIs for it. The network layer is kept invisible for the MIDlet running the framework. This way
the developer does not have to focus on implementing specific methods to communicate over the network,
but rather use available network interfaces. As of today there is only one network layer implemented for
the Peer2Me framework, Bluetooth. This is because Bluetooth is the only network technology commonly
available in mobile devices at the moment. More details about the Bluetooth technology can be found in
Chapter 5.2, Bluetooth.

17.2.2 Strengths of Bluetooth

With exception of WLAN on a few PDA’s and Smart Phones, Bluetooth is the only wireless technology
commonly available on portable devices like mobile phones today. The use of Bluetooth in wireless hands
free units further increase the implementation of the technology into new equipment. The technology is also
on its way to become standard on most computers, which opens for wireless communication between mobile

and more stationary devices.

To be able to take advantage of Bluetooth’s network capabilities in a J2ME application running on a mobile
device the JSR-82 Bluetooth API must be present. This API is included on many of the new mobile phones

3Sony Ericsson K750
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with MIDP 2.0 support. The API enables the J2ME application to communicate with other applications
running on other devices via Bluetooth. This gives the possibility to create ad hoc networks, as is the case

with the applications based upon the Peer2Me framework.

The experiments we performed concerning range in our depth study [39] proved that the transmitting range of
the Bluetooth units in mobile phones is considerably higher than the 10 meters described to be the limitation
for Class 2 Bluetooth devices [28]. We were able to sustain a connection between two devices for distances
up to about 70 meters both outdoors and indoors and these ranges will make it possible to develop useful

applications based upon the Peer2Me framework using Bluetooth as a network layer.

Bluetooth is using a technique called "Frequency Hopping” to increase the quality of the signal. This technique
reduces interference and noise, makes the signals harder to intercept and enables higher bandwidth for data
transmission. These factors make Bluetooth a relatively stable medium and well suited to be used with the

Peer2Me framework v2.0.

17.2.3 Weaknesses of Bluetooth

Through our use and testing of Bluetooth as a wireless network medium we have found the relatively long
discovery time to be the main disadvantage. This limits the possibility to create ad hoc networks as the
mobile devices have to been in proximity of each other for a long enough period of time before the ad hoc
network can be established. The discovery of devices worn by persons passing each other in a corridor is for
instance not very likely. A successful creation of an ad hoc network relies on the participants to more or less

stationary in range of each other.

The Bluetooth technology has got a theoretical limit of 8 simultaneous connections and this number is quite
lower than that on most devices. We have hower overcome this limitation by creating a pure peer-to-peer

architecture where the devices are connected only as they send data to each other.

In our depth study [39] we were able to acheive transfer rates of approximately 7kB/s. Although we have
increased this to about 20kB/s (see Table 16.1), it is not very high. This restricts the amount of data it is
practical to transfer from one device to another and it is mostly suited for transfer of textual messages and

small files like images.

As described in Chapter 17.1.3 there are some problems with different mobile device vendors implementing
J2ME in a proprietary manner. This affects the Bluetooth APT as well; especially in the way the applications
are allowed to create a Bluetooth connection. In turn this leads to problems establishing spontaneous as hoc

networks as the user has to authenticate any attempt to connect.

17.3 Development Tools

This chapter contains an evaluation of the development tools used in this project.
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17.3.1 General Evaluation of the Development Tools

The Eclipse IDE* is our preferred environment for writing both code and IIEX documents as this
documentation. To be able to develop J2ME applications we have extended Eclipse with the EclipseME®
plug-in and SUN’s Java Wireless Toolkit®. This solutions gives us an easy way of packaging and deploying
finished MIDlets as a JAR file ready to execute on J2ME compatible devices. To make this configuration
work in Mac OSX we had to do some modifications to the preverifier using elements from a SDK called

mpowerplayer”.

17.3.2 Strengths of the Development Tools

As the Eclipse IDE is Java based and hence is platform independent it is an ideal development environment
for this project because of the mix of Windows PCs and Mac OSX macs used. By using this multi platform
IDE we eliminated problems that might have occurred if we had used a heterogeneous and OS specific

environment.

The EclipseME plug-in gives us several advantages for developing J2ME applications. Combined with the
wireless toolkit it has a very useful code assist that makes coding easier and faster. It also features an
automatic packaging function that crates a JAR package containing the MIDlet and all the necessary class
files. This is far more elegant than the manual approach that includes writing and running an Ant® script.

The EclipseME have a graphical interface for creating JAD files as well, another helpful element.

Since we are two contributors in this project the built in CVS? client found in Eclipse is a very useful
tool. I allows to collaborate and work as a team even though we often work from physical different locations.
By using CVS to keep track of changes in our code and documentation we can always be sure that we are
working with the latest version and we do not have to worry about compromising each other’s code. The
fact that CVS is using a repository on a remote server also adds an extra level of security against loss of

code.

17.3.3 Weaknesses of the Development Tools

The main weakness we have discovered using Eclipse is some stability problems. Eclipse functions can
suddenly cease to work and unchanged code that is compiled a minute ago fails to compile. The errors can

often be fixed using a combination of restarting, cleaning projects and refreshing form CVS repository.

Another problem we have encountered is incompatibility between the text encoding formats in Mac OSX
and Windows (MacRoman and ISO-8859-1). This is resolved by forcing the Mac version of Eclipse to use
ISO- 8859-1 for this project.

4
5

www.eclipse.org

www.eclipseme.org
Shttp://java.sun.com/products/sjwtoolkit/index.html
“mpowerplayer.com

8http://ant.apache.org/
9http://www.nongnu.org/cvs/
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CHAPTER 18

Evaluating the Redesign

In this chapter we will evaluate Peer2Me v2.0 and try to point out strengths and weaknesses of the framework.
The evaluation will have a qualitative and subjective character and represents the perceived quality of the
redesigned Peer2Me framework. Qualitative data is, as described in Chapter 2.2, expressed in words and
gives a richer understanding of the subject in question. This evaluation is used to answer Research Question
1 and the part of Research Question 3 not answered by the results of GQM; Analysis and Interpretation
found in Chapter 19. In Research Question 1, we asked:

1. Does a redesign of the Peer2Me framework improve developers ability to produce J2ME

based applications for mobile collaboration?

18.1 General Evaluation of the Peer2Me Framework v2.0

As the for the original Peer2Me framework is the main purpose for the redesigned version to support
development of collaborative mobile applications based on J2ME and any available network protocols. We
are still limited to the use of Bluetooth as network medium because this is the only implemented network
API for J2ME. Bluetooth is however becoming a widespread technology present on a large range of mobile

phones and with recent upgrades it performs quite good as well.

Overall we are satisfied with v2.0 of the framework. We have fulfil out main goals of improving the
architecture, simplifying the interface and decreasing the footprint. Our impression is that Peer2Me
framework v2.0 is simpler to both learn and use than the original version. Many of the underlying problems

and errors are also removed, and the framework appears to be a more reliable and versatile.
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18.2 Strengths of the Peer2Me Framework v2.0

The main strength of the redesigned version of the Peer2Me framework is the fact that it now uses a
pure peer-to-peer topology in the creation of and communication over ad-hoc networks. This eliminates the
bottleneck and single point of failure problem associated with the Master/Slave topology of the Peer2Me
v1.0. This solution utilizes the full bandwidth of the network technology and even overcomes the theoretical

limitations of simultaneously connected nodes.

As described in Chapter 16, the transfer rate is considerably higher in Peer2Me v2.0 than Peer2Me v1.0.
While the perceived transfer rate in v2.0 in a specific case is 18kB/s, it is 7kB/s in v1.0. This is most likely
a result of an optimalization of the way bytes are sent and read. In Peer2Me v2.0 bytes a written and read

in blocks of a certain size, while in Peer2Me v1.0 bytes are read one by one.

The Peer2Me framework v2.0 encapsulates all network related classes and presents a generic interface towards
the MIDlets developed. This approach reduces the time and code required to develop a new MIDlet and
does not demand any knowledge of the network technology. New network modules can be added without

altering the MIDlet interface at all or having to change the code of existing applications.

A new feature of Peer2Me v2.0 is the inclusion of the FileConnection API (JSR-75). This allow the MIDlets
to access the local file system of the device it is executing on. The methods for performing this type of file
access are encapsulated by the framework that presents methods for file sending and file list navigation to
the MIDlets.

Another new feature of the framework is the detection of lost nodes. If a node in the network tries to
send some data to another node that for some reason have disconnected in an irregular manner action is
taken. The lost node is removed from the group and all the other participants are synchronized. This way

no data is lost or presumed received when this is not the case.

The communication between the Peer2Me framework and the Peer2Me MIDlets is considerably simplified
and features two interfaces only, one for MIDlet-to-framework method calls and one for calls in the opposite
direction. These interfaces contain only the most basic methods and all non relevant functionality is hidden

behind the framework.
The frameworks code are structured and well written with descriptive comments and intuitive method/-

variable names. This combined with the developers guide found in Part IV makes the task of creating a new

Peer2Me MIDlet manageable to most Java developers.

18.3 Weaknesses of the Peer2Me Framework v2.0

The major weakness of the Peer2Me framework v2.0 is the lack of scatternet support (see Chapter 5.2.6,
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Piconets and Scatternets). By adding this kind of network abilities devices that are not in direct network

range of each other can communicate via other devices in their individual piconets.

Another drawback is the limited testing we have been able to perform on the finished framework. With

more extensive testing we could have eliminated even more potential errors and bugs from the program.
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cHAPTER 19

GQM; Analysis and Interpretation

This chapter will be used to answer Research Question 2 and parts of Research Question 3 found in Chapter
2.1:

2. Does a redesign of the Peer2Me framework reduce the footprint and the complexity of

the applications developed as well as the framework itself?

3. Will a redesign of the Peer2Me framework increase the performance and decrease the

error rate of the applications developed?

In Chapter 16.1, The Goal/Question/Metric Approach, we have stated two goals that will help us answer
question number 2 and some of question 3 found above. We used the Goal Question Metric method to break
the goals down into questions and metrics and in this final Analysis and interpretation phase the questions
will be answered. Both Goals have entirely quantitative metrics and the data have been gathered through
the Comparison of Framework Properties found in Chapter 16.2. When all the answers where found they

where used to evaluate if the two main goals have been fulfilled.

19.1 Evaluating Goal 1

This is the first of the goals from the GQM approach found in Chapter 16.1. Created using the GQM

template for goals it states:

Goal 1: Analyze the the redesigned Peer2Me framework
for the purpose of Evaluating the framework and the MIDlets
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with respect to its footprint and complexity
from the point of view of the Developers

in the context of Mobile collaborative application development.

We will now answer and evaluate the four questions related to this goal. Based on the answers a conclusion

to whether or not the goal is reach will be given.

Question 1: Has the redesigned Peer2Me framework got a smaller footprint
than the original framework?

Metric Measure framework footprint.

Peer2Me framework v1.0 footprint 1875 code lines - 47,2kB

Peer2Me framework v2.0 footprint 1531 code lines - 36,1kB

The footprint of the framework specific classes has been reduced with about 16% (11kB). This must be

considered a considerably improvement.

Answer The footprint of the framework have been reduced noticeably by the redesign.

Question 2: Has a MIDlet built upon the redesign Peer2Me framework got
a smaller footprint than a MIDlet built upon the original framework?

Metric Measure MIDlet footprint.
Peer2Me framework v1.0 MIDlet footprint 402 code lines - 9,7kB

Peer2Me framework v2.0 MIDlet footprint 321 code lines - 9,8kB

The footprint of the MIDlet has been reduced by about 80 code lines, but the size in kB has gotten 0,1kB
larger. This could be due to the way the JAR file is packages and the result for a larger MIDlet could have

turn out to be different.

Answer The footprint of a MIDlet built upon the Peer2Me framework is slightly reduced.

Question 3: Has the redesigned Peer2Me framework got a smaller interface
towards the MIDlets than the original framework?

Metric Measure the number of relations between a MIDlet and the framework.
Peer2Me framework v1.0 relations Interfaces:4 - Class references:6

Peer2Me framework v2.0 relations Interfaces:1 - Class references:1
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We have managed to reduce the number of interfaces and class references to one of each. This is the
minimal coupling one can achieve and still ensure communication both ways between the framework and the
MIDlet.

Answer The coupling between the Peer2Me framework and the MIDlets have decreased considerably from
v1.0 to v2.0.

Question 4: Is the redesigned Peer2Me framework less complex than the original
framework?

Metric Measure number of packages, number of classes and average class size.
Peer2Me framework v1.0 MIDlet complexity Packages:18 - Classes:29 - Avg. class size: 65 code lines

Peer2Me framework v2.0 MIDlet complexity Packages:6 - Classes:18 - Avg. class size: 85 code lines

Few packages and classes combined with a relatively small average class size indicates that the framework is

not very complex.

Answer The numbers tells us that the number of packages is reduced to a third and the number of classes

is almost down 40%. The redesigned framework must be considered less complex than the original one.

Conclusion

The answers to Goall given above leads us to the conclusion that the goal is reached. The evaluation
has shown that the redesign has made the Peer2Me framework both smaller and less complex than it was in

it’s original form.

19.2 Evaluating Goal 2

This is the evaluation of the second and last goal from the GQM approach found in Chapter 16.1. The goal
is:
Goal 2: Analyze the the redesigned Peer2Me framework

for the purpose of Evaluating an application built upon the framework

with respect to its stability, performance and error rate

from the point of view of the Developers

in the context of Mobile collaborative application development.

The only question of this goal can be read bellow.

Question 1: Does the redesigned Peer2Me framework perform better, with
respect to transfer rate, than the original framework?
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Metric Measure transfer rate.
Peer2Me framework v1.0 transfer rate 7kB/s

Peer2Me framework v2.0 transfer rate 18kB/s

A high as possible transfer rate is important to ensure practical applications of the framework. High network

traffic between multiple devices demands a quite high bandwidth.

Answer The transfer rate of v2.0 of Peer2Me is nearly tripled in comparison with that of the original

framework. It is still not a high value, but considering the theoretical limit it is quite satisfactory.

Conclusion

The transfer rate is almost tripled and the goal is absolutely reached.
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cHAPTER 20

Conclusion

In Chapter 2.1 we stated three research questions. We wanted to find out if a redesign of the Peer2Me
framework could improve its usability, performance, modifiability, availability and testability. Throughout
this project we have worked according to the methods described in Chapter 2.2, and designed and

implemented a new improved version of the Peer2Me framework.

In this chapter we summarize the project results by answering the research questions. The content of

Chapter 18 and 19 constitutes a basis for answering these questions.

1. Does a redesign of the Peer2Me framework improve developers ability to produce J2ME

based applications for mobile collaboration?

% Yes, our opinion is that Peer2Me v2.0 is considerably easier to make use of than Peer2Me v1.0.
This is based on the following improvements in Peer2Me v2.0:
o Compact and tidy code.
o Descriptive naming of variables and methods.
o Well commented code and a comprehensive Javadoc.

o A simple and intuitive framework interface.

(a) Is the documentation and the code, with regards to structure and comments, improved sufficiently

to decrease the degree of difficulty developing a new application?

* Yes. The code is made compact and tidy to achieve readability. Comments have been used
throughout the entire Peer2Me v2.0 to describe the usage of variables and methods. All
methods and classes are well described in a Javadoc to increase developers’ ability to quickly
comprehend and start using the framework. Methods and variables also have self explaining

names, so no confusion about their function occurs.
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(b)

Does the redesigned architecture increase the developers understanding of the framework’s

structure, and by this simplify the process of developing a working application?

x Yes. The new architecture hides the internal structure of the framework for the MIDlet
developer. This combined with a simplified framework interface, has made the process of

developing a working application considerably easier.

2. Does a redesign of the Peer2Me framework reduce the footprint and the complexity of

the applications developed as well as the framework itself?

*

Yes. Comparing Peer2Me v1.0 and Peer2Me v2.0 shows a reduction in both footprint and
complexity of the developed applications from v1.0 to v2.0.

Will the redesign of the architecture reduce the footprint of the framework?
* Yes. The footprint of the framework specific classes has been reduced with about 20%.

Will improving the interface between the Peer2Me framework and the applications reduce the

number of code lines required to develop a working application?

x Yes. A comparison of two simple instant messenger applications using respectively Peer2Me

v1.0 and Peer2Me v2.0, shows a reduction of about 20% in number of code lines.

Will the the redesign of the architecture reduce the coupling between the Peer2Me framework and

the applications?

* Yes. While MIDlets using Peer2Me v1.0 has to make use four interfaces and six framework
classes, MIDlets built upon Peer2Me v2.0 only utilize one interface and one class. This

contributes to a reduction of complexity in the MIDlets developed.

3. Will a redesign of the Peer2Me framework increase the performance and decrease the

error rate of the applications developed?

*

(a)

Yes. Experiments have shown that the performance, with regards to transfer rate has improved.

The errors discovered in Peer2Me v1.0 are no longer present in Peer2Me v2.0.

Does the redesigned Peer2Me framework perform better, with respect to transfer rate, than the

original framework?

* Yes. Experiments using a given set of data, shows an improvement of transfer rate by 158%
from Peer2Me v1.0 to Peer2Me v2.0.

Does a revision of the code remove the errors experienced during testing of the original framework?

* Yes. To our knowledge, all the errors experienced in Peer2Me v1.0 has been eliminated in
Peer2Me v2.0.

Will the introduction of a system for logging the errors as they occur improve the developers

ability to correct these errors?

* Yes, definitively. We experienced that the logging function in Peer2Me v2.0 was very useful
during development and testing of MIDlets. We were able to locate and remove errors much

faster than we were using Peer2Me v1.0.
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CHAPTER 21

Further Work

Although we have announced that Peer2Me v2.0 is robust and simple to use, there are still some work left

to do. This chapter contains some short term and long term goals.

21.1 Short Term Goals

To validate the usability of Peer2Me v2.0, it should be tested and evaluated by a group of software developers.
This could typically be done by gathering a group of developers to a MIDlet development session. The ideal
would be just to give them access to this report and the relevant Javadocs, including the Peer2Me Javadoc,
and see if they are able to use the framework as intended. In addition to evaluating the MIDlets developed,
it could be useful to make the developers fill out a questionnaire, mapping out things like the level of their

skills and their opinions about the Peer2Me framework v2.0.

21.2 Long Term Goals

One long term goal is to add support for other network protocols. Currently, Peer2Me v2.0 only supports
Bluetooth as network medium, but support for other network mediums can easily be added as Peer2Me v2.0

already is prepared for this.

Another long term goal is to add support for scatternets. The current mobile phones do not support
scatternets at hardware level, which limits the area it is possible to interconnect devices within. Implementing
support for scatternets requires a rather complicated dynamic routing algorithm, and is a quite large project

in itself.

To evaluate the value of mobile collaborative applications, applications that are stable and easy to use
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should be distributed to a large amount of people. By doing this, it would be possible to study how mobile

collaborative applications can affect the way people collaborate and communicate.
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APPENDIX A

Glossary

API An application programming interface is the interface that a computer system or application provides
in order to allow requests for service to be made of it by other computer programs, and/or to allow

data to be exchanged between them.

CDC The Connected Device Configuration is a framework for J2ME applications targeted at devices with

limited resources.

CLDC The Connected Limited Device Configuration is even smaller than the CDC mentioned above and

is used for pagers and mobile phones.

CSCW Computer Supported Cooperative Work, a research field that focuses on how computer-based

systems can support multiple people working on related tasks.

IEEE The Institute of Electrical and Electronics Engineer is an international non-profit, professional
organization for the advancement of technology related to electricity. Consists of 360,000 members

in around 175 countries.

GQM Goal Question Metric. The GQM is a method of taking the goals of an empirical study and brake
them down into questions and measurement metrics. The GQM method forces scientists to decide

upon and define what they actually want to measure before doing it.

J2ME Java 2 Micro Edition, a collection of Java API’s targeting smaller consumer electronics like mobile

phones, PDA’s and so on.

J2SE Java 2 Platform, Standard Edition. J2SE is a complete collection of API’s that enables development

of Java applications on several platforms of personal computers.

JABWT Java APIs for Bluetooth Wireless Technology. JABWT is a set of standard Java APIs that enable

the development of applications in Java conforming to the Bluetooth Specification 1.1.
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JSR-82 Java Specification Request 82. A Java API that allows MIDlets to make use of Bluetooth hardware

on the device.

MANET Mobile Ad Hoc Networks, a self-configuring network of mobile routers (and associated hosts)

connected by wireless links. The routers move at random and organize themselves arbitrarily.

MIDlet A Java program specialized to run on the J2ME virtual machine, often on mobile phones. The
main class of the MIDlet has to be a subclass of javax.microedition.midlet.MIDlet and the MIDlet
classes have to packaged in a JAR-package. To be runnable the JAR-package has to be preverified by

a preverifier.

MIDP Mobile Information Device Profile. The J2ME architecture consists of the Virtual Machine, the
CLDC and a so-called profile. MIDP is the only available profile and has reached version 2.0. The

profile contains a collection of API’s that offers IO-functionality and gaming among other things.

MOWAHS MObile Work Across Heterogeneous Systems. The MOWAHS project is a joint re- search effort
by the software engineering and the database technology groups at the Depart- ment of Computer and

Information Science (IDI) at the Norwegian University of Science and Technology (NTNU).
NTNU The Norwegian University of Science and Technology.

PAN Personal Area Networks are networks connecting users within a personal operating space, typically

supporting up to a ten meter range.

P2P The term "peer-to-peer computing” (P2P), refers to the use of computer networks that relies in the
computing power and bandwidth of the participants (peers) in the network rather than fixed servers

offering resources and services.

Peer2Me Peer2Me is the name of a framework for developing mobile collaborative applications on mobile

phones utilizing Personal Area Networks (PANS).

Piconet A piconet is an ad-hoc computer network of devices using Bluetooth technology protocols to allow

one master device to interconnect with up to seven active slave devices.
Scatternet When several piconets interconnect a scatternet is created.

WPAN Wireless Personal Area Networks are the wireless equivalent to a PAN.
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APPENDIX B

Demo MIDlets

The source code of two MIDlets built upon Peer2Me v2.0.

B.1 Peer2MeDemoMIDlet

package midlets;

import javax.microedition.midlet. MIDlet;

import javax.microedition.midlet. MIDletStateChangeException;
import javax.microedition.ledui. CommandListener;

import javax.microedition.ledui.Command;

import javax.microedition.ledui.Display;

import javax.microedition.lcdui . Displayable;

import javax.microedition. lcdui.Form;

import javax.microedition. lcdui. List ;

import javax.microedition. lcdui . TextField;

import javax.microedition. ledui . ChoiceGroup;

import javax.microedition. lcdui . Choice;
import java. util . Enumeration;
import java. util . Vector;

import java. util . Hashtable;

import peer2me.framework.x;

import peer2me.util.Log;
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[x%

*
x This class contains a MIDlet using the Peer2Me framework v2.0.

* It has a simple GUI and supports sending of both text and files.

*
* @author Torbjgrn Vatn & Steinar A. Hestnes

*/
public class Peer2MeDemoMIDlet extends MIDlet implements FrameworkListener{

// A Log instance
Log log = Log.getInstance();

// The Main GUI of the MIDlet

private MainGui mainGui;

// The Log GUI of the MIDlet
private LogGui logGui;

// The Connect GUI of the MIDlet

private ConnectGui connectGui;

// The Send GUI of the MIDlet

private SendGui sendGui;

// The Send GUI of the MIDlet
private FileGui fileGui;

// A reference to the last displayed gui. Is used to go back.
private Displayable lastGui;

// The Framework instance

Framework framework;

// The variables retrived from the input fields of the GUI

private String nodeName;

// The preferred network of the MIDlet

private final String preferredNetwork = "peer2me.network.bluetooth.BluetoothNetwork”;

// The name of the MIDlet

private String midletName;

// A list containing the addresses to the nodes added in the ConnectGui choicegroup
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private Hashtable nodeAddressList;

// A hashtable containing the addresses and names to each connected node.
// The names is the keys, and the values is the addresses

private Hashtable participatingNodeNames;

/x%

%
* Constructor
*/
public Peer2MeDemoMIDlet(){}

protected void startApp() throws MIDletStateChangeException{
mainGui = new MainGui();
logGui = new LogGui();
connectGui = new ConnectGui();
sendGui = new SendGui();
fileGui = new FileGui();
// Sets the main gui as the current Displayable
showGui(mainGui);
// Gets an instance of the Framework
framework = FrameworkFrontEnd.getInstance(this);
// Setting the name of the MIDlet
midletName = "TestMidlet”;

protected void pauseApp() {}

VeSS

*
x This method is called when the MIDLet is shut down

*
*/
protected void destroyApp(boolean arg0) throws MIDletStateChangeException{
// Shuts down the framework
framework.shutdownFramework();

notifyDestroyed ();

}

public void notify AboutException(String location, Exception exception){}

VeSS

*

x This method displays the desired GUI class
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*
* @param gui
*/
public void showGui(Displayable gui){
// Saves a reference to the last displayed gui
lastGui = Display.getDisplay(this ). getCurrent();
// Sets the new gui
Display.getDisplay( this ). setCurrent(gui);
gui.setCommandListener((CommandListener)gui);

}

VES:

* This method is called by the framework when a node is found. These nodes
% are not yet connected in a network. To do this, use the

* Framework.connectToNodes() method.

+ @param address The network adress of the node
* @param remoteNodeName The name of the found remote name
*/
public void notify AboutFoundNode(String nodeAddress, String remoteNodeName){
connectGui.addNode(nodeAddress,remoteNodeName);

showGui(connectGui);

[x%

+ This method is called from from the framework to notify the midlet about

* the participating devices.

* @param participants A hashtable that contains the names of the participants as unique keys and
* the network addresses as values.
*
*/
public void notify AboutParticipants(Hashtable participants){
this . participatingNodeNames = participants;
sendGui.removeParticipants();
sendGui.addParticipants();

// Shows the gui where we can send datapackages

if (participatingNodeNames.size()>0)showGui(sendGui);
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[H%

*
+ This method is called from the framework whenever a text package is

* received from a remote node.

+ @param senderName The name of the sender
* @param textMessage The received text message.

*/

public void notify AboutReceived TextPackage(String senderName, String textMessage){

String message = senderName+" sent : \n"+textMessage.length()+" characters.\n”;

sendGui.append (message);

/x%

*

This method is called from the framework whenever a file package is

* received from a remote node.

* @param senderName The name of the sender

* @param filePath The path to the received file

*/

public void notify AboutReceivedFilePackage(String senderName, String fileName){

String message = senderName+" sent : \n"+fileName+"\n";

sendGui.append (message);

VeSS

*

*/

This class is a private GUI class used to display GUI elements for this
MIDlet

@author Torbjgrn Vatn & Steinar A. Hestnes

private class MainGui extends Form implements CommandListener{

// The OK Command

private Command ok;

private Command displayLog;
private Command search;

private Command exit;

// The text filed use to input a name
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TextField text;

/x%
*
* Constructor Extends Form to be able to display different GUI elements
*
*/
public MainGui(){
super(midletName);
ok = new Command(”Ok”, Command.OK, 0);
displayLog = new Command("View Log”, Command.OK, 4);
search = new Command("Search”, Command.OK, 1);
exit = new Command("Exit”, Command.EXIT,0);
text = new TextField("Name”, "Per Tome”, 30, TextField. ANY);

append(text);

addCommand(ok);
addCommand(displayLog);
addCommand (exit);

JEES

* This method is called when the CommandListener detects the use of a Command

* @param command The command used
x @param disp The displayable

*

/

public void commandAction(Command command, Displayable disp){

if (command == ok){
// Fetches the input from the gui
nodeName = text.getString();
deleteAll ();
removeCommand (ok);
append(”Your name is "+nodeName+". \n\nPress Search if you want to discover other devices.\n\n");

addCommand (search);

try{
framework.initFramework(nodeName, midletName, preferredNetwork);

}catch(Exception e){

append("Error initiating the framework. Please try again.” +e);
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}else if (command == search){
try{
framework.startNodeSearch();
append(”Searching for devices running Peer2MeDemoMIDlet\n");
}eatch(Exception e){

append("Could not start a search for other devices. Please try again.”+e);

}else if (command == displayLog){
logGui.append("Exception log:\n");
logGui.append(log.getLog(Log. EXCEPTION_LOG));

logGui.append (”\ nsssssessssrstssoe\ n'”);

logGui.append("Data package log:\n");
logGui.append(log.getLog(Log. DATA_PACKAGE_LOG));

logGui.append (7\ nsssssssssssooss \n”);

logGui.append("Connection log:\n”);
logGui.append(log.getLog(Log. CONNECTION_LOG));

logGui.append (7\ nissessssosssssoko\n”) ;

logGui.append("Debug log:\n");
logGui.append(log.getLog(Log. DEBUG_LOG));
logGui.append (”\ nsssssesessstsrsssoe:\ n'”);
showGui(logGui);

else if (command == exit){
try{
destroy App(true);
}catch (MIDletStateChangeException msce) {
// This exception is ignored because the unconditional attribute of the

// destroyApp() method is true.

}
}

x This class is a private GUI class to display Log elements for this MIDlet
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*
x @author Torbjgrn Vatn & Steinar A. Hestnes
*/

private class LogGui extends Form implements CommandListener{

// The log menu Commands

private Command showExceptionLog;
private Command showConnectionLog;
private Command showDataPackageLog;
private Command showDebuglog;
private Command displayLog;

private Command hide;

private Command exit;

public LogGui(){
super(”Log”);
// The log menu Commands
showExceptionLog = new Command("Exception log”, Command.ITEM, 4);
showConnectionLog = new Command(’Connection log”, Command.ITEM, 4);
showDataPackageLog = new Command("Data package log”, Command.ITEM, 4);
showDebugLog = new Command("Debug log”, Command.ITEM, 4);
displayLog = new Command(”"Full log”, Command.ITEM, 1);
hide = new Command("Hide log”, Command.OK, 0);
exit = new Command("Exit”, Command.EXIT,0);

addCommand (showExceptionLog);

addCommand (showDataPackageLog);

addCommand (showConnectionLog);

addCommand (showDebugLog);
addCommand(displayLog);

addCommand (hide);

addCommand (exit);

}

/%

* This method is called when the CommandListener detects the use of a Command

* @param command The command used
* @param disp The displayable
*
*/
public void commandAction(Command command, Displayable disp){
if (command == showExceptionLog){
this . deleteAll ();
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append(log.getLog(Log. EXCEPTION_LOG));
}

else if (command == showConnectionLog){
deleteAll ();
append(log.getLog(Log. CONNECTION_LOG));
}

else if (command == showDataPackageLog){
deleteAll ();
append (log.getLog(Log. DATA_PACKAGE_LOG));

else if (command == showDebugLog){
deleteAll ();
append(log.getLog(Log. DEBUG_LOG));

else if (command == displayLog){
deleteAll ();
logGui.append("Exception log:\n");
logGui.append(log.getLog(Log. EXCEPTION_LOG));
logGui.append (7\ nissessssosssoko\n”) ;

logGui.append("Data package log:\n”);
logGui.append(log.getLog(Log. DATA_PACKAGE_LOG));

logGui.append 7\ nsssessksss sk \ 1) ;

logGui.append(”Connection log:\n”);
logGui.append(log.getLog(Log. CONNECTION_LOG));
logGui.append 7\ nsss sk \17);

logGui.append("Debug log:\n”);
logGui.append(log.getLog(Log. DEBUG_LOG));
logGui.append (7\ nissessssomssssoko\n”) ;

}

else if (command == hide){
deleteAll ();
showGui(lastGui);

}

else if (command == exit){
try{

destroy App(true);
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}catch (MIDletStateChangeException msce) {
// This exception is ignored because the unconditional attribute of the

// destroyApp() method is true.

}
}
}
}
/x%

*
* This class is a private GUI class to display Connect elements for this MIDlet
*

* @author Torbjgrn Vatn & Steinar A. Hestnes

*/

private class ConnectGui extends Form implements CommandListener{

// The commands

private Command back;
private Command displayLog;
private Command connect;

private Command exit;

//The ChoiceGroup of

private ChoiceGroup nodes;

VES:

*
x Constructor
*/

public ConnectGui(){

super("Nodes”);

// The ChoiceGroup

nodes = new ChoiceGroup("Choose the node(s) to connect to”,Choice. MULTIPLE);

nodeAddressList = new Hashtable();

// The Commands

back = new Command("Back”,Command.BACK,1);

displayLog = new Command(”"Display log”,Command.ITEM,4);
connect = new Command(’Connect”,Command.ITEM,0);

exit = new Command("Exit”, Command.EXIT,0);

addCommand (back);

addCommand(connect);
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addCommand(displayLog);
addCommand (exit);

// Adds the ChoiceGroup
append(nodes);

/%

*
* This method adds a node name to the ChoiceGroup
*
* @param address The address of the remote node
* @param remoteNodeName The name of the remote node
*/
public void addNode(String nodeAddress, String remoteNodeName){
nodeAddressList.put(remoteNodeName,nodeAddress);

nodes.append(remoteNodeName,null);

[xx

* This method is called when the CommandListener detects the use of a Command

* @param command The command used
x @param disp The displayable

*

*/

public void commandAction(Command command, Displayable disp) {

if (command == back){
showGui(lastGui);

}

else if (command == displayLog){
logGui.append("Exception log:\n");
logGui.append(log.getLog(Log. EXCEPTION_LOG));

(
logGui.append (7\ nsssssesessssesessoo\ n'”) ;

logGui.append("Data package log:\n”);
logGui.append(log.getLog(Log. DATA_PACKAGE_LOG));

logGui.append (7\ n sk sk \ 1) ;
logGui.append(”Connection log:\n”);

logGui.append(log.getLog(Log. CONNECTION_LOG));

logGui.append (7\ nsssssssssooss\n”)
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logGui.append("Debug log:\n");
logGui.append(log.getLog(Log. DEBUG_LOG));
logGui.append 7\ nsss sk \17);
showGui(logGui);

else if (command == connect){
// Fetches all the selected elements in the ChoiceGroup
Vector addressVector = new Vector();
for (int 1=0; i<nodes.size(); i++){
if (nodes. isSelected (1)){
addressVector.addElement ((String)nodeAddressList.get(nodes.getString(i)));
}
}

String [| addresses = new String[addressVector.size ()];
addressVector.copyInto(addresses);
if (addresses.length == 0) append("Please chose a recipient!”);

else framework.connectToNodes(addresses);

else if (command == exit){

try{
destroy App(true);

}catch (MIDletStateChangeException msce) {
// This exception is ignored because the unconditional attribute of the
// destroyApp() method is true.

}

}

}

VeSS

*

x This class is a private GUI class to display Send elements for this MIDlet
*

* @author Torbjgrn Vatn & Steinar A. Hestnes

*/

private class SendGui extends Form implements CommandListener{

// The commands

private Command displayLog;
private Command sendTextPackage;
private Command sendFilePackage;

private Command clearScreen;
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private Command exit;

// The ChoiceGroup
private ChoiceGroup connectedNodes;

private TextField factor;

/%

*
* Constructor

*/

public SendGui(){

super(”Send datapackage”);

// Creating the Commands

sendTextPackage = new Command("SendTextPackage”,Command.ITEM,1);
sendFilePackage = new Command("SendFilePackage”,Command.ITEM,2);
displayLog = new Command("View log”,Command.ITEM,3);

clearScreen = new Command(”Clear screen”,Command.ITEM,4);

exit = new Command("Exit”, Command.EXIT,0);

// The ChoiceGroup containing the connected Nodes

connectedNodes = new ChoiceGroup(’Choose recipients”, Choice. MULTIPLE);

factor = new TextField("Alphabet factor”,”700”,5, TextField. ANY);

// Adding the elements
addCommand (send TextPackage);
addCommand(sendFilePackage);
addCommand(displayLog);
addCommand(clearScreen);
addCommand (exit);
append(connectedNodes);
append (factor);

/%

*

* This method add the connected participants to the connected ChoiceGroup

*/

public void addParticipants(){
Enumeration names = participatingNodeNames.keys();
while(names.hasMoreElements()){

connectedNodes.append((String)names.nextElement(),null);
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VeSS

+ This method removes all connected participants to the connected ChoiceGroup
/
public void removeParticipants(){
connectedNodes.deleteAll();

VES:

* This method is called when the CommandListener detects the use of a Command

* @param command The command used
* @param disp The displayable

*

*/

public void commandAction(Command command, Displayable disp){

if (command == sendTextPackage){
Vector recipientNodes = new Vector();
for (int 1=0; i<connectedNodes.size(); i++){
if (connectedNodes.isSelected(i)){
// Gets the address to the recipient node
recipientNodes.addElement ((String)participatingNodeNames.get(connectedNodes.getString(i)));

}

String [| recipientAddresses = new String|recipientNodes.size ()];

recipientNodes.copylInto(recipient Addresses);

String alfa = "abcedefghijklmnopqrstuvwxyz”;

String message = 7,

for (int i=0;i<Integer.parselnt(factor .getString ()); i++){
message += alfa;

if (recipient Addresses.length!=0)framework.send TextPackage(recipient Addresses,message);
else append("Please choose a recipient!\n”);
}else if (command == sendFilePackage){
Vector recipientNodes = new Vector();
for (int 1=0; i<connectedNodes.size(); i++){

if (connectedNodes.isSelected(i)){

// Gets the address to the recipient node
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recipientNodes.addElement ((String)participatingNodeNames.get(connectedNodes.getString(i)));

}

String || recipientAddresses = new String[recipientNodes.size ()];

recipientNodes.copylInto(recipient Addresses);

if (recipient Addresses.length!=0){
// Sets the recipents and switches GUI
fileGui . setRecipients (recipient Addresses );
fileGui . fillList ();
showGui(fileGui);

}else append("Please choose a recipient!\n”);

telse if (command == displayLog){
logGui.append("Exception log:\n");
logGui.append(log.getLog(Log. EXCEPTION_LOG));

logGui.append 7\ nsss sk scorssrss\ 1)

logGui.append("Data package log:\n”);
logGui.append(log.getLog(Log. DATA_PACKAGE_LOG));

logGui.append (”\ nssssesessssoteeeots \ n'”);

logGui.append("Connection log:\n”);
logGui.append(log.getLog(Log. CONNECTION_LOG));

logGui.append (7\ nsssssessssrsesssoo\ n'”) ;

logGui.append("Debug log:\n");
logGui.append(log.getLog(Log. DEBUG_LOG));
logGui.append "\ nsss sk \17);
showGui(logGui);

telse if (command == clearScreen){
sendGui.deleteAll ();
// Creates a clean SendGui
sendGui = new SendGui();
sendGui.addParticipants();
// Displays it

showGui(sendGui);
}else if (command == exit){
try{
destroy App(true);

}catch (MIDletStateChangeException msce) {
// This exception is ignored because the unconditional attribute of the

// destroyApp() method is true.
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VeSS

*

* This class is a private GUI class to display FileSend elements for this MIDlet
*

* @author Torbjgrn Vatn & Steinar A. Hestnes

*/

private class FileGui extends List implements CommandListener{

// The commands

private Command displayLog;
private Command sendFilePackage;
private Command updateList;

private Command exit;

// The root of the file system on the SE K750/W800
private String root = "c:/other/Peer2Me/”;

// The root of the file system on the SE Emulator
//private String root = "peer2me/”;

// A Enumeration containing the files in the root directory

Enumeration files;

// The addresses of the recipients of the chosen file

String [] recipientAddresses;

/xx

*
x Constructor
*
*/
public FileGui(){
super(”Send filePackage”, List. EXCLUSIVE);

// Creating the elements

displayLog = new Command("View log”,Command.ITEM,4);
sendFilePackage = new Command(”Send File”,Command.ITEM,2);
updateList = new Command("Update List”,Command.ITEM,2);
exit = new Command("Exit”, Command.EXIT,0);
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// Adds the commands
addCommand(displayLog);
addCommand (sendFilePackage);
addCommand (updateList);
(

addCommand (exit);

/%

*
* This method fills the fileList List with the names of the files
* located in root.

*
*/

public void fillList (){

// Fills the files Enumeration
files = framework.getFileList(root);

if (files != null){
// Fills the filesList List
while ( files .hasMoreElements()) {
append((String) files .nextElement(), null);

}
}
}

VES:
*
* This method sets the recipientAddresses
*
+* @param recipientAddresses The recipientAddresses to set
*/
public void setRecipients (String[] recipientAddresses){

this .recipientAddresses = recipientAddresses;

/%
* This method is called when the CommandListener detects the use of a Command
*
* @param command The command used
* @param disp The displayable
*
*/

public void commandAction(Command command, Displayable disp){

if (command == sendFilePackage){
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framework.sendFilePackage(recipient Addresses,root+getString(getSelectedIndex()));
fileGui . deleteAll ();
showGui(sendGui);

else if (command == updateList){
fillList ();

else if (command == displayLog){
logGui.append("Exception log:\n");
logGui.append(log.getLog(Log. EXCEPTION_LOG));

logGui.append (7 nsss sk oo \17);

logGui.append("Data package log:\n");
logGui.append(log.getLog(Log. DATA_PACKAGE_LOG));

logGui.append (”\ nssssesessssoteseseoios \ n')

logGui.append(”Connection log:\n");
logGui.append (log.getLog(Log. CONNECTION_LOG));

logGui.append (7\ nsssssessssesessooo\ n'”);

logGui.append("Debug log:\n");
logGui.append(log.getLog(Log. DEBUG_LOG));
logGui.append "\ nsss sk \17)
showGui(logGui);

else if (command == exit){
try{
destroy App(true);
}catch (MIDletStateChangeException msce) {
// This exception is ignored because the unconditional attribute of the

// destroyApp() method is true.

}
}
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B.2 Peer2Messenger

package peer2Messenger;

import javax.microedition.midlet. MIDlet;

import javax.microedition.midlet. MIDletStateChangeException;

import javax.microedition. ledui .
import javax.microedition. ledui .
import javax.microedition. ledui .
import javax.microedition. ledui .
import javax.microedition. ledui .
import javax.microedition.lcdui.
import javax.microedition.lcdui.

import javax.microedition.lcdui.

import java. util . Enumeration;
import java. util . Vector;

import java. util . Hashtable;

import peer2me.framework.x;

import peer2me.util.Log;

VES:

*

CommandListener;
Command;
Display;
Displayable;

Form;

TextField;
ChoiceGroup;
Choice;

+ This class contains a MIDlet built upon Peer2Me v2.0.

+* The MIDlet is a basic chat application.

*

x @author Torbjgrn Vatn & Steinar A. Hestnes

*/

public class Peer2Messenger extends MIDlet implements FrameworkListener{

// A Log instance
Log log = Log.getInstance();

// The Main GUI of the MIDlet

private MainGui mainGui;

// The Log GUI of the MIDlet

private LogGui logGui;

// The Connect GUI of the MIDlet
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private ConnectGui connectGui;

// The Send GUI of the MIDlet
private SendGui sendGui;

// A reference to the last displayed gui. Is used to go back.
private Displayable lastGui;

// The Framework instance

Framework framework;

// The variables retrived from the input fields of the GUI

private String nodeName;

// The preferred network of the MIDlet

private final String preferredNetwork = "peer2me.network.bluetooth.BluetoothNetwork”;

// The name of the MIDlet

private String midletName;

// A list containing the addresses to the nodes added in the ConnectGui choicegroup

private Hashtable nodeAddressList;

// A hashtable containing the addresses and names to each connected node.
// The names is the keys, and the values is the addresses

private Hashtable participatingNodeNames;

VeSS
*
x Constructor
*/
public Peer2Messenger(){}

protected void startApp() throws MIDletStateChangeException{
mainGui = new MainGui();
logGui = new LogGui();
connectGui = new ConnectGui();
sendGui = new SendGui();
// Sets the main gui as the current Displayable
showGui(mainGui);
// Gets an instance of the Framework
framework = FrameworkFrontEnd.getInstance(this);
// Setting the name of the MIDlet
midletName = "TestMidlet”;
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protected void pauseApp() {}

VeSS

*

# This method is called when the MIDLet is shut down

k

*/
protected void destroyApp(boolean arg0) throws MIDletStateChangeException{

// Shuts down the framework

framework.shutdownFramework();

notifyDestroyed ();

}

public void notify AboutException(String location, Exception exception){}

/x%

*
+ This method displays the desired GUI class
*
* @param gui
+/
public void showGui(Displayable gui){
// Saves a reference to the last displayed gui
lastGui = Display.getDisplay(this). getCurrent();
// Sets the new gui
Display.getDisplay(this ).setCurrent(gui);
gui.setCommandListener((CommandListener)gui);

}

/%

* This method is called by the framework when a node is found. These nodes
* are not yet connected in a network. To do this, use the

* Framework.connectToNodes() method.

x @param address The network adress of the node

* @param remoteNodeName The name of the found remote name

*/

public void notify AboutFoundNode(String nodeAddress, String remoteNodeName){
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connectGui.addNode(nodeAddress,remoteNodeName);

showGui(connectGui);

/%

*

This method is called from from the framework to notify the midlet about

*

the participating devices.

*

@param participants A hashtable that contains the names of the participants as unique keys and
* the network addresses as values.

*

*/

public void notify AboutParticipants(Hashtable participants){

this . participatingNodeNames = participants;

sendGui.removeParticipants();

sendGui.addParticipants();

// Shows the gui where we can send datapackages

if (participatingNodeNames.size() >0)showGui(sendGui);

VES:

* This method is called from the framework whenever a text package is

* received from a remote node.

+ @param senderName The name of the sender
* @param textMessage The received text message.
*/
public void notify AboutReceived TextPackage(String senderName, String textMessage){
String message = 7\n"+senderName+" says: \n’+textMessage;

sendGui.append (message);

VES:

+ This method is called from the framework whenever a file package is

* received from a remote node.

+ @param senderName The name of the sender

* @param filePath The path to the received file
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*/

public void notify AboutReceivedFilePackage(String senderName, String fileName){}

VeSS

*

x This class is a private GUI class used to display GUI elements for this
x MIDlet

*

* @author Torbjgrn Vatn & Steinar A. Hestnes

*/

private class MainGui extends Form implements CommandListener{

// The OK Command

private Command ok;

private Command displayLog;
private Command search;

private Command exit;

// The text filed use to input a name
TextField text;

VES:
*
* Constructor Extends Form to be able to display different GUI elements
*
*/
public MainGui(){
super(midletName);
ok = new Command(’Ok”, Command.OK, 0);
displayLog = new Command("View Log”’, Command.OK, 4);
search = new Command("Search”; Command.OK, 1);
exit = new Command("Exit”, Command.EXIT,0);
text = new TextField("Name”, "Per Tome”, 30, TextField. ANY);

append (text);
addCommand(ok);

addCommand(displayLog);
addCommand (exit);
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* This method is called when the CommandListener detects the use of a Command

* @param command The command used
+ @param disp The displayable

*

/

public void commandAction(Command command, Displayable disp){

if (command == ok){
// Fetches the input from the gui
nodeName = text.getString();
deleteAll ();
removeCommand(ok);
append(”Your name is "+nodeName+". \n\nPress Search if you want to discover other devices.\n\n");

addCommand(search);

try{
framework.initFramework(nodeName, midletName, preferredNetwork);
}catch(Exception e){

append("Error initiating the framework. Please try again.”);

telse if (command == search){
try{
framework.startNodeSearch();
append(”Searching for devices running Peer2Messenger\n”);
}catch(Exception e){

append("Could not start a search for other devices. Please try again.”+e);

}else if (command == displayLog){
logGui.append("Exception log:\n");
logGui.append(log.getLog(Log. EXCEPTION_LOG));

logGui.append (7\ nissessssomssssoko\n”) ;
logGui.append("Data package log:\n”);
logGui.append(log.getLog(Log. DATA_PACKAGE_LOG));
logGui.append (7\ nsssssessssesrsesoso\ n'”);
logGui.append(”Connection log:\n”);
logGui.append(log.getLog(Log. CONNECTION_LOG));

logGui.append (7\ nsssssessokosscorssos \17);

logGui.append("Debug log:\n”);
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logGui.append(log.getLog(Log. DEBUG_LOG));
logGui.append (7\ nssesessksss sk \ 1) ;
showGui(logGui);

else if (command == exit){
try{
destroy App(true);
}catch (MIDletStateChangeException msce) {
// This exception is ignored because the unconditional attribute of the

// destroyApp() method is true.

}
}

VES

*
x This class is a private GUI class to display Log elements for this MIDlet
*

* @author Torbjgrn Vatn & Steinar A. Hestnes

*/

private class LogGui extends Form implements CommandListener{

// The log menu Commands

private Command showExceptionLog;
private Command showConnectionLog;
private Command showDataPackageLog;
private Command showDebugLog;
private Command displayLog;

private Command hide;

private Command exit;

public LogGui(){
super("Log”);
// The log menu Commands
showExceptionLog = new Command("Exception log”, Command.ITEM, 4);
showConnectionLog = new Command(’Connection log”, Command.ITEM, 4);
showDataPackageLog = new Command("Data package log”, Command.ITEM, 4);
showDebugLog = new Command("Debug log”, Command.ITEM, 4);
displayLog = new Command("Full log”, Command.ITEM, 1);
hide = new Command("Hide log”, Command.OK, 0);
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exit = new Command("Exit”, Command.EXIT,0);

addCommand (showExceptionLog);
addCommand (showDataPackageLog);
addCommand (showConnectionLog);
addCommand (showDebugLog);
addCommand(displayLog);
addCommand (hide);
addCommand (exit);

}

VES:
* This method is called when the CommandListener detects the use of a Command
*
* @param command The command used
* @param disp The displayable
*
*/
public void commandAction(Command command, Displayable disp){
if (command == showExceptionLog){
this . deleteAll ();
append(log.getLog(Log. EXCEPTION_LOG));

}

else if (command == showConnectionLog){
deleteAll ();
append(log.getLog(Log. CONNECTION_LOG));

}

else if (command == showDataPackageLog){
deleteAll ();
append(log.getLog(Log. DATA_PACKAGE_LOG));

else if (command == showDebugLog){
deleteAll ();
append(log.getLog(Log. DEBUG_LOG));

else if (command == displayLog){
deleteAll ();
logGui.append("Exception log:\n");
logGui.append(log.getLog(Log. EXCEPTION_LOG));

logGui.append 7\ nsss sk \17);
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logGui.append("Data package log:\n”);
logGui.append(log.getLog(Log. DATA_PACKAGE_LOG));

logGui.append (7 nsss sk \17);

logGui.append(”Connection log:\n”);
logGui.append(log.getLog(Log. CONNECTION_LOG));
logGui.append (”\ nssssesesssssteeseoios \ n'”);

logGui.append("Debug log:\n”);
logGui.append(log.getLog(Log. DEBUG_LOG));
logGui.append (7\ nsssssessssseesooor\ n'”) ;

else if (command == hide){
deleteAll ();
showGui(lastGui);

}

else if (command == exit){
try{
destroy App(true);
}catch (MIDletStateChangeException msce) {
// This exception is ignored because the unconditional attribute of the

// destroyApp() method is true.

}
}
}

}
VeSS

*

x This class is a private GUI class to display Connect elements for this MIDlet
*

x @author Torbjgrn Vatn & Steinar A. Hestnes

i/

private class ConnectGui extends Form implements CommandListener{

// The commands

private Command back;
private Command displayLog;
private Command connect;

private Command exit;

//The ChoiceGroup of

private ChoiceGroup nodes;
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VeSS

*
* Constructor
*/
public ConnectGui(){
super("Nodes”);

// The ChoiceGroup
nodes = new ChoiceGroup(’Choose the node(s) to connect to”,Choice. MULTIPLE);

nodeAddressList = new Hashtable();

// The Commands

back = new Command("Back”,Command.BACK,1);

displayLog = new Command("Display log”,Command.ITEM,4);
connect = new Command(’Connect”,Command.ITEM,0);

exit = new Command("Exit”, Command.EXIT,0);

addCommand (back);
addCommand(connect);

addCommand(displayLog);

addCommand (exit);

// Adds the ChoiceGroup

append (nodes);

[x%
*
* This method adds a node name to the ChoiceGroup
*
+ @param address The address of the remote node
* @param remoteNodeName The name of the remote node
*/
public void addNode(String nodeAddress, String remoteNodeName){
nodeAddressList.put(remoteNodeName,nodeAddress);

nodes.append(remoteNodeName,null);

[x%

# This method is called when the CommandListener detects the use of a Command

* @param command The command used

+ @param disp The displayable
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*

*/

public void commandAction(Command command, Displayable disp) {

if (command == back){
showGui(lastGui);
}

else if (command == displayLog){
logGui.append("Exception log:\n");
logGui.append(log.getLog(Log. EXCEPTION_LOG));

logGui.append (7\ nssssssssssessoso\ n'”) ;

logGui.append("Data package log:\n”);
logGui.append(log.getLog(Log. DATA_PACKAGE_LOG));
logGui.append (7 nsss sk sorssiors \17);

logGui.append(”Connection log:\n”);
logGui.append(log.getLog(Log. CONNECTION_LOG));

logGui.append (”\ nssssesessosotsesetoios \ n');

logGui.append("Debug log:\n”);
logGui.append(log.getLog(Log. DEBUG_LOG));
logGui.append (7\ nsssssessssesesesooo\ n'”) ;
showGui(logGui);

else if (command == connect){
// Fetches all the selected elements in the ChoiceGroup
Vector addressVector = new Vector();
for (int 1=0; i<nodes.size(); i++){
if (nodes.isSelected (1)){
addressVector.addElement ((String)nodeAddressList.get(nodes.getString(i)));
}
}

String [] addresses = new String[addressVector.size ()];
addressVector.copyInto(addresses);
if (addresses.length == 0) append("Please chose a recipient!”);

else framework.connectToNodes(addresses);

else if (command == exit){

try{
destroy App(true);
}catch (MIDletStateChangeException msce) {
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// This exception is ignored because the unconditional attribute of the

// destroyApp() method is true.

}
}

}
/x%

*
x This class is a private GUI class to display Send elements for this MIDlet
*

* @author Torbjgrn Vatn & Steinar A. Hestnes

*/

private class SendGui extends Form implements CommandListener{

// The commands
private Command displayLog;
private Command send TextPackage;

private Command exit;

// The ChoiceGroup

private ChoiceGroup connectedNodes;

private TextField input;

VES:
*
x Constructor
*/
public SendGui(){

super("Write a message”);

// Creating the Commands

sendTextPackage = new Command(’Send”,Command.ITEM,1);
displayLog = new Command("View log”,Command.ITEM,4);
exit = new Command("Exit”, Command.EXIT,0);

input = new TextField("Message”,””,200, TextField. ANY);

// The ChoiceGroup containing the connected Nodes
connectedNodes = new ChoiceGroup(”Choose recipients”, Choice. MULTIPLE);

// Adding the elements

addCommand (send TextPackage);
addCommand(displayLog);
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addCommand (exit);
append(connectedNodes);
append(input);

}

/%

*

+ This method add the connected participants to the connected ChoiceGroup
*
*/
public void addParticipants(){
Enumeration names = participatingNodeNames.keys();
while(names.hasMoreElements()){

connectedNodes.append((String)names.nextElement(),null);

[x%

*
+ This method removes all connected participants to the connected ChoiceGroup
*

o/

public void removeParticipants(){

connectedNodes.deleteAll();

VES:

* This method is called when the CommandListener detects the use of a Command

* @param command The command used
+ @param disp The displayable

*

*/

public void commandAction(Command command, Displayable disp){

if (command == sendTextPackage){
Vector recipientNodes = new Vector();
for (int 1=0; i<connectedNodes.size(); i++){
if (connectedNodes.isSelected(i)){
// Gets the address to the recipient node

recipientNodes.addElement((String)participatingNodeNames.get(connectedNodes.getString(i)));

}

String [] recipientAddresses = new String[recipientNodes.size ()];

recipientNodes.copylInto(recipient Addresses );
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if (recipient Addresses.length!=0)framework.send TextPackage(recipient Addresses,input.getString());

else append("Please choose a recipient!\n”);

}else if (command == displayLog){
logGui.append("Exception log:\n");
logGui.append(log.getLog(Log. EXCEPTION_LOG));

logGui.append (7\ nisesessssossssokoo\n”) ;

logGui.append("Data package log:\n”);
logGui.append(log.getLog(Log. DATA_PACKAGE_LOG));

logGui.append (”\ nsssssessssestssoso\ n'”);

logGui.append(”Connection log:\n”);
logGui.append(log.getLog(Log. CONNECTION_LOG));

logGui.append "\ nsssssessoksscorssrss \ 1)

logGui.append("Debug log:\n”);
logGui.append(log.getLog(Log. DEBUG_LOG));
logGui.append (”\ nssssesesssssseeeotr \ n');
showGui(logGui);

else if (command == exit){
try{
destroy App(true);
}catch (MIDletStateChangeException msce) {
// This exception is ignored because the unconditional attribute of the

// destroyApp() method is true.
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APPENDIX C

Peer2Me v2.0 Javadoc

The Javadoc on Peer2Me v2.0. Due to limited support for generating Javadoc in M TEX format, the readability
is not optimal in this appendix. For maximum readability, we recommend the digital version of the Peer2Me
v2.0 Javadoc which is bundled with the Peer2Me v2.0 JAR file.

C.1 Package peer2me.domain

Package Contents

Classes

DataPackage . ... ... 198
This class is the super class of the different type of packages that can be sent between

nodes in the network.
FilePackage . ... ..o 200
This class represents a data package containing metadata about a file of some sort

that should be sent over the network.

This class represents a group of nodes running the same service (MIDlet).

GroupSyncPackage. .. ... ..o 205
A GroupSyncPackage is a package used internally in the framework to synchronize

the groups containing the participants.

This class represents a node in the network.

TextPackage . ... ..o 209
This class represents a data package containing text that should be sent over the

network.
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C.1.1 Class DataPackage

This class is the super class of the different type of packages that can be sent between nodes in the network.
It contains the attributes that are common for all types of data packages. These are the address of the
sender and the address(es) to the recipiant(s) of the DataPackage. Currently, there exists three types of data
packages.

Declaration

public abstract class DataPackage
extends java.lang.Object java.lang.Object

All known subclasses

TextPackagepeer2me.domain. TextPackage, GroupSyncPackagepeer2me.domain.GroupSyncPackage,

FilePackagepeer2me.domain.FilePackage

Field summary

FILE_ PACKAGE
GROUP_SYNC_PACKAGE
log

TEXT_PACKAGE

Constructor summary

DataPackage(int) Constructor used to create an empty DataPackage object to fill with the
parseBytes() method
DataPackage(int, Node, String[]) Constructor

Method summary

getRecipients() This method returns all the recipients of this data package

getSender() This method returns the sender of this data package

getType() This method returns an int indicating the type of data package

parseBytes(byte[]) This method parses the content of the byte array (byte[]) back into a
DataPackage object

setRecipients(String[]) This method sets the nodes to receive this package

setSender(Node) This method sets the sender of this data package

toSendableFormat() This method transforms this data package into a byte array (byte[]) that

is possible to send over a network stream

Fields

* public peer2me.util.Log log
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x public static final int GROUP_SYNC_PACKAGE
x public static final int TEXT_PACKAGE

x public static final int FILE_PACKAGE

Constructors

x DataPackage
public DataPackage( int type )

o Description

Constructor used to create an empty DataPackage object to fill with the parseBytes() method
o Parameters
x type — The type of the DataPackage

x DataPackage
public DataPackage( int type, Node sender, java.lang.String[] recipients )

o Description

Constructor
o Parameters
* type — The type specifying the type of data package
*x sender — A node object representing the sender node

* recipients — The addresses to the recipients of the data package

Methods

+ getRecipients
public java.lang.String[] getRecipients( )

o Description
This method returns all the recipients of this data package
o Returns — recipients The addresses to the recipients of this package

x getSender
public Node getSender( )

o Description

This method returns the sender of this data package

o Returns — sender The node that sends this package

+ getType
public int getType( )
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o Description

This method returns an int indicating the type of data package
o Returns — type An int indicating the type of data package

+x parseBytes
public abstract void parseBytes( byte[] data )

o Description

This method parses the content of the byte array (byte[]) back into a DataPackage object
o Parameters
* data — The byte]] containing the data representing the DataPackage object

x setRecipients

public void setRecipients( java.lang.String[] recipients )

o Description

This method sets the nodes to receive this package
o Parameters
* recipients — The addresses to the nodes that shall receive this package

* setSender

public void setSender( Node sender )

o Description

This method sets the sender of this data package
o Parameters
* sender — The node that sends this package

* toSendableFormat
public abstract byte[] toSendableFormat( )

o Description

This method transforms this data package into a byte array (byte[]) that is possible to send over

a network stream

o Returns — The byte[] representation of the data package

C.1.2 Class FilePackage

This class represents a data package containing metadata about a file of some sort that should be sent over
the network. The package contains the file path and length of the file to transfer, so that the receiver can

handle the incoming stream of data and transform it back into a copy of the file.
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Declaration

public class FilePackage

extends peer2me.domain.DataPackage peer2me.domain.DataPackage

Constructor summary

FilePackage() Constructor used to create an empty FilePackage object to fill with the
parseBytes() method
FilePackage(Node, String][], String) Constructor

Method summary

getFilePath() This method returns the file path of this FilePackage

getFileSize() This method returns the file size of this FilePackage

parseBytes(byte[]) This method parses the content of the byte array (byte[]) back into a
FilePackage object

toSendableFormat() This method transforms this file package into a byte array (byte[]) that

is possible to send over a network stream

Constructors

x FilePackage
public FilePackage( )

o Description

Constructor used to create an empty FilePackage object to fill with the parseBytes() method

x FilePackage
public FilePackage( Node sender, java.lang.String[] recipients, java.lang.String filePath
)
o Description
Constructor
o Parameters

*x sender — A node object representing the sender node
* recipients — The addresses to the recipients of the file package

x filePath — The path of the file to be sent

Methods

x getFilePath
public java.lang.String getFilePath( )

o Description

This method returns the file path of this FilePackage
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o Returns — The file path

x getFileSize
public long getFileSize( )

o Description

This method returns the file size of this FilePackage

o Returns — The file size

* parseBytes
public void parseBytes( byte[] data )

o Description

This method parses the content of the byte array (byte[]) back into a FilePackage object
o Parameters

* data — The byte]] containing the data representing the FilePackage object

* toSendableFormat
public byte[] toSendableFormat( )

o Description

This method transforms this file package into a byte array (byte[]) that is possible to send over a

network stream

o Returns — The byte[] representation of the file package

Members inherited from class peer2me.domain.DataPackage peer2me.domain.DataPackage

* public static final FILE_ PACKAGE

* public String getRecipients( )

* public Node getSender( )

* public int getType( )

% public static final GROUP_SYNC_PACKAGE
* public log

* public abstract void parseBytes( byte[] data )
* public void setRecipients( java.lang.String[] recipients )
* public void setSender( Node sender )

% public static final TEXT PACKAGE

* public abstract byte toSendableFormat( )

C.1.3 Class Group

This class represents a group of nodes running the same service (MIDlet). All connected nodes in the ad
hoc network are participants in the group. Participants can be added and removed, and a list of all the

participants can be retreived.
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Declaration

public class Group
extends java.lang.Object java.lang.Object

Constructor summary

Group() Constructor.

Method summary

addParticipant(Node) This method adds a node to the group as a participant.

getNode(String) This method returns a node with the address specified as input

getParticipatingNodeNames(FrameworkFrontEnd) This method returns a list containg
the names (as keys) of the nodes participating in this group.

getParticipatingNodes() This method returns a list containing the nodes participating in this
group.

removeAllParticipants() This method removes all participating nodes.

removeParticipant(String) This method removes a participating node.

shutdownGroup() This method closes the NodeConnection of all the participating nodes, and

removes all nodes from the group.

Constructors

* Group
public Group( )

o Description

Constructor. Creates a new Group. A group is created in FrameworkFrontEnd.initFramework().

Methods

+x addParticipant
public void addParticipant( Node node )

o Description
This method adds a node to the group as a participant.
o Parameters
* node — The node to add as a participant.

+* getNode
public Node getNode( java.lang.String address )

o Description

This method returns a node with the address specified as input

o Parameters
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x address — The address of the node to get

o Returns — A node with the address specified as input

x getParticipatingNodeNames
public java.util.Hashtable getParticipatingNNodeNames( peer2me.framework.FrameworkFrontEnd
frameworkFrontEnd )

o Description
This method returns a list containg the names (as keys) of the nodes participating in this group.

The addresses are stored as values. It is called from FrameworkFrontEnd.notify AboutParticipants().

o Returns — A list containing the nodes participating in this group. The node name is the key and

the address is the value

x getParticipatingNodes
public java.util.Hashtable getParticipatingNodes( )

o Description
This method returns a list containing the nodes participating in this group. The address is the

key to find the Node.

o Returns — A list containing the nodes participating in this group. The address is the key and

the node name is the value

* removeAllParticipants

public void removeAllParticipants( )

o Description

This method removes all participating nodes. It is used to clear the group before it is updated by

a groupSyncPackage received from a remote node.

* removeParticipant

public void removeParticipant( java.lang.String address )

o Description
This method removes a participating node.
o Parameters
* address — The address of the node to remove from this group

* shutdownGroup
public void shutdownGroup( )

o Description

This method closes the NodeConnection of all the participating nodes, and removes all nodes from
the group. It is called from the MIDlet via FrameworkFrontEnd.shutdownFramework() when all

network connections should be closed.
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C.1.4 Class GroupSyncPackage

A GroupSyncPackage is a package used internally in the framework to synchronize the groups containing
the participants. The participant performing the groupsync uses its own group as content of the package.

All the receivers synchronizes their groups based on the information found in the GroupSyncPackage.

Declaration

public class GroupSyncPackage

extends peer2me.domain.DataPackage peer2me.domain.DataPackage

Constructor summary

GroupSyncPackage() Constructor used to create an empty GroupSyncPackage object to fill
with the parseBytes() method
GroupSyncPackage(Node, String[], Node[]) Constructor

Method summary

getParticipants() This method returns a list of the nodes that are participating in the network

(group)
parseBytes(byte[]) This method parses the content of the byte array (byte[]) back into a

GroupSyncPackage object
toSendableFormat() This method transforms this groupsync package into a byte array (bytel[])

that is possible to send over a network stream

Constructors

* GroupSyncPackage
public GroupSyncPackage( )

o Description

Constructor used to create an empty GroupSyncPackage object to fill with the parseBytes()
method

* GroupSyncPackage
public GroupSyncPackage( Node sender, java.lang.String[] recipients, Node[] participat-
ingNodes )

o Description
Constructor
o Parameters

x sender — A node object representing the sender node
x recipients — The addresses to the recipients of the groupsync package

* participatingNodes — A hashtable with node addresses as keys and names as values
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Methods

* getParticipants

public Node[] getParticipants( )

o Description

This method returns a list of the nodes that are participating in the network (group)

o Returns — A list of participating nodes

* parseBytes
public void parseBytes( byte[] data )

o Description

This method parses the content of the byte array (byte[]) back into a GroupSyncPackage object
o Parameters

* data — The byte[] containing the data representing the GroupSyncPackage object

* toSendableFormat
public byte[] toSendableFormat( )

o Description

This method transforms this groupsync package into a byte array (byte[]) that is possible to send

over a network stream

o Returns — The byte[] representation of the groupsync package

Members inherited from class peer2me.domain.DataPackage peer2me.domain.DataPackage
* public static final FILE_PACKAGE
* public String getRecipients( )
* public Node getSender( )
* public int getType( )
* public static final GROUP_SYNC_PACKAGE
* public log
* public abstract void parseBytes( byte[] data )
* public void setRecipients( java.lang.String[] recipients )
* public void setSender( Node sender )
* public static final TEXT_PACKAGE
* public abstract byte toSendableFormat( )

C.1.5 Class Node

This class represents a node in the network. It contains information like the name of the node and its network
address. A node also owns a nodeConnection object listening for- and processing incoming and outgoing

data packages.
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Declaration

public class Node
extends java.lang.Object java.lang.Object

Constructor summary

Node(String, StreamConnection) Constructor.
Node(String, String) Constructor.

Node(String, String, StreamConnection) Constructor.

Method summary

get Address() This method returns the node address

getNodeConnection() This method returns the NodeConnection owned by this node

getNodeName() This method returns the name of the node

restoreNode(String) This method restores a node with the properties specified in the given
input string.

setNodeConnection(StreamConnection) This method sets the connection to this remote
node.

setNodeName(String) This method sets the name of the node

startNodeConnection() This method creates a nodeConnection running two threads.

Constructors

* Node
public Node( java.lang.String address, javax.microedition.io.StreamConnection connec-

tion )

o Description

Constructor. Creates a new Node. This constructor is used when a node is created to represent
a remote device on the node which was DISCOVERED during a search. In this case, only the
address is known. In addition, a StreamConnection object containing a connection to this remote

device exists. The constructor is called from the run() method in ConnectionListener.
o Parameters

* address — The node network address

* connection — The connection to this remote node

* Node
public Node( java.lang.String nodeName, java.lang.String address )

o Description

Constructor. Creates a new Node. This constructor is used when a node is created to represent
the LOCAL device. In this case, nodeName and address are known. The constructor is called

from FrameworkFrontEnd.initFramework().
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o Parameters

% nodeName — The name of the node

* address — The node network address

* Node
public Node( java.lang.String nodeName, java.lang.String address,

javax.microedition.io.StreamConnection connection )

o Description
Constructor. Creates a new Node. This constructor is used when a node is created to represent
a remote device on the node which INITIATED the search. In this case, name and address is
known. In addition, a StreamConnection object containing a connection to this remote device

exists. The constructor is called from the nodeFound() method in the Network subclass.
o Parameters

* nodeName — The name of the node
* address — The node network address

% connection — The connection to this remote node

Methods

* getAddress
public java.lang.String getAddress( )

o Description
This method returns the node address
o Returns — The node network address

x getNodeConnection

public peer2me.network.NodeConnection getNodeConnection( )

o Description
This method returns the NodeConnection owned by this node
o Returns — nodeConnection This nodes NodeConnection

x getNodeName
public java.lang.String getNodeName( )

o Description

This method returns the name of the node

o Returns — The nodeName

* restoreNode

public static Node restoreNode( java.lang.String nodeString )
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o Description

This method restores a node with the properties specified in the given input string.
o Parameters

* nodeString — A string containing node properties (name:address)

*x setNodeConnection
public void setNodeConnection( javax.microedition.io.StreamConnection connection )

o Description
This method sets the connection to this remote node. It is called from Network.nodeFound().
o Parameters

* connection — The connection to this remote node

* setNodeName
public void setNodeName( java.lang.String nodeName )

o Description
This method sets the name of the node
o Parameters

% nodeName — The name of the node

* startNodeConnection

public void startNodeConnection( )

o Description
This method creates a nodeConnection running two threads. Ome of the threads listens for
incoming data packages, and the other processes outgoing data packages. It is only used when

this node object represents a remote node.

C.1.6 Class TextPackage

This class represents a data package containing text that should be sent over the network.

Declaration

public class TextPackage

extends peer2me.domain.DataPackage peer2me.domain.DataPackage

Constructor summary

TextPackage() Constructor used to create an empty TextPackage object to fill with the
parseBytes() method
TextPackage(Node, String[], String) Constructor
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Method summary

getContent() This method returns the text content of this TextPackage

parseBytes(byte[]) This method parses the content of the byte array (byte[]) back into a
TextPackage object

toSendableFormat() This method transforms this text package into a byte array (byte[]) that

is possible to send over a network stream

Constructors

+x TextPackage
public TextPackage( )

o Description

Constructor used to create an empty TextPackage object to fill with the parseBytes() method

*x TextPackage
public TextPackage( Node sender, java.lang.String[] recipients, java.lang.String con-
tent )

o Description

Constructor
o Parameters

x sender — A node object representing the sender node
x recipients — The addresses to the recipients of the text package

x content — The String to be sent

Methods

*x getContent
public java.lang.String getContent( )

o Description
This method returns the text content of this TextPackage
o Returns — The content

+ parseBytes
public void parseBytes( byte[] data )

o Description
This method parses the content of the byte array (byte[]) back into a TextPackage object
o Parameters

* data — The byte]] containing the data representing the TextPackage object
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* toSendableFormat
public byte[] toSendableFormat( )

o Description

This method transforms this text package into a byte array (byte[]) that is possible to send over

a network stream

o Returns — The byte[] representation of the text package

Members inherited from class peer2me.domain.DataPackage peer2me.domain.DataPackage

* public static final FILE_ PACKAGE

* public String getRecipients( )

* public Node getSender( )

* public int getType( )

* public static final GROUP_SYNC_PACKAGE
* public log

* public abstract void parseBytes( byte[] data )
* public void setRecipients( java.lang.String[] recipients )
* public void setSender( Node sender )

* public static final TEXT PACKAGE

* public abstract byte toSendableFormat( )

C.2 Package peer2me.framework
Package Contents

Interfaces

Bra e WO K . .. e 211
This interface acts as a "facade” for the entire Peer2Me framework as the methods in

this interface is the only methods the MIDlets running the framework needs access

to.
FrameworKLIstemner. ... ... 214

This interface must be implemented by all Peer2Me MIDlets.

Classes
FrameworkFrontEnd . ... 216

This is the main class of the Peer2Me framework.

C.2.1 Interface Framework

This interface acts as a "facade” for the entire Peer2Me framework as the methods in this interface is the
only methods the MIDlets running the framework needs access to. To use the Peer2Me framework, the
MIDlets should run the FrameworkFrontEnd.getInstance() which returns a reference of type Framework. All

framework services is then available through this reference.
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Declaration

public interface Framework

All known subinterfaces

FrameworkFrontEndpeer2me.framework. FrameworkFrontEnd

All classes known to implement interface

FrameworkFrontEndpeer2me.framework.FrameworkFrontEnd

Method summary

connectToNodes(String[]) This method connects multiple devices in a network.

getFileList(String) This method returns a list of the files in the given root directory on the
device

initFramework(String, String, String) This method initiates the framework, and is the first
method that should be run after getting a instance of the framework.

sendFilePackage(String[], String) This method sends a file package over the network.

sendTextPackage(String|[], String) This method sends a text package over the network.

shutdownFramework() This method shuts down the framework and closes all the open network
connections and streams.

startNodeSearch() This method starts a search for devices running the same MIDlet.

Methods

* connectToNodes

void connectToNodes( java.lang.String[] addresses )

o Description

This method connects multiple devices in a network. When a connection is established, the
notify AboutParticipants() method specified by the FrameworkListener interface is called.

o Parameters
* addresses — The addresses of the devices to connect to.

x getFileList

java.util.Enumeration getFileList( java.lang.String root )
o Description
This method returns a list of the files in the given root directory on the device
o Parameters
* root — The path to the root directory

o Returns — An enumeration containing the names of the files in the root directory
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* initFramework
void initFramework( java.lang.String nodeName, java.lang.String midletName, java.lang.String
preferredNetwork ) throws java.lang.ClassNotFoundException,
java.lang.IllegalAccessException, java.lang.InstantiationException,

java.io.IOException, java.lang.Exception

o Description
This method initiates the framework, and is the first method that should be run after getting a
instance of the framework. It initiates the fundamental services offered by the framework.

o Parameters

* nodeName — The name of the user of the MIDlet.

* midletName — The name of the MIDlet, eventually translated into a ServiceID used to find

other devices running the same MIDlet.
* preferredNetwork — Deciding which network implementation to use.

o Throws

* java.lang.ClassNotFoundException — The input preferredNetwork is invalid
java.lang.IllegalAccessException — The input preferredNetwork is invalid
java.lang.InstantiationException — The input preferredNetwork is invalid

*
*
* java.io.IOException — Error initiating framework
*

java.lang.Exception — Error initiating framework

x sendFilePackage
void sendFilePackage( java.lang.String[] recipients, java.lang.String filePath )

o Description

This method sends a file package over the network. When the package terminates to the
recipients, they are alerted by the notifyAboutReceivedFilePackage() method specified by the

FrameworkListener interface.
o Parameters

x recipients — A list containing the addresses of the recipient nodes

x filePath — The path of the file to be sent

x sendTextPackage
void sendTextPackage( java.lang.String[] recipients, java.lang.String textMessage )

o Description
This method sends a text package over the network. When the package terminates to the
recipients, they are alerted by the notify AboutReceivedTextPackage() method specified by the

FrameworkListener interface.
o Parameters

* recipients — A list containing the addresses of the recipient nodes

* textMessage — The text message to be sent
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* shutdownFramework

void shutdownFramework( )

o Description

This method shuts down the framework and closes all the open network connections and streams.

It should be called before closing the MIDlet to clean up the network connections.

* startNodeSearch

void startNodeSearch( ) throws java.io.IOException

o Description
This method starts a search for devices running the same MIDlet. When such a device is found,
the notify AboutFoundNode() method specified by the FrameworkListener interface is called.

o Throws

% java.io.IOException — Thrown if the search crashes

C.2.2 Interface FrameworkListener

This interface must be implemented by all Peer2Me MIDlets. It ensures that the Framework can access a
set of methods in the MIDlet in order to notify the MIDlet about various events.

Declaration

public interface FrameworkListener

Method summary

notify AboutException(String, Exception) This method is called by the framework when-
ever an exception notice is given by the log.

notify AboutFoundNode(String, String) This method is called by the framework when a
node is found.

notify AboutParticipants(Hashtable) This method is called from from the framework to
notify the midlet about the participants of the ad hoc network.

notify AboutReceivedFilePackage(String, String) This method is called from the frame-
work whenever a file package is received from a remote node.

notify AboutReceivedTextPackage(String, String) This method is called from the frame-

work whenever a text package is received from a remote node.

Methods

x notify AboutException

void notifyAboutException( java.lang.String location, java.lang.Exception exception )
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o Description
This method is called by the framework whenever an exception notice is given by the log. This
will be done in cases where exceptions occure in threads and cannot be thrown in the usual way.

o Parameters

* location — The location where the Exception occured

* exception — The actual Exception

* notify AboutFoundNode
void notifyAboutFoundNode( java.lang.String nodeAddress, java.lang.String remoteN-

odeName )

o Description

This method is called by the framework when a node is found. These nodes are not yet connected

in a network. To do this, use the Framework.connectToNodes() method.
o Parameters

* nodeAddress — The network address of the node

* remoteNodeName — The name of the found remote node

* notify AboutParticipants
void notifyAboutParticipants( java.util.Hashtable participants )

o Description

This method is called from from the framework to notify the midlet about the participants of the

ad hoc network.
o Parameters
x participants — A hashtable that contains the names of the participants as unique keys and

the network addresses as values.

* notify AboutReceivedFilePackage
void notifyAboutReceivedFilePackage( java.lang.String senderName, java.lang.String
filePath )

o Description

This method is called from the framework whenever a file package is received from a remote node.
o Parameters

* senderName — The name of the sender

* filePath — The path to the received file

x notify AboutReceived TextPackage
void notify AboutReceivedTextPackage( java.lang.String senderName, java.lang.String
textMessage )
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o Description

This method is called from the framework whenever a text package is received from a remote

node.
o Parameters

* senderName — The name of the sender

* textMessage — The received text message

C.2.3 Class FrameworkFrontEnd

This is the main class of the Peer2Me framework. It manages and connects the resources and functions of

the framework. It also handles all communication and interaction with the MIDlets running the framework.

Declaration

public class FrameworkFrontEnd
extends java.lang.Object java.lang.Object

implements Framework

Method summary

connectToNodes(String[]) This method establishes a connection to the chosen nodes.

getFileList(String) This method returns a list of the files in the given root directory on the
device

getGroup() This method returns the local representation of the group.

getInstance(FrameworkListener) This method creates an instance of FrameworkFrontEnd
and returns it as a reference of type Framework.

getLocalNode() This method returns a reference to the local node.

initFramework(String, String, String) This method initiates the framework, and is the first
method that should be run after getting a instance of the framework.

notify AboutException(String, Exception) This method passes on the Exception notice from
the Log to the MIDlet.

notify AboutFoundNode(String, String) This method is called from the nodeFound()
method in the Network class whenever a node is found

notify AboutLostNode(String) This method removes a lost node from the group.

notify AboutReceivedFilePackage(FilePackage) This method is called from NodeConnec-
tion.processIncomingData() whenever a file package is received from a remote node.

notify AboutReceived GroupSyncPackage(GroupSyncPackage) This method is called from
NodeConnection.processIncomingData() whenever a groupSyncPackage is received from a
remote node.

notify AboutReceived TextPackage(TextPackage) This method is called from NodeConnec-

tion.processIncomingData() whenever a text package is received from a remote node.
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sendFilePackage(String|[], String) This method is used by the MIDlet to send a file package
over the network.

sendTextPackage(String[], String) This method is used by the MIDlet to send a text package
over the network.

shutdownFramework () This method shuts down the framework and closes all the open network
connections and streams.

startNodeSearch() This method starts a search for devices running the same MIDlet.

Methods

* connectToNodes

public void connectToNodes( java.lang.String[] addresses )

o Description

This method establishes a connection to the chosen nodes. After updating the local group, it
synchronizes the groups on all other participating nodes. The method should be called from the
MIDlet.

o Parameters
* addresses — The addresses to the nodes to connect to.

x getFileList

public java.util.Enumeration getFileList( java.lang.String root )

o Description

This method returns a list of the files in the given root directory on the device
o Parameters
* root — The path to the root directory
o Returns — A Enumeration containing the names of the files in the root directory

*x getGroup
public peer2me.domain.Group getGroup( )

o Description

This method returns the local representation of the group. It is called from ConnectionLis-

tener.run() or Network.nodeFound() when a remote node is found and should be added to the
group.

o Returns — The local representation of the group

* getInstance

public static synchronized Framework getInstance( FrameworkListener midlet )

o Description

This method creates an instance of FrameworkFrontEnd and returns it as a reference of type
Framework. This is the only method that can be called directly from the MIDlet on the
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FrameworkFrontEnd. The MIDIet is restricted to only use the methods specified in the Framework

interface.
o Parameters

* midlet — A reference to the MIDlet (The MIDIlet must implement the FrameworkListener

interface).

o Returns — A reference to the Framework

* getLocalNode
public peer2me.domain.Node getLocalNode( )

o Description

This method returns a reference to the local node.

o Returns — An object representing the local node

* initFramework
public void initFramework( java.lang.String nodeName, java.lang.String midletName,
java.lang.String preferredNetwork ) throws java.lang.ClassNotFoundException,
java.lang.IllegalAccessException, java.lang.InstantiationException,

java.io.IOException, java.lang.Exception

o Description
This method initiates the framework, and is the first method that should be run after getting a
instance of the framework. It initiates the fundamental services offered by the framework.

o Parameters

* nodeName — The name of the user of the MIDlet.

*x midletName — The name of the MIDlet, eventually translated into a ServiceID used to find

other devices running the same MIDlet.

* preferredNetwork — Deciding which network implementation to use.

o Throws
% java.lang.ClassNotFoundException — The input preferredNetwork is invalid
* java.lang.IllegalAccessException — The input preferredNetwork is invalid
* java.lang.InstantiationException — The input preferredNetwork is invalid
* java.io.IOException — Error initiating framework

* java.lang.Exception — Error initiating framework

* notify AboutException
public void notify AboutException( java.lang.String location, java.lang.Exception excep-

tion )

o Description

This method passes on the Exception notice from the Log to the MIDlet. This will be done in

cases where exceptions occure in threads and cannot be thrown in the usual way.
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o Parameters

* location — The location (class and method) where the Exception occured

* exception — The actual Exception

* notify AboutFoundNode
public void notify AboutFoundNode( java.lang.String address, java.lang.String remotelN-
odeName )

o Description

This method is called from the nodeFound() method in the Network class whenever a node is

found
o Parameters

% address — The network address of the node

* remoteNodeName — The name of the found remote node

* notify AboutLostNode
public synchronized void notifyAboutLostNode( java.lang.String address )

o Description

This method removes a lost node from the group. It is called from Network.sendDataPackage() if a

node is unreachable. After removing the node, the groups on all other nodes become synchronized.
o Parameters
* address — The address to the lost node

* notify AboutReceivedFilePackage
public void notify AboutReceivedFilePackage( peer2me.domain.FilePackage filePackage )

o Description

This method is called from NodeConnection.processIncomingData() whenever a file package is

received from a remote node. It processes the package, logs the event, and notifies the midlet.
o Parameters
* filePackage — The received file package.
x notify AboutReceived GroupSyncPackage

public void notify AboutReceivedGroupSyncPackage( peer2me.domain.GroupSyncPackage group-
SyncPackage )

o Description

This method is called from NodeConnection.processIncomingData() whenever a groupSyncPack-
age is received from a remote node. The method processes the package, logs the event, and

updates the group.

o Parameters
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x groupSyncPackage — The received groupSyncPackage.

* notify AboutReceivedTextPackage
public void notify AboutReceivedTextPackage( peer2me.domain.TextPackage textPackage )

o Description

This method is called from NodeConnection.processIncomingData() whenever a text package is

received from a remote node. It processes the package, logs the event, and notifies the midlet.
o Parameters
* textPackage — The received text package.

x sendFilePackage
public void sendFilePackage( java.lang.String[] recipients, java.lang.String filePath )

o Description
This method is used by the MIDlet to send a file package over the network. When the package
terminates to the recipients, the notify AboutReceivedFilePackage() method in this class is run.

o Parameters

x recipients — A list containing the addresses of the recipient nodes

x filePath — The path of the file to send

* sendTextPackage
public void sendTextPackage( java.lang.String[] recipients, java.lang.String textMes-

sage )

o Description

This method is used by the MIDlet to send a text package over the network. When the package
terminates to the recipients, the notify AboutReceived TextPackage() method in this class is run.

o Parameters

*x recipients — A list containing the addresses of the recipient nodes

* textMessage — The text to be sent

* shutdownFramework
public void shutdownFramework( )

o Description

This method shuts down the framework and closes all the open network connections and streams.

It should be called from the MIDlet before closing, to clean up the network connections.

* startNodeSearch
public void startNodeSearch( ) throws java.io.IOException
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o Description
This method starts a search for devices running the same MIDlet. When such a device is found,
the notify AboutFoundNode() method in this class is called.

o Throws

* java.io.IOException — Thrown if the search crashes

C.3 Package peer2me.network.bluetooth
Package Contents

Interfaces

BluetoothServiceDiscoveryListener. . ... ... ... i e e 221
This interface has to be implemented by classes that wants to do a Bluetooth service

discovery using the BluetoothServiceDiscovery class, and receive callbacks from this

class.
Classes
BluetoothINetwork . ... ... e 222
his class is a bluetooth specific sub class of the Network class and implements all
the abstract methods of it’s parent class in a bluetooth context.
BluetoothServiceDiSCOVEry .. ... ..o 225

This class is responsible for doing the low level Bluetooth discovery operations.

C.3.1 Interface BluetoothServiceDiscoveryListener

This interface has to be implemented by classes that wants to do a Bluetooth service discovery using
the BluetoothServiceDiscovery class, and receive callbacks from this class. In this case, the class
BluetoothNetwork implements this interface.

Declaration

public interface BluetoothServiceDiscoveryListener

All known subinterfaces

BluetoothNetworkpeer2me.network.bluetooth. BluetoothNetwork

All classes known to implement interface

BluetoothNetworkpeer2me.network.bluetooth.BluetoothNetwork

Method summary

serviceDiscoveryError() What to do when something went wrong during servicediscovery

serviceSearchCompleted() What to do when serviceSearch is completed
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Methods

* serviceDiscoveryError

void serviceDiscoveryError( )

o Description

What to do when something went wrong during servicediscovery

x serviceSearchCompleted

void serviceSearchCompleted( )

o Description

What to do when serviceSearch is completed

C.3.2 Class BluetoothNetwork

This class is a bluetooth specific sub class of the Network class and implements all the abstract methods of
it’s parent class in a bluetooth context. It uses the bluetooth Java API, JSR-82, to perform operations on

the bluetooth hardware of the mobile device.

Declaration

public class BluetoothNetwork
extends peer2me.network.Network peer2me.network.Network

implements BluetoothServiceDiscoveryListener

Constructor summary

BluetoothNetwork() Constructor.

Method summary

connectionEstablished() This method is called from the ConnectionListener.run() when the
acceptAndOpen() method in ConnectionListener.run() is done.

connectToNode(String) This method establishes a connection to the chosen node.

getNodeAddress(Object) This method returns the node address.

getRemoteNodeName(Object) This method fetches the name of the remote node.

getUUIDString() This method returns the UUID string used as an identifier in the discovery
process.

init() Initiates the network instance.

nodeFound(Object) Called when the same MIDlet is found on a remote device.

searchForNodes() Starts a search for devices running the same MIDlet

sendDataPackage(DataPackage, String[]) This method is used by the FrameworkFrontEnd
to send a data package of any sort to a remote node.

serviceDiscoveryError() What to do when something went wrong during servicediscovery.

serviceSearchCompleted() Sets the boolean serviceSearchCompleted = true.
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Constructors

* BluetoothNetwork
public BluetoothNetwork( )

o Description

Constructor. Protected to ensure singleton pattern.

Methods

* connectionEstablished

public void connectionEstablished( )

o Description

This method is called from the ConnectionListener.run() when the acceptAndOpen() method in

ConnectionListener.run() is done.

* connectToNode

public void connectToNode( java.lang.String nodeAddress )

o Description

This method establishes a connection to the chosen node. It is run from the BluetoothNet-

work.sendDataPackage().
o Parameters
* nodeAddress — The address to the node to connect to

* getNodeAddress
public java.lang.String getNodeAddress( java.lang.Object input ) throws java.io.IOException

o

Description

This method returns the node address.

Parameters

o

% input — String "localNode” to retreive the address of the local device. A ServiceRecord or

StreamConnection object to retreive the address of a remote device.

Returns — The node network address.

[e]

Throws

[¢]

* java.io.IOException —

* getRemoteNodeName
public java.lang.String getRemoteNodeName( java.lang.Object input )

o Description

This method fetches the name of the remote node.
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o Parameters
* input — An object representing the connection to the found node.
o Returns — The name of the remote node.

* getUUIDString
public java.lang.String getUUIDString( )

o Description

This method returns the UUID string used as an identifier in the discovery process. The UUID
string is generated based on the application ID given by the application running the framework.
The UUID must be used to ensure that all nodes joining the network are running the same

application.
o Returns — uuidString
* init

public void init( ) throws javax.bluetooth.BluetoothStateException

o Description
Initiates the network instance. It is called from the FrameworkFrontEnd.initFramework()

o Throws

* javax.bluetooth.BluetoothStateException — Failed to initiate the network

+ nodeFound

public void nodeFound( java.lang.Object input )

o Description

Called when the same MIDlet is found on a remote device. It is called from BluetoothServiceDis-

covery.serviceSearchCompleted().
o Parameters
* input — Either a ServiceRecord or a StreamConnection that describes the characteristics of

the Bluetooth service found

* searchForNodes

public void searchForNodes( ) throws java.io.IOException

o Description
Starts a search for devices running the same MIDlet

o Throws

* java.io.IOException — Error during the search

+x sendDataPackage
public void sendDataPackage( peer2me.domain.DataPackage dataPackage, java.lang.Stringl[]

recipients )
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o Description

This method is used by the FrameworkFrontEnd to send a data package of any sort to a remote

node.

o Parameters

* dataPackage — The data package to be sent

x recipients — A list containing addresses to the recipient nodes

* serviceDiscoveryError

public void serviceDiscoveryError( )

o Description

What to do when something went wrong during servicediscovery. The method is called from

BluetoothServiceDiscovery.serviceSearchCompleted().

x serviceSearchCompleted

public void serviceSearchCompleted( )

o Description

Sets the boolean serviceSearchCompleted = true. This value will interrupt the while-loop in

sendDataPackage. This because the serviceSearch must be completed before we try to send a

package. The method is called from BluetoothServiceDiscovery.serviceSearchCompleted().

Members inherited from class peer2me.network.Network peer2me.network.Network

public
public
public
public
public
public
public

* K K K X X X

throws

abstract
abstract

void connectionEstablished( )
void connectToNode( java.lang.String nodeAddress )

String getApplicationId( )

ConnectionListener getConnectionListener( )

FrameworkFrontEnd getFrameworkFrontEnd( )

static synchronized Network getInstance( )

static synchronized Network getInstance( java.lang.String preferredNetwork )

java.lang.ClassNotFoundException, java.lang.IllegalAccessException,

java.lang.InstantiationException

public
public
public
public
public
public

S D R S

abstract
abstract
abstract
abstract
abstract
abstract

recipients )

*

String getNodeAddress( java.lang.Object input ) throws java.io.IOException
String getRemoteNodeName( java.lang.Object input )

void init( ) throws java.lang.Exception

void nodeFound( java.lang.Object input ) throws java.io.IOException

void searchForNodes( ) throws java.io.IOException

void sendDataPackage( peer2me.domain.DataPackage dataPackage, java.lang.Stringl[]

public void setApplicationld( java.lang.String applicationID )

* public void setConnectionListener( ConnectionlListener connectionListener )
* public void setFrameworkFrontEnd( peer2me.framework.FrameworkFrontEnd frameworkFrontEnd )

C.3.3 Class BluetoothServiceDiscovery

This class is responsible for doing the low level Bluetooth discovery operations. The class initializes seqential

device discovery, and searches for services (the same MIDlet built upon the Peer2Me framework) on each of

the found devices.

225



Declaration

public class BluetoothServiceDiscovery
extends java.lang.Object java.lang.Object

implements javax.bluetooth.DiscoveryListener

Constructor summary

BluetoothServiceDiscovery() Constructor.

Method summary

deviceDiscovered (RemoteDevice, DeviceClass) This method is called by the javax.bluetooth.Discovery Agent
(agent) whenever a bluetooth device is discovered
doDeviceDiscovery() This method starts the discovery process.
inquiryCompleted (int) This method is called by the javax.bluetooth.DiscoveryAgent (agent)
when the discovery process is completed
servicesDiscovered(int, ServiceRecord[]) This method is called by the javax.bluetooth.DiscoveryAgent
(agent) whenever one or more services (read: Peer2Me framework) are found on a remote
device
serviceSearchCompleted (int, int) This method is called by the javax.bluetooth.Discovery Agent
(agent) when the search for services (read: Peer2Me framework) is completed
startServiceSearch(String) This method is used to re-establish a connection to a device when

we have the address.

Constructors

*x BluetoothServiceDiscovery

public BluetoothServiceDiscovery( )

o Description

Constructor. Called from BluetoothNetwork.init().

Methods

* deviceDiscovered
public void deviceDiscovered( javax.bluetooth.RemoteDevice remoteDevice,

javax.bluetooth.DeviceClass deviceClass )

o Description

This method is called by the javax.bluetooth.DiscoveryAgent (agent) whenever a bluetooth device

is discovered
o Parameters

* remoteDevice — The device discovered

% deviceClass — The device class of the discovered device
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* doDeviceDiscovery
public void doDeviceDiscovery( ) throws javax.bluetooth.BluetoothStateException

o Description
This method starts the discovery process. It is called from BluetoothNetwork.searchForNodes().

o Throws
* javax.bluetooth.BluetoothStateException — Error getting reference to LocalDevice

* inquiryCompleted
public void inquiryCompleted( int discType )

o Description
This method is called by the javax.bluetooth.DiscoveryAgent (agent) when the discovery process
is completed
o Parameters
x discType — The type of request that was completed; either INQUIRY_-COMPLETED,
INQUIRY_TERMINATED, or INQUIRY_ERROR

* servicesDiscovered
public void servicesDiscovered( int transld, javax.bluetooth.ServiceRecord[] serviceRe-

cord )

o Description
This method is called by the javax.bluetooth.DiscoveryAgent (agent) whenever one or more
services (read: Peer2Me framework) are found on a remote device
o Parameters
% transId — The transaction ID of the service search that is posting the result

x serviceRecord — A list of services found during the search request

x serviceSearchCompleted

public void serviceSearchCompleted( int transID, int respCode )

o Description
This method is called by the javax.bluetooth.DiscoveryAgent (agent) when the search for services
(read: Peer2Me framework) is completed
o Parameters
* transID — The transaction ID of the service search that is posting the result

x respCode — The response code that indicates the status of the transaction

* startServiceSearch

public void startServiceSearch( java.lang.String address )

o Description
This method is used to re-establish a connection to a device when we have the address.
o Parameters

% address — The address to the device
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C.4 Package peer2me.network

Package Contents

Classes
ConnectioNLiStener . .. ... .. 228
This class contains a ConnectionListener thread listening for incoming connection
attempts from other devices running the same MIDlet built upon the framework.
N O WO K . . o 229
This is the super class of the technology specific network classes.
NodeConnection. ... ... ... e 233

This class contains a thread that runs on each connected node and listens for

incoming data packages and sends data packages out.

C.4.1 Class ConnectionListener

This class contains a ConnectionListener thread listening for incoming connection attempts from other
devices running the same MIDlet built upon the framework. When a incomming connection is detected, a
Node representation is created representing the connecting device. A ConnectionListener thread is created
in Network.init().

Declaration

public class ConnectionListener
extends java.lang.Object java.lang.Object
implements java.lang.Runnable

Constructor summary

ConnectionListener(String) Constructor.

Method summary

run() This method is called when the ConnectionListener thread is started in the constructor.

shutdown() This method shuts down this thread and closes the connection to clean up.

Constructors

*+ ConnectionListener

public ConnectionListener( java.lang.String connectionURL )

o Description

Constructor. A ConnectionListener is created in the Network.init() method.
o Parameters

% connectionURL — The ConnectionURL to listen to
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Methods

* run

public void run( )

o Description

This method is called when the ConnectionListener thread is started in the constructor. It
continously listens for incoming connections matching the servicelD of the peer2me framework.
The listener is "passive” and opens a connection waiting for a device to take contact. If an incoming
connetion occurs, information is abstracted from the remote node, and a node object containing

this connection is created and added to the group on the local node.

* shutdown

public void shutdown( )

o Description

This method shuts down this thread and closes the connection to clean up. It is called from

FrameworkFrontEnd.shutdownFramework().

C.4.2 Class Network

This is the super class of the technology specific network classes. Methods that are equal for all the sub
classes are located in this super class, and there are abstact methods that the sub classes have to implement.

The getInstance() method in this class returns a reference to the preferred network sub class.
Declaration

public abstract class Network

extends java.lang.Object java.lang.Object

All known subclasses

BluetoothNetworkpeer2me.network.bluetooth.BluetoothNetwork

Constructor summary

Network()

Method summary

connectionEstablished() This method is called from the ConnectionListener.run() when the
acceptAndOpen() method in ConnectionListener.run() is done.

connectToNode(String) This method establishes a connection to the chosen node.

getApplicationId() This method returns the applicationId

getConnectionListener() This method returns the ConnectionListener reference

getFrameworkFrontEnd() This method returns the FrameworkFrontEnd reference
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getInstance() This method returns a reference to the instance of the preferred network.

getInstance(String) This method returns an instance of the preferred network.
getNodeAddress(Object) This method returns the node address.
getRemoteNodeName(Object) This method fetches the name of the remote node.

init() Initiates the network instance.

nodeFound(Object) Called when the same MIDlet is found on a remote device

searchForNodes() Starts a search for devices running the same MIDlet
sendDataPackage(DataPackage, String[]) This method is used by the FrameworkFrontEnd

to send a data package of any sort to a remote node.

set ApplicationId(String) This method sets the applicationID.

setConnectionListener(ConnectionListener) This method sets a reference to the Connec-

tionListener
setFrameworkFrontEnd (FrameworkFrontEnd) This method sets a reference to the Frame-
workFrontEnd

Constructors

* Network
public Network( )

Methods

* connectionEstablished

public abstract void connectionEstablished( )

(¢]

Description

This method is called from the ConnectionListener.run() when the acceptAndOpen() method in

ConnectionListener.run() is done.

* connectToNode

public abstract void connectToNode( java.lang.String nodeAddress )

(¢]

o

Description

This method establishes a connection to the chosen node. It could e.g. be run from the

Network.sendDataPackage() to connect before sending a package.
Parameters

* nodeAddress — The address to the node to connect to

* get Applicationld

public java.lang.String getApplicationId( )

o

o

Description

This method returns the applicationld
Returns — applicationID The ID of the MIDlet
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* getConnectionListener

public ConnectionListener getConnectionListener( )

o Description

This method returns the ConnectionListener reference

o Returns — connectionListener A reference to the ConnectionListener

* getFrameworkFrontEnd

public peer2me.framework.FrameworkFrontEnd getFrameworkFrontEnd( )

o Description

This method returns the FrameworkFrontEnd reference

o Returns — frameworkFrontEnd A reference to the FrameworkFrontEnd

* getInstance

public static synchronized Network getInstance( )

o Description
This method returns a reference to the instance of the preferred network. It is used when an
instance already is created and a reference to this instance is needed.

o Returns — The Network instance

o Throws

* java.lang.ClassNotFoundException — The input preferredNetwork is invalid
* java.lang.IllegalAccessException — The input preferredNetwork is invalid

* java.lang.InstantiationException — The input preferredNetwork is invalid

*x getInstance
public static synchronized Network getInstance( java.lang.String preferredNetwork ) throws
java.lang.ClassNotFoundException, java.lang.IllegalAccessException,

java.lang.InstantiationException

o Description
This method returns an instance of the preferred network. It is called from FrameworkFron-
tEnd.initFramework().

o Parameters

* preferredNetwork — Indicating which network implementation to use. *
o Returns — The Network instance
o Throws

* java.lang.ClassNotFoundException — The input preferredNetwork is invalid
* java.lang.IllegalAccessException — The input preferredNetwork is invalid

* java.lang.InstantiationException — The input preferredNetwork is invalid
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* getNodeAddress
public abstract java.lang.String getNodeAddress( java.lang.Object input )

throws java.io.IOException

o Description

This method returns the node address.
o Parameters

x input — String "localNode” to retreive the address of the local device. A object representing

the connection to the remote node to retreive the address of a remote device.
o Returns — The node network address.
o Throws

* java.io.IOException —

x getRemoteNodeName
public abstract java.lang.String getRemoteNodeName( java.lang.Object input )

o Description

This method fetches the name of the remote node.
o Parameters
* input — An object representing the connection to the found node.
o Returns — The name of the remote node.
* init

public abstract void init( ) throws java.lang.Exception

o Description
Initiates the network instance. It is called from the FrameworkFrontEnd.initFramework()
o Throws

* java.lang.Exception — Failed to initiate the network

+ nodeFound

public abstract void nodeFound( java.lang.Object input ) throws java.io.IOException

o Description

Called when the same MIDlet is found on a remote device
o Parameters

* input — An object representing the connection to the found node.

* searchForNodes

public abstract void searchForNodes( ) throws java.io.IOException

o Description

Starts a search for devices running the same MIDlet
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o Throws

* java.io.IOException — Error during the search

x sendDataPackage
public abstract void sendDataPackage( peer2me.domain.DataPackage dataPackage, java.lang.String[]

recipients )

o Description
This method is used by the FrameworkFrontEnd to send a data package of any sort to a remote

node.
o Parameters

* dataPackage — The data package to be sent

* recipients — A list containing addresses to the recipient nodes

* set Applicationld
public void setApplicationld( java.lang.String applicationID )

o Description
This method sets the applicationID. The application ID must be used to ensure that all nodes

joining the network are running the same MIDlet.
o Parameters
* applicationID — The ID of the MIDlet (e.g. the MIDlet name)

* setConnectionListener

public void setConnectionListener( ConnectionlListener connectionListener )

o Description

This method sets a reference to the ConnectionListener
o Parameters
* connectionListener — A reference to the ConnectionListener
* setFrameworkFrontEnd

public void setFrameworkFrontEnd( peer2me.framework.FrameworkFrontEnd frameworkFron-
tEnd )

o Description

This method sets a reference to the FrameworkFrontEnd
o Parameters

* frameworkFrontEnd — A reference to the FrameworkFrontEnd

C.4.3 Class NodeConnection

This class contains a thread that runs on each connected node and listens for incoming data packages and

sends data packages out. It is created and started in NodeConnection.startNodeConnection().
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Declaration

public class NodeConnection

extends java.lang.Object java.lang.Object

Constructor summary

NodeConnection(StreamConnection, Node) Constructor.

Method summary

closeConnection() This method closes the input- and output streams and the connection.

getConnection() This method returns the connection object.

getSendQueueSize() This method return the size of the sendQue.

openInputStream() This method sets a boolean that controls whether or not the InputStream
are allowed to listen for incoming data.

openOutputStream() This method sets a boolean that controls whether or not the Output-
Stream are allowed to send data.

processIncomingData() This method receives incoming datapackages from remote nodes.

processSendQueue() This method sends datapackages to remote nodes.

sendDataPackage(DataPackage) This method is called by the sendMessage() method in the
Network class when a data package is sent to the Node associated with this NodeConnection.

setConnection(StreamConnection) This method updates the connection object.

Constructors

*+ NodeConnection
public NodeConnection( javax.microedition.io.StreamConnection connection, peer2me.domain.Node

node )

o Description

Constructor. This constructor is called from the constructor in class Node.
o Parameters

* connection — The connection to the node
* node — The node that owns this NodeConnection

Methods

* closeConnection

public void closeConnection( )

o Description

This method closes the input- and output streams and the connection. It is called from

Group.shutdownGroup() to clean up during shutdown.

234



getConnection

public javax.microedition.io.StreamConnection getConnection( )

o Description

This method returns the connection object.

o Returns — An object representing the connection to the remote node

getSendQueueSize
public int getSendQueueSize( )

o Description
This method return the size of the sendQue.

o Returns — The size of the sendQue

openlnputStream

public void openInputStream( )

o Description
This method sets a boolean that controls whether or not the InputStream are allowed to listen

for incoming data. The value is toggled from ConnectionListener.run().

openOutputStream
public void openOutputStream( )

o Description
This method sets a boolean that controls whether or not the OutputStream are allowed to send

data. The value is toggled from NodeConnection.sendDataPackage()

processIncomingData

public void processIncomingData( )

o Description
This method receives incoming datapackages from remote nodes. It is called in an infinite loop in

the private class InputThread in this class.

processSendQueue

public synchronized void processSendQueue( )

o Description

This method sends datapackages to remote nodes. It processes the que of unsent datapackages.

It is called in an infinite loop in the private class OutputThread in this class.

sendDataPackage
public synchronized void sendDataPackage( peer2me.domain.DataPackage dataPackage )

o Description
This method is called by the sendMessage() method in the Network class when a data package is
sent to the Node associated with this NodeConnection.
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o Parameters
* dataPackage — The DataPackage to send

* setConnection

public void setConnection( javax.microedition.io.StreamConnection connection )

o Description

This method updates the connection object. It is used when the existing connection is closed and

a new open connection is needed.
o Parameters

* connection — The connection to the remote node

C.5 Package peer2me.util

Package Contents

Classes
ASCIITOHEXCOMNVETt . . .ottt e et e et e et e e i 236
This class converts ASCII letters into hexadecimal numbers
FileHandler . . .. ..ottt e e e e 237

This class contains functionality for reading and writing all kinds of files to and

from the device file system.

This class contains functionality to create and maintain a log of events and

exceptions.

C.5.1 Class ASCIIToHexConvert

This class converts ASCII letters into hexadecimal numbers

Declaration
public class ASCIIToHexConvert
extends java.lang.Object java.lang.Object

Constructor summary

ASCIIToHexConvert() Constructor

Method summary

convert ASCIIToHex(String) This method returns a String with hex representations of each

character in the provided String
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Constructors

* ASCIIToHexConvert
public ASCIIToHexConvert( )

o Description

Constructor

Methods

* convert ASCIIToHex
public java.lang.String convertASCIIToHex( java.lang.String ascii )

o Description

This method returns a String with hex representations of each character in the provided String
o Parameters
*x ascii — The String to convert

o Returns — A String with hex representations

C.5.2 Class FileHandler

This class contains functionality for reading and writing all kinds of files to and from the device file system.

Declaration

public class FileHandler
extends java.lang.Object java.lang.Object

Constructor summary

FileHandler(String) Constructor.

Method summary

closeFile() This method closes and nullifies the input- and ouput streams, and the file connection
getBlockSize() This method fetches the size of the blocks to read and write

getFileList() This method returns a list of the files in the given file path on the device
getFileSize() This method returns the size of the this file

readFile() This method reads the next byte in the file and returns it

setFileSize(long) This method sets the size of the this file

writeFile(byte) This method writes the incoming byte to the file

writeFile(byte[], int) This method writes the incoming byte block to the file
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Constructors

* FileHandler
public FileHandler( java.lang.String filePath )

o Description

Constructor.
o Parameters

x filePath — The path to the file to be handled

Methods

* closeFile

public void closeFile( )

o Description

This method closes and nullifies the input- and ouput streams, and the file connection

* getBlockSize
public int getBlockSize( )

o Description
This method fetches the size of the blocks to read and write
o Returns — The blocksize

*x getFileList
public java.util.Enumeration getFileList( )

o Description
This method returns a list of the files in the given file path on the device

o Returns — A Enumeration containing the names of the files in the root directory

x getFileSize
public long getFileSize( )

o Description

This method returns the size of the this file

o Returns — The size as a long

* readFile

public synchronized byte[] readFile( ) throws java.io.IOException

o Description

This method reads the next byte in the file and returns it

o Returns — The next block of bytes
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o Throws

* java.io.IDException — This exception is thrown when the reading has failed

* setFileSize

public void setFileSize( long fileSize )

o Description

This method sets the size of the this file
o Parameters
* fileSize — The size to set

* writeFile

public synchronized void writeFile( byte theByte ) throws java.io.IOException

o Description
This method writes the incoming byte to the file
o Parameters
* theByte — The next byte to write
o Throws

* java.io.IOException — This exception is thrown when the writing has failed

+x writeFile
public synchronized void writeFile( byte[] theBytes, int numberOfBytesRead ) throws

java.io.IOException
o Description
This method writes the incoming byte block to the file
o Parameters

* theBytes — The next byte block to write
* number0fBytesRead — The number of bytes in the theBytes|] array

o Throws

* java.io.IOException — This exception is thrown when the writing has failed

C.5.3 Class Log

This class contains functionality to create and maintain a log of events and exceptions. The Log contains
four differnet kinds of logs, an exception log, a connection log, a data package log and a debug log. They can
be used to log events from anywhere in the framework, and the logs can be retreived later to get information
about the execution of the MIDlet.

Declaration

public class Log
extends java.lang.Object java.lang.Object
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Field summary

CONNECTION_LOG
DATA PACKAGE_LOG
DEBUG_LOG
EXCEPTION_LOG

Method summary

getInstance() This method returns the only existing instance of the Log class

getLog(int) This method returns the desired log in a displayable format.

logConnection(String) This method adds a Connection entry to the Connection log

logDataPackage(String) This method adds a data package entry to the data package log

logDebuglInfo(String, String) This method adds a Debug entry to the Debug log

logException(String, Exception, boolean) This method adds an Exception entry to the
Exception log

setFramework (FrameworkFrontEnd) This method is called by the FrameworkFrontEnd to
reveal itself to the Log

Fields
x public static final int EXCEPTION_LOG
x public static final int CONNECTION_LOG
x public static final int DATA_PACKAGE_LOG

x public static final int DEBUG_LOG

Methods

* getInstance

public static synchronized Log getInstance( )

o Description

This method returns the only existing instance of the Log class
o Returns — The singleton instance of the Log class

* getLog
public java.lang.String getLog( int log )

o Description

This method returns the desired log in a displayable format. It must be called by activating a
soft button in the application. Due to multithreading and interuptions there can be some delay

in the creation of the log.

o Parameters
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* log — The Log.FIELD representing the desired log
o Returns — The desired log as a String

* logConnection

public void logConnection( java.lang.String connectionStatus )

o Description
This method adds a Connection entry to the Connection log
o Parameters
x connectionStatus — A textual description of the connection status

* logDataPackage
public void logDataPackage( java.lang.String packageStatus )

o Description
This method adds a data package entry to the data package log
o Parameters

* packageStatus — A textual description of the data package status

x logDebuglInfo
public void logDebugInfo( java.lang.String location, java.lang.String debuglnfo )

o Description
This method adds a Debug entry to the Debug log
o Parameters
* location — The location (class and method) where the debuginfo was logged

* debugInfo — A textual description of the debug information

* logException
public void logException( java.lang.String location, java.lang.Exception exception, boolean

notify )

o Description
This method adds an Exception entry to the Exception log
o Parameters
* location — The location (class and method) where the Exception occured
* exception — The actual Exception

* notify — This boolean decides whether or not to notify the Framework about the Exception

that occured

* setFramework

public void setFramework( peer2me.framework.FrameworkFrontEnd framework )
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o Description

This method is called by the FrameworkFrontEnd to reveal itself to the Log
o Parameters

* framework — The FrameworkFrontEnd refrence sent by the FrameworkFrontEnd itself
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APPENDIX D

Peer2Me v2.0 Source code

The full source code of Peer2Me v2.0.

D.1 Package peer2me.framework

D.1.1 Interface Framework

package peer2me.framework;

import java.io.lOException;

import java. util . Enumeration;

/x%
*
+ This interface acts as a "facade” for the entire Peer2Me framework as the
+* methods in this interface is the only methods the MIDlets running the
x framework needs access to. To use the Peer2Me framework, the MIDlets should
% run the FrameworkFrontEnd.getInstance() which returns a
* reference of type Framework. All framework services is then available

* through this reference.

x @author Torbjgrn Vatn & Steinar A. Hestnes

*/

public interface Framework{

VeSS

*
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* This method initiates the framework, and is the first method that should

* be run after getting a instance of the framework. It initiates the

* fundamental services offered by the framework.

*

* @param nodeName The name of the user of the MIDlet.

* @param midletName The name of the MIDlet, eventually translated into a ServicelD
x used to find other devices running the same MIDlet.

* @param preferredNetwork Deciding which network implementation to use.

*

* @throws ClassNotFoundException The input preferredNetwork is invalid

* @throws Illegal AccessException The input preferredNetwork is invalid

* @throws InstantiationException The input preferredNetwork is invalid

* @throws IOException Error initiating framework

* @throws Exception Error initiating framework

*/

public void initFramework(String nodeName, String midletName, String preferredNetwork) throws ClassNotFoundException,

Illegal AccessException, InstantiationException, IOException, Exception;

VeSS

*
# This method shuts down the framework and closes all the open network connections and streams.
* It should be called before closing the MIDlet to clean up the network connections.

*

*/

public void shutdownFramework();

VeSS

% This method starts a search for devices running the same MIDlet.
* When such a device is found, the notify AboutFoundNode() method

% specified by the FrameworkListener interface is called .

* @throws IOException Thrown if the search crashes

*/

public void startNodeSearch() throws IOException;

[x%
*
+ This method connects multiple devices in a network.
* When a connection is established, the notify AboutParticipants()
+* method specified by the FrameworkListener interface is called .

*
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x @param addresses The addresses of the devices to connect to.
*/

public void connectToNodes(String[] addresses);

/xx

*

This method sends a text package over the network. When the package

*

terminates to the recipients, they are alerted by the
notify AboutReceived TextPackage() method specified by the

* FrameworkListener interface.

*

*
x @param recipients A list containing the addresses of the recipient nodes
x @param textMessage The text message to be sent

*

*/

public void sendTextPackage(String[] recipients, String textMessage);

/xx

* This method sends a file package over the network. When the package
* terminates to the recipients, they are alerted by the
x notify AboutReceivedFilePackage() method specified by the

* FrameworkListener interface.

* @param recipients A list containing the addresses of the recipient nodes
x @param filePath The path of the file to be sent

*

*/

public void sendFilePackage(String[] recipients, String filePath );

/%

*
* This method returns a list of the files in the given root directory on the device
*

x @param root The path to the root directory

% @return An enumeration containing the names of the files in the root directory

*/

public Enumeration getFileList(String root);
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D.1.2 Interface FrameworkListener

package peer2me.framework;

import java. util . Hashtable;

JEE
* This interface must be implemented by all Peer2Me MIDlets.
x It ensures that the Framework can access a set of methods in the MIDlet in order
* to notify the MIDlet about various events.
*
x @author Torbjgrn Vatn & Steinar A. Hestnes
*/

public interface FrameworkListener {

VeSS

*

% This method is called by the framework whenever an exception notice is
x given by the log. This will be done in cases where exceptions occure
% in threads and cannot be thrown in the usual way.

*

* @param location The location where the Exception occured

* @param exception The actual Exception

*/

public void notify AboutException(String location, Exception exception);

VeSS

# This method is called by the framework when a node is found.
* These nodes are not yet connected in a network.

x To do this, use the Framework.connectToNodes() method.

* @param nodeAddress The network address of the node
* @param remoteNodeName The name of the found remote node
*/
public void notify AboutFoundNode(String nodeAddress, String remoteNodeName);

/x%

*
+ This method is called from the framework whenever a text package is
* received from a remote node.

*
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x @param senderName The name of the sender

x @param textMessage The received text message

*/

public void notify AboutReceived TextPackage(String senderName, String textMessage);

/%

*

This method is called from the framework whenever a file package is

received from a remote node.

*

* @param senderName The name of the sender
x @param filePath The path to the received file

*/

public void notify AboutReceivedFilePackage(String senderName, String filePath);

/x%

* This method is called from from the framework to notify the midlet about

* the participants of the ad hoc network.

x @param participants A hashtable that contains the names of the participants as unique keys and
* the network addresses as values.
*/

public void notify AboutParticipants(Hashtable participants);
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D.1.3 Class FrameworkFrontEnd

package peer2me.framework;

import peer2me.network.Network;

import peer2me.util.FileHandler;

import peer2me.util.Log;

import peer2me.domain.FilePackage;
import peer2me.domain.Group;

import peer2me.domain.GroupSyncPackage;
import peer2me.domain.Node;

import peer2me.domain. TextPackage;

import java.io.lOException;
import java. util . Enumeration;

import java. util . Hashtable;

/%

* This is the main class of the Peer2Me framework. It manages
* and connects the resources and functions of the framework.
* It also handles all communication and interaction with the

* MIDlets running the framework.

x @author Torbjgrn Vatn & Steinar A. Hestnes

*/

public class FrameworkFrontEnd implements Framework{

// The instance of the FrameworkFrontEnd returned by the getInstance() method, will be casted to Framework upon return
private static FrameworkFrontEnd singleton;

// The midlet that initiated the framework represented by a FrameworkListener instance

private FrameworkListener midlet;

// The Network instance of the preferred network

private Network currentNetwork;

// The group containing all connected nodes running the same application

private Group group;

// The local node

private Node localNode;

// A Hastable containing the addresses(key) and names(value) of the nodes found in the discovery process
private Hashtable foundNodes;

// A Log instance
private Log log = Log.getInstance();
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VeSS

*
+ This method creates an instance of FrameworkFrontEnd and returns it as
x a reference of type Framework. This is the only method that can
% be called directly from the MIDlet on the FrameworkFrontEnd.
* The MIDlet is restricted to only use the methods specified in the
* Framework interface.
*
* @param midlet A reference to the MIDlet (The MIDlet must implement the FrameworkListener interface).
* @return A reference to the Framework
*/
public static synchronized Framework getInstance(FrameworkListener midlet){
if (singleton == null){

singleton = new FrameworkFrontEnd();

// Creates a instance of the Log class and set self as framework

Log.getInstance ().setFramework(singleton);

// Sets the midlet variable

singleton . midlet = midlet;

// The FrameworkFrontEnd instance are casted to Framework to avoid access to unwanted methods
Framework framework = singleton;

return framework;

}

VeSS
+ Constructor. Made private to ensure singleton pattern.
*/

private FrameworkFrontEnd(){}

[

*
# This method initiates the framework, and is the first method that should

* be run after getting a instance of the framework. It initiates the

* fundamental services offered by the framework.

*

* @param nodeName The name of the user of the MIDlet.

+ @param midletName The name of the MIDlet, eventually translated into a ServicelD used to find other devices

* running the same MIDlet.
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* @param preferredNetwork Deciding which network implementation to use.

* @throws ClassNotFoundException The input preferredNetwork is invalid
x @Qthrows IllegalAccessException The input preferredNetwork is invalid

*x @throws InstantiationException The input preferredNetwork is invalid

x @throws IOException Error initiating framework

* @throws Exception Error initiating framework

public void initFramework(String nodeName, String midletName, String preferredNetwork) throws ClassNotFoundException,

Illegal AccessException, InstantiationException, IOException, Exception{

// Creates a Network instance
currentNetwork = Network.getInstance(preferredNetwork);
// Sets a reference to this class to be used in the Network class
currentNetwork.setFrameworkFrontEnd (this);
// Sets the applicationld to be used by the Network class
currentNetwork.set ApplicationId(midletName);
// Creates a group that will be filled with nodes running the same application
group = new Group();
// Adds a representation of this (the local) node to the group.
localNode = new Node(nodeName,currentNetwork.getNodeAddress("localnode”));
group.addParticipant(localNode);
// Initiates the currentNetwork
currentNetwork.init ();
// Creates the foundNodes Hashtable
foundNodes = new Hashtable();

VeSS

*
# This method shuts down the framework and closes all the open network connections and streams.
% It should be called from the MIDlet before closing, to clean up the network connections.

*
/

public void shutdownFramework(){

// Shuts down and closes the Group
group.shutdownGroup();
// Shuts down the ConnectionListener

currentNetwork.getConnectionListener().shutdown();

}
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* This method returns the local representation of the group. It is called from

*

ConnectionListener.run() or Network.nodeFound() when a remote node is found
and should be added to the group.

*

*

@return The local representation of the group
*/

public Group getGroup(){

return group;

[

*
* This method starts a search for devices running the same MIDlet.
* When such a device is found, the notify AboutFoundNode() method
* in this class is called.
*
* @throws IOException Thrown if the search crashes
*/

public void startNodeSearch() throws IOException{

currentNetwork.searchForNodes();

}

JES:

+ This method establishes a connection to the chosen nodes.

x After updating the local group, it synchronizes the groups on
x all other participating nodes.

* The method should be called from the MIDlet.

* @param addresses The addresses to the nodes to connect to.
*/
public void connectToNodes(String[] addresses){
// Creates Node objects based on the Vectors nodeNames and nodeAddresses
for (int 1=0; i<addresses.length; i+4){
getGroup().addParticipant(new Node((String)foundNodes.get(addresses[i]),addresses][i]));

}
// Synchronizes the groups on all connected nodes

synchronizeGroups();

}

/x%

*

* This method is used to make the Framework syncronize the Groups on all the
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*

connected nodes. The result of running this method is that the method
notify AboutParticipants() is called on the MIDlet.

*

x It is called from the methods connectToNodes() and
* notify AboutLostNode() in this class.

*

/

private synchronized void synchronizeGroups(){

Creates a string table with the recipient addresses
g b

Hashtable participatingNodes = group.getParticipatingNodes();

String [| recipients = new String[0];
// Only do this if there is more than this node in the group
if (participatingNodes. size ()>1){
recipients = new String[participatingNodes.size()—1];
// Need a list of nodes to run a groupsync
Node|] nodes = new Node[participatingNodes.size()];
// Adds the local Node to the nodes]]
nodes[0] = localNode;
// Removes the local Node from the participatingNodes]

participatingNodes.remove(localNode.get Address());

Enumeration addresses = participatingNodes.keys();

int counter = 0;

while(addresses. hasMoreElements()){
String address = (String)addresses.nextElement();
// Does not add the local node
recipients [counter] = address;
// Fetches the Node objects from participatingNodes
nodes[counter+1] = (Node)participatingNodes.get(address);

counter-+;

// Sends a networkpackage to all participants to synchronize the group on all nodes
if (recipients .length!=0){
currentNetwork.sendDataPackage(new GroupSyncPackage(localNode,recipients,nodes),recipients);
}
// Adds the local Node to the group again
participatingNodes.put(localNode.get Address(),localNode);

// Notifies the MIDlet about the participants of the group
notify AboutParticipants();
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// Logs the sending of the data package

String recipientNames = "7;

for (int 1=0; i<recipients.length; i++){
if (group.getNode(recipients[i])!=null ){

recipientNames +="— "+group.getNode(recipients|[i]).getNodeName()+" ("+recipients[i]+”) \n”;

}

if ( recipients .length>0)log.logDataPackage(”"Sent a group sync package to:\n "4recipientNames);

VES:

This method returns a reference to the local node.

*

*

@return An object representing the local node
*/
public Node getLocalNode(){

return localNode;

VES:

* This method is used by the MIDlet to send a text package over the network.
* When the package terminates to the recipients, the

* notify AboutReceived TextPackage() method in this class is run.

+* @param recipients A list containing the addresses of the recipient nodes
* @param textMessage The text to be sent

*

*/

public void sendTextPackage(String[] recipients, String textMessage){

// Logs the sending of the text package
String recipientNames = ";
for (int 1=0; i<recipients.length; i++){
recipientNames +="— "+group.getNode(recipients]i]).getNodeName()+" ("+recipients[i]+”) \n”;
}

log .logDataPackage("Sending textpackage to:\n"+recipientNames);
TextPackage textPackage = new TextPackage(localNode,recipients,textMessage);

// Passes the task of sending the data package over to the network

if ( recipients .length!=0)currentNetwork.sendDataPackage(textPackage, recipients);
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/x%

*

This method is used by the MIDlet to send a file package over the network.

*

When the package terminates to the recipients, the

*

notify AboutReceivedFilePackage() method in this class is run.

x @param recipients A list containing the addresses of the recipient nodes

* @param filePath The path of the file to send

*

*/

public void sendFilePackage(String[] recipients, String filePath){
FilePackage filePackage = new FilePackage(localNode,recipients,filePath );

// Passes the task of sending the data package over to the network

if ( recipients .length!=0)currentNetwork.sendDataPackage(filePackage, recipients);

// Logs the sending of the file package
String recipientNames = "7;
for (int 1=0; i<recipients.length; i+-+){
recipientNames += group.getNode(recipients]i]).getNodeName()+” ("+recipients[i]+”) \n”;
}

log.logDataPackage("Sending file to: "+recipientNames);

VES:
+ This method returns a list of the files in the given root directory on the device

% @param root The path to the root directory
x @return A Enumeration containing the names of the files in the root directory
*/
public Enumeration getFileList(String root){
// Creates a FileHandler representing the root
FileHandler fileHandler = new FileHandler(root);
// Returns the file list of the root
Enumeration list = fileHandler. getFileList ();

return list ;

/*******************************************************************/
// The notify methods used to notify the midlet about various events

[tk kot skskk kot sk sk ot sk sk skt ssRsksk sk ot sk sk skt sk sk sk ot sk ok ok |
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VeSS

*
« This method is called from the nodeFound() method in the Network class whenever a node is found
*

x @param address The network address of the node
* @param remoteNodeName The name of the found remote node
*/
public void notify AboutFoundNode(String address, String remoteNodeName){

// Here we add a number after equal node names to make them unique

// We do this so we can set the node names as keys and the node addresses as values

// The reason for doing this is that the node names will be displayed in the midlet

// and after selecting a node name, the address should be sent to the framework.

if (foundNodes.contains(remoteNodeName) || remoteNodeName.equals(localNode.getNodeName())){

for (int i=—1;i<foundNodes.size();i++){
if (!foundNodes.contains(remoteNodeName+" "+ (i+2))){
remoteNodeName = remoteNodeName+" "+ (i4+2);

i = foundNodes.size();

}
}

// Stores the address and the name of the node in the foundnodes table
foundNodes.put(address, remoteNodeName);
midlet.notify AboutFoundNode(address,remoteNodeName);

}

VeSS
* This method removes a lost node from the group.
« It is called from Network.sendDataPackage() if a node is unreachable.
* After removing the node, the groups on all other nodes become

* synchronized.

* @param address The address to the lost node
*/
public synchronized void notify AboutLostNode(String address){
log .logDataPackage(getGroup().getNode(address).getNodeName()+” ("+address+”) not reachable”);
log .logConnection("Disconnected "+getGroup().getNode(address).getNodeName()+" ("+address+")");
getGroup().removeParticipant (address);
// Synchronizes the groups on the connected devices

synchronizeGroups();
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VeSS
*
% This method passes on the Exception notice from the Log to the MIDlet.
+ This will be done in cases where exceptions occure in threads and
% cannot be thrown in the usual way.
*
* @param location The location (class and method) where the Exception occured
#* @param exception The actual Exception
¥/
public void notify AboutException(String location, Exception exception){
midlet.notify AboutException(location, exception);

}

VES:

*

This method is called from NodeConnection.processIncomingData()
x whenever a groupSyncPackage is received from a remote node.

+ The method processes the package, logs the event, and updates the group.

* @param groupSyncPackage The received groupSyncPackage.
*/
public void notify AboutReceived GroupSyncPackage(GroupSyncPackage groupSyncPackage){

// Resets the group before synch

group.removeAllParticipants();

// Uses the content of the package to update the group on this device
Node[] participants = groupSyncPackage.getParticipants();

for (int i=0; i<participants.length; i++){
group.addParticipant(participants|i ]);

}

notify AboutParticipants();

String sender = groupSyncPackage.getSender().getAddress();
log.logDataPackage("Received group sync package from “+sender);

[x%

*

This method is called from NodeConnection.processIncomingData()

* whenever a text package is received from a remote node.

*

It processes the package, logs the event, and notifies the midlet.
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* @param textPackage The received text package.
*/
public void notifyAboutReceived TextPackage(TextPackage textPackage){
log .logDataPackage("Received text package from "+textPackage.getSender().getNodeName()+".”);
midlet.notify AboutReceived TextPackage(textPackage.getSender().getNodeName(), textPackage.getContent());

/%

* This method is called from NodeConnection.processIlncomingData()
* whenever a file package is received from a remote node.

* [t processes the package, logs the event, and notifies the midlet.

x @param filePackage The received file package.

*/

public void notifyAboutReceivedFilePackage(FilePackage filePackage){
log .logDataPackage("Received file (7+filePackage.getFilePath()+") from "+filePackage.getSender().getNodeName());
midlet.notify AboutReceivedFilePackage(filePackage.getSender().getNodeName(), filePackage.getFilePath());

}

/%

*
* This method notifies the midlet about the current group by running the
* notify AboutParticipants method. It is e.g. called from
* FrameworkFrontEnd.synchronizeGroups().
*
*/
private void notifyAboutParticipants(){
// Fetches all the participating Nodes
midlet.notify AboutParticipants(getGroup().getParticipatingNodeNames(this));
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D.2 Package peer2me.domain

D.2.1 Class DataPackage

package peer2me.domain;

import peer2me.util.Log;

JEE

*

This class is the super class of the different type of packages that can be

*

sent between nodes in the network. It contains the attributes that are common

*

for all types of data packages. These are the address of the sender and the

*

address(es) to the recipiant (s) of the DataPackage. Currently, there exists

*

three types of data packages.

*
x @author Torbjgrn Vatn & Steinar A. Hestnes
*/

public abstract class DataPackage {

// A Log instance
public Log log = Log.getInstance();

// The type of package
private int type;
// The Node that sendt the data package
private Node sender;
// The addresses of the nodes that are the recipients of the data package

private String[] recipients ;

/* The constants representing the different types of data packages used
in node connection to determine the type of package recived x/
public final static int GROUP_SYNC_PACKAGE = 0;
public final static int TEXT_PACKAGE = 1;
public final static int FILE_.PACKAGE = 2;

VeSS
* Constructor
x @param type The type specifying the type of data package

x @param sender A node object representing the sender node

+ @param recipients The addresses to the recipients of the data package
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*/
public DataPackage(int type, Node sender, String[| recipients ){
this .type = type;
this .sender = sender;

this . recipients = recipients;

VES

* Constructor used to create an empty DataPackage object to fill with the
x parseBytes() method

* @param type The type of the DataPackage
*/
public DataPackage(int type){
this .type = type;

/%

*
* This method returns an int indicating the type of data package
*

% @return type An int indicating the type of data package
*/
public int getType(){

return type;

VeSS

*
% This method returns the sender of this data package
*

* @return sender The node that sends this package
¥/

public Node getSender(){

return sender;

}

/x%

*

+ This method sets the sender of this data package

*
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x @param sender The node that sends this package
*/
public void setSender(Node sender){

this .sender = sender;

/x%

*
* This method returns all the recipients of this data package

*

* @return recipients The addresses to the recipients of this package
*/

public String[] getRecipients(){

return recipients ;

}

/%

*
* This method sets the nodes to receive this package
*
* @param recipients The addresses to the nodes that shall receive this package
*/

public void setRecipients (String[] recipients ){

this . recipients = recipients;

/******************************************>|<*********>|<**************************/
// The abstract methods inherited and overridden by the sub data package classes

[ ks otk sk sk otk sk sk otk sk ot sskk sk ot sk sk sk otk sk sk ot R sk sk otk sk sk kot o/

/x%

*
* This method transforms this data package into a byte array (byte[]) that

% is possible to send over a network stream
x @return The byte[] representation of the data package

*/

public abstract byte[] toSendableFormat();

VeSS

*
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« This method parses the content of the byte array (byte[]) back into a DataPackage object
*

x @param data The byte[] containing the data representing the DataPackage object

*

*/

public abstract void parseBytes(byte[] data);
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D.2.2 Class TextPackage

package peer2me.domain;

import java. util . Vector;

JEE

*
x This class represents a data package containing text that should be
x sent over the network.

*

x @author Torbjgrn Vatn & Steinar A. Hestnes

*/

public class TextPackage extends DataPackage {

// The String content of this TextPackage

private String content;

/x%
* Constructor

* @param sender A node object representing the sender node
* @param recipients The addresses to the recipients of the text package
* @param content The String to be sent
*/

public TextPackage(Node sender, String[] recipients, String content){
super(TEXT_PACKAGE, sender, recipients);

this .content = content;

/x%

*
* Constructor used to create an empty TextPackage object to fill with the
+ parseBytes() method
*/

public TextPackage(){

super(TEXT_PACKAGE);

}

VeSS

*
# This method returns the text content of this TextPackage

*
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* @return The content
*/
public String getContent(){

return content;

}

VeSS

*
* This method transforms this text package into a byte array (byte[]) that

* is possible to send over a network stream

* @return The byte[] representation of the text package
*

*/

public byte[] toSendableFormat() {

// The String to send

String sendableFormat = ",

// Setting the sender in the sendableFormat String
// The format of the String is:

// —> from:”address—of—the—sender”:”name—of—the—sender”

//
sendableFormat += "from:"4getSender().getNodeName()+":"+getSender().get Address()+"\n";

// Setting the recipients in the sendableFormat String
// The format of the String is:
// —> to:"address—of—the—recipient”

//

String [] recipients = getRecipients();
for (int i=0; i<recipients.length; i++){
sendableFormat += "to:"’+recipients[i]4+"\n";

// Setting the content in the sendableFormat String
// The format of the String is:

// —> content:”content”

//

sendableFormat += "content:"+content+"\n";

return sendableFormat.getBytes();
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*
* This method parses the content of the byte array (byte[]) back into a TextPackage object
*

« @param data The byte[] containing the data representing the TextPackage object
*/
public void parseBytes(byte[] data){
// Counter that keeps track of how many bytes are converted
int processed = 0;
// The node addresses found in the "to” section of the String
Vector recipients = new Vector();
char newLine = "\n’;
// The loop processing the bytes
while(processed < data.length){
// The StringBuffer temporary holding the content of the byte|]
StringBuffer buffer = new StringBuffer();
// Fetches the content of the byte [], stops for every new line (marked with a "\n”)
while(data[processed] != newLine){
buffer .append((char)data[processed]);
processed+-+;

}

// Retrives the sender, marked by "from”
if (buffer . toString (). startsWith("from™)){
int fromStart = buffer.toString (). indexOf(”:")+1;

try{
Node from = Node.restoreNode(buffer.toString().substring(fromStart));
setSender (from);

}eatch(Exception e){

log .logException("TextPackage.parseBytes()” e, false );

}

}else

if (buffer . toString (). startsWith("to”)){
int toStart = buffer.toString (). indexOf(”:")+1;
try{
recipients .addElement(buffer.toString().substring (toStart ));
}eatch(Exception e){
log . logException("TextPackage.parseBytes()” e, false );
}
}else
if (buffer . toString (). startsWith("content”)){
int contentStart = buffer.toString (). indexOf(":")+1;
content = buffer.toString (). substring(contentStart );

}

// Adds 1 to the counter that keeps track of the bytes processed,

264



// this is added due to the \n
processed—++;

// Sets the recipients in the super class DataPackage
String [] recipientAddreses = new String[recipients. size ()];
recipients . copylInto(recipient Addreses);

setRecipients (recipientAddreses );
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D.2.3 Class FilePackage

package peer2me.domain;

import java. util . Vector;

import peer2me.util.FileHandler;

JEE

+ This class represents a data package containing metadata about a file of some

x sort that should be sent over the network. The package contains the file path

* and length of the file to transfer, so that the receiver can handle the incoming
* stream of data and transform it back into a copy of the file .

*

x @author Torbjgrn Vatn & Steinar A. Hestnes

*/

public class FilePackage extends DataPackage {

// The file path of the file to transfer
private String filePath ;

// The size of the file

private long fileSize ;

VeSS
* Constructor

x @param sender A node object representing the sender node
*x @param recipients The addresses to the recipients of the file package

x @param filePath The path of the file to be sent

public FilePackage(Node sender, String[] recipients , String filePath ){
super(FILE_PACKAGE,sender,recipients);
this. filePath = filePath;
this. fileSize = new FileHandler(filePath).getFileSize ();

VeSS

*
* Constructor used to create an empty FilePackage object to fill with the
* parseBytes() method
*

*/
public FilePackage(){
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super(FILE_PACKAGE);
}

VeSS

*
% This method returns the file path of this FilePackage
*

# Qreturn The file path
*/

public String getFilePath(){

return filePath ;

}

VeSS

*
% This method returns the file size of this FilePackage
*

x Q@return The file size
*/

public long getFileSize (){

return fileSize ;

}

VeSS

*
* This method transforms this file package into a byte array (byte[]) that
* is possible to send over a network stream

*
* @return The byte[] representation of the file package

*

*/
public byte[] toSendableFormat() {

// The String to send

String sendableFormat = ";

// Seting the sender in the sendableFormat String

// The format of the String is:

// —> from:”address—of—the—sender”:”name—of—the—sender”
/!

sendableFormat += "from:"4getSender().getNodeName()+":"+getSender().get Address()+"\n";

// Setting the recipients in the sendableFormat String
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// The format of the String is:

// —> to:"address—of—the—recipient”

//

String [| recipients = getRecipients();

for (int i=0; i<recipients.length; i++){
sendableFormat += "to:"’+recipients[i]4+"\n";

// Setting the filePath in the sendableFormat String
// The format of the String is:
// —> filePath:"filePath”

//
sendableFormat += "filePath:"+filePath+"\n";

// Setting the fileSize in the sendableFormat String
// The format of the String is:

// —> fileSize:” fileSize ”

//

sendableFormat += "fileSize:"+fileSize+"\n";

return sendableFormat.getBytes();

}

[

*
* This method parses the content of the byte array (byte[]) back into a FilePackage object
*

* @param data The byte[] containing the data representing the FilePackage object
*/
public void parseBytes(byte[] data){
// Counter that keeps track of how many bytes are converted
int processed = 0;
// The node addresses found in the "to” section of the String
Vector recipients = new Vector();
char newLine = "\n’;
// The loop processing the bytes
while(processed < data.length){
// The StringBuffer temporary holding the content of the byte (]
StringBuffer buffer = new StringBuffer();
// Fetches the content of the byte [], stops for every new line (marked with a "\n”)
while(data[processed] != newLine){
buffer . append((char)data[processed));
processed+-+;

}
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// Retrives the sender, marked by "from”
if (buffer . toString (). startsWith("from”)){
int fromStart = buffer.toString (). indexOf(":”)+1;

try{
Node from = Node.restoreNode(buffer.toString().substring(fromStart));
setSender(from);

}catch(Exception e){
log . logException("FilePackage.parseBytes()”,e, false );

}

}else

if (buffer . toString (). startsWith("t0”)){
int toStart = buffer.toString (). indexOf(":”)+1;
try{
recipients . addElement(buffer.toString().substring (toStart ));
}catch(Exception e){
log .logException("FilePackage.parseBytes()”,e, false );
}

}else

if (buffer . toString (). startsWith("filePath”)){
int contentStart = buffer.toString (). indexOf(":")+1;
filePath = buffer.toString (). substring(contentStart );

}else

if (buffer . toString (). startsWith(” fileSize 7)){
int contentStart = buffer.toString (). indexOf(":”)+1;
fileSize = Long.parseLong(buffer.toString().substring(contentStart ));
}
// Adds 1 to the counter that keeps track of the bytes processed,
// this is added due to the \n
processed—++;

// Sets the recipients in the super class DataPackage
String [] recipientAddreses = new String[recipients. size ()];
recipients . copyInto(recipient Addreses);

setRecipients (recipient Addreses );
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D.2.4 Class GroupSyncPackage

package peer2me.domain;

import java. util . Vector;

JEE

*

*

*

*

*

*

*

A GroupSyncPackage is a package used internally in the
framework to synchronize the groups containing the participants. The participant performing
the groupsync uses its own group as content of the package. All the receivers synchronizes

their groups based on the information found in the GroupSyncPackage.

@author Torbjgrn Vatn & Steinar A. Hestnes

/

public class GroupSyncPackage extends DataPackage {

// The participating nodes
private Node]] participatingNodes;

/x5
* Constructor

* @param sender A node object representing the sender node
* @param recipients The addresses to the recipients of the groupsync package
* @param participatingNodes A hashtable with node addresses as keys and names as values
*
*/
public GroupSyncPackage(Node sender, String[] recipients, Node[] participatingNodes){
super(GROUP_SYNC_PACKAGE, sender, recipients);
this . participatingNodes = participatingNodes;

VeSS

*
* Constructor used to create an empty GroupSyncPackage object to fill
* with the parseBytes() method
*/

public GroupSyncPackage(){

super(GROUP_SYNC_PACKAGE);

}
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[H%

*
* This method returns a list of the nodes that are participating in the network (group)
*

x @return A list of participating nodes
*/
public Node[] getParticipants(){

return participatingNodes;

VeSS

*
* This method transforms this groupsync package into a byte array (byte[])
+ that is possible to send over a network stream
*

* @return The byte[] representation of the groupsync package
*

*/

public byte[] toSendableFormat() {

// The String to send

String sendableFormat = ;

// Setting the sender in the sendableFormat String

// The format of the String is:

// —> from:”address—of—the—sender”:”name—of—the—sender”

//

Node sender = getSender();

sendableFormat += "from:"+sender.getNodeName()+":"+sender.get Address()+"\n";

// Setting the recipients in the sendableFormat String

// The format of the String is:

// —> to:"address—of—the—recipient”

//

String [] recipients = getRecipients();

for (int i=0; i<recipients.length; i++){
sendableFormat += "to:"+recipients[i]+"\n";

// Setting the content in the sendableFormat String
// The format of the String is:
—> participant:"name—of—a—participant”:’address—of —a—participan
tici t:” f tici t”:"add f tici t”

//

for (int 1=0; i<participatingNodes.length; i++){
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sendableFormat += "participant:’+participatingNodes|i].getNodeName()+":"+participatingNodes|i].get Address()+"\n";

}

return sendableFormat.getBytes();

}

VeSS

*
* This method parses the content of the byte array (byte[]) back into a
* GroupSyncPackage object

x @param data The byte[] containing the data representing the GroupSyncPackage object
«/
public void parseBytes(byte[] data) {
// Counter that keeps track of how many bytes are converted
int processed = 0;
// The node addresses used in the "to” section of the package
Vector recipients = new Vector();
// The node addresses used in the ”participant” section of the package

Vector participants = new Vector();

char newLine = "\n’;
// The loop processing the bytes
while(processed < data.length){
// The StringBuffer temporary holding the content of the byte (]
StringBuffer buffer = new StringBuffer();
// Fetches the content of the byte [], stops for every new line (marked with a "\n”)
while(data[processed] != newLine){
buffer . append((char)data[processed));
processed+-+;

}

// Adds 1 to the counter that keeps track of the bytes processed,
// this is added due to the \n (new line)

processed++;

// Runs the toString() on the buffer
String line = buffer.toString ();

// Retrives the sender, marked by "from”
if (line .startsWith("from”)){
int fromStart = line.indexOf(":")+1;
try{
Node from = Node.restoreNode(line.substring(fromStart));

setSender (from);
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}eatch(Exception e){
log .logException("NetworkPackage.parseBytes()17,e,false);

}

}else

// Retrives the recipients, marked by "to”
if (line . startsWith("to”)){
int toStart = line.indexOf(":”)+1;
try{
recipients .addElement(line.substring(toStart ));
}eatch(Exception e){
log .logException("NetworkPackage.parseBytes()27,e,false);
}
// Sets the recipients in the super class DataPackage
String [] recipientAddresses = new String[recipients. size ()];
recipients . copyInto(recipient Addresses);
setRecipients (recipient Addresses );

}else

// Retrives the participants, marked by "participant” on each line
if (line . startsWith("participant”)){
int participantStart = line.indexOf(":")+1;
try{
Node participant = Node.restoreNode(line.substring(participantStart));
participants . addElement (participant);
}catch(Exception e){
log .logException("Network Package.parseBytes()3”,e,false);

// End of package (while—loop). Adds the found participants to a list that can be read from the package object
participatingNodes = new Node[participants.size ()];

participants . copyInto(participatingNodes);
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D.2.5 Class Group

package peer2me.domain;

import java. util . Hashtable;
import java. util . Enumeration;
import peer2me.framework.FrameworkFrontEnd;

import peer2me.network.NodeConnection;

VES:

This class represents a group of nodes running the same service (MIDlet).

*

*

All connected nodes in the ad hoc network are participants in the group.

*

Participants can be added and removed, and a list of all the

*

participants can be retreived .

x @author Torbjgrn Vatn & Steinar A. Hestnes

*/
public class Group {

// A list containing participating nodes

private Hashtable participatingNodes;

[x%

*
x Constructor.
*
* Creates a new Group.
x A group is created in FrameworkFrontEnd.initFramework().
*/
public Group(){
participatingNodes = new Hashtable();

VES:

*

+ This method closes the NodeConnection of all the participating nodes, and

*

removes all nodes from the group.
x It is called from the MIDlet via FrameworkFrontEnd.shutdownFramework()
* when all network connections should be closed.
*
/
public void shutdownGroup(){
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Enumeration nodes = participatingNodes.elements();
while(nodes.hasMoreElements()){
Node node = (Node)nodes.nextElement();
// Closes the connection
NodeConnection connection = node.getNodeConnection();
if (connection != null)connection.closeConnection();
// Removes the node from the Group

participatingNodes.remove(node.get Address());

VES:
*
+ This method adds a node to the group as a participant.
*
* @param node The node to add as a participant.
*/
public void addParticipant(Node node){

// Adds the node only if it is not added already.

// This test is necessary during groupsync
if (! participatingNodes.containsKey (node.get Address())){
participatingNodes.put(node.get Address(),node);
Yelse{
// If the node already exists in the participant list , this is the node that
// initially discovered this node and was saved only with address and connection
// Name is still missing and we have to add it
if (node.getNodeName() != null){
((Node)participatingNodes.get(node.get Address())).setNodeName(node.getNodeName());

if (node.getNodeConnection() != null){
if (node.getNodeConnection().getConnection() != null){
// Important to start the connection!
((Node)participatingNodes.get(node.get Address())).startNodeConnection();
((Node)participatingNodes.get(node.get Address())).getNodeConnection().set Connection(
node.getNodeConnection().getConnection());
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*
+ This method removes a participating node.
*
x @param address The address of the node to remove from this group
*/

public void removeParticipant(String address){

participatingNodes.remove(address);

/%
+ This method removes all participating nodes.
x It is used to clear the group before it is updated by a
x groupSyncPackage received from a remote node.
*
/
public void removeAllParticipants(){
participatingNodes. clear ();

}

/%

*
* This method returns a list containing the nodes participating in this group.

x The address is the key to find the Node.

*

* @return A list containing the nodes participating in this group. The address is
% the key and the node name is the value

*/

public Hashtable getParticipatingNodes(){

return participatingNodes;
/%
* This method returns a list containg the names (as keys) of the nodes participating in this group.
* The addresses are stored as values.

x It is called from FrameworkFrontEnd.notify AboutParticipants().

% @return A list containing the nodes participating in this group. The node name is

*

the key and the address is the value
*/

public Hashtable getParticipatingNodeNames(FrameworkFrontEnd frameworkFrontEnd){

// An enum containing the node addresses
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Enumeration addresses = participatingNodes.keys();

// Makes a hashtable with names as keys and addresses as values
Hashtable names = new Hashtable();

while(addresses.hasMoreElements()){
String address = (String)addresses.nextElement();
// The local node should not be added because a user should not send datapackages to him/her—self
if (!address.equals(frameworkFrontEnd.getLocalNode().get Address())){
Node node = (Node)participatingNodes.get (address);
String name = node.getNodeName();

names.put(name,address);

}

return names;

/%
+ This method returns a node with the address specified as input

* @param address The address of the node to get
* @return A node with the address specified as input
*/
public Node getNode(String address){
Object node = participatingNodes.get(address);
if (node != null) return (Node)participatingNodes.get(address);

else return null;
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D.2.6 Class Node

package peer2me.domain;

import peer2me.network.NodeConnection;

import javax.microedition. io . StreamConnection;

JEE

This class represents a node in the network.

*

It contains information like the name of the node and its network address.

*

*

A node also owns a nodeConnection object listening for— and processing
* incoming and outgoing data packages.
*
x @author Torbjgrn Vatn & Steinar A. Hestnes
*/
public class Node {

// Object variables relevant for a node

private String nodeName;

private String address;

// The connection to the remote node

private StreamConnection connection;

// The NodeConnection holding the connection to the remote node

private NodeConnection nodeConnection;

[x%
*
* Constructor. Creates a new Node.
x This constructor is used when a node is created to represent the LOCAL
* device. In this case, nodeName and address are known.
* The constructor is called from FrameworkFrontEnd.initFramework().
*
* @param nodeName The name of the node
* @param address The node network address
*/
public Node(String nodeName, String address){
this .nodeName = nodeName;

this .address = address;
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* Constructor. Creates a new Node.
+ This constructor is used when a node is created to represent a remote
x device on the node which INITIATED the search.
* In this case, name and address is known. In addition, a
* StreamConnection object containing a connection to this remote device
* exists .
* The constructor is called from the nodeFound() method in the Network subclass.
*
* @param nodeName The name of the node
* @param address The node network address
% @param connection The connection to this remote node
*
/
public Node(String nodeName, String address, StreamConnection connection){
this .nodeName = nodeName;
this .address = address;
this .connection = connection;
// Starts the connection thread on the remote node

startNodeConnection();

/%

*
* Constructor. Creates a new Node.
+ This constructor is used when a node is created to represent a remote
x device on the node which was DISCOVERED during a search.
* In this case, only the address is known. In addition, a
x StreamConnection object containing a connection to this remote device
* exists .
% The constructor is called from the run() method in ConnectionListener.
*
+ @param address The node network address
* @param connection The connection to this remote node
*/
public Node(String address, StreamConnection connection){
this .address = address;
this .connection = connection;
// Starts the connection thread on the remote node

startNodeConnection();
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+ This method creates a nodeConnection running two threads.
* One of the threads listens for incoming data packages, and the other
% processes outgoing data packages.
* It is only used when this node object represents a remote node.
*
/
public void startNodeConnection(){
// Starts a thread that listens for incoming and outgoing messages from/to this node

if (nodeConnection == null) nodeConnection = new NodeConnection(connection, this);

VES:

*
* This method returns the NodeConnection owned by this node
*

% @return nodeConnection This nodes NodeConnection
*/
public NodeConnection getNodeConnection(){

return nodeConnection;

/%
* This method sets the connection to this remote node.
x It is called from Network.nodeFound().
*
* @param connection The connection to this remote node
*/
public void setNodeConnection(StreamConnection connection){
this .connection = connection;

if (nodeConnection != null) nodeConnection.setConnection(connection);

/xx

*
* This method returns the name of the node
*

x @return The nodeName

*/

public String getNodeName() {

return nodeName;
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* This method sets the name of the node
*
* @param nodeName The name of the node
*/
public void setNodeName(String nodeName){

this .nodeName = nodeName;

/%

*
* This method returns the node address
*

* @return The node network address
*/
public String getAddress() {

return address;

/%
*
* This method restores a node with the properties specified in the given input string.
*
* @param nodeString A string containing node properties (name:address)
*
*/
public static Node restoreNode(String nodeString){
int separator = nodeString.indexOf(":”);

return new Node(nodeString.substring(0, separator),nodeString.substring(separator+1, nodeString.length()));
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D.3 Package peer2me.util

D.3.1 Class Log

package peer2me.util;

import peer2me.framework.FrameworkFrontEnd;

import java. util . Vector;

VES:

x This class contains functionality to create and maintain a log of events

* and exceptions.

x The Log contains four differnet kinds of logs, an exception log, a connection

x log, a data package log and a debug log. They can be used to log events from anywhere in
* the framework, and the logs can be retreived later to get information about the execution
x of the MIDlet.

* @author Torbjgrn Vatn & Steinar A. Hestnes
*/
public class Log {

// The singleton instance of this class
private static Log singleton;
// This FrameworkFrontEnd instance enables the Log to notify the Framework of exceptions

FrameworkFrontEnd framework;

// These Vectors are used to store the different elements we want to log
[FFFAAAAAAIAA A AAAAAKAAAAFAAA A I A FAAA KA FA K FAAAA A A A FAAAAKIFF KA A A KK
// The Vector containing the logged Exceptions
private Vector exceptionLog = new Vector();
// The Vector containing the opened Connections
private Vector connectionLog = new Vector();

// The Vector containing information about exchanged data packages

private Vector dataPackageLog = new Vector();

// The Vector containing debug information

private Vector debugLog = new Vector();

// These static variables represent the different Log Vectors
/***********************************************************/
public static final int EXCEPTION_LOG = 1;
public static final int CONNECTION_LOG = 2;

public static final int DATA_PACKAGE_LOG = 3;
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public static final int DEBUG_LOG = 4;

VeSS

*
# This method returns the only existing instance of the Log class
*

* @return The singleton instance of the Log class
¥/

public static synchronized Log getInstance(){

if (singleton == null){
singleton = new Log();

}

return singleton ;

}

VeSS

*
* Constructor. Made private to ensure singleton pattern.
*

*/
private Log(){};

[

*
* This method is called by the FrameworkFrontEnd to reveal itself to the Log
*
* @param framework The FrameworkFrontEnd refrence sent by the FrameworkFrontEnd itself
*/

public void setFramework(FrameworkFrontEnd framework){

this . framework = framework;

/x%
* This method adds an Exception entry to the Exception log

+ @param location The location (class and method) where the Exception occured

* @param exception The actual Exception

* @param notify This boolean decides whether or not to notify the Framework about the Exception that occured
*/

public void logException(String location, Exception exception, boolean notify){

// The actual String stored in the log
String logString = exception.getMessage()+" @ "+location;
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// Adding the exception message to the log

exceptionLog.addElement(logString);

// Notifying the Framework of the Exception if requested

if (notify ) framework.notify AboutException(location, exception);

/%

*
* This method adds a Connection entry to the Connection log
*
x @param connectionStatus A textual description of the connection status
*/

public void logConnection(String connectionStatus){

connectionLog.addElement(connectionStatus);

/%

*
* This method adds a data package entry to the data package log
*

* @param packageStatus A textual description of the data package status

*/
public void logDataPackage(String packageStatus){
dataPackageLog.addElement(packageStatus);

}
[x%
* This method adds a Debug entry to the Debug log

* @param location The location (class and method) where the debuginfo was logged
* @param debuglnfo A textual description of the debug information
*/

public void logDebugInfo(String location, String debuglnfo){

// The actual String stored in the log
String logString = debuglnfo+” @ "4location;

debugLog.addElement (logString);
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VeSS

*
* This method returns the desired log in a displayable format.
x It must be called by activating a soft button in the application.
* Due to multithreading and interuptions there can be some delay in the creation of the log.
*
* @param log The Log.FIELD representing the desired log
* @return The desired log as a String
¥/
public String getLog(int log){

switch(log){

case EXCEPTION_LOG: return formatLog(exceptionLog);

case CONNECTION_LOG: return formatLog(connectionLog);
case DATA_PACKAGE_LOG: return formatLog(dataPackageLog);
case DEBUG_LOG: return formatLog(debugLog);

default: return “"No such log”;

* This method extract the elements from the vector parameter

* @param log The Vector to extract elements from

* @return The contents of the Vector presented as a String
*/
private String formatLog(Vector log){

String returnString = "

// Runs through the vector and adds the elements to the returnString
for(int 1 = 0; i<log.size (); i++){
String element = (String)log.elementAt(i);
if (element != null) returnString += element+”’ \n—————————— \n 7
// = ""+element;

}

return returnString;

}
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D.3.2 Class FileHandler

package peer2me.util;

import java.io.DatalnputStream;
import java.io.DataOutputStream;
import java.io. EOFException;

import java.io.lOException;

import java. util . Enumeration;

import javax.microedition.io.Connector;

import javax.microedition.io. file . FileConnection;

VES:
x This class contains functionality for reading and writing all kinds of
x files to and from the device file system.

*

x @author Torbjgrn Vatn & Steinar A. Hestnes
*/

public class FileHandler{

// The path to the file
private String filePath;

// The streams related to the file
private DatalnputStream inputStream:;

private DataOutputStream outputStream;

// The connection to the file

private FileConnection fileConnection;

// How long to sleep from opening the stream to start reading/writing

private final int sleepTime = 20;

// The size of the blocks to read and write
private int blockSize = 1024%50;

// The total size of the file

private long fileSize ;

// The number of written and read bytes
private int readBytes;

private int writtenBytes;

// The byte[] temporary holding the bytes read and written to the file
private byte[] readByteBlock;
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private byte[] writeByteBlock;

VeSS
*
x Constructor.
*
* @param filePath The path to the file to be handled
/
public FileHandler(String filePath){
this. filePath = filePath;
this.readBytes = 0;
this . writtenBytes = 0;
this. fileSize = 0;

VeSS

*
* This method returns a list of the files in the given file path on the device
*
x @Qreturn A Enumeration containing the names of the files in the root directory
*/

public Enumeration getFileList(){

Enumeration list = null;

try{

// Connects to the file

if (fileConnection == null){
fileConnection = (FileConnection) Connector.open(“file:///"+filePath);
// Pauses the Thread for a while before using the fileConnection
try {

Thread.sleep(sleepTime);

} catch (InterruptedException ie) {

//This exception is irrelevant for the excecution

}
}

// Fetches the file list

list = fileConnection. list ();

try {
// Pauses the Thread for a while before using the fileConnection
Thread.sleep(sleepTime);

} catch (InterruptedException ie) {

//This exception is irrelevant for the excecution

}
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}catch(IOException ioe){
Log.getInstance ().logException("FileHandler. getFileList ()7, ioe, false );

}

// Returns the list

return list ;

VeSS

*
* This method returns the size of the this file
*
% @return The size as a long
*/

public long getFileSize (){

try{
// Connects to the file

if (fileConnection == null){
fileConnection = (FileConnection) Connector.open(“file: ///"+filePath);
// Pauses the Thread for a while before using the fileConnection
try {
Thread.sleep(sleepTime);
} catch (InterruptedException ie) {

//This exception is irrelevant for the excecution

}
}

// Fetches the file size
fileSize = fileConnection. fileSize ();
// Pauses the Thread for a while before using the fileConnection
try {
Thread.sleep(sleepTime);
} catch (InterruptedException ie) {
//This exception is irrelevant for the excecution
}
}catch(IOException ioe){
Log.getInstance().logException("FileHandler.FileHandler()”,ioe, false );

}

// Returns the file size

return fileSize ;
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VeSS

*
« This method fetches the size of the blocks to read and write
*

x @return The blocksize
*/
public int getBlockSize(){

return blockSize;

}

VeSS

*
* This method sets the size of the this file
*
x @param fileSize The size to set
*/

public void setFileSize (long fileSize ){
this. fileSize = fileSize ;

/x%
+ This method reads the next byte in the file and returns it

* @return The next block of bytes
* @throws IOException This exception is thrown when the reading has failed
*/

public synchronized byte[] readFile() throws IOException{

try{
// Connects to the file

if (fileConnection == null){
fileConnection = (FileConnection) Connector.open(“file: ///"+filePath);
// Pauses the Thread for a while before using the fileConnection
try {
Thread.sleep(sleepTime);
} catch (InterruptedException ie) {

//This exception is irrelevant for the excecution

}
}

}catch(IOException ioe){
Log.getInstance().logException("FileHandler.FileHandler()”,ioe, false );

}
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// Checks if the end of the file is reached
if (readBytes == fileConnection.fileSize ()) throw new EOFException();

try{
if (inputStream == null){
inputStream = fileConnection.openDatalnputStream();
// Pauses the Thread for a while before using the inputStream
try {
Thread.sleep(sleepTime);
} catch (InterruptedException ie) {

//This exception is irrelevant for the excecution

}
}

// Reads the next block of bytes from the stream

// Checks if the file is smaller than the block size
if ( fileSize == 0)fileSize = fileConnection. fileSize ();
if ( fileSize < blockSize) blockSize = (int) fileSize ;

// Checks if the remaining unread bytes are less than block size
if ( fileSize — readBytes < blockSize){
blockSize = (int)( fileSize — readBytes);

}

readByteBlock = new byte[blockSize];
inputStream.read(readByteBlock, 0, blockSize);
readBytes += blockSize;

return readByteBlock;

}catch(IOException ioe){
closeFile ();

throw ioe;

}

VeSS
* This method writes the incoming byte block to the file
* @param theBytes The next byte block to write

* @param numberOfBytesRead The number of bytes in the theBytes[] array

x @throws IOException This exception is thrown when the writing has failed
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*/
public synchronized void writeFile (byte[] theBytes, int numberOfBytesRead) throws IOException{

// If input numberOfBytesRead == —1, the end of the file is reached
if (numberOfBytesRead == —1){

closeFile ();

throw new EOFException();

}

try{

// Connects to the file

if (fileConnection == null){
fileConnection = (FileConnection) Connector.open(“file:///"+filePath);
// Pauses the Thread for a while before using the fileConnection
try {

Thread.sleep(sleepTime);

} catch (InterruptedException ie) {

//This exception is irrelevant for the excecution

}

// Checks whether or not the file exists, if not create else delete and create
if (fileConnection. exists ()){

// Deletes the existing file

fileConnection . delete ();

// Creates a new file to write to

fileConnection . create ();
Yelse{

// Creates a new file to write to

fileConnection . create ();

}
}

}catch(IOException ioe){
Log.getInstance ().logException("FileHandler. FileHandler()”,ioe, false );

}

try{
if (outputStream == null){
outputStream = fileConnection.openDataOutputStream();
// Pauses the Thread for a while before using the outpuStream
try {
Thread.sleep(sleepTime);
} catch (InterruptedException ie) {

//This exception is irrelevant for the excecution

}
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// Trims the last block of bytes

byte[] bytesToWrite = new byte[numberOfBytesRead];

// Copies the remaining bytes into a temporary byte|]

for (int i=0; i<numberOfBytesRead; i++){
bytesToWrite[i] = theBytes][i];

}

outputStream.write(bytesToWrite);

}eatch(IOException ioe){
closeFile ();

throw ioe;

}

VeSS
% This method writes the incoming byte to the file

* @param theByte The next byte to write

* @throws IOException This exception is thrown when the writing has failed

x @deprecated The method is substituted by writeFile(byte[] theBytes, int numberOfBytesRead)
¥/
public synchronized void writeFile (byte theByte) throws IOException{
try{
// Connects to the file
if (fileConnection == null){
fileConnection = (FileConnection) Connector.open(“file: ///"+filePath);
// Pauses the Thread for a while before using the fileConnection
try {
Thread.sleep(sleepTime);
} catch (InterruptedException ie) {

//This exception is irrelevant for the excecution

}

// Checks whether or not the file exists, if not create else delete and create
if (fileConnection . exists ()){

// Deletes the existing file

fileConnection . delete ();

// Creates a new file to write to

fileConnection . create ();

Yelse{
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// Creates a new file to write to
fileConnection. create ();
}
}

}catch(IOException ioe){
Log.getInstance().logException("FileHandler.FileHandler()”,ioe, false );

}

try{
if (outputStream == null){
outputStream = fileConnection.openDataOutputStream();
// Pauses the Thread for a while before using the outpuStream
try {
Thread.sleep(sleepTime);
} catch (InterruptedException ie) {

//This exception is irrelevant for the excecution
}
}

// Checks if the file size is less than the block size
if ( fileSize < blockSize) blockSize = (int) fileSize ;

// Calculates the index to write the byte to

double numberOfBlocksWrittenDouble = (double)writtenBytes/(double)blockSize;

int numberOfBlocksWrittenInt = (int)(writtenBytes/blockSize);

int index = (int)((numberOfBlocksWrittenDouble—numberOfBlocksWrittenInt)=+blockSize);

// Have to create a new writeByteBlock every time it is empty
if (writeByteBlock == null)writeByteBlock = new byte[blockSize];

writeByteBlock[index] = theByte;
writtenBytes++;

// Every time writeByteBlock is full it is written to file
if (index==(writeByteBlock.length—1) || writtenBytes == fileSize){
outputStream.write(writeByteBlock);
writeByteBlock = null;
// Checks if the remaining unread bytes are less than block size
if ( fileSize — writtenBytes < blockSize){
writeByteBlock = new byte[((int)( fileSize — writtenBytes))];

}

if (writtenBytes == fileSize) throw new EOFException();
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}catch(IOException ioe){
closeFile ();

throw ioe;

}

/x%

*
# This method closes and nullifies the input— and ouput streams,
+ and the file connection
*
*/
public void closeFile (){
try{
// Pauses the Thread for a while before closing the streams and fileConnection
try {
Thread.sleep(sleepTime);
} catch (InterruptedException ie) {
//This exception is irrelevant for the excecution

}

if (inputStream != null)inputStream.close();
inputStream = null;
if (outputStream != null) outputStream.close();
outputStream = null;
if (fileConnection != null) fileConnection. close ();
fileConnection = null;
}catch (IOException ioe) {
Log.getInstance().logException("FileHandler. closeFile ()7, ioe, false );
}
}
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D.3.3 Class ASCIIToHexConvert

package peer2me.util;

[x%

*
* This class converts ASCII letters into hexadecimal numbers
*

* @author Torbjgrn Vatn & Steinar A. Hestnes
*/
public class ASCIIToHexConvert {

VeSS

* Constructor

*

*/
public ASCIIToHexConvert(){
}

VES
* This method returns a String with hex representations of each character in the provided String

* @param ascii The String to convert
* @return A String with hex representations
/

public String convert ASCIIToHex(String ascii){
String hexString = 7;

for (int i=0; i<ascii.length (); i++){
hexString += findHexValue(ascii.charAt(i));
}

return hexString;

}

[

*
* This method has a switch case structure that contains the hex values for the symbols:

* 0—9, A—Z and a—2z

*

* @param input The char to convert to hex

* @return The retrived hex value, ”00” is returned in cases where no value is found in the switch
*/

private String findHexValue(char input){
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}

}

99

String hex ="

switch(input){

case ‘07 : hex = "307; break; case 'V’ : hex
case '17 : hex = "317; break; case "W’ : hex
case ‘27 : hex = "32”; break; case "X’ : hex
case '3’ : hex = ; break; case 'Y’ : hex
case '47 : hex = "34”; break; case 'Z’ : hex
case 57 : hex = "35"; break; case ’a’ : hex
case 6’ : hex = "36"; break; case 'b’ : hex
case 77 : hex = "37"; break; case ‘¢’ : hex
case '8’ : hex = "38"”; break; case 'd’ : hex
case '97 : hex = "39”; break; case e’ : hex
case 'A’ : hex = "41”; break; case 'f’ : hex
case 'B’ : hex = "42”7; break; case 'g’ : hex
case 'C’ : hex = "43”; break; case 'h’ : hex
case ‘D’ : hex = "44”; break; case i’ : hex
case 'E’ : hex = "45”7; break; case ']’ : hex
case I’ : hex = ”: break; case 'k’ : hex
case ‘G’ : hex = 7 break; case 17 : hex
case 'H’ : hex = "48"; break; case 'm’ : hex
case "I’ : hex = "49”; break; case 'n’ : hex
case 'J’ : hex = "4A”; break; case "0’ : hex
case 'K’ : hex = "4B”; break; case 'p’ : hex
case 'L : hex = "4C”; break; case 'q’ : hex
case "M’ : hex = "4D”; break; case 'r’ : hex
case ‘N’ : hex = "4E"; break; case s’ : hex
case 'O’ : hex = "4F”; break; case 't’ : hex
case P’ : hex = "507; break; case 'u’ : hex
case '()7 : hex = "517; break; case 'v’ : hex
case 'R’ : hex = "52”; break; case 'w’ : hex
case 'S’ : hex = "53"; break; case 'x’ : hex
case 17 : hex = "54”; break; case 'y’ : hex
case 'U’ : hex = "55"; break; case 'z’ : hex
default :

hex = 7007;

// the retrived hex value

return hex;

"567; break;
"577; break;
758”7 break;
7597 break;
"HA”; break;
76175 break;
7627 break;
763" break;
7647 break;
765”7 break;
"667; break;
"677; break;
"68”; break;
"69”7; break;
"6A”; break;
"6B”; break;

60
6D’

s break;
s break;

617 break;

"6F
"7
"1
o
73
T4
TE
767
T
787

s break;
s break;
”: break;
break;
break;
break;
break;
break;
break;
break;

77975 break;

"TA”; break;
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D.4 Package peer2me.network

D.4.1 Class Network

package peer2me.network;
import java.io.lOException;
import peer2me.util.Log;

import peer2me.domain.DataPackage;

import peer2me.framework.FrameworkFrontEnd;

[*%

This is the super class of the technology specific network classes. Methods

*

*

that are equal for all the sub classes are located in this super class, and there are

*

abstact methods that the sub classes have to implement. The getInstance() method

*

in this class returns a reference to the preferred network sub class.

*
* @author Torbjgrn Vatn & Steinar A. Hestnes

*/

public abstract class Network{

// The Log instance
private static Log log;

// The Network instance returned by the getInstance() method

private static Network singleton;

// A reference to the FrameworkFrontEnd

private FrameworkFrontEnd frameworkFrontEnd;

// The applicationld of the MIDlet
private String applicationlD;

// The ConnectionListener of the Network

private ConnectionListener connectionListener;

VES:

% This method returns an instance of the preferred network.

x It is called from FrameworkFrontEnd.initFramework().

x @param preferredNetwork Indicating which network implementation to use.
* @throws ClassNotFoundException The input preferredNetwork is invalid

+ @throws Illegal AccessException The input preferredNetwork is invalid
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* @throws InstantiationException The input preferredNetwork is invalid
% @return The Network instance
*/
public static synchronized Network getInstance(String preferredNetwork) throws ClassNotFoundException,

Illegal AccessException, InstantiationException{

// A log instance
log = Log.getInstance();

if (singleton != null){
return singleton ;
Yelse{

try{
// Fetching a instance of the preferred network class

singleton = (Network)Class.forName(preferredNetwork).newInstance();

}catch(ClassNotFoundException cnfe){
log .logException("Network.getInstance()”,cnfe, false );
throw cnfe;

}catch(Illegal AccessException iae){
log.logException("Network.getInstance()” iae, false );
throw iae;

}catch(InstantiationException ie){
log.logException("Network.getInstance()”,ie, false );

throw ie;

}

// Returning the singleton instance

return singleton;

}

/%

*
* This method returns a reference to the instance of the preferred network.
* It is used when an instance already is created and a reference to

* this instance is needed.

* @throws ClassNotFoundException The input preferredNetwork is invalid
x @throws Illegal AccessException The input preferredNetwork is invalid
* @throws InstantiationException The input preferredNetwork is invalid
* @Qreturn The Network instance
*/

public static synchronized Network getInstance(){
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// Checks whether the other getInstance method has already been run

if (singleton==null){
log .logDebugInfo("Network.getInstance()”,”No Network instance found!”);
return null;

}

return singleton;

/x%

*

# This method sets a reference to the ConnectionListener
*

* @param connectionListener A reference to the ConnectionListener

*/
public void setConnectionListener(ConnectionListener connectionListener){

this .connectionListener = connectionListener;

/%

*
% This method returns the ConnectionListener reference
*
* @return connectionListener A reference to the ConnectionListener
*/

public ConnectionListener getConnectionListener(){

return connectionListener;

[x%

*
* This method sets a reference to the FrameworkFrontEnd
*
% @param frameworkFrontEnd A reference to the FrameworkFrontEnd
*/
public void setFrameworkFrontEnd(FrameworkFrontEnd frameworkFrontEnd){

this . frameworkFrontEnd = frameworkFrontEnd;

[x%

*

# This method returns the FrameworkFrontEnd reference

*
* Qreturn frameworkFrontEnd A reference to the FrameworkFrontEnd

*/
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public FrameworkFrontEnd getFrameworkFrontEnd(){

return frameworkFrontEnd;

/x%

*

This method sets the applicationID.

*

The application ID must be used to ensure that all nodes joining

*

the network are running the same MIDlet.
*
* @param applicationID The ID of the MIDlet (e.g. the MIDlet name)
*/
public void setApplicationId(String applicationID){
this . application]D = applicationlD;

VeSS

*
# This method returns the applicationld
*
# Qreturn applicationID The ID of the MIDlet
*/

public String getApplicationId(){

return applicationlD;

}

[FrrooocooooR OO RO R Rk
// The abstract methods inherited and overridden by the sub network classes

/*************************************************************************/

VeSS

+ Initiates the network instance.

x It is called from the FrameworkFrontEnd.initFramework()
*

* @throws Exception Failed to initiate the network

*/

public abstract void init () throws Exception;

VeSS

* Starts a search for devices running the same MIDlet
*

* @throws [OException Error during the search

*/

public abstract void searchForNodes() throws IOException;
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[H%

*

* Called when the same MIDlet is found on a remote device

*
x @param input An object representing the connection to the found node.
*/

public abstract void nodeFound(Object input) throws IOException;

/%

*

This method fetches the name of the remote node.

*

x @param input An object representing the connection to the found node.

*

@return The name of the remote node.

*/

public abstract String getRemoteNodeName(Object input);

/xx
*
+ This method establishes a connection to the chosen node.
x It could e.g. be run from the Network.sendDataPackage() to connect
x before sending a package.
*
* @param nodeAddress The address to the node to connect to
*
«/

public abstract void connectToNode(String nodeAddress);

/x%
*
% This method is called from the ConnectionListener.run() when
* the acceptAndOpen() method in ConnectionListener.run() is done.
*
*/

public abstract void connectionEstablished();

/%

*
* This method returns the node address.

*

x @param input String "localNode” to retreive the address of the local device.
x A object representing the connection to the remote node to retreive the

* address of a remote device.

*
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* @return The node network address.
* @throws IOException

*

*/

public abstract String getNodeAddress(Object input) throws IOException;

/%

*
* This method is used by the FrameworkFrontEnd to send a data package of
% any sort to a remote node.

*

x @param dataPackage The data package to be sent

* @param recipients A list containing addresses to the recipient nodes

*

of

public abstract void sendDataPackage(DataPackage dataPackage, String[] recipients);
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D.4.2 Class NodeConnection

package peer2me.network;

import peer2me.util.FileHandler;
import peer2me.util.Log;

import peer2me.domain.DataPackage;
import peer2me.domain.FilePackage;
import peer2me.domain.GroupSyncPackage;
import peer2me.domain.Node;

import peer2me.domain. TextPackage;
import java.io.DatalnputStream;
import java.io.DataOutputStream;
import java.io. EOFException;

import java.io.IOException;

import java. util . Date;

import java. util . Vector;

import javax.microedition.io.StreamConnection;

JEE

*

x This class contains a thread that runs on each connected node and listens for
* incoming data packages and sends data packages out.

* It is created and started in NodeConnection.startNodeConnection().

*

x @author Torbjgrn Vatn & Steinar A. Hestnes
*/

public class NodeConnection{

// The Log instance
private Log log;

// The Network instance of the preferred network

private Network currentNetwork;

// The different variables concerning the in— and out streams
private DatalnputStream inputStream;

private DataOutputStream outputStream;

private StreamConnection connection;

private Node node;

// The queue holding the data packages to send

private Vector sendQueue;
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// Boolean values that controls whether or not the Input— and OutputStreams are allowed to perform their tasks
private boolean openlnputStream;

private boolean openOutputStream;

// The threads running whenever a connection is open.
private InputThread inputThread;
private OutputThread outputThread;

JEE

*

Constructor.

*

This constructor is called from the constructor in class Node.

*

* @param connection The connection to the node
* @param node The node that owns this NodeConnection
*/

public NodeConnection(StreamConnection connection, Node node){

// Fetches a instance of the Log

log = Log.getInstance();

// Sets the connection to connect to and fetches an instance of the currentNetwork
this .connection = connection;

this .node = node;

currentNetwork = Network.getInstance();

// Creates the sendQue

sendQueue = new Vector();

// The Input— and OutputStreams shall not do anything before the node is connected
// These values are toggled from ConnectionListener.run() and NodeConnection.sendDataPackage()
openlnputStream = false;

openOutputStream = false;

// Starts a thread that processes the sendQue

outputThread = new OutputThread();
outputThread.setPriority (Thread. MAX_PRIORITY);

outputThread.start();

// Starts a thread constantly listening for incoming datapackages

inputThread = new InputThread();

inputThread.setPriority (Thread. MAX_PRIORITY);

inputThread.start ();

+ This method return the size of the sendQue.

*
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x @return The size of the sendQue

*/
public int getSendQueueSize(){

return sendQueue.size();

}

/%

*

This method receives incoming datapackages from remote nodes.
% It is called in an infinite loop in the private class InputThread
* in this class.
*
*/
public void processIncomingData(){
if (connection != null){
boolean connectionFailed = false;
try{
if (inputStream == null){
inputStream = connection.openDatalnputStream();
}
}catch(IOException ioel){
connectionFailed = true;
log .logException("NodeConnection.processIncomingData()1”ioel, true);
// Opening of streams failed, ergo connection lost
// Close connection and inform the NodeListener
try {
connection. close ();
// The connection must be set to null to stop the thread running
// this method when the connection has closed
connection = null;
} catch (IOException ioe2){

log .logException("NodeConnection.processIncomingData()2”ioe2,true);

// If an inputstream and an outputstream was successfully opened, a infinite loop starts
if (! connectionFailed){
try {
while(inputStream != null && connection != null && !connectionFailed){
int type = —1;
try{
// Reads the type of the data package
type = inputStream.readInt();
}catch(IOException ioe){
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connectionFailed = true;
}
// The type of the package determines what should be done with the package
switch(type){

case(DataPackage. GROUP_SYNC_PACKAGE):
// Reads the length of the incoming package
int byteLengthl = inputStream.readInt();
byte[] bytesl = new byte[byteLengthl];
// Reads the incoming bytes
for (int 1=0;i<bytesl.length;i++){
bytesl[i] = inputStream.readByte();

}

// Checks if the sendQue on the sender side is empty
if (inputStream.readBoolean()){
// Closes the connection if the remote node is finished sending all its datapackages

openlnputStream = false;

}

GroupSyncPackage groupSyncPackage = new GroupSyncPackage();

// Interprets the content and sets the variables in the groupSyncPackage object

groupSyncPackage.parseBytes(bytesl);

// Notifies the midlet via the frontEnd about the received message.
currentNetwork.getFrameworkFrontEnd().notify AboutReceived GroupSyncPackage(groupSyncPackage);
break;

case(DataPackage. TEXT_PACKAGE):
// Reads the length of the incoming package
int byteLength2 = inputStream.readInt();
byte[] bytes2 = new byte[byteLength2];

// Reads the incoming bytes in blocks
// Reading blocks increases the transfer rate considerably
boolean finishedReading = false;
int blockSize = 200;
int totalRead = 0;
while (! finishedReading){
// If whats left is less than one blockSize
if (byteLength2 — totalRead < blockSize) blockSize = byteLength2—totalRead;
byte[] block = new byte[blockSizel;
int numberRead = inputStream.read(block,0,blockSize);

// Stores whats read in an array large enough for the whole package

307



for (int 1=0; i<numberRead; i++){
bytes2[totalRead] = block]i];
totalRead++;

}

if (totalRead == byteLength2) finishedReading = true;

// Checks if the sendQue on the sender side is empty
if (inputStream.readBoolean()){
// Closes the connection if the remote node is finished sending all its datapackages

openlnputStream = false;

}

// Notifies the midlet via the frontEnd about the received message.
TextPackage textPackage = new TextPackage();
textPackage.parseBytes(bytes2);

currentNetwork.getFrameworkFrontEnd().notify AboutReceived TextPackage(textPackage);
break;

case(DataPackage. FILE_PACKAGE):

// Reads the length of the incoming package
int byteLength3 = inputStream.readInt();
byte[] bytes3 = new byte[byteLength3];
// Reads the incoming bytes
for (int i=0;i<bytes3.length;i++){

bytes3[i] = inputStream.readByte();

// Creates a filePackage based on the received data

FilePackage filePackage = new FilePackage();

filePackage . parseBytes(bytes3);

// Reads the file and writes it to the filesystem

FileHandler fileHandler = new FileHandler(filePackage.getFilePath());
// Fetches the size of the file and sets it in the fileHandler
fileHandler . setFileSize ( filePackage . getFileSize ());

// Checks if the sendQue on the sender side is empty
if (inputStream.read Boolean()){
// Closes the connection if the remote node is finished sending all its datapackages

openlnputStream = false;

}

boolean endOfFile= false;
while (!endOfFile){
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try{
byte[] theBytes = new bytel[fileHandler.getBlockSize ()];
// Reads data from the inputStream into a byte table
int numberOfBytesRead = inputStream.read(theBytes, 0, fileHandler.getBlockSize());
// Writes the bytes to file
fileHandler . writeFile (theBytes, numberOfBytesRead);

}catch(EOFException eofe){
endOfFile = true;
fileHandler . closeFile ();

}
}

currentNetwork.getFrameworkFrontEnd().notify AboutReceivedFilePackage(filePackage);
break;

default :
break;

}catch(IOException ioe) {

log . logException("NodeConnection.processIncomingData()3”; ioe, true);

[x%
*
* This method sends datapackages to remote nodes.
x [t processes the que of unsent datapackages.
x It is called in an infinite loop in the private class OutputThread
% in this class.
*
*/
public synchronized void processSendQueue(){
if (connection != null){
if (sendQueue.size() > 0){
// Retriving the data packages to send from the sendQue
DataPackage dataPackage = (DataPackage)sendQueue.firstElement();
sendQueue.removeElement(dataPackage);
// A byte table holding the data to send
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byte[] data = dataPackage.toSendableFormat();

try{
// Opening the output stream if it is not allready open
if (outputStream == null){

outputStream = connection.openDataOutputStream();

// Saves a timestamp used to estimate the transfer rate

long startTime = new Date().getTime();

// Sending the type of the data package over the steam
outputStream.writelnt(dataPackage.get Type());

// Sending the length of the data package over the steam

outputStream.writelnt(data.length);

// Sends the data package in blocks over the stream
// Sending blocks instead of single bytes increases the transfer rate considerably
boolean finishedWriting = false;
int blockSize = 200;
int totalWritten = 0;
while (! finishedWriting){
// If whats left is less than one blockSize
if (data.length — totalWritten < blockSize) blockSize = data.length—totalWritten;
byte[] block = new byte[blockSize];
// Fills the byte array to be sent
for (int 1=0; i<blockSize; i++){
block[i] = data[totalWritten];
totalWritten+-+;

}

outputStream.write(block);

if (totalWritten == data.length) finishedWriting = true;

// If the datapackage is a FilePackage we have to send the content
// of the file
long fileSize = 0;
if (dataPackage.getType() == DataPackage. FILE_PACKAGE){
// Opens the file handler
FileHandler fileHandler = new FileHandler(((FilePackage)dataPackage).getFilePath());

// Flushes the output stream
outputStream.flush();
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boolean endOfFile = false;
while (lendOfFile){
try{
byte[] theBytes = fileHandler.readFile ();
outputStream.write(theBytes);
}catch(EOFException eofe){
endOfFile = true;
fileHandler . closeFile ();
}

}
fileSize = ((FilePackage)dataPackage).getFileSize();

// Logs a message if the text package was sent successfully
if (dataPackage.getType() == DataPackage. TEXT_PACKAGE ||
dataPackage.getType() == DataPackage. FILE_PACKAGE){

// Estimates the transfer rate of the file

long endTime = new Date().get Time();

long transferTime = (endTime—startTime)/1000;

if (transferTime==0) transferTime = 1;

double kBps = ((double)(data.length+fileSize)/1024)/(double)transferTime;

//the code below calculates and rounds off the transfer rate with three decimals
String rate = Double.toString(kBps);
int commalndex = rate.indexOf(".”);
int decimal3 = Integer.parselnt(””+rate.charAt(commalndex+3)+"");
int decimald = Integer.parselnt(””+rate.charAt(commalndex+4)+"");
rate = rate.substring (0,commalndex+4);
if (decimal4>=5){
if (decimal3 == 9){
decimal3 = decimal3+1;
rate = rate.substring (0,commalndex+2);
rate += decimal3;
}
else {
decimal3 = decimal3+1;
rate = rate.substring (0,commalndex+3);

rate += decimal3;

log .logDataPackage("Finished transfering data to "+
node.getNodeName()+". (Transfer rate was "+rate+"kB/s)”);
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}eatch(IOException ioe){
// Because this method is called from within a run() the log has to noitfy the MIDLet of the exception
log .logException("NodeConnection.processSendQue()”,ioe,true);
closeConnection();
// Tries to send the datapackage once more

currentNetwork.sendDataPackage(dataPackage,dataPackage.getRecipients());

// If the queue is not empty, the processing continues
try {
Thread.sleep(500);
} catch (InterruptedException ie) {
// do nothing

}

try{
// Closes the outputstream if the sendQueue is empty

// The connections are re—established when a new datapackage is sent
if (sendQueue.size() == 0){
// Notifies the remote recipient that we are closing the stream
outputStream.writeBoolean(true);
openOutputStream = false;
// Flushes the output stream
outputStream.flush();
Yelse{
outputStream.writeBoolean(false);
// Flushes the output stream
outputStream.flush();
// Must process the next package
processSendQueue();
}
}eatch(IOException ioe){
// Because this method is called from within a run() the log has to noitfy the MIDLet of the exception
log .logException("NodeConnection.processSendQue()2” ioe,true);

closeConnection();

[x%
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* This method is called by the sendMessage() method in the Network class

*

when a data package is sent to the Node associated with this

NodeConnection.

*

*
x @param dataPackage The DataPackage to send
*/
public synchronized void sendDataPackage(DataPackage dataPackage){
sendQueue.addElement(dataPackage);
// Continues to run the Input— and OutputStreams on the
// representation of the remote recipient node

openOutputStream();

[x%

*
+ This method returns the connection object.
*
x @return An object representing the connection to the remote node
*/

public StreamConnection getConnection(){

return connection;

JEE

*
+ This method updates the connection object. It is used when the existing
* connection is closed and a new open connection is needed.
*
* @param connection The connection to the remote node
*/

public void setConnection(StreamConnection connection){

this .connection = connection;

/%

*
* This method sets a boolean that controls whether or not the InputStream
x are allowed to listen for incoming data.

* The value is toggled from ConnectionListener.run().
*
*/
public void openInputStream(){
this .openlnputStream = true;

// Starts the steams again
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inputThread.restart Thread();

}

[x%

*

*

This method sets a boolean that controls whether or not the OutputStream
x are allowed to send data.

* The value is toggled from NodeConnection.sendDataPackage()

*

«/

public void openOutputStream(){

this.openOutputStream = true;

// Starts the steams again

outputThread.restart Thread();

}

[x%
*
+ This method closes the input— and output streams and the connection.
x It is called from Group.shutdownGroup() to clean up during shutdown.
*
*/
public void closeConnection(){
try{
if (outputStream != null) this.outputStream.close();
this .outputStream = null;
if (inputStream != null) this.inputStream.close ();
this .inputStream = null;
if (connection != null) this.connection. close ();
this .connection = null;
}catch(IOException ioe){
// Because this method is called from within a run() the log has to noitfy the MIDLet of the exception

log . logException("NodeConnection.closeConnection()” ioe,true);

VES:

*
x This class is a thread listening for incoming datapackages from remote nodes.
* The thread is started from the constructor in class NodeConnection.

*
x @author Torbjgrn Vatn & Steinar A. Hestnes
*/

private class InputThread extends Thread{
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/%
x Constantly running. It is run from the constructor in class NodeConnection.
x Constantly listening for incoming datapackages.

*
*/
public void run(){
while(true){
if (openInputStream){
try{
// Sleeps the thread to ensure that the connection is open
sleep (500);
}catch(InterruptedException ie){
// This exception is irrelevant for the excecution
}
// Calls the processIncomingData() method to receive data packages from remote nodes

processIncomingData();

if (!openInputStream){
try{
// Sleeps the thread to ensure that the connection is ready to be closed
sleep (500);
}catch(InterruptedException ie){

// This exception is irrelevant for the excecution

}
closeConnection();

}

}

// Pauses the thread until it is notified again
this . pauseThread();

/%
+ This method pauses this thread
*
*/
private synchronized void pauseThread(){
try{
this . wait ();
}catch(InterruptedException ie){

// This exception is irrelevant for the excecution
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/H%
* This method notifies this thread
*
*/
public synchronized void restart Thread(){
this . notify ();

/%

*
+ This class is a thread sending datapackages to remote nodes.

x The thread is started from the constructor in class NodeConnection.
*

x @author Torbjgrn Vatn & Steinar A. Hestnes

*/

private class OutputThread extends Thread{

/%

* Constantly running. It is run from the constructor in class NodeConnection.

* Processes the sendQue.

*

”

public void run(){
while(true){
if (openOutputStream){
try{

// Sleeps the thread to ensure that the connection is open
sleep (500);
}catch(Interrupted Exception ie){

// This exception is irrelevant for the excecution

}

// Calls the processSendQue() method to send any unsendt data packages

processSendQueue();

if (!openOutputStream){
try{

// Sleeps the thread to ensure that the connection is ready to be closed

sleep (100);
}catch(InterruptedException ie){

// This exception is irrelevant for the excecution

}

closeConnection();

}
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}

// Pauses the thread until it is notified again
this . pauseThread();

/%
+ This method pauses this thread
*
*/
private synchronized void pauseThread(){
try{
this . wait ();
}catch(InterruptedException ie){

// This exception is irrelevant for the excecution

/xx
+ This method notifies this thread
*
*/
public synchronized void restartThread(){
this . notify ();

}
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D.4.3 Class ConnectionListener

package peer2me.network;

import peer2me.util.Log;

import peer2me.domain.Node;

import java.io.lOException;

import javax.microedition.io.Connector;

import javax.microedition.io.StreamConnection;

import javax.microedition.io.StreamConnectionNotifier;

[*%
x This class contains a ConnectionListener thread listening for
* incoming connection attempts from other devices running
% the same MIDlet built upon the framework.
* When a incomming connection is detected, a Node representation is created
* representing the connecting device.
* A ConnectionListener thread is created in Network.init ().
*
* @author Torbjgrn Vatn & Steinar A. Hestnes
*/

public class ConnectionListener implements Runnable{

// The Log instance
private Log log;

// The network instance related to this ConnectionService

private Network currentNetwork;

// The ConnectionURL that the ConnectionService should listen to
private String connectionURL;

// The StreamConnectionNotifier that creates a StreamConnection that
// represents a server side socket connection

private StreamConnectionNotifier connectionNotifier = null;

// The StreamConnection representing the open connection

private StreamConnection connection = null;

// This ConnectionService thread

private Thread localThread;

// Whether or not the Thread should shut down

private boolean shutdown = false;

// Whether or not the connection has failed

private boolean failed = false;

/x5

* Constructor.
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% A ConnectionListener is created in the Network.init() method.
*

* @param connectionURL The ConnectionURL to listen to

*/

public ConnectionListener(String connectionURL){

this . currentNetwork = Network.getInstance();

this .connectionURL = connectionURL;

// Fetches a instance of the Log
log = Log.getInstance();

// Starts a ConnectionListener thread listening for a connection
localThread = new Thread(this);
localThread.start ();

}

/x5
% This method is called when the ConnectionListener thread is started in the
* constructor.
*
x It continously listens for incoming connections matching the
% servicelD of the peer2me framework. The listener is "passive” and opens a
x connection waiting for a device to take contact.
* If an incoming connetion occurs, information is abstracted from the remote
* node, and a node object containing this connection is created and added

* to the group on the local node.

public void run(){
try{

// Opens the stream
connectionNotifier = (StreamConnectionNotifier) Connector.open(connectionURL);

while(true){//(! failed || !shutdown){

// Returns a StreamConnection that represents a server side socket connection.

connection = (StreamConnection)connectionNotifier.accept AndOpen();

// If the connection is successful a representation of the remote node is created
if (! failed || !shutdown){

// Creates the node who found "me” (as a participant) and opens a connection

String address = Network.getInstance().getNodeAddress(connection);
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Node remoteNode = new Node(address,connection);

// Starts the InputThread in NodeConnection again since we have a connection

remoteNode.getNodeConnection().openlnputStream();

// Adds the node who found "me” to the group containing all found nodes

currentNetwork.getFrameworkFrontEnd().getGroup().addParticipant (remoteNode);

// This Node is discovered and connected by another Node the currentNetwork is notified

currentNetwork.connectionEstablished();

log .logConnection("Connected successfully to a node with address: "+address);

}catch(IOException ioe) {
log .logException("ConnectionListener.run()”,ioe, true);
failed = true;

}eatch(SecurityException se) {
log .logException(’ConnectionListener.run()”;se, true);
failed = true;

teatch(Illegal ArgumentException iae){
log .logException(’ConnectionListener.run()”,iae, true);

failed = true;

VeSS
*
* This method shuts down this thread and closes the connection to clean up.
« It is called from FrameworkFrontEnd.shutdownFramework().
*
*/
public void shutdown(){
// Have to shut down
shutdown = true;
// Closes the connection to clean
try{
connectionNotifier . close ();
}catch (IOException ioe) {

log .logException(’ConnectionListener.shutdown()” ioe,false );
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D.5 Package peer2me.network.bluetooth

D.5.1 Class BluetoothNetwork

package peer2me.network.bluetooth;

import java.io.lOException;
import java. util . Hashtable;

import java. util . Vector;

import javax.bluetooth.BluetoothStateException;
import javax.bluetooth.LocalDevice;

import javax.bluetooth.RemoteDevice;

import javax.bluetooth.ServiceRecord;

import javax.bluetooth.DataElement;

import javax.microedition.io.Connector;

import javax.microedition.io.StreamConnection;
import peer2me.util. ASCIIToHexConvert;
import peer2me.util.Log;

import peer2me.network.ConnectionListener;
import peer2me.network.Network;

import peer2me.network.NodeConnection;
import peer2me.domain.DataPackage;

import peer2me.framework.FrameworkFrontEnd;

[ x%

+ This class is a bluetooth specific sub class of the Network class

+ and implements all the abstract methods of it’s parent class in a bluetooth

x context. It uses the bluetooth Java API, JSR—82, to perform operations on

* the bluetooth hardware of the mobile device.

* @author Torbjgrn Vatn & Steinar A. Hestnes

*/

public class BluetoothNetwork extends Network implements BluetoothServiceDiscoveryListener{

// The Log instance
private Log log;

// The connectionURL used by the ConnectionService created in the init() methood

private String connectionURL;

// The UUID number generated using the tool found at http://kruithof.xs4all.nl/uuid /uuidgen

private String generatedUuid = "0ade9c80bb2b11daad4d0800200c9ab6”;
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// A reference to BluetoothServiceDiscovery

private BluetoothServiceDiscovery bluetoothServiceDiscovery;

// A list containing addresses and serviceRecords of all found nodes
// (nodes who are running the same application but not connected yet)

private Hashtable foundNodes;

// This boolean decides whether or not this Node is connected to another node.

private boolean isConnected;

// A boolean indicating whether the serviceSearch is completed or not

private boolean serviceSearchCompleted;

// A boolean indicating whether the serviceSearch failed or not

private boolean serviceSearchFailed;

VeSS

*
* Constructor. Protected to ensure singleton pattern.
*
¥/

public BluetoothNetwork(){

// Fetches a instance of the Log
log = Log.getInstance();

VeSS
* Initiates the network instance.
« It is called from the FrameworkFrontEnd.initFramework()

*
* @throws BluetoothStateException Failed to initiate the network
*/

public void init () throws BluetoothStateException{
isConnected = false;

serviceSearchCompleted = false;

serviceSearchFailed = false;

// Sets the connectionURL used by the ConnectionListener
String localNodeName = getFrameworkFrontEnd().getLocalNode().getNodeName();
connectionURL = "btspp://localhost:"+getUUIDString()+";authenticate=false;encrypt=false;name="+localNodeName;

// Have to set the local device discoverable

323



try {
LocalDevice.getLocalDevice().set Discoverable(javax. bluetooth. Discovery Agent. GIAC);

} catch (BluetoothStateException bse) {
log .logException("ConnectionListener. ConnectionListener()”,bse, false );

throw bse;

foundNodes = new Hashtable();
// Creates the class that contains low level Bluetooth discovery operations.

bluetoothServiceDiscovery = new BluetoothServiceDiscovery();

/# The ConnectionListener instance that listens for incoming requests from
* other nodes in discovery mode. When this node is discovered the ”discoverer”
* can choose to create a connection between the two, and the remote node is
* represented by a node object localy on this node.
*/

setConnectionListener(new ConnectionListener(connectionURL));

/%

*
* This method is called from the ConnectionListener.run() when
* the acceptAndOpen() method in ConnectionListener.run() is done.
*
*/
public void connectionEstablished(){
// Indicates that this node was connected (contacted) by another node

isConnected = true;

VeSS

* Starts a search for devices running the same MIDlet
*
* @throws IOException Error during the search
*
*/
public void searchForNodes() throws IOException{
// This initiates the discovery process

if (lisConnected) bluetoothServiceDiscovery.doDeviceDiscovery();

VeSS

* Called when the same MIDlet is found on a remote device.
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% It is called from BluetoothServiceDiscovery.serviceSearchCompleted().
*
* @param input Either a ServiceRecord or a StreamConnection that describes the characteristics
x of the Bluetooth service found
*/
public void nodeFound(Object input){

// Input type is object because superclass cannot relate to ServiceRecord which is a bluetooth specific class .

ServiceRecord serviceRecord = (ServiceRecord)input;

// Retrives the name of the found node

String remoteNodeName = getRemoteNodeName(serviceRecord);

// The bluetooth address of the node "I” ”as owner” found

String address = serviceRecord.getHostDevice().getBluetoothAddress();

// If the node is not already connected, the MIDlet is notified via the frontEnd
// and the user is asked whether he/she wants to connect to it or not.
if (getFrameworkFrontEnd().getGroup().getNode(address) == null){
// Alerts the FrameworkFrontEnd about the found (participating) node
getFrameworkFrontEnd().notify AboutFoundNode(address,remoteNodeName);

// Saves the found node so a connection can be established later by running the connectToNodes() method.

foundNodes.put(address,serviceRecord);

Yelse{

// This code is run if the node has been disconnected temporarily or lacks
// a connection. This method (nodeFound) is then called as a result from a
// new serviceSearch on a given address (see BluetoothServiceDiscovery.startServiceSearch()).
// It re—opens a connection to a node that has been disconnected temporarily.
StreamConnection connection = null;
try{
// Re—opens a connection to a (participating) node.
connection = (StreamConnection) Connector.open(serviceRecord.getConnectionURL(
ServiceRecord. NOAUTHENTICATE_NOENCRYPT ,false));
}catch(IOException ioe){
// The connection could not be established

log .logException("BluetoothNetwork.nodeFound()”, ioe, false);

}

getFrameworkFrontEnd().getGroup().getNode(address).setNodeConnection(connection);
getFrameworkFrontEnd().getGroup().getNode(address).startNodeConnection();
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VES:
# This method fetches the name of the remote node.

x @param input An object representing the connection to the found node.
* @return The name of the remote node.
*/
public String getRemoteNodeName(Object input){
DataElement data = ((ServiceRecord)input).getAttributeValue(0x0100);
return (String)data.getValue();

VES:

This method establishes a connection to the chosen node.
It is run from the BluetoothNetwork.sendDataPackage().

*

*

* @param nodeAddress The address to the node to connect to
*
*/

public void connectToNode(String nodeAddress){

// Connects to the recipient

bluetoothServiceDiscovery.startServiceSearch (nodeAddress);

serviceSearchCompleted = false;
while (I serviceSearchCompleted){
// Waiting for the agent to set serviceSearchCompleted = true in
// the BluetoothNetwork.serviceSearchCompleted() method.
// This because we dont want to send the package before the search is completed
try{
Thread.sleep(300);
}catch(InterruptedException ie){
// Do nothing

}

// Resets the value

serviceSearchCompleted = false;
if (! serviceSearchFailed ){

log .logConnection("Successfully connected to "+getFrameworkFrontEnd().getGroup().getNode(
nodeAddress).getNodeName()+"("+nodeAddress+")");
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VeSS
*
x Sets the boolean serviceSearchCompleted = true.
% This value will interrupt the while—loop in sendDataPackage.
* This because the serviceSearch must be completed before we
* try to send a package.
* The method is called from
x BluetoothServiceDiscovery.serviceSearchCompleted().
*
+/
public void serviceSearchCompleted(){
// Resets the serviceSearchFailed in case an earlier search has failed
serviceSearchFailed = false;

serviceSearchCompleted = true;

}

VES
+* What to do when something went wrong during servicediscovery.
* The method is called from
* BluetoothServiceDiscovery.serviceSearchCompleted().
*
*/
public void serviceDiscoveryError(){
// Stops the sending of the datapackage in sendDatapackage()
serviceSearchFailed = true;

serviceSearchCompleted = true;

}
/xx
* This method returns the node address.
* @param input String ”localNode” to retreive the address of the local device.

x A ServiceRecord or StreamConnection object to retreive the address of a

remote device.

*

@return The node network address.
x @throws IOException
*/
public String getNodeAddress(Object input) throws IOException{

*

// Checks whether the input is a String and the String equals "localnode”.
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// If so the address of the LocalDevice is returned.
if (input.getClass (). isInstance (new String())){
String inputString = (String)input;
// Make sure that we won’t get any UPPER /lower case problems
inputString.toLowerCase();
if (inputString.equals(”localnode”))return LocalDevice.getLocalDevice().getBluetoothAddress();

// Input type is object because superclass cannot relate to ServiceRecord which is a bluetooth specific class .
// This method is valid either the input type is ServiceRecord or StreamConnection.
RemoteDevice remoteDevice = null;
try{
ServiceRecord serviceRecord = (ServiceRecord) input;
remoteDevice = serviceRecord.getHostDevice();
}catch(ClassCastException ccel){
// Could not cast the input object to ServiceRecord. Trying streamConnection instead ;—)
try{
StreamConnection streamConnection = (StreamConnection) input;
remoteDevice = RemoteDevice.getRemoteDevice(streamConnection);
}catch(ClassCastException cce2){
//This will only happen if the input object type is wrong
log .logException("BluctoothNetwork.getNodeAddress()”,cce2,false);
}catch(IOException ioe){
log .logException("BluetoothNetwork.getNodeAddress()”,ioe,false);

throw ioe;

}

return remoteDevice.getBluetoothAddress();

/x%

* This method is used by the FrameworkFrontEnd to send a data package of

* any sort to a remote node.

* @param dataPackage The data package to be sent

* @param recipients A list containing addresses to the recipient nodes

*

*/

public void sendDataPackage(DataPackage dataPackage, String|[] recipients){

// A Vector containing the addresses to the nodes that could not be reached

Vector addressesToLostNodes = new Vector();

for (int i=0; i<recipients.length; i++){
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// If the node has been removed/disconnected in the meantime
if (getFrameworkFrontEnd().getGroup().getNode(recipients[i])==null){
// do nothing

Yelse{

// Connects to the remote node if the connection never has been opened or if it has been closed
NodeConnection nodeConnection = getFrameworkFrontEnd().getGroup().getNode(recipients[i]).getNodeConnection();
if (nodeConnection!=null){
if (nodeConnection.getConnection()==null){
// Establishes a connection to the recipient
// This method waits until the new connection is ready (or not)
connectToNode(recipients[i]);
}else if (nodeConnection.getSendQueueSize() == 0){
// If the que is empty, the connection has been closed, and we need a new one
nodeConnection.setConnection(null);
// Establishes a connection to the recipient
// This method waits until the new connection is ready (or not)

connectToNode(recipients|[i]);

}
}else{
// Establishes a connection to the recipient
// This method waits until the new connection is ready (or not)

connectToNode(recipients[i]);

}

// Sends the data package to the recipient
if (! serviceSearchFailed ){
getFrameworkFrontEnd().getGroup().getNode(recipients[i]).getNodeConnection().send DataPackage(dataPackage);
Yelse{
// If the serviceSearch failed, the node must be removed from the group, and groups become synchronized

addressesToLostNodes.addElement(recipients][i] );

}
}
}

// Removes the nodes that could not be reached to remove these from the group by running a groupsync
for (int 1=0; i<addressesToLostNodes.size();i++){
// Notifies only if the node is not already removed from the local group.
// This because a node could have been removed when sending the previous data package and this
// package is sent right after the first one (as in text first and then sync package)
if (getFrameworkFrontEnd().getGroup().getNode((String)addressesToLostNodes.elementAt(i))!=null){
getFrameworkFrontEnd().notify AboutLostNode((String)addressesToLostNodes.element At(i));
}
}
}
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[H%

*

*

*

This method returns the UUID string used as an identifier in the discovery process.
The UUID string is generated based on the application ID given by the application
running the framework. The UUID must be used to ensure that all nodes

joining the network are running the same application.

@return uuidString

*/
public String getUUIDString(){

// The ASCII to Hex converter
ASCIIToHexConvert convert = new ASCIIToHexConvert();
// The String to convert to hex
String toConvert = "7
// The UUID consists of 16 hex values so the String to be converted must not exceed 16 chartacters
if (super.getApplicationld ().length() > 16){
toConvert = super.getApplicationld().substring(0, 15);

} else {

toConvert = super.getApplicationld();
}
// The converted hex String
String convertedString = convert.convert ASCIIToHex(toConvert);
// The length of convertedString
int convertedLength = convertedString.length();

// The String to return
String uuidString = ";
if (convertedLength < 32){
uuidString = generatedUuid.substring(0 , (32—convertedLength)) + convertedString;
} else if (convertedLength == 32){
uuidString = convertedString;

}

return uuidString;

330



D.5.2 Interface BluetoothServiceDiscoveryListener

package peer2me.network.bluetooth;

[ x%

+ This interface has to be implemented by classes that wants to do a

* Bluetooth service discovery using the BluetoothServiceDiscovery class,
+ and receive callbacks from this class. In this case, the class

* BluetoothNetwork implements this interface.

* @author Torbjgrn Vatn & Steinar A. Hestnes
*/

public interface BluetoothServiceDiscoveryListener {

VeSS

*

x What to do when serviceSearch is completed

*

*/

public void serviceSearchCompleted();

/x%
* What to do when something went wrong during servicediscovery

*

*/

public void serviceDiscoveryError ();
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D.5.3 Class BluetoothServiceDiscovery

package peer2me.network.bluetooth;

import java. util . Vector;

import javax.bluetooth.BluetoothStateException;
import javax.bluetooth.DeviceClass;

import javax.bluetooth.DiscoveryAgent;

import javax.bluetooth.DiscoveryListener;
import javax.bluetooth.LocalDevice;

import javax.bluetooth.RemoteDevice;

import javax.bluetooth.ServiceRecord;

import javax.bluetooth.UUID;

import peer2me.network.Network;

import peer2me.util.Log;

/x%
* This class is responsible for doing the low level Bluetooth discovery operations.
* The class initializes seqential device discovery, and searches for services

* (the same MIDlet built upon the Peer2Me framework) on each of the found devices.

* @author Torbjgrn Vatn & Steinar A. Hestnes
*/

public class BluetoothServiceDiscovery implements DiscoveryListener{

// A Log instance
Log log = Log.getInstance();

// The current network

private BluetoothNetwork currentNetwork;

// A table containing the UUIDs (Universally Unique Identifier) use to perform the discovery process
private UUID[] uuids = new UUIDI1];

// The UUID String fetched from currentNetwork

private String uuidString;

// Vector containing the devices found during discovery
private Vector devicesFound = null;
// Vector containing the services (read; running the Peer2Me framework) found on the discovered devices

private Vector servicesFound = null;

// An instance representing the local bluetooth device
private LocalDevice localDevice;

// The discovery agent of the local device
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private DiscoveryAgent agent;

// An identifier used on mobile phone bluetooth devices
private int mobileDeviceClassCode = 0x200;
// The attributes to include in the agent.searchServices() method
private int [] attributes = {0x100,0x101,0x102};

/x%

*
* Constructor.
+ Called from BluetoothNetwork.init().
*
Y
public BluetoothServiceDiscovery(){
this . currentNetwork =(BluetoothNetwork)Network.getInstance();
// Fetches the UUID string from currentNetwork
this .uuidString = currentNetwork.getUUIDString();

}

/x%

*
+ This method starts the discovery process.

* It is called from BluetoothNetwork.searchForNodes().

*

* @throws BluetoothStateException Error getting reference to LocalDevice
*/

public void doDeviceDiscovery() throws BluetoothStateException{

uuids[0] = new UUID(uuidString, false);
servicesFound = new Vector();

devicesFound = new Vector();

try{
localDevice = LocalDevice.getLocalDevice();
}catch(BluetoothStateException bse) {
log .logException("BluetoothServiceDiscovery.doDeviceDiscovery()”,bse, false);

throw bse;

//Fetches the discovery agent of the local device

agent = localDevice.getDiscoveryAgent();

try {
// The discovery agent starts the inquiry for other devices
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agent.startInquiry (DiscoveryAgent. GIAC, this);
}
catch(BluetoothStateException bse) {
log .logException("BluetoothServiceDiscovery.doDeviceDiscovery()”,bse, false);
throw bse;

}

/%
*
* This method is called by the javax.bluetooth.DiscoveryAgent (agent) whenever a bluetooth device is discovered
*
* @param remoteDevice The device discovered
* @param deviceClass The device class of the discovered device
*
of

public void deviceDiscovered(RemoteDevice remoteDevice,DeviceClass deviceClass){

// The device class of the discovered device

int deviceclass = deviceClass.getMajorDeviceClass();

if (deviceclass ==mobileDeviceClassCode){
// Adds the discovered device to the devicesFound Vector

devicesFound.addElement(remoteDevice);

[H%

* This method is called by the javax.bluetooth.DiscoveryAgent (agent) whenever one or more

x services (read: Peer2Me framework) are found on a remote device

* @param transld The transaction ID of the service search that is posting the result
x @param serviceRecord A list of services found during the search request

*

«/

public void servicesDiscovered (int transld, ServiceRecord[] serviceRecord) {

// Checks whether the service already exists in servicesFound. This because the
// DiscoveryAgent sometimes finds the same service several times :—( STUPID!!!

boolean alreadyAdded = false;
for (int i=0;i<serviceRecord.length;i++){

if (servicesFound. size ()==0){

// Adds the retrived ServiceRecord to the servicesFound Vector
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servicesFound.addElement (serviceRecord]i]);
log .logDebuglInfo("BluetoothServiceDiscovery.servicesDiscovered()”,”Found a node with address: "+
serviceRecord[i ]. getHostDevice().getBluetoothAddress()+" running the same application”);

Yelse{

for (int j=0;j<servicesFound.size();j++){

// Must compare the addresses of the devices to avoid adding the same service on the same device twice or more

String addressServiceFound = ((ServiceRecord) servicesFound.elementAt(j)).getHostDevice().getBluetooth Addre:

String addressServiceRecord = serviceRecord[i].getHostDevice().getBluetoothAddress();

if (addressServiceFound.equals(addressServiceRecord)){
alreadyAdded = true;

}
if (!already Added){

// Adds the retrived ServiceRecord to the servicesFound Vector
servicesFound.addElement(serviceRecord[i]);
log .logDebugInfo("BluetoothServiceDiscovery.servicesDiscovered()”,”Found a node with address: "+

serviceRecord|[i |. getHostDevice().getBluetoothAddress()+" running the same application”);

/s

*
* This method is called by the javax.bluetooth.DiscoveryAgent (agent) when the search for
* services (read: Peer2Me framework) is completed

*

+ @param transID The transaction ID of the service search that is posting the result

* @param respCode The response code that indicates the status of the transaction

*

«/

public void serviceSearchCompleted(int transID, int respCode){

switch(respCode) {

case DiscoveryListener. SERVICE_SEARCH_COMPLETED:
log .logDebuglnfo(”"BluetoothServiceDiscovery.serviceSearchCompleted()”,”Service search completed”);
break;

case DiscoveryListener. SERVICE_.SEARCH_DEVICE_NOT_REACHABLE:
log . logDebugInfo("BluetoothServiceDiscovery.serviceSearchCompleted()”,”Service search device not reachable”);
// If a searchServices() call is made on a specific device, the devices found table will contain no devices

// In this case the network must be notified about the error.
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// In the initial doDeviceDiscovery() these errors are ignored because devices not running the framework
// can interfere the discovery process.
if (devicesFound.size()==0) currentNetwork.serviceDiscoveryError();

break;

case DiscoveryListener. SERVICE_SEARCH_ERROR:
log . logDebugInfo("BluetoothServiceDiscovery.serviceSearchCompleted()”,”Service search error”);
if (devicesFound.size()==0) currentNetwork.serviceDiscoveryError();

break;

case DiscoveryListener.SERVICE_.SEARCH_NO_RECORDS:
log.logDebuglnfo("BluetoothServiceDiscovery.serviceSearchCompleted()”,
”No bluetooth devices running the same service (application) found”);
if (devicesFound.size()==0) currentNetwork.serviceDiscoveryError();

break;

case DiscoveryListener.SERVICE_SEARCH_TERMINATED:
log . logDebugInfo("BluetoothServiceDiscovery.serviceSearchCompleted()”,”Service search terminated”);
if (devicesFound.size()==0) currentNetwork.serviceDiscoveryError();

break;
}

// Searches further on the next device
if (devicesFound.size()>0){
try {
// The discovery agent searches for services on the next device stored in the devicesFound Vector
agent.searchServices (attributes ,uuids,(RemoteDevice)devicesFound.firstElement (), this);
devicesFound.removeElementAt(0);
} catch (BluetoothStateException bse) {
log .logException("BluetoothServiceDiscovery.serviceSearchCompleted”, bse, true);

currentNetwork.serviceDiscoveryError();

}
}

else {
if (servicesFound. size ()==0){
log .logDebuglnfo("BluetoothServiceDiscovery.serviceSearchCompleted()”,”No services found”);
Yelse{
log .logDebuglnfo("BluetoothServiceDiscovery.serviceSearchCompleted()”,
"Found the desired service running on one or more nodes”);
// For each element in servicesFound the serviceFound method is called on currentNetwork
for (int i=0;i<servicesFound.size();i++){
currentNetwork.nodeFound((ServiceRecord)servicesFound.elementAt(i));

}

currentNetwork.serviceSearchCompleted();
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*
* This method is called by the javax.bluetooth.DiscoveryAgent (agent) when the discovery process is completed
*

* @param discType The type of request that was completed; either

x INQUIRY_-COMPLETED, INQUIRY_TERMINATED, or INQUIRY_ERROR

*

*/

public void inquiryCompleted(int discType) {
switch (discType) {

case DiscoveryListener.INQUIRY_COMPLETED:
if (devicesFound.size()==0){
log .logDebuglInfo("BluetoothServiceDiscovery.inquiryCompleted()”,”No devices found”);
// Send a message to the midlet
currentNetwork.serviceSearchCompleted();
Yelse{

try {
log .logDebuglnfo("BluetoothServiceDiscovery.inquiryCompleted()”,”Found one or more devices”);

// The discovery agent searches for services on the first device stored in the devicesFound Vector
agent.searchServices (attributes ,uuids,(RemoteDevice)devicesFound.firstElement (), this);
devicesFound.removeElementAt(0);
} catch (BluetoothStateException bse) {
log .logException("BluetoothServiceDiscovery.serviceSearchCompleted”, bse, true);
}
}

log .logDebuglInfo("BluetoothServiceDiscovery.inquiryCompleted()”,”Device inquiry completed”);
break;
case DiscoveryListener. INQUIRY_ERROR:

log .logDebuglnfo("BluetoothServiceDiscovery.inquiryCompleted()”;”Device inquiry error”);
break;

case DiscoveryListener.INQUIRY_TERMINATED:
log .logDebuglInfo("BluetoothServiceDiscovery.inquiryCompleted()”,”Device inquiry terminated”);

break;
}
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*
* This method is used to re—establish a connection to a device when we have the address.
*

+ @param address The address to the device
*/

public void startServiceSearch (String address){

// Connects to a remote device with the given address
RemoteDevicelnstance remoteDevice = new RemoteDevicelnstance(address);
try{

localDevice = LocalDevice.getLocalDevice();

agent = localDevice.getDiscoveryAgent();

uuids[0] = new UUID(uuidString, false);

servicesFound = new Vector();

devicesFound = new Vector();

agent.searchServices (attributes ,uuids,remoteDevice,this);
}catch(BluetoothStateException bse) {

log .logException("BluctoothServiceDiscovery.startServiceSearch()”, bse, false );

// throw bse;

VES:

*
+ This private class creates a RemoteDevice based on the address.

x It is used during the re—establishment of a connection to a device in
% the startServiceSearch () method in this class.

*

* @author Torbjgrn Vatn & Steinar A. Hestnes

*/

private class RemoteDevicelnstance extends RemoteDevice{

/%
*
* Constructor. Forwarding the address to the superclass.
*

P

* @param address The address of the device
*/

public RemoteDevicelnstance(String address){

super(address);
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