
June 2006
Tor Stålhane, IDI

Master of Science in Computer Science
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Model Driven Enterprise Analysis
A model-driven tool-assisted process for criticality and availability
analysis of enterprise systems

Thomas Hermansen

Problem Description
When analyzing a system, one uses an analysis method and take basis in a representation of the
system. The aim of this Master thesis is to evaluate which configurations of method and
representation that best lets us assess the reliability of business critical enterprise systems. The
methods are taken from the field of System Safety, and are altered if needed. The representations
are taken from well used notations used in IT, such as UML. Further more, an extension to the
RUP framework that facilitates a complete process for identifying and treating these reliability
problems is to be created. This process should implement a selection of the configurations
mentioned above. Lastly, a set of tools which automates and makes this extended process more
efficient is proposed and implemented. Examples are tools that administrate and automate
activities in the extended process, and tools that assist in the analysis, making it more thorough.

Assignment given: 20. January 2006
Supervisor: Tor Stålhane, IDI

i

Abstract

Today more and more companies acquire enterprise-scale solutions for their
organization. Enterprise-scale solutions connect departments and business
functions in the organization in order to facilitate the coordination, com-
munication, and work flow between them. However, when systems get more
interconnected and complex, they are also more prone to faults. If busi-
ness critical parts of the system are affected, this can be devastating for a
company.

When designing large enterprise scale systems, one uses a wide range of
specialized models with different view points and applications. This frag-
mentation and specialization of the representation of the system decreases
the clarity of the total enterprise model and implies that it is difficult to
analyze the enterprise as a whole. To overcome this problem, specialized
software tools that can integrate the sub models in a total model can be
developed.

This thesis will develop a tool assisted extended process to the development
process Rational Unified Process that helps analyzing the design of enter-
prise solutions by integrating the behavioral and structural models of the
system into a unified representation.

The tools take basis in digitized models represented in UML, the industry
standard language for modeling software systems. We will focus on the two
quality attributes availability and criticality.

ii

Preface

This report is part of a master thesis carried out at the Department of
Computer and Information Science at the Norwegian University of Science
and Technology (NTNU) during the spring semester of 2006.

I would like to thank my supervisor Dr. Tor Stålhane for feedback and for
allowing me to define my own project within the frames of his associated
research group.

Trondheim, June 16th 2006.

Thomas Hermansen

iii

iv

Contents

1 Introduction 1
1.1 Terminology . 1

1.1.1 System Safety . 1
1.1.2 Rational Unified Process 1
1.1.3 Enterprise systems . 2
1.1.4 Business critical systems 2
1.1.5 Unified Modeling Language (UML) 2
1.1.6 UML Profiles . 2

1.2 Motivation . 3
1.3 Problem description . 3
1.4 Related work . 5
1.5 Report outline . 5

2 Introduction to the Tools 7
2.1 Quality attributes . 7

2.1.1 Availability . 7
2.1.2 Criticality . 9

2.2 The tools relation to quality attributes 10
2.3 Tool requirements . 11

3 The Enterprise Representation 13
3.1 Introduction . 13

3.1.1 The nature of Enterprise Systems 15
3.2 Exploring the enterprise . 15
3.3 Model selection . 19

3.3.1 Business processes . 19
3.3.2 Systems . 21
3.3.3 Subsystems . 24
3.3.4 Summary . 24

3.4 Designing the enterprise representation data structure 26
3.5 The EnterpriseRepresentation object model 26

3.5.1 Behavioral part . 28
3.5.2 Structural part . 31

v

3.6 The XMI-Readers . 33
3.6.1 ComponentReader . 33
3.6.2 DeploymentReader . 38
3.6.3 BusinessProcessReader 40
3.6.4 SequenceReader . 44

4 Enterprise Analyzer 50
4.1 Introduction . 50
4.2 Structure of the Enterprise Analyzer 51
4.3 Analysis . 52
4.4 Calculating criticalness . 53

4.4.1 Calculating component criticality 56
4.4.2 Calculating system and environment criticality 59

4.5 Calculating Availability . 61
4.5.1 Calculating structural availability 61
4.5.2 Calculating process availability 63

4.6 Calculating importance . 70
4.6.1 Calculating component importance 70

5 The Model Analyzer 74
5.1 Introduction . 74
5.2 The Risk Manager . 75
5.3 The Transformers . 76

5.3.1 Transformer usage . 77
5.4 The input . 78
5.5 Transformation Profile structures 80

5.5.1 PHA profile . 80
5.5.2 HAZOP profile . 82

6 Enterprise UML Profiles 84
6.1 The UML parts . 84
6.2 Stereotype extensions . 86

6.2.1 Activity Diagram . 87
6.2.2 Deployment Diagram 87
6.2.3 Component Diagram 89
6.2.4 Sequence Diagram . 90
6.2.5 Tag values . 91

7 Transformation Profiles 92
7.1 Transformation Profile - HAZOP 92

7.1.1 Business Scenario . 92
7.1.2 (Sub) System Scenario 92
7.1.3 Guide words . 93

7.2 Transformation Profile - PHA 94

vi

7.2.1 Business Scenario . 94
7.2.2 Enterprise Structure 94
7.2.3 System Structure . 94

8 The Extended RUP Process 97
8.1 Introduction . 97
8.2 The process . 97
8.3 Business activity . 98
8.4 Enterprise Structure activity 99
8.5 System Scenario activity . 99
8.6 System Structure activity . 99
8.7 Sub System Scenario activity 101
8.8 Risk analysis activity . 101

9 Test of the Tools 102
9.1 The business processes . 102

9.1.1 The Enterprise Structure 107
9.1.2 System Scenarios . 108
9.1.3 System Structure and Sub System Scenarios 111

9.2 Testing the Enterprise Analyzer 115
9.3 Testing the Model Analyzer 115

9.3.1 Testing the HAZOP Analyzer 115
9.3.2 Testing the PHA Analyzer 115

10 User Manuals 120
10.1 The Enterprise Analyzer . 120
10.2 The Model Analyzer . 129

10.2.1 HAZOP configuration 130
10.2.2 PHA configuration . 131
10.2.3 HAZOP analysis . 131
10.2.4 PHA analysis . 134
10.2.5 Risks . 134

11 Discussion 137
11.1 The Enterprise Representation 138
11.2 The Enterprise Analyzer . 139
11.3 The Model Analyzers . 140
11.4 The Enterprise UML profiles 140
11.5 The Transformation profiles 140
11.6 The process . 140

12 Conclusions and Future Work 141
12.1 Conclusions . 141
12.2 Future work . 142

vii

A Code Overview 144
A.1 EnterpriseRepresentation . 144
A.2 EnterpriseAnalysis . 144
A.3 RiskAnalysis . 144
A.4 Class diagrams . 146

B An Introduction to Risk 154
B.1 Risk . 154

B.1.1 What is risk? . 154
B.1.2 Risk terminology . 154
B.1.3 Risk Management . 155
B.1.4 Risk Management Process 156

C An Introduction to the Rational Unified Process 160
C.0.5 What is RUP? . 160

D Methods of Analysis 165
D.1 Preliminary Hazard Analysis (PHA) 165
D.2 Hazard and operability study (HAZOP) 167

E ZIP file contents 170
E.1 Practical Information . 170
E.2 Executables . 170
E.3 .NET 2005 projects . 170
E.4 Source . 171
E.5 Models and enterprise representation 171

viii

List of Figures

1.1 UML Profile Example. 3
1.2 The aim of the process. 4

2.1 The proposed tools. 10

3.1 Creating the Enterprise Representation. 14
3.2 Enterprise meta model. 16
3.3 The enterprise pyramid structure. 17
3.4 The structure of the enterprise. 18
3.5 Comparing the diagram types on business process modeling. . 20
3.6 An example Activity Diagram. 21
3.7 Comparing the diagram types on systems behavioral modeling. 22
3.8 An example Sequence Diagram. 22
3.9 Comparing the diagram types on systems structural modeling. 23
3.10 Example Deployment Diagram. 23
3.11 Comparing the diagram types on sub systems structural mod-

eling. 24
3.12 An Example Component Diagram. 25
3.13 The main modeling views. 25
3.14 The Relation between UML and the objects in the Enterprise

Representation. 27
3.15 The structure of the enterprise. 28
3.16 The EnterpriseRepresentation data structure. 29
3.17 An example graph of BusinessFunctionObjects. 30
3.18 An example System Operation linked list. 30
3.19 SystemOperation with neighboring objects. 31
3.20 The structure of a SubSystemOperation. 31
3.21 Enterprise structure tree - object instance model. 32
3.22 System/SystemOperation relation - object instance model. . . 32
3.23 The structure of the XMI representation of a Component model. 34
3.24 An example Component Diagram. 34
3.25 An example Component Diagram XMI file. 35
3.26 The structure of the XMI representation of a Deployment

model. 39

ix

3.27 The structure of the XMI representation of an Activity Dia-
gram. 42

3.28 The structure of the XMI representation of a Sequence Diagram. 44

4.1 The principle of analysis. 50
4.2 Enterprise Analyzer tool structure. 51
4.3 Structure of an AnalysisResult object. 52
4.4 Criticalness in the behavioral part. 53
4.5 Component criticality inheritance - One business process. . . 55
4.6 Component criticality inheritance - Multiple business process. 56
4.7 System/Environment criticality inheritance. 59
4.8 Structural availability inheritance. 64
4.9 Process availability inheritance. 64
4.10 Example Activity Diagram. 67
4.11 GetProbabilityOfBusinessFunctions - Algorithmic steps. . . . 67
4.12 GetProbabilityOfBusinessFunctions - Recursive traversal. . . 69
4.13 An example series of components. 70

5.1 The principle of transformation. 74
5.2 The Risk Manager. 75
5.3 The Risk object. 75
5.4 Transformer - Architectural pattern. 76
5.5 Transformer usage - Sequence Diagram. 78
5.6 Diagram Structure. 79
5.7 Database model of the PHA Transformation Profiles. 80
5.8 An example study node. 81
5.9 Database model of the HAZOP Transformation Profiles. . . . 82

6.1 Activity Diagram - Parts. 85
6.2 Sequence Diagram - Parts. 85
6.3 Component Diagram - Parts. 86
6.4 Deployment Diagram - Parts. 86

7.1 Action extended stereotypes and parameters. 92
7.2 Message extended stereotypes and parameters. 93

8.1 The main structure of the process. 97
8.2 Business activity. 98
8.3 Enterprise Structure activity. 99
8.4 System Scenario activity. 100
8.5 System Structure activity. 100
8.6 Sub System Scenario activity. 101
8.7 The Risk Analysis activity. 101

9.1 Print Paper Business Scenario. 103

x

9.2 Purchase Supplies Business Scenario. 104
9.3 Add Subscriber Business Scenario. 105
9.4 Remove Subscriber Business Scenario. 105
9.5 Create newspaper content Business Scenario. 105
9.6 Deliver newspaper Business Scenario. 106
9.7 Host online edition Business Scenario. 106
9.8 Newspaper Enterprise Structure. 107
9.9 Printing the paper - Systems scenarios. 109
9.10 Purchase supplies - Systems scenarios. 110
9.11 Add Subscriber - Systems scenarios. 111
9.12 Remove Subscriber - Systems scenarios. 112
9.13 Create newspaper content - Systems scenarios. 113
9.14 Deliver Newspaper - Systems scenarios. 114
9.15 Host online edition - Systems scenarios. 114
9.16 Example System Scenario and System Structure. 115
9.17 Enterprise Analysis result. 116
9.18 Start Printing - System Scenario. 117

10.1 Enterprise Analyzer - Main menu. 121
10.2 Enterprise Analyzer - Adding Environment. 122
10.3 Enterprise Analyzer - Structural View. 122
10.4 Enterprise Analyzer - Structural view II. 123
10.5 Enterprise Analyzer - Configuring a process. 123
10.6 Enterprise Analyzer - Load Business Scenario. 123
10.7 Enterprise Analyzer - Behaviorial view. 124
10.8 Enterprise Analyzer - Changing process criticality. 124
10.9 Enterprise Analyzer - Selecting a business function. 125
10.10Enterprise Analyzer - Behavioral view II. 125
10.11Enterprise Analyzer - Selecting a System Operation. 126
10.12Enterprise Analyzer - Behavioral view. 126
10.13Enterprise Analyzer - Analysis result screen. 127
10.14Enterprise Analyzer - Removing items. 128
10.15Enterprise Analyzer - Saving the enterprise representation. . . 128
10.16Enterprise Analyzer - Loading an enterprise representation. . 129
10.17Model Analyzer - Main menu. 129
10.18HAZOP Configuration screen. 130
10.19Adding generic guide words. 131
10.20PHA Configuration screen. 132
10.21The HAZOP Analysis screen. 133
10.22Selecting file. 134
10.23HAZOP output item. 135
10.24Add risk dialogue. 136
10.25Risk list. 136

xi

A.1 EnterpriseRepresentation Class Diagram. 150
A.2 EnterpriseAnalysis Class Diagram. 151
A.3 RiskAnalysis Class Diagram. 152

B.1 Risk migration. 155
B.2 The risk management process. 157

C.1 The waterfall process. 160
C.2 The iterative method. 161
C.3 The RUP iterative process (From www.rational.com). 163
C.4 The phases and disciplines of RUP (From www.rational.com). 164

D.1 An example process engineering system. 167

xii

List of Tables

2.1 Tool Requirements. 12

5.1 Example HAZOP output. 83

6.1 Tagvalue examples. 91

7.1 System Structure - Action - PHA Check List Items. 94
7.2 Enterprise Structure - Node - PHA Check List Items. 95
7.3 Enterprise Structure/System Structure - Association - PHA

Check List Items. 95
7.4 Enterprise Structure - Component - PHA Check List Items. . 96
7.5 System Structure - Component - PHA Check List Items. . . . 96

9.1 Business processes and criticality. 103
9.2 Reliability and Maintainability In The Enterprise. 108
9.3 Reliability and maintainability in Press. 111
9.4 Reliability and maintainability in the Printing System. 112
9.5 HAZOP test on “Start printing” System Scenario. 117
9.6 PHA test on Enterprise Structure - I. 118
9.7 PHA test on Enterprise Structure - II. 119

A.1 Files in the EnterpriseRepresentation project - I. 145
A.2 Files in the EnterpriseRepresentation project - II. 146
A.3 Files in the EnterpriseAnalysis project - I. 147
A.4 Files in the RiskAnalysis project - I. 148
A.5 Files in the RiskAnalysis project - II. 149
A.6 Files in the RiskAnalysis project - III. 153

D.1 An example PHA output. 166
D.2 An example HAZOP output. 168

xiii

Chapter 1

Introduction

1.1 Terminology

1.1.1 System Safety

The field of System Safety is a set of methods and practices to assess the
risks connected with the development and execution of a system, so that
we can take appropriate measures to minimize these risks. System Safety is
about what can go wrong and how it can go wrong. For an introduction to
the concept of risk, see Appendix B.

1.1.2 Rational Unified Process

The Rational Unified Process (RUP)1 is a process framework developed by
Rational Software, now fully owned by IBM. A process framework is a sys-
tematic description of the process of software development, defining goals,
tasks, and plans and distributing work among the participants in the project.
RUP lets the user configure a custom process of development which is tai-
lored to the projects needs based on proven best practices. RUP provides a
web-based electronic process guide that leads the whole development team
through the development process. Extensions to this electronic process guide
can be created by developing software addons called RUP plug-ins.

RUP is based upon the idea of iterative development, as apposed to the
traditional Waterfall process (See Appendix C). The main focus of RUP is
the requirements and the architecture of the system(s).

1http://www.rational.com/products/rup/

1

1.1.3 Enterprise systems

Enterprise systems are systems that integrate the business functions in an
organization to enhance the efficiency and the flexibility of the organization.
Enterprise systems realize business processes, which are the main activities
of a business.

1.1.4 Business critical systems

A business critical system is a system on which the organization is fully
reliant to conduct its business. A breakdown in a business critical system
will halt the business itself.

1.1.5 Unified Modeling Language (UML)

The Unified Modeling Language (UML) is a general purpose language for
modeling object oriented systems, [13].

1.1.6 UML Profiles

Since the UML language is a general purpose modeling language and has
been designed to model a wide range of object oriented systems, we some-
times need a more specialized language to model special features of a domain.
One solution to this problem is to extend the UML language by creating
a UML Profile. A UML Profile does not change the structure of the UML
language, but it introduces three extension mechanisms: stereotypes, tagged
values, and constraints, [24].

Figure 1.1 shows a UML description of the operation “fetching data from a
database” in the base UML language, as well as a UML Profile which has
been created to capture this interaction more precisely.

Stereotypes are extensions of the constructs in the UML language. You can
take the modeling construct of Subsystem in standard UML and extend it
to Database or Client, or you can take the standard UML connector Uses
and extend it by the more precise relation GetsDataFrom.

Tagged values are pairs of names and values that stereotypes can take. In
Figure 1.1, the “Client” stereotype has a tagged value named OS with value
“Windows” indicating that the client runs on the Windows OS.

Constraints are defined using the Object Constraint Language (OCL). They
define a set of rules which describes what a well-formed or legal model is.

2

Figure 1.1: UML Profile Example.

1.2 Motivation

Modern enterprise systems bring great benefits to the companies that ac-
quire them. Yet, the interconnectedness of the systems makes the business
more vulnerable. If business critical parts of the system are crippled, this
can be devastating for a company. Business critical parts are those parts of
the system that are imperative for the day-to-day run of the business and
help the business conduct its primary functions. The consequence of a fault
in a business critical function can be loss of profit, loss of clients, and even
loss of the business itself.

To minimize the vulnerability of the system during operation, it is impera-
tive that we locate these vulnerabilities at the design stage of the project,
so that we can protect ourselves against them. This can be achieved by
building and analyzing models.

In the early days of system design it was easy to analyze a system based on a
small set of models. Because of the complexity of the modern enterprise sys-
tems, the fact that they are technically complex, and that they incorporate
socio-technical aspects, developers have to use a wide range of specialized
models. This makes it very hard to analyze the enterprise because the de-
scription (models) are fragmented and hard to interrelate. This has led to
the need of software tools specialized to integrate the different sub models,
thereby providing a unified view of the enterprise as a whole.

1.3 Problem description

The aim of this work is to create tools and work process that can assist
in the analysis of an enterprise solution. The idea is found in Figure 1.2.
Using the process and a set of tools that take models as input, automatic or
semi-automatic analysis of the enterprise is performed. This will be carried
out using the XMI standard. XMI is a flat file format for the storage of

3

UML models based on XML, [5], [12].

Figure 1.2: The aim of the process.

I will develop two software tools. The first is called the Enterprise Ana-
lyzer. It takes all the enterprise models (both behavioral and structural)
and merges them into an internal representation of the enterprise. The re-
sult will be a report of the analysis of the enterprise. The tool will focus on
the two quality attributes availability and criticality.

The second tool is called the Model Analyzer. It takes a single model as
input and transforms it into a list of risks that threaten the enterprise.
The users should be able to create their own transformation logic. While
the Enterprise Analyzer analyzes the whole enterprise, the Model Analyzer
analyzes specific parts of the system. The Model Analyzer will also have
the ability to store the risks it uncovers in a database. The tools will be
developed using C# 2.0 on .NET platform (v2.0) with Visual Studio 2005.

Then we define how the enterprise should be modeled. A set of UML Profiles
is created to precisely model the different parts of the enterprise. We call
these the Enterprise UML Profiles.

Also, a set of transformation profiles need to be defined. A transformation
profile is a piece of logic that describes how the Model Analyzer turns a
UML model into a set of risks. We must create transformation logic that
turns models described by the Enterprise UML Profiles into risks concerning
the enterprise.

I will also create a process extension to the Rational Unified Process (RUP).
For a more detailed description of RUP, see Appendix C.

4

1.4 Related work

Skene and Emmerich, [19], argues that Model Driven Development (MDD)
is a suitable framework for integrating analysis and design. MDD is a con-
cept where the design and development of applications are almost completely
done by creating models that is transformed into code. They saw the pos-
sibility of integrating the analysis directly into the modeling tools. Their
focus was on performance, which is only loosely and indirectly related to
reliability. Performance is a measure of the ability to handle work load.

Barth, [20], introduced another approach to performance analysis of com-
puter systems represented in UML models and developed a prototype tool
that simulated the performance of the system.

Earlier there has been a myriad of papers discussing the use of models as
basis for automatic performance analysis. Balsamo and Simeoni, [17], gives
a review of many of these approaches.

Majzik, Pataricza, and Bondavalli, [25], describe a transformation that does
a dependability analysis of a structural UML diagram.

Rodrigues and Rosenblum, [18], proposed a UML Profile for model driven
reliability analysis of general computer systems. They have not developed
any tools, but rather used an XLS2 transformation to turn the XMI models
into the input of the LTSA tool (Labelled Transition Systems Analyzer)
which is a tool developed by [16] for verification of concurrent systems.

Earlier work seems to be mostly related to performance analysis, and to
some degree to reliability analysis. I emphasize two other quality attributes,
namely availability and criticality. Most of the work seems to range from
conceptual to early prototypes. I have developed tools that can be used
within the RUP framework that covers both the behavioral and structural
aspect of the enterprise.

1.5 Report outline

In chapter 3 we define an Enterprise Representation and the models needed
to create this representation.

The two tools, the Enterprise Analyzer and the Model Analyzer, will be
described in Chapter 4 and 5 respectively.

Chapter 6 describes the Enterprise UML Profiles.
2An XML based language for transforming an XML file into another textual represen-

tation

5

Chapter 7 defines the Transformation Profiles that the Model Analyzer uses
to transform the models into risk lists.

In Chapter 8 an extension to the RUP Process is created to facilitate the
use of the tools in the development of enterprise systems.

Chapter 9 describes a test of the tools using an example enterprise modeled
with the Enterprise UML Profile.

Chapter 10 contains the tools’ user manuals.

A discussion of the work is found in Chapter 11.

Chapter 12 gives the conclusions and proposes future work.

Appendix A contains the class diagrams of the tools, as well as an overview
of what each source file in the tool does.

Appendix B gives an introduction to the concept of risk and risk analysis.

Appendix C gives an introduction to the Rational Unified Process.

Appendix D contains a description of the two types of risk analysis that the
Model Analyzer performs.

Appendix E shows the contents of the ZIP file attached to this report.

6

Chapter 2

Introduction to the Tools

2.1 Quality attributes

When developing an enterprise system, it is helpful to define a set of criteria
to measure the performance. Two such criteria, availability and criticality,
are defined in the following and are the focus of my tools.

2.1.1 Availability

The purpose of the enterprise systems is to assist and perform business
functions, which in turn run the enterprise. The first identifiable goals in
the engineering of an enterprise system is to increase the availability of these
business functions. The enterprise should have some kind of availability
level goal, such as “The online store should never be unavailable more than
1 minute a day on average”.

If the developers are to design an enterprise system that meets a set of these
goals, they must have some way of calculating this availability. Having a
high availability implies that the systems, components, infrastructure etc
in the enterprise are reliable. To identify the reliability issues, we need to
perform risk analysis.

According to Musa [9] reliability of a software component is

“The probability of execution without failure for some specified interval of
time or other natural units.”

E.g, a component can have reliability of 0.9 (90 percent chance) of not failing
within one year of operation.

7

A common way to define reliability is simply as the time between failures,
Mean Time Before Failure (MTBF), which is the average time between
failures.

In order to have a high availability, we also need high maintainability. Once
an enterprise function is down, we must restore it as quickly as possible.
Mean Time To Repair (MTTR), which is the average time it takes to repair
the component, is a measure of the maintainability of the component.

With these two factors we can define availability as

Availibility =
MTBF

MTBF + MTTR
. (2.1)

As seen, the availability is not the same as the reliability. The availability
is a function of reliability and maintainability. If we speed up the time it
takes to repair a component, it does not make the component more reliable
(the time between failures does not increase), but the availability of the
component is increased.

Assume that a system is composed of several components that are used to re-
alize the system functions. The system function can rely on the components
in two different ways.

The components can be arranged in an AND-configuration, which means
that the function uses a series of components that all need to be successful
for the function itself to be successful. The availability of such a function is
defined in (2.2), [8].

availibility =
n∏

i=0

Ai. (2.2)

The overall reliability of an AND-configuration with n components is the
product of the availability of each component.

An example is a process that needs to gather data from two different data-
bases and calculate some value. For the process to succeed, the two data-
bases must be operational, as well as the component that performs the
calculation. In other words, we have three components that need to suc-
ceed. Assume that all the components have an availability of 0.99. Then
the overall availability of the process is 0.99 · 0.99 · 0.99 = 0.970299.

The other arrangement of components is the OR-configuration, where a
function uses a series of components in which at least one of them must
succeed for the whole process to succeed. The formula for calculating the
availability of such a configuration is shown in (2.3), [8].

8

availibility = 1−
n∏

i=0

(1−Ai). (2.3)

One example is a component with the availability of 0.99 that does a cal-
culation based on the data in a database. The data exists in two parallel
databases, both of which have an availability of 0.99. The overall availability
of the process is then 0.99 · (1− ((1− 0.99) · (1− 0.99))) = 0.989901.

When developing an enterprise system, the reliability and maintainability
are not hard to find. Enterprise systems uses to a large extent OTS1 prod-
ucts where the vendors supply the reliability information. The same applies
for computer hardware.

When determining the reliability of in-house developed software, there exists
thumb rules and mathematical models for calculating this based on inputs
like number of statements, numbers of conditions and the experience of the
programmer, code coverage etc.

The time to repair any failures may be determined by looking at the enter-
prises unique situation, such as accessibility to support, technicians etc.

The companies also usually have legacy systems that they want to inte-
grate, and know themselves what the reliability and maintainability of these
systems are.

2.1.2 Criticality

Knowing the availability of a certain part of the enterprise is not enough.
The more critical a business function is, the higher level of availability is
needed. Some business processes will be more critical than other, and the
components realizing a process will inherit this criticality. When doing risk
analysis we should have a clear picture of which components that are more
critical than others, so that we can focus more time on them.

A good measure of criticality would be the amount of profit a company
misses if the business process is down, plus the amount of money it costs,
e.g in the form of the loss of clients etc.

The two main performance indicators of the enterprise system analysis will
be the availability and the criticality. The criticality can be viewed as the
processes’ influence on the structural parts of the enterprise, while the avail-
ability can be viewed as the structural parts influence on the processes.

1Off The Shelf - A piece of software acquired externally. Either commercially (COTS)
or with an Open Source license.

9

Further, one can see that it is availability and criticality that together gives
the most precise answer to the question about where it is best to concentrate
resources in development. Knowing the criticality of the enterprise is then
important when designing a reliable enterprise system.

2.2 The tools relation to quality attributes

Figure 2.1: The proposed tools.

Figure 2.1 shows the relation between the two quality attributes (availability
and criticality) of the extended process and the tools.

When a part of the enterprise is modeled, it is analyzed using the Model An-
alyzer. Based on the risk analysis assisted by this tool, the analyst updates
the models’ reliability and maintainability information if needed (MTBF
and MTTR tag values). The general design is altered to reduce any risks
that the analysis has uncovered.

The model is then fed into the Enterprise Analyzer which appends it to
the current representation of the enterprise. One can then use the tool
to calculate the criticality and availability of the updated enterprise. This
information can also be considered when using the Model Analyzer.

The Model Analyzer helps the modelers create more reliable solutions, whilst
the Enterprise Analyzer helps these same modelers to verify that the enter-
prise meets the availability goals and to see which parts of the enterprise
that are most critical.

10

2.3 Tool requirements

Given that the tools are to be used in connection with the RUP process,
it enforces certain requirements or constraint on how the extended process
and tools should function. With basis in the best practices of RUP, I will
now lay down these requirements.

• Develop iteratively.

The process should allow iterative development. This means that the prac-
tices forced by the extended process should not conflict with the overall RUP
practice of iterative development.

• Use component architecture.

The enterprise software should be modeled with a component-based view.

• Model visually.

The design of the enterprise should be done as visually as possible. Since
the system is modeled using UML models to describe every facet of the
enterprise, this is already achieved.

• Continuously verify quality.

Quality, in view of our tools and extended process, is criticality and avail-
ability. As the enterprise design and development is progressing, we should
be able to verify the criticality and availability of the enterprise.

We sum up the requirements in Table 2.1.

11

REQ Description
R1 The tools should allow componential and iter-

ative development of the enterprise.
R2 The tools should efficiently analyze the criti-

cality of the enterprise
R3 The tools should efficiently analyze the avail-

ability of the enterprise
R4 The analyzers should be able to verify the

availability and criticality of the enterprise
whilst it is developed.

Table 2.1: Tool Requirements.

12

Chapter 3

The Enterprise
Representation

3.1 Introduction

Models can be said to have a level and a view. The level is level of detail of
the model. For example system level or component level. The view is what
the model tries to represent, such as behavior or structure.

A business analyst might design the business processes, one architect might
model the behaviorial aspect of the systems in the enterprise, whilst another
might model the structural aspect of a sub system. Each models a piece of
the enterprise. The problem arrives when it is time to analyze the enterprise.
The enterprise representation is fragmented and it is not easy to see the
relation between the different parts of the enterprise. It is very hard or near
impossible to do a full analysis of the system. Also, few, if any persons have
knowledge about every facet of the enterprise.

One way to reduce the fragmentation is to define a model that encompasses
the whole enterprise at every view and level. Such a model would not only
be very large and difficult to read, but also hard to analyze from a human
perspective. Fragmentation leads to more precise models, but it decreases
our ability to analyze the enterprise.

Defragmentation leads to more easily analyzable models, but makes it harder
to fully model a part of the enterprise. If we have to omit details of the en-
terprise, these details will not be analyzed during the model-based analysis.

We need to find a way where we can model at different levels and views,
that is, have a fragmented representation, without the loss of clarity.

13

The solution to this problem is to merge these digitized models (XMI stored
models) into an all-encompassing model that is analyzed by a software tool.
See Figure 3.1.

This unified model is from now referred to as the Enterprise Representation.
It is a data structure used by Enterprise Analyzer tool.

As the system is gradually designed, the models are parsed into this data
structure, thus growing a representation of the enterprise. The business
analyst can at any time review the availability of the business processes
based on the models supplied by the architects and, likewise, the architects
can review the criticality of the different parts in the system based on the
models that the business analyst created. The analyst can see if the current
solution meets the availability requirements, and the architects can identify
weak spots.

Figure 3.1: Creating the Enterprise Representation.

This chapter will define a representation of the enterprise and select a set of
models that lets us model this representation.

14

3.1.1 The nature of Enterprise Systems

In [3] we see that the typical Enterprise Systems are net centric, that is, they
use a client-server architecture. This is logical as many users need to access
the same information in the enterprise system. By storing the data centrally,
it is easily accessed by users across the organization. Not only over LAN,
but also over the internet, as organization can span over large geographic
distances. Enterprise solutions can also connect to other organizations for
business to business commerce and collaboration. Enterprise systems are
therefore highly distributed systems with a high degree of information flow
and many transactions.

A study of large companies using enterprise systems showed that 70-80 per-
cent of all transactions was made in legacy1 systems, often developed in old
languages like COBOL2, which means that a lot of the effort in the develop-
ment of an enterprise system is connecting old systems with new, [4]. This
implies that the component based architecture of RUP is justified in this
domain.

3.2 Exploring the enterprise

In order to automatically analyze the enterprise, we need to define its struc-
ture. In other words we must create a meta model of the enterprise domain.
A blue print in which we can define a wide range of different enterprises that
all conform to the same meta model.

In Figure 3.2 such a meta model is defined. The model was created by doing
a top down decomposition of the enterprise.

As said, the role of the enterprise system is to realize one or more business
processes. Such a process might be “Sell an item”. The business process is
in turn realized by a set of business functions. A business function is a task
performed by the enterprise. In the example of the business process “Sell an
item”, a business function might be “Accept order” and “Handle Order”.

The business functions are realized by a set of systems which support these
functions. Systems such as “Invoice-database” and “Order-database” Sys-
tems are in turn realized by a set of components. A Software component
may be a class or a set of classes that perform a special function such as

1Computer systems or application programs which are outdated and incompatible with
other systems, but are too costly to replace or redesign. They are often large, intimidating,
and difficult to modify. -http://www.rigi.csc.uvic.ca/Pages/description/glossary.html

2Common Business Oriented Language. Programming language developed in the 1960s
for the creation of financial and administrational software.

15

Figure 3.2: Enterprise meta model.

a “Database Handler” component which handles communication with the
database. Each component is realized by a set of methods, which in turn
are realized by a piece of code.

This decomposition shows the connection between the socio-technical con-
struct of a business function to the technical construct of a line of code.

Each construct in this model weakens its super construct, and weaknesses
are passed upwards in the model. A weak line of code could result in the
weakening of the entire enterprise. By having this traceable link we may
easily analyze the enterprise. For example, if we know what business func-
tions that are critical to the enterprise, we can easily trace this criticality
down to component level, and therefore know which components we need to
spend more time on (both in analysis and development).

In Figure 3.2 we can see that there exists three distinct levels of modeling
and analysis. These three levels are shown in Figure 3.3. The upper level
deals with the business processes of the enterprise, the middle level deals
with how the systems realize these processes, and the lower level deals with
the inner workings of a single system.

At the start of the project, we don’t know anything about the architecture,
we only have set of requirements which defines a set of business processes.
The next step is to realize these business processes with a set of systems.

16

Figure 3.3: The enterprise pyramid structure.

As we pass along the time line of the project, we go from conceptual to
real, from socio-technical to purely technical. The design becomes more and
more detailed, and the amount time and resources needed to analyze them
increases. Since every level is important for the overall well-functioning
of the enterprise, we cannot ignore the lower levels. This produces the
unwanted effect of ever increasing analysis work.

As previously mentioned, a construct weakens it’s super-construct. Another
way to view this is that sub-construct inherits the criticality of its super-
construct. For example a critical system must have a critical component,
and a non critical system cannot have critical components.

By moving downwards in the pyramid, we can filter out non critical aspects
from our analysis, so that even if the fidelity of the design increases, the
work of analysis does not.

The nature of criticalness is simple. A critical business process is realized by
critical systems, which uses critical components. The criticalness is inherited
downwards in the hierarchy (Figure 3.2).

Capturing this connection on the other hand is not simple. There is no
diagram that captures all aspects of the system. Even if we had this, such
a diagram would be confusing to both make and read. Diagrams focus on
different views and levels of detail. A component would be depicted at a
static low level logical diagram, while a business process would be depicted
in a behavioral high level process diagram. In other words, we must use
several kinds of models to model the diagram and their connection needs

17

to be created and maintained outside the models. The Enterprise Analyzer
could then take these models as input, assemble an internal representation
of the system, and assist us in analyzing and visualizing the criticality of
the system.

Such a tool will become useful when a system grows so large that one person
cannot easily see how the criticality expands into the system. A business an-
alyst knows which business functions that are critical for the enterprise, but
does not have knowledge about which system components that are critical
in realizing these processes. On the other side, you may have a developer
that knows what components are critical to the task that they are realizing,
but they do not know how to relate this criticality to the business processes.
The first step in creating such a tool is to define an enterprise representation.

Based on the structure in Figure 3.3 and Figure 3.2, we can define a repre-
sentation of the enterprise (Figure 3.16).

Figure 3.4: The structure of the enterprise.

The three layers in the pyramid of Figure 3.3 are shown with three different
shades of grey in the figure. The enterprise is also divided into two concerns,
a behavioral and a structural concern. The entities at the left side consti-
tute the behavioral parts of the system, whilst the right side in the figure
constitutes the structural parts.

The behavior of the enterprise is divided into business processes, which them-
selves are realized by a set of business functions. Each business function is
divided into system operations, which are interactions between systems or a
highly abstracted operation within a single system.

18

System operations in turn are divided into subsystem operations, which are
the interactions between components in the system(s).

The structure of the enterprise starts with the environment, which is the
environment in which the system runs. It can be physical, like a server, or
logical, like an operating system. Environments themselves consist of other
environments or systems. Systems are distinct parts of the enterprise that
offer functionality to the business functions. The Systems are divided into
components, which themselves can be divided into one or more components.

To complete the representation we need to link the behavioral and structural
parts. This is done by linking each system operation with its associated
systems and, likewise, linking subsystems to its associated components.

We now have the structure of the enterprise. The next step is to select a set
of models that lets us model something that can be transformed into this
representation.

3.3 Model selection

In the previous section it was established that the enterprise representation
should have a three-layered nature. One is in the business process domain,
largely dealing with the business processes. The second concentrates on the
systems and their interplay. The third focuses on the components of the
systems and their interplay.

3.3.1 Business processes

At this level we need to capture the business process and the business func-
tions. The entities of this level of modeling are business functions, and a
single model should represent a single business process.

The business functions transcend the technical aspect of the systems and
is more than a sequence of system operations. For example, the activity
of selling an item from an online store may span over several weeks, from
ordering the item, storing it, selling it, and dispatching it.

At this stage, we don’t aim to find out how one system in the process may
fail, but rather how the process itself might fail. To assess the business
process, we must effectively model it conceptually. First it must support
parallelism, since business processes are often divided into parallel sub-
activities.

The entities of the model must be able to represent business functions, since

19

this is the main focus of business process modeling. The connectors in the
model must represent the transition from one business function to another.
Furthermore, the model must be able to handle conditional forks, as each
process can be divided into several scenarios.

There are five behavioral UML models: Communication-, Interaction-, State
Machine-, Sequence-, and the Activity Diagram. Based on the requirements
above, we can compare all of the behavioral diagrams (see Figure 3.5).

Figure 3.5: Comparing the diagram types on business process modeling.

Only the Activity Diagram satisfies all our needs to model business processes.
Figure 3.6 shows such a diagram applied to the modeling of a business
process. The figure also points out the different parts the activity diagram
is decomposed into. The action states represent business functions, the
transition show the sequence of the business functions. The decision lets us
branch out into several scenarios based on a decision. The fork and merge
let us model parallel activities.

20

Figure 3.6: An example Activity Diagram.

3.3.2 Systems

When realizing a business function, the systems in the enterprise cooperate.
Information will flow from department to department. The goal is to capture
this interplay of entities in the enterprise. at this level we need to model
the systems, the environments in which the systems run, and the interaction
between these parts.

Beginning with behavioral part, the entities must be able to depict a sys-
tem, and the connectors must depict the communication (data retrieval,
messaging etc.) between these systems. The model should also be able to
depict the sequence of actions, so that we may easily see the consequences
of a failed action. Based on these requirements, we can compare all of the
behavioral diagrams (see Figure 3.5).

Only the sequence diagram satisfies all our needs to model the behavioral
interactions of the Systems level. Figure 3.8 depicts such a diagram. The
sequence diagrams are composed of life lines, which are structural parts
of the system (in our case whole Systems), and messages, which are the
interactions between these (in our case System Actions).

On the structural side, we need to represent systems and environments. We
can define the following requirements: It should show the mapping of the
system to hardware and other software (the environments), and its entities
should be systems.

In Figure 3.9, all the structural diagrams are compared w.r.t these two re-
quirements. Only the Deployment Diagram satisfies these two requirements.
Figure 3.10 shows such a diagram applied to our example. The nodes rep-
resent environments, while components represent systems.

21

Figure 3.7: Comparing the diagram types on systems behavioral modeling.

Figure 3.8: An example Sequence Diagram.

22

Figure 3.9: Comparing the diagram types on systems structural modeling.

Figure 3.10: Example Deployment Diagram.

23

3.3.3 Subsystems

When analyzing the subsystem part of the system, we can uncover risks
concerning components and the interaction between them. The entities in
the subsystem domain are components.

In the structural part of the layer, the model should depict the logical struc-
ture of components and the relation between them.

Figure 3.11: Comparing the diagram types on sub systems structural mod-
eling.

By comparing all the structural diagrams in Figure 3.11, we see that only
the Component Diagram meets all of our requirements. Figure 3.12 depicts
such a model. The component in the diagram represents a component in
the enterprise.

The interactions between components follow the same needs as the interac-
tions between the systems, therefore the sequence diagram is the best option
for modeling this view. The only difference is that messages represents sub-
system operations instead of system actions and that the lifelines represent
components rather than systems.

3.3.4 Summary

In the previous section it was argued that the modeling of the enterprise
should be done at three different levels of detail or abstraction, namely, en-
terprise level, systems level and subsystems level. At each of these levels we
selected a set of requirements which we considered important at these levels,

24

Figure 3.12: An Example Component Diagram.

and then, based on this, we selected a model to capture these requirements.
Figure 3.13 shows this choice.

Figure 3.13: The main modeling views.

We have also established which parts of the diagrams that represent the
different parts of the enterprise (See Figure 3.16). Our aim is now to take
all these models and merge them into a data structure of the enterprise
that permits easy analysis. The next step is therefore to assign an object
representation to each of these parts.

Figure 3.14 shows the relation between the elements in the UML diagrams
and the data structure of the enterprise representation. The UML diagrams
and diagram elements are colored yellow, while the objects in the enterprise
representation are colored gray.

The enterprise environment is represented by a single Deployment Diagram.
The diagram is decomposed into components and nodes, where the first
represents a System, while the latter represents an Environment.

A System object is represented by Component Diagram, which consists of
components that represents Component objects.

25

A business process is represented by an Activity Diagram. The Activity
Diagram is decomposed into several parts. The Action represents a business
function. The Transition represents the transition between business func-
tions. The decision, fork and merge elements all have their own object in
the enterprise representation.

Each business function is represented by a Sequence Diagram. Sequence
Diagrams are composed of messages and lifelines. The messages represent
System Actions, whilst the lifelines represent systems. A System Action
is represented by a Sequence Diagram, where the messages represent Sub
System Actions and the lifelines represent components.

3.4 Designing the enterprise representation data
structure

We must now use the enterprise objects (marked as grey in Figure 3.14) to
define a data structure that follows the structure of Figure 3.15. From now
on we call this data structure the EnterpriseRepresentation.

3.5 The EnterpriseRepresentation object model

Figure 3.16 shows the object structure of the EnterpriseRepresentation data
structure. It represents the structural and behavioral parts of the enterprise
and it builds the structure from UML models.

The structure of the enterprise is extracted from the structure of the UML
diagrams, but to be able to describe the enterprise richly enough to ana-
lyze it, we also need to supply the models with extra information. This
information is stored as stereotypes and tag values in the models.

Every entity in the Enterprise extends the base class EnterpriseEntity, which
facilitates the storage of such extended information. Each entity has one
or several stereotypes, and a set of tags. The TagValues- and Stereotype-
objects are stored in an ArrayList (a dynamic array in the C# language).

An EnterpriseEntity also has a name and an id that resolves any possible
name conflicts.

I will present the different parts of the data structure in the next sections.
As this is a complex data structure, I will use object instance models to
illustrate how the structure manifests itself.

26

Figure 3.14: The Relation between UML and the objects in the Enterprise
Representation.

27

Figure 3.15: The structure of the enterprise.

3.5.1 Behavioral part

The EnterpriseRepresentation has an ArrayList populated with BusinessProcess
objects. This list contains all the business processes in the enterprise. A
business process is realized by a set of business functions, but as described
earlier, when modeling the business process, we use more than the business
functions. We also have a set of objects that are used to describe things
such as decisions etc.

The business process is therefore realized by a graph of BusinessFunctionObject-
s. There are four different objects (nodes in the graph) that extend the Busi-
nessFunctionObjects. They all share the property that they follow another
BusinessFunctionObject through the attribute prev. The first BusinessFunc-
tionObject in the graph has prev value null.

The BusinessFunctionFork is a node where the business flow branches out
in two or more paths. The BusinessFunctionFork therefore has an Ar-
rayList named nexts, which contains all the BusinessFunctionObjects that
it branches to.

The BusinessFucntionMerge is a node where all the branches from a Busi-
nessFunctionFork meet up. The BusinessFunctionDecision is a node where
the business flow branches into two or more paths, but unlike the fork node
only one of the paths are executed. Each path has a probability assigned to
it. Like with the BusinessFunctionFork, the nexts are stored in an ArrayList.

The BusinessFunction is a node in this graph, which represents a business

28

Figure 3.16: The EnterpriseRepresentation data structure.

29

function. The BusinessFunction is followed by an another BusinessFunc-
tionObject in the case where the given BusinessFunction is the last one in
the graph, it has the value null. It also holds a pointer to the BusinessProcess
of which it is a part.

Figure 3.17 shows an object instance model of an example graph as it man-
ifests itself at runtime.

Figure 3.17: An example graph of BusinessFunctionObjects.

Note that BusinessFunction does not extend EnterpriseEntity, but imple-
ments its members separately. The reason for this is that BusinessFunction
also must extend the base class BusinessFunctionObject, and the C# lan-
guage does not support multiple inheritance.

Each BusinessFunction is composed of a set of SystemOperation objects.
Unlike the BusinessProcess which is modeled in the parallel activity dia-
gram, it takes basis in the Sequence Diagram. In other words, it is only a
linked list of SystemOperations objects (see Figure 3.18). Each of the Sys-
temOperation objects also keeps a reference to its business function. The
BusinessFunction has a reference to the first System Operation through the
firstoperation member.

Figure 3.18: An example System Operation linked list.

The SystemOperation is composed by a sequence of SubSystemOperations,
which is represented by a linked list with the firstoperation attribute in
SystemOperation pointing to the first item in the list. Each of the Sub-
SystemOperation objects in this linked list keeps a reference parent to its
SystemOperation.

30

The SystemOperation keeps a reference to the two systems that it involves
(Figure 3.19). If the system operation is only performed on one system,
these two references both reference this single system.

Figure 3.19: SystemOperation with neighboring objects.

The SubSystemOperation keeps a reference to the components involved in
the operation (Figure 3.20).

Figure 3.20: The structure of a SubSystemOperation.

3.5.2 Structural part

The structure of the Enterprise is represented in the EnterpriseRepresen-
tation by an Environment object environment with the name “Enterprise”.
As previously described, an Environment can be further divided into sub
environments. Therefore each Environment has an ArrayList of environ-
ments. The Environment also has a set of systems which run within the
environment stored in the ArrayList systems.

The System is divided into a group of components in the ArrayList compo-
nents, which in turn may be divided into components. Each of these entities
also keep a reference to their super entity.

The components, systems, and environments make up a tree structure (Fig-
ure 3.21).

31

Figure 3.21: Enterprise structure tree - object instance model.

System and Component also keep an ArrayList (sysop and subsysops) that
reference the (sub)operations that is associated with the respective entity.
These redundant references are used so that we can easily traverse the struc-
ture. Figure 3.22 shows the access to the sub systems from the System
object.

Figure 3.22: System/SystemOperation relation - object instance model.

32

3.6 The XMI-Readers

The EnterpriseRepresentation class has four classes for parsing UML dia-
grams.

1. The DeploymentReader which reads Deployment diagrams and popu-
lates the environments and systems.

2. The ComponentsReader which reads Component diagrams and popu-
lates a System object with Components.

3. The BusinessProcessReader which reads an Activity Diagram and pop-
ulates a BusinessProcess.

4. The SequenceReader which reads Sequence Diagrams and populates
the structure with either subsystem operations or system operations.

In the next sections the different readers will be described in more detail.

3.6.1 ComponentReader

Introduction

The ComponentReader transforms the externally XMI-stored Component
Models into a tree structure of Component objects within the Enterpris-
eRepresentation.

The input

The structure of the Component Diagram XMI-representation is found in
Figure 3.23. UML has many features within its Component Diagram, but
the meta model below uses only the parts that we need in our case, which
is representing a hierarchy of components within a system.

Figure 3.24 shows a Component Diagram that conforms to the meta model
in Figure 3.23, and has the XMI-representation shown in Figure 3.25.

We do not represent any communication paths between the components, as
they are given by the behavioral diagrams.

Every model is encapsulated in a <UML:Model> element, and is the top
element of a Component Diagram. A model further contains an element
named <UML:Namespace.ownedElement> which encapsulates the elements

33

Figure 3.23: The structure of the XMI representation of a Component model.

Figure 3.24: An example Component Diagram.

34

Figure 3.25: An example Component Diagram XMI file.

35

in the model. In our case we have two possible elements. A component rep-
resented with the element <UML:Component> and stereotypes represented
by <UML:Stereotype>.

The components themselves may have a <UML:Namespace.ownedElement>
element which contains more components, as well as their own components.
Each component may have several <UML:Stereotype> elements under the
owned element <UML:ModelElement.stereotype> and a set of tag values,
represented by the element <UML:TaggedValue> under the owned element
<UML:ModelElement.taggedValue>.

Parsing the input

In the following section I will describe the most central algorithms that
parse the input and build the structure. There are three central methods.
The first serves as an accessor method for outside classes. This method
calls a second method that locates the starting point in the XMI node tree.
Finally, a third recursive method traverses through this node tree until its
fully parsed and gradually builds the object representation along the way.

Pseudo code 1 GetComponent
Input: systemid - The unique id to the system which the components are to be appended.
Input: filename - The filepath to the XMI file containing the component diagram.
Input: env - An Environment object that contains the system that is the Component

Diagram is going to populate.
Returns: Component
Description: Parses an XMI-document representing a UML Component model into a

tree of Component objects (From the EnterpriseRepresentation data structure) and
appends it to a system.

Filename: ComponentReader.cs

1: Parse XMI-document into XMLDocument document
2: name ← GetReferenceToSystemByID(id).Name
3: return GetSuperComponent(name)

Pseudo code 1 parses the XMI-file into an XMLDocument object (A .NET
object for storing XML files), which gives us a data structure representation
of the XMI-document. The XMLDocument consists of XMLNode objects
that each stores an element.

Then the name of the system which is to be populated with components is
extracted. The reason for this is that the components in the Component
Diagram must be nested in a component with the same name as the system
it decomposes. This serves as a runtime validity check while parsing, gives
the models more readability, and lastly it works as a dummy node in the
top of the tree, making it possible for the first level of component detail to

36

have multiple components. Then, lastly, GetSuperComponent (see Pseudo
Code 2) is called using the name of the system.

Pseudo code 2 GetSuperComponent
Description: This method locates the Component in the diagram which has the same

name as the system it is going to represent and creates a tree of Component objects
of its sub components.

Input: name - The name of the system that is going to be populated.
Returns: Component
Filename: ComponentReader.cs

1: for each XMLNode node with type “UML:Component” in document do
2: if node.Name equals name then
3: thecomponent ← create new Component based on data in node
4: if node has child nodes then
5: for each XMLNode subnode in node.children do
6: if subnode.Type equals “UML:Namespace.ownedElement” then
7: AppendSubComponents(subnode.children,thecomponent)
8: end if
9: end for

10: end if
11: end if
12: end for
13: return thecomponent

The GetSuperComponents locates the component within the Component Di-
agram that shares the same name as the system that is to be populated,
and then creates a tree structure of its sub-components. The Component
thecomponent is created. This is the top node of the tree we are going to
grow. The tree structure is built using the recursive method AppendSub-
Components in pseudo code 3.

AppendSubComponents takes two objects as input. The first is the tree
structure of components that has already been built, and the second is
the XML-representation of the subcomponents of the component (the child
nodes of the XMLNode) that was parsed in the previous recursive call.

The method extracts all the components owned by the current component,
creates Component objects, appends these to the tree structure, and passes
it recursively to another call of the AppendSubComponent.

The branching of the recursive calls are only stopped when a component
doesn’t have any children. When all branches are finalized, we have a built
a tree structure of Component objects out of our XMI representation.

37

Pseudo code 3 AppendSubComponents
Description: A recursive algorithm that traverses the part of an XMI model stored in

an XMLNodeList and builds a tree of components.
Input: XmlNodeList nodes - A list of XMI child nodes of the previouly parsed compo-

nent.
Input: Component thecomponent - The component to which we are going to append the

subcomponents of nodes too.
Returns: None (void)
Filename: ComponentReader.cs

1: for each XmlNode node in nodes do
2: if node.Name equals “UML:Component” then
3: c ← new Component(based on data in node)
4: thecomponent.component.Add(c)
5: for each XMLNode subnode in node.children do
6: if subnode.Name equals “UML:Namespace.ownedElement” then
7: AppendSubComponents(subnode.children,c)
8: end if
9: if subnode.Name equals “UML:ModelElement.stereotype” then

10: c.Stereotype ← GetStereotypeNameByID(based on id in subnode)
11: end if
12: if subnode.Name equals “UML:ModelElement.taggedValue” then
13: for each XMLNode subsubnode in subnode.children do
14: c.AddTag(new TagValue(based on data in subsubnode))
15: end for
16: end if
17: end for
18: end if
19: end for
20: return thecomponent

3.6.2 DeploymentReader

The DeploymentReader transforms the externally XMI-stored Deployment
Diagram into a tree structure of System and Environment objects within
the EnterpriseRepresentation.

The input

The structure of the Deployment Diagram is found in Figure 3.26. The
structure of a Deployment Diagram is closely related to that of the Compo-
nent Diagram.

The Deployment Diagram contains Nodes (Environments), which themselves
can be further partitioned into sub nodes or have a set of components (Sys-
tems). Both nodes and component extend a set of stereotypes and a set of
tag values.

38

Figure 3.26: The structure of the XMI representation of a Deployment
model.

Parsing the input

This parsing algorithm follows the same principle as the one with the Com-
ponent Reader. One method to access the parser, one method that localizes
the “starting point” of the model, and a recursive method which does the
actual parsing and object structure creation.

Pseudo code 4 GetDeployment
Description: A method that takes an XMI stored Deployment Diagram and transforms

it into a tree structure of Environment and System objects.
Input: String filname - The file path of the XMI document that is to be parsed.
Returns: Environment
Filename: DeploymentReader.cs

1: Parse XMI-document into XMLDocument document
2: return GetSuperNode()

Pseudo code 4 parses the XMI-file into an XMLDocument object and calls
the GetSuperNode (see pseudo code 5 mothod which locates the first (as in
the node that has no parents) node in XMI-representation.

The GetSuperNode method locates the Node “Enterprise” which every rep-
resentation of the systems and environments in the enterprise is encapsulated
within.

39

Pseudo code 5 GetSuperNode
Description: A method that starts the parsing of a Deployment Diagram currently

loaded in the global document object.
Input: None.
Returns: Environment object which is the top node of the tree structure of Environment

and System objects.
Filename: DeploymentReader.cs

1: for each node with type “UML:Node” in document do
2: if node.Name equals “Enterprise” then
3: Environment env ← new Environment(based on data in node)
4: if node has children then
5: for each subnode in node do
6: if subnode.Name equals “UML:Namespace.ownedElement” then
7: env ← GetSubNodes(subnode.children, env)
8: end if
9: end for

10: end if
11: end if
12: end for
13: return env

When it is found, the recursive GetSubNodes-method (6) is called and tra-
verses the structure very much like the ComponentReader did. The only
difference being that this parser builds a tree structure with two different
kinds of object, both Systems and Environments.

3.6.3 BusinessProcessReader

Introduction

The BusinessProcessReader transforms the externally XMI-stored Activity
Diagrams into a BusinessProcess object.

The input

The Activity Diagram can have two kinds of states, AcitityStates and PseudoStates.
The ActivityState is an action and represents a business function. There are
four kinds of pseudo states. The Initial and Final state, which defines where
the Activity Diagram starts and ends. The Junction is a state that handles
several input or output transitions. The Junction is a Merge Node if it has
multiple incoming transitions, and a Decision Node if it has only a single
incoming transition. The last pseudo state is the Fork, which represents a
Fork node.

40

Pseudo code 6 GetSubNodes
Description: A recursive method that parses a Deployment Diagram stored in the XMI-

notation.
Input: XmlNodeList nodes - A list of XMI child nodes of the previously parsed environ-

ment.
Input: Environment env - The environments that the sub nodes is to be appended to.
Returns: Environment object which is the top node of the tree structure of Environment

and System objects.
Filename: DeploymentReader.cs

1: for each node in nodes do
2: if node.Name equals “UML:Node” then
3: Environment e ← New Environment(based on data in node)
4: env.environments.Add(e)
5: for each subnode in node.children do
6: if subnode.Name equals “UML:Namespace.ownedElement” then
7: GetSubNodes(subnode.children, e)
8: end if
9: if subnode.Name equals “UML:Node.deployedComponent” then

10: for each subsubnode in subnode.children do
11: if subsubnode.Name equals “UML:Component” then
12: System s ← new System(based on data in subsubnode)
13: Add s to e.systems
14: Add Tags to s
15: end if
16: if subnode.Name equals “UML:ModelElement.taggedValue” then
17: for each subsubnode in subnode.children do
18: if subsubnode.Name equals “UML:Component” then
19: e.AddTag(new TagValue(based on data in subsubnode))
20: end if
21: end for
22: end if
23: end for
24: end if
25: end for
26: end if
27: end for
28: return env

All of these states are encapsulated within the UML:CompositeState.subvertex
element. The transition between the different states is defined by the UML:Transistion
elements which reside under the UML:Model/UML:Namespace.ownedElement.

The ActivityStates also have a set of stereotypes and tag values affiliated
with it, which are stored under the elements of <UML:ModelElement.stereotype>
and <UML:ModelElement.taggedValue>.

41

Figure 3.27: The structure of the XMI representation of an Activity Dia-
gram.

42

Parsing the input

This parsing algorithm has three main methods. One method that starts
the parsing, one method that finds the initial node, and finally a recursive
method that builds the object representation of the business process.

Pseudo code 7 GetProcess
Description: This method is the access method of the BusinessProcessReader, it lets

the user supply an Activity Diagram which is parsed into a BusinessProcess object.
Input: string filename - The filpath of the Activity Diagram that holds the Business

Process.
Input: string name - The name of the Business Process.
Returns: BusinessProcess
Filename: BusinessProcessReader.cs

1: Parse filename into XMLDocument document
2: process ← new BusinessProcess
3: process.Name ← name
4: ParseProcess(process)
5: return process

The GetProcess method (Pseudo Code 7) loads the XMI file into an XML-
Document object and creates a BusinessProcess object.

The next step is the ParseProcess (Pseudo Code 8) method which locates
the initial state and then locates the transition that goes from the initial
node. With this information the first state is located.

This state can either be an AcitivtyState, a BusinessForkNode, or a Busi-
nessFunctionDescion. It cannot be a BusinessFunctionMerge node as these
join several incoming transitions, and there can only be one incoming tran-
sition from the initial node. Either way, the first object is created and
appended to the business process as the first function.

The first object either has one or multiple next objects. The method now
calls the recursive ParseFunctionObject method for each of the nexts. The
ParseFunctionObject takes three parameters, namely the current object,
the previous object, and the id of the current object. The first thing done
in the method is to append the current object to previous objects next
attribute. This two-way reference between objects makes it easier to traverse
the structure.

The next step is to see see if the current object has one or multiple next
objects. If there only is one next object, the id of that object is found
by going through all the transitions and looking for the state that has an
incoming transition from the current object. When this id is found, a new
object is created based on this value, and then the method recursively calls
itself.

43

If there are multiple next objects, the next id values are extracted and the
procedure in the prevents paragraph is done for each one.

3.6.4 SequenceReader

Introduction

The SequenceReader parses a Sequence Diagrams and produces a linked list
of SystemOperation or SubSystemOperation objects.

The input

The main parts of the Sequence Diagram is the message and the classifier
role, also known as the life line, which are the vertical lines that messages
pass between. Both can have several stereotypes and have a set of tagged
values. The messages are linked to the life lines with the two pointers,
receiver and sender.

Figure 3.28: The structure of the XMI representation of a Sequence Dia-
gram.

44

Parsing the inputs

The structure representation of the operations is simple. The SystemOperation-
s is simply a double linked list that point to their parent BusinessFunction.
Likewise the SubSystemOperation is a simple linked list where each mem-
ber has a pointer to its parent SystemOperation. Given the structure of
the XMI document, this is the most straightforward parsing with respect to
structural traversal.

I am now going to describe the process of parsing the SystemOperations.
Keep in mind that the way we parse SubSystemOperations is nearly identi-
cal, the difference being in what kind of objects that is created, and which
they reference. SubSystemOperations reference Component objects rather
than System objects. Given this, I will only document the first.

There are two main methods. The first is GetSystemOperation, which is
the accessor method that outside classes use to parse a diagram. It simply
reads the XMI document into an XMLDocument, extracts the sequence of
the messages, and stores it in an ArrayList called msg.

Then we go through each of the id values in the msg list and create a Syste-
mOperation for each of them. A doubly linked list structure is maintained.

The SystemOperation object itself is created by the method CreateSyste-
mOperationMessage. It assures that the SubSystem object maintains the
right references to the other parts of the EnterpriseRepresentation struc-
ture, namely the systems it involves and the BusinessFunction object it
realizes.

When creating a list of SubSystemOperations, we use a similar method
named CreateSubSystemOperation.

45

Pseudo code 8 ParseProcess
Description: The method takes an empty business process as input and locates the first

business function object in the globally stored XMI file. The first business function
is appended to the business process. It then uses the ParseFunctionObject method
to build the whole business function graph.

Input: BusinessProciess process - The business process that the business functions are
to be assocatied with.

Returns: BusinessProcess
Filename: BusinessProcessReader.cs

1: firstobject ← Get First object in the activity diagram.
2: if firstobject is an ActivityState then
3: process.First ← new BusinessFunction
4: Append tags and stereotypes to process.First
5: next ← get the id of the next state
6: if next is a Fork Node then
7: nextobj ← new BusinessFunctionFork
8: end if
9: if next is a Decision Node then

10: nextobj ← new BusinessFunctionDesicion
11: end if
12: if next is an Action then
13: nextobj ← new BusinessFunction
14: end if
15: Process.First.Next ← nextobj
16: ParseFunctionObject(nextobj,process.First, next)
17: else if firstobject has multiple nexts then
18: if firstobject is a Fork Node then
19: process.First ← new BusinessFunctionFork
20: end if
21: if firstobject is a Decision Node then
22: process.First ← new BusinessFunctionDecision
23: end if
24: for each next in firstobject do
25: if next is an Action then
26: nextobj ← new BusinessFunction
27: else if next is a Merge Node then
28: nextobj ← new BusinessFunctionMerge
29: else if next is a Decision Node then
30: nextobj ← new BusinessFunctionDescision
31: else if next is a Fork Node then
32: nextobj ← new BusinessFunctionFork
33: end if
34: if nextobj not null then
35: if firstobject is a BusinessFunctionDesicsion then
36: Add probabilities to firstobject.
37: end if
38: set nextobj as a next object in process.First
39: ParseFunctionObject(nextobj, process.First, next)
40: end if
41: end for
42: end if
43: return process

46

Pseudo code 9 ParseFunctionObject
Description: A recursive method that builds the business function graph. It takes the

current node as input and recursively passes the node’s children to itself.
Input: Object function - The current function.
Input: Object prev - The previously parsed function.
Input: String current - The ID of the current object.
Returns: None (void)
Filename: BusinessProcessReader.cs

1: function.previous ← prev
2: currenttype ← get the current object type
3: if currentobject has multiple next objects then
4: for each nextobject in currentobject do
5: BusinessFunctionObject next ← null
6: if nextobject is an ActivityState then
7: next ← new BusinessFunction
8: Extract stereotypes and tags to next.
9: else if nextobject is Merge Node then

10: next ← new BusinessFunctionMerge
11: else if nextobject is a Decision Node then
12: next ← new BusinessFunctionDecision
13: end if
14: if nextobject is a Fork Node then
15: next ← new BusinessFunctionFork
16: end if
17: if next not null then
18: current.next.Add(next)
19: ParseFunctionObject(function.next,function,nextid)
20: end if
21: end for
22: else
23: nextid ← GetNextID(current)
24: ObjectType nexttype ← GetObjectType(nextid)
25: BusinessFunctionObject next ← null
26: if MultipleNexts(nexttype) then
27: if nexttype is a ObjectType.DescsionNode then
28: next ← new BusinessFunctionDecision
29: else
30: next ← new BusinessFunctionFork
31: end if
32: else
33: if nexttype is a ObjectType.ActivityState then
34: next ← new BusinessFunction(GetActivityStateName(nextid), process,

nextid)
35: Extract stereotypes and tags to next.
36: else if nexttype is a ObjectType.MergeNode then
37: next ← new BusinessFunctionMerge
38: end if
39: end if
40: if next is not null then
41: function.Next ← next
42: ParseFunctionObject(function.Next, function, nextid)
43: end if
44: end if

47

Pseudo code 10 GetSystemOperations
Description: A method that parses all the messages in a Sequence Diagram and builds

an doubly linked list of System Operations.
Input: Environment enterprise - The Enterprise environment that contains the all the

systems that the System Operations are associated with.
Input: string filename - The filepath of the Sequence Diagram.
Input: BusinessFunction parent - The business function that the all of the System Op-

erations realize.
Returns: SystemOperation
Filename: SequenceReader.cs

1: Parse file into XMLDocument document
2: msg ← GetMessageSquence
3: SystemOperation first ← new SystemOperation of msg[msg.Count - 1]
4: msg.RemoveAt(msg.Count - 1)
5: SystemOperation current
6: SystemOperation newop
7: current ← first
8: while msg.Count greater than 0 do
9: newop ← CreateSystemOperationMessage of msg[msg.Count - 1]

10: current.next ← newop
11: newop.prev ← current
12: current ← newop
13: msg.RemoveAt(msg.Count - 1);
14: end while
15: return first

48

Pseudo code 11 CreateSystemOperationMessage
Description: A method that creates a single SystemOperation object based on an id.
Input: string id - The XMI id of the message in the Sequence Diagram that we want to

create an SystemOperation of.
Returns: SystemOperation
Filename: SequenceReader.cs

1: for each node with type “UML:Message” in document do
2: if node.id equals id then
3: SystemOperation sysop ← new SystemOperation(based on data in node)
4: sysop.fromsystem ← Get reference to system based on data in node
5: sysop.toosystem ← Get reference to system based on data in node
6: sysop.fromsystem.AddSystemOperation(sysop)
7: sysop.toosystem.AddSystemOperation(sysop)
8: if node has children then
9: for each subnode in node do

10: if subnode.Name equals “UML:ModelElement.stereotype” then
11: sysop.AddStereotype(based on id in subnode)
12: end if
13: end for
14: if subnode.Name equals “UML:ModelElement.taggedValue” then
15: for each subnode in node do
16: sysop.AddTag(based on id in subnode)
17: end for
18: end if
19: end if
20: end if
21: end for
22: return sysop

49

Chapter 4

Enterprise Analyzer

4.1 Introduction

Figure 4.1: The principle of analysis.

The Enterprise Analyzer takes the enterprise representation as input and
performs an automatic analysis of it. Figure 4.1 shows the principle of the
analysis.

The structural parts of the enterprise are the basis for the availability of
the business functions, and this availability is inherited from the structural
parts to the behavioral.

Each business process has a criticality value assigned to it, which is inherited

50

from the business process to the structural parts of the enterprise.

4.2 Structure of the Enterprise Analyzer

Figure 4.2: Enterprise Analyzer tool structure.

Figure 4.2 shows the structure of the Enterprise Analyzer tool. The tool is
divided into two parts. The first part lets the user build, save, and load en-
terprise representations through the EnterpriseRepresentationCreator GUI,
whilst the other part analyzes an enterprise representation and presents it
with the AnalysisPresenter GUI.

The EnterpriseRepresentationCreator creates an EnterpriseRepresentation
object. This object has a set of methods used to build the representation.
EnterpriseRepresentationCreator simply bridges the user and this function-
ality.

The AnalysisPresenter has an EnterpriseAnalyzer object which has all the

51

functionality to analyze the enterprise, and it consumes an EnterpriseRep-
resentation object.

The EnterpriseAnalyzer has a ComponentAnalyzer. The ComponentAna-
lyzer analyzes the components and produces a ComponentAnalysisResult
object that contains the results.

Likewise, the EnterpriseAnalyzer also has analyzers that perform analysis on
systems, environments, and processes. All the analysis results are gathered
in the object AnalysisResult, which is presented by the AnalysisPresenter.

How to use the Enterprise Analyzer described in the user manual in the
appendix.

4.3 Analysis

The result of the analysis is shown in Figure 4.3.

Figure 4.3: Structure of an AnalysisResult object.

The AnalysisResult class encapsulates four ArrayLists which stores classes
that hold the analysis result of the different parts of the enterprise.

Each result consists of a reference to the object it analyzed in the enterprise
representation and a set of analysis values.

52

Every structural part has a criticality. The criticality is a number that
describes how critical the part is to the overall enterprise.

The structural parts have two kinds of availability. The base availability
AB is the availability of a structural part isolated. The total availability AT

is the availability of the part also considering external contributions to its
availability.

For example, AB(C) is the availability of a component C, whilst AT (C) is
the availability of the component when considering the availability of the
system and environments it runs under.

The components also have an importance value, which is a function of avail-
ability and criticality. A higher importance, the more we gain by spending
time on increasing its availability.

The process has an availability and a critical availability. The availability
is the percentage of time that the whole process is functioning completely.
The critical availability is how often the all the critical parts that a of the
process needs are available. A critical part is something that is necessary
for the business processes to succeed.

The next sections will describe these parameters further.

4.4 Calculating criticalness

One of the two main focus points of the Enterprise Analyzer is calculating the
criticalness of different parts of the system. Each of the business processes
are given a relative criticality value based on their criticality.

The enterprise representation model encompasses the whole enterprise, and
therefore we are able to trace this criticality to all the parts of the system.

Figure 4.4: Criticalness in the behavioral part.

53

Figure 4.4 shows the business process “Handle Order” decomposed into the
three levels of modeling. It starts with a business analyst who identifies
that handling orders are critical for the enterprise and therefore marks it as
critical.

Finally, the business analyst creates the business scenario by defining a set of
business functions. One of the business functions identified is that we have
to create an invoice. The business analyst then asks himself the question.
“Is creating an invoice critical to realizing the business process “Handle
Order”?”, which of course it is, and he marks it as “critical”.

At the next level a software architect is given the task of modeling a so-
lution that realizes “Create Invoice” using the systems. E.g., the architect
identifies several system operations such as, “Get Order details” “Add in-
voice to database” and “Update sales statistic”. The architect asks himself,
“Which of these three are critical for realizing “Create Invoice”?” To create
an invoice he has to know what the customer bought, and he must store
the invoice. Therefore the two first are marked critical. Updating the sales
statistics is not critical. If it fails, the invoice will still be created.

Lastly, another architect is given the task to create a solution that realizes
the “Get Order Details”. He identifies several critical sub system operations
such as “Get Customer Details” and “Get Order Items”.

At each level the modelers have only decided what is critical at their own
level in realizing their goal. They have no knowledge about how their mod-
els fit in with the whole enterprise. The architect who identified the task
“Get Customer Details” had no idea about whether his solution introduced
business critical functionality.

From the enterprise model, we may track the criticalness downwards and
identify it as critical to realizing “Handle Order”. If this functionality fails,
we will not be able to handle incoming orders. If creating invoices was not
critical to handling an order, “Get Customer Details” would not be critical
either, since we couldn’t track a continuous chain of criticalness upwards
from “Get Customer Details” to “Handle Order”.

Hence, by making the modelers use the stereotype “Critical” to mark what
is important at their level of behavioral modeling, we may calculate how the
criticalness transcends into the enterprise.

The next logical step is to relate this criticalness to the structural parts of the
enterprise. Because the Enterprise Representation interlinks the behavioral
and structural parts of the enterprise, we may trace this criticality further.

Suppose that we give a business process a relative criticalness of 100. We
can see how this spreads out in the enterprise in Figure 4.5. Through system

54

Figure 4.5: Component criticality inheritance - One business process.

operation and sub system operations the behavioral part of the enterprise is
related to the structural part. Therefore the operations inherit the criticality
from the business processes they realize, and the structural parts of the
enterprise inherits this criticality by realizing the operations.

55

4.4.1 Calculating component criticality

Figure 4.6 shows how the criticality of a component is calculated. The figure
shows a simplified enterprise with two business processes BP1 and BP2, both
with a criticality of 100. We assume that all the business functions, system
operations, and sub system operations are critical in the following examples.

Figure 4.6: Component criticality inheritance - Multiple business process.

Components interact with sub system operations, therefore the criticality of
a component is inherited from the sub system operations with which it is
linked.

Component A is used by two operations SSO1 and SS02, which realizes BP1
and BP2. BP1 has a criticality of 50, and BP2 has a criticality of 100. SSO1
only have a criticality of 50 since it is only used 50 percent of the times BP1
is executed.

What is then the criticality of Component A? By adding the criticality of
the sub system operations we get 150, but a component cannot be more
critical than the business processes it realizes. We could have a hundred
sub system operations linked with this component, yet it would not be 150
times as critical as the business process. The criticality of a component C
that realizes a business process BP is

Criticality(C,BP) = MAX({SSO0 . . . SSOi}), (4.1)

where SSOi criticality realizes BP , and SSOi uses component C. In the

56

case above with BP1, this would mean MAX(50,100) which is 100.

When a component is realizing more than one business process, the calcu-
lation is a bit different. The criticality of a component that realizes a set of
business processes BP0 to BPn is

Criticality =
∑

Criticality(C,BP0) + . . . + Criticality(C,BPn), (4.2)

where Criticality(C,BP) is given by (4.1). In other words, it is the sum of the
maximum sub system operation from each business process. Component B
will always be used to realize both BP1 and BP2, therefore it gets a criticality
score of 200. The algorithm for calculating this value is found in Pseudo
Code 12.

Pseudo code 12 ComponentCriticalityCalculation
Description: Calculates the criticality of the components in an enterprise based on the

business processes.
Input: An Enterprise Representation with a set of business processes with associated

values of criticality.
Filename: ComponentAnalysis.cs

1: for each component in EnterpriseRepresentation do
2: maxcrit ← 0
3: critsum ← 0
4: for each process in EnterpriseRepresentation do
5: prob← Get the probability of component being used during an execution of the

process.
6: for each subsysop realized by component do
7: if subsysop is critical then
8: if subsysop realizes process then
9: crit ← GetCriticality(subysop) · prob

10: break out of for each
11: end if
12: end if
13: end for
14: critsum ← critsum + crit
15: end for
16: Component.criticality ← critsum
17: end for

The algorithm calculates the criticality of each component by going through
each business process. Each sub system operation of the component is then
checked to see wether it realizes the given business processes and if it is
critical.

The probability of the component being executed during the process is calcu-
lated, and the criticality contribution from that business process is calculated
as the product of the process criticality and the probability. The criticality

57

of the component is the sum of the criticality of the business processes that
is realized by the component.

58

4.4.2 Calculating system and environment criticality

Calculating the criticality of a system is done the same way as with compo-
nents, except that the criticalness is inherited through the system operations
usage of systems (See Figure 4.7), and the criticalness is multiplied with the
probability of the system being used in an execution of the business process.
See Pseudo Code 13.

Figure 4.7: System/Environment criticality inheritance.

Pseudo code 13 SystemCriticalityCalculation
Description: Calculates the criticality of the systems in an enterprise based on the busi-

ness processes.
Input: An Enterprise Representation with a set of business processes with a value of

criticality associated with them.
Filename: SystemAnalysis.cs

1: for each system in EnterpriseRepresentation do
2: critsum ← 0
3: crit ← 0
4: for each process in EnterpriseRepresentation do
5: prob ← Get the probability of system being used during one execution of the

process.
6: for each sysop realized by system do
7: if sysop is critical then
8: if sysop realizes process then
9: crit ← GetCriticality(sysop) · prob

10: break out of for each statement
11: end if
12: end if
13: end for
14: critsum ← critsum + crit
15: end forSystem.criticality ← critsum
16: end for

The criticality of an environment is inherited by the systems that run under
it. Pseudo Code 14 shows the pseudo code for calculating the environments
criticality. For each environment the criticality is summed by the criticality

59

of each process that is realized by the environment multiplied with probabil-
ity of the environment being used during one execution of the given business
process.

Pseudo code 14 EnvironmentCriticalityCalculation
Description: Calculates the criticality of the systems in an enterprise based on the busi-

ness processes.
Input: An Enterprise Representation with a set of business processes with associated

values of criticality.
Filename: SystemAnalysis.cs

1: for each environment in EnterpriseRepresentation do
2: crit ← 0.0
3: for each businessprocess in EnterpriseRepresentation do
4: prob ← Get the probability of environment being used during an execution of

the process.
5: crit ← crit + bp.Criticality · prob
6: end for
7: environment.criticality ← crit
8: end for

60

4.5 Calculating Availability

The other value we are concerned with in the Enterprise Tool are the avail-
abilities.

4.5.1 Calculating structural availability

There are two kinds of structural availability, the base availability and the
total availability, as was discussed earlier in this chapter.

The three structural parts in the enterprise (components, systems, and en-
vironments) can have two tag values named MTBF and MTTR.

Based on these parameters we can calculate the availability of the part as
shown in (4.3).

AB =
MTBF

MTBF + MTTR
. (4.3)

If the part also have the tag value parallel that says that the part has n-
parallel components whose availability is not inter-dependant. In this case
the calculation of the availability is shown in (4.4).

AB = 1− (1− (
MTBF

MTBF + MTTR
))n. (4.4)

The availability of a component is the product of its own base availability
multiplied with the base availability of n components super components
(n ≥ 0), multiplied with the base availability of the system the components
run under and the product of all the k environments that the systems run
under (k > 0). (Equation (4.5)).

AT (C) = AB(C) ·
n∏

i=0

AB(Ci) ·AB(S) ·
k∏

i=0

AB(Ei). (4.5)

The pseudo node is found in Pseudo Code 15. It uses the method GetAvaili-
bilityOf, which takes a EnterpriseEntity object and calculates its availability
(shown in (4.4) and 4.3) based on the tag values in the XMI document. The
algorithm starts with a component and traverses the structural part of the
enterprise representation upwards, while calculating the overall availability.

Likewise, the availability of a system is the product of the availability of the
system itself and all the environments that the system runs under. (Equation
(4.6)).

61

Pseudo code 15 ComponentAvailibilityCalculation
Description: The code for calculating the availability of a component.
Input: Component comp - The component that is to be analyzed.
Filename: ComponentAnalyzer.cs

1: availibility ← GetAvailibilityOf(comp)
2: for each super component c of component do
3: availibility ← availibility· GetAvailibilityOf(c)
4: end for
5: System sys ← component.System
6: availibility ← availibility · GetAvailibilityOf(sys)
7: for each super environment e of sys do
8: availibility ← availibility · GetAvailibilityOf(e)
9: end for

10: comp.availibility ← availibility

AT (S) = AB(S) ·
n∏

i=0

AB(Ei). (4.6)

The pseudo code for calculating the availability of a system is found in
Pseudo Code 16.

Pseudo code 16 SystemAvailibilityCalculation
Description: The code for calculating the availability of a system.
Input: System sys - The system that is going to be analyzed.
Filename: SystemAnalyzer.cs

1: availibility ← GetAvailibilityOf(sys)
2: for each super environment e of sys do
3: availibility ← availibility · GetAvailibilityOf(e)
4: end for
5: sys.availibility ← availibility

The availability of an environment is the product of the availability of the
environment itself and the n-environments it runs under. (Equation (4.7)).

AT (E) = AB(E) ·
n∏

i=0

AB(Ei). (4.7)

The pseudo code for calculating the availability of an environment is found
in Pseudo Code 17.

Figure 4.8 shows the calculation of the availability of a hypothetical enter-
prise structure. All the structural parts have an availability of 0.99.

62

Pseudo code 17 EnvironmentAvailibilityCalculation
Description: The code for calculating the availability of an environment.
Input: Environment env - The environment that is going to be analyzed.
Filename: EnvironmentAnalyzer.cs

1: availibility ← GetAvailibilityOf(env)
2: for each super environment e of env do
3: availibility ← availibility · GetAvailibilityOf(e)
4: end for
5: sys.availibility ← availibility

4.5.2 Calculating process availability

Based on the availability of the structural parts of the enterprise, we want
to calculate the availability of the business processes in the enterprise. The
processes interact with the structural parts of the enterprise through system
operations and sub system operations.

Figure 4.9 shows how the sub operations inherit the availability of the com-
ponents. However, as the components run under the same environments, the
environments availability contributes to the total availability of the business
process more than once. The complicates the calculation. There is however
another approach. By taking the product of all the base availabilities of all
environments, systems and components, each part only contributes to the
total availability once.

Equation (4.8) shows the calculation of the availability of a business process
realized by a set of environments, systems, and components. The availability
is the product of the contribution to the availability of the components,
systems, and environments.

AT (BP) = AC(C) ·AC(S) ·AC(E). (4.8)

Equation (4.9), (4.10), and (4.11) show the calculation of each contribution
from n-parts. The contribution to the overall availability from a single part is
the probability (P) that the part is used during an execution of the business
process multiplied with its base availability, plus the reminder probability
(1 − P). The idea is that when a part is not used, its contribution to the
overall availability is 1.0. The contribution of n-parts is the product of the
contribution of each part.

AC(E) = (
n∏

i=0

AB(Ei) · P (Ei) + (1.0 − P (Ei)). (4.9)

63

Figure 4.8: Structural availability inheritance.

Figure 4.9: Process availability inheritance.

64

AC(S) =
n∏

i=0

AB(Si) · P (Si) + (1.0 − P (Si)). (4.10)

AC(C) =
n∏

i=0

AB(Ci) · P (Ci) + (1.0 − P (Ci)). (4.11)

The pseudo code for calculating the availability of a process is found in
Pseudo Code 18.

GetAvgSystemProbability, GetAvgEnvironmentProbability and GetAvgCom-
ponentProbability are methods that calculate how often the part is involved
with the realization of a business process.

Pseudo code 18 ProcessAvailibilityCalculation
Description: The code for calculating the availability of a business process.
Input: BusinessProcess bp - The business process that is going to be analyzed.
Filename: ProcessAnalyzer.cs

1: availibility ← 1.0
2: components ← GetComponentAnalysis()
3: environments ← GetEnvironmentAnalysis()
4: systems ← GetSystemAnalysis()
5: for each SystemAnalysisResult s in systems do
6: if s realizes bp then
7: sysprob ← GetAvgSystemProbability(bp,s.system)
8: availibility ← availibility · ((sysprob · sys.baseavailibility) + (1.0 - sysprob))
9: end if

10: end for
11: for each EnvironmentAnalysisResult e in environments do
12: if e realizes bp then
13: envprob ← GetAvgEnvironmentProbability(bp,e.environment)
14: availibility ← availibility · ((envprob · e.baseavailibility) + (1.0 - envprob))
15: end if
16: end for
17: for each ComponentAnalysisResult c in components do
18: if e realizes bp then
19: compprob ← GetAvgComponentProbability(bp,c.component)
20: availibility ← availibility · ((compprob · c.baseavailibility) + (1.0 - compprob)
21: end if
22: end for
23: return availibility

The critical availability is the availability of the smallest set of structural
parts that can realize the given business processes. In other words, we allow
that non-critical parts fail. The pseudo code for this calculation is identical
to that of Pseudo Code 18, the only difference being that instead of checking
for realization in line 6, 12 and 18, we check for critical realization. Does
the structural part realize a critical action that realizes the given business
process?

65

Pseudo code 19 shows the pseudo code for the GetAvgSystemProbability.
It starts by creating a list called bfs. This list will store all the business
functions in the given business processes that use the system. Then, for each
system operation subsys in the system, we check if it realizes the business
process. If this is the case, we add it to the bfs-list, but only if it is not
already in the list.

After this, we have filled the bfs-list with the business processes that realizes
the business process using the given system. The next step is to calculate the
probability that, during an execution of the business processes, the system
is used. Or in other words, the probability that at least one of the business
functions in the bfs-list is used. This is done by passing the first the list to
the GetProbabilityOfBusinessFunctions method.

Pseudo code 19 GetAvgSystemProbability
Description: A method that calculates the probability of system being used during an

execution of a business process.
Input: System sys - The system that the calculation is performed on.
Input: BusinessProciess bp - The business process that the system must realize.
Filename: SystemAnalyzer.cs

1: ArrayList bfs ← new ArrayList
2: for each SystemOperation sysop in sys.sysops do
3: if GetProcessOf(sysop) equals bp then
4: contains ← false
5: for each BusinessFunction bf in bfs do
6: if bf .ID equals sysop.businessfunction.ID then
7: contains ← true
8: end if
9: end for

10: if contains equals false then
11: bfs.Add(GetProcessOf(sysop))
12: end if
13: end if
14: end for
15: sum ← GetProbabilityOfBusinessFunctions(bfs, bp.First, 1.0)
16: return sum

Pseudo code 20 shows the pseudo code for the GetProbabilityOfBusiness-
Functions.

Before explaining the algorithm code-wise, I will show the principle visually
using figures. Figure 4.10 shows an example UML-modeled business process
with six business functions and two decisions.

Figure 4.11 (step 1) shows how the object representation of this business
process, as it manifests itself in the enterprise representation. The graph is
turned into a redundant tree to ease the calculations.

Assume that the system is used to realize business function BF6 and BF3
(marked red in step 2).

66

Figure 4.10: Example Activity Diagram.

Figure 4.11: GetProbabilityOfBusinessFunctions - Algorithmic steps.

67

The probability of system usage is then the probability of reaching BF6 or
BF3 during an execution of the business process.

This probability can then be calculated by starting in the tree node and
tracing each path until we reach either BF6 or BF3. The probability-
contribution of one path is the product of each made decision’s probability,
and the probability of system usage is the sum of all these paths. This is
shown in step 3.

The probability of reaching BF6 + Probability of reaching BF3 is

(0.75 · 0.5 + 0.5) = 0.875.

The second BF6 that is on the same branch as F3 is not calculated. We
cannot come to the second BF6 without using BF3, therefore, the probability
of getting to the second BF6 is accounted for in the probability of getting
to BF3.

The algorithmic approach is then clear. We need to calculate the proba-
bilities at the ends, which are business functions that is realized with the
system (marked red in Figure 4.11) and sum them. By traversing the graph
recursively we can reach all the ends, but we need to do two more things.
Firstly, calculate the probability of getting to the end and then returning it.

The GetProbabilityOfBusinessFunctions method takes a node as input and
returns the probability of reaching a red business function by executing its
subtree. By passing the top node of the complete tree into the method, we
get the probability of encountering a red business function when executing
the whole business process.

The structure of the algorithm is then very simple. It recursively calls itself
and passes the child(ren) node(s) of the current node. This means that the
probability of encountering a red business function during execution of a
nodes subtree is the sum of the corresponding probability of all its children,
which themselves, in turn, are the sum of the corresponding probability of
their own children. This is repeated until we reach a node without tra-
versable children. In the representation there are two kinds of nodes with-
out traversable children. First we have the red business functions, which
are business functions that are realized by the system. The second are the
nodes that don’t have children at all and are not red business functions.

If we reach one of the latter, we know that the current path does not reach
a red business function (because then it would have been stopped before),
and we return the value 0.0. If we reach a red business function, we return
the probability of getting to that business function. This probability value
is passed downwards in the call hierarchy. Every time a decision is encoun-
tered, the probability is updated by being multiplied by the probability at

68

the decision. Figure 4.12 visualizes the algorithm applied to the structure
shown in Figure 4.11.

The algorithm goes into three branches. One branch ends up in BF5. Since
this is a non red node with zero children, its contribution to the sum is zero,
and zero is returned. Another branch ends up in BF6. This is a red function
and the probability of getting there is 0.375. The last branch ends up in the
red function of BF3. The probability of getting there is 0.5. The probability
of reaching a red business function in the tree is then the sum of these three
branches which is 0.875.

Figure 4.12: GetProbabilityOfBusinessFunctions - Recursive traversal.

Pseudo Code 20 shows the GetProbabilityOfBusinessFunctions method which
constitutes the algorithm. The method takes three arguments: A Business-
FunctionObject, that is, a node in the graph, a list of all the business func-
tions that are realized by the system (red business functions), and a sum
value which represents the probability of getting to the node prior to the
one that is the input argument.

When the method is first called, we pass along the list of business functions
that are realized by the system (red functions), the top node in the tree, and
the value 1.0 as sum. The sum value indicates that we have a probability of
1.0 getting to the first node.

There are two kinds of nodes, the ones with one child (BusinessFunction-
Merge- and BusinessFunction objects), and the ones with one or more chil-
dren (BusinessFunctionDescision- and BusinessFunctionFork objects).

If the node only have one child, we return the result of the method recursively
called by passing along the list, the child node and the sum. The sum is not
altered because there is not a conditional forking.

69

If the node is a BusinessFunctionDescision, we return the sum of all the sub
branches of its children passed recursively. Since this node is conditional,
the sum is multiplied with the probability of getting from the decision node
to the given next.

If the node is a BusinessFunctionFork, we simply pass along the current sum
value to each of the sub branches of its children. We do not update the sum
value, since the fork is not conditional.

If we encounter a BusinessFunction is in the list (a red function), we do
not return a recursive self call, but rather the sum value (the probability of
getting to that red function). If we encounter any BusinessFunction with
no children which is not in the list, we simply return 0, for the reasons
mentioned earlier in this section.

In code line 4 there is comparison based on the ID of the business functions.
This is done because different business function objects in the tree are dif-
ferent instances, and therefore are we not able to use the equality operator.
The reason for this is that when growing the redundant tree, we had to
create the business function objects more than once. But all other objects
in the enterprise representation are not redundant. This is the reason that
this is the first time the equality operator is not used to compare objects.

GetAvgEnvironmentProbability and GetAvgComponentProbability follow the
same principle, except that we select the business functions that are realized
by the given environment and component as input to the method.

4.6 Calculating importance

4.6.1 Calculating component importance

All references to availability in this section will be to base availabilities.

Consider three components in an AND-configuration as shown in Figure
4.13 with an availability of 0.85, 0.90, and 0.95 respectively.

Figure 4.13: An example series of components.

The overall availability of such a configuration is 0.85 · 0.90 · 0.95 = 0.72675.

70

Pseudo code 20 GetProbabilityOfBusinessFunctions
Description: A recursive method that calculates the probability that a set of business

functions are used by a business process.
Input: double sum - A value used in the calculation of the probability.
Input: BusinessFunctionObject obj - The current object that the recurisve method visits.
Input: Arraylist bfs - The set of business functions that the probability calculation is

based on.
Filename: EnterpriseRepresentation.cs

1: partialsum ← 0.0
2: if obj is a BusinessFunction then
3: for each BusinessFunction bf inbfs do
4: if bf .ID is obj.ID then
5: return sum
6: end if
7: end for
8: end if
9: if obj has multiple nexts then

10: ArrayList nexts ← Get nexts of obj
11: if obj is a BusinessFunctionDescision then
12: ArrayList probs ← Get probabilities of obj
13: for each next in nexts do
14: partialsum ← partialsum + GetProbabilityOfBusinessFunctions(bfs, next,

sum · probability of next)
15: end for
16: return partialsum
17: else
18: for each next in nexts do
19: partialsum ← partialsum + GetProbabilityOfBusinessFunctions(bfs, next,

sum)
20: end for
21: return partialsum
22: end if
23: else
24: if obj.next not equals null then
25: return GetProbabilityOfBusinessFunctions(bfs, obj.next, sum)
26: end if
27: end if
28: return 0.0

Assume that the cost of doing an improvement is constant, that is that the
cost of going from an availability of 0.2 to 0.4, is the same as going from 0.4
to 0.6. If we had to choose one of the components for improvement, which
one would benefit the overall availability the most if it was improved? We
show how to quantify the improvement.

The expression for the overall availability is A(C1) ·A(C2) ·A(C3).

By partial derivation of the overall function by each of the components avail-
ability, we can get a quantified value of the improvement of the component.

The improvement of C1 is then

71

I(C1) =
∂(A(C1) ·A(C2) ·A(C3))

∂A(C1)
= A(C2) ·A(C3). (4.12)

Accordingly, the improvement of the tree components is then

I(C1) = 0.90 · 0.95 = 0.855.

I(C2) = 0.85 · 0.95 = 0.8075.

I(C3) = 0.85 · 0.90 = 0.765.

If the component only realizes one business process, the overall importance
is the improvement multiplied with the criticality of the business process
(CBP) and the probability (PC) that the component is used during an exe-
cution of the business process.

ICi =
∂(A(C0) . . . A(Ci−1) · . . . A(Ci+1) · . . . ·A(Cn))

∂A(Ci)
· CBP · PC . (4.13)

Performing the differentiation, we get

ICi = A(C0) · . . . A(Ci−1) · . . . A(Ci+1) · . . . ·A(Cn) · CBP · PC . (4.14)

If a component realizes n business processes, the overall importance is the
sum of the importance from each of the n business process.

ICi =
n∏

i=0

(ICi = A(C0)·. . . A(Ci−1)·. . . A(Ci+1)·. . .·A(Cn)·CBPi ·PC). (4.15)

Pseudo Code 21 contains the pseudo code for the calculation of the compo-
nent’s importance. For each component in the enterprise, we go though each
of the business processes. If the component critically realizes the business
process, we calculate the probability of the component being used.

We then go through all the components and multiply the base availability
of all the components that critically realizes the business process. This
product will be the importance of the component in realizing the business
process. This importance is further multiplied with the probability that the
component is used in the business process and the criticality of the business
process. This product can be seen as the gain from the business process of
improving the component. This is the calculation in Equation (4.14).

72

Pseudo code 21 CalculateComponentImportance
Description: The pseudo code for the calculation of component importance.

1: for each Component comp in EnterpriseRepresentation do
2: sumimportance ← 0.0
3: for each BusinessProcess bp in EnterpriseRepresentation do
4: if comp critically realizes bp then
5: importance ← 1.0
6: prob ← GetAvgComponentProbability(comp, bp)
7: for each Component c in EnterpriseRepresentation do
8: if c critically realizes bp then
9: if c.ID not equal to comp.ID then

10: importance ← importance · GetAvailibilityOf(c)
11: end if
12: end if
13: end for
14: sumimportance ← sumimportance + importance · comp.crit · prob
15: end if
16: end for
17: comp.importance ← sumimportance
18: end for

We want the overall gain, therefore we must sum this product for each of the
business processes, which corresponds to the calculation in Equation (4.15).

73

Chapter 5

The Model Analyzer

5.1 Introduction

The Enterprise Tool described in the previous chapter analyzes the repre-
sentation of the enterprise assembled by a set of models. The Model Analyze
does a risk analysis of a single model.

When diagrams have a predefined structure (as UML diagrams have) and
contain high fidelity information about the domain (as UML profiles lets
us), we can create a tool that transforms the diagram into a set list of risks.
This process is from now on called the transformation.

Figure 5.1 shows the process of transformation. A single UML diagram
represented in an XMI-document is combined with a transformation profile,
which is the ’recipe’ of the transformation, to produce a list of risks which
the risk analyst can read.

Figure 5.1: The principle of transformation.

The Model Analyzer can do two different types of risk analysis. Preliminary
Hazard Analysis (PHA) and Hazard and Operability Study (HAZOP). They
are both described in Appendix D. In the depth study done prior to this
thesis, [26], I argue that these two methods are the best when doing an risk

74

analysis of the enterprise.

5.2 The Risk Manager

The Risk Manager GUI is a part of the Model Analyzer that lets the user
store risks that are found during analysis. The GUI uses the RiskManager
class that writes and reads risks to/from the file “risk.dat”. This file stores
serialized Risk-objects that represent one risk.

Figure 5.2: The Risk Manager.

The Risk object is shown in Figure 5.3. A Risk contains a name, a descrip-
tion, a likelihood, and a consequence.

Figure 5.3: The Risk object.

75

5.3 The Transformers

The transformers turn the diagrams into risk lists. All the transformers
share a common architectural pattern which is depicted in Figure 5.4 (a
complete class diagram is found in Appendix A).

Figure 5.4: Transformer - Architectural pattern.

The transformation logic is stored in a database file, where it is portioned
into one or more transformation profiles. The transformer takes one profile
and one XMI-file as input.

The TransformationProfileManager is a class that contains methods to store,
access, delete, and alter profiles in the configuration database. The Config-
urator is the user interface that allows users to create and edit profiles.

The Transformer is the class that is responsible for doing the transformation.
It consumes two types of data to complete the transformation. It uses a
TransformationProfileManager object to retrieve a profile and a Diagram
object.

The separation of the TransformationProfileManager and the Transformer
is a logical one, as both the Presenter and the Transformer need to access
the profiles.

76

The diagrams are stored in the XMI format, but each type of diagram has an
object representation. The XMI file is parsed from an XML representation
to an object representation. By separating parsing and analysis, both the
parsing and transformation functionality can be changed without affecting
the other.

The UML specification, which defines the structure of UML diagrams, pretty
much stays the same from version to version. The XMI specification, which
defines how the UML diagrams is represented in XMI, have seen more rev-
olutionary design changes.

Also, accessing an object structure is much easier than parsing an XML
document, and makes future changes in the transformer easier.

The output of the transformer is the OutputItem. This object stores the
output of the transformation, in other words one risk.

The last object is the Presenter, which is the object with which the user
interacts. The Presenter has both a TransformationProfileManager that
lets the user pick a profile and a transformer that transforms a user given
XMI-file with the given transformation profile.

The Presenter takes a set of OutputItems and presents them to the screen.
By using the AddRisk GUI Dialogue, the user can select an OutPutItem
and add it to the risk-list. The separation of presentation and other logic is
a common pattern for achieving a clean code base and easy extendability.

Also, by passing the analysis result in an OutputItem object. Both the
Presenter and the Transformer may be altered without spawning changes
in each other, as long as they both conform to the use of the OutputItem
object.

5.3.1 Transformer usage

The Sequence Diagram in Figure 5.5 shows how the transformation works.
When the Transformers Presenter is initialized, it creates a Transformation-
ProfileManager and a Transformer. The Presenter uses this Transformation-
ProfileManager to retrieve a list of all the diagram types the user analyze
and presents this in a list.

The user selects this diagram type, and the Presenter retrieves and presents
a list of all the profiles that is associated with the given diagram type. The
user selects the profile he wants to use, selects the file where the model is
stored, and starts the transformation.

The Presenter starts the transformation by supplying the filename and pro-

77

file id to the Transformer. The Transformer gets the transformation logic
and parses the diagram into an object representation and starts the trans-
formation. The output is returned to the Presenter and presented for the
user.

Figure 5.5: Transformer usage - Sequence Diagram.

5.4 The input

The transformer takes an XMI document as input, but it is parsed into an
object representation of the diagram. Figure 5.4 shows the structure of these
diagrams. There are four different kinds of diagrams, all of which extend the
class Diagram. The Diagram base class contains methods that all diagrams
share, that is, methods for extracting stereotype and tag value information
from the XMI-documents.

Each diagram is decomposed into parts that extend the DiagramElement
base class. This base class contains common methods for all UML elements

78

Figure 5.6: Diagram Structure.

79

such as methods for storing tag values and stereotypes.

A more detailed class diagram can be found in Appendix A.

5.5 Transformation Profile structures

Let us now see the difference between the two transformers. One transforms
UML diagrams into PHA risk lists, and the other produces a HAZOP analy-
sis of a UML diagram. The difference lies in the transformation profiles.

5.5.1 PHA profile

Figure 5.7 shows the structure of the PHA transformation profile as it is
represented in the database file. Each of the entities depict a table in the
database, and the connector represents the relations between them.

Figure 5.7: Database model of the PHA Transformation Profiles.

The PHA profile is stored in the CheckListProfile. Each profile is related to
a DiagramType, which lets us sort profiles based on that given property.

A CheckListProfile has several StudyNodes. A StudyNode is a single part of
the diagram. Therefore each StudyNode has a UMLEntity connected to it,
which defines which entity the study node extends.

80

UMLEntity is associated with a UMLDiagramType so that we can ensure
that the user doesn’t create study nodes in a profile created for one diagram
type from another diagram type.

The name attribute in the StudyNode table represents the name of the
Stereotype that the given StudyNode is associated with.

The following example can illustrate the use. One study node could be of
the UMLEntityType “Component”, and the stereotype could be “ThirdPar-
tyComponent” (See Figure 5.8).

Figure 5.8: An example study node.

For each StudyNode there can exist two kinds of associated piece of trans-
formation logic.

1. Third party vendor goes out of business.

2. Third party vendor cuts support.

Pseudo code 22 PHATransform
Description: The code that PHA transforms a diagram into a list of risks.
Input: diagram - The diagram that is to be used.
Input: profile - The transformation profile that is to be applied.
Filename: PHATransformer.cs

1: for each studynode in profile do
2: for each diagramelement in diagram do
3: if diagramelement equals studynode then
4: for each checklistitem associated with studynode do
5: Add checklistitem to output
6: end for
7: for each tagchecklistitem associated with studynode do
8: if diagramelement constraint satisfies tagchecklistitem then
9: Add tagchecklistitem to output

10: end if
11: end for
12: end if
13: end for
14: end for

The first is the CheckListItem, which is piece of information that is output if
the diagram has the given study node. For example, if the diagram includes

81

a Component with the stereotype ThirdPartyComponjent, it could have the
following associated CheckListItems

1. 3rd party vendor goes out of business.

2. 3rd party vendor cuts support.

The second kind is the TagCheckListItem. As with the CheckListItem, it is
associated with a study node and output for each of the occurrences of that
study node in the model. The difference is that its check list will only be
output if the study node meets a constraint check on one of its tag values.

As described earlier, an entity in the UML diagram may not only be ex-
tended by creating new stereotypes, but one can also append a name/value
pair called a tag value. This enables us to do a check on tag values. The
supported operands are “>”,“<”,“!=” and “==”.

The Studynode in Figure 5.8 can have the tag value “yearly license”, which
is either true or false. If this value is true, it means that the vendor has to
be paid yearly for the use of the component.

E.g., one TagCheckListItem associated with this study node could then say

“If study node is a “ThirdPartyComponent”, and has the tag “yearly license”
with value true, then output “Forgetting the renewal of license”.”

The PHA transformation is shown in Pseudo Code 22.

5.5.2 HAZOP profile

Figure 5.9: Database model of the HAZOP Transformation Profiles.

Figure 5.9 shows the structure of the HAZOP transformation profile. The

82

HAZOP follows the structure of the PHA, except in the structure of the
logic connected to the study node.

Each study node has a set parameters connected to it. For example, if
the study node is a Message with stereotype “Database Query”, then a
parameter could be “processing” or “communication”. A parameter is a
special view of the study node.

Each parameter has a set of guide words associated to it. As previously
mentioned in the appendix, the HAZOP output is a study node merged
with a parameter and a study node.

If “processing” had the guide words “no” and “less” associated with it, the
HAZOP outputs to a “Data Query” named “GetInvoices”, and its interpre-
tation is shown in Table 5.5.2.

The transformation code is shown in Pseudo Code 23.

Study
node

Name Parameter Guide
word

Interpretation

Database
Query

GetInvoices Processing no The Invoice-DB does
not process the query

Database
Query

GetInvoices Procesing less The Invoice-DB does
not return all the data,
or the processing is to
slow

Table 5.1: Example HAZOP output.

Pseudo code 23 HazopTranform
Description: The code that HAZOP transforms a diagram into a list of risks.
Input: diagram - The diagram that is to be used.
Input: profile - The transformation profile that is to be applied.
Filename: HazopTransformer.cs

1: for each studynode in profile do
2: for each diagramelement in diagram do
3: if diagramelement equals studynode then
4: for each parameter associated with studynode do
5: for each guideword associated with parameter do
6: Add tagchecklistitem to output
7: Output studynode + parameter + guideword
8: end for
9: end for

10: end if
11: end for
12: end for

83

Chapter 6

Enterprise UML Profiles

6.1 The UML parts

In this section I will sum up the four kinds of diagrams that was chosen
to represent the enterprise and their subparts. When constructing a set
of UML profiles, we may use these basic parts as extension points for new
stereotypes which give the diagram more fidelity.

We draw our basic UML parts from two sources. The first is the Enterprise
Analyzer which requires that the Enterprise is modeled by a set of basic
UML parts. The other source is the Model Analyzer, which can do analysis
on a range of basic UML types, many of which is not used in the to model
the Enterprise Representation.

The challenge is then not to add too many parts that the Model Analyzer
supports, because it will make the models harder to model. But yet add
enough so that we can use the PHA and HAZOP analysis feature of the
Model Analyzer usefully.

The Activity Diagram Figure 6.1 shows the parts of the UML Activity
Diagram that are supported by the tools.

Only the Action and the Transition is supported by the Model Analyzer.

Sequence Diagram Figure 6.2 shows the parts of the UML Sequence
Diagram that are supported by the tools.

Only the Lifeline and the Message is supported by the Model Analyzer.

84

Figure 6.1: Activity Diagram - Parts.

Figure 6.2: Sequence Diagram - Parts.

85

Component Diagram Figure 6.3 shows the parts of the UML Compo-
nent Diagram that are supported by the tools.

Figure 6.3: Component Diagram - Parts.

The Model Analyzer supports all of the parts in the figure.

Deployment Diagram Figure 6.4 shows the parts of the UML Deploy-
ment Diagram that are supported by the tools.

Figure 6.4: Deployment Diagram - Parts.

The Model Analyzer supports all of the parts in the figure.

6.2 Stereotype extensions

Given the parts in the previous section, I will extend the ones that make
sense to extend.

86

6.2.1 Activity Diagram

At this level we are concerned with the business modeling level, and therefore
the stereotypes should be types that make sense in the business domain.

The main parts of the activity diagram that is supported by the Model
Analyzer are

• Action.

• Transition.

The Action represents a business process, and we can make the following
extensions

1. Human.

2. Automated.

3. HumanAutomated.

4. NonCritical.

Within the enterprise, business functions can either be fully automated,
fully done by a human, or done by a human interacting with an automated
process. There is also a stereotype that indicates that the business func-
tion is NonCritical. It is much less work to mark all non-critical business
processes “NonCritical”, than marking all the critical with “Critical”.

6.2.2 Deployment Diagram

At this level we are concerned with modeling of environments and systems
in the enterprise, and therefore the stereotypes should be types that make
sense in this domain.

The main parts of the Deployment Diagram that the Model Analyzer sup-
ports is:

• Node.

• Component.

• Dependency.

87

• Association.

Nodes represent the environments in the enterprise, and we can make the
following extensions

• Mainframe.

• PC.

• Server.

• Operating System.

• Network.

The Component represents a system in the enterprise, and we can make the
following extensions

• ApplicationSystem.

• DatabaseSystem.

• FileSystem.

• Firmware.

The Association represents a relation between nodes and components, in
our domain this can be interpreted as how the parts communicate.

• Internet.

• LAN.

• WLAN.

• Serial.

• MessageBus.

I do not see a use for the dependency in our domain.

88

6.2.3 Component Diagram

At this level we are concerned with modeling of the internal structure of a
system, and therefore the stereotypes should be types that make sense in
this domain. The main parts of the Component Diagram is

• Component.

• Dependency.

• Association.

The Component represents a component in the enterprise, and we can do
the following extensions:

• GUI.

• 3rdParty.

• CommunicationHandler.

• DatabaseHandler.

• Component

The Association between the components can be viewed as the means of
communication between them, which gives us these extensions

• Internet.

• LAN.

• WLAN.

• Serial.

• MessageBus.

Likewise with the Deployment Diagram, I do not see a use for the depen-
dency in this.

89

6.2.4 Sequence Diagram

At this level we are concerned with them modeling of interaction between
systems and components, and therefore the stereotypes should be types that
make sense in these two domains.

The main parts of the Sequence Diagram is

• Life Line.

• Message.

The Life Line represents a system or a component, at this modeling view it
is not necessary to classify what kind of component or system it is, rather
capture the interaction. The systems and components is more modeled with
higher fidelity in the Component- and Deployment Diagram. Therefore, I
see no need to extend this part.

The Message represents an interaction between two systems/components,
or an action within a single system/component. Groth, [14], argues that the
computer have four distinct operating modes.

1. IT systems process information.

2. IT systems store information.

3. IT systems communicate information.

4. IT systems can be configured.

Also, users may interact with the computer. We also need a stereotype
that indicates if a SystemOperation or SubSystemOperation is non-critical,
which gives us the following six extensions.

• Store.

• Process.

• Communication.

• Configuration.

• GUI Interaction.

• NonCritical.

90

6.2.5 Tag values

All the stereotypes that extend nodes (environments in the Enterprise Rep-
resentation) and components (systems/components in the Enterprise Rep-
resentation) may have the tags MTBF and MTTR which specifies the reli-
ability and maintainability of the parts (See section 2.1.1). The stereotypes
extending a UML component representing components in the enterprise may
also has the tag value parallel to indicate that there are several independent
components standing by to perform the functionality of the given compo-
nent.

A DatabaseHandler could have the tags in Table 6.1.

Tag name Tag value
MTBF 100
MTTR 1
Parallel 2

Table 6.1: Tagvalue examples.

Which indicate that there are two independent parallel DatabaseHandler
components standing by, both which operate on average for 100 time units
before failing and requiring one time unit to be repaired.

91

Chapter 7

Transformation Profiles

7.1 Transformation Profile - HAZOP

7.1.1 Business Scenario

Figure 7.1 shows the different extended stereotypes (the large bubbles) used
to classify business functions, and beneath I have listed a set of parameters
(the small bubbles) that I found relevant to the stereotype.

Figure 7.1: Action extended stereotypes and parameters.

7.1.2 (Sub) System Scenario

Figure 7.1 shows the different extended stereotypes used to classify (sub)
system operations, and beneath I have listed a set of parameters I found
relevant to the stereotype.

92

Figure 7.2: Message extended stereotypes and parameters.

7.1.3 Guide words

The parameters described previously are associated with the following generic
guide words.

• No.

• More.

• Less.

• As well as.

• Before.

• Part of.

• Reverse of.

• Other than.

• Early.

• Late.

• After.

93

7.2 Transformation Profile - PHA

In the next sections I will propose a set of PHA profiles. Keep in mind that
these profiles are mainly used for testing the PHA feature, and that, time
permitted, a lot more time could have be spent making these profiles more
comprehensive. These profiles will be extended by developing organizations
that might use it for the purpose of analyzing enterprise solutions.

7.2.1 Business Scenario

The Transformation Profile for the Business Scenario is shown in Table 9.1.

Studynode Name Description
Human Death The human dies.
Human Error The human makes an error.
Human No The human doesn’t do what he is in-

tended to do.
Human Wrong Time The human acts at the wrong time.
Automated Fail The automated process fails.
Automated Wrong Time The automated process is performed

at the wrong time.
HumanAutomated Error The human makes an error.
HumanAutomated No The human doesn’t do what he is in-

tended to do.
HumanAutomated Wrong Time The process is performed at the

wrong time.

Table 7.1: System Structure - Action - PHA Check List Items.

7.2.2 Enterprise Structure

The PHA Transformation Profile for the Enterprise Scenario is found on
Table 7.2, 7.3 and 7.4.

7.2.3 System Structure

The PHA Transformation Profile for the System Scenario is found on Table
7.5 and 7.3.

94

Studynode Name Description
Network Down Time The network is down.
Network Overload The network bandwidth overloads.
Network Packet loss The network has packet loss.
Network Intrusion Someone intrudes the network.
PC Power The PC loses power.
PC Hardware failure The hardware fails.
PC Overload The processing power is overloaded.
OperatingSystem Halts The OS halts.
OperatingSystem Slows The OS slows.
OperatingSystem Leak The OS suffers from a memory leak.
Server Power The server loses power.
Server Hardware failure The hardware fails.
Server Overload The processing power is overloaded.
Mainframe Power The server loses power.
Mainframe Hardware failure The hardware fails.
Mainframe Overload The processing power is overloaded.

Table 7.2: Enterprise Structure - Node - PHA Check List Items.

Studynode Name Description
LAN Loss The LAN has high packet loss.
LAN Overload The bandwidth is overloaded.
LAN No The LAN is breaks down.
WLAN Low The signal strength is too low.
WLAN Range The unit is out of range.
WLAN Unsecured The connection is unsecured and intruded.
WLAN Loss The WLAN has high packet loss.
WLAN Overload The bandwidth is overloaded.
Serial No The serial connection goes down.
Serial Overload The connection is overloaded.
MessageBus Wrong Wrong message is sent.
MessageBus No No messages are sent.
MessageBus Few The messages are sent to too few recipients.
MessageBus Delay The messages are delayed.

Table 7.3: Enterprise Structure/System Structure - Association - PHA
Check List Items.

95

Studynode Name Description
DatabaseSystem Down The database is down.
DatabaseSystem Overload The database is overloaded.
DatabaseSystem Corrupted The database is corrupted.
DatabaseSystem Intrusion The database is intruded.
DatabaseSystem Lost Data in the database is lost.
FileSystem Down The file system is down.
FileSystem Intrusion The file system is intruded.
FileSystem Corrupted The file system is corrupted.
ApplicationSystem Down The application system is down.
ApplicationSystem Denial The application system denies service.
Firmware Damaged The firmware is damaged.
Firmware Outdated The firmware is outdated.

Table 7.4: Enterprise Structure - Component - PHA Check List Items.

Studynode Name Description
GUI Wrong Input The user enters wrong input.
GUI Wrong Output The GUI shows wrong output.
3rdParty No Support The 3rd party vendor cuts support.
CommunicationHandler Overload The component can’t handle the

communication load.
CommunicationHandler Break down The component breaks down.
DatabaseHandler Wrong retrieval The component retrieves wrong data.
DatabaseHandler Wrong write The component writes wrong data.
DatabaseHandler Break down The component breaks down.
Component Break down The component breaks down.

Table 7.5: System Structure - Component - PHA Check List Items.

96

Chapter 8

The Extended RUP Process

8.1 Introduction

8.2 The process

Figure 8.1: The main structure of the process.

The processes are divided into five distinct activities, which are shown in
Figure 8.1.

The Business activity is the analysis and modeling of business processes,
and is the first the activity in the process. When one or more business
processes have been modeled, the next activity is the Enterprise Structure,
which is the modeling and analysis of the systems and environments in the
enterprise.

97

The next activity is System Scenario, where business functions in business
processes are refined by creating system scenarios.

After this, one can return to the Business activity to create more business
processes, or one can continue to refine the system scenario into sub system
scenarios. The first step in this is the System Structure activity. It deals
with the modeling of the structural composition of systems, which is followed
by the Sub System Scenario activity which shows the interaction between
the subparts (components) of the System. Then one can either continue
by creating more system scenarios or business processes. The processes are
repeated until the solution is satisfactory modeled and analyzed. Each of
the activities will be described in the next sections.

8.3 Business activity

The Business activity is shown in Figure 8.2. The first step is to identify a
business process and model it. When the model is defined, it is analyzed by
the Model Analyzer tool. If this analysis calls for changes in the model, these
are implemented. The processes go in a model/analysis-loop until the model
is found satisfactory. The last step is to feed the model into the Enterprise
Analyzer tool to start the creation of an enterprise representation. The
whole procedure is repeated as long as there are more business processes to
be modeled.

Figure 8.2: Business activity.

98

8.4 Enterprise Structure activity

The Enterprise Structure activity is shown in Figure 8.3. The activity is
started by modeling the enterprise structure. This means identifying the
environments and systems that are needed to realize the business functions.
Once the structure is modeled, it is analyzed using the Model Analyzer
tool. The processes go into a model/analysis cycle until they are found
satisfactory. Lastly the model is fed into the Enterprise Analysis tool to
append it to the enterprise representation.

Figure 8.3: Enterprise Structure activity.

8.5 System Scenario activity

The System Scenario activity is shown in Figure 8.4. The first step is to
select a business function that is going to the be refined by a system scenario.
The scenario is modeled and analyzed and then fed into the Enterprise
Analysis tool to grow the enterprise representation.

8.6 System Structure activity

The System Structure activity is shown in Figure 8.5. A system is selected
and modeled by decomposing it into components. The result is analyzed
and then fed into the enterprise representation with the Enterprise Analysis
tool. This is repeated for as long as there are more systems to model and
analyze.

99

Figure 8.4: System Scenario activity.

Figure 8.5: System Structure activity.

100

8.7 Sub System Scenario activity

The Sub System Scenario activity is shown in Figure 8.6. A system operation
is selected to be refined by a sub system scenario. When the sub system
scenario is fully modeled and analyzed, it is fed into the Enterprise Analysis
tool. This procedure is repeated until there are no more system operations
to realize.

Figure 8.6: Sub System Scenario activity.

8.8 Risk analysis activity

Each use of the Model Analyzer should follow a simple process (Figure 8.7)
that is taken from [11]. This process is more explained in more detail in
Appendix B.1.3.

Figure 8.7: The Risk Analysis activity.

101

Chapter 9

Test of the Tools

9.1 The business processes

To demonstrate and test the methods, I have constructed a case scenario.
The case is an enterprise system at a newspaper consisting of the following
six departments.

Printing Department The main business process in the Printing depart-
ment is the printing of the paper.

Inventory Department The main business processes in this department
is administrating the inventory, this means tasks such as purchase, internal
delivery etc.

Administration Department The main process in this department is
to manage subscriptions.

Publishing Department The business process in this department is cre-
ation of the contents of the newspaper.

Transport Logistics Department The main process in this department
is delivering the newspaper to drop off points.

IT Department The main processes of the IT department is hosting the
online edition of the newspaper.

102

This gives us the seven business processes shown in Table 9.1. I have also
assigned each process a criticality value.

Description Criticality
1 Print paper. 300
2 Purchase supplies. 50
3 Add subscribers. 20
4 Remove subscribers. 10
5 Create newspaper content. 300
6 Deliver newspapers. 300
7 Host online edition. 75

Table 9.1: Business processes and criticality.

Based on the UML Profile defined in Chapter 6, I will now model this
enterprise system, following the process described in Chapter 8.

The first step is to create business work flow diagrams for each of these
business processes.

Print paper

Figure 9.1 shows the business scenario for the Print Paper business process.

Figure 9.1: Print Paper Business Scenario.

The Print Manager starts by checking if there is enough ink and paper

103

in printing department to perform the print. If there is not enough, the
manager requests more supplies from the Inventory Department, awaits their
arrival, and then refills. The manager then awaits the order to start the
printing from the Publishing Department. After the printing is finished, he
dispatches the paper by noticing the Transport Logistics Department that
the paper is ready for transport.

Purchase supplies

Figure 9.2 shows the business scenario for the Purchase Supplies business
process.

Figure 9.2: Purchase Supplies Business Scenario.

First, the stock levels are checked at a specified time interval. If some of
the levels are to low, the availability of the supplies at electronic stores are
checked. If the supplies are available, an electronic order is placed at the
supplier with the lowest cost or delivery time. If there is no availability in
the electronic stores, the workers need to find a supplier manually and place
the order.

Add subscriber

Figure 9.3 shows the business scenario for the Add Subscriber business
process. There are three ways subscribers can order a subscription, either
through letter and telephone, where the subscription is added manually, or
through the internet, where the subscription is added automatically.

Remove subscriber

Figure 9.4 shows the business scenario for the Add Subscriber business
process. With background in the Add Subscriber process, it is self-explained.

104

Figure 9.3: Add Subscriber Business Scenario.

Figure 9.4: Remove Subscriber Business Scenario.

Create newspaper contents

Figure 9.5 shows the business scenario for the Create newspaper contents
business process. The journalists start by writing the articles, after which
layout managers merge these articles with ads to create the newspaper con-
tents.

Figure 9.5: Create newspaper content Business Scenario.

The final layout is approved by the editor, and the Printing Department is
told that they can start the printing of the newspaper.

Deliver newspaper

Figure 9.6 shows the business scenario for the Deliver newspaper business
process.

105

Figure 9.6: Deliver newspaper Business Scenario.

The manager of the department receives a notice that the paper is ready
for delivery, and a set of drop-off lists are created and printed. A drop-off
list is a delivery instruction for a delivery driver. The lists are created in
such a way that they minimize the amount of time needed to deliver all the
newspapers to their designated recipients.

Host online edition

Figure 9.7 shows the business scenario for the Host online edition business
process.

Figure 9.7: Host online edition Business Scenario.

It is very simple, it is only the function of hosting the online edition such
that a remote web user may access it.

106

9.1.1 The Enterprise Structure

The next step is to define the structure of the enterprise that is going to
handle these business processes. This is done in Figure 9.8.

Figure 9.8: Newspaper Enterprise Structure.

Table 9.2 shows the reliability and maintainability in the enterprise.

I have not specified a MTBF or MTTR number to the systems as a whole,
but will specify this information for each component in the systems.

107

Entity MTBF MTTR
Database Server 1000 4
Application Server 1000 4
Inventory DB 100 3
Content DB 100 3
Subscriber DB 100 3
Press Hardware 10000 10
Press 20000 50
Administration System - -
Inventory System - -
Printing System - -
Publishing System - -
Transport Logistics System 0 0
Webserver 1000 1
Webserver Hardware 1000 4
Internet 10000 1
LAN 30000 2

Table 9.2: Reliability and Maintainability In The Enterprise.

9.1.2 System Scenarios

Printing the paper The business functions in the “Printing the paper”
process are refined in Figure 9.9.

Purchase Supplies The business functions in the “Purchase Supplies”
process are refined in Figure 9.10.

Add Subscriber The business functions in the “Add Subscriber” process
are refined in Figure 9.11.

Remove Subscriber The business functions in the “Remove Subscriber”
process are refined in Figure 9.12.

Create newspaper content The business functions in the “Create news-
paper content” process are refined in Figure 9.13.

Deliver newspaper The business functions in the “Deliver newspaper”
process are refined in Figure 9.14.

108

Figure 9.9: Printing the paper - Systems scenarios.

109

Figure 9.10: Purchase supplies - Systems scenarios.

110

Figure 9.11: Add Subscriber - Systems scenarios.

Host online edition The business functions in the “Host online edition”
process are refined in Figure 9.15.

9.1.3 System Structure and Sub System Scenarios

To limit the scope of the case enterprise, I will only model the enterprise
at sub system level on one system operation. This system operation is the
“Get Content”, which refines the “Start Printing” business function. The
sub system operations of “Get Content” and the system structure of the
systems involved in this system operation are shown in Figure 9.16.

The reliability and maintainability of the components in the two systems is
shown in Table 9.3 and 9.4,

Entity MTBF MTTR
Communication Handler 10000 1
Print Controller 20000 1

Table 9.3: Reliability and maintainability in Press.

111

Figure 9.12: Remove Subscriber - Systems scenarios.

Entity MTBF MTTR
Message Handler 10000 1
DB Handler 20000 1
Press Handler 15000 1
GUI 20000 1

Table 9.4: Reliability and maintainability in the Printing System.

112

Figure 9.13: Create newspaper content - Systems scenarios.

113

Figure 9.14: Deliver Newspaper - Systems scenarios.

Figure 9.15: Host online edition - Systems scenarios.

114

Figure 9.16: Example System Scenario and System Structure.

9.2 Testing the Enterprise Analyzer

I loaded all of the models above into the Enterprise Analyzer and got the
analysis result shown in Figure 9.17.

9.3 Testing the Model Analyzer

9.3.1 Testing the HAZOP Analyzer

I tested the HAZOP analysis feature on the “Start printing” system scenario.

Table 9.5 shows the result. The output items that was not interpreted since
a risk is omitted.

9.3.2 Testing the PHA Analyzer

I tested the PHA analysis feature on the Enterprise Structure (Figure 9.8).
Table 9.6 and Table 9.7 shows the result.

115

Figure 9.17: Enterprise Analysis result.

116

Figure 9.18: Start Printing - System Scenario.

Studynode Type Parameter Guideword Interpretation Consequence Likelihood Solution

Get Newspa-
per Content

Communication Integrity Less The data con-
tent data is
not complete.

Moderate Unlikely Have the
print man-
ager look
over the first
newspaper
that is
printed.

Get Newspa-
per Content

Communication Load No The data
cannot be
retrieved
from the
database.

Moderate Possible Transfer the
content via a
CD from the
content data-
base and the
printing sys-
tem.

Print
Content

Communication Validity No The printing
is started be-
fore the con-
tent is ready.

Moderate Possible Have the
print man-
ager look
over the first
newspaper
that is
printed.

Print
Content

Communication Destination No The notice
is never
received.

Major Possible Have the
Printing
System send
a confirma-
tion message
that is has
received the
notice.

Start
Printing

GUI Interac-
tion

Validity No The print
manager
starts print-
ing without
content being
ready.

Moderate Rare Accept risk.

Table 9.5: HAZOP test on “Start printing” System Scenario.

117

Studynode Name Description

Database Server Overload The processing power is overloaded.

Database Server Hardware failure The hardware fails

Database Server Power The server loses power

Application Server Overload The processing power is overloaded.

Application Server Hardware failure The hardware fails

Application Server Power The server loses power

LAN Down time The network is down.

LAN Overload The network bandwidth overloads.

LAN Packet loss The network has packet loss.

LAN Intrusion Someone intrudes the network.

Printing System Down The application system is down.

Printing System Denies The application system denies service.

Publishing System Down The application system is down.

Publishing System Denies The application system denies service.

Inventory System Down The application system is down.

Inventory System Denies The application system denies service.

Transport Logistics System Down The application system is down.

Transport Logistics System Denies The application system denies service.

Administration System Down The application system is down.

Administration System Denies The application system denies service.

Web Server Down The application system is down.

Web Server Denies The application system denies service.

Content DB Down The DB is down

Content DB Overload The DB is overloaded

Content DB Corrupted The DB is corrupted

Content DB Intrusion The DB is intruded

Content DB Lost Data in the DB is lost.

Table 9.6: PHA test on Enterprise Structure - I.

118

Studynode Name Description

Inventory DB Down The DB is down

Inventory DB Overload The DB is overloaded

Inventory DB Corrupted The DB is corrupted

Inventory DB Intrusion The DB is intruded

Inventory DB Lost Data in the DB is lost.

Subscriber DB Down The DB is down

Subscriber DB Overload The DB is overloaded

Subscriber DB Corrupted The DB is corrupted

Subscriber DB Intrusion The DB is intruded

Subscriber DB Lost Data in the DB is lost.

Press Damaged The firmware is damaged

Press Outdated The firmware is outdated

Transport Logistics Printer Damaged The firmware is damaged

Transport Logistics Printer Outdated The firmware is outdated

From: Application Server To: Database Server Loss The LAN has high packet loss.

From: Application Server To: Database Server Overload The bandwidth is overloaded.

From: Application Server To: Database Server No The LAN is down.

From: Web Server Hardware To: Application
Server

Loss The LAN has high packet loss.

From: Web Server Hardware To: Application
Server

Overload The bandwidth is overloaded.

From: Web Server Hardware To: Application
Server

No The LAN is down.

From: Application Server To: Press Hardware Loss The LAN has high packet loss.

From: Application Server To: Press Hardware Overload The bandwidth is overloaded.

From: Application Server To: Press Hardware No The LAN is down.

From: Web Server Hardware To: Database Server Loss The LAN has high packet loss.

From: Web Server Hardware To: Database Server Overload The bandwidth is overloaded.

From: Web Server Hardware To: Database Server No The LAN is down.

From: Press Hardware To: Database Server Loss The LAN has high packet loss.

From: Press Hardware To: Database Server Overload The bandwidth is overloaded.

From: Press Hardware To: Database Server No The LAN is down.

From: Transport Logistics Printer To: Application
Server

No There is no connection.

From: Transport Logistics Printer To: Application
Server

Overload The connection is overloaded

Table 9.7: PHA test on Enterprise Structure - II.

119

Chapter 10

User Manuals

10.1 The Enterprise Analyzer

Figure 10.1 shows the main screen of the Enterprise Analyzer application.
From this screen we can build a complete representation of the enterprise.

The first step in building the Enterprise is to load the enterprise environ-
ment. This contains structural information about the environments and
systems in the enterprise. This is done by pressing “Add Environment”
button in Figure 10.1.

You will presented by a dialogue for selecting the XMI-file where this infor-
mation is stored (Figure 10.2). Select the appropriate file and press “OK”.

This will take you back to the main screen, and the structural view of the
enterprise will be updated and look something like Figure 10.3. It will show
all the environments and their systems.

The next step is to load the components in the enterprise. This is done
by pressing “Add Components” button in Figure 10.1. You will then be
presented with a new dialog for selecting XMI-files as shown in Figure 10.2.
You can select multiple files.

After this you will be taken back to the main screen, and the structural
view is again updated and show the components relation with the systems
(Figure 10.4).

The next step is to add a business processes. The first thing is to enter a
name for the business process and assign a criticality score to it. See Figure
10.5. Then click “Add Functions” which takes you to a dialogue for selecting
an XMI-file (Figure 10.6). Select the file that contains the business scenario
for the given business process and press “Open”.

120

Figure 10.1: Enterprise Analyzer - Main menu.

121

Figure 10.2: Enterprise Analyzer - Adding Environment.

Figure 10.3: Enterprise Analyzer - Structural View.

122

Figure 10.4: Enterprise Analyzer - Structural view II.

Figure 10.5: Enterprise Analyzer - Configuring a process.

Figure 10.6: Enterprise Analyzer - Load Business Scenario.

123

Again, you will be taken back to the main menu and the behavioral view is
updated and contains all the business functions that are used by the business
process. See Figure 10.7.

Figure 10.7: Enterprise Analyzer - Behaviorial view.

At any time, you can right click on a business process and select that you
want to change the criticality of the process (Figure 10.8, 1). You will then
be presented with a pop up dialogue that allows you to enter this value
(Figure 10.8, 2).

Figure 10.8: Enterprise Analyzer - Changing process criticality.

You can add system operations to the business functions by selecting one
in the behavior view. When selected the business function is marked by a
black square (See Figure 10.9). Press “Add System Operations” and you
will be presented with a new file selecting dialogue. Select the XMI-file that
contains the system operations to the given business function and press
“OK”.

Again, you will be taken back to the main menu and the behavioral view
is updated and contains all system operations you just added. See Figure
10.10.

124

Figure 10.9: Enterprise Analyzer - Selecting a business function.

Figure 10.10: Enterprise Analyzer - Behavioral view II.

125

Likewise, one can select a system operation in the behavioral view (See
Figure 10.11) and press the “Add Sub System Operations” button to add
sub system operations to the given system operation. The result will look
something like in Figure 10.12, showing the sub operations and their relation
to the system operation.

Figure 10.11: Enterprise Analyzer - Selecting a System Operation.

Figure 10.12: Enterprise Analyzer - Behavioral view.

The last steps (adding system and sub system operations) is repeated until
the enterprise is fully built. At any time you can press “Analyze” in the
main screen which will analyze the current enterprise representation. This
will take you to the screen in Figure 10.13.

This screen shows the result of the analysis. The components, systems, and
environments of the enterprise is shown in four lists, where each row is a
part of the enterprise with the different columns showing the key figures of
the analysis such as different types of availability and criticality. Pressing
the “Back” button will take you back to the main screen.

By selecting an item in the behavior- and structure view we can delete all
the subcomponents by pressing the “Delete” button on the keyboard. You
will then be presented with a dialogue that asks you to confirm the deletion

126

Figure 10.13: Enterprise Analyzer - Analysis result screen.

127

(Figure 10.14). This enables the user of the application to remove certain
portions of the enterprise and reload it, which is necessary if a model has
been changed.

Figure 10.14: Enterprise Analyzer - Removing items.

You can also save the enterprise representation in a binary format by press-
ing “Save” on the main screen. This way you don’t have to re-create the
enterprise every time you restart the application. You will be presented by
a file-saving dialogue (Figure 10.15).10

Figure 10.15: Enterprise Analyzer - Saving the enterprise representation.

Write the desired filename in the text box named “File name” and press
“Save”. You can later load this representation by pressing the “Load” button
on the main screen. You will then be presented with a open-file dialogue

128

(Figure 10.16), which lets you select an enterprise representation with the
ENT extension.

Figure 10.16: Enterprise Analyzer - Loading an enterprise representation.

10.2 The Model Analyzer

Figure 10.17 shows the main menu of the Model Analyzer, in the next sec-
tions I will describe each choice.

Figure 10.17: Model Analyzer - Main menu.

129

10.2.1 HAZOP configuration

The “HAZOP Configuration” takes you to the screen shown in Figure 10.18.
From this screen you can create, edit, and delete HAZOP transformation
profiles.

Figure 10.18: HAZOP Configuration screen.

The screen is divided into four sections which are marked on the screen.
Section 1, right side, lets you add a profile. Select the type of diagram that
the profile is going to transform and enter a name. Section 2, left side, lets
you select or delete profiles.

When a profile is selected, you can add study nodes in Section 2. The
principle is the same as in section 1. Choose which entity type the study
node extends and enter a name. The list on the left side lets you select and
delete study nodes.

When a study node is selected, you can add parameters in Section 2. Para-

130

meters only have a name. Further you can select a parameter and add guide
words to it in section 4. You can either choose your own guide words, or
click “Add Generics” and select from a list of common generic guide words.
In the latter case, the dialogue in Figure 10.19 will pop up.

Figure 10.19: Adding generic guide words.

10.2.2 PHA configuration

The “PHA Configuration” takes you to the screen shown in Figure 10.20.
From this screen you can create, edit, and delete PHA transformation pro-
files.

Section 1 and 2 is identical to the corresponding sections in the “PHA
Configuration”-screen. Section 3 lets you add a stereotype dependent check
list item, by giving a name and description. Section 4 lets you create a
check list item with a tag constraint by supplying a tag name, operator, and
a value.

10.2.3 HAZOP analysis

The “HAZOP Analysis” screen is shown in Figure 10.21. The list box
marked 1, lets you select the type of diagram you want to analyze. When
the selection is done, the list box marked 2 is filled with the transformation
profiles that is associated with the given diagram type. By pressing the “Se-
lect File”, marked 3, you will be presented by the dialogue in Figure 10.22.
Select the appropriate XMI-file, and then press “Analyze”, marked 4.

The result of the analysis is output in the list on the right side of the screen,
see Figure 10.23.

You can select an output item and do one of two things. You can delete it

131

Figure 10.20: PHA Configuration screen.

132

Figure 10.21: The HAZOP Analysis screen.

133

Figure 10.22: Selecting file.

by pressing the “Delete button”, marked 7, or store the risk internally in the
application by pressing the “Add Risk” button. When adding a risk, you
will be presented by the dialogue shown in Figure 10.24.

By pressing the “Export” button, marked 5, you can export the list to an
XML represented Office Word document.

10.2.4 PHA analysis

The “PHA Analysis” screen is identical to that of the “HAZOP Analysis”
screen, except that it presents PHA output items instead of HAZOP output
items.

10.2.5 Risks

The “Risks” shown in Figure 10.25 lets you view the risks stored internally
in the tool, as well as adding new risks by pressing the “Add risk” button.
You will then be presented with the dialogue in Figure 10.24.

134

Figure 10.23: HAZOP output item.

135

Figure 10.24: Add risk dialogue.

Figure 10.25: Risk list.

136

Chapter 11

Discussion

The work of this thesis can be divided into the following parts or products.

• Definition and development of an Enterprise Representation.

• Development of the Enterprise Analyzer tool.

• Development of the Model Analyzer tool.

• Definition of a set of Enterprise UML Profiles.

• Definition of a set of Transformation Profiles.

• Definition of a work process that uses these tools.

• Construction of a case enterprise and a test of the tools.

• The user manuals for the tools.

The Enterprise Representation is a model that encompasses both the behav-
iorial and structural parts of the enterprise at different levels. The model
allows traceability between all the sub parts. I selected a set of UML models
for creating this representation and developed a data structure that repre-
sented the Enterprise Representation and had functionality to access and
build it.

I developed the Enterprise Analyzer, which has two functions. First, it al-
lows the user to build an Enterprise Representation by loading digitized
UML models. Second, it allows the user to take an Enterprise Representa-
tion and analyze the criticality and availability of the solution. This is done
by tracing the availability from the structural parts to the behavioral and
trace the criticality from the behavioral parts to the structural parts.

137

To better the criticality of the behavioral parts and the availability of the
structural parts, I developed the Model Analyzer tool that lets the user
analyze a single model based on a Transformation Profile.

A set of UML profiles to model the enterprise was defined. These are ex-
tensions to the UML language that allow a more precise description of the
enterprise domain.

The Transformation Profiles describes how the Model Analyzer turns a
model in a Enterprise UML Profile into a set of risks.

I have proposed a work process that describes how the tools should be
applied when designing and analyzing an enterprise solution.

The tools and the process have been tested by modeling a case enterprise
and taking it through analysis work process.

User manuals for the two tools are also contained within this document.

In the next sections I will discuss the work.

11.1 The Enterprise Representation

I believe that the Enterprise Representation captures the important parts
of the enterprise without being too complex. The modelers need only refine
the parts of the enterprise that are critical, thus limiting their work.

The purpose of modeling is mainly to communicate design to customers and
developers. Modeling all critical interactions, means a significant increase
in work load and cost. The question is then, is the extra modeling worth it
in terms of what the criticality and availability analysis returns?

The strengths of this model driven analysis approach is the fact that no
single person need to have complete overview of the enterprise. Therefore,
the larger and more interconnected the enterprise is, the more should be
gained by using this approach.

If conventional analysis is to succeed, there must also be good communi-
cation between the different modelers if they are to see the whole picture.
This means that if the developing organization is dispersed in time and/or
space, the model driven approach gives an advantage. Also, as the extra
modeling translates into higher development costs, the approach should be
applied to enterprise projects where the cost of failing is high.

The Model Driven Development (MDD) supporters envisions that nearly all
software development will be done by modeling in the future, [23]. IBM pro-

138

mote the use of UML Profiles, while Microsoft promote the use of Domain
Specific Languages (DSLs). In both cases the idea is that models are trans-
formed into code. If the future is MDD, the developers have to model the
whole solution, and therefore the modeling amount is no longer an argument
against model driven analysis.

In the future there will probably also exist a set of industry standard models
to develop enterprise systems that will replace my models, but these new
models could easily be parsed into my Enterprise Representation. Many of
these standard models are already proposed, [21], [22].

All the models are based on the v1.4 specification of UML, even though most
of the current modeling tools support the v2.0 specification of UML. The
reason for this is that the XMI specification for storing v2.0 UML diagrams
digitally, the XMI v2.1 specification, is not implemented in most modeling
tools. The v1.2 XMI specification (for storing v1.4 UML diagrams) is widely
supported. I used the tool “Visual Paradigm for UML 5.2”.

11.2 The Enterprise Analyzer

The Enterprise Representation proved to be an easy representation to ana-
lyze. The redundant structure and references made it easy to navigate and
extract relevant relations and values. Calculating the key parameters was a
very straightforward programming job.

The approach to building the enterprise representation, which is done by
loading one model at a time, may be time consuming for larger projects.
Information about which model the given model refines can be stored in
meta data in the diagrams or possibly be defined in the filename. This will
allow automated building of the enterprise.

A weakness in the implementation is that every business process is treated
as independent of the others. If one business function A depends on B, the
criticality of the latter cannot be less than the criticality of the one that
depends on it. This can be worked around by modeling the two business
processes as one. There is the possibility of letting users define the depen-
dencies between processes in the tool, which allows the modeling of two
interdependent business processes separately.

139

11.3 The Model Analyzers

The HAZOP analysis proved to be a good explorative method. It is easy to
configure to the parameters and guide words.

The PHA analysis makes it easy for the developing organization to store
dangers they have encountered as check list items in a PHA Transformation
Profile. This way the tool serves as an simple, yet effective, way of collecting
risk knowledge in the organization.

11.4 The Enterprise UML profiles

The Model Analyzer allows the developers to use their own UML profiles.
For example, a company specialized in developing enterprise systems in the
health care domain, could create their own health care specific stereotypes.
This feature gives the tool large flexibility.

11.5 The Transformation profiles

The Transformation Profiles were created to test the Model Analyzer. The
HAZOP Profile performed well, but the PHA did not show its full potential
due to the fact that the profile was relatively small. We expect that PHA
will become more useful as the amount of knowledge stored in the profiles
grows.

The users of the Model Analyzer can create their own profiles. For ex-
ample, the above mentioned health care specialized company, could easily
create their own transformation based on their specialized UML Profile with
logic that produced health care specific risks and considerations. This is a
powerful feature of the tool.

11.6 The process

The process defined a simple and effective approach to using the tools during
design and analysis of the enterprise solution.

140

Chapter 12

Conclusions and Future
Work

12.1 Conclusions

The aim of this thesis has been to develop a set of tools and a work process
that would allow model driven availability and criticality analysis of large
scale enterprise solutions. I saw two possible approaches to model driven
analysis, which resulted in two tools used in my process.

The Enterprise Analyzer, a tool that takes basis in a set of models with
different views of the enterprise and merges them into a unified model (data
structure) of the enterprise called the Enterprise Representation. Then it
does a criticality and availability analysis of the total model.

I also developed the Model Analyzer which takes basis in a single digitized
model and does an assisted analysis using methods from the field of System
Safety.

The tools were tested on a hypothetical case. The Model Analyzer proved to
be easy to use, customizable, and efficient in analyzing a part of the enter-
prise. Especially the PHA (Preliminary Hazard Analysis) analyzer within
this tool made it easy to store the risk knowledge and transfer it into future
projects.

The Enterprise Analyzer proved to overcome the obstacle of analyzing large
enterprise solutions modeled in different views. The question that arose was
whether the task of modeling the whole solution proved to be too cumber-
some, or that the result of the analysis was worth the extra modeling.

I claim that it is useful when designing large and highly interconnected

141

enterprises. Also developing projects that are dispersed in time and space
will benefit from this automatic model driven approach to analysis. I also
claim that this kind of approach to analysis will become more common and
cost effective in the future when Model Driven Development becomes more
mature.

12.2 Future work

I have identified the following possible directions for future work.

Incorporate data and user modeling The current Enterprise Analyzer
encompasses the structural and behavioral parts of the enterprise. It is
possible to also incorporate data- and user modeling in the enterprise
representation. This way we can also calculate the availability and
criticality of data. This is possible with the current version by model-
ing data and user as structural parts of the enterprise, but separating
the three allows greater flexibility in adding new analysis features.

More quality attributes There is the possibility of incorporating more
quality attributes into the analysis process such as QoS (quality of
service). If one introduces users as a modeling construct as proposed
in the previous section, this could easily be incorporated. There is
a connection between an enterprise’s quality of service and the prof-
itability, which in turn affects criticality.

Risk tracing As of today, the Model Analyzer and the Enterprise Ana-
lyzer are two separate tools. By linking risks uncovered by the model
analysis to the different parts of the enterprise representation, we could
have a dynamic indicator of each of the risks criticality. That is as the
criticality of different parts of the enterprise change, so does that the
criminalities of the risks associated with the given part. The Model
Analyzer could be integrated into the Enterprise Analyzer and do a
direct analysis of the Enterprise Representation.

More analysis method support The tools could incorporate more meth-
ods of analysis from the field of System Safety. Methods such as Fault
Tree Analysis (FTA) and Fault Mode Effects Analysis (FMEA) could
be included in this tool.

Industry Standard models As industry standard model for modeling en-
terprise systems for Model Driven Development purposes becomes
available, the XMI-readers could be altered to parse these structures
into an Enterprise Representation.

142

Testing the tools on an industrial case I tested the tools on a constructed
case. It would be natural to follow up by a test on a large scale industry
case enterprise.

143

Appendix A

Code Overview

This appendix gives a short description of the different files in the three
projects and contains the class diagrams of the tools.

A.1 EnterpriseRepresentation

The EnterpriseRepresentation project folder contains all the classes needed
to build a representation of the enterprise. The project is compiled into a
DLL-file and used by Enterprise Analysis tool. Table A.1 and A.2 contain
information about each of the code files in the project. Information such as
filename, a description of the file, an ID that is used for refereing to the files.
Also, table has a reference to which classes the given class extends (Column
E) and the interfaces it implements (Column I).

A.2 EnterpriseAnalysis

The EnterpriseAnalysis project folder contains the classes and files that is
needed to build the Enterprise Analyzer tool. The project is compiled into
an executable. Table A.3 contain information about each of the code files
in the project.

A.3 RiskAnalysis

The RiskAnalysis project folder contains the classes and files that is needed
to build the Model Analyzer tool. The project is compiled into an exe-

144

ID Filename Description E I Other
1 BusinessFunction.cs A class used to represent a business function

in the representation of a business scenario.
5 15 Serializable

2 BusinessFunctionDecision.cs A class used to represent a decision node in
the representation of a business scenario

5 14 Serializable

3 BusinessFunctionFork.cs A class used to represent a forking in the rep-
resentation of a business scenario

5 14 Serializable

4 BusinessFunctionMerge.cs A class used to represent a forking in the rep-
resentation of a business scenario.

5 - Serializable

5 BusinessFunctionObject.cs A base class that implements common func-
tionality that all the classes that make up the
business scenario representation shares

- - Serializable

6 BusinessProcess.cs A class that keeps information about a busi-
ness process and acts as a dummy-node in the
start of the business scenario representation

1 - Serializable

7 BusinessProcessReader.cs A class that parses Activity Diagrams contain-
ing business process data and builds a Busi-
nessProcess (see 6) object out of it

- - Serializable

8 Component.cs A class that represents a software component
in enterprise in the enterprise representation

11 - Serializable

9 ComponentReader.cs A class that parses a Component Diagram con-
taining a structural representation of a system
and populates a System (see 18) with Compo-
nents (see 8)

- - Serializable

10 DeploymentReader.cs A class that parses a Deployment Diagram
containing a structural representation of the
enterprise (environments and systems) and
builds it using Environments (See 13) and Sys-
tem (see 18)

- - Serializable

11 EnterpriseEntity.cs A base class that implements common func-
tionality that all the classes that make up a
part of the enterprise shares

- - Serializable

12 EnterpriseRepresentation.cs A class that encompasses all the other classes
and acts like the access class to the enterprise
representation

- - Serializable

13 Environment.cs A class that represents an environment in the
enterprise representation

11 - Serializable

14 IFunctionMultipleNext Ob-
jects.cs

An interface used to access the succeed-
ing BusinessFunctionObject-extended classes
from a class extending BusinessFunctionOb-
ject. This interface is used when the class has
multiple next-objects

- - -

15 IFunctionNextAccessor.cs An interface used to access the succeeding
BusinessFunctionObject-extended class from
a class extending BusinessFunctionObject.
This interface is used when the class has a sin-
gle next-object

- - -

Table A.1: Files in the EnterpriseRepresentation project - I.

145

ID Filename Description E I Other
16 SequenceReader.cs A class that is used to parse Sequence Dia-

grams into linked lists of System Operations
(see 19) and Sub System Operations (see 17)

- - Serializble

17 SubSystemOperation.cs A class that represents a Sub System Oper-
ation. A System Operation (See 19) is com-
posed of a linked list of SubSystemOperation-
objects

11 - Serializble

18 System.cs A class that represents a System in the Enter-
prise representation

11 - Serializable

19 SystemOperation.cs A class that represents a System Operation,
Business Functions (see 1) are composed of a
linked list of SystemOperation-objects.

11 - Serializable

20 TagValue.cs A class that represents a tag value, which is a
name/value pair that stores information about
a part of enterprise. This information is ex-
tracted from the UML diagram

- - Serializable

Table A.2: Files in the EnterpriseRepresentation project - II.

cutable. Table A.4, A.5, and A.6 contain information about each of the
code files in the project.

A.4 Class diagrams

146

ID Filename Description
1 AnalysisPresenter.cs This class is a .NET User Control that

presents the results from the analysis of the
enterprise.

2 AnalysisResult.cs This class holds the analysis result from the
analysis of the enterprise done by the Enter-
priseAnalyzer (See 5)

3 ComponentAnalysisResult.cs A class that holds the result of the component
analysis done by the ComponentAnalyzer (See
4)

4 ComponentAnalyzer.cs A class that analyzes the components in the
enterprise and produces a ComponentAnaly-
sisResult (See 3)

5 EnterpriseAnalyzer.cs A class that analyzes the whole enterprise by
using the analyzers (See 4,8,11 and 13). It
returns a AnalysisResult object (See 2)

6 EnterpriseRepresentationCreator.cs The class is a .NET User Control that lets
the user create an enterprise representation by
loading diagrams into the application

7 EnvironmentAnalysisResult.cs A class that holds the result of the environ-
ment analysis done by the EnvironmentAna-
lyzer (See 8)

8 EnvironmentAnalyzer.cs A class that analyzes the environments in the
enterprise and creates an EnvironmentAnaly-
sisResult (See 7)

9 MainMenu.cs The MainMenu is a .NET Windows Form file
that is the main menu of the application.
The user controls AnalysisPresenter (See 1)
and EnterpriseRepresentationCreator (See 6)
is docked into this form.

10 ProcessAnalysisResult.cs A class that holds the result of the process
analysis done by the ProcessAnalyzer (See 11)

11 ProcessAnalyzer.cs A class that analyzes the business processes in
the enterprise and creates a ProcessAnalysis-
Result (See 10)

12 SystemAnalysisResult.cs A class that holds the result of the system
analysis done by the SystemAnalyzer (See 13)

13 SystemAnalyzer.cs A class that analyzes the systems in the enter-
prise and creates a SystemAnalysisResult (See
12)

Table A.3: Files in the EnterpriseAnalysis project - I.

147

ID Filename Description E
1 ActivityDiagram.cs A class that represents a UML Activity Dia-

gram.
10

2 ActivityState.cs A class that represents the state in a UML
Activity Diagram

11

3 ActivitiyTransition.cs A class that represents the transition in a UML
Activity Diagram

11

4 AddRiskDialogue.cs A dialogue form that lets the user of the Model
Analyzer tool to add a Risk to the Risk-list

-

5 Association.cs A class that represents the association be-
tween nodes/components in UML Compo-
nent/Deployment Diagrams

11

6 Component.cs A class that represents a component in a UML
Component/Deployment Diagrams

11

7 ComponentDependency.cs A class that represents the depends-relation
between components in a UML Component
Diagram.

11

8 ComponentDiagram.cs A class that represents a UML Component Di-
agram

10

9 DeploymentDiagram.cs A class that represents a UML Deployment
Diagram

10

10 Diagram A base class that contains common functional-
ity that all the diagram represents use. Mainly
to extract stereotypes and tag-values

-

11 DiagramElement A base class that contains common function-
ality that all the diagram elements in the di-
agram representations uses. Mainly to access
stereotypes and tag-values

-

12 GenericGuideWordSelector.cs A .NET User Control that lets the user select
a set of generic guide words and add them to
a given parameter in the HAZOP transforma-
tion profile

-

13 HazopConfigControl.cs A .NET User Control that lets the user con-
figure a HAZOP transformation profile

-

Table A.4: Files in the RiskAnalysis project - I.

148

ID Filename Description E
14 HazopOutputItem.cs A class that represents a output line of the

HAZOP analysis.
-

15 HAZOPOutputPresenter.cs A .NET User Control that presents the result
of a HAZOP analysis.

-

16 HazopTransformationProfileManager.cs A class that handles the creation, deletion and
editing of HAZOP transformation profiles.

-

17 phaconfig.mbd An Access-database file where the PHA trans-
formation profiles are stored

-

18 HazopTransformer.cs A class that does a HAZOP analysis (trans-
formation) on a UML diagram.

-

19 MainForm.cs The MainForm is a .NET Windows Form that
is the main form of the application, in which
the User Controls are docked.

-

20 Menu.cs A .NET User Control that contain the main
menu of the Model Analyzer tool

-

21 Node.cs A class that represents the node in a UML
Deployment Diagram

-

22 PHAConfigControl.cs A .NET User Control that lets the user con-
figure a PHA transformation profile

-

23 PHAOutputItem.cs A class that represents a output line of the
PHA analysis.

-

24 PHAOutputPresenter.cs A .NET User Control that presents the result
of a PHA analysis

-

25 PHATransformationProfileManager.cs A class that handles the creation, deletion and
editing of PHA transformation profiles

26 PHATransformer.cs A class that does a PHA analysis (transforma-
tion) on a UML diagram

-

27 ReportMaker.cs A class that creates reports -
28 Risk.cs A class that represents a single risk. This class

is serializble, so that the risks can be stored in
a binary format in between the executions of
the tool

-

29 NumerInput.cs A .NET Windows Form that is shown to get
the user to supply a number.

-

Table A.5: Files in the RiskAnalysis project - II.

149

Figure A.1: EnterpriseRepresentation Class Diagram.
150

Figure A.2: EnterpriseAnalysis Class Diagram.

151

Figure A.3: RiskAnalysis Class Diagram.

152

ID Filename Description E
29 RiskManager.cs A class that the storage and retrieval of risks -
30 RiskManagerGUI.cs A .NET User Control that lets the user man-

age risks
-

31 SequenceDiagram.cs A class that represents a UML Sequence Dia-
gram

10

32 SequenceLifeLine.cs A class that represents a lifeline in a UML Se-
quence Diagram

11

33 SequenceMessage.cs A class that represents a message in a UML
Sequence Diagram

11

34 Stereotype.cs A class that holds a UML stereotype in a Di-
agram

-

35 TagValue.cs A class that holds a UML tag value in a Dia-
gram

-

36 Validator.cs A class that is used to validate input that is
going to be stored in a database

-

37 Hazopconfig.mbd An Access-database file where the HAZOP
transformation profiles are stored

-

38 Risks.dat A binary files where the risks are stored in
between executions of the tool.

-

Table A.6: Files in the RiskAnalysis project - III.

153

Appendix B

An Introduction to Risk

B.1 Risk

B.1.1 What is risk?

A risk is the possibility of something (usually negative) that may happen in
the future, [6].

B.1.2 Risk terminology

A hazard or a threat is a set of conditions that may lead to a undesirable
event. Risk can also be viewed as the probability of a threat or hazard to
occur (its likelihood) multiplied with the consequence, also known as the
criticality.

Risk management is the process of identifying, prioritizing, recording, treat-
ing, and monitoring risks, [7].

Risk managers must consider two dimensions of risk, its consequence and
its possibility, and find a balance between these two. Risks can be divided
into two groups, accepted and unaccepted risks. Risk managers will have to
transform unacceptable into acceptable risks (Figure B.1). This is called risk
migration or mitigation, and can be done in two dimensions. You can try to
limit the consequences of the risk, and you can try to lower the possibility
of the risk to occur.

A fault is a undesirable state of the system, a failure is the loss of func-
tionality in a system. A fault may not result in a failure, but failure is
always caused by faults. A secondary failure is a failure that is caused by

154

Figure B.1: Risk migration.

stress exceeding the levels in which the system-component is designed for.
A primary failure is a failure the occurs even tough the component is not
pushing its stress levels. That is a component which is incorrectly designed,
selected, or installed.

B.1.3 Risk Management

Risk management can be divided into a set of activities, [10]:

Identify. The identification activity is to discover the risks that face the
system. This is done by gathering data about about the system.

Analyze. The analysis of risks is taking the gathered risk data from the
system and turning it into decision-making information.

Plan. The planning activity deals with how we handle the risk. That is
to make decisions and actions out of risk information. There are four
ways to deal with a risk:

1. Change the design.
2. Create a plan to handle the risk.
3. Accept the risk.
4. Transfer the risk.

The first possible action is to change the design of the system, that
is to build a barrier into the system or rework the architecture to
reduce the risk. The second action is to accept the risk and prepare

155

for it by creating plans. This includes plans that minimize the chance
of occurrence of the risk (maintenance plans) and plans that tell the
organization what to do when the risk is realized (emergency plans).
This is an option when the cost of taking a well prepared risk is cheaper
than to redesign the system.

The third option is to accept the risk and do no planning for it. In
these cases the criticality of the risk is so low that neither planning or
redesigning is worth the effort.

The last option is to transfer it, that is to pass the responsibility the
another part. One example of risk transferal is insurance.

Track. Risk tracking is the activity of recording and monitoring the risks.
All risks uncovered should be organized and available for the peo-
ple who needs that information, and there should be some “watchdog
mechanism” that alerts the organization when a risk has triggered.

Control. Risk control is the activity of implementing and controlling the
plans and policies.

Communicate. The activity serves the need to communicate the risk to
the involved parties, that being workers, customers etc.

It is important to remember that the job of the risk manager is not to
minimize the occurrence of every risk, which is something that might seem
rational for someone new to the field. Rather, the goal is to minimize the
criticality. For most companies in the world, criticality is measured in cur-
rency. We do not need to construct the most sophisticated fire-prevention
system in the world (likelihood reduction) when we can simply sign an in-
surance.

However, there is more to the job of the risk manager than considering dollar
figures, the one factor that really complicates the work is the value of human
life. By setting the value unlimited every possible safety feature concerning
human safety considered would be implemented, this forces companies to
put a value on human life.

B.1.4 Risk Management Process

The risk management process (Figure B.2) describes the interrelation of
activities which is performed in the risk management discipline, [11]. It is
the systematic application of these activities. It is this process we want to
match as closely as possible with the RUP-process.

156

Figure B.2: The risk management process.

157

The first thing done before the analysis is the definition of the scope. The
scope defines how deep into the system, or out of the system, we should go
when finding risks.

Risk identification means verbalizing a possible threat: “There could be a
fire in the reactor”. Analyzing the risks means finding the consequences of
it: “That would halt our production for days.”

Consulting means that we need to consult the people with specific compe-
tence to help us find the criticality of the risk: “Call the chief engineer and
ask him about the possibility of fire”. It is not required, nor expected, that
the risk analysts have complete knowledge about every aspect of the system.

Risk evaluation means giving the risk qualitative or quantitative data to
evaluate the severity: “A fire would happen every year on average, and
there is a 75 percent chance that a fire would stop production for a week or
more”.

Treating the risks means taking appropriate actions to handle it: “We need
to install fire extinguishers near the reactors”.

[15] states that the following is the safety order of precedence for risk treat-
ment:

1. Design for minimum risk.

2. Incorporate safety devices.

3. Provide warning devices.

4. Develop training and procedures.

The first thing we must try to do is to try to design the system to minimize
or eliminate the risk.

Those that cannot be minimized satisfactory (of financial or practical rea-
sons) enough though design, we can incorporate safety devices (or safety
features as they will be called from now) into the system.

If the safety features themselves cannot handle a risk, we must create warn-
ing devices which alerts a signal to the organization that something unde-
sirable may happen, or already has happened.

The last option is to create safety procedures that can be engaged by the
organization, and train the organization to follow them. In the case of the
enterprise, this has its own field called “Business Continuity Planning”.

158

Communication is about telling the people who is involved with the risks
about it: “Propose for the management that they order eight fire extinguish-
ers and set up a training session for the workers.”

Risk monitoring is about keeping track of the risks, this is mainly done by
recording the risks so they can be accessed at later stages. When recording
the risks, it is usual to use the risk management matrix, which is a table that
stores one risk for each row, and has multiple columns describing properties
of the risk. These properties should include:

• A unique ID to represent the risk.

• A description of the risk.

• The source of the risk.

• The criticality of the risk (likelihood, consequence).

• Preventive measures.

• Who is responsible for the risk.

And of course, any other properties that might be relevant for the given
system. In our case, working with software components and classes, it would
perhaps be wise to link the risks with these entities.

159

Appendix C

An Introduction to the
Rational Unified Process

C.0.5 What is RUP?

RUP is a process framework which takes basis in the iterative process of
the developing software. The iterative process differs from the traditional
Waterfall process.

Figure C.1: The waterfall process.

The Waterfall process (Figure C.1) assumes that you first collect the re-
quirements of the system, analyze the problem, then design the solution,
implement it, test it and then you are done. Such a process may be effec-
tive for small software projects where the requirements are clear and the
team fully understands the goals and challenges that exist within the given

160

project. However, when projects scale up and involve multiple end-users and
subsystems, you may encounter a scenario where during the testing of the
system, you find out that this system is not what the end-user wanted, or
perhaps the system do not meet a specific quality requirement and therefore
needs to be redesigned. At this point the system is well into its development,
and such changes are costly and may very well produce new problems. In
short, one can say that this process tend to delay the detection and treat-
ment of problems.

Two faulty assumptions that this model is based on is that requirements
given by the stakeholders will remain frozen during the development and
that we can get the best design right on paper the first time, [1].

The iterative process, upon which RUP is built, deals with the problems
introduced by the waterfall process by dividing the project into several wa-
terfall processes or iterations (Figure C.2).

Figure C.2: The iterative method.

An iteration often ends in an executable release. By starting with a skeletal
system or a prototype, the developers start fleshing out the system iteration
by iteration with the most critical functionality being implemented first.
Testing and evaluation is done along the way. In this way problems are
not pushed forward in time, but can be dealt with at a time when it is
easy and manageable to perform the change, with minimal effects on other
components.

RUP is divided into four phases:

Inception. Stakeholders agree on requirements and estimate the cost, risk,
and schedule of the project.

Elaboration. Establish the architectural base and create an architectural
prototype.

161

Construction. Construct the prototype into the final system and test it.

Transition. Move the system from development to the end user. This
includes activities like hardware installation, staff training etc.

Each of these phases consists of a number of iterations, which in turn are like
small waterfall projects. The activities performed in the project are divided
into disciplines. Each discipline creates and uses artifacts, which are central
pieces of information. The RUP-process consists of the following disciplines:

Business modeling. This discipline include activities that analyze, create,
refine, and extend the business processes in the organization. In most
cases we do not create the business processes from scratch, but we
need to understand them. The discipline is mainly performed early
in the project lifetime. Artifacts include the business model, business
vision document etc.

Requirements. This discipline includes analyzing and understanding the
needs of the stakeholders and managing the changes in requirements.
Just like business modeling, the majority of time spent in this dis-
cipline is done early the project, but the management of changes in
requirement is a project-long activity. Central artifacts include Use
Case models, requirements specification etc.

Analysis and Design. This discipline is concentrated around the analysis
and design of the architecture of the system. Some central artifacts
include system diagrams and user-interface prototypes. It is performed
in all phases, but mainly in the Elaboration phase.

Implementation. The discipline consist of the planning of the integration,
the development of components, and the integration of these compo-
nents. Some artifacts include the integration plan and the builds. The
discipline is mainly performed in the Elaboration and Construction
phases, but plays a role in all phases.

Test. The Test discipline consists of planning, performing, and evaluat-
ing tests of the system. These tests ensure that the components are
performing satisfactory with such aspects as quality attributes, user
requirements etc. Typical artifacts are Test Plan and Test Results.

Deployment. This discipline consists of testing the software in its final
operational environment. The packing, distribution, and installation
of the software and training of end users.

162

Configuration and Change Management. This discipline ensures that
the project artifacts maintain their integrity. When a change is per-
formed it is ensured that this change is updated in all relevant artifacts,
that is to maintain consistency between artifacts and the project. It
also adds traceability to the project.

Project Management. This discipline consists of the activities of manag-
ing the project, such as resource planning, follow-up etc.

Environment. The Environment discipline are the activities supporting
and providing the infrastructure, tools, compilers etc (the environ-
ment) needed to develop and test the system.

Each of the phases are divided into iterations. Figure C.3. shows the itera-
tive process of RUP.

Figure C.3: The RUP iterative process (From www.rational.com).

Before the development is started, there is some business modeling and
initial planning. Then the project enters an iterative process of Planning -
Requirements - Analysis and Design - Implementation - Testing - Evaluation.
When the development is complete, it is deployed. Typically the inception
phase consists of a single iteration, elaboration consists of two, construction
is divided into multiple iterations depending on the size of the project, and
lastly the transition phase is often divided into two iterations, [1].

The amount of work spent in each discipline in each iteration varies over
the lifetime of the project. Typically there is not spent a lot of time on the
implementation discipline in the inception phase (the two first iterations).
Figure C.4 indicates how the workload may vary from iteration to iteration

163

in a typical project. The height of the graphs is the amount of work spent
in the given iteration in the given discipline.

Figure C.4: The phases and disciplines of RUP (From www.rational.com).

RUP is based on the following six best practices, [1].

• Develop iteratively.

• Manage requirements.

• Use component architecture.

• Model visually.

• Continuously verify quality.

• Manage change.

164

Appendix D

Methods of Analysis

D.1 Preliminary Hazard Analysis (PHA)

PHA (Preliminary Hazard Analysis) is a method performed to find risks
early in the planning of a system and is often the basis for later work in the
risk analysis. The PHA is done by listing dangers associated with each of the
elements in the system. For each danger found, the possible causes, conse-
quences, and severity of the danger are recorded. The method is performed
by three consecutive steps:

1. Collection. The collection will be done very early in the design of the
system. Not every detail will be known about the system, but the
different subsystems should be known, as well as the main interactions
between them. If the method has been performed on similar cases
before, the information from these cases may be of value for the current
one.

2. Analysis. First we identify every danger that threatens the system.
Then we list the possible causes that can produce the situation, their
consequences, and a proposal for minimizing or removing the threat.
All of these scenarios will then be rated by their severity. You may
also add other factors that may be relevant at a later stage, such as
cost to implement etc.

3. Documentation. The output of the method is a table that lists the
results found in the analysis.

In the general method the following aspects should be considered, [2]:

165

1. Dangerous equipment and materials (such as poisonous materials and
cutters)

2. Environmental risks (such as natural catastrophes)

3. Process-risks (such as fires etc)

4. Safety related equipment. (Fire extinguishers, protective wear etc)

5. Operation, maintenance and emergency procedures (Human errors,
maintenance procedures etc)

These aspects are important in many engineering disciplines, but when look-
ing at business critical software systems in the enterprise, we are better off
by creating our own list of important aspects.

Danger Cause Consequence Severity Prev. action(s)
Database is
down

Power failure Loss of business Critical Purchase and install
UPS 1 for database
server

Database is
down

Server is down Loss of business Critical Keep database at two
different servers

Table D.1: An example PHA output.

Strengths and weaknesses

The strength of the method is finding what could go wrong with the system,
but not necessarily how. It covers the system wide, but shallow, given this
It can uncover major design issues on an early stage.

Complexity.

The method can be performed by one person, but it is important that this
person has expertise in all the technologies involved and knowledge about
the domain in which the system is going to operate. Because of this, the test
is usually performed by a group of people that complement each other with
different expertise. The time required to perform the method varies with
the size of the system and the scope of the analysis. The method produces
a moderate amount of documentation which is also dependent on the size
of the system and the scope.

166

D.2 Hazard and operability study (HAZOP)

HAZOP is usually used in process engineering, such as the development of
chemical plants. HAZOP is a systematic method that investigates the sub
components (often processes) of a system. HAZOP considers the hazards
(external consequences) and operability (internal consequences) of the sys-
tem. The system is divided into study nodes, which are analyzed using
guide-words and parameters.

Take the example of engineering a chemical process with one container con-
taining one liquid, substance A, and one containing another liquid, substance
B. These two liquids are transported into a reaction chamber, where a new
substance is created, substance C. The creation of Substance C requires the
right ratio of mix of substance A and B (Figure D.1).

Figure D.1: An example process engineering system.

The system is divided into three study nodes, which are the parts of the
system where something may go wrong and that we want to investigate into.
In this example the three pipelines are the study node (A-pipe, B-pipe, and
C-pipe). Then a set of parameters is defined. Parameters are properties of
the study node we want to study, like flow and temperature. Finally a set of
guide words is defined. Guide words are used to investigate how the system
may differ from the desired state, typical guide words would be no, more,
less etc. The HAZOP applies each guide word, on each parameter, for each
study node to systematically consider all possible risks. A scenario would
be “no flow in the pipe A” or “less temperature in Pipe B”. Table D.2 shows

167

the input of this method applied on the example.

Study
Node

Parameter Guide
word

Deviance Consequence Preventive
Action(s)

Pipeline
A

Flow No No flow in
pipeline A

The production
of substance C
is stopped, and
the substance C
in the reaction
chamber and
storage tank is
spoiled

Stop the C-
valve and
B-valve to stop
the process
and investigate
deviance.

Pipeline
A

Flow More Abnormal
high flow in
pipeline A

Overflow in the
reaction cham-
ber and the sub-
stance C in the
reaction cham-
ber and storage
tank is spoiled

Try to regulate
the A-valve to
obtain normal
flow, or close
the C-valve and
B-valve to stop
the process.

Pipeline
A

Flow Less Too low flow
in pipeline A

Underflow in
the reaction
chamber and
the substance C
in the reaction
chamber and
storage tank is
spoiled

Try to regulate
the A-valve to
obtain normal
flow, or close
the C-valve and
B-valve to stop
the process.

Table D.2: An example HAZOP output.

Relevancy

This method would be useful in the development of enterprise systems as
these systems are highly process-oriented. It is not hard to see a similarity
between the enterprise system and the process engineering example pre-
sented above: Business functions, human or automated, in an organization
can be viewed as reaction chambers in which information from different parts
in the organization are refined. A typical input would be a diagram that
captures the process in the organization and systems, such as a sequence
diagram or communication diagram. A set of specialized guide words and
parameters will have to be created.

Complexity.

This method should use several specialists with knowledge about the system
and the domain it is going to operate in. The meeting should be lead by

168

a HAZOP-leader which has experience in the method, [2]. The amount of
time this method requires would depend on the size of the system. The
input of this method is a diagram showing the processes of the system we
consider, and the output would be tables of risks.

169

Appendix E

ZIP file contents

This appendix will describe the content of the ZIP file that is attached to
this report.

E.1 Practical Information

The tools are developed on the .NET platform for Microsoft Windows op-
erating systems family. Before running the tools you must have the .NET
2.0 Framework installed. As older versions of Windows may have an earlier
version installed, you may have to visit Microsoft’s web page to download
the “Microsoft .NET Framework Version 2.0 Redistributable Package” to
run the tools.

E.2 Executables

The tools are stored in the subdirectory “Tools”.

E.3 .NET 2005 projects

The Visual Studio projects of the Enterprise Analyzer, EnterpriseRepresen-
tation and Model Analyzer is stored in the “Visual Studio 2005 Projects”
subdirectory.

170

E.4 Source

Even though the source files are stored within the .NET projects, I have
also put the source in a separate folder, as the projects also contain a lot of
IDE-related files and resources. This way it is easier to find and navigate
the source files.

E.5 Models and enterprise representation

The models used in my test of the tools are stored in the sub directory of
“Enterprise Models”. The “EnterpriseRepresentation” subdirectory holds a
saved enterprise representation (ENT-file) built by these models.

171

Bibliography

[1] P. Kruchten : The Rational Unified Process - An Introduction, Third
edition (2003), ISBN 0-321-1-19770-4.

[2] M. Rausand : Riskoanalyse - veiledning til NS 5814, ISBN 82-519-0970-8
(In norwegian).

[3] J.M. Myerson : Enterprise Systems Integration, ISBN 0-8493-1347-3.

[4] A. Targowski : Electronic Enterprise: Strategy and Architecture, Chap-
ter 7, ISBN: 1-931777-78-0.

[5] C. Giacomo, E. Reggio, M. Iori, A. Salvarani : Describing and Extending
Classes with XMI: An Industrial Experience.

[6] R. King : Risk Management, p. 15, ISBN 0948672722.

[7] A. Jolly : Managing Business Risk (2nd Edition), ISBN 0749440813.

[8] Dr. J. Murphy, Dr. T.W Morgan : Availability, Reliability, and Surviv-
ability: An Introduction and Some Contractual Implications, The Jour-
nal of Defense Software Engineering.

[9] J. Musa. Software Reliability Engineering. McGraw-Hill, New York,
N.Y., 1998.

[10] P. Higuera Yacov, Y. Haimes : Software Risk Management (Technical
Report CMU/SEI-96-TR-012 ESC-TR-96-012).

[11] AS/NZS 4360:1999 (Risk management standard).

[12] XML Metadata Interchange (XMI) Specification - An Adopted Specifi-
cation of the Object Management Group , Object Management Group
Inc.

[13] M. Fowler : UML Distilled: A Brief Guide to the Standard Object
Modeling Language , Third Edition ,Addison-Wesley Professional ISBN
0321193687.

172

[14] L. Groth : Future Organizational Design : The Scope for the IT-based
Enterprise, ISBN 0471988936.

[15] D. Alberico, J. Bozarth, M. Brown, J. Gill, S. Mattern, A. McKinlay
: “SOFTWARE SYSTEM SAFETY HANDBOOK - A Technical Man-
agerial Team Approach.”, Joint Software System Safety Committee.

[16] S. Uchitel, R. Chatley, J. Kramer, and J.Magee : LTSA-MSC: Tool
Support for Behaviour Model Elaboration Using Implied Scenarios, In
Proc. of 9th TACAS, Warsaw, Apr. 2003.

[17] S. Balsamo and M. Simeoni : Deriving Performance Models from Soft-
ware Architecture Specifications, Dipartimanto di Informatica, Univer-
sità Ca´ Foscari di Venezia, Italy.

[18] G. N. Rodrigues, D. S. Rosenblum, S Uchitel : Reliability Prediction in
Model-Driven Development.

[19] J. Skene, W. Emmerich : Model Driven Performance Analysis of Enter-
prise Information Systems, Department of Computer Science University
College London, London, United Kingdom.

[20] M. Barth : Performance Assessment of Software Models In a Config-
urable Environment Simulator, Institute of Computer Science, Ludwig-
Maximilians-Universität, München, Germany.

[21] UML Profile for CORBA, v 1.0, formal/02-04-01, Object Managementr
Group.

[22] R. Silaghi, F. Fondement, A Strohmeier : Towards an MDA-oriented
UML profile for distribution, Enterprise Distributed Object Computing
Conference, 2004. EDOC 2004, Proceedings. Eighth IEEE International.

[23] B. Selic : The Pragmatics of Model-Driven Development, IEEE SOFT-
WARE, September/October 2003, pages 19 - 25.

[24] L. Fuentes-Fernández and A. Vallecillo-Moreno : An Introduction to
UML Profiles, European Journal for the Informatics Professional.

[25] I. Majzik, A. Pataricza, and A. Bondavalli : Stochastic Dependability
Analysis of System Architecture Based on UML Models, In Architecting
Dependable Systems, LNCS-2667, pages 219 - 244. Springer, 2003.

[26] T. Hermansen : Creating more reliable business critical enterprise sys-
tems using RUP and System Safety, Depth study project, Norwegian
University of Science and Technology.

173

