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Abstract

This master thesis presents PORDaS, the Peer-to-peer Object Relational Data-
base System. It is a continuation of work done in a project of fall 2005, where the
foundation for the thesis was laid down. The focus of the work is on distributed
query processing between autonomous databases in a structured peer-to-peer
network.

A great deal of effort has gone into compiling the theoretical foundation for
the project, which served as a basis for assessing alternative approaches to
introducing a query processor in a peer-to-peer database.

The old PORDaS version was extended to include a simplified, pipelined query
processor capable of joining tables. The query processor had two different ex-
ecution strategies, the first was performing join operators at the requesting
node and the second was performing join operators parallel among the nodes
participating in the query. Experiments which ran PORDaS on a cluster of
36 computers showed that there are room for improvements even though the
system was able to perform all the tests.

Keywords : peer-to-peer, distributed hash tables, distributed databases, dis-
tributed query processing
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Chapter 1

Introduction

Structured overlay networks have emerged as a promising infrastructure for
building scalable and robust distributed systems. This thesis resumes the work
of PORDaS, a project of fall 2005, which laid the foundation for a distributed
database system in a structured peer-to-peer environment. The focus is on
interconnecting independent, autonomous database systems to form a larger
database system with extensive query processing capabilities while keeping data
in their natural habitats.

The first part of the work will be to study relevant literature in the field of
distributed query processing. Following this study, various alternatives for a
distributed query processor will be compiled and evaluated. Some of the conclu-
sions from the evaluation will be tested by adding a distributed query processor
to the previous PORDaS version. The new features will be tested to see if the
goals are met.

The background chapter introduces the basic theory on which the master thesis
is based. It contains sections on distributed databases, object relational data-
bases, peer-to-peer systems, distributed hash tables and a synopsis of previous
and related work. The analysis chapter goes in further detail on distributed
query processing. The PORDaS chapter presents the final PORDaS version,
which is followed by a chapter on testing and results that gives a summary of
the data gathered through various simulations. The final chapter concludes the
master thesis and gives an outline for future work.

There are a few people who deserve credit for their contributions to the PORDaS
project. First of all, Kjetil Nørv̊ag, who is the initiator and guide of this master
thesis, has given valuable insights and direction on the theory and goals of
the project. Svein Erik Bratsberg supplied helpful advice on distributed query
processing. Kai Torgeir Dragland helped on accessing the Endless cluster, and
Erlend Hammer gave access to the computer lab used for testing.
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Chapter 2

Background

The purpose of this chapter is to give a brief presentation of subjects of relevance
to the master thesis. There will be a presentation of distributed databases,
object oriented databases and peer-to-peer systems. The previous work done
on PORDaS in the fall project of 2005 is given as a short summary in order to
keep this report self contained. The chapter ends with a section about related
work.

2.1 Distributed Databases

It is assumed that the reader is familiar with the basic concepts of databases
and distributed systems, as these will not be treated here. The interested reader
is referred to [1] for a survey of databases. PORDaS will be built on many of
the ideas provided in the field of distributed databases. It will share some of
their properties, such as network transparency and having a query processor
that copes with data scattered in many locations.

A distributed database [2, 3] is a set of logically interrelated databases spread
in a physical network. The data stored in the system may be related even
if it resides on different sites. There are various approaches to implementing
a distributed database, though their preferable properties can be defined as a
set of transparencies. A transparency in a system is a construct that shields
its implementation details by providing a semantically higher interface. These
are location transparency, performance transparency, replication transparency,
transaction transparency, fragment transparency, schema change transparency
and local DBMS transparency. Location transparency makes it possible to ask
for data without knowing its location. Performance transparency refers to the
idea that the performance of a query should be independent of which site the
query was sent from. Replication transparency means that if there are replicas in
the system, answers will not contain duplicate entries. Additionally, an answer
will be produced as long as a replica remains alive. Transaction transparency
implies that a transaction either commits or aborts, even though a query might
involve more than one site. Fragment transparency makes it possible to divide
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a relation into fragments and spread these fragments to different sites. Schema
change transparency implies that when data is inserted or removed from the
system, the update is reflected at all the sites. Local DBMS transparency guar-
antees the operation of the distributed database despite the existence of any
local DBMS working on the data at a site.

An obvious advantage of distributed databases is the ability to gather the re-
sources spread across multiple sites in a single interface. This is especially useful
when interconnecting legacy systems. Distributed databases have the promise
of improved performance, which is due to two reasons. The first is data local-
ization, which means that data can be fragmented or replicated close to sites
where it is needed. The second is the use of parallelism, where queries can be
split into smaller parts which can be resolved simultaneously. Multiple queries
can also be handled at the same time.

Another advantage is the possibility of higher reliability through the use of
replicas. Expanding the system is also easier than in the centralized case; adding
a new site is usually a matter of registering it. However, there are limits to how
far a distributed database can be scaled without penalties to performance due
to increased overhead.

Distributed Query Processing

A distributed query processor is the component that resolves queries. The
resolution process differs somewhat from the ones used in centralized databases.
This is because there are more parameters to consider, like dealing with resource
location, network delay, fragmentation of tables across sites and the existence
of replicas. The steps typically involved in a distributed query processor are
illustrated in figure 2.1. The first three are performed locally, while the last is
distributed.

Figure 2.1: Steps in distributed query processing
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The first action is to decompose the query into a tree representation in algebraic
form. This step is done without knowledge of data localization, and is the same
as in centralized databases. After forming the algebraic tree, it is restructured
using heuristics to form a better tree, which means the worst execution plans
are avoided. The next step is localization of the requested data, which means
finding the sites that store the data, be it fragments or replicas. When data is
localized, the optimizer searches for a good execution plan. The space of possible
query plans is much larger than that of centralized systems. An additional
problem is that maintaining relevant statistics for the query optimizer is more
expensive, and the communication overhead between sites has to be accounted
for. Most query processor use heuristics and two-phase optimizers to avoid
evaluating every possible plan, sometimes at the expense of optimality [3]. A
good execution strategy is found by evaluating multiple permutations of the
restructured query tree according to a cost function. The cost function covers
areas such as the amount of requested data at each site, the probability of
matching when joining and network latency. The query is then executed in a
distributed manner and the answer is sent back to the requesting site.

When it comes to concurrency, keeping the integrity of a distributed database
is difficult. There are numerous approaches, each with varying degree of per-
formance loss due to overhead. Some introduce the possibility of distributed
deadlocks. When a site becomes unavailable due to a crash or network failure,
the distributed database must continue its operation in a graceful manner. This
takes a toll on performance, and is especially hard when the network divides into
two or more partitions. Another challenge is the security aspect of distributed
databases. Data sent across a network are liable to be intercepted.

Traditionally, the distributed database has not been very successful. This is due
to several facts, like the advent of data warehousing and a lack of investments,
though the most prominent is the failure to scale.

Adapting Database Requirements

Distributed databases suffer when facing network partitioning. This is because
they are based on the fundamental idea of transactional consistency. Transac-
tional consistency (ACID1) is one of the most important concepts in database
theory. In distributed databases however, it is not possible to guarantee ACID
combined with availability and tolerance of partitioning. In this context, high
availability means that data is always available from some replica. Tolerance
of partitioning means the entire system can sustain a partition between repli-
cas. The CAP Principle (Consistency, Availability and Partitioning resilience)
states that a distributed system can only enjoy two of those properties simulta-
neously [4].

1ACID stands for Atomicity, Consistency, Isolation, and Durability. Without these, the
integrity of the database cannot be guaranteed. Atomicity refers to the ability to guarantee
that either all of the elements of a transaction are performed or none of them are. Consistency
refers to the database being in a legal state when the transaction begins and when it ends.
Isolation refers to the ability to make operations in a transaction appear isolated from all
other operations. Durability refers to the guarantee that once a transaction is committed, the
effects will persist.
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This means that the consistency requirement must be relaxed in order to attain
high availability and tolerance for partitions. Partitioning is unavoidable in any
distributed system beyond a certain scale.

2.2 Object Relational Databases

This section briefly presents the relational model and explains the concept of
object relational databases [1, 5].

The Relational Model

Relational databases came into existence in the late 1970s and provided a robust
foundation for the storage, retrieval and manipulation of data [1]. The relational
model is based on the mathematical idea of a relation, which is represented as
tables in a database. Relations are used to hold information about entities, and
are implemented as two-dimensional arrays. The rows in the array, called tuples,
refer to specific instances of objects, and the columns in the array correspond
to attributes. Each attribute has a domain, which is a specific type of value.
See figure 2.2 for an example database.

Figure 2.2: Tables in the relational model

The relational model works well for processing typical business data, but it falls
short when it comes to storing and retrieving complex data such as diagrams,
geographical data or images. There is also a semantic gap between the relational
model and object oriented programming languages, that means there has to be
a conversion between the two whenever they are used together. Object oriented
databases were pitched as the solution to these problems. They can store com-
plex data and can incorporate specialized access methods. Hence, vendors of
relational DBMS have extended the relational model with various object ori-
ented capabilities to comply with the emerging demands. Unfortunately, there
is no single, precise definition of an object relation model, as there are many
different approaches and features in each specific extension.

The Object Relational Model

The most important features of the extended models are abstract data types,
collections, inheritance, polymorphism and functions.
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• Abstract data types
An abstract data type (ADT) can be used for creating complex abstrac-
tions of objects, providing a simplified interface for querying and manip-
ulation. For example, when storing geometric objects, representing them
as ADTs eases the implementation of functions such as intersect and area.
The possibility of incorporating specialized index structures is also an ad-
vantage.

• Collections
Having collections in a object relational database means multiple values
can be stored in a single column of a table. Examples of collections are
lists, sets and arrays.

• Inheritance
Inheritance makes it easier to model complex structures and relationships.
It enables the use of polymorphism, which is a powerful construct in object
orientation that enables an object to be treated as a member of multiple
classes.

• Functions
Functions can manipulate data in the database without the need for client
side code. Centralizing the implementation this way makes for easier
maintenance of code but increases the load on the database server.

There are several advantages of extending the relational database model as op-
posed to using a purely object oriented approach [5]. First of all, many compa-
nies have invested significant funds in relational databases, making it attractive
to build on what they already have. Second, purely object oriented databases
can currently not compete in terms of performance. Third, the relational model
can be kept while the benefits of object orientation are available.

Third, it enables the centralization of functionality in which complex operations
can be performed centrally.

2.3 Peer-to-Peer Systems

A peer-to-peer (P2P) system [6] is a distributed system where participating
nodes are treated as equal and are able to act as service providers as well as
consumers. This is in contrast to the traditional client-server architecture, where
a few servers provide services for their clients. The decentralized structure gives
a higher utilization of each node’s resources, and P2P systems are thus very
scalable.

Nodes in a P2P system must act autonomously due to the lack of central co-
ordination. This is an advantage when it comes to robustness since there is no
single point of failure. It is however a challenge when it comes to resource local-
ization since the nodes do not have a complete and consistent perception of the
system’s global state. The following sections will present different approaches
to localization in P2P systems.
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2.3.1 Resource Localization

This section contains an overview of three different strategies for indexing and
searching for data in P2P systems. These are the centralized, the decentralized
and the structured approaches. Figure 2.3 illustrates their characteristics.

Figure 2.3: Different Peer-to-Peer approaches

Centralized (Hybrid) P2P Systems

Centralized P2P systems rely on a centralized entity that indexes all the data
in the network. Nodes connect to the network through the centralized entity,
and in doing so, their data is registered in the index. When a node leaves, its
data is removed from the index. Any of the connected nodes can search for data
by querying the centralized entity. Thus, the index acts as a mediator between
the clients in the system, telling them where they can find data. This is a
hybrid model where the only P2P interactions are file transfers from one peer
to another. The main disadvantage is that the centralized entity is a bottleneck
that restricts the scalability of the system. It also constitutes a single point of
failure.

Decentralized P2P Systems

In order to obtain better scalability and fault-tolerance, the functionality of a
centralized index can be shared among the nodes in the network. This is the
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concept of the decentralized P2P system, such as the Gnutella protocol. Rather
than having a few of the nodes know the state of the network, this information
is stored among all the nodes. However, it is not feasible to construct fully
interconnected systems without losing scalability. This would require each node
to maintain an enormous amount of state when the number of nodes grows.
The solution is for each node to have connections to a small number of peers2.
These nodes may be connected to other nodes, thus creating a loosely connected
network. Lookups are performed by flooding requests to all peers, which in turn
pass the request on to their peers and so on. This approach generates a large
amount of network traffic, so each request is given a time to live (TTL)3. The
TTL prevents queries from reaching further than a limited horizon. Because
of the horizon, one cannot guarantee that a lookup is successful even if the
requested resource exists somewhere in the network. It has been shown that a
18 byte request in a Gnutella network can produce hundreds of megabytes of
network traffic [7].

Structured P2P Systems

Structured P2P systems organize the connected nodes in a overlay network to
obtain decentralization. The purpose of the network is to improve the search
procedure so that requests are routed rather than flooded. The most common
overlay network used in P2P systems are distributed hash tables (DHT). The
next section contains a thorough discussion of DHTs.

2.3.2 Distributed Hash Tables

A DHT is a virtual network on top of the underlying physical network. Two
adjacent nodes in the overlay network may be far away from each other in terms
of other distance metrics (geographic, number of IP hops, round-trip time). As
the name implies, a DHT is also a lookup mechanism for P2P systems which
replaces the flooding approach used to spread requests in decentralized systems.
The basic idea is to route requests in the direction of the requested data. This is
done by partitioning the identifier space among the nodes in the system. Each
node is made responsible for its designated part of the identifier space. This
can be seen as a hash table where each node acts as a hash bucket. Values
are mapped to the identifier space by assigning a key to them, generated by
applying one or more hash functions to the value.

DHT implementations are usually expanded to include functionality for insert-
ing and retrieving values. These functions use the lookup function to find the
node which is responsible for the value’s key.

The rest of this section presents different aspects of DHT implementations.

2Gnutella nodes usually have connections to 4 other nodes
3In Gnutella, the TTL is typically set to 7 hops
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Topologies

A DHT’s topology defines how nodes are connected, how the identifier space is
partitioned and how lookups are performed. Several different topologies have
been proposed for DHTs [8]. Here is a presentation of the most common ones:

• Ring topology
The ring topology (figure 2.4) uses a cyclic one-dimensional identifier
space. The distance between two keys A and B is (A−B) mod N , where
N is the size of the identifier space. Each node is given a key4 and hence
assigned a position in the ring. A node is responsible for the keys in the
range between the preceding node in the ring and itself.

The requirement for the ring to work properly is that each node maintains
a connection to its successor. This would, however, imply linear lookup-
times and that the ring is broken if a single node fails. In order to increase
the fault tolerance each node is maintaining a list of successors with k
nodes. This means that k nodes with consecutive identifiers must fail to
break the ring. Logarithmic lookup-times are achieved by introducing a
finger-table at each node. Node n’s finger-table maintains connections to
the nodes with keys n + 2i−1, where 1 ≤ i ≤ m and m is the length of the
identifiers.

Figure 2.4: Ring topology

• Tree topology
The tree topology (figure 2.5) organizes the identifier space in a hierarchi-
cal fashion. The distance between two nodes is the height of their smallest
common sub-tree. Each node maintains a routing table with connections

4Node identifiers can be created in a number of ways. For example by hashing the node’s
IP address and port number or it can be issued by a centralized authority.
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to (d− 1) ∗ logd N nodes where d is the tree’s fan-out5 6. This gives each
node a certain degree of freedom when it comes to selecting routing-table
entries.

Figure 2.5: Tree topology

• Hypercube topology

Hypercube topologies (figure 2.6) use a coordinate system shaped like
a d-torus7. The identifier space is partitioned into zones. Two nodes
are neighbors if their coordinate spans abut along one dimension. The
path-length between two nodes is O( d

√
N). An advantage of hypercube

topologies is that there exists, dependant on d, a number of alternative
paths between two nodes. This can increase the network utilization.

Lookup

A lookup is an operation that finds the node responsible for any given value.
It consists of routing lookup messages towards the node that is responsible
for a given key. At each step of the process the message is sent to the node
that is closest to the target. Lookup-operations can be divided in to two sub-
categories, iterative (figure 2.78.) and recursive (figure 2.89). Both approaches
have advantages and disadvantages.

Iterative lookup is performed by returning a response to each lookup-message
to the sender and thus giving the initiating node full control over the process.
The downside to this approach is that the number of messages required to reach

5A tree’s fan-out refers to the number of child nodes each node in the tree may have.
6For every of the logd N levels in the hierarchy, each node needs to maintain connections

to the d− 1 other sub-trees.
7A d-torus is a d-dimensional Cartesian space that wraps around the edges
8Adopted from [9]
9Adopted from [9]
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Figure 2.6: 2-dimensional hypercube topology

a node is somewhat increased10. It also requires that a lot of TCP-connections
must be initiated or that an alternative protocol is being used.

Recursive lookup is performed by passing on lookup-messages to the next node
without involving the initiator. This approach does not give the initiator any
control over the process or information about why a lookup fails (there could
be a malicious or overloaded node somewhere along the path). Possible solu-
tions to this problem are using a probabilistic routing scheme11 [11] instead of
a deterministic one, or switching to iterative lookup after a given number of at-
tempts [10]. Recursive lookup uses the connections that are already established
between the nodes in the network, but one might want to establish a connection
to return the result directly from the target node to the initiator since this will
decrease the required number of messages.

As seen in the topologies section, most DHTs are capable of performing lookups
with O(log N) messages. One should be aware that this is not equal to the
number of IP hops. A lookup request from a computer in Trondheim to one
in Oslo could very well visit every continent in the world before completing if
routing table entries are not carefully selected.

Adapting to changes

In P2P systems there is a continuing process of adapting the network as nodes
join or leave. The continual process of nodes joining and leaving is often referred
to as churn [9]. Nodes join and leave as they please and therefore the network
needs a coping strategy that does not disrupt the operation of the system.

10The number of messages is increased by a factor of 0.6 according to [10]
11In a probabilistic routing scheme messages will only be forwarded to the best node with a

certain probability. If a lookup fails, chances are that the lookup will follow a slightly different
path the next time it is retried, and it will eventually succeed.
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Figure 2.7: Iterative lookup.

Figure 2.8: Recursive lookup.

When a node wants to join a network, it may connect through any node that is
already in the network12. The new node is then given a share of the identifier
space (or it may share the space with another node) and needs to acquire the
keys belonging to that share. It also needs to build its own routing table and
tell other nodes to update theirs.

A node may intentionally leave the network or abruptly leave due to failure. In
the first case the node may notify other nodes and give away its keys before
leaving and thus leaving the system in a graceful manner. In the case of failure,
the other nodes in the network need to be able to detect the node’s departure,
update their routing tables and take over the failing node’s share of the identifier
space13. The updates can be done in a reactive or a periodic manner [9]. Doing

12The process of connecting to a P2P network is called bootstrapping. The node used to
enter the network is often referred to as a bootstrap node or boot node

13In many DHTs, such as Chord, this happens as a consequence of the topology and no
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it in a reactive manner means that a join or leave triggers the update process.
Periodic means that updating is done as a continuous process.

Reactive updates ensure that the system’s state is kept as consistent as possible
and that the number of messages passed around is kept at a minimum. However,
in the event of multiple nodes joining or leaving, this approach may trigger an
immense amount of network traffic. This may be enough to cause even more
nodes to fail and thus create even more update processes.

Periodic updates generate a constant rate of traffic and have a less probability of
keeping the routing-tables in a consistent state. However, routing performance
does not suffer much from small inconsistencies. DHTs with periodic updates
are more robust against churn [9].

Searching in DHTs

It is difficult to perform effective searches or range queries in P2P systems
organized using DHTs, since they only provide lookup on exact key matches.
In order to be able to search in such a system one must either flood queries
like in Gnutella or build another index on top of the DHT. Other alternatives
including using tree structured DHTs or sharing routing information have been
proposed as well [12, 13].

2.4 Previous Work

The PORDaS project of fall 2005 resulted in a experimental prototype of a P2P
database and outlines for further work. In order to keep this master thesis self-
contained, the following section will present a brief summary of that project.
An analysis of the scope and direction of the thesis is presented in section 3.1.

PORDaS is a system where independent database systems are connected to a
DHT to be able to share and access data from other repositories. The system
is location transparent and based on resource identifiers. The DHT is used to
form a global shared memory where an index is stored. The index entries are at
the schema-level and contains mappings between resource and node identifiers.

PORDaS also contains a metadata index that makes it possible to search for
resources based on assigned keywords. An entry in the keyword index contains
a mapping between the keyword and all related resources. It is not necessary
to put keywords in the DHT index, but it was originally added as an initial
exercise and was later kept for convenience. An alternative would have been to
create a separate structure for the keywords, for instance formed as a hierarchy
of terms. This type of indexing is not optimal since there is only a limited
amount of possible keywords and their popularity is not uniformly distributed.

The indices are maintained using soft state and can thus never guarantee any
form of consistency. Each index entry is given a time to live which is periodically
updated by its owner. The advantage of this apporach is that it only requires

effort to repartition the identifier space is needed
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a limited amount of resources to keep the index fairly up to date. Soft state
indices are also quite robust when facing a large number of node failures [14].

PORDaS’ query processing capabilities are limited, with selection and projec-
tion as the only available operators. One of the main goals of this thesis is to
expand the query processor to include join-operators as well.

The software is written entirely in Java. This choice was made to allow rapid
development of the prototype. The program has been designed with modularity
in mind. The DHT, local storage is separated from the rest of the system and
can easily be replaced14. PORDaS is only a middleware layer itself and can
therefore be included in any application. The DHT used is FreePastry [15],
an implementation of Pastry [16] (Appendix A) written in Java. The storage
layer was initially an embedded version of MySQL [17] (not Java), but was
later replaced with Derby [18] (Java) to ensure compatibility with all available
resources15.

A test application was built to run experiments with PORDaS on clusters.
The experiments showed that the system behaved as expected, but needed a
scheduling mechanism to ensure that nodes can only start a limited number
of transfers at the same time. FreePastry is a best-effort service and does not
retransmit messages lost due to overflow in the message buffer. This caused
queries to fail and response times to increase exponentially when nodes received
queries at a higher rate than they could be processed.

2.5 Related Work

PORDaS is in many ways related to the fields of distributed databases [2, 3]
and distributed query processing [19].

PORDaS is similar to the PIER project [14, 20], which is a distributed query
engine built as middleware to create other applications over. Its prime purpose
is scalability, which is achieved through the use of a DHT structured overlay
network. The data in PIER are managed locally at each site, and is structured
using a relational model. Transactional consistency is relaxed in order to attain
the goal of massive scalability and resilience to network partitioning. PIER
differs from PORDaS in that it indexes all tuples in the system, while PORDaS
maintains an index at the table level. This means that PIER has a larger
index. Additionally, PORDaS focuses on increasing availabilty and performance
through replication.

ObjectGlobe [21] is a distributed query processing infrastructure, where sites in
a network offer their data and processing capabilities for a fee. It relies on a cen-
tralized lookup service and focuses on security and privacy issues. Mariposa [22]
is a system similar to ObjectGlobe. It employs an economical model to drive
a distributed database. The idea is to have sites buy and sell data processing
services using a virtual currency. Where queries are processed depends not only
on data location but on which node is selling its processing power.

14Replacing the storage component or DHT requires no changes to PORDaS. The new
component must adhere to the storage or network interface.

15MySQL 5.0 was released later on with improved platform support
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An introduction to queries in the context of P2P networks with a DHT overlay
network is given in [23]. A data model specifically designed for P2P applications
is introduced in [24]. The idea is to allow for inconsistent databases and to allow
for interoperability in the absence of a global schema.

AmbientDB [25] is a P2P query processing architecture using the relational
datamodel. A DHT is used to connect clients and to create indices that support
transparent query processing in an ad-hoc P2P network.

PeerDB [26] takes a different approach by using agents to collect data in a
unstructured P2P database system. The clients can reconfigure their network
tables in order to obtain better performance. Additionally, data can be shared
without a shared schema. This is done using a keyword thesaurus, where each
relation in the system is associated with a set of keywords.
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Chapter 3

Analysis

This chapter defines and analyses the fields of interest for the master thesis.
The chapter opens with a section on scope, where the boundaries for the thesis
are defined. The next parts revolve around the core subjects; the study of a
distributed query processor and ways to optimize the performance of a P2P
database system. The analysis ends with a section on considerations related to
performance tests and experiments.

3.1 Project Scope

This section presents the scope of the master thesis. It gives an overview of the
main areas of interest, and it defines the boundary of constraint.

The core of the thesis is distributed query processing, and how this can be done
sensibly in a P2P environment. An important question in this respect is how to
locate and retrieve resources without global knowledge of the state of the system
nor which peers store which data. This challenge, and the previously mentioned
goal of robustness, is met with the use of an overlay network. In short, the
use of a distributed index is studied. Another question is how the resources
in the system can be utilized in an efficient fashion when performing queries.
The possibility of pipelining and parallelizing the query processing is examined.
A secondary area of focus is to search for ways to increase the performance.
This work contains the use of replication, caching fragmentation and the use of
specialized indices.

In order to focus on the core subjects of the thesis there are several subjects
related to P2P systems and databases that will be left out or simplified.

The query language will not be extended further than adding join operators.
This means that functions such as nested queries, aggregations and unions will
not be supported. The object relational capabilities of the previous PORDaS
project will not be expanded. This means that there will still be abstract data
types, but no effort will be made to include additional features such as inher-
itance, polymorphism, collections, functions or other of the features seen in
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modern ORDBMSs.

The facilities for navigating through or finding schema definitions are very lim-
ited in PORDaS. Currently, schema definitions in PORDaS are identified by
their hash value. This is not a very user friendly solution and PORDaS could
possibly benefit from a solution similar to XML namespaces where every el-
ement within a namespace must be unique. Another similar improvement is
better categorization of schemas by using an ontology and semantic webs. This
could allow for a better keyword search. These issues will however remain sim-
plified.

Security issues will not be considered. Hence there will not be any measurements
to prevent denial-of-service attacks or general abuse. Nor will there be any focus
on trust or solving the problem of free-riders. It is assumed that users are benign,
trustworthy and willing to contribute.

3.2 Distributed Query Processing

This section contains an analysis of distributed query processing in a P2P data-
base. It begins with a presentation of how a traditional query processor with a
static query optimizer could be adapted to a widely distributed environment [2].
Finally, a more dynamic query processor is presented.

3.2.1 Traditional Distributed Query Processing

This section analyses the adaptation of a traditional distributed query process-
ing theory to a P2P setting, and identifies problems that may arise.

Query decomposition

The first step of any type of query processing is query decomposition. The goal
is to convert the query from a textual representation into a relational algebra
tree. The structure of the tree decides the order of execution in the execution
step.

Before this happens, syntax errors are discovered and malformed queries are
rejected by the parser. This step also removes redundant expressions. Figure 3.1
gives an example of a conversion from a textual query to its equivalent algebra
tree. Basically, all the projections in the query will be set as the root of the tree,
followed by any selections. Finally, cartesian products are put in the bottom of
the tree.

An algebra tree has many equivalents, some of which are better in terms of ex-
ecution performance. The last part of decomposition is therefore restructuring
of the initial algebra tree to avoid the worst solutions. The restructuring is done
using a set of conversion rules [2] on the initial tree. The basic idea is to reduce
the size of the intermediate results as early as possible using heuristics. This
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Figure 3.1: Decomposing a SQL query into an algebra tree

translates to smaller inputs to the most expensive operators and less data ship-
ping between sites. Restructuring is done by pushing selections and projections
towards the leaves in the tree. Cartesian products are avoided, and if they can’t
be, they are pulled towards the root. Figure 3.2 gives an example on how a tree
can be improved. Two of the cartesian products in the tree have been converted
into joins by consuming the selections in the tree, selections and projections are
pushed down.

Data localization

The next step is data localization. First, the schema definition for each of
the tables in the query must be retrieved. The schema definition is needed in
order to type-check the attributes and to check that the resources referenced
in the query actually exist. Second, the nodes which store the data involved
in the query must be identified. If any of the tables are replicated, these must
be handled appropriately to avoid duplicates in the result. In the case where
a DHT is used, an index can be distributed among the nodes. This index can
contain information that connects schema definitions and a list of the nodes that
store them. The schema definitions in the index must be uniquely addressable.
This can be done through the use of a hash function. Queries can then reference
specific tables by using hashed schema definitions as identifiers. For ease of use,
aliases can be made to make the queries easier to read and create.
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Figure 3.2: Restructuring an initial algebra tree

Planning and optimization

After the localization step comes planning and optimization. The output of this
part of the process is an optimized execution plan that decides how the query
tree will be executed, and which sites are to be involved.

The optimized plan is found by first defining the search space for the query. As
the search space increases dramatically in size with the number of tables and
operators involved (optimization is an NP-hard problem), considering all the
options is too expensive. Instead, heuristics are used to find a good solution
within a feasible amount of time. The search space is defined by applying
transformation rules to the query tree, thus creating a set of equivalents. For
instance, many alternatives are made by permuting the join order as it has a
significant effect on the performance of the query. Additionally, the search space
can be constrained by restricting the shape of the tree. The disadvantage is that
in disregarding certain tree structures, the most efficient strategy may be pruned
away. There are two classes of trees that are important in this respect, linear
and bushy trees. The binary operators in a linear tree must have at least one
operand that is a base relation. The operators in a bushy tree do not have this
constraint. It is obvious that bushy trees offer more possibilities for executing
queries in parallel in a distributed setting. Figure 3.3 illustrates the difference
between the two classes of trees. The two cartesian products in the bushy tree
could be resolved concurrently by different sites, but this is not possible with
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the linear tree.

Figure 3.3: Classes of algebra trees

The choice of execution strategy is another parameter to consider when creating
the search space. For instance, there are several choices on how to perform
joins [27]. Nested loop, sort-merge, hash-join and hybrid hashing are some of
the procedures used when the queries are local. Some of these have been adapted
to fit the requirements of distributed databases. These will be further explained
in the section on the execution phase.

When the search space has been established, a cost function is used to score
each of the alternatives. In centralized query processing [28], the search space
is bounded by the local database, but in the decentralized case, the network
has to be accounted for. The cost function itself is based on a cost model,
which predicts the costs of operators and the size of results. The more accurate
the model and the knowledge of the input data is, the less the chance is of
creating a bad execution strategy. A weak cost function can be damaging to
the response times and the throughput of the system. The inputs to the cost
function are statistics collected about the state of the system. This includes
table cardinalities, the minimum and maximum values for numeric attributes,
the presence of indices, the type of indices and so on. The cost of network
communication can be approximated by a constant, or it can be more precisely
determined by storing the average latency for each site. In a P2P network, the
connected computers are likely to run on hardware with different performance.
The cost function has to deal with this fact, either by getting information about
the performance or assume it is the same at all sites. Such a simplification
narrows the search space considerably.

It is hard to make realistic assumptions about the state of the network, especially
in a P2P environment. The nodes in the network may have different types of
connections, the currently connected set of nodes may be in flux and the load
at each node may differ from one moment to the next. By assuming constant
communication cost, the complexity of the cost function is greatly reduced.

At any rate, the statistics must be accessible from somewhere in the distributed
system, and they need to be maintained. In general, the more precise the
statistics are, the more expensive they are to maintain. In a P2P setting, having
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each node keep a repository of the global state is prohibitively expensive if
the goals of scalability are to be met. One possibility is to distribute this
information as an index among the nodes by using the DHT. However, this is
best when the data are rarely updated. If not, the optimizer would operate
on stale information, disrupting its performance. Additionally, maintaining an
index of statistics requires a certain amount of resources.

An example cost function for distributed query processing is presented in [2]:

Ttotal = TCPU ∗ ]insts + TI/0 ∗ ]I/Os + TMSG ∗ ]msgs + TTR ∗ ]bytes

TCPU ∗ ]insts is the time taken to process all instructions in the CPU. TI/0 ∗
]I/Os is the time needed to perform I/O. The rest of the formula, TMSG ∗
]msgs+TTR ∗ ]bytes, is the cost of communication, where a constant latency is
assumed. TMSG is the constant time taken to start and receive a message and
]msgs is the number of messages sent. TTR ∗ ]bytes is the constant time taken
to transfer ]bytes. In a P2P network with a DHT, the time taken to look up
resources should be added to the formula.

Using a static optimizer in a P2P database is hard because of fluctuations in
the connected population and the fact that loads are likely to change during a
query. This makes it difficult to assess the state of the system through statistics,
which makes the optimizer base its decisions on uncertain data.

Execution

The final step in query processing is to execute the plan created by the optimizer.

When transferring data in a P2P database, it is beneficial to pipeline tuples to
maximize resource usage [1]. Pipelining means that tuples are processed when
they arrive and sent as soon as they are created. This reduces performance
penalties du to skew1 since operators do not have to wait until they have received
all tuples from their operands. This way, the result is received as a stream of
tuples, adding the benefit that the first tuple in the result can be seen earlier.
Another advantage is that there is no need for storing intermediate results in
a temporary files, as they are shipped off immediately. The granularity of the
pipeline can be varied. Sending blocks of tuples instead of single tuples will
save message overhead, but will require intermediate storage. Finding the right
block size is a trade-off between the two.

In the case of errors in the execution phase, there has to be a mechanism for
coping with failure. Errors can be caused by many reasons, for example a site
can have failed, parts of the network may be down or the load at a site may
be too large. There are several appropriate actions that can be taken in the
face of an error. Different strategies exist such as aborting the query, restarting
the query, re-planning it or merely delivering the partial results. The choice of
strategy depends on the requirements of the application.

The abort and restart mechanisms are straightforward. The query execution
halts and in the case of restart is resubmitted to the query processor. Both

1Skew refers to an uneven delivery of results from the operators involved in the resolution
of a query.
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methods are easy to implement, but they risk discarding useful partial results.
Re-planning means that the query is re-planned to avoid the failure. Either
a new plan is submitted, or if it is possible, the part of the plan that failed
can be re-planned. Re-planning means that partial results can be kept while a
new plan is made for the remainder of the query. This strategy could be more
effective, but it is also more complex. The alternative of delivering only partial
results ensures that the response time is somewhat unaffected by failures, but
the results suffers from being incomplete.

Performing joins in a P2P database where the network is volatile, is not an easy
task. On the bright side, the distributed nature of P2P systems lends itself
to traditional parallel join algorithms. An attempt was made to incorporate
these in PIER [14], which is a distributed query engine using overlay networks.
The approach taken was to implement two binary equi-join algorithms based on
adaptation of parallel and distributed schemes. Suggestions are also made for
optimizing the schemes.

One is a DHT-based version of the pipelining hash join [29]. The concept
is shown in figure 3.4 which illustrates a selection between to tables stored in
different namespaces in a DHT. The nodes in the DHT that have data from one
of the relations to be joined, scan their data locally. This data is then rehashed
into a new namespace based on the join key. The relations are then probed, and
the matching tuples are sent to the next join step. If it is the last step, they are
returned to the node which initiated the query.

Figure 3.4: Pipelining hash join in a DHT

Another approach, namely fetch matches, is a variant of a traditional distributed
join algorithm, that only works when one of the relations is already hashed on
the join attributes. Basically, the method saves the work of rehashing both
relations. All the nodes that store the other relation, go through all their tuples
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in this relation and performs a get on the hashed relation for each tuple. The
results are forwarded to the node which initiated the query.

Optimizations of the schemes above include the use of bloom filters, which have
the effect of minimizing the total bandwidth consumption. When performing a
join, every node storing either of the relations to be joined, compute a bloom
filter for each of the relations. These filters are then distributed to a small
temporary namespace, where the filters are OR-ed together and then dispatched
to the nodes holding the opposite table. The bloom filters are then used to
minimize the amount of tuples which are processed for the distributed join
outlined above.

Another optimization is the symmetric semi-join, which saves bandwidth by
avoiding rehashing both the joining tables. The idea is to limit the initial
communication by projecting each of the tables locally to their primary keys
and join keys, and then doing a symmetric hash join on the projections as
explained above. The results are sent into fetch matches joins on each of the
tables’ primary keys.

3.2.2 Adaptive Query Processing With Eddies

Due to the problems associated with using a static query optimizer in a volatile
environment it is necessary to consider an alternative that avoids the trouble of
pre-optimizing and having a metadata catalogue altogether.

An eddy [30] is a tuple router which is interposed between the data processed and
are eventually routed as output. Eddies employ a routing policy to decide where
a tuple should be routed next. If the routing policy responds to feedback from
the operators it can adjust the flow of tuples during the execution. This allows
eddies to dynamically change query plans during execution and obviates the
need for an optimizer or a metadata catalogue. Figure 3.5 shows the difference
between a traditional query plan and a query plan with an eddy.

The eddy was originally designed for centralized query processing but the con-
cept has also been adapted to distributed query processing as Federated Eddies
(Freddies) [31]. Freddies are designed to work within PIER [20] and will serve
as an example since they are the only known implementation. Other proposals
for eddies in distributed query processing has been made in [32, 33].

Freddies are quite similar to eddies with a unique instance of a freddy on each
node participating in a query. In addition to routing tuples to its local operators,
freddies has the option to put tuples in the DHT. Figure 3.62 shows a freddy
instance executing a query plan using hash ripple join. The freddy may route
to local operators or rehash tuples to other nodes.

The first step of freddy-based query processing is to create a query plan where
cross products are avoided. The query plan contains an operator graph where
acceptable orderings encoded. The same query plan is disseminated to each
node participating in the query.

2Adopted from [31]
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Figure 3.5: (A): A traditional query tree. (B): Query execution using an eddy.

Each tuple carries two bitvectors, done and ready, indicating which operators
it has been processed by and which operators it is eligible to be processed by.
Each time a tuple is outputted from an operator it has the appropriate done
and ready bits set. If the output is the result of a binary operator the vectors
from both input tuples are ORed. When a tuple has all its done bits set it is
outputted.

The performance of eddies relies on their routing policy and the ability to make
the correct assumptions about which join algorithms to use. These choices have
to be made on the basis of heuristics and with the constraint that each relation
does only participate in one join. This prevents eddies from exploring the entire
space of valid query trees since all that can be done during the execution phase
is to alternate the ordering of the operators3.

In order to enable reordering of operators one must be able to change the query
plan while preserving its state. To do so continuously requires operators that are
pipelined4 and avoids synchronization barriers5 while having frequent moments
of symmetry6.

The ripple join [35] family has been proposed as suited join operators when using

3Solutions to some of the limitations of eddies has been proposed in [34]
4If the operators are not pipelined one will have to wait until an operator has completed

processing before one can reorder the operators.
5A synchronization barrier is a structure that causes each thread in a collection of threads

to block until the entire collection is blocked, at which time the entire collection is released.
Join algorithms encounter synchronization barriers whenever they must wait for input. Skew
can cause significant overhead if there are frequent synchronization barriers.

6A moment of symmetry is a point in execution where the ordering of inputs to a join can
be modified without significant changes to the state of the operator. When execution reaches
a synchronization barrier it ends the scheduling dependency between the inputs. Many join
algorithms has a moment of symmetry at this point.
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Figure 3.6: Query processing with a freddy

eddies[30, 31]. Index and hash ripple joins can be used for equi-joins and simple
or block ripple joins can be used for non-equi-joins. These algorithms cannot
compete with the best case performance of more traditional algorithms, but
their adaptability make them favourable since best case scenarios are unlikely
to exist for long periods of time in a volatile environment.

3.3 Optimizations

This section presents two promising areas for increasing the performance of
distributed query processing. These are replication and having a specialized
index to support range queries.

3.3.1 Replication

In a distributed system like PORDaS it is unlikely that the entire load of the
network is uniformly distributed among the nodes. Nodes may contribute un-
evenly in terms of how much data they share and which resources they hold.
Another factor is that the query distribution is more likely to follow a power
law distribution, rather than a uniform distribution [36]. A distributed data-
base is not scalable if it is unable to handle hot spots. In addition to having
an uneven load distribution one must also be able to handle objects increasing
or decreasing in popularity. An increase in popularity, either a slow change or
a more sudden flash crowd7 effect, requires that new replicas are made. When
popularity decreases it is desirable to decrease the amount of replicas to avoid
wasting resources.

7”Flash Crowd” was a 1973 short story by science fiction author Larry Niven, one of a series
about the social consequence of inventing an instantaneous, practically free transfer booths
that could take one anywhere on Earth in milliseconds. One consequence not predicted by
the builders of the system, was that with the almost instantaneous reporting of newsworthy
events, tens of thousands of people worldwide would flock to the scene of anything interesting.
Source: Wikipedia
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Another potential advantage of having replicas is the possibility of using repli-
cas for parallelism. This could be done either by performing tasks in parallel
or retrieving data from multiple sources simultaneously. This could result in
decreased response times if there are idle resources. It will however only result
in increased overhead if the replicas are under heavy load. If 4 replicas are
receiving requests from 12 nodes it does not make a difference to their load if
each replica receives 3 full tasks or 12 smaller (1/4) tasks, the amount of work
is still the same.

It is possible to use replication to avoid hotspots and reduce response times at
the same time. The BitTorrent-protocol [37] lets downloading nodes download
fragments from each other and thus relieving the original source of much of
the load while decreasing response times. A similar approach can be used in a
database system if the query processor is based on data shipping. However, it
will require an extra effort to keep the replicas in a consistent state.

Replication can also increase the availability of a resource, but it is necessary to
have a strategy in case the owner of the resource never returns to the system.
Two possible strategies is to keep the replicas alive as long as they have a certain
popularity level another is to give them a time to live. Both these strategies
will only ensure extended, and not permanent, availability.

The use of replication also has its disadvantages. Without careful consideration,
replication can be devastating with regard to the resource consumption. If the
workload is mainly read operations, having multiple copies of an item is good for
the performance [2]. On the other hand, if the core database is constantly being
updated, then maintaining replicas requires a considerable amount of resources.

Replica Maintenance

When there are replicas in a system, some scheme must be defined in order to
keep the replicas up to date. There are a variety of alternatives to choose from.
The replica control protocols can be divided in two categories; strict and lazy
replication [19, 2].

Strict means enforcing equivalence among database copies. In short, every copy
must be consistent with each other after an update. The Read One Write
All (ROWA) protocol is one such protocol. It transforms a read operation to
a read from any of the available copies. Write operations are converted to
a write to all the copies, thus ensuring consistency. Several optimizations on
ROWA have been proposed. Protocols built on the concept of voting have also
been explored. Basically, some form of voting process between the nodes in a
distributed database is used to decide when to update.

Lazy replica control protocols allow updates without necessarily waiting for
all replicas to be written to. An update is written to some of the copies, and
propagated to the remaining replicas at a later time. This can lead the database
into a state of inconsistency, which must be detected and resolved in some
fashion.
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Replication Strategy

A replication strategy governs when to replicate and where replicas are stored.
The strategies can be divided into two categories, static and dynamic.

Static replication determines the replication parameters at connection time.
This means that the number of replicas, what to replicate and where to send
the replicas are determined when a site is added to the distributed database.
The CAN [38] and Pastry [16] DHTs suggest this type of replication strategy to
ease the transition when a node goes down. The number of replicas is usually
small. There are several options for selecting the site to ship a replica to.
It can be random, by sampling a subset of the network or in a predetermined
manner according to the structure of the DHT. These can be supplemented with
demand-driven replication, where any node can request a replica. This can be
advantageous if the node will make frequent use of the object. The advantage of
static replication is that it does not need any elaborate scheme to decide when
to replicate, which makes the overhead non-existent. However, static replication
does not take into consideration the shifting popularity of data. If a given set
of data becomes popular, nothing is done to adjust to the increase in demand
other than hoping the number of replicas is enough. In addition, resources are
wasted by replicating data that are seldom or never accessed.

Dynamic replication strategies can be categorized in two groups [19]. The first
group are those that aim to reduce communication cost by increasing locality.
This is done by placing replicas at sites near where they are anticipated to
be used. The second group measures the popularity of data, and adapts to
changes in demand by replicating hot items. Examples of this strategy is the
LAR scheme [39] and Beehive [36].

The two groups are not mutually exclusive, as it is perfectly possible to have
both in the same system. Both are useful in a P2P database setting, though
care must be taken to handle the added complexity. Resources must be used
to maintain the replicas, and a mechanism is needed to avoid duplicate results
from replicas.

To give an example of dynamic replication, the concept applied in the Beehive
system will be presented. The purpose of Beehive is to reduce the lookup latency
in a DHT by spreading DHT record replicas when they are needed. This idea
can be adapted to a P2P database to improve query performance. Instead of
replicating DHT records, parts of the database can be replicated and spread in
lieu with increasing demand.

Beehive exploits the structure of DHTs that rely on prefix-routing. Prefix-
routing implies that the identifier space is circular. The idea is presented in
section 2.3.2. Every node is given an identifier in the circular identifier space.
The objects inserted to the DHT are assigned identifiers, and are stored at the
node with the most equal identifier. When routing requests for data, the request
is routed to nodes with successively matching prefixes. The Beehive concept is
that the number of hops to the destination can be reduced by one if a replica
is inserted at every node preceding the destination by one. Preceding by one
means there is a difference in one of the prefixes, and thus the destination node
is in their routing table. The number of hops can be reduced even further by
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expanding the replication to the previously preceding points, and so on until
the replica has been spread to all nodes. Figure 3.78 shows how the path to
the destination can be made shorter by adding replicas. In the figure, the last
routing hop comes from a level 2 node. If replicas were spread to level 2 nodes,
this hop would be avoided. The same goes for the hop from level 1 to level 2, if
replicas were spread to level 1.

Figure 3.7: Replication levels and the effect on routing.

In order to use popularity to govern replication, a mechanism has to be in place
to measure the popularity of an object. This is a function of the number of
times an object has been accessed over a certain period of time, and is measured
locally at each node. When an object is loses its popularity, it should no longer
be replicated. In the Beehive model, the popularity of an object is measured as
the aggregate of all accesses made to an object and its replicas. The aggregate
value is gathered periodically, and is collected by having local values flow from
the nodes at the lowest level of replication to the source copy. The source
aggregates the values, and sends the final aggregate toward the lowest level.
This way, all nodes keeping a replica knows when the data is no longer popular.

In the face of flash crowds, where certain objects become very popular in a
short amount of time, this can easily flood the popular nodes. To decrease this
problem, new requests for data can be delayed until the replicas are in place.

In a distributed system where the resources are not owned by the same orga-
nization, the willingness to participate in replication schemes may not be in
everyone’s interest. Even if the willingness exists, it may be that nodes lack the
resources to store copies for others. There are schemes that create an incentive
to participate in sharing, such as the Mariposa system [22]. This is not the
focus of this master thesis, and will not be pursued any further.

Replica Granularity

The size of replicas is an important aspect of replication. Alternative granular-
ities for replicas are entire databases, tables, parts of tables and tuples. Each
granularity has its benefits and disadvantages:

8Figure adapted from [36].
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• Replicating databases
Measuring when to replicate when replicating the entire database, is easier
than when the granularity is smaller. It is merely a matter of controlling
the number of external accesses. There is less overhead since there are no
partitions.

On the other hand, replicating an entire database can be costly. If a
replica leaves the network, replacing that replica means sending the entire
database. Another problem is the popularity of the data being replicated.
Most likely, only a fraction of the entire database will be popular data
worth replicating. Shipping and maintaining unnecessarily large amounts
of data is not optimal.

Keeping in line with shifting hot spots is also difficult when replicating
entire databases. Due to the potentially large amounts of data in a data-
base, the time between the detection of a hot spot and the time the replica
is in place might be longer than the lifetime of a hot spot.

• Replicating tables
Using tables as the unit of replication makes it possible to discern pop-
ularity at a smaller granularity. This avoids replicating tables which are
not a part of the hot spot. A disadvantage is an increase in overhead
for building and maintaining a bigger index. Its size is governed by the
number of popular tables at each node. The overhead can be decreased by
increasing the level which decides when a table is deemed popular. The
downside is that the time before replication begins, and thus relieving the
hot spot, will be longer.

There is a chance that not all tuples in the replicated table are popular.
In the extreme case, only a single tuple is popular, and this would imply
that an unnecessary amount of data was replicated.

• Replicating parts of tables
There are several different approaches to partitioning tables, a survey of
which is presented in the context of parallel databases [40].

The simplest one, round-robin partitioning, maps the i’th tuple to site
i mod n, where n is the number of sites in the partitioning set. Hash
partitioning places tuples to a set of sites based on a hash function. In
both these cases, the granularity is at the tuple level. This gives a high
maintenance cost in a P2P setting.

Range partitioning splits a relation into two or more ranges. These could
be replicated at different nodes, which would enable parallelism while
minimizing the size of the replicas. An optimizer would have to be in
place to determine the best number of ranges. Having too many replicas
would require the node storing the source copy to maintain an expensive
amount of network connections. If the source copy is updated frequently,
it might be a good idea to reassess the range partitioning. Shifting the
contents of the replicas is potentially a costly operation. On the other
hand, a smaller granularity gives a more detailed control over hotspots.

• Replicating tuples
Replicating at the tuple level represents the extreme end of the spectrum.
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It gives the most powerful control over replicas at the expense of the
highest maintenance cost. Control means being able to exactly define hot
spots and thus replicate only popular tuples. The cost of maintenance
would be high because this alternative requires an index record for each
replicated tuple.

The choice of replication strategy depends on the application, though an opti-
mum solution would perhaps be to create a hybrid version that could adapt to
the current environment. Creating such a hybrid would be a complex task, and
will not be pursued here.

In the light of the PORDaS P2P environment, replicating at the table level is
what makes the most sense. It incurs a medium impact on the index and the
bandwidth consumption compared to the other alternatives. Additionally, it is
easily incorporated into the current platform due to the design of the index.

3.3.2 Range Queries

If multiple sites in a distributed database can store data using the same schema,
thus creating a distributed relation, it is possible to increase the performance
of range queries. By knowing where ranges are stored, queries can be directed
to those sites only. This is especially useful when many sites store data in the
same relation.

One way of supporting range queries in a P2P network is to use a centralized
index. The index would store global knowledge of the values in the network
so that it could relay range queries. This approach suffers from a single point
of failure and poor scalability. A completely decentralized way of supporting
range queries is to flood the network with requests, as it is done in the Gnutella
network. The benefits are that there is no single point of failure and each node
only keeps track of its local information. But flooding the network with queries
takes a high toll on performance.

When using a DHT to structure a P2P network, there is no direct support for
range queries. A range query has to be resolved by asking every site that stores
the relation.

There have been several proposals for handling range queries in structured P2P
networks, either by using an alternative overlay structure or building an extra
layer on top of a DHT. The alternatives are presented in the following section:

• Alternative Overlay Structure
BATON [13] is a binary balanced tree overlay structure that is not based
on hashing. The motivation for using a tree structure is because it is a
heavily used data structure in traditional databases. For fault tolerance
BATON employs horizontal links between the nodes in each level of the
tree. BATON guarantees a cost for both exact and range queries to be
performed in O(log N) steps in a network of N nodes.

• Range hashing
One approach [41] used locality sensitive hashing to place ranges of values
at the same node with high probability. Intuitively, this is in conflict with
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attaining a uniform data distribution. Additionally, the range hashing is
approximate, which means the probability of finding correct answers is
less than optimal.

• Range index
Information about ranges and where they are stored could be put in an
additional index in the DHT. This way, queries can be constrained to only
those sites that have data in the requested ranges. The cost is to maintain
an extra index.

P-Tree [42] is based on the B+-structure and has a Chord [43] implemen-
tation as its overlay network. The idea is building a B+ index on top of
Chord that holds range information. In a sense it has similarities to the
R-Tree [44] for spatial databases. The P-tree gives a theoretical guarantee
of log N for both exact and range queries.

It would be interesting to try these the alternatives in PORDaS, but in order to
constrain the scope of the master thesis, they will not be pursued any further
here.

3.4 Testing

This section describes different aspects related to testing that must be taken
into consideration when designing PORDaS. One must take into account what
the tests should include, which resources that are available and the project’s
timeframe.

The intention behind PORDaS is to create a scalable database system spread
over a wide area and possibly heterogeneous networks. If experiments should
support such a claim one would have to run the experiments in a similar en-
vironment, 100.000 nodes and above [45]. This is obviously an unfeasible task
without running multiple node instances per computer and simulate network
communication between them.

Simulating multiple nodes will require modifications to PORDaS. The network
layer must simulate delays between local nodes and the nodes must share their
access to the processor, storage and network with other nodes. Creating a proper
simulation environment is just a too complex task for this project’s timeframe.

The computers available for testing will probably be a cluster with 20−60 nodes
so the only realistic goal is to verify that each node behaves as expected and to
identify problem areas and bottlenecks. This can be done by running different
scenarios and measuring the performance in each scenario.

Ideally, one should be able to measure the time spent on every single task.
However, this will affect the performance of PORDaS and generate a quite large
amount of data. The amount of data can be reduced by only storing aggregates
like average, minimum and maximum values.

Given the resources and timeframe of this project a realistic goal would be to
verify that the system behaves as expected on the available hardware and to
identify possible weaknesses. The tests should not be concerned with subjects
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that are not in the scope of this thesis such as robustness and problems related
to churn.
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Chapter 4

PORDaS

This chapter presents the finished PORDaS. The first section gives and overview
of PORDaS and its architecture. The following sections presents the main
components while the final section presents two applications that are built on
PORDaS.

4.1 Overview

The new version of PORDaS is a distributed database with support for parallel
execution of queries. It is built as a database layer on which larger application
can be built. The main addition to PORDaS is the improved distributed query
processor. In the previous version, queries could only target tables from a single
site, and they were not parsed but sent directly to the database layer. In order
to accommodate joins between sites and to free the design from specific database
implementations, a new query language was created. A new parser had to be
built from scratch in order to support the new features. The rest of the query
processor had to be built as well, and a lot of effort went into the planner and
executor. It can now build both bushy and linear query trees, and the execution
can either be centralized or distributed. These are explained in the section on
query processing. Another big improvement is the introduction of a pipelined
process, which is a much better match for a P2P database. Previously, results
were sent in one single message, which delays the result until the entire query is
processed. Much of the internal workings of PORDaS have also been improved.
Message sending in the DHT has been made more efficient, and results are no
longer routed but sent directly using sockets between source and destination.

Some of the desired functionality of a P2P database presented in the analysis has
not been implemented. This includes introducing replication, creating a range
index, having more ways to perform joins and adding a dynamic executor. An-
alyzing the field to find sensible solutions was preferred rather than focusing on
the implementation. Also, developing a distributed database proved more diffi-
cult than first expected, regardless of the simplifications. This is especially true
for the planner and optimizer, which turned out to be very complex subjects.
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Architecture

This section present the architecture of PORDaS, along with a brief explanation
of the main components. Using the previous version of PORDaS as a foundation
required some remodelling, but the main components are the same. Figure 4.1
shows how PORDaS is structured.

Figure 4.1: The PORDaS architecture

The node is the main component, encapsulating all the other components in
PORDaS. It binds them together and provides an entry point to the outside
through an Application Programming Interface (API). The API enables the
building of new applications on top of PORDaS while protecting the inside of
the node. The application layer can interact both with the local database and
query data at other sites transparently, without users having to know where the
data is located.

The nodes in a PORDaS network are loosely connected through a DHT (sec-
tion 2.3.2). Its purpose is to enable resource location and to route requests
for data. It also enables message sending and reception. When a message is
received, it makes sure the message is unwrapped and that it reaches the ap-
propriate component. The communication section explains the DHT in depth.

The storage component keeps track of all the data stored at a node. It holds the
local database and a metadata repository that manages information about local
tables. The storage component also stores parts of the distributed index, which
all the nodes in the system participates in sharing. The index holds information
about the contents and location of other tables in the system.
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The query processor consists of a parser, a planner and an executor. It takes
queries as input from the application layer, creates a plan and executes it. The
resulting tuples are pipelined back to the application layer.

4.2 Communication

This section explains how nodes communicate in PORDaS.

Except when returning query results, every message in PORDaS is routed
through the DHT layer. Messages are sent for keyword and query requests,
to resolve sub queries and to maintain the distributed index. Appendix C gives
an overview of the messages in PORDaS. When returning results, direct TCP
connections between the nodes are used for improved performance.

The DHT layer in PORDaS is created as an interface. This means that any
DHT can be used for message routing, as long as it complies with the DHT
interface. The interface specifies the required functions for joining and leaving
a network, and for routing messages based on an identifier.

PORDaS currently uses the FreePastry DHT [15]. It was chosen because it was
easily integrated, and because of its platform independence. PORDaS will in
theory run on any system that supports Java, which is virtually everything. It
has been tested on both Windows and Unix systems, without any problems.
However, Pastry is not the most efficient DHT in terms of routing speed and
overhead. According to its authors, the Bamboo DHT [46] is better in that
respect, though it is lacking in documentation and platform independence.

4.3 Storage

This section presents the elements of the storage component. These are the
local database, the index and the metadata repository.

Local database

PORDaS operates internally on an object relational data model. It only sup-
ports abstract data types, but could be extended to include more object rela-
tional functions, such as inheritance, methods and collections. The choice of a
object relational model was due to it being the current industry standard, and
to prove that it could be used in PORDaS.

A PORDaS node needs access to a database in order to store data. In the
spirit of modularity the database is only defined as an interface. This allows
PORDaS to, in theory, use any kind of storage. The only requirement is that a
database connector that adheres to the database interface is created. PORDaS
is not concerned with how the connector maps the object relational model to
the underlying database’s storage model. Figure 4.2 illustrates the concept.
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Figure 4.2: Database interface

There is currently only a connector for Derby which is an embedded database.
This means the database can be packaged along with the application and thus
avoiding an installation procedure.

Index

The distributed index serves two purposes; searching for schema definitions
using keywords and finding the locations of arbitrary tables. Section 2.4 explains
the rationale for storing keywords in the index. The ability to locate tables is
needed by the distributed query processor.

When a new table is inserted into the system, several hash values are computed;
one for each keyword associated with the table and one based on the schema
definition. Figure 4.3 shows the content of the index as it is stored at each
node. For each hashed keyword record in the index, there is a list of table
definitions with a respective description. It’s a list because a keyword can be
used to describe more than one table. The same goes for the table index. More
than one node can store the same table, which means that queries targeting a
certain table get the concatenated result from all nodes storing that table.

Each node in a PORDaS network are responsible for separate parts of the index,
based on the node identifier used in the DHT. In order for this to work, the index
records are assigned identifiers too. These are computed by hashing the value to
be indexed, which is either a keyword or a schema definition. A record is then
mapped to a node by storing it at the node with the largest matching identifier.
This node is found by the DHT routing mechanism. To retrieve this record from
the index, the record identifier is used as the key in a DHT lookup. Figure 4.4
gives an example of a set of nodes spread in a simplified version of the circular
identifier space used in FreePastry. Next to each node are the keyword and table
records it stores in the distributed index. For example, node 8 is responsible
for all records from 5 to 8. The figure also illustrates how a lookup for key 4 is
resolved when originated from node 8.
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Figure 4.3: The keyword and table index

Figure 4.4: The keyword and table index
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Figure 4.5 gives an example on how the index can be distributed among 36
nodes. The data was collected when testing PORDaS. As can be seen in the
figure, some nodes are responsible for larger parts of the index than others.

The index makes PORDaS location transparent. This means that in order to
query any table, local or external, all that is required is the schema definition.
By hashing the schema definition, every table that has this schema is found.

Figure 4.5: Distribution of index entries
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Metadata

A node needs knowledge about the contents of its database, which is referred
to as metadata. It is needed when entering the index, when keeping the index
up to date, and when the parser is checking query references.

Metadata is a list of table objects that encapsulate information about every
table in the local database. An object contains the name of the table and a
list of the table’s attributes. For convenience, the hashed value of the table’s
schema is also stored. Storing the hashed value avoids having to rehash the
schema every time it is needed. In addition, every object in the metadata list
has a set of keywords and a textual description. Figure 4.6 summarizes the
contents.

Figure 4.6: The contents of metadata

The metadata is frequently accessed, so it is an advantage to have a represen-
tation in memory to increase performance. The alternative would be to extract
metadata from the database each time it is needed, resulting in more disk ac-
cesses. The metadata is therefore loaded into memory at startup, and kept there
as long as the application is running.

Whenever a new table definition is discovered, either when searching for key-
words or when querying using hashed identifiers, the table definition is added
to the metastore. By caching table definitions this way, time is saved the next
time this table is accessed. Additionally, by storing external table definitions
locally, they can be queried using their table name as the identifier instead of
using the hashed schema value1.

Resource identifiers

Every resource in PORDaS needs a unique identifier. Each node has a 40 bit
identifier, and so has each schema and keyword. Resource identifiers are unique

1If there are more than one table with the same name in the metastore, they can’t be
distinguished by name. In this case, the hashed schema value must be used instead.
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in the sense that identical resources generates identical keys2. The keys are
generated by applying a cryptographic hash function. Keyword identifiers are
created by simply hashing the keyword, while schema identifiers are created
by hashing the entire schema-definition and thus if a schema is changed it is
regarded as a completely different table.

Even though it was never realized PORDaS is designed with replication in mind.
Replicas would be read-only. In addition to replicas, it is also possible to cre-
ate the exact same schema on multiple nodes. This raises the need to identify
schema instances. A schema instance identifier is an 80-bit identifier that is a
concatenation between the schema identifier and the master node’s node identi-
fier. This causes all schema instances to be indexed at the same node and index
entries with the same instance identifier are replicas.

Node identifiers are randomly generated, but are assumed to be unique due
to the large identifier space (240 ≈ 1012). Another approach would be to give
an independent source responsibility for the designation of identifiers. Coupled
with security certificates it would add authentication to PORDaS.

Maintenance

Soft state (see section 2.4) is used to maintain the distributed index. It means
that every index record has an associated Time-To-Live (TTL) value. When
it expires, the record is deleted from the index. Thus, in order for a node to
keep its index records in the system, they must be continually refreshed. After
a node leaves the system, either voluntarily or because of an error, its index
records will perish when the TTL reaches zero. This is fits nicely with the P2P
environment, where periods of fluctuations must be handled. If a node goes
down, the index records it holds for others disappears. Due to soft state, all
nodes that had some of their records at the failed node, will eventually discover
the failure. Thus, they will adapt to the failure by resubmitting their missing
records to the DHT.

4.4 Query Processing

The fundamentals of distributed query processing is presented in the background
section 2.1 and in section 3.2 in the analysis chapter. This section gives an
overview of how the theory was adapted to create a distributed query processor
in a P2P environment.

First, an overview of the processor is given, and then the query language is
explained. The last part walks through the process step by step.

2The identifiers can only be regarded as pseudo-unique since there is a small chance that
two different resources could generate the same key.
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Overview

Figure 4.7 shows how queries are resolved in PORDaS. The structure is the
same as for traditional distributed systems, though the observant reader will
notice the lack of an optimization step. This is left as future work as there was
not time to implement it.

The processor can handle multiple queries at a time, through the use of threads
and queues of messages and results. The number of threads was a significant
challenge, both in terms of performance and being a big source of errors. In
retrospect, a single threaded design for the query processor would be better.
Operators would then be implemented as iterators and not as threads.

Figure 4.7: The life of a query

Query Language

The query language is a simplified form of SQL. The supported functionality is
selection using less than, equals or larger than, projection, cartesian products
and joins between tables. More than one conditional can be added using the
AND keyword. To reduce the complexity, negation and combination using OR
was not implemented.
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Insertion is also supported. A complete definition in Backus-Naur form can be
found in appendix B. The following shows the basic structure of an insertion:

INSERT INTO TableReference VALUES(Attribute1, Attribute2 , . . . , AttributeN)

A selection has the this syntax:

SELECT Table1.Attribute1, . . . , TableN.AttributeX
FROM Table1, . . . , TableN
WHERE Table4.Attribute1 < 123 AND Table2.Attribute1 = Table4.Attribute2

Tables in a query can be referenced by their name or by their hashed identifier.
To distinguish between the two, a ] is used as a prefix when referencing hashed
identifiers.

Query Decomposition

Decomposing queries from a textual representation into an algebra tree is done
by the parser component. The PORDaS parser is kept simple, as little effort is
used on informative error-handling or reforming inefficient queries. There will
be no attempt to remove redundancy nor checking for semantic correctness3 as
creating a user friendly interface is not the main goal of the master thesis.

When a new query is submitted, the parser’s first task is verifying the query
syntax. The syntax is checked against the Backus-Naur form defined in appen-
dix B. The next task is to verify type correctness, which is making sure the
relations and attributes referenced in the query actually exist. The operations
in the query are checked against the type of each attribute as well, making sure
they match. Before this can be done, the table definition for each table refer-
enced in the query must be fetched. First, the local metastore is searched. If one
or more table definitions are lacking, they must be fetched from the distributed
index. This delays the query until all tables are accounted for.

The next step is creating the initial algebra tree. The final tree is either bushy
or linear, depending on the settings. The first part of the tree is always the
same for both types. First, the projections are defined as the root, followed by
each selection in the query. In the case of building a linear tree4, any cartesian
products are added as the left child of its parent. If there are joins in the query,
these are added as the last part of the tree, in the same fashion as cartesian
products. When building a bushy tree, the goal is to balance the tree as much
as possible, catering for parallel execution. This is done by maximizing the
number of cartesian products and joins with two operators as children.

Restructuring the tree is done to get a better tree. The projections and selections
in the algebra tree are pushed as far down as they can be, and in doing so, the
size of intermediate results will be reduced during execution.

3A query is semantically correct if all of its elements contribute to the final result.
4PORDaS builds left-deep trees, which are a subset of linear trees. A left-deep tree is

always extended along the leftmost path of each operator, with only base relations as the
right child of the operators.
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Localization

Localization means finding every site that has a table referenced in the query.
These are found by querying the distributed index, and are sorted according to
the table that they hold. Using caching to improve the localization process is
not done, because of the potentially volatile nature of the P2P network. Nodes
that store one of the tables in the query might have left or joined the network
since the last time they were queried.

Planning

When the locations of every table in the query are found, a plan for the execution
can be devised. There is no optimization involved, as there is no way to retrieve
statistics needed to make informed decisions using a cost function. Instead, the
planner uses a simple heuristic to create plans. These plans are either centralized
or distributed.

Centralized Plans

A centralized plan is a plan where the required base relations are fetched to the
initiating site so that the operators in the query can be resolved locally. In the
spirit of reducing the amount of network traffic, any selection and projection on
base relations are executed at the remote sites before the streaming of results
is started. Figure 4.8 gives an example of a centralized plan. The dotted lines
indicate network communication. It is important to note that the data fetched
from a base relation in the figure may include contacting one or more sites.
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Figure 4.8: Centralized plan
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Distributed Plans

In a distributed plan, the responsibility for executing the query tree is distrib-
uted among the set of nodes that store tables referenced in the query. If statistics
about each table was available, like cardinality, maximum and minimum values,
this information could be used to restructure the tree in a beneficial way. As
this is not the case, predefined rules are used instead. The rule is best explained
by an illustration, see figure 4.9. It gives an example of a conversion from an
algebra tree to a distributed plan. The first rule is to always calculate cartesian
products at the initiating node, which avoids sending too much data over the
network. It is conceivable that in certain cases it might be better to distribute
cartesian products as well, but it is assumed to not be the average case.

The second rule is to delegate the resolution of joins to one of the owners of
the leftmost table in the join tree. The choice is arbitrary, it could have been
any of the owners. The chosen owner will receive the entire join subtree. If this
subtree has any more joins in it, these joins are delegated in the same manner
as well. In the figure this can be seen as the second join under the cartesian
product is delegated to two separate nodes.
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Figure 4.9: Conversion from an algebra tree to a distributed plan
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Execution

The execution phase begins with the initiating node requesting data from all
base relations in the query. If the query plan is a distributed query plan subtrees
are delegated to other nodes. The execution is pipelined, which means that
processed tuples are sent up the tree as soon as possible. This avoids having
to store temporary caches with intermediate results. To know where a tuple
belongs at the receiving end, all tuples sent across the network are tagged with
an identifier. The identifier uniquely specifies the query and the point in the
query tree where the tuple is expected. This can seen in the plan in figure 4.9.
For instance, the children of the cartesian product are tagged as 1.1 and 1.2. At
the sites responsible for those parts of the query, every resulting tuple is tagged
with 1.1 or 1.2, respectively.

Joins

The query processor relies on a naive join algorithm based on a simple nested-
loop join which makes dataflow query processing possible (Figure 4.10). The
key difference is that it does not have an inner or outer table. Tuples from one
operand are joined with all previously-seen tuples of the other operand. The
join algorithm changes to a regular nested-loop join when one of the operands
has reached ’end of stream’. When the join operator has processed both input
streams it will send an ’end of stream’ message. Figure 4.10 shows an overview
of the join operator and an example of how the join operator runs through the
cross-product space when operand B arrives faster than operand A.

Figure 4.10: Pipelined join operator
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The algorithm does not handle large data volumes, it assumes that the entire
operation can be done in main memory. An additional drawback is that it is
inferior to algorithms like pipelining hash join (Chapter 3.2.1) when it comes
to equi-joins. It is however more versatile since it can perform any kind of join.
A database system should ideally

Failed Queries

A query can fail if any of the nodes it relies on goes down. Section 3.2 in
the analysis chapter presents different strategies for coping with failure. The
simplest strategy is chosen for PORDaS, where a failed query times out and
returns a failure message.

4.5 Example Applications

This section presents two of the applications that were built using PORDaS as
a distributed database layer. They were created for testing and demonstration
purposes. A third program that simulates user behavior is presented in chapter 5
on testing.

Graphical User Interface

The first application that was created enables access to a distributed database
through a graphical user interface (GUI). A screenshot can be seen in figure 4.11.
The application can both create a new PORDaS network, and it can connect
to existing networks by using the address of an already connected node. When
connected, interesting schema definitions can be found by performing keyword
searches. Queries targeting these schemas can then be formed, and sent as
requests to the PORDaS layer. Here, the queries are executed, and answers are
pipelined back to the GUI, which displays them in the output area as soon as
they arrive5. Options can be set such that queries are either resolved locally or
divided as sub queries and executed in a distributed fashion (see section 4.4).
The structure of the trees created by the planner can be set to be either bushy
or linear (see section 3.2).

The GUI offers two views of the internal state of the database. The contents of
the metastore and the index can be seen on request. These views were handy
in the debugging process. A screenshot of the index is shown in figure 4.12. It
displays the keyword and table records that are stored at this node. As can be
seen by the selected keyword in the keywords list, there are 4 schemas in the
system with that keyword6. The selected record in the table owner index shows
there is only one node in the network that has tuples in this table.

5Showing tuples as they arrive is optional. Refreshing the GUI affects the performance of
queries, especially when they are large.

6The “animal” keyword
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Figure 4.11: GUI application

Textual interface

The textual interface is yet another presentation layer built over PORDaS. It
has basically the same capabilities as the GUI application, and was created for
use on platforms without a graphical interface. This was handy when testing
the application through a UNIX shell. Figure 4.13 illustrates its use.
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Figure 4.12: Contents of the keyword and owner index

Figure 4.13: Textual interface
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Chapter 5

Tests and Results

This chapter presents how PORDaS was tested and the results of the testing.
It consists of an overview of the test setup, the applications used for testing and
each of the tests. Finally, the results are given in a graphical form which forms
the basis of a discussion.

5.1 Test Setup

This section presents the test environment, the possible configurations and the
type of measurements that were made.

Resources

The tests were conducted at one of the computer labs at NUST1, hosting 80
computers with decent hardware2 and Microsoft Windows XP. Due to technical
difficulties3 the number of available computers was reduced to 36.

Using a computer lab meant manually installing the PORDaS software at each
computer which is a time consuming operation. The tests had to be carried out
during nighttime to avoid disrupting the daily use of the lab. This was all a
bit unfortunate since the program was not ready to run tests until late in the
project. There was not room for many tests during the one night that could be
used either.

Having 36 nodes in the DHT network means that there was at most one routing
hop between any two nodes. The problem with using a cluster connected in a
LAN is that the network is optimal compared to what would be the case for a
real world PORDaS system.

1Norwegian University of Science and Technology
23 GHz Pentium 4, 1GB RAM
3The system administrator had difficulties with disabling the Windows Firewall. It had to

be done manually on a smaller set of nodes.
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There are also several UNIX clusters available at NUST that could have been
used. These vary in size from seven nodes to over sixty, and consist of rel-
atively powerful computers. Use of the clusters is streamlined through batch
job queues, which significantly eases the task of deploying PORDaS. The seven
node cluster was used initially while developing the test environment. The larger
clusters were used by others as well. Using these clusters would have caused
a lot of waiting since PORDaS need access to all nodes simultanously. Other
applications would have been shut out during a simulation as well.

A more realistic testing environment can be found at PlanetLab. The PlanetLab
project [47] has over 6004 nodes in its planetary network. NUST has yet to enter
due to the cost of joining5. It would have required a lot of effort to deploy and
test PORDaS on PlanetLab as well, which rendered it unfeasible for this project
even if NUST did have access.

Parameters

The test server could create different tests by changing these parameters:

• Number of tables at each node
Having more tables in the local database means the node has to main-
tain more state in the DHT. This interprets into more traffic due to the
maintenance mechanism.

• Number of tuples in a table
The number of tuples in a table restricts the maximum amount of data
that can be returned from a query.

• Length of test
In order to make the collected data less susceptible to variances due to the
randomness of the query process, the length of the test can be increased. In
effect, the sample size is increased so that the standard error is decreased.

• Number of nodes
If there were enough available computers, varying the number of nodes
could indicate how PORDaS would scale to a larger network. Since there
relatively few computers in the test environment, it has little purpose to
alter this value. It will be kept at 36 for all the tests.

• Request interval
The time between two consecutive requests defines how often a new query
will be created. It can either be defined as a constant or be randomly
distributed by a poisson distribution.

• Number of concurrent queries
Setting the number of concurrent queries means halting when a certain
number of queries are running. When the network is congested, setting
this value low can avoid further worsening of traffic.

4677 nodes as of June 2006.
5PlanetLab requires that each participating institution donates at least two computers.

The minimum hardware specification is 3.2 GHz Pentium4 or AMD 3200+ processor, 4GB
RAM and 320 GB hard drive space.
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• Number of active nodes and sharing nodes
An active node periodically requests, directed at sharing nodes’ data, with
the predefined request interval. A sharing node is a node whose table
definitions are distributed among the active nodes.

• Type of Query Processor
Queries are resolved either in a centralized or a distributed manner. Sec-
tion 4.4 in the PORDaS chapter gives an explanation.

• Type of query trees
The trees produced in the planner can be either bushy or left deep. Sec-
tion 3.2 illustrates their differences.

• Result size
The size of the final result can be constrained to a maximum value. A
standard deviation can be supplied to get different sized queries. By set-
ting this value, very large and very small results can be avoided.

• Number of tables in a query
The number of tables referenced in a query can be set to get a certain
control over the number of nodes involved in a query. A standard deviation
can be defined to get variation.

• Number of joins in a query
Setting this number decides the number of joins a query.

Measurements

The tests measured:

• Response time
The response time of a query is measured as the time from the query is
sent until the last tuple is received. The maximum, minimum and average
response times are recorded.

• Throughput
Throughput is measured as the number of queries processed per second,
and is calculated as the number of responses received divided by the length
of the test.

• Number of tuples received
The number of tuples received says something about the amount of data
transferred through the network.

• Index size
Knowing the index size for each of the nodes in the system enables the
calculation of the distribution of index records.

5.2 Test application

The tests are performed by a test application which simulates the activity of a
regular PORDaS node. The test application connects to a centralized server to
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ease the administration and collection of statistics (Figure 5.2). It is only the
test application which uses the client-server model (figure 5.1), PORDaS is still
P2P.

Figure 5.1: Test architecture

The test application initially connects only to the test server. The server then
sends parameters such as the number of tables each node should store and
the number of tuples in each table. The test server can order nodes to join
the DHT at any time, the first node that joins will create a new ring. When
a new simulation starts, each node will receive simulation parameters and an
overview of which tables it can include in its queries. The test application will
generate queries at a specified rate while the simulation is running. There is no
communication between the test server and the nodes during this step. Nodes
send their statistics to the test server after the simulation is done. It is possible
to start new tests with differnet parameters without restarting the system. One
should note that some parameters, such as database size, cannot be changed
from one simulation to another without restarting the entire system.

The communication between the nodes and the test server is done by a single
TCP connection per node. This will allow nodes to communicate with the test
server even if they are behind a firewall that blocks incoming connections (the
connection is an outgoing connection). Last years test environment relied on
Java RMI and required a connection in each direction to be initialized. This
made it impossible to test PORDaS on UNIX clusters.
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Figure 5.2: The test server application.
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5.3 Tests

This section presents the contents and purpose of the two tests that were
planned.

Test Parameters

Many of the parameters in the two tests were common. The reasoning behind
the setting of parameters was to simulate a medium load and a probable usage
pattern. Databases are kept small since the desire is to test PORDaS and not
Derby. The time between requests is Poisson distributed with a given mean
value. The queries will wait if there are more concurrent queries than the
maximum number of concurrent queries allowed.

• Tables per node: 8

• Tuples per node: 2000

• Number of nodes: 36

• Simulation length: 10 minutes

• Request intensity: 2 seconds

• Random time between requests

• Joins in query: 3 (deviation 2)

• Number of tables in query: 4 (deviation 2)

• Number of concurrent queries: 5

• Maximum result size: 100 000 (deviation 90 000)

Test 1

In the first test, all nodes were sharing and active. The purpose was to compare
every permutation of type of algebra tree and type of planner, which means that
4 simulations were be run. The interesting data in this case are the number of
started queries versus the number of finished queries, and the response times
for each permutation.

Test 2

The purpose of the second test was to study and isolate the effect of executing
queries in parallel. This was achieved by having one active, non-sharing node
query the rest of the nodes, which were sharing and inactive. The only task
of the non-active sites in the system was resolving the queries the one active
node gave them. Two tests were run. The first test had the query processor
make linear trees and used a centralized execution strategy. The second test
used bushy trees and a distributed execution strategy.
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5.4 Results

This section presents and comments the results of the tests.

Test 1

Figure 5.3 shows a comparison of all permutations of type of query planner and
type of algebra tree with respect to the number of started and finished queries.
In both cases using centralized plans the loss of queries is minimal, while in the
distributed case, the loss is noticeable. With a linear query tree, the loss is over
13%. The circumstances indicate that the reason for the loss is that queries
timed out before results were received. The time-out threshold was set to two
minutes. By looking at the maximum response times for the queries that did
finish, these are close to this limit.

The same figure also shows a distinct difference between the centralized and
distributed simulations. The number of started queries is much lower in the
distributed case. The reason for not starting more queries is because of the
limit on the number of concurrent queries. Waiting for a query to be executed
has the effect of lowering the throughput.

Figure 5.4 and figure 5.4 show the response times for all permutations of query
planner and algebra tree. Times are given for when the first, tenth, hundredth
and so on tuple was received. The series in the graphs are divided into categories
based on the size of the result.

Similar for all the simulations is that for the category of results of size 0-100
tuples, there is a decrease in response time from when the first to the tenth
tuple is received. This means there are queries with less than 10 tuples in the
result that take a long time to execute. The reason why it takes more time to
execute might be that the queries are more complex, containing more joins and
selections. The size of the result does not say much about the complexity of the
query.

In the distributed, bushy case and in the centralized, bushy case, the category
of queries with results in the range of 250-500 tuples have high response time
compared to the others. This series is based on scarce data, with only 11 queries.
The maximum response time for this series is high, with over 104 seconds. The
next range has maximum response times of 11 seconds, so the anomalous range
is likely to consist of outliers.

In both the distributed cases, the largest range of results has significantly lower
response time than many of the lower ranges. The same goes for the two sec-
ond highest and third highest ranges as well. It is probable to assume the
explaination lies with the way queries are formed by the simulator. Basically,
the maximum result size is determined in advance for each query created. To
get smaller queries, joins are added to constrain the size. When large queries
occur, they have many cartesian products6. Cartesian products are always exe-

6The number of tables in a query is determined per query, and if there are few tables
available, the only way to get big results is through cartesian products.
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cuted locally, which means that smaller parts of the query is delegated to others,
which again translates to less network traffic.

Both the centralized simulations have a noticeable artifact. The series with
results in the range of 1000-2500 tuples have a terrible response time for the
1000th tuple. It is hard to say why this is so, as the statistics gathered is too
coarsly grained to identify the source of error.

When comparing the centralized and the distributed simulations, it is obvious
that the centralized plans perform much better. The second test was designed
to study this closer.

Figure 5.3: Started versus finished queries

Test 2

Figure 5.6 shows a comparison of the minimum, average and maximum response
times observed for queries with a resultsize between 25.000 and 50.000 tuples.
The distributed execution strategy performs consistantly worse than the cen-
tralized strategy.

Discussion

PORDaS was able to conduct the simulations without node failures. This does
not prove the correctness or scalability of PORDaS, but it shows that the system
is stable enough to handle moderate work loads between a modest number of
peers.

Both tests show that the centralized execution strategy is better than the dis-
tributed. The distributed execution strategy has the advantage of executing
operators in parallel, but failed since the joins always had a huge selection rate.
This caused the distributed execution strategy to generate a lot more network
traffic than the centralized strategy. The distributed strategy could have worked
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Figure 5.4: Average response times for distributed query plans

better in comparison to the centralized strategy if the joins had lower selection
rates.

The tests show the importance of choosing the correct heuristics when processing
queries without an optimizer. A better heuristic would probably be to only
perform equi-joins in a distributed fashion by using an operator like the pipeling
hash join or hash ripple join. The other joins could be centrally performed with
the current join algorithm.

The test application also deserves some commenting. Classifying queries by the
size of the result does not reveal much about the complexity of the queries. Gen-
erating queries at random did also make it difficult to identify specific problems.
It would probably have been better to use a small set of pre-defined queries to
get better control over the work load. More extensive logging of events could
help identify problem areas, but probably at the expense of the performance.

An additional problem with the statistics is that some of the tests contain too
few samples for some query classes. This is due to the short simulation time
and the fact that the test application did not have much control over the final
result size. This could be solved easily by running longer tests, but due to the
short period of time available at the computer lab the simulation times were
kept short.
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Figure 5.5: Average response times for centralized query plans

Figure 5.6: Comparison of distributed and centralized query processing
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Chapter 6

Conclusions and Further
Work

A major part of the master thesis has been searching for and studying material
related to P2P systems and databases in a distributed environment. There is a
lot of theory to cover, and a great deal of effort has been put into acquiring an
overview of challenges and opportunities.

The next part was using the gained knowledge to propose a system which in-
tegrated the fields of P2P technology and databases into a P2P database. The
central area of focus was the query processor, and finding paths for optimiza-
tion. The most promising ideas were using a dynamic query processor, forcing
relaxed consistency and introducing a scheme for replication.

The foundation from the project of fall 2005 was extended by incorporating a
pipelined, distributed query processor. Finally, there was a round of simula-
tions that proved the system could be deployed and run on a modest cluster of
36 computers. The simulations showed that the centralized query planner per-
formed much better than the distributed one. It indicates that the heuristics
employed were not optimal.

However, several of the features displayed in the analysis were left out of the
implementation due to time considerations. Developing the required for dis-
tributed query processing foundation took longer time than expected, and it
became apparent that creating a query processor, despite numerous simplifica-
tions, is a complex task. Adding a P2P aspect to the system did not make it
any easier, on the contrary. Distributed computing is also complex, which was
quickly discovered when trying to manage a heavily multi-threaded program. It
lead to the conclusion that a single-threaded design would be more appropriate.

The scope of the master thesis was broad from the beginning, opening for more
than one direction. As there was no available P2P database framework to use
as a starting point, this had to be built before any specialized inquires could be
mounted. It soon became apparent that each component in the framework was
comprehensive enough to constitute a master thesis in themselves.

65



The bottom line is that P2P databases with relaxed consistency is a promising
architecture, and that multiple opportunities exists for optimization.

The future work on PORDaS could take several directions but the most natural
progression would be to improve the query processor. This includes adding
an appropriate join algorithm for equi-joins, implementing query operators like
iterators instead of threads and adding a form of distributed eddies to do query
optimization.

With a proper query processor in place a replication scheme (section 3.3.1) could
be introduced to increase performance and achieve better load balancing. An-
other important improvement would be to increase the robustness of PORDaS.
There has not been much focus on how to deal with departing nodes and errors
during query execution. The current query processor relies on timeouts, but
this could be wasteful if there are available replicas.

PORDaS does not currently possess many of the features found in modern a
ORDBMS. The query processor should be expanded to be able to perform ag-
gregations on data, set operators, nested queries etc. There is also a lot of work
left to be done on the object relational features as the current implementation
of abstract data types merely serves as a proof of concept.
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Appendix A

Pastry

This appendix presents Pastry [16], which is a DHT that adapts to network
locality.

Topology

Pastry arranges its nodes in a 128-bit one-dimensional circular identifier-space.
Each node in the Pastry network is assigned a 128-bit node identifier (nodeId)
by computing a cryptographic hash of the node’s IP address or public key. For
the purpose of routing, nodeIds and object keys are thought of as a sequence
of digits with base 2b. Routing is performed as follows. In each routing step,
a node normally forwards the message to a node whose nodeId shares with the
key a prefix that is at least one digit (or b bits) longer than the prefix that the
key shares with the present node’s id.

In order to support the Pastry routing procedure each node maintains a routing
table. The routing table is organized into dlog2b Ne rows with 2b − 1 entries in
each. The 2b−1 entries at row n of the routing each refer to a node whose nodeId
shares the present node’s nodeId in the first n digits, but whose n + 1th digit
has one of the 2b − 1 possible values other than the n + 1th digit in the present
node’s id. Each entry in the routing table is only one of many possible nodes.
In order to provide good locality properties the nodes are chosen according to
a proximity metric. See figure A.1 for an illustration1.

Each node does also maintain a leaf set and a neighbor set. The leaf set consists
of the most immediate neighbors in the nodeId space. The neighbor set contains
the nearest nodes in terms of the number of IP routing hops. The purpose of
the neighbor set is to ensure that Pastry can take network locality into account
when choosing routing table entries. See figure A.2 for an illustration 2.

1Adopted from [16].
2Adopted from [16].
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Figure A.1: The Pastry overlay network

Figure A.2: Routing table in Pastry

Lookup

The principle behind Pastry’s routing procedure is to always send a message
to a node whose nodeId is numerically closer to the given key than the current
node’s nodeId.

If the key falls within the leaf set, the message is forwarded directly to the
destination node. If the key is not covered by the leaf set, then the routing
table is used and the message is forwarded to a node that shares a common
prefix with the key by at least one more digit. If no such node is reachable the
message will be forwarded to a node that is numerically closer to the key.

Using a deterministic routing procedure makes the system vulnerable to failed
nodes. If a node accepts messages without forwarding them correctly, repeated
queries will fail every time. In applications where such node failures must be
tolerated, the routing can be randomized.
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Maintenance protocol

If a node in the routing table or leaf set fails, it has to be replaced by another
node. The replacement is found by contacting nearby nodes.

Each node in the neighborhood set is contacted periodically to see if it is still
alive. If node is not responding, a replacement will be found through other
neighbors’ neighborhood sets.

Replication

Replication in Pastry is done by replicating objects on the k nodes with the
numerically closest nodeIds to a key in the nodeId space.
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Appendix B

The PORDaS Query
Language

This appendix defines the query language used in PORDaS using Backus-Naur
form.

sql command ::= select command | insert command | update command | delete command

select command ::= ”select” [ ”all” | ”distinct” ] ”*” | column {”,” column}
”from” table { ”,” table } [ ”where” logical term ]

column ::= {table ”.”}identifier

table :: = identifier

identifier ::= ”letter” { ”letter” | ”digit” }

logical term ::= logical factor { ”and” logical factor }

logical factor ::= expression comparison op expression

comparison op ::= = | < | >

expression ::= constant | column
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Appendix C

Messages

This appendix presents the messages used in the communication between nodes
in a PORDaS network. Figure C.1 illustrates all message types. These are
categorized as keywords, tables, queries and table definitions.

Keywords

Creating, maintaining and querying the keyword index requires 5 types of mes-
sages.

The keyword insertion message is used to insert keywords to the index. This is
done when the node connects, or upon request. The hashed keyword is the key
for the record, used by the index to identify the value. The table definition is
the table associated with the keyword.

The keyword refresh message is used to refresh a keyword record. Both the
hashed keyword and the hashed table definition must follow the message, to
specifically target the correct record. This is because two different table def-
initions may be described using the same keyword. When a refresh message
ends up at a site that does not have that keyword in its index, the keyword
record must be requested. The from field is used for this purpose. If the node
responsible for a given keyword record goes down, the refresh message will end
up at the next node in the DHT.

The keyword index record request message is used to request a specific keyword
record. When this message is received, it forces the node to send a keyword
insertion message.

The keyword request message is used to request all table definitions related to
the given keyword. The from field is used when returning the response.

The keyword response message is sent to answer a keyword request. It contains
all table definitions that are described with the specified keyword.
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Tables

PORDaS relies on the index to store the location of tables. Three messages are
used to serve this purpose.

The owner insertion message is used to add an owner of a specific table to the
table index. All nodes periodically send one such message for each of the tables
in their local database. There is no table refresh message because it would
contain the same fields as this message.

The owners request message is used to request a list of all the locations where the
specified table can be found. The from field says where to return the response.

The owners response message is sent when responding to table requests. It
contains all the locations of the requested table.

Queries

In order to fetch tuples and delegate responsibility for a sub query, two messages
are needed.

The sub query request message is sent to ask a node to resolve the given query
tree. The external id is needed in order to know at which point in the query
tree the response should be inserted.

The sub query response is a tuple with an external id. This id plugs the tuple
in at the right place at the requesting node.

Table Definitions

To answer queries that reference tables using their hashed table definition value,
the index must be able to find out which table this is, and where it is stored.
This requires two messages.

The table definition request message is sent to retrieve the table definition con-
nected to the hashed table definition. The from field is needed in order to know
where to send the response.

The table definition response is sent as an answer to a table definition request.
It contains the requested table definition.
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Figure C.1: PORDaS messages
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