& NTNU

Innovation and Creativity

Implementation and evaluation of
Norwegian Analyzer for use with
DotLucene

Bjorn Harald Olsen

Master of Science in Computer Science
Submission date: June 2006

Supervisor: Tore Amble, IDI

Co-supervisor: Stein Joar Gran, InfoFinder Norge AS

Norwegian University of Science and Technology
Department of Computer and Information Science

Problem Description

DotLucene is the .NET port of the information retrieval (IR) library Lucene, which is developed by
Apache Software Foundation. Lucene is a full featured IR library, with support for indexing and
searching. Lucene is open source and is distributed under the Apache License. InfoFinder Norge
AS desires an implementation of a Norwegian Analyzer for DotLucene.

An analyzer is a module which extracts words, discards punctuation, removes accents from
characters, performs case folding, removes common words, and normalizes words. The goal of
this thesis is to develop and test an as complete as possible analyzer for the Norwegian language.
The analyzer must be implemented in C# and .NET.

Assignment given: 20. January 2006
Supervisor: Tore Amble, IDI

Abstract

This work has focused on improving retrieval performance of search in Norwegian doc-
ument collections. The initiator of the thesis, InfoFinder Norge, desired an Norwegian
analyzer for DotLucene. The standard analyzer used before did not support stopword
elimination and stemming for Norwegian language. Norwegian Analyzer and standard
analyzer were used in turns on the same document collection before indexing and query-
ing, then the respective results were compared to discover efficiency improvements.

An evaluation method based on Term Relevance Sets were investigated and used on
DotLucene with use of the two analyzer approaches. Term Relevance Sets methodology
were also compared with common measurements for relevance judging, and found useful
for evaluation of IR systems. The evaluation results of Norwegian analyzer and standard
analyzer gave clear indications that use of stopword elimination and stemming for
Norwegian documents improves retrieval efficiency.

Term Relevance Set-based evaluation was found reliable by comparing the results with
precision measurements. Precision was increased with 16% with use of Norwegian
Analyzer compared to use an standard analyzer with no content preprocessing support
for Norwegian. Term Relevance Set evaluation with use of 10 ontopic terms and 10
offtopic terms gave an increased tScore of 44%. The results show that counting term
occurrences in the content of retrieved documents can be used to gain confidence that
documents are either relevant or not relevant.

Preface

This thesis is the final work of my master studies at the Department of Computer
and Information Science at the Norwegian University of Technology and Science in
Trondheim.

Acknowledgments

I would like to thank several persons for giving me assistance throughout the work.
First of all I thank Jeanine Lilleng for co-operation regarding Term Relevance Sets and
feedback on the report in general. I also thank Tore Amble my supervisor. Thanks to
InfoFinder Norge AS represented by Stein J. Gran who gave me feedback, and Havard
Stranden who recommended me to InfoFinder so I could write this thesis. @yvind
Vestavik receives thanks for giving me access to a large Norwegian document collection.

Bjorn Harald Olsen
June 15, 2006

iii

v

Contents

Preface iii
List of Figures ix
List of Tables xi
I Setting 1
1 Introduction 3
1.1 Introduction e 3
1.2 Motivation e 3

1.3 Goals e 4
1.4 Thesisoutline 4

IT Background 7
2 Information retrieval systems 9
2.1 Introduction e 9
2.2 Information retrieval 9
2.2.1 Information versus Data retrieval 10

2.3 Relevancy e 11

2.4 Indexing and searching 11
2.4.1 Inverted fileindex 12

2.5 Retrieval models 12

2.5.1 Booleanmodels 12
2.5.2 Vector spacemodels 13
2.5.3 Probabilisticmodels oL 14
2.6 Improve retrieval efficiency with text preprocessing 15
2.6.1 Suffix stripping: Stemming versus lemmatization 17
Lucene information retrieval library 19
3.1 Imtroduction 19
3.2 Lucene Usageo i e e e e 19
3.3 Indexing and searching oo 21
3.4 The QueryParser 22
3.5 Ranking in Luceneo 23
3.6 Analyzersin Lucene 24
3.7 Conclusion e 25
Evaluation of IR systems 27
4.1 Introduction L 27
4.2 Retrieval evaluation 27
4.2.1 Recall and precision oL 28
4.2.2 TREC collections 29
4.3 Evaluation using Term Relevance Sets 31
4.3.1 Introduction 31
4.3.2 Goals 31
4.3.3 Understanding Trels 32
4.3.4 Exploration of Trels, 34
435 Results 37
4.3.6 Discussion 40
4.3.7 Conclusion 41

vi

IIT TImplementation 43

5 Implementation of Norwegian Analyzer 45
5.1 Imtroduction L 45
5.2 Components e 45
5.3 NorwegianStemmer: Stemming using Snowball 47
5.4 Verification of NorwegianStemmer L L. 48

6 Implementation of Trels-based evaluation 51
6.1 Introduction 51
6.2 Evaluation procedure o 51
6.3 Open and parsing content of documents 52
6.4 Counting terms oL 52

7 Implementation of Trels-based evaluation framework for DotLucene 55

7.1 Introduction 55
7.2 Components 56
7.2.1 IR system based on DotLucene 56

7.2.2 Evaluation of IR system based on DotLucene 57

IV Results 59
8 Results 61
8.1 Imtroduction 61
8.2 Ewvaluation procedure 61
8.3 Deciding cutoff point Lo L 62
8.4 Document collection L Lo 62
8.5 Term Relevance Sets 63
8.6 Results. 64
8.7 Discussion L 65

vii

8.8 Conclusion e 67

9 Conclusion and further work 69
V Appendices 71
A Fields in Lucene 73
B Query subclasses in Lucene 75
C Common words in the Norwegian language 77
D Indexing benchmark 79

E Term Relevance Sets used for exploration of Trels-based evaluation 81

F Term Relevance Sets used for evaluation 85
G Results of Trels-based evaluation experiments 91
H Norwegian stemmer in Snowball 95

Bibliography 99

viii

List of Figures

2.1

2.2

3.1
3.2

3.3

3.4
3.5
3.6

4.1

4.2
4.3
4.4
4.5
4.6

5.1
5.2
5.3

5.4

Information retrieval system 10
Boolean model Venn diagram [3] 13
Lucene and application responsibilities [12] 20
Query terms used with appropriate query-methods 22
Formula used by Lucene to determine document score based on a query

[I1]. o 23
Using analyzer when adding documents to the index 24
Using analyzer when retrieving documents 24
Analyzer is a collection of operations 25

Illustration of document subsets used for precision and recall calculations

Sample recall-precision curve from TREC 2005 [19]. 29

Document level scoring (tScore(d;, q)) and collection scoring (tScore(Dg)) 33

Calculation of result list score tScore(D,) on relevant documents 38
Experiments on relevant, irrelevant and fifty-fifty document collection . 39
Changing priority of terms 39
Components of default StandardAnalyzer 45
Components of NorwegianAnalyzer 46

Documents are first converted to a stream of tokens, filtered and con-
flated into terms inindex L 46

Relevant classes and their relations 47

ix

6.1
6.2

7.1
7.2

8.1

G.1
G.2
G.3
G4
G.5
G.6

Calculating score for a collection of retrieved documents D, 52

Parsing supporting different document formats. 52
Trels-based evaluation framework overview 55
Trels-based evaluation framework processes 56

Abstract evaluation procedure for NorwegianAnalyzer and StandardAnalyzer. 62

Normalized for document size in relevant document 91
Mean of random selected term pairs 92
Normalized for document size in irrelevant documents 93
Mean of random selected terms in irrelevant documents 93
Fifty-fifty relevant and irrelevant documents 94

Mean of random selected terms in fifty-fifty relevant and irrelevant doc-
UMENES o L e e e e e e e 94

List of Tables

2.1
2.2

2.3

3.1
3.2

4.1
4.2

5.1
5.2

7.1
7.2

8.1
8.2

8.3

Al

B.1

Sample inverted file index [31] Lo 12
Document and query vectors for a given vocabulary [31] 14
Conditional probabilities [31] 15
Examples of companies and search engines that are using Lucene [12]. . 20
Lucene scoring factors [12]. o 23
Sample TREC topic [26], 29
Sample Qrels [18] 30
Components of Norwegian Analyzer in executed order 46
Sample words with their stemmed equivalent 49
Associated classes oL 57
Components of Trels-based evaluation framework 58
Boost factors for documents of different size 63

Evaluation results of StandardAnalyzer with and without stopword elim-
ination, and NorwegianAnalyzer, 64

Increased effectiveness using different analysis operations 65

An overview of different field types, their characteristics, and their usage
[12] . o o 73

Query subclasses in Lucene [12] o000 75

xi

xii

Part 1

Setting

Chapter 1

Introduction

1.1 Introduction

This chapter will give an introduction to the topic of this thesis and describe the task,
aimed goals, and chapter layout of the thesis.

1.2 Motivation

The idea of automatic access of large amount of stored knowledge was given already
in 1945 [5]. The principle of searching is quite trivial, but the solutions facilitating
searching are complex computer systems called information retrieval (IR) systems. The
goal of an IR system is to find the information item(s) satisfying an information need
often expressed by a query. Based on what the system know, usually only a query,
items which satisfies the assumed information need is located and returned to user.
It is the task of the system to return the items with the highest probability of being
interesting to the user.

The initiator of this thesis is InfoFinder Norge AS. InfoFinder aims at facilitating
search in business data. An enterprise may have many different data stores; docu-
ments, spread sheets, presentations, PDF-files, e-mail, drawings, scanned documents
or telefaxes. Their goal is to make all possible data sources available through a single
search interface.

InfoFinder uses a open source system for indexing and searching called DotLucene which
is the .NET port of Lucene. InfoFinder choose not to implement software performing
indexing and searching on their own. This gives them the opportunity to focus on
creating smart interfaces and tools for information source organization which increases
functionality and quality of search results.

Many of InfoFinders customers are seated in Norway and the content of the data
sources is often written in Norwegian. For better storing and searching it common to

3

use language dependent preprocessing of text content. Because of this, they requested
a module performing content preprocessing for Norwegian. The module should fit the
existing system used for search in business data.

My approach is to implement a module for preprocessing Norwegian text documents
performed before indexing and searching for Lucene. After this module is found to
satisfy given specifications, it will be focused on evaluation of the resulting system
when the module is put into practice. The evaluation methods will be investigated
through experiments and finally used to compare the new approach for preprocessing
Norwegian documents with the module previously used.

1.3 Goals

The two main goals of this thesis are to

e Adapt DotLucene for use on Norwegian documents collections.

e Investigate and use Term Relevance Sets for evaluation of Norwegian Analyzer
with use of DotLucene.

Norwegian Analyzer for DotLucene will be implemented according to given methods
for text preprocessing of Norwegian documents. The methods are standard operations
from the DotLucene library, stopword elimination, and an stemming algorithm for
Norwegian. A simple TR system will be created with use of DotLucene and both the
previous standard analyzer used, and Norwegian Analyzer created. Performing the
same evaluation with use of both analyzers should give an indication of how much
Norwegian Analyzer increases the quality of search results. The evaluation method will
first be investigated and finally used for evaluation of DotLucene with use of Norwegian
Analyzer.

1.4 Thesis outline

The report describes topics first generally and secondly especially for practical usage.
The main focus will be information retrieval (including analysis of Norwegian) and
evaluation. The following structure can be expected:

Background

Chapter 2: Information retrieval in general

Chapter 3: Information retrieval with use of Lucene

Chapter 4: Evaluation of information retrieval systems in general and with use of Term
Relevance Sets

Implementation
Chapter 5: Implementation of Norwegian Analyzer

4

Chapter 6: Implementation of relevance measurement based on Term Relevance Sets
Chapter 7: Implementation of evaluation framework based on Term Relevance Sets

Results
Chapter 8: Evaluation and results

Part 11

Background

Chapter 2

Information retrieval systems

2.1 Introduction

People are not interested in searching, but finding. Information technology let us store
knowledge digitally and once data stores grow its getting harder to browse through the
documents in order find an answer to the question we might have.

IR systems performs organization of document collections and make it possible to access
documents satisfying the needs of a user. Throughout this thesis the definition of a
document is used as follows:

”A document is a unit of text that is returned in response to queries. It
might be a paragraph, a section, a chapter, a Web-page, an article, or a
whole book” [3].

This chapter will discuss topics which are supposed to improve efficiency of IR systems.
An efficient IR system is a system which manages to present documents to the user,
which satisfies the needs. Documents satisfying information needs of a user are called
relevant documents.

To improve efficiency we use retrieval models which are algorithms that use available in-
formation to locate relevant documents among all the stored documents. Additionally,
the content of documents can be processed before storage, so that the effect of retrieval
models increases. This chapter will discuss classic models in information retrieval and
common text processing techniques used to increase efficiency of IR systems.

2.2 Information retrieval

The different tasks encapsulated in an IR system has together one common goal; to
retrieve relevant documents in short time. Figure 2.1 shows basically the interface

between the user and the information. Time efficient retrievals is of great importance

Query

IR System
Documents y

Figure 2.1: Information retrieval system

and many techniques are developed in order to achieve both time and space efficient
data structures. These subjects are interesting, but they will not be discusses in detail
through this thesis, except that it will be mentioned at relevant occasions. The main
focus will be on how well IR systems perform retrieval of relevant information.

Its not always easy to know what is relevant for the users querying for something. For
example in a music library when a user searches using a sub string of either a artist,
song title or genre, the domain is limited which makes it easier to know that retrievals
are relevant. The World Wide Web consists of many information domains which make
the search much more complicated. Searching for ”zeppelin”, would make it hard for
the search engine to if the users means the rock band ”Led Zeppelin” or ”Zeppelin
airships”.

This chapter will describe information retrieval more in detail and common methods
used to achieve as relevant results as possible.

2.2.1 Information versus Data retrieval

Data retrieval must not be confused with information retrieval. The goal of data
retrieval is more definite than information retrieval, which means it does not have to
handle the big question of relevancy that’s a big issue related to information retrieval.
Data retrieval aims at retrieving data which satisfies clearly defined conditions, such
as regular expressions or a relational database. The query language is often more
specifically defined, in contrast to information retrieval which handles natural language
queries[3].

In the context of IR systems, data retrieval consists mainly of finding documents which
satisfies a specific keyword or a term. This does not mean the documents retrieved
satisfying the subject or topic which the user is looking for. The task of finding which of
these documents that’s relevant and how they should be ranked is related to information
retrieval. This task is quite undetermined and related to content ”interpretation”
(syntactic and semantic) and user context analysis. There are many techniques used
to find out what’s relevant to the user, and will be discussed in the following sections.

10

2.3 Relevancy

As stated before, relevancy is quite relatively. Determining what is relevant changes
depending on what kind of information retrieved for, as well as the context of the
user. This means, if the same user searches in two information sources, that is different
of nature, the system should modify parameters of its ranking model for each search
performed.

If a search is performed in an electronic mailbox its highly relevant to retrieve all e-mail,
both outgoing and incoming, that matches for example a specific e-mail address. If a
single e-mail is judged irrelevant by the IR system, an important part of a conversation
could be left out. This is a situation where we want to find everything related to a
query. In the scope of information retrieval we measure this kind of retrieval using the
unit recall.

On the other hand, in an e-commerce environment users searching for a specific product
are interested in few documents matching the exact product name which are low priced.
Now we want to find only those documents that relates to a given query. This is called
PTecision.

These examples represents two different goals of information retrieval and different
methods and ranking models are used to achieve them. While precision and recall are
discussed further in section 4.2.1, we now go on discussing the methods and ranking
models.

2.4 Indexing and searching

Indexing and searching are core functionalities in IR systems and choosing the right
methods is crucial for time efficient retrieval as well as performing relevant document
retrieval. Before going into details they will be defined shortly.

e Indering: processing the original data into a highly efficient cross-reference lookup
in order to facilitate rapid searching. The result of indexing is called an index.
An index is basically the same as an index of a book. When looking up a word
you get references to pages where the word appears. An searchable index consists
of references to different documents which the word appears [12, 31].

e Searching: the process of looking up words in an index to find documents where
they appear [12].

There may different ways of creating indices. Specially for text the most suitable
structure is an inverted file index which is the structure used by Lucene [31, 12]. The
next section contains a simple example of an inverted file index and how its used for
searching.

11

2.4.1 Inverted file index

Inverted file index is a general concept which is used as basis for the indexing core of
many IR systems, where Lucene is one of them [12]. A simple example is created below
to explain the most important aspects of inverted file index.

Table 2.1 shows a sample index where ”Term” is the indexed word and ”Documents”
the positional information for the terms. List of appearances or positions for each term
is using the notation (r;(z;y1,y2,...),...). Where a term appears in r documents and
for each document x the term appears at position yi,ys,. . ..

Number Term Documents

1 about (2;(1;4),(2;3))
2 always (2;(1;2),(2;1))
3 best (1;(1;6))
4 losers (2;(1;1),(2;4))
5 whine (2;(1;3),(2;2))
6 their (1; (1;5))

Table 2.1: Sample inverted file index [31]

This sample have information both about term appearance in document and position
inside the document. This can be used to to search for phrases, since its possible to find
the distance between terms inside a document. Different levels of detail can be used.
In contrast to previous example, we could only include information of which documents
terms occurs, and not the position inside documents. This would result in an index
consuming less disc space, but decrease the level of search complexity possibilities, such
as phrase distance.

2.5 Retrieval models

” A ranking algorithm operates according to basic premises regarding the no-
tion of document relevance. Distinct sets of premises (regarding document
relevance) yield distinct information retrieval models” [3].

Retrieval models are used to find relevant documents in a collection based on some
kind of evidence. Most used is query evidence, where the terms in a query are the basis
for selecting relevant documents. This section guide through the three classic retrieval
models used to predict relevant documents.

2.5.1 Boolean models

This is the simplest way of processing a query. It is the oldest of the three classical
models and already introduced in the 50s [23]. Each term in the query are combined

12

with the logical connectives AND, OR, and NOT which means the intersection, union
and complement, respectively. Documents satisfying the logical expression are retrieved
to the user. Lets say we have the query below, where ¢, are query terms.

(tt AND t) AND NOT ts

If D,z are documents satisfying a query term = we would retrieve the documents marked
by the shaded area in figure 2.2. The nature of the boolean model implies either

Figure 2.2: Boolean model Venn diagram [3]

exclusion or inclusion of documents. There are no way or weighting query terms so
for example half of the documents matching a query term are considered as a possible
relevant result. Hence, the choice stand between retrieving many documents (OR) or
few documents (AND). Which means high precision or high recall, respectively [31].

Boolean retrieval systems, despite its limits, were the primary mechanism used to access
information for more than three decades [3]. Currently, more featured methods have
been developed, featuring weighting of terms in contrast to inclusion or exclusion. To
day boolean model have more or less been substituted by the model in next section.

2.5.2 Vector space models

Vector space models are also called similarity models since they measure the similarity
between vectors of weighted terms. Queries or documents can be expressed as vectors.
The vector shows what words of a vocabulary occurring in a query or document. A
similarity measure of a query vector of terms and a document vector of terms shows
how close they are in the vector space. Measuring the similarity between a document
vector and query vector, gives us an idea of how relevant a document is to a given query.
If a query is close to a document in the vector space, we assume that the document is
relevant to the query.

Similarity measure might be calculated using the inner product of the two vectors, or
alternatively an inverse function of the angle between the corresponding vector pairs
[24]. A simple example will explain it more clearly. Lets say we weight terms based

13

on how many times they occur in the text. Considering table 2.2 we have two vectors,
one for document D and query () defined as

D = 7Pease porridge hot, pease porridge cold”

@ = "hot porridge”
Vocabulary cold hot pease porridge
Document vector, D 1 1 2
Query vector, 0 1 0 1

Table 2.2: Document and query vectors for a given vocabulary [31]

Lets say we use the inner product to measure similarity between vector () and document
D, the similarity is expressed as

The inner product of two vectors X = (x;) and Y = (y;) with n dimensions is defined
to be

XY= Zn:l’z‘yi
=1

Using the query and document vectors from table 2.2 the similarity measure is
M (hot porridge, D) = (0,0,0,1,0,0,0,0,1,0) - (1,0,0,1,0,0,0,2,2,0) = 3

In contrast to the boolean model, which would have returned the document as relevant
for ”hot AND porridge”, the vector model returns a scalar which tells how relevant the
document is, based on term occurrences [31].

2.5.3 Probabilistic models

There are many ways of using probability for ranking documents in information re-
trieval. The classic way is based on the Probability Ranking principle [20], and the
models attempt to rank documents by their probability of relevance given a query
[14, 21]. There were early found benefits from putting fundamental theory of proba-
bilistic retrieval together with indexing and searching methods [22].

This section will focus on the classic probabilistic model where ranking is found based
on relevance probability based on documents and a given query. Currently, a lot of
research focus on probabilistic models with query independent evidence [7, 28, 29]. Yet,
the following classic probabilistic model example uses query evidence and is based on
Bookstein&Swanson [4].

A specific term (typically from a query) is supposed to either prove that a document is
relevant or not relevant. First we need to establish a weight for each term which will

14

be used to prove the relevancy. Secondly, the probability for each term appearing in
the document, are multiplied in order to find total weight for a document. High weight
means high probability for the document to be relevant.

Number of documents

Relevant Nonrelevant Total
Term t present R; ft — Ry ft
Term t absent R-R N-fi—(R—R) N-f
Total R N —R N

Table 2.3: Conditional probabilities [31]

The creation of term weights conditional probabilities are estimated based upon known
relevance judgments. Lets say we have a collection of N documents, where R documents
are relevant. R; of the relevant documents contain term ¢ and f; are the documents
in the collection where term t appears. These values are set from a training set of
documents which relevance judgments have already been decided [31].

Table 2.3 are used to estimate the conditional probabilities;

Pr[relevant | term ¢ is present] = R —t/ f;
Pr[irrelevant | term ¢ is present] = (f; — Ry)/ f
Prlterm ¢ is present | relevant] = R;/R
Prfterm ¢ is present | irrelevant] = (f; — R;)/(IN — R)

Then term ¢ weight w; is derived using Bayes’ theorem:
R:/(R — Ry)
(fe = Re)/(N = fe — (R — Ry))
where values greater than one indicate that term ¢ supports that the document is

relevant. Weights less than one indicates that the appearance of term ¢ supports that
the document is not relevant [31].

Wt =

Total weight of a document is estimated on

weight(Dyg) = H wy
teDy

2.6 Improve retrieval efficiency with text preprocessing

In general, text preprocessing and lexical analysis is very central in the scope of in-
formation retrieval and in order to achieve relevant results. Mainly the preprocess-
ing operations are; extracting words, discarding punctuation, removing accents from

15

characters, case folding, removing common words (stopwords) or normalization (suffix
stripping) [3, 12, 2, 31].

Stopword elimination is one of the operations included in Norwegian Analyzer. Its no
doubt that elimination of common words, or semantically insignificant words, increases
the performance of IR systems. For example would the query ”President of United
States” match the document string ”President of the United States” if ”the” was re-
moved. Elimination of common words is widely used and accepted among experts.

How do Google handle common words? According to Google they ignore common
words when preprocessing queries [15]. However, they do not say anything about the
indexing phase. A simple test shows that they actually do not remove common words
before indexing. The query ”to be or not to be”, with and without quotes shows this!.
Without quotes shows that not is the only word considered while all the others are
thrown away. With the quotes documents about Shakespeare are retrieved. Hence,
common words are not removed during indexing [12]. Google needs a lot of storage in
order to index all common words of large parts of the Web. For those who do not have
this ability, eliminating stopwords make the size of the index smaller and less storage
consuming.

Suffiz stripping has also become more and more a natural part of IR systems. Basically,
it means elimination of plurals, past participles, genitive endings etc. Its important to
note that suffix stripping is assumed to be done both on user query and on document
content during indexing. For example would a document containing

CONNECT
CONNECTED
CONNECTION

after suffix stripping be

CONNECT
CONNECT
CONNECT

Since ”connect”, ”connected”, and ”connection” now are transferred to the same term
”connect” in the index, a query for one of them would match all three. The consequence
is that documents containing terms closely related to the query terms are returned.

A second effect of suffix stripping is the that the total number of terms in index is
reduced. This results in less disc space consumption. If the index search algorithm
for example has an asymptotic run time of O(n), term reduction would also decrease
search latency.

Suffix stripping basically means to find the basic form of a word. Two approaches are

!The ”to be or not to be”’-test on Google were done 12-05-2006

16

common for doing this; lemmatization and stemming, and will be discussed in following
section.

2.6.1 Suffix stripping: Stemming versus lemmatization

Stemming and lemmatization in information retrieval, basically, aims at the same goal,;
suffix stripping. Lemmatization can yet imply prefix stripping, for example comple-
ments for words; visible contra invisible. Use of this in information retrieval would
result in the opposite of the information need, thus this feature is not desired.

Lemmatization is the process of finding the lemma of a given word. Since it aims
at finding the right meaning of a word, its required to determine the part of speech
of the word, therefore lemmatization is also called part-of-speech tagging [8]. The
disadvantage of this approach is the need of grammar knowledge and large amount of
implementation effort.

Stemming has several advantages compared to lemmatization. Stemming operates at
one word at a time and the result is called the stem of a word. This means no grammar
knowledge requirement and no need to consider part-of-speech for each word. There
are two well-known stemming algorithms; KSTEM [13] and Porters algorithm for suffix
stripping [17], where the latter are relevant for this thesis. Section 5.3 describes Porters
algorithm for Norwegian in detail.

17

18

Chapter 3

Lucene information retrieval
library

3.1 Introduction

Lucene is an high performance, scalable Information Retrieval (IR) library [12]. Lucene
provides text indexing and searching capabilities for applications needing search fea-
tures, which are many.

Lucene is currently a member of the Apache Jakarta family of projects [12] and li-
censed under the liberal Apache Software License [30]. Lucene is free, open-source and
originally implemented in Java. Note that Lucene is not a search engine. Its a soft-
ware library or a tool kit which can be used by others to create full-featured search
applications.

The original Java implementation is ported to several other programming languages;
Perl, Python, C++ and .NET [12]. The Lucene port for .NET will be used during
implementations later on and therefore referred to as DotLucene.

3.2 Lucene usage

Providers of search solutions may choose degree of effort putting into developing search
algorithms and indexing infrastructure. Some companies, such as Fast Search & Trans-
fer!, has created their own technology and algorithms for ranking and indexing docu-
ments [2].

There are examples of companies finding it unnecessary to develop machinery for in-
dexing and searching. Instead of putting a great deal of effort into developing already
efficient algorithms, they focus on other tasks. Intelligent use of different data sources

'FAST - Solution provider developing their own technology (http://www.fastsearch.com/)

19

Nutch.org Open-source search engine for the World Wide Web.

jGuru.com Community-driven web-page for Java developers.
SearchBlox Search tool focusing on companies.
Michaels.com Michaels Stores, Inc. is an arts and crafts retailer with more than 800

stores in the United States and Canada.

Table 3.1: Examples of companies and search engines that are using Lucene [12].

and intelligent presentation of results to the user, are tasks that have a greater potential
for improvement than index and search algorithms. Often this results in a two-layered
IR systems; the application layer and the layer providing machinery for indexing and
searching.

In figure 3.1 we see that Lucene takes care of the most basic tasks; indexing and
searching. While a given application performs gathering of data and presentation of
results. The application probably have more knowledge about the actual user, and can
perform these tasks so that they fit a given scenario.

Mail
Get Users'
Query

Present
Search
Results

Application

Index
Documents

Lucene

Figure 3.1: Lucene and application responsibilities [12]

InfoFinder, as mentioned, uses Lucene as indexing and search machinery and adds
intelligent software on top to improve relevancy of results. Table 3.1 shows several
other companies and search engines that are using Lucene as bottom IR machinery.

20

3.3 Indexing and searching

This section will in a simplified and understandable way describe how to index a doc-
ument and search for it in Lucene. Four main steps have to be done; create index, add
document to index, search index, and explore hits (results are called hits).

First an index is created using the class IndexWriter. Irrelevant properties are marked
with dots.

IndexWriter writer = new IndexWriter(indexDirectory, ...);

Now an empty index has been created. Lets create a document an add it to the same
index. The content of the document are added to a text field called ”contents”. A
document may consist of several fields. Its up to the developer to divide documents into
appropriate fields. For example could the title and body of a document be separated
into two fields. If many documents are indexed with use of the fields ”title” and
"body”, we have the possibility of retrieving or searching among the title or body of
all documents. An advantage is that we have the opportunity to put more weight on
the title when searching among all documents. (for more fields and explanations see
appendix A).

Document doc = new Document();
doc.add(Field.Text ("contents", new FileReader (documentFile)));
writer.add(doc);

The index contains now one document and is searchable. Below a IndexSearcher is
instanced, a simple query created, and search performed. TermQuery is one of several
Query-subclasses supported by Lucene. More information about TermQuery and other
subclasses can be found in appendix B. There will also be discussed more about query-
classes in the later section 3.4. Now, lets see how we search and retrieve some results.

IndexSearcher searcher = new IndexSearcher(indexDirectory);
Query query = new TermQuery(new Term("contents", "mason"));
Hits hits = searcher.search(query);

The container Hits will now consist of all documents that have the word "mason” in
a "contents” field. Each hit is also given a score between 1 and 0, which tells how
relevant Lucene believes the document is to the query.

Its actually not harder than this. Yet, it does not mean that it can not be done harder.
As mentioned in section 3.2 the application facilitating the collection of data sources
and interaction with user has the possibility to perform intelligent decisions in order to
fit a given environment and users. Some of the classes mentioned above have different
factors and configurations, such as "boost” for Query, Field and Document. ”Boost”
can be used to weight content that is believed to be specifically relevant. Construction

21

of queries can also be done in a more advanced way. Different kinds of queries can be
used in combination in order to achieve appropriate retrievals. Next section will discuss
the query issue more in detail.

3.4 The QueryParser

Different query methods supported by Lucene are listed in appendix B. Developing a
search application gives the opportunity to use these query methods to create nested
queries fitting a give scenario. This section will give an example of how query methods
can be nested for a book scenario. For example could a user type the query ”book
1-932394-28-17. It consists of the term "book” which indicates that we are looking for
a book, and the ISBN number of the book. In this case it would be appropriate to use
a query method which retrieves the exact match of the ISBN number. The query term
”book” could probably be weighted less because a book record would consist of author,
title, publisher, etc.

QueryParser can be used by IR systems which prefers automatic nesting of query meth-
ods. Lets go into an example of a nested query. Three such query-methods supported
by Lucene are; TermQuery, PhraseQuery and BooleanQuery. TermQuery matches ex-
act terms in the index, and is useful for retrieving keys (such as ISBN). PhraseQuery
matches terms within a certain distance of each other. BooleanQuery use AND, OR
and NOT to logically combine its containing clauses, which may be other queries. So,
how would we use these in combination for a specific query? Lets say we have the

BooleanQuery

AND

PhraseQuery TermQuery

"erik hatcher” "1-932394-28-1"

Figure 3.2: Query terms used with appropriate query-methods

query "erik hatcher 1-932394-28-1". First, its pretty obvious that TermQuery is appro-
priate for the ISBN number. Secondly, we know that ”erik” and ”hatcher” would be
to separate terms in the index, and it would be appropriate to use the PhraseQuery. In
the end, BooleanQuery could be used to combine these two with an AND operator, as
illustrated in figure 3.2.

This example shows how different query-method could be used in combination for a
given query. Its not a fact that QueryParser would chose to do it this way, but probably
something in that direction. QueryParser is not right for every scenario. Some IR
developers may prefer to instance the query manually, to be sure that the query is

22

appropriate for the specific needs.

3.5 Ranking in Lucene

Searching may result in a number of documents believed to satisfy the question or
information need expressed in a query. Its a crucial task to develop algorithms that
finds these documents. Earlier in section 2.5, three classic models for ranking and
retrieval was described. Lucene uses a model based on vector space models or similarity
models [9]. This section describes the retrieval model of Lucene. Note that Lucene is
under constant construction and the model may develop. The model described here is
based on the Lucene version as in benchmarks under appendix D

Each document retrieved receives a score. The score explained here is the raw score. Its
important to note this since the score returned for a document hit is not necessarily the
raw score. Lucene guarantees that all scores are 1 or less. If the top-ranked document
scores greater that 1, all document hit scores will be normalized such that the top-
ranked document receives score 1 [12].

Y otingtf(tind) - idf(t) - boost(t.field in d)-

lengthNorm(t.field in d) - coord(q,d) - queryNorm(q)

Figure 3.3: Formula used by Lucene to determine document score based on a query [11].

The formula in figure 3.3 shows how score is calculated based on terms ¢ in the query
g and a document d. The score is computed for each document matching a query [12].
Table 3.2 explains the factors used in the formula.

Factor Description

tf(t in d) Term frequency factor for the term (t) in the
document (d).

idf(t) Inverse document frequency of the term.

boost(t.field in d) Field boost, as set during indexing.

lengthNorm(t.field in d) Normalization value of a field, given the num-

bers of terms within the field. This value is
computed during indexing and stored in the
index.

coord(q,d) Coordination factor, based on the number of
query terms the document contains.

queryNorm(q) Normalization value for a query, given the sum
of the squared weights of each of the query
terms.

Table 3.2: Lucene scoring factors [12].

Boosting is featured so that the score can be influenced manually. Boosting can be done

23

for the whole document or specific fields. Such as document titles could be boosted so
they would influence the score significantly. If a query term is found in the title of a
document, we assume this document to be extra relevant. Queries may also be boosted,
either a specific term in a multiple-clause query or the whole query. A boosted query
results in that documents hitting this query are boosted [12].

3.6 Analyzers in Lucene

A topic of this thesis is to implement and evaluate an analyzer for Norwegian. In section
2.6 it was explained how text preprocessing is used to improve efficiency of IR systems.
Lucene have something called analyzers, which is a collection of text preprocessing
operations such as stopword elimination and stemming described in section 2.6. Lets
define analysis and an analyzer.

” Analysis, in Lucene, is the process of converting field text into its most
fundamental indexed representation; terms. An analyzeris an encapsulation
of the analysis process” [12].

This means that an analyzer performs the conversion of document text into terms, so
the document can be placed into an index. Basically, conversion is to divide text into
pieces or words, perform text processing operations on each piece or word, and finally
call it a term.

An IR system have two main text input resources, (1) documents which is indexed and
made searchable, and (2) queries typed by users which is used to search the index for
documents. Both text inputs are preprocessed or analyzed. Figure 3.4 shows analyzers
used when documents are added to the index. Figure 3.5 shows analyzers in use when
a query is typed by a user and search is performed.

> Analyzer > Indexing

Figure 3.4: Using analyzer when adding documents to the index

Query
— | Analyzer »> Searching Index

Figure 3.5: Using analyzer when retrieving documents

The operations performed by the analyzer may be different depending on the language
of the text. Some of the operations are though standard operations, such those dividing

24

text into words separated by whitespaces. Others are created to do linguistic operations
for a given language. In this thesis linguistic operations performing elimination of
stopwords and stemming for Norwegian are central issues. Figure 3.6 shows use of a
standard operations, Tokenization, and two language specific operations.

Analyzer

» Tokenization » StopwordFilter Stemming - Terms

Figure 3.6: Analyzer is a collection of operations

In addition to those shown in figure 3.6 there is used a couple of language independent
operations. These are StandardFilter and LowercaseFilter. Before the NorwegianAnalyzer
was implemented in this thesis, InfoFinder did not have an analyzer specific for Nor-
wegian language. FEarlier InfoFinder used StandardAnalyzer from the Lucene library,
which consists of only language independent standard operation. StandardAnalyzer can
be used in cases of lack of analyzer supporting a desired language. One goal of this
thesis is to compare efficiency of using StandardAnalyzer and NorwegianAnalyzer, hence
the previous and current situation of InfoFinder. Hopefully, the effort of implementing
NorwegianAnalyzer will result in better IR performance.

3.7 Conclusion

This chapter has connected the general aspects of information retrieval to Lucene. Index
structure technique and retrieval model in Lucene are two important aspects which are
based upon general methods in information retrieval. Lucene has also some added fea-
tures, such as boosting, which enables tuning of document retrievals. StandardAnalyzer
from the Lucene library uses basic linguistic operations also used by NorwegianAna-
lyzer. In addition NorwegianAnalyzer will use techniques specific for Norwegian in order
to increase efficiency.

25

26

Chapter 4

Evaluation of IR systems

4.1 Introduction

The enormous increase of available information have resulted in many systems making
it possible to reach the one document satisfying the needs of a user. A good example
is the World Wide Web (or just the Web); a huge information resource which can be
reached via many online search engines. FEnterprises also use IR systems in order to
keep track of documents stored in different types of information sources; databases,
mailboxes and fileservers. Section 2.3 discusses relevancy and how different scenarios
sees relevancy different. An enterprise would probably have a different view of relevancy
than the Web, which can be dependent on data resources used. Fuvaluation is therefore
not always trivial; for example different views of relevancy must be taken into account.

The purpose of this chapter is to describe common evaluation techniques and introduce
an less known technique which is explored through experiments. The new method
explored is later used for evaluation of DotLucene and Norwegian Analyzer.

4.2 Retrieval evaluation

When an information retrieval system receives an input query it returns a list of ranked
documents. The ranking method or algorithm used by a specific IR system is usually
evaluated by sending in an query and explore the results returned by the system.

The following two sections will (1) describe how we measure effectiveness for a given
list of retrieved documents and (2) how reference collections can be used to perform
large scale evaluation.

27

4.2.1 Recall and precision

Two common and widely used measurement units for retrieval performance are recall
and precision. Precision is the proportion of retrieved material that is relevant. Usually
these values are calculated from the k top-ranked documents retrieved by the actual
ranking method. Precision Py is given by:

number retrieved that are relevant (Rr)

P, =

total number retrieved (Dr)

Recall is the proportion of relevant material actually retrieved. Ry for the k top-ranked
documents is given by:

number relevant documents that are retrieved (Rr)

k =

total number relevant (Rn)

Figure 4.1 illustrates the variables used in previous definitions. If a ranking method

retrieves one document which is relevant we get P, = llrféfgﬁztrgzziﬁd = 100%. If

we say that there are totally 10 relevant documents in the collection we get R; =
1 relevant retrieved __ 10%

10 relevant documents :

Document Collection (Dn)

Relevant

Relevant and
| — retrieved (Rr)

Retrieved
documents (Dr)

Figure 4.1: Illustration of document subsets used for precision and recall calculations [3].

Optimally, recall and precision would be 100%. In that case all relevant document
are returned and no irrelevant. Unfortunately, this is rarely the case. Recall-precision
curves shows the relation between these two measurement units. Usually high precision
values gives low recall, and vice versa. Figure 4.2 shows a sample recall-precision curve
from the TREC measures. It gives an idea of the practical relation between recall and
precision and the fact that one normally have to take a tradeoff into account.

Section 2.3 discussed two different cases where one prefers precision and the other recall.
As mentioned, it depends on user needs and environment. Therefore, when evaluating
an IR system we use the measurement unit fitting the goals of the IR system. For
example, if one desire to retrieve as many of the relevant documents in the collection as
possible, using recall would tell if the system is efficient or not. On the other hand, if
the systems goal is to retrieve a proper portion of relevant document, precision would
be suitable for evaluation. Optimizing either of the two would maybe hurt the other

28

0.8

0.6

Precision

04|

0.0 —
00 02 04 0.6 08 10
Recall

Figure 4.2: Sample recall-precision curve from TREC 2005 [19].

significantly. Therefore it could be a solution to optimize both precision and recall at
the same time so the solution fits both desires pretty well.

Searching the Web is quite challenging in some ways. The number of relevant document
for a given query can be incredibly high. A search engine for the Web which maximizes
recall, would probably return many document hardly ever read by the user. Therefore,
precision is often maximized by search engines on the Web.

4.2.2 TREC collections

The Text REtrieval Conference (TREC) is arranged once a year and has become a
standard for comparing IR models and algorithms. People come here to evaluate their
IR system. The participants (100 in 2004) receive a document collection and a set of
queries or ”topics”.

<top>
<num> Number: 505
<title> edmund hillary; sir?

<desc> Description:
Who is/was Edmund Hillary?

<narr> Narrative:
A relevant document will provide biographical information on

Edmund Hillary.
</top>

Table 4.1: Sample TREC topic [26]

29

After all participant have searched the document collection with all the queries, they
all have lists of retrieved documents, which their IR system find the most relevant for
each query. Each participant hands the lists of retrieval to a ”committee” of human
assessors. Each document is judged either relevant or not relevant to the query [16].

Queries are described in a topic which is formatted using a simple SGML-style tagging.
Table 4.1 above shows a sample TREC topic [27]. The number identifies the topic and
the description tag contains a query. The ”"narrative” field describes what a relevant
document should contain. Relevance judgments called Qrels are lists telling which
documents that are relevant to a given topic. Qrels contains four variables as listed
below.

TOPIC is the topic number.

ITERATION is the feedback iteration (almost always zero and not used).

DOCUMENT# is the official document number.

RELEVANCY is a binary code of 0 for not relevant and 1 for relevant.

Table 4.2 contains five lines picked from a randomly picked Qrels file. The example
shows that three of the documents are relevant and two are not relevant for the same
topic.

301 0 FBIS3-10082 1
301 0 FBIS3-10169 0
301 0 FBIS3-10243 1
301 0 FBIS3-10319 0
301 0 FBIS3-10397 1

Table 4.2: Sample Qrels [18]

To judge retrievals TREC uses a pooling technique on the set of documents retrieved
by each participant. Each document in the pool is judged by a human assessor. When
enough results have been assembled and judged, the relevance judgment are considered
”complete” for a particular set of documents. It is assumed that the most relevant
documents have been found [16]. This means that there still may be relevant documents
which are not found by any of the participants. When the judgment is done, the
efficiency of each participant’s IR system are measured and evaluated.

When all TREC runs are completed and judgments done, the collection of Qrels (judg-
ments) can be used by non-participants and participants to evaluate IR systems. A
document collection and belonging queries and Qrels, can be downloaded and used for
evaluation. This is an great resource after a conference is finished. English is the lan-
guage which have the greatest amount of test collections. French, German, and Italian
are also languages with growing document collections and judgments.

30

TREC has done a great job gathering information retrieval experts every year to par-
ticipate and share knowledge. The database has become very large and they have
created a well working infrastructure for large scale testing of IR systems. Though,
using TREC Collections for evaluation of IR systems has its drawbacks; evaluation is
dependent of fixed document collections and few languages and domains are supported
(roughly 8). The creating of Qrels includes manual assessment of documents which is
time consuming and requires a great deal of human resources.

4.3 Evaluation using Term Relevance Sets

4.3.1 Introduction

There is clearly a need for an evaluation method which can be used on any document
collection (probably a collection changing daily), requiring less human assessment, and
easy to deploy for different languages and domains.

Evaluation with Term Relevance Sets (Trels) is described in Scaling IR-System Eval-
uation using Term Relevance Sets and was published in 2004 by researchers from the
IBM Haifa Research Lab, Israel [1]. The key feature and advantage of Trels-based
evaluation is, in contrast to Qrels, that no manual document judgment is needed and
a evaluation setup can be done for any language. In addition Trels-based evaluation
is not adversely affected by changes to the underlying collection, since its not based
on document relevance judgments. Experiments show that Trels-based evaluation is
highly correlative with Qrels-based evaluation (estimated correlation is 0.93) [1].

Because TREC and Qrels-based evaluation does not have any support for large scale
evaluation of Norwegian text and queries, Trels are used for evaluation in this thesis.
This chapter will describe the details of the method and explore it on sample collections.
This is done as a preparation for the evaluation on a large document collection later in
chapter 8.

4.3.2 Goals

The further exploration will focus on the following two aspects, which also appears in
the ”further work” proposals in the article [1]. The answers to these questions will also
be important as a basis of the evaluation in chapter 8.

e Facilitating the creation of Trels: how important is it to pick the right on/off
topic terms.

e Examining the robustness of Trels: how many terms are usually needed for on/off
topic sets.

The second goal implies a subgoal. The decision of how many terms that is needed will
be taken out from the resulting relevance score. It is expected after a given number

31

of term additions that the score will start to converge. If this shows to be true this
converging score threshold will be used to decide how many terms that is needed. It
will also be discussed if the threshold could be used as a yardstick to tell how relevant
document retrievals are.

4.3.3 Understanding Trels

Trels-based evaluation have a different approach than evaluation based on Qrels in
respect of finding out whether documents are relevant or not relevant. Instead of com-
paring retrieval results to pre-specified relevant pages, Trels-based evaluation examines
the content of the results.

The content of each result is evaluated by looking for occurrences of a pre-specified list
of terms. These terms are believed to indicate that a document is either relevant or
irrelevant to a specific query [1]. The method uses a set of queries as its input. Each
query is associated with a Trels, which consist of two sets of terms:

e onTopic: terms related to the query that are likely to appear in relevant docu-
ments.

e offTopic: terms related to the query but unlikely to occur within relevant pages.

If there are found occurrences of onTopic terms in a document, the confidence that this
document is relevant increases. If there are found off Topic terms as well, the confidence
is decreased. A sample Trels is given below:

query: '"recycle, automobile tires"
onTopic: "rubberized asphalt", "door mats", playground
offTopic: "traction, air-pressure, paper, plastic, glass

As you know, old tires are recycled into door mats or rubberized asphalt and they
are often used at playgrounds. When creating the set of onTopic terms we have to
either know what kind of terminology used in the desired documents, or we could use
a third-party retrieval tool to browse through relevant documents found [1].

The offTopic terms can also be selected by using a third-party retrieval system. If we
for example give Google ! the query "recycle”, we would probably get documents about
paper, plastic and glass which are related to source segregation. The second query term
”automobile tires” can also be associated with traction and air-pressure, which is also
irrelevant.

The original query terms may appear in the phrases or lexical affinities in the onTopic
set, but the individual query terms and linguistic derivates should be excluded. The

Yhttp: //www.google.com

32

motivation for this is that we want to grade the system on terms or compounds they
have not been exposed to [1].

Measures

The relevance of a list of retrieved documents for a specific query are evaluated using a
measure unit called tScore. Basically the measurement of results for query ¢ is done in
two steps; first the tScore(d, q) for each retrieved document d is calculated. Secondly
tScore(Dy) for the whole list of retrieved documents is calculated. Figure 4.3 illustrates
this.

Trels(q)

Retrieved documents (Dq)

d] d2 d:] di

Y h 4 ¥ h 4
tScore(dq.q) | ‘ t3core(dsq) ‘ ‘ tScore(ds.q) I | tScare(d,q)

tScore(Dq)

Figure 4.3: Document level scoring (¢tScore(d;, ¢)) and collection scoring (tScore(D,))
There are two different ways of calculating tScore for each document; equation 4.1

or equation 4.2. The first scheme is for query ¢ the weighted difference between the
number of onTopic and offTopic terms appearing in document d.

tScorepasic(d,q) =|t € onTopicNd | — x|t € off Topic N d | (4.1)
The second method for calculation of tScore(d, q) is called the Similarity scheme and

requires some IR resources which can measure the cosine similarity between the exam-
ined results and the term vectors induced from the Trels.

tScoresim(d, q) = cos(onTopic,d) — B cos(of fTopic,dof fTopic,d)) (4.2)

33

The two schemes are highly correlated according to the developers of the Trels-based
evaluation methodology. There were found through experiments a correlation of 0.991,
and they emphasize that the choice of scheme depends on facilities supported by the
IR environment [1].

The constant 3 is set according to how heavily the off Topic terms should be weighted.
(8 = —1 basically make them count as onTopic terms. I choose to set 3 = 1 which
weights onTopic and off Topic terms equally, and yields the highest correlation with
Qrels [1].

To calculate the final score for a result set D, for query ¢ either equation 4.3 or equation
4.4 can be used. These two differs in how they take the document ranking into account.
Equation 4.3 will put less weight on the ones ranked low, and high weight on the first
ones. Equation 4.4 simply calculates the mean values of all the tScore(d, q). Both ways
of calculating total score among document retrieval are explored later.

» s di,
tScore(Dy) = Liz1 Zzncorle() (4.3)
i=17

k
tScoreQk(Dy) = % Z tScore(d;,q) (4.4)
i=1

Own considerations

Its been chosen to normalize tScore(d, q) on the size (number of words in the body of
the document) of the respective document. For example if a document consists of 100
words, 10 onTopic terms and 0 off Topic terms, we would get a tScorepqs;. of 10. If we
duplicate the body of the document the number of onTopic terms will be duplicated
as well, and tScorepgsic will be 20. A normalization on document size would result in
a equal tScorep,s;. for both the original one and the duplicated. If w is any word in
document d the general normalization follows equation 4.5 below.

tScorenorm(di,q) = tScorepysic(di, q) (4.5)

1
‘wEdi‘

4.3.4 Exploration of Trels

There are several issues according to use of Trels that have to be discovered through
experiments since no such results have been published. The most important constants
are related to the off Topic and onTopic-term sets. How many terms in the two sets
are necessary? Experiments with different numbers of terms will be compared before
a conclusion can be drawn. Another issue is the use of the measure unit tScore. What
tScore can be expected from a good retrieval, a less good retrieval, or a really bad

34

retrieval? And finally we will discuss whether its possible to decide a threshold which
determines the retrieval as either relevant or not relevant.

The following tests are executed without any influence of DotLucene, neither any other
retrieval system. More precisely this means that the top-ranked documents, which are
used to calculate tScore(Dy), are set up manually and will be fictive retrieval results.
When a fictive top-ranked-list consists of only relevant documents we can get an idea of
tScore(Dg)-values if the IR system only returned highly relevant documents. Likewise
the fictive retrieved documents were set with only irrelevant documents and finally a
set of fifty-fifty relevant and irrelevant documents.

For the experiments its used two different test cases. This is done both to have a wider
basis for the conclusions and to test two different collections according to their nature
of content.

Case 1

The relevant and irrelevant documents for case 1 is collected through a third-party
search engine on the Web. The retrieved documents collected from the approximately
hundred top-ranked documents. Either they were found relevant or irrelevant. Totally
ten relevant documents and ten irrelevant documents were collected.

For case 1 both the relevant and irrelevant documents is closely related to each other.
For this reason they probably use same terminology and therefore harder to separate
as irrelevant or relevant. The query

"hvordan oppdra barn" (in english: how to raise children)

results in irrelevant documents that’s either about raising other things that children,
animals mostly. Irrelevant documents were also about subjects related to children in
general, diseases for example.

Query hvordan oppdra barn

Relevant documents 10

Irrelevant documents 10

Average document size | 5.9kB

Document subjects Tutorials on how to raise kids

Test purpose Separate a subject inside a domain

Kinds of onTopic and | The offTopic terms are that is inside the do-
offtopic terms main(raising and children) but not the wanted

subject inside the domain. The onTopic terms
are related to the wanted subject inside the
domain

35

Case 2

This case uses a shorter query and the collection of irrelevant documents differs totally
from the relevant. In contrast to case 1, where the irrelevant documents are likely to
be closely related to the relevant, the irrelevant documents of case 2 should be easier
to separate from the relevant ones since they, with small probability, use the same
terminology (terms). The query

"springer" (in english: bishop (in chess))

gave irrelevant documents mostly about dog breeds (springer spaniel). There were
also collected irrelevant documents that were about workout (”springer” has a second
meaning "running” in Norwegian). Relevant documents were picked from web pages
containing chess rules, match reports and tutorials.

Query springer

Relevant documents 10

Irrelevant documents 10

Average document size | 8.5kB

Document subjects Chess rules, tips and tricks, match logs

Test purpose Differentiate documents from different do-
mains

Kinds of onTopic and | The offTopic terms are easy to confuse with

offtopic terms the subjects closely related to the query. The
onTopic terms are related to chess in general

Experiment procedure

First all documents needed for the test runs where collected. Documents of differ-
ent sizes retrieved by Google using the suffix ”site:no” in order to retrieve Norwegian
documents?, where categorized either relevant or not relevant.

For each test case there were created a Trels with on/off topic sets of 20 terms each.
For each increment of number of terms tested, there were included another term from
the Trels. For example when Case 1 is running the experiment with on/off topic set
of 1 term, only the first onTopic term and the first off Topic term were used from the
Trels with 20 terms that belongs to Case 1. The Trels-definitions for both cases can be
found in appendix E.

Three different experiments where tScore(D,) were calculated for each case using the
same Trels, both equation 4.3 and 4.4:

2Norway have two official languages; Bokmal and Nynorsk. The second official language ”Nynorsk”
is a much smaller language and directly translated it means ”New Norwegian” (even if its older). All
documents and Trels used in experiments of this chapter are written in Bokmal

36

1. Collection of relevant documents
2. Collection of irrelevant documents

3. Collection of irrelevant and relevant documents

In parallel to all executions there were done a experiment trying to eliminate two factors;
number of terms used and human assessment when selecting terms to be used. These
results are supposed to show the effect of eliminating human influence of term order
selection. For each number of terms test x = {1,2,...,20} there were executed N = 200
iterations. For each iteration there were picked x term pairs (both from onTopic and
off Topic set) randomly without repetition. With 7" = 20 equation 4.6 describes the
calculation for each term number.

N
tScore(Dg)y = %ZtScore(Dq)x z=A{1,...,T} (4.6)
i=1

Using the evaluation framework implemented and described in chapter 6 the results
were plotted.

4.3.5 Results

This section investigates Trels-based evaluation measurement calculations in practice
for case 1 and case 2. The raw result material is organized according to goals and areas
to be explored.

Evaluating query results

When a query is submitted into an IR system a set of documents is returned. Earlier
figure 4.3 illustrated how each of the documents were given a score tScore(d,q) and
how all these score were used to calculate a total score tScore(D,) for the result of
the query. This section shows the result of this process as numbers of terms varies in
the on/off topic terms sets. Section 4.3.3 investigates two different equation used for
scoring. Equation 4.1 is used to calculate scores for each document. In addition to
vary number of on/off topic terms, two ways of calculating total score of all documents
returned to a given query are plotted. As earlier mentioned, equation 4.3 aggregates
the document scores with higher weighting of the top-ranked. Equation 4.4 is only the
mean calculation.

Figure 4.4 shows the results of case 1 and case 2 for the respective relevant document
collection. What we see is that increasing use of terms increases the total score. This
means that if we increase the number of terms, we gain the confidence that the docu-
ment collection of being relevant. Since we know that the documents are relevant, this
is an expected outcome.

37

10.00 T T T T 20.00

15.00

10.00 -

tScore
tScore

rrrrrrr Equation 4.3 —— Equation 4.3 ——
g Equation 4.4 ———— Equation 4.4 ---+--

.
0 5 10 15 20 0 5 10 15 20
onloff topic terms onloff topic terms

(a) Case 1 (b) Case 2

Figure 4.4: Calculation of result list score tScore(D,) on relevant documents

If we take a look at the difference between equation 4.3 and 4.4 for both cases in figure
4.4, we can observe something interesting. For case 1 we see that equation 4.4 gives
higher score than equation 4.3, and for case 2 its the opposite (when using more than
6 terms). Equation 4.3 weights the top-ranked documents heavier than lower ranked
documents. This means that if we use equation 4.3 we get an idea of how well the
documents are ranked. Figure 4.4 tells us that the document ranking is less good in
case 1, but seem to be slightly better in case 2.

Lets say we have two documents d; and do. Each document is first given an individual
score. tScore(dy, q) = 4 and tScore(ds, q) = 2 for query ¢. Calculating the mean score
of those would not be affected by ranking; (4 +2)/2 = 3 and (2+4)/2 = 3. Now we
choose to weight the first ranked document by 1 and the second by % If dy with the
highest score 4, is ranked on top we get; (1-4+ 3 -2)/2 = 2.5. On the other hand, if
dy is ranked below dy we get; (1-2+ 3 -4)/2 = 2.

In this way does equation 4.3 show how well ranked the documents are. Back to figure
4.4 we now see that the documents of case 1 are better ranked than the documents of
case 2.

For later experiments its preferred to get a general impression of the top k£ ranked
documents. Therefore its chosen to use equation 4.4 which calculates the mean score
of the top k ranked documents. This choice will make it easier to compare results with
common measurements. Precision and recall calculations count how many of the k top
ranked documents that are relevant, and not where in the result list they occur. If its
desired to measure the ranking more in detail, its common to vary k. It could be 5, 10,
or sometimes 100. If k = 10 for example gives high precision and k = 5 gives relatively
low precision, this tells that the ranking should be improved.

38

Number of terms needed

This section has the goal of determining how many terms that should be included in
the on/off topic term sets. Again, experiments with different numbers of terms were
executed, but this time also on documents of different levels of relevancy. An evaluation
method should be able to detect both relevant and irrelevant document retrievals. The
evaluation is executed on three different document collections; one consisting of only
relevant documents, one only irrelevant documents, and the last with half relevant and
half irrelevant. This should give an idea of how many on/off topic terms we need in
order to determine relevancy or irrelevancy.

20.00

10.00 -

tScore
o
3
3
#

] 15.00

10.00

-10.00 Relevant documents

Half relevant, half irrelevant

Irelevant documents --

tScore
o
3
3

-10.00

4 -15.00

0 5

onoff topic terms

(a) Case 1

-20.00
0

F Relevant documents ——
Half relevant, half irrelevant ------
Irrelevant documents ---%-
0

5

L
10
on/off topic terms

(b) Case 2

Figure 4.5: Experiments on relevant, irrelevant and fifty-fifty document collection

Figure 4.5 shows that less than four terms does almost give the same score for relevant,
irrelevant, and the mixed collection of documents. Using four terms would probably

result in "random” relevance judging of document retrievals.

As we see, after 5-6

terms tScore for relevant documents increases while for irrelevant documents tScore
decreases. And using 10 terms would make the distinction clear.

tScore

10.00 T T

Best
st terms last

Be:
Random selet

terms first ——

cted terms ---*-

10
onloff topic terms

15

Figure 4.6: Changing priority of terms

When an ”expert” uses domain knowledge to create Trels, she would probably write

39

down the first terms that comes to her mind first. This may result in a set of terms
with decreasing degree of importance. Previously, we found that 10 terms is enough to
determine relevancy of a document collection. Now we are trying to change the order
of choosing terms, so that the most important terms are applied first. Additionally,
the inverse order were plotted, so the terms come in increasing degree of importance.
Would the optimal choice of terms change the number of terms needed? This question
is now to be answered.

Figure 4.6 shows that if the most significant terms are chosen first, we reach the max-
imum level of score at 10 terms. The original term set, where ”own knowledge” were
used to pick terms, also ended up with the same conclusion. This tells us that using an
experts knowledge worked as good as forcing the best terms to come first. The second
plot in figure 4.6, where the best terms are picked last, show that after 10 terms we
can hardly tell if these documents are relevant or not.

4.3.6 Discussion

The past experimentation has been focusing on exploring constants related to Trels
sets, methods used for evaluation and values to expect from the evaluation process.

The constant exploration focusing on finding how many terms needed in the on/off
topic sets. We have seen that different terms affect the score in different degree. Some
of the terms even do not affect the score in any degree at all. This means that the
ones that does not affect the score, does not have to be present in the term sets. The
relevance score seem to converge between 10-20 terms, but the score can also change
by adding a 20th term. Despite this it seems like the relevance judgment would be the
same whether 10 or 20 terms is used, hence 10 terms seem to be a natural choice since
collecting terms is rather time consuming.

Two different ways of calculating the total score tScore(D,) for the whole retrieval list
were also tried out. They have been referred to as equation 4.3 and 4.4. Its a fact
that equation 4.3 takes the ranking into account. The highly ranked documents are
weighted more that the lower ranked documents. The effect of weighting highly ranked
documents is that irrelevant documents can be retrieved, but as long as they are ranked
low it does not affect the score significantly.

If its demanded few relevant documents the weighted aggregation of tScore(D,) should
be preferred. If we want to know if all the documents in the top k ranked documents
are relevant, the equation calculating the mean value should be used.

Experiments on both relevant and irrelevant documents results in positive and negative
tScore(Dy), respectively. It seems natural to set the threshold of relevancy to zero;
negative score is irrelevant and positive is relevant. This also seems reasonable since
positive score means more onTopic terms than offTopic terms.

Its also important to use the right method when calculation of the whole retrieval list
according to the specific needs. If the needs are few relevant document and the mean

40

tScore for the retrieval list is calculated. The result can misleading since irrelevant
documents in the list that’s lower ranked will lead to negative score.

In comparison to the TREC measures its been observed that documents may be judged
differently due to the nature of the methods. TREC would judge a document relevant
if only a small part of the document answers the query. Trels-based evaluation would
also judge the document as relevant if not the other parts of the documents consist of
major portion of off Topic terms.

4.3.7 Conclusion

Section 4.3.2 describes that the goals of this chapter were to find out how many terms in
the onTopic and off Topic sets required in order to perform a reliable relevance judgment.
There were executed several evaluation processes on different fictive retrievals for two
different cases. The cases were selected in order to perform experiments on different
types of document collections. During the experiments its been discovered several
properties of Trels-based evaluation. The experiments show that the use of 10 terms,
both onTopic and off Topic, is adequate for a reliable relevancy judgment.

The score threshold for relevancy is set to zero where negative score is irrelevant and
positive is relevant. In every case the person responsible for the evaluation have to
decide what criteria that’s behind relevant or not relevant. The method used for cal-
culation should be chosen out of the specific needs in every case.

41

42

Part 111

Implementation

43

Chapter 5

Implementation of Norwegian
Analyzer

5.1 Introduction

This chapter describes the implementation of the NorwegianAnalyzer module. As de-
scribed in section 3.6, analyzers in Lucene is used to perform linguistic operations on
documents before indexing or searching. StandardAnalyzer which is included in the
Lucene library performs language independent operations on documents as shown in
figure 5.1. NorwegianAnalyzer is uses two additional operations for the Norwegian lan-
guage compared to StandardAnalyzer. This chapter will describe these two processes
and the additional standard operations included.

StandardAnalyzer

P StandardTokenizer StandardFilter LowerCaseFilter »| Terms

Figure 5.1: Components of default StandardAnalyzer

5.2 Components

NorwegianAnalyzer is basically a collection of five text processing operations. In Lucene,
the processing operations are called filters. Text processed through NorwegianAnalyzer
is manipulated by five filters. Three filters are used from the DotLucene library and
two are implemented for the Norwegian language. Figure 5.2 shows the three standard
filters and the two Norwegian specific filters which are shaded.

Table 5.1 contains detailed information about all filters used. Note that StandardTo-
kenizer has the whole text as input argument. The remaining filters receives a token

45

NorwegianAnalyzer

D»+ StandardTokenizer —»{ StandardFilter H LowerCaseFilter StopEiiter NorwegianStemFiiter

Figure 5.2: Components of NorwegianAnalyzer

stream and passes the stream over to the next filter. As mentioned, text are divided
into pices of word during tokenization. As a result, the document is transferred into a
token stream where each word in the text is a token in the stream.

Class name Arguments Description
Standard Tokenizer Text Converts the text to a stream of tokens
StandardFilter Token stream Removes dots from acronyms and ’s

from words with apostrophe.
LowerCaseFilter Token stream Case folding

StopFilter Token stream, Eliminates common words
stopword list

NorwegianStemFilter Token stream Suffix stripping (stemming)

Table 5.1: Components of Norwegian Analyzer in executed order

Figure 5.3 shows how text is treated in the analyzer. First text is divided into tokens,
and after filtering they are converted to terms. A token is called a term when it is
associated with a field. Fields are earlier discussed in section 3.3.

Tokenizer R R R L R T : Filter -
——> | Token | +++ | Token Token |: ——— Term

Term

Figure 5.3: Documents are first converted to a stream of tokens, filtered and conflated into
terms in index

The three first operations, StandardTokenizer, StandardFilter, and LowerCaseFilter sim-
ply perform the text processing described in table 5.1. StopFilter which eliminates
stopwords, is used from the DotLucene library with information of stopwords for the
Norwegian language. It is given a file containing the stopwords as an argument. As
commented before, Norway have two official languages. The stopword list supports
both languages.

NorwegianStemFilter is implemented for this thesis with use of design patterns from
other stem filter for DotLucene. NorwegianStemFilter uses a class called NorwegianStem-
mer which contains the stemming algorithm for both Norwegian official languages. Fig-
ure 5.4 shows all relevant classes and relations. Classes which are adapted for Norwegian

46

are shaded.

StopFilter

NorwegianStemmer

LowCaseFilter

StandardFilter

StandardTokenizer NorwegianStemFilter

NorwegianAnalyzer

/

QueryParser IndexWriter

Figure 5.4: Relevant classes and their relations

5.3 NorwegianStemmer: Stemming using Snowball

Snowball is a resource maintained by M.F. Porter and contains stemming algorithms for
several languages including Norwegian. The algorithms are written in a language called
Snowball [10]. All snowball stemmers are based on the Porters stemming algorithm
from 1980 [17].

The core of the Snowball’s Norwegian stemming algorithm! is quite simple. First a well
defined suffix region of a word is determined. Secondly the region is checked against
a set of rules, and then the suffix region manipulated according to the matches found.
The manipulation can either be deletion or substitution of one or several letters.

Norwegian has three additional letters which also are vowels. Note the vowels of the
Norwegian alphabet below:

aeiouygea

All stemmers described with Snowball use at least one of two regions called R1 and
R22. Norwegian stemmer use only R1 and is defined by

”R1 is the region after the first non-vowel following a vowel, or is the null
region at the end of the word if there is no such non-vowel” [17].

"http://snowball.tartarus.org/algorithms/norwegian /stemmer.html (18-05-2006)
*http://snowball.tartarus.org/texts/rir2.html (18-05-2006)

47

For example the word ”beautiful” would have R1 ”iful”;

b e a u t i f u 1
| <= > | R1

Before we can go on with the steps of the algorithm, one more definition is needed;
only valid s-ending if ”s” is proceeded by

bcdfghjlmnoprtvysz

or k if its not preceded by a vowel.

Now we have all definitions needed to run the algorithm which consists of three steps.
Each step is done for all words. Note that the description below is not written in the
language Snowball, its rather

1. Search for the longest among the following suffixes in R1, and perform the action
indicated.

(a) a e ede ande ende ane ene hetene en heten ar er heter as es edes
endes enes hetenes ens hetens ers ets et het ast
— delete

(b) s
— delete if preceded by valid s-ending.

(c) erte ert
— replace with er

Note; the letter of the valid s-ending is not necessarily in R1

2. If the word ends dt or vt in R1
— delete the t

3. Search for the longest among the following suffixes in R1

leg eleg ig eig lig elig els lov elov slov hetslov
— delete

5.4 Verification of NorwegianStemmer

After implementing Porters stemming algorithm for Norwegian, it was desired to verify
that NorwegianStemmer performs stemming according to the specification. To ensure
correctness there were created an NUnit test for the stemmer. NUnit is a unit-testing
framework for .NET. It simply make it possible to check if a unit, typically a method
or function, gives the correct output to given arguments.

The unit test uses NorwegianStemmer to stem a given word from a list? and compares

3http://snowball.tartarus.org/algorithms /norwegian /diffs.txt (20-05-2006)

48

the result with the correct stem of the word. A list of totally 20635 words are stemmed
and compared with the prespecified stemmed equivalent. Does all words pass the test,
the stemmer is assumed to be implemented correctly.

Table 5.2 shows some words from the file containing the records used for verification.
The word on the left side is stemmed by NorwegianStemmer and the result is compared
with the correct equivalent on the right side.

adgang adgang
adgangen adgang

adkomst adkomst
adkomstdokument adkomstdokument
adkomstdokumenter adkomstdokument
adkomsten adkomst

adlyde adlyd

adlyder adlyd

Table 5.2: Sample words with their stemmed equivalent

NorwegianStemmer were developed until all words passed the test successfully. Ap-
proximately, a day or two were spent on getting all steps of the algorithm to perform
correctly.

49

50

Chapter 6

Implementation of Trels-based
evaluation

6.1 Introduction

This chapter will describe the implementation of Trels-based evaluation methodology
described in section 4.3. This implementation can be used to evaluate any IR system
as long as the retrieved documents are located in a filesystem and Term Relevance Sets
are available.

6.2 Evaluation procedure

As mentioned, Trels-based evaluation judges relevancy based on the content of docu-
ments. Therefore there is functionality for loading the content of the retrieved docu-
ments. Since the content of documents is not stored in the index, there is functionality
for loading and parsing the content of document. It possible to get a document’s lo-
cation in the filesystem. This path is used when loading and parsing the content of
documents. There is support for parsing Microsoft Word documents, Adobe PDF,
HTML, and plain text.

Figure 6.1 shows the evaluation procedure. First the documents are parsed (they can
be of any of the previously given formats). After the document is parsed it is browsed
through for topic terms defined in a Trels. When all topic terms are counted in the
document content, the document is given a relevance score. Finally, when all document
returned for a given query is given an individual score, a total score for all document
is calculated. This is the final score for the query these documents are supposed to
answer.

51

Dq
di
tScore(ds,q)
N
dz >
» Count terms tScore(dz,q) 23';;'2: tScore(Dq)
tScore(d;,q)
di

Figure 6.1: Calculating score for a collection of retrieved documents D,

6.3 Open and parsing content of documents

In order to browse content of document, they need to be opened and parsed. It is added
several parser so that different formats can be parsed and browsed. Figure 6.2 shows
that after using a format specific parser, the content is give to the evaluation process
as a string.

| HTML ‘ ’ PDF ‘ ‘Mswmdl

doc

Figure 6.2: Parsing supporting different document formats.

6.4 Counting terms

For a given Trels all documents are treated one at a time. For each document the
content is browsed for occurrences of on/off topic terms. It is chosen to count words
that contains the term as well. This has advantages and disadvantages. It is particularly
an advantage in relation to the Norwegian language since compound words are quite
common. The disadvantage is that opposite meanings will be conflated; ” visible” would
match ”invisible”.

Below you see the code used to count terms. This is for a given Trels referenced to by

52

the variable ”trels”. First the onTopic set is iterated and the total number of terms
found are stored in the variable numOn”. The same is done for the off Topic set of
terms. The variable "text” is the content of a given document. At last the individual

document score is calculated.

foreach (string term in trels.getOnTopics())

{
MatchCollection matches = Regex.Matches(text, term);
numOn += matches.Count;

}

foreach (string term in trels.get0ffTopics())

{
MatchCollection matches = Regex.Matches(text, term);
num0ff += matches.Count;

}

double tScore_basic = (numOn - (BETA * numOff));

The score of this document is after counting stored and another document is browsed.
Finally, all scores are averaged and the total score is returned, as shown in figure 6.1

above.

53

54

Chapter 7

Implementation of Trels-based
evaluation framework for
DotLucene

7.1 Introduction

The Trels-based evaluation framework uses Trels-based evaluation methodology imple-
mented in chapter 6. This framework performs automatic evaluation of DotLucene.
The evaluation process uses a set of pre-specified Trels-definitions, requests the IR sys-
tem DotLucene to answer a query and evaluates the retrieved documents. Figure 7.1
shows an conceptual overview of the framework.

This chapter describes how Trels-based evaluation was realized through the framework
created. The IR system was implemented using indexing and search functionality from
the DotLucene toolkit.

Trels @ Score

Document
collection

Figure 7.1: Trels-based evaluation framework overview

55

7.2 Components

The framework consists of two parts; an IR system and the evaluation part. Both parts
needs one external resource each. The IR system needs access to a document collection
which is indexed and made searchable. The evaluation part needs one or more Trels-
definitions. For each Trels the query is first given to the IR system for searching,
then the on/off topic terms are used to evaluate the ranked list of retrieved documents
returned for the respective query. Figure 7.2 illustrates the important processes and
their relations.

On/off topic
terms

Trels @ Query
D

Documveni Index
collection

Figure 7.2: Trels-based evaluation framework processes

Its chosen to distinguish the IR system and the process of evaluation. This emphasizes
that the evaluation does not depend on what IR system that is used. The evaluation
process considers the IR system as a black-box which answers queries. This means that
it practically only knows about queries and documents, and its purpose is to evaluate
how well the documents are ranked. The two following sections describes the two parts
and their respective components.

7.2.1 IR system based on DotLucene

This is the part actually evaluated. It is a minimal implementation using basic indexing
and search functionality from the DotLucene library. An IR system has many opportu-
nities for tuning the library so it performs at its maximum; such as intelligent decisions
according to user context and the environment. Such functionality is not added in this
turn. Only basic parameters are set appropriately so that lexical analysis and filters
are suitable for Norwegian. Specifically, the implementation of NorwegianAnalyzer rep-
resents the largest change of parameters. Except this, all other parameters are kept
default.

Table 7.1 contains the most important classes used, their arguments and a short de-
scription.

56

Class name Arguments Description

DotLucene.IndexWriter Analyzer Indexing document collection
DotLucene.IndexSearcher DotLucene.Query Searches the index based on a query

DotLucene.QueryParser Query string from Creates a query
a given Trels,
Analyzer

DotLucene.Hits Collection of retrieved documents

NorwegianAnalyzer Stopword list Used by IndexWriter and QueryParser
to analyze text

Table 7.1: Associated classes
7.2.2 Evaluation of IR system based on DotLucene

The evaluation part encapsulates the IR system and performs necessary tasks. Initially
it builds the index. For large document collections this may be time consuming. Unless
any parameters of the filters needs to be changed, the index does not have to be rebuilt.
If additionally documents needs to be added, these can be added to an existing index.
After the index is built, searches are performed and the respective results are evaluated
and a final score is returned. The process of evaluation for a given Trels follows these
steps:

1. Load the Trels and extract the query and the two term sets (onTopic and off Topic).
2. Search the index using the query gq.
3. For each k top ranked document hit (according to a cut-off point k) do

(a) Load content of document.

)
(b) Count onTopic terms in document.
)

(

¢) Count offTopic terms in document.
(d) Calculate document score (tScorepgsic)-

4. Calculate score (tScore(Dy)) for all documents retrieved as a result for query g.

Most tasks as part of the evaluation is done by the class TrelsEval. In addition to
the IR system, it uses tools for parsing documents in order to load the content and
perform term counting (on/off topic terms). The IFilter! parser used supports several
document formats, including PDF, DOC (Microsoft Word), HTML and plain text.
TrelsXmIReader parses Trels-definitions in XML-format and creates object instances of
RelevanceSet. They most relevant classes are listed in table 7.2.

http:/ /www.codeproject.com/csharp/TFilter.asp

o7

Class name Arguments Description

TrelsEval Analyzer, Document Performs Trels-based evaluation (in-
collection, Trels collec- dexing, searching and evaluation of
tion ranked documents)

RelevanceSet Query, OnTopic terms, Container for a query and its respective
OffTopic terms on/off topic terms

TrelsXmlIReader XML definition of a Parses and validates Trels from XML
Trels

IFilter.Parser Parsers documents.

Used to scan document
contents

Table 7.2: Components of Trels-based evaluation framework

Overall the implementation is pretty straight-forward. Most of the choices made are
related to the methodology itself, and therefore left to section 4.3 which discusses the
Trels-based evaluation approach.

58

Part 1V

Results

59

Chapter 8

Results

8.1 Introduction

The focus of this chapter is to evaluate DotLucene using NorwegianAnalyzer. Trels-
based evaluation framework is executed using DotLucene with different analyzers; first
with NorwegianAnalyzer and then two variants of StandardAnalyzer.

This comparison tells if the use of NorwegianAnalyzer makes DotLucene retrieve docu-
ments of higher relevancy to a given query. Comparison with StandardAnalyzer is done
because it was previously used by InfoFinder, the initiator for this thesis.

8.2 Evaluation procedure

The evaluation procedure consist of three main steps; indexing, searching and evalua-
tion. As mentioned earlier, analysis is used both during indexing and during searching
(see section 3.6). Since we are evaluating several analyzers, both indexing and searching
have to be done for each analyzer evaluated. These is the procedure steps done

1. Index document collection with each of the analyzers.

[\)

. Create collection of Term Relevance Sets (Trels).
3. Search using all analyzers on respective indices.

4. Perform evaluation.

Figure 8.1 shows the evaluation steps for two analyzers. Note how ”Document collec-
tion” and ”Trels collection” are shared resources. For each Trels in the Trels collection
a query is extracted. For each Trels-query ¢ a set of documents D, is retrieved by
the IR system, which is given a tScore(Dy)@Qk for a given cutoff point k. The total

61

Indexing Searching Evaluation

1
i
. N 1 £
Indexing with I Search with Retrieved
NorwegianAnalyzer ! Index NorwegianAnalyzer documents
1
1 /
1

|
|
|
|
1
|
1
|
|
|
Trels }
|
|
1
|
|
|
1
|
|

Document
collection

collection

1
1
1
1
| \
1
Indexing with : — Search with Retrieved
StandardAnalyzer T Index StandardAnalyzer documents
1
1

Figure 8.1: Abstract evaluation procedure for NorwegianAnalyzer and StandardAnalyzer.

evaluation score for the whole system S is called tScore[@Qk](S), and is the average of
all tScore(D,) from each query or Trels.

8.3 Deciding cutoff point

When a given query is submitted, the IR system returns varying number of documents.
If many documents, lets say 100, are returned as a result for a query, the IR system
must decide how many of those that should actually be presented to the user. Its very
unlikely that the user bother to read the summaries of all results, unless they are few.
Many search engines chose to present a given number of top ranked documents, which
are most likely to capture the users attention.

When evaluating IR system its often taken into account that users, most likely, only
see a given number of top ranked documents. Therefore the evaluation is on the basis
of the k top ranked documents, which is called the cutoff point. Sometimes evaluation
is also done with several different cutoff points, 5, 10 or 100 is often found in evaluation
results. Precision measure would then be marked with an ’Q’ and the cut off point &
(P@5, PQ10 or P@100).

In this evaluation its chosen to use cutoff point & = 10. This means that the 10
documents that DotLucene consider the most relevant ones are evaluated, both for
precision calculations and Trels-evaluation.

8.4 Document collection

The document collection consists of all news articles from Adresseavisen! 2003 and
2004. Totally, the collection consist of 100601 articles (155 MB) with an average of 244
words per document. The indexing process took roughly 1 hour and 25 minutes. All
benchmark data can be found in appendix D.

It was observed that some of the articles were typically ”front page” notes. Such articles

"http://www.adressa.no

62

consists of a headline and a reference to the page where the article can be found in the
paper, such as ”Saddam Hussein is now captured. See page 13”. Since these articles
does not contain any significant topic information, there were set a boost factor lower
than one to documents containing less than 15 words. Larger documents kept the
default boost factor 1.0 (see table 8.1). The consequence is that these ”front page”
notes are given lower score and therefore not ranked so high. See section 3 for boosting
details.

Words in document Boost

less than 5 0.3
less than 10 0.6
less than 15 0.9
15 or more 1.0

Table 8.1: Boost factors for documents of different size

8.5 Term Relevance Sets

Totally 10 queries with appropriate term sets were created. As previously mentioned,
the document collection consists of news articles from 2003 and 2004. Queries were
picked based on the biggest news events during those years, both international news
and news from Norway. Five from 2003 and five from 2004.

The process of creating Trels is quite time consuming (roughly 30-60 minutes each),
but having the framework ready, creation of Trels is mainly all manual work needed for
a large scale evaluation on a document collection. Based on the results of section 4.3
its chosen to use 10 onTopic and 10 off Topic terms in each Trels.

Every term in the sets have a potential to affect the total score. There is always a chance
for including terms that is not a true on/off topic term for the respective query. This
can result in Trels that does not perform the correct relevance judgment. Using several
queries with related Trels and calculate the average would even out misjudgments and
give a more correct picture of a systems performance. This is also emphasized by the
authors of Trels-based evaluation:

”Individual terms are almost never absolute indicators of relevance or lack
thereof. The power of the evaluation lies in the aggregation of term appear-
ances across many documents returned for many queries” [1].

The time dedicated to create Term Relevance Sets for this evaluation was quite limited,
so in the end it were used totally 10 queries and for each query there were created a
Trels. The Trels collection used for evaluation is added in appendix F. They are
written in Norwegian, so for non-Norwegian readers, they can be browsed to notice the
structure, query length or just observe the basis for the evaluation.

63

8.6 Results

This section will present the results from the evaluation process on DotLucene using
three levels of analysis.

e StandardAnalyzer doing

— Tokenization with cleverness for alphanumerics, acronyms, company names,
e-mail addresses, numbers and words with apostrophe.

— Case folding (lowercasing).
e StandardAnalyzer* doing the same as StandardAnalyzer + eliminating stopwords.

e NorwegianAnalyzer doing the same as StandardAnalyzer + eliminating stopwords
+ stemming

This approach will show how effectiveness is affected by first eliminating stopwords and
secondly eliminating stopwords and stemming. Its expected that stopword elimination
increases the effectiveness or score and applying stemming is expected to increase effec-
tiveness even more. For later discussions there were also calculated precision in addition
to tScore. For each of the three analyzers all documents retrievals, totally 300 docu-
ments, were judged manually in order to calculate P@Q10 for each query/Trels. Table
8.2 shows tScore(D,;)@10 and P@10 for each query/Trels as they appear in appendix
F.

StandardAnalyzer StandardAnalyzer* NorwegianAnalyzer
Query/Trels | tScore(D,) PQ10 | tScore(Dy) PQ10 | tScore(D,) PQ10
1 2.4 1.0 2.1 1.0 1.6 1.0
2 10.5 0.9 6.2 0.9 10.1 1.0
3 3.2 0.9 7.2 0.9 11.6 0.9
4 4.4 0.9 6.1 1.0 4.5 1.0
) -0.1 0.2 0.7 0.4 2.6 0.6
6 0.4 0.2 0.5 0.1 5.6 1.0
7 3.1 1.0 2.1 1.0 4.4 1.0
8 3.7 1.0 4.2 1.0 4.5 1.0
9 9.6 1.0 10.9 1.0 10.6 1.0
10 5.4 1.0 8.4 1.0 6.1 0.9
Average 4.26 0.81 4.84 0.83 6.16 0.94

Table 8.2: Evaluation results of StandardAnalyzer with and without stopword elimination, and
NorwegianAnalyzer

The average over all queries shows effectiveness performance for the whole IR system S,
where S is varied using different analyzers. The system performance shows an increased
effectiveness using stopword elimination, and a significant higher effectiveness using
both stopword elimination and stemming. Table 8.3 shows increased score compared

64

Increased effectiveness using tScore(S) PQ10(S)

Stopword elimination 13.6% 2.5%
Stemming 27.3% 13.3%
Stopword elimination 44.6% 16%

and stemming

Table 8.3: Increased effectiveness using different analysis operations

to StandardAnalyzer. Remember that using stopword elimination and stemming equals
NorwegianAnalyzer.

These results seem realistic compared to published results for other European lan-
guages. At CLEF 2003 it was reported results for 9 European languages where Porter’s
Snowball stemmers where compared with no stemming. For Swedish it was reported
that PQ10 increased with 18.1% with use of Snowball, and for German it was reported
an increase of 12.6% [25]. These languages are quite related to Norwegian so they can
give a hint about how well the results achieved in this thesis are. The evaluation of
Norwegian Snowball stemmer done here shows an increased PQ10 of 13.3%.

At the Royal Institute of Technology in Stockholm, Sweden, it has been published
results for a self-created stemmer. They found that P@10 increased with 15% using
their stemming algorithm compared to no stemming. This also shows that the achieved
results here are reasonable [6]. It did not succeed to find published results for using
stemming on Norwegian.

8.7 Discussion

The main goal of this chapter is to present results of using DotLucene with Norwegian
analysis compared with a standard approach. The comparison is done using evaluation
based on term relevance sets. In addition the traditional measure precision were calcu-
lated. This section will discuss some important issues related to information retrieval
and evaluation done. Primarily, the focus of the results is limited to

e Using DotLucene as retrieval machinery.
e Advantage of using analysis for Norwegian.

e Evaluation based on Trels.

DotLucene have proved to be reliable and easy to use throughout the evaluation phase.
The boosting property of documents came in handy when the problem of ”small”
documents were discovered. The highly flexible and modular architecture made it
easy to run evaluation with different analyzers. The benchmark details in appendix D
seems relatively similar to others found at The Apache Software Foundation? according
to performance.

20Other benchmarks can be found at http://lucene.apache.org/java/docs/benchmarks.html

65

Using analysis for Norwegian shows in general a significant increase of retrieval effec-
tiveness, with background on both Trels-based evaluation and precision measurement.
Table 8.2 show for some queries the opposite; that analysis decreases effectiveness.
For example for query/Trels number 2 we see that stopword elimination affects tScore
negatively, while stemming again increases tScore. Such behaviour occurs for several
queries both for stemming and stopword elimination. Despite these few exceptions the
overall effect of using analysis for Norwegian seem to be positive.

The Trels-based evaluation methodology was explored in section 4.3, and proved to be
useful for relevance evaluation of information retrievals. In previous section we saw that
deploying different analyzers resulted in different tScores. Since tScore-scoring is quite
unknown, precision calculations were applied so the measurement could be compared in
some way. When looking at all results from all three analyzer variants, we see that low
tScore can give high precision; average precision corresponding to tScore > 1.6 is 0.956
and average precision corresponding to tScore < 1.6 is 0.225. This is an interesting
observation if we look at the nature of the two approaches:

e For precision calculations an human assessor judges a document as relevant if it
in some way is relevant to the query.

e Trels-based evaluation says that a document is relevant if it consists of pre-
specified terms.

Since Trels-based evaluation estimates relevancy based on content, high ¢Score-results
necessary does not mean higher "relevancy” in the way we measure precision. For
example if document dy receives an estimated tScore of 5.0, and document do have a
tScore of 10.0 for a given query. Assuming that a document is relevant as long as its
related to the query, we could say that d; and ds are equally relevant, but do probably
consists of more relevant content to read. The definition of relevancy is of course an
important issue here. To summarize we can say that

e If a relevant document should contain a significant amount of text related to a
topic
— Trels-based evaluation returns high values of tScore.

— For precision measurement, the human assessor judges documents relevant
if they satisfies the minimum level of content.

e If a relevant document should just answer the query (necessarily just a sentence)

— Trels-based evaluation can be used by setting a low threshold for tScore.

— For precision measurement, the human assessor judges documents relevant
if they just answer the query.

These two requirements scenarios emphasizes an advantage of Trels-based evaluation.
Change of requirement to document relevancy would just introduce an change of tScore
threshold for Trels-based evaluation, while precision measurements requires re-judging
of documents.

66

8.8 Conclusion

The results show a significant increase of effectiveness of the IR system using Nor-
wegianAnalyzer compared to StandardAnalyzer. Totally precision increased with 16%
and tScore had an increase of 44.6%. This increase comes both from elimination of
stopwords and stemming.

The use of Trels-based evaluation showed high correlation with precision measurements,
and there were discovered that tScore values are relatively low even for relevant doc-
uments. As an feature, tScore can be used to indicate greater amount of relevant
content.

67

68

Chapter 9

Conclusion and further work

The work of this thesis has consisted of implementing an Norwegian Analyzer and
a framework for evaluation of DotLucene. FEvaluation of standard methods and the
improved Norwegian Analyzer showed that use of stopword elimination and stemming
increases the retrieval performance of DotLucene for information retrieval in Norwegian
text documents. The improvements implemented in Norwegian Analyzer increased
precision with 16%. Evaluation with Term Relevance Sets gave an increased relevancy
of 44%. Both measures indicates that InfoFinder who initially desired the the improved
analyzer should, for Norwegian documents, use Norwegian Analyzer together with their
existing IR system based on DotLucene.

Evaluation based on Term Relevance Sets were explored and implemented. The eval-
uation method is easy to use for any IR system, but the current implementation only
performs automatic evaluation for DotLucene based IR systems. The Term Relevance
Sets were created with 10 offTopic terms and 10 onTopic terms, which during explo-
ration showed to be enough to judge the relevancy of documents. Occurrences of these
terms in a document content either increases or decreases the confidence of this doc-
ument to be relevant for a given query. Totally, there were used 10 such queries with
belonging Term Relevance Sets. The average of each query result gave the total score
of the performance of DotLucene and Norwegian Analyzer.

The exploration of Trels-based evaluation done has given indication of that the method-
ology performs reliable relevance judging of retrieved documents. The two cases ex-
perimented with was supposed to challenge the evaluation methodology differently.
Still, there should be done experiments on several cases to increase the confidence of
that Trels-based evaluation performs reliable relevance judgments. Due to the time
limitation of this thesis this is left for future work.

Experiments with selecting the 10 most important terms among a set of 20, showed
that the 10 least important did not affect the relevance score in any significant degree.
Future work could be focusing on ways of measuring the quality of terms included
in on/off topic terms. It was also chosen to use the same number of onTopic terms
and offTopic terms. It would be useful to find out if the number of terms required

69

are different for the onTopic and offTopic set. The published work of Trels-based
evaluation uses significantly fewer term in the offTopic set than in the onTopic set.
Does this affect the identification of irrelevant documents, or should it be prioritized
to gather onTopic terms to identify relevant documents? This could also be a subject
for further experimentation of Trels-based evaluation.

70

Part V

Appendices

71

Appendix A

Fields in Lucene

Field method/type Analyzed | Indexed | Stored | Example usage

Field:Keyword(String, X X Telephone and Social Secu-

String) rity numbers, URLs, personal

Field.Keyword(String, names, Dates

Date)

Field.UnIndexed(String, X Document type(PDF, HTML

String) and so on), if not used as a
search criteria.

Field.UnStored(String, X b Document titles and content

String)

Field.Text(String, X X X Document titles and content

String)

Field.Text(String, X X Document titles and content

Reader)

Table A.1: An overview of different field types, their characteristics, and their usage [12]

73

74

Appendix B

Query subclasses in Lucene

TermQuery The most elementary way to search an index for a specific term.
TermQuery is case-sensitive. Useful for retrieving documents by key;

ISBN-numbers for example.

RangeQuery Facilitates searches from a starting term through an ending term.
PrefixQuery Matches documents containing terms beginning with a specified
string.

BooleanQuery A container of boolean clauses. A clause is a subquery(any of the
other query subclasses) that can be optional, required or prohibited.
These attributes allow for logical AND, OR and NOT combinations.

PhraseQuery Using the positional information about terms in the index, terms
within a certain distance of each other can be located. The maximum
allowable positional distance between terms to be considered a match

is called slop.

WildcardQuery Used to query for terms with missing pieces but matches in some

degree. * is used for zero or more characters. ? for zero or one
character.
FuzzyQuery Matches terms similar to a specified term. Uses Levenshtein distance

algorithm to determine how similar terms in the index are to a spec-

ified target term.

Table B.1: Query subclasses in Lucene [12]

75

76

Appendix C

Common words in the Norwegian

language

0og

at

til
med
ikkje
meg
har
mitt
na
fra
dem
kan
hva
her
ble
inn
noe
deres
ned
deg
mot
dette
ingen
samme
inni
hvem
bare

1

en
er

han
der

seg

om

ha

over

du

0SS
hans
skal
alle
blei
nar
ville
kun
skulle
si

a

disse
din
hvilken
mellom
VOrs
enn

"http://snowball.tartarus.org/algorithms /norwegian /stop.txt

jeg

et

pa

av

sa,
men
vi
hadde
da

ut
opp
hvor
selv
vil
blitt
kom
dere
ja
denne
sine
meget
uten
ditt
hvilke
var
hvis
fordi

77

det
den
de
ikke
var
ett
min
hun
ved
sin
man
eller
sjol
bli
kunne
noen
som
etter
for
sitt
hvorfor
hvordan
blir
sann
hver
bade
for

mange
veere
dykk
deires

€g

elles

hoe

hoss
korleis
kvarhelst
me
mykje
nokor
sidan

um

verte

ogsa
bae
dykkar
deim
ein
honom
henne
hossen
korso
kven
medan
no
noko
SO

upp
vort

slik
begge
dei

di

eit
hja
hennar
ingi
kva
kvi

mi
nokon
nokre
somt
vere
varte

78

veert
siden
deira,
da

eitt

ho
hennes
inkje
kvar
kvifor
mine
noka
sia
somme
vore
vart

Appendix D

Indexing benchmark

Hardware environment

Dedicated machine for indexing
CPU

RAM

Drive configuration

Software environment

DotLucene Version
Compiler

OS Version
Location of index

DotLucene indexing variables

Number of source documents

Total filesize of source documents
Average filesize of source documents
Source documents storage location
File type of source documents
Analyzer used

Number of fields per document
Type of fields

Index persistence

Index size

Figures

Time taken (in ms/s as an average of 3 index-

ing runs)
Time taken / 1000 docs indexed
Memory consumption

79

Yes

Pentium4 @ 2.4 GHz
512 MB

IDE

1.4.3

Visual Studio C# 2005 Express
Microsoft Windows XP Service Pack 2
Filesystem

100601

155 Megabyte

1.7 KB

Filesystem

Plain text

NorwegianAnalyzer (Snowball)
3

1 text, 1 keyword, 1 unstored
FSDirectory

60 MB

1 hour 25 minutes

50 seconds
65 000 KB

80

Appendix E

Term Relevance Sets used for
exploration of Trels-based
evaluation

Case 1

<?7xml version="1.0" encoding="UTF-8" 7>
<Trels>

<query>hvordan oppdra barn</query>

<offTopic>
<term>dyr</term>
<term>hund</term>
<term>hest</term>
<term>valp</term>
<term>fgll</term>
<term>sykdom</term>
<term>vannkopper</term>
<term>underholdning</term>
<term>bgker</term>
<term>svangerskap</term>
<term>adhd</term>
<term>rgde hunder</term>
<term>meslinger</term>
<term>feber</term>
<term>bleier</term>
<term>kosthold</term>
<term>gravid</term>
<term>skillsmisse</term>
<term>barnekler</term>
<term>separasjon</term>

</offTopic>

<onTopic>
<term>barneoppdragelse</term>

81

<term>mamma< /term>
<term>pappa</term>
<term>autoritet</term>
<term>kjerlighet</term>
<term>grenser</term>
<term>straff</term>
<term>respekt</term>
<term>familie</term>
<term>vilje</term>
<term>sinne</term>
<term>gi etter</term>
<term>konflikt</term>
<term>misunnelse</term>
<term>forklare</term>
<term>irettesette</term>
<term>streng</term>
<term>snill</term>
<term>utvikling</term>
<term>ungdom</term>
</onTopic>
</Trels>

Case 2

<?xml version="1.0" encoding="UTF-8" 7>
<Trels>

<query>springer</query>

<offTopic>
<term>trene</term>
<term>jogge</term>
<term>kondisjon</term>
<term>arkiv</term>
<term>hund</term>
<term>sykle</term>
<term>verlag</term>
<term>spaniel</term>
<term>engelsk</term>
<term>kennel</term>
<term>oppdrett</term>
<term>trening</term>
<term>mat</term>
<term>axel</term>
<term>lgype</term>
<term>skogen</term>
<term>rase</term>
<term>mosjon</term>
<term>sykle</term>
<term>fuglehund</term>

</offTopic>

<onTopic>
<term>brettspill</term>

82

<term>spill</term>
<term>oppstilling</term>
<term>angrep</term>
<term>forsvar</term>
<term>svart</term>
<term>hvit</term>
<term>lgper</term>
<term>konge</term>
<term>dronning</term>
<term>tarn</term>
<term>bonde</term>
<term>hest</term>
<term>sjakkmatt</term>
<term>matt</term>
<term>rokkering</term>
<term>taktikk</term>
<term>motstander</term>
<term>brett</term>
<term>koordinat</term>
</onTopic>
</Trels>

84

Appendix F

Term Relevance Sets used for
evaluation

<Trels id="1">

<query>irak krig</query>

<offTopic>
<term>kuwait</term>
<term>valg</term>
<term>vietnam</term>
<term>gulfkrigen</term>
<term>gresshopper</term>
<term>ugler</term>
<term>verdenskrig</term>
<term>korea</term>
<term>japan</term>
<term>afrika</term>

</offTopic>

<onTopic>
<term>amerika</term>
<term>george bush</term>
<term>colin powell</term>
<term>saddam hussein</term>
<term>usa</term>
<term>storbritannia</term>
<term>baghdad</term>
<term>angrep</term>
<term>krig</term>
<term>styrker</term>

</onTopic>

</Trels>

<Trels id="2">
<query>utbrudd av sars virus</query>
<offTopic>
<term>fugleinfluensa</term>
<term>south african revenue service</term>

85

<term>michael sars</term>
<term>georg ossian sars</term>
<term>peter christen asbjgrnsen</term>
<term>pollen</term>
<term>samples of anonymised records</term>
<term>allergi</term>
<term>sola</term>
<term>legionella</term>

</offTopic>

<onTopic>
<term>hong kong</term>
<term>kina</term>
<term>virus</term>
<term>influensa</term>
<term>smitte</term>
<term>severe acute respiratory syndrome</term>
<term>spredning</term>
<term>epidemi</term>
<term>sykdom</term>
<term>who</term>

</onTopic>

</Trels>

<Trels id="3">

<query>angrep pa irak i 2003</query>

<offTopic>
<term>kuwait</term>
<term>valg</term>
<term>vietnam</term>
<term>gulfkrigen</term>
<term>gresshopper</term>
<term>ugler</term>
<term>verdenskrig</term>
<term>pks</term>
<term>korea</term>
<term>afrika</term>

</offTopic>

<onTopic>
<term>usa</term>
<term>george bush</term>
<term>colin powell</term>
<term>saddam hussein</term>
<term>invasjon</term>
<term>storbritannia</term>
<term>baghdad</term>
<term>amerika</term>
<term>krig</term>
<term>styrker</term>

</onTopic>

</Trels>

<Trels id="4">

86

<query>programmet idol pa tv2</query>

<offTopic>
<term>billy</term>
<term>sport</term>
<term>fotball</term>
<term>idrett</term>
<term>golf</term>
<term>tippeligaen</term>
<term>eliteserien</term>
<term>valgkamp</term>
<term>kommunestyrevalg</term>
<term>miljgvernpris</term>

</offTopic>

<onTopic>
<term>kjartan salvesen</term>
<term>popstjerne</term>
<term>platekontrakt</term>
<term>finale</term>
<term>kurt nilsen</term>
<term>gaute ormasen</term>
<term>rgrlegger</term>
<term>spektrum</term>
<term>jorunn stiansen</term>
<term>idol</term>

</onTopic>

</ Trels>

<Trels id="5">

<query>drept pa kjgpesenter i stockholm</query>

<offTopic>
<term>olof palme</term>
<term>voldtekt</term>
<term>ggteborg</term>
<term>oslo</term>
<term>skutt</term>
<term>ulykke</term>
<term>selvmord</term>
<term>skjgt</term>
<term>terror</term>
<term>pistol</term>

</offTopic>

<onTopic>
<term>anna lindh</term>
<term> nk </term>
<term>knivstukket</term>
<term>mord</term>
<term>utenriksminister</term>
<term>statsrad</term>
<term>sverige</term>
<term>1957</term>
<term>politiker</term>
<term>mijailovic</term>

87

</onTopic>
</Trels>

<Trels id="6">

<query>flodbglgekatastrofe i asia</query>

<offTopic>
<term>fedafjorden</term>
<term>tafjord</term>
<term>ramnefjellet</term>
<term>bgdal</term>
<term>ytre nesdal</term>
<term>flybilletter</term>
<term>neeringsliv</term>
<term>bgrs</term>
<term>kina</term>
<term>korea</term>

</offTopic>

<onTopic>
<term>sgr—asia</term>
<term>bglge</term>
<term>jordskjelv</term>
<term>tsunami</term>
<term>sgrgst —asia</term>
<term>katastrofe</term>
<term>omkomne</term>
<term>phuket</term>
<term>dgde</term>
<term>savnet</term>

</onTopic>

</Trels>

<Trels id="7">

<query>rocknes ulykke</query>

<offTopic>
<term>exxon—valdez—ulykken</term>
<term>mehamn—ulykken</term>
<term>sleipner —ulykken</term>
<term>bilulykke</term>
<term>tsjernobyl—ulykken</term>
<term>kursk</term>
<term>nintendo</term>
<term>emulator</term>
<term>software</term>
<term>freeware</term>

</offTopic>

<onTopic>
<term>forliste</term>
<term>druknet</term>
<term>kantret</term>
<term>vatlestraumen</term>
<term>19. januar</term>
<term>sjoforklaringen</term>

88

<term>bergen</term>
<term>spesialskipet</term>
<term>havarerte</term>
<term>omkom< /term>
</onTopic>
</Trels>

<Trels id="8">

<query>munch ranet</query>

<offTopic>
<term>kiosk</term>
<term>hotel continental</term>
<term>leie ut</term>
<term>munch—utleie</term>
<term>refsnes gods</term>
<term>nasjonalgalleriet</term>
<term>bensinstasjon</term>
<term>bankran</term>
<term>thon hotel munch</term>
<term>restaurant munch</term>

</offTopic>

<onTopic>
<term>skrik</term>
<term>madonna</term>
<term>edvard munch</term>
<term>munch—museet</term>
<term>tgyen</term>
<term>munch—ranet</term>
<term>maleriene</term>
<term>stavanger—ranet</term>
<term>munch—maleriene</term>
<term>munch—saken</term>

</onTopic>

</Trels>

<Trels id="9">

<query>knutby drapet</query>

<offTopic>
<term>lindh</term>
<term>fadime</term>
<term>ronald ramm</term>
<term>fadime sahindal</term>
<term>oluf palme</term>
<term>hariri senior</term>
<term>nordisk rads filmpris</term>
<term>film</term>
<term>roman</term>
<term>meta—drapet</term>

</offTopic>

<onTopic>
<term>helge fossmo</term>
<term>kristi brud</term>

89

<term>&asa waldau</term>
<term>menighet</term>
<term>sara svensson</term>
<term>pastor</term>
<term>barnepiken</term>
<term>fossmo</term>
<term>gransta</term>
<term>alexandra fossmo</term>
</onTopic>
</Trels>

<Trels id="10">

<query>siktede i nokas ranet</query>

<offTopic>
<term>noka milkshake—diett</term>
<term>isys</term>
<term>noka dietten</term>
<term>landvetter</term>
<term>verditransport</term>
<term>tveita</term>
<term>meta</term>
<term>klpfta</term>
<term>haugesund</term>
<term>eldre kvinne</term>

</offTopic>

<onTopic>
<term>stavanger</term>
<term>norsk kontantservice</term>
<term>gissel</term>
<term>politidrap</term>
<term>nokas</term>
<term>skuddveksling</term>
<term>rettsak</term>
<term>toska</term>
<term>schumann</term>
<term>havna</term>

</onTopic>

</Trels>

90

Appendix G

Results of Trels-based evaluation
experiments

As an supplement to section 4.3 some experiment results can be found in this appendix.
The graphs shows results from the same cases described.

Collection of relevant documents

10.00 T T T T 20.00

15.00

10.00 -

tScore
tScore

on/off topic terms on/off topic terms

(a) Case 1 (b) Case 2

Figure G.1: Normalized for document size in relevant document

91

tScore

Equation 3.3 ——
Equation 3.4 --—=--

T T T T
4 1.00 -
Equation 3.3 ——
Equation 3.4 --—=--
4 050 -
4
B S 000
a
4 050 -
4 1.00 -
. . . .
5 10 15 20 0

onloff topic terms

(a) Case 1

Figure G.2: Mean of random

92

5 10
onloff topic terms

(b) Case 2

selected term pairs

Collection of irrelevant documents

0.00 - B 0.00
5.00 - B 5.00
=4 =3
@ -10.00 - 4 @ 1000 |
| VA -
-15.00 B -15.00
Equation 3.3 —— Equation 3.3 ——
2000 | Equation 3.4 ------ 4 2000 | Equation 3.4 -~~~
0 5 10 15 20 0 5 10 15 20
on/off topic terms onloff topic terms
(a) Case 1 (b) Case 2
Figure G.3: Normalized for document size in irrelevant documents
1.00 - A 1.00 -
Equation 3.3 —— Equation 3.3 ——
Equation 3.4 --—-- Equation 3.4 -----
0.50 A 0.50
e 4
g 000 d S 000
2 (]
0.50 - 4 0.50
1.00 - A 1.00 -
‘ ‘
0 5 10 15 20 0 5 10 15 20
on/off topic terms on/off topic terms

(a) Case 1 (b) Case 2

Figure G.4: Mean of random selected terms in irrelevant documents

93

Collection of relevant and irrelevant documents

10.00 4 10.00

2 g
3 0.00 — 3 0.00 A
a a
ro—_ \,
.
5.00 — 5.00 B
-10.00 - Equation 3.3 —— — -10.00 Equation 3.3 —— A
Equation 3.4 - Equation 3.4 -
0 5 10 15 20 0 5 10 15 20
on/off topic terms on/off topic terms
(a) Case 1 (b) Case 2
Figure G.5: Fifty-fifty relevant and irrelevant documents
1.00 - — 1.00 - A
Equation 3.3 —— Equation 3.3 ——
Equation 3.4 --—=-- Equation 3.4 --—=--
0.50 - — 0.50 - A
14 I
g 000 b 8 000F . 1
2 g [T e
0.50 - — 0.50 - A
1.00 - — 1.00 - A
0 5 10 15 20 0 5 10 15 20
on/off topic terms. onloff topic terms.

(a) Case 1 (b) Case 2

Figure G.6: Mean of random selected terms in fifty-fifty relevant and irrelevant documents

94

Appendix H

Norwegian stemmer in Snowballl

routines (
mark_regions
main_suffix
consonant_pair
other_suffix

externals (stem)

integers (pl x)

groupings (v s_ending)

stringescapes {}

/* special characters (in ISO Latin I) */

stringdef ae hex ’E6’

stringdef ao hex ’Eb5’

stringdef o/ hex ’F8’

define v ’aeiouy{ae}{ao}{o/}’

define s_ending ’bcdfghjlmnoprtvyz’

define mark_regions as (

$pl = limit

Porters stemming algorithm for Norwegian written in Snowball can be fount at
http://snowball.tartarus.org/algorithms /norwegian /stemmer.html

95

test (hop 3 setmark x)
goto v gopast non-v setmark pl
try ($p1 < x $pl = x)

backwardmode (
define main_suffix as (

setlimit tomark pl for ([substring])
among (

’a’ ’e’ ’ede’ ’ande’ ’ende’ ’ane’ ’ene’ ’hetene’ ’en’ ’heten’
’er’ ’heter’ ’as’ ’es’ ’edes’ ’endes’ ’enes’ ’hetenes’

’hetens’ ’ers’ ’ets’ ’et’ ’het’ ’ast’
(delete)
)S)
(s_ending or (’k’ non-v) delete)
‘erte’ ’ert’

(<=’er’)
)
)
define consonant_pair as (
test (
setlimit tomark pl for ([substring])
among (
’dt’ v’
)
)

next] delete

define other_suffix as (
setlimit tomark pl for ([substring])

among (
’leg’ ’eleg’ ’ig’ ’eig’ ’lig’ ’elig’ ’els’
’hetslov’
(delete)
)

define stem as (

do mark_regions

96

’lov’ ’elov’

’ens’

’slov’

backwards (
do main_suffix
do consonant_pair
do other_suffix

97

98

Bibliography

1]

[5]
[6]

Einat Amitay, David Carmel, Ronny Lempel, and Aya Soffer. Scaling ir-system
evaluation using term relevance sets. Technical report, IBM Haifa Research Lab,
Haifa, Israel, July 2004.

Fast Search & Transfer ASA. The Book of Search, volume 1. First edition, 2006.

Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval.
ACM press, 1999.

A. Bookstein and D.R. Swanson. Probabilistic models for automatic indexing.
Journal of the American Society for Information Science, 26(1):45-50, September
1974.

Vannevar Bush. As we may think. Atlantic Monthly, 176:101-108, July 1945.

J. Carlberger, H. Dalianis, M. Hassel, and O. Knutsson. Improving precision in
information retrieval for swedish using stemming. Technical report, Numerical
Analysis and Computing Science, Royal Institute of Technology, Stockholm, Swe-
den, May 2001.

N. Craswell, S. Robertson, H. Zaragoza, and M. Taylor. Relevance weighting
for query independent evidence. In SIGIR’05: Proceedings of the 28th annual
international ACM SIGIR conference on Research and development in information
retrieval, pages 416-423. ACM Press, 2005.

Doug Cutting, Julian Kupiec, Jan Pedersen, and Penelope Sibun. A practical
part-of-speech tagger. In Proceedings of the Third Conference on Applied Natural
Language Processing, pages 133-140, 1992.

Douglass R. Cutting and Jan O. Pedersen. Space optimizations for total ranking.
Technical report, Excite Inc. and Verity Inc., 555 Broadway, Redwood City, CA
94063.

Snowball: A Language for stemming algorithms. http://snowball.tartarus.org/.
(18-05-2006).

Lucene Similiarity Formula.
http://csunx4.bsc.edu/lucene/api/org/apache/lucene/search/Similarity.html.
(06-06-2006).

99

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

Otis Gospodnetic and Erik Hatcher. Lucene in action. Manning Publications,
2005.

R. Krovetz. Viewing morphology as an inference process. In Proceedings of the
16th ACM SIGUR Conference, pages 191-202, 1993.

M.E. Maron and J.L. Kuhns. On relevance, probabilistic indexing and information
retrieval. Journal of the ACM, 7:216-244, 1960.

The Essentials of Google Search. http://www.google.com/help /basics.html. (12-05-
2006).

TREC Overview. http://trec.nist.gov/overview.html. (01-05-2006).

Martin F. Porter. An algorithm for suffix stripping. 14(3):130-130, 1980. See also
http://www.tartarus.org/martin/PorterStemmer/def.txt.

TREC Sample Relevance Judgments (Qrels).
http://trec.nist.gov/data/robust/qrels.robust2004.txt. (5-06-2006).

Evaluation Report. http://trec.nist.gov/pubs/trec14/appendices/ce.measures05.pdf.
In Text REtrieval Conference 2005. (06-06-2006).

S.E. Robertson. The probabilistic ranking principle in ir. Journal of Documenta-
tion, 33:294-304, 1977.

S.E. Robertson and K. Sparck-Jones. Relevance weighting of search terms. Journal
of the Americal Society of Information Science, pages 129-146, 1976.

S.E. Robertson, C.J. van Rijsbergen, and M.F. Porter. Probabilistic models of
indexing and searching. In Proceedings of the 3rd annual ACM conference on

Research and development in information retrieval, pages 35-56. Butterworth &
Co, 1980.

G. Salton and M.J. McGill. Introduction to Modern Information Retrieval.
McGraw-Hill Book Company, New-York, 1983.

Gerard Salton, A.Wong, and C.S.Yang. A vector space model for automatic in-
dexing. Communications of the ACM, 18(11):613-620, November 1975.

Stephen Tomlinson. Lexical and algorithmic stemming compared for 9 european
languages with hummingbird searchserver at clef 2003. In Cross-Language Fvalu-
ation Forum (CLEF) 2003, July 2003.

TREC Sample Topics. http://trec.nist.gov/data/topics_eng/topics.501-550.txt.
(14-06-2006).

TREC Test Questions (Topics). http://trec.nist.gov/data/testq_eng.html. (01-05-
2006).

T. Upstill. Document ranking using web evidence. PhD thesis, Australian National
University, 2004.

100

[29] T. Upstill, N. Craswell, and D.Hawking. Query-independent evidence in home
page finding. ACM Trans. Inf. Syst., 21(3):286-313, 2003.

[30] Apache License version 2.0. http://www.apache.org/licenses/LICENSE-2.0.txt,
2004. (13-05-2006).

[31] Tan H. Witten, Alistair Moffat, and Timothy C. Bell. Managing Gigabytes: com-
pressing and indexing documents and images. Morgan Kaufmann, second edition,
1999.

101

102

