
June 2006
Harald Rønneberg, IDI
Jørn Ølmheim, Statoil
Einar Landre, Statoil

Master of Science in Computer Science
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Applicability and Identified Benefits of
Agent Technology
-Implementation and Evaluation of an Agent System

Mari Torgersrud Haug
Elin Marie Kristensen

Problem Description
The focus in the master thesis would be to implement a prototype of a system based on agent
technology. An ideal solution should illustrate the benefits of agent technology. The
implementation could demonstrate potential application areas for agent technology in the future,
and show that agents can be used to solve problems where
traditionally development tools have shortcomings. The goal for the students of the master thesis
is to obtain practical experience with agent technology and to evaluate the applicability of agent
systems. Is the technology as good as asserted?

Assignment given: 20. January 2006
Supervisor: Harald Rønneberg, IDI

Abstract

Agent oriented approaches are introduced with intention to facilitate software de-
velopment in situations where other methods have shortcomings. Agents offer new
possibilities and solutions to problems due to their properties and characteristics.

Agent technology offer a high abstraction level and is therefore a more appropriate
tool for making intelligent systems. Multi-agent systems are well suited in appli-
cation areas with dynamic and challenging environments, and is advantageous in
support for decision making and automation of tasks.

Reduced coupling, encapsulation of functionality and a high abstraction level are
some of the claimed benefits related to agent technology. Empirical studies are
needed to investigate if agent technology is as good as asserted.

This master thesis will give a deeper understanding of agent technology and benefits
related to it. To investigate different aspects, an experiment was designed to reveal
the applicability and the benefits. Two multi-agent systems were implemented and
used as objects to be studied in the empirical study.

As part of the investigation, a proper application area were chosen. The application
area can be characterized as a scheduling problem with a dynamic and complex
environment. Prometheus and JACK were used as development and modeling tools.
Achieved experiences related to the development process will be presented in this
report.

The findings of the empirical study indicate reduced coupling and increased encap-
sulation of functionality. To achieve these benefits, the number of entities and func-
tions had to be increased, and thus the number of code-lines. Further, the results
indicate that more entities and lines of code will not have a significant influence on
the development effort, due to the high abstraction level of agent technology.

Preface

This master thesis was written as a part of the Master program at Department
of Computer and Information Science(IDI) at the Norwegian University of Science
and Technology (NTNU). The work is a continuance of a report which concerned
the most important aspects of agent technology. The report was written as part of
the graduate level course "TDT4735 Software Engineering, Depth Study" during the
fall semester 2005.

The problem definition of the thesis was chosen in cooperation with Statoil. The
authors have had two supervisors from Statoil, Jørn Ølmheim and Einar Landre.
Together they have contributed with their knowledge about agent technology and
java programming, and they have shared their experiences with the authors. Harald
Rønneberg has been the supervisor at NTNU.

We would like to thank our supervisors Jørn Ølmheim and Einar Landre for their
counseling and advices. They have given us insightful and valuable feedback. Their
contribution made the task interesting and challenging. We would like to thank
Harald Rønneberg, who has been given counseling on the structure of the master
thesis.

Trondheim, June 14, 2006

——————————– ——————————–
Elin Marie Kristensen Mari Torgersrud Haug

Agent Technology

4

CONTENTS Agent Technology

Contents

1 Introduction 1

1.1 Motivation . 1

1.1.1 Applicability of Agent Technology 2

1.1.2 Benefits of Agent Technology 2

1.2 Problem Definition . 2

1.3 Context . 3

1.4 Problem Approach . 3

1.5 Report Outline . 3

I State of the Art 5

2 Software Agents 7

2.1 Agent Characteristics . 7

2.1.1 Autonomous . 7

2.1.2 Situated in an Environment 8

2.1.3 Reactive . 8

2.1.4 Proactive . 8

2.1.5 Flexible . 8

2.1.6 Robust . 8

2.1.7 Social . 8

2.2 Claimed Benefits of Agent Technology 9

2.3 Application Areas . 10

2.3.1 Planning and Scheduling . 10

2.3.2 Business Process Systems . 10

2.3.3 Decision Support . 10

2.3.4 Critical Situations . 11

2.3.5 Task Automation . 11

2.4 Previous Experiences . 11

2.4.1 An Example of an Evaluation of a Multi-Agent System 11

2.4.2 Multi-Agent System at Sidney Airport 12

i

Agent Technology CONTENTS

2.4.3 Autonomous Manufacturing Architecture 12

3 Development Method and Tools 15

3.1 Prometheus Methodology . 15

3.1.1 System Specification . 15

3.1.2 Architectural Design . 16

3.1.3 Detailed Design . 17

3.2 JACK . 18

4 Application Area 21

4.1 Facts about Mongstad . 21

4.2 Jettyplanning . 22

4.2.1 Description of the Jettyplanning Process 22

4.2.2 Present Practice at Mongstad 22

4.2.3 Example of a Jettyplanning System; Seaberth 23

4.3 Motivation for Selection of Application Area 23

4.3.1 Application Area Characteristics 23

4.3.2 Agents, Scheduling and Decision Making 24

II Own contribution 25

5 Experiment Approach 27

5.1 Experiment Process . 27

5.2 Experiment Definition . 28

5.3 Experiment Planning . 29

5.3.1 Application Area Selection . 29

5.3.2 Hypothesis Formulation . 29

5.3.3 Experiment Design . 31

5.3.4 Validity Evaluation . 31

5.4 Experiment Construction . 34

5.4.1 Benefits . 34

5.4.2 Metrics . 34

5.4.3 The Relation between Benefits, Hypothesis and Metrics 35

6 System Development 37

6.1 System Specification . 37

6.1.1 Goals . 37

6.1.2 Roles . 38

6.1.3 Scenarios Illustrated by Use Cases 39

6.2 Architectural Design . 40

6.2.1 Agent Types . 40

ii

6.2.2 Interaction Diagrams . 41

6.2.3 The System Structure . 43

6.3 Detailed Design . 44

6.3.1 Agent Overview Diagrams . 44

6.3.2 Capabilities Related to the Berth Agent 47

6.3.3 Capabilities Related to the JettyPlanner Agent 50

6.3.4 Capabilities Related to the GUI Agents 51

6.3.5 Capabilities Related to the Ship-Agent 55

6.4 Implementation . 56

6.4.1 JACK Entities . 56

6.4.2 Extensions and Replacements of Code 59

III Evaluation and Conclusion 61

7 Evaluation 63

7.1 Measurements, Testing of Hypothesis and Results 63

7.1.1 Hypothesis 1 . 63

7.1.2 Hypothesis 2 . 65

7.1.3 Hypothesis 3 . 66

7.1.4 Hypothesis 4 . 68

7.1.5 Hypothesis 5 . 70

7.1.6 Hypothesis 6 . 71

7.1.7 Summary, Testing of Hypothesis 72

7.2 Experiences with Agent Technology and JettyPlanning 73

7.3 Experiences with JACK and Prometheus 74

7.4 Validity Concerns . 75

8 Conclusion and Further Work 77

8.1 Conclusion . 77

8.2 Further Work . 78

Agent Technology CONTENTS

iv

LIST OF FIGURES Agent Technology

List of Figures

3.1 Artifacts in System Specification . 15

3.2 Artifacts in Architectural Design . 17

3.3 Artifacts in Detailed Design . 17

5.1 Experiment Principles[CW00] . 31

6.1 Goal Overview for JettyPlanner1 and JettyPlanner2 38

6.2 Role Overview for JettyPlanner1 and JettyPlanner2 38

6.3 Sequence Diagram for UseCase1: Ship Arrival, JettyPlanner1 41

6.4 Sequence Diagram for UseCase2: Ship Delay, JettyPlanner1 41

6.5 Sequence Diagram for UseCase1: Ship Arrival, JettyPlanner2 42

6.6 Sequence Diagram for UseCase2: Ship Delay, JettyPlanner2 42

6.7 System Overview JettyPlanner1 . 43

6.8 System Overview JettyPlanner2 . 44

6.9 Agent Overview, Berth in JettyPlanner1 and JettyPlanner2 45

6.10 Agent Overview, JettyPlanner in JettyPlanner1 and JettyPlanner2 . . 45

6.11 Agent Overview, Gui in JettyPlanner1 46

6.12 Agent Overview, Ship in JettyPlanner2 46

6.13 Capability: InitiationOfLiftingArm Overview, Berth in JP1 and JP2 . . 47

6.14 Capability: RequestHandling Overview, Berth in JettyPlanner1 48

6.15 Capability: RequestHandling Overview, Berth in JettyPlanner2 48

6.16 Capability: ReceiveShipResponsibility Overview, Berth in JettyPlanner1 49

6.17 Capability: ReceiveShipResponsibility Overview, Berth in JettyPlanner2 49

6.18 Capability: RemoveShipResponsibility Overview, Berth in JettyPlanner1 50

6.19 Capability: RemoveShipResponsibility Overview, Berth in JettyPlanner2 50

6.20 Capability: BerthRequesting Overview, JettyPlanner in JettyPlanner1 51

6.21 Capability: BerthRequesting Overview, JettyPlanner in JettyPlanner2 52

6.22 Capability: DelayHandler Overview, Jettyplanner in JP1 and JP2 . . 52

6.23 Capability: Initiation Overview, Gui in JettyPlanner1 and JettyPlanner2 53

6.24 Capability: GuiManaging Overview, Gui in JettyPlanner1 54

6.25 Capability: GuiManaging Overview, Gui in JettyPlanner2 54

v

6.26 Capability: GuiChange Overview, Gui in JettyPlanner1 54

6.27 Capability: ArrivalManaging Overview, Ship in JettyPlanner2 55

6.28 Capability: DynamicVariablesManaging Overview, Ship in JettyPlanner2 56

7.1 Measurements of Metric M1(LOC) 64

7.2 Measurements of Metric M2(NOE) 65

7.3 Measurements of Metric M3(NOF) 67

7.4 Measurements of Metric M4(NOCBE) 69

7.5 Measurements of Metric M5(NOEA) 70

List of Tables

2.1 Benefits of Agent Technology . 9

2.2 Implicated Benefits in RMIT Study 12

3.1 JACK Entities . 19

5.1 Formulated Hypothesis . 30

5.2 Benefits, Hypothesis and Metrics . 35

6.1 UseCase1: Ship Arrival . 39

6.2 UseCase2: Ship Delay . 40

7.1 Results for M1: Lines of Code(LOC) 64

7.2 Results for M2: Number of Entities 66

7.3 Results for M3: Number of Functions(NOF) 67

7.4 Results for M4: Number of Couplings between Entities (NOCBE) . . 68

7.5 Results for M5: Number of External Activations 70

Agent Technology LIST OF TABLES

viii

Listings

6.1 Code-Segment from Ship.agent i JettyPlanner2 56

6.2 ArrivalManaging.cap in JettyPlanner2 57

6.3 ManageKnockOut.plan in JettyPlanner2 57

6.4 IncomingShip.event in JettyPlanner2 58

6.5 MyLiftingArm.bel in JettyPlanner2 . 59

6.6 Method: knockOut in JettyPlanner1 59

6.7 Method-Call on a Ship-reference in JettyPlanner1 60

6.8 Sending Event VariableRequest in JettyPlanner2 60

Agent Technology LISTINGS

x

CHAPTER 1. INTRODUCTION Agent Technology

Chapter 1

Introduction

During the summer of 2005, Elin M Kristensen started to work with agent technol-
ogy as a part of her summer internship at Statoil, and her interest for agents started
to grow. Supervisors at Statoil introduced her to a problem definition concerning
agent technology for her depth study and master thesis at the university.

The depth study concerned the most important aspects of agent technology. Differ-
ent agent architectures, multi-agent systems, and application areas were covered.
She also explored achieved experiences related to agent technology.

Elin M Kristensen and Mari Torgersrud Haug decided to cooperate with the master
thesis, and to continue the work from the depth study. The master thesis is con-
cerned with practical experiences with agent technology. The results of our work
is gathered in this report, and include a description of an accomplished research
performed on agent technology.

The motivation presented in section 1.1, will introduce the principal objective with
our research. The problem definition, composed in cooperation with Statoil, is
quoted in section 1.2. Section 1.3 describes the context, and section 1.4 presents
the problem approach. Section 1.5 will give an outline of the report.

1.1 Motivation

Today, it becomes more and more important with software systems that require
small amount of user interaction, supervision and manual management for enter-
prises. Schedule- and planning problems do often occur in complex environments.
In these kind of surroundings automated systems can be favorable. If the systems
are efficient, they might lead to cost reduction and improve the enterprise’s produc-
tion capacity [Ste05].

For instance, a system responsible for monitoring and managing specific parts in an
environment, must be able to provide supervision functionality. In a system imple-
mented with traditionally development tools, the supervision functionality includes
continuously probing for changes. Much of the resources are therefore occupied
and cause unfavorable system utilization. An alternative is to make the passive
parts self controlled and more active. Then the parts could be able to signalize and
communicate with the rest of the system when relevant changes have occurred. The
time occupied by supervision, could instead be utilized to perform other tasks in the
system.

Due to their properties, agents can represent parts and indirectly give them active

1

Agent Technology CHAPTER 1. INTRODUCTION

and autonomous behavior. Agent technology can therefore lead to more dynamic
systems. There are many claimed benefits related to agent technology. These bene-
fits can be of great value in different application areas[PW04a].

1.1.1 Applicability of Agent Technology

The use of agent technology is becoming more and more common. Agents are au-
tonomous software entities with a degree of reasoning ability, which make them
potential for solving problems in new application areas. They can act as indepen-
dent entities and introduce automated systems that can handle new problems and
increased amount of information.

Agents are able to detect changes in their surrounding environment. Based on
these changes they can communicate with other entities in the system or choose
suited actions. This property makes agents clearly advantageous in situations with
challenging environments.

By monitoring operations, sensors and detectors, agents can collect information
from the environment. Agents can also sort and filter the information for a specified
purpose. This property makes the agents useful, bringing the right information to
the right people at the right time. As a consequence, people involved can make
faster and better decisions.

It is of great interest to make further investigations of agent-technology because it
may introduce possibilities to solve problems in challenging environments. Within
software engineering, the focus is now turning toward dynamic processes. Systems
have to adapt more easily to business needs, because they change continually due
to instant requirements. As a consequence, enterprises need more dynamic systems
to ensure efficiency and satisfied customers[SL03].

1.1.2 Benefits of Agent Technology

Agents are an approach to structure and develop software that offer certain benefits.
Agents are proactive and reactive. This makes them human-like in the way they deal
with problems[Age06]. The similarity makes their functionality easy to understand.
Most agent platforms are built with a high abstraction level, which means that their
programming language is close to natural language. This property facilitate the
implementation of agents. Other benefits related to agent technology are reduced
coupling, encapsulation of functionality and high degree of modularity[PW04a].

1.2 Problem Definition

The problem definition given by Statoil is as follows:

"The focus in the master thesis would be to implement a prototype of a system based

on agent technology. An ideal solution should illustrate the benefits of agent tech-

nology. The implementation could demonstrate potential application areas for agent

technology in the future, and show that agents can be used to solve problems where

traditionally development tools have shortcomings. The goal for the students of the

master thesis is to obtain practical experience with agent technology and to evaluate
the applicability of agent systems. Is the technology as good as asserted?"

We have tried as good as possible to meet the challenges of the problem definition
in our work with the master thesis.

2

CHAPTER 1. INTRODUCTION Agent Technology

1.3 Context

Our master thesis is written in cooperation with Statoil. Statoil is a Norwegian
oil- and gas company with about 24,000 employees and activities in 29 countries.
Statoil has their own IT Department which, among other things, work with devel-
opment and maintenance of software systems used in the oil- and gas industry all
around the world. To be competitive in the oil- and gas market, Statoil continuously
explores and takes advantages of new technology.

Agent technology is a new technology in Statoil, and their IT Department stands
behind the problem definition of this master thesis. It appears that the use of agents
gives a valuable abstraction of systems under certain conditions. Statoil wants to
learn more about agents and their advantages. The goal is to verify if the positive
results and suggestions related to agents and their usage, are correct. These systems
should be able to respond on state changes in the business and take action, either
automatically or by assignment of a task to a user for manual processing. Statoil
wants to serve their customers as well as possible, and has expectations that agents
can improve their services.

1.4 Problem Approach

The objective of this master thesis is to investigate benefits claimed to be related
to agent technology. The research will consist of a literature study, development of
two multi-agent systems and construction and performance of an experiment.

Our prestudy uses foundings from Elin M Kristensen’s depth study performed during
the fall semester 2005. In addition have we concentrated about more practical
issues. Development and implementation methods have been used to achieve a
better understanding of the possibilities and the functionality provided by agents.

According to software literature and theory, agent technology provides certain ben-
efits. To investigate some of these benefits, an experiment was constructed and
performed. Two agent-based applications were developed as a part of the experi-
ment. An application area with a complex and dynamic environment was selected
in cooperation with our supervisors. The main difference between the systems is
that one part is implemented as an object in the first version , and thereafter re-
placed with an agent in the other.

Development of two agent-based applications have given us experiences that will
make us able to perform qualitative evaluations of agent technology. In addition,
will quantitative evaluation be performed to provide results with internal and ex-
ternal validity.

1.5 Report Outline

The master thesis starts with a presentation of agent technology and development
tools and methods. The experiment process is thereafter described. The process
concerns experiment definition, planning, and evaluation of results. System devel-
opment and examples of implementation will be presented. Finally at the end of
the master thesis, experimental results and experiences with agent technology will
be given. The organization of the master thesis is as follows:

Chapter 2: Software Agents To understand what agent technology covers, a de-
scription of the agent entity is given in this chapter. Agent technology is well

3

Agent Technology CHAPTER 1. INTRODUCTION

suited in specific application areas, and some of the domains will be pre-
sented. Agents have special properties, and there are many claimed benefits
related to agent technology. Chapter 2 describes the benefits and presents
previous experiences with agent technology.

Chapter 3: Development Methods and Tools Two multi-agent systems have been
developed as part of the master thesis. This chapter describes the develop-
ment methods and tools used in the development process. The methodologies
and tools presented are The Prometheus Methodology and JACK.

Chapter 4: Application Area The application area has been chosen due to its spe-
cial characteristics and complexity. This chapter introduces facts about the
application area and describes the parts to be implemented. Our motivation
for the choice is given in the end of the chapter.

Chapter 5: Experiment Approach An experiment has been constructed and per-
formed to evaluate agent technology. Chapter 5 presents the experiment pro-
cess and different parts of it. The experiment definition and planning are
described, together with the experiment construction.

Chapter 6: System Development This chapter describes the system development
process of the two agent-based applications. It contains the System Specifica-
tion, the Architectural Design and Detailed design. Examples of implementa-
tion are given in the end of the chapter.

Chapter 7: Evaluation Testing of hypotheses has been performed as part of the
experiment. The testing process and the results are presented in chapter 7.
A description is given of how agent technology were used to develop multi-
agent systems in relation to the chosen application area. The experiences with
JACK an Prometheus and the validity of our results are discussed in the end
of the chapter.

Chapter 8: Conclusion and Further Work The master thesis is concluded in chap-
ter 8 and suggestions for further work are presented.

4

Agent Technology

Part I

State of the Art

5

Agent Technology

6

CHAPTER 2. SOFTWARE AGENTS Agent Technology

Chapter 2

Software Agents

An understanding of agent technology implies knowledge about the software entity
Agent. The concept of agents has been around since the 1950’s, but the current idea
of what an agent is stems from the 1980’s, when the properties of independence and
autonomy became central to agent hood[Nnw96].

Section 2.1 gives an overview of agent properties. Due to these characteristics,
agent-technology provides certain benefits, which is described in section 2.2.

Agent-based solutions are well suited in specific application areas. Examples of
some application areas are given in section 2.3, with an argumentation of why
multi-agent systems are appropriate. The last section, 2.4, presents previous expe-
riences with agent technology.

2.1 Agent Characteristics

To grasp the extent of the concepts of software agents, it is necessary to identify
their main properties and characteristics. There are many taxonomies that refer
to different types of agent entities[Nnw96]. Following, one of the most adopted
definitions of a software agent is given:

"An agent is a computer system that is situated in some environment, and that is
capable of autonomous action in this environment in order to meet its design ob-
jectives. An intelligent agent is in addition reactive, proactive and social[Woo02]".

This definition mentions the hallmarks autonomous, reactive and proactive. To
make the difference between agents and objects visible, and to clarify the concept
of agents, these hallmarks and some other properties will now be explained.

2.1.1 Autonomous

The property of autonomy indicates that agents are independent and make their
own decisions[PW04a]. Agents have free will, which influences their behavior
when they make decisions about what to do and with whom they want to coop-
erate. Internal states and goals form the autonomy, and give the agent ability to
interact with the environment like a human with a specified goal[Nnw96].

7

Agent Technology CHAPTER 2. SOFTWARE AGENTS

2.1.2 Situated in an Environment

Almost all kind of software are situated in an environment. A possible way to distin-
guish between agents and objects, is to compare environments where they are ap-
propriate. Agents tend to be used when the environment is dynamic, unpredictable
and unreliable[PW04a]. Rapidly changes can occur in this type of environment,
and therefore lead to difficulties in predicting the system’s behavior on a case-by-
case basis[MD02]. Agents can handle such changes in an appropriate way. The
following definition illustrate the environment’s impact on an agent’s performance:

"An autonomous agent is a system situated within and a part of an environment
that senses that environment and acts on it, over time, in pursuit of its own agenda
and so as to effect what it senses in the future[FG96]."

Accordingly, the agents use the environment actively to reach its goals.

2.1.3 Reactive

Agents are reactive, and are therefor able to handle changing environments. Re-
activity indicates that the agents will respond to perceived changes in the environ-
ment before a time limit is exceeded. Events represent changes which the agent
must take into consideration when choosing a plan of action. The reaction will be
in accordance with the agent’s present goal[Woo02].

2.1.4 Proactive

The term proactiveness, indicates that an agents have a goal-oriented behavior.
Goals make the foundation for taking rational decisions about what actions to take.
The decisions take place when an agent senses changes in the environment and
strive to reach a desired system state. Consequently, an agent can make several
steps, in a sequence of actions, to reach different goals. In situations where the
environment changes or the goal achievement fails, the agent will still try to find a
way to reach the goal[PW04a], [Woo02].

2.1.5 Flexible

Agents have flexible behavior, because they can achieve goals in several ways. To
reach a goal an agent chooses a plan to follow. If the plan fails for some reason, the
agent can choose between other possibilities to obtain the desired result[PW04a].

2.1.6 Robust

To handle complex environments the agent need to be robust. Robustness can be
described as the ability to persistently pursue goals even if a failure occurs. The
property of robustness is closely related to flexibility. Flexibility introduces the op-
portunity of recovering from failure by picking an alternative plan[PW04a]. The
agent will try all suitable plans until the goal has been achieved or all options are
exhausted.

2.1.7 Social

Agents have the ability to collaborate and negotiate with each other to achieve
goals. The interactions between agents can be described in terms of human behav-

8

CHAPTER 2. SOFTWARE AGENTS Agent Technology

Benefit Description

Reduced coupling No control point to external entities
Encapsulation of functionality The Autonomy of agents leads to less commu-

nication.
High degree of modularity Easier to modify and expand
Human reasoning Provided by the BDI model. Substitution of

humans.
High abstraction level Make modeling and implementation easier.
Challenging environments Handle complex and dynamic in the environ-

ment

Table 2.1: Benefits of Agent Technology

ior. The most common interaction types are teamwork, negotiation and coordination[PW04a].
Agents can for instance perform teamwork when several agents have the same goal.
Sometimes agents can negotiate to obtain the right conditions in the environment.
Reasoning about goals and conditions, and the ability to contact other agents to
achieve a goal, make agents social.

2.2 Claimed Benefits of Agent Technology

Despite agent technology is a young field, there exist many claimed benefits about
agent technology in the literature. This section will describe the main benefits, and
will serve as a foundation for further investigation.

One important benefit of agent technology is that agents reduce coupling[PW04a].
They do not provide any control point to external entities. Agents are autonomous,
which means that they control how to deal with the messages they receive. The
autonomy lead to encapsulation of functionality. In addition, agents can be given
responsibility and be relied upon in achieving goals, which result in less communi-
cation.

Reduced coupling cause more modular software systems. Modular systems are easy
to expand, by adding several modules. They are changeable because modifications
in one module do not cause ripple effects to other modules. Agents can also be used
as glue between software applications[PW04a].

In some applications agents can substitute for humans. The reactiveness and proac-
tiveness of agents make them more human-like in how they deal with problems.
The Belief-Desire-Intent(BDI) model is used to model agent intelligence by mim-
icking human reasoning[PW04a]. Some agent frameworks provide special agent-
languages that take advantage of the BDI-property and make agents more easy to
implement. Since the BDI model is based on human reasoning, it constitute a nat-
ural paradigm for implementing intelligence. Some agent frameworks take advan-
tage of this and provides a special agent language to fully capitalize on this benefit.
These frameworks make programming easier because they are custom-built for the
purpose of agents, and the models are close to human thinking. These properties
are also characteristics of a model with a a high abstraction level[Ølm05].

Agents are clearly advantageous in situations with challenging environments. The
autonomy of agents bring along the possibility of recovering from failure, making
them suitable for unpredictable and unreliable environments. Agents can sense
changes in the environment and choose actions based on these changes[PW04a].

The benefits of agent technology are summarized in table 2.1.

9

Agent Technology CHAPTER 2. SOFTWARE AGENTS

2.3 Application Areas

Agents are well suited to solve special kind of problems. This section will present
suggested application areas for system development.

2.3.1 Planning and Scheduling

Within logistic and transportation, the most important processes are scheduling,
forecasting and dispatching. The processes concern, among other factors, handling
of incoming orders and construction of cost optimal transportation plans. The per-
formance of these processes affects the company’s income and costs. For instance by
focusing on delivery time, quality and services, one can obtain satisfied customers
and gain new ones, which again result in more profit[HB04].

Agents are able to monitor situations to make a model of observed performance,
which could prepare the company for future situations. The predicted performance
can be useful when making plans. Agents can be implemented with multiple plans
and choose the most appropriate direction of action for the situation at hand. They
are also able to reconsider their direction when changes occur. The latter properties
make agents well suited for planning situations.

2.3.2 Business Process Systems

A business process consists of one or several activities that produce results valu-
able to the enterprise, its stakeholders or its customers[Wik06]. The activities in
a business process involve receiving inputs, treat the input with the right method
and produce output of the treatment. Today the business processes are becoming
more complex and need to adapt to changing circumstances. The traditional mod-
els which design the processes before the system is developed, have proved to fail
because they are not dynamic[WW05].

Agents can offer dynamic modeling of the environment. They are goal-oriented
and flexible, which means that they are able to achieve goals under changing cir-
cumstances. There is no need to predetermine the order of activities, because an
agent-system can manage the business processes due to their situational aware-
ness. A multi-agent system can handle the current business environment and the
underlying business polices. Agent’s nature will lead to real-time decisions and
coordination of tasks[Kri05].

2.3.3 Decision Support

Decision support involves how to achieve better and faster decisions. By getting the
right information to the right people in right time, people involved can come to a
good decision faster[Kea04].

Multi-agent systems can be used to gather information from the environment, by
monitoring operations, sensors and detectors. To make a decision, information from
different sources need to be handled and analysed. A multi-agent system could con-
sist of several agents acting as information seekers that cooperate with agents hav-
ing an analyst role. Together they can serve as a link between humans and the rest
of the system. The decision team could consist of both agents and humans. Agents
can propose different alternatives based on the processed information, present this
to the user and let the user take the final decision based on experience.

10

CHAPTER 2. SOFTWARE AGENTS Agent Technology

Multi-agent systems can continuously process information from situations and re-
port this to the user. They can gather appropriate knowledge dependent on the
events they receive in short time. This could support the users of the system in
making proactive decisions, instead of reactive[Kri05].

2.3.4 Critical Situations

In critical situations, time is essential. Minutes and seconds can make a difference
between a scare and a catastrophe. The emergency organization has to be formed
as fast as possible. Humans get stressed in emergency situations, and can overlook
critical events.

Agents have the ability to handle events fast and in accordance with the environ-
ment. Multi-agent systems are favorable to help people react faster and more ratio-
nal in critical situations[Kri05]. Agents can be part of the control system to monitor
situations. When they receive an unexpected event, they can gather the right knowl-
edge and make the right people receive the messages. Agents can also coordinate
the resources needed to handle the situation[Kri05].

2.3.5 Task Automation

Task automation denotes that a system is capable of performing tasks triggered from
internal events without requiring user input[Ølm05]. Tasks that are repeated often
and are complicated or tedious to perform, are good candidates for automation.
Automation could simplify the work for people in several situations.

Software agents are ideal for automating tasks since they can react to conditions in
the system or initiate the appropriate actions in a proactive manner[Ølm05]. As an
example, agents can be implemented to perform search and filtering of information
in accordance to specific criteria. Agents are especially useful in generating propos-
als, based on knowledge processing, for the user to verify and complete. Another
situation where task automation can be practical is in relation to maintenance and
monitoring routines that must be initiated frequently. Agents could be responsible
for initiating these routines with a predetermined time setting.

2.4 Previous Experiences

The purpose of this section is to get an overview of earlier experiences and research
results. Previous experiences can serve as a foundation for our research strategy.
The results from the experiences can be valuable material for a comparison.

2.4.1 An Example of an Evaluation of a Multi-Agent System

A student at the RMIT Computer Science Department in Melbourne, Australia, has
done a comparative analysis of agents and state machines in order to understand
how the choice of technology can affect factors as performance, complexity and
estimated efforts. The experiment consisted of developing an agent model and a
state machine model that where both JAVA based[Bar01].

The results from this study indicate that the state machine implementation has a
higher degree of effort in addition to a longer duration. These implications are only
estimates and almost totally based on lines of code(LOC). Nevertheless, the results
show that using an agent model may save development time[Bar01].

11

Agent Technology CHAPTER 2. SOFTWARE AGENTS

Benefit Description

Save development time The agent model is estimated to have less code, and
therefore shorter time to implement.

Less code The State Machine model required about 10% more
lines of code

Fewer logical errors Less code, imply fewer errors
Less modification effort The tendencies show that the modification duration

for a state machine module are double that of the
agent module.

Table 2.2: Implicated Benefits in RMIT Study

The study also observed that the State Machine model required about 10% more
lines of code. This implicates that an agent implementation would lead to less code

and fewer logical errors.

The implementation of the state machine had an increase of modification effort
that was more than double than that of the agent. This was used to conclude
that the effort would be far greater for the state machine if the system were to be
extended[Bar01]. Table 2.2 summarizes the benefits observed in this study.

2.4.2 Multi-Agent System at Sidney Airport

A multi-agent system called OASIS[OAS92] has been used at Sidney airport to make
air traffic congestion more easy to manage. OASIS is agent-oriented, and consists of
independent agents that solve parts of an overall problem. The distribution of co-
operating agents is the central design principle for the system. The system achieves
to maximize runway utilization through arranging landing aircraft into an optimal
order, assign them a landing time, and then monitor the progress of each aircraft in
real time[OAS92].

Observation of the multi-agent system indicates that an agent based tool did not
outperform the best air traffic controller, but the performance of the average con-
trollers increased. Therefore, it can be said that the system introduced an overall
improvement of performance.

2.4.3 Autonomous Manufacturing Architecture

The Agent Oriented Software Group won in November 2004, the UK Trade & Invest-
ment Award, for ”Best New Business Entrant” in UK. They seek to develop leading
application products based on JACK agent technology. They have come up with an
example that illustrates an innovative way in how to make a manufacturing archi-
tecture. Usually, manufacturing architectures consist of robots that transfer a ”part”
between them. The alternative architecture has made the ”part” autonomous. The
part is represented by an agent, which run on a computer and become active in the
decision making. The part-agent communicates with robot controllers via a real-
time blackboard. This bring along that the part could send and receive messages
directly to the controllers, and answer questions about it self, without needing any
external robot investigating its properties.

This example shows that agents are appropriate in situations where a passive object
is transfered between active objects. The passive object can be made autonomous
and then communicate with the other active objects[Luk]. The gain from this mod-
ification are a system with a more dynamic structure and with a shorter reaction

12

CHAPTER 2. SOFTWARE AGENTS Agent Technology

time on unforeseen events. There will be no need for frequently inspection of the
object, because the object is able to signal its needs.

13

Agent Technology CHAPTER 2. SOFTWARE AGENTS

14

CHAPTER 3. DEVELOPMENT METHOD AND TOOLS Agent Technology

Chapter 3

Development Method and

Tools

The Prometheus methodology and JACK have been used to develop our two multi-
agent systems. The Prometheus methodology provides guidelines for specifying,
designing, implementing and testing agent-oriented software systems[PW04b]. The
methodology consists of three phases, each outlined in section 3.1. Section 3.2
introduces JACK, which is the agent platform we will use in our implementation.

3.1 Prometheus Methodology

The Prometheus methodology[PW04b] captures the process of developing an agent-
oriented system. Design artifacts are used to capture information about the system
and its design. The process consists of three phases; the system specification phase,
architectural design phase and detailed design phase. The phases will be described in
the remainder of this section.

3.1.1 System Specification

The focus of the system specification phase[PW04b][PTW05] is to identify the goals
and basic roles, in addition to percepts(input from environment) and actions(output
to environment). The graphical representation of these artifacts are given in figure
3.1, and related descriptions will now be given.

Figure 3.1: Artifacts in System Specification

15

Agent Technology CHAPTER 3. DEVELOPMENT METHOD AND TOOLS

Actions and Percepts

These issues, rise questions about what input will be available to the agent system
from the environment, and what will the agent system do to interact with and affect
the environment. Inputs to agent systems are identified as percepts, and outputs
from the system are identified as actions[PTW05].

Goals

The goals [PW04c] of the system should indicate what the system is supposed to
do. The identified goals will result in an initial list of system goals. The goals are
thereafter refined into subgoals.

Scenarios

Scenarios describe the sequences of progress within the system. Each scenario gen-
erates a goal. More specific goals may not require a separate scenario. Scenarios
are used primarily to illustrate the normal running of the system, but they can also
be useful to indicate what is expected to happen when something goes wrong. The
identified scenarios consist of a number of detailed steps, where each step can be a
goal, scenario, action or percept.

Roles

Roles [PTW05] consist of a grouping of related goals. The term is used for a chunk
of behavior the system is going to meet. Each role can be described with triggers,
which is information about the events and situations that will cause the activity of
the role to be activated. The trigger can contain percepts, but also prerequisites in
the environment. Each role should have percepts or actions allocated to it.

3.1.2 Architectural Design

The Architectural Design phase is based on the artifacts from the System Specifica-

tion. The phase defines the agent types and the interaction that will be included in
the system[PTW05].

Specifying the Agent Types

This aspect of the Architectural Design[PW04d] focuses on the process of deciding
which agent types to be used. Agent types are formed by combining roles. Alter-
native groupings should be considered and evaluated by the the standard software
engineering criteria of coupling and cohesion.

In Agent systems coupling is exhibited primarily in communication between agents,
although use of a shared data store is another possible form of coupling[PW04d].
The criteria is to aim for a system that is as loosely coupled as possible. It is not
preferable that all agents have to know about all other agents. Cohesion is a prop-
erty of a single component, and exists if all of the components parents are related.
Most often, cohesion in an agent is based on the goals of the agent being closely
related[PW04d].

16

CHAPTER 3. DEVELOPMENT METHOD AND TOOLS Agent Technology

After the suggested design alternatives are reviewed, the most appropriate is pur-
sued.

Specifying the Interactions

This phase considers the dynamic aspects of the system, and focus on designing the
interaction between agents. The interaction diagrams are developed by identifying
which agents perform the steps in each scenario, see section 3.1.1. The messages
that agents exchange to maintain the right sequencing are also considered.

Designing the System Structure

The information about the agent types and the communication between them are
brought together in this phase and gathered in a System Overview Diagram. This
diagram captures the overall architecture of the agent system.

The System Overview Diagram contains the agents and their way of communication
in term of message exchange, persistent data stores, percepts and actions. A graph-
ical representation of artifacts in the System Overview Diagram is given in figure
3.2.

Figure 3.2: Artifacts in Architectural Design

3.1.3 Detailed Design

The Detailed Design phase uses artifacts produced in the Architectural Design Phase

to define the internals of every agent in the system and to specify how agents ac-
complish their overall tasks. The internals of each agent are their capabilities, plans,
events and data structures. Figure 3.3 show the graphical representation of those
artifacts. This phase should provide the information necessary to start the imple-
mentation.

Figure 3.3: Artifacts in Detailed Design

17

Agent Technology CHAPTER 3. DEVELOPMENT METHOD AND TOOLS

Capabilities

The first part of detailed design deals with the capabilities an agent needs to per-
form its tasks. Roles are a natural starting point for identifying capabilities. Routine
tasks that is required multiple places can be captured in a capability, and be com-
prised by multiple agents. Each capability should be a well-defined collection of
plans, using particular beliefs or data, which address a specific set of goals for the
agent. An Agent overview diagram shows the relationships between the capabilities
of an agent[PW04e].

Events and Plans

The detailed design process continues with focusing on the plans and events gener-
ated and handled within each capability. Each incoming message to the capability
must have one or more plans to respond to the message. Multiple plans responding
to the message provide multiple ways of reacting to a situation. Plans are parts of
the specification of the dynamic behavior of the system.

Each plan is triggered by an event, which can be the arrival of a percept, arrival of a
message from another agent, or an internal message[PW04f]. The plans and events
within each capability results in a Capability Overview Diagram.

Data

It is important to ensure that all significant data structures are well specified, to-
gether with their location. JACK offers some specialized support for data represen-
tation, among others beliefsets, views and resource management[PW04f].

Beliefsets are used in JACK to maintain an agent’s beliefs about the world. It de-
scribes a set of beliefs that the agent may have in terms of fields. Beliefsets include
keys, fields and query methods[Age06].

Views in Jack, provide the means to integrate a wide range of data sources within
the JACK framework. The view construct allows general purpose queries to be
made about an underlying data model. The data model may be implemented using
multiple beliefsets or arbitrary Java data structures[Age06]. For instance can a
Graphical User Interface(GUI) be wrapped in a view.

Semaphore is a synchronization resource which can be used to establish mutual
exclusion regions of processing in JACK plans and threads. A semaphore is a bi-
nary resource that plans and threads may wait for, and signal when they have
completed[Age06].

These concepts are all represented as Named data in the Detailed design diagrams.

3.2 JACK

A range of agent oriented programming languages exist today. We will use an agent
platform called JACK to develop our agent system. JACK is a product developed by
The Agent Oriented Software Group (AOS), and provides tools required to develop
autonomous software systems that are both goal-directed and reactive. The JACK
Agent Language is a high level programming language that extends Java with agent-
oriented concepts[Age06], such as:

• Agents

18

CHAPTER 3. DEVELOPMENT METHOD AND TOOLS Agent Technology

Entity File extension Usage

JACK event .event JACK event definition.
JACK plan .plan JACK plan definition.
JACK agent .agent JACK agent definition.
JACK capability .cap JACK capability definition.
JACK view .view JACK view definition.
JACK beliefset .bel JACK beliefset definition.
Java class .java Java class or interface definition.

Table 3.1: JACK Entities

• Capabilities

• Events

• Plans

• Data representations

• Resource and Concurrency Management

Many of the Prometheus concepts map directly to JACK. For instance do a prometheus-
agent map into a JACK-agent, and so do the capabilities from the design. Much
of the code can be directly generated from a detailed design. The JACK Intelligent
Agent environment contains a tool, Jack Development Environment(JDE), which sup-
ports the generation of skeletons for JACK code from the detailed design[PW04g].

When developing a JACK application, source code will be created for some or all
of the agent oriented entities in table 3.1. Since JACK extends Java with agent-
oriented entities, JACK source code is first compiled into regular Java code before
being executed. The files that are created for these entities must have the same
base name as the entity defined in the file[Age06].

In addition, every JACK application must have a Java class that contains the main
method. This class will be the entry point for the Java Virtual Machine and any
other Java-file required by this application[Age06].

19

Agent Technology CHAPTER 3. DEVELOPMENT METHOD AND TOOLS

20

CHAPTER 4. APPLICATION AREA Agent Technology

Chapter 4

Application Area

Claimed benefits and applicability of agent technology have been related to many
application areas. Common descriptions for these areas are dynamic environment,
handling of complex processes or need for high level reasoning[MD02].

We have found a proper application area to evaluate agent technology. Our chosen
application area is jettyplanning at Mongstad terminal and refinery. Section 4.1
gives facts about Mongstad and section 4.2 describes the jettyplanning process.

The motivation for our choice is based on characteristics of the application area and
the claimed contribution of functionality a multi-agent system can provide in such
a setting. Our reason for selecting jettyplanning as application area is described in
section 4.3.

4.1 Facts about Mongstad

One of Statoil’s refineries in Norway is situated at Mongstad near Bergen. It pro-
vides intermediate storage for more than a third of all oil produced by Statoil in
Norway, and has a number of berths where shipment of products and crude oil take
place[Sta06].

Oil is brought to Mongstad in shuttle tankers from the Heidrun platform, and
through pipelines from the Troll platforms in the North Sea. The crude oil is there-
after exported from the terminal. Mongstad also provides storage capability[Sta06].

Facts on the terminal:

• Six rock cavern stores with a total capacity of 9.4 million barrels

• Two jetties able to handle crude oil and product carriers up to 380,000 dead
weight tonnes

• One ship-to-ship jetty able to handle crude oil carriers up to 440,000 dead
weight tonnes

Mongstad serves as the terminal for:

• Troll Oil Pipeline I, about 250,000 barrels per day

• Troll Oil Pipeline II, about 150,000 barrels per day

• Heidrun transshipment, about 240,000 barrels per day

21

Agent Technology CHAPTER 4. APPLICATION AREA

Crude oil is also received for transshipment from Statoil-operated fields as Gullfaks,
Norne and Åsgard.

4.2 Jettyplanning

The number of jetties at Mongstad restricts the loading capacity of products and
crude-oil. The jetties can be characterized as limited resources. To avoid demurrage
and extra costs, a preferable utilization of the jetties is as optimized as possible.

One jetty has several berths where ships can receive oil products. Jettyplanning
concerns allocation of berths to incoming ships. A description of the jettyplanning
process will now be given, followed by present practice in Statoil and an example
of a jettyplanning system.

4.2.1 Description of the Jettyplanning Process

Many issues need to be considered when berths are allocated to incoming ships.
The following steps describes briefly the jettyplanning process.

• A trader makes an agreement with one of Statoil’s partners. The agreement
contains information about the shipment of the cargo.

• A ship is delegated to export the oil from Mongstad.

• To receive the oil product the ship needs a port of discharge.

• The berth allocation is given based on shipment information such as arrival
date, type of cargo, docking time, the size of the ship, and so on.

• In the berth allocation process, other ships and their allocations also need to
be considered.

• An ideal situation is to obtain an optimal allocation of berths to avoid delays
and loss of money.

• Unforeseen events related to ships and berths need to be considered, which
means that the plan for berth allocation is dynamic.

• When a ship arrives at Mongstad it docks to the given berth and receives the
cargo.

• The ship is moved from the schedule when the ship leaves Mongstad.

4.2.2 Present Practice at Mongstad

The jettyplanning process at Mongstad has no tailor-made software system. People
responsible for the jettyplanning use Excel-worksheets connected to databases to
consider the placement and time allocation for incoming ships before registration.

The partly manual system can be difficult to manage. Complex calculations can
be necessary when the number of incoming ships reach a great number. To make
the total cost minimal and to be able to make the best decision, many alternative
calculations for each ship is required[LO06].

22

CHAPTER 4. APPLICATION AREA Agent Technology

4.2.3 Example of a Jettyplanning System; Seaberth

Statoil has considered a software system called Seaberth as an alternative to their
partly manual system used today. Seaberth is created by Cirrus Logistics and is used
worldwide to assist efficient scheduling and processing of ships[Cir06].

In Seaberth, scheduling is based on the system seeking the best berthing solution
within a number of location and user defined, rules and constraints. It seeks to
provide the best possible berth plan to meet the prevailing business objectives. The
tool helps users make sound scheduling decisions. These decisions are not only
based on the immediate requirement of one event, but also on the context of current
and future planned operations for the whole facility[Cir06].

Seaberth is the only product of its kind and has a lot of functionality. The system is
very expensive. The high cost related to implementation and integration is probably
the reason why Statoil has decided not to buy Seaberth[LO06].

4.3 Motivation for Selection of Application Area

Our motivation for selecting jettyplanning as application area is based on its charac-
teristics. Our choice is also influenced by assertions about how multi-agent systems
can deal with challenges related to these characteristics. The characteristics and the
assertions will now be described.

4.3.1 Application Area Characteristics

Jettyplanning can be characterized by three concepts; planning, scheduling and
decision making. Each of these concepts occupies amounts of resources. To obtain
a good result, they need to be handled with special consideration.

Planning is hard in changing environments, and the number and frequency of
changes make plans outdated in short time. Humans have to spend a lot of time
to manually keep the plans up to date. The processes at Mongstad can be charac-
terized as non-linear and dynamic, and they take place in a changing environment.
Near real time, from batch to flow, in the right level of detail and with use of simple
rules, are some of the main requirements for the planning part[HBH05].

Scheduling is concerned with finding the best possible allocation of berths to achieve
the lowest cost at Mongstad. To choose the best allocation alternative, a huge
amount of information is required. Decision making is used to actually choose the
best allocation alternative, and is therefore strongly related to this part.

NP-complete problems can be described as problems which can not be solved in
polynomial-time by any algorithm. The presence of the three following key concepts
can be used to show that we have a NP-complete problem[THC01].

• Optimization problems:Each feasible solution has an associated value, and we
want to find the feasible solution with the best value.

• Decision problems: The answer can be "yes" or "no", and the decision may
change from time to time.

• Reduction: Not possible to reduce one problem into another

A jettyplanner application can be concerned with optimization of berth allocation
during scheduling. Scheduling is related to decision making. When a new ship

23

Agent Technology CHAPTER 4. APPLICATION AREA

arrives, a berth allocation may lead to reallocation of other ships. Jettyplanning
can therefore in some cases be described as a NP-complete problem if complete
optimization is required. A consequence of complete optimization is that decision
making is needed to avoid a never ending loop, trying to find all possible allocation
alternatives.

4.3.2 Agents, Scheduling and Decision Making

It is asserted that agents are especially useful in situations where complex problems
need to be handled, or when an exact execution order of activities may not be
practical. Agents are proactive, flexible and reactive and try to make the best out of
any situation. They can not solve NP-complete problems, but they will try to choose
the best solution path in accordance to their current environment [PW04a, Woo02].

Agents use their capability of cooperation to achieve their common goals, which in
this case are nearly optimized jetty utilization, loading and maintenance. Their na-
ture leads to real-time decisions and coordination of tasks[PW04a, Woo02]. Jetty-
planning consists of complex processes in a dynamic environment, and is therefore
a proper application area for our multi-agent system.

24

Agent Technology

Part II

Own contribution

25

Agent Technology

26

CHAPTER 5. EXPERIMENT APPROACH Agent Technology

Chapter 5

Experiment Approach

Experiments are a valuable tool in evaluating new software methods and tech-
niques. A good experiment needs to be prepared, conducted and analysed properly
to give valid results[CW00].

The process of performing an experiment can be divided into different main activi-
ties. The experiment process is described in section 5.1.

The first step in the process is to define the experiment. A definition is necessary to
ensure that important aspects are considered. Our experiment definition is given in
section 5.2.

After defining the experiment, the planning take place. The definition gives the
foundation for the experiment, while the planning prepares for how the experiment
is conducted. Our plan for the experiment is described in section 5.3. The related
experiment construction is presented in section 5.4.

5.1 Experiment Process

Results from our study will be of both qualitative and quantitative character. Quan-

titative results are most preferable, because conclusions can be drawn from com-
parisons and statistical analysis. Qualitative data, for instance explanations from
people, can give valuable information that support the quantitative results[CW00].

Statoil’s solution for jettyplanning is partly manual and a comparison between the
current system and a multi-agent system would not be consistent nor practicable.
Our research strategy is therefore to perform a Quasi-experiment. Quasi experiments
can not be called true experiments, because the participants or the objects to be
evaluated are not selected by random[CW00]. The objects to be evaluated in our
experiment are two implemented multi-agent systems for jettyplanning.

We will use the experiment process suggested by Claes Wohlin et al[CW00], which
consists of the following steps:

• Experiment Definition
The experiment is defined in terms of problems, objective and goals.

• Experiment Planning
The design and instrumentation is determined. Possible threats are evaluated.

• Experiment Operation
The subjects to be evaluated is prepared. The experiment is being executed

27

Agent Technology CHAPTER 5. EXPERIMENT APPROACH

and data is collected.

• Analysis and Interpretation
Measured data is analysed and gathered in descriptive statics.

Each step defines important aspects necessary for our research. We will use them as
a guideline to assure we perform the experiment as good as possible. The two first
steps are described section 5.2 and 5.3. The work related to the step Experiment

Operation is described in chapter 6, and the Analysis is given in chapter 7.

5.2 Experiment Definition

The purpose of a goal definition is to ensure that important aspects of an experiment
are defined before the planning and execution take place. We have decided to use
the "Goal Question Metric"(GQM) template to define our goal.

The GQM template is taken from the book "Experimentation in Software Engineer-
ing" [CW00] and is written as follows:

Analyse <Object(s) of study>

for the purpose of <Purpose>
with respect to their <Quality focus>

from the point of view of the <Perspective>

in the context of <Context>

Objects of Study The objects of study are the entities that are studied in the ex-
periment. We will compare two different multi-agent implementations of a
jettyplanner system. See section 5.3 for a brief description of the two sys-
tems.

Purpose The purpose defines the intention of the experiment. We want to evaluate
the benefits and applicability of agent technology. We believe we can measure
the applicability and the benefits by changing ship objects within the system
to ship agents, and then evaluate the result and the consequences of these
changes.

Quality Focus Quality focus is the primary effect under study in the experiment.
We will have focus on benefits and applicability.

Perspective The perspective presents the viewpoint from which the experiment
results are interpreted. We have chosen a developer perspective.

Context The context is the environment in which the experiment is run. It defines
the personnel involved in the experiment(subjects) and the software artifacts
involved(objects). In our experiment we as students are the subjects. The
objects of context are the development tools described in chapter 3.

Our definition for the experiment then turns out as follows:

Analyse two different implementations of the Jettyplanner

for the purpose of evaluation

with respect to benefits and applicability of agent technology

from the point of view of developers

in the context of students using Jack and Prometheus to implement a multi-agent

system.

28

CHAPTER 5. EXPERIMENT APPROACH Agent Technology

5.3 Experiment Planning

The experiment planning prepares for how the experiment is conducted. This sec-
tion will present our context selection and hypothesis formulations. The selection
of variables and subjects are described, followed by our experiment design.

5.3.1 Application Area Selection

Our application area is jettyplanning at Mongstad as described in chapter 4. Statoil’s
current system at Mongstad is partly manual, and it is used in a step by step fashion
where humans take all the important decisions.

We have decided to implement two multi-agent systems for jettyplanning. A com-
parison can be performed based on these two versions. The versions are as follows.

• JettyPlanner1: Ships are represented as objects within the system.

• JettyPlanner2: Ships are represented as agents within the system.

Both versions have agent types like JettyPlanner, Berth and GuiManager. For de-
tailed system design, see section 6.3.

In JettyPlanner2, the ship-object is changed into a ship-agent, which means it gets
the agent properties described in chapter 2. We want to compare the differences
between the two versions to discover possible benefits and applicability of agent
technology.

5.3.2 Hypothesis Formulation

Testing of hypothesis make the foundation for analysis in an experiment. A hypoth-
esis is stated formally and the data collected during the course of the experiment is
used to, if possible, reject the hypothesis.

To evaluate the two multi-agent systems, we have written a number of hypotheses
statement related to agent technology. For each issue we want to evaluate, we
have formulated two kind of hypotheses, a null hypothesis(H0) and one or two
alternative hypothesis(HA1 or HA2). The null hypothesis states that there are no
real underlying trends or patterns in the experiment setting. If the null hypothesis
is rejected, one of the alternative hypothesis is chosen[CW00].

The hypothesis tries to characterize aspects of multi-agent systems, and can there-
fore be related to questions in the GQM approach[CW00]. Table 5.1 presents the
hypothesis.

29

Agent Technology CHAPTER 5. EXPERIMENT APPROACH

Id Hypothesis

H01 The functionality of the the two versions will be implemented
with approximately the same number of code lines.

HA1.1 JettyPlanner2 will implement the same functionality as JettyPlan-
ner1 with fewer lines of code.

HA1.2 JettyPlanner2 will implement the same functionality as JettyPlan-
ner1 with several lines of code.

H02 The number of entities will be the same for the two JettyPlanner
versions.

HA2.1 JettyPlanner2 will have more entities than JettyPlanner1.
HA2.2 JettyPlanner2 will have less entities than JettyPlanner1.
H03 Both versions will use the same number of functions to complete

the different use-cases described in chapter 6.
HA3.1 JettyPlanner2 will complete the use-cases with fewer functions

than JettyPlanner1.
HA3.2 JettyPlanner2 will complete the use-cases with several functions

than JettyPlanner1.
H04 Both versions will have the same number of couplings between

the components in the system.
HA4.1 JettyPlanner2 will have fewer couplings between the components

than JettyPlanner1.
HA4.2 JettyPlanner2 will have several couplings between the compo-

nents than JettyPlanner1.
H05 JettyPlanner1 and JettyPlanner2 have the same number of exter-

nal operations changing their internal state.
HA5.1 JettyPlanner2 has a fewer amount of external operations chang-

ing the internal state than JettyPlanner1.
HA5.2 JettyPlanner2 has several external operations changing the inter-

nal state than JettyPlanner1.
H06 Use of agent-technology will not provide a higher abstraction level

for modeling and implementation of applications.
HA6.1 Use of agent-technology will provide a higher abstraction level for

modeling and implementation of applications.

Table 5.1: Formulated Hypothesis

30

CHAPTER 5. EXPERIMENT APPROACH Agent Technology

Some of the hypothesis require an objective measure, a value only dependent of
the object that is being measured. Other attributes have subjective measures, were
judgment from people come into account. The testing of the hypothesis is given in
chapter 7.

5.3.3 Experiment Design

An experiment design consists of a series of tests of the treatments[CW00]. Our
experiment design consists of one factor, which is the jettyplanner system, and two
treatments, namely JettyPlanner1 and JettyPlanner2. We want to compare the two
treatments against each other.

5.3.4 Validity Evaluation

One important question during the whole experiment process is the validity of the
results.

Wohlin et al. proposes four types of threats to the validity of experimental results[CW00].
The threats are related to conclusion-, internal-, construct- and external validity. Fig-
ure 5.1 illustrates how each threat is related to different parts of the experiment
process.

Figure 5.1: Experiment Principles[CW00]

The figure is divided in two parts, the Theory area and the Observation area. We
want to draw conclusions about the theory defined in the hypothesis, based on our
observations.

1. Conclusion Validity This validity is concerned with the relationship between
the treatment and outcome. Conclusion validity means that there is some
kind of statistical relationship with a given significance.

2. Internal Validity This validity is concerned with the causal relationship be-
tween the observed treatment and the outcome. Internal validity means that
the treatment causes the outcome.

31

Agent Technology CHAPTER 5. EXPERIMENT APPROACH

3. Construct Validity This validity concerns the relation between theory and
observation. If we have construct validity the treatment reflects the construct
of cause and the outcome reflects the effect construct.

4. External Validity This validity is concerned with generalization. We have
external validity if the cause-effect construct has been generalized and the
same results has been achieved.

Validity Threats

We have tried to find possible validity threats related to our evaluation. We have
to address, or in some cases, accept these threats to obtain a valid result. We have
found the following threats applicable in our evaluation.

Threats to Conclusion Validity:

Low statistical power It can be difficult to reveal a true pattern in our data since
we only will perform one comparison of two multi-agent systems. The two
systems only present a small fraction of the diversity of multi-agent systems.
We will accept this threat and take into account that some of our conclusions
can be erroneous.

Fishing We will perform a quasi-experiment which means that the objects to be
evaluated are not selected by random. We must be careful to not influence
the result by implementing specific outcomes. We will address this threat by
implementing the two versions without thinking of preferable results.

Reliability of measures The reliability of measures are dependent of how we de-
cide to perform different measurements. Objective measurements are more
reliable than subjective measurements. We will address this threat by using
metrics that involve a small degree of human judgment.

Threats to Internal Validity:

Maturation Maturation is the effect of that the subjects, in our case ourselves,
will react differently as time passes. The two versions of our Jettyplanner
application will be implemented at different time intervals and will therefore
be affected by our knowledge about agent technology. We will accept this
threat and take into account that our maturation of knowledge can influence
the causal relationship between treatment and outcome.

Selection We only have one treatment to evaluate which means that our selection
of objects may not be representative for all possible outcomes. We will ac-
cept this threat and take into account that our conclusion may not contain all
possible outcomes.

Threats to Construction Validity:

Poor experiment constructions The experiment is dependent of the its construc-
tions. If the constructions are not sufficiently defined, it will be difficult to
generalize the result of the experiment to the theory behind the experiment.
We will address this threat and define measurements and treatments as good
as possible.

32

CHAPTER 5. EXPERIMENT APPROACH Agent Technology

Mono-operation bias Our experiment may under-represent the construct and may
not give the full picture of the theory because we have a quasi experiment.
We will accept this threat and take into account that our construction may not
give the full picture of the theory.

Confounding constructs A low level of construct can affect the outcome. The
cause construct in the theory must be reflected in the treatment and the effect
construct must be reflected in the outcome. We will address this threat by
constructing an experiment with a clear relation between theory and observa-
tion.

Threats to External Validity:

Interaction of selection and treatment A condition that limits our ability to gen-
eralize the results of our experiment, is that we may not be representative
of the population we want to generalize to, namely the developers. We will
accept this threat and take into account that we are only students with lack of
experience.

Interaction of setting and treatment The experimental setting and the material
shall be representative for the industrial in practice to make the experiment
generalizable. We will address this threat by using development tools and
methods that are up to date.

33

Agent Technology CHAPTER 5. EXPERIMENT APPROACH

5.4 Experiment Construction

The experiment construction connects hypothesis and metrics with benefits. The
result is presented in this section, and can be characterized as the underlying struc-
ture for our experiment.

5.4.1 Benefits

We will examine some of the claimed benefits for agent technology by relating them
to relevant hypothesis. The benefits we want to examine are as follows.

• Reduced development effort

• Reduced coupling

• Encapsulation of functionality

• High abstraction level

We will use reduced development effort as a generic term for reduced amount of
code, number of entities and functions. Reduced development effort was given as
one of the benefits in section 2.4. Reduced coupling, encapsulation of functionality
and high abstraction level are benefits described in section 2.2.

5.4.2 Metrics

Quantitative research is concerned with quantifying a relationship or comparing
two or more groups. Entities to be measured are denoted the term metrics[CW00].
The following quantitative metrics will be used in the evaluation:

M1 Lines of Code (LOC)
The number of written code-lines. Code-lines will be counted as the number
of semicolons in the source-code.

M2 Number of Entities (NOE)
The number of events, plans, capabilities, agents, views, beliefsets and java-
classes.

M3 Number of Functions(NOF)
The number of get/set methods, other methods and plans used by the ship-
object and the ship agent.

M4 Number of Couplings between Entities (NOCBE)
Couplings in Jettyplanner1 will be defined as external method-calls to the
ship-object from other entities within the system and method-calls from the
ship-object to other entities. Couplings in Jettyplanner2 will in addition to in-
and outgoing method-calls, be events sent and received by the ship agent.

M5 Number of External Activations(NOEA)
External activations in Jettyplanner1 will be defined as external method-calls
to the ship-object from other entities. External activations in Jettyplanner2
will be external method-calls and received events.

34

CHAPTER 5. EXPERIMENT APPROACH Agent Technology

Benefits Hypothesis Metrics

Development Effort H01/HA1.1/HA1.2 M1(LOC)
H02/HA2.1/HA2.2 M2(NOE)
H03/HA3.1/HA3.2 M3(NOF)

Reduced coupling H04/HA4.1/HA4.2 M4(NOCBE)
Encapsulation of functionality H05/HA5.1/HA5.2 M5(NOEA)
High abstraction level H06/HA6.1 Qualitative Result

Table 5.2: Benefits, Hypothesis and Metrics

5.4.3 The Relation between Benefits, Hypothesis and Metrics

The benefits, hypothesis and metrics can be connected with each other. The re-
lations indicate how the hypotheses and the metrics will be used to investigate
possible benefits in the evaluation. Table 5.2 gives an overview of these relations.

35

Agent Technology CHAPTER 5. EXPERIMENT APPROACH

36

CHAPTER 6. SYSTEM DEVELOPMENT Agent Technology

Chapter 6

System Development

We have used the development methods and tools described in chapter 3 to design
and implement our two versions of the JettyPlanner. The difference between the
two versions is that ships are represented as java objects in JettyPlanner1 and JACK
agents in JettyPlanner2. We started with the implementation of JettyPlanner1, and
then made the necessary modifications and extensions for JettyPlanner2. Section
6.1 contains the System Specification, section 6.2 the Architectural Design diagrams
and section 6.3 the Detailed Design Diagrams. Section 6.4 will give code examples,
to illustrate how agent entities are implemented in JACK. We will basically describe
JettyPlanner1, but in the cases where the two systems differ, we will also describe
the approach to JettyPlanner2.

6.1 System Specification

The goals of the system is given in section 6.1.1 and indicate the main requirements
for the Jettyplanner. Section 6.1.2 combines goals into groups of functionality, also
called roles. The system specification is similar for JettyPlanner1 and JettyPlanner2.
Artifacts used in the diagrams was explained in section 3.1.1

6.1.1 Goals

Agents are proactive and have goals they want to achieve. We have identified sys-
tem goals to obtain an overview of what the JettyPlanner should be able to do.

The main goal of the Jettyplanner is to Optimize jetty allocation. This means that
the agents try to find the best solution for the current situation, and make the jetty
allocation as good as possible. This goal was further refined into sub-goals, as
depicted in the figure 6.1

37

Agent Technology CHAPTER 6. SYSTEM DEVELOPMENT

Figure 6.1: Goal Overview for JettyPlanner1 and JettyPlanner2

Optimize jetty allocation is divided into Find best schedule, and Handle ship delay. In
the situation of a ship delay, a new arrival must be considered for a ship. Find best

schedule will therefore be a subgoal for Handle ship delay. We have refined the Find
best schedule goal into the following subgoals.

Registrate ship arrival; the system must be able to receive a new ship arrival. Handle

berth request; means that the system must do a request to the berths to ask for the
best allocation for a ship. Examine allocation alternative; denotes that the cost of
allocation for a ship should be examined for every appropriate berth. Choose best

berth alternative; the system should choose the best allocation alternative for a ship
in accordance to relevant variables. The jettyplanner system should also be able to
Present schedule, in other words present information to the user of the system.

After refining the goals, they were rearranged and similar goals were moved to-
gether in groupings. The gropings provided the basis for examining which roles to
be fulfilled in the Jettyplanner.

6.1.2 Roles

The functionality of the system is described by using the term Role. Each role con-
sists of a grouping of related goals.

The roles for the Jettyplanner are given in figure 6.2, followed by a description of
each of them.

Figure 6.2: Role Overview for JettyPlanner1 and JettyPlanner2

ShipMonitor The ShipMonitor is responsible for registrating ship arrivals and han-

38

CHAPTER 6. SYSTEM DEVELOPMENT Agent Technology

dle ship delay. Percept: Ship arrival and Ship delay.

JettyMonitor The JettyMonitor is responsible for a nearly optimized jetty alloca-
tion, and should therefore be able to find the best schedule, examine alloca-
tion alternatives and choose the best berth alternative.

BerthMonitor The BerthMonitor is responsible for handling berth requests. Ac-
tion: The result of this functionality is a Berth allocation, a relation between
ship and berth.

InterfaceMonitor The InterfaceMonitor is responsible for presenting a model of
the schedule to the user. Action: Display jettyplan

6.1.3 Scenarios Illustrated by Use Cases

We have written scenarios to illustrate the sequence of performance steps within
the JettyPlanner systems.

UseCase1: Ship Arrival describes the sequence for handling a ship arrival, see table
6.1. UseCase2: Ship Delay include the sequence for handling delay in arrival time,
which indicates that the schedule must be reorganized. This use case is found in
table 6.2. The use cases are similar from step3 in UseCase1 and step5 in UseCase2.

Trigger Description

A ship ar-
rives

A ship arrives Mongstad and reports its arrivaltime in hours.
The ship will be allocated a berth with the right product and
capacity. The schedule will be updated.

Number Step type Description

1 Percept Arrival information about the ship received
2 Goal Registrate ship arrival
3 Goal Handle berth request
4 Goal Examine allocation alternative
5 Goal Choose best berth alternative
6 Action Berth allocation
7 Goal Present schedule
8 Action Display jettyplan

Table 6.1: UseCase1: Ship Arrival

39

Agent Technology CHAPTER 6. SYSTEM DEVELOPMENT

Trigger Description

Delay in
arrival
time

A ship reports that it will arrive later than first assumed. The
ship will be reallocated in accordance to the changes and the
schedule will be updated.

Number Step type Description

1 Percept Delay information about the ship received
2 Goal Handle ship delay
3 Goal Remove ship from present berth
4 Goal Registrate ship arrival, with updated arrival

time
5 Goal Handle berth request
6 Goal Examine allocation alternative
7 Goal Choose best berth alternative
8 Action Berth allocation
9 Goal Present schedule
10 Action Display jettyplan

Table 6.2: UseCase2: Ship Delay

6.2 Architectural Design

In the Architectural Design are the agent types identified, the interaction between
the agents are described with sequence diagrams, and the overall system structure
are presented. From now on, and throughout this section, we will separate the
design of JettyPlanner1 and JettyPlanner2.

6.2.1 Agent Types

The agent types are identified based on in the roles from section 6.1.2. Note that
an agent in a system can have several roles.

Agents in JettyPlanner1

JettyPlanner has role JettyMonitor

Berth has role BerthMonitor

GUI has roles ShipMonitor, InterfaceMonitor

Agents in JettyPlanner2

JettyPlanner has role JettyMonitor

Berth has role BerthMonitor

GUI has role InterfaceMonitor

Ship has role ShipMonitor

40

CHAPTER 6. SYSTEM DEVELOPMENT Agent Technology

6.2.2 Interaction Diagrams

Based on the use case scenarios in section 6.1.3, the messages that must be ex-
changed between the agents to obtain achievement of goals in the right sequence
have been identified.

Interactions in JettyPlanner1

Figure 6.3 illustrates the interaction between the JettyPlanner1’s three agent types
in the Ship Arrival scenario. Figure 6.4 depicts the Ship Delay scenario.

Figure 6.3: Sequence Diagram for UseCase1: Ship Arrival, JettyPlanner1

Figure 6.4: Sequence Diagram for UseCase2: Ship Delay, JettyPlanner1

Interactions in JettyPlanner2

Figure 6.5 illustrates the interaction between the JettyPlanner2’s four agent types
in the Ship Arrival scenario. Figure 6.6 shows the Ship Delay.

41

Agent Technology CHAPTER 6. SYSTEM DEVELOPMENT

Figure 6.5: Sequence Diagram for UseCase1: Ship Arrival, JettyPlanner2

Figure 6.6: Sequence Diagram for UseCase2: Ship Delay, JettyPlanner2

42

CHAPTER 6. SYSTEM DEVELOPMENT Agent Technology

6.2.3 The System Structure

The system overview diagrams gather all the entities in the system and give a brief
overview of the systems main entities and the communication between them.

System Overview Diagram for JettyPlanner1

Figure 6.7 presents the system overview diagram for JettyPlanner1. The system
includes the agent types; JettyPlanner, Berth and GUI. The GUI receives information
from the environment of the system in term of the Ship arrival and Ship delay per-
cepts. As a consequence, messages will be sent from GUI to JettyPlanner to inform
about the environmental changes. If a new Ship arrival occurs, the JettyPlanner will
send a BerthRequest to the Berth-agents to find an appropriate berth for the ship.
The Berth will check its allocation opportunities, by using their Berth data and send
a message to the JettyPlanner with a BerthReply. The JettyPlanner will then delegate
responsibility for the ship to a chosen berth.

If a Ship delay occurs, the JettyPlanner will ask the present responsible Berth to re-
move the ship by sending RemoveShip, followed by sending a new BerthRequest to
all the Berth-agents. After the JettyPlanner-agent has delegated the ship responsi-
bility to a berth, it informs the GUI that it should update the user interface. This
results in an action; GUI displays a graphical representation of the jettyplan.

Figure 6.7: System Overview JettyPlanner1

System Overview Diagram for JettyPlanner2

Figure 6.8 presents the system overview diagram for JettyPlanner2. The system
includes the agent types; JettyPlanner, Berth, GUI and Ship. The Ship receives in-
formation from the environment of the system in terms of the Ship arrival and Ship

delay percepts. As a consequence, messages will be sent from Ship to JettyPlanner

to inform about the environmental changes. If a new Ship arrival occurs, the Jet-

tyPlanner will send a BerthRequest to the Berth-agents to find an appropriate berth
for the ship. The Berth will send a RequestShipInformation to the Ship-agent, that
will give information about the berth in a ShipReply. The Berth will compare ship
and berth data, and inform about its allocation opportunities in a BerthReply to the

43

Agent Technology CHAPTER 6. SYSTEM DEVELOPMENT

JettyPlanner. The JettyPlanner will then delegate the responsibility for the ship to a
chosen berth and inform the Ship about the allocation with a AssignAllocation mes-
sage. The Ship will then inform the GUI to update the user interface, which result
in an action; GUI display a graphical representation of the jettyplan.

If a Ship delay occurs, the message from the the Ship-agent will bring along the
JettyPlanner to ask the present responsible for the Ship to RemoveShip, followed by
sending a new BerthRequest to all the Berth-agents.

Figure 6.8: System Overview JettyPlanner2

6.3 Detailed Design

The Detailed Design Phase deals with the capabilities an agent needs to fulfill its
tasks. The Agent Overview diagrams take each agent into account, and show the
relationship to their capabilities. The Capability Overview Diagrams describe each
capability separately and include their plans, events and beliefs.

6.3.1 Agent Overview Diagrams

This type of diagram shows the top level view of the agent’s internals. The diagram
includes the capabilities of the agent, the messages related directly to the agent and
the data internal to the agent.

The diagram should also contain the artifacts from the System Overview Diagram.
Since we have used the Prometheus tool in the Architectural Design and JACK in the
Detailed Design, we only use artifacts from JACK. See figure 3.3 in section 3.1.3.

The Agent Overview Diagrams from the two versions do not have many differences.
Two different versions will be presented in the cases where they differ.

The Berth-agent, in JettyPlanner1 and JettyPlanner2, is given in figure 6.9. The
agent has the following capabilities:

InitiationOfLiftingArm Initiates the variables internal to every Berth-agent.

RequestHandling Handles a request about whether this berth can make an alloca-
tion of a specified ship.

44

CHAPTER 6. SYSTEM DEVELOPMENT Agent Technology

ReceiveShipResponsibility Handles a delegation of responsibility for a ship, and
do the necessary reallocations.

ShipRemover Remove the allocation of a specific Ship.

Figure 6.9: Agent Overview, Berth in JettyPlanner1 and JettyPlanner2

The JettyPlanner-agent, has the same Agent Overview Diagram in both versions. The
diagram is presented in figure 6.10. The agent has the following capabilities:

BerthRequesting Handles the case where an incoming ship requests for a berth
allocation. The capability uses a Semaphore to ensure that only one ship is
inquired at the time.

DelayHandler Handle the case where an already allocated ship has reported a
delay in arrival time.

Figure 6.10: Agent Overview, JettyPlanner in JettyPlanner1 and JettyPlanner2

The difference between the two GUI agents’ overview diagrams, is that the GUIChange

capability is left out in JettyPlanner2. In JettyPlanner2, the GUIManager has the re-
sponsibility related to GUIChange, in addition to its primary responsibility. The
responsibilities of all GUI capabilities will now be explained. JettyPlanner1’s GUI-
agent is given in figure 6.11.

45

Agent Technology CHAPTER 6. SYSTEM DEVELOPMENT

Initiation Reads data from the named data shown in figure 6.11 and instantiates
Ship-objects/agents and Berth-agents.

GuiManaging Responsible for communication to and from the Screen-view, which
is connected to the external user interface. Make sure that the agent system
are informed about new user-interactions and the user are informed about
relevant system decisions.

GuiChange A variant of the GuiManaging capability, but handle the situations where
a change in already registrated data are made. (e.g a delay in arrival time for
a ship)

Figure 6.11: Agent Overview, Gui in JettyPlanner1

JettyPlanner2 introduces an additional agent, namely the Ship-agent, see figure
6.12. This agent is supposed to substitute the Ship-object from JettyPlanner1. To
give the two versions of the system the same functionality, the Ship agent introduces
two capabilities;

ArrivalManaging Manages the occurrence of a new ship arrival, and decides what
to do next.

VariableManaging Manages the dynamic variables internal to the Ship-agent, re-
ceives information about updates and informs other agents about the present
value of the variables.

Figure 6.12: Agent Overview, Ship in JettyPlanner2

46

CHAPTER 6. SYSTEM DEVELOPMENT Agent Technology

6.3.2 Capabilities Related to the Berth Agent

This section presents the capabilities related to the Berth-agent in figure 6.9. Each
will be taken into account and their internal plans, events, and data will be de-
scribed. Explanations related to capability overview diagrams that are equal for the
two versions will only be given once.

Capability: InitiationOfLiftingArm

The Berth-agent posts a LiftingArmInitiation event to the InitiateMyLiftingArm-plan
at instantiation. The plan reads data from MyLiftingArmBs and relates them to the
agent’s variables.

Figure 6.13: Capability: InitiationOfLiftingArm Overview, Berth in JettyPlanner1
and JettyPlanner2

Capability: RequestHandling

BerthRequest events are handled by the AllocationCheck plan. The plan checks the
Berth-agent’s variables against the request. If the right conditions are met, it posts
an AllocationRequest event to itself, which is handled by three different plans. The
AllocateShipWantedArrivalTime plan, finds the cost and placement of the ship when
the ship gets the arrival time it has asked for. The AllocateShipNearWantedArrival-

Time plan finds the cost and placement of the ship in the case where the ship is
allocated behind the ship that occupies the wanted allocation time. AllocateShip-

FirstTimeIntervalAvailable plan, finds the first time interval available, accordingly
not occupied by any other ship and large enough for docking duration. After these
plans are finished, the AllocationCheck plan sends a BerthReply with the best alterna-
tive that the three alternative plans have produced. The RequestHandling capability
overview is given in figure 6.14.

Most events in JettyPlanner1 contain a Ship object with all information necessary
to answer a request. In JettyPlanner2, events do not contain sufficient informa-
tion and therefore the Berth-agents must communicate with the Ship-agent. Fig-
ure 6.15 illustrates that the three plans; AllocateShipWantedArrivalTime, Allocate-

ShipNearWantedArrivalTime and AllocateShipFirstTimeIntervalAvailable send a Vari-

ableRequest to ask for information about a ship, and receive this in a VariableReply
event.

47

Agent Technology CHAPTER 6. SYSTEM DEVELOPMENT

Figure 6.14: Capability: RequestHandling Overview, Berth in JettyPlanner1

Figure 6.15: Capability: RequestHandling Overview, Berth in JettyPlanner2

48

CHAPTER 6. SYSTEM DEVELOPMENT Agent Technology

Capability: ReceiveShipResponsibility

This capability, given in figure 6.16, is used when a DelegationOfResponsibility event
is sent to a Berth-agent. The ShipAllocation plan take care of allocating the dele-
gated ship at the suggested position. In JettyPlanner1, this plan is also responsible
for sending out a DisplayShip event to inform that the new allocation has taken
place. IncomingShip events are sent when already allocated ships are knocked out.
These events will lead to a new allocation for the knocked out ships.

Figure 6.16: Capability: ReceiveShipResponsibility Overview, Berth in JettyPlan-
ner1

JettyPlanner2’s version of the capability is found in figure 6.17. What distinguish
the two versions are the messages sent from the ShipAllocation plan. In JettyPlan-
ner2 a ResponsibleReply event is sent to inform that the allocation has taken place.
The KnockOutShip is sent to the Ship-agent.

Figure 6.17: Capability: ReceiveShipResponsibility Overview, Berth in JettyPlan-
ner2

Capability: ShipRemover

The ShipRemover capability is used in the situation when a ship delay has occurred
and a RemovementOrder is sent to the Berth responsible for the ship. The Remove-

49

Agent Technology CHAPTER 6. SYSTEM DEVELOPMENT

Ship plan in JettyPlanner1, figure 6.18, removes the allocation of the delayed ship.
The plan sends an IncomingShip event to make sure that the ship is reallocated
according to the new arrival time. The ManageRemovement plan in JettyPlanner2,
figure 6.19, handles the same situation as the RemoveShip plan, but is not responsi-
ble for sending an IncomingShip event.

Figure 6.18: Capability: RemoveShipResponsibility Overview, Berth in JettyPlan-
ner1

Figure 6.19: Capability: RemoveShipResponsibility Overview, Berth in JettyPlan-
ner2

6.3.3 Capabilities Related to the JettyPlanner Agent

This section describes the JettyPlanner-agent’s capabilities, with their internal plans,
events, and data.

Capability: BerthRequesting

This capability handles the case where an IncomingShip event is sent to the Jet-

tyPlanner. The RequestForBerthHandling plan receives the event, and sends out a
request to all the Berth-agents. When the plan has received a BerthReply for all
the BerthRequests, it posts the allocation alternatives to the ChooseBerthAlternative

plan. The semaphore is used to ensure mutual exclusion, ergo only one request
can happen at one time. The ChooseBerthAlternative plan picks out the allocation

50

CHAPTER 6. SYSTEM DEVELOPMENT Agent Technology

alternative which will lead to lowest cost for placing the ship. This part is equal for
the two versions.

In JettyPlanner1, see 6.20 figure, the DisplayShip will signal not to display the
ship in the case of no allocation alternatives. When an alternative exists, a Delega-

tionOfResponsibility event will inform the Berth that came up with the alternative.

Figure 6.20: Capability: BerthRequesting Overview, JettyPlanner in JettyPlanner1

A DelegationOfResponsibility event is sent to the right Berth when an alternative is
chosen, like in JettyPlanner1. Whether there exists an alternative or not, a Updat-

eDynamicVariables event is sent to the responsible Ship agent to inform about the
situation. The BerthRequesting capability in JettyPlanner2 is found in figure 6.21.

Capability: DelayHandler

The HandleArrivalChange plan receives a MovingShip event when a ship is delayed.
The plan informs, with a RemovementOrder, the current holder of the ship. This
capability is the same for the two versions, and is shown n figure 6.22.

6.3.4 Capabilities Related to the GUI Agents

This section presents the capabilities related to the GUI-agent, shown in figure 6.11.

Capability: Initiation

When the GUI-agent is instantiated, it posts a ShipBerthInitiation event to the Initi-

ationOfShipBerts plan. The plan uses the shipBs, berthBs, berthLiftingArm and liftin-

gArmProduct data to read information and relate it to variables needed to establish
Ship-objects and Berth-agents. In JettyPlanner2, Ship-agents are established at this
stage instead of objects. The results from the InitiationOfShipBerths plan, is posted

51

Agent Technology CHAPTER 6. SYSTEM DEVELOPMENT

Figure 6.21: Capability: BerthRequesting Overview, JettyPlanner in JettyPlanner2

Figure 6.22: Capability: DelayHandler Overview, Jettyplanner in JettyPlanner1 and
JettyPlanner2

52

CHAPTER 6. SYSTEM DEVELOPMENT Agent Technology

further in an InitialData event to the GuiManaging capability, described in the next
section.

Figure 6.23: Capability: Initiation Overview, Gui in JettyPlanner1 and JettyPlan-
ner2

Capability: GuiManaging

The GuiManaging capability’s main concern, is to communicate with the Screen-view
that connects the user interface to the rest of the agent system.

In JettyPlanner1, see figure 6.24, the RegistrateShipArrival plan receives a ShipAr-

rival event from the Screen, and forwards the information by sending an Incom-

ingShip event. InitialData and DisplayShip activate the InitializeGui plan and the
UpdateGui plan respectively. The activation causes different methods to use a ref-
erence to the Screen-view. These methods initiate updates in the user interface.

JettyPlanner2’s version of the GuiManaging capability can be seen in figure 6.25,
The difference from the other capability is that the Screen-view posts a SubmitShip

event on command from the external user interface classes. The information is
thereafter forwarded in a ShipArrival event.

Capability: GuiChange

The ForwardShipDelay plan related to this capability, see figure 6.26, receives the
same ShipArrival event as the RegistrateShipArrival plan in GuiManaging. Only one
of the plans is activated at the same time, and both plans have a check to see if it
should be activated by the event. The ForwardShipDelay plan, forward a Moving-

Ship event in the case where the ShipArrival corresponds to a ship that is delayed.
This capability occur only in JettyPlanner1. In JettyPlanner2, this functionality is
covered by the GuiManaging capability and the Ship agent.

53

Agent Technology CHAPTER 6. SYSTEM DEVELOPMENT

Figure 6.24: Capability: GuiManaging Overview, Gui in JettyPlanner1

Figure 6.25: Capability: GuiManaging Overview, Gui in JettyPlanner2

Figure 6.26: Capability: GuiChange Overview, Gui in JettyPlanner1

54

CHAPTER 6. SYSTEM DEVELOPMENT Agent Technology

6.3.5 Capabilities Related to the Ship-Agent

As mentioned earlier, the transformation of the ship-object representation to a Ship-
agent, is the main difference between the two JettyPlanner versions. The Ship agent,
from figure 6.12 only occur in JettyPlanner2, and so do the related capabilities.

Capability: ArrivalManaging

The HandleShipArrival plan handles ShipArrival events. It decides whether this
event indicates a new incoming ship. If there is a new incoming ship, an Incoming-

Ship event is sent. If the ship is delayed a RemoveShip event is sent. The Manage-

KnockOut plan manages the case where a ship receives a KnockOutShip message.
The plan handles this situation by sending a ShipArrival event to make sure that the
ship gets a new allocation. The ArrivalManaging capability is described in figure
6.27.

Figure 6.27: Capability: ArrivalManaging Overview, Ship in JettyPlanner2

Capability: DynamicVariablesManaging

The DynamicVariablesManaging capability, in figure 6.28, controls the Ship-agent’s
variables. Incoming VariableRequests are handled by the VariableCheck plan. The
plan looks up the requested variables and sends them in a VariableReply. The Up-

dateVariables plan is notified when the Ship has been delegated to a Berth. This
will result in an update of the ship-variables, and an outgoing DisplayShip event to
signal the user interface.

55

Agent Technology CHAPTER 6. SYSTEM DEVELOPMENT

Figure 6.28: Capability: DynamicVariablesManaging Overview, Ship in JettyPlan-
ner2

6.4 Implementation

Code-examples from JettyPlanner1 and JettyPlanner2 are presented in this section
to demonstrate how JACK entities are implemented. We will also illustrate the main
differences between the implementations of the two applications.

Source code for illustrating different JACK entities is given in section 6.4.1. Section
6.4.2 have intention to illustrate the extensions and replacements that JettyPlan-
ner2 needs to obtain the same functionality as JettyPlanner1.

6.4.1 JACK Entities

Different JACK entities will be presented in this section. These entity types were
introduced in section 3.2. Examples of implementations of these entity types are
illustrated with source code from our systems.

Agent

Listing 6.1 presents a code-segment from the Ship.agent entity in JettyPlanner2.
The agent has several get- and set-methods, but these can only be called by plans
internal to the Ship-agent. It is not possible to activate regular methods within an
agent entity from external classes or objects. The reason is that they can not receive
a reference to the agent, which is a requirement for making external method calls.
The get- and set-methods are not included in the following code-segment.

Listing 6.1: Code-Segment from Ship.agent i JettyPlanner2
public agent Ship extends Agent {

#has capability ArrivalManaging cap;

#has capability VariableManaging cap1;

public Ship(String name, int length , int width , double draft , int

capacity, int numberOfHoles){

super(name);

System.out.println("Oppretter ship agent");

this.agentName = name;

this.length = length;

this.width = width;

this.draft = draft;

56

CHAPTER 6. SYSTEM DEVELOPMENT Agent Technology

this.capacity = capacity;

this.numberOfHoles = numberOfHoles ;

visitedBerth = new Vector();

}

public String agentName;

public int length;

public int width;

public double draft;

public int capacity;

public int numberOfHoles ;

public String product;

public TimePoint arrivalTime ;

public TimePoint delegatedArrivalTime ;

public TimePoint departureTime ;

public Vector visitedBerth ;

We have observed that the most exceptional with an agent entity, compared to a
java class, is the entity declaration starting with; public agent.... Another issue is
that agent entities contain declarations of its capabilities.

Capability

The Ship-agent has the capability ArrivalManaging. The implementation of this
capability is shown in listing 6.2.

Listing 6.2: ArrivalManaging.cap in JettyPlanner2
public capability ArrivalManaging extends Capability {

#handles external event ShipArrival ;

#sends event IncomingShip ev;

#sends event DisplayShip ev2;

#handles external event KnockOutShip ;

#posts external event ShipArrival ev3;

#sends event RemoveShip ev1;

#uses plan HandleShipChanges ;

#uses plan ManageKnockOut ;

}

A capability contains references to all its plans and events.

Plan

The Ship-agent uses the plan ManageKnockOut. The implementation of this plan is
shown in listing 6.3

Listing 6.3: ManageKnockOut.plan in JettyPlanner2
public plan ManageKnockOut extends Plan {

#handles event KnockOutShip ev;

#posts event ShipArrival ev1;

#uses interface Ship self;

static boolean relevant(KnockOutShip ev)

{

return true;

}

context()

{

true;

}

57

Agent Technology CHAPTER 6. SYSTEM DEVELOPMENT

#reasoning method

body()

{

self.setDelegatedArrivalTime (null);

self.setDepartureTime (null);

self.visitedBerth .add(ev.berthName);

@post(ev1.newShipArrival (self.getAgentName (), self.product, self.

arrivalTime));

}

}

A plan entity is declared with public plan, and contains references to events that
it handles, posts and sends. In addition, a plan can contain a statement, #uses

interface, which gives access to the agent’s methods.

static boolean relevant() is used to determine if a plan is relevant to the actual
event. The context() is used to determine if the plan should be executed in the
current context. The body() is the plan’s main reasoning method. It describes what
an agent actually does when it executes an instance of this plan[Age06]. A plan can
also contain other reasoning methods that the main body() method can call when
needed[Age06].

Event

The Ship-agent sends the event IncomingShip to the JettyPlanner-agent. The imple-
mentation of the event is shown in listing 6.4

Listing 6.4: IncomingShip.event in JettyPlanner2

public event IncomingShip extends MessageEvent {

public String shipName;

public int length;

public int width;

public double draft;

public int capacity;

public int numberOfHoles ;

public String product;

public TimePoint arrivalTime ;

#posted as

shipRequest (String shipName, int length , int width , double draft , int

capacity, int numberOfHoles , String product, TimePoint arrivalTime)

{

this.shipName = shipName;

this.length = length;

this.width = width;

this.draft = draft;

this.capacity = capacity;

this.numberOfHoles = numberOfHoles ;

this.product = product;

this.arrivalTime = arrivalTime ;

}

}

All events require at least one posting method, starting with #posted as. The method
must be used whenever an instance of the event needs to be created. It describes
how the event can be constructed and posted or sent[Age06].

58

CHAPTER 6. SYSTEM DEVELOPMENT Agent Technology

Beliefset

The Berth-agent uses the beliefset MyLiftingArm to manage knowledge about its
lifting arms. The implementation is shown in listing 6.5.

Listing 6.5: MyLiftingArm.bel in JettyPlanner2
public beliefset MyLiftingArmBs extends OpenWorld {

#key field String liftingArmId ;

#value field int capacity;

#value field String product;

#indexed query getProduct (logical String liftingArmId , logical int

capacity, String product);

}

The #key field declaration is used to describe a beliefset’s key fields, and the #value

field declarations the value fields. An #indexed query is used to access the data
contained in the beliefset[Age06].

6.4.2 Extensions and Replacements of Code

Code examples from JettyPlanner1 and JettyPlanner2 are presented to illustrate
what kind of differences that appear in the implementation when an object is re-
placed by an agent.

Methods in JettyPlanner1 versus Plans in JettyPlanner2

An agent uses plans, instead of methods, to obtain required functionality. As a
consequence, some of the methods implemented in the ship class were moved to
JACK-plans when the Ship-object was replaced by the Ship-agent.

Listing 6.6, and the already given plan in listing 6.3, illustrate how the functionality
from the knockOut-method in the Ship-class is implemented as a plan in JettyPlan-
ner2.

Listing 6.6: Method: knockOut in JettyPlanner1
public void knockOut(String berthName){

delegatedArrivalTime =null;

departureTime = null;

visitedBerth .add(berthName);

}

The main difference observed between the method implementation and the plan
implementation, besides the structure, is the public declaration of the method. This
indicate that the method is visible to external entities, which is not the case for a
plan.

External Activations of a Ship-object versus a Ship-agent

An external activation of the Ship-object requires a reference to the object. The ex-
ternal references are used to exchange data with the Ship-object or use functionality
provided by the methods in the Ship-class.

External references of the Ship-agent is not possible to receive. The references are
therefore replaced with event exchanges in JettyPlanner2.

59

Agent Technology CHAPTER 6. SYSTEM DEVELOPMENT

Listing 6.7 and 6.8 illustrate this difference between the versions. The examples are
taken from a plan called ”AllocateShipFirstTimeIntervalAvailable”, which is imple-
mented differently in the two versions. In both occurrences, the Berth-agent uses
the plan. The Berth-agent has an ArrayList with references to the ships that it is re-
sponsible for. In JettyPlanner1, this list contains Ship-objects, and in JettyPlanner2
the list contains ship names represented as Strings.

The objects in the list in JettyPlanner1 are used to perform a method-call to get the
ship’s delegated arrival time. In JettyPlanner2, an event is sent to the Ship-agent by
using its name in the list. If the Ship-agent chooses to reply, the berth receives data
from the Ship-agent.

Entities in JettyPlanner2 can not activate the Ship-agent by using a reference. In-
stead they have to send an event to the agent, which activates a plan, and wait for
a reply.

Listing 6.7: Method-Call on a Ship-reference in JettyPlanner1

for(int i = 1; i < shipList.size(); i++){

ship = (Ship)shipList.get(i);

if(!departureTime .isAfter(ship.getArrivalTime ())){

Listing 6.8: Sending Event VariableRequest in JettyPlanner2

for(int i = 1; i < shipList.size(); i++){

shipName = (String)shipList.get(i);

@send(shipName, varReq);

try{

@wait_for(varReq.replied());

}

catch(NullPointerException e){

System.out.println("Failed waiting for reply for

ship variables at "+self.name());

}

VariableReply varRep = (VariableReply)varReq.getReply

();

60

Agent Technology

Part III

Evaluation and Conclusion

61

Agent Technology

62

CHAPTER 7. EVALUATION Agent Technology

Chapter 7

Evaluation

We have performed measurements of our two multi-agent systems by using the met-
rics described in section 5.4.2. These metrics have been used to test our hypothesis.
The results are given in section 7.1.

Jettyplanning as application area has many challenges to be handled during imple-
mentation. We have used agent-related development methods and tools to handle
these problems. A description of how we used agent technology to develop a solu-
tion for jettyplanning is given in section 7.2. Experiences related to Prometheus and
JACK are given in section 7.3.

The validity of our results are discussed in section 7.4. Some of the validity threats
have been addressed, while others have been accepted.

7.1 Measurements, Testing of Hypothesis and Results

We have performed measurements for each of the metrics presented in section 5.4.
The results of the measurements will be used to test our hypothesis. Each hypoth-
esis is presented with the related metric, followed by a discussion of the result. A
conclusion states whether the hypothesis has been rejected or not.

7.1.1 Hypothesis 1

Hypothesis 1 is concerned with lines of code and is given as follows:

H01 The functionality of the the two versions will be implemented with approxi-
mately the same number of code lines.

HA1.1 JettyPlanner2 will implement the same functionality as JettyPlanner1 with
fewer lines of code.

HA1.2 JettyPlanner2 will implement the same functionality as JettyPlanner1 with
several lines of code.

We have chosen metric M1(LOC), to test hypothesis 1. Semicolons were counted to
find the total number of written code-lines in each JettyPlanner version. The Find
in files function in Textpad were used to count semicolons.

We have counted semicolons in the JACK source code for the agent entities. We
have this because the amount indicates the actual number of lines that have been

63

Agent Technology CHAPTER 7. EVALUATION

written. When the source code is compiled into regular Java code, JACK generates
extra lines of code[Age06]. The result of the measurement is given in table 7.1. For
more information about code generation in JACK, see chapter 3.

M1: Lines of Code(LOC)

Package JettyPlanner1 JettyPlanner2

gui 593 530
ship 0 159
berth 387 466
jettyplanner 171 183
Other 4 5
Total Lines of Code 1155 1343

Table 7.1: Results for M1: Lines of Code(LOC)

We have depicted the result in a diagram to illustrate the measurements related to
each version. The diagram is given in figure 7.1.

Figure 7.1: Measurements of Metric M1(LOC)

Discussion

The diagram in figure 7.1 depicts that JettyPlanner2 has a larger amount of code
in certain packages than JettyPlanner1. JettyPlanner1 has a larger amount of code
in the gui-package than JettyPlanner2. The reason for this is that the ship-object
belongs to the gui-package in JettyPlanner1. When we transform the ship-object
into a ship-agent, a new package is created, the ship package. The amount of code
in the ship-package is therefore zero in JettyPlanner1. In JettyPlanner2 the ship
package contains the ship-agent, its plans, events and capabilities.

The berth and the jettyplanner package have a larger amount of code in Jetty-
Planner2. The reason for this is that ship-references and external method-calls in
JettyPlanner1 are replaced with events and plans in JettyPlanner2.

JettyPlanner1 has 1155 lines of code, while JettyPlanner2 has 1343 lines of code.
This is an increase of 16.28%.

64

CHAPTER 7. EVALUATION Agent Technology

Conclusion The result from the measurement of metric M1 in table 7.1 indicates
that JettyPlanner2 has several lines of code than JettyPlanner1. We therefore reject
hypothesis H01 and choose hypothesis HA1.2.

We have seen that turning our ship-object into a ship-agent will give us more code.
We believe that this tendency will occur in other cases where agents are used instead
of objects.

7.1.2 Hypothesis 2

Hypothesis 2 concerns the number of entities in each version and is given as follows:

H02 The number of entities will be the same for the two versions of the Jettyplan-
ner.

HA2.1 JettyPlanner2 will have more entities than JettyPlanner1.

HA2.2 JettyPlanner2 will have less entities than JettyPlanner1.

We have chosen metric M2(NOE), to test hypothesis 2. We counted the number
of entities related to packages in each JettyPlanner version. The results of the
measurement are given in table 7.2, and are illustrated in figure 7.2.

Figure 7.2: Measurements of Metric M2(NOE)

Discussion

We can clearly see in figure 7.2 that the use of a ship-agent in JettyPlanner2 lead
to more event and plan entities, than in JettyPlanner1. The distribution of other
entities are quite similar for both versions.

The reason for this increase in amount of events and plans, are that a ship-agent
needs these entities to implement the same functionality as a single ship-object.
An object only consist of one class with methods and variables, while an agent
distribute its functionality in plans and events. The difference is illustrated in code
examples in section 6.4.2

JettyPlanner1 consists of 59 entities, while JettyPlanner2 consists of 69. This is an
increase of approximately 17% in amount of entities.

65

Agent Technology CHAPTER 7. EVALUATION

M2: Number of entities(NOE)

Entity Package JettyPlanner1 JettyPlanner2

JACK events gui 5 4
ship 0 4
jettyplanner 4 5
berth 4 6

Total: 13 19
JACK plans gui 5 4

ship 0 4
jettyplanner 3 3
berth 7 7

Total: 15 18
JACK capabilities gui 3 2

ship 0 2
jettyplanner 2 2
berth 4 4

Total: 9 10
JACK agents gui 1 1

ship 0 1
jettyplanner 1 1
berth 1 1

Total: 3 4
JACK views gui 1 1
Total: 1 1
JACK beliefsets gui 4 4

berth 1 1
Total: 5 5
Java classes gui 8 7

jettyplanner 1 1
berth 3 3
no package 1 1

Total: 13 12
Total Number of Entities 59 69

Table 7.2: Results for M2: Number of Entities

Conclusion

The result for metric M2 in table 7.2 indicates that JettyPlanner2 has more enti-
ties than JettyPlanner1. Hypothesis H02 is therefore rejected, and are replaced by
hypothesis HA2.1.

We have seen that turning a ship-object into a ship-agent will lead to more entities
in terms of plans and events. We believe that this tendency will occur in other cases
where agents are used instead of objects.

7.1.3 Hypothesis 3

Hypothesis 3 concerns the amount of functions in each version and is given as
follows:

H03 Both versions will use the same number of functions to complete the use-cases

66

CHAPTER 7. EVALUATION Agent Technology

described in chapter 6.

HA3.1 JettyPlanner2 will complete the use-cases with a fewer functions than Jet-
tyPlanner1.

HA3.2 JettyPlanner2 will complete the use-cases with several functions than Jetty-
Planner1.

Metric M3(NOF) has been chosen to test hypothesis 3. We have counted the number
of get/set methods, other methods and plans used by the ship-object and the ship-
agent respectively. The results of the measurement are given in table 7.3, and are
illustrated in figure 7.3.

M3: Number of functions(NOF)

Functions JettyPlanner1 JettyPlanner2

get/set- methods 14 14
Other methods 3 1
Plans 0 4
Total Number of Functions 17 19

Table 7.3: Results for M3: Number of Functions(NOF)

Figure 7.3: Measurements of Metric M3(NOF)

Discussion

Figure 7.3 illustrates that the ship-object and the ship-agent have the same get()-
and set() methods. They also have one regular private method in common.

The noticeable difference between JettyPlanner1 and JettyPlanner2 is that two of
the ship-object’s methods in JettyPlanner1 have been implemented as plans in Jet-
tyPlanner2. These methods are public in JettyPlanner1, which means that other
entities can call the methods if they have an external reference to the ship-object.
In JettyPlanner2, external references are replaced by events. As a consequence, the

67

Agent Technology CHAPTER 7. EVALUATION

ship-agent need plans to handle these incoming events. The ship-agent also uses
plans in JettyPlanner2 to reply to requests.

The ship-object in JettyPlanner1 has 17 functions, while the ship-agent has 19. This
is an increase of 11.76%.

Conclusion

The results for metric M3, given in table 7.3, depict that JettyPlanner2 has two
more functions than JettyPlanner1. We reject hypothesis H03, and replace it with
hypothesis HA3.2.

Public methods used by external entities must be replaced by plans when turning
objects into agents. The increase in number of functions for JettyPlanner2 may
imply that this can be a tendency when turning objects into agents.

7.1.4 Hypothesis 4

Hypothesis 4 is concerned with the amount of couplings between entities in each
version and is given as follows.

H04 Both versions will have the same number of couplings between the compo-
nents in the system.

HA4.1 JettyPlanner2 will have fewer couplings between the components than Jet-
tyPlanner1.

HA4.2 JettyPlanner2 will have several couplings between the components than
JettyPlanner1.

Metric M4(NOCBE) has been chosen to test hypothesis 4. We counted the number
of couplings between the ship-object/ship-agent and other entities in each version.
In section 5.4 we defined couplings to be in- and out going method calls and events.

The results of the measurement of metric M4 are given in table 7.4 and are depicted
in figure 7.4.

M4: Number of Couplings between entities (NOCBE)

JettyPlanner1 JettyPlanner2
External package Entities Coupling to

ship-object

Coupling

from ship-

object

Coupling to

ship-agent

Coupling

from ship-

agent

gui Java classes 17 0 5 0
Plans 0 0 1 2

jettyplanner Plans 3 0 2 3
Java classes 1 0 0 0

berth Agent 2 0 0 0
Plans 37 0 12 1
Java classes 4 0 0 0

All packages 64 0 20 6

Table 7.4: Results for M4: Number of Couplings between Entities (NOCBE)

68

CHAPTER 7. EVALUATION Agent Technology

Figure 7.4: Measurements of Metric M4(NOCBE)

Discussion

The results depicted in figure 7.4 indicates that there are a larger amount of cou-
plings between the ship-object and other entities in JettyPlanner1, than between the
ship-agent and other entities in JettyPlanner2. In addition, the amount of incoming
couplings from java-classes is reduced in JettyPlanner2.

In JettyPlanner1 most of the couplings occur as external references to the ship-
object from other entities’ plans. It is not possible to have external references to an
agent. Therefore, these kind of couplings have to be replaced by events in Jetty-
Planner2.

Events are used by the ship-agent to communicate with other entities. The agent
sends these events from plans. As a consequence, all the couplings from the ship-
agent to other entities are implemented in plans in JettyPlanner2. The ship-agent
has 6 outgoing couplings. There are zero outgoing couplings in JettyPlanner1 be-
cause the ship-object has no external references to other entities.

The ship-object in JettyPlanner1 has a total of 64 in- and outgoing couplings. These
couplings are reduced to 26 in JettyPlanner2 when the ship-object is replaced by an
agent, which means an reduction of 59.38% in couplings between components.

Conclusion

Based on the results for metric M4 in table7.3, we reject hypothesis H04 and choose
hypothesis HA4.1.

We have seen from the results that incoming couplings are reduced when turning an
object into an agent. There is no longer need for external references to the object
from other entities. Events are instead used for communication, and out-going
couplings will therefore increase as a consequence.

The huge reduction of couplings in JettyPlanner2 may imply that this tendency will
occur in other cases where agents are used instead of objects.

69

Agent Technology CHAPTER 7. EVALUATION

7.1.5 Hypothesis 5

Hypothesis 5 is concerned with the number of external activations and is given as
follows:

H05 JettyPlanner1 and JettyPlanner2 have the same number of external operations
changing their internal state.

HA5.1 JettyPlanner2 has fewer external operations changing the internal state
than JettyPlanner1.

HA5.2 JettyPlanner2 has several external operations changing the internal state
than JettyPlanner1.

We have chosen metric M5(NOEA) to test hypothesis 5. We decided to count in-
coming couplings that activated the ship-object or the ship-agent to get the results
given in table 7.5. The couplings were defined as external method-calls and re-
ceived events in section 5.4.2.

Figure 7.5 illustrates the results in a diagram.

M5: Number of External Activations(NOEA)

External package Entities JettyPlanner1 JettyPlanner2
gui Java classes 17 5

Plans 0 1
jettyplanner Plans 3 2

Java classes 1 0
berth Agent 2 0

Plans 37 12
Java classes 4 0

All packages 64 20

Table 7.5: Results for M5: Number of External Activations

Figure 7.5: Measurements of Metric M5(NOEA)

70

CHAPTER 7. EVALUATION Agent Technology

Discussion

It can be seen in figure 7.5 that there is a larger amount of external activation in
JettyPlanner1 than in JettyPlanner2.

To handle the ship-object, plans and java-classes in JettyPlanner1 contain ship-
object references which are used to activate the object. The references need to
be used each time the ship-object is involved in a process within the system.

In JettyPlanner2, activation occurs when the ship-agent receives events. The agent
will then decide how to respond to the event, and the reply can be in accordance
with a request. An example of a reference to the ship-object, and an event to the
ship-agent, is given in section 6.4.2.

The ship-object in JettyPlanner1 has 64 external activations. These are reduced to
20 in JettyPlanner2 when the ship-object is replaced by an agent. This means that
there is an reduction of 68.75% in external activation between components.

Conclusion

Based on the results for metric M5 in table 7.5 we reject hypothesis HO5 and choose
hypothesis HA5.1.

We have seen that the number of external activation is reduced when we replace an
object with an agent. We believe the reason for this is that the agent is autonomous
and independent, and can be a participator in processes instead of being an object
to be handled.

We are convinced that the tendency with reduced number of external activation will
occur in other cases where agents are used instead of objects.

7.1.6 Hypothesis 6

Hypothesis 6 concentrates about the level of abstraction, and is given as follows.

H06 Use of agent-technology will not provide a higher abstraction level for model-
ing and implementation of applications.

HA6.1 Use of agent-technology will provide a higher abstraction level for modeling
and implementation of applications.

Since its not possible to quantify the abstraction level using metrics, we have de-
cided to do a qualitative assessment for hypothesis 6. We have examined the mod-
eling against the following definition for abstraction.

Abstraction means that we concentrate on the essential features and ignore details

that are not relevant. The transition from a problem to be solved to a model or a

implementation is dependent of decomposition. The result is a hierarchical structure

where the problem is described at different abstraction levels[Vli02].

In connection with implementation of applications, the term ”abstraction level” has
the same meaning as ”level of programming language”. Definition for high-level
programming languages is given below.

A high-level programming language is a programming language that, in comparison

to low-level programming languages, may be more abstract, easier to use, or more

portable across platforms. Such languages often abstract away CPU operations such as
memory access models and management of scope[Wik06].

71

Agent Technology CHAPTER 7. EVALUATION

Discussion

We have used JACK to design and implement our two JettyPlanner versions. The
foundation for JACK is the BDI Architecture[Age06], which is based on the attitudes
Belief, Desire and Intention.

In the BDI Architecture, the agents have their own beliefset which contains the
knowledge and assumptions about the environment and other agents. The desires
of the agent is represented with a set of plans. Each plan can be used to achieve
goals according to the current environment. The agent will use the beliefset to
select an appropriate plan, when a plan is selected it will represent the intention of
the agent[MLD04, Ølm05].

The understanding of the relationship between the attitudes and how they affect
the behavior of agents, provides a natural way of modeling intelligence. The BDI
model is based on human behavior and reasoning, and can therefore provide a con-
trol mechanism for intelligent action on a high abstraction level [MLD04, Ølm05].
Using terms like agent, capabilities, plans, events and beliefsets makes it possible
to describe the problem area from a human viewpoint, ergo high abstractive, and
therefore easy to understand.

JACK is a cross-platform development environment written in Java. The program-
ming language is far from CPU operations, which can be seen in the code struc-
ture. Source code must be contained in entities, and the entities are quite specific.
Therefore, it would be difficult to make a programming language with foundation
in JACK. We use this as an argument, for calling the model and programming lan-
guage high abstractive.

Conclusion

Based on our own experiences obtained during design and implementation of the
JettyPlanner versions, we decide to reject hypothesis HO6 and choose hypothesis
HA6.1.

We have experienced that modeling and implementation is on a high abstraction
level when we use agent technology to develop our systems. Abstraction of the
problem area is obtained using terms like agents, plans, capabilities and events.
These terms are related to human behavior and reasoning, and are therefore easy
to understand. The programming language is in addition portable across platforms
and far from CPU operations.

7.1.7 Summary, Testing of Hypothesis

The results of the hypothesis testing can point out tendencies that will occur when
agents are used instead of objects.

We have seen that the amount of code lines has increased with 16.28% in Jetty-
Planner2. Also the amount of entities increased with 17%. JettyPlanner2 has more
lines of code and entities because of the necessary extension of events and plans
related to the ship-agent.

Another interesting result of the tests is that the amount of couplings between the
ship and other entities was reduced with 59.38% in JettyPlanner2. Agents do not
provide any control point to external entities, and all communication is based on
sending and receiving events. The reduced amount of coupling lead to a higher
degree of modularity. Modularity is therefore obtained by increasing the number

72

CHAPTER 7. EVALUATION Agent Technology

of entities in the agent system, and as consequence, the number of code-lines. To
achieve the same modularity in JettyPlanner1, without replacing the ship-object
with an agent, more java-classes would have to be implemented. Interfaces for the
ship-object could for instance have been implemented to make specific functionality
accessible[EG95].

Couplings between entities are interrelated with external activation. Our tests of
the hypothesis show that external activation of the ship was reduced with 68.75%
when the ship-object was replaced with a ship agent. Events are used instead of
external references to exchange data with the ship in JettyPlanner2. The agent is
autonomous, which means that it can control and decide for itself whether it want
to exchange data with other entities. This autonomy lead to reduction in external
activation and therefore better encapsulation of functionality.

Modeling and implementation have been on a high level of abstraction when we
developed our two systems. The problem area was transformed and decomposed
using human terms like capability, events, plans and agents. Due to agent technol-
ogy, it was easy to describe the problem to be solved. The transition turning the
problem into models, and thereafter implementation, was not difficult. A positive
impact is that the high abstraction level influences the development effort. The
negative effects from the increase in lines of code, entities and functions, can be
reduced due to the high abstraction level.

7.2 Experiences with Agent Technology and JettyPlanning

Jettyplanning is our application area. We identified three concepts; Scheduling,
Planning and Decision making in section 4.3.1 to characterize jettyplanning. These
concepts revealed challenges that we had to handle during implementation of our
multi-agent systems. Our experiences with agent-based solutions related to our
application area are presented in this section.

The developed JettyPlanner systems solve the scheduling problem by taking incom-
ing ship under consideration one by one. Requests are thereafter sent to all berths.
Berths with the right capacity and demanded product computes three cost alterna-
tives for suggestion:

1. The cost is calculated for allocating the ship at wanted arrival time. If the
berth is occupied by another ship at this time, the alternative will result in the
other ship being knocked out.

2. If the berth is occupied at wanted arrival time, the cost is calculated for allo-
cating the ship after the occupying ship.

3. If the berth is occupied at wanted arrival time, the cost is calculated for allo-
cating the ship at first time arrival available.

Since ships can knock out each other in alternative 1 and 2, we had to set up a
condition to avoid infinite loops. We decided that a ship can not knock out the ship
that knocked it out in the first place.

The berth-agent decides which of the three alternatives has the lowest cost, and
sends it to the jettyplanner-agent as a suggested allocation alternative. The jettyplanner-
agent receives suggested allocation from all relevant berth-agents. The jettyplanner-
agent will delegate the responsibility for the incoming ship to the berth-agent with
the best alternative for allocation. The incoming ship will as a result be allocated

73

Agent Technology CHAPTER 7. EVALUATION

the berth that has suggested the lowest cost. The scheduling problem is solved by
achieving the best allocation-solution for a ship at the present moment.

Decision making is strongly connected to the scheduling problem. Several decisions
are made to find the best allocation alternative for a ship. The berth-agent is imple-
mented to make a decision about which of the three allocation alternatives it will
suggest for the jettyplanner-agent. The jettyplanner-agent is implemented to collect
answers from all the berth-agents, and decides which berth will be the receiver. In
our opinion, the agents in our multi-agent systems have proved to be valuable in
decision making. They are capable of making decisions on their own, which was
very useful during implementation of our systems.

We stated in section 4.3.1 that planning is difficult in changing environments. To
make a schedule representable for the situation and optimal at all time, it has to be
reconsidered each time a change occur. In our system, changes are reported to the
system through inputs in the graphical user interface. The input generates events
that inform the agents about the changes. The agents are then able to perform a
rescheduling every time a change occur. As a result, our two multi-agent systems
react dynamically to the environment. They handle changes and keep the schedule
up to date.

7.3 Experiences with JACK and Prometheus

We have learned about development tools and methods related to agent technology
during the work with our master thesis. We have studied the Prometheus design

tool, and achieved practical experiences when we used it to design our own system.

JACK Intelligent Agents Agent Practicals was used as a guideline to get confident with
the development environment. We got familiar with the most common possibilities
JACK provides as a tool.

We have experienced that Prometheus and JACK have an abstraction level which is
easy to understand and use to convert situations from the real world into models.
We did the detailed design of our systems in JACK, which generated skeletons for
entity files from diagrams. This saved us from a lot of work and the diagrams
evolved together with the implementation. A positive consequence was that the
models were up to date at all time.

The high abstraction level made some useful concepts in JACK easily accessible.
We used the Semaphore to obtain mutual exclusion for plans. Also, a type of event
called InferenceGoalEvent were used to obtain calculation of several answers for
one event. Another concept that eased our implementation, was the use of a
ParalellMonitor. The monitor makes it possible to do tasks in parallel by several
agents[Age06].

It was challenging to think agent-oriented during the modeling process. Our earlier
experiences are broadly speaking related to object-oriented programming. During
implementation we sometimes felt that we did not make the most out of the possi-
bilities JACK provides as a tool.

We experienced that JACK generates a huge amount of extra files with code, which
was difficult to comprehend the meaning of. In the beginning, we tried to use the
version control tool, Concurrent Versions System(CVS), to keep track of our work
and changes in the code. It was difficult to keep all the files up to date with all the
extra files generated by JACK. Some of the clean-up operations related to code did
not work properly in JACK. Not all the generated files where deleted in situations
where we renamed an entity. This introduced errors when the application were

74

CHAPTER 7. EVALUATION Agent Technology

compiled and executed. We had to manually delete the files.

7.4 Validity Concerns

We discussed validity threats in section 5.3.4. Some of these threats had to be
accepted, while others needed to be addressed to obtain valid results. We will now
discuss the validity of our results.

Conclusion Validity Low statistical power: We have only performed one compari-
son. Some of our conclusions can therefore be erroneous due to lack of data.
Reliability of measures: We have used metrics to test our hypothesis. Metrics
are quantitative, and our measurements are therefore objective.

Internal Validity Selection: Our selection of objects may not be representative for
all possible outcomes.

Construction Validity Experiment construction: We have defined measurements,
hypothesis and treatments to obtain a good experiment construction. We have
tried to construct an experiment with a clear relation between theory and
observation.
Mono-operation bias: We have performed a quasi-experiment which means
that our experiment may not give the full picture of the theory.

External Validity Interaction of selection and treatment: We may not be representa-
tive of the population we want to generalize to, namely the developers.
Interaction of setting and treatment: We have used development tools and
methods that are up to date to have an experimental setting that are repre-
sentative for the industrial in practice.

75

Agent Technology CHAPTER 7. EVALUATION

76

CHAPTER 8. CONCLUSION AND FURTHER WORK Agent Technology

Chapter 8

Conclusion and Further Work

In this chapter we will give a conclusion for our research and suggest issues for
further work. The conclusion is given in section 8.1, suggestions for the future are
presented in section 8.2.

8.1 Conclusion

It is claimed that agent technology has a large degree of utility value for enterprises
due to agent’s properties and behavior. Achieved benefits like reduced coupling,
better encapsulation of functionality and high abstraction level are all related to
multi-agent systems.

We have performed an experiment to investigate theory about agent-technology
and potential application areas. We have developed two applications for jettyplan-
ning at Mongstad. The difference between these applications is that incoming ships
are represented as software-objects in JettyPlanner1 and software-agents in Jetty-
Planner2.

The experiment was based on claimed benefits about agent-technology. We wanted
to investigate what we would achieve within functionality and effort if we replaced
software objects with software agents. Several hypothesis were written to cover
different aspects. To obtain reliable and valid results, quantitative metrics were
defined to be used in the evaluation.

We have tested six hypothesis. The results can be related to four claimed ben-
efits. One of the benefits is reduced development effort. According to the results
of the testing, the development effort in lines of code and number of entities has
increased with approximately 16-17%. The number of functions increased with
approximately 12%.

Reduced coupling and encapsulation of functionality are also claimed to be attendant
to agent technology. In our experiment, the amount of couplings was reduced with
approximately 60% when the ship-object was replaced with the ship-agent. The
amount of external activation of the ship entity had a reduction of approximately
70%.

It is asserted that agent technology has a high abstraction level. We have experienced
that modeling and implementation were on a high level of abstraction when we
developed our two systems. We used human terms to transform and decompose
the problem area. Due to agent technology, it was easy to describe the problem
to be solved, and transform it into models and implementation. JACK agents can

77

Agent Technology CHAPTER 8. CONCLUSION AND FURTHER WORK

be developed and deployed on any platform, and the programming language is far
from CPU operations.

According to our results will agent-based solutions have a slight increase in develop-
ment effort. Due to a considerable reduction of couplings and better encapsulation
of functionality, this increase can be viewed as convenient. The results related to re-
duced coupling and encapsulation of functionality are so good that the gain weights
up for the extra effort related to the increased number of code-lines, entities and
functions. In addition will the high abstraction level affect the development effort
and reduce the negative effects even more.

The number of code-lines for each of our two multi-agent systems are approximately
1100 and 1300. Since some of our results are very distinct, we believe that the
discovered tendencies also will be revealed in larger systems. The reduced coupling
and the encapsulation of functionality will influence the software architecture to
a high extent. It will probably be easy to implement and maintain agent-based
systems of larger scale.

Agent entities can be used as natural building blocks in larger systems. The in-
crease in development effort will probably be noticeable, but on the other hand,
this increase can be characterized as trivial due to the benefits related to higher
abstraction level.

We believe that the results are a consequence of the extra functionality offered by
agent-technology. The agent is autonomous, and participate more actively than an
ordinary object. It can control and decide for itself whether it want to communicate
and collaborate with other entities.

An autonomous agent lead to reduction in external activation and therefore better
encapsulation of functionality. The use of events and plans reduces the amount
of couplings between entities, and a higher degree of modularity is obtained as a
consequence. We believe that our results indicate that this can be a tendency in
other cases where software-objects are replaced with software-agents.

Planning, scheduling and decision making can be challenging to provide, and they
characterize our application area. Optimization and decision making are inter-
related with NP-complete problems[THC01], and traditionally development tools
have shortcomings dealing with these kind of problems. Agent technology can not
solve NP-complete problems, but can offer new and better alternative solutions.

We have experienced that agent technology provides functionality to handle our
application area in a new kind of way. The multi-agent system tries to make a
nearly optimized schedule for the jetty at Mongstad at any moment, by taking real-
time decisions based on the environment. Due to agent-technology, new dynamic
solutions can be found to handle complex application areas.

8.2 Further Work

Agents offer new solutions to already existing and well known problems. They can
coordinate work, arrange themselves to changes in the environment and handle
huge amounts of information.

The results from our experiment indicate that agent-technology actually can be re-
lated to benefits like reduced coupling, encapsulation of functionality and higher
abstraction level. Our two multi-agent systems are of a small scale. It would be
interesting to perform the same kind of experiment on larger multi-agent systems.
If the results turned out be approximately the same, agent technology will be ex-
tremely valuable for enterprises.

78

CHAPTER 8. CONCLUSION AND FURTHER WORK Agent Technology

We have seen that agent technology offers functionality that can deal with com-
plex problems where planning, scheduling and decision making is necessary. These
characteristics can be related to many other problem areas.

Multi-agent systems can for instance be used in public health services to provide
scheduling of appointments. Nurses and doctors could then use more of their time
to help patients. Doctors make decisions every day, a multi-agent system could
provide decision support by giving important information and suggest medical so-
lutions. More task automated systems would probably decrease the medical waiting
list, which in the longer term would decrease government spending.

We have seen that agent-technology can be valuable in the oil- and gas industry.
In addition to jettyplanning, there are several other application areas where agent-
technology can give valuable contributions. Agent-based solutions, can for instance
be used to monitor pipelines out in the north-sea. The agents could control the
pump performance and the substance of crude oil at each pipeline. Due to a high
abstraction level, avoidance of centralized software could be possible. Necessary
calculations could be performed at each pipeline, and thereafter gathered if neces-
sary. If a system is distributed, problems can be divided into subtask and be solved
in parallel. The performance of the system would increase as a consequence of the
distribution[Emm97].

We have performed one experiment to demonstrate applicability of agent technol-
ogy. We have seen that its possible to replace a passive object with an active agent,
and obtain a more dynamic system. For the future, several experiments should be
performed to validate our results. Another possibility to demonstrate the benefits
of agent technology is to compare a multi-agent system against a complete object-
oriented system.

79

Agent Technology CHAPTER 8. CONCLUSION AND FURTHER WORK

80

BIBLIOGRAPHY Agent Technology

Bibliography

[Age06] Agent Oriented Software Group. The Agent Oriented Software Group

(AOS), http://www.agent-software.com/, 2006.

[Bar01] Arran Bartish. A comparativ analysis of intelligent agents and state ma-
chines: Models for the game domain. Technical report, RMIT Computer
Science Department, Australia, 2001.

[Cir06] Cirrus Logistics. The SEABERTH Solution to effective berth sceduling,
http://www.seaberth.com/, 2006.

[CW00] Martion Host et. al. Claes Wohlin, Per Runeson. Experimentation in Soft-

ware Engineering, An Introduction. Kluwer Academic Publishers, 2000.

[EG95] Ralph Johnson et. al. Erich Gamma, Richard Helm. Design Patterns, Ele-

ments of Reusable Object-Oriented Software. Addison Wesley Ltd, 1995.

[Emm97] Wolfgang Emmerich. Distributed System Principles. De-
partment of Computer Science, University College Lon-
don, http://www.cs.ucl.ac.uk/staff/W.Emmerich/lectures/ds98-
99/dsee3.pdf, 1997.

[FG96] Stan Franklin and Art Graesser. Is it an agent, or just program?: A tax-
onomy for autonomous agents. Technical report, Institute for Intelligent
Systems, University of Memphis, 1996.

[HB04] Helga Neureiter Christian Herneth and Heimo Bürbaumer. A collection
of agent technology pilots and projects. Technical report, Capgemini,
Germany, 2004.

[HBH05] Ole Henrik Olsbu Heimo Bürbaumer, Arnt Vegard Espeland and Rune
Hovde. Shipment & allocation, agent solution workshop, mapping of
business areas to sw agent functionalities. Technical report, Capgemini,
Norway, 2005.

[Kea04] Elin M. Kristensen and Sigrun Lurås et. al. The complot: A performance
about about statoil world operations. Technical report, Rotvoll Operation
Center, Statoil, 2004.

[Kri05] Elin M. Kristensen. Agent technology, tdt 4735 software engineering,
depth study. Master’s thesis, NTNU, 2005.

[LO06] Einar Landre and Ole Henrik Olsbu. Facts about present practice, 2006.
e-mails from Ole Henrik Olsbu and Einar Landre.

[Luk] Andrew Lukas. Microsoft PowerPoint presentation made by Andrew
Lukas in AOS.

81

Agent Technology BIBLIOGRAPHY

[MD02] Scott A. O Malley and Scott A. DeLoach. Determining when to use an
agent-oriented software engineering paradigm. Technical report, De-
partment of Electrical and Computer Engineering, Air Force Institute of
Technology Wright-Patterson Air Force Base, Ohio and Department of
Computing and Information Technology Sciences, Kansas State Univer-
sity, 2002.

[MLD04] Ronald Ashri Michael Luck and Mark D’Inverno. Agent Based Software

Development. Artech House, Boston, London, 1 edition, 2004.

[Nnw96] Hyacinth S Nnwana. Software agents: An overview.
Technical report, Intelligent Systems Research, Advanced
Applications and Technology Department, Cambridge,
http://www.sce.carleton.ca/netmanage/docs/AgentsOverview/ao.html,
1996.

[OAS92] The OASIS Air Traffic Management System, 1992. Proceedings of the Sec-
ond Pacific Rim International Conference on Artifical Intelligence (PRI-
CAI92).

[PTW05] L. Padgham, J. Thangarajah, and M. Winikoff. Tool support for agent
development using the prometheus methodology. Technical report, RMIT
University, Melbourne Australia, 2005.

[PW04a] L. Padgham and M. Winikoff. Developing intelligent agent systems - a

practical guide, chapter 1. John Wiley and Sons, 2004.

[PW04b] L. Padgham and M. Winikoff. Developing intelligent agent systems - a
practical guide, chapter 3. John Wiley and Sons, 2004.

[PW04c] L. Padgham and M. Winikoff. Developing intelligent agent systems - a

practical guide, chapter 4. John Wiley and Sons, 2004.

[PW04d] L. Padgham and M. Winikoff. Developing intelligent agent systems - a

practical guide, chapter 5. John Wiley and Sons, 2004.

[PW04e] L. Padgham and M. Winikoff. Developing intelligent agent systems - a

practical guide, chapter 8. John Wiley and Sons, 2004.

[PW04f] L. Padgham and M. Winikoff. Developing intelligent agent systems - a

practical guide, chapter 9. John Wiley and Sons, 2004.

[PW04g] L. Padgham and M. Winikoff. Developing intelligent agent systems - a

practical guide, chapter 10. John Wiley and Sons, 2004.

[SL03] Wei Xu Shaohua Liu, Jun Wei. Towards dynamic process with variable
structure by reflection. Technical report, Technology Center of Software
Engineering, Institute of Software,The Chinese Academy of Sciences, Bei-
jing, 2003.

[Sta06] Statoil ASA. About Statoil, our business, http://www.statoil.com, 2006.

[Ste05] C.A. Rouff M.G. Hinchey J.L. Rash W.F. Truszkowski R. Sterritt. Towards
autonomic management of nasa missions. Technical report, NASA God-
dard Space Flight Center USA, 2005.

[THC01] Ronald L. Rivest et. al. Thomas H. Cormen, Charles E. Leiserson. In-

droduction to Algorithms, chapter 34. The MIT Press, Cambridge, Mas-
sachusetts, 2 edition, 2001.

82

BIBLIOGRAPHY Agent Technology

[Vli02] Hans Van Vliet. Software Engineering, Principles and Practice. John Wiley
and Sons Ltd, 2 edition, 2002.

[Wik06] Wikipedia.org. Wikipedia, the free encyclopedia,
http://www.wikipedia.org, 2006.

[Woo02] M Wooldridge. An introduction to MultiAgent Systems. John Wiley & Sons
Ltd, 1 edition, 2002.

[WW05] Minhong Wang and Huaiqing Wang. Intelligent agent supported busi-
ness process management. Technical report, Department of Information
Systems, City University of Hong Kong, Hong Kong, 2005.

[Ølm05] Jørn Ølmheim. Software agents, for dynamic java enterprise applica-
tions. Technical report, Statoil, 2005.

83

