
June 2006
Herindrasana Ramampiaro, IDI

Master of Science in Computer Science
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Efficient Algorithms for Video
Segmentation

Vegard Andre Kosmo

Problem Description
The main goal of this thesis is to find efficient algorithms that automatically build a picture
storyline from an input video file. The algorithms will be evaluated based on both output quality
and elapsed time during the operation.

Assignment given: 20. January 2006
Supervisor: Herindrasana Ramampiaro, IDI

Abstract

Describing video content without watching the entire video is a challenging
matter. Textual descriptions are usually inaccurate and ambiguous, and if
the amount of video is large this manual task is almost endless. If the tex-
tual description is replaced with pictures from the video, this is a much more
adequate method. The main challenge will then involve which pictures to
pick to make sure the entire video content is covered by the description. TV
stations with an appurtenant video archive would prefer to have an effective
and automated method to perform this task, with focus on holding the time
consumption to an absolute minimum and simultaneously get the output
results as precise as possible compared with the actual video content.

In this thesis, three different methods for automatic shot detection in video
files have been designed and tested. The goal was to build a picture storyline
from input video files, where this storyline contained one picture from each
shot in the video. This task should be done in a minimum of time. Since
video files actually are one long series of consecutive pictures, various image
properties have been used to detect the video shots. The final evaluation has
been done based both on output quality and overall time consumption.

The test results show that the best method detected video shots with an
average accuracy of approximately 90%, and with an overall time consump-
tion of 8.8% of the actual video length. Combined with some additional
functionality, these results may be further improved.

With the solutions designed and implemented in this thesis, it is possible
to detect shots in any video file, and create a picture storyline to describe
the video content. Possible areas of application are TV stations and pri-
vate individuals that have a need to describe a collection of video files in an
effective and automated way.

i

ii

Preface

This master thesis documents the work performed by Vegard André Kosmo
from January to June in 2006. The main goal of the thesis was to examine
different approaches for automatic segmentation of video files.

I would like to thank associate university professor Herindrasana Ramampiaro
from the Department of Computer and Information Science (IDI) at the Nor-
wegian University of Science and Technology (NTNU) for his guidance and
sharing of expertise during my work on this thesis.

Trondheim

Vegard André Kosmo

iii

iv

Contents

1 Introduction 1
1.1 Problem description . 1
1.2 Challenges . 2
1.3 Thesis title and description 2
1.4 Solution strategies . 2
1.5 Thesis contribution . 3
1.6 Thesis outline . 4

2 Background theory 5
2.1 Video as a medium . 5
2.2 Video codecs . 6
2.3 Video segmentation . 8

2.3.1 Detecting shots . 8
2.3.2 State of the art in r-frame generation 9
2.3.3 Visual features in video shot segmentation 10

2.4 Shot detection algorithms . 16
2.4.1 Evaluating shot detection algorithms 16
2.4.2 Algorithm 1 - Video cut detection using frame windows 19
2.4.3 Algorithm 2 - Support Vector Machine classification . 22
2.4.4 Algorithm 3 - Fusion of multiple cues 24
2.4.5 Algorithm 4 - A feature based algorithm 27

2.5 R-frames selection . 29
2.5.1 Selecting the right r-frames 29
2.5.2 Redundancy avoidance 30
2.5.3 R-frames presentation 33

2.6 Speeding up the algorithms 34

3 Requirements analysis 37
3.1 Video test material requirements 37
3.2 Algorithm requirements . 37
3.3 User interface requirements 37

3.3.1 Algorithm test bench view 38
3.3.2 R-frames presentation view 38

v

4 Construction 39
4.1 Algorithm construction . 39

4.1.1 Global color histograms algorithm 39
4.1.2 Local color histograms algorithm 41
4.1.3 Global edge chasing algorithm 42

4.2 User interface construction . 44
4.2.1 Algorithm test bench view 44
4.2.2 R-frames presentation view 47

4.3 Video test material . 48
4.4 Algorithm speed-up . 49
4.5 New aspects . 50

5 Implementation 51
5.1 Java frameworks . 51

5.1.1 Java Media Framework 51
5.1.2 Java Advanced Imaging 52

6 Results 55
6.1 Algorithm speed-up . 55
6.2 Video test material - Cuts and fades 56
6.3 Results from the global color histogram algorithm 56
6.4 Results from the local color histogram algorithm 60
6.5 Results from the global edge chasing algorithm 62
6.6 Algorithms head-to-head . 65

7 Conclusion and further work 69
7.1 Global color histograms . 69
7.2 Local color histograms . 69
7.3 Global edge chasing . 70
7.4 Conclusion . 72
7.5 Further work . 72

7.5.1 Increased sampling rate 72
7.5.2 Increased user control 73
7.5.3 Permanent picture storyline storage 73
7.5.4 Image searching . 73

References 76

vi

List of Figures

2.1 A hierarchy of digital video 6
2.2 An illustration of the RGB model 11
2.3 Two images with similar color histograms 12
2.4 Precision and recall values in a given example 17
2.5 Moving query window with a half-window size of 5 20
2.6 Moving query window with a half-window size of 10 21
2.7 A 4× 3 uniform spatial image grid 22
2.8 x - t section through the spatiotemporal video volume 25
2.9 Bayesian network using color features 26
2.10 Example of peaks in the edge change fraction value 28
2.11 Horizontal ascending view . 33
2.12 Horizontal/Vertical view . 34
2.13 Hierarchical view . 34
2.14 Non-linear shot boundary detection strategies 36

4.1 Region of interest in the global color histogram algorithm . . 40
4.2 The image RGB color scale 40
4.3 Regions of interest in the local color histogram algorithm . . . 41
4.4 Original image before edge detection 42
4.5 Modified image after edge detection 43
4.6 Regions of interest in the global edge chasing algorithm . . . 43
4.7 Menu to open video files for segmentation 44
4.8 Menu to choose algorithm . 45
4.9 Menu to choose threshold . 45
4.10 The video window . 46
4.11 The r-frames presentation view 47
4.12 The r-frames presentation view with vertical scrollbar 47

6.1 Algorithm time consumptions 66
6.2 Algorithm precision values . 67
6.3 Algorithm recall values . 68

7.1 False cut detection by the edge chasing algorithm 71

vii

viii

List of Tables

2.1 Definition of terms . 30

6.1 Cuts and fades in the test video files 56
6.2 Algorithm time consumptions 66
6.3 Algorithm precision values . 67
6.4 Algorithm recall values . 68

ix

x

Chapter 1

Introduction

This report describes the work of designing, testing and evaluating efficient
algorithms related to segmentation of video files. This chapter gives a brief
overview of the concept of video segmentation, challenges and problems re-
lated to this matter and a discussion of some possible strategies to manage
such operations.

1.1 Problem description

The amount of produced digital video information in our society is growing
fast, especially among the private individuals. The main reasons for this
growth are cheaper and better video cameras, higher availability of digital
video editing software and dramatically reduced storage costs. An obvious
consequence of this tendency is increased needs to manage this video in-
formation. Management in this context involves production, compression,
storage, indexing and retrieval of video.

Because video files actually consist of a series of pictures, and each pic-
ture may contain large amounts of information, video management is a quite
complex and challenging matter. It is a growing need to find methods that
indicate the content of a video file in a short but still descriptive way. A
user of a video management system may then decide if a video file is rele-
vant to his/her needs, without actually watching the video. While there are
plenty of tasks that have to be solved to make a complete video management
system, this thesis will mainly focus on the matter of describing the entire
content of video files by segmenting the files into parts and describing each
part independently.

1

1.2 Challenges

First of all, describing video content by means of pure text is very difficult.
It is a process that have to be done manually, and may suffer from different
interpretations from different people. The generation of these textual meta-
data is also a time consuming process, and the task will be insuperable with
the amount of video information growing large. This leads to the desire of
using other methods to describe video content, either in combination with
textual data or as an independent solution.

One possible way to approach this problem is by using pictures to make
a summation of the video file. Pictures are descriptive and nonambiguous,
and should be generated in less time than the textual metadata. Another
major advantage is the possibility to automate this task, i.e. let a computer
carry out the entire operation. This leads to another challenge: How to pick
the right pictures. A perfect algorithm would find all parts of the video
file, find one descriptive picture from each part and remove pictures that
are almost identical. The entire operation would be done in a minimum of
time. Unfortunately, it is not that easy. As in many other domains, it is a
trade-off between accuracy and speed. Speeding up the algorithm may lead
to loss of important parts of the video file, or pictures with poor quality. An
accurate algorithm will probably use as much time as it takes to watch the
entire video file. Because of this, it is important to attack one problem at
a time, and in the end combining the solutions to make the final result as
good as possible. That is what this thesis is about.

1.3 Thesis title and description

The thesis title is

Efficient algorithms for video segmentation

with the description

The main goal of this thesis is to find efficient algorithms that automati-
cally build a picture storyline from an input video file. The algorithms will be
evaluated based on both output quality and elapsed time during the operation

1.4 Solution strategies

Since video segmentation is an area that has been explored for several years,
it is a natural solution strategy to use algorithms already known, and utilise
these as a platform to test and combine different solutions in a new way.

2

Since the segmentation process can be divided into three main parts, it is
desirable to optimize each part and combine the best solutions from each
part. The first part is related to segment the video files into pieces, and
make sure that the number of pieces found is equal to the actual number in
the video file. There exists several ways to do this, and they will be thor-
oughly described in the next chapter. The next part is to pick pictures from
each part of the video file, and use these pictures to describe the video file
content. If the pictures are presented in ascending order, they will form a
storyline that can be viewed in much less time than watching the video. From
a user’s point of view it is desirable that pictures containing almost exactly
the same thing will be removed, so the picture storyline will be as compact
as possible. The strategies for finding these pictures will be introduced in
the next chapter. The final part of the segmentation process is to optimize
the operations, to make sure the time consumption will be minimized. It
is important to monitor the output quality during this operation, as higher
speed probably produces less precise result sets. Different solutions to speed
up the segmentation algorithms will be discussed in the next chapter.

To evaluate the quality of each algorithm, it is necessary to define test cases.
The video files used in each test case have to be examined manually, to find
the segments of each file. The output from each algorithm is then to be
compared with the ideal output, and evaluated on the basis of this combined
with the overall time consumption. The easiest way to run the test cases will
be to make a simple graphical user interface, with the possibilities to open a
video file and construct a picture storyline. It is also adequate to implement
a timer that shows the progress of the segmentation process, combined with
overall time used. The main focus related to the test prototype will not be
ease of use and fancy layout, but making a tool to run the test cases and
draw conclusions from the produced output.

1.5 Thesis contribution

One possible outcome of this thesis is to design and implement a solution that
can be used by TV stations to automatically describe their video content.
Most TV productions these days are made with digital video cameras, where
a cut is defined automatically with the touch on the start/stop button. But
even if the camera is stopped for a while, it is not necessarily a cut on exactly
that point in the video. If the camera starts to film the same things after the
break, the cut point defined by the digital camera is obviously wrong. This
is one thing that can be improved by designing new ways to detect shots in
video files. Another point of designing shot detection algorithms is to have
the possibility to automatically detect shots in video files that are older than
the digital video camera technology. Most TV stations have archives that

3

include older video material, and the possibility to describe this content as
well would be of great importance.

1.6 Thesis outline

The structure of the remaining part of the report is as follows: Chapter 2
gives an overview of theoretical background information to completely un-
derstand the scope of the problem, and how it can be solved. Chapter 3
analyses the requirements that have to be considered during the development
of a video segmentation test prototype. Chapter 4 describes the construction
of the algorithms that will be tested and evaluated, the test cases and the
test case prototype. Chapter 5 describes the most important parts related
to the implementation of the shot detection prototype. Chapter 6 gives the
results of the test cases, while chapter 7 concludes which algorithms that are
best suited for these kind of operations, in addition to an overall summery
of the entire thesis.

4

Chapter 2

Background theory

This chapter describes video as a medium, and gives a thorough explanation
of the process of video segmentation. Some known methods and algorithms
regarding this matter will be introduced. Since segmentation algorithms is a
very important part of this thesis, this section is quite comprehensive. I think
it is important to illustrate a wide selection of earlier results and conclusions,
and use this knowledge to explore new possibilities instead of doing work that
already has been done and evaluated. Further, this chapter suggests how to
select the best pictures from a video file to build a complete picture storyline,
which from a user’s point of view will represent a compact summation of the
video file content. The final section presents methods for speeding up the
entire segmentation process, with the goal of keeping the output quality as
unaffected as possible. These methods will create a foundation for further
use, related to test cases and evaluation of the algorithms presented in later
chapters.

2.1 Video as a medium

To design efficient video shot detection algorithms, it is important to examine
video as a medium to fully understand this domain. Video is a continuous
series of pictures displayed sequentially at a fixed rate. Because all the
pictures in a video file have equal size, the pictures are called frames. Digital
video information consists of a series of 25 frames per second [1]. These
frames can be grouped together in related collections, to make the handling
of the video file easier. The collections are defined as follows, and will be
used through the entire thesis [2]:

• Clip: A clip is a digital video document. It can last from a few seconds
to several hours, and consists of a sequence of contiguous video frames.
A video segment is any contiguous portion of a clip.

5

• Scene: A scene is a sequential collection of shots unified by a common
event or locale. A clip can have one scene or several scenes.

• Shot: A shot is captured between a record and a stop camera operation.
A scene can have one shot or several shots.

• Frame: A frame is the atomic part related to digital video, and is one
picture from the picture sequence.

This can be organized hierarchically, as shown in figure 2.1. A shot is a
collection of frames, a scene is a collection of shots and a clip is a collection
of scenes. The figure is taken from [2].

Figure 2.1: A hierarchy of digital video

Since the frame rate of digital video is 25 frames per second, a full mo-
tion picture contains a large number of frames. Storing and managing the
digital video content is a challenging matter, because of the great amount of
information. A compressed full-length movie requires one or two CD-ROMs,
where each CD-ROM holds 700 MB of data. A DVD movie requires up to
4.7 GB [3], because of the increased image and sound quality.

2.2 Video codecs

The word ’codec’ is a compounding of the two words compression and
decompression, which describes a device or program capable of performing
transformations on a data stream or signal [4]. Video codecs are devices

6

or software modules that enables the use of compression for digital video.
Compression is a conversion of data to a format that requires fewer bits,
usually performed so that the data can be stored or transmitted more ef-
ficiently. The compression usually employs lossy data compression, where
compressing data and then decompressing it retrieves data that may well be
different from the original, but is close enough to be useful in some way.

A typical digital video codec design starts with conversion of camera-input
video from RGB color format to YCbCr color format. The conversion to
YCbCr provides two benefits. First, it improves compressibility by provid-
ing decorrelation of the color signals. Second, it separates the luma signal,
which is perceptually much more important, from the chroma signal, which
is less perceptually important and which can be represented at lower resolu-
tion. To reduce the raw data rate before the basic encoding process, spatial
and temporal down sampling may be used. The most popular transform is
the discrete cosine transform (DCT), which is similar to the discrete Fourier
transform (DFT), but using only real numbers. DCT is used both in digital
video and image compression. A two-dimensional DCT of N ×N blocks is
computed, and the results are quantized and entropy coded. Quantization
is the process of approximating a continuous range of values by a relatively
small set of discrete integer values, while entropy coding involves the actual
compression process. N is typically 8, and the following formula is applied
to each row and column of the block:

fj =
N−1∑
n=0

xncos

[
π

N
j(n+

1
2
)
]

(2.1)

The result is an 8×8 transform coefficient array in which the (0,0) element
is the DC zero-frequency component and entries with increasing vertical and
horizontal index values represent higher vertical and horizontal spatial fre-
quencies.

Several codecs are now in everyday use. The most important ones are listed
below:

• MPEG-1: This codec is used for Video CDs, and also sometimes for
online video. The quality is roughly comparable to that of VHS. It
includes the .mp3 standard. When it comes to compatibility, VCD has
the highest compatibility of any digital video/audio system.

• MPEG-2: This codec is used on DVD and in another form for SVCD,
and used in most digital video broadcasting and cable distribution
systems.

7

• MPEG-4: This codec is an MPEG standard that can be used for in-
ternet, broadcast, and on storage media. It offers improved quality
relative to MPEG-2.

• DivX, XviD and 3ivx: Video codec packages basically using MPEG-4
video codec, with the .avi, .mp4, .ogm or .mkv file container formats.

• Windows Media Video (WMV): This is Microsoft’s family of video
codec designs including WMV 7, WMV 8, and WMV 9. It can do
anything from low resolution video for dial up internet users, to High-
Definition Television (HDTV). Files can be burned to CDs and DVDs,
or put out to any number of devices. It is also useful for Media Centre
PCs.

2.3 Video segmentation

As described in the section 2.1, a video segment is any contiguous por-
tion of a video clip. But in the context of building a structure to increase
management and retrieval efficiency, picking segments randomly in a video
file is not a good idea. It is important to have a strict plan to follow, to
make sure the output of the segmentation task is exactly what was intended
in the first place. The main idea is to segment the video files into shots, and
then pick one picture from each shot to show the content at that point in
the video file. Such a picture is called a representative frame, or r-frame
for short. Some papers use the name key-frame for this purpose, but it
is in fact exactly the same as an r-frame. The name r-frame will be used
throughout this thesis.

2.3.1 Detecting shots

Shot detection in video files can be carried out in many different ways. Most
of the activity is concentrated on the detection of shot boundaries using sharp
transition detection, cuts [5]. A cut, or shot boundary, is a sharp transition
between a shot and the one following. Great difference in brightness pattern
from one picture to the other is in most cases a cut. The main reason for
this is the simple fact that two consecutive frames inside the same shot do
not change significantly in their background and object content, and their
overall brightness distribution differs little.

Examples of other types of shot boundary are fades, where the frames of the
shot gradually change from or to black, dissolves, where the frames of the
first shot are gradually morphed into the frames of the second and wipes,
where the frames of the first shot are moved gradually in a horizontal or
vertical direction into the frames of the second [1]. These are all matters

8

that complicate the process of automatic shot boundary detection. Since
the changing occurs gradually from one shot to the next one, the frame dif-
ference is much smaller than the gap between two frames in sharp transition
shots.

Automatic shot boundary detection is also difficult because of camera and
object motion [1]. Sports and music videos usually have much object motion,
while cameras have a variety of movement such as panning, tilting, boom-
ing, tracking, zooming in and out, or a combination of these. Another case
is sudden changes in light or color values inside a shot. These matters can
lead to false shot detections in an automatic process.

2.3.2 State of the art in r-frame generation

Video segmentation has previously been divided into two main types of video
abstraction, the video skimming and the video summary [5].

Video skimming can be divided further down into two sub-categories: The
video highlight and the summary sequence. The video highlight is like a
movie trailer, containing the most interesting parts of the original video file.
Important people and/or objects, or frames with the largest difference with
the respect to color, motion and audio estimation are usually selected. In the
end are all the selected scenes organized according to their time relevance
in the movie. The summary sequence approach speeds up the playback, so
that the whole film can be watched in a shorter amount of time. This is
most challenging in the case of getting the audio to fit with the images, so
this solution is most in use related to documentaries with text content.

Video summary uses still images (r-frames), to describe the content of video
shots. This method is much more effective in the case of video content re-
trieval. There are five categories of constructing r-frames from a video file:
The sampling-based, segment-based, motion-based, mosaic-based
and shot-based.

In the sampling-based approach, r-frames are selected randomly or uni-
formly at certain time intervals. The process is automatic. Since the method
does not take shot length into consideration, a possible drawback is to miss
shots that are small in time. On the other hand, sample-based detection
may generate an unnecessary amount of r-frames from the same shot, if the
shot is long in time. This does not scale for long videos.

As a consequence of this, the segment-based r-frames constructing model
has been developed. This method is based on each segment’s length and
rarity. Segments with their importance lower than a predefined threshold

9

are discarded. The selected r-frame of a segment will be the frame which
is closest to the center of that given segment. The main drawback in this
model is that semantically properties might be missed because of the thresh-
old filtering.

Motion-based r-frames construction controls number of frames based on
temporal dynamics in the scene. Pixel-based image differences or optical
flow computation are commonly used. Optical flow is calculated for each
frame, and a motion metric is computed on the basis of this calculation.

The mosaic-based approach is used to generate a synthesized panoramic
image that can represent the entire content of a video scene. Static back-
ground mosaic is used for background scenes, while synopsis mosaic summa-
rizes the entire dynamic foreground event in the video clip by detecting the
object trajectory.

The most sophisticated video summery method is the shot-based approach.
This method demands content interpretation by means of low-level visual
features. The three most common features used for this purpose is color,
texture and shape. These will be described in the next subsection. Video
retrieval under the shot-based method is divided into two main categories.
The dependent-video features category focus on environment, as a back-
ground street in a picture, or on static or moving objects, such as a car.
The goal is to distinguish the dominant objects between consecutive frames.
Dominant objects in a frame are those color objects with the largest num-
ber of pixels. To determine if a shot is a part of a scene, the algorithm
performs a correlation score calculation. The shot is a part of the scene if
the result satisfies the condition. The independent-video features cate-
gory integrates domain-independent video features such as color and shape
of semantic objects and object locations.

2.3.3 Visual features in video shot segmentation

Constructing r-frames to describe the content of video files has one big ad-
vantage: Efficient search and retrieval. While it is quite complex to search
a video file based on text or pictures, several efficient image retrieval al-
gorithms have been developed. The basis for the search is then a limited
amount of images instead of a full length video file, which clearly simplifies
the retrieval process. Because most shot detection algorithms compare one
frame with the next one, visual features in video along with efficient image re-
trieval algorithms is highly relevant in the regard of video shot segmentation.

Color
To make use of the color features in image and video retrieval, a standardized

10

color model has to be present. One of the most common color models in use
is the RGB model. In this model, the primary colors are red, green and
blue. All other colors are produces by combining the three primary colors
into different composition, where white contains all the colors and black be-
ing the absence of any color. When written, the RGB model represent each
color by a unique 24 bit value. The 24 bits are divided into three integers
between 0 and 255, where each integer represent one of the three primary col-
ors. White has the bit value (255, 255, 255), while black has (0, 0, 0). With
this system, approximately 16.7 million discrete colors can be reproduced.
Figure 2.2 illustrates the RGB model.

Figure 2.2: An illustration of the RGB model

Given the knowledge that each pixel in every frame of the entire video
file has a 24 bit integer value, these values have to be organized in a way
that makes shot detection and image retrieval possible. One solution to this
is to make use of color histograms. Their main advantages are efficiency
and insensitivity to small changes in camera viewpoint. In addition to this,
color histograms are computationally trivial to compute. In [6], the following
definition of color histograms is given:

All images are scaled to contain the same number of pixels M. The color
space is discretized to contain n distinct colors. Since it is not very efficient
to use all 16.7 million possible colors, a few of the most significant bits are
used. If the 2 most significant bits are used, the histogram may contain up
to 64 distinct colors. A color histogram H is a vector < h1, h2, ..., hn >, in
which each bucket hj contains the number of pixels of color j in the image.
Typically images are represented in the RGB color space. For a given image
I, the color histogram HI is a compact summary of the image. To compare
two images based on their color histograms, two different distances can be
used. The first one is called L1-distance, and is defined as the sum of
absolute value of differences:

|HI −HI′ | =
n∑

j=1

|HI[j] −HI′[j]| (2.2)

The second approach is called L2-distance, and is defined as the sum

11

of squared differences:

||HI −HI′ || =
n∑

j=1

(HI[j] −HI′[j])
2 (2.3)

The differences are weighted evenly across different color buckets for sim-
plicity.

Even if color histograms are very efficient in the case of image comparing
and retrieval, they still have some drawbacks. They do not contain spa-
tial information, so images with very different appearances can have similar
histograms. This is shown in figure 2.3. The figure is taken from [6].

Figure 2.3: Two images with similar color histograms

One way to overcome the limitations of color histograms is use color
coherence vectors. A color’s coherence is the degree to which pixels of
that color are members of large similarly-colored regions. The significant re-
gions are referred to as coherent regions. The images shown in figure 2.3 are
quite different in content and context, but the color histograms are similar.
The amount of red regions are equal in both images, but the picture to the
right has all the red pixels gathered inside one coherent region. This is the
idea behind coherence vectors. Coherent pixels are a part of some sizable
contiguous region, while incoherent pixels are not. A color coherence vector,
or CCV for short, represents this classification for each color in the image.
This allows fine distinctions that cannot be made with color histograms.

In [6], a method for CCV computing is given. The initial stage is similar to
the computation of a color histogram. The picture is blurred by replacing
pixel values with the average value in a small local neighborhood. The color
space is discretized, such that there are n distinct colors in the image. Then
the pixels are classified within a color bucket as either coherent or incoher-
ent. A coherent pixel is part of a large group of pixels of the same color,
while an incoherent pixel is not. The next step is to construct connected
components, which are maximal sets of pixels such that for any two pixels

12

p,p’ as elements of C, there is a path between p and p’. Connected com-
ponents are only computed within a given discretized color bucket. When
this is complete, each pixel will belong to exactly one connected component.
Pixels are classified as either coherent or incoherent depending on the size
in pixels of its connected component. A pixel is coherent if the size of its
connected component exceeds a fixed threshold value, otherwise the pixel is
incoherent.

The test results in [6] show that the overall computation of CCVs is slower
than color histograms, but the results of image retrieval and ranking by rel-
evance are much better with CCVs.

Shape
Shape features in images can also be used in the purpose of detecting shots
in video files. In [7], shape of the objects within an r-frame is represented
using moment invariants. The moment of an image f(x,y) is defined as:

mpq =
∑ ∑

xpyqf(x, y) (2.4)

Invariance to scale change, rotation and translation are some character-
istics that make moment invariants an ideal representation mechanism in
a video browser. Moment invariants are derived from normalized central
moments defined as:

ηpq =
1
mγ

00

∑ ∑
(x− x′)p(y − y′)qf(x, y) (2.5)

where γ = (p+q
2 + 1), x′ = m10

m00
and y′ = m01

m00
.

The first few moment invariants are defined as:

φ1 = η20 + η02 (2.6)

φ2 = (η20 − η02)2 + 4η2
11 (2.7)

φ3 = (η30 − 3η12)2 + (3η21 − η03)2 (2.8)

The shape of each r-frame is then represented using the vector ~σ defined
as:

~σ = {σ1, σ2, σ3, ..., σ7} (2.9)

Finally, the euclidean distance is used to measure the similarity of two
r-frames:

13

ψ(α, β) = |~σα − ~σβ |2 (2.10)

In [8], shape is classified as the most important low level visual feature
among color, texture and spatial localization. The reason for this is that
shape represents significant regions or relevant objects in images. In general,
shape representations are classified into two categories: Boundary-based
and region-based. The first one uses the pixels along the object boundary,
while the second one uses the pixels contained in the region.

In [9], the focus is on finding shapes that become similar to a given shape
after being rotated. To do this, Fourier descriptors are used. Given a
boundary function bt, its Fourier transform can be written as:

Bf =
1√
N

N−1∑
t=0

bte
−j2πtf

N (2.11)

where f ∈ {b (N−1)
2 c, ..., 0, ..., d (N−1)

2 e} and j =
√
−1 is the imaginary

unit. The coefficients B0, B±1, called Fourier descriptors, describe the shape
of the object in the frequency domain. The energy in the frequency domain
is the same as the energy in the spatial domain, and the inverse Fourier
transform gives the original boundary function. Given two boundary func-
tions, bt and b′t, a typical measure of similarity between the two boundaries
is the Euclidean distance, which corresponds to mean-square error and
which is also directly related to the cross-correlation:

D2(b,b
′
) =

N−1∑
t=0

|bt − b
′
t|2 (2.12)

Texture
Another way to approach shot detection and image retrieval in general, is to
make use of the image texture features. In [10], Gabor filters are used in
this purpose. Gabor filter, or Gabor wavelet, is widely used to extract texture
features from the images. The method has shown to be very efficient. Other
texture methods to mention are pyramid-structured wavelet transform,
tree-structured wavelet transforms and multi-resolution simultane-
ous autoregressive model. Image retrieval with Gabor filters outperforms
these methods [10].

Gabor filters are a group of wavelets, with each wavelet capturing energy
at a specific frequency and a specific direction. Texture features can then
be extracted from this group of energy distributions. For a given image
I(x, y) with size P × Q, its discrete Gabor wavelet transform is given by a
convolution:

14

Gmn(x, y) =
∑

s

∑
t

I(x− s, y − t)ψ∗
mn(s, t) (2.13)

where s and t are the filter mask size variables, and ψ∗
mn is the complex

conjugate of ψ∗mn, which is a class of self-similar functions generated from
dilation and rotation of wavelets.

After applying Gabor filters on the image with different orientation at dif-
ferent scale, an array of magnitudes is obtained:

E(m,n) =
∑

x

∑
y

|Gmn(X,Y)| (2.14)

The magnitudes represent the energy content at different scale and ori-
entation of the image. The main purpose of texture-based retrieval is to find
images or regions with similar texture. The mean µmn and standard devia-
tion σmn of the magnitude of transformed coefficients are used to represent
the homogenous texture feature of the region:

µmn =
E(m,n)
P ×Q

(2.15)

σmn =

√∑
x

∑
y(|Gmn(x, y)| − µmn)2

P ×Q
(2.16)

A feature vector f(texture representation) is created using µmn and σmn

as the feature components. Five scales and six orientations are used in com-
mon implementation and the feature vector is given by:

f = (µ00, σ00, µ01, σ01, ... , µ45, σ45)

The texture similarity measurement of a query image Q and a target image
T is defined by:

D(Q,T) =
∑
m

∑
n

dmn(Q,T) (2.17)

where

dmn =
√

(µQ
mn − µT

mn)2 + (σQ
mn − σT

mn)2 (2.18)

In [10], retrieval tests were run both on texture images and natural im-
ages. The extracted texture features are used to measure the similarity
between the compared images. The method is most useful if the entire im-
age or main part of the image has a uniform texture.

15

In the relation to video segmentation, shots may be detected because of sud-
den changes in image texture. In [11], Gabor filters are used for this purpose.
The Gabor energy method measures the similarity between neighborhoods
in an image and Gabor masks. Each Gabor mask consists of Gaussian win-
dowed sinusoidal waveforms with parameters of wavelength λ, orientation θ,
phase shift φ and the standard deviation σ. The filter is given by:

G(x, y) = e−
(x−X)2 + (y − Y)2

2σ2
× sin(

2π(xcosθ − ysinθ)
λ

+ φ) (2.19)

A set of filters is generated by varying the θ and λ. The texture energy
for a filter is calculated as the sum over the phases of the squared convolution
values. Next, the texture energy response of each frame is used to find the
difference between the adjacent group of frames. To compute the distance
measure at frame i, a Gaussian window at scale s is selected around the
frame. The weighted average texture energy is calculated to the left and
right of the frame. The normalized distance between the average texture
energy is used as the estimate of the change across segment boundary.

2.4 Shot detection algorithms

This section describes how shot detection algorithms can be evaluated, along
with the results from an article that compares a few selected methods of shot
detection. Further, some algorithms and methods from the literature will be
presented in detail, to give a broadly illustration of how many ways these
kinds of problems may be solved.

2.4.1 Evaluating shot detection algorithms

Test results in [12] shows that it is probably not possible to find only one
optimal segmentation algorithm without being supplemented by heuristics
which involve both semantic information and priori knowledge about the im-
ages under consideration. Hundreds of segmentation algorithms have been
presented in the literature, but there is no single general algorithm which
can be considered good for all images, nor are all algorithms equally good
for a particular image. Selecting different algorithms to segment different
types of video seems to be the most straightforward and effective solution.

In computer science in general, there are two main criteria that are used
to evaluate the overall quality of an algorithm. The first one is related to
computation costs during the operation. This factor is in most cases evalu-
ated on the basis of how much time is needed to get the desired output. In
the process of video shot detection it is important to use efficient methods
to analyse the frames, because one hour of full quality video contains 90 000

16

different frames.

The second criterion is related to the output produced by the algorithm,
compared with the expected output. There are two values that may be used
in result evaluation: Precision and recall [13]. During testing, there are
one quantity of relevant results. In the domain of shot detection in video
files, this quantity will be all shots that exists in the given video file, named
R. |R| is the number of shots that exist in the video file. After the shot
detection algorithm is run, an answer set A is returned. |A| is the number
of shots in this amount. |Ra| is defined as the number of shots in the inter-
section between R and A, ergo relevant shots in the answer set.

Precision is the number of returned shots that are relevant, ergo

Precision =
|Ra|
A

(2.20)

Recall is the number of relevant shots that are returned, ergo

Recall =
|Ra|
R

(2.21)

Figure 2.4 shows the relation between precision and recall in a given result
set. The figure is taken from [13].

Figure 2.4: Precision and recall values in a given example

To make use of these values, the video files used in the test cases have to
be examined manually before the tests are run. All shots have to be found by
hand, and the test case outputs have to be compared with this ideal answer
set.

In [14], a number of algorithms have been evaluated based on precision
and recall values. Five different shot detection algorithms were run on the

17

same data set, and the output was compared against the predefined ideal
output. The data set contained television programs, news programs, movies
and television commercials. Plots of recall and precision values were made
after running the test cases. All of the algorithms were designed to examine
every frame of the test data rather than perform temporal sampling. The
five selected algorithms were:

• Histograms: A gray-scale histogram was computed over the entire
frame. The difference measure was the sum of the absolute histogram
difference. A shot boundary was declared if the histogram difference
between consecutive frames exceeded a predefined threshold.

• Region histograms: Each frame was divided into 16 blocks in a 4 X 4
pattern. A gray-scale histogram was computed for each region. His-
togram differences were computed for each region between consecutive
frames. If the number of region differences that exceeded the difference
threshold was greater than the count threshold, a shot boundary was
declared.

• Running histograms: A gray-scale histogram was computed over each
image. If the histogram difference between consecutive frames exceeded
a high threshold, a cut was declared. If the histogram difference ex-
ceeded a low threshold, a gradual shot transition was assumed. If this
was the case, computing differences from the start of the gradual transi-
tion was started. If the running difference exceeded the high threshold,
a gradual transition was declared once the run ended. If the difference
dropped below the low threshold for more than two frames, the as-
sumed gradual transition was declared to be over, and the running
difference computation stopped.

• Motion compensated pixel differences: In this approach, 3 threshold
values were used: cut, high and low. Each frame was divided into
12 blocks in a 4 X 3 pattern. Block matching with a 24 by 18 search
window was used to generate a set of motion vectors and a set of
block matching values. The two highest and two lowest match values
were discarded and the remaining vales were averaged to produce the
match value. If the match value exceeded the cut threshold, a cut was
declared. Match values above the low threshold indicated a gradual
transition. While exceeding the high threshold, a gradual transition
was declared once the match value dropped below the low threshold.

• DCT coefficient differences: One threshold was used. The same 15 dis-
crete cosine transform coefficients were taken from each block of frame
and a vector was produced. DCT coefficients are used to compare the
size of JPEG compressed frames, without any need of decompression.

18

The difference measure was computed, and a possible shot boundary
was detected if the difference exceeded the threshold value.

All video material was manually analysed, and the number of frames,
cuts and gradual transitions were found. The algorithms performed best on
the television program data set, mainly because of the low number of grad-
ual transitions. The histogram algorithm usually produced the first or
second best precision for a given recall value. Important points regarding
this algorithms are simplicity, along with straightforward threshold selection.
The region histogram algorithm seemed to be the best algorithm for ap-
plications where recall is not the highest priority. The running histogram
algorithm seemed to be the best algorithm for applications where recall is
important. This algorithm was poor in gradual transition detection. The
motion algorithm did not perform as well as the histogram-based algo-
rithms in general. The greatest weakness was gradual transition detection.
The DCT algorithm gave low precision values for a given recall. The al-
gorithm generated a large number of false positives in black frames between
television commercials. Because of this, a secondary algorithm is needed to
examine the false detected frames. This make the DCT algorithm an inef-
fective filter.

The final conclusion of [14] is that algorithms with more than one threshold
value are very sensitive to the threshold settings. In general, the simpler
algorithms outperformed the more complicated algorithms.

2.4.2 Algorithm 1 - Video cut detection using frame windows

The first algorithm to be described is presented in [15], and makes use of
a technique called frame windows. Their technique makes use of the intu-
ition that frames preceding a cut are similar to each other, and dissimilar
to those following the cut. For each frame in the video, a set or window
of consecutive, ordered frames is extracted centred on that frame. Second,
the frames in the window are ordered by decreasing similarity to the current
frame. Last, the ranking of the frames are inspected. The number of frames
preceding the current frame in the original video that now are ranked in
the first half of the list is recorded, and it is called the pre-frame count.
This process is repeated for each frame. Cuts are detected by identifying
significant changes in the pre-frame count between consecutive frames.

The basic approach is to make use of the fact that a cut is indicated by
a frame that is dissimilar to a window of those that precede it, but similar
to a window of those that follow it. A good illustration of this approach is
shown in figure 2.5. The figure is taken from [15]

The figure shows a cut between the 14th and the 15th frame. After

19

Figure 2.5: Moving query window with a half-window size of 5

processing the first 12 frames in the fragment, the 13th frame is the current
frame that is being considered as a possible cut. Five pre-frames are shown
marked before the current frame, and five post-frames follow it. With the
current frame centered, the pre- and post-frames together constitute a mov-
ing window. It is referred to as moving because it is used to sequentially
consider each frame in the video as possibly bordering a cut. The number
of pre- and post-frames is always equal, and called the half-window size,
HWS. In the figure, HWS = 5.

To detect whether the current frame fc borders a cut, a collection of frames
C is created from the frames fc−HWS ...fc−1 and fc+1...fc+HWS that respec-
tively precede and follow the current frame fc. The global feature data of
the frames in C is summarized, and the distance between the current frame
fc and each frame in C is computed. The frames are ordered by increasing
distance from the current frame to achieve a ranking. Only the first |C|

2
top-ranked frames are considered. This number is equal to the HWS. The
number of pre-frames in the |C|

2 top-ranked frames is referred to as the pre-
frame count. If the value of the pre-frame count is zero or close to zero, it is
likely that a cut has occurred. In figure 2.5, the current 13th frame is not
the first in a new shot and therefore does not define a cut. It is expected
that the five pre-frames and the first post-frame would be ranked as more
similar to the current frame than the remaining post-frames. The pre-frame
count is four or five, and a cut is unlikely to be present.

To make cut detection more efficient, it is possible to combine rankings from
the moving window approach. A representation of a video is shown in figure
2.6. The figure is taken from [15]. The video contains two shots labelled
A and B, and the HWS value is set to 10. The figure shows five different
situations that occur as the video is sequentially processed with the frame
window algorithm.

The first row shows the situation where the moving window is entirely
within shot A. The pre-count is 5, and a cut is not reported. The second
row shows frames from shot B entering the window. The ranking process
determines that 7 of the most similar 10 frames are pre-frames. Compared
to the first row, the pre-frame count is larger because the frames from shot
B are less similar to the current frame, and are therefore ranked below all

20

Figure 2.6: Moving query window with a half-window size of 10

frames from shot A. The pre-frame count is not near zero, and a cut is not
reported. In the third row, the current frame is the last in the first shot. The
ranking determines that the pre-frame count is at the maximum value of 10,
since all post-frames are ranked below all pre-frames. Since this is not near
zero, a cut is not reported. The fourth row shows the case where the current
frame is the first in shot B. Here, the post-frames are all more similar to
the current frame than the pre-frames are, so the pre-frame count is 0. The
algorithm reports a cut. The final row shows what happens as the frames
from shot B enter the pre-frame half-window. Some of the pre-frames are
now similar to the current frame, and so the pre-frame count increases to 2.
Since a cut was reported for the previous frame, another one is not reported
here.

The general trend of this ranking approach is when frames of only one shot
are present in the moving window, the ratio of pre-frames to post-frames
ranked in the top |C|

2 frames is typically 1. As a new shot enters the post-
frames of the window, this ratio increases. When the first frame of the new
shot becomes the current frame, the ratio rapidly decreases. Then, as the
new shot enters the pre-frames, the ratio stabilises again near 1. This algo-
rithm assumes that the value of the pre-frame count falls from near |C|

2 to
0 within a few frames. Further, there can be significant frame differences
within a shot, so it has to be specified that the pre- and post-frames span-
ning a cut must be reasonably different. For this, two empirically-determined
thresholds are used. It is required the last pre-frame and the first post-frame
to have a difference of at least 25% of the maximum possible inter-frame
difference. It is also specified that the average difference between fc and the
top |C|

2 frames must be at least half the corresponding value of the lower |C|
2

frames.

The overall results of the algorithm presented in [15] show that the ap-
proach finds 19 out of 20 cuts on the given video test set, and only 1 in
10 cuts that are detected are false alarms. The recall and precision values

21

are in most cases around 90%. The frame comparisons were performed with
one-dimensional color histograms. The best results were found with the half
window size value set to between 6 and 10 frames. Small window sizes are
preferable as they minor the amount of computation required. However, a
very small window size increases the sensitivity to frame variations within a
shot, thereby increasing false alarms. The final conclusion is that this ap-
proach both increases output quality and reduces computational costs during
the shot detection operation.

2.4.3 Algorithm 2 - Support Vector Machine classification

The next shot boundary detection approach to be described is presented
in [16]. The algorithm makes use of Support Vector Machine (SVM)
classification. SVMs are used in data modeling, and combine generalization
control with a technique to address the curse of dimensionality. The kernel
mapping provides a unifying framework for most of the commonly employed
model architectures, enabling comparisons to be performed.

The first step of the algorithm is to extract color histograms from the video
frames. Global frame histograms and block histograms are extracted. The
block histograms use a 4 × 3 uniform spatial image grid, as shown in figure
2.7.

Figure 2.7: A 4× 3 uniform spatial image grid

Then, a Blocked Color Histogram (BCH) can be denoted by vector
VH :

VH = [vH1, vH2, ..., vH13]

All the BCHs corresponding with frames are jointed, and a matrix MH

containing all the vectors is constructed:

22

MH =

V1H1 V1H2 ... V1H13

V2H1 V2H2 ... V2H13

...
VNH1 VNH2 ... VNH13

The wavelet coefficients of the column vectors in MH are calculated, and

the coefficients matrix MW constructed:

MW =

V1W1 V1W2 ... V1W13

V2W1 V2W2 ... V2W13

...
VNW1 VNW2 ... VNW13

Each column vector ofMW is the wavelet coefficient series of each block in

frames. By analyzing them, the transition conditions of blocks can be found.

Since shot transitions are temporal random processes, the features of SVM
must have temporal processes too. A moving temporal window is set in the
wavelet coefficient vectors. The transition processes of shots are captured,
and the noise of video is wiped off. It is pointed out in [16] that it is impossi-
ble to set a uniform function to resolve the problem of threshold setting. The
most important problem of adopting BCH is to set the weight of each block.
The system adopts SVM to resolve this problems upon. A 3-class SVM is
constructed, where the features of SVM include all the wavelet coefficients
in the temporal window. The algorithm can be described as, given training
vectors:

T = {(x1, y1), ..., (xl, yl) ∈ (SWV,Label)}l,
xi ∈ SWV, yi ∈ Label = {1, 2, 3}, i = 1, ..., l

The decision function of classifier i-j is:

f ij =
{
i, gij(x) , > 0

j , others
(2.22)

(i, j) ∈ {(i, j)|i ≤ j, i, j = 1, 2, 3}

gij(x) =
∑l

n=1 ynα
ij
nK(x, xn) + bij , n = 1, ..., l

where l is the number of Sliding Window Vectors (SWVs). 3 classifiers
are constructed, and each one trains data from two different classes. Each
binary classification is considered to be a voting where vote can be cast for
all data points x. When the results from the SVM classification are joint, a
series of labels are returned. These indicate NF for Normal Frame, CF for
Cut Frame and GT for Gradual Transition Frame. Then CUTs and GTs can

23

be detected. The r-frames are extracted as a by-product of multi-resolution
analysis for shot boundary detection. This algorithm approach offers three
kinds of r-frames:

• (1) The minimal points of wavelet coefficients in shots are chosen to
represent r-frames

• (2) The maximal points of wavelet coefficients in shots are chosen to
represent r-frames

• (3) In long shots, a series of local minimum points are chosen to rep-
resent r-frames

The conclusion of the article is that the testing result of the experi-
ment shows that the new method has good accuracy for the detection of
shot boundaries. It basically resolves the difficulties of detection caused by
sub-window. The framework also greatly improves accuracy of gradual tran-
sitions of shot.

2.4.4 Algorithm 3 - Fusion of multiple cues

In [11], an interesting approach is presented. The main point of the arti-
cle is to find a solution to the conflicting evidence provided by the different
features in video frames. It is pointed out that, since there is a strong cor-
relation between the features, it is not easy to fuse the information from
the features to make interpretations. The goal of the article is to develop a
framework to address the problem of information fusion when the features
are noisy and highly correlated. This is done by presenting a method based
on Bayesian networks that models the dependence between the segmen-
tation decision and the different features. A major advantage related to
this framework is the possibility to select the best set of techniques that are
sufficient to make reliable and robust decisions for a given class of video data.

An important thing related to video shot boundary detection is that al-
though the mechanisms do not perform well for all situations, they perform
well in a subset of the situations. The approach in [11] is to make use of a
combination of four distinct methods. The first set of features is based on
the color distributions in each frame of the video, as described in subsection
2.3.3. The second feature set is based on the response of each frame to a
set of texture filters, also described in subsection 2.3.3. The third feature
set scores the frames for a segmentation boundary based on the tracking
of significant point features in the video. The features are selected from
the frames and tracked across the video. A score is assigned to the track-
ing of the features, and is used to evaluate the segmentation boundaries.
The score is computed by weighting the contribution of each feature that

24

is tracked from the last frame to the current frame. The weight for the ith

feature is computed as:

wi = 1− e
−pi

k (2.23)

where pi is the number of frames in the past through which the ith feature
was tracked and k is the same constant that determines the sensitivity to
the history of the tracks. To compute a distance measure across the segment
boundary, the difference between the average track scores in windows on ei-
ther side of the candidate boundary frame is computed. At frame i, a window
of size S is selected around the frame and the average track score is calcu-
lated to the left and right of the frame. The difference between the average
track scores and the fraction of missed tracks is used as the distance measure
of the tracking module. The fourth feature class computes the likelihood of
a segmentation boundary by detecting edges in the spatiotemporal volume
that represents the video. Video data is three dimensional data where the
temporal dimensions is the third dimension. It is possible to make a projec-
tion detection filter to detect cuts. Planes parallel to the x− t and the y− t
planes are used. Edges perpendicular to the t axis in frame sections indicate
possible video segment boundaries. This is shown in figure 2.8. The figure
is taken from [11].

Figure 2.8: x - t section through the spatiotemporal video volume

The fraction of the pixels at any t covered by the horizontal edges is taken
as a measure of the segment boundary. Averaging this measure across many
sections gives a probability measure of the existence of a segment boundary
based on the evidence from edges in spatiotemporal volumes.

The segmentation is computed by comparing the change across the can-
didate segment boundary. The change can be measured as a distance D =
F (Sb−ε, Sb+ ε) between the video features, Sb−ε and Sb+ε, in the two tem-
poral intervals [b − ε, b] and [b, b + ε] around the boundary b. The distance
measure is then compared with a threshold value to determine if there exists
a boundary at b. The different approaches select different properties Sb−ε

25

and Sb+ε to represent the intervals and the function that evaluates the dis-
tance. The challenge is then to find fusion techniques that either use the D
from each module for making the fusion decision or the individual decisions
from each module to make the fused decision.

The fusion process is carried out by using a Bayesian network. A Bayesian
network over a set of variables X = {X1, ..., Xn} is an annotated directed
acyclic graph that encodes a joint probability distribution over X. Formally,
a Bayesian network is a pair B =< G,L >. The first component, G, is
a directed acyclic graph whose vertices correspond to the random variables
X1, ..., Xn, and whose edges represent direct dependencies between the vari-
ables. The second component, L, represents a set of local conditional prob-
ability distributions L1, ..., Ln. A Bayesian network B defines a unique joint
probability distribution over X given by the product:

PB(X1, ..., Xn) = Πn
i=1Li(Xi|pa(i)) (2.24)

where pa(i) denotes the set of parents of Xi in G. In [11], it is assumed
that there is one variable Ai for each feature, and a distinguished variable
Outcome that can take value from the set {0, 1, 2} depending on whether
the frame is normal, a boundary or a flash. The objective is given a set
of vectors X = {A1, ..., An, Outcome}, to induce a probability distribution
Pr(A1, ..., An, Outcome) from this data in the form of a Bayesian network.
The dependence among attributes in a Bayesian network will be represented
via a tree structure. An example of this is shown in figure 2.9. The figure
is taken from [11].

Figure 2.9: Bayesian network using color features

26

In such a network as shown in 2.9, an edge from Ai to Aj implies that
the influence of Ai on the assessment of Outcome also depends on the value
of Aj . These kinds of networks are learnable in polynomial time, which is
an attractive property.

The results in [11], after experimenting with Bayesian network model in-
duction and segmentation, were very encouraging. Few boundaries were
missed, although the number of false positives were large. Since the frame-
work developed was very general and in an early phase, it is important to
notice the positive results among with the possibility to extend the model
with more sophisticated methods and decision computations.

2.4.5 Algorithm 4 - A feature based algorithm

A new shot detection approach presented in [17] is focused on avoiding false
shot detections because of camera motion or moving objects that make a
large amount of pixels change their values from frame to frame. The method
is using the observation that during a cut or dissolve in video, new intensity
edges appear far from the locations of old edges. Further, old edges disap-
pear far from the location of new edges. An edge pixel that appears far from
an existing edge pixel is defined as an entering edge pixel, and an edge
pixel that disappears far from an existing pixel as an exiting edge pixel. By
counting the entering and exiting edge pixels, cuts, fades and dissolves can
be detected and classified.

The algorithm presented in [17] takes as input two consecutive images I
and I

′ . An edge detection step is first performed, resulting in two binary
images E and E

′ . ρin denotes the fraction of edge pixels in E
′ which are

more than a fixed distance r from the closest edge pixel in E. ρin measures
the proportion of entering edge pixels. A fade-in, cut or an end of a dissolve
should assume a high value of ρin. ρout denotes the fraction of edge pixels
in E which are farther than r away from the closest pixel in E

′ . ρout mea-
sures the proportion of exiting edge pixels. It should assume a high value
during a fade-out, cut or at the beginning of a dissolve. The basic measure
of dissimilarity is

ρ = max(ρin, ρout) (2.25)

This represents the fraction of edges that have entered or exited. Scene
breaks can be detected by looking for peaks in ρ, which in [17] is termed as
the edge change fraction. An example of this is shown in figure 2.10.
The cut between frames #9-#10, the dissolve in frames #25-#35 and the
fade out starting at frame #55 are shown as clear peaks in the ρ value. The
figure is taken from [17].

27

Figure 2.10: Example of peaks in the edge change fraction value

The first step in the algorithm is edge detection. At first, the image is
smoothed by convolving it with a Gaussian of width σ. Next, the gradient
magnitude is computed. This value indicates how fast the local intensities
are changing. Copies of E and E

′ are created with each edge pixel dilated
by a radius of r. The copies are named E and E′ . The equation for ρout is

ρout = 1−
∑y

xE[x+ δx, y + δy]E′ [x, y]∑y
xE[x, y]

(2.26)

which is the fraction of edge pixels which are exiting. The equation for
ρin is

ρin = 1−
∑y

xE[x+ δx, y + δy]E
′
[x, y]∑y

xE[x+ δx, y + δy]
(2.27)

The edge change fraction ρ shown in equation 2.25 is the maximum of
these two values.

The nest step of the algorithm is to detect scene breaks by looking for peaks
in the edge change fraction ρ. When a peak is located, it is necessary to
classify it as a cut, dissolve or fade. A cut is detected by the fact that is the
only scene break that occurs entirely between two consecutive frames. This
will lead to a single isolated high value of ρ. During a fade in, ρin will be
much higher than ρout, since there will be many entering edge pixels and few
exiting edge pixels. At a fade out, the opposite is the case, and ρout will be
much higher than ρin. A dissolve consists of an overlapping fade in and fade
out. During the first half of the dissolve, ρin will be greater, but during the

28

second half ρout will be greater.

The algorithm has been tested on a number of image sequencies, containing
various scene breaks. Intensity histograms have been used to detect edge
change fractions. The sum of the histogram differences used is given by

N−1∑
i=0

|Ht[i]−Ht+1[i]| (2.28)

where N denotes the number of histogram buckets, and Ht denotes the
intensity histogram of the t’th frame. 50 MPEG movies were used for test-
ing. The results show that 115 out if 118 cuts were detected. 17 false
positives were detected. If focusing on performance, nearly linear speedup
were obtained, because this approach makes use of parallel processing. The
weakness of the algorithm mentioned in [17] is involving failure in the case of
handling rapid changes in overall scene brightness, or scenes which are very
dark or very bright. These may lead to false positives.

2.5 R-frames selection

When the shot boundary detection algorithm has found all the boundaries
in the video file, r-frames selection is the next task. It is important to find
frames that fully describe the video content, as well as not picking too many
frames because of the storyline’s length in the browsing window. It is also
important to present the r-frames in a way that describes the video content
in a well arranged way.

2.5.1 Selecting the right r-frames

After the video file has been transformed into one long series of frames, there
are several methods to pick r-frames for video shot descriptions. To reduce
the final number of r-frames, the best solution is to pick only one r-frame
from each shot. The drawback of this is that if the quality of that one chosen
r-frame is poor, there is no other r-frame to fully describe that particular
shot from the video file. On the other hand, no matter what method is cho-
sen, there is never guaranteed that the quality is good enough.

One simple method is to choose the first frame after the shot boundary,
and use that frame as an r-frame for the particular video shot. This method
is computationally cheep, as the r-frames can be picked immediately after
the shots have been detected. But it is impossible to evaluate the picture
quality without further operations.

Another method is to choose the frame in the middle of the shot as an

29

r-frame. The algorithm keeps control on how many frames each shot con-
tains, and then picks the middle frame. The result is much the same as the
previous solution, with no control on output quality.

One final solution is to evaluate the content of the frames, and choose the
one frame with the best content description as an r-frame. This method
demands more computational resources, but the output quality is almost
certain to be good. It is hard to decide what quality criteria to use, but it
is possible to make a histogram middle value for the entire shot, and then
pick the frame nearest that value. Frames with poor quality and other major
differences will not be chosen, and the shot content will be well described
based on that one r-frame.

2.5.2 Redundancy avoidance

One problem with automatic video shot detection algorithms is the possi-
bility of getting too many r-frames as output. If one r-frame is picked from
each shot in the video file, and the video contains dialogues, the r-frame
summary will contain repeated similar r-frames [18]. As an example, there
are 300 cut-points in a 15-minute segment of the movie "Terminator 2". The
result is 2400 r-frames to be displayed to browse a two-hour move. From a
user’s point of view, this will be far from acceptable. The solution proposed
in [18], is to effectively reduce the number of redundant r-frames extracted
from long video sequences by detecting similar r-frames, and link them to-
gether. Table 2.1 shows the definition of terms used.

Term Explanation
DC-picture A 90× 60-subsampled still image
Cut The moment when the camera changes
Shot A series of frames divided by cut-points
Pattern A group of shots with similarity in camera, location and angle
Similar shots Two shots which are members of the same pattern
Act A sequential group combining several patterns

Table 2.1: Definition of terms

Before the search for similar parts can start, the video stream is pre-
processed with the following steps:

• 1: Subsample video stream

• 2: Detect cuts

• 3: Compare shots

• 4: Link similar shots

30

• 5: Confirm similarities

• 6: Label patterns

• 7: Detect acts

The subsampling part involves extracting still images out of the video
stream. Each frame is divided into units of 8 × 8 pixels in units called
blocks. The blocks are encoded by the DCT method mentioned in section
2.2. The result is a subsampled version of the original picture, but the num-
ber of pixels is reduced to 1/8. The pictures are named DC pictures, and
used to detect cuts in the video file.

Further, two shots are compared to see whether they are similar shots. Sev-
eral DC-pictures from each shot are chosen, and the differences for all pairs
calculated. When a pair of similar DC-pictures is01 found, the two shots are
linked. The operation is a matter of solving three different problems:

• 1: Which DC-pictures should be selected when comparing the shots?

• 2: How many DC-pictures should be sampled from each shot?

• 3: How should the DC-pictures be compared?

The hypothesis in [18] is that it is very difficult to find a general formula
for which pictures to select, as the first picture in one shot can be similar
to the last picture in another. By experimenting with input parameters,
the best number of DC-pictures to select from each shot was 8. To com-
pare the DC pictures, two different methods are used. The first method is
histogram comparison based on the picture’s color values, as described
in section 2.3.3. Since this method occasionally detect false matches, as
shown in figure 2.3, another method is used to properly distinguish differ-
ences. This method is named layout analysis. Here, the image formed by
the pixel-wise difference between luminance images is analyzed. A similar-
ity counter adds up the number of pixels below a certain threshold. If the
similarity counter is large, two frames are declared to be similar.

When the similar shots are detected, the next step in the process is to group
similar shots and detect patterns in the groups. To avoid two different pat-
terns to be grouped, a link certainty variable C is used. It estimates the
certainty of the similarity process. A similarity variable for shot k and shot
l(Skl) is set to 1 when shot k and shot l are evaluated as similar, and to 0
when they are not. A certain algorithm is used to calculate Ckl, and if it has
a value larger than a given threshold value, shots k and l are determined to
be linked. As a result, similar shots are grouped into patterns.

31

The final step of the operation is act determination. The concept of an
act is useful in arranging key-frames more clearly on a display terminal. In
[18], several views have been tested. One possibility is to omit all redundant
r-frames, and only show one frame from each act. Another view is to arrange
frames vertically in temporal order, with r-frames in the same act displayed
horizontally.

The conclusion in the article is that the proposed method is efficient in
most cases, and reducing the number of r-frames by more than half.

Another approach for redundancy avoidance is presented in [19]. The main
point in this method is to filter out the blank unicolor frames and repetitive
frames. When an r-frame is detected by the video cut detection process,
a frame signature is derived from the composition of the DCT coefficients.
Blocks with similar signatures are compared to determine size and location
of groups of blocks in order to derive region signatures. After deriving block
signatures for each frame, regions of similarly valued block signatures are
determined. Regions consist of two or more blocks which share similar block
signatures. Each region is then assigned a region signature:

Region(Block_signature, region_size,Rx,Ry) (2.29)

Rx and Ry are the coordinates of the center of the region. Each region
corresponds roughly to an object in the image. Since a frame is represented
by a number of regions, the similarity between frames can be regulated by
choosing the numbers of regions that are similar, based on their block sig-
nature, size and location.

Block signatures can be used to remove unicolored frames. The color compo-
sition of the frame is checked, and if the frame is composed of mostly similar
DC values, it is filtered out as a unicolor frame. Alternatively, after the
region signatures are computed, the frame is unicolor if one of the regions
takes up to 90% of the frame size.

To filter out repetitive frames, a frame comparison procedure compares a
current r-frame F ” with all r-frames F ′ in a list of past r-frames. Their
respective region signatures are compared using the absolute value of the
region size differences:

frame_difference =

|reg_s′1 − reg_s”1|+ |reg_s′2 − reg_s”2|+ |reg_s′3 − reg_s”3|
(2.30)

where reg_s′i and reg_s”i is the region size of the region si in the frame
F

′ and F ” respectively. If the frame difference is greater than a certain

32

threshold, then the frames are considered similar, and the current frame is
not added to the table of contents. If the frame difference is smaller than the
threshold, then the frames are considered different enough and the current
frame is kept in the visual table of contents. In addition to the region size,
the frames are compared based on the position of the region centroids.

2.5.3 R-frames presentation

When the r-frames are chosen, they have to be presented in a way that
shows the content of the video file in a most descriptive way. There are
several ways to organize this view, and no answer exists to decide which is
best suited. The first solution is to show all the selected r-frames in one
horizontal storyline, with the r-frames sorted in ascending order from left to
right. This view is shown in figure 2.11. The drawback of this view is that it
is difficult to navigate in the storyline, as the segmentation is only on frame
level. The number of frames may be large, and the user has to look through
the whole line to get a view on the content.

Figure 2.11: Horizontal ascending view

The next solution is to make use of both horizontal and vertical organi-
sation. The scenes from the video may be sorted in ascending order in the
vertical direction, and the r-frames belonging to the scenes in ascending hor-
izontal order. If several frames are chosen from each shot, it is also possible
to use shot organisation instead of scenes. An example of this view is shown
in figure 2.12. It is also a great advantage to have a bar in the bottom of
the window which shows scene/shot duration and relative placement in pro-
portion to the entire video. Further functionality may include the possibility
to play one particular scene or shot by clicking on a belonging r-frame.

The final solution discussed in this section is the hierarchical view, with a
possible tree structure as illustration. The root node may be the entire video,
which is divided further down into scenes, shots and r-frames. A suggestion
of this kind of view is shown in figure 2.13. It is very easy to navigate in

33

Figure 2.12: Horizontal/Vertical view

this structure, and possibilities to play scenes and shots may be included.

Figure 2.13: Hierarchical view

2.6 Speeding up the algorithms

Methods like comparing corresponding pixels in images, color grayscale his-
tograms or changes in edges are all referred to as the linear shot boundary
detection approach, due to the fact that they sequentially measure inter-
frame differences and study their variance values. Such sequential searching
is an expensive operation, as the number of frames to be examined is very
large. It is important to find efficient solutions to speed up the shot detec-
tion algorithms, without loosing information on the way. In [20], they have
experimented with a non-linear approach in which most frames do not need
to be compared.

34

The idea is motivated by two facts. First, there is little difference between
consecutive frames within a shot. Thus, most comparisons under linear tech-
niques are wasteful. Second, frames do not have to be examined in the order
they appear in the video clip. It is then possible to develop search tech-
niques to skip over unnecessary comparisons much in the same way that
binary search skips over data items which have no chance of being matched.
Two different approaches have been tested in [20], named regular skip and
adaptive skip.

In regular skip, every other dth frames are compared. If d=2, the first frame
is compared with the third, the third with the fifth, and so forth. When two
frames i and i+2 are identified to be in two different shots, frame i and i+1
are compared to determine the shot boundary. If frame i and frame i+1 are
identified to be in two different shots, the shot boundary lies between frame i
and frame i+1. Otherwise, it lies between frame i+1 and frame i+2. Frame
i+1 does not have to be compared with frame i+2, since the approach as-
sumes that a shot has at least two frames. This assumption is generally true
in practice. Once a shot boundary has been identified, the same procedure
is then repeated for the next shot starting from its first frame. This method
reduces the number of comparisons almost in half.

In the regular skip method, the value of d is static throughout the oper-
ation. But the optimal value of this variable varies from video to video. In
the adaptive skip strategy, d is determined dynamically. In each iteration,
the algorithm determines how many frames to skip by comparing the current
frame with the one last examined. If this comparison is more similar than
the last comparison, d is increased for the next comparison. If it becomes
less similar, d is decreased. If the current comparison indicates that the two
frames are in two different shots, the algorithm scans backward to look for
the boundary using regular skip in the reverse direction. Once the bound-
ary has been determined, the scan continues forward again using the same
procedure.

Figure 2.14 illustrates the methods discussed in this section. The figure is
taken from [20]. 2.14(a) shows a given video clip with three shots. 2.14(b)
shows the regular linear approach, where every two consecutive frames are
compared. The computational cost N linear

c for this method can be calculated
as F − 1, where F is the total number of frames in the video. In this exam-
ple F is 50, so N linear

c = 49. 2.14(c) illustrates the regular skip approach.
The odd numbered frames are compared, and when two frames are identi-
fied to be in two different shots, one additional comparison is necessary to
determine the shot boundary. Thus, the number of comparisons required by
regular skip can be computed as N regular

c = bF
2 c+ s, where s is the number

35

of shot boundaries in a given video. This example video has 50 frames and
two shot boundaries, and N regular

c = 27. This represents 45% saving over
the linear approach. With the adaptive skip method, the value of d is 2 in
the beginning. Frame # 1 and frame # 3 are compared. Both frames are in
shot 1, and the value of d is increased to 3. Frame # 3 and frames #6 are
compared next. The frames are still in shot 1. The value of d is increased,
and the process continues until d = 6 and frame # 15 and frame # 21 are
compared. Since these frames are in two different shots, a backward scan
is required to find the shot boundary between frame # 17 and frame # 18.
For the entire example video, Nadaptive

c = 20, which is a 59% improvement
over the linear approach.

Figure 2.14: Non-linear shot boundary detection strategies

Experimental results presented in [20] show that it is possible to save a
great amount of resources with the non-linear approach methods discussed in
this section, both regarding the total time for execution and the total number
of frame comparisons. In average, regular skip reduces the costs of the linear
technique in half, while the adaptive skip method saves more than 80%. The
exact savings depend on the lengths of the shots in the video. The savings
are greater for videos with longer shots. The best result presented shows
that adaptive skip is more than 16 times better than the linear approach.

36

Chapter 3

Requirements analysis

This chapter describes requirements related to the process of designing and
testing a prototype for video shot detection. This involves requirements for
the video test material, the shot detection algorithms and how to present
the results in the end of the segmentation process.

3.1 Video test material requirements

When designing and testing different algorithms for shot detection, it is
important to have video test material that covers a wide area of different do-
mains, situations and genres. The algorithms have to be tested and evaluated
based on the results from all the different test videos. A specific algorithm
may be the best in one genre, and completely useless in others. For the same
reason, it is also important to have great variations related to colors, length,
light settings and fade-ins/outs in the video test material.

3.2 Algorithm requirements

The shot detection algorithms have to be designed independent of the test
video format, content and genre. It should be possible to choose algorithm
and threshold values from the graphical user interface.

3.3 User interface requirements

The best way to design the user interface is to present all the functionality
in the same view, and simultaneously keep it simple and well arranged. This
interface can be divided into two different regions, the algorithm test bench
view and the r-frames presentation view.

37

3.3.1 Algorithm test bench view

This view shall present a way to choose which segmentation algorithm to
use, and which threshold values that have to be exceeded to define a cut
in the video file. In addition to this, there has to be a possibility to open
a video file from an internal or external disk and functionality to start the
segmentation process.

3.3.2 R-frames presentation view

This view shall present one r-frame from each shot found in the input video
file, in the most tidy and perspicuous way. It is desirable that the user has
the possibility to start the video from a specific point by clicking on the
appurtenant r-frame.

38

Chapter 4

Construction

This chapter describes the construction of a video shot detection prototype.
This involves the shot detection algorithms, the graphical user interface and
the video test material.

4.1 Algorithm construction

The main idea regarding the construction of a video shot detection prototype
is to test different algorithm approaches, and hopefully find the most efficient
algorithm in the end. It is important to build the different algorithms from
different view points, and approach the problem from different angles. This
section will give an overview of the algorithm construction part, and explain
why and how the different algorithms are built.

4.1.1 Global color histograms algorithm

The first algorithm to be implemented for testing is called the Global color
histograms algorithm. The main idea with this algorithm is to treat every
frame picked out as one unit, and build one color histogram for each image.
This is illustrated in figure 4.1, where the red arrows include the whole
image inside the region of interest.

The global color histograms is built up by defining 4 regions of equal size,
spanning from the minimum value 0 to the maximum value 256. The first
region covers the values from 0 to 63, the second covers the values from 64
to 127, the third covers the values from 128 to 191 and the fourth covers the
values from 192 to 255. It is possible to use smaller regions as well, but this
will in the end result in computational slow-downs of the algorithm. The
color scale is illustrated in figure 4.2.

For every pixel of the image, the R, G and B values are detected and
placed into one of the 4 regions. During the histogram comparing process,
the number of pixels within each color band and region are counted for the

39

Figure 4.1: Region of interest in the global color histogram algorithm

Figure 4.2: The image RGB color scale

40

two histograms that are compared. The sum is stored and compared in the
end. Great differences from one histogram to another may indicate a cut
in the video. The sum is compared to a fixed threshold value, and a cut is
defined if the difference is greater than the threshold value. The image that
constitutes the foundation of the given histogram is written out to be shown
as an r-frame in the end of the segmentation process. The weakness of this
approach is that great differences in pixel values may well occur without a
cut in the video. One well-known example is a sudden flash of sun light
in one frame within a shot. Another weakness is that this method probably
will not detect a cut that gradually takes place, as the overall pixel difference
from one frame to the next one changes little during a fade-out or fade-in.

4.1.2 Local color histograms algorithm

The next algorithm is called the Local color histograms algorithm. The same
regions of color and color scale are used here, as in the global approach
explained in the previous subsection. The difference is that this algorithm
divides the image into small regions of interest, instead of looking at the
entire image. This is illustrated in figure 4.3, where each square is one
independent region.

Figure 4.3: Regions of interest in the local color histogram algorithm

The histograms are generated in exactly the same way, but one distinct
histogram is created for each region. This algorithm is designed with 9
regions, which figure 4.3 shows. In the histogram comparing process, cor-
responding regions are compared. That is; region 1 from histogram 1 is
compared with region 1 from histogram 2 and so on. A cut is defined if
the pixel values from more than a given number out of the 9 regions exceed

41

a fixed threshold, and the belonging frame is written to the GUI as an r-
frame. This given number may be changed during the testing phase. The
same anticipated weaknesses exist for this algorithm as the global approach,
in addition to the growing computational costs regarding the histogram gen-
eration and comparing processes. The advantage is that the shot detection
hopefully will be more precise, as the algorithm has increased control over
exactly where in the image the differences occur.

4.1.3 Global edge chasing algorithm

The third algorithm is called the Global edge chasing algorithm. The main
point of this algorithm is to detect sharp contrasts within the images, and
define these as edges. To illustrate this, figure 4.4 shows an original example
image, and figure 4.5 shows the same image with the detected edges as white
lines on the black background.

Figure 4.4: Original image before edge detection

After the edges have been detected, the local color distribution algorithm
explained in the previous subsection is used to make color histograms of the
9 regions of interest that figure 4.6 illustrates.

The same procedure is used, but the histogram comparing process is
accomplished a bit different. Since the major part of the image regions is
black, the comparing is based on the number of non-black pixel values within

42

Figure 4.5: Modified image after edge detection

Figure 4.6: Regions of interest in the global edge chasing algorithm

43

each region. The threshold has to be much lower than the threshold used by
the regular local color histogram comparator.

4.2 User interface construction

To make the user interface provide all the functionality from one window,
the best solution is probably to use a frame with a menu bar to the algorithm
operations, and one frame to view the output results.

4.2.1 Algorithm test bench view

Three menus are needed, where the first one handles the Open file and Exit
functionality. A suggestion to how this menu can be designed is illustrated
in figure 4.7. The Open file option opens a file dialog box, and gives the
opportunity to open a video file for segmentation. The Exit option shuts
down the program, included the r-frames presentation view.

Figure 4.7: Menu to open video files for segmentation

The second menu contains options for choosing which algorithm to use in
the segmentation process. Informative names have to be used, so it is easy to
find the right algorithm. A suggestion to how this menu can be designed is
illustrated in figure 4.8. In this illustration, the algorithms just have fictive
names. It is possible to run only one algorithm at the time.

The third and last menu contains options for choosing which threshold to
use during the segmentation process. The option Low will result in a higher
number of found shots than the option Medium, and the option High will
result in a lower number of shots. This menu is illustrated in figure 4.9.

When a video file is opened for segmentation, the process starts imme-
diately. The progress can be viewed in the video window, as shown in figure
4.10.

44

Figure 4.8: Menu to choose algorithm

Figure 4.9: Menu to choose threshold

45

Figure 4.10: The video window

46

4.2.2 R-frames presentation view

When the segmentation process is finished, a new frame is created. One
r-frame from each shot in the video is shown as an image in this frame. It is
possible for the user to click on one specific image, and the video will then
start at that point in the video file. The r-frames presentation view is shown
in figure 4.11. In this illustration, the segmentation algorithm found four
shots in the input video.

Figure 4.11: The r-frames presentation view

Since longer video files contains a great number of shots, it is necessary
to have a vertical scroll bar in the presentation frame to show all the r-frames
in one window. This is illustrated in figure 4.12, where the segmentation
algorithm found 107 shots in the input video.

Figure 4.12: The r-frames presentation view with vertical scrollbar

47

4.3 Video test material

Since the main focus in this thesis is to find efficient shot detection algo-
rithms, video format independency is not taken into consideration. Raw and
uncompressed video material in .avi format is used, meaning the file size to
be quite big. The increased disk activity to read these files in the segmenta-
tion process slows down the algorithms a bit, but this is minimal compared
to the overall time consumption. The file size means it is difficult to use
video files with duration of more than one hour. But the main point related
to video file duration is to have files that last for more than a few seconds,
not if it is two or three hours. Video files from different genres and situations
are used to make sure the algorithms are tested thoroughly. The video test
material includes the following video files:

• Britney Spears - You drive me crazy: Music video with a duration of
3 minutes and 17 seconds. The video contains some fade-ins and fade-
outs, flashing light and bright colors. Since it is a music video, most
shots in the video are short in time, so the segmentation algorithms
should find a quite large number of shots. This video also contains
a lot of people in motion, so it is a challenging task to detect all the
shots correctly.

• Eric Clapton - Tears in heaven: Music video with a duration of 4
minutes and 34 seconds. This video is significantly different from the
Britney Spears video. There is no people in motion, and the colors are
dark with no flashing light. The main reason for using this video is
because fade-ins and fade-outs are used in almost every camera change.
A moving camera is also in use, and this is a great video for testing
the different segmentation algorithms in these areas.

• Metallica - The unforgiven: Music video with a duration of 6 minutes
and 29 seconds. This video is extremely dark, and contains no colors
but black and white. It should be great for testing the algorithms
based on color distribution. Some fade-ins and fade-outs are also used.

• Metallica - Turn the page: Music video with a duration of 5 minutes
and 46 seconds. This video contains a mixture of long and short cuts,
and shots with many and few colors. The most interesting thing about
it is to see if the segmentation algorithms handle the different parts in
a satisfactory way.

• Football goal: Newcastle United - Manchester United: Football clip
with a duration of 21 seconds. This video is included in the test set to
test the dominating green field’s impact on the algorithm output.

48

• Football goal: Manchester United - Tottenham Hotspur: Football clip
with a duration of 47 seconds. This video is included in the test set
because it contains a lot of motion and changing in color values.

• Top Gear - Koenigsegg test drive: A clip from the british BBC car pro-
gram Top Gear, with a duration of 8 minutes and 32 seconds. The clip
shows a presentation and test drive of the racing car Koenigsegg CC8S.
Fade-ins and fade-outs are used during the presentation of the car’s
design, while frequently camera switching is used during the driving
sequences. Long shots occur when the test driver is talking and ex-
plaining the properties of the car. The video contains a lot of colors
and sun light.

• Saturday Night Live - Blue Oyster Cult imitation: Satirical sketch with
a duration of 5 minutes and 51 seconds. This video has low resolution
and few camera switches, and the colors are not bright. The shots are
long in time, and there is nearly no motion from the people involved.

• Throlltech - Qt4 dance: Amateur music video made by the software
company Throlltech, with the duration of 4 minutes and 22 seconds.
This video is included in the test set because it contains a lot of motion,
and several effects are used when the camera changes.

4.4 Algorithm speed-up

To avoid the costly sequential operation of selecting all frames from the test
videos, one variant of the skip methods described in section 2.6 has been
constructed. This variant is called stepwise searching. The main idea is to
reduce the number of frames to be evaluated. One fixed step size k is de-
fined. Frame number k, 2k, 3k.... are evaluated, until a shot is detected. A
sequential search is then performed within the last interval of length k to
find the exact cut point.

Another approach to be tested is to choose a fixed number of frames to
pick per second, and skip the rest. Values to be tested are 1, 2 and 4 frames
per second. The probability of missing a cut is minimal, as most shots are
at least one second in length. It is important to take the overall time con-
sumption into consideration when the output results are evaluated, as the
algorithms will be slowed down by increasing the frames per second rate.

To spare time during the video segmentation process, it is important to per-
form most of the operations at once. More specifically, the color histogram
generation and comparing can be done almost simultaneously, because the
previous frame’s histogram already is finished. In addition, the output from

49

the histogram comparing is ready in about no time, and it is already known
if this point was a cut in the video or not, according to the given algorithm.
In the case of the edge detection approach, this operation has to be done
separately from the others and before the histograms can be generated. This
will cost extra time, and it will probably be noticed during the testing of the
algorithms.

4.5 New aspects

Video shot detection based on color histograms is not a new approach, nei-
ther is dividing each frame into regions. But the combination of global edge
detection and region based color histograms is an approach that is not docu-
mented earlier. It is important to have the regular color histogram algorithms
implemented to test the new approach against these methods. Both output
quality and overall time consumption is important factors regarding this, in
combination with which video types that produce good results.

50

Chapter 5

Implementation

This chapter describes some key points of this thesis’ implementation part.
Frameworks that are used will be explained, and some important code is
included to illustrate essential matters regarding the algorithm implementa-
tion.

5.1 Java frameworks

Since the implementation part is written in Java, it is efficient to use some
of the built in media frameworks. The shot detection prototype is designed
on a foundation of two different Java frameworks, namely the Java Media
Framework (JMF) [21] and Java Advanced Imaging (JAI) [22].

5.1.1 Java Media Framework

The Java Media Framework enables audio, video and other time-based me-
dia to be added to applications and applets built on Java technology. The
package can capture, playback, stream and transcode multiple media for-
mats. The most important part used in this thesis is the mediaPlayer. It
takes a video file as input, and can perform different operations on this file.
For simplicity only raw and uncompressed .avi files have been used, but the
player may be configured to handle all kinds of known video formats and
codecs. The media player contains information about the video file duration
and the frames per second rate. Under the media control class, two impor-
tant interfaces are used. The first one is the FramePositioningControl, that
has the seek operator included. This operator takes one frame number as
input, and positions the media player to the specific frame in the video file.
The other interface is the FrameGrabbingControl, which contains the method
grabFrame(). This method grabs a specific frame and returns it as a buffer.
This buffer is written to a regular image with the BufferToImage class, and
handed over to the JAI related classes.

51

5.1.2 Java Advanced Imaging

When the images are returned from the JMF classes, they have to be analysed
so that the cuts in the video files can be detected. The JAI framework has
some built in functions to ease this process. To create a color histogram for
an entire given image, det following code is used (explanatory comments are
written in blue):

Algorithm 1 Color histogram creation
int[]bins = {64, 64, 64};
The color value interval. 64 gives 4 intervals between 0 and 256
double[]low = {0, 0, 0};
The lowest possible color value
double[]high = {256, 256, 256};
The highest possible color value
parameterBlock = newParameterBlock(); The component to store the
histogram input values
parameterBlock.addSource(InputImage);
Adds the input image to the ParameterBlock
parameterBlock.add(null);
No region of interest means the entire image
parameterBlock.add(1);
Every pixel in the horizontal direction is checked
parameterBlock.add(1);
Every pixel in the vertical direction is checked
parameterBlock.add(bins);
Adds the color value interval
parameterBlock.add(low);
Adds the low color value
parameterBlock.add(high);
Adds the high color value
return(Histogram)JAI.create(”histogram”, parameterBlock, null);
Returns the created color histogram

For each frame picked out from the video, one color histogram is created.
To compare two consecutive histograms, the number of pixels for each value
within the 64-valued band is counted for the R, B and G bins. The sum is
compared with a fixed threshold value, and a cut is declared if this threshold
is exceeded.

To create color histograms for specific locations within an image, the re-
gion of interest has to be declared. This is done by using the geometric class
Rectangle. 9 distinct regions are specified, and one color histogram is created
for each of the regions the same way as described in algorithm 1. The 9

52

regions are made with the following code (explanatory comments are written
in blue):

Algorithm 2 Region of interest specification
rectangle = newRectangle(startingPointX, StartingPointY, regionWidth, regionHeight);
The rectangle to define the region of interest
roi = newROIShape(rectangle);
Adds the rectangle to the region of interest
parameterBlock.add(roi);
Adds the region of interest to the ParameterBlock

The edge chasing algorithm is divided into two parts. The first part
defines the edges of an image, and the second part creates region histograms
the same way as described in algorithm 2. The edges are defined with the
following code (explanatory comments are written in blue):

Algorithm 3 Edge detection
float[]kernelMatrix = {−1,−2,−1,
0, 0, 0,
1, 2, 1};
Creates a constant array with the Sobel horizontal kernel. The sobel
operator enhances the horizontal edges of the image by performing a con-
volution
kernel = newKernelJAI(3, 3, kernelMatrix);
Creates the kernel using the kernel matrix
outputImage = JAI.create(”convolve”, inputImage, kernel);
Runs the convolve operator, creating the processed output image
return(outputImage);
returns the processed image

53

54

Chapter 6

Results

This chapter describes the results of the testing performed with the differ-
ent algorithm approaches and the given video test material. Output result
quality, computational costs and consumption of time are all taken into con-
sideration.

6.1 Algorithm speed-up

After experimenting with the stepwise searching approach described in sec-
tion 4.4, in combination with the Java Media Framework described in sub-
section 5.1.1, it was quite clear that the FramePositioningControl operator
is too slow to be changed dynamically during the segmentation process. Too
much time is wasted to go back and make the sequential search in the end.
The MediaPlayer has to be stopped and started all over again, and the over-
all profits of these extra operations are in the end minimal.

The solution was to use the other approach instead, with fixed frames per
second evaluations. The testing has been done with 1, 2 and 4 frames per
second. The segmentation process is performed much more smoothly with
this solution, and much less time is spent. But still, picking 2 or 4 frames
per seconds is much less effective than just picking 1. Test results show that
doubling the frame picking rate approximately doubles the time consumed
by the segmentation process. And even more important: The outputs results
are not much better than the results from the 1 frame per second approach.
Because of this, the test results presented in this chapter are all output from
the approach with a frame picking rate of 1 frame per second. The variables
during the testing process are then limited to three factors:

• Algorithm: The three algorithms Global color distribution, Local color
distribution and Global edge chasing have been tested.

• Threshold value: The threshold value for defining a shot in the video

55

files has been altered between high, medium and low during the differ-
ent test cases.

• Input video: Video files with different properties have been used to test
the robustness of the different algorithms.

All the tests have been run on a system with an AMD Athlon XP 2500+
CPU with 1.83 GHz and 512 MB of RAM. Since the different algorithms have
been run on the same system, the relative time difference between them is
unaffected by the hardware properties.

6.2 Video test material - Cuts and fades

All the video files have manually been examined to find the exact number of
cuts, fade-ins and fade-outs. Table 6.1 shows the results from this exami-
nation.

Video file Shots Fade-ins Fade-outs
Britney Spears - You drive me crazy 119 1 1
Eric Clapton - Tears in heaven 43 42 42
Metallica - The unforgiven 114 12 21
Metallica - Turn the page 163 2 8
Newcastle United - Manchester United 3 0 0
Manchester United - Tottenham Hotspur 12 2 2
Top Gear - Koenigsegg test drive 103 11 15
Saturday Night Live - Blue Oyster Cult imitation 52 4 3
Throlltech - Qt4 dance 39 4 4

Table 6.1: Cuts and fades in the test video files

6.3 Results from the global color histogram algo-
rithm

All results described in this section are output from the Global color his-
togram algorithm, with the threshold value in medium mode. The number
of shots detected with the threshold value in low and high mode are men-
tioned for comparison. The number of cuts are always 1 less than the number
of shots in the video files.

Britney Spears - You drive me crazy
This video contains 119 shots, included 1 fade-in and 1 fade-out. With the
threshold value in low mode, the algorithm detected 126 shots in the video.
With the threshold value in high mode, 106 shots were detected. The overall

56

time consumption was 24.1 seconds.

With the threshold value in medium mode, 119 shots were detected. 111
of the shots were detected correctly. 8 shots were detected falsely, while 8
shots were not detected. The number of returned shots that are relevant
(precision value) is 111

119 = 93%, while the number of relevant shots that are
returned (recall value) is 111

119 = 93%.

The video is not the most challenging one according to color histograms,
as it contains bright and clear colors, with few fade-ins and fade-outs. The
false detections are mostly caused by light flashes and camera motion.

Eric Clapton - Tears in heaven
This video contains 43 shots, included 42 fade-ins and fade-outs. With the
threshold value in low mode, the algorithm detected 58 shots in the video.
With the threshold value in high mode, 37 shots were detected. The overall
time consumption was 35.7 seconds.

With the threshold value in medium mode, 43 shots were detected. 33 of the
shots were detected correctly. 10 shots were detected falsely, while 10 shots
were not detected. The precision value is 33

43 = 77%, while the recall value is
33
43 = 77%.

This video is much more challenging than the Britney Spears video, as it
contains a large amount of fade-ins and fade-outs. The colors are dark and
diffuse as well. False detections are a major portion of the final output, and
the fade-ins and fade-outs are probably the main reason for this.

Metallica - The unforgiven
This video contains 114 shots, included 12 fade-ins and 21 fade-outs. With
the threshold value in low mode, the algorithm detected 131 shots in the
video. With the threshold value in high mode, 96 shots were detected. The
overall time consumption was 27.9 seconds.

With the threshold value in medium mode, 113 shots were detected. 99
of the shots were detected correctly. 14 shots were detected falsely, while 15
shots were not detected. The precision value is 99

113 = 88%, while the recall
value is 99

114 = 87%.

This video is also very challenging according to color histograms, because
of dark colors and almost black and white only. Most of the areas within
the frames are black, meaning the histogram values on each side of a cut is
quite similar.

57

Metallica - Turn the page
This video contains 163 shots, included 2 fade-ins and 8 fade-outs. With the
threshold value in low mode, the algorithm detected 166 shots in the video.
With the threshold value in high mode, 146 shots were detected. The overall
time consumption was 28.6 seconds.

With the threshold value in medium mode, 160 shots were detected. 143
shots were detected correctly. 17 shots were detected falsely, while 20 shots
were not detected. The precision value is 143

160 = 89%, while the recall value
is 143

163 = 88%.

This video seemed less challenging than the Unforgiven video because of
the bright colors. But the test results show that the outcome was nearly the
same, probably because of frequently camera changing.

Football goal: Newcastle United - Manchester United
This video contains 3 shots, included 0 fade-ins and 0 fade-outs. With the
threshold value in low mode, the algorithm detected 4 shots in the video.
With the threshold value in high mode, 2 shots were detected. The overall
time consumption was 2.7 seconds.

With the threshold value in medium mode, 3 shots were detected. 3 of
the shots were detected correctly. 0 shots was detected falsely, while 0 shots
was not detected. The precision value is 3

3 = 100%, while the recall value is
3
3 = 100%.

This video is not very challenging. The cut points are clear and easy to
spot. It is not surprising that the algorithm detects all cuts without any er-
rors. The video is also very short in time, so the efficient time consumption
of 2.7 seconds is as expected.

Football goal: Manchester United - Tottenham Hotspur
This video contains 12 shots, included 2 fade-ins and 2 fade-outs. With the
threshold value in low mode, the algorithm detected 16 shots in this video.
With the threshold value in high mode, 10 shots were detected. The overall
time consumption was 6.8 seconds.

With the threshold value in medium mode, 12 shots were detected. 10 of the
shots were detected correctly. 2 shots were detected falsely, while 2 shots
were not detected. The precision value is 10

12 = 83%, while the recall value is
10
12 = 83%.

This video is not very challenging. Both false detections are caused by peo-
ple suddenly coming in the way of the camera, and the algorithm interprets

58

this as cuts in the video.

Top Gear - Koenigsegg test drive
This video contains 103 shots, included 11 fade-ins and 15 fade-outs. With
the threshold value in low mode, the algorithm detected 115 shots in this
video. With the threshold value in high mode, 94 shots were detected. The
overall time consumption was 42.2 seconds.

With the threshold value in medium mode, 102 shots were detected. 96
of the shots were detected correctly. 6 shots were detected falsely, while 7
shots were not detected. The precision value is 96

102 = 94%, while the recall
value is 96

103 = 93%.

Some parts of this video are challenging, as a lot of zooming effects are
used. These parts are the main reason for the false detections.

Saturday Night Live - Blue Oyster Cult imitation
This video contains 52 shots, included 4 fade-ins and 3 fade-outs. With the
threshold value in low mode, the algorithm detected 56 shots in this video.
With the threshold value in high mode, 44 shots were detected. The overall
time consumption was 8.9 seconds.

With the threshold value in medium mode, 48 shots were detected. 46 of the
shots were detected correctly. 2 shots were detected falsely, while 6 shots
were not detected. The precision value is 46

48 = 96%, while the recall value is
46
52 = 88%.

All cuts in this video are relatively easy to spot. The main reason for the
low time consumption is the video’s frame rate, that is considerably lower
than the frame rate of the other test videos.

Throlltech - Qt4 dance
This video contains 39 shots, included 4 fade-ins and 4 fade-outs. With the
threshold value in low mode, the algorithm detected 50 shots in this video.
With the threshold value in high mode, 34 shots were detected. The overall
time consumption was 38.1 seconds.

With the threshold value in medium mode, 39 shots were detected. 32 of the
shots were detected correctly. 7 shots were detected falsely, while 7 shots
were not detected. The precision value is 32

39 = 82%, while the recall value is
32
39 = 82%

This video is partly challenging, as some areas contain a lot of zooming
affects and people in motion. These areas are the main reason for the false

59

detections.

6.4 Results from the local color histogram algo-
rithm

All results described in this section are output from the Local color histogram
algorithm, with the threshold value in medium mode. The number of shots
detected with the threshold value in low and high mode are mentioned for
comparison.

Britney Spears - You drive me crazy
This video contains 119 shots, included 1 fade-in and 1 fade-out. With the
threshold value in low mode, the algorithm detected 131 shots in the video.
With the threshold value in high mode, 100 shots were detected. The overall
time consumption was 18.9 seconds.

With the threshold value in medium mode, 115 shots were detected. 107
of the shots were detected correctly. 8 shots were detected falsely, while 12
shots were not detected. The precision value is 107

115 = 93%, while the recall
value is 107

119 = 90%.

Eric Clapton - Tears in heaven
This video contains 43 shots, included 42 fade-ins and fade-outs. With the
threshold value in low mode, the algorithm detected 60 shots in the video.
With the threshold value in high mode, 31 shots were detected. The overall
time consumption was 23.0 seconds.

With the threshold value in medium mode, 43 shots were detected. 36 of the
shots were detected correctly. 7 shots were detected falsely, while 7 shots
were not detected. The precision value is 36

43 = 84%, while the recall value is
36
43 = 84%.

Metallica - The unforgiven
This video contains 114 shots, included 12 fade-ins and 21 fade-outs. With
the threshold value in low mode, the algorithm detected 125 shots in the
video. With the threshold value in high mode, 97 shots were detected. The
overall time consumption was 28.5 seconds.

With the threshold value in medium mode, 115 shots were detected. 102
of the shots were detected correctly. 13 shots were detected falsely, while 12
shots were not detected. The precision value is 102

115 = 89%, while the recall
value is 102

114 = 89%.

60

Metallica - Turn the page
This video contains 163 shots, included 2 fade-ins and 8 fade-outs. With the
threshold value in low mode, the algorithm detected 169 shots in the video.
With the threshold value in high mode, 151 shots were detected. The overall
time consumption was 24.5 seconds.

With the threshold value in medium mode, 160 shots were detected. 150
shots were detected correctly. 10 shots were detected falsely, while 13 shots
were not detected. The precision value is 150

160 = 94%, while the recall value
is 150

163 = 92%.

Football goal: Newcastle United - Manchester United
This video contains 3 shots, included 0 fade-ins and 0 fade-outs. With the
threshold value in low mode, the algorithm detected 5 shots in the video.
With the threshold value in high mode, 2 shots were detected. The overall
time consumption was 2.4 seconds.

With the threshold value in medium mode, 3 shots were detected. 3 of
the shots were detected correctly. 0 shot was detected falsely, while shots 0
was not detected. The precision value is 3

3 = 100%, while the recall value is
3
3 = 100%.

Football goal: Manchester United - Tottenham Hotspur
This video contains 12 shots, included 2 fade-ins and 2 fade-outs. With the
threshold value in low mode, the algorithm detected 17 shots in this video.
With the threshold value in high mode, 10 shots were detected. The overall
time consumption was 6.2 seconds.

With the threshold value in medium mode, 13 shots were detected. 10 of the
shots were detected correctly. 3 shots were detected falsely, while 2 shots
were not detected. Both the fade-ins and fade-outs were found. The preci-
sion value is 10

13 = 77%, while the recall value is 10
12 = 83%.

Top Gear - Koenigsegg test drive
This video contains 103 shots, included 11 fade-ins and 15 fade-outs. With
the threshold value in low mode, the algorithm detected 113 shots in this
video. With the threshold value in high mode, 88 shots were detected. The
overall time consumption was 33.9 seconds.

With the threshold value in medium mode, 105 shots were detected. 91
of the shots were detected correctly. 14 shots were detected falsely, while 12
shots were not detected. The precision value is 91

105 = 87%, while the recall
value is 91

103 = 88%.

61

Saturday Night Live - Blue Oyster Cult imitation
This video contains 52 shots, included 4 fade-ins and 3 fade-outs. With the
threshold value in low mode, the algorithm detected 57 shots in this video.
With the threshold value in high mode, 48 shots were detected. The overall
time consumption was 15.1 seconds.

With the threshold value in medium mode, 52 shots were detected. 48 of the
shots were detected correctly. 4 shots were detected falsely, while 4 shots
were not detected. The precision value is 48

52 = 92%, while the recall value is
48
52 = 92%.

Throlltech - Qt4 dance
This video contains 39 shots, included 4 fade-ins and 4 fade-outs. With the
threshold value in low mode, the algorithm detected 46 shots in this video.
With the threshold value in high mode, 30 shots were detected. The overall
time consumption was 28.9 seconds.

With the threshold value in medium mode, 38 shots were detected. 37 of
the shots were detected correctly. 1 shot was detected falsely, while 2 shots
were not detected. The precision value is 37

38 = 97%, while the recall value is
37
39 = 95%.

6.5 Results from the global edge chasing algorithm

All results described in this section are output from the Global edge chasing
algorithm, with the threshold value in medium mode. The number of shots
detected with the threshold value in low and high mode are mentioned for
comparison.

Britney Spears - You drive me crazy
This video contains 119 shots, included 1 fade-in and 1 fade-out. With the
threshold value in low mode, the algorithm detected 129 shots in the video.
With the threshold value in high mode, 114 shots were detected. The overall
time consumption was 26.1 seconds.

With the threshold value in medium mode, 121 shots were detected. 99
of the shots were detected correctly. 22 shots were detected falsely, while 20
shots were not detected. The precision value is 99

121 = 82%, while the recall
value is 99

119 = 83%.

Eric Clapton - Tears in heaven
This video contains 43 shots, included 42 fade-ins and fade-outs. With the
threshold value in low mode, the algorithm detected 57 shots in the video.

62

With the threshold value in high mode, 34 shots were detected. The overall
time consumption was 38.8 seconds.

With the threshold value in medium mode, 45 shots were detected. 36 of the
shots were detected correctly. 9 shots were detected falsely, while 7 shots
were not detected. The precision value is 36

45 = 80%, while the recall value is
36
43 = 84%.

Metallica - The unforgiven
This video contains 114 shots, included 12 fade-ins and 21 fade-outs. With
the threshold value in low mode, the algorithm detected 105 shots in the
video. With the threshold value in high mode, 94 shots were detected. The
overall time consumption was 35.9 seconds.

With the threshold value in medium mode, 105 shots were detected. 86
of the shots were detected correctly. 19 shots were detected falsely, while 28
shots were not detected. The precision value is 86

105 = 82%, while the recall
value is 86

114 = 75%.

Metallica - Turn the page
This video contains 163 shots, included 2 fade-ins and 8 fade-outs. With the
threshold value in low mode, the algorithm detected 178 shots in the video.
With the threshold value in high mode, 154 shots were detected. The overall
time consumption was 35.9 seconds.

With the threshold value in medium mode, 165 shots were detected. 141
shots were detected correctly. 24 shots were detected falsely, while 22 shots
were not detected. The precision value is 141

165 = 85%, while the recall value
is 141

163 = 87%.

Football goal: Newcastle United - Manchester United
This video contains 3 shots, included 0 fade-ins and 0 fade-outs. With the
threshold value in low mode, the algorithm detected 6 shots in the video.
With the threshold value in high mode, 3 shots were detected. The overall
time consumption was 3.5 seconds.

With the threshold value in medium mode, 3 shots were detected. 2 of
the shots were detected correctly. 1 shot was detected falsely, while 1 shot
was not detected. The precision value is 2

3 = 67%, while the recall value is
2
2 = 67%.

Football goal: Manchester United - Tottenham Hotspur
This video contains 12 shots, included 2 fade-ins and 2 fade-outs. With the
threshold value in low mode, the algorithm detected 12 shots in this video.

63

With the threshold value in high mode, 9 shots were detected. The overall
time consumption was 13.8 seconds.

With the threshold value in medium mode, 11 shots were detected. 5 of
the shots were detected correctly. 6 shots were detected falsely, while 7 shots
were not detected. The precision value is 5

11 = 45%, while the recall value is
5
12 = 42%.

Top Gear - Koenigsegg test drive
This video contains 103 shots, included 11 fade-ins and 15 fade-outs. With
the threshold value in low mode, the algorithm detected 118 shots in this
video. With the threshold value in high mode, 95 shots were detected. The
overall time consumption was 43.5 seconds.

With the threshold value in medium mode, 102 shots were detected. 80
of the shots were detected correctly. 22 shots were detected falsely, while 23
shots were not detected. The precision value is 80

102 = 78%, while the recall
value is 80

103 = 78%.

Saturday Night Live - Blue Oyster Cult imitation
This video contains 52 shots, included 4 fade-ins and 3 fade-outs. With the
threshold value in low mode, the algorithm detected 65 shots in this video.
With the threshold value in high mode, 45 shots were detected. The overall
time consumption was 17.2 seconds.

With the threshold value in medium mode, 54 shots were detected. 44 of the
shots were detected correctly. 10 shots were detected falsely, while 8 shots
were not detected. The precision value is 44

54 = 81%, while the recall value is
44
52 = 85%.

Throlltech - Qt4 dance
This video contains 39 shots, included 4 fade-ins and 4 fade-outs. With the
threshold value in low mode, the algorithm detected 50 shots in this video.
With the threshold value in high mode, 33 shots were detected. The overall
time consumption was 50.7 seconds.

With the threshold value in medium mode, 42 shots were detected. 33 of
the shots were detected correctly. 9 shot were detected falsely, while 6 shots
were not detected. The precision value is 33

42 = 79%, while the recall value is
33
39 = 85%.

64

6.6 Algorithms head-to-head

To see the performance of the different algorithms head-to-head, all the re-
sults have been written in tables to give an overview of the time consump-
tions, the precision values and the recall values. The best result for each
video file is written in blue. Table 6.2 shows the time consumptions for all
of the algorithms on the different test videos. The best results were shared
between the global color histogram algorithm and the local color histogram
algorithm, with a distinct predominance in the favour of the local approach.
The time consumptions are also illustrated by the graph in figure 6.1. As
this figure shows, the local color histogram algorithm has the lowest time
consumptions in most cases. The edge chasing approach is a little bit higher
in all the test cases.

65

Video file Global Local Edge chasing
You drive me crazy 24.1 s 18.9 s 26.1 s
Tears in heaven 35.7 s 23.0 s 38.8 s
The unforgiven 27.9 s 28.5 s 35.9 s
Turn the page 28.6 s 24.5 s 35.9 s
Newcastle United - Man U 2.7 s 2.4 s 3.5 s
Man U - Tottenham Hotspur 6.8 s 6.2 s 13.8
Koenigsegg test drive 42.2 s 33.9 s 43.5 s
Blue Oyster Cult imitation 8.9 s 15.1 s 17.2 s
Qt4 dance 38.1 s 28.9 s 50.7 s

Table 6.2: Algorithm time consumptions

Figure 6.1: Algorithm time consumptions

66

Table 6.3 shows the algorithm precision values head-to-head. The best
results are shared almost in half between the global and local color histogram
algorithms. This is also illustrated in figure 6.2. The results are quite even,
but the edge chasing algorithm has a drop-point in the Tottenham video test
case, with a precision value only on 45%.

Video file Global Local Edge chasing
You drive me crazy 93% 93% 82%
Tears in heaven 77% 84% 80%
The unforgiven 88% 89% 82%
Turn the page 89% 94% 85%
Newcastle United - Man U 100% 100% 67%
Man U - Tottenham Hotspur 83% 77% 45%
Koenigsegg test drive 94% 87% 78%
Blue Oyster Cult imitation 96% 92% 81%
Qt4 dance 82% 97% 79%

Table 6.3: Algorithm precision values

Figure 6.2: Algorithm precision values

67

Table 6.4 shows the algorithm recall values head-to-head. The local color
histogram algorithm has most of the best results. This is also illustrated in
figure 6.3. Like with the precision value, the edge chasing algorithm has
a drop-point related to the Tottenham video. The recall value is as low as
42%.

Video file Global Local Edge chasing
You drive me crazy 93% 90% 83%
Tears in heaven 77% 84% 84%
The unforgiven 87% 89% 75%
Turn the page 88% 92% 87%
Newcastle United - Man U 100% 100% 67%
Man U - Tottenham Hotspur 83% 83% 42%
Koenigsegg test drive 93% 88% 78%
Blue Oyster Cult imitation 88% 92% 85%
Qt4 dance 82% 95% 85%

Table 6.4: Algorithm recall values

Figure 6.3: Algorithm recall values

68

Chapter 7

Conclusion and further work

This chapter evaluates the results from the different algorithm approaches
tested in chapter 6. The main advantages and disadvantages are stated out
for each of the algorithms, and a final comparison between all approaches is
done in the end.

7.1 Global color histograms

This algorithm approach is very good for finding cuts that do not involve
fading or zooming effects. The detection rate is high for this type, and few
cuts are missed. The precision value is in average 89.1% for the videos in
the test set, while the recall value is in average 89.8%. The r-frames picked
are also very clear and descriptive. The time consumption for this approach
is also effective, as it in average uses 10.4% of the actual video file duration.

The algorithm is much more inaccurate if the cut involves a fade-in and/or a
fade-out. The cut may be missed completely, or the picked r-frame may not
be good enough to describe the video content at the given point. Another
weakness is that objects suddenly moving in front of the camera is detected
as a cut. One example of this is the Tottenham video, where a person moving
in front of the camera makes the algorithm pick out that point as a cut in
the video, which is a false decision. Dark colors with few changes between
shots is also a challenge related to this approach. In particular, several false
detections in the Metallica - The Unforgiven video are caused by this.

7.2 Local color histograms

As the global color histogram algorithm, the local color histogram algorithm
is very good for finding cuts that do not involve fading or zooming effects.
This algorithm approach is overall a little bit better than the global his-
tograms solution, and the output results are more precise. The precision

69

value is in average 90.3% for the videos in the test set, while the recall value
is in average 90.3%. In most cases the precision and recall values are slightly
better for this approach, as tables 6.3 and 6.4 show. The time consumption
is also more efficient, as this solution in average uses 8.8% of the actual video
file duration.

The same weaknesses exist for this approach as the global histograms so-
lution, but the output is a little better for this solution regarding fade-ins
and fade-outs. The reason for this is probably the region dividing, but the
results are not good enough to say that this approach solves the fade-in/fade-
out problem.

7.3 Global edge chasing

The most interesting results are those from the global edge chasing approach,
as this is a new way of combining two approaches into a new one to detect
video cuts. The test results show that the output quality is dependent on
which video files the algorithm is tested with. If the video file has few colors
and indistinct edges, it is hard for this algorithm to detect the right cuts.
An example of this is the dark Metallica - The Unforgiven video, where the
indistinct edges lead to several false detections. In the Metallica - Turn the
page video, the colors are brighter and the edges are more clear. The recall
value for this video is much higher than the for the previous one, as table
6.4 shows. It is quite clear that edges that are easy to spot in the test videos
lead to better output results. The precision value is in average 75.6% for
the videos in the test set, while the recall value is in average 76.2%. An
interesting point about this algorithm is that it seems fade-ins and fade-outs
are easier spotted than with the regular color histogram algorithms. This
may be caused by the fact that the edges in the pictures change fast even if
one image gradually floats into another.

The main drawback of this algorithm is that it is costly to both compute
the edge images and the histograms at the same time. This is shown by the
average time consumption of 14.0% of the actual video file duration. This
value is higher for short video files since the algorithm is slow in the first
phase of the shot detection process. Further, some false cut detections may
occur because of a large number of edges in a limited area within the picture.
This is illustrated by figure 7.1. On the figure, the two images labelled #1
and #2 is two consecutive frames within the same shot in the video. The
edge detector creates one edge for each mesh in the net, as shown in the im-
ages labelled #3 and #4. Since the threshold for the histogram comparator
is low, the small changes from image #3 and image #4 are enough to define
a cut, which is clearly a false decision.

70

Figure 7.1: False cut detection by the edge chasing algorithm

71

7.4 Conclusion

The results show that the best solution among the approaches tested in this
thesis is the local color histograms algorithm. This approach has in average
the most precise output, and is generally the most efficient related to time
consumption. The global color histograms algorithm is not far behind, and
some of the results are almost identical. The weakness for both of the solu-
tions is the problem related to correct detections of fade-ins and fade-outs.
Some of the fade-ins and fade-outs in the test videos were not found by either
of the algorithms.

The global edge chasing algorithm detected fade-ins and fade-outs in a bet-
ter way than the color histograms solutions, but the overall results were not
good enough. The algorithm is slow compared to the two others, and the
final precision and recall values are too dependent on the test video charac-
teristics. Dark videos with indistinct edges revealed some major weaknesses
related to this approach.

My personal opinion is that both the color histogram algorithms produce
good results, both related to precision/recall values and overall time con-
sumption. As a matter of fact I am a bit surprised that the local algorithm
was faster than the global solution. I expected the dividing into image regions
to result in larger computational costs, hence larger time consumption. The
opposite thing happened, and the local histograms solution outperformed
the global histograms solution in most cases.

Regarding the global edge chasing approach, I found it disappointing that
the algorithm failed in some test cases. Precision and recall values below 50%
is not acceptable in a shot detection application. A shot detection algorithm
should deliver satisfactorily output independent of the video file character-
istics. The extra time consumption related to this algorithm was expected
because of the extra computational operations, and I think the results were
as expected compared to the regular color histogram algorithms.

7.5 Further work

There are some factors related to the algorithms designed in this thesis that
can be improved, to get more precise output and reduce the overall time
consumption.

7.5.1 Increased sampling rate

During testing it was shown that if the algorithms picked more than 1 frame
per second, the final precision and recall values were improved. This im-

72

provement was not big enough to overcome the fact that doubling the frame
picking rate also doubled the overall time consumption, but in combination
with another improvement this is possible to utilize. The main idea is to
divide the input video file into smaller parts, and perform shot detection in
parallel with increased frame picking rate. An example of this is to divide the
input video into four distinct parts, and create one frame picking operator
to each part. The operators pick frames in parallel, each operator from the
appurtenant part of the video. If the frame picking rate simultaneously is
increased from 1 to 4, the overall time consumption should stay unchanged.
Most likely this will reduce the number of false detections, meaning the pre-
cision and recall values to improve.

7.5.2 Increased user control

Another possible improvement is to give the user of the shot detection ap-
plication the possibility to make some adjustments before the shot detection
process is started. Based on these adjustments, the algorithm parameters
can be regulated to make the output results as good as possible. These fac-
tors may involve color features of the video file and the video file’s category.
If the video contains few and dark colors, the algorithm should be adjusted
to be more focused on light changes in the video. Further, if the video cate-
gory is Music video, the algorithm’s motion sensitivity should be lowered to
reduce the number of false detections because of this.

7.5.3 Permanent picture storyline storage

As the implemented shot detection application writes the r-frames directly to
the GUI, this information is lost when the program is closed. In a adequate
system, as an example related to a TV station, it is desirable to detect the
shots in the video archive one time only, and then permanently store the
picture storyline. This can easily be done by writing the r-frames to disk
when they are detected, or flushing the information to a database after the
shot detection process is finished.

7.5.4 Image searching

If the shot detection application is used with the intention to describe video
content by images, it is probably desirable to have image searching as a built-
in feature. An example image may be used for searching, and the data store
is then scanned for matching or nearly matching results. Different image
features may be used as foundation for the search function, for example
image colors, texture and shapes.

73

74

Bibliography

[1] Paul Browne, Alan F Smeaton, Noel Murphy, Noel O’Connor, Seán
Marlov, and Catherine Berrut. Evaluating and combining digital video
shot boundary detection algorithms. 2000.

[2] Boon-Lock Yeo and Minerva M. Yeung. Retrieving and visualizing
video. 1997.

[3] Kjell Bratbergsengen. Lagring og behandling av store datamengder.
2003.

[4] Wikipedia.org. Wikipedia.

[5] Markos Mentzelopoulus and Alexandra Psarrou. Key-frame extraction
algorithm using entropy difference. 2004.

[6] Greg Pass, Ramin Zabih, and Justin Miller. Comparing images using
color coherence vectors. 1996.

[7] F. Arman, R. Depommier, A. Hsu, and M-Y. Chiu. Content-based
browsing of video sequences. 1994.

[8] Marinette Bouet, Ali Khenchaf, and Henri Briand. Shape representation
for image retrieval. 1999.

[9] Davood Rafiei and Alberto O. Mendelzon. Efficient retrieval of similar
shapes. 2002.

[10] Dengsheng Zhang, Aylwin Wong, Maria Indrawan, and Guojun Lu.
Content-based image retrieval using gabor texture features. 2000.

[11] Bikash Sabata and Moises Goldszmidt. Fusion of multiple cues for video
segmentation. 1999.

[12] Xia Yong, Dagan Feng, and Zhao Rongchun. Optimal selection of image
segmentation algorithms based on performance predication. 2004.

[13] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information
Retrieval. Addison-Wesley, 1999.

75

[14] John S. Boreczky and Lawrence A. Rowe. Comparision of video shot
boundary detection techniques. 1996.

[15] S. M. M. Tahaghoghi, Hugh E. Williams, James A. Thom, and Timo
Volkmer. Video cut detection using frame windows. 2005.

[16] Huamin Feng, Wei Fang, Sen Liu, and Yong Fang. A new general
framework for shot boundary detection and key-frame extraction. 2005.

[17] Ramin Zabiha, Justin Miller, and Kevin Mai. A feature-based algorithm
for detecting and classifying scene breaks. 1995.

[18] Hisashi Aoki, Shigeyoshi Shimotsuji, and Osamu Hori. A shot clas-
sification method of selecting effective key-frames for video browsing.
1996.

[19] Nevenka Dimitrova, Thomas McGee, and Herman Elenbaas. Video
keyframe extraction and filtering: A keyframe is not a keyframe to
everyone. 1997.

[20] Kien A. Hua and JungHwan Oh. Detecting video shot boundaries up
to 16 times faster. 2000.

[21] Sun Microsystems. Java Media Framework 1.0 Programmers Guide,
1998.

[22] Sun Microsystems. Programming in Java Advanced Imaging, 1999.

76

