
June 2006
Pinar Öztürk, IDI

Master of Science in Computer Science
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

A Shared Memory Structure for
Cooperative Problem Solving

Kari Røssland

Problem Description
CoPS is a multiagent framework for cooperative problem solving, and the purpose of this
framework is to ease the implementation of multiagent systems. The aim of this master thesis is
to model and implement the part of the CoPS framework facilitating the teamwork. Teamwork will
be performed through a shared communication medium, or a blackboard like structure, where the
agents add information and partial results that might be interesting for other agents. Rules might
be used to decide when, what and for whom certain pieces of information should be
communicated. Before this work can start, the existing prototype must be slightly modified due to
some weaknesses and errors. Tools that should be used are:
*Jess – a java based rule engine
*JADE – a java implemented software framework simplifying the implementation
of multiagent systems
*jCreek - a java implmeneted, flexible, frame-based
knowledge representation language

Assignment given: 20. January 2006
Supervisor: Pinar Öztürk, IDI

Abstract

CoPS is a FIPA compliant multiagent framework for cooperative distributed
problem solving. The purpose of this framework is to ease the implementation
of cooperative problem solving agents. Agents are autonomous software modules
acting in an environment. A multiagent system is an environment inhabited by
several agents. Agents in a multiagent system are designed to perform certain
tasks that will fulfill the overall goal of the system. When such a task is too
complicated for an agent to solve by itself, it has to be decomposed and divided
on a team of agents solving the overall task cooperatively.

Work with CoPS was initiated by Gundersen at NTNU in 2003 [34]. The
focus of his work was the decomposition of tasks and formation of a prob-
lem solving team. An architecture was designed and a prototype of the CoPS
framework was implemented. Autumn 2005, we (read Kari Røssland and Pinar
Öztürk) did a project where the main objective was to use the CoPS framework
for a medical domain application. During this work, some problems about the
CoPS framework were uncovered.

The main motivation behind this master thesis is to extend the pre-existing
CoPS framework with a shared memory structure that assists the team of agents
who are cooperating to solve a task. The task is decomposed into a three,
showing the hierarchy and precedence of subtasks; representing a plan for solving
the problem. The shared memory structure is supposed to execute this plan on
an abstract level, by coordinating a team of agents in executing the plan on the
concrete level.

In our approach to integrate a shared memory structure with the pre-existing
CoPS framework, we first corrected the problems that were discovered in our
2005-project. Second, we modeled the CoPS framework with a black box -
shared memory structure, to specify the requirements for the shared memory
structure and to uncover which modifications had to be done to the pre-existing
CoPS components. Third, an architecture for the shared memory structure,
named the TEAM SPACE, was modeled. Fourth, the modifications to the pre-
existing CoPS components and the TEAM SPACE were implemented in the
CoPS framework prototype. Finally, part of the medical domain application
model from the 2005-project was implemented using the CoPS framework pro-
totype.

The contribution of this thesis is a framework architecture for cooperative
distributed problem solving in multiagent systems using a shared memory struc-
ture. Our shared memory structure, the TEAM SPACE, coordinates the prob-
lem solving process that is based on a plan in form of a hierarchy of decomposed
tasks.

Contents

1 Introduction 1
1.1 Motivation and Objectives . 1
1.2 Approach . 4
1.3 Structure . 4
1.4 Summary . 5

2 Multiagent Systems and Shared Memory Structures 6
2.1 Intelligent Agents . 6
2.2 Multiagent Systems . 7

2.2.1 Motivations for Multiagent Systems 7
2.2.2 Issues in Multiagent Systems 8
2.2.3 Cooperative Distributed Problem Solving 12

2.3 Shared Memory Structures . 14
2.3.1 Blackboard Systems . 15
2.3.2 The Publish/Subscribe Model 16

2.4 Summary . 17

3 An Architecture for Cooperative Problem Solving: CoPS 19
3.1 The overall CoPS System . 20
3.2 A three-layered CoPS Architecture 22

3.2.1 Problem Solving Knowledge 22
3.2.2 Agents . 25
3.2.3 Problem Solving Process 26

3.3 An Example . 29
3.4 Current work with CoPS . 33
3.5 Corrections and Extensions to CoPS 33

3.5.1 Corrections . 33
3.5.2 Extensions . 34

3.6 Summary . 36

4 The TEAM SPACE Architecture 37
4.1 The Core TEAM SPACE Architecture 37

4.1.1 TEAM SPACE Interactions and Interfaces 38
4.1.2 TEAM SPACE Agent . 41
4.1.3 TEAM SPACE Structure Components 44
4.1.4 TEAM SPACE (TS) Structure Functions 47

4.2 An Example . 55
4.3 TEAM SPACE Architecture Additions 60

v

4.3.1 Parallel TEAM SPACEs 60
4.3.2 Failure Handling . 64
4.3.3 Dynamics and Re-Planning 65

4.4 Other Extensions to the CoPS Architecture 66
4.5 How the TEAM SPACE Architecture Meets the Functional Re-

quirements . 72
4.6 Summary . 75

5 Comparison of CoPS to Relevant Work 76
5.1 Criteria for the Comparison . 76
5.2 Relevant work - Systems Using Shared Repositories 77

5.2.1 Application of a Blackboard Framework to a Cooperative
Fixture Design System . 78

5.2.2 A Blackboard-Based Multiagent System for Supporting
Concurrent Engineering Projects 82

5.2.3 A Blackboard Used for Collaborative Development of In-
teractive Robot . 85

5.2.4 MAPSEC: Mobile-Agent Based Publish/Subscribe Plat-
form for Electronic Commerce 88

5.3 The Comparison to CoPS . 91
5.3.1 Representation . 92
5.3.2 Awareness . 94
5.3.3 Investigation . 95
5.3.4 Interaction . 96
5.3.5 Integration . 97
5.3.6 Coordination . 99

5.4 Summary . 99

6 Implementation Details 101
6.1 Implementation Overview . 101
6.2 Implementation Tools and The Pre-Existing CoPS Prototype . . 103

6.2.1 JADE and CoPS Agents 103
6.2.2 jCreek and TMST . 106
6.2.3 Jess . 107

6.3 Corrections . 109
6.4 CoPS Problem Solving Process Extensions 110

6.4.1 The Modified CoPSTaskResponsible 111
6.4.2 The Modified CoPSProblemSolver 115
6.4.3 The Modified TMST . 117

6.5 The TEAM SPACE . 119
6.5.1 The TEAM SPACE agent 119
6.5.2 The TEAM SPACE structure 124

6.6 Summary . 128

7 Experimentation and Results 129
7.1 How to Implement an Application Using the CoPS Framework . 129
7.2 The Checkup Example Application 130

7.2.1 Implementation of the Checkup Ontology 130
7.2.2 Implementation of the Checkup TMST 134
7.2.3 Implementation of the Checkup Agents 136

vi

7.3 Test-Run of the Checkup Example Application 139
7.3.1 Solving a single problem 139
7.3.2 Solving of two problems in parallel 148

7.4 Test-Run Results . 152
7.4.1 Corrections . 153
7.4.2 Extensions Pre-Existing CoPS components 154
7.4.3 The Main Extension to CoPS: TEAM SPACE 154

7.5 Summary . 155

8 Conclusions and Future Work 156
8.1 Discussion and Conclusions . 156

8.1.1 The Current CoPS Framework 156
8.1.2 Accomplished Objectives 157
8.1.3 Arguments for Our TEAM SPACE Approach 158
8.1.4 A Critical View of CoPS 159

8.2 Future Work . 160
8.3 Summary . 161

A Content of the Enclosed Zip-File 162
A.1 The javadoc folder . 162
A.2 The source code folder . 162
A.3 The checkup example folder . 162

B How to Run the Checkup Example Application 164
B.1 Running the Checkup Example Application in UNIX 164
B.2 Running the Checkup Example Application in Windows 166

vii

viii

List of Figures

1.1 Using CoPS in a system for performing checkups at a health center. 2
1.2 A decomposition of the Take bloodtest task, into subtasks. The

arrows between the subtasks indicate I/O dependencies. 2

2.1 An agent in its environment taking as input its perceptions and
producing as output its actions, modified from [26]. 7

2.2 The school-example ontology - a hierarchy of classes where all
artifacts of the world is a subclass of Entity. 9

2.3 A taxonomy of some of the different ways in which agents can
coordinate their behaviour and activities, modified from [36]. . . 11

2.4 The architecture of a basic blackboard system, showing the black-
board, knowledge sources or agents, and control components,
taken from [36]. 16

2.5 A simple object-based publish/subscribe system, consisting of
publishers, subscribers and a central event service, taken from
[11]. 17

3.1 The overall CoPS system view. The CoPS system has four types
of agents: Task Responsible (TR), Decomposer (DEC), Prob-
lem Solver (PS), and Personal Assistant (PA). Tasks handled
by CoPS are decomposed into a TMST (Task Method Sub-Task
tree). Problem solving and integration of partial results are sup-
ported by a shared memory - the TEAM SPACE. 20

3.2 A three - layered CoPS Architecture. The layers are: PROB-
LEM SOLVING PROCESS, AGENTS and PROBLEM SOLV-
ING KNOWLEDGE. The agents abbreviations are: Task Re-
sponsible (TR), Decomposer (DEC), Personal Assistant (PA),
and Problem Solver (PS). The shaded shapes reflect the focus of
the current work with CoPS. 22

3.3 The nodes part of the TMST (Problem Solving Method - PSM,
task and action) and their attributes. Short explanations to the
attributes are provided. Modified from [34]. 23

3.4 The TMST - the complete solution space for a task, and the
(chosen) solution of the TMST (marked with grey nodes) - a
specific solution for a task. Modified from [34]. 24

3.5 The FIPA Request Interaction Protocol, describing a conversa-
tion starting with a request - message being sent from an Initiator
to a Participant. Taken from [13]. 27

ix

3.6 The FIPA Contract Net Interaction Protocol, describing a con-
versation starting with a call-for-proposal (cfp) message being
sent from an Initiator to a Participant. Taken from [13]. 28

3.7 The TMST returned by the Decomposer (DEC) when the task,
(Task :name takeLaboratoryTest :input (Patient :name Paul)), is
received. 30

3.8 The TMST showing the solution, marked with shaded nodes.
The lowest cost suggested for actions or PSMs propagates up-
wards in the tree-structure. Actions are connected to executors
(Problem Solvers, PSs)- that has offered to execute them for the
price attached to the corresponding action. 32

3.9 Parts of the overall CoPS system view depicted in figure 3.1, in-
teracting with the TEAM SPACE. Agents interaction with the
TEAM SPACE are Task Responsible (TR) and a group of Prob-
lem Solvers (PSs). 35

4.1 The Team Space Interface shows how Task Responsible (TR) and
Problem Solvers (PSs) interact with the TEAM SPACE (TS)
Agent, and how the TEAM SPACE (TS) Agent interacts with
the TEAM SPACE (TS) Structure. 38

4.2 A protocol for collaborative work in CoPS. The protocol defines
the messages exchanged between the TS Agent, PSs (Problem
Solvers) and TR (Task Responsible) during problem solving in
the TEAM SPACE. 41

4.3 The general agent architecture used by all of the CoPS agents,
and also by the TEAM SPACE (TS) Agent. The components of
the architecture are represented by boxes, and the interactions
between them with arrows. 42

4.4 The TEAM SPACE (TS) Agent process state diagram. Internal
process states are illustrated by boxes, while the possible transi-
tions between them are illustrated by arrows. This process state
diagram reflects the behaviours of the TS Agent. Here we sup-
pose that the TS Agent only handles one TS Structure at a time. 43

4.5 The architecture of the TEAM SPACE (TS) Structure. Rule
Base Container keeps and manipulates a set of rules. Result Li-
brary and Goal Stack keeps and manipulates facts. Plan Library
provides information stored in the TMST. TEAM SPACE (TS)
Problem Solving State, represents a view of the facts stored in
the Result Library and the Goal Stack. 45

4.6 The TMST showing the solution, marked with shaded nodes.
The lowest cost suggested for actions or PSMs propagates up-
wards in the tree-structure. Actions are connected to executors
(Problem Solvers, PSs)- that has offered to execute them for the
price attached to the corresponding action. 56

4.7 Parallel problem solving in the TEAM SPACE with a single
TEAM SPACE (TS) Agent. The TS Agent has references to a set
of TEAM SPACE (TS) Structures, and it interacts with several
problem solving teams at once. The problem solving teams are
comprised of Problem Solvers (PSs) and a Task Responsible (TR). 61

x

4.8 Parallel problem solving in the TEAM SPACE with multiple
TEAM SPACE (TS) Agents. Each TS Agent only has refer-
ence to one TEAM SPACE (TS) Structure, and it interacts with
one problem solving team at a time. The problem solving team
is comprised of Problem Solvers (PSs) and a Task Responsible
(TR). 62

4.9 The TEAM SPACE (TS) Agent process state diagram. Internal
process states are illustrated by boxes, while the possible transi-
tions between them are illustrated by arrows. This process state
diagram reflects the behaviours of the TS Agent. Here we sup-
pose that the TS Agent may handle several TS Structures at a
time. 63

4.10 The former version of the Problem Solver (PS) process
state diagram. Internal process states are illustrated by boxes,
while the possible transitions between them are illustrated by
arrows. This process state diagram reflects the behaviours of PS.
Taken from [34]. 67

4.11 The new version of Problem solver (PS) process state dia-
gram. Internal process states are illustrated by boxes, while the
possible transitions between them are illustrated by arrows. This
process state diagram reflects the behaviours of TR. 68

4.12 The former version of Task Responsible (TR) process state
diagram. Internal process states are illustrated by boxes, while
the possible transitions between them are illustrated by arrows.
This process state diagram reflects the behaviours of TR. Taken
from [34]. 70

4.13 The new version of Task Responsible (TR) process state
diagram. Internal process states are illustrated by boxes, while
the possible transitions between them are illustrated by arrows.
This process state diagram reflects the behaviours of TR. 71

5.1 The architecture of the cooperative fixture design system, modi-
fied from [28]. 78

5.2 Hierarchical structure of the blackboard, from [28]. 79
5.3 Implementation of the system architecture in the GBB environ-

ment, from [28]. 81
5.4 The blackboard-based I2QFD, from [19]. 83
5.5 Agency system of I2QFD, from [19]. 83
5.6 Basic composition and basic design process, from [24]. 86
5.7 Combined blackboard structure with publish/subscribe model,

taken from [24]. 87
5.8 Transactions between the servers, from [24]. 88
5.9 The architecture of MAPSEC, taken from [31]. 89
5.10 The MAPSEC buyer subsystem architecture, taken from [31]. . . 89
5.11 The MAPSEC supplier subsystem architecture, taken from [31]. . 90
5.12 The inner structure of the MAPSEC Broker, taken from [31]. . . 90

xi

6.1 The three layered CoPS architecture, showing which parts are
involved in our implementation. The agent abbreviations are: PA
- Personal Assistant, TR - Task Responsible, DEC - Decomposer,
PS - Problem Solver. 102

6.2 The class hierarchy of the CoPS agent implementation [34]. The
shaded classes represent which agents that are actually imple-
mented in the CoPS framework prototype. 104

6.3 The FileWriter class. Used by most of the main classes in the
CoPS framework prototype, to logs different happenings. 111

6.4 A modified UML diagram of the CoPSTaskResponsible agent
and its behaviours. The former version is found in [34]. Red
text means new variables/methods in modified classes, blue text
means modified variables/methods in modified classes, black text
means not modified variables/methods in old classes or vari-
ables/methods in new classes. 112

6.5 A modified UML diagram of the CoPSProblemSolver agent and
its behaviours. The former version is found in [34]. Red text
means new variables/methods in modified classes, blue text means
modified variables/methods in modified classes, black text means
not modified variables/methods in old classes or variables/methods
in new classes. 116

6.6 A modified UML diagram of the TMST main class. The former
version is found in [34]. Red text means new variables/methods in
modified classes, blue text means modified variables/methods in
modified classes, black text means not modified variables/methods
in old classes or variables/methods in new classes. 118

6.7 Our package structure for the TEAM SPACE implementation.
agent contains TS Agent classes, and structure contains TS Struc-
ture classes. 119

6.8 An UML class diagram showing the classes that implements the
TS Agent. These classes are contained in the package: teamSpace.agent120

6.9 An UML class diagram showing the classes that implements the
TS Structure. These classes are contained in the package: teamSpace.structure125

6.10 Classes representing some of the TMST-units. These are used
by the other classes implementing the TS Structure and the TS
Agent. These classes are contained in the package: teamSpace.structure128

7.1 The implemented part of the Checkup TMST. The initial task
Do checkup is decomposed into a hierarchy of PSMs, actions,
and tasks. The Checkup TMST has a total of 20 different actions. 131

7.2 The class diagram of the checkup ontology. The ontology de-
scribes concepts used by agents when solving a checkup problem. 132

7.3 Class diagram for the agents implemented to solve the Do checkup
task. 136

7.4 A proposal message encoded in FIPA-SL, using the Checkup On-
tology. 138

7.5 Action (action - type) - agent tuples that are a returned by the
Matchmaker (DF). 141

xii

7.6 Result from the TR’s handling of proposals. Executors (TMST
node) are named after PSs, and related to a TMST Action and
a Cost. 142

7.7 Result from the solution generation. The figure lists the different
nodes part of the solution and their final costs. The cost of the
initial Task is approximately 31.6. 142

7.8 A list of the agents receiving accept-proposal and refuse-proposal
messages, after the solution of the TMST is generated. 143

7.9 Agent interactions in the problem solving process steps: solving
of subtasks and integration of partial results. 144

7.10 The first problem solving state, generated after executing the
rules of RuleBase for the first time. 145

7.11 The second problem solving state, generated after executing the
rules of RuleBase for the second time. 146

7.12 A list of the agents receiving accept-proposal messages from TR1,
after the solution of the TMST is generated. 150

7.13 A list of the agents receiving accept-proposal messages from TR2,
after the solution of the TMST is generated. 150

7.14 A segment from TR1.txt showing that TR1 requests TSAgent to
initialize a TS structure, and specialize it for a task with a certain
input and teamID. 150

7.15 A segment from TR2.txt showing that TR2 requests TSAgent to
initialize a TS structure, and specialize it for a task with a certain
input and teamID. 151

7.16 A list of the agents receiving accept-proposal messages from TR1,
after the solution of the TMST is generated. 152

7.17 A list of the agents receiving accept-proposal messages from TR2,
after the solution of the TMST is generated. 152

7.18 A segment from TR1.txt showing that TR1 requests TSAgent1
to initialize a TS structure, and specialize it for a task with a
certain input and teamID. 152

7.19 A segment from TR2.txt showing that TR2 requests TSAgent2
to initialize a TS structure, and specialize it for a task with a
certain input and teamID. 153

B.1 The starting window of the Jade GUI. 165
B.2 This illustrations shows how to fill out the parameters, when

starting a new agent in the Jade GUI. 165

xiii

xiv

List of Tables

3.1 The attributes related to the TMST-nodes in the TMST returned
by the DEC when the task (Task :name takeLaboratoryTest :input
(Patient :name Paul)), is received. 31

4.1 How the interactions in the figure 3.1 relate to the interactions
in figure 4.1 . 39

4.2 Information needed from each of the nodes (action, PSM, task)
in the TMST to make the rules in the Rule Base Container. . . . 50

xv

xvi

Chapter 1

Introduction

CoPS is a FIPA compliant multiagent framework for cooperative distributed
problem solving, and the purpose of this framework is to ease the implemen-
tation of cooperative problem solving agents. Agents are autonomous software
modules acting in an environment. A multiagent system is an environment
inhabited by several agents. Agents in a multiagent system are designed to per-
form certain tasks that will fulfill the overall goal of the system. When such a
task is too complicated for an agent to solve by itself, it has to be decomposed
and divided on a team of agents solving the overall task cooperatively.

This chapter gives an introduction to the master thesis, which main objective
is to develop a shared memory structure for the CoPS framework. In section 1.1
the motivations and objectives for our work is stated. Section 1.2 outlines our
approach to reach the objectives. And finally, the structure of this document is
described in section 1.3.

1.1 Motivation and Objectives

Work with CoPS was initiated by Gundersen at NTNU in 2003 [34]. The focus
of his work was the decomposition of tasks and formation of a problem solving
team. An architecture was designed and a prototype of the CoPS framework
was implemented. Autumn 2005, we (read Kari Røssland and Pinar Öztürk)
did a project where the main objective was to use the CoPS framework for a
medical domain application. The Medical Checkup System that was modeled is
illustrated in figure 1.1. Next, we use this figure to give a simplified example
description of how CoPS works.

The Medical Checkup System is used by all of the persons working at the
health center. Each person has its own specialized user interface, represented
by a Personal Assistant agent. Personal Assitant agents also connect the users
to problem solver agents in the system. The problem solver agents are experts
on the users’ fields of competence and assist their users in performing their
daily activities. Some of the problem solver agents are connected to external re-
sources like databases or software systems. The problem solver agents exchange
information between them and engage in cooperative problem solving.

Imagine that a patient shows up at the reception of the health center, re-
questing a bloodtest. Then, the Receptionist checks with the system if there are

1

Patient
Database

Agent

Prescription
Agent

Diagnosis
Agent

Receptionist
Agent

Nurse Agent

Decomposer
Agent

Task
Responsible

Agent

Physician
Agent

Disease
Database

Medicine
System

Patients
Database

Laboratory
Agent

Photographic
Monitoring

Agent

Patient

Photographic
Monitoring

Person

Laboratory
Person

Nurse Physician

Receptionist

The Medical Checkup System

Software system

Database

Person

Personal Assistant
agents

Agents

Labsystem
Agent

Laboratory
System

Figure 1.1: Using CoPS in a system for performing checkups at a health center.

Take
Bloodtest

Get patient
info

Get
blood

Analyze
blood

Update
patient info

Figure 1.2: A decomposition of the Take bloodtest task, into subtasks. The
arrows between the subtasks indicate I/O dependencies.

2

enough available resources. The Receptionist Agent asks the Task Responsible
Agent if it is able to gather a team of problem solver agents to solve the task
Take bloodtest. Task Responsible Agent asks the Decomposer Agent to decom-
pose the task. The decomposition is illustrated in figure 1.2. When the Task
Responsible Agent gets the decomposition from the Decomposer Agent, it forms
a team of agents (some of them related to medical personnel) that are capable
of solving the Take bloodtest - task together.

The team consists of Patient Database Agent performing Get patient info
and Update patient info, Laboratory Agent performing Get blood and Labsystem
Agent performing Analyze Blood. Problem solver agents decide for themselves
if they will or can join the team dependent on their users’ available capacity.
When the team is formed, Task Responsible Agent informs the Receptionist
Agent that there are available capacity to take the patient’s bloodtest.

As one can see in figure 1.2, there are I/O dependencies between the different
subtasks. Thus, there are dependencies between agents. This means, for exam-
ple, that Laboratory Agent performing the task Get blood, cannot start solving
the task before it knows the solution of Get patient info, produced by Patient
Database Agent. The problem solver agents do not know about each other and
for that reason they need to be coordinated.

In this master thesis we propose a shared memory structure for coordinating
a team of agents engaged in solving a shared task. The shared memory structure
uses the information from the task decomposition to make a set of rules that
decide when the different tasks are ready to be performed. The structure also
keeps a knowledge base where partial results are stored. When Patient Database
Agent has performed Get patient info it stores the task’s output (result) in the
shared memory structure knowledge base. The rules then use the information
in the knowledge base to infer that Get blood is ready to be performed. The
input (result) needed to perform Get blood is sent to Laboratory Agent which
then performs its task.

The main objectives of this master thesis are:

• Correct problems in the pre-existing CoPS framework.

• Modify the pre-existing CoPS framework, in such a way that a shared
memory structure could be integrated.

• Model an architecture for a shared memory structure and integrate it with
the pre-existing CoPS framework.

And the outputs from reaching those objectives are:

• CoPS framework architecture with a shared memory structure.

• CoPS framework prototype (API), supporting shared memory structures.

• An example application (part of the Medical Checkup System), imple-
mented using the CoPS framework API.

3

1.2 Approach

In our approach to integrate a shared memory structure with the pre-existing
CoPS framework, we first corrected the problems that were discovered in our
2005-project. Second, we modeled the CoPS framework with a black box -
shared memory structure, to specify the requirements for the shared memory
structure and to uncover which modifications had to be done to the pre-existing
CoPS components. Third, an architecture for the shared memory structure,
named the TEAM SPACE, was modeled. Fourth, the modifications to the pre-
existing CoPS components and the TEAM SPACE was implemented in the
CoPS framework prototype. Finally, part of the medical domain application
model from the 2005-project was implemented using the CoPS framework pro-
totype.

Different Java tools were used for the implementation. These tools also put
some implications from modeling of the architecture. The tools are:

• Jess - a java based rule engine

• JADE - a java implemented software framework simplifying the imple-
mentation of multiagent systems

• jCreek - a java implmeneted, flexible, frame-based knowledge representa-
tion language

1.3 Structure

The approach for attaining the objectives is reflected in how this report is struc-
tured. The process has been iterative though. The further structure of the
report is as follows:

• Chapter 2 introduces important concepts of intelligent agents, multiagent
systems and shared memory structures.

• Chapter 3 gives an overall view of the CoPS architecture integrated with
a black-box shared memory structure, called the TEAM SPACE. The pre-
existing work with CoPS is described, and corrections and extensions to
this work are proposed. Finally, functional requirements for the TEAM
SPACE architecture are listed.

• Chapter 4 presents our proposition for the TEAM SPACE architecture.
The TEAM SPACE is our main extension to CoPS.

• Chapter 5 gives a comparison of CoPS, with the integrated TEAM SPACE,
to other relevant work. Relevant work are other systems using shared
memory structures.

• Chapter 6 describes the implementation details. It includes a presentation
of the different implementation tools and a description of how corrections
and extensions are implemented in the CoPS framework prototype.

• Chapter 7 explains how the CoPS framework prototype was used to im-
plement part of the Medical Checkup System. Results from the test-run
of the application are also provided.

4

• Finally, chapter 8 concludes the results from our work, and outline future
work.

1.4 Summary

In this chapter we have given an introduction to the work part of this master
thesis. The introduction included a description of our motivation and objectives,
our approach to achieve these objectives, and an overview of how this document
is outlined.

5

Chapter 2

Multiagent Systems and
Shared Memory Structures

A multiagent system (MAS) is inhabited by intelligent agents solving problems
alone or by cooperating with other agents in their environment. A shared mem-
ory structure could be part of a multiagent system, and be used by the intelligent
agents to cooperate and share information.

This chapter provide an introduction to important issues considering intel-
ligent agents, multiagent systems and shared memory structures. Intelligent
agents are shortly covered in section 2.1, multiagent systems and cooperative
distributed problem solving (CDPS) are described in section 2.2, and finally
some research areas focusing on shared memory structures are touched upon in
section 2.3.

Content of this chapter serves as the theoretical background for the work
with this master thesis, and will hopefully make it easier to read and understand
the remaining chapters of this document.

2.1 Intelligent Agents

There are many definitions of agents. Both simple systems like thermostats
and more complex systems like space probes can be seen as agents. Intelligent
agents have more specific definitions and restrictions though. The definition to
be used here is found in [36]:

”An intelligent agent is one that is capable of flexible autonomous
actions in some environment in order to meet its design objec-
tives. Flexibility means three things: Reactivity, pro-activeness
and social ability.”

As pictured in figure 2.1, an agent takes as input its perceptions; information
about the current environmental state, and produces as output; actions that
affect its surroundings, and causes new environmental states. Agents use per-
ceptions in different ways to decide which action to perform next through a
decision making process.

According to [23], an agent capable of autonomous behavior, make judgments
and perform actions independently and without control by others or by outside

6

Agent

Environment

Input: Perception Output: Action

Figure 2.1: An agent in its environment taking as input its perceptions and
producing as output its actions, modified from [26].

forces. We can also say that the agent is self-directed. To explain this further
we can compare it to objects in object-oriented programming. An object is told
what to do, through method invocation made by other objects. An agent is
asked to do something by accepting requests from other agents. Whether the
request is fulfilled or not, is decided by the agent itself. The agent can also
perform actions without being asked, which is not possible with objects [36].

Another difference between objects and agents is that agents are capable
of flexible behavior ; the standard object model do not mention this kind of
behavior. Flexible behavior is composed of reactivity, pro-activeness and social
ability. A reactive agent perceives its environment, and responds in a timely
fashion to changes that occur in it in order to satisfy its design objectives. An
agent’s pro-active behavior describe the abilities of attending to goal-directed
behavior by taking the initiative in order to satisfy their design objectives.
Finally, social behavior is important for an agent to interact with other agents.
Communication through exchange of information in cooperative or competitive
settings are used as a mean by agents to achieve their goals and to satisfy their
design objectives [36, 37, 12].

2.2 Multiagent Systems

Distributed Artificial Intelligence (DAI) is a subfield of AI, concerned with prob-
lem solving where agents solve tasks and subtasks [37]. The main areas of
DAI are multiagent systems (MAS) and cooperative distributed problem solv-
ing (CDPS). MAS is concerned with the behavior of a collection of autonomous
agents aiming to solve a given problem. How this problem can be divided among
the agents and how the solution are cooperatively found through communicating
and sharing information is considered by DPS.

2.2.1 Motivations for Multiagent Systems

There are several applications of multiagent systems in domains like medicine,
biology, air traffic, urban traffic, telecommunications, economics, news, elec-
tronic commerce, computer games, enterprise management and design. Some
of these applications were described in [33]. Problems solved by the different
applications have one or more of these characteristics: modular, decentralized,
changeable, ill-structured and complex. Motivations for using MAS are tightly
connected to these problem characteristics [27].

First of all, agents are suited to applications that fall into natural modules,

7

since agents themselves are modular, like objects in object-oriented program-
ming. Second, since an agent is autonomic and pro-active, it does not need to be
invoked externally or be told to take action or which action to perform. When
several such agents are distributed they can solve problems that are too large
for a centralized agent and provide solutions which draw from distributed infor-
mation sources, or where expertise is distributed. Third, the fact that agents
are modular and pro-active make them especially valuable when a problem is
likely to change frequently. Modularity permits the system to be modified one
piece at a time, and decentralization minimizes the impact that changing one
module has on the behavior of other modules. Fourth, agents offer a realistic
approach to manage ill-structured, under-specified applications. Because when
you develop agents, you do not have to consider a specific domain structure,
but only the classes of entities that exist in that domain. Finally, when imple-
menting agents one gives each of them a set of behaviors. At run-time, when
different agents are working together by combining their behaviors, the total
set of behaviors increase. In addition agents can combine simple behaviors to
make more advanced ones. Rather complex systems may be implemented with
a reduced amount of software and thus more cost-effective.

2.2.2 Issues in Multiagent Systems

To explain some important issues in multiagent systems we will here introduce
a multiagent environment inhabited by intelligent agents. The domain of the
environment is a school and the agents play roles as teachers and students.
Especially important is an agent’s social ability, as the agents cannot go around
attempting to achieve their goals without taking others into account. And some
goals can only be achieved through cooperation.

Knowledge Representation and Ontologies

Agents may keep some symbolic model of the environment. This model is not
an exact copy of the environment. Since there are large amounts of entities
and information, agents only partly models the world. Environmental models
introduce two key problems [36]. First, the real world should be translated
into an accurate adequate symbolic description, in time for that description to
be useful. Then, it is the representation or reasoning problem; the problem
of how to symbolically represent information about complex real-world entities
and processes, and how to get agents to reason with this information in time
for the results to be useful.

Knowledge is represented using a knowledge representation language. The
fact that Paul and Karen are students and are located in a classroom, and that
Paul is their teacher and is located in the teachers room can be represented as
follows (this is just one of many ways to represent this information):

student (Paul) teaching (Tom, Karen)
student (Karen) teaching (Tom, Paul)
teacher (Tom) inroom (Room1, Karen)
classroom (Room1) inroom (Room1, Paul)
teachersroom (Room2) inroom (Room2, Tom)

8

Entity

Person Room

Teacher Student Class-
room

Teachers-
room

Figure 2.2: The school-example ontology - a hierarchy of classes where all arti-
facts of the world is a subclass of Entity.

A specification of all the objects, concepts, and the relationships in the school
environment are represented in an ontology. The ontology is a vocabulary for
the knowledge representation. A part of the school ontology, in a simplified
version, can be as in figure 2.2. It shows a hierarchy of subclasses, where all
artifacts in the world is a subclass of entity. Further on, both teachers and
students are types of person. Each artifact can also have attributes, and these
attributes will be inherited by its subclasses.

Communication and Communication Languages

For teachers and students to be able to work together, in either a cooperative or
competitive way, they have to communicate. Communication between agents
is a special type of action, like the actions they use to change the state of the
environment [36]. A communicative action influence other agents by changing
their state (beliefs and knowledge), rather then influencing the environment.

Teachers communicate knowledge to their students so that their knowledge
bases grow, or faulty information are corrected or removed. The communication
can appear through message passing, when a teacher lectures for his students
in class, or through a shared memory, when the teacher writes something on
the blackboard. A message can be broadcasted, or sent directly to an agent
when the address is known. When an agent do not know who should receive a
message, it may send it to a facilitator which forwards the message to the right
receiver(s). The facilitator helps coordinating agents’ activities and can satisfy
requests on behalf of their subordinated agents. Other similar existing methods
include mediators, brokers, matchmakers, yellow pages and blackboards [12].

Rules for the set-up of a message being sent are defined by a communication
protocol [36]. The semantics of a communication protocol is domain indepen-
dent, meaning that agents from a school domain may as well communicate with
agents from a hospital domain, using similar communication protocols. The
structure of a protocol may contain fields like performative, sender, receiver,
language, ontology and content. To be able to interpret a message an agent
has to speak the language submitted in the language field, and it has to know
about the ontology. For example, when a student communicates with a doctor
about some medical problem, the doctor knows about medical ontologies, but
he would have to use a more common ontology for the student to understand
what he is saying. The content of a message is a symbolic representation using

9

the structure of the language and the vocabulary of the ontology. From this
we can draw the conclusion that a message is domain independent, while it’s
content is domain dependent.

Interaction and Interaction Protocols

Communication is a tool for agent interaction. There is no way to avoid inter-
actions in multiagent systems. Just look at the school environment: Students
and teachers are walking around talking to each other. By moving into a class-
room, finding a chair, and sitting down, a student changes the environment. By
changing the environment, the student interacts indirectly with the persons in
that environment (classroom in this case) perceiving the changes. If the chair
belongs to another person and this person comes up to the student starting
arguing to get his chair back, they interact directly.

An interaction is basically a series of events or a dialogue between agents,
with some final outcome. Therefore while a communication protocol specifies
a single message, an interaction protocol specifies series of messages (the mes-
sage flow) [36]. For multiagent systems to be efficient, the interaction among
agents should serve some purpose. Like agents interacting to share resources or
coordinate their actions.

Imagine a group of students working together on a project. First, they would
have to decide upon a common goal for the project. Next, they must plan and
organize the work. When a plan is worked out, and the total project is divided
into smaller parts, the singular tasks should be divided among the students.
Typically, a student will participate in those parts of the project that he/she
is best at. After working on the project for a while, the students find out that
they must make some changes, so they re-plan and divide the work once again.
Finally, the project is finished by putting together and adapting the different
parts. In this example, the interactions among students are crucial to complete
the project.

Coordination: Cooperation and competition

A reason for agents to interact, is to coordinate agent actions. Coordination has
been defined in [36] like...:

”...The process by which an agent reasons about its local actions
and the (anticipated) actions of others to try and ensure that
the community acts in a coherent manner.”

For agents to coordinate their actions, they have to know about how they depend
on other agents. Then they can arrange their actions in a way that improves
the performance or reduces conflict in a group of agents. As described in the
figure 2.3, coordination can be either cooperative or competitive.

Whether to use cooperative or competitive coordination in a MAS mostly
depends on the MAS being open or closed [14]. An open MAS can contain
agents that are not designed to cooperate and coordinate at all. But, most
open MASs are designed to assist the agents in working together. The most
common kinds of these mechanisms are negotiations and auctions. An example
of negotiation is when an agent barters services in exchange for assistance on a
particular task or subtask. An example of an auction would be where you have

10

Coordination

Cooperation Competition

Planning

Distributed
planning

Centralized
planning

Negotiation

Figure 2.3: A taxonomy of some of the different ways in which agents can
coordinate their behaviour and activities, modified from [36].

a group of tasks and agents that you would like to distribute as efficiently as
possible. You would let the agents bid on the tasks they want to do. Assuming
that the agents are configured correctly they would only bid on the tasks they
can complete for less than the other agents.

Closed MASs contain well-behaved agents designed to cooperate easily to-
wards a global goal. An agent is driven by goals, which they strive to fulfill.
These goals may be connected to its own interests, or to the design objectives
of this particular agent. But, in a MAS agents also attempt to fulfill the sys-
tem’s overall goal. A goal can be achieved by performing several tasks. When
agents’ goals or tasks are connected in some way, like information dependencies,
sharing of resources, task redundancy or need of another agent’s capabilities to
accomplish a certain task, the agents will have to cooperate, or at least they
will be better off doing it. The time to perform a set of tasks is reduced and the
use of resources is improved. Again we go back to the student-project-example.
The overall goal of the project is to produce good results and deliver in time.
Participating students have goals connected to the tasks that they are going
to perform. But while working, a student might recognize that he needs some
information from what the others have been doing since he is going to write the
summary chapter. Sandra comes up to Paul and tells him that they have to read
some of the same articles, and therefore she could tell him what is important
so that he does not have to read them also. This indicates that the results of
the project are better and more consistent, and that the project-process is more
efficient, when the students cooperate.

Coordination Mechanisms

There are several kinds of techniques or mechanisms that are used for agent
coordination [26, 35, 18]. Some of them are described here.

Organizational structuring. Agents are organized into an organization. The
organization is a pattern of information and control relationships between in-
dividuals and is responsible for shaping the types of interactions among the

11

agents. The organization may be based on how a task is decomposed. Agents
use knowledge of the organization to determine with whom to communicate
and how to prioritize tasks - it specifies which actions an agent will undertake.
Organizational structures may be functional (based on skills), spatial (based on
physical location) or temporal (based on time relationship).

Social norms and laws. A norm is an established, expected pattern of be-
haviour (to queue when buying cinema tickets). A social law is similar to norms,
but carry some authority (traffic rules). Social laws in an agent system can be
defined as a set of constraints, for example saying that when the environment
is in some state, then a certain set of actions is forbidden.

Metal-level information exchange. Agents exchange control level information
about current priorities and focus. The control level information influences
agent’s decisions. But, it does not specify which goals an agent will or will not
consider, and might therefore be imprecise.

Partial global planning. The main principle is that cooperating agents ex-
change information in order to reach common conclusions about the problem
solving process. The planning is partial because the system does not generate
a plan for the entire problem. And it is global because agents form non-local
plans by exchanging local plans and cooperating to achieve a non-local view of
problem solving. Partial global planning involves 3 iterated stages: (1) each
agent decides what its own goals are and generates short-term plans in order
to achieve them, (2) agents exchange information to determine where plans and
goals interact, (3) agents alter local plans in order to better coordinate their
activities.

Multi-agent Planning. There are two basic approaches to multi-agent plan-
ning. The first one, centralized planning involving central coordination to iden-
tify interactions. The second one, distributed planning involving a group of
agents cooperating to form a centralized or a distributed plan.

Mutual modelling. Agents build a model of the other agents - their beliefs
and intentions, and coordinate own activities based on this model.

2.2.3 Cooperative Distributed Problem Solving

As mentioned before cooperative distributed problem solving (CDPS) is an area
within DAI. A definition made by Durfee(1989)[37, 26] is:

”CDPS studies how a loosely-coupled network of problem solvers
can work together to solve problems that are beyond their indi-
vidual capabilities. Each problem-solving node in the network is
capable of sophisticated problem-solving and can work indepen-
dently, but the problems faced by the nodes cannot be completed
without cooperation. Cooperation is necessary because no single
node has sufficient expertise, resources, and information to solve
a problem, and different nodes might have expertise for solving
different parts of the problem”

Most work on CDPS has made the benevolence assumption: that the agents in
a system implicitly share a common goal, and thus that there is no potential for
conflict between them. This assumption greatly simplifies the designer’s task.
CDPS is described in [37, 26].

12

In CDPS tasks are known at design time, and the process of CDPS has four
phases which work out from the given task or problem:

1. Problem decomposition

2. Subproblem distribution; task allocation

3. Subproblem solving/solution

4. Answer/solution synthesis

A teamwork model based on CDPS have a slightly different process from this
one. One of the differences is that the tasks or goals used for cooperation are
not known at design time:

1. Recognize the potential for cooperative action

2. Team formation: Find a group of agents that have a commitment to joint
action

3. Plan formation: Agree upon course of action

4. Team action: Execute agreed plan of joint action

The different stages of these two problem solving processes can be solved by
using a variety of methods. Different parts of the problem solving and methods
used are explained next.

Problem decomposition and task allocation

First of all, the potential for cooperative action would have to be recognized.
The agents find out that the overall system performance will be better with
cooperative action. Then the overall problem to be solved is decomposed into
smaller subproblems. The problem decomposition will typically be hierarchical,
so that subproblems are further decomposed into smaller subproblems, and so
on, until the subproblems are of an appropriate granularity to be solved by
individual agents. The different levels of decomposition will often represent
different levels of problem abstraction.

Both centralized and distributed decomposition is possible depending on the
MAS-design. If the problem is decomposed by one individual agent, this as-
sumes that this agent must have the appropriate expertise to do this. It must
have knowledge of the task structure, that is, how the task is put together,
and of agents that will eventually solve problems and their capabilities. In dis-
tributed decomposition, several agents have the necessary knowledge to make a
problem decomposition. And some agents might have additional information to
other agents, and therefore the decomposition itself may be better treated as a
cooperative activity.

After the problem is decomposed one has to find agents capable of perform-
ing the leaf-node-actions. This part of the process can be called subproblem
distribution, task allocation or team formation. Here we will use team forma-
tion as the process of finding and deploying capable agents for performing the
different tasks. The chosen agents will work together and cooperate to achieve
the common goal of solving the initial problem. How to gain the required infor-
mation about agents, and on the basis of this recruit new team members, is the

13

core problem of the team formation process. The solution may depend on the
cooperation techniques or cooperation protocols used, among other attributes.

The contract net protocol is a widely used standard for allocating tasks in
multiagent systems. In the contract net protocol there are a network of agents
or nodes. The collection of nodes is the ”contract net”. Each node in the net-
work can play ”contractor” or ”manager”. Everything starts with a contractor
recognizing that it cannot accomplish a task alone. It breaks it into several
subtasks and announces these subtasks for potential contractors. In the next
step, the manager receives and evaluates bids from different contractors and
finally awards a contract to a suitable contractor. A contractor may also divide
a subtask into new subtasks. So the team formation process is managed by the
contracting. And the final team working on the initial problems is a collection
of contractor and manager nodes (some nodes act as both) that spring out from
the initial problem.

Subproblem solution

In this stage, the subproblems identified during problem decomposition are in-
dividually solved. This stage typically involves sharing of information between
agents: one agent can help another out if it has information that may be useful
to the other. This process may be interleaved with the processes of problem
decomposition and task allocation.

Solution synthesis

In this stage, solutions to individual subproblems are integrated into an overall
solution. As in problem decomposition, this stage may be hierarchical, with
partial solutions assembled at different levels of abstraction.

A typical mode of cooperative coordination that is involved in CDPS is task
sharing, where components of a task are distributed to component agents. Task
sharing relates to task allocation, and considers how tasks are to be allocated
to individual agents. In a homogenous system a task could be allocated to any
agent, but in a system where agents are different and have different capabilities
and the benevolence assumption is not present, task sharing is a more complex
problem.

Another typical mode of cooperative coordination involved in CDPS, in ad-
dition to task sharing, is result sharing. Result sharing is distribution of infor-
mation, for example partial results that is relevant to subtasks. Information
can be shared proactively (one agent sends another agent some information be-
cause it believes the other will be interested in it), or reactively (an agent sends
another information in response to a request that was previously sent). Result
sharing may be realized through message passing or through a shared memory.

2.3 Shared Memory Structures

A shared memory structure may be used by agents in a MAS for indirect com-
munication of information. During the cooperative distributed problem solving
process, described in section 2.2.3, agents working on the same problem share
tasks and results. By using a shared memory structure, agents may place results

14

from their actions in this common repository, so that they are available to other
interested agents. When a shared memory is used like this, it can also be seen
as a common workspace or working memory. Next, we describe some research
areas focusing on the idea of shared memory structures.

2.3.1 Blackboard Systems

For the past quarter century, AI researchers have used the paradigm of col-
laborating software systems to tackle large and difficult problems. Blackboard
systems were the first attempt at integrating ”cooperating” software modules.
The goal was to achieve the flexible, brainstorming style of problem solving
performed by a group of human experts working together to solve problems
that no single expert could solve alone. Multiagent system research approaches
the collaborating software paradigm from an agent-centric orientation [7, 37],
but they still use some ideas from blackboard systems, like shared memories.
Blackboard systems are thoroughly described in [9, 17, 6], here we just give a
short introduction.

In a blackboard system, domain knowledge is organized into a set of diverse
and independent processes called knowledge sources (KSs) or specialists. Each
knowledge source contains knowledge about one aspect of the overall problem-
solving task. Knowledge sources do not call one another directly. Instead, they
interact indirectly through a shared database called the blackboard.

The blackboard is subdivided into a set of distinct information levels, each
representing a different view of the global solution space. The basic data unit
of the blackboard is the hypothesis. A hypothesis represents a partial solution
expressed at one of the information levels of the blackboard. The set of possible
hypotheses at a level represents the search space at that level. Relationships
among hypotheses at different levels on the blackboard are represented by links,
which allow a partial solution at one level to constrain the search at another
level.

Knowledge sources are invoked in response to particular kinds of changes
on the blackboard, called events. An intelligent controller determines which
knowledge sources should execute their actions at each step in the problem-
solving process. Figure 2.4 shows the architecture of a basic blackboard system.

Some important characteristics of blackboard systems are:

• Independence of expertise. Each knowledge source is an expert on
some aspects of the problem and can contribute to the solution indepen-
dently of the particular mix of other specialists in the system.

• Diversity in problem-solving techniques. The internal representa-
tion and inferencing machinery used by each knowledge source are hidden
from direct view.

• Flexible representation of blackboard information. The black-
board model does not place any prior restrictions on what information
can be placed on the blackboard.

• Common interaction language. Knowledge sources must be able to
correctly interpret the information recorded on the blackboard by other
knowledge sources.

15

..............

..............
Blackboard

..............

..............

Control
Components

Pending KS
Activations

Library of
KSs

Executing
Activated KS

Events

Figure 2.4: The architecture of a basic blackboard system, showing the black-
board, knowledge sources or agents, and control components, taken from [36].

• Event-based activation. Knowledge sources are triggered in response
to blackboard and external events. Blackboard events include the addition
of new information to the blackboard, a change in existing information, or
the removal of existing information. Rather than having each knowledge
source scan the blackboard, each knowledge source informs the blackboard
system about the kind of events in which it is interested. The blackboard
records this information and directly considers the knowledge source for
activation whenever that kind of event occurs.

• Need for control. A control component that is separate from the indi-
vidual knowledge sources is responsible for managing the course of problem
solving.

• Incremental solution generation. Knowledge sources contribute to
the solution as appropriate, sometimes refining, sometimes contradicting,
and sometimes initiating a new line of reasoning.

2.3.2 The Publish/Subscribe Model

The publish/subscribe model and some applications are described in [11, 24, 3,
31, 30]. Well adapted to large-scale distributed applications, the publish/subscribe
communication paradigm has recently received increasing attention. With sys-
tems based on the publish/subscribe interaction scheme, subscribers register
with their interest in an event, or a pattern of events, and are subsequently
asynchronously notified of events generated by publishers.

The publish/subscribe interaction paradigm provides subscribers with the
ability to express their interest in an event or a pattern of events, in order to
be notified subsequently of any event, generated by a publisher, that matches
their registered interest. In other terms, producers publish information on a

16

Publisher

Publisher

Publisher

Publisher

Subscriber
Notify()

Subscriber
Notify()

Subscriber
Notify()

Subscriber
Notify()

Event Service

Storage and management
of subscriptions

Subscribe

Unsubscribe

Notify

Publish

Publish

Notify() Subscribe()

Unsubscribe()

Figure 2.5: A simple object-based publish/subscribe system, consisting of pub-
lishers, subscribers and a central event service, taken from [11].

software bus (an event manager) and consumers subscribe to the information
they want to receive from that bus. This information is typically denoted by
the term event and the act of delivering it by the term notification.

The basic system model for publish/subscribe interaction, in figure 2.5, relies
on an event notification service providing storage and management for subscrip-
tions and efficient delivery of events. Such an event service represents a neutral
mediator between publishers, acting as producers of events, and subscribers,
acting a consumers of events. Subscribers register their interest in events by
typically calling a subscribe() operation on the event service, without know-
ing the effective sources of these events. This subscription information remains
stored in the event service and is not forwarded to publishers. The symmet-
ric operation unsubscribe() terminates a subscription. To generate an event, a
publisher typically calls a publish() operation. The event service propagates the
event to all relevant subscribers. Thus, the event service can be seen as a shared
memory structure.

Some advantageous properties introduced by this paradigm is:

• Space decoupling. The interaction parties do not need to know each
other.

• Time decoupling. The interacting parties do not need to be actively
participating in the interaction at the same time.

• Synchronization decoupling. Publishers are not blocked while produc-
ing events, and subscribers can get asynchronously notified of the occur-
rence of an event while performing some concurrent activity.

2.4 Summary

In summary, a multiagent system contains a number of autonomous, distributed
agents which interact directly or indirectly trough respectively direct or indirect
communication. Multiagent environments or multiagent architectures have to
provide an infrastructure specifying communication and interaction protocols.
The agents are also able to act in an environment where they have different
”spheres of influence”, when these spheres of influence overlap, relationships will

17

appear among agents and their actions [37]. When agent actions are dependent
in some way the agents need to coordinate their action to be able to fulfill
their own design objectives, and the overall design objectives of the multiagent
system. To support this a multiagent system may provide different coordination
mechanisms.

In CDPS (cooperative distributed problem solving), agents solve problems
using four steps: 1) Problem decomposition, 2) Subproblem distribution; task
allocation, 3) Subproblem solving, and 4) Solution Synthesis. How the different
steps are solved, amongst other things, depends on which coordination mecha-
nisms and which protocols that are used in the multiagent system.

Agents in a multiagent system may communicate indirectly via a shared
memory. The CoPS framework for cooperative problem solving in multiagent
systems, that is proposed in this thesis, uses a shared memory called the TEAM
SPACE. This shared memory adopts ideas from blackboard systems, and the
publish/subscribe and push communication models. The TEAM SPACE ar-
chitecture is presented in chapter 4. And in chapter 5, the CoPS framework
with the TEAM SPACE is compared to relevant work, including applications
of blackboard systems and the publish/subscribe communication model.

18

Chapter 3

An Architecture for
Cooperative Problem
Solving: CoPS

CoPS is a framework that should enable easy implementation of software agents
solving problems cooperatively. The framework architecture is partly designed
and a prototype is implemented at NTNU in Trondheim. This work is described
in the master thesis of Gundersen [34]. In a project at NTNU, autumn 2005, we
worked with the CoPS framework, using it to model and implement a problem
from a health center domain. This work is described in our project report [33].
Using CoPS on a real world problem, uncovered some lacks and errors in the
existing CoPS prototype. Some of these findings are corrected as a part of the
work with this thesis. In addition we extend the CoPS framework with a shared
memory structure, used for the cooperative problem solving of agents.

This chapter gives a short introduction to the CoPS architecture, and it
describes which parts of the architecture that are already developed and im-
plemented, and which parts that will be covered by this thesis. In section 3.1,
we give an overall view of the CoPS System. This is not done in earlier work
with CoPS. In section 3.2, a three layered CoPS architecture is proposed. The
CoPS architecture was also described in [34, 33], but in this chapter we take
a different approach to describing the architecture. Instead of elaborating the
different parts independently, we give a more wholesome view of the architec-
ture. This description also includes the shared memory structure. An example
of how a problem may be solved cooperatively by agents in CoPS is outlined in
section 3.3. Section 3.4 points on parts of the CoPS framework, that have been
developed in earlier work. And finally in section 3.5, we propose the corrections
and extensions to CoPS.

Basically this chapter is provided to give an explanation of the CoPS frame-
work, to introduce the idea of a shared memory structure in CoPS, and to
outline the focus of our work described in the remaining chapters.

19

TMST
PA

TR

PS

PS

PS

1:problem
solving
request

2:task
solving
request

3:decomposition
 request

DEC

6:team formation

4:make
5:tmst

TEAM SPACE

7:solution
generation

8:initialize

9:solving of
subtasks

11:solution

12:solution

13:solution

The CoPS System Overview

Interaction
Intelligent Agent

TEAM SPACE -
Shared communication medium

TMST -
Task, Method, Sub-Task tree

Task/problem

Problem Solving Method (PSM)

Action (Primitive PSM)

10:integration
of partial
solutions

Figure 3.1: The overall CoPS system view. The CoPS system has four types of
agents: Task Responsible (TR), Decomposer (DEC), Problem Solver (PS), and
Personal Assistant (PA). Tasks handled by CoPS are decomposed into a TMST
(Task Method Sub-Task tree). Problem solving and integration of partial results
are supported by a shared memory - the TEAM SPACE.

3.1 The overall CoPS System

The CoPS framework specifies intelligent agents, protocols, coordination mech-
anisms and knowledge representation needed to support cooperative distributed
problem solving (CDPS). Earlier work with CoPS focuses on the team formation
part of the CDPS process. A capable team of software agents is formed each
time the system receives a new problem, based on the current configuration of
the system (which agents with which capabilities that are available). A team
consists of software agents capable of solving problems as experts. Reconfigura-
tion of the team should be possible if agents happen to change their mind about
joining the team, are disconnected, or fail in any other way.

The overall CoPS system is pictured in figure 3.1. This view shows each
step in the process of receiving a problem request from a user, decomposing the
problem, allocating tasks from the decomposition, solving the sub-tasks and in-
tegrating partial results (solution synthesis) by cooperation, and finally return-
ing the problem solution. Handling of failures and re-planning/reconfiguration
are not incorporated into this view. Cooperation is achieved through the orga-
nization of agents into different types, a Task Method Sub-Task (TMST) tree,
and task allocation. A shared memory structure - the TEAM SPACE, enables
result sharing, and sharing of plans and resources needed for solving a prob-
lem. There are four different types of agents: Personal Assistant (PA), Task

20

Responsible (TR), Problem Solver (PS), and Decomposer (DEC). The most im-
portant interactions between the agents, the TMST and the TEAM SPACE,
are enumerated in their corresponding order in the overall view of the system:

1. PA receives a problem solving request from the user. It converts the
problem into a format that is understandable by the system; a task.

2. PA forwards the task in a task solving request to TR.

3. TR forwards the task in a decomposition request to DEC, for it to
decompose the task into a TMST.

4. DEC makes the TMST (Task, -Method, Sub-Task tree) from the task
received from TR. The TMST is a hierarchy of tasks which are solved
by one of the attached problem solving methods (PSMs). At the leaves
we have primitive PSMs or actions. The root of the TMST is the task
received from the TR. The DEC also attaches a teamID to the TMST.
The teamID is used to identify the group of agents that later are chosen
to solve the problem.

5. DEC returns the decomposition of the received task from the TR in tmst.
As the TR receives the task decomposition it can start forming a team of
PSs. TR needs information about what agents are capable of the actions
specified in the TMST. This information is requested from a Matchmaker
(not shown in the overall system view), keeping a list of all available agents
in the system and what services (actions, capabilities) they offer.

6. TR does the team formation by using a contract net interaction proto-
col. Each of the PSs capable of performing an action, receives a call-for-
proposal message. Then, the PSs return a propose message with a price
for performing the action. After step 7, TR sends an accept-proposal
message to the chosen PSs, with an invitation to join the team. The
accept-proposal messages contains the teamID, associated with the TMST
representing the problem. PSs that was invited returns an inform-message
as an acceptance of the invitation.

7. TR does the solution generation on the TMST. As the TMST represents
several different ways of solving the initial task, the TR must find the best
possible solution. The solution generation takes in to consideration the
proposal messages received from the PSs in step 6. As a result of the
solution generation, the TMST is updated by attaching chosen PSs for
the final solution to their corresponding actions (task allocation), and
TMST-nodes part of the solution are tagged. A solution is represented in
figure 3.1 by the shaded nodes.

8. TR initialize the TEAM SPACE, by sending the TMST, now containing
a solution.

9. TEAM SPACE uses the information stored in the TMST to coordinate
the PSs in the solving of subtasks process.

10. TEAM SPACE uses the information stored in the TMST to coordinate
the TR in the integration of partial solutions process.

21

AGENTS

PROBLEM SOLVING PROCESS

PROBLEM SOLVING KNOWLEDGE

Problem
Identification

Presentation
of the

Solution

Problem Solving

Problem
Analyzis

Team
Formation

Solving of
Subtasks

Integration
of Partial
Solutions

PA TR

DEC
PS

TR

PS
PS

PS

PSPS
PSPS

TR PA

TMST Domain
Knowledge

CoPS
Ontology

TEAM SPACE

Figure 3.2: A three - layered CoPS Architecture. The layers are: PROBLEM
SOLVING PROCESS, AGENTS and PROBLEM SOLVING KNOWLEDGE.
The agents abbreviations are: Task Responsible (TR), Decomposer (DEC),
Personal Assistant (PA), and Problem Solver (PS). The shaded shapes reflect
the focus of the current work with CoPS.

11. When the initial task is solved, TEAM SPACE returns the solution of
this task to the TR.

12. TR returns the solution of the initial task to the PA.

13. PA presents the solution of the requested problem for the user.

The overall view of the CoPS system described here is comprised of the three
main architectural constructs: the problem solving process, the agents, and the
problem solving knowledge. These constructs are represented in the next section
as a three-layered architecture.

3.2 A three-layered CoPS Architecture

The three-layered CoPS architecture depicted in figure 3.2 gives three different
but integrated views of the architecture. The problem solving knowledge at
the bottom-layer is used by the agent at the middle-layer to carry through the
problem solving process at the top-layer.

3.2.1 Problem Solving Knowledge

The bottom-layer of the CoPS Architecture has four different components:
TMST, Domain Knowledge, CoPS Ontology, and TEAM SPACE. The TEAM

22

Problem solving method (PSM)

 - Name
 - Description
 - Assumptions
 - Input
 - Output
 - Control information
 - A set of subtasks

Task

 - Name
 - Description
 - Assumptions
 - Input
 - Output
 - Goal
 - A set of PSMs/actions

Action

 - Name
 - Description
 - Assumptions
 - Input
 - Output
 - Type

Attribute/slot meanings

 - Name: Unique identifier for the TMST node
 - Description: A short textual description of the TMST node
 - Assumption: (Not used in this work)
 - Input: Defines what information is needed to perform a task, compose a PSM or execute an action
 - Output: Defines what information that will be the output of a task, PSM or Action
 - Control information: I/O dependencies between subtasks. Denote which input of subtasks to the
PSM are dependent of what output to other subtasks.
 - A set of subtasks: Refers to the TMST sub-nodes of a PSM - task(s)
 - A set of PSM/actions: Refers to the TMST sub-nodes of a task - action(s) or PSM(s)
 - Goal: Describes the goal that must be achieved for the task to be accomplished
 - Type: The action-type

Figure 3.3: The nodes part of the TMST (Problem Solving Method - PSM,
task and action) and their attributes. Short explanations to the attributes are
provided. Modified from [34].

SPACE, when initialized for problem solving, contains a reference to a TMST.
Data or knowledge stored in the TMST and in the TEAM SPACE is part of the
domain knowledge. And finally, the domain knowledge is built using the CoPS
ontology.

TMST

The TMST (Task Method Sub-Task tree) is comprised of tasks and problem
solving methods. Tasks represent what to do. Each task specifies a goal, and
the goal is achieved when the related task is accomplished. Problem solving
methods (PSMs) represent how to do it - how to perform a task. There are two
different types of PSMs. The first type is task decomposition methods, which
define a set of subtasks needing to be achieved in order for the original task to
be accomplished. The second type is a primitive problem solving method, an
action, representing executable code which may be performed directly. Indicat-
ing that actions capture the skills of an agent. Tasks, PSMs and actions have
several attributes. Attributes related to the TMST nodes and their meanings
are described in figure 3.3.

Tasks and PSMs are structured in a directed acyclic graph, - a TMST,
as shown in figure 3.4. A task may be achieved by one or more alternative
PSMs, thus PSMs connected to a task have OR relations between them. A
PSM specifies a set of tasks which have to be performed for the PSM to be
fulfilled, thus tasks connected to a PSM have AND relations between them.
This recursion continues until all leaf nodes in the graph are primitive PSMs. A
PSM defines dependencies between its subtasks, and thus dependencies between
the agents.

The root node of the graph is a task representing the initial problem. The
TMST captures different ways of solving that root-node-task, it is a description

23

T6 T8T7

T3

T5T4

T0

T2T1

M5

M8M7

M6M4M3

M2M1

A1

A6A5A4

A10A9
A3A2

Ag1 Ag5Ag4Ag3Ag2

T11T10T9

A7 A8

Task

Problem Solving Method (PSM)

Action (Primitive PSM)

Agent

Figure 3.4: The TMST - the complete solution space for a task, and the (chosen)
solution of the TMST (marked with grey nodes) - a specific solution for a task.
Modified from [34].

of the complete solution space for the initial problem. The complete solution
space is not needed for solving the problem, just one way of solving the problem
would be sufficient. In the TMST shown in figure 3.4, the complete solution
space is represented by the tree in total, and one particular solution to a problem
is represented by the shaded nodes.

The TMST is generated in a top-down manner, and the solution is found
by a bottom-up approach. The generation of a specific solution takes into
consideration the agents that are currently in the system, and their skills and
capabilities.

After the TMST is generated, each action is allocated, by a TR, to an agent
having skills to perform this action. In figure 3.4, the agents Ag1, Ag2, Ag3,
Ag4 and Ag5 are all capable of, and willing to perform the actions. Now, the
solution generation of the TMST is done in three steps:

1. The solution space for the current situation (not the complete solution
space) is activated. All actions connected to an agent are activated. All
tasks connected to an activated action or PSM are activated. And, all
PSMs having all of their subtasks activated are activated. If the initial
task gets activated, the problem has at least one solution.

2. Costs are propagated through the solution space. Each agent - action
relation has a cost. One starts at the bottom level and propagates the
costs upwards in the tree of activated nodes. For all of the tasks one
always choose the cheapest alternative of solving it (choose one of the
sub-PSMs/sub-actions).

3. All chosen nodes (cheapest alternatives) in the cost propagation are tagged
as part of the solution.

24

Domain knowledge and CoPS Ontology

An agent needs knowledge about the domain it works in and about the problem
being solved. This knowledge is represented in the agent’s knowledge base. If
the knowledge is shared between agents, the same ontology for representing the
knowledge must be used, in such a way that the agents are able to understand
this knowledge. Remember that the ontology is the vocabulary used in the
content of messages exchanged between agents.

The domain knowledge should be represented using a domain ontology in
combination with a CoPS ontology. The CoPS ontology describes concepts used
by the system. These concepts may involve the problem solving process, agents,
structure of the TMST and the content of the TEAM SPAE. By wrapping the
domain knowledge into this framework specific ontology, it would be easier to
increase the domain independence of our framework. Using a CoPS Ontology
results in standardization of the general parts of CoPS, in such a way that the in-
tegration of the architectural components is more elegant. Messages exchanged
between agents may conform to one standard by encoding the content using the
CoPS Ontology.

TEAM SPACE

The TEAM SPACE assists in coordinating agent actions in the solving of subtask
and integration of partial solutions processes. The realization of the TEAM
SPACE is the main contribution of this thesis and is thoroughly elaborated
later.

3.2.2 Agents

The CoPS framework architecture proposes five different types of agents. The
agents have a generic agent architecture. This generic architecture and detailed
process charts for each of the agent’s behaviours are detailed in [34] and in [33].
Here we just give a short description of the different agent types. The different
agent types are:

• Personal Assistant (PA). The PA is the bridge between the user of the
software system and the software system. It will receive problems and
information, and present the software system’s solution in a proper way.

• Task Responsible (TR). The TR is responsible for seeing to that the
specified problem is solved at run-time. It must gather a team of PSs,
administer the problem solving process and integrate partial solutions.

• Matchmaker. The matchmaker knows the different agents in the soft-
ware system, it is also responsible for knowing which services they offer
and where to find them. The matchmaker responds with the services of-
fered by agents in the system on request, and in this way helps the agents
finding each other. This agent is not a ”visible” component of the archi-
tectural view in figure 3.2, but it is still a part of CoPS. Any agent that
enters the system has to register its services with the matchmaker. And
any agent, at any time, can communicate with the matchmaker to get
information about other agents.

25

• Decomposer (DEC). The job of the DEC is to decompose tasks - make
TMSTs. It knows how complex problems can be decomposed and how
the components of the decomposition are related to each other. A DEC
decomposes tasks on request, and returns a TMST describing the decom-
posed task, attached with a teamID.

• Problem Solver (PS). PSs are the workers in the system, and are capable
of solving specific problems or tasks. They may join a team to help out
in a cooperative problem solving process in the solving of subtasks, or
they may solve problems on their own - without joining a team. PSs solve
problems on request.

Interaction patterns between the different agent types, also marked with arrows
in figure 3.2, is described together with the different stages of the problem
solving process, in the next section. We also describe how the problem solving
knowledge is used.

3.2.3 Problem Solving Process

Different agents take part in different steps of the problem solving process.
Which agents are involved in each step of the problem solving process is indi-
cated in figure 3.2. During the process, agents have to communicate. For the
conversations, FIPA interaction protocols are used. Remember that interaction
protocols guide the flow of messages between agents. FIPA (The Foundation
for Intelligent Physical Agents) is an IEEE Computer Society standards orga-
nization that promotes agent-based technology and its standards with other
technologies [13]. The FIPA web-page referenced by [13], has links to a col-
lection of articles describing the different FIPA standards, as these articles are
referenced in the text, the citation will be extended by the number of the article,
so that it can easily be found at the web-page.

Problem Identification and Presentation of the Solution

The only agent involved in the problem identification - and presentation of the
solution processes is the PA. The interactions 1 and 13 in the overall system
view, depicted by figure 3.1, are part of these processe. CoPS does not specify
how to implement the PA, since the focus of this framework is the cooperative
problem solving process.

After the PA has finished the problem identification, turning the problem
into a (initial) task, it communicates the task to the agent(s) performing the
problem solving process. When the result of the problem solving process has
been reached, the solution (to the initial task) has to be communicated to the
PA. All conversations conform to FIPA standards, and the conversation between
the PA and the agents solving the problem is similar to the request interaction
protocol specified by FIPA in [13] (document number: SC00026). The request
interaction protocol is pictured in figure 3.5. Thus, the PA requests the TR
to solve the problem specified by the user. If the TR accepts the request,
it should either answer with an inform message specifying the solution, or a
failure message specifying what went wrong. This interaction between the TR
and the PA frames the whole problem solving process. The protocol is initiated

26

Figure 3.5: The FIPA Request Interaction Protocol, describing a conversation
starting with a request - message being sent from an Initiator to a Participant.
Taken from [13].

27

Figure 3.6: The FIPA Contract Net Interaction Protocol, describing a conversa-
tion starting with a call-for-proposal (cfp) message being sent from an Initiator
to a Participant. Taken from [13].

at the beginning of the problem solving process and finally completed when the
solution is attained, or a failure has occurred.

Problem Solving

The problem solving process involves the interactions 2-12 in the overall system
view depicted by figure 3.1. The problem analysis-process is performed by the
TR. First, the TR checks whether the request is coded in a language and uses
ontologies that the agent knows of. Next, it checks whether it may solve the
problem without involvement from other agents. If it is not able to do the job
by itself, a team is required. The team is formed on basis of the TMST, in the
team formation -process.

The TMST is generated by the DEC. In order to get the TMST, the TR has
to initiate a conversation with the DEC. This conversation also conforms to the
specified FIPA Request Interaction Protocol. When a TMST is received, the
TR may start finding PSs that should join the problem solving team. TR needs
information about what agents are capable of the actions specified in the task
structure tree. This information is requested from the Matchmaker. Again, the
FIPA Request Interaction Protocol is used.

Next, agents for the problem solving team are recruited by using the FIPA
Contract Net Interaction Protocol [13] (document number: SC00029), pictured

28

in figure 3.6. CoPS uses this protocol with kind of a twist. Instead of sending the
participant an accept-proposal message containing the action to be performed,
the initiator sends an accept-proposal message containing an invitation to join
the problem solving team, with an attached teamID. If the participant is a PS,
and therefore knows about team work, it will answer with a inform message
saying that it joins the team. If the participant, on the other hand, does not
know the CoPS way of cooperating in teams, it will respond the call-for-proposal
message with a not-understood message. The team is formed, on the basis of
the TMST solution part.

The solving of subtasks process is performed by the PSs, and the integration
of partial solutions process is performed by a TR. These two processes are
coordinated by the TEAM SPACE. PSs perform (solve) subtasks by executing
actions. Their partial results, representing task solutions, are shared through
the TEAM SPACE. When all subtasks of a PSM have a solution in the TEAM
SPACE, the TR integrates these partial solutions. The partial result from this
integration, representing a task solution, is shared through the TEAM SPACE.
When there is a solution to the initial task, the result is returned to the PA.

3.3 An Example

In this section we describe how a problem is solved by the CoPS system, step
by step. Details of what goes on in the TEAM SPACE is left out though, and
properly described in the next chapter, 4. Imagine that we have a system with
these agents and capabilities:

• PA - Receives request from a user

• TR - Administrates the problem solving process

• DEC - Decomposes a task

• PSs - Solve simple problems:

– PS-LA (Laboratory Agent) - Knows how to take a bloodtest and how
to analyze it manually

– PS-LSA (Laboratory System Agent) - Knows how to operate the
laboratory system, and can analyze a bloodtest mechanically.

– PS-PDBA (Patient Database Agent) - Knows how to (update and)
get patient info in the patients database.

– PS-RA (Receptionist Agent) - Knows how to (update and) get pa-
tient info in a manual patients archive.

The steps of the problem solving process, performed by the listed agents, are
described according to the enumerated interactions pictured in figure 3.1. The
steps are:

1. PA Receives a problem solving request from the user: ”Perform a labora-
tory test on a patient. The patient’s name is Paul”.

29

Take
laboratory

test

Performing
blood test

Get patient
info

Getting
patient info

from patients
database Getting

patient info
from manual

archive

Get
blood Analyze

blood

Taking
bloodtest

Analyzing
bloodtest

mechanically

Analyzing
bloodtest
manually

Task

Initial task

Problem solving method (PSM)

I/O-dependency

Action (primitive PSM)

Figure 3.7: The TMST returned by the Decomposer (DEC) when the task,
(Task :name takeLaboratoryTest :input (Patient :name Paul)), is received.

2. PA forms the request into a task, which is part of the Problem Identifi-
cation-process. The task looks like this: (Task :name takeLaboratoryTest
:input (Patient :name Paul)). This format reflects an ontology, where a
Task -entity has values for the attributes name and input. The Task-entity
could belong to the CoPS ontology. A Patient-entity (from the domain
ontology) has a value for the attribute name. The instance of Patient
serves as the Task-input-value. A task solving request containing this
task is forwarded to the TR agent.

3. The TR agent performs the Problem Analysis-process. As it is not capable
of solving the task alone, it has to start a Team Formation-process, and
forwards the task in a decomposition request to DEC.

4. The DEC makes the TMST illustrated in figure 3.7. Each of the nodes
in the TMST also has some attributes that are defined using the domain
ontology. These attributes are listed in 3.1.

5. DEC returns the TMST to the TR. The TR then requests the Match-
maker of PSs that knows how to perform the actions: gettingPatientIn-
foDB, gettingPatientInfoMA, takingBloodtest, analyzingBloodMech, an-
alyzingBloodMan. The matchmaker responds with the list: PS-DBA ->
gettingPatientInfoDB, PS-RA -> gettingPatientInfoMA, PS-LA -> tak-
ingBloodtest and analyzingBloodMan, PS-LSA -> analyzingBloodMech.

6. TR makes a call-for-proposal message to all the PSs received from the
Matchmaker, asking them what it would cost to perform the associated
action. These propose messages are received from the PSs:

• PS-DBA: (Cost :action gettingPatientInfoDB :price 5)
• PS-RA: (Cost :action gettingPatientInfoMA :price 8)
• PS-LA: (Cost :action takingBloodtest :price 4), (Cost :action analyz-

ingBloodMan :price 9)

30

Table 3.1: The attributes related to the TMST-nodes in the TMST returned by
the DEC when the task (Task :name takeLaboratoryTest :input (Patient :name
Paul)), is received.

task takeLaboratoryTest
input (Patient :name Paul))
output (Patient :name x :test results (TestResult :description y))
goal (Patient :name x :test results (TestResult :description y))
PSM performingBloodTest
input (Patient :name x)
output (Patient :name x :test results (TestResult :description y))
task getPatientInfo
input (Patient :name x)
output (Patient :name x :info y)
goal (Patient :name x :info y)
action gettingPatientInfoDB
input (Patient :name x)
output (Patient :name x :info y)
action gettingPatientInfoMA
input (Patient :name x)
output (Patient :name x :info y)
task getBlood
input (Patient :name x :info y)
output (Patient :name x :info y :blood sample reference z)
goal (Patient :name x :info y :blood sample reference z)
action takingBloodtest
input (Patient :name x :info y)
output (Patient :name x :info y :blood sample reference z)
task analyzeBlood
input (Patient :name x :info y :blood sample reference z)
output (Patient :name x :info y :test results (TestResult :description m))
goal (Patient :name x :info y :test results (TestResult :description m))
action analyzingBloodMech
input (Patient :name x :info y :blood sample reference z)
output (Patient :name x :info y :test results (TestResult :description m))
action analyzingBloodMan
input (Patient :name x :info y :blood sample reference z)
output (Patient :name x :info y :test results (TestResult :description m))

31

Take
laboratory

test

Performing
blood test

Get patient
info

Getting
patient info

from patients
database Getting

patient info
from manual

archive

Get
blood Analyze

blood

Taking
bloodtest

Analyzing
bloodtest

mechanically

Analyzing
bloodtest
manually

5

8

4

2

9

5
4 2

11

11

PS-DBA

PS-RA

PS-LA

PS-LSA

PS-LA

Task

Initial task

Problem solving method (PSM)

I/O-dependency

Action (primitive PSM) Price

Executor

Figure 3.8: The TMST showing the solution, marked with shaded nodes. The
lowest cost suggested for actions or PSMs propagates upwards in the tree-
structure. Actions are connected to executors (Problem Solvers, PSs)- that
has offered to execute them for the price attached to the corresponding action.

• PS-LSA: (Cost :action analyzingBloodMech :price 2)

7. TR tries to generate the solution of the TMST with the lowest cost. The
solution and its costs are marked in figure 3.8. The figure also shows
which agents are added as executors to the different actions. The agents
connected to the shaded actions, receive an invitation to join the problem
solving team. Each invitation is attached with the same teamID.

8. TR requests for initialization of the TEAM SPACE. The TMST in fig-
ure 3.8, and all the pictured information is used to initialize the TEAM
SPACE.

9. TEAM SPACE uses the information in the TMST to coordinate the PSs
in the problem solving. Details about this, are described in the example
presented in chapter 4, after the TEAM SPACE architecture has been
outlined.

10. TEAM SPACE uses the information in the TMST to coordinate the TR
in the integration of partial solutions. Details about this, are described in
the example presented in chapter 4, after the TEAM SPACE architecture
has been outlined.

11. When the initial task is solved, TEAM SPACE returns the solution of the
task to the TR: (Task name: takeLaboratoryTest output: (Patient :name
Paul :test results (TestResult :description NA - normal, Glucose - high,
HB - low))).

32

12. TR returns the solution of the initial task to the PA: (Task name: take-
LaboratoryTest output: (Patient :name Paul :test results (TestResult :de-
scription NA - normal, Glucose - high, HB - low))).

13. PA presents the solution for the user: ”The laboratory test performed on
patient Paul says that NA is normal, Glucose is high and HB is low”.

In chapter 4, the same example is extended to show how the TEAM SPACE
works.

3.4 Current work with CoPS

The focus of earlier work with CoPS is marked with the shaded components in
our three-layered architecture, in figure 3.2. The implemented prototype and
the work with the architecture does not complete all of the elements introduced
so far. The implemented prototype include this functionality:

• PROBLEM SOLVING PROCESS. Problem Analyzis and Team For-
mation.

• AGENTS. The TR, DEC and PS are implemented with the function-
ality needed for realizing the implemented parts of the problem solving
process. The PA is implemented as an empty shell. The Matchmaker is
implemented in the pre-existing framework used for implementing the pro-
totype. All of the conversations mentioned are implemented, these include:
The conversation between TR and PA (request protocol), the conversation
between TR and DEC (request protocol), the conversation between TR
and Matchmaker (request protocol), and finally the conversation between
TR and PS (modified contract net).

• PROBLEM SOLVING KNOWLEDGE. TMST.

In our 2005-project [33] we used the CoPS framework for a medical domain
application - checkup system. Results from the modeling and implementation,
showed that the CoPS framework was easy to use, and that it to a certain extent
was applicable in a real-world scenario. The CoPS prototype had some failures
and lack of flexibility. These results lay out the direction of work in this thesis,
in addition to the extensions considering architectural elements.

3.5 Corrections and Extensions to CoPS

The corrections should improve the existing work with the CoPS framework.
Extensions to the CoPS framework are a further realization of architectural
components.

3.5.1 Corrections

Here we describe the corrections to CoPS that are supposed to be done in this
work. We come back to which corrections that are actually done, while de-
scribing our results in chapter 7. The corrections solely involve implementation
issues that were uncovered during implementation and test-run of the checkup

33

system, in our 2005-project. First, there are some code bugs (problems) that
made the test-run of the checkup system fail. The problems should be removed
by performing some extensive debugging. The problems are:

• The PSs send two exactly alike copies of their proposals to the TR.

• The TR does not answer the PSs with a proposal accepted message when
the solution being pursued is chosen.

• The TR concludes that the team formation process succeeded, even though
this was not the case.

• In certain configurations of the system the TR dies without being properly
terminated.

Second, there are some problems that limited the implementation possibilities,
related to lack of functionality, and thus to lack of flexibility. The problems are:

• PS agents can only have one single capability.

• PS agents can only attend to one conversation at a time.

• Dynamic formation of problem solving teams are not fully realized. Re-
configuration of the team is not possible if agents happen to change their
minds about joining the team, are disconnected, or fail in any other way.
By now, team formation is dynamic in the sense that it is formed according
to the state of the system at the exact time it is needed. But, the CoPS
framework architecture proposes that the team may change in real-time,
depending on external changes to the environment.

Corrections to all of the problems limiting the implementation could as well be
seen as extensions to CoPS. The limitations even point to important parts of the
architecture that are not yet fully developed. These extensions are necessary
to add, in order to fully test and integrate the TEAM SPACE with the CoPS
framework.

3.5.2 Extensions

Here we describe the extensions to CoPS that are supposed to be done in this
work. Like with the corrections, we come back to which extensions that are
actually performed, while describing our results in chapter 7. The extensions to
CoPS are related to architectural components. If we look at the architectural
view of CoPS in figure 3.2 again, these are are the extensions to each of the
three layers:

• PROBLEM SOLVING PROCESS. solving of subtasks and integration
of partial solutions should be realized.

• AGENTS. TR - and PS behaviours should be extended in such a way
that these agents are able to perform the problem solving process steps;
solving of subtasks and integration of partial solutions.

• PROBLEM SOLVING KNOWLEDGE. A shared memory structure
- the TEAM SPACE and a CoPS Ontology should be realized. And the
TMST should support functionality and keep information needed by the
TEAM SPACE.

34

TR

PS

PS

PS

6:team formation

TEAM SPACE

8:initialize

9:solving of
subtasks

11:solution

Parts of the CoPS System Overview

Interaction
Intelligent Agent

TEAM SPACE -
Shared communication medium

TMST -
Task, Method, Sub-Task tree

10:integration
of partial
solutions

Figure 3.9: Parts of the overall CoPS system view depicted in figure 3.1, inter-
acting with the TEAM SPACE. Agents interaction with the TEAM SPACE are
Task Responsible (TR) and a group of Problem Solvers (PSs).

The different parts of the architecture involving our extensions are tightly con-
nected. The TEAM SPACE is used to support the TR and PSs in the problem
solving processes: solving of subtasks and integration of partial solutions. The
TEAM SPACE is the main extension though. A part of the overall view of the
CoPS system illustrated in figure 3.9, might help put some implications on what
is the responsibilities of the TEAM SPACE.

When the TR has formed a team (figure 3.9, 6), and generated a solution
to TMST (figure 3.1, 7 - not in the figure 3.9), it initializes the TEAM SPACE
by submitting the TMST (figure 3.9, 8). This initialization can be seen as a
request, that needs to be handled by the TEAM SPACE. The TEAM SPACE
needs to be initialized according to the current problem to be solved.

All information needed about a problem is stored in the TMST. Problem
Solving methods (PSMs) have control information, considering the I/O depen-
dencies of their sub-tasks. Using this control information it is possible to infer
in what order agent actions need to be executed, and what pieces of informa-
tion an agent needs in order to perform an action. Each task in the TMST is
related to a goal. Each action in the TMST is connected to an executor which
stores information about the agent performing the action. PSs solve subtasks
by executing actions.

The TEAM SPACE should be able to recognize when an action waiting for
some input is ready to be executed, and inform the PS allocated to that action
(figure 3.9, 9). When the PS has executed the action, the result is returned to
the TEAM SPACE (figure 3.9, 9). Next, the TEAM SPACE should be able
to recognize when goals at different levels in the TMST are met. When all of

35

the tasks (goals) of a PSM are performed (fulfilled), the TR should be notified
so that it can integrate these partial solutions (figure 3.9, 10). After the TR
has integrated a set of partial solutions, the result is again returned to the to
the TEAM SPACE (figure 3.9, 10). And finally, when the initial task (goal) is
performed (fulfilled), the solution is returned to the TR (figure 3.9, 11).

By looking at this description of the CoPS system we uncover some of the
TEAM SPACE responsibilities. These responsibilities are translated into a set
of functional requirements for the TEAM SPACE:

1. The TEAM SPACE must keep a structure for storing partial results from
both the PSs and TR.

2. The TEAM SPACE must be able to reason about the partial results and
the current problem to be solved. In such a way that it always knows
which actions are ready to be executed, which partial results are ready to
be integrated, and which goals are met. Said in another way, the TEAM
SPACE must keep the correct state of the problem solving process at any
time.

3. The TEAM SPACE must be able to communicate the correct informa-
tion,efficiently, to the PSs and the TR (the problem solving team).

4. The TEAM SPACE must be able to handle the information received from
the PSs and TR, and update the state of the problem solving process
accordingly.

5. The TEAM SPACE must handle concurrent problem solving, by allocating
a separate working area for each problem solving team.

6. The TEAM SPACE must be able to convert the knowledge stored in the
TMST, so that it could be used to initialize the working area for a problem
solving team.

In the next chapter, the TEAM SPACE architecture is presented. We review
these requirements at the end of that chapter, and explain how they are fulfilled
by the proposed TEAM SPACE architecture.

3.6 Summary

This chapter has given an overview of the CoPS architecture, describing both
old and new features. On the basis of previous work with CoPS, the focus of the
work with our thesis was outlined. This work involves corrections to the existing
CoPS prototype, and extensions related to old and new components of the CoPS
architecture. The main extension to CoPS is the TEAM SPACE, representing
a shared memory structure for cooperative problem solving performed by the
CoPS agents.

In the next chapter, the TEAM SPACE architecture is fully sketched and de-
scribed, interfaces between the TEAM SPACE and other architectural elements
in CoPS are defined, and necessary extensions to the existing CoPS architectural
componets are realized.

36

Chapter 4

The TEAM SPACE
Architecture

The TEAM SPACE architecture conceptualizes a shared memory structure, or a
shared workspace used by the CoPS agents during the problem solving process.
This architecture is an extension to the CoPS architecture introduced in chapter
3. There we also described how the TEAM SPACE is integrated with existing
elements of the CoPS architecture.

In this chapter, section 4.1 starts out describing the core TEAM SPACE
architecture. The core architecture contains the basic elements to make the the
TEAM SPACE work. Section 4.2 presents an example which is based on the
same problem as was exemplified in chapter 3 - section 3.3. More complicated
issues, like parallelism and re-planning are discussed in section 4.3. The TEAM
SPACE assists the Task Responsible (TR) and Problem Solvers (PSs) in coor-
dinating their actions during the problem solving processes; solving of subtasks
and integration of partial results. This necessarily means that these parts of the
CoPS architecture (described in chapter 3) need to be extended and modified.
These extensions and modifications are described in section 4.4. Finally, section
4.5 shows how the TEAM SPACE architecture meet the functional requirements
listed in chapter 3.

Description of the TEAM SPACE architecture also serves as a conceptual
design that is used to develop the existing CoPS prototype further.

4.1 The Core TEAM SPACE Architecture

In this section the core TEAM SPACE architecture is described. The TEAM
SPACE is divided into two main components; the TEAM SPACE (TS) Agent
and the TEAM SPACE (TS) Structure. A TEAM SPACE may consist of several
TS Agents and TS Structures. One TS Structure is dedicated for each problem
solving team. A TS Agent is the interface between a problem solving team
and its TS Structure. Only the TS Agent may access the team’s TS Structure.
This is done to encapsulate all functionality considering the TEAM SPACE,
within this architecture, and to make a clean, standardized and message based
interface.

In this section, we first look at the interactions between the TS Agent, TS

37

TEAM SPACE
TEAM

SPACE
agent

TEAM SPACE
structure

3:check for actions and PSMs
4:actions ready to execute
and PSMs ready to compose

PS

PS

PS

7:execute
action

9:action
result
10:update and check for
actions and PSMs5:no more

actions
or PSMs

11:get solution

TR

1:initialize 2:initialize

13:solution 12:solution

6:compose PSM

8:PSM result

Interaction

Jump to ...

Intelligent agent

TMST -
Task, Method, Sub-Task tree

TEAM SPACE structure
Shared communication medium

Figure 4.1: The Team Space Interface shows how Task Responsible (TR) and
Problem Solvers (PSs) interact with the TEAM SPACE (TS) Agent, and how
the TEAM SPACE (TS) Agent interacts with the TEAM SPACE (TS) Struc-
ture.

Structure, Task Responsible (TR), and Problem Solvers (PSs). Second, we look
at the TS Agent behaviour. And finally, we look at the content and functions
of the TS Structure.

4.1.1 TEAM SPACE Interactions and Interfaces

The TS Structure represents a shared memory, used by the agents during the
problem solving process steps; solving of subtasks and integration of partial re-
sults. A TS Structure consists of different architectural components. For now,
we will just look at the TS Structure as merely a black box. The only things we
need to know here is that the TS Structure keeps track of the problem solving
state and has functions for manipulating it. These function include: initializing
the first state of the problem solving with information from a TMST, updating
the problem solving state during the problem solving, and extracting informa-
tion from the current problem solving state. The problem solving state, among
other things, defines which actions are ready to execute (solving of subtasks)
and which PSMs are ready to compose (integration of partial solutions).

When a team is successfully formed, the TR wants to initialize a TS Struc-

38

Table 4.1: How the interactions in the figure 3.1 relate to the interactions in
figure 4.1

CoPS system view interactions TEAM SPACE interactions
8:initialize 1:initialize
9:problem solving 7:execute action and 9:action result
10: integration of partial results 6:compose PSM and 8:PSM result
11:solution 13:solution

ture that will guide the problem solving team in solving the initial task. A TS
Structure is not directly accessible for the TR though. The TS Structure may
only be accessed by a TS Agent. The TS Agent, like the other CoPS agents,
registers with the Matchmaker when entering the environment. When the TR
wants to initialize a TS Structure, it first has to request the Matchmaker for
available TS Agents, it chooses one of them, and then sends a request to ini-
tialize a TS Structure. This is the starting point for the interactions depicted
in figure 4.1.

Interactions between the TEAM SPACE and other CoPS components were
also described in chapter 3 - figure 3.1, showing the overall CoPS system view.
These interactions are further detailed in figure 4.1. How the interactions in
these two figures relate are listed in table 4.1. Interactions illustrated in figure
4.1 are:

1. TR sends a request to initialize a TS Structure to the TS Agent. At-
tached to this request is a copy of the TMST kept by the TR. At this
point nodes part of the TMST solution are tagged, and the TMST has a
teamID. This interaction actually contains several messages that are sent
between the TR and the TS Agent. It is realized by the FIPA request in-
teraction protocol shown in 3 - figure 3.5. The agree and refuse messages
of the protocol have information telling the TR if the initialization went
OK or not. The inform-result message of the protocol is not sent for the
TR until interaction 13.

2. The TS Agent initializes a TS Structure by creating a new TS Structure
component and providing it with the TMST. Then the TS Structure ini-
tializes the first problem solving state, with information from the TMST.
The TS Structure component then ”belongs to” the team of PSs with the
team ID stated by this TMST. The TS Agent keeps a list of TS Structure
components, for each of the problem solving teams it supports.

3. After the TS Structure is initialized, the TS Agent checks for actions
and PSMs, in the TS Structure, ready to be executed or composed.

4. The TS Structure extracts information from the current problem solving
state and returns a list of actions ready to execute and PSMs ready
to compose. Actions and PSMs in the list are attributed with the nec-
essary information. An action has a name, an address for the PS agent
that should execute it, any needed input for the action, and a team ID.
A PSM has a name, and address for the TR agent that should compose

39

it, any needed input for the PSM, the partial results that from the PSMs
sub-tasks that are to be composed and a team ID.

5. If there are no more actions ready to execute or PSMs ready to com-
pose, the TS Agent jumps to interaction 11.

6. If there are any PSMs ready to compose, the TS Agent requests a TR to
compose the PSM. The TS Agent gets the address of the TR from the
PSM’s attributes. The rest of the attributes are attached to the request.
This interaction is a request message, part of the FIPA request protocol,
and interaction 8 is the inform message of the protocol. The TS Agent
sends one request for each of the PSMs.

7. If there are any actions ready to execute, the TS Agent requests a PS to
execute the action. The TS Agent gets the address of the PS from the
action’s attributes. The rest of the attributes are attached to the request.
This interaction is the request message part of the FIPA request protocol,
and interaction 9 is the inform message of the protocol. The TS Agent
sends one request for each of the actions.

8. TR uses information in the corresponding PSM node in the TMST to
compose the partial results. The PSM result is returned to the TS
Agent.

9. A PS keeps the necessary knowledge about how an action is executed,
and uses this knowledge and the action - input to generate a result. The
action result is returned to the TS Agent.

10. After the TS Agent has received all the results from the PSMs and actions
it forwards them to the TS Structure and tells it to update the problem
solving state. At the same time, the TS Agent checks for actions and
PSMs, in the TS Structure, ready to be executed or composed. After
this we jump back to interaction 4.

11. The TS Agent tries to get the solution from the TS Structure.

12. The TS Structure checks if the initial task of the TMST has a solution by
extracting information from the current problem solving state, and returns
it to the TS Agent as the final solution of the problem.

13. The TS Agent forwards the solution found in the TS Structure to the TR
agent. This interaction is a completion of the request protocol initiated by
interaction 1, and it represents the inform-result message of the protocol.

From these listings of interactions we see that the interface between the TS
Agent and TR agent is realized by instances of the FIPA request protocol, and
the interface between the TS Agent and a PS agent is also realized by the FIPA
request protocol. The interface between the TS Agent and the TS Structure
could be realized by method invocations. The interaction pointing from the TS
Agent to the TS Structure invoke a method, and the interaction pointing from
the TS Structure to the TS Agent are results from the method invocations (the
TS Structure can not access the TS Agent). Finally, the TS Agent is the TR’s
and PSs’ interface to the TS Structure.

40

TEAM
SPACE
Agent

PSTR

request - initialize problem solving

refuse - initialization failed

agree - initialization ok

O

request - compose PSM

request - execute action
A

inform - PSM result

inform - action result

No more actions or PSMs

More actions
and PSMs

0...n/1

0...p/0...q

failure - problem solving failed

inform - problem solving result

O

O

A

#messages/#receivers
performative - contentAgent

OR

AND
TMST

Figure 4.2: A protocol for collaborative work in CoPS. The protocol defines
the messages exchanged between the TS Agent, PSs (Problem Solvers) and TR
(Task Responsible) during problem solving in the TEAM SPACE.

The messages exchanged between TS Agent, TR and PSs during the problem
solving process are represented as an interaction protocol in figure 4.2. This is
an interaction protocol for the collaborative work in CoPS. The protocol is
composed of different instances of the FIPA request protocol. Thus, we label
the messages part of our protocol with FIPA performatives.

4.1.2 TEAM SPACE Agent

The general agent architecture

All of the different CoPS agents, including the TS Agent have a generic agent
architecture consisting of three modules, which are: Behavioral Control Unit,
Communication Module and Knowledge Base, as illustrated in figure 4.3. The
Behavioral Control Unit controls the agent’s behavior, by deciding what is the
next action that the agent should perform. As communicating is an action, the
Behavioral Control Unit will also instruct the communication module, about
when to send a message, and what to do about incoming messages.

When the Behavioural Control Unit handles an incoming message, the con-
tent (knowledge) kept by that message is added to the Knowledge Base’s Work-
ing Memory. The Working Memory keeps knowledge about the current ac-
tivities of the agent, like knowledge about the current problems being solved.
Knowledge about the agent’s capabilities are stored in the Long Term Memory.

The knowledge stored in the Knowledge Base represents the state of an
agent. A type of states called internal processes, indicate what the next proper

41

Agent Architecture

Knowledge Base
outgoing
message

incoming
message

order
to send a
message

Communication
Module

internal
state

knowledge
to be added

Behavioral Control Unit

incoming
message

Working
Memory

Long Term
Memory

Figure 4.3: The general agent architecture used by all of the CoPS agents, and
also by the TEAM SPACE (TS) Agent. The components of the architecture
are represented by boxes, and the interactions between them with arrows.

behaviors for an agent should be. The transitions between these states are
guided by different pieces of knowledge in the Knowledge Base. The different
agent types (Task Responsible, Problem Solver, TS Agent, etc.) have different
internal process states and transitions between these states. Next, the behavior
of the TS Agent is elaborated in the context of its corresponding process state
diagram. Internal process states are illustrated by boxes, while the possible
transitions between them are illustrated by arrows, see figure 4.4.

TEAM SPACE Agent Behaviour

The internal processes of the TS Agent are illustrated in figure 4.4. These
processes make up the TS Agent’s behaviour. Indicators for the TS Agent
behaviour are found in the TEAM SPACE interactions, described in section
4.1.1.

When the TS Agent enters the CoPS environment, it starts registering its
services at the Matchmaker. Next, the TS Agent waits for a request about
performing its service. When a request is accepted it uses the TMST attached
to this request to initialize the TS Structure. The TS Agent initializes a TS
Structure by instantiating a new TS Structure component, providing it with
the TMST and adding it to the list of TS Structure components, belonging to
different problem solving teams.

If the TS Structure was initialized without failure, the TS Agent checks
for actions and PSMs that are ready to be composed or executed, in the TS
Structure. If there are any actions or PSMs, these are handled. The handling
involves requesting TR to compose the PSMs, requesting the PSs to execute the
actions and updating the TS Structure with the results from the requests. After
updating the TS Structure the TS Agent checks for new actions or PMSs that
are ready. If there are no more actions or PSMs that are ready to be executed or
composed, the TS Agent ends the problem solving. At this state the TS Agent
has to check if the TS Structure has a solution to the initial problem. If there

42

TEAM SPACE Agent - Behaviour
This TS agent can only handle
one TS structure at a time.Register with

Matchmaker

Wait for
TEAM SPACE

request

Prepare
Result

Handle
Failure

End Problem
Solving

request with TMST

solution

Return Result

result

Initialize
TEAM SPACE

TS structure
(reference)

no more
actions
or PSMs

actions
and PSMs outputs/

results

Check for
Actions

and PSMs

Handle
Actions and

PSMs

failure
specification

failure

Figure 4.4: The TEAM SPACE (TS) Agent process state diagram. Internal pro-
cess states are illustrated by boxes, while the possible transitions between them
are illustrated by arrows. This process state diagram reflects the behaviours
of the TS Agent. Here we suppose that the TS Agent only handles one TS
Structure at a time.

43

is a solution, the result that is going to be returned to the TR is prepared. If
everything goes as planned, the TS Agent behaviour ends in the Return Result
- state, where the result is returned as an answer to the request that is accepted
in the Wait for TEAM SPACE request - state. If a failure happens during some
of the states, the TS Agent transits to the Handle Failure - state, where the
failure is specified. Then, the TS Agent ends in the Return Result - state, only
now the failure specifications is returned as a response to the initial request.

4.1.3 TEAM SPACE Structure Components

In subsection 4.1.1, we said that the TS Structure keeps track of the problem
solving state and has functions for manipulating it. Interactions between the
TS Agent and TS Structure also showed that the TS Agent had to use these
functions in order to coordinate a team of agents in executing actions and com-
posing PSMs. The TS Structure architecture is pictured in figure 4.5. Here we
look at the different architectural components of this structure, and how these
components interact to provide the functionality needed by the TS Agent.

TEAM SPACE (TS) Structure

The TS Structure is its own component containing a set set of other components.
None of these other components can be accessed directly by the TS Agent. The
TS Structure serves as their interface.

• Content: Plan Library, Rule Base Container, Result Library and Goal
Stack. These components can only be reached through the TS Structure
component

• Functions: TS Structure realizes the functions it provides through the
other components. Detailed information about how functions are realized
is presented in subsection 4.1.4. Functions provided by the TS Structure
and their return values are:

– Initialize. This function initializes the TS Structure with all of its
components and returns the status of the initialization. The status
describes if the TS Structure was properly initialized or not.

– Check for actions and PSMs. This function executes the rules
kept by the Rule Base Container (updates the TS Problem Solving
State) to find actions ready to execute and PSMs ready to compose
(extracts the TS Problem Solving State). If there are any actions
or PSMs ready to be processed these are returned in a list. If there
are no actions or PSMs ready to be processed, an empty list is re-
turned. And if a failure occurs, a failure specification is returned.
The function mainly has two parts:
∗ Update the TS Problem Solving State.
∗ Extract the TS Problem Solving State.

– Update the Result Library. This function updates the TS Prob-
lem Solving State by adding new facts to the Result Library. The
functions returns the status of the update. The status describes if
the TS Problem Solving State was properly updated or if a failure
did occur during the update.

44

(One team space for each team of problem solving agents)

TEAM SPACE
Problem Solving State

The TEAM SPACE structure

Plan Library Result Library

Rule Base Container

Goal Stack

TMST
with a solution

part

Facts about
partial results

Facts about the
world

Rules considering
tasks

Rules considering
PSMs

Facts about
achieved goals

Results/
Knowledge

Used to generate
rules

Facts about the
problem

solving state
The knowledge decides
the outcome of executing
the rules.

Executing the rules
gives new knowledge

Rules considering
actions

Executing the
rules might
recognize new
achieved goals

Achieved
goal
-name
-result

Executed
Action
-name
-result

Composed
PSM
-name
-result

Action
Ready to
Execute
-name
-executor
-input
-teamID

PSM Ready
to Compose
-name
-executor
-input
-partial results
-teamID

The problem solving state

Figure 4.5: The architecture of the TEAM SPACE (TS) Structure. Rule Base
Container keeps and manipulates a set of rules. Result Library and Goal Stack
keeps and manipulates facts. Plan Library provides information stored in the
TMST. TEAM SPACE (TS) Problem Solving State, represents a view of the
facts stored in the Result Library and the Goal Stack.

45

– Get the solution. This function returns the solution to the initial
task, if it exists. If there is no solution this is also reported. The
solution can be found from the TS Problem Solving State.

• Accessed by: The TS Agent accesses the TS Structure to update and
extract necessary information about the TS Problem Solving State. TS
Agent uses information about the TS Problem Solving State to coordinate
a team of agents.

Plan Library

The Plan Library basically serves as the interface to the TMST.

• Content: A copy of the TMST that has all the necessary information
about the problem to be solved. The TMST is placed in the Plan Library
when the TS Structure initializes it.

• Functions: Extract different kinds of information from the TMST.

• Accessed by: TS Structure accesses the Plan Library during the initialize
function by setting the TMST. The Rule Base Container generates a set of
rules during the initialization. The rules that are generated are specialized
for the problem being solved, and the Rule Base Container therefore access
the Plan Library to get the necessary information from the TMST.

Rule Base Container

The Rule Base Container has a rule base and functions to manipulate the rules.

• Content: A set of rules. The rules are categorized into three types: Rules
considering tasks, rules considering PSMs and rules considering actions.
The rules are generated by the Rule Base Container from information
in the TMST, when the TS Structure is being initialized. Information
from the TMST includes: Node attributes (name, input, output, etc.),
relationships between sub-nodes and super-nodes, and I/O dependencies
between subtasks of a PSM.

• Functions: Generate and execute rules. Detailed description of how the
Rule Base Container converts the information from the TMST into rules,
and how the rules are executed is described after this introduction to the
TS Structure components.

• Accessed by: TS Structure accesses the Rule Base Container during the
initialize function, to make it generate a set of rules. TS Structure also
accesses the Rule Base Container during the check for actions and PSMs
function, to make it execute the rules. By executing the rules the TS
Problem Solving State is updated.

Result Library

The Result Library has a knowledge base with facts represented by using specific
templates, and functions to manipulate those facts.

46

• Content: A list of facts, which evolves during the problem solving pro-
cess, and a set of templates. The templates describe how the different
types of facts should be represented, and are added to the Result Library
during the initialization of the TS Structure. The first fact is added during
the initialization of the TS Structure, and represents the initial input to
the problem solving process.

• Functions: Extract certain types of facts, add new facts, remove old facts
and add templates.

• Accessed by: TS Structure accesses the Result Library during the ini-
tialize function to make it add a set of templates and the initial input
to the list of facts. TS Structure also accesses the Result Library during
the function update the Result Library - facts about the result of executed
actions and composed PSMs are added. The Rule Base Container uses
the facts stored in the Result Library when executing its rules. Facts in
the Result Library are used to evaluate the left hand side conditions of a
rule, and if evaluated to be true, the rule fires. All of the rules kept by
the Rule Base Container are evaluated during an execution, and the rules
that fire may add new facts to the Result Library.

Goal Stack

The Goal Stack also has a knowledge base with facts represented using one
specific template, and functions to manipulate those facts.

• Content: A list of facts representing goals part of the TMST that have
been achieved until the current state of the problem solving process, and
a template describing how the goal - facts should be represented. The
template is added during the initialization of the TS Structure.

• Functions: Extract a certain fact, add new facts and add a template.

• Accessed by: TS Structure accesses the Goal Stack during the initialize
function to make it add a template. Some of the rules in the Rule Base
Container decide when a goal is achieved. When one of these rules fires a
fact about the achieved goal is added to the Goal Stack.

The TEAM SPACE (TS) Problem Solving state.

The TS Problem Solving State is not a component, but rather a view of facts
kept by the Result Library and the Goal Stack. The state is made up of fulfilled
goals attributed with name and result, executed actions attributed with name
and result, composed PSMs attributed with name and result, actions ready to
execute attributed with name, executor, input and teamID, and PSMs ready
to compose attributed with name, executor, input, partial results and teamID.
The TS Problem Solving State changes when new facts are added or removed
from the Result Library and Goal Stack.

4.1.4 TEAM SPACE (TS) Structure Functions

Here, detailed information about the TS Structure functions and how they are
realized by the different components of the TS Structure are given.

47

Initialize

After the TS Agent has created a TS Structure component with a TMST, it
calls the initialize function in the TS Structure with the TMST as an input.
The TS Structure component initializes itself and its components, using the
information in the TMST. Finally, it returns the status of the initialization.

The TS Structure is initialized through the initialization of its components.
The Plan Library is initialized as the TS Structure provides it with the TMST.
Besides the information about the decomposition of the initial task, the TMST
has these attributes: team ID, address of the requester (Task Responsible) of
the TS Structure, and initial input to the problem solving process. The Result
Library is initialized by the TS Structure in two stages. First, the TS Structure
tells the Result Library to define a set of templates describing how facts should
be presented. And second, the TS Structure gets ”the initial input to the
problem solving process” from the Plan Library and tells the Result Library
to add this information. The Result Library translates ”the initial input to
the problem solving process” into a fact represented on the form of one of the
templates. The Goal Stack is initialized by the TS Structure telling it to define
a template describing how its facts about achieved goals should be represented.

Templates in the Goal Stack and Result Library are pre-defined and generic.
They may be used to represent facts used in any problem solving process, where
the initial problem (or task) is decomposed by a TMST. The generic templates
look like this (the first template is used in the Goal Stack, and the rest of them
in the Result Library):

(achieved
(slot goal)
(slot output))

(taskinput
(slot name)
(slot value))

(taskoutput
(slot name)
(slot value))

(actioninput
(slot name)
(slot value))

(actionoutput
(slot name)
(slot value))

(psminput
(slot name)
(slot value))

(psmoutput
(slot name)

48

(slot value))

(ready to execute
(slot action)
(slot action type))
(slot input)
(slot executor))

(ready to compose
(slot psm)
(slot input)
(multislot partial results)
(slot executor))

(executed
(slot action)
(slot output))

(composed
(slot psm)
(slot output))

The first string in the constructs is the name of the template or the concept it
defines. Names following slot are attributes of the concept. And finally, names
following multislot refer to a list of attributes. Slot-values of the templates may
contain plain strings or strings represented in a predefined ontological knowledge
representation. Meaning that the slot-values are specific to the domain of the
problem being solved. Slot-values refer to information stored in the TMST.
The templates, and therefore the problem solving, are domain independent, but
they are restricted to our way of solving the problem. Therefore these templates
should reflect a CoPS Ontology (not defined in this thesis).

The last step of the initialization, is the most complicated one. Then the TS
Structure tells the Rule Base Container to generate a set of rules, that will be
used to coordinate the problem solving process. The Rule Base Container uses
the information in the TMST, kept by the Plan Library, to generate the rules.

As is described before, the TMST has actions, PSMs and tasks, each task
has a goal. PSMs describe how a task (the goal of the task) is accomplished.
When the TMST has a solution, the nodes part of the solution are tagged.
Each tagged PSM has a list of subtasks, which results need to be composed.
There are I/O dependencies between these PSM subtasks which are described
in the PSM. Each tagged task only has one PSM or action. A tagged action
is a directly executable PSM. Information needed by the Rule Base Container,
for it to generate the rules, is extracted from the different tagged nodes of the
TMST by the Plan Library, like described in table 4.2.

There have been made some assumptions to simplify the the generation
of rules, owing to the fact that the CoPS ontology is not prioritized. These
assumptions should be considered removed later. We assume that the output of
an action or a PSM directly serves as the output of the task that this action or
PSM accomplishes. Further, we assume that the input of a task directly serves

49

Table 4.2: Information needed from each of the nodes (action, PSM, task) in
the TMST to make the rules in the Rule Base Container.

Node in the TMST Piece of information
action name

type
inputname
input/input value
output name
executor

PSM name
input name
input value
output name
executor
subtasks
I/O dependencies among subtasks

task goal (name)
input name
input value
output name
PSM/action that accomplishes the task (sub-node)

as the input of its sub-node, either an action or a PSM. And finally, we assume
that the input of a PSM serves directly as input of at least one of its sub-tasks.
These assumptions give directions for the different rule constructs.

There are different types of rules, divided into three classes. The first class
has rules instantiating rule constructs considering tasks, the second class has
rules instantiating rule constructs considering PSMs, and the third class has
rules instantiating rule constructs considering actions. The rule constructs are
skeletons (templates), describing general rules. Rule constructs are built from
the templates defining how facts should be represented in the Result Library
and Goal Stack. Rule constructs are pre-defined and generic, like the templates.
And these constructs may be instantiated for any problem solving process, where
the initial problem (or task) is decomposed by a TMST.

Fact templates define concepts with slot-values related to the TMST. When
a rule construct is instantiated, slots in the fact templates are filled in with the
correct values, from the TMST. The rule instantiations specializes the Rule Base
Container for assisting in solving the task, decomposed by the TMST. Instan-
tiation of all the necessary rules are done by traversing the tagged nodes part
of the TMST solution. The traversing starts with the initial task. Instantiation
of rule constructs has the same meaning as generating the rules.

When the Rule Base Container starts generating the rules, it first gets the
name of the initial task of the TMST from the Plan Library, and generates
rules related to this task. It then gets the name of the task’s PSM or action
sub-node. If the task’s sub-node is a PSM, the Rule Base Container generates
rules related to that PSM, and then gets the names of the PSM’s sub-tasks.
Next, rules related to each of these sub-tasks are generated. The tagged nodes

50

in the TMST are traversed until all of the actions are reached, and rules related
to these actions are generated.

When a task is reached during the traversing of tagged nodes in the TMST,
the Rule Base Container uses the task name to get the additional information
about that task, listed in table 4.2, from the Plan Library. This information
includes the name of the PSM or action that is the sub-node of the current
task. Some of the rules considering a task also need information about that
task’s sub-node. Thus, additional information about the PSM or action is also
gotten from the Plan Library. Then the Rule Base Container instantiates all
of the rule constructs considering tasks, with the information gotten from the
Plan Library. The rules are kept by the Rule Base Container. Next, rules
related to the task’s sub-node (an action or PSM) is generated. Rule constructs
considering tasks are:

(rule-number
(taskoutput (name xoutput) (value ?out))
(test (neq ?out nil))

=>
(assert (achieved (goal yname) (output ?out))))

Meaning: When task x has an output value, it means that the goal y of this task
is reached. The fact that the goal y is achieved and has the output value of task
x is added(asserted) to the Goal Stack.

(rule-number
(actionoutput (name xoutput) (value ?out))
(test (neq ?out nil))

=>
(assert (taskoutput (name youtput) (value ?out))))

Meaning: This rule is only made if the task is linked to an action. When action
x has an output value, we add a fact to the Result Library saying that task y
has an output value which is the same as the output of the action x. Action x
performs task y.

(rule-number
(taskinput (name xinput) (value ?in))
(test (neq ?in nil))

=>
(assert (actioninput (name yinput) (value ?in))))

Meaning: This rule is only made if the task is linked to an action. When task x
has an input value, we add a fact to the Result Library saying that action y has
an input value which is the same as the input of the task x. Action y performs
task x.

(rule-number
(psmoutput (name xoutput) (value ?out))
(test (neq ?out nil))

=>
(assert (taskoutput (name youtput) (value ?out))))

51

Meaning: This rule is only made if the task is linked to a PSM. When PSM x
has an output value, we add a fact to the Result Library saying that task y has
an output value which is the same as the output of the PSM x. PSM x performs
task y.

(rule-number
(taskinput (name xinput) (value ?in))
(test (neq ?in nil))

=>
(assert (psminput (name yinput) (value ?in))))

Meaning: This rule is only made if the task is linked to a PSM. When task x
has an input value, we add a fact to the Result Library saying that PSM y has
an input value which is the same as the input of the task x. PSM y performs
task x.

When a PSM is reached during the traversing of tagged nodes in the TMST, the
Rule Base Container uses the PSM name to get the additional information about
that PSM, listed in table 4.2, from the Plan Library. This information includes
the name of the sub-tasks of the current PSM. Some of the rules considering
a PSM also need information about that PSM’s sub-tasks. Thus, information
about the sub-tasks is also gotten from the Plan Library. Then the Rule Base
Container instantiates all of the rule constructs considering PSMs, with the
information gotten from the Plan Library. The rules are are kept by the Rule
Base Container. Next, rules related to the PSM’s sub-tasks are generated, for
one task at a time. Rule constructs considering PSMs are:

(rule-number
(taskoutput (name xoutput) (value ?out))
(test (neq ?out nil))

=>
(assert (taskinput (name yinput) (value ?out))))

Meaning: This rule is added when there are I/O -dependencies between the sub-
tasks of a PSM. One rule is added for each pair of dependent tasks. When task
x has an output value, we add a fact to the Result Library saying that task y has
an input value which is the same as the output of the task x. Task y can not be
achieved before task x has an output(solution).

(rule-number
(taskoutput (name x1output) (value ?out1))
(test (neq ?out1 nil))
(taskoutput (name x2output) (value ?out2))
(test (neq ?out2 nil))
...
(taskoutput (name xnoutput) (value ?outn))
(test (neq ?outn nil))

=>
(assert (ready to compose

(psm yname)

52

(partialresults ?out1 ?out2 ... ?outn)
(executor agentname))))

Meaning: When all of PSM y’s subtasks (x1 - xn) has an output value, we add
a fact to the Result Library saying that PSM y is ready to be composed, and the
partial results are set to be the output values from the subtasks.

(rule-number
(composed (psm xname) (output ?out))
(test (neq ?out nil))
?fact <- (ready to compose (psm xname))

=>
(assert (psmoutput (name xoutput) (value ?out)))
(retract ?fact))

Meaning: When PSM x is composed, we add a fact to the Result Library saying
that the output value of PSM x is the same as the output value from the compo-
sition. The rule also sees that the fact saying that PSM x is ready to compose
is removed from the Result Library.

(rule-number
(psminput (name xinput) (value ?in))
(test (neq ?in nil))

=>
(assert (taskinput (name yinput) (value ?in))))

Meaning: When PSM x has an input value, we add a fact to the Result Library
saying that the input value of task y is the same as the input value of PSM x.
The rule is created if the information in the TMST says that the input value
of PSM x is the same as the input value of task y, which is one of the PSM’s
sub-tasks.

When an action is reached during the traversing of nodes in the TMST, the
Rule Base Container uses the action name to get the additional information
about that action, listed in table 4.2, from the Plan Library. Then the Rule
Base Container instantiates all of the rule constructs considering actions, with
the information gotten from the Plan Library. The rules are kept by the Rule
Base Container. Rule constructs considering actions are:

(rule-number
(actioninput (name xinput) (value ?in))
(test (neq ?in nil))

=>
(assert (ready to execute

(action xname)
(action type xtype) (input ?in)
(executor agentname))))

Meaning: When action x has an input value, we add a fact to the Result Library
saying that action x is ready to be executed. The input value of action x is set
as the input value of the added fact.

53

(rule-number
(executed (action xname) (output ?out))
(test (neq ?out nil))
?fact <- (ready to execute (action xname))

=>
(assert (actionoutput (name xoutput) (value ?out)))
(retract ?fact))

Meaning: When action x is executed, we add a fact to the Result Library saying
that the output value of action x is the same as the output value from the execu-
tion. The rule also sees that the fact saying that action x is ready to be executed
is removed from the Result Library.

After the Rule Base Container has rules for all of the tagged nodes of the
TMST, the initialization of the Rule Base Container is done. And thus, the
initialization of the TS Structure is finally done as well. If the information kept
by the TMST is correctly defined, these rules will guide the problem solving
process in an effective manner until the solution to the initial task (goal) is
found.

Check for Actions and PSMs

When the TS Agent calls the check for actions and PSMs function in the TS
Structure, the TS Structure starts updating the TS Problem Solving State. The
TS Structure tells the Rule Base Container to execute the rules. When the
Rule Base Container executes the rules, all of the rules generated during the
initialization is matched against the facts stored in the Result Library.

A Rule’s left-hand side lists a set of conditions that has to be true for the
rule to fire. These conditions are represented using the same templates as are
used in the Result Library. For a condition to be true, there has to be a fact
in the Result Library that matches this condition. And both the fact - and
the condition representation must be using the same template. When a rule is
matched against the facts in the Result Library, all of the conditions on its left
hand side must evaluate to be true, for this rule to fire.

A rule’s right-hand side lists a set of consequences that are realized if the
rule fires. These consequences are represented using the templates in the Result
Library or the Goal Stack. If we look at the rule constructs described before, we
see that a rule’s right hand sides define two different consequence-types: (assert
(fact)) and (retract (fact)). The assert-consequence means that a fact should
be added, and the retract-consequence means that a fact should be removed.
The facts are added or removed from the Result Library or the Goal Stack,
depending on which templates are used.

Thus, when the Rule Base Container executes the rules and some of the
rules fire, the Rule Base Container tells the Result Library or the Goal Stack
to modify their lists of facts by adding or removing facts. As the facts stored
in the Result Library and the Goal Stack at any time defines the TS Problem
Solving State, the TS Problem Solving State is now updated.

When the TS Problem Solving State is updated, the TS Structure moves
on to the next step of the check for actions and PSMs function. This step
involves extracting information from the TS Problem Solving State. More pre-

54

cisely this means finding out if there are new actions or PSMs that are ready
to be processed. The TS Structure tells the Result Library to extract a facts
on the form: (ready to execute (action action name) (action type type) (input
input value) (executor agent name)), (ready to compose (psm psm name) (par-
tialresults result1 result 2 result3) (executor agent name)). The Result Library
looks for those facts, and translates them into lists of actions and PSMs (with
attributes), and returns them to the TS Structure. The list is finally returned
by the TS Structure to the TS Agent.

Update the Result Library

When the TS Agent has received the results from the PSs’ execution of actions
and TR’s composition of partial results, it translates them into a list of actions
and PSMs (with the results as attributes). The TS Agent calls the TS Structure
function update the result library with the list as an input. The TS Structure
forwards this list to the Result Library and tells it to add the information as
new facts. The Result Library translates the information in the list into facts.
The facts are represented by using the pre-defined templates. Then, these facts
are added to the Result Library. The facts may look like this: (executed (action
action name) (output output value)) and (composed (psm psm name) (output
output value)). By adding these facts to the Result Library, the TS Problem
Solving State has changed, and it may cause new rules to fire next time the
rules are executed.

Get the solution

When the TS Agent tries to get the solution to the initial task from the TS
Structure it calls the get the solution function. The TS Structure asks the Plan
Library for the initial goal. Then, the TS Structure asks the Goal Stack to
get the output of the initial goal by providing it with the goal name. The Goal
Stack searches through its facts for facts on the form (achieved (goal goal name)
(output output value)), where the goal slot-value matches the name of the initial
goal. The output slot-value is returned as the solution. The value that is
returned to the TS Structure, is the solution to the initial goal, and at the same
time the solution to the initial task, which the goal is related to in the TMST.
The TS finally structure returns the solution to the TS Agent.

4.2 An Example

In this section we see how a problem is solved in the TEAM SPACE, step by
step. It is the same example as introduced in chapter 3. Remember that the
agents in the system are: PA, TR, DEC, and the PSs - PS-LA, PS-LSA, PS-
PDBA and PS-RA. This example focus on the steps 8-11 in the example given in
chapter 3. The steps are also describing the TEAM SPACE interfaces, pictured
in figure 4.1. A new agent is introduced in the system, which is the TS Agent.

In this example, every time the TS Structure get the Rule Base Container
to execute the rules we show the TEAM SPACE problem solving state. Here we
list all the facts present in the Goal Stack - and Result Library that contribute
to the TS Problem Solving State. The numbers initiating each described step
of the problem solving corresponds to the interactions in figure 4.1.

55

Take
laboratory

test

Performing
blood test

Get patient
info

Getting
patient info

from patients
database Getting

patient info
from manual

archive

Get
blood Analyze

blood

Taking
bloodtest

Analyzing
bloodtest

mechanically

Analyzing
bloodtest
manually

5

8

4

2

9

5
4 2

11

11

PS-DBA

PS-RA

PS-LA

PS-LSA

PS-LA

Task

Initial task

Problem solving method (PSM)

I/O-dependency

Action (primitive PSM) Price

Executor

Figure 4.6: The TMST showing the solution, marked with shaded nodes. The
lowest cost suggested for actions or PSMs propagates upwards in the tree-
structure. Actions are connected to executors (Problem Solvers, PSs)- that
has offered to execute them for the price attached to the corresponding action.

1)The TR sends a request to the TS Agent to initialize the TS Structure. At-
tached to this request is the TMST in figure 4.6. Each of the nodes in the
TMST has the attributes listed in chapter 3 - table 3.1.
2)The TS Agent creates a TS Structure component. And calls the function
initialize on the TS Structure with the TMST as an input. The TS Structure
uses the information of the TMST to initialize for problem solving. The TMST
is set in the Plan Library, the Result Library and Goal Stack is initialized with
templates, and the rules are generated by the Rule Base Container using the
domain specific knowledge stored in the TMST and the structure of the TMST
itself. The ”initial input to the problem solving process” is also translated into
the fact (taskinput (name ”takeLaboratoryTest input) (value ”(Patient :name
Paul)”, and added to the Result Library.
3) The TS Agent checks for actions ready to execute and PSMs ready to compose
(for the first time after the initialization), by calling the check for actions and
PSMs function of the TS Structure.
4) The TS Structure gets the Rule Base Container to execute the rules, and the
TS Problem Solving State is updated:

• Fulfilled goals: (no)

• Executed actions: (no)

• Composed PSMs: (no)

• Actions ready to Execute:
(ready to execute (action ”gettingPatientInfoDB”) (input ”(Patient :name

56

Paul)”) (executor ”PS-PDBA”) (teamID ”1”))

• PSMs ready to compose: (no)

The action ready to execute (gettingPatientInfoDB), with its information, is
returned to the TS Agent.
7-9-10) The TS Agent requests PS-PDBA to execute gettingPatientInfoDB,
and submits the attributes in the request. PS-PDBA executes the action and
returns the result. TS Agent asks the TS Structure to update the TS Problem
Solving State, by calling the function update the Result Library with the result
as an input. The TS Structure makes sure that this fact is added to the Result
Library: (executed (action ”gettingPatientInfoDB”) (output ”(Patient :name
Paul :into Information about Paul)”)). Then, the TS Agent checks for actions
ready to execute and PSMs ready to compose (for the second time), by calling
the check for actions and PSMs function of the TS Structure.
4) The TS Structure gets the Rule Base Container to execute the rules, and the
TS Problem Solving State is updated:

• Fulfilled goals:
(achieved (goal ”getPatientInfo goal”) (output ”(Patient :name Paul :info
Information about Paul)”))

• Executed actions:
(executed (action ”gettingPatientInfoDB”) (output ”(Patient :name Paul
:info Information about Paul)”))

• Composed PSMs: (no)

• Actions ready to Execute:
(ready to execute (action ”takingBloodtest”) (input ”(Patient :name Paul
:info Information about Paul)”) (executor ”PS-LA”) (teamID ”1”))

• PSMs ready to compose: (no)

The action ready to execute (takingBloodtest), with its information, is returned
to the TS Agent.
7-9-10) The TS Agent requests PS-LA to execute gettingPatientInfoDB, and
submits the attributes in the request. PS-LA executes the action and returns
the result. TS Agent asks the TS Structure to update the TS Problem Solving
State, by calling the function update the Result Library with the result as an
input. The TS Structure makes sure that this fact is added to the Result Li-
brary: (executed (action ”takingBloodtest”) (output ”(Patient :name Paul :info
Information about Paul :blood sample reference 3456)”)). Then, the TS Agent
checks for actions ready to execute and PSMs ready to compose (for the third
time), by calling the check for actions and PSMs function of the TS Structure.
4) The TS Structure gets the Rule Base Container to execute the rules, and the
TS Problem Solving State is updated:

• Fulfilled goals:
(achieved (goal ”getPatientInfo goal”) (output ”(Patient :name Paul :info
Information about Paul)”))
(achieved (goal ”getBlood goal”) (output ”(Patient :name Paul :info In-
formation about Paul :blood sample reference 3456)”))

57

• Executed actions:
(executed (action ”gettingPatientInfoDB”) (output ”(Patient :name Paul
:info Information about Paul)”))
(executed (action ”takingBloodtest”) (output ”(Patient :name Paul :info
Information about Paul :blood sample reference 3456)”))

• Composed PSMs: (no)

• Actions ready to Execute:
(ready to execute (action ”analyzingBloodMech”) (input ”(Patient :name
Paul :info Information about Paul :blood sample reference 3456)”) (ex-
ecutor ”PS-LSA”) (teamID ”1”))

• PSMs ready to compose: (no)

The action ready to execute (analyzingBloodMech), with its information, is
returned to the TS Agent.
7-9-10) The TS Agent requests PS-LSA to execute analyzingBloodMech, and
submits the attributes in the request. PS-LSA execute the actions and returns
the result. TS Agent asks the TS Structure to update the TS Problem Solv-
ing State, by calling the function update the Result Library with the result
as an input. The TS Structure makes sure that this fact is added to the Re-
sult Library: (executed (action ”analyzingBloodMech”) (output ”(Patient :name
Paul :test results (TestResult :description NA - normal, Glucose - high, HB -
low))”)). Then, the TS Agent checks for actions ready to execute and PSMs
ready to compose (for the fourth time), by calling the check for actions and
PSMs function of the TS Structure.
4) The TS Structure gets the Rule Base Container to execute the rules, and the
TS Problem Solving State is updated:

• Fulfilled goals:
(achieved (goal ”getPatientInfo goal”) (output ”(Patient :name Paul :info
Information about Paul)”))
(achieved (goal ”getBlood goal”) (output ”(Patient :name Paul :info In-
formation about Paul :blood sample reference 3456)”))
(achieved (goal ”analyzeBlood goal”) (output ”(Patient :name Paul :info
Information about Paul :test results (TestResult :description NA - normal,
Glucose - high, HB - low))”))

• Executed actions:
(executed (action ”gettingPatientInfoDB”) (output ”(Patient :name Paul
:info Information about Paul)”))
(executed (action ”takingBloodtest”) (output ”(Patient :name Paul :info
Information about Paul :blood sample reference 3456)”))
(executed (action ”analyzingBloodMech”) (output ”(Patient :name Paul
:info Information about Paul :test results (TestResult :description NA -
normal, Glucose - high, HB - low))”))

• Composed PSMs: (no)

• Actions ready to Execute: (no)

58

• PSMs ready to compose:
(ready to compose (psm ”performingBloodTest”) (input ”(Patient :name
Paul)”) (partial results ”(Patient :name Paul :info Information about Paul)”
”(Patient :name Paul :info Information about Paul :blood sample reference
3456)” ”(Patient :name Paul :info Information about Paul :test results
(TestResult :description NA - normal, Glucose - high, HB - low))”) (ex-
ecutor ”TR”))

The PSM ready to compose (performingBloodTest), with its information, is
returned to the TS Agent.
6-8-10) The TS Agent requests TR to compose performinBloodTest, and sub-
mits the attributes in the request. TR composes the partial results from the
PSM’s subtask and returns the final result. TS Agent asks the TS Structure to
update the TS Problem Solving State, by calling the function update the Result
Library with the result as an input. The TS Structure makes sure that this fact
is added to the Result Library: (composed (psm ”performingBloodTest”) (out-
put ”(Patient :name Paul :test results (TestResult :description NA - normal,
Glucose - high, HB - low))”)). Then, the TS Agent checks for actions ready to
execute and PSMs ready to compose (for the fifth time), by calling the check
for actions and PSMs function of the TS Structure.
4) The TS Structure gets the Rule Base Container to execute the rules, and the
TS Problem Solving State is updated:

• Fulfilled goals:
(achieved (goal ”getPatientInfo goal”) (output ”(Patient :name Paul :info
Information about Paul)”))
(achieved (goal ”getBlood goal”) (output ”(Patient :name Paul :info In-
formation about Paul :blood sample reference 3456)”))
(achieved (goal ”analyzeBlood goal”) (output ”(Patient :name Paul :info
Information about Paul :test results (TestResult :description NA - normal,
Glucose - high, HB - low))”))
(achieved (goal ”takeLaboratoryTest goal”) (output ”(Patient :name Paul
:test results (TestResult :description NA - normal, Glucose - high, HB -
low))”))

• Executed actions:
(executed (action ”gettingPatientInfoDB”) (output ”(Patient :name Paul
:info Information about Paul)”))
(executed (action ”takingBloodtest”) (output ”(Patient :name Paul :info
Information about Paul :blood sample reference 3456)”))
(executed (action ”analyzingBloodMech”) (output ”(Patient :name Paul
:info Information about Paul :test results (TestResult :description NA -
normal, Glucose - high, HB - low))”))

• Composed PSMs:
(composed (psm ”performingBloodTest”) (output ”(Patient :name Paul
:test results (TestResult :description NA - normal, Glucose - high, HB
- low))”))

• Actions ready to Execute: (no)

• PSMs ready to compose: (no)

59

An empty set of PSMs to compose and actions ready to execute is returned to
the TS Agent.
5-11-12) Since there are nothing more to do, the TS Agent tries to get the
solution, by calling the function get the solution in the TS Structure. The TS
Structure finds that the initial task ”takeLaboratoryTest” is solved, since the TS
Problem Solving State has the fact: (achieved (goal ”takeLaboratoryTest goal”)
(output ”(Patient :name Paul :test results (TestResult :description NA - normal,
Glucose - high, HB - low))”)). This fact exists in the Goal Stack, and indicates
that the goal of the initial task is accomplished. The output of the achieved
goal is returned as the solution for the TS Agent.
13) Finally, the TS Agent returns the solution, ”(Patient :name Paul :test results
(TestResult :description NA - normal, Glucose - high, HB - low))”, to the TR.

4.3 TEAM SPACE Architecture Additions

Here we look at additions to the core TEAM SPACE architecture. In section
4.3.1 we describe how several problem solving teams may solve their problems at
the same time in parallel TEAM SPACEs. Section 4.3.2 explains how failures
are handled and reported by the TEAM SPACE Architecture. And finally,
section 4.3.3 mentions the problem of re-planning if any unanticipated events
occur during the problem solving process, and how this may be solved by the
TEAM SPACE architecture.

4.3.1 Parallel TEAM SPACEs

Providing parallel TEAM SPACEs in our architecture can be done in two dif-
ferent ways. In the first way, illustrated by figure 4.7, there are only one TS
Agent. In the second way, illustrated by figure 4.8, there are several TS Agents.
Some explanations to these figures follow.

In figure 4.7 we have only one TS Agent, which assists in solving three
different problems (tasks) at once. There has to be one TR for each of the
problems. The TR knows about the teamID and the TMST which decomposes
the initial task. The PSs can join several problem solving teams at the same
time. In our figure one PS joins team 1 and team 2, and the other PS joins team
1 and team 3. A PS knows about which actions it has committed to perform in
each of the teams it joins.

When the TS Agent receives requests from a TRs to initialize a TS Structure,
the TS Agent creates a new TS Structure component and calls the initialize
function, for each of these requests. Each TS Structure component is associated
with the requesting TR’s team ID, which is stored in the TMST attached to
that TR’s request. The TS Agent handles problem solving in all of the created
TS Structures at the same time by ”running its behaviour in parallel”. Exactly
what part of the behaviour that runs in parallel, and how this works, is shown
in figure 4.9. This figure is almost the same as figure 4.4. The difference is
that, after receiving a number of requests for for initializing a TS Structure, the
behaviour splits into as many parallel behaviours as the number of requests (or
the number of TS Structures). When all of the requests are readily processed
(Done), the TS Agent can accept new requests for initializing a TS Structure.

60

TEAM SPACE

TR

TEAM
SPACE
agent

PS

TEAM SPACE
structure 2

teamID_1 action_a

teamID_2 action_b

PS

teamID_1 action_d

teamID_3 action_e

teamID_2 action_c

teamID_1 TMST_1

TR

teamID_2 TMST_2

TR

teamID_3 TMST_3

TMST_2

TEAM SPACE
structure 1

TMST_1

TEAM SPACE
structure 3

TMST_3

teamID_1

teamID_2

teamID_3

...

...

...

Parallel TEAM SPACE Problem Solving
An approach with

one TEAM SPACE agent

...

<text>

Agent

TMST -
Task Method Sub-Task tree

Knowledge, attribute

Reference

Interaction
Pointer

Figure 4.7: Parallel problem solving in the TEAM SPACE with a single TEAM
SPACE (TS) Agent. The TS Agent has references to a set of TEAM SPACE
(TS) Structures, and it interacts with several problem solving teams at once.
The problem solving teams are comprised of Problem Solvers (PSs) and a Task
Responsible (TR).

61

TEAM SPACE

TR

TEAM
SPACE
agent 1

PS

TEAM SPACE
structure 2

teamID_1 action_a

teamID_2 action_b

PS

teamID_1 action_d

teamID_3 action_e

teamID_2 action_c

teamID_1 TMST_1

TR

teamID_2 TMST_2

TR

teamID_3 TMST_3

TMST_2

TEAM SPACE
structure 1

TMST_1

TEAM SPACE
structure 3

TMST_3

teamID_1 ...

Parallel TEAM SPACE Problem Solving
An approach with

several TEAM SPACE agents

TEAM
SPACE
agent 2

teamID_2 ...

TEAM
SPACE
agent 3

teamID_3 ...

...

<text>

Agent

TMST -
Task Method Sub-Task tree

Knowledge, attribute

Reference

Interaction
Pointer

Figure 4.8: Parallel problem solving in the TEAM SPACE with multiple TEAM
SPACE (TS) Agents. Each TS Agent only has reference to one TEAM SPACE
(TS) Structure, and it interacts with one problem solving team at a time. The
problem solving team is comprised of Problem Solvers (PSs) and a Task Re-
sponsible (TR).

62

TEAM SPACE Agent - Behaviour
This TS agent can handle several
TS structures in parallel.

Register with
Matchmaker

Wait for
TEAM SPACE

requests

Done

Prepare
Result

Handle
Failure

End Problem
Solving

solution

Return Result

result

Initialize
TEAM SPACE

TS structure
(reference)

no more
actions
or PSMs

actions
and PSMs outputs/

results

Check for
Actions

and PSMs

Handle
Actions and

PSMs

failure
specification

n request with TMST

problem
solving in
all n TEAM
SPACES are
done

failure

Figure 4.9: The TEAM SPACE (TS) Agent process state diagram. Internal pro-
cess states are illustrated by boxes, while the possible transitions between them
are illustrated by arrows. This process state diagram reflects the behaviours
of the TS Agent. Here we suppose that the TS Agent may handle several TS
Structures at a time.

63

During the problem solving, the TS Agent interacts with all of the PSs.
When a PS receives a request to perform an action, it verifies that he has
committed to performing this action by looking at its teamID - action tuples.
The messages between the PSs and the TS Agent and the messages between
the TRs and the TS Agent all are tagged with the teamID. Thus, the TS Agent
knows which TS Structure to update after a received message, and the PSs and
TRs can verify if the messages they receive from the TS Agent really are meant
for them.

In figure 4.8, the same three problems (tasks) are solved, as in figure 4.7.
This is a more decentralized approach to parallelism, since we have one TS Agent
for each problem solving team. The PSs interact with different TS Agents, if
they join several teams at once. This approach is appropriate if the problems to
be solved are large (many levels of decomposition in the TMST) and therefore
demands many interactions between the TS Agent and the PSs, and between
the TS Agent and the TRs.

The two different approaches to parallel problem solving in the TEAM
SPACE may also be combined.

4.3.2 Failure Handling

It is the TS Agent that discovers and handles failures during the problem solving
in a TS Structure. Figure 4.4 and 4.9 illustrates that the TS Agent has a set of
behavioural states that may transit to the state Handle Failure. During these
states the TS Agent interacts with the TS Structure, PSs and TR. Failures may
be discovered in the return values from TS functions or in messages received
from PSs and TR. Next, we describe failures that may occur in the different
behavioural states of the TS Agent:

• Initialize TEAM SPACE. In this state, the TS Agent calls the initialize
function of the TS Structure. If the TS Structure cannot be properly
initialized, this is returned. And the TS Agent transits to the state Handle
Failure. In this case the failure is specified and returned in the state Return
Result as a refuse message (part of the FIPA request protocol) to the TR.
This refuse message is a response to the TR’s request of initializing the
TEAM SPACE.

• Check for Actions and PSMs. In this state, the TS Agent calls the
check for actions and PSMs function of the TS Structure. If a failure
occurs while the TS Structure executes this function, a failure specifica-
tion is returned. And the TS Agent transits to the state Handle Failure.
The failure specification from the TS Structure function is handled and
returned to the TR in the state Return Result. The return message this
time is a failure message (part of the FIPA request protocol), which is the
result notification to the TR’s request of initializing the TEAM SPACE.

• Handle Actions and PSMs. In this state the TS Agent requests TR to
compose PSMs and PSs to execute actions that are ready to be processed.
If any of these agents return a refuse message or a failure message, the TS
Agent transits to the Handle Failure state. If everything goes well with
the processing of PSMs and actions, the TS Agent calls the update the
Result Library function of the TS Structure. This function returns the

64

status of the update. If the return value states that the update failed, the
TS Agent transits to the Handle Failure state. The failure is handled, and
a specification is returned for the TR in a failure message (like described
for the previous state).

• End Problem Solving. In this state the TS Agent calls the Get the
solution function of the TS Structure. If the function reports that there
are no solution, the TS Agent transits to the Handle Failure state. The
failure is handled, and a specification is returned for the TR in a failure
message (like described over).

How the different failures are handled is not proposed here, and will be suggested
for future work in chapter 8. For now, when a TS Agent discovers a failure,
the problem solving in the corresponding TS Structure is terminated, and the
failure specification is returned to the TR that requested the TS Structure in
the first place. The handling of failures are closely related to dynamics and
re-planning that is shortly introduced in the next subsection.

4.3.3 Dynamics and Re-Planning

This part of the architecture is not going to be implemented. But, here we
describe how the TEAM SPACE architecture may be useful for the purpose of
dynamics and re-planning during the problem solving process.

The pre-existing CoPS architecture proposes that a team should be recon-
figured if agents change their minds about joining the team, are disconnected or
fail in any other way (this was not implemented in previous work though). If a
PS fails to execute its action, the TR should allocate this action to another PS.
If there are no available PSs that have the capability of executing the action, the
task connected to the action has to be re-planed. Re-planning the task involves
modifying the solution of the TMST.

If a PS fails to execute its action, this is recognized by the TS Agent, as
described in the previous subsection. The TS Agent transits to its Handle
Failure state, and it has the knowledge of which PS that did fail, and which
action the PS failed to solve. This is what the TS Agent could do to assist the
TR in re-allocating the action or re-planning the task of this action:

• TS Agent halts the problem solving process and requests the TR to allo-
cate the action to another PS.

• If the TR achieved to find another PS to execute the action, this PS is
invited to join the team and is informed about the team ID. The name
of the PS is returned to the TS Agent. The TS Agent then makes sure
that the rules which involve the failing PS and the action that it failed to
solve, are updated with the information about the new PS. In addition the
Result Library containing a fact defined by the template ready to execute,
representing the failed action is updated: the value of the executor slot is
replaced with the name of the new PS. Then the TS Agent may start the
problem solving process again.

• If the TR did not find another PS to execute the action, the TS Agent may
help in re-planning the task of the action that failed. Then the TS Agent
get the TS Structure to find out if the Plan Library may find any other

65

solution to that task in the TMST. The Plan Library extracts information
from the TMST and may find that the task could be accomplished by
executing another action. The TS Agent requests the TR to allocate this
action to a PS.

• If the TR achieved to find another PS to execute the action, this PS is
invited to join the team and is informed about the team ID. The name of
the PS is returned to the TS Agent. Now the TS Agent makes sure that
the rules which involve the failing PS and the action that it failed to solve,
are updated with the information about the new PS, in addition to the
information about the new action. The Result Library is also updated.
Now the ready to execute fact representing the failed action, is removed
and replaced by a fact representing the new action. Then the TS Agent
may start the problem solving process again.

If the task that has the failing action cannot be achieved at all, a bigger part of
the TMST must be re-planned. This may be done by the TS Agent in almost
the same way, only modifying a bigger set of rules in the TS Structure Rule
Base Container and facts in the TS Structure Result Library.

The rules in the Rule Base Container and the facts in the Result Library
and Goal Stack may be seen as an executable version of the TMST. Earlier in
this subsection we state that re-planning a task involves modifying the solution
of the TMST. The solution of the TMST was used to generate the rules in the
Rule Base Container and to initialize the Result Library and Goal Stack in the
first place. This means that manipulating rules and facts in the TS Structure
can be seen as modifying the solution of the TMST.

At any time the collection of facts represent the current TS Problem Solving
State. The ”executable version of the TMST” brings us from one TS Problem
Solving State till another. When, for example, a PS fails to execute an action,
the TS Problem Solving State is ”stuck”. Then the TS Agent cooperates with
the TR to find a way out of the problematic TS Problem Solving State, using
the TS Structure. Rules are manipulated and facts are modified, removed and
replaced until the facts represent a TS Problem Solving State that is no longer
”stuck”, and that conforms to one of the possible solutions of the TMST. In this
way, the TEAM SPACE may add dynamics to the team work of CoPS agents.

4.4 Other Extensions to the CoPS Architecture

The TEAM SPACE is the main extension to the pre-existing CoPS architecture.
Other extension to the CoPS architecture were proposed in chapter 3. We have
chosen to leave the CoPS Ontology out here, because it is not that important
considering the objectives of this thesis. What is important though, is to make
sure that the Problem Solver (PS) and the Task Responsible (TR) are fit to join
in the solving of subtasks - and integrating partial solutions process steps using
the TEAM SPACE.

CoPS Problem Solver

The former behaviours of the Problem Solver (PS) is shown in figure 4.10, and
the new version is shown in figure 4.11. The newer version of the PS can have

66

Figure 4.10: The former version of the Problem Solver (PS) process state
diagram. Internal process states are illustrated by boxes, while the possible
transitions between them are illustrated by arrows. This process state diagram
reflects the behaviours of PS. Taken from [34].

67

Wait for
problems
to solve

Register with
Matchmaker

Review
problem

Wait for
invitation

Consider
to join
team

bid

invitation

Wait for
problem
solving
request

Solve
problem

Return
Solution

Handle
failure

failure

accept
invitation

problem
and input

solution

failure
speci-
fication

Donerejection

reject
invitation

n new problems
n behaviour charts
running in parallel

handling
of all n problems
done

Figure 4.11: The new version of Problem solver (PS) process state diagram.
Internal process states are illustrated by boxes, while the possible transitions
between them are illustrated by arrows. This process state diagram reflects the
behaviours of TR.

68

several capabilities (not a single one, like before), meaning that it can perform
a variety of action types. It is also able to attend to several conversations at
the same time, meaning that it can perform multiple actions simultaneously.
Finally, it is extended with behavioural processes that manage the problem
solving in the TEAM SPACE. The older version of PS is described in [34, 33],
and the newer version is described next.

When the PS enters the CoPS environment it registers with the Matchmaker.
A PS registers one or more capabilities, reflecting which action(s) it is capable of
performing, or which problems it can solve. Then, it waits to receive problems to
solve from TRs. When the PS has received some problems (requests to perform
an action) it splits its behaviour into as many parts as the number of problems,
and proceeds with parallel behaviours. The different problems are processed
simultaneously, but in the following we look at the processing of one separate
problem. All of the other problems are processed in the same way.

A problem is reviewed to see if it is interesting, and if the PS has the capa-
bilities of solving it. If the PS decides to solve the problem (perform the action),
it returns a bid with a price for the solution to the TR that requested a solution
to that problem . If the TR accepts the bid of the PS, the PS gets an invitation
(with a team ID) to join a problem solving team, if not the PS gets a rejection
and is done processing the problem. When an invitation is received, the PS
considers to join the team. If the invitation is rejected (the PS do not want to
join the team) the PS is done, and if the invitation is accepted (the PS wants
to join the team) the PS starts to wait for a problem solving request from the
TS Agent to start solving the problem. A problem solving request from the TS
Agent, contains information about the problem to be solved (action to execute),
input information to this problem (knowledge needed to solve it), and a team
ID indicating which problem solving team (and TMST) this problem belongs
to. The PS uses the team ID and the information about the problem to verify
that it actually is part of the team that the team ID identifies and that it has
agreed to solve that problem. Then the PS solves the problem (executes the
action), the solution is returned to the TS Agent, and the PS is done processing
this problem. If a failure occurs while the PS tries to solve the problem, the
failure is handled, and a failure specification is returned to the TS Agent as the
”solution” of the problem. Then the PS is done processing this problem.

When all of the other problems also are readily processed and done, the PS
starts waiting again for new problems to solve.

CoPS Task Responsible

The former behaviours of the CoPS Task Responsible (TR) is shown in figure
4.12, and the new version is shown in figure 4.13. The newer version of the TR
is extended with behavioural processes that manage the problem solving in the
TEAM SPACE. The older version of the TR is described in [34, 33], and the
newer version is described next.

When the TR enters the CoPS environment it registers with the Match-
maker. It registers its capabilities of administrating the problem solving process.
Then, it waits to receive problems (tasks) to solve. When a new problem ar-
rives, the TR must review the problem to check if it is understood and accepted.
When the problem is accepted, the TR has to get the decomposition (TMST
) from the Decomposer (DEC). After the TMST is received from the DEC,

69

Figure 4.12: The former version of Task Responsible (TR) process state
diagram. Internal process states are illustrated by boxes, while the possible
transitions between them are illustrated by arrows. This process state diagram
reflects the behaviours of TR. Taken from [34].

70

Wait for
problem
to solve

Review
problem

Get
decomposition

Form
team

Return
problem
solution

Handle
failure

new problem

problem accepted

TMST

Register with
Matchmaker

Request to
initialize a

TEAM
SPACE
structure

team

Wait for PSM
composition

request
Compose

PSM
Return
PSM

solution

request,
partial
results

solution

Wait for
solution

solution

agree

failure

The TR agent keeps waiting for new
PSMs to compose, until he receives
the solution.

Figure 4.13: The new version of Task Responsible (TR) process state
diagram. Internal process states are illustrated by boxes, while the possible
transitions between them are illustrated by arrows. This process state diagram
reflects the behaviours of TR.

71

the TR can form the problem solving team, based on this TMST (described
in chapter 3). When a team is formed, the TR sends a request to initialize a
TS Structure for the TS Agent. If the TS Agent agrees to do this, the TR has
two processes running at the same time. In the first process, it waits for PSM
composition requests from the TS Agent, and when such a request is received
the TR composes the PSM and returns the solution for the TS Agent. In the
second process, the TR waits for a solution (to the initial task/problem) from
the TS Agent. As soon as a solution is received, the TR stops waiting for further
PSM composition requests, and returns the problem solution for the requester
of the problem. If any failures occur during the problem solving, the failure is
handled and specified, and returned to the requester of the problem.

4.5 How the TEAM SPACE Architecture Meets
the Functional Requirements

This section describes how the proposed architecture covers the functional re-
quirements that were listed in chapter 3. Each of the requirements are repeated
here, followed by description of how it is covered by the TEAM SPACE archi-
tecture proposed in this chapter:

1. The TEAM SPACE must keep a structure for storing partial results from
both the PSs and TR.

All partial results from the PSs and TR are kept by the TS Structure,
in the Result Library. Partial results from the PSs’ execution of actions
and the TR’s composition of PSMs, are sent to the TS Agent. The TS
Agent calls the update the Result Library function in the TS structure
with the results as an input. This function makes sure that the results are
added as facts in the Result Library.

2. The TEAM SPACE must be able to reason about the partial results and
the current problem to be solved. So that it always knows which actions
are ready to be executed, which partial results are ready to be integrated,
and which goals are met. Said in another way, the TEAM SPACE, at any
time, must keep the correct state of the problem solving process.

Reasoning in the TEAM SPACE architecture, is provided by the TS Struc-
ture Rule Base Container. The Rule Base Container is initialized when it
instantiates a set of generic rule constructs by using the information in the
TMST. The TMST has specific information about the problem that is be-
ing solved, and thus the generated rules are specialized for that problem.
When the rules are executed, facts stored in the Result Library decide
which rules that fire. The rules that fire, add new facts to the Result
Library and Goal Stack. The Result Library may also be updated when
TS Agent receives partial results from the PSs and TRs. The TS Problem
Solving State depend on certain types of facts in the Result Library and
Goal Stack. These facts include amongst others, actions that are ready to
be executed, which partial results are ready to be integrated (PSMs ready
to be composed) and which goals are met (achieved) (see figure 4.5).

72

The rules in the Rule Base Container ”reason about” the partial results
in the Result Library, updating the facts in the Result Library and Goal
Stack. The state of the problem solving process (TS Problem Solving
State) can at any time be extracted from the facts kept in the Result
Library and Goal Stack.

3. The TEAM SPACE must be able to communicate the correct informa-
tion,efficiently, to the PSs and the TR (the problem solving team).

The TEAM SPACE is comprised of two main components: TS Agent and
TS Structure. The TS Structure represents the shared memory or working
space. And the TS Agent, is the interface between the TS Structure and
the problem solving team. The TS Problem Solving State, represented by
the TS Structure, at any time has information about what information
that needs to be communicated to the PSs or TR part of a problem solv-
ing team. The TS Agents uses the information about the TEAM SPACE
Problem Solving State to decide when to communicate information to
the PSs and the TR, and thus the correct information is communicated
efficiently.

4. The TEAM SPACE must be able to handle the information received from
the PSs and TR, and update the state of the problem solving process ac-
cordingly.

It is the TS Agent that first receives the information from the PSs and
TR. Interactions between PSs and the TS Agent are realized with a FIPA-
request protocol, and so is the interactions between TR and the TS Agent.
In addition the messages sent in these interactions use the same commu-
nication language. This means that a TS Agent can understand the in-
formation received from the PSs and TR. When the TS Agent receives a
message it translates this message into a form (objects representing ac-
tions, goals and PSMs) that the TS Structure understands, and asks the
TS Structure to update the TS Problem Solving State. The TS Structure
then tells the Result Library to add the new information. The Result
Library translates the information into facts, using the generic templates
and adds the fact to its list. As mentioned before, when new facts are
added to the Result Library or Goal Stack, the TS Problem Solving State
changes.

5. The TEAM SPACE must handle concurrent problem solving, by allocating
a separate working area for each problem solving team.

The TEAM SPACE architecture proposed in this chapter, has two ap-
proaches to handling concurrent problem solving in parallel TS Structures.
These were described in section 4.3.1. The first approach involves a TS
Agent having a list of TS Structures, handling all of them in parallel, us-
ing parallel behaviour. The second approach solves the concurrency by
introducing several TS Agents into the CoPS environment, where each of
them facilitates one problem solving team with a TS Structure.

73

6. The TEAM SPACE must be able to convert the knowledge stored in the
TMST, so that it could be used to initialize the working area for a problem
solving team.

When the TS Agent receives a request to initialize a TS Structure from
the TR, it creates a TS Structure component. Next, the TS Agent calls
the initialize function on the TS Structure with the TMST with a TMST
as an input. The TS Structure initializes itself by using the information
in the TSMT considering the problem to be solved. The TS Structure is
initialized through the initializations of its components.

The Plan Library is initialized as the TS Structure provides it with the
TMST. The Plan Library is than able to extract knowledge from the
TMST, that is needed by the other TS Structure components. The Re-
sult Library is initialized by the TS Structure in two stages. First, the
TS Structure tells the Result Library to define a set of generic templates
describing how facts should be represented in the Result Library. The
templates define concept from the TMST, and assists the Result Library
in converting TMST-related knowledge into facts. And second, the TS
Structure gets ”the initial input to the problem solving process” from the
Plan Library and tells the Result Library to add this information. The Re-
sult Library translates the information into a fact represented on the form
of one of the templates. The Goal stack is initialized by the TS Structure
telling it to define a template describing how facts about achieved goals
should be represented in the Goal Stack. And finally the TS Structure tells
the Rule Base Container to initialize, by generating rules. The rules are
generated by instantiating generic rule-constructs with knowledge from
the TMST, provided by the Plan Library.

When the initialization is done: 1) The Plan Library is able to extract
necessary information from the TMST, 2) Templates have been defined,
that helps the TS Structure components to store knowledge related to
the TMST, 3) Rules have been generated that ”automates” the process of
solving the problem (or task) composed by the TMST, and 4) The ”ini-
tial input to the problem solving process”, stored in the TMST has been
translated into a fact, and stored in the Result Library.

The initialization of the TS Structure, that involves adapting the TS Struc-
ture to a specific TMST is the most extensive and complex function of the TS
Structure. When the initialization is done, the problem solving process steps:
solving of subtasks and integration of partial solutions, is ”automated” by the
TS Structure. The remaining work after the initialization involves, updating
(executing rules, adding partial results) and extracting (checkin for actions and
PSMs, getting the solution) information from the TS Problem Solving State.

Failure handling in the TEAM SPACE, discussed in subsection 4.3.2, is indi-
rectly part of the functional requirements. Dynamics and re-planning supported
by the TEAM SPACE, discussed in subsection 4.3.3, is not part of the func-
tional requirements. The subsection is added to demonstrate how the TEAM
SPACE architecture can be used for the purpose of team formation dynamics
and re-planning of tasks in future extensions of the CoPS framework.

74

4.6 Summary

In this chapter a TEAM SPACE architecture has been proposed, which con-
ceptualizes a shared memory structure, used by Task Responsible (TR) and
Problem Solvers (PSs) during the problem solving process steps: solving of sub-
tasks and integration of partial solutions. A summary of the TEAM SPACE
architecture was provided in section 4.5. That section described how the pro-
posed TEAM SPACE architecture covers all the functional requirements that
were listed in chapter 3. In addition to the TEAM SPACE architecture, the
extensions to the PS and TR part of the CoPS framework were described in
this chapter.

The TEAM SPACE architecture and the extension to the CoPS framework
are implemented in the CoPS framework prototype. Implementation details
are provided by the next chapter. In chapter 7 we describe how the CoPS
framework prototype was used to implement part of an application that realizes
a real-domain problem in a health center scenario.

75

Chapter 5

Comparison of CoPS to
Relevant Work

The TEAM SPACE architecture proposed for the problem solving in CoPS,
make CoPS a blackboard-like architecture for cooperative problem solving. This
solution differs from a traditional blackboard architecture, since CoPS is a multi-
agent framework. The TEAM SPACE architecture represents a shared memory
or workspace for the CoPS agents, using ideas from the blackboard paradigm.
This part of CoPS, facilitates the collaborative problem solving. In this chap-
ter we compare CoPS to other relevant work. Focus of the relevant work is
collaborating modules using shared memories or workspaces.

In section 5.1 criteria for the comparison are described. In section 5.2 four
different systems (architectures) that all involve collaborating modules using a
shared repository are introduced. And finally, in section 5.3 a comparison is
made between these four systems and the CoPS framework, using the chosen
criteria.

5.1 Criteria for the Comparison

In chapter 2 multiagent systems and blackboard systems were described sepa-
rately. Blackboard systems were the first attempt at integrating ”collaborating”
software modules. Work with blackboard systems has given rise to some ideas,
like shared memories, that later have been used in the development of multia-
gent systems. Multiagent system research approaches the collaborating software
paradigm from an agent-centric orientation. The goal of both blackboard - and
multiagent systems is to achieve effective collaboration with a group of indepen-
dent software entities [7]. That is also a goal in CoPS. CoPS intends to offer
a FIPA - compliant framework for developing agents engaged in distributed
collaborative problem solving.

The different kinds of relevant work introduced in the next section, all have
something to do with collaborating groups of software entities, and they all use
some kind of shared repository. First, a blackboard architecture is described.
Here a set of experts implemented as knowledge sources in a blackboard system,
collaborate to achieve a fixture design. Second, a blackboard based multiagent
system is described. This system supports concurrent engineering projects. A

76

set of agencies (groups of intelligent agents) collaborate to assist the people
working on a design project, in the project management process. Agencies also
make sure that the project follows the product oriented process steps described
on a blackboard. Results produced during the execution of a project are stored
on the blackboard, in relation to their corresponding process steps. Third we
introduce an architecture which uses a blackboard in combination with the pub-
lish/subscribe method. And finally, an architecture for an e-commerce system is
presented. In this architecture agents collaborate to buy and sell goods on the
behalf of their users. Buyer and seller agents find each other through a shared
space that implements the publish/subscribe method.

In [7] Corkill lists some key challenges involved in creating effective collab-
orating software systems. These challenges are met differently by the many
applications of such systems, and therefor serve as good criteria for comparing
the CoPS architecture to the four systems introduced above. The criteria are:

1. Representation - getting software modules to understand one another.

2. Awareness - making modules aware when something relevant to them
occurs.

3. Investigation - helping modules to quickly find information related to
their current activities.

4. Interaction - creating modules that are able to use the concurrent work
of others while working on a shared task.

5. Integration - combining results produced by other modules.

6. Coordination - getting modules to focus their activities on the right
things at the right time.

CoPS can be seen as collaborating software. But, it is neither a full-fledged
multiagent architecture nor a full-fledged classic blackboard architecture. CoPS
is a multiagent architecture using a shared workspace - the TEAM SPACE, for
collaborative problem solving. In the development of the TEAM SPACE, ideas
from blackboard systems and the publish/subscribe model were used.

5.2 Relevant work - Systems Using Shared Repos-
itories

In this section, four different systems are introduced. This work is relevant to
what has been done in this master thesis, in different ways. First, all of the
systems, like CoPS, are consisting of collaborating software modules. Second,
they all use some form of shared repository. In addition, the systems in dif-
ferent ways use general architectures or methodologies that are adopted by, or
has inspired the work with CoPS: The multiagent architecture, the blackboard
architecture and the publish/subscribe method.

77

OOP Environment -
Concentra's Concept Modeller

Supporting Modules
-IDEAS

Blackboard Environment - GBB

Blackboard Data Structure

Setup
Sequence

Components

Process Status

Fixturing
Cofiguration

Control Shell

Mathcing
Processes

Trigger Condition

Control Strategy

Knowledge Sources
Reasoning

Mechanisms
Re-Allocation

Deformation
Stability

Accessibility
Fixturing
Design

Principles

Solid Modelling

FEM-Analysis

Informationally
Complete Product

Model

Module for Fixture
Design

Module for Geometric
Reasoning

Module for Fixturing
Analysis

Figure 5.1: The architecture of the cooperative fixture design system, modified
from [28].

5.2.1 Application of a Blackboard Framework to a Coop-
erative Fixture Design System

In [28] Roy and Liao propose an application of a blackboard framework to
a cooperative fixture design system. Fixture design is a complicated process
which needs knowledge about a number of design issues including work-piece
configuration, manufacturing processes involved, machining environment, etc.

Introduction

The knowledge needed to perform a fixture design is divided between different
designers (experts) working together, sharing knowledge, and performing a vari-
ety of design tasks. When performing a generic fixture design task, the designers
use a variety of engineering-related models such as functional, equational, ana-
lytical and geometric models. The proposed cooperative fixture design system,
supports communication between knowledge sources (experts), and it accom-
modates different modeling paradigms.

An architecture for cooperative problem solving consisting of a blackboard
control system and several independently executing domain experts has been
developed. The implementation of the architecture has been carried out in a
generic blackboard framework, GBB [17, 9]. The Blackboard Environment, de-
picted in figure 5.1 consists of three major components: the Knowledge Sources

78

Figure 5.2: Hierarchical structure of the blackboard, from [28].

(KSs), the Blackboard Data Structure and the Control Structure. The black-
board environment also consults with other supporting modules. The black-
board system assists in the problem solving process, and the supporting modules
provide guidance in the actual design activities. Components of the architec-
ture belonging to the Blackboard Environment, are described next, more detailed
information about the supporting modules can be found in [28].

The Knowledge Sources

Knowledge sources (KSs) keep the domain and control knowledge needed for
problem solution. Each KS, can be written as procedures, collections of rules
(IF-THEN), algorithms, reasoning methodologies, or design constraints as logic
assertion. KSs are represented separately and independently as functional mod-
ules in the blackboard environment, and are the only contributers to the evolving
problem solution in the problem solving process. The problem solution involves
making a decision about a specific fixture design.

A number of KSs are developed to cover different general functions of the fix-
ture design system, which are grouped into Re-Allocation and Reasoning Mech-
anisms (see 5.1). In addition several domain KSs are developed to cover the
whole fixture design process, these are grouped into: Fixture Design Heuristics
- KSs who know about fixture design principles, Stability - KSs who know how
to make sure the work-piece (object for the fixturing design) keep stable during
the fixturing process, Accessibility - KSs who know how to avoid interference
and who know about how to satisfy geometric constraints, and finally Defor-
mation - KSs who considers work-piece deformation during fixturing-setup and
process operation.

The Blackboard Data Structure

The Blackboard Data Structure, provides a hierarchical organization of data.
This data involves information and solutions considering a fixturing design which
are generated during the problem solving process. Figure 5.2 illustrates an ex-
ample of a hierarchical, blackboard structure created in the system. There are
two basic components in the blackboard structure, spaces and units. Spaces
divide the whole blackboard data structure into tree-like directories for keeping

79

objects called units. The spaces and units in a blackboard structure are like
directories and files in a file system. The properties of units are determined
by their various attributes, or slots. During the problem solving process, infor-
mation (resident in slots) associated with objects (units) on one level serves as
input to a set of KSs, which place new information on the same or other levels
in turn. The objects and their properties define the vocabulary of the solution
space.

The Control Shell

The KSs respond opportunistically to changes on the blackboard. The Con-
trol Shell (in figure 5.1) monitors the changes on the blackboard and decides
what actions to take next. GBB, and thereby the fixturing design system, uses
”event driven processing” as the interface between the blackboard and the con-
trol shell. An event is defined as any change in the blackboard due to new
data or KS actions. Events are immediately made available to the control shell
which responds by either activating a KS and putting it in a queue, or invoking
execution of a KS activation.

The solution is built one step at a time. Any reasoning process(es) can
be applied at one process step to achieve local solutions. As a result, the se-
quence of KS execution becomes dynamic and opportunistic rather than fixed
and preprogrammed. Criteria are provided to determine when to terminate the
process.

Implementation of the Cooperative Fixture Design System in the
GBB Environment

How the architecture of the cooperative fixture design system (in figure 5.1)
is implemented in the GBB environment, is shown in figure 5.3. The KSs are
grouped into four main functional (domain) knowledge bases (KBs): Design
Heuristics, Stability, Accessibility and Deformation (described before). All do-
main KSs are managed by a GBB administrator which controls the activation of
and communication between the KSs. Hence the GBB administrator does the
work of the Control Shell. The administrator performs two kinds of processes in
the system: (i) activation of domain KBs according to the status of the current
blackboard data and, (ii) modification of the current blackboard data according
to the execution results of the KBs.

The administrator always consults with all domain KBs whenever there is
any modification (for fixturing configurations) on the blackboard. This allows
the system to consider appropriate fixturing configuration(s) according to all
functional requirements expressed in individual domain KBs. Any modifications
to an intermediate fixturing configuration (contributed by the domain KBs) are
regularly posted on the blackboard by the administrator.

Each domain knowledge base has a basic structure including a pre-processor,
a set of domain KSs and a re-allocation KS, and an interface mechanism. When
a domain knowledge base is activated by the GBB administrator, the pre-
processor determines which KSs should be activated. The activating conditions
are based on the content of current blackboard data (data on the processed
fixturing configuration). The interface mechanism deals with communication
between the domain KBs and the GBB administrator.

80

Figure 5.3: Implementation of the system architecture in the GBB environment,
from [28].

The use of the System for a Fixture Design Process

The system starts out with a work-piece. The goal of the KSs is to collabo-
ratively generate the clamping configurations (including clamping positions, an
optimal clamp set-up sequence, and clamping forces) of this work-piece. The
GBB administrator starts by activating an initial KS to retrieve all required
information regarding work-piece geometry, available clamping areas, cutting
tool paths, cutting forces, and clamping components. The GBB administrator
then initiates the problem solving process by posting the initial fixturing config-
uration data on the blackboard. When the blackboard is initialized, the GBB
administrator consults with all domain KBs to make them check the suitability
and applicability of the preliminary fixturing configuration. Appropriate subset
KSs are chosen by the pre-processors of their KBs, and are activated to add their
modifications to the current configuration. The changes are communicated to
the GBB Administrator through the KB’s interface mechanism, and the GBB
Administrator eventually posts the changes on the blackboard. The first level
of searching paths is formed, as the fixturing configuration is adjusted according
to the preferences and knowledge of the activated KSs. Next, all of the KBs are
again consulted to check the suitability and applicability of the current fixturing
configuration represented on the blackboard. The activated KSs provide new
adjustments, and all of the KBs are consulted again.

The propagation of the problem solving process as it progresses through the
intermediate stages of the blackboard, follows a tree-like searching path, like
illustrated in figure 5.2. Based on the current blackboard data, the system
generates the searching tree in a dynamic and opportunistic way. The system
terminates the problem solving process when the KSs cannot suggest any other

81

modifications. The final status of the blackboard provides the information about
the final clamping configuration.

5.2.2 A Blackboard-Based Multiagent System for Sup-
porting Concurrent Engineering Projects

In [19] Kao, Su and Wang propose a framework of a blackboard-based multiagent
system, called I2QFD (Integrative Intelligent Quality Function Deployment), to
facilitate the communication and coordination of distributed design projects. To
be more precise this framework enable timely sharing of information, support
project planning and control, facilitate team collaboration and synchronize the
design process.

Introduction

There is a dual view of the project’s process: the project management pro-
cess, which is about the description and the organization of work, and the
product-oriented process, which is about the specification and the development
of the product as a result of the project. The project management process
is facilitated by a multiagent system, while the QFD (Quality Function De-
ployment)-embedded blackboard outlines and documents the product-oriented
process. QFD is a comprehensive quality design method that seeks out customer
needs, uncovers qualities that are important for the customer, translates these
into design characteristics and actions, and finally builds and delivers a quality
product [16].

The I2QFD Overall System

The overall I2QFD framework is illustrated in figure 5.4. As mentioned before,
I2QFD is a framework for a blackboard-based multiagent system. The agents
of the system is grouped into IA modules (or Intelligent Agencies). IA modules
use the QFD-embedded blackboard, to coordinate the teamwork. In this way,
the project management process and the product-oriented process of an engi-
neering project are combined in the same system. The IA modules make sure
that the project team members executes their tasks so that each stage of the
project follows the QFD method. Team members use the blackboard, via the IA
modules, to contribute ideas, submit works, respond to others’ output and in-
spect current designs instantly from personal workstations. The blackboard has
functionality to integrate knowledge, reason about it’s content, support flexible
control of the design process, and document the different tasks or stages of the
engineering project.

QFD involves processes from several disciplines. Therefore, the global black-
board is parted into a number of distributed blackboards. Each of these black-
boards are connected to the global Knowledge-based System (KBS) and to a
local KBS. The local KBS is also accessible to the pertinent functional groups.
This is not further discussed here.

The I2QFD Agency System

The agency system (agents) supports the project manager and facilitates the
design team in complying with the QFD process. As presented in figure 5.4

82

Figure 5.4: The blackboard-based I2QFD, from [19].

Figure 5.5: Agency system of I2QFD, from [19].

83

and figure 5.5, there are four IAs (Intelligent Agencies): the Communica-
tion Agency, Personnel Allocation Agency, Scheduling Agency and Coordination
Agency. These work together while performing respective functions. Knowledge
Query and Manipulation Language (KQML) is used as the communication pro-
tocol between IAs.

The Communication Agency consists of a central agent, which dispatches
messages between local agents and other IAs, and a set of local agents, each of
which serves an individual team member by transmitting messages between the
member and the central agent. When a local agent receives a message in the
KQML packet from the central agent, it will convert it into the specific format
that is comprehensible to the local members.

The Personnel Allocation Agency assists the project manager in organizing
the project team. At the beginning of the planning stage, the project manager
defines a network of tasks part of the project. The agency uses this infor-
mation to generate a relevant Work Breakdown Structure (WBS). The WBS
represents the hierarchy and precedence of project tasks. Recruitment messages
with descriptions of tasks are sent to the qualified experts. To respond to the
recruitment, each interested expert sends a bid indicating discipline, skill level,
committed available period and estimated time length fro processing the task
of interest. Once there is a sufficient number of candidates for each task, the
Personnel Allocation Agency will recommend the best project team that will
complete the project within the shortest time.

The Scheduling Agency generates a feasible schedule for a project team that
meets due date and budget constraints. During the project’s initial stage, the
Scheduling Agency estimates the project completion time of the alternative
teams proposed by the Personnel Allocation Agency. Once the project starts to
execute, the Scheduling Agency is capable of supporting the project manager to
reschedule the project when unexpected events occur. Unexpected events might
conflicts between tasks or the lack of critical resources.

Coordination involves managing interdependencies among activities. This is
done to avoid redundant activities, provide sharing of information, and balance
workload among agents. Specifically, the functions provided by the Coordination
Agency include supporting the team members in performing their tasks in the
right order, and solving conflicts to keep the design project on track.

The Use of I2QFD in the Project Process

I2QFD works as a supporting medium for the distributed project team, whereas
the project manager and the team members are the true actors who should
implement the project management process and product oriented process.

In a distributed, networked enterprise a project manager is responsible for
a design project, which includes a set of tasks according to a defined WBS.
To respond to the recruiting messages announced by the project manager, each
expert may bid for more than one task. When sufficient bids are received, the
project manager evaluates candidates with support from the Personnel Alloca-
tion Agency. The Personnel Agency makes a list of alternative team organiza-
tions. Then it sends a request to the Scheduling Agency to estimate project
completion time with respect to each team organization. The schedule with the
earliest completion time is chosen.

While the project is in progress, the design team carries out the assigned

84

tasks according to the preset schedule. During the project, the QFD-embedded
blackboard evolves with information, as each team member is responsible for
contributing useful information to the team. They may request and receive
information for performing their tasks, from each other. The activities of an
individual proceed in parallel with those of other members as well as various
functions of the agency system. Information received by team members can be
categorized as request message and task assignment. For instance, the Schedul-
ing Agency may send a request to a team member for the progress report of
an assigned task. In contrast, when working on the assigned task, there are
two possible instances that require time-consuming activities. The first is that
once a specific task is completed on schedule, its result will be sent to the Co-
ordination Agency for further processing. Unless a design conflict is detected,
the Coordination Agency will pass the result instantly to the next member(s)
to start the follow-up processes. The second instance is that, when confronting
a certain difficulty in completing the task on time, the member may request
the project manager for assistance or additional information. With assistance
from the Scheduling Agency and Coordination Agency, the project manager will
identify the appropriate member(s) to assign additional task(s). Suppose the
Coordination Agency detects design conflicts or a member failing to proceed
with the task due to the preceding tasks performed by others, e.g. an unfit
part’s spec, the Coordination Agency will notify the source member(s) for mod-
ification. Once the present task is completed, the member becomes available for
new assignment or may start to work on other projects.

5.2.3 A Blackboard Used for Collaborative Development
of Interactive Robot

In [24] Matsusaka and Kobayashi propose an architecture for an environment,
which enables the collaborative development of interactive robots. Collabora-
tion between designers, engineers and other specialists is necessary in order to
realize large-scale integrated systems.

Introduction

Most conventional approaches for the development of robots are based on the
top-down design flow model; the chief engineer analyzes the problem and designs
the global system framework before the module engineers develop the detailed
design to satisfy the specifications. However, it is sometimes desirable that
each component is designed and developed independently, but the behaviour of
the combined system is often so complicated that it is impossible for the chief
engineer to anticipate all of the problems. In such cases, the design process
should be performed in parallel to assure flexibility. The module developers
must analyze the problems from the viewpoint of their own specialties. This is
called the bazaar-type development model. The aim of the study described in
[24] was to develop an environment that supports this bazaar-type development
model.

The experience of the module developer is denoted the Scope of Interest
(SoI). Fields in which a module developer has sufficient knowledge to provide
new information for the development of a module is denoted the Area of Profes-
sion (AoP). The act of disseminating this information is denoted commitment,

85

Figure 5.6: Basic composition and basic design process, from [24].

and the commitment of information requested from other developers is denoted
collaboration. A schematic of this process is presented in figure 5.6. The shared
workspace at the center of the system is called the Blackboard.

How the Blackboard is Used in a Development Process

The basic design process using the blackboard is as follows:

1. Examine the blackboard. A developer can gain an overview of all the
information by looking at the blackboard.

2. Select all useful information. The developer selects all useful informa-
tion within his or her SoI from the blackboard and uses it to implement
the new module.

3. Implement the individual module. Implement the module that gen-
erates new information belonging to the developers AoP from sensor data
or from reference to other information.

4. Prepare the environment to execute the module. Prepare sufficient
computing power to execute the module in real-time.

5. Connect to the system / commit the information. Connect the
module and begin to commit (add it to the blackboard) the new informa-
tion generated by the module.

6. Adjust the module. Inspect the behaviour of the module when con-
nected to the entire system and adjust if necessary.

The system Architecture

Information generated by any module must be open to all modules including
new ones. To realize an open data-sharing framework, the blackboard model
is adopted. The blackboard approach realizes equal access to data from any
module in the system, hence the blackboard is used for storing and representing

86

Figure 5.7: Combined blackboard structure with publish/subscribe model, taken
from [24].

the data. Data on the blackboard is tagged to make it easy to access for the
different modules. A publish/subscribe model is used for notifying the modules
about events. Modules can view events by subscribing to the interested data
(specified by their tags) in the the publish/subscribe framework.

The system uses a data exhibition server consisting of two servers, as de-
picted in figure 5.7. One of them provides a data exhibition service based on
the blackboard model - Blackboard Server, and the other provides an event noti-
fication service based on the publish/subscribe model Message Dispatch Server.
A module developer can gain an overview of -, select - and commit new infor-
mation through the data exhibition service. A developer can use either the data
exhibition or event notification service to access to the same piece of information.
Thus, the developer can use the data as state or event information.

Data committed to the data exhibition server are defined as floating point
numbers and text strings. In the case of text strings, the developer can define
the data format following discussions with other developers. It is prohibited
to commit data that requires contextual information to interpret the meanings.
That means, modular outputs are limited to expressions of existing knowledge.
Analysis of the causality of the data is performed in the modules.

Implementation of the System Architecture

The data exhibition server consists of two servers, a blackboard server and a
message (dispatch) server, as illustrated in figure 5.7 and 5.8. The blackboard
server responds to SET, GET and MONitor requests from the clients. Data
is distinguished by the tags (text strings). Setting and getting requests are
followed by tags to specify the area and data (for the setting request). The server
responds to the request by notification of ACKnowledge (for setting request) or
requested data (for getting request). A monitor request, which is prepared for
reading the tag and data written to the blackboard, is followed by an index
number and the server responds to the request by answering the tag and data
written on the real address indicated by index number.

The message dispatch server responds to the SUBscribe and the POST re-

87

Figure 5.8: Transactions between the servers, from [24].

quest from the clients. The subscribing service provides a service based on reg-
ular expressions, and automatically adds client IDs to subscriber lists(Interest
Groups) when a developer generates a new tag. The posting service will deliver
the assigned message to the entire client list for the specified tag.

The blackboard server will send a post request when it receives a set request.
Therefore, data can be accessed actively by sending a get request, or passively
by sending a subscribe request.

5.2.4 MAPSEC: Mobile-Agent Based Publish/Subscribe
Platform for Electronic Commerce

In [31, 30] Sahingoz and Erdogan presents MAPSEC, an architecture for e-
commerce systems. They present a platform that uses the publish/subscribe
mechanism for utilization of the system, and mobile agents as mediators between
buyers and suppliers.

Introduction

Electronic commerce technology offers the opportunity to integrate and optimize
the global production and distribution on supply chain. Software agents help
to automate a variety of tasks including those involved in buying and selling
products over the Internet. The electronic marketplace is dynamically changing,
as any number of buyers and suppliers can be present at any time.

88

Figure 5.9: The architecture of MAPSEC, taken from [31].

Figure 5.10: The MAPSEC buyer subsystem architecture, taken from [31].

The MAPSEC Architecture

The MAPSEC electronic commerce system involves three actors. Buyers are
looking to purchase services. Suppliers or sellers offer the services and Dispatch
Service facilitates communication between buyers and suppliers. The MAPSEC
architecture, illustrated in figure 5.9, provides all the services which are essen-
tial to agent-based commercial services. This includes a communication infras-
tructure, a mechanism for storage, transfer of goods, banking and monetary
transactions along with an economic mechanism for brokered buyer-supplier
transactions.

To request a purchase order from the MAPSEC system, a buyer has to
initialize a buyer subsystem on its machine. Figure 5.10 illustrates the buyer
subsystem architecture. A human user interacts with the Buyer Agent via a
Buyer Interface module. Progress of current transactions, and past transactions
are stored in the History DBMS. Goods are categorized into generic names
such as ”car”, ”CD” and ”book”. When a Buyer Agent receives a purchase
request from a user, it uses category information to prompt the user for search
criteria to find the specific item to be purchased. Information required are
name, maximum price, required quantity, and required delivery date. Then,
it creates a Mobile Agent to search for product information and to perform
goods or services acquisition in MAPSEC. The Buyer Agent specifies the criteria
for the acquisition of the product, and dispatches the Mobile Agent to the
potential suppliers. The mobile agent visits each supplier site, searches the
product catalogs according to the buyer’s criteria. Then, it returns to the buyer
site with the best deal it finds and adds it to the History DBMS.

To subscribe to the system, a supplier has to initialize a supplier subsystem
on its machine. Figure 5.11 illustrates the supplier subsystem. The Supplier
Interface module facilitates the interaction between a user and Supplier Agent.

89

Figure 5.11: The MAPSEC supplier subsystem architecture, taken from [31].

Figure 5.12: The inner structure of the MAPSEC Broker, taken from [31].

Supplier Agent processes purchase orders from buyer agents and decides how to
execute transactions according to selling strategies specified by the user.

The Products Database Management System provides information about the
products that may be sold by the Supplier Agent. Goods are added to the
database either by manually adding a resource to the database or by purchasing
goods from other agents. Each Mobile Agent on the supplier side searches the
supplier database for the product it is interested in. It determines whether the
required quantity is available to be offered or not. If so, the Supplier Agent
gives an immediate quotation to the buyer’s Mobile Agent.

Mediation between buyers and suppliers is done by the centralized Dispatch
Service, consisting of several Brokers in a topology as shown in figure 5.9. The
inner structure of a broker is given in figure 5.12. MAPSEC is basically an event-
based system. A Broker implements the publish/subscribe paradigm in which
purchase events are published and made available to the supplier components
of the system, through notifications.

Both suppliers and buyers have to know the address (URL) of the Broker
Agent that they will connect. When a buyer wants to buy a product, it creates a
mobile agent with the necessary information and sends it by calling the publish()
method of the broker. If a supplier wants to register (or unregister) to the broker,
it calls the broker’s subscribe() (or unsubscribe() method giving the necessary
parameters. The parameters include products information, name, password,
etc. Knowledge Base is a database, which keeps the information about the
suppliers, buyers, brokers and products in the MAPSEC system.

Incoming agents are downloaded by the Agent Loader, and then they are
dispatched to suppliers by the Agent Dispatcher when a request arrives from
the Broker Agent. Publish Controller manages a queue of incoming messages,

90

which eventually are processed by the Broker Agent. A message is evaluated,
by using the Knowledge Base, and a list of target suppliers and brokers are
selected. Agents then send copies of the mobile agent to the selected brokers
and suppliers, through the Agent Dispatcher. Suppliers and brokers return
their results by calling the getValue() method of the Decision Manager. The
Decision Manager compares the incoming results from the suppliers and selects
the one that are closest to satisfy the constraints and sends a reply message to
the brokers and suppliers through Reservation Manager. Decision Manager also
sends its decision to the buyer, to be added to its History DBMS, by means of
Notification Manager.

5.3 The Comparison to CoPS

In this section we compare the relevant work described in section 5.2 to the CoPS
framework architecture that is proposed in chapter 3 and 4, using the criteria
listed in section 5.1. These criteria describe challenges in collaborative software
systems. Not all the relevant work is equally emphasized when discussing the
different criteria. This is because we focus on the most important and interesting
similarities and differences. In addition, some of the articles lack necessary
information.

All of the systems described as relevant work, including the CoPS framework
focus on collaborative software modules using a shared repository to solve dif-
ferent problems. The shared repository might include a shared memory or/and
a shared workspace. The definitions of the software modules and the shared
repositories are one of the differences between the systems.

In the CoPS framework, software modules are defined by the different agents:
Task Responsible (TR), Problem Solver (PS), Decomposer (DEC), Matchmaker
and Personal Assistant (PA). It is mainly the TRs and PSs that cooperate to
solve a problem, the other agents assist in different stages of the problem solving
process. The CoPS shared memory structure, used by the TRs and PSs in their
cooperation, is defined by the TEAM SPACE. The TEAM SPACE itself is
comprised of two components: the TS agent and the TS structure. TS agent
controls the access to the TS structure, which conceptualizes the shared memory
structure.

In the fixture design system, the software modules are realized by knowledge
sources (KSs), and the these are divided into six functional groups represent-
ing their knowledge domain: reasoning mechanisms, re-allocation, deformation,
stability, accessibility, and fixturing design principles. A blackboard data struc-
ture serves as the shared memory. A control shell controls the access to the
blackboard data structure.

Software modules in the blackboard based multiagent system for project sup-
port, are like in CoPS , realized by agents. The agents are categorized into
different intelligent agencies (IAs): Personnel Allocation Agency, Coordination
Agency, Scheduling Agency, and Communication Agency. These agents collabo-
rate to support a project manager and his team members in executing a project,
by using a shared memory structure which is a QFD embedded blackboard.

The system for collaborative development of an interactive robot, can be seen
as having composite modules. Here we suggest that a module is comprised of
a developer (human) and the software module it develops. And both parts of

91

the module access the shared memory, which is a blackboard. The developers
collaborate to develop an interactive robot by communicating information and
results via the blackboard. And their software modules collaborate to simulate
the interactive robot by committing their signal outputs to the blackboard and
by taking as input the committed signals from other software modules. The
software modules together represents the implementation of interactive robot
developed so far.

The last system, MAPSEC, has two categories of software modules, realized
by agents that are collaborating to trade goods between sellers and buyers:
Supplier and Buyer. The shared memory or workspace could also be seen as a
set of software modules. But here we choose to say that the Dispatch Service,
consisting of a network of Brokers (agents), is a set of shared workspaces. Each
Broker represents a single workspace.

5.3.1 Representation

The first challenge in collaborative software systems is representation, which
deal with how one gets the software modules to understand each other, and
thus how the software modules understand the information kept by the shared
memory structure. Keywords considering representation in the systems to be
compared are:

• Both direct and indirect exchange of information, only indirect exchange
of information.

• The same knowledge representation in software modules and the shared
memory, different knowledge representation in software modules and the
shared memory.

• One software module to access the shared memory (translator), several
software modules to access the shared memory.

The CoPS agents represent their knowledge using ontologies and they exchange
information directly through messages, using the same message protocol, and
the same communication language. The content of a message is a symbolic
representation using the structure of the language and the vocabulary of an
ontology. When an agent receives a message, it is only able to interpret the
message content, if it knows about the ontology and the communication lan-
guage that was used to encode it.

Indirect information exchange also occur between the TR and PSs in CoPS,
that are part of the same problem solving team. The team communicates
through the TEAM SPACE. The TS agent, part of the TEAM SPACE com-
municates with the PSs and TR part of a team, using messages (like described
above). Imagine that PS1 has agreed to perform actionA and PS2 has agreed
to perform actionB. PS2 needs the results from actionA before it can execute
actionB. The TS agent extracts information from the TS structure, finds that
actionA is ready to be executed, translates the information about the action
into a message format that is understood by PS1, and sends it. PS1 executes
the action and returns the result to the TS agent. Then, the TS agent gets the
TS structure to add these results in the Result Library. Next time the TS agent

92

extracts information from the TS structure it finds that actionB is ready to be
executed because the results from actionA is placed in the Result Library. Then,
the TS agent communicates the results from actionA to PS2, and PS2 is able to
execute its action. The results from actionA was communicated indirectly from
PS1 to PS2 via the TEAM SPACE. The TS agent is the only software module
accessing the shared memory structure - TS structure.

The TS structure does not use the same knowledge representation as the
agents. Knowledge or facts stored in the TS structure are represented using
pre-defined templates. These templates are only known by the TS structure
and its components. When the TS agent extracts information from the TS
structure, the TS structure translates the facts in the Result Library and Goal
Stack into lists of actions or PSMs before the information is returned to the TS
agent. Results from action executions and PSM compositions are also commu-
nicated from the TS agent to the TS structure in form of action- and PSM lists.

The blackboard based multiagent system meet the representation challenge in
a similar way to CoPS. Agents communicates information directly using a com-
mon communication protocol (KQML), and they communicates information in-
directly via the QFD embedded blackboard on behalf of the system users. A
difference to CoPS is that this system allows several agents to access the shared
memory structure.

In the fixture design architecture, the knowledge sources only exchange informa-
tion indirectly via the blackboard data structure. In the implemented system,
the GBB Administrator is the only module that can access the blackboard data
structure, and it communicates information both ways between the knowledge
sources and the blackboard data structure. The blackboard data structure is
composed of directories (spaces) and objects (units). Objects’ properties are
resident in attributes (slots). During the problem solving, objects and their
properties serve as input to a set of KSs which produce new information to be
added to the blackboard data structure, also on the form of objects and prop-
erties. The objects and their properties define the vocabulary of the solution
space, and must be known by KSs.

In the system for collaborative development of an interactive robot, all of the
modules may access the blackboard. Information put on the blackboard must
be tagged and represented on the form of a string, or an integer. The string-
values should not require contextual information to interpret the meanings; their
meanings are decided in beforehand by the developers. Developers communicate
indirectly via the blackboard, and they understand what others have committed
because of the earlier agreement on the meanings. Software modules created
by the developers also communicate indirectly via the blackboard, by exchang-
ing their sensor outputs. The meanings of the different tagged outputs were
known by the developers when they created the software module, and thus the
developer made the software module able to interpret them.

The tags used in this system have approximately the same function as the
templates used in our TS structure. The meanings of the templates are also
defined in beforehand, and they make it easier to extract specific knowledge.

93

5.3.2 Awareness

The second challenge in collaborative software systems is awareness. This chal-
lenge involves making modules aware when something relevant to them (an
event) occurs. Keywords considering awareness in the systems to be compared
are:

• Software modules are actively seeking information about relevant events
or they are passively receiving information about relevant events.

• Who are notified about a particular event.

• Receiver and notifier of events.

In the CoPS framework agents make each other aware when something relevant
to them happens by sending a message. When the TR receives a task solving
request from a PA, the PA makes the TR aware that it should try to solve the
task. When the TR sends a request for a task decomposition to the DEC, it
makes the DEC aware that it should ”do some work”. Thus, agents in CoPS
may be both receivers and notifiers about a particular event.

The TS agent makes the PSs and TR related to a TS structure component,
aware when information relevant to their actions and PSMs are present in the
Result Library knowledge base. When an action is ready to be executed or a
PSM is ready to be composed this can be seen as an event. A particular event is
only communicated to one of the PSs or the TR. The TS agent actively ”seeks”
for information about events in the TS structure. The other CoPS agents only
passively receives information about events.

In the fixture design system, the KSs are all passively receiving information
about relevant events, and they may not notify the other KSs about events.
The KSs are made aware of relevant events on the blackboard data structure
by the GBB Administrator. Events here are defined as change of data on the
blackboard data structure. When an event occurs, all of the KSs are notified,
and have the opportunity to evaluate the information related to that event, to
see if it is able to act upon it.

In the blackboard based multiagent system, awareness is achieved in about the
same way as in CoPS. Agents notify each other about happenings relevant to
them, and changes in data on the blackboard are also handled by the relevant
agents.

In the systems for collaborative development of an interactive robot, a developer
can select either the data exhibition or event notification service to access the
same information. By using the data exhibition service the developer actively
get the information relevant to them, and by using the event notification service
the developer is notified about changes to the data it is interested in by subscrib-
ing to certain types of information. When an event occurs on the blackboard
(change of data), the label of this piece of data is used to find the developers
that have subscribed for that information. All of the subscribers belonging to
the specific label is notified about the event.

94

A human user of the MAPSEC system which wants to buy a product inter-
acts with a Buyer Agent. When Buyer Agent receives a purchase request from
the buyer, it passively receives information about a relevant event. Criteria for
the product are specified. Then a Mobile Agent is created and sent by calling
the publish() method of the Broker Agent. The purchase event is published and
made available to the Supplier Agents of the system.

The supplier agent subscribes to certain purchase events by calling the sub-
scribe() method of the Broker Agent giving the necessary parameters. The
parameters describe the criteria for the product it offers. When a purchase
event is published that matches the subscription criteria of a Broker Agent, the
Broker Agent is made aware of this. Broker Agent call the notify() method
on the Buyer Agent. The subscription information kept by the Broker Agent
decides which Supplier Agents are notified about a purchase event.

This may be compared to the function of the TMST in CoPS. PSs offer
to perform actions, and joins a team. To execute the action, the PS needs
the input information of this action. Thus, when a PS offers to perform an
action it also subscribes to the input information needed to execute it. During
the problem solving in the TEAM SPACE, the TS agent notifies the PSs and
TR about information that has arrived, and that they need to execute actions
and compose PSMs. Information is published in the TS structure, via the TS
agent by PSs or TR. Like in MAPSEC, ”subscription information” stored in the
TMST and kept by the TS structure is used by the TS Agent to decide which
PSs or TR are notified about an event (actions ready to execute, PSMs ready
to compose) in the TS structure. The difference is that published information
is ”modified” and does not directly serve as an event. One or several events are
produced from the the published information (by executing the rules kept by
the TS structure), and these events result in event notifications.

5.3.3 Investigation

The third challenge in collaborative software systems is investigation. Software
modules need to find information related to their current activities (problem
solving). How this information is found and by whom are important keywords
here. The investigation challenge in the systems we are comparing seems to be
closely related to the awareness challenge. This is probably because the events
described before are related to change of information. How and by whom a
software module is made aware of an event, and how and by whom a software
module is provided with information related to their current activities, are al-
most the same.

CoPS agents get information related to their current activities enclosed in mes-
sages from other CoPS agents, or from the TS agent (extracting information
from the TS structure). Information does not have to be searched for in the TS
structure, since it generates the events; actions ready to execute and PSMs ready
to compose, together with the information needed to respond to this event. It
is originally the TSMT (relations between nodes, node input and outputs, I/O
dependencies), that has the knowledge about what information is needed by
whom during the problem solving process.

In the fixture design system, the GBB administrator extracts information from

95

the blackboard, which it gives to the different knowledge bases. This happens
when an event occurs because of change in the blackboard data structure. The
knowledge bases use this information to decide which KSs are to be activated.
The activated KSs get the information they need from the knowledge base pre-
processor.

In the blackboard based multiagent system the agents get information related to
their current activities enclosed in messages from other agents, and from finding
the information on the blackboard. We might say that the QFD - method is
like the TMST when it is not instantiated for a problem (modified with a solu-
tion, after the team formation process). Both structures define how information
should flow between the different phases a problem solving process. In CoPS
the TMST is ”specialized” for solving a specific problem with a given team of
problem solver, when the team formation is done. And it then defines how
the information should flow between team members during the execution of the
problem solving. In the blackboard based multiagent system a Work Breakdown
Structure (WBS) represents the hierarchy and precedence of project tasks. This
WBS does not have several ”solutions” like the TMST, but team members are
recruited on the basis of the WBS. Since the WBS represents the precedence
of tasks it also gives information about information dependencies between the
agents performing the different tasks.

In the system for collaborative development of an interactive robot, software
modules may find information themselves related to their current activities
through the data exhibition service. Data is distinguished by tags, and are
therefor easily found. The software modules may also be informed about infor-
mation they are interesting in by subscribing for data with specific tags. Then
it is the publish/subscribe service that ”finds” and delivers the information.

5.3.4 Interaction

The fourth challenge in collaborative software systems is interaction. Interaction
between the different software modules is the most important issue considering
the collaborative work. Software modules should be able to use the concurrent
work of others while working on a shared task. Keywords considering interaction
in the systems to be compared are:

• Direct and indirect interaction.

• Serial (shared memory with single access) and concurrent interaction (shared
memory with multiple access).

The work on the shared task of CoPS agents are handled in two stages. First,
the agents interact directly until the task is decomposed into a TMST, and a
team of PSs are formed. Second, the TR and PSs part of the problem solving
team interact indirectly through the TEAM SPACE. The interactions through
the TEAM SPACE follow a publish/subscribe kind of pattern (like described
under the discussion of awareness).

The indirect interaction in CoPS may be both serial and concurrent, de-
pendent on the sub-task relationships defined in the TMST. If several actions

96

and/or PSMs are ready to be processed, the TS agent notifies all of the relevant
agents simultaneously. The agents process these actions and PSMs in parallel
and return the results when they are done. All of the results are updated by
the TS agent in the TS structure at the same time.

Sometimes several teams of problem solving agents also work in parallel.
Then, there may occur interactions between the different teams as well. Imag-
ine that the teams communicate with the same TS agent which keeps a separate
TS structure for each of them. During the problem solving, the TS agent rec-
ognizes that two tasks existing in different TS structures are the same. Only
one of these tasks need to be performed, as the result from this one is copied by
the TS agent to the TS structure keeping the other task. This saves time effort
and cost. The solving of several problems in parallel was not discussed by the
relevant work presented in this chapter.

The blackboard based multiagent system also has both direct and indirect in-
teraction between the agents. Agents work on the shared task of supporting a
project manager an its team in performing an engineering project.

The fixture design system uses a more traditional blackboard approach and
the KSs only interacts indirectly through the blackboard data structure. Here
we may also have some kind of concurrent interaction since several KSs may be
activated at the same time. They do not access the blackboard data structure
themselves, but communicates their results to the GBB Administrator. The
KSs work on the shared task of performing a fixture design.

In the system for collaborative development of an interactive robot the devel-
opers interact both directly and indirectly using the blackboard. The software
modules only interact indirectly via the blackboard. The developers work on
the shared task of developing an interactive robot. And the software modules
works on the shared task of demonstrating the robot’s composite behaviour.

Buyer Agents and Supplier Agents in MAPSEC only interact indirectly via
a Broker Agent. Their shared task is to exchange goods between buyers and
suppliers.

5.3.5 Integration

The fifth challenge in collaborative software systems is integration. When talk-
ing about integration here, we mean how results produced by the different mod-
ules are combined into an integrated result. Keywords considering integration
in the systems to be compared are:

• Relationship management.

• Results integrated by software modules or by the shared memory struc-
ture.

• Opportunistic and planned problem solving. The use of a result integra-
tion model.

• Definition for when the solution to the initial problem is found.

97

In CoPS, the relationships among tasks are defined by the TMST and managed
by the TS structure. The solution part of the TMST represents a plan for the
problem solving, and can also be seen as a result integration model. The TS
structure transforms the TMST solution into an executing plan represented by
a set of rules. Then the TS agent can at any time extract information from
the TS structure considering which actions or PSMs to perform next and what
information is needed. The TS structure also makes sure to propagate output
values upwards in the TMST. When the sub-node of a task is an action and
the action is executed, the output of this action is set as the output of the task.
When all of the subtasks of a PSM has an output-value. The PSM may be
composed. This means to integrate the results/outputs from the PSMs subtasks.
The composition of a PSM is always performed by the TR that administers the
problem solving process. That PSM is the sub-node of a task, and the output
from the composition of the PSM is set as the output of that task. When the
initial task has an output - value, the problem solving is done. And the output
of the initial task is the final solution.

The propagation of values, is not actually done on the TMST, but it is rep-
resented by adding new facts to the TS structure Result Library and Goal Stack.

In the blackboard based multiagent system, the WBS represents the hierar-
chy and precedence of project tasks, like the TMST in CoPS. While the project
is in progress, the design team carries out the assigned tasks according to the
preset schedule or plan. During the project, the QFD-embedded blackboard
evolves with information, as each team member is responsible for contributing
useful information to the team. The integration of results are done by the team
members, using the system. For example, when a report is finished by one
team member, this is forwarded to another team member (by the Coordination
agency) for the follow-up process. Who is responsible for the follow up process,
is defined by the WBS. The WBS can be seen as a result integration model.
When all of the tasks are completed, the project (initial task) is done.

In the fixture design system, KSs solve a problem opportunistically. The prob-
lem solving process starts with an initial blackboard data and continues until
the final blackboard data is reached when all the involved KSs unanimously
agree (or disagree) about a design decision. The propagation of the decision
making process as it progresses through the intermediate stages of the black-
board, follows a tree-like searching path. Based on the current blackboard data,
the system generates the searching tree in a dynamic and opportunistic way. In
each step of the searching process any KSs can be activated to contribute with
new information. The fixture design system does not have a model for inte-
grating results, as this model is very difficult to make because of the nature of
opportunistic problem solving.

In the blackboard system for collaborative development of an interactive robot,
the information on the blackboard is not integrated in any ways. Information
is just added, in such a way that it will be available for other modules. When a
new module is developed, it is integrated into the system, but it does not lead
to changes in any of the other modules. But it might change the outcome of the
whole system. This is module integration, and not integration of the data on
the blackboard. Meaning that data is integrated in the modules (in how these

98

work together) and not on the blackboard. The blackboard only keeps the re-
sult from this integration. This system also uses opportunistic problem solving
and does not have an result integration model. The ”solution” is found when
the different modules part of the robot, show the behaviour that the developers
wanted.

5.3.6 Coordination

The sixth challenge in collaborative software systems is coordination. Introduc-
ing coordination mechanisms in a system of collaborating software modules is
important when we want to anticipate or control the final outcome of the system.
By coordinating the software modules, we get them to focus their activities on
the right thing at the right time. In the systems we have been looking at there
are two main differences; planned coordination, and opportunistic coordination
(coordination decided by status of data kept by the shared memory).

In CoPS the agents decide for themselves when to engage in some activity. But
when a TR has agreed to solve a problem, its focus is to come up with a solution
that can be returned to the requester of the problem. The TR coordinates the
other agents (DEC, PSs) during the team formation process. When a team is
formed, the TR and PSs part of that team are coordinated by the TS agent.
The TS agent follows the plan outlined by the TMST, which is automated by
the TS structure.

In the blackboard based multiagent system, coordination done before a project
team is formed is done by the project manager, Personnel Agency and Schedul-
ing Agency. When a team is formed, the agents and project team members, are
coordinated by the Coordination Agency, using the QFD embedded blackboard
and the WBS.

In the fixture design system, all domain KBs are managed and coordinated
by the GBB administrator. The KBs coordinates its KSs, by deciding which
KSs to activate according to the incoming information from the GBB adminis-
trator. There is no plan (like the TMST or the WBS) used for the coordination
in the fixture design system. Agents are only coordinated according to the sta-
tus of the data kept by the blackboard data structure in combination with some
KS-selection criteria used by the KBs.

The developers and software modules in the blackboard system for collabo-
rative development of a robot, are only coordinated by the blackboard pub-
lish/subscribe service. Coordination here does not use a pre-defined plan either,
it is solely decided by the status of the data kept by the shared memory.

In MAPSEC agents are coordinated by the Broker Agent.

5.4 Summary

In this chapter, our proposed CoPS framework with a shared memory structure,
the TEAM SPACE, has been compared to relevant work. The relevant work

99

included here, involved other systems consisting of collaborative software mod-
ules and shared memory structures. These systems were compared to CoPS on
the basis of six different criteria. Through this, it became more evident that
CoPS adopts methodologies from the different paradigms: multiagent archi-
tectures, blackboard architectures and publish/subscribe models. During the
comparison, our CoPS framework architecture was also described from other
perspectives than were used in chapter 4.

100

Chapter 6

Implementation Details

In previous work with the CoPS framework a CoPS framework prototype was
implemented. This work is described in [34, 33]. In this thesis we have focused
on extending the CoPS framework by introducing a shared memory structure
that is used to guide a problem solving team in solving their subproblems and
sharing their results. To integrate this shared memory structure with the ex-
isting CoPS framework, the pre-existing parts of the CoPS framework also had
to be modified. Chapter 4, described the TEAM SPACE architecture proposed
for the shared memory structure. In addition, it explained how the Task Re-
sponsible (TR) and Problem Solver (PS) should be modified, to make it able
for the existing CoPS framework to use the TEAM SPACE architecture. This
chapter presents how the modifications and extensions to the CoPS framework
is transfered and implemented in the CoPS framework prototype.

Section 6.1, has an overview of which parts of the CoPS architecture that are
extended and which parts that are modified in the CoPS framework prototype.
An introduction to the applied implementation tools, and to the pre-existing
CoPS framework prototype is given in section 6.2. In section 6.3 we describe
the implementation of the corrections to the CoPS framework, suggested in
chapter 3. In section 6.4 we the describe the implementation of the extensions
to the CoPS framework, also suggested in chapter 3. And finally in section
6.5 implementation details considering the TEAM SPACE architecture are pre-
sented.

This chapter is provided to give a detailed description of the CoPS framework
prototype, and to show how the TEAM SPACE architecture constructs and the
other extensions to the CoPS framework is translated into an implementation.
The implemented CoPS framework prototype, described here, are used for a
medical domain application in chapter 7, to show that the prototype works in
the pre-described way.

6.1 Implementation Overview

What we have implemented is illustrated by figure 6.1. The pre-existing proto-
type of the CoPS framework focus on the problem solving process steps: problem
analyzis and team formation. To realize these steps The Task Responsible (TR),
Decomposer (DEC) and Problem Solver (PS) were implemented. The conver-

101

AGENTS

PROBLEM SOLVING PROCESS

PROBLEM SOLVING KNOWLEDGE

Problem
Identification

Presentation
of the

Solution

Problem Solving

Problem
Analyzis

Team
Formation

Solving of
Subtasks

Integration
of Partial
Solutions

PA TR

DEC
PS

TR

PS
PS

PS PSPS
PS

PSTR

TR PA

Domain
Knowledge

CoPS
Ontology

TEAM SPACE

Totally implemented in this work

Extensions to existing classes

Modifications and corrections to existing classes

TMST

Figure 6.1: The three layered CoPS architecture, showing which parts are in-
volved in our implementation. The agent abbreviations are: PA - Personal
Assistant, TR - Task Responsible, DEC - Decomposer, PS - Problem Solver.

102

sations between these agents were implemented in addition to the TMST. The
pre-existing prototype did not function optimally, so we have made some mod-
ifications and corrections to the TR, DEC, PS and TMST considering problem
analysis and team formation. We have also implemented the solving of sub-
tasks - and integration of partial solutions process steps of the problem solving.
This required us to extend the pre-existing implementation of the TR, PS and
TMST, and to implement the TEAM SPACE.

As one can see from figure 6.1, the implemented prototype of the CoPS
framework is still not complete. Implementation of the remaining architectural
components, most likely will infer further modification to the existing imple-
mentation.

6.2 Implementation Tools and The Pre-Existing
CoPS Prototype

The pre-existing CoPS prototype is implemented in Java. JADE (Java Agent
DEvelopment) is a Java based software framework which simplifies the imple-
mentation of multiagent systems through a middle-ware that complies with
the FIPA specifications [2]. JADE was used to implement the CoPS agents and
their conversations. jCreek, is the Java implementation of CreekL (implemented
in Lisp). CreekL is a flexible frame-based knowledge representation language,
which is modeled using semantic nets [15]. jCreek was used to implement the
TMST. The implementation in this master thesis in addition uses Jess, which
is a rule engine and scripting environment written in JAVA [32].

The three different Java-implementation tools are shortly introduced next.
We also describe of how JADE and jCreek were used in the pre-existing CoPS
prototype to realize the different parts of the CoPS architecture.

6.2.1 JADE and CoPS Agents

All necessary information needed to understand and use JADE can be found on
the JADE-website [2]. Particularly useful documents are JADE Programmer’s
Guide [1] and JADE Tutorial - Application-Defined Content Languages and
Ontologies [5].

The implemented part of the CoPS framework has four abstract agent classes,
which are implemented using JADE. These classes are CoPSDecomposer, CoP-
STaskResponsible and CoPSProblemSolver which are subclasses of CoPSAgent.
As these agents are implemented using the JADE framework, they extend the
JADE Agent class. A Personal Assistant (PA) does not necessarily need to
be a CoPS agent, it may though. This class is not yet implemented. FIPA
has standardized the use of a Directory Facillitator agent in multiagent system
platforms, this agent will play the role of the Matchmaker. The entire class
hierarchy is illustrated in figure 6.2, and the implemented classes are shaded in
grey.

CoPS - agent classes implementing the JADE Agent, may use services pro-
vided by the JADE framework, like sending and receiving messages. To control
how the agents react and behave, the JADE framework uses different classes of
behaviour.

103

CoPSDecomposer CoPSProblemSolverCoPSTaskResponsible

DirectoryFacilitatorCoPSAgentPersonalAssistant

JADEAgent

{Abstract}

{Abstract}{Abstract}{Abstract}

Figure 6.2: The class hierarchy of the CoPS agent implementation [34]. The
shaded classes represent which agents that are actually implemented in the
CoPS framework prototype.

JADE behaviours

There are several kinds of behaviours, and when using JADE an agent’s be-
haviour is usually defined by implementing one or more of the behaviours pro-
vided by the framework. Both primitive and complex behaviours exist. Complex
behaviours are comprised of a set of behaviours, while primitive behaviours are
not.

During the startup of agents extending the JADE Agent class the setup()
method is called. In the setup() method one or more behaviours are added to the
implemented agents’ set of current behaviours. The set of behaviours is arranged
in a queue and behaviours are selected and executed in a non-preemptive round
robin schedule. Behaviours are executed one at a time until the action() method
of each behaviour is finished executing. Behaviours can also be added to the
agent during execution of other behaviours.

Conversations between the agents are implemented using some of the com-
plex JADE behaviours. JADE provides implementation of some of the inter-
action protocols specified by FIPA. The request-like protocol are implemented
using AchieveREInitiator and AchieveREResponder. The Contract Net proto-
col, on the other hand, is implemented using ContractNetInitiator and Con-
tractnetResponder. As defined by FIPA, initiators are the agents taking the
initiative to start a conversation, while responders are agents responding to a
request from the initiator. An extensive introduction to JADE behaviours and
how these works is given in [1]. Next, we will give a short introductions to some
behaviours that are used in the implementation of the CoPS prototype.

The OneShotBehaviour class

This abstract class models simple atomic behaviours that must be executed only
once. A class that extends the SimpleBehaviour class implements the action()
- method. After the behaviour has been added to the agent and chosen to be
executed, the code in the action - method is run, and that is it [1].

104

The ParallelBehaviour class

This class implements an abstract class CompositeBehaviour. The Composite-
Behaviour class are made up by composing a number of other behaviours(children).
So the actual operations performed by executing this behaviour are not defined
in the behaviour itself, but inside its children. The ParallelBehaviour class
executes its sub-behaviours (children) concurrently and terminates when a par-
ticular condition on its sub-behaviours is met [1].

The FSMBehaviour class

This class, like the ParallelBehaviour class, implements the abstract class Com-
positeBehaviour. The FSMBehaviour class executes its children according to a
Finite State Machine (FSM). Each child represents the activity to be performed
within a state of the FSM and the user can define the transitions between the
states of the FSM. One of the children can be registered as the starting state,
meaning that the FSMBehaviour begins executing that associated behaviour.
When a child corresponding to a state completes, its termination value (as re-
turned by the onEnd() method) is used to select the transition to fire and a
new state is reached. At next round, the child corresponding to the new state,
will be executed. Some of the children of an FSMBehaviour can be registered
as final states. The FSMBehaviour terminates after the completion of these
children [1].

The AchieveREInitiator and AchieveReResponder classes

The AchieveReInitiator class is provided in JADE for aiding the implementa-
tion of the initiator of a request-like conversation. It defines a set of states
(sub-behaviours) and the transitions between them. It is up to the programmer
to define what happens in those states. Each of the states are, as in the FSM-
Behaviour, implemented using behaviours. In the JADE API the programmer
is given access to some of these states through a set of methods. Programmers
are also given the possibility to implement one or more of the states completely,
by registering the behaviours that replace the default content (behaviour) of the
given states.

Among other methods, the AchieveReInitiator class has methods for prepar-
ing and sending request messages (prepareRequests()), handling responses (han-
dleAgree(), handleRefuse(), handleNotUnderstood(), handleAllResponses()), and
handling result notifications (handleInform(), handleFailure(), handleAllResult-
Notifications()). These methods must be implemented by the class implement-
ing the AchieveREInitiator class, or else nothing happens when they are called.

The AchieveReResponder class is implemented by agents that respond to
requests in a conversation. As with AchieveReInitiator, there are defined a set
of states (sub-behaviours), which may be reached trough methods or changed
by states defined by the programmer.

Among other methods, the AchieveReResponer class has methods for re-
sponding to a request (prepareResponse() and sending the results (prepareRe-
sultNotification()). The response to a request can be an agree message, a refuse
message, or a not-understood message. If the response is an agree message, the
results are prepared. The message notifying the result can be an inform message

105

or a failure message. These methods must be implemented by the class imple-
menting the AchieveREResponder class, or else nothing happens when they are
called [1].

The ContractNetInitiator and ContractNetResponder classes

The ContractNetInitiator and ContractNetResponder classes are provided in
JADE for aiding the implementation of the initiator and responder of a con-
versation following the Contract Net protocol. Like the AchieveReInitiator and
AchiveReResponder classes, these classes define a set of states (sub-behaviours)
and the transitions between them.

Among other methods, the ContractNetInitiator class has methods for prepar-
ing and sending the call-for-proposal message, requesting an action(prepareCfps())
and for handling the responses (handlePropose(), handleRefuse(), handleNo-
tUnderstood(), handleAllResponses()). Handling the responses include making
and sending proposal messages for the accepted proposals (bids) and reject-
proposal messages for the rejected proposals (bids). The ContractNetInitia-
tor class also has methods for handling the results from agents which pro-
posals were accepted (handleInform(), handleFailure(), handleAllResultNotifi-
cations()). These methods must be implemented by the class implementing the
ContractNetInitiator class, or else nothing happens when they are called.

Among other methods, the ContractNetResponder class has methods for
preparing and sending a response to the call-for-proposal message (prepareRe-
sponse()), and a method for preparing the result of the requested action (pre-
pareResultNotification()). The response to a call-for-proposal message can be a
propose message, a refuse message, or a not-understood message. If the agent
has made a proposal it waits for an accept-proposal message and when this one
is arrived the actions is performed and a the result i returned as an inform mes-
sage or as a failure message. These methods must be implemented by the class
implementing the ContractNetInitiator class, or else nothing happens when they
are called [1].

6.2.2 jCreek and TMST

The TMST is implemented using jcreek, which is the Java implementation of
CreekL. CreekL is a flexible frame-based knowledge representation language,
which is modeled using semantic nets. This knowledge representation language
has two main categories of concepts: entities (objects) and relations between
them. Thus, for representing a task it is modeled as an entity, and all of the
slots (variables) of the this task are relations, which have other entities as the
slot values. Reasoning on the structure happens in form of traversing the nodes.

Main Classes

The implementation of the TMST is done by defining new entity types. Action,
Task and ProblemSolvingMethod classes are represented as frames and imple-
mented specifying a type of their own. An actions in a TMST are implemented
by instantiating an Action entity type class. The new instance of Action is a
new entity type, which is related to Action. This relationship is defined by an
instance-of relation. No relation type classes have been implemented though,

106

since new relations are defined at real-time. Two types of relationships are
used: instance-of relation, defining sub- and superclass relations, and structural
relation defining other relations between entities.

When the TR reasons about the PSs and their capabilities, the TR represents
them in its knowledge model through the entity type Executor. These four
entity types are the main classes used for implementing the TMST : Action,
Task, ProblemSolvingMethod and Executor.

Slots for the different nodes in a TMST, were listed and described in chapter
3 - figure 3.3. A ProblemSolvingMethod entity class has slots defined by relations
to one or several Task entity classes. And a Task entity class has relations to
one or several Action entity classes or ProblemSolvingMethod entity classes. The
other classes in the TMST represent the rest of the slots in these main classes,
and are called supporting classes.

Supporting Classes

The supporting classes are all the classes which are not represented as nodes
in a TMST such as input output, assumptions, and so on. These are used for
representing additional information needed to implement the TMST - the infor-
mation that is used for describing the tasks, PSMs, actions and executors. The
different supporting classes are: Assumptions, Input, Output, Value, Goal, Cost
and ControlInformation. Entity types created from these classes are related to
other entity types with the structural relation.

The overall class TMST

In the implementation of the TMST, the knowledge model is a class called TMST
which is a subclass of the jcreek LocalKnowledgeModel. Thus, it is a structure for
storing entities, represented by the different main classes and supporting classes,
and relations. Methods for receiving all entities of type ProbleSolvingMethod,
Action and Task are provided. In addition there are methods for executing
different operations on the TMST.

• Setting Initial Problem: A method for setting the root node of the TMST
instance.

• I/O Dependency Analyzation: A method for analyzing the I/O dependen-
cies among all subtasks of all the PSMs in the model.

• Solution Space Generation: A method for generating the solution space
of a problem. All nodes part of the solution space is activated.

• Solution Generation: A method for finding the best solution of the solution
space. All nodes part of the solution are tagged, these nodes are necessarily
also activated.

6.2.3 Jess

All information needed to understand and use Jess can be found on the Jess-
website [32]. Particularly useful information has been found in Jess 6.1 Manual
[10], The Zen of Jess 2 [25] and Some Guidelines for Deciding Whether to Use
a Rules Engine [29].

107

Jess is an expert system shell and scripting language written in Java. It
supports the development of rule-based expert systems which can be tightly
coupled to code written in the Java language. Java functions can be called
from the Jess scripting language and Jess can be embedded in a Java applica-
tion. We have used that last opportunity - A Jess rule engine is embedded in
our implementation of the TEAM SPACE (TS) structure. The rule engine is
used in the Rule Base Container, the Goal Stack and the Result Library. We
do not use pure Jess language scripts, but java code which manipulates Jess
through its Java API. Jess supports a long list of functions and options (see
[10]), but here we only describe the different Jess-functions and options used in
our implementation.

Facts

A rule-base system maintains a collection of knowledge nuggets called facts. So
does our TEAM SPACE structure, where facts are stored in the Result Library
and the Goal Stack. Facts can be added to the knowledge base using the assert
- function. The sentence (assert (executed (action ”gettingPatientInfo”)(output
”(Patient :name Paul :info Information about Paul)”))), adds the fact (executed
(action ”gettingPatientInfo”)(output ”(Patient :name Paul :info Information
about Paul)”)) to the knowledge base. You can remove an individual fact from
the knowledge base using the retract - function. The sentence (retract (exe-
cuted (action ”gettingPatientInfo”))), removes the fact asserted above from the
knowledge base.

The ”structure” of the fact that we added and removed from the knowledge
base is decided by a template. A template is defined by using the deftemplate-
function. The sentence (deftemplate executed (slot action) (slot output)), defines
the template used by our fact from before. executed is the name of the concept or
the object that the fact describes. Following this name are the slots or attributes
of the concept. Our concept executed has the slots action and output. The types
of the slot-values may also be defined, but it is not necessary. In our fact the
slot-value of the action-slot is the string: ”gettingPatientInfo”. The slot-value
of the output-slot is the string: ”(Patient :name Paul :info Information about
Paul)”.

Rules

Rules can take actions based on the contents of one or more facts. A Jess rule
is something like an ”if ... then” - statement in a procedural language, but it is
not used in a procedural way. While ”if ... then” - statements are executed at
a specific time and in a specific order, according to how the programmer writes
them, Jess rules are executed whenever their ”if” -parts (their left-hand-sides)
are satisfied, given only that the rule engine is running. Rules are defined in
Jess using the defrule-function. One of the rules in our system may look like
this:

(defrule rule-34
(executed (action ”gettingPatientInfo”) (output ?out))
(test (neq ?out nil))
?fact <- (ready to execute (action ”gettingPatientInfo”))

=>

108

(assert (actionoutput (name ”gettingPatientInfo output”) (value ?out)))
(retract ?fact))

The name of the rule is rule-34. The rule fires if the facts; (executed (action ”get-
tingPatientInfo”)(output ”(Patient :name Paul :info Information about Paul)”))
and (ready to execute (action ”gettingPatientInfo”)) exists in the knowledge
base, and if the Jess-function test evaluates to true. ?out is a variable, and
”(Patient :name Paul :info Information about Paul)” is bounded to that vari-
able when one checks if the rule should be fired. Clearly, ?out is not equal
to (neq) nil, and test evaluates to true. The fact : (ready to execute (action
”gettingPatientInfo”)) is bounded to the variable ?fact.

Rules are run by the function run. When rule-34 fires, the fact (actionoutput
(name ”gettingPatientInfo output”) (value ”(Patient :name Paul :info Informa-
tion about Paul)”)) is added to the knowledge base, and the fact (ready to execute
(action ”gettingPatientInfo”)) is removed from the knowledge base.

To use the introduced functions, manipulating facts and rules, from Java, a
jess.Rete-class must be instantiated. This class is the rule engine itself, and it
has its own knowledge base, agenda, rules, etc. If this class is manipulated by
calling appropriate methods, one has a working rule-engine. For example, our
fact, from above, may be added by calling the method executeCommand((assert
(executed (action ”gettingPatientInfo”)(output ”(Patient :name Paul :info In-
formation about Paul)”)))) on the Rete-instance. Other classes from the Jess-
API are used to extract information from the knowledge base.

6.3 Corrections

All of the corrections to the CoPS framework, listed in chapter 3, have been
implemented - except the one that involves a full realization of dynamic forma-
tion of problem solving teams. The correction that has not been done was too
extensive to cover this time, and will be proposed as future work in chapter 8.

In addition to the proposed corrections, other necessary modification were
applied due to problems that were encountered during the implementation.
What has been done is only mentioned here. More detailed information is added
to the java-doc in the proper classes. Pre-existing parts of the architecture that
are affected by the corrections are marked by the lightest shade of grey in figure
6.1. The corrections are:

• Extensive debugging was done so that the CoPS agents behave like they
should, according to their descriptions in [34]. The messages sent between
the agents are now corrected, in such a way that the TR at any time can
conclude correctly about the state of the problem solving process. And
the TR runs until it’s being properly terminated.

• The agent classes CoPSAgent, CoPSDecomposer, CoPSTaskResponsible
and CoPSProblemSolver contained inner classes representing the behaviours.
These inner classes are made as separate classes to make the code easier
to follow.

• All of the conversation-protocols (implemented as agent behaviours) are
completed, and every significant message is properly handled. Before only

109

parts of the protocols were implemented. This made the conversations
incomplete, and it was difficult to follow the governing idea of the problem
solving process.

• The recursive solution generation in the TMST class, did not reach the
correct solution. One recursively propagated the costs upwards in the
TMST by always choosing the cheapest alternative, and tagged the nodes
that became part of the solution in the same recursion. This is logically
impossible to do. We moved tagging of the solution to its own method
that was run on the TMST, after the final (and cheapest) cost for each
node was decided.

• The generation of the solution space (activation of nodes considering agent
proposals), in the TMST class, did not give the correct outcome either, so
it has been corrected as well.

• The CoPSProblemSolver class has been drastically changed; now a PS can
have several capabilities, and attend to multiple conversations at a time;
meaning a PS can join several problem solver teams simultaneously. The
changes to the CoPSProblemSolver class are further described in the next
section, 6.4.

All these corrections are proved to be working. The proofs are presented in
chapter 7, giving results from the test-run of an example application.

6.4 CoPS Problem Solving Process Extensions

The suggested extensions to CoPS, like the corrections, were introduced in chap-
ter 3. To realize the problem solving process steps, solving of subtasks and in-
tegration of partial results, some of the pre-existing classes of CoPS had to be
extended. Agent classes that were modified are: CoPSTaskResponsible which
implements the TR and CoPSProblemSolver which implements the PS. The
problem solving knowledge - class that was modified is TMST. Pre-existing
parts of the architecture that are affected by the extensions are marked by the
medium shade of grey in figure 6.1.

The problem solving knowledge layer of our three-layered architecture that
was introduced in chapter 3, and illustrated in figure 3.2 and 6.1, also has the
components CoPS Ontology and TEAM SPACE, in addition to the TMST. The
CoPS Ontology is not implemented as part of our work, and will be proposed
for future work in chapter 8. The TEAM SPACE is implemented as the main
extension to the CoPS framework, and implementation details are described in
section 6.5.

In this section, we describe how the modified version of the pre-existing
classes, function. Most of the classes have gotten a new instance variable of the
type FileWriter. An instance of FileWriter is associated with a TR and follows
the TR and all of the agents that it involves in its problem solving process. The
FileWriter is used by the different classes involved in one common problem, to
log the evolutionary steps of the problem solving process to a file. The file gets
the name of the TR and a ”.txt”-suffix. When we have several TRs working on
different problems one file is created per TR. The FileWriter class is shown in

110

FileWriter
String file = ""
write(String text):void
clear():void
getFileName():String

Figure 6.3: The FileWriter class. Used by most of the main classes in the CoPS
framework prototype, to logs different happenings.

figure 6.3, and only has methods for writing to a file, clearing a file, and getting
the name of the file.

6.4.1 The Modified CoPSTaskResponsible

Agents extending the CoPSTaskResponsible abstract class become the TR. As
described before, the TR is responsible for seeing to that a requested problem
is solved at run-time. TR analyzes the problem, gathers a team of PSs, ad-
ministers the problem solving process, combine partial results of a PSM into an
integrated solution, and finally returns a solution (or a failure specification) to
the requester of the problem. Our implemented CoPSTaskResponsible is capable
of doing all this. A modified UML class diagram of the CoPSTaskResponsible
is illustrated in figure 6.4. The figure also indicates what classes are new, what
classes are modified, and how the classes are extended or modified. As the
CoPSTaskResponsible is a subclass of the CoPSAgent, it is also a subclass of
the Jade Agent class.

The implementation of the TR and its behaviours is complex, and this is
reflected in the number of implemented behaviour classes, and the long list
of methods in the CoPSTaskResponsible class. The behaviour classes are not
unaffected by each other, they interact and depend on each other in different
ways. In the following we describe how the CoPSTaskResponsible class, and its
behaviour classes realize the behaviour of the TR.

First, setup() in CoPSTaskResponsible is called. The setup() method is an
empty placeholder for application specific code provided by the JADE Agent
class. It is used for setting up the agent - prepare it for action in the agent en-
vironment. During the setup a message template is defined and the behaviours
implemented by DFRegisteringBehaviour and HandleProblemSolvingRequestBe-
haviour is added to the agent (CoPSTaskResponsible). The message template
is used for filtering the messages that should be handled by the HandleProblem-
SolvingRequestBehaviour.

The first behaviour to be executed by the agent is DFRegisteringBehaviour.
This behaviour makes sure that the TR registers its capabilities with the Direc-
tory Facilitator (Matchmaker) implemented by the JADE framework. The next
behaviour is the HandleProblemSolvingRequestBehaviour, which is not executed
until the agent receives a message with a problem solving request that matches
the template defined during the setup. The HandleProblemSolvingRequestBe-
haviour class extends the JADE AchieveReResponder behaviour class. When
a problem solving request is received, the problem is analyzed by the abstract
method reviewProblem() in CoPSTaskResponsible. If the problem is not ac-

111

HandleProblemSolvingRequestBehaviour (modified)
MessageTemplate = null
FileWriter fw = null
HandleProblemSolvingRequestBehaviour(Agent agent, MessageTemplate mt):
constructor
prepareResponse(ACLMessage request):ACLMessage
onEnd():int

PrepareResultBehaviour (modified)
static final String GD = "GetDecomposition"
static final String FT = "FormTeam"
static final String APSP = "AdministerProblemSolvingProcess"
static final String TRR = "TaskResponsibleResponse"
static final String FSB = "FailureSpecificationBehaviour"
static final int SUCCESS = 0
static final int DECOMPOSITION_FAILED = 1
static final int TEAM_FORMATION_FAILED = 2
static final int PROBLEM_SOLVING_FAILED = 3
static final int RESPONSE_FAILED = 4
PrepareResultBehaviour(Agent a):constructor
onStart():void
onEnd():int

FormTeamBehaviour (modified)
int transition = PrepareResultBehaviour.TEAM_FORMATION_FAILED
FileWriter fw = null
FormTeamBehaviour(Agent a, ACLMessage cfp):constructor
prepareCfps(ACLMessage cfp):Vector
handlePropose(ACLMessage propose, Vector acceptances):void
handleNotUnderstood(ACLMessage notU, Vector acceptances):void
handleRefuse(ACLMessage refuse, Vector acceptances):void
handleAllResponses(Vector responses, Vector acceptances):void
handleInform(ACLMessage inform):void
handleFailure(ACLMessage failure):void
handleAllResultNotifications(Vector resultNotifications):void
onEnd():int

ComposePSMBehaviour(new)
MessageTemplate template
String currentRequest
ComposePSMBehaviour(Agent agent, MessageTemplate template)
prepareResponse(ACLMessage request):ACLMessage
prepareResultNotification(ACLMessage request, ACLMessage response):
ACLMessage
onEnd():int

TaskResponsibleResponseBehaviour (modified)
ACLMessage solution = null
boolean finished = false
int transition = PrepareResultBehaviour.SUCCESS
Behaviour dataStoreBehaviour
FileWriter fw = null
TaskResponsibleResponseBehaviour(Agent a, DataStore ds, Behaviour
topBehaviour):constructor
action():void
done():boolean
onEnd():int

1

1

1

GetDecompositionBehaviour (modified)
int transition = PrepareResultBehaviour.DECOMPOSITION_FAILED
FileWriter fw = null
GetDecompositionBehaviour(Agent a, ACLMessage m):constructor
prepareRequests(ACLMessage request):Vector
handleAgree(ACLMessage agree):void
handleNotUnderstood(ACLMessage notUnderstood): void
handleInform(ACLMessage inform):void
handleRefuse(ACLMessage refuse):void
handleFailure(ACLMessage failure):void
onEnd():int

11

1

1

(abstract) CoPSTaskResponsible (modified)
TMST tmst = null
String task = ""
String solution = ""
ACLMessage request = null
ACLMessage response = null
long waitForMillis = 10000
Ontology ontology
FileWriter fw = null
reviewProblem(String task):boolean
problemSolved():boolean
initializeOntology():Ontology
getOntology():Ontology
getSLContentAsAbsObject(Ontology ont, String content):
AbsObject
matchAbsObjects(AbsObject abs1, AbsObject abs2):boolean
getDecomposer():AID
lookupProblemSolvers(Action action):AID[]
setReplyByTime():long
encodeCostOfActionRequest(AID receiver, Action action):
String
encodeAction(AID receiver, Action action)
lookup(String agentType):DFAgentDescription[]
getTMST():TMST
getSolutionLanguage():String
getSolution():String
setSolution(String solution):void
getRequest():ACLMessage
setResponse(ACLMessage response):void
getResponse():ACLMessage
setTask(String task):void
getTask():void
setup():void
getProblemSolvers():ArrayList
makeCfps(ACLMessage cfp, ArrayList actionsAndAgents):
Vector
makeInvitations(Vector responses):Vector
extractPrice(ACLMessage proposal):String
getActionsMatchingProposal(ACLMessage proposal):Action[]
mapAgentToExecutor(ACLMessage response):void
setTMST(TMST tmst):void
composePSM(ACLMessage request):ACLMessage
getFInalPSM():String
getFileWriter():FileWriter
getTeamSpaceAgent():AID

HandleAgreeBehaviour (new)

HandleAgreeBehaviour(Agent agent):constructor
action():void

AdministerProblemSolvingProcessBehaviour (new)
int transition = PrepareResultBehaviour.PROBLEM_SOLVING_FAILED
FileWriter fw = null
AdministerProblemSolvingProcessBehaviour(Agent a, ACLMessage req):
constructor
prepareRequest(ACLMessage request):Vector
handleNotUnderstood(ACLMessage notUnderstood):void
handleRefuse(ACLMessage refuse):void
handleInform(ACLMessage inform):void
handleFailure(ACLMessage failure):void
onEnd():int

1

1

(abstract) CoPSAgent

setServiceDescription():
ServiceDescription

DFRegisteringBehaviour
ServiceDescription sd = null
DFRegisteringBehaviour(Agent a,
ServiceDescription sd):Constructor
action():void

1 1

1

1
FailureSpecificationBehaviour (new)

Behaviour dataStoreBehaviour
FileWriter fw = null
FailureSpecificationBehaviour():constructor
FailureSpecificationBehaviour(Agent a, DataStore ds, Behaviour
topBehaviour):constructor
action():void
onEnd():int

Figure 6.4: A modified UML diagram of the CoPSTaskResponsible agent and
its behaviours. The former version is found in [34]. Red text means new vari-
ables/methods in modified classes, blue text means modified variables/methods
in modified classes, black text means not modified variables/methods in old
classes or variables/methods in new classes.

112

cepted, a refuse message is sent to the requester. If the problem is accepted, the
prepareResultNotification() should be called. This is not the case here as this
state of the AchieveReResponder behaviour is exchanged with a new behaviour,
represented by the PrepareResultBehaviour class. This behaviour is added to
the agent.

The PrepareResultBehaviour class extends the JADE FSMBehaviour. It
defines a set of states represented by new behaviours, which are implemented
by the classes: GetDecompositionBehaviour, FormTeamBehaviour, Administer-
ProblemSolvingProcessBehaviour, TaskResponsibleResponseBehaviour and Fail-
ureSpecificationBehaviour. The first state is implemented by the GetDecompo-
sitionBehaviour class.

GetDecompositionBehaviour

The GetDecompositionBehaviour class extends the JADE AchieveREInitiator
class. This class realizes the TR’s part of the conversation with the Decomposer
(DEC) to get a TMST, representing the decomposition of a problem. The TMST
is kept by an instance of the TMST class.

First, the Directory Facilitator (Matchmaker) is requested for all DEC agents
in the system, and one of these is chosen. This is done through the method get-
Decomposer() in CoPSTaskResponsible. If an appropriate agent is found, a
request message containing the initial problem as the content is sent to the
DEC agent. If an inform message with a TMST instance is received from DEC,
the TMST is stored in the CoPSTaskResponsible with the method setTMST().
Then, the transition returned from this behaviour is SUCCESS. If the TR re-
ceives a not-understood -, refuse-, or failure message from the DEC, the transi-
tion returned from this behaviour is DECOMPOSITION FAILED.

FormTeamBehaviour

If the transition from the running of GetDecompositionBehaviour is SUCCESS,
the state of the PrepareResultBehaviour, implemented by the FormTeamBe-
haviour class is reached. This class extends the JADE ContractNetInitiator
class.

The prepareCfps() method of the ContractNetInitiator class is implemented
to define the call-for-proposal messages that are sent to the proper PS agents in
the system. The proper agents are found by extracting the actions (leaf -nodes)
from the TMST, and requesting the Directory Facilitator for agents capable of
performing those actions. This is realized by the getProblemSolvers() method
in CoPSTaskResponsible, which returns a list of action-PS agent pairs. This list
is used in prepareCfps() to make the call-for-proposal messages.

The implemented method handleAllResponses() is called when all the re-
sponses are received. For all of the received proposal-message the sender (PS)
agent is mapped to the an Executor in the TMST by the CoPSTaskResponsi-
ble method mapAgentToExecutor(). Next, the solution space of the TMST is
generated, and the best solution is found, by calling the TMST methods gen-
erateSolutionSpace() and generateSolution(). If a solution space is found, the
CoPSTaskResponsible method makeInvitations() is called. The method returns
a list of invitations for the agents part of the chosen solution in the TMST.
Finally, the accept-proposal messages are sent for the PS agents as invitations

113

to join the team, and reject-proposal messages are sent for the PS agents that
was not invited to join the team. If a solution in the TMST could not be found,
all of the agents that sent a proposal receives a reject-proposal message, and
the behaviour ends with the transition TEAM FORMATION FAILED.

Finally, the implemented method handleAllResultNotifications() goes through
the results received from the agents that were invited to join the team. An in-
form message means that the PS accepts the invitation, a failure message means
that the PS will not join the team. If a failure message is received, the current so-
lution of the TMST is not fulfilled, and the transition from the behaviour is Pre-
pareResultBehaviour.TEAM FORMATION FAILED. If no failure messages are
received the transition from the behaviour is PrepareResultBehaviour.SUCCESS
- a team of PS agents capable of solving the initial task through cooperation is
successfully formed.

AdministerProblemSolvingProcessBehaviour

If the transition from the running of GetDecompositionBehaviour is SUCCESS,
the state of the PrepareResultBehaviour, implemented by the AdministerProb-
lemSolvingProcessBehaviour class is reached. This class extends the JADE
AchieveREInitiator class.

This class implements the behaviour of the TR involving requesting the
TEAM SPACE (TS) Agent to initialize and solve a problem in the TEAM
SPACE (TS) Structure. The request sent by the behaviour contains the TMST
instance kept by CoPSTaskResponsible. The TMST is gotten by calling the
method getTMST(), and the TS Agent is found by calling the method get-
TeamSpaceAgent(), both in CoPSTaskResponsible. If a TS Agent sends a refuse
message or a not-understood message the transition from this behaviour is
PROBLEM SOLVING FAILED. The state of the AchieveREInitiator, handling
an agree message is replaced by a behaviour implemented by the class HandleA-
greeBehaviour.

When the TS Agent agrees to solve a problem in the TS Structure, the
HandleAgreeBehaviour extending JADE OneShotBehaviour makes sure that a
new behaviour implemented by the class ComposePSMBehaviour is added to
CoPSTaskResponsible. The ComposePSMBehaviour extending JADE Achiev-
eREResponder is executed when a request for composing a PSM is received from
the TS Agent. If the content of the request is understood an agree message is
sent, if not a not-understood message is sent. Then the result is prepared by
calling the abstract method in CoPSTaskResponsible - composePSM(). In the
implemented onEnd() method of AdministerProblemSolvingProcessBehaviour,
a check is done to find out if the requested PSM is the final PSM (last PSM
to compose in TMST). This is done by calling getFinalPSM() in CoPSTaskRe-
sponsible. If it was not the final PSM, the composePSMBehaviour is added
again, and the TR agent waits for further PSMs to compose. If it was the final
PSM, we are taken back to AdministerProblemSolvingProcessBehaviour. Now
the TR agent waits for the TS Agent to return the final solution of the problem
solving in the TEAM SPACE. If a failure message is received the behaviour
ends with the transition PROBLEM SOLVING FAILED. If an inform message
is received, containing the solution to the initial task, the behaviour ends with
the transition SUCCESS.

114

TaskResponsibleResponseBehaviour

If the transition from the running of AdministerProblemSolvingProcessBehaviour
is SUCCESS, the state of the PrepareResultBehaviour implemented by the
TaskResponsibleResponseBehaviour is reached. This class extends the JADE
SimpleBehaviour.

The purpose of this behaviour is to generate a message containing the so-
lution to the initial problem. The message is generated in the implemented
action() method, by calling getSolution() and getSolutionLanguage in CoP-
STaskResponsible. The generated message is put back into the message - ”sys-
tem” of HandleProblemSolvingRequestBehaviour, which finally can return the
result to the requester of the problem, as an inform message. When the result
is returned, the behaviour implemented by HandleProblemSolvingRequestBe-
haviour is added to the agent again, and the TR starts again to wait for new
problem solving request messages.

FailureSpecificationBehaviour

The FailureSpecificationBehaviour also implements a state of the PrepareRe-
sultBehaviour. This state is reached if a behaviour representing an other state
in the PrepareResultBehaviour, ends with one of the following transitions:

• DECOMPOSITION FAILED

• TEAM FORMATION FAILED

• PROBLEM SOLVING FAILED

• RESPONSE FAILED

The purpose of this behaviour is to generate a message containing a failure
specification. The message is generated in the implemented action, by using the
information about the transition that led to this state. The generated message
is put back into the message - ”system” of HandleProblemSolvingRequestBe-
haviour, which finally can return the result to the requester of the problem, as
a failure message.

6.4.2 The Modified CoPSProblemSolver

Agents extending the CoPSProblemSolver abstract class become PSs. As de-
scribed before, the PSs are the workers in the system, and are capable of solving
specific problems or performing actions. They may join the team, that is orga-
nized by the TR, by responding to call-for-proposal messages. When they are
part of a team, they wait for and respond to problem solving requests from a
TS Agent. The extended CoPSProblemSolver also implements the possibility
of a PS joining several teams, or at least performing several actions, in each
behavioural cycle.

As the CoPSProblemSolver is a subclass of the CoPSAgent, it is also a
subclass of the JADE Agent class. A modified UML class diagram of the CoP-
SProblemSolver and its behaviour classes is illustrated in figure 6.5. The figure
also indicates what classes are new, what classes are modified, and how the
classes are extended or modified.

115

(abstract) CoPSProblemSolver (modified)
ACLMessage currentRequest = null
Ontology ontologies[]
Codec languages[]
private boolean partOfTeam
initializeOntologies(): Ontology[]
initializeLanguages(): Codec[]
decideWheterToMakeProposal(ACLMessage
request):boolean
makeProposal(ACLMessage request):String
performAction(ACLMessage request):ACLMessage
setup():void
getLanguages():Codec[]
knownLanguage(ACLMessage):boolean
knownOntology(ACLMessage):boolean
setCurrentRequest(ACLMessage request):void
getCurrentRequest():ACLMessage
getPartOfTeam():boolean
setPartOfTeam(boolean pot):void

CheckCfpsBehaviour (new)

action():void
onEnd():int

RespondToCfpsBehaviour (modified)
String problem = ""
RespondToCfpsBehaviour(Agent a, MessageTemplate
template, DataStore ds):constructor
prepareResponse(ACLMessage request):ACLMessage
handleRejectProposal(ACLMessage cfp, ACLMessage
propose, ACLMessage accept):ACLMessage
prepareResultNotification(ACLMessage cfp,
ACLMessage propose, ACLMessage accept)
onEnd():int

ProblemSolvingBehaviour (new)

ProblemSolvingBehaviour(Agent a, MessageTemplate t):
constructor
prepareResponse(ACLMessage request):ACLMessage
prepareResultNotification(ACLMessage request,
ACLMessage response):ACLMessage
onEnd():int

(abstract) CoPSAgent

setServiceDescription():
ServiceDescription

DFRegisteringBehaviour
ServiceDescription sd = null
DFRegisteringBehaviour(Agent a,
ServiceDescription sd):Constructor
action():void

1 1

*

1 *

*

Figure 6.5: A modified UML diagram of the CoPSProblemSolver agent and its
behaviours. The former version is found in [34]. Red text means new vari-
ables/methods in modified classes, blue text means modified variables/methods
in modified classes, black text means not modified variables/methods in old
classes or variables/methods in new classes.

116

First, setup() in CoPSProblemSolver is called. As mentioned before, the
setup() method is an empty placeholder for application specific code provided
by the JADE Agent class, used for setting up the agent. During the setup the
agent’s languages and ontologies are initialized by calling initializeLanguages()
and initializeOntologies(), and two behaviours are added to the agent which are
DFRegisteringBehaviour and CheckCfpsBehaviour.

The first behaviour to be executed by the agent is the DFRegisteringBe-
haviour - the PS agent registers its capabilities (what actions it can perform)
with the Directory Facilitator (Matchmaker). The next behaviour is CheckCf-
psBehaviour which extends the JADE SimpleBehaviour class. This behaviour
gathers all the incoming call-for-proposal messages, and when there are no more
incoming messages, a JADE ParallelBehaviour is added to CoPSProblemSolver.
The ParallelBehaviour has one sub-behaviour for each of the call-for-proposal
messages. The sub-behaviours are implemented by RespondToCfpsBehaivour.
The ParallelBehaviour makes sure that the call-for-proposal-messages are han-
dled in parallel by the RespondToCfpsBehaviour instances. ParallelBehaviour
finishes when all of the RespondToCfpsBehaviour instances and their children
(behaviours added to the agent from this behaviour) are done.

RespondToCfpsBehaviour extends the JADE ContractNetResponder class.
A response to the call-for-proposal message received from a TR is prepared in
prepareResponse(). The agent decides whether to make a proposal, by calling
decideWhetherToMakeProposal(). The proposal is made by calling makePro-
posal(), which is an abstract method in CoPSProblemSolver. If a proposal is
not made or the agent receives a reject-proposal message, this behaviour is
done. If a proposal is made and sent, and the agent eventually receives an
accept-proposal message, containing an invitation to join a team, prepareRe-
sultNotification() starts preparing the answer. The agent makes and sends an
inform-message to tell that it joins the team and calls setPartOfTeam(true) in
CoPSProblemSolver. And a new behaviour is added to the agent, implemented
by the ProblemSolvingBehaviour class. If the agent decides not to join the team,
it makes and sends a failure-message and the behaviour is done.

ProblemSolvingBehaviour extends the JADE AchieveREResponder class. This
class handles problem solving request messages from a TS Agent. When a re-
quest message is received, it is handled by prepareResponse(). If the PS agent un-
derstands the content of the message, and is part of a team (getPartOfTeam()),
it replies with an agree message, if not it replies with a refuse message (not
part of a team) or a not-understood message (did not understand the content).
If a refuse - or not-understood message was sent the behaviour is done. If an
agree message was sent PS starts preparing the result in prepareResultNotifica-
tion(). It performs the action by calling the abstract method performAction()
in CoPSProblemSolver, and returns the results from the execution in an inform
message. The behaviour is done.

When all the sub-behaviours of ParallelBehaviour are done, CheckCfpsBe-
haviour is added to the agent again, and it starts waiting for new call-for-
proposal messages.

6.4.3 The Modified TMST

The TMST class keeps the model of a TMST, like described in section 6.2.
The UML diagram of the TMST class is illustrated in figure 6.6. As one can

117

TMST (modified)
String initialInput = ""
int teamID
FileWriter fw
TMST():constructor
getAction(String actionname):Action
getActions(String actiontype):Action[]
getTask(String taskname):Task
getAllProblemSolvingMethods():ArrayList
getAllActions():Action[]
getAllTasks():ArrayList
getAllExecutors():Executor[]
getProblemSolvingMethod(String psmname):
ProblemSolvingMethod
getInitialProblem():Task
setAsInitialProblem(Task initialProblem):void
dependencyAnalyzation():void
analyzeIODependencies(ProblemSolvingMethod psm):void
addFloat(float list[]):float
activate():void
activateFrom(Entity ent):void
analyzeAndPrint():void
printSolutionAndCost():void
generateSolutionSpace():boolean
addSolutions(Entity ent):void
generateSolution():boolean
generateSolutionRecursively(Entity ent):float
setFileWriter(FileWriter fw):void
getFileWriter():FileWriter
getTeamID():int
setTeamID(int id):void
setInitialInput(String input):void
getInitialInput():String
isSpacePart(Entity ent):boolean
tagSolutionEntities(Entity ent, boolean initialTask):void

Figure 6.6: A modified UML diagram of the TMST main class. The former
version is found in [34]. Red text means new variables/methods in modified
classes, blue text means modified variables/methods in modified classes, black
text means not modified variables/methods in old classes or variables/methods
in new classes.

118

teamSpace

agent structure

Figure 6.7: Our package structure for the TEAM SPACE implementation. agent
contains TS Agent classes, and structure contains TS Structure classes.

see in the diagram, there has been done quite some modifications to this class,
but most of these are due to the corrections listed in the previous section.
Modifications considering ”CoPS problem solving process extensions” involves
the three instance variables initialInput, teamID and fw, and methods for getting
and setting them.

The initialInput is a string, representing the actual input for the initial task
of a TMST instance. This input might be (Patient :name paul) for the initial
task doCheckup. The input related to the initial task, which is stored in TMST
from before is (Patient :name x), in this case.

Each instance of TMST, created by the Decomposer, keeps a decomposition
of a specific problem that will be solved by a team of PSs. The teamID becomes
the identification of this team, and it relates an instance of TMST to its team.

6.5 The TEAM SPACE

As described in chapter 4 the TEAM SPACE is comprised of a TEAM SPACE
(TS) agent and a TEAM SPACE (TS) Structure. Classes that implements the
TEAM SPACE are contained in the teamSpace package, classes that implements
the TS Agent are contained in the agent package, and classes that implements
the TS Structure are contained in the structure package. This is illustrated in
figure 6.7. The figure also shows that classes from agent access classes from
structure. The TeamSpaceAgent class (implementing the TS Agent) keeps in-
stances of the TeamSpace class (implementing the TS Structure).

All the parts of the TEAM SPACE architecture that was proposed in chap-
ter 4 have been implemented, except from the part covering dynamic team
formation and re-planning of tasks. Our TEAM SPACE architecture covers
the functional requirements listed in chapter 3. Dynamic team formation and
re-planning of tasks are not part of these requirements. This indicates that the
implementation of the TEAM SPACE also covers the functional requirements.

6.5.1 The TEAM SPACE agent

Main responsibilities of the TS Agent is to be TR’s and PSs’ interface to the
TS Structure. A TS Agent initializes the TS structure on request from the TR,
it notifies TRs and PSs about actions that need to be executed and PSMs that

119

PrepareResultBehaviour
ACLMessage solution = null
boolean finished = false
int transition = TeamSpacePSBehaviour.SUCCESS
Behaviour dataStoreBehaviour
String teamID = ""
FileWriter fw = null
PrepareResultBehaviour(Agent a, DataStore ds, Behaviour
topBehaviour, String teamID):constructor
action():void
done():boolean
onEnd():int

FailureBehaviour
Behaviour dataStoreBehaviour
String teamID = ""
FileWriter fw = null
FailureBehaviour(Agent a, DataStore ds, Behaviour topBehviour,
String teamID):constructor
action():void
onEnd():int

EndProblemSolvingBehaviour
int transition = TeamSpacePSBehaviour.SUCCESS
String teamID = ""
FileWriter fw = null
EndProblemSolvingBehaviour(Agent a, String teamID):constructor
action():void
onEnd():int

The blackboard.agent package

TeamSpaceAgentBehaviour
String teamID = ""
FileWriter fw = null
TeamSpaceAgentBehaviour(Agent a, MessageTemplate mt,
DataStore ds):constructor
prepareResponse(ACLMessage request):ACLMessage
onEnd():int

DFRegisteringBehaviour
ServiceDescription sd = null
DFRegisteringBehaviour(Agent a, ServiceDescription sd):constructor
action():void

TeamSpacePSBehaviour
static final String CFA = "CheckForActions"
static final String HA = "HandleActions"
static final String EPS = "EndProblemSolving"
static final String PR = "PrepareResultBehaviour"
static final String F = "Failure"
static final int SUCCESS = 0
static final int CHECK_FOR_ACTIONS_FAILED = 1
static final int HANDLE_ACTIONS_FAILED = 2
static final int END_PROBLEM_SOLVING_FAILED = 3
static final int PREPARERESULT_BEHAVIOUR_FAILED = 4
static final int NO_MORE_ACTIONS = 5
String teamID = ""
TeamSpacePSBehaviour(Agent a, String teamID):constructor
onStart():void
onEnd():int

1

1

1 *

*

*

1

*

CheckTeamSpaceRequestsBehaviour

CheckTeamSpaceRequestBehaviour(Agent a):constructor
action():void

CheckForActionsBehaviour
int transition = TeamSpacePSBehaviour.SUCCESS
String teamID = ""
FileWriter fw = null
CheckForActionsBehaviour(Agent a, String teamID):constructor
action():void
onEnd():int*

HandleActionsBehaviour
int transition = TeamSpacePSBehaviour.SUCCESS
ArrayList actions
ArrayList executedActions
ArrayList psms
ArrayList executedPSMs
String teamID = ""
FileWriter fw = null
HandleActionsBehaviour(Agent a, ACLMessage request, String
teamID):constructor
prepareRequest(ACLMessage request):Vector
handleNotUnderstood(ACLMessage notUnderstood):void
handleAgree(ACLMessage agree):void
handleRefuse(ACLMessage refuse):void
handleFailure(ACLmessage failure):void
handleInform(ACLMessage inform):void
handleAllResultNotifications(Vector resultNotifications):void
onEnd():int

1

*

1

*

TeamSpaceAgent
Vector teamSpaces = new Vector()
setup():void
getActionsReadyToExecute(String teamID):ArrayList
getPSMsReadyToCompose(String teamID):ArrayList
getProcessingActions(String teamID):ArrayList
getProcessingPSMs(String teamID):ArrayList
initializeTeamSpace(TMST tmst, String teamID, String
requester):boolean
setProcessedActions(ArrayList actions, String teamID):boolean
setProcessingActions(ArrayList actions, String teamID):void
setProcessingPSMs(ArrayList psms, String teamID):void
setProcessedPSMs(ArrayList psms, String teamID):boolean
setServiceDescription():ServiceDescription
printCurrentState(String teamID):void
getProblemSolution(String teamID):String
getInitialProblem(String teamID):String
getInitialInput(String teamID):String
getFileWriter(String teamID):FileWriter
getTeamSpace(String teamID):TeamSpace

Figure 6.8: An UML class diagram showing the classes that implements the TS
Agent. These classes are contained in the package: teamSpace.agent

120

need to be composed, it updates the TS structure with results from execution
and composition, and it finally extracts the result to the initial problem and
returns it to the TR. In addition, if there is only one TS Agent in the system, it
might have to keep track of several TEAM SPACE structures at the same time
and communicating with different problem solving teams.

The TS Agent is implemented by the TeamSpaceAgent class, which is not
abstract and does not extend the CoPSAgent class like CoPSTaskResponsible
and CoPSProblemSolver does. But, TeamSpaceAgent is a subclass of the JADE
Agent class. A UML class diagram of the TeamSpaceAgent class and the classes
implementing its behaviours is illustrated in figure 6.8. The TeamSpaceAgent
class keeps a list of TeamSpace objects, and each of these objects is dedicated
for solving a specific problem. TeamSpace objects are identified by the teamID,
which is related to the team of PS agents that shall solve the problem. A
CoPSAgent instance is the PS’s and TR’s interface to the TeamSpace objects
representing the TS Structures. Since the CoPSAgent instance may be involved
with many problem solving teams at the same time, the teamID must always me
submitted when one of the methods dealing with a specific TeamSpace object is
called. In the following, we describe how the CoPSAgent class and its behaviour
classes realize the behaviour of the TS Agent.

First, setup() in TeamSpaceAgent is called. As mentioned before, the setup()
method is an empty placeholder for application specific code provided by the
JADE Agent class, used for setting up the agent. During the setup, two be-
haviours are added to TeamSpaceAgent which are implemented by DFRegister-
ingBehaviour and CheckTeamSpaceRequestsBehaviour.

The DFRegisteringBehaviour and CheckTeamSpaceRequestsBehaviour
classes

The first behaviour to be executed by the TeamSpaceAgent is the DFRegister-
ingBehaviour - the TeamSpaceAgent registers its capabilities with the Directory
Facilitator (Matchmaker). The next behaviour is CheckTeamSpaceRequestsBe-
haviour which extends the JADE SimpleBehaviour class. This behaviour gath-
ers all incoming TeamSpace request messages. When there are no more incoming
messages, a JADE ParallelBehaviour is added to TeamSpaceAgent. ParallelBe-
haviour has one sub-behaviour for each of the TeamSpace request messages. The
sub-behaviours are implemented by the TeamSpaceAgentBehaviour class. Par-
allelBehaviour makes sure that the TeamSpace request messages are handled
in parallel by the TeamSpaceAgentBehaviour instances, and it finishes when
all of these TeamSpaceAgentBehaviour instances and their children (behaviours
added to the agent from this behaviour) are done.

The TeamSpaceAgentBehaviour class

TeamSpaceAgentBehaviour extends the JADE AchieveReResponder class. A
response to the TeamSpace request message received from the TR is prepared
in prepareResponse(). The content of the request message is an instance of a
TMST. Preparing the response involves trying to initialize a TeamSpace object
by calling the method initializeTeamSpace() in TeamSpaceAgent, and submit-
ting the TMST, a teamID and the name of the sender of the request (the TR).
initializeTeamSpace() creates a new TeamSpace object and adds it to the list of

121

TS Structures kept by TeamSpaceAgent. Then the TeamSpace object is initial-
ized by calling initialize() on the object. If the initialization ends successfully,
TeamSpaceAgent responds with an agree message. If the content of the message
was not understood, TeamSpaceAgent responds with a not-understood message.
And if the TeamSpace could not be initialized textitTeamSpaceAgent responds
with a refuse message. In the two last cases the behaviour is done. In the
first case, where an agree message was sent, a new behaviour is added to han-
dle the state of TeamSpaceAgentBehaviour that prepares the result notification.
TeamSpacePSBehaviour implements the added behaviour.

The TeamSpacePSBehaviour class

The TeamSpacePSBehaviour class extends the JADE FSMBehaviour. It de-
fines a set of states represented by different behaviours, which are implemented
by the classes: CheckForActionsBehaviour, HandleActionsBehaviour, EndProb-
lemSolvingBehaviour, PrepareResultBehaviour and FailureBehaviour. It also
defines a set of transitions that decides what is the next state after the current
state. The next sections describe the different states of this behaviour, and
how the transition between states work. This behaviour is done (and thereby
the TeamSpaceAgentBehaviour that started it), when one of the final states are
reached. The final states are implemented by PrepareResultBehaviour and Fail-
ureBehaviour. The first state is implemented by the CheckForActionsBehaviour
class.

The CheckForActionsBehaviour class

If the TeamSpacePSBehaviour is just started, or if the running of HandleAc-
tionsBehaviour ends with the transition SUCCESS, the state of the TeamSpacePS-
Behaviour that is implemented by CheckForActionsBehaviour is reached. This
class extends the JADE OneShotBehaviour class. The action() method calls
getActionsReadyToExecute() and getPSMsReadyToCompose in TeamSpaceAgent
(submitting a teamID), which return a list of actions and a list of PSMs respec-
tively. If the lists are empty, the behaviour is done and the transition returned is
NO MORE ACTIONS. If the lists are not empty, the actions and PSMs that are
ready to be processed are set in the correct TeamSpace by calling setProcessin-
gActions() and setProcessingPSMs() in TeamSpaceAgent. Then, the behaviour
is done and the returned transition is SUCCESS.

The HandleActionsBehaviour class

If the transition from CheckForActionsBehaivour is SUCCESS, the state of
TeamSpacePSBehaviour implemented by HandleActionsBehaviour is reached.
HandleActionsBehaviour extends the JADE AchieveREInitiator class and its
purpose is to support a conversation with PSs and TRs, that will process the
actions and PSMs found in the previous state.

Requests for the PSs and TRs are prepared in the method prepareRequests().
The actions and PSMs that are ready to be processed are gotten from the
correct TeamSpace by calling getProcessingActions() and getProcessingPSMs()
in TeamSpaceAgent, and stored in the lists actions and psms. An action object
contains the address of a PS and information the PS needs to execute the action.

122

A PSM object contains the address of a TR, and information the TR needs
(partial results, input) to compose that PSM. Request messages are made, and
sent for all of the action and PSM objects.

If only agree messages are received as responses to the request messages, tex-
titTeamSpaceAgent starts waiting for the inform messages. If a not-understood
- or a refuse message is received, textitTeamSpaceAgent will not be able to com-
plete the problem solving in the TeamSpace, and some action should be taken.
For now, the behaviour ends with the transition HANDLE ACTIONS FAILED.

The inform messages received are processed by handleInform(). Inform mes-
sages keeps the output from an action or PSM, produced by a PS or TR. For each
inform message, one extracts which action/psm it represents, this action/psm
object is found in the list actions/psms, the object is manipulated by adding the
output, and then it is put into the executedActions/executedPSMs list. When
all the inform messages are received, handleAllResultNotifications() is called.
The processed actions and PSMs are added to the correct TeamSpace by calling
setProcessedActions() or setProcessedPSMs() in TeamSpaceAgent. If the actions
and PSMs are successfully set, what is done in this state is written to the file
kept by the FileWriter, and the behaviour ends with the transition SUCCESS.
If an error occurs during the setting of actions and PSMs the behaviour ends
with the transition HANDLE ACTIONS FAILED.

The EndProblemSolvingBehaviour class

If CheckForActionsBehaviour ends with the transition NO MORE ACTION
the state of TeamSpacePSBehaviour implemented by EndProblemSolvingBe-
haviour is reached. EndProblemSolvingBehaviour extends the JADE OneShot-
Behaviour. In the action() method getProblemSolution() is called in TeamSpaceAgent
to check if there is a solution to the initial problem. If there is a solution the
behaviour ends with the transition SUCCESS, and if there is no the behaviour
ends with the transition END PROBLEM SOLVING FAILED.

The PrepareResultBehaviour class

If EndProblemSolvingBehaviour ends with the transition SUCESS, the state
of TeamSpacePSBehaviour implemented by PrepareResultBehaviour is reached.
PrepareResultBehaviour extends the JADE OneShotBehaviour. In the action()
method a message containing the solution to the initial problem is generated,
using the information from getProblemSolution() in TeamSpaceAgent. The mes-
sage is put back into the message - ”system” of TeamSpaceAgentBehaviour,
which finally can return the result to the requester of the team space, as an
inform message. When the result is returned, the TeamSpacePSBehaviour is
done, since PrepareResultBehaviour is a final state.

The FailureBehaviour class

The FailureBehaviour also implements a final state of TeamSpacePSBehaviour.
This state is reached if a behaviour representing an other state in TeamSpacePS-
Behaviour ends with one of the following transitions:

• CHECK FOR ACTIONS FAILED

123

• HANDLE ACTIONS FAILED

• END PROBLEM SOLVING FAILED

The purpose of this behaviour is to generate a message containing a failure
specification. The message is generated in the implemented action() method,
by using the information about the transition that led to this state. The gen-
erated message is put back into the message - ”system” of TeamSpaceAgentBe-
haviour, which finally can return the result to the requester of TeamSpace, as
a failure message. When the result is returned, the TeamSpacePSBehaviour is
done, since PrepareResultBehaviour is a final state.

As described in the two final states, when the result is returned, the TeamSpacePS-
Behaviour is done, and thereby the TeamSpaceAgentBehaviour are done as well.
When all of the other TeamSpaceAgentBehaviours, that are children of Paral-
lelBehaviour, added by CheckTeamSpaceRequestsBehaviour, are done also, the
ParallelBehaviour is done, and thereby CheckTeamSpaceRequestsBehaviour is
done. The CheckTeamSpaceRequestsBehaviour is added to the TS Agent again
and it starts all over to wait for new TeamSpace request messages.

6.5.2 The TEAM SPACE structure

The TEAM SPACE (TS) structure architecture was described in chapter 4, sec-
tion 4.1.3. The TS Structure is comprised of four different components: Plan
Library, Result Library, Goal Stack and Rule Base Container. The TEAM
SPACE (TS) Problem Solving State gives a view of information kept by the Re-
sult Library and the Goal Stack. The main responsibilities of the TS Structure
is:

• ... to convert the knowledge in a TMST into rules that will guide the
problem solving process steps: solving of subtasks and integration of par-
tial results.

• ... to store results from PSs executing actions and TR composing a PSM’s
partial results.

• ... to reason about these results and using the rules to infer the correct
state of the problem solving process.

The TS Structure is implemented by five classes: TeamSpace, PlanLibrary, Re-
sultLibrary, RuleBase and GoalStack. The classes are illustrated by an UML
diagram in figure 6.9. The PlanLibrary class implements the Plan Library in
the TS Structure architecture, the GoalStack class implements the Goal Stack,
the ResultLibrary class implements the Result Library and the RuleBase class
implements the Rule Base Container. Finally, the TeamSpace class implements
the TS Structure, containing references to the other components.

TEAM SPACE structure classes

The TeamSpace class realizes all of the functions provided by the TS Structure
through manipulating the other classes, and thus implements a single interface
to the TS Structure functionality. One instance of the TeamSpace structure

124

The blackboard.structure package

GoalStack
Rete ruleEngine
FileWriter fw = null
GoalStack(Rete ruleEngine):
constructor
setFileWriter(FileWriter fw):void
getAchievedGoals():ArrayList
getGoalOutput(String goalName):
String

TeamSpace
String teamID
Rete ruleEngine
RuleBase ruleBase
GoalStack goalStack
ResultLibrary resultLibrary
TMST taskStructureTree
String requester
FileWriter fw = null
ArrayList processingActions = new ArrayList()
ArrayList processingPSMs = new ArrayList()
TeamSpace(TMST taskStructureTree, String
teamID, String requester): constructor
initialize():boolean
getFileWriter():FileWriter
getActionsReadyToExecute():ArrayList
getPSMsReadyToCompose():ArrayList
addProcessedActions(ArrayList actions):boolean
addProcessedPSMs(ArrayList psms):boolean
getProblemSolution():String
getInitialProblem():String
getTeamID():String
getInitialInput():String
getProcessingActions():ArrayList
getProcessingPSMs():processingPSMs
setProcessingActions(ArrayList actions)
printCurrentState():void

ResultLibrary
Rete ruleengine
boolean initialize = false
ArrayList executedActions = new ArrayList()
ArrayList composedPSMs = new ArrayList()
FileWriter fw = null
ResultLibrary(Rete ruleEngine): constructor
setFileWriter(FileWriter fw):void
add(String construct):void
addProcessedActions(ArrayList actions):boolean
addProcessedPSMs(ArrayList psms):boolean
getExecutedActions():ArrayList
getComposedPSMs:ArrayList
getActionsReadyToExecute():ArrayList
getPSMsReadyToCompose():ArrayList
initialize():boolean

PlanLibrary
TMST tmst
String composer
Task initialTask = null
FileWriter fw = null
PlanLibrary(TMST tmst, String composer):
constructor
setFileWriter(FileWriter fw):void
getInitialTask():String
getPSM(String taskName):String
getAction(String taskName):String
getTasks(String psmName):String[]
getActionInput(String actionName):String
getActionOutput(String actionName):String
getTaskInput(String taskName):String
getTaskOutput(String taskName):String
getPSMInput(String psmName):String
getPSMOutput(String psmName):String
getIODependencies(String psmName):
ArrayList
getExecutor(String actionName):String
getActionType(String actionName):String
getComposer():String
getInputValue(String inputName):String
getOutputValue(String ouputName):String
getGoal(String taskName):String
getInitialGoal():String
getInitialInput():String
getTeamID():int

RuleBase
Rete ruleEngine
int ruleCount = 0
PlanLibrary planLib
FileWriter fw = null
RuleBase(Rete ruleEngine): constructor
setFileWriter(FileWriter fw):void
add(String construct):void
getRuleNumber():int
initialize(PlanLibrary planLib):boolean
initializeTask(String taskName):boolean
initializePSM(String psmName):boolean
initializeAction(String actionName):
boolean
executeRules():void

1

1

1

1

1

1

1 1

Figure 6.9: An UML class diagram showing the classes that implements the TS
Structure. These classes are contained in the package: teamSpace.structure

125

is created for each problem, by calling the TeamSpace constructor with an in-
stance of TMST, a teamID representing the team of problem solvers, and the
name of the requester of the problem solving. The TeamSpace then instantiates
one instance of each of the TS structure classes, and a Jess Rete class, which
represents a Java interface to the Jess rule engine. The Rete class has its own
knowledge base and rules.

The PlanLibrary class is instantiated by calling the constructor with an
instance of a TMST, and the name of the composer of PSMs (TR). Basically,
PlanLibrary serves as an interface to a TMST. It has different methods to extract
and manipulate information from the TMST.

The RuleBase class is instantiated by calling the constructor with the Rete
class instance created by TeamSpace. RuleBase serves as an interface to the
rules in the Jess rule engine. The initialize...() methods in RuleBase converts
information from a TMST, kept by the PlanLibrary, into rules describing the
problem solving process. In addition, there are methods for adding and execut-
ing rules in the Rete instance. After a rule is created by one of the initialize...()
methods, it is added to the Rete instance.

The ResultLibrary class is instantiated by calling the constructor with the
same instance of the Rete class as was used in the RuleBase class. Only, this
class serves as an interface to the facts stored in the knowledge base of the Jess
rule engine. ResultLibrary has methods for adding facts to the Jess knowledge
base, and for extracting certain types of facts from it.

The GoalStack class is also instantiated by calling the constructor with the
Rete instance, and it is the interface to the part of the Jess knowledge base
(kept by the Rete instance) that keeps facts about achieved goals. GoalStack
has methods to extract information about achieved goals from the Rete instance.

TEAM SPACE structure main functionality

During the description of the TEAM SPACE architecture in chapter 4, we
found four main functions that needed to be covered by the TS structure. The
functions are: To initialize the TS structure for assisting in solving a specific
problem, to check for actions and PSMs that are ready to be executed and com-
posed (involves updating and extracting the problem solving state), to update
the Result Library and to get the solution to the initial problem. All of these
functions are implemented by the TS structure classes.

The TS Structure is initialized by creating a new instance of the TeamSpace
class, which again instantiates one instance of each of the other TS Structure
classes. Then initialize() is called on the TeamSpace, which again calls initial-
ize() on its instance of ResultLibrary and on its instance of RuleBase. initialize()
in ResultLibrary adds a set of Jess templates to the Rete (rule-engine) knowledge
base, defining how the facts should be represented. And initialize() in RuleBase
traverses the TMST by extracting information from PlanLibrary, and creates a
set of Jess rules which it adds to the Rete (rule-engine) rules.

The check for actions and PSMs are done separately. getActionsReadyToEx-
ecute() in TeamSpace returns an ArrayList of actions that are ready to be
executed. This is done by first calling executeRules() in RuleBase. The exe-
cution of rules may add new facts to the Jess knowledge base. Then, getAc-
tionsReadyToExecute() is called in ResultLibrary, which extracts facts from the
knowledge base which are based on the template (ready to execute (slot action)

126

(slot action type) (slot input) (slot executor)). getPSMsReadyToCompose() in
TeamSpace returns an ArrayList of PSMs that are ready to be composed. Now,
the rules are already executed. getPSMsReadyToCompose in the ResultLibrary
is called, which extracts facts from the knowledge base which are based on
the template (ready to compose (slot psm) (slot input) (mulitslot partial results)
(slot executor)).

When actions are executed and PSMs are composed, the ResultLibrary needs
to be updated. Then addProcessedActions() and addProcessedPSMs() are called
in the TeamSpace and these methods respectively call addProcessedActions()
and addProcessedPSMs() in ResultLibrary. addProcessedActions() goes through
the submitted list of processed actions and adds facts on this form; (executed
(action ”an action name”)(output ”the action output”)), to the Jess knowledge
base. addProcessedPSMs() goes through the submitted list of composed PSMs
and adds facts on this form; (composed (psm ”a psm name”)(output ”the psm
output”)), to the Jess knowledge base.

When there are no more actions and PSMs that is not processed, and there is
a solution to the problem, the method getProblemSolution() returns the solution
to the initial task (the output of the achieved goal connected to the initial task).
This is done by calling getGoalOutput() in GoalStack, and submitting the initial
goal which is gotten from calling getInitialGoal() in PlanLibrary.

The TS structure architecture has a part called the TS Problem Solving
State. TS Problem Solving State is not a component, but rather a view of
the facts stored in the knowledge base kept by the Rete instance. printCur-
rentState() in TeamSpace writes the current TS Problem Solving State once
each problem solving cycle to the file represented by the FileWriter. A cycle
lasts from the rules are run, to the next time they are run. Types of information
part of the TS Problem Solving State and how they are found:

• Achieved goals. A list of achieved goals is returned from getAchieved-
Goals() in GoalStack. The method extracts knowledge from the knowledge
base which is based on the template (achieved (slot goal) (slot output)).

• Executed actions. A list of executed actions is returned from getEx-
ecutedActions() in ResultLibrary, which stores the executed actions in a
list.

• Composed PSMs. A list of composed PSMs is returned from getCom-
posedPSMs() in ResultLibrary, which stores the composed PSMs in a list.

• Actions ready to execute. A list of actions ready to be executed is
returned from getActionsReadyToExecute() in ResultLibrary (described
above).

• PSMs ready to compose. A list of PSMs ready to be composed is
returned from getPSMsReadyToCompose() in ResultLibrary (described
above).

When we are talking about lists of goals, actions and PSMs we refer to ob-
jects which are instances of some supporting classes. These classes are shortly
described next.

127

TSTMSTNode
String name
String input
String executor
String output
TSTMSTNode(String name, String input,
String executor):constructor
getName():String
getInput():String
getExecutor():String
setOutput(String output):void
getOutput():String

TSPSM
ArrayList partialResults
TSPSM(String name, String input, String
executor, ArrayList partialResults):
constructor
getPartialResults():ArrayList

TSAction
String actionType
TSAction(String name, String input, String
executor, String actionType):constructor
getActionType():String

TSGoal
String name
String output
TSGoal(String name, String output):
constructor
getName():String
getOutput():String

The blackboard.structure package

Figure 6.10: Classes representing some of the TMST-units. These are used
by the other classes implementing the TS Structure and the TS Agent. These
classes are contained in the package: teamSpace.structure

TEAM SPACE supporting classes

A UML class diagram of the supporting classes is illustrated in figure 6.10. The
classes are TSPSM and TSAction which are subclasses of TSTMSTNode, and
the class TSGoal. These classes represent PSMs, actions and goals and keep
some of their attributes. This is done to make it easier for the other TEAM
SPACE structure classes to handle and reason about these concepts outside the
Jess rule-engine. When a CoPS ontology is properly implemented, the ontology
should be used to represent the PSMs, actions and goals. The supporting classes
may also be seen as manageable substitutes for the nodes part of a TMST.

6.6 Summary

This chapter has given a detailed description of how the corrections and exten-
sions to the CoPS framework, described in chapter 3, have been implemented
by modifying and extending the pre-existing CoPS framework Prototype. The
main extension to the prototype was the shared memory structure, the TEAM
SPACE. All of the components of the TEAM SPACE architecture, that was
proposed in chapter 4, has been implemented.

In chapter 7, the implemented CoPS framework prototype is used for imple-
menting part of a medical domain check-up system. There we get to prove that
our implementation covers the functionality proposed for the CoPS corrections
and extensions, that are described earlier, in conceptual terms.

128

Chapter 7

Experimentation and
Results

The CoPS framework prototype is an API, that may be used to let programmers
easily implement their applications of cooperative distributed problem solving
agents. The prototype that is a the result of the work with this master thesis,
is described in the previous chapters.

In this chapter, we use the CoPS framework prototype to implement an ap-
plication from a medical domain. The application is concerned with performing
a checkup at a health center. In section 7.1 we describe the steps needed to be
taken when implementing an application using the CoPS framework prototype.
Section 7.2 presents the different implementation steps of our checkup example
application. The test-run of our application is described in section 7.3. And
finally, the results from the test-run are listed in section 7.4.

This chapter lay the grounds for making conclusions and describing the
achieved results of the work with this master thesis, in chapter 8.

7.1 How to Implement an Application Using the
CoPS Framework

The CoPS framework has three main parts: CoPS agents, TMST and TEAM
SPACE. Both CoPS agents and the TMST needs to be implemented or special-
ized by the application developer using the CoPS framework prototype. The
TEAM SPACE is generic and may be used in any application domain.

To implement an application with cooperating agents using our CoPS frame-
work prototype, a minimum set of tasks have to be done [34]:

• The agents playing the necessary roles (Task Responsible - TR, Problem
Solver - PS, Decomposer - DEC) must be extended, and their abstract
methods must be implemented.

• A JADE ontology describing the domain of the problem being solved must
be implemented.

• A TMST based on the implemented JADE ontology must be implemented.

129

PSs need ontologies to understand the problems they are set to solve. To encode
these problems, the TR also need to understand how to encode and decode
actions, thus agents need a common understanding of actions. Ontologies are
used to share understanding of domains. It is imperative that the TMST used
as basis for the cooperation must be based on the same ontology that agents
use to understand the domain. This ensures that the tasks, actions and PSMs
described in the TMST are solvable by the agents. Implementing agents in
the CoPS framework is done by extending the different agent classes. As the
abstract CoPS agents contains a set of abstract methods, these methods must
be implemented. Thus, implementing a CoPS agent means to:

• Extend the agent class corresponding to the agent role the agent is sup-
posed to play.

• Implement the abstract method of the extended class.

JADE ontologies should be implemented as explained by Caire in [5]. A TMST
must have a task as the root node, and actions as leaf nodes to be a valid
TMST. All of the implemented nodes of the TMST must have unique names.
The input, output and assumptions must be encoded using the implemented
JADE ontology.

7.2 The Checkup Example Application

In our 2005-project [33], a complex scenario, involving a checkup at a health
center was modeled, based on the CoPS framework. A small part of the model
was implemented using the CoPS framework prototype. In the work with this
master thesis, we have implemented a greater part of of the modeled checkup
scenario.

This section describes the implemented part of the checkup scenario, and
shows how it is realized by applying the CoPS API. First, an ontology was
implemented. Second, the TMST depicted by figure 7.1 was implemented. The
implemented TMST decomposes the problem of doing a checkup on a patient,
and it has the initial task Do checkup. And finally, the different agents were
implemented.

7.2.1 Implementation of the Checkup Ontology

The ontology serves as a vocabulary for representing knowledge in the system,
describing the domain. It is known and used by the agents when they represent
their services and when they interpret the messages they receive. In addition
it is used in the implementation of the TMST. The TMST consists of several
frames representing the different nodes of the tree. These frames have slots for
input, output and goals that will need to be understood by the agents. As the
agents know about the ontology, and these slots are defined using it, the agents
can achieve a correct interpretation of the slot - information.

The implemented ontology is illustrated in figure 7.2. How JADE ontologies
should be implemented, is described in [5]. JADE ontologies distinguish between
concepts, predicates and agent actions. Concepts represent entities that exist in
the world and may have a complex structure. Predicates are expressions that say

130

Pe
rfo

rm
in

g
ch

ec
ku

p
Fi

nd

al
te

rn
at

ive

di
gn

os
es

Do
 c

he
ck

up

G
et

pa

tie
nt

in

fo
In

te
rro

ga
te

pa

tie
nt

Up
da

te

pa
tie

nt

in
fo

G
et

al

te
rn

at
ive

di

ag
no

se
s

In
te

rro
ga

tin
g

pa
tie

nt
G

et
tin

g
pa

tie
nt

 in
fo

fro
m

 p
at

ie
nt

s
da

ta
ba

se
 1

G
et

tin
g

pa
tie

nt
 in

fo

fro
m

 m
an

ua
l

ar
ch

ive
 1

Up
da

tin
g

pa
tie

nt
 in

fo

of
 p

at
ie

nt
s

da
ta

ba
se

 1
Up

da
tin

g
pa

tie
nt

 in
fo

of

 m
an

ua
l

ar
ch

ive
 1

G
et

tin
g

al
te

rn
at

ive

di
ag

no
se

s
in

di

se
as

e
da

ta
ba

se

G
et

tin
g

al
te

rn
at

ive

di
ag

no
se

s
fro

m
 b

oo
k

G
et

hi

st
or

ica
l

in
fo

Pe
rfo

rm

ph
ys

ica
l

ex
am

in
at

io
n

G
at

he
rin

g
sim

pl
e

ev
id

en
ce

G
et

tin
g

hi
st

or
ica

l in
fo

fro

m
 p

at
ie

nt

da
ta

ba
se

 1

Pe
rfo

rm
in

g
ph

ys
ica

l
ex

am
in

at
io

nG
at

he
r

ev
id

en
ce

G
at

he
rin

g
ad

va
nc

ed

ev
id

en
ce

G
et

hi

st
or

ica
l

in
fo

G
et

tin
g

hi
st

or
ica

l in
fo

fro

m
 p

at
ie

nt

da
ta

ba
se

 2
G

et
tin

g
hi

st
or

ica
l in

fo

fro
m

 m
an

ua
l

ar
ch

ive
 1

G
et

tin
g

hi
st

or
ica

l in
fo

fro

m
 m

an
ua

l
ar

ch
ive

 2Pe
rfo

rm
in

g
ph

ys
ica

l
ex

am
in

at
io

n

Pe
rfo

rm

ph
ys

ica
l

ex
am

in
at

io
n

Ta
ke

la

bo
ra

to
ry

te

st

Pe
rfo

rm
in

g
bl

oo
d

te
st

G
et

 p
at

ie
nt

in

fo

G
et

tin
g

pa
tie

nt
 in

fo
fro

m
 p

at
ie

nt
s

da
ta

ba
se

 2
G

et
tin

g
pa

tie
nt

 in
fo

fro

m
 m

an
ua

l
ar

ch
ive

 2

G
et

bl

oo
d

An
al

yz
e

bl
oo

d

Ta
kin

g
bl

oo
dt

es
t

An
al

yz
in

g
bl

oo
dt

es
t

m
ec

ha
ni

ca
lly

An
al

yz
in

g
bl

oo
dt

es
t

m
an

ua
lly

Up
da

te

pa
tie

nt
 in

fo

Up
da

tin
g

pa
tie

nt
 in

fo
of

 p
at

ie
nt

s
da

ta
ba

se
 2

Up
da

tin
g

pa
tie

nt
 in

fo

of
 m

an
ua

l
ar

ch
ive

 2

Fi
nd

in
g

al
te

rn
at

ive

di
ag

no
se

s

An initial task

A PSM

A task

An action, a primitive
problem solving method
I/O dependency

Figure 7.1: The implemented part of the Checkup TMST. The initial task
Do checkup is decomposed into a hierarchy of PSMs, actions, and tasks. The
Checkup TMST has a total of 20 different actions.

131

TakeBloodTest

CheckupEntity
String name
getName()
setName()

Symptom
String description
getDescription()
setDescription()

Diagnose
String description
getDescription()
setDescription()

Price
Float value
getValue()
setValue()

Cost
CheckupAction action
Price price
getAction()
setAction()
getPrice()
setPrice()

AnalyzeBloodTestMech

PerformPhyExamination1
PerformPhyExamination2

GetHistInfoMA1
AnalyzeBloodTestMan

UpdateStatus
String status
getStatus()
setStatus()

Checkup Ontology

Evidence
String description
getDescription()
setDescription()

TestResultPhysicalEvidence
Patient

String information
List symptoms
List diagnoses
String historical_information
List physical_evidences
List test_results
String evidence_conclusions
String blood_sample_reference
Diagnose final_diagnose
getInformation()
setInformation()
getSymptoms()
setSymptoms()
getDiagnoses()
setDiagnoses()
getHistoricalInformation()
setHistoricalInformation()
getPhysicalEvidences()
setPhysicalEvidences()
getTestResults()
setTestResults()
getEvidenceConclusions()
setEvidenceConclusions()
getBloodSampleReference()
setBloodSampleReference()

GetPatientInfoDB1
GetPatientInfoDB2

GetHistInfoMA2
GetPatientInfoMA1
GetPatientInfoMA2

GetHistInfoDB1
GetHistInfoDB2

UpdatePatientInfoDB1
UpdatePatientInfoDB2

UpdatePatientInfoMA1
UpdatePatientInfoMA2

GetAlternativeDiagnosesDB
GetAlternativeDiagnosesBook

Interrogate

CheckupAction
List input
CheckupEntity output
String assumtions
getInput()
setInput()
getOutput()
setOutput()
getAssumptions()
setAssumptions()

Figure 7.2: The class diagram of the checkup ontology. The ontology describes
concepts used by agents when solving a checkup problem.

132

something about the world and thus may be either true or false. Agent actions
are a special type of concepts that indicate actions that may be performed by
agents.

In the Checkup Ontology, illustrated in figure 7.2 the concepts are the Check-
upEntity, its subclasses and Price. The subclasses of the CheckupEntity are
Patient, Diagnose, Symptom, UdateStatus and Evidence. The Patient concept
is used to represent the patient that are in for the checkup. It has a list of
properties which are updated and used by the agents while they solve the Do
Checkup task on a specific patient. Some of the Patient properties are repre-
sented using the CheckupEntity subclasses. The UpdateStatus - concept is used
to let the agents know if an update process, i.e. update of patient information,
succeeded.

The agent actions in the ontology are subclasses of CheckupAction. Each
of the 20 agent actions correspond to one of the action - nodes of the TMST,
depicted in figure 7.1. ChekupAction specifies a set of attributes or properties:
input, output and assumptions. Input may be a list of CheckupEntity, output
must be one CheckupEntity, and the assumptions must be stored in a string.
Assumptions are not used in this implementation though.

The only predicate part of the ontology is Cost. Cost ties a Price to a
CheckupAction. Because Cost is a predicate, it is possible for a TR to ask
the PSs about what the cost (Cost) of performing an action (CheckupAction)
is. The agent answers with specifying the price (Price). Since JADE supports
encoding and decoding objects to and from the textual FIPA-SL language, as
long as the domain knowledge has been implemented as a JADE ontology, the
agents are able to interpret the messages using the ontology. A query for what
the price of getting alternative diagnoses from a database is encoded in FIPA-SL
as follows:

The TR asks the receiver of this message whether there exists a price - X
for getting alternative diagnoses from a database, where the output will be
an instance of Patient. The patient has the name Paul and two alternative
diagnoses. The Cost predicate has the form Cost(CheckupAction, Price). The
CheckupAction is GetAlternativeDiagnosesDB, the Price is ?X, meaning it is
unknown. The TR therefor expects to get the value of X in return.

133

7.2.2 Implementation of the Checkup TMST

The Checkup TMST is implemented using the CoPS framework that again is
based on jCreek. The different elements of the Checkup TMST, being tasks,
actions and PSMs are all frames, represented by classes in the CoPS framework.
The slots of these frames are also represented by classes in the CoPS framework.
These classes are used for building the Checkup TMST.

The Checkup TMST is illustrated in figure 7.1. The implementation of the
TMST, is done in the CheckUpTMST class. The different tasks, PSMs and
actions are implemented by instantiating the corresponding classes in the CoPS
framework, and they are all associated with an instance of the TMST class. The
slots of the different frames, or the attributes of the nodes in the Checkup TMST
are also defined here. The input, output, goal and (action) type slots are coded
using the Checkup Ontology, because the information has to be understood by
the TR and the PSs.

The initial task Do Checkup has the following values for the name, input,
output, goal and problem solving method slots:

• name: doCheckup

• input: (Patient :name x)

• output: (Patient :name x :finalDiagnose y)

• goal: (Patient :name x :finalDiagnose y”)

• problem solving method (PSM): performingCheckup

The input of the initial task is the patient’s name represented by the Checkup
Ontology’s Patient concept, and the goal of this task is to associate a final
diagnose to that patient. The output of the task is the same as the goal. To
achieve this task, the PSM performingCheckup is used. This PSM has these
values for the name, input, output and task slots:

• name: performingCheckup

• input: (Patient :name x)

• output: (Patient :name x :finalDiagnose y)

• tasks: findAlternativeDiagnoses, gatherEvidence

The performingCheckup PSM produces its output from composing the outputs
from the tasks findAlternativeDiagnoses and gatherEvidence. The findAlter-
nativeDiagnoses task has these values for the name, input, output, goal and
problem solving method slots:

• name: findAlternativeDiagnoses

• input: (Patient :name x)

• output: (Patient :name x :diagnoses (Diagnose :description y))

• goal: (Patient :name x :diagnoses (Diagnose :description y))

• problem solving method (PSM): findingAlternativeDiagnoses

134

To achieve this task the PSM findingAlternativeDiagnoses is used. The other
subtask of the PSM performingCheckup - gatherEvidence has these values for
the name, input, output, goal and problem solving method slots:

• name: gatherEvidence

• input: (Patient :name x :diagnoses (Diagnose :description y))

• output: (Patient :name x :diagnoses (Diagnose :description y)
:evidence conclusions z)

• goal: (Patient :name x :diagnoses (Diagnose :description y)
:evidence conclusions z)

• problem solving method (PSM): gatheringSimpleEvidence, gatheringAd-
vancedEvidence

To achieve this task one of the PSMs gatheringSimpleEvidence and gatheringAd-
vancedEvidence may be used. All of the other tasks and PSMs part of the
Checkup TMST, depicted in figure 7.1 are defined in similar ways. When defin-
ing nodes in the Checkup TMST it is important that the slot - values that
relate to the Checkup Ontology is correctly stated, or else the agents using the
information in the Checkup TMST will not be able to interpret the content of
the slots. In addition, one has to be aware of the restrictions put on the format
of a TMST by the TEAM SPACE architecture. These restrictions were:

• The output of a task should have the same definition as the output of its
subnodes (actions or PSMs).

• The input of a task should have the same definition as the input of its
subnodes (actions or PSMs).

• The input of a PSM should have the same definition as at least one of the
inputs of its subtasks.

Actions in the Checkup TMST are also defined by slots with values represented
on the form of the Checkup Ontology. The action gettingPatientInfoDB1 has
these values for the name, input, output and type slots:

• name: gettingPatientInfoDB1

• input: (Patient :name x)

• output: (Patient :name x :information y)

• type: GetPatientInfoDB1

The string defining this action-type is the name of a CheckupAction subclass
in our Checkup Ontology. Each of the action nodes in the Checkup TMST
refer to one of the CheckupAction subclasses in the Checkup Ontology like this.
PSs define their capabilities also using the subclasses of CheckupAction in the
Checkup Ontology. And when a PS has the capability GetPatientInfoDB1, it
means that it is able to perform the action gettingPatientInfoDB1. The PS will
only perform the action if it knows the input value (Patient :name x), where x is
substituted with a real name, say Paul. After performing the action an output

135

CoPSTaskResponsible

CoPS Agent
{abstract}

CheckUpTaskResponsible

CoPSProblemSolver
{abstract}

CoPSDecomposer
{abstract} {abstract}

CheckUpDecomposer

PhysicianAgent LabSystemAgent

LaboratoryAgent
PatientDBAgent

DiagnosisAgent

ReceptionistAgent

Figure 7.3: Class diagram for the agents implemented to solve the Do checkup
task.

on the form (Patient :name x :information y) is produced: (Patient :name Paul
:information ”Paul had a check last month where...”).

The TMST is built by executing the CheckUpTMST class. During this ex-
ecution, dependencies of the subtasks belonging to each PSM in the Checkup
TMST are analyzed. The result of this analysis is stored in a slot of the PSM
as control information. As can be seen in figure 7.1, the subtasks of the PSM
described above performingCheckup has an I/O dependency. During the depen-
dency analysis, the input and output values of subtasks of a PSM are compared.
If the input of one task matches the output of another task, this is interpreted
as an I/O dependency. findAlternativeDiagnoses has the output value (Patient
:name x :diagnoses (Diagnose :description y)) which is exactly the same as the
input value of gatherEvidence. The I/O dependency between these tasks is
stored in the PSM performingCheckup in this format:

<gatherEvidenceInput>(gatherEvidence) : -
<findAlternativeDiagnosesOutput>(findAlternativeDiagnoses)

The control information says that the task findAlternativeDiagnoses must be
performed before the task gatherEvidence, as the input of gatherEvidence is the
same as the output of findAlternativeDiagnoses.

7.2.3 Implementation of the Checkup Agents

Eight agents were implemented to solve the Do checkup (doCheckup) task.
These are CheckUpTaskResponsible, CheckUpDecomposer, ReceptionistAgent,
PatientDBAgent, PhysicianAgent, DiagnosisAgent, LabSystemAgent and Lab-
oratoryAgent. The class diagram illustrating the agent hierarchy is pictured in
figure 7.3. The CheckUpTaskResponsible is a subclass of CoPSTaskResponsible,

136

the CheckUpDecomposer is a subclass of CoPSDecomposer, and the six other
implemented agents are subclasses of CoPSProblemSolver.

The Task Responsible (TR) - CheckUpTaskResponsible

Even though the CheckUpTaskResponsible is the one doing most of the work, this
class contains little code. This is because the work done by the CheckUpTaskRe-
sponsible is more generic than the other agents. Most of the necessary functions
are are implemented by the superclass CoPSTaskResponsible. The CheckUp-
TaskResponsible uses the Checkup Ontology to encode and decode messages
associated with the team formation problem solving process step. And it uses
the Checkup TMST to form the team of PSs and to initialize the TS structure.

During the problem solving process steps assisted by the TEAM SPACE;
solving of subtasks and integration of partial solutions, the CheckUpTaskRespon-
sible has to compose all of the PSMs that are tagged as part of the Checkup
TMST solution. This is managed by implementing the abstract method com-
posePSM() in CoPSTaskResponsible. By implementing that method, we make
sure that the CheckUpTaskResponsible ”knows” how to compose the partial re-
sults from the subtasks of a PSM. When a PSM’s subtasks are achieved, a TS
Agent informs CheckUpTaskResponsible, by sending a requests to compose the
PSM. CoPSTaskResponsible handles the request in composePSM(), where it also
creates the results that are returned in an inform message. The request mes-
sage content should be encoded in FIPA-SL by using a CoPS Ontology. Since
the CoPS ontology is still not implemented, the content is a text-string on this
format:

<PSM-name>-<partial-result-1><partial-result-2>...<partial-result-3>
The content of the answer/inform message is formed as a text-string on this
format:

<PSM-name>-<PSM-output>
If the CheckUpTaskResponsible was requested to compose the PSM perform-
ingCheckup described above, the request message from the TS Agent could look
like this:

performingCheckup -
(Patient :name Paul :diagnoses (Diagnose :description ”A diagnose for Paul”))
(Patient :name Paul :diagnoses (Diagnose :description ”A diagnose for Paul”)
:evidence conclusions ”Conclusions from the evidences”)

Partial results in the message follow the definition of the output slots in the
PSM performingCheckup’s subtasks. The inform message returned to a TS
Agent could look like this:

performingCheckup -
(Patient :name x :finalDiagnose y)

The output value in the message follows the definition of the PSM perform-
ingCheckup output. Thus, the strings are still composed of concepts from our
Checkup Ontology.

The Decomposer (DEC) - CheckUpDecomposer

The CheckUpDecomposer does not make the decomposition from the ground
up. In the current version of the CoPS framework, it is only a mere container of
the Checkup TMST. When the CheckUpTMST class is executed, the Checkup

137

Figure 7.4: A proposal message encoded in FIPA-SL, using the Checkup Ontol-
ogy.

TMST definition is stored in a file. Every time CheckUpDecomposer receives a
request message, that file is used to instantiate an object of the TMST class.
TMST is used to manipulate and extract information from the Checkup TMST.
CheckUpDecomposer adds a unique teamID to TMST before it is serialized and
sent to the agent who requested it.

The Problem Solvers (PSs)

All of the implemented PSs extends CoPSProblemSolver and implement its
abstract methods. In setServiceDescription(), the different PSs use the Checkup
Ontology to describe their services, that they register with the Matchmaker.
Services of the problem solving agents have two properties: The action-type,
defining which action it can perform, and the output, defining the results of the
action. The action-type is defined by one of the CheckupAction subclasses in
the Checkup Ontology. The output is a string defining a CheckupEntity. The
different implemented PSs and their services (action-types) are:

• ReceptionistAgent : GetPatientInfoMA1, GetPatientInfoMA2, UpdatePa-
tientInfoMA1, UpdatePatientInfoMA2, GetHistInfoMA1, GetHistInfoMA2

• PatientDBAgent : GetPatientInfoDB1, GetPatientInfoDB2, UpdatePati-
entInfoDB1, UpdatePatientInfoDB2, GetHistInfoDB1, GetHistInfoDB2

• PhysicianAgent : Interrogate, GetAlternativeDiagnosesBook,
PerformPhyExamination1, PerformPhyExamination2

• DiagnosisAgent : GetAlternativeDiagnosesDB

• LabSystemAgent : AnalyzeBloodtestMech

• LaboratoryAgent : TakeBloodtest, AnalyzeBloodtestMan

138

In makeProposal() the Checkup Ontology is used for decoding the call-for-
proposal messages from CheckUpTaskResponsible. When a PS receives a call-
for-proposal message, the method is used to consider if the agent should make
a proposal or not. This is done by checking if one of its capabilities matches
the requested action. If a PS decides to return a proposal message, the price
is computed at random. The proposal that may be the response to the call-
for-proposal message described in subsection 7.2.1, is encoded in FIPA-SL like
described by figure 7.4. As a PS finds out that it has the capability of perform-
ing the action with the action-type GetAlternativeDiagnosesDB with the right
output, it generates a price for performing the action. The price is decoded in
the message as a Checkup Ontology Price concept.

A PS handles requests for executing actions received from a TS Agent, by
implementing the abstract method performAction(). This method works in the
same way as composePSM() in CheckupTaskResponsible. The content of the
request message to be handled has the format:

<action-type>-<action-input>
And the content of the response message to this request has the format:

<action-type>-<action-output>
If a PS agent was requested to execute the action gettingPatientInfoDB1, the
content of the request message could be:

GetPatientInfoDB1-
(Patient :name Paul)

And the content of the response message could be:
GetPatientInfoDB1-
(Patient :name Paul :information ”Paul had a check...”)

When the performAction() method is called, the PS agent has already agreed to
solve the GetPatientInfoDB1 message during the team formation process step.

7.3 Test-Run of the Checkup Example Applica-
tion

How to run the implemented checkup example application, is described in ap-
pendix B. In the first subsection, the described test-run involves solving a single
problem, and in the second subsection the described test-run involves solving
two problems in parallel.

During our test-runs, where the agents solve the problem decomposed by
figure 7.1, the process of the problem solving process is written to a txt-file
with the same name as the instantiated CheckupTaskResponsible. In addition,
we can follow the flow of messages between the agents using the JADE GUI
(graphical user interface). The txt-file and the GUI are used to present run-time
descriptions of our example application. Our description follows the different
steps of the problem solving process as described in chapter 3.

7.3.1 Solving a single problem

Here we describe the test-run of the example code solving a single problem.
We instantiate or start one of each of the implemented agents in addition to
a TeamSpaceAgent and a DefaultAgent, by naming them. The default agent is
the one sending a request for the CheckupTaskResponsible to solve a task. If

139

a solution is found or a failure occurs during the problem solving process, the
CheckupTaskResponsible notifies the default agent by sending an inform mes-
sage or a failure message. The agents run in the JADE Environment. Names
of the different instances of the agent classes are as follows:

ReceptionistAgent - RE
PatientDBAgent - PDB
PhysicianAgent - PHY
DiagnosisAgent - DI
LabSystemAgent - LSA
LaboratoryAgent - LA
CheckupTaskResponsible - TR
CheckupDecomposer - DEC
TeamSpaceAgent - TSAgent
DefaultAgent - DEF

Remember that the PSs have registered their capabilities in form of action-
types and outputs, as described in subsection 7.2.3.

The problem solving is started by DEF which sends a request message for
TR. The terminal window from where the code is run has this output, which
describes the problem being solved and the final outcome of the problem solving:

The intervening steps where the problem is solved in accordance to the problem
solving process steps, described in chapter 3, are logged to the file TR.txt. These
steps are described next. The txt-file that was generated during this specific
test-run is enclosed in the zip-file, following this thesis, as described in appendix
A.

Problem Analyzis

TR reviews the task (Task :name doCheckup :input (Patient :name paul)), and
finds that it cannot solve it alone.

Team Formation

TR needs a decomposition of the task (TMST). And sends a request for DEC
with the content: (Task :name doCheckup :input (Patient :name paul)). DEC
understands the task and sends an agree message for TR. Then DEC creates
a TMST object, sets TMST.teamID = 1 and returns it for TR in an inform
message. TR extracts the TMST from the message, sets TMST.initialInput =
(Patient :name paul)), and saves the TMST object in an instance variable.

Next, TR requests the Matchmaker for agents capable of performing the
actions in the TMST. One request is sent per action and one inform message

140

for each of the requests are received in return. Action (action-type) - agent
tuples that are a result from this conversation is illustrated in figure 7.5.

Figure 7.5: Action (action - type) - agent tuples that are a returned by the
Matchmaker (DF).

Now, the FIPA Contract Net Protocol is initialized by the TR and one call-
for-proposal message is made and sent for each of the action - agent tuples in
figure 7.5. The call-for-proposal messages look like the one described in section
7.2.1. The agents that are capable of performing several actions, receives one
call-for-proposal message for each of these actions. The PSs respond with one
proposal message for each of the received call-for-proposal messages, where
they offer a price for performing their actions. The propose messages look like
the one described in section 7.2.3.

All the proposals are handled by TR. Names of the agents sending proposals
are used to create Executors (one of the TMST main classes - described in
chapter 6). Executors are mapped to Actions in the TMST. Each Executor -
Action relation has a Cost - value. The information needed to do this is found in
the proposals. The result from this process, based on the TR’s received proposal
in this test-run is illustrated in figure 7.6. The first line in figure 7.6 says that the
agent DI offers to perform the action gettingAlternativeDiagnosesDiseaseDB for
the cost of approximately 10.5. The result will be different each time the code
is run, since the PSs generate their price for performing an action randomly.

Next, the solution space is activated in the TMST. All Actions connected
to an Executor are activated, all Tasks connected to an activated Action or
PSM are activated. And, all PSMs having all of their sub-Tasks activated
are activated. If the initial Task gets activated, the problem has at least one
solution. In this example all of the nodes in the TMST are activated, including
the initial task doCheckup.

After the solution space is activated, TR tries to find the cheapest solution
according to the Executor - Action costs. One starts at the bottom level (Ac-
tions) and propagates the costs upwards in the TMST. For all of the Tasks one

141

Figure 7.6: Result from the TR’s handling of proposals. Executors (TMST
node) are named after PSs, and related to a TMST Action and a Cost.

Figure 7.7: Result from the solution generation. The figure lists the different
nodes part of the solution and their final costs. The cost of the initial Task is
approximately 31.6.

142

Figure 7.8: A list of the agents receiving accept-proposal and refuse-proposal
messages, after the solution of the TMST is generated.

always choose the cheapest alternative of solving it (choose one of the sub-PSMs
or sub-Actions). All chosen nodes are tagged as part of the chosen solution. The
nodes part of the solution and their costs are illustrated in figure 7.7. The total
cost of the chosen solution is approximately 31.6.

When the solution is generated, TR makes invitations (accept-proposals)
to join the team for the agents that made a prosal and is mapped (through
an Executor) to the Actions that are part of the chosen solution. The other
agents that made a proposal receive a refuse-proposal message. An agent
gets one inivtation(accept-proposal) or refuse-proposal for each of the prosals
it has made. Who gets to join the team and who are refused is illustrated in
figure 7.8.

TR receives inform messages from all of the agents that received an invita-
tion (accept-proposal). And TR has successfully formed a team.

Solving of Subtasks and Integration of Partial Results

The problem solving process steps; solving of subtasks and integration of partial
results, are performed using the TEAM SPACE. These steps are described using
a message sequence diagram copied from the JADE GUI at run-time. The
diagram is depicted in figure 7.9. The different messages are explained by the
following numbered list. The numbers correspond to the numbers aligned with
the messages in the figure.

1. TR requests the Matchmaker (DF), for an agent offering the service
TEAM SPACE COORDINATOR.

143

Figure 7.9: Agent interactions in the problem solving process steps: solving of
subtasks and integration of partial results.

144

Figure 7.10: The first problem solving state, generated after executing the rules
of RuleBase for the first time.

2. Matchmaker returns the address of TSAgent

3. TR requests the TSAgent to initialize a TS Structure. Attached to this
request is the TMST, which now contains information about the chosen
solution.

4. TSAgent sends an agree message to tell the TR that initialization of the
TS Structure went well. The TS Structure is represented by an object of
the TeamSpace class. Templates have been defined and rules have been
generated like described in chapter 4. Defined rules and templates are
logged to TR.txt, and it involves to much information to include here.
The TeamSpace object attribute teamID is set to 1. And an initial fact
has been added to the ResultLibrary : (taskinput (name doCheckup input1)
(value ”(Patient :name paul)”)).

Now the TSAgent may initiate the solving of subtasks (execution of ac-
tions), and integration of partial results (composition of PSMs). First,
the TSAgent manipulates the TeamSpace object so that the rules are exe-
cuted, and thus the problem solving state is updated. The problem solving
state at this point is illustrated in figure 7.10.

5. TSAgent requests PDB to execute gettingPatientInfoDB1 with the input
(Patient :name paul). The message has the formate as described in section
7.2.3. That is also the case for the other messages exchanged between
TSAgent and PSs, and between TSAgent and TR.

6. PDB sends an agree message. It agrees to execute the action.

7. PDB sends an inform message containing the output: (Patient :name paul
:information paul information).

145

Figure 7.11: The second problem solving state, generated after executing the
rules of RuleBase for the second time.

Each time the TSAgent receives solutions to executed actions or com-
posed PSMs, it makes sure that the problem solving state kept by the
TeamSpace object is updated. This involves adding new information (re-
sults) in ResultLibrary, and executing the rules in RuleBase. Rules that
fire also add new information in ResultLibrary. The problem solving state
at this point is illustrated in figure 7.11.

8. TSAgent requests PHY to execute interrogatingPatient with the input
(Patient :name paul :information paul information).

9. PHY sends an agree message. It agrees to execute the action.

10. PHY sends an inform message containing the output: (Patient :name paul
:information paul information :symptoms (Symptom :description symp-
tom1)).

The problem solving state is updated (description of the whole problem
solving state at this point can be found in the file TR.txt, this is also the
case for the proceeding evolution of the problem solving states). Actions
ready to execute: updatingPatientInfoDB1, gettingAlternativeDiagnoses-
DiseaseDB.

11. TSAgent requests PDB to execute updatingPatientInfoDB1 with the input
(Patient :name paul :information paul information :symptoms (Symptom
:description symptom1)).

12. TSAgent requests DI to execute gettingAlternativeDiagnosesDiseaseDB

146

with the input (Patient :name paul :information paul information :symp-
toms (Symptom :description symptom1)).

13. DI sends an agree message. It agrees to execute the action.

14. PDB sends an agree message. It agrees to execute the action.

15. DI sends an inform message containing the output: (Patient :name paul
:diagnoses (Diagnose :description diagnose1)).

16. PDB sends an inform message containing the output: (UpdateStatus :sta-
tus ok).

The problem solving state is updated. PSM ready to compose: findin-
gAlternativeDiagnoses.

17. TSAgent requests TR to compose findingAlternativeDiagnoses, the partial
results are: (Patient :name paul :information paul information), (Patient
:name paul :information paul information :symptoms (Symptom :descrip-
tion symptom1)), (UpdateStatus :status ok), (Patient :name paul :diag-
noses (Diagnose :description diagnose1)).

18. TR sends an agree message. It agrees to compose the PSM.

19. TR sends an inform message containing the output: (Patient :name paul
:diagnoses (Diagnose :description diagnose1)).

The problem solving state is updated. Action ready to execute: get-
tingHistInfoMA1.

20. TSAgent requests RE to execute gettingHistInfoMA1 with the input (Pa-
tient :name paul :diagnoses (Diagnose :description diagnose1)).

21. RE sends an agree message. It agrees to execute the action.

22. RE sends an inform message containing the output: (Patient :name paul
:historical information paul historical information :diagnoses (Diagnose :de-
scription diagnose1)).

The problem solving sate is updated. Action ready to execute: perform-
ingPhysicalExamination1.

23. TSAgent requests PHY to execute performingPhysicalExamination1 with
the input (Patient :name paul :historical information paul historical information
:diagnoses (Diagnose :description diagnose1)).

24. PHY sends an agree message. It agrees to execute the action.

25. PHY sends an inform message containing the output: (Patient :name
paul :historical information paul historical information :diagnoses (Diag-
nose :description diagnose1) :physical evidences (PhysicalEvidence :de-
scription evidence1)).

The problem solving state is updated. PSM ready to compose: gath-
eringSimpleEvidence.

147

26. TSAgent requests TR to compose gatheringSimpleEvidence, the partial re-
sults are: (Patient :name paul :historical information paul historical information
:diagnoses (Diagnose :description diagnose1)), (Patient :name paul :his-
torical information paul historical information :diagnoses (Diagnose :de-
scription diagnose1) :physical evidences (PhysicalEvidence :description ev-
idence1)).

27. TR sends an agree message. It agrees to compose the PSM.

28. TR sends an inform message containing the output: (Patient :name paul
:diagnoses (Diagnose :description diagnose1) :evidence conclusions sum-
mary).

The problem solving state is updated. PSM ready to compose: perform-
ingCheckup.

29. TSAgent requests TR to compose performingCheckup, the partial results
are: (Patient :name paul :diagnoses (Diagnose :description diagnose1)),
(Patient :name paul :diagnoses (Diagnose :description diagnose1) :evi-
dence conclusions summary).

30. TR sends an agree message. It agrees to compose the PSM.

31. TR sends an inform message containing the output: (Patient :name paul
:finalDiagnose diagnose).

The problem solving state is updated. There are no actions ready to
execute and no PSMs ready to compose. The problem solving state tells
that the goal doCheckup goal is achieved, and has the output (Patient
:name paul :finalDiagnose diagnose). That goal belongs to the initial task
doCheckup, and this means that the initial problem is solved.

32. TSAgent returns the solution to the initial task doCheckup, (Patient :name
paul :finalDiagnose diagnose), for TR in an inform message. The inform
message completes the conversation initiated by the third message in figure
7.9.

33. TR returns an inform message for DEF with the solution of the initial task
doCheckup, (Patient :name paul :finalDiagnose diagnose). This inform
message completes the first conversation that was initiated, where DEF
requested TR to solve the task doCheckup.

The last message described above completes the problem solving process. And
the TR is now free to handle further requests for solving tasks.

7.3.2 Solving of two problems in parallel

Here we describe the test-run of the example code solving two problems in
parallel. As described in chapter 4, the TEAM SPACE has two different ways
of solving concurrent problem solving teams. If only one TS Agent is running in
the environment, this agent may handle several teams by creating a TS structure
for each of them. If there are several TS Agents running in the environment,
these agents share handling the requests of initializing a TS structure from TRs.

148

There is always one TR and a group of PSs in a problem solving team. The
PSs can join several teams at the same time. A TR is only part of one team at
a time.

Test-run with One TS Agent

We instantiate/start one of each of the implemented agents, except there are
two instances of CheckUpTaskResponsible. In addition a TeamSpaceAgent and
aDefaultAgent are instantiated. Names of the different instances of the agent
classes are as follows: Names of the different instances of the agent classes are
as follows:

ReceptionistAgent - RE
PatientDBAgent - PDB
PhysicianAgent - PHY
DiagnosisAgent - DI
LabSystemAgent - LSA
LaboratoryAgent - LA
CheckupTaskResponsible - TR1
CheckupTaskResponsible - TR2
CheckupDecomposer - DEC
TeamSpaceAgent - TSAgent
DefaultAgent - DEF

The problem solving is started by the DEF which sends a request message
for TR1 and TR2. The request messages specify two different problems to be
solved. The terminal window from where the code is run has this output, which
describes the problems being solved and the final outcome:

The intervening steps where the problems are solved, follow the description given
in subsection 7.3.1. The work related to TR1 is written to the file TR1.txt, and
the work related to TR2 is written to the file TR2.txt. The txt-files from this
specific test run are found in the enclosed zip-file, like described in appendix A.
Figure 7.12 and 7.13 shows which agents get to join the teams of respectively
TR1 and TR2. These figures also show that TR1 and TR2 have achieved
different solutions in their TMST s, and that an agent (like the PBD and PHY)
can join several problem solving teams. For the team of TR1 teamID = 2, and
for the team of TR2 teamID = 1.

Both TR1 and TR2 contacts TSAgent for initializing a TeamSpace where
they can solve their problems. Segments from the files TR1.txt and TR2.txt
illustrated in respectively figure 7.14 and 7.15 show that both TR1 and TR2

149

Figure 7.12: A list of the agents receiving accept-proposal messages from TR1,
after the solution of the TMST is generated.

Figure 7.13: A list of the agents receiving accept-proposal messages from TR2,
after the solution of the TMST is generated.

contacts TSAgent to solve two different problems. During the execution of
actions and composition of PSMs, the TSAgent runs a parallel behaviour with
two sets of sub-behaviours, where each of them handles one of the problems.
The two initialized TeamSpace classes are separated by the teamID instance
variable.

Test-run with Two TS Agents

We instantiate/start one of each of the implemented agents, except there are
two instances of CheckUpTaskResponsible. In addition two TeamSpaceAgent
instances and an instance of DefaultAgent are made. Names of the different
instances of the agent classes are as follows:

ReceptionistAgent - RE

Figure 7.14: A segment from TR1.txt showing that TR1 requests TSAgent to
initialize a TS structure, and specialize it for a task with a certain input and
teamID.

150

Figure 7.15: A segment from TR2.txt showing that TR2 requests TSAgent to
initialize a TS structure, and specialize it for a task with a certain input and
teamID.

PatientDBAgent - PDB
PhysicianAgent - PHY
DiagnosisAgent - DI
LabSystemAgent - LSA
LaboratoryAgent - LA
CheckupTaskResponsible - TR1
CheckupTaskResponsible - TR2
CheckupDecomposer - DEC
TeamSpaceAgent - TSAgent1
TeamSpaceAgent - TSAgent2
DefaultAgent - DEF

The problem solving is again started by the DEF which sends a request message
for TR1 and TR2. The request messages specify the two different problems to
be solved; the same problems as was used in the test-run with one TS Agent.
The terminal from where the code is run has this output, which describes the
problems being solved and the final outcome:

The intervening steps where the problems are solved, follow the description given
in subsection 7.3.1. The work related to TR1 is written to the file TR1.txt, and
the work related to TR2 is written to the file TR2.txt. The txt-files from this
specific test run are found in the enclosed zip-file, like described in appendix A.
Figure 7.16 and 7.17 shows which agents get to join the teams of respectively
TR1 and TR2. In the test-run with one TS Agent, all of the agents joining the
two teams communicated with the same TSAgent during the problem solving
process. In this example, the agents in the team of TR1 communicate with

151

Figure 7.16: A list of the agents receiving accept-proposal messages from TR1,
after the solution of the TMST is generated.

Figure 7.17: A list of the agents receiving accept-proposal messages from TR2,
after the solution of the TMST is generated.

TSAgent1, and the agents in the team of TR2 communicate with TSAgent2.
Segments from the files TR1.txt and TR2.txt illustrated in respectively figure

7.14 and 7.15, show that TR1 contacts TSAgent1 and TR2 contacts TSAgent2
to solve two different problems.

7.4 Test-Run Results

In this section we summarize the results from the test-run of our checkup exam-
ple application. In addition to the test-run scenarios described in this chapter,
we have used other scenarios to test the corrections and extensions to the CoPS
framework prototype. The results are based on what is implemented. Cor-
rections and extensions to the CoPS framework architecture that have been

Figure 7.18: A segment from TR1.txt showing that TR1 requests TSAgent1 to
initialize a TS structure, and specialize it for a task with a certain input and
teamID.

152

Figure 7.19: A segment from TR2.txt showing that TR2 requests TSAgent2 to
initialize a TS structure, and specialize it for a task with a certain input and
teamID.

mentioned earlier, but are not implemented, are proposed for future work in
chapter 8.

7.4.1 Corrections

The corrections to the CoPS framework prototype were proposed in chapter
3 - subsection 3.5.1. Which of the corrections that have been implemented
and details about the implementation were described in chapter 6. During the
implementation, new faults were detected and corrected, these are also described
in chapter 6. Results from implemented corrections that affect the code at run-
time are:

• The messages sent between the agents are now corrected, and the CoPS
agents behave as described in chapter 3. This can be verified by looking
at the message sequence diagram, which can be set up in the JADE GUI
at run-time (like the one in figure 7.9). Task Responsible (TR) can at any
time conclude correctly about the state of the problem solving process,
and it runs until it is being properly terminated. This has been tested by
running examples where there are not enough agents to form a problem
solving team, where an agent fails to perform its action, etc. No matter
what, the TR informs the requester of the problem about the outcome in
either an inform message (containing the result) or in a failure message
(containing a failure specification).

• All of the conversation-protocols are complete, as all necessary messages
are being sent. Meaning that our CoPS framework prototype is FIPA
compliant. All conversations conform to either the FIPA Request Protocol
or the FIPA Contract Net Protocol, depicted in chapter 3 - figure 3.5 and
3.6. This can be verified by looking at the message sequence diagram,
which can be set up in the JADE GUI at run-time

• The generation of the solution space, work as it is supposed to. This
can be verified by looking in the TR.txt files generated during a test-run.
A conceptual description of the solution space generation is provided in
chapter 3 - section 3.2.

• The generation of the solution, work as it is supposed to. This can be
verified by looking in the TR.txt files generated during a test-run, or at

153

the test-run scenarios described in this chapter. A conceptual description
of the solution generation is also provided in chapter 3 - section 3.2.

• A Problem Solver (PS) can have several capabilities. It can also attend
to multiple conversations at the same time. A PS handles several conver-
sations with the TR during the team formation. A PS can join several
problem solving teams simultaneously. This can be verified by looking at
the previous sections of this chapter.

7.4.2 Extensions Pre-Existing CoPS components

Extensions to the pre-existing CoPS framework components were proposed in
chapter 3 - subsection 3.5.2 and modeled in chapter 4 - section 4.4. Which
extensions are implemented and their implementation details are described in
chapter 6. Results from implemented extensions are:

• The Task Responsible (TR) is able to use the TEAM SPACE. TR commu-
nicates with the TS Agent to initialize the TS structure. TR participates
in the problem solving by composing PSMs, also through communication
with the TS Agent. When the TS Agent has found the solution to the
initial problem (task) in the TS structure, this is returned to TR, and
TR forwards the solution to the requester of the initial problem (task).
This can be verified by looking at the test-run scenarios described in this
chapter.

• The Problem Solver (PS) is able to use the TEAM SPACE. PSs part of
a team participates in the problem solving by executing actions, through
communication with the TS Agent. This can be verified by looking at the
test-run scenarios described in this chapter.

• The TMST stores the initial input for the problem to be solved and a
team ID. This can also be verified by looking at the test-run scenarios
described in this chapter.

• Through the previous items of this list we conclude that the problem
solving steps solving of subtasks and integration of partial solutions are
successfully realized in the CoPS framework prototype.

7.4.3 The Main Extension to CoPS: TEAM SPACE

The functional requirements of the TEAM SPACE architecture were described
in chapter 3 - subsection 3.5.2. In chapter 4 an architecture was proposed
that fulfilled the functional requirements. All parts of the architecture fulfilling
the requirements have been implemented, and the implementation details are
described in chapter 6. The test-run scenarios described in this chapter may be
used to verify that all implemented parts of the TEAM SPACE work according
to the requirements. The results are:

• The TEAM SPACE stores partial results from both PSs and TR.

• The TEAM SPACE does at any time keep the correct state of the problem
solving process.

154

• The TEAM SPACE communicates the correct information, efficiently, to
the PSs and the TR (the problem solving team).

• The TEAM SPACE handles the information received from the PSs and
TR, and updates the state of the problem solving process accordingly.

• The TEAM SPACE handles concurrent problem solving, by allocating a
separate working area (TS structure) for each problem solving team.

• The TEAM SPACE converts the knowledge stored in the TMST, when
initializing the TS structure for a problem solving team.

Results from the test-run show that all of the implemented propositions for
corrections and extensions to the CoPS framework are working the way we
wanted. This is probably because of the incremental development approach we
used. First, all the corrections to the CoPS framework prototype was imple-
mented and properly tested. Next, we performed cycles of modeling extensions,
implementing them as part of the CoPS framework prototype and testing them
(on our checkup example). The tests were evaluated, and then we started from
the beginning working with the models (architecture) of the extensions again.

But, there still remains a lot of work with the CoPS framework. Some of
the proposed corrections and extensions to the CoPS framework have not been
implemented, due to lack of time and the chosen focus of this master thesis.
Some of the architectural CoPS components are not developed at all. And most
of the components that have been developed need to be improved. We continue
this discussion in the next chapter, 8.

7.5 Summary

In this chapter we have used the CoPS framework prototype, to implement
an application from a medical domain; the checkup example application. This
involved implementing a Checkup Ontology, a Checkup TMST, and a set of
agents that were specialized to solve the checkup problem by extending the ab-
stract CoPS agent classes. Several test-run scenarios of our checkup example
application were described. The descriptions were used as a basis for discussing
the results of our implemented prototype. The conclusion from this discus-
sion is that all implemented corrections and extensions to the CoPS framework
prototype work as we planned for.

155

Chapter 8

Conclusions and Future
Work

In this master thesis we have been working with a FIPA compliant framework
architecture for cooperative distributed problem solving agents. A shared mem-
ory structure has been proposed, to coordinate a team of agents working on a
shared task.

This chapter summarizes the work done through discussion and conclusions,
in section 8.1. Section 8.2, lists some proposition for future work with the CoPS
framework architecture and prototype.

8.1 Discussion and Conclusions

In this section, we first give a short introduction to the current CoPS framework.
Second, we summarize the accomplished objectives. Third, we give some argu-
ments for our TEAM SPACE approach. And finally, we mention some critical
points of the CoPS architecture.

8.1.1 The Current CoPS Framework

A problem is decomposed into subtasks as a TMST. The TMST represents
several ways of solving the initial task. A Task Responsible (TR) extracts
the leave nodes of the TMST, which are actions. Then, TR requests capable
Problem Solvers (PSs) if they are willing to perform those actions. When the
TR knows which PSs are offering to perform the actions, it is able to generate
a solution space. The solution space reflects the current configuration of the
system. Each of the PSs have proposed a cost for performing an action. These
cost values are used to generate the chosen solution of the TMST. Nodes part
of the chosen solution are tagged. PSs connected to tagged action - nodes are
invited to join the TR’s problem solving team.

The chosen solution of a TMST, works as a plan for the TR and PSs part
of a problem solving team. A shared memory structure, the TEAM SPACE, is
applied by the TR and PSs during the problem solving. In the TEAM SPACE,
the plan represented by the TMST is automated by generating a set of rules.
The rules cover the dependencies between nodes in the TMST solution, and thus

156

between PSs and TR. In addition the TEAM SPACE keeps knowledge about
agents’ partial results. The rules ”reason about” this knowledge, and uses it to
generate a correct state of the problem solving process.

TEAM SPACE notifies PSs when their actions are ready to be executed, and
they return their partial results back to the TEAM SPACE. TR is responsible for
combining partial results. TEAM SPACE notifies TR about partial results when
they have been produced by the PSs. This communication pattern resembles
a publish/subscribe model. When the TR has combined the last set of partial
results, these are returned to the TEAM SPACE. Then, the TEAM SPACE is
able to recognize that the solution to the initial problem is met, and the solution
is returned to the TR.

The TEAM SPACE consists of two main components; TS Agents and the TS
Structures. A TS Structure keeps the rules and knowledge related to a specific
problem solving team. And the TS Agent acts as the control function of the
TEAM SPACE. Responsibilities of the TS Agent are:

• ... to make sure that a TS structure is instantiated and specialized for a
problem solving team, based on the solution of their TMST. Specialization
involves generating rules and adding initial knowledge, and is performed
by the different TS Structure components.

• ... to notify agents about actions that are ready to be performed and
partial results that are ready to be composed.

• ... to update the TS Structure with partial results from agents.

• ... and finally to inform the TR when there is a solution to the initial
problem.

As the CoPS framework is extended with the TEAM SPACE, it resembles a
blackboard architecture. The TS Structure could be compared to the black-
board, the TS Agent could be compared to the control component, and the
CoPS agents could be compared to knowledge sources.

Our proposed CoPS framework architecture is a multiagent framework for
cooperative problem solving, lending methodologies from the blackboard and
publish/subscribe paradigms.

8.1.2 Accomplished Objectives

In chapter 1, we introduced the objectives of this master thesis. Here we present
the results from those objectives:

• Correct problems in the pre-existing CoPS framework.

Corrections to the pre-existing CoPS framework were proposed in chapter
3. All of these corrections have been implemented in the CoPS framework
prototype - except the one that involves a full realization of dynamic for-
mation of problem solving teams. During the implementation, additional
problems were discovered. These problems were also corrected. Implemen-
tation details are covered by chapter 6. The implemented corrections were
proved to be working by the test-run of our checkup example application,
described in chapter 7

157

• Modify the pre-existing CoPS framework, in such a way that a shared
memory structure could be integrated.

Extensions to the CoPS framework were proposed in chapter 3. All of
the proposed extensions to the pre-existing CoPS framwework, except the
CoPS Ontology, have been realized. These involve extensions to the agents
PS and TR, and to the TMST. Modifications to the PS and TR architec-
tures were described in chapter 4. The modifications to their architectures
were realized in the CoPS framework prototype. Extensions to the TMST
were also realized. Implementation details are covered by chapter 6. The
implemented extensions were proved to be working by the test-run of our
checkup example application, described in chapter 7.

• Model an architecture for a shared memory structure and integrate it with
the pre-existing CoPS framework.

The main extension to the CoPS framework was the TEAM SPACE, which
conceptualized a shared memory structure. Functional requirements for
the TEAM SPACE were listed in chapter 3. The TEAM SPACE archi-
tecture was thoroughly explained in chapter 4. Our proposed architecture
covered all of the functional requirements from chapter 3. All components
of the TEAM SPACE architecture, that were realizing the functional re-
quirements, were also realized in the CoPS framework prototype. Im-
plementation details are covered by chapter 6. The implemented TEAM
SPACE was proved to be working in accordance to the functional require-
ments by the test-run of our checkup example application, described in
chapter 7.

Based on this, we may state that the outputs of our project are: 1) A modi-
fied CoPS framework architecture with an integrated shared memory structure
- TEAM SPACE. 2) A CoPS framework prototype (API), realizing the archi-
tecture. 3) And a checkup example application, implemented using the CoPS
framework API.

8.1.3 Arguments for Our TEAM SPACE Approach

We chose to conceptualize the TEAM SPACE into the two main components TS
Agent and TS Structure. A TEAM SPACE may consist of several TS Agents
and TS Structures. A TS Structure is related to one problem solving team.
And a TS Agent manages the TS Structure on behalf of the agents part of that
problem solving team, and uses it to coordinate the agents and their actions.
A TS Agent may handle several problem solving teams in parallel. Then, TS
Agent keeps one TS Structure for each of the teams. These are the arguments
for our approach:

• The approach is flexible. If there are few available TS Agents in the sys-
tem, they may take on more work. The TS Agents have one TS Structure
for each of the problem solving teams. When it is needed it can han-
dle several TS Structures simultaneously. When the system is overloaded
with problem solving teams, one could add yet more TS Agents. Then,
handling of the teams’ TS structures are divided between the TS Agents.

158

• We have realized a pure message interface between agents part of a prob-
lem solving team and the TS Agent. This is clean and elegant. All func-
tionality related to the shared memory structure is encapsulated within
the TEAM SPACE.

• Since it is only the TS Agent that accesses a TS Structure:

– There is no need for TS Structure access control. Since only one TS
Agent may access a particular TS Structure.

– The TS Agent may filter the information from TRs and PSs, in order
to recognize erroneous information at an early stage. For example,
when a PS is not able to execute an action, or when one of the agents
do not respond to the request messages sent by the TS Agent.

– The TS Agent may recognize if the received information could be used
by agents part of another problem solving team. This can be done,
because the TS Agent has an overall view of several TS Structure
components (belonging to the teams it is coordinating).

– PS and TR does not need any information about the shared mem-
ory structure. PS only needs to know how to handle the messages
received from the TS Agent. TR also needs to know how it should
contact a TS Agent to make it initialize a TS Structure for its team.

• Everywhere there is a TS Agent, there is a TEAM SPACE. Thus, our
TEAM SPACE approach is ideal for distributed problem solving.

The TS Structure needed some mechanism for executing the plan represented
by the TMST, and reason about partial results. We chose to use rules for this
purpose. Because the knowledge about task dependencies in the TMST could
easily be converted into rules. This is also true for the dependencies between
the different types of nodes in the TMST. The dependencies could be defined
in IF THEN - sentences. And at the same time, these rules may ”reason
about” partial results, which are also related to the TMST.

8.1.4 A Critical View of CoPS

In the current CoPS framework architecture and API, there are several critical
points. We mention some of them here:

• When the TR uses the composed TMST to form a team of PSs, it sends
call-for-proposal messages to all available agents capable of all actions part
of the TMST. If the TR would choose one solution of the TMST and try
form a team capable of this solution. If it was not possible to form a team,
another solution should be tried. The number of sent messages could be
decreased, but it still depends on the domain, number of agents in the
system, etc. We have not tested which is the best solution in our hospital
domain.

• In the implemented API, the best solution of the TMST is decided by its
cost only. This may not always be the best heuristic.

159

• A lot of message are exchanged between TS Agent and the agents part
of a problem solving team, during the problem solving. If the PSs and
TRs would be able to access the TS Structure, the number of messages
could be decreased. But, this advantage should be weighed out against
the advantages of the current approach.

In addition, the current architecture and API has some critical points due to
parts of the architecture that are not yet modeled. These are not mentioned
here, but proposed for future work in the next section.

8.2 Future Work

At this point, the CoPS framework architecture is still not complete. And the
implemented API is still just a prototype. Propositions for future work with
CoPS are parted into two different categories. The first category covers the
work proposed for this master thesis that was not accomplished:

• Dynamic formation of problem solving teams are not fully realized. Re-
configuration of the team is not possible if agents happen to change their
minds about joining the team, are disconnected, or fail in any other way.
By now, team formation is dynamic in the sense that it is formed according
to the state of the system at the exact time it is needed. But, the CoPS
framework architecture proposes that the team may change in real-time,
depending on external changes to the environment. The TEAM SPACE
could be used to assist in this process.

• Modeling and implementing a CoPS Ontology. The ontology should cover
concepts about the problem solving in CoPS. An implementation of the
CoPS Ontology would lead to modifications to other parts of CoPS as
well.

• Handling failures properly if they occur during the team formation or
during the problem solving in the TEAM SPACE. In the current version,
failures are just specified and a failure message are sent to the relevant
receiver.

• The TEAM SPACE architecture implied some limitations to the structure
of a TMST (described in chapter 4). Remove these limitations.

The second category of future work, deals with work related to architectural
components, and work to improve the current architecture:

• Implement the Personal Assistant (PA).

• Do something about the critical points of the CoPS framework, mentioned
in the previous section.

• Solve the problem of unique name constraint in TMST implementations.
In the implemented TMST, the nodes must have unique names. This
is bothersome when we have several action - nodes in the TMST that
represent the same action.

160

• Use the CoPS Framework API to implement applications from different
domains.

• Extend PS and TR in such a way that they may actually reason about
the problems.

• Modify the TS Agent in such a way that it would recognize similar tasks
in its parallel TS Structures.

• Evaluate new possibilities for use of the TEAM SPACE, like giving the
agents an opportunity to request information from the shared TS Struc-
ture.

8.3 Summary

This chapter has provided a discussion and conclusions about our work with this
master thesis. We have, among other things, described our accomplished ob-
jectives. These objectives were introduced in chapter 1, and further elaborated
in chapter 3. The proposed work for this master thesis presented in chapter 3,
that has not been done, was described as future work.

161

Appendix A

Content of the Enclosed
Zip-File

The delivery of this master thesis is enclosed with a zip-file, master deliverance.zip.
In this appendix we list the content of this file. The top-level folder has 3 folders:
javadoc, source code and checkup example.

A.1 The javadoc folder

This folder contains the javadoc for the implementation of the CoPS framework
prototype. The submitted javadoc include both the implementation done in this
work, implementation done in earlier work with CoPS and the implementation
of our checkup example application. The javadoc is not complete for the earlier
parts of the CoPS framework prototype. But, most of the classes that were
implemented during our work here, is commented. The documentation is parted
into three folders: teamSpace, cops and tmst. These are also the names of the
top-level packages of our implementation.

A.2 The source code folder

This folder contains the source code of the implemented java-classes. The sub-
mitted java classes include both the implementation done in this work, im-
plementation done in earlier work with CoPS and the implementation of our
checkup example application. The classes are enclosed in three different folders:
teamSpace, cops and tmst. The classes in each of the folders are contained in
the packages of the same name as the folders.

A.3 The checkup example folder

This folder contains the files needed to run the checkup example application
that was described in chapter 7. The files produced from the test-run scenarios
described in chapter 7 - section 7.3, are contained in the folders thesis-test-
run-parallel and thesis-test-run-single. For each of the scenarios there are a
text file containing the log(s) of the TR(s), and a jadegui - document, which

162

shows the sequence diagram copied from the JADE GUI at run-time. Jar-
files, including the jar-files representing the CoPS framework prototype and
the checkup example application are contained in the lib folder. Appendix B
describes how to run the checkup example application, and how to view the
jadegui files from the checkup test-run scenarios.

163

Appendix B

How to Run the Checkup
Example Application

The code of the CoPS framework prototype, and the code of our example ap-
plication is contained in the zipped file enclosed with this master thesis, as
described in Appendix A.

B.1 Running the Checkup Example Application
in UNIX

The Checkup Example Application consists of two main parts: The checkup
TMST and the checkup agents. The checkup agents (the application) could be
run with or without the Jade GUI.

• To run the TMST, move to the checkup example folder and write
./tmst eksekver in the terminal window. One might have to set the per-
mission to execute the bash file, if access is denied. Then, write this in
the terminal window: chmod 755 tmst eksekver.

• To run the checkup application, where the agents solve a single problem,
move to the checkup example folder and write ./cops single problem in the
terminal window. One might have to set the permission to execute the
bash file, if access is denied. Then, write this in the terminal window:
chmod 755 cops single problem.

• To run the checkup application, where the agents solve two problems in
parallel using one TS Agent, move to the checkup example folder and write
./cops two problems1 in the terminal window. One might have to set the
permission to execute the bash file, if access is denied. Then, write this in
the terminal window: chmod 755 cops two problems1.

• To run the checkup application, where the agents solve two problems in
parallel using two TS Agents, move to the checkup example folder and
write ./cops two problems2 in the terminal window. One might have to
set the permission to execute the bash file, if access is denied. Then, write
this in the terminal window: chmod 755 cops two problems2.

164

Figure B.1: The starting window of the Jade GUI.

Figure B.2: This illustrations shows how to fill out the parameters, when starting
a new agent in the Jade GUI.

165

To run the different checkup application scenarios with a Jade GUI, the first
procedure is the same as described above, only extend the ./cops ... commands
with gui. One might also have to set access rights on these files as well. Then,
do as described above. The the Jade GUI illustrated in figure B.1 appears at the
screen. By using the GUI, one can watch agent interactions during the problem
solving process steps. To achieve this follow these instructions:

1. Select Tools / Start Sniffer from the menu. A window for a sniffer agent
opens.

2. The sniffer agent window has two parts. Open the catalogues on the right
side until one see a list of the different agents in the system. Right click
the agents and chose Do sniff this agent(s), for the agents one want to
observe.

3. Then one have to start a DefaultAgent (that we have implemented). The
DefaultAgent starts the problem solving process by sending request mes-
sage(s) for the TR(s). To start the agent go back to the window illustrated
in figure B.1. Select the folder Main - Container in the folder list. Then,
select Actions / Start New Agent from the menu. And fill out the pop-up
form like depicted in figure B.2.

4. Go back to the sniffer agent window and watch the interactions between
the agents one have chosen to ”sniff”. The arrows represent messages. To
inspect the content of a message, double-click the arrow.

To look at the jadegui documents described in appendix A, one first move to
checkup example folder an write ./jade gui in the terminal window. The Jade
GUI appears on the screen. Then, start the sniffer agent like described above.
In the window of the sniffer agent, select Action / Open Snapshot File, and open
one of the jadegui files, in subfolders of checkup example: thesis-test-run-single
or thesis-test-run-parallel.

B.2 Running the Checkup Example Application
in Windows

To run one of the examples described above in Windows, one should copy the
content of the batch file and paste it in a Windows command (terminal) window.
Then, replace all / with \ and all : with ; (not the ones after the agent-names).
Besides this, one follows the instructions described in the previous section.

166

Bibliography

[1] F. Bellifemine, G. Caire, T. Trucco, and G. Rimassa. JADE PROGRAM-
MER’S GUIDE, 2005. http://jade.tilab.com/doc/programmersguide.pdf.

[2] Fabio Bellifemine, Giovanni Caire, Giovanni Rimassa, Agostino Poggi,
Tiziana Trucco, Elisabetta Cortese, Filippo Quarta, Giosu Vitaglione,
Nicolas Lhuillier, and Jrme Picault. Java Agent DEvelopment Framework
(JADE). http://jade.cselt.it/index.html.

[3] M. Brian Blake, David H. Fado, and Gregory A. Mack. A publish and
subscribe collaboration architecture for web-based information. In WWW
’05: Special interest tracks and posters of the 14th international conference
on World Wide Web, pages 1164–1165, New York, NY, USA, 2005. ACM
Press.

[4] Jan Bosh. Design and Use of Software Architectures - Adopting and devel-
oping a product-line approach. Addison-Wesley, 2000.

[5] Giovanni Caire. JADE TUTORIAL Application-
Defined Content Languages and Ontologies, 2004.
http://sharon.cselt.it/projects/jade/doc/CLOntoSupport.pdf.

[6] Daniel D. Corkill. Blackboard Systems. AI Expert, 6(9):40–47, 1991.

[7] Daniel D. Corkill. Collaborating Software: Blackboard and Multiagent
Systems and the Future, 2003. Proceedings of the International Lisp Con-
ference.

[8] G. Edwin and M. T. Cox. COMAS: Coordination in Multiagent Systems,
2001. Edwin, G., Comas: coordination in multiagent systems, Master’s
thesis, Wright State University, Dayton, OH, 2001.

[9] Robert Engelmore and Tony Morgan, editors. Blackboard Systems.
ADDISON-WESLEY PUBLISHING COMPANY, 1988.

[10] Ernest J. Friedman-Hill. Jess the Rule Engine for the Java Platform (Jess
6.1 Manual), 2005. http://www.jessrules.com/jess/docs/61/.

[11] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie
Kermarrec. The Many Faces of Publish/Subscribe. ACM Computing Sur-
veys, 35(2):114–131, 2003.

167

[12] R. Flores-Mendez. Towards the Standardization of Multi Agent Systems
Architectures: An Overview, 1999. ACM Crossroads - Special Issue on
Intelligence Agents, Vol. 5 (4), ACM Press, Summer, 1999.

[13] IEEE Foundation for Intelligent Physical Agents. The foundation for in-
telligent physical agents, 2005. http://www.fipa.org.

[14] Darren Foster, Carolyn McGregor, and Samir El-Masri. A Survey of Agent-
Based Intelligent Support Systems Support Clinical Management and Re-
search. In Fourth International Joint Conference on Autonomous Agents
and Multiagent Systems, 2005.

[15] Frode Srmo. jCreek. Webpage: http://dionysus.idi.ntnu.no/newcreek/jCreek-
ProgrammersGuide.doc.

[16] QFD Institute. Quality Function Deployment (QFD), 2006.
http://www.qfdi.org/.

[17] V. Jagannathan, Rajendra Dodhiawala, and Lawrence S. Baum, editors.
Blackboard Architectures and Applications. ACADEMIC PRESS, INC.,
1989.

[18] N. R. Jennings. Coordination techniques for distributed artificial intel-
ligence. In G. M. P. O’Hare and N. R. Jennings, editors, Foundations of
Distributed Artificial Intelligence, pages 187–210. John Wiley & Sons, 1996.

[19] Hsing-Pei Kao, Eric Su, and Brian Wang. I2QFD: a Blackboard-Based
Multiagent System for Supporting Concurrent Engineering Projects. In-
ternation Journal of Production Research, 40(5):1235–1267, 2002.

[20] David Keil and Dina Goldin. Modeling Indirect Interaction in Open Com-
putational Systems, 2003. In Proceedings of the Twelfth IEEE Interna-
tional Workshop on Enabling Technologies: Infrastructure for Collabora-
tive Enterprises (WETICE03).

[21] Elizabeth A. Kendall. Agent Roles And Role Models : New Abstractions
For Intelligent Agent System Analysis And Design, 1999. ECOOP’99, AOP
Workshop, Lisbon, 14.06.99.

[22] Rick Kazman Len Bass, Paul Clements. Software Architecture in Practice
- Second Edition. Addison-Wesley, 2003.

[23] LCC Lexico Publishing Group. Dictionary.com. www.dictionary.com.

[24] Yosuke Matsusaka and Tetsunori Kobbayashi. System Software for Col-
laborative Development of Interactive Robot, 2001. In Proceedings of the
IEEE.

[25] Jason Morris. The Zen of Jess 2, 2005.
http://www.jessrules.com/jess/zen.shtml.

[26] Pinar Öztürk. Lecture Notes, TDT4280 Distributed Artificial Intelligence
and Intelligent Agents. Lectured at NTNU, Norway, 2004.

168

[27] H. Van Dyke Parunak. Practical and Industrial Applications of Agent-
Based Systems, 1998. Parunak (1998). Practical and Industrial Applica-
tions of Agent-Based Systems. http://www.cs.umbc.edu/agents/.

[28] Utpal Roy and Jianmin Liao. Application of a Blackboard Framework to a
Cooperative Fixture Design System. Computers in Industry, 37(1):67–81,
1998.

[29] George Rudolph. Some Guidelines for Deciding Whether to Use a Rules
Engine, 2003. http://www.jessrules.com/jess/guidelines.shtml.

[30] Ozgur Koray Sahingoz and Nadia Erdogan. A Two-Leveled Mobile Agent
System for Electronic Commerce, 2003. ”In the journal of Aearonautics
and Space Technologies Institute (ASTIN)”.

[31] Ozgur Koray Sahingoz and Nadia Erdogan. MAPSEC: Mobile-Agent Based
Publish/Subscribe Platform for Electronic Commerce, 2003. In Computer
and Information Sciences - ISCIS 2003, p. 348-355.

[32] Sandia National Laboratories. Jess the Rule Engine for the Java Platform.
Webpage: http://herzberg.ca.sandia.gov.

[33] Kari Rssland (supervisor: Pinar Öztürk). Application of CoPS Multiagent
Framework in a Medical Domain, 2005. TDT4745 Knowledge Systems,
depth study Autumn 2005.

[34] Odd Erik Gundersen (supervisor: Pinar Öztürk). A MultiAgent Framework
for Collaborative Problem Solving, 2004. A master thesis submitted to the
Norwegian University of Science and Technology, Department of Computer
and Information Science, Trondheim, Norway, July 30.

[35] Katia P. Sycara and Dajun Zeng. Coordination of Multiple Intelligent Soft-
ware Agents. International Journal of Cooperative Information Systems,
5(2):181–212, 1996.

[36] Gerhard Weiss, editor. Multiagent Systems: A Modern Approach to Dis-
tributed Artificial Intelligence. Massachusetts Institute of Technology, 1999.

[37] Michael Wooldridge. An Introduction to: Multiagent Systems. John Wiley
& Sons Ltd, 1996.

169

