
June 2006
Pinar Öztürk, IDI

Master of Science in Computer Science
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Dancing Robots

Axel Tidemann

Problem Description
The Master's thesis will investigate and implement
a multiple paired models architecture used for imitation learning in a simulated robot. The
focus will be on using multiple paired models as a control architecture to
achieve imitation. A module is either consisting of paired models (i.e. an inverse and forward
model).
The inverse and forward models will be implemented using neural networks.

Assignment given: 2006-01-20
Supervisor: Pinar Öztürk, IDI

Dancing Robots

Axel Tidemann
IDI, NTNU

tidemann@stud.ntnu.no

i

Abstract

This Master’s thesis implements a multiple paired models architecture that is
used to control a simulated robot. The architecture consists of several modules.
Each module holds a paired forward/inverse model. The inverse model takes as
input the current and desired state of the system, and outputs motor commands
that will achieve the desired state. The forward model takes as input the current
state and the motor commands acting on the environment, and outputs the
predicted next state. The models are paired, due to the fact that the output
of the inverse model is fed into the forward model. A weighting mechanism
based on how well the forward model predicts determines how much a module
will influence the total motor control. The architecture is a slight tweak of the
HAMMER and MOSAIC architectures of Demiris and Wolpert, respectively.

The robot is to imitate dance moves that it sees. Three experiments are
done; in the first two the robot imitates another robot, whereas in the third
experiment the robot imitates a movement pattern gathered from human data.
The pattern was obtained using a Pro Reflex tracking system. After training
the multiple paired models architecture, the performance and self-organization
of the different modules are analyzed. Shortcomings with the architecture are
pointed out along with directions for future work.

The main results of this thesis is that the architecture does not self-organize
as intended; instead the architecture finds its own way to separate the input
space into different modules. This is also most likely attributed to a problem
with the learning of the responsibility predictor of the modules. This problem
must be solved for the architecture to work as designed, and is a good starting
point for future work.

ii

iii

Preface

This Master’s thesis documents the work done by the author from January to
June 2006. The completion of the Master’s thesis ends the first period of the
Forskerskole at IDI, and I will continue working on my PhD after delivering the
Master’s thesis. I am part of the Self-organizing systems group (SOS) at the
Division of Intelligent Systems, IDI, NTNU.

Acknowledgements

I would like to thank my supervisor, Pinar Öztürk, for guiding me and always
making me think about what I was going to do and why. She is also a constant
source of drive and motivation through the sheer interest she takes in my work,
and how she actively participates in determining what I should focus on. We
have collaborated closely during the entire period that has lead up to this Mas-
ter’s thesis. I would also like to thank the other students in our group whom I
have worked with and discussed various issues with related to this thesis; these
are (in no particular order) Rikke Amilde Løvlid, Boye Annfeldt Høverstad,
Firas Risnes Barakat and Ole-Marius Moe Helgesen.

In addition, I would like to thank my co-supervisor Ruud van der Weel, who
let me use the Pro Reflex tracking system at his lab at Dragvoll. I would also
like to thank two of his Master students, Ørjan Sakariassen and Erlend Refseth
Pedersen, who helped me set up and calibrate the Pro Reflex system.

A final thanks goes out to Jon Klein for not only writing the breve simula-
tor, but also for helping me with various technical issues, relating to both the
simulator itself and how to program it.

Trondheim, 2nd of June 2006.

iv

v

Contents

1 Introduction 1
1.1 Motivation . 1

1.1.1 Different types of learning 1
1.1.2 Why learning by imitation? 2

1.2 Research question . 2
1.3 Working hypotheses . 2
1.4 Methodology . 3
1.5 Reader’s guide . 4

2 Background 5
2.1 Imitation in developmental psychology 5
2.2 Imitation in neuroscience . 11
2.3 Imitation in computer science . 13

2.3.1 The correspondence problem 21
2.4 Discussion . 22

3 Related work 24
3.1 Jacobs’ mixtures of experts . 24
3.2 The HAMMER architecture . 26
3.3 The MOSAIC architecture . 27
3.4 The differences between MOSAIC and HAMMER 28

4 Design 33
4.1 The multiple paired models architecture 33

4.1.1 Why multiple paired models? 34
4.2 Flow of data in the system . 36
4.3 Pseudocode . 39

4.3.1 Activation of the architecture 40
4.3.2 Training of the architecture 40

5 Implementation 41
5.1 At the core of the architecture: the neural networks 41
5.2 Specification of inputs and outputs 43

5.2.1 The inverse model . 43
5.2.2 The forward model . 44
5.2.3 The responsibility predictor 44
5.2.4 The likelihood estimator 45
5.2.5 Calculation of λ . 46

vi

5.2.6 The feedback controller 46
5.2.7 The plant . 47

5.3 What is learned where . 47
5.3.1 The inverse model . 48
5.3.2 The forward model . 48
5.3.3 The responsibility predictor 48

5.4 The learning algorithm . 48
5.5 The difference between learning and action generation 49
5.6 Simplifications . 50
5.7 Running the system . 51
5.8 The breve simulator . 53

5.8.1 Tiny Dancer . 54
5.9 Gathering movement data with the Pro Reflex system 56

6 Experiments 60
6.1 Experiment 1 - The two Ks . 61

6.1.1 Description . 61
6.1.2 Goal of the experiment 61

6.2 Experiment 2 - The cheerleader 62
6.2.1 Description . 62
6.2.2 Goal of the experiment 62

6.3 Experiment 3 - YMCA . 63
6.3.1 Description . 63
6.3.2 Goal of the experiment 63

6.4 The different parameters of the architecture 64
6.4.1 The learning rate δ . 64
6.4.2 The gain K for the feedback-error 64
6.4.3 σ in the likelihood function 64
6.4.4 Calculation of λ, re-visited 65
6.4.5 A note on run time for evaluating parameters 65
6.4.6 Stopping criterion . 66
6.4.7 Speed of the different breve versions 66

6.5 A note on the iteration and integration stepsizes in breve 67

7 Results 68
7.1 Description of the plots . 68

7.1.1 Performance during the training period 68
7.1.2 Performance of one epoch 70
7.1.3 The performance of the system compared to the desired

state . 71
7.1.4 The performance of the system with λ values superposed 71
7.1.5 Attractor plots . 71

7.2 The two Ks . 72
7.2.1 The learning of each of the modules 72
7.2.2 Switching between controlling modules 73
7.2.3 Attractor plots . 74
7.2.4 Was the goal met? . 74

7.3 The cheerleader . 87
7.3.1 The learning of each of the modules 87
7.3.2 Switching between controlling modules 87

vii

7.3.3 Attractor plots . 88
7.3.4 Was the goal met? . 89

7.4 YMCA . 101
7.4.1 The learning of each of the modules 101
7.4.2 Switching between controlling modules 101
7.4.3 Attractor plots . 102
7.4.4 Was the goal met? . 103

8 Conclusion 117

9 Future work 120

Bibliography 122

Glossary 128

A Attachments 131
A.1 Source code . 131
A.2 Videos . 131

viii

List of Figures

2.1 The AIM framework. 10
2.2 Gaussier’s architecture . 15
2.3 Ito and Tani’s architecture . 17
2.4 The RNNPB, linguistic-behaviour binding 18
2.5 Tani, experimental setup . 19
2.6 Cangelosi’s robots . 20
2.7 Matarić’s approach to imitation 22

3.1 The mixtures of experts architecture 25
3.2 HAMMER, passive route . 26
3.3 HAMMER, active route . 27
3.4 The MOSAIC architecture . 29
3.5 The MOSAIC architecture, action production and observation . . 30

4.1 The architecture of my implementation 35
4.2 The system architecture . 37
4.3 Training of the system . 38
4.4 A closer look at the training of the system 39

5.1 The recurrent neural network used in the architecture 42
5.2 The sigmoid function, plotted on inputs in the range [-5, 5]. . . 43
5.3 The imitator watching the teacher 50
5.4 The Tiny Dancer, aka Elton . 55
5.5 The ball joint . 55
5.6 The revolute joint . 55
5.7 The universal joint . 56
5.8 The setup of the Pro Reflex system 57
5.9 Tracking with the Pro Reflex system 58

6.1 The two Ks motion . 61
6.2 The cheerleader motion . 62
6.3 The YMCA motion . 63

7.1 Total training period, the two Ks 75
7.2 Performance at the last epoch, the two Ks 76
7.3 Desired and actual trajectory, the last epoch, the two Ks 77
7.4 Performance at epoch 1000, the two Ks 78
7.5 Desired and actual trajectory, epoch 1000, the two Ks 79
7.6 Performance at epoch 1057, the two Ks 80

ix

7.7 Performance at epoch 1058, the two Ks 81
7.8 Performance at epoch 1100, the two Ks 82
7.9 Performance at epoch 1500, the two Ks 83
7.10 Desired/actual state and λ plots, the last epoch, the two Ks . . . 84
7.11 Attractor plots, module 1, the two Ks 85
7.12 Attractor plots, module 2, the two Ks 86
7.13 Total training period, the cheerleader 90
7.14 Performance at the last epoch, the cheerleader 91
7.15 Desired and actual trajectory, the last epoch, the cheerleader . . 92
7.16 Desired/actual trajectory and λ plots, the last epoch, the cheer-

leader . 93
7.17 Performance at epoch 2000, the cheerleader 94
7.18 Desired/actual trajectory with λ plots, epoch 2000, the cheerleader 95
7.19 Desired/actual trajectory with λ plots, epoch 7200, the cheerleader 96
7.20 Desired/actual trajectory with λ plots, epoch 7400, the cheerleader 97
7.21 Attractor plots, module 1, the cheerleader 98
7.22 Attractor plots, module 2, the cheerleader 99
7.23 Attractor plots, module 3, the cheerleader 100
7.24 Total training period, the YMCA 104
7.25 Performance at the last epoch, the YMCA 105
7.26 Desired/actual trajectory and λ plots, the last epoch, the YMCA 106
7.27 Performance at epoch 2000, the YMCA 107
7.28 Performance at epoch 9000, the YMCA 108
7.29 Desired/actual trajectory and λ plots, epoch 2000, the YMCA . 109
7.30 Desired/actual trajectory and λ plots, epoch 9000,the YMCA . . 110
7.31 Desired and actual trajectory, epoch 2000, the YMCA 111
7.32 Desired and actual trajectory, epoch 9000, the YMCA 112
7.33 Attractor plots, module 1, the YMCA 113
7.34 Attractor plots, module 2, the YMCA 114
7.35 Attractor plots, module 3, the YMCA 115
7.36 Attractor plots, module 4, the YMCA 116

x

xi

Chapter 1

Introduction

1.1 Motivation

The main goal of this thesis is to use imitation learning to teach a robot how
to dance, by recognizing and generating movements. I will be the teacher, and
the simulated robot will learn to imitate my moves. The robot has to recognize
what move I am doing, and generate the appropriate movements. The robot will
have to switch between moves as I switch mine while dancing. This approach
is very close to the way humans learn how to dance. When learning how to
dance, a human will observe another person doing a specific movement. The
imitator will then try to recreate the demonstrated movement. The movement
may not be very similar at first, but with training the movement of the imitator
becomes closer to that of the demonstrated trajectory. In this Master’s thesis,
the imitator is a robot, trying to learn the movements demonstrated by imitating
them. It has neural networks controlling the joint velocities of its body. The
neural networks start out with random weights, but are trained in order to
match the demonstrated trajectory more closely.

I have chosen the name “Dancing robots” for the thesis, since it sounds fun
and fresh and more accessible to people outside computer science. It could very
well be called “Sequential movement in a robot taught by imitation learning”,
but the former title is more catchy. Dance is something everyone can relate
to, and is not necessarily the first thing that comes to mind when discussing
computer science. In addition, dance has a very strong imitative element. The
main focus of the thesis is to study and implement an architecture that allows
for imitation learning to take place in a simulated situated agent.

1.1.1 Different types of learning

Broadly speaking, there are two types of knowledge: declarative (like Paris is
the capital of France) and procedural (how to hit a baseball with a baseball bat).
Declarative knowledge is deeply rooted in the good old-fashioned artificial intel-
ligence (abbreviated GOFAI), where rules were stored and inference was made
based on the rules. These rules were often hard-coded into the program itself by
the designers, leading to brittle systems that were not very noise-tolerant, and
did not work well outside their designated domain. Most notably, they often
did not learn from experience in their environment, but instead relied on the

1

designer having thought of all the possible situations the artificial intelligence
might encounter.

The failure of GOFAI lead to a new paradigm: an artificial intelligence based
on biological principles, namely the neural structures found in the brain. The
knowledge is represented in a distributed fashion. This knowledge corresponds
more to procedural knowledge, as it is not explicit but represents some type
of behaviour in the environment. Learning is divided into two categories: 1)
unsupervised learning, where the artificial intelligence creates its own clusters
and notions about the input data, and 2) supervised learning, where there is a
teacher present, guiding the training of the network in the correct direction. A
third variation which resembles supervised learning is reinforcement learning,
which does provide some feedback on the performance of an agent, but the
feedback is only a scalar (i.e. good or bad), not an error vector that can be used
to tune the neural network.

1.1.2 Why learning by imitation?

Learning by imitation is a supervised learning approach, since there clearly is a
desired state to achieve. It is a user-friendly approach to making a robot behave
the way you want it. Instead of fiddling with joint angles, torque, et cetera you
could “program” a robot simply by showing it what to do. It is not hard to
fathom how much easier it would be to program robots this way.

Imitation is also important in the development of language. Imagine being
able to show a robot a certain movement and making the robot learn a word
corresponding to the action. This ties the field of imitation to research in
audio/vision comprehension, i.e. it requests a multi-modal approach to be fully
integrated in the real world.

I believe imitation will help people use robots, and information technology
in general. I see my work as a contribution to bridging the gap between people
and machines, i.e. making the human-machine interface easier to understand
for computer-illiterate people.

1.2 Research question

In order to summarize the previous sections, I have formulated the research
question for the Master’s thesis:

Research question. Is it possible to implement a multiple paired models archi-
tecture that will separate the input space to different modules by self-organization,
and use the multiple paired models architecture as a framework for imitation
learning?

1.3 Working hypotheses

To bridge the gap between the research question and the experiments that are
to be done, some working hypotheses have been formulated:

Hypothesis 1. The multiple paired models architecture will self-organize the
control of different movements to different modules.

2

Hypothesis 2. The use of context information will help the modules self-
organize as intended, to such an extent that the λ values will follow the context
values in terms of transitions, i.e. when one movement is finished, there will be
a different module having the highest λ value.

Hypothesis 3. The multiple paired models architecture will discover the rela-
tionship between the context information and the discrete movements, so that
the responsibility predictor will reflect the context information.

1.4 Methodology

Working on this thesis has mainly followed the following procedure:

1. Studying the relevant topics in the literature. After reading about the
background of imitation learning (chapter 2) and related work done in the
field of computer science (chapter 3) the inspiration for my own imple-
mentation became clear.

2. Design of the architecture and experiments to verify the working hypoth-
esis. The working hypothesis was formulated along with the design of the
architecture.

3. Implementation of the architecture. As the implementation phase be-
gan (chapter 5), the design of the experiments (chapter 6) also started.
The research question and working hypothesis were formulated to clarify
what I wanted to achieve with the experiments. During implementation of
the architecture, the architecture itself and the design of the experiments
changed. Taking the abstract model down to computer code revealed a lot
of details that had not been thought of beforehand. Often this lead to a
re-visit of the related work studied earlier, to better understand the work
presented. Seeing the work from an implementer’s perspective led to new
insight into the related work, and to redesign of my own architecture. Dur-
ing this period I collaborated with Firas Risnes Barakat on implementing
the humanoid robot in breve (the simulator used, see section 5.8). The
architecture itself was implemented in MatLab.

Neural networks were used at the core of the architecture, to implement
the forward/inverse models and the responsibility predictor. Training data
for breve was gathered using the Pro Reflex system.

4. Conducting the experiments. As the implementation of the experiments
began, the experiments were redesigned and new ones were made. After
a period of testing and debugging the architecture and the experiments,
a final set of experiments were decided upon (chapter 6).

5. Analyzing the results, chapter 7. This was closely related to both the
design and implementation of the experiments. When analyzing, the effect
of tweaking the parameters of the architecture became more clear. This is
a time-consuming process, since running an experiment can take several
hours. This often lead to a re-visit to the design stage of the experiment,
as well as the implementation stage. The discovery of subtle programming
errors at the analysis stage meant more debugging and going back to the
implementation stage.

3

6. Writing the conclusion. After analyzing the results, the conclusion was
written, see chapter 8. In this chapter the accomplishments and failures
of the implementation was discussed.

7. Writing ideas for future work, chapter 9. During the entire process (but
especially during the later phases), new ideas sprung to mind. These were
written down in the future work chapter, since the time constraints of the
thesis did not allow the implementation of the ideas.

1.5 Reader’s guide

The reader who is mostly interested in what I have implemented in the thesis
should jump directly to chapter 4, “Design” and read the rest of the thesis
from there. The reader who also wants to gain insight into the background for
the implementation and why it was implemented as such, should read at least
chapter 3, “Related work” for the essential information for the implementation.
Chapter 2 should be read by the reader who is interested in getting a broad
background of the field of imitation learning in both developmental psychology,
neuroscience and computer science.

For all readers, I strongly suggest recommend reading through the Glossary,
so that the terminology will be common for both the reader and the author of
the thesis. The thesis will use certain over-loaded concepts (such as movement
and motion), that need to be defined in order to avoid confusion.

4

Chapter 2

Background

Imitation as human capability has been studied for a long time, in both cognitive
psychology and neuroscience. Especially the field of developmental psychology
has had a focus on how infants learn by imitating their parents and the people
in their surroundings. Whereas imitation was thought of as a rather simple
ability (manifested in the phrase “monkey see, monkey do”), it has later been
acknowledged as one of the key abilities of human cognition.

During the last decade, neuroscientists have found cortical areas that seem to
form a basis for the ability to imitate. This work has inspired computer scientists
to implement models of how imitation works in situated and embodied systems.
The work done by psychologists, neuroscientists and computer scientists form
the basis of inspiration for my abstract model.

This chapter will give an insight into the work done in the field of imitation
from different points of view, namely developmental psychology, neuroscience
and computer science. The chapter is quite eclectic (but by no means com-
plete); the idea is that it forms the basis upon which chapter 3, “Related work”
specializes. Chapter 4, “Design” is again more specialized than chapter 3, like
a pyramid.

2.1 Imitation in developmental psychology

Piaget [51] describes imitation as the continuation of accommodation (i.e. ad-
justment or adaptation) of sensory-motor schemas to the external world. The
sensory-motor schemas comprise both motor and perception stimuli. The sensory-
motor schemas are stored in an individual through repetition. Assimilation is
the process where the schemas are maintained, both through production (i.e.
generating a behaviour) and recognition of a behaviour.

Piaget sees intelligence as an equilibrium between assimilation and accom-
modation, i.e. learning new schemas and making these schemas suit the external
world of the individual. Imitation is then the on-going accommodation of the
schemas to the external world.

Piaget divides the different levels of imitation in six stages.

The first stage consists of preparing the child through reflexes, initiated by
external stimuli. The reflex leads to repetition of sensory-motor experi-
ences, effectively yielding assimilation.

5

The second stage (1 month) expands the reflex schemas developed in the first
stage by adding external elements into circular reactions. The external
elements are added as a result of experience. An example of a circular
reaction is when the child hears the sound of another child crying, it
begins to cry too. The external element (the sound of crying) then starts
off a circular reaction (continuation of crying). The circular reaction is
thus a process where new objects are directly incorporated into known
schemas.

At this stage vocal imitation begins. First, vocal contagion appears; the
voice of other individuals stimulates the voice of the child. Second, there
is mutual imitation when an adult imitates the sound the child is making,
at the same time as the child is producing the sound. The child will then
reinforce its own sound in order to maintain the imitation. Third, the
child will try to imitate a sound it has heard before but never produced
on its own.

Visual imitation also becomes apparent at this stage, which can be seen in
the head movements of the child. The child will follow the head movements
of the experimenter.

Piaget points out that no perceptive behaviour (visual, auditory, etc) is a
simple act, instead each behaviour is an assimilating activity, where assim-
ilation of objects also takes place. After this assimilation has taken place,
accommodation of movements of organs to movements of external objects
can become possible. In this early stage of imitation, the consciousness of
the child cannot distinguish itself from the external world, i.e. the subject
and the object are one.

The third stage (6 months) introduces secondary reactions, where new cir-
cular reactions appear, enabling the child to manipulate external objects.
This comes as a result of coordination of vision and prehension in the
child. The secondary reactions are built on top of the primary circular
reactions appearing in the previous stage. Piaget names it conservative
imitation, since secondary schemas are not coordinated among themselves.
In addition, assimilation is still the main driving force of imitation - ac-
commodation of the assimilated schemas to pursue novel behaviour is not
taking place.

At this stage, the child learns to imitate movements the child already
knows (i.e. assimilated to a motor schema) and is visible to the child
when it produces them. The child can not imitate movements not visible
to itself, nor movements that are new (i.e. it has never produced the
movement by itself).

Pseudo-imitation also appears at this stage. This is a kind of imitation
that appears through training. It is different from assimilation and ac-
commodation since the imitative action disappears if it is not being con-
stantly trained. It can be produced by repeating an action the child has
spontaneously made. The child will then repeat this action, and if the
experimenter also continues to imitate, the imitation goes on. However,
after the interaction has ended, the movement will not be imitated if the
experimenter repeats this movement at a later point. Since this is not a
movement that has first been discovered by the child through the reflex

6

and stored by the process of assimilation, it will not be recalled unless
constantly trained. In other words, the child must first produce an action
itself in order to be able to learn it properly, and the first production of
an action must be through the reflex.

The fourth stage (8-9 months) is distinguished by the ability to coordinate
schemas with respect to each other. This increases the mobility of the
child, and also evolves a set of indices. An example of such an index can be
a sound that triggers a specific behaviour, where the sound is not directly
linked to the behaviour itself. The coordinations lead to acknowledging
the object and to comprehending space and causality regarding objects.

It should be noted that the child takes spontaneous interest in movements
just because they correspond to movement itself is practising, i.e. the
schemas are an end in themselves.

The fourth stage also introduces the beginning of imitation of sounds and
movements that are new to the child. Earlier, these inputs had left the
child indifferent. This coincides with the general progress of intelligence.
However, if the stimuli is too different from the child’s experience the child
will still be indifferent to them, but new stimuli that are comparable to
what the child already knows yields an instant attempt to reproduce what
has been perceived. In the case of seeing a new movement or hearing
a new sound that are partially known to the child, the existing schemas
will be modified to integrate the new element (new element meaning new
movement or new sound) into the schemas. Due to the modification of
the schemas, new movements and sounds cannot be directly assimilated
into motor schemas. It is neither possible to directly accommodate the
schemas to the models. The child has to try out new schemas to see
whether they will match what it perceived. At this stage, the child can
also coordinate schemas to find a combination of schemas that might suit
the new movement or sound it perceived, i.e. apply known means to new
situations.

The fifth stage (one year) marks the beginning of systematic imitation of new
sensory-motor schemas. Unlike previous stages, the child now also imitates
new movements invisible to it. Accommodation and assimilation is now
more differentiated, leading to tertiary circular reactions which is more
sophisticated than just merely investigation. The child now experiments
with schemas to discover new objects. The process is done systematically
and on a trial-and-error basis.

The sixth stage (one year and 4 months) is the last stage in the development
of imitation, and now the child becomes capable of doing mental combi-
nations of the different schemas, relieving it from the necessity of trying
them out in the external world, as was necessary in the earlier stages. In
other words, the child then becomes able to imitate new sensory-motor
schemas instantly by interiorising the accommodation of schemas. Earlier,
the child could coordinate the different schemas to make a combination
to suit the novel perception, but now the child becomes capable of imi-
tating new and complex movements, doing the accommodation internally
without the need for external experimentation. Deferred imitation also

7

appears at this stage. The child’s reproduction of the perceived move-
ment or sound can now manifest itself after the perceiving the movement
or sound, bringing imitation to the level of representation.1

After the acquisition of language, representative imitation (i.e. having a
mental image of what it is about to imitate) develops spontaneously when
the child is from 2 to 7 years old. At this stage the representative imitation
is often unconscious since the child is very egocentric. When the child
reaches 7 or 8, the representative imitation becomes deliberate (i.e. the
child can use it for reasoning), taking a part of intelligence as a whole. At
this stage the estimation of the person to be imitated influences the child
as well. An authoritative or admired person will be imitated, whereas
another child at the same age or younger is less likely to be imitated.
When with persons of high esteem, the child is often unaware that it is
imitating, since it confuses its own activity or point of view with those of
others. This does not happen as easily when with children of the same
age or younger. Another important property of representative imitation is
that the representation comes before the reproduction. In stages I-V there
were no images, but the deferred imitation appearing at the sixth stage
implies the existence of an image. Piaget thinks that the image consists
of interiorised imitation, thus leading the image to take a life of its own.
The imitating child is therefore often unaware of it imitating due to this
interiorised imitation.

At the age of 7 or 8 imitation of detail appears. The child also becomes
conscious of imitation, i.e. it is able to distinguish external elements from
itself. At this age reflective imitation emerges, i.e. imitation helps the
child accomplish what it wants to do. Reflective imitation is thus wholly
controlled by the intelligence. This coincides with an increase in the ability
of perceptive activity, such as comparisons, analyses, anticipation etc.

Although Piaget claims imitation of movements invisible to the child does
not appear until the fifth stage, Meltzoff and Moore [44] found that infants aged
between 12 and 21 days were able to imitate facial gestures of the experimenter.
They tested six infants with an average age of 14.3 days, and found all of them
to be able to imitate the following movements: lip protrusion, mouth open-
ing, tongue protrusion and sequential finger movement (opening and closing the
hand by serially moving the fingers). Meltzoff and Moore suggest that the child
can represent the visually and proprioceptively perceived information in a way
that allows a mapping to the child’s own motor system. In other words, the
perception the child has made can be transformed in such a way that it can be
matched to its own motor capabilities (what Piaget would call schemas). This
is supposedly done by an active matching process and mediated by an abstract
representational system. The ability to use these “intermodal equivalences” as
Meltzoff and Moore put it, is an innate ability of humans, and not something
that develops in the first months of the child’s life. Indeed, in [45] they find
that neonates can also imitate head movements, not only facial gestures. Melt-
zoff and Moore suggest that imitation in newborns is due to a process they call
active intermodal mapping (AIM). The intermodal mapping relies on a repre-

1Piaget gives two meanings to the word “representation”: in the broadest sense it is con-
ceptual, in the narrow sense it is a mental or memory image (i.e. symbolic representation).

8

sentational system capable of uniting perception and production of human acts.
In [46] AIM is discussed in more detail. The process of matching perceived
behaviour with behaviour produced by the child itself is done constantly by
the proprioceptive feedback loop. The loop corrects any discrepancies between
the child’s motor performance and the target. The detection of equivalences be-
tween acts of the self and those external is at the core of the AIM. The detection
is possible since perceived and produced human acts are coded in a common
framework. The framework is therefore “supramodal” since it can unify codings
from different modalities.

Meltzoff and Moore think that organ identification is the first step of imita-
tion in the newborn. This is the process of discovering what to move prior to
discovering how to move it. Note that an organ is suggested to be one of the fol-
lowing: head, brows, jaw, lips, tongue, arms, hands, fingers, trunk, legs and feet.
Meltzoff and Moore suggest (but do not state firmly) that organ identification
is already present at birth, being developed by evolution.

The child must therefore learn what muscle movements generate different
states of organ relations. This is done by body babbling, according to Meltzoff
and Moore, an analogy to vocal babbling, where correspondence between muscle
movements and auditory perception is learned. However, body babbling can
already begin in utero. They hypothesize that the organ relations is the driving
mechanism behind the mapping of externally perceived movements to those of
the child’s own. This mechanism can also compare what the infant is seeing to
what it is doing, allowing for correction of the organ relations. The ability to
correct itself also allows the child to separate the self from the other.

The AIM framework consist of three main parts: 1) the perceptual system,
which produces perceptions of the other and the self, 2) the supramodal repre-
sentational system, where the two organ relations (of the self and the other) are
compared, which in turn feeds the 3) action system, responsible for controlling
the body of the child. The framework can be seen in figure 2.1.

Meltzoff and Moore suggest that there are four developmental changes in
imitation of the child: 1) The first developmental change is learning which
organ relations correspond to a more high level behaviour termed as human
acts. The human act is more than a simple movement, but a goal-directed
organ transformation. 2) The second change is becoming aware of a matching
relationship between the child and the target. When the child becomes older,
it will test whether it is being imitated or not by making sudden changes in
its actions. The point is to see what the adult will do when the child changes
behaviour. If the adult changes its behaviour according to the change made by
the child, the child will understand that the adult is doing the same as itself.

3) The third change (ca. 1 year of age) occurs when the child becomes
more preoccupied with detail of the actual imitation. At this stage the child
will also try to feel the unseen part of his own body and at the same time
the corresponding body part of the adult. For instance, the child might touch
its own tongue and the tongue of the adult, yielding an idea of what their
own tongue looks like and how both tongues feels the same. 4) The fourth
developmental change (which occurs at about 18 months) is when the child
understands the underlying goal of the human act of the adult, even when the
adult fails to achieve the goal, i.e. imitation of an inferred act. The child will
imitate what the adult tried to do, which is the beginning of understanding the
adult’s intentions. In short, the developmental changes create higher levels of

9

body babbling). In fact, the data from the 1994
study show that 9 of the 10 infants who saw
the tongue-protrusion-to-the-side target initially
produced a small tongue movement with no
lateral component. According to our model, this
initial effort is corrected by computing the non-
overlap between the organ relations of the
visual target and those achieved by these first
attempts. This comparison isolates the lateral
dimension as a missing component, setting the
goal for the next act. Repeated cycles of this
process, isolating aspects of the target not
captured in the last attempt, give the imitative
progression its non-random character.

Meltzoff and Moore's (1994) microanalysis of the
correction process revealed four monotonically
ordered steps in infants' convergence toward the
tongue-protrusion-to-the-side target. As dia-
grammed in Figure 3, the first step is a lateral
movement of the tongue. Step 2 adds a small
outward component to the lateral one. Step 3
produces a full tongue protrusion far beyond the
lips. Step 4 integrates the lateral component into
the full tongue protrusion. This process involves
differentiating several dimensions of the target
from one another (laterality, forwardness, and
extent) and then integrating them into a single act.
The process is not trial and error or even a simple

186 A. N. Meltzoff and M. K. Moore

Early Dev. Parent. 6: 179±192 (1997) '1997 John Wiley & Sons, Ltd.

Figure 2. AIM model of the mechanisms underlying early facial imitation. The model depicts the functional relations
among the external world, perceptual system, representational system, and action system. Representations of the
external target (the adult demonstration) and the infant's body are compared in terms of organ relations (see text). The
solid arrows indicate current processing. The dotted arrow indicates prior learning from body babbling experience.

Figure 2.1: The AIM framework, made up of three main parts: 1) the percep-
tual system, which receives inputs from both the world and the body. 2) The
supramodal representational system, which compares the organ relations of the
body and that of the world. 3) The action system, which outputs the act chosen
in the “Directory of Coordinated Acts”. The figure is taken from [46].

10

abstraction regarding the child’s understanding of itself compared to the other.

2.2 Imitation in neuroscience

When mirror neurons were discovered in 1996, it seemed likely that this area
of the brain was responsible for imitation. After several years of research in
the field, this appears to be agreed upon, and interest in mirror neurons as a
basis for imitation has gained a lot of interest in neuroscience and in artificial
intelligence.

Rizzolatti [54] discovered mirror neurons in 1996 by placing electrodes in
the brain of monkeys. He observed that when the instructor grasped a piece of
food, certain neurons in the brain of the monkey became active. These neurons
were also active when the monkey performed the same action. It seemed as if
the neurons were able to perform some inner simulation of the action, and that
this ability is crucial to be able to learn from others. The mirror neurons code
motor commands, but not directly, since they are active when both performing
and observing an action. The coding must therefore be on a higher level of the
action that is observed and reproduced.

The mirror neurons were found in the F5 area of the monkey, which corre-
spond to Broca’s area in humans. Soon after the discovery of mirror neurons
in monkeys, the same neural behaviour2 were discovered in humans [53, 24] in
the superior temporal sulcus, the inferior parietal lobule and the inferior frontal
gyrus (area 45). Area 44 and 45 consist of Broca’s area, which plays an im-
portant part of the language capabilities of the brain (along with Wernicke’s
area3).

The fact that there is a link between the mirror neuron system and Broca’s
area makes Arbib hypothesize that the mirror neurons provide the ability to
have language [4, 20]. The mirror neurons made human beings capable of im-
itating each other, forming the basis of language: our brains had to become
“language-ready”. The human race evolved so that the hands, the larynx and
facial expressions could be used to form a language, and the mirror neurons
enabled an individual to imitate the sound of another individual, allowing for
all sorts of word-games (i.e. determining what a sound means by relating it to
specific objects). The word-games would then develop into a language. The
use of language must have provided a considerable advantage, since our narrow
throats increase the risk of choking on food. It is not difficult to imagine how
imitation would be beneficial to any race; if an individual made a discovery it
could simply show it to other members of the group to spread the new-found
knowledge.

In addition to facilitate learning by imitation, Gallese believes that mirror
neurons are crucial to mind-reading [21]. Mind-reading is attributing mental
states to other human beings, such as goals, beliefs, expectations etc. More

2There appears to be no indication in the literature [54, 37, 23] that the mirror neuron
system is comprised of a specific kind of neural substrate. The mirror neurons are just part
of the neocortex, they have no special physical properties themselves.

3Wernicke’s area does the processing of auditory input for understanding speech. Broca’s
area produces the motor commands that result in speech, and is located close to the motor
area controlling mouth and tongue movements. There is a bidirectional pathway between
Broca’s area and Wernicke’s area [37].

11

specifically, Gallese thinks that the mind-reading functions according to simu-
lation theory, which claims that the mental states of others are discovered by
taking the perspective of the other person, i.e. putting oneself in the shoes of
the other. When taking the other’s perspective, pretend beliefs, goals, etc. are
created, according to how yourself would feel if you were in the same situation.
These pretend mental states make up your simulation of the other person, i.e.
you are reading his mind by placing yourself in the same situation. Since mirror
neurons fire both when observing and performing the same action, they can be
seen as providing the transformation that allows the observer to place itself in
the shoes of the target, i.e. allowing for both inner simulation of the actions of
others and reading the mind of others (which could be argued is the same thing,
since the former is subsumed in the latter).

Modeling how imitation learning works is also of great interest, since many
fields of artificial intelligence (if not the entire field) would greatly benefit of
some way to implement this mechanism. Schaal has discussed several aspects of
modeling mirror neurons [55, 56]. Research in the field is more or less divided
in two: those focusing on the perceptual part of imitation learning (i.e. trans-
forming visual information into meaningful representations for the agent) or on
the motor part (all perceptual information is already present, and is ready to be
fed into a perception-action system of the agent). Schaal focuses on the latter,
since the former is mostly about geometrical transformation of sensory input,
also called the correspondence problem, see section 2.3.1. Schaal identifies three
approaches to imitation learning [55] (as stated above, none of these approaches
deal with the correspondence problem).

The first approach is to directly learn a control policy. Learning it directly
means that the imitator must be able to observe both the internal state (i.e. the
position of the different joints relative to one another) and the internal action
(i.e. motor commands) of the teacher. Normally, these variables are hidden,
therefore the movement primitives (i.e. moving the left arm) must be defined in
a way that makes them observable (i.e. seeing the acceleration of the fingertip
when balancing a pole). The imitator must then know a priori how to convert the
observed acceleration of the fingertip into motor commands, i.e. the expressed
movements from the teacher must be understood by the imitator. The observer
does not know the goal of the teacher, it only learns the mapping between state
and action, and therefore it is also referred to as task-level imitation.

The second approach is to learn a movement from demonstrated trajecto-
ries. By recording the movements of the teacher, the observer tries to imitate
the behaviour based on the set of recorded coordinates. An example is placing
markers on a human arm, and recording the Cartesian coordinates as the arm
moves using an optical tracking system. A robot could then try to match the co-
ordinates by approximating the trajectory mathematically. The difference from
the first approach is that the demonstrator and imitator shared some common
ground (i.e. the imitator would know the motor commands corresponding to
the demonstrated movement), whereas in the second approach they do not, and
the imitator must find a way to generate the motor commands that will result
in a match of the demonstrated trajectory.

The third approach is model-based learning. After demonstration, the ac-
tion is approximated by a predictive forward model. Wolpert has devised such
an architecture for imitation learning [63, 64, 62]. Wolpert argues that the cere-
bellum has several coupled forward and inverse models, one coupling for each

12

motor primitive. This will be elaborated upon in section 3.3.
Schaal sees the modular approach as the best solution, given how well for-

ward models can predict future states. In addition, Schaal thinks the modular
approach fits nicely with the simulation theory of mind reading (as previously
discussed in relation with Gallese’s work), as well as a possible implementable
solution to Meltzoff and Moore’s AIM model (see section 2.1).

2.3 Imitation in computer science

It seems as the mirror neurons perform some inner simulation of the action being
done (cf. Ziemke’s work on inner simulation of perception [65, 34]), and that
this ability is crucial to be able to learn from others. Programming behaviours
for robots is a tedious task, requiring the engineer to specify the position of
each movable part of a robot’s body at any time. Programming an artificial
arm would require specific control over all limbs, joints, and fingers. If one
was able to implement the ability to imitate in robots, programming would be
much more easy. Instead of specifying low-level commands, the action could be
presented (preferably visually) and the robot would be able to learn it simply
by watching. Making robots learn from imitation has been attempted earlier,
but recently more bottom-up approaches have been taken.

In the previous section, Wolpert’s multiple model architecture was discussed.
Demiris and Hayes have also taken a multiple model approach to imitation [14].
They used a biologically plausible computational model (similar to Wolpert’s
model discussed above) to make a robot learn how to imitate another robot. The
architecture is also comprised of paired forward and inverse models, each having
the same role as described earlier. The robots were simulated. The learner robot
would see the posture of the teacher robot, and would try to imitate it based on
a set of postures that it knew (i.e. its repertoire of behaviours). Each of these
behaviours also predicted how well they suited the demonstrated trajectory it
was supposed to imitate. If the prediction error increased for all behaviours
during the demonstration (i.e. the output of one of the behaviours did not
match that of the demonstrator as the demonstration progressed), the learner
was facing a novel behaviour, thus forcing it to learn the new behaviour. So
the system became aware when it had to learn a new behaviour, simply by
looking at how badly each behaviour actually matched the teacher robot. This
architecture will be further elaborated upon in section 3.2.

Breazeal and Scassellati [6] see two fundamental problems with learning by
imitation; 1) how does the robot know what to imitate and 2) how does the
robot map what it sees to its own motor behaviours to imitate the action (i.e.
the correspondence problem)? In order to solve the first problem the robot must
have the ability to perceive the movement it is about to imitate. In addition,
the robot must have the ability to determine what is important in the flow of
sensory input. The second problem consists of converting what the robot saw
into motor actions of its own. Breazeal and Scassellati see two approaches:
the perception can be converted into motor actions in the observer (like the
function of mirror neurons) or to represent the motor actions of the learner and
the teacher in the same space (i.e. using Cartesian coordinates) and comparing
the trajectory directly. This is similar to the direct learning of a policy approach
Schaal described above.

13

Gaussier et al. [22] propose a neural architecture suitable for on-line learn-
ing of sensorimotor actions. The architecture can be seen in figure 2.2. The
experiment is to let a robot follow another robot and reproduce the movements
of the teacher robot. Both robots are autonomous vehicles. The learner robot
has already learned to use its visual input to move in the environment. The
learner sees the teacher by the use of a camera. Movement is based on changes
in optical flow; if it expands (something is closing up on the robot) it will go
backward, if it contracts (the environment is opening up) it will go forward. In
addition, the robot will turn if it sees expansion points. This can be seen in
the architecture as the “Reflex Action” box. This is hardwired so the robot can
follow the teacher. The robot learns to imitate the movements of the teacher
by constantly predicting its own actions based on the tracking mechanisms. In
the case where the prediction is wrong, a new situation has been encountered.
This occurs when the robot turns in order to follow the teacher. The robot
then learns to imitate the sequences of turns that the teacher robot performs.
The teacher demonstrates a square trajectory, a zig-zag trajectory and a more
complex trajectory (more random-like in its pattern). The learner follows the
teacher and learns these sequences, so it can reproduce them when the teacher
is not present. In other words, the robot learns turn sequences from the teacher.
The different sequences can be accessed in the robot; it has an internal variable
coding for each sequence. The authors call this the “emotion” or the “moti-
vation” of the robot. The infrared sensors of the robot are directly connected
to this internal variable, so saturating the infrared sensors directly modifies the
variable, and hence the corresponding recall of sequences. This can be seen as
a simple interface to the robot. However, this also requires that the robot will
not walk into obstacles that might modulate the infrared sensors, leading to a
possible change in sequence recall.

Ito and Tani [32] investigated how a robot could imitate multiple patterns (in
his work, a pattern is a sequence, i.e. multiple patterns are multiple sequences)
demonstrated by humans. The robot was human-like in shape, having two legs,
two arms and a head. The teacher would make certain patterns with his arms,
and the robot would imitate these patterns. The robot would go through two
phases; first it would learn the hand trajectories of the teacher. This is done by
learning to predict sensory information, i.e. the model-based learning described
by Schaal earlier. However, note the difference between the work of Ito and
Tani on one hand and Wolpert, Demiris and Hayes on the other: In Ito and
Tani’s architecture there is only one model predicting the next state. Wolpert
and Demiris had multiple paired models, competing for motor control. So even
though this is also model-based learning, it is not done with multiple paired
models (as Schaal was describing). The robot had a camera, supplying it with
visual input. The robot would then remain still, and just watch the movement
pattern of the teacher, and its neural network controller would learn to predict
the perception at the next time step. Second, (dubbed the “interaction phase”
by the authors) the robot attempted to follow the pattern displayed by the
teacher when the teacher demonstrated the pattern. The robot would then try
to predict the teacher’s movements (i.e. where the arms of the teacher would be
in the next timestep), and act accordingly (i.e. imitate). The robot would be
familiar to certain patterns that it had been trained on in the first phase. When
perceiving a pattern demonstrated by the teacher the dynamic patterns stored
in the neural network is regenerated. Seeing a pattern triggers this regeneration.

14

Figure 2.2: The architecture of Gaussier et al, used for on-line learning of sen-
sorimotor actions. The “Reflex Action” box is a hardwired controller, allowing
the imitator to follow the teacher. The recognition learns the relationship be-
tween sensory input and the action outputted by the “Reflex Action” box, by
reinforcement or associative learning. The figure is taken from [22].

The robot is controlled by a recurrent neural network. This network consists
of both motor control and mirror neurons. The architecture will be discussed
in some detail. The network is augmented with two extra inputs called para-
metric biases (abbreviated PB, the recurrent network with parametric biases is
then abbreviated RNNPB). These units are active both when generating and
recognizing a pattern, which makes them the network’s mirror neurons. After
perceiving the patterns, the network is trained using backpropagation. The
parametric biases are then self-determined by the network, i.e. the network
decides itself how it will code for each pattern presented to the network. The
network can be seen in figure 2.3. The inputs to the network are as follows:
rt is the robot joint angles, ut is the teacher’s hand position, pt are the para-
metric biases and ct are context units that enable memory in the network. The
network predicts the next joint angles r̂t+1 and the next position of the arms
of the demonstrator ût+1 in the learning phase. Notice how the output of the
network are joint angles, not motor commands. The multiple model architec-
tures of Demiris and Wolpert have an inverse model that will output the motor
commands directly (see chapter 3 for more details regarding the architectures
of Demiris and Wolpert). The RNNPB outputs joint angles that must be trans-
formed into motor commands by solving the inverse kinematics of the arms.

In the RNNPB, the error of the predictions is backpropagated through the
network. The backpropagation also determines the values of the parametric
biases; the values of the parametric biases are updated by the error that is
backpropagated. Normally, backpropagation only changes the weights of the
network, here the error also determines the actual neuron activation of the
parametric biases. The parametric bias values will then slowly change towards

15

stable values, and these values will code for a specific pattern. At the interaction
phase there is no further learning to the network, and the parametric biases will
then eventually converge to the determined values of the pattern (the values are
still calculated based on the error of the prediction, but the synaptic weights
of the network are not changed). The parametric biases are active both dur-
ing learning and during execution of the same behaviour, behaving like mirror
neurons.

The robot was trained by actual people performing four different patterns
(i.e. four sequences of patterns), with their arms. The patterns were 1) horizon-
tally swinging both arms in phase, 2) vertically swinging both arms in phase, 3)
rotating both arms in opposite phase and 4) rotating both arms in phase. The
robot managed to follow patterns of the teacher when trained on sets of three
of the previously mentioned patterns. Interestingly, the network did not scale
well with more patterns, implying that the complexity of the inner dynamics
increases non-linearly when more patterns are presented to the learner. But still
the robot managed to imitate three of the four patterns presented, when trained
only on sets of three patterns. The robot must generalize to a great extent, since
human input provide the training patterns, which produces trajectories for the
same movement being slightly different from one demonstration to the next.
Despite this amount of noise, the robot managed to imitate the learner.

Tani et al. [60] reviews two additional experiments with the RNNPB ar-
chitecture, in addition to the experiment just discussed. In the experiment
discussed above, the parametric biases code for specific patterns, i.e. there is
one code for each pattern. This is self-determined during training. When the
network is trying to imitate the input from the user, the parametric biases will
converge over time to the same activation when a known input pattern is pre-
sented to the robot (i.e. a movement that it has been trained on). However, Tani
points out that it is also possible to feed the parametric bias activation to the
network, and the activations will then generate the corresponding behaviour. In
other words, the parametric biases can both recognize and generate behaviour.
This function is very true to how mirror neurons operate in the human brain.
As mentioned, two additional experiments are reviewed in [60]. In the second
experiment (where the first is the one in [32]) a robot arm learns different trajec-
tories and the corresponding parametric biases. By manually switching between
these patterns, the network regenerates the different movement patterns.

The third experiment is the most interesting. Tani uses the same network
architecture, but two networks (one linguistic network and one behaviour net-
work) are now coupled together via their parametric biases, see figure 2.4. The
experimental setup can be seen in figure 2.5. The robot has an arm that it uses
to point and hit the different objects. It can push the objects with its body.

During training, a set of sentences are learned along with their corresponding
behaviours. The parametric biases in both network the linguistic network and
behaviour network are simultaneously updated and constrained to differ as little
as possible for each sequence. The sentences consist of two words, a verb and
a noun. The verbs are point, push and hit. The nouns are red, blue, green,
left, center and right. The robot is then trained to “push red” by manually
guiding the robot, showing the sensory input for the desired action as well as
providing the word input to the linguistic network. Not all possible combinations
of the sentences were trained on the robot, in order to see how well it could
generalize. After training, sentences were given to the linguistic network, which

16

pt

rt (inputs)

ut (inputs)

rt+1 (target)

ut+1 (target)

(a) Learning Phase

(b) Interaction Phase

ut+1^rt+1^

errortuerrortr

pt
rt

ut (inputs)

ut+1 (target)

ct

ct+1ut+1^rt+1^

errortu

Robot Movement
Pattern Generation

ct

ct+1

Figure 3: The system flow of RNNPB in learning phase (a) and interaction phase (b).

11

Figure 2.3: The architecture of Ito and Tani, for a) the learning phase and b) the
interaction phase. rt are the robot’s joint angles, ut are the coordinates of the
user, pt is the parametric bias and ct is the context information. The network
trains off-line on the input/output relation. During the interaction phase, the
robot joint angles are fed back into the network, to make the network aware of
its own actions. The parametric bias is determined through backpropagation of
the error, both during learning and interaction (but the weights are not changed
during the interaction phase, only the parametric bias). The figure is taken from
[32]

17

Figure 12: (a) Model for co-learning of word sequences and corresponding behaviors,

(b) model for recognizing word sequences and generating corresponding behaviors.

23

Figure 2.4: The RNNPB architecture on the linguistic-behaviour binding. In
a) word sequences and corresponding behaviours are learned at the same time
through the connections of the parametric biases. In b) the network on the left
recognizes word sequences and generates the corresponding behaviours via the
parametric biases. wt are the words that the network learns, mt are the motor
values and st are the sensor values. Note how the use of the word “module” is
taken from [60], and is not according to the glossary. The figure is taken from
[60].

18

then initiated the corresponding behaviour via the parametric biases. The robot
actually managed to perform the right action for some of the unlearned word
sequences. This is possible since each word is not learned separately, but in a
relation with other words. The network is therefore able to generalize.

robot hand camera
mobile robot
at home position

red, blue and green objects

Figure 13: The task environment consists of red, blue and green objects placed in left,

center, and right positions, respectively. The mobile robot is at the starting position.

positions and starting position of the robot are perturbed within 20 percent of the

robot travel distance for each sampling, in order to make each sensory-motor sequence

slightly different. This was necessary to make the robot generate the trained behaviors

robustly. In summary, 70 (14 x 5) pairs of linguistic and sensory-motor sequences

are learned and bound to each other. Further, 20 (4 x 5) sensory-motor sequences

are learned without binding. The learning is iterated for 50,000 steps. The mean

square errors converged to 0.0091 and 0.025 for the linguistic and the behavior modules,

respectively.

6.2 Results and analysis

Recognition and generation tests were conducted after learning was completed. The

appropriate corresponding behaviors were generated for all 18 word sequences, includ-

ing the 4 untrained ones. In order to analyze the internal structures self-organized in

the co-learning process, a phase space analysis was conducted for PBl and PBb. In

this analysis, the original 6-dimensional PB space is projected onto the 2-dimensional

surface determined by principal components analysis. In Figure 14 (a) the PBl vectors,

25

Figure 2.5: The experimental setup in [60]. The robot sees the different objects,
and uses its arm to point or hit the objects. The robot is trained on data
gathered by manually pushing the robot toward the desired object. The network
(as can be seen in figure 2.4) then learns the correlation between sensorimotor
experiences and words. The figure is taken from [60].

The experiment is influenced by the work of Arbib [4], as discussed above.
The link between motor actions and language is present in the experiment of
Tani et al. Language itself is also coordination of motor actions, such as con-
trolling the larynx, lips, tongue and making facial gestures. Here, the robot has
a meaningful representation of word sequences. Not only does the experiment
make the link between language and motor actions, I see it also as a solution
to the symbol grounding problem4. Tani et al. have successfully accomplished
grounding sentences into meaningful representations of the robot. The robot is

4 The symbol grounding problems is a term coined by Harnad [25]. It is a response to an
argument made by Searle [57]. Searle argues that symbols have absolutely no meaning to a
computer. In order to illustrate his point, Searle made an example known as the “Chinese
Room” argument. The argument is as follows: suppose a human with no knowledge of the
Chinese language was placed in a room. The person is handed questions written in Chinese.
The person does not understand Chinese, but has a book of rules, written in English, on how
to manipulate Chinese symbols. The person is thus capable of answering the questions by
simply following the rules provided by the book. To the Chinese people on the outside of the
room, it seems as if the person understands Chinese, when it does not understand anything
at all besides following the rules.

The analogy to a computer system is simple. The variables of a computer program only

19

able to understand the sentences and turn them into action, without the need
of explicit symbols. When the robot is told to “push red” it would know what it
means, and perform the corresponding action. Tani et al. do not mention this
as symbol grounding, perhaps since it is such a simple example. But I would
not be surprised if Tani publishes more complicated examples of this behaviour
and labels it symbol grounding.

Cangelosi has done a lot of work in the area of symbol grounding. More
recently, he has done work on grounding by imitation [9]. Cangelosi et al. did
experiments where a robot would learn by imitation from another robot [8].
At the same time, the teacher would tell the learner the names of actions and
objects (i.e. the verbs and the nouns). The robots were stationary, and had
arms that could manipulate objects. The experiment was done in a computer
simulation, with real-world physics (such as gravity). See figure 2.6.

During the second simulation agents learned to perform basic actions by mimicking them, while

simultaneously learning words corresponding to these actions. Furthermore they learned higher-level

composite behaviours by receiving linguistic descriptions containing these previously acquired words.

The agents merged basic actions into a composite action by transferring the neural grounding of the

words referring to basic actions to the word indicating the higher-level behaviour. This process of

grounding transfer (Riga et al., 2003) grounds words, known exclusively from linguistic descriptions,

on the neural level by adapting neural activations of the words contained in the description.

The imitator robot, during training, learned the basic actions of opening and closing their left and

right arms (upper arms & elbows), lifting them (shoulders), and moving forward and backward

(wheels), together with the corresponding words. At the 50
th
 epoch it received 1

st
 level linguistic

descriptions of combined actions, consisting in a new word and two known words referring to basic

actions. A combined action consisted for example in grabbing the object in front of them and was

described like: “close_left + close_right = grab”. Grounding was transferred from “close_left” and

“close_right” to “grab”. Consequently, when the agent was given the command “grab” it successfully

executed the combined action of pushing its arms towards the object and grabbing it. At the 100
th

epoch it received second level descriptions, in which a defining word was itself learned exclusively

from a linguistic description. Following the example of before, we combined grabbing and moving

forward into carrying: “move_forward + grab = carry”. Also at this level grounding was successfully

transferred to the new word, enabling the agent to correctly perform the action of carrying on hearing

the word “carry”: it pushed both arms against the object and moved forward, effectively exhibiting the

behavior of carrying the object. The system learned several of these combined actions simultaneously,

and also four-word definitions and grounding transfers of up to three levels have been realized.

The second simulation sheds light on language as a cognitive enhancer, as a means through which

new behaviors can be acquired quickly and effortlessly, building on experience accumulated by

previous generations of agents. The importance of cultural transmission in cognitive development is

highlighted. Our long-term goal is to develop a framework for training robots by demonstration, using

both imitation and a natural language interface, enabling for a neuro-robotic approach to investigating

imitation as a precursor of communication.

Figure 2: Simulation setup for the model of imitation and communication in epigenetic robots.

5. Conclusion

Adaptive agent models and evolutionary and epigenetic robots can significantly contribute to a better

understanding of the strict interdependence between language and perceptual, motor and cognitive

capabilities. Such models of language emergence have important scientific and technological

implications for research in language and communication. In robotics and artificial intelligence, they

provide new approaches and algorithms for the development of autonomous interactive systems. In

cognitive science, these models permit a deeper understanding of the psychological and cognitive

bases of language and its grounding in perceptual and sensorimotor abilities. Finally, in linguistics and

other disciplines interested in language origins, agent and robotics models allow the simulation of the

evolutionary emergence of language and the test of language origin hypothesis.

Figure 2.6: The robots in Cangelosi et al.’s experiment on learning by imitation.
The learner robot imitates the teacher robot while the teacher communicates the
names of actions and objects. Note that the imitator does not see the teacher
(I will make the same simplification, see section 5.6). The imitator learns the
relation between action and objects. The figure is taken from [8].

The learner was already programmed to manipulate objects. The learner
has an on-line mimicking algorithm that produces movement dynamics which
is fed to a neural network. The neural network then memorizes action patterns
that it receives from the teacher robot.

The learning robot would then learn the relationship between words and

make sense to the programmer, the computer only follows a set of rules that it knows it can
perform on the variables. The computer program cannot understand anything of the program
at all. The symbols themselves are extrinsic to the computer, i.e. they mean nothing to the
computer itself.

Harnad proposes a solution to this problem. By grounding symbols in a bottom-up fashion,
they will be meaningful to a computer. Grounding symbols means making a link between
a symbol and its experience in sensor data. For instance, the symbol of an apple will be
grounded with the perceptions of the shape of an apple, its smell, how it tastes and what if
feels like to hold. The next time the computer is presented the symbol “apple” it would know
what an apple is, it would mean more than just a symbol.

20

their actions by imitating actions while being told the name of the action. The
imitating robot would later learn composite actions based on descriptions of
simple actions. The composite action “grab” would be presented like “close left
arm + close right arm = grab”. “grab” would be a new word to the robot, and
it had to combine the actions “close left arm” and “close right arm” in order to
perform “grab”. This is possible since the robot has grounded representations
of the actions “close left arm” and “close right arm”.

Tani and Cangelosi actually implement the ideas put forth by Arbib, which in
turn builds on the discovery by Rizzolatti et al., that the mirror neurons enable
imitation learning by representing internal motor actions. Language plays an
important part, either in the form of generating internal symbols (such as in
the case of Tani) or as explicitly as in the work of Cangelosi. This again goes
hand-in-hand with Arbib’s idea that the mirror neurons are what enable us to
have language. The link between language (i.e. having internal symbols of some
sort) and motor action is strong.

Another approach to imitation is taken by Matarić [42, 41]. She has a mod-
ular architecture where four important aspects of imitation are considered. The
modules are: 1) a mechanism for selective attention, allowing the robot to focus
on important features of the visual input (i.e. hands or tools). 2) A mapping
system that transforms visual input to meaningful representations for the robot
(i.e. transforming coordinates). This system is referred to as the mirror system
of the architecture. 3) Motor primitives that can be composed to form more
complex motor behaviours. This module resembles (if not completely equal
to) Brooks’ subsumption architecture5 [7]. 4) A learning mechanism, based on
matches found between observed movements and executable movements. The
learning mechanism is biased towards reusing existing motor primitives by com-
posing them hierarchically. The architecture can be seen in figure 2.7. Matarić
attacks both problems put forward by Schaal, as her architecture deals with both
the visual processing part of imitation as well as the actual motor behaviour.

The modular approach has been tested on several test-beds, including sim-
ulated humanoids, a robot dog (a Sony AIBO6), mobile robots, and a real hu-
manoid robot, and found to work well. Matarić has mainly a symbolic approach
to imitation, but has done connectionist implementations as well [5].

2.3.1 The correspondence problem

The correspondence problem is one of the major problems in the field of im-
itation learning [49]. It concerns the problem of mapping sensor input from

5In Brooks’ subsumption architecture, different motor primitives (represented as modules)
can be arranged hierarchically in layers. Higher layers represent more abstract actions, whereas
low-level layers account for simple actions. The point is that the low-level actions are given
higher priority over the higher levels, and can therefore override actions given from the higher
levels, since many modules might issue a motor command at the same time. The idea is
that low-level actions deal with simple tasks needed to stay alive (such as avoiding obstacles)
whereas the higher levels represent more abstract goals. There is no complex computation
being done, it is a purely reactive architecture. Several modules can therefore “fire” at the
same time (i.e. issue motor commands). The arrangement into layers with different priorities is
supposed to deal with the selection of motor commands “on-the-fly” without any computation
as well. Brooks’ architecture is probably the most successful reactive architecture, however it
cannot escape the limitations of its designer. When several layers and modules are present, it
becomes harder to make it work.

6http://www.sony.net/Products/aibo/

21

�� A selective attentional mechanisms for extracting salient movement information from the
visual stream by focusing on the e�ectors �hands or tools�� We assume that this mechanism is
based on an evolutionarily old capacity to recognize kin and conspeci�cs �Parr � de Waal �			�
and interpret their actions and situation�speci�c intentions �Cheney � Seyfarth �		���
�� A mirror�like sensory�motor mapping system as a means of representational integration and

transformation from visual input into executable motor programs� This mechanism performs the
functions variously referred to as direct matching� mirroring� or resonance �Iacoboni et al� �			�
Rizzolatti et al� �		�b�� found in the monkey and human�

� A motor control system consisting of primitives that constitute the basic motor vocabulary

composable into a broad movement repertoire through sequencing and superposition� These can be
thought to perform the function of spinal force��eld primitives �Bizzi et al� �		�� as well as cortical
central pattern generators �Brooks �	��� Stein �		���
�� A classi�cation�based learning mechanism that learns from the match between the observed

and executable movements and is biased toward parametrized reuse of the existing motor programs
through hierarchical composition�
Figure � shows the model� with the information processing �ow indicated among its main

components� We now describe each of the model components in turn�

Figure �� The information processing �ow in our imitation model� structured around perceptual�

motor primitives used for movement segmentation� classi�cation� and generation�

Attention in Movement Tracking

Deciding what to pay attention to for subsequent imitation is a dicult problem� Based the
literature on visual attention �Pashler �			�� and on our own eye�tracking results �Matari�c �
Pomplun �		��� we assume that the focus of attention is not driven directly by the intention to
imitate� Instead� in our model we postulate an attentional mechanism that takes into consideration
both intrinsic bottom�up image features �such as velocity changes and the position of the end�point�
and extrinsic� top�down task goals �imitation or otherwise� in selecting what to attend to�
Our attentional mechanism performs a segmentation of the retinal space� then evaluates the

current interest level of each feature� and �nally displaces the center of attention accordingly� We
transform all of the features into an egocentric coordinate frame �Stein �		�� Flanders� Tillery �
Soechting �		�� Flanders � Soechting �		�� suitable for subsequent higher�level processing� The

�

Figure 2.7: Matarić’s modular approach to imitation. Note that the use of the
word module is not according to that of the glossary, instead it simply means “an
independent unit”. Each of the modules correspond to what Matarić regards
important concepts of imitation. The figure is taken from [42].

one frame of coordinates to another. For instance, when the teacher performs
a gesture that is to be imitated, it is perceived visually by the imitator. How-
ever, the imitator needs to transform the information hidden in the visual data
onto its own motor capabilities. This is no simple task. Most researchers avoid
the problem by making simplifications, such as Demiris’ approach where he is
able to read the joint angles of the demonstrator [14]. I have taken the same
approach in my implementation, see section 5.6.

To have a truly autonomous situated imitative agent in the real world, it
needs to have the ability to extract this information from visual input. This
will require collaboration with research done in the image processing field.

2.4 Discussion

Comparing Piaget and Meltzoff and Moore it seems like Meltzoff and Moore have
the most plausible explanation regarding the development of early imitation in
the newborn. They go against Piaget who claims that certain abilities (i.e.
being able to imitate acts that include unseen parts of the child’s own body) is
only evident after about a year or so. Their model incorporates a mechanism
allowing for comparison between the organ relations of the other and the self.
Since this mechanism also can correct errors in the self, it provides a solution
to the dualism problem that Piaget mentions, i.e. that the child is not able
to discern itself from the other. Since the child is able to tell that there is an
error in its own movements compared to that of the other, it must know what
constitutes the self and what is external.

After reading about mirror neurons it seems like they could be the biological
equivalent of the matching system that Meltzoff and Moore have in their frame-
work. Although mirror neurons are a relatively new discovery, they are gaining
importance and interest from different fields (such as artificial intelligence and

22

neuroscience).
Recent evidence shows that children with autism have no mirror neuron

activity [11]. In an experiment where children with and without autism were
told to observe and imitate facial expressions, both groups of children performed
equally well at the imitation task, but the children suffering from autism did
not have any mirror neuron activity, as opposed to the children without this
disorder. The children suffering from autism must rely on some other visual and
motor attention mechanism to achieve the same effect (the imitation of the facial
gesture), but still they have a hard time understanding the emotions conveyed
by the facial expression. This supports Gallese’s theory that the mirror neurons
make an individual capable of taking the perspective of another. Lacking this
ability coincides with the social problems children with autism have, i.e. having
problems functioning socially due to lack of ability to understand how other
people feel.

In short, imitation learning and mirror neurons are gaining a lot of support
of being a crucial component for the development of human cognition. The
renowned neurologist V. S. Ramachandran believes mirror neurons will help
explain the complex mental abilities of human beings by predicting that “mirror
neurons will do for psychology what DNA did for biology” [52].

For me as a computer scientist, there is a lot of work to be done to implement
these ideas, as part of the on-going goal to discover true artificial intelligence.
An important question is how to implement the different models proposed. I
believe a bottom-up approach to intelligence (also known as sub-symbolic ar-
tificial intelligence) is the most promising route of one day achieving true AI.
There exists an array of techniques that could be used (for a collection of the
most common ones, see [47]).

If placing the computer scientists discussed above along a line where connec-
tionist approach would be to the far left and a symbolic approach to the right,
Tani, Cangelosi and Gaussier would be to the left, Demiris and Hayes would be
somewhere in the middle (since they began using hard-coded forward models
to do predictions, but later on tried techniques like bayesian belief networks)
and Matarić to the right. This is a very coarse clustering, since both Demiris
and Hayes and Matarić have made use of connectionist methods in their body
of work, but it separates the works discussed here.

Another coarse clustering would be to look at how imitation is implemented.
Either there is one network doing everything, or there are multiple experts
approaches. Wolpert, Matarić and Demiris and Hayes belong to the latter,
whereas Cangelosi, Tani and Gaussier would be in the former category.

As a closing note, Breazeal and Scassellati puts one type of imitation learning
above all others. That is when the student learns both the goal and how to
achieve the goal simply from watching. They call this true imitation. A system
that would be able to perform true imitation would without doubt represent a
major breakthrough in the field of artificial intelligence.

23

Chapter 3

Related work

For this thesis, the focus has been on designing and implementing a multiple
paired inverse and forward models architecture (which will be described later
on, in chapter 4). Forward and inverse models1 are concepts from control the-
ory, however neuroscientists who have studied motor control and learning have
begun to use the inverse/forward model pairing to explain motor control in
the brain. Especially Wolpert uses the inverse/forward pairing to explain how
motor control takes place in the cerebellum [64].

This chapter presents work related to the concept of having multiple paired
models2 share the control of an entity. The differences between HAMMER and
MOSAIC will also be discussed3, but first Jacobs’ mixtures of expert will be
introduced, since it was the first architecture that used several neural networks
that would compete for controlling the output.

3.1 Jacobs’ mixtures of experts

Jacobs was the first to develop the idea of having a mixture of experts [33]
to overcome the storage problems related to neural networks. A network can
only hold a certain amount of information, and the division of the input space
to specific networks will help the networks specialize on certain computational
functions, to avoid interference effects. This is accomplished by using several
expert networks and a gating network that decides which network is the expert
for a given case of input data. This is an easy task to do if one is aware of the

1A forward model takes as input the state of the environment and the action being per-
formed, and predicts the next state of the environment. An inverse model takes as input a
goal that is to be achieved, the state of the environment and predicts which motor actions
must be made to achieve the desired goal [36].

2Note that throughout this thesis I will use “multiple paired models” to mean an archi-
tecture that has several modules. Each module consists of a forward and inverse model. A
module therefore corresponds to a box holding both an inverse and forward model. Multiple
paired models is the architecture that comprises several modules (i.e. it could have been called
multiple modules, but I do not want to add any further confusion by deviating from the term
already used in the literature).

3Jacobs’ mixtures of experts is not discussed along with HAMMER and MOSAIC, since
it is not an architecture used for imitation, and it does not have the inverse/forward model
coupling. The mixtures of experts architecture is mentioned in this chapter for historical
reasons since it was the first architecture that used several neural networks and had a soft
limit gating mechanism to govern the output of the architecture.

24

division of subtasks before training the individual networks, however Jacobs’
mixture of experts learns to allocate experts to regions of the input space. The
experts compete over having control of the final output, and it is the gating
network that assigns probabilities to each of the networks. The architecture can
be seen in figure 3.1.3ert A. Jacobs et nl. Adaptive Mixtures of Local Experts 81

aerts that special-
local in the sense
weights in other

I that each expert
of possible input

zobs et al. use an
y assume that the
of the outputs of

the proportion of
al error on case f’

(1.1)

; the proportional
or, and d” is the

th a blend of the
eat? local expert
: by the combined
ne expert change,
j for all the other
he experts causes
.s in which many
;e competition by
rrage solutions in
a simpler remedy
:s are encouraged

parate experts, we
sion about which
error is then the

.esired and actual

(1.2)

s required to pro-
dual. As a result,
t directly affected
till some indirect

they do not learn the
Jreassigned subtask.

Neiwork

Figure 1: A system of expert and gating networks. Each expert is a feed-
forward network and all experts receive the same input and have the same
number of outputs. The gating network is also feedforward, and typically
receives the same input as the expert networks. It has normalized outputs
11~ = exp(.r))/ 1, exp(.r,), where .rj is the total weighted input received by out-
put unit j of the gating network. The selector acts like a multiple input, single
output stochastic switch; the probability that the switch will select the output
from expert j is pJ.

coupling because if some other expert changes its weights, it may cause
the gating network to alter the responsibilities that get assigned to the ex-
perts, but at least these responsibility changes cannot alter the sign of the
error that a local expert senses on a given training case. If both the gating
network and the local experts are trained by gradient descent in this new
error function, the system tends to devote a single expert to each training
case. Whenever an expert gives less error than the weighted average of
the errors of all the experts (using the outputs of the gating network to
decide how to weight each expert’s error) its responsibility for that case

Figure 3.1: The mixtures of experts architecture. Each network competes for
control over the output nodes. The gating network determines which expert will
govern the output nodes. A soft limit approach is used, allowing for the output
of the experts to overlap, as opposed to a winner-take-all approach, where only
one expert would be chosen. The figure is taken from [33].

The idea is that the architecture will self-organize into dividing the input
space to the different experts. When the input space has many clusters, the
idea is that an expert will focus on one of the clusters. In addition, since a soft
limit approach is taken, the experts can overlap and the correct output for a
given input can be shared among the experts. The mixture of experts was used
to discriminate vowels recorded from different speakers. The different experts
would then specialize on different classes of vowels to discriminate them from
each other.

The architecture was also expanded to include hierarchies [35], where the
nodes of the tree constitute two experts and a gating network. The root node
is thus the last gating network, determining what to output from the previous
gating networks.

Even though his architecture was not used for imitation specifically, nor did
he use an inverse/forward coupling, he was the first to propose an architecture
where multiple neural networks split the input space amongst themselves to
facilitate the learning of each network.

25

3.2 The HAMMER architecture

The hierarchical attentive multiple models for execution and recognition of ac-
tions (HAMMER) [14] is a dual-route architecture. The duality can be found
in a passive and an active imitation route. The passive imitation route consists
of imitating directly; the posture of the demonstrator is extracted from visual
information, and a movement matching module produces the motor commands
required to achieve the current posture in the motor system of the imitator.
This ongoing process enables the system to learn novel behaviours. The passive
imitation route is inspired by the Active Intermodal Mapping hypothesis made
by Meltzoff and Moore (see section 2.1). The passive imitation architecture can
be seen in figure 3.2.

• The range of actions imitated was wide, which would mean that the infant would have to have a
large number of FAPs in its repertoire.

• The fact that the infants attempt to and succeed in improving the quality of the imitated act
(Meltzoff, 1981).

(Meltzoff & Moore, 1983, Meltzoff & Moore, 1989) put forward the ‘‘Active Intermodal Mapping’’
hypothesis which postulates that the infants use the demonstrator's states, perceived visually, as a target
against which to direct their own body states, perceived proprioceptively. This hypothesis is
particularly attractive in the case of facial or head movements for which the infant has no other way of
knowing the state of its own body other than proprioception. The existence of a mechanism that
matches stimuli between different modalities has also been advocated by (Maurer, 1993), but while
Meltzoff's AIM mechanism appears to be activated as a choice made by the infant, Maurer argues that
the infant's intermodal matching of stimuli is a by-product of what was termed neonatal ‘‘synesthesia’’:
the infant confuses input from the different senses. The infant, it is argued, does not register the
modality that the stimuli appeared in but rather it responds to changes in the stimulation's intensity
summed over all of the undifferentiated sensory modalities. Synesthesia is hypothesised to be a normal
stage of early infant development: it is argued that the primary sensory cortex is not very specialised in
infants, but with development it becomes so, the senses become more differentiated, and ‘‘true’’
intermodal matching develops. Whatever the exact mechanism is, the ability of the infant to match
stimuli between modalities is well documented, and has been demonstrated between other modalities in
addition to the visual/proprioceptive cases mentioned earlier, for example tactual/visual intermodal
matching (Meltzoff, 1981, 1993).

At this stage it is useful to draw parallels between this work and the assembly and mobile robot
imitation work mentioned earlier. There are a lot of commonalities between the passive imitation
model in assembly robots and the IRM model in infants. Both rely on the existence of a set of
predefined action patterns, which are triggered after the perception and classification of the visual
input. This set, at least in the robot work is fixed, and frequently tuned to the requirements of the task
in hand.

The mobile robot imitation work (Hayes & Demiris, 1994, Dautenhahn, 1995) is closer to the AIM
hypothesis model, since the robots do not attempt to recognise the type of action performed by the
demonstrator, but imitate directly. However there is a difference between AIM and the approach
followed by the mobile robot researchers: the robot imitators do not attempt to match the
demonstrator's state with their own (as AIM suggests), but usually achieve it by trying to maintain a
quantity constant. For example, in (Hayes and Demiris, 1994) where a robot learns how to negotiate a
maze by imitating the movements of another robot, the imitator robot simply tries to maintain the
distance between itself and the demonstrator robot constant.

(Demiris and Hayes, 1996) presented a computational architecture that follows the AIM model more
closely, and demonstrated it in the context of imitation of head movements by a robotic head (Demiris
et al, 97). The details of this architecture have been presented elsewhere (Demiris and Hayes, 96,
Demiris et al 97), but the essential parts are shown in figure 1:

Figure 1: the passive imitation architecture

Figure 3.2: The passive imitation route of HAMMER. Based on visual infor-
mation, the posture is extracted from the demonstrator. The matching module
then computes which motor commands are required to achieve the same posture
in the imitator as that of the demonstrator. The figure is taken from [14].

The active route consists of multiple paired inverse and forward models,
where one pair of inverse/forward models constitute one behaviour. The imita-
tor has a repertoire of movements that it knows. The imitative process consists
of finding the one behaviour in the repertoire that matches the behaviour of
the demonstrator. When a behaviour is observed, each inverse model outputs
the motor commands required to achieve the desired position in parallel. Note
that the input to the system is the state of the observer. The idea is that the
imitator now puts oneself in the shoes of the other, and generates motor com-
mands based on what it would do if it was in the same state. The output of
the inverse model is fed to the forward model, which predicts what the next
state will be. The predictions of the forward models are compared with the
demonstrated trajectory at the next timestep, and when the demonstration is
completed, the behaviour with the highest confidence value (i.e. whose predic-
tions did best match the demonstrated trajectory, calculated at each timestep
through the demonstration) is chosen as the behaviour corresponding to that of

26

the imitator.
The active imitation route (see figure 3.3) thus consists of trying out different

behaviours in parallel, and selecting the behaviour that best matches the actual
demonstrated trajectory.

Figure 2: the architecture’s basic building block, a behaviour paired with a forward model.

More importantly, the same structure can be used in order to match a visually perceived demonstrated
behaviour with the imitator's equivalent motor one. This is done by feeding the demonstrator's
current state as perceived by the imitator to the behaviour modules and having it generate the motor
commands that it would output if it was in that state and wanted to execute this particular behaviour.
The motor commands are inhibited from being sent to the motor system. The forward model outputs an
estimated next state which is a prediction of what the demonstrator's next state will be. This prediction
is compared with the actual demonstrator's state at the next time step.
This comparison results in an error signal which can be used to increase or decrease the behaviour's
confidence value, which is an indicator of how confident the particular imitator's behaviour is that
it can match the demonstrated behaviour.

 Figure 3: the complete active architecture, with multiple behaviours-forward models operating in parallel.

Figure 3 shows the complete architecture which consists of several of the structures that were described
above, operating in parallel. When the demonstrator executes a behaviour, the
perceived states are fed into the imitator's available behaviours which generate motor commands that
are sent to the forward models. The forward models generate predictions about the demonstrator's next
state which are compared with the actual demonstrator's state at the next time step, and the error signal
resulting from this comparison affects the confidence values of the behaviours. At the end of the
demonstration (or earlier if required) the behaviour with the highest confidence value, i.e. the one that
is the closest match to the demonstrator is selected.

Implementation of the architecture

This section presents and analyses the results of implementing the architecture above on a dynamics
simulator of a thirteen degrees of freedom robot. The results show that the architecture is capable of

Figure 3.3: The active route of HAMMER. Each behaviour (i.e. inverse model)
outputs the motor commands that achieve the desired state. The coupled for-
ward model predicts the outcome of the motor commands on the environment.
If the forward model predicts well, the coupled inverse model will be chosen as
the behaviour for the demonstrated movement. The figure is taken from [14].

The HAMMER architecture has a lot of extensions and variations4. By
extending it with an attention mechanism [15], significant computational savings
were achieved. The attention mechanism would provide sensory information
only to certain modules that perform well, excluding other modules that do not
seem to provide the solution to the imitation problem. Since having multiple
models leads to the problem of coordinating them, the attention mechanism was
invented to ease the computation involved in trying to decide which module was
best suited. For instance, if the behaviour to be imitated consisted of picking
up a cup, there is no point in considering a module that throws darts. It is
computationally expensive to consider the modules from start till end that are
not relevant at all for the demonstrated trajectory. The idea of the attention
mechanism was thus to filter out on an early stage the behaviours that were
clearly not suitable to generate the correct behaviour.

3.3 The MOSAIC architecture

The modular selection and identification for control (MOSAIC) [63] is also made
up of multiple paired inverse and forward models. The forward model is fed
an efference copy of the total motor command and the current state. The

4Note that in [14] the architecture was not referred to as HAMMER, although it is clearly
the same architecture. I have chosen to consequently call it HAMMER.

27

inverse model is fed the current state and the desired state, and outputs a motor
command to achieve the desired state. In addition, each pair of inverse and
forward models has a responsibility predictor, that can predict the suitability
of the module, based on contextual information. Evidence from a PET study is
found to support Wolpert’s multiple forward and inverse models architecture.
Chaminade [10] found that when the goal or the action of a movement was not
displayed, different areas of the brain were activated in order to construct either
the means that achieved the goal or the actual goal (depending on which was
absent). The MOSAIC architecture can be seen in figure 3.4.

For each module, multiplying the responsibility predictor and prediction
error of the forward model gives a responsibility signal. The responsibility signals
of all the modules are then normalized, and the final motor command output is
based on the normalized responsibility signals. The responsibility signal value
also determines how much the forward and inverse models will learn; it plays
two important roles in MOSAIC: 1) in the decision taking process (then as
the responsibility predictor and 2) in the learning process (when it has been
multiplied with the likelihood of the forward model, then as the responsibility
signal which is used to gate the learning of the networks). If a forward model
makes good predictions, the forward model and the inverse model will be receive
more of its error signal for training than a forward model with higher prediction
errors.

The calculation of the predictive error can only be done at t+1, i.e. at t = s
the forward model makes a prediction, and at t = s + 1 it is possible to see how
well the forward model predicted the next state of the environment. At t = 0
there is an evident problem: there is no prediction done at t = −1 to compare
with. This is where the responsibility predictor comes in: it allows selection of a
module based on contextual information prior to actual movement. Effectively,
at t = 0 it is the responsibility predictor alone that determines the suitability
of each module.

MOSAIC differs from Jacobs’ mixture-of-experts in the way the different
networks are coordinated: in Jacobs’ architecture, there is one gating network
whereas in MOSAIC there are several modules determining the gating of the
different modules.

MOSAIC was first an architecture for sensorimotor control and learning
[63, 64, 39, 27], but in later works it has been extended to include imitation as
well [62]. When dealing with imitation, the coupling of the forward and inverse
models are a bit different: instead of feeding the total motor command into
each forward model, the output of the inverse model is fed to its paired forward
model. The difference between the two can be seen in figure 3.5.

3.4 The differences between MOSAIC and HAM-
MER

MOSAIC was originally intended as an architecture for sensorimotor control
and learning, not imitation, as opposed to HAMMER. MOSAIC is intended to
directly model neural activity in the brain, and is therefore implemented using
neural networks [27]. HAMMER is also supposed to be a biologically plausible
model for neural activity in the brain, however it is implemented using a variety

28

150 ms previously, a temporal credit assignment problem
faced by many models of motor learning. We are currently
testing models in which the metabotropic receptors on
the P-cell act to keep a trace of previous input activity
(M. Malkmus, R.C. Miall, and J.F. Stein, unpublished), in line
with similar models of the cerebellar cortical contribution
to eye-blink conditioning53 or saccadic adaptation54.

The cerebellum as multiple paired forward and inverse
models
The previous sections have focused on the utility and evi-
dence for either inverse or forward models within the cer-

ebellum for generation of motor commands and control of
movements. In this section, we speculate on the benefits of
multiple internal models and, in particular, the advantages
of pairing inverse and forward models for motor learning
and control. Although the cerebellum has often been
viewed as a modular system3,55, we present a new cohesive
computational framework for motor learning and control.

Humans demonstrate a remarkable ability to generate
accurate and appropriate motor behavior under many dif-
ferent and often uncertain environmental conditions. Con-
sidering the number of objects and environments, and their
possible combinations, that can influence the dynamics of

Review W o l p e r t e t a l . – I n t e r n a l m o d e l s

344
T r e n d s i n C o g n i t i v e S c i e n c e s – V o l . 2 , N o . 9 , S e p t e m b e r 1 9 9 8

Box 1. Multiple paired forward-inverse models

Responsibility
estimator

n

2

1

Efference
copy

Predicted
sensory
feedbackSensory

feedback

Prediction
error

Contextual
signal

✖

Feedforward
motor

command
Forward
model

Inverse
model

+

✖

✖

Prior

Responsibility
estimate

 (posterior)

Feedback
motor

command

+

✖

+

Likelihood
model

Likelihood

Responsibility
predictor

Motor
command

Motor
error

Desired
trajectory

–

–

The figure shows a schematic of the multiple paired forward-
inverse modela,b. N paired modules are shown as stacked sheets
(the dotted lines represent training signals and 3 signal multipli-
cation). The details of the first module are shown and interactions
between modules take place through the Responsibility
Estimator. Each module consists of three interacting parts. The
first two, the forward model and the responsibility predictor, are
used to determine the responsibility of the module. This respon-

sibility signal reflects the degree to which the module captures the
current context and should, therefore, participate in control. The
aim is that the multiple forward models learn to divide up experi-
ence so at least one forward model can predict the consequence of
performed actions under any given context. The likelihood that a
particular forward model captures the current behavior is deter-
mined from its prediction error. The smaller this error, the more
likely the sensory feedback and efference copy are consistent with

Figure 3.4: The MOSAIC architecture. The inverse model receives the desired
state of the environment, and produces the motor command that will achieve the
desired state. The feedback motor command is used to train the inverse model.
The feedback error command is also added to the final motor output command,
although this is not shown on the figure (this is more easily visible in [27]).
The feedback error motor command [38] is based on the differences between the
desired state at timestep t and the actual state at timestep t + 1 (i.e. how well
the motor commands managed to achieve the target state), multiplied with a
gain. Each forward model receives an efference copy of the motor command
being executed. Based on the motor command, the forward model predicts
the next state of the environment. The prediction is compared to the actual
next state of the environment, and a likelihood is computed. The likelihood
assumes the prediction error has a gaussian distributed noise term with standard
deviation σ. The responsibility predictor receives contextual sensor information,
and outputs a prior responsibility that is multiplied with the likelihood. This
product yields the responsibility signal, and is normalized across all the modules.
It is theoretically possible that all the modules receive the same strength in
the responsibility signal, i.e. that all modules are equally suited to control
the movement. Notice how the responsibility signal determines how much the
inverse model, the forward model and responsibility predictors receive of their
error signal. If the responsibility signal is high, the models will receive more
of their error signal. The different modules undergo competitive learning, since
the good predictors at a certain instant will learn more than the bad predictors
at the same time. For more detail on the different parameters of the MOSAIC
architecture, see section 6.4. The figure is taken from [64].

29

598 D. M. Wolpert and others Motor control and social interaction

controller 1

+
controller 2

controller 3

controller 4

predictor 1

predictor 2p

predictor 3

predictor 4p no
rm

al
iz

at
io

n

prediction
error

motor
command sensory feedback

of me

responsibilities

predicted
consequence

predictor 1

predictor 2

predictor 3

predictor 4 no
rm

al
iz

at
io

n

prediction
error

possible motor
commands sensory feedback

of you

responsibilities

predicted
consequenceqqqq

1

time

time

responsibilities

action
production

action
observation

efference
copy

controller 11

controller 22

controller 3

controller 44

3 4 2 12

2 4 1 2 13

(a)

(b)

Figure 3. The MOSAIC for action observation. During action production (a), at a given time only one or a small set of
modules generates a motor output. In this example of balancing a walking stick on a finger, the modules are activated in a
particular sequence such as 1 → 3 → 2 → 4 → 2 → 1. For action production the outputs of the controllers are combined
and predictions of the consequences of the motor command are compared with sensory feedback from my own body to
determine future control. For action observation (b) each controller in the observer generates the motor command that it
would produce given the observed trajectory and current state of the observed person. Rather than these commands acting on
the observer’s own musculoskeletal system, the output of each controller forms the input to its paired predictor, thereby
generating a prediction of the likely next state. Therefore, the observer uses her own multiple modules to try to simulate the
observed percept. These predictions are compared with the observed next state of the performer, leading to the likelihood that
each of the observer’s controllers would have generated the behaviour. Therefore, the observer encodes this as a symbolic
stream, for example 2 → 4 → 3 → 1 → 2 → 4, representing the sequence of modules that needs to be used to generate the
observed behaviour. The observer can use this information in imitation either by replacing their usual sequence of module
activation or by biasing the selection.

duce prediction errors. Again, these prediction errors can
be converted into responsibilities determining which of my
controllers has to be active to generate the motion I see
you perform. Therefore, the identities of the modules
which best account for the percept form a symbolic code
of the hidden state of the actor. When the actor generates
a continuous trajectory (by activating modules
2 → 1→3 → 1→4 …), the observer encodes this as a sym-

Phil. Trans. R. Soc. Lond. B (2003)

bolic stream (e.g. module 1 → 3→4 → 2→1 …) rep-
resenting which module needs to be used to generate the
observed behaviour. This symbolic representation cap-
tures a representation of the observed movement, which
has fewer dimensions than would be needed to store the
entire trajectory. Moreover, the movement is represented
in the observer’s private lexicon. If the MOSAIC of the
actor and observer are identical (which is never likely to

Figure 3.5: In a) MOSAIC is the same as discussed earlier (and seen in figure
3.4. Notice the subtle difference in b), where the output of each inverse model
(i.e. controller) is fed to its paired forward model (i.e. predictor). Based on
how well these forward models predict, responsibility signals are computed. The
sequence of responsibility signals is then used to imitate the behaviour that was
observed, by replaying the sequence of responsibility signals. The figure is taken
from [62].

30

of techniques. In [14], the forward models were hand-coded, and the inverse
models were PID5 controllers. Later on, bayesian belief networks6 were used for
learning the inverse/forward coupling [13, 12] and in [58, 16] minimum variance
controllers7 were used as inverse models. Even though both architectures model
what goes on in the brain, it is evident that the implementation of MOSAIC
is more biologically plausible. Implementations of the HAMMER architecture
have been more pragmatic, trying out different solutions that might work.

However, if we do not consider how the architecture is implemented (i.e.
what goes on inside each box in the architecture), the differences are not that
big. HAMMER has the direct coupling between inverse and forward models
(i.e. that the output of the inverse model is fed directly to the forward model,
see figure 3.3), whereas in the MOSAIC architecture, the forward model was fed
the sum of the motor outputs, as can be seen in figure 3.4. This inverse/forward
coupling was present in HAMMER from the beginning was added later on in
MOSAIC (as I pointed out in the caption of figure 3.5). This is probably related
to the fact that the MOSAIC architecture started out as an architecture for
motor control, not for imitation learning specifically. I think the inverse/forward
coupling is a very important part of the architecture for imitation learning, as
it best shows how the different modules are responsible for both producing an
action and predicting its consequences.

Another difference is the responsibility predictor of the MOSAIC architec-
ture. This gives the modules to have a prior conception of how well suited the
module is for the given movement, and that there is an explicit signal that could
bias the selection of modules. The HAMMER architecture does not possess such

5PID stands for Proportional-Integrative-Controller, which is a way of controlling a system
based on an error term [50]. The error term is the difference between the actual state and the
desired state of the system. If there is a large error term, the PID controller should output
a large control signal to correct the state of the system. The correction is based on three
terms: 1) the proportional error, which is simply the difference between the actual state and
the desired state, multiplied with a constant, 2) the integrative error, which is the summation
of the previous error terms, and 3) the derivative error, which computes the rate of change of
the error over time. The idea is that the proportional error will correct any sudden changes
of the system, the integral error will account for errors in the past and that the derivative will
predict the error term in the future, by looking at the rate of change of the error. These error
terms must be tuned in order to yield good performance, which is often not a trivial task.

6Bayesian belief networks learn a distribution over a set of variables [47]. The naive Bayes
classifier (ibid) assumes that all variables in a dataset are independent of one another. This is a
strong assumption, which is why it is called a naive classifier. Normally, you have some sort of
relationship between different variables. Bayesian belief networks represent the relationship
between variables, by stating conditional independence between subsets of variables. The
conditional independence assumptions are represented by a directed acyclic graph, where
a node corresponds to a variable. It is the arcs of the network that show the conditional
independence, a node j is conditionally independent of other nodes that does not descend
node j given its immediate predecessors. The Bayesian belief network can also be used for
inference; it can compute the probability distribution of any subset of variables knowing the
values of another subset of variables.

7The minimum variance controller is based on a principle that the central nervous system
aims to minimize the noise that results of signal strength [26]. I.e. a strong signal will produce
more unstable behaviour, as a result from the noise that is inherent in the central nervous
system. The variance of the noise depends on the signal strength, and it increases with the
strength of the signal. The desire to minimize the variance of the noise explains the smoothness
of arm movement trajectories, displayed in bell-shaped velocity profiles. Sudden and abrupt
changes in the trajectory of the arm will require a large control signal, which will be subject
to more noise than smooth trajectories. Therefore, smooth trajectories are optimal, and is
therefore the preferred solution of the central nervous system.

31

a method, and must take all the modules into consideration. This is probably
why Demiris and Khadhouri developed the attention mechanism for the mul-
tiple models, so that the search for the appropriate model could be simplified.
Wolpert avoids this problem, by utilizing the context signal.

The inverse/forward coupling of the HAMMER architecture makes it more
appealing, since it better shows the modularity of the architecture (as I men-
tioned previously in this section). Demiris does not state that neural networks
should not be used as forward and inverse models - quite the contrary in fact,
since he has used a variety of methods to implement the different models. The
responsibility predictor in MOSAIC seems like a clever way to help coordinate
the different modules, and therefore I will combine these two architectures in
my own design, as will be described in section 4.1.

32

Chapter 4

Design

This chapter describes the design of the architecture. The chapter shows the
conceptual model, and also how data flows in the system. Pseudocode for the
learning and activation of the architecture is also provided.

4.1 The multiple paired models architecture

I have designed a mixture of the HAMMER and MOSAIC architecture. In
MOSAIC [62], there are differences between action production and observation:
when producing an action, each forward model is fed the sum of all the inverse
model motor commands (see figure 3.5). When observing an action for imitation,
the output of each inverse model is fed into the paired forward model instead.
In other words, there is a subtle difference between action observation and
generation in MOSAIC.

My approach is similar to the HAMMER architecture and the MOSAIC
architecture in observation mode, since each inverse model is fed into the cor-
responding forward model. However, HAMMER does not learn on-line to the
same extent as my implementation; in the HAMMER architecture the models
are determined beforehand, either by hand-coding them or learning them by
motor babbling1.

The difference between learning and production of behaviours in my im-
plementation is simply that when learning, the responsibility predictor, inverse
model and forward model are adjusted according to the error signal. See section
5.5.

When imitating, motor commands are being inhibited (i.e. not sent to the
actual motor system) in both HAMMER and MOSAIC during the recognition
phase. In the HAMMER architecture, the behaviour with the highest confidence
value is selected as the appropriate behaviour after the demonstrated behaviour
has finished. In MOSAIC, the recognition phase results in a symbolic string of
activated modules. MOSAIC then uses this string of activated modules to play
back the action that was observed, see figure 3.5.

1Motor babbling is the process where an infant explores its own motoric capabilities by
waving its arms, kicking its feet et cetera. At the same time, the infant learns the connection
between proprioceptive information and movement of the limbs [46].

33

In my implementation, motor commands will be sent to the motor system,
both when learning and generating behaviours (motor commands will be de-
scribed in more detail in section 5.2.1). How is this different from HAMMER
and MOSAIC, except for not inhibiting the motor command? As mentioned
above, the HAMMER architecture does not learn on-line in the self-organizing
way I will implement it. For the MOSAIC architecture: in [62], it is not men-
tioned how the MOSAIC architecture when used for imitation is trained (recall
that the MOSAIC architecture is slightly different when in action generation
mode and action observation mode). The only logical conclusion is therefore
that it is trained like when it is in action generation mode, see figure 3.4. The
novelty in my implementation is therefore that I train my architecture with
the principles from MOSAIC’s action generation mode (i.e. as is done in [27])
but use the principles on the architecture as seen in action observation mode,
something that has not been done by Wolpert.

The resulting behaviour of my implementation can be thought of as the im-
itation done by a child, where it does not know it is actually imitating when
observing an action, corresponding to Piaget’s sixth stage of imitation (see sec-
tion 2.1). Alternatively, it can be thought of as being yet another simulation of
one’s own motor capabilities, i.e. mentally rehearsing the movement generated
by the multiple paired models. However, I personally prefer the analogy to the
child imitating directly - it is truly learning by imitation, since it tries to recre-
ate the postures of the demonstrator, and match its own postures to that of the
demonstrator while watching the demonstrator.

In a sense, I use the “best of both worlds” in my implementation, as discussed
in section 3.4. I use the essence of the HAMMER architecture (the pairing
of inverse and forward models), along with the responsibility predictor of the
MOSAIC architecture, as well as the concept of how the responsibility signal is
used to gate the learning of the neural networks.

4.1.1 Why multiple paired models?

The brain is inherently modular. There are different regions that deal with
specific functions. However, whether there are multiple paired models within
each region (for instance the cerebellum as proposed by Wolpert [64]) is not
certain. Nevertheless, the multiple paired inverse/forward approach seems like
a very plausible explanation to how the brain works. And it is also easy to
implement on a computer.

In addition, the multiple paired models architecture can be seen as a solution
to the problem of trying to compress too much information into one network.
If a network has learned some concepts, the presentation of new concepts will
most likely interfere with the already stored information. This is also called
catastrophic forgetting [1, 2, 3]. By having the several neural networks that will
learn subsets of the total input space, the problem of catastrophic forgetting
can be avoided. Ideally, the control architecture would be one massive neu-
ral network, that would self-organize into a perfect controller for the robot2.

2Note that I do not contradict the obvious modularity of the brain with this statement.
The argument is this: if we knew how the brain learns and self-organizes, a massive neural
network would theoretically develop the same areas that would have the different functions as
found in the brain. I do not mean that a single huge feed-forward neural network could model
the complexity of the human brain, when I say “massive neural network” I think of a high-

34

LIKELIHOOD
NORMALIZATION

PLANT

FEEDBACK
CONTROLLER

ui
t

-x̂i
t+1

x

x

+-

pi
t

lit

λt

ufeedback
ut

xt+1

xt

x't

xt

yt

RESPONSIBILITY PREDICTOR

INVERSE MODEL FORWARD MODEL

Figure 4.1: The architecture of my implementation. The same architecture is
used for both learning and generating a motion. Also note that the responsibility
signals are multiplied with the backpropagated errors. The dashed errors show
the flow of the error signal through the different neural networks. xt is the
current state, x

′

t is the desired state, x̂i
t+1 is the predicted next state at the ith

module, yt is the context info, ui
t is the motor command output from the ith

module, ut is the total motor command, ufeedback is the feedback error motor
command, pi

t is the prior estimation of the suitability of the ith module (the
predicted responsibility), lit is the likelihood and λt is a vector containing the
responsibility signal for each module (which is also used to gate the learning of
the networks). λt is normalized. The plant (i.e. the simulator, see section 5.8)
is shown in gray, since it is the only external entity to the architecture.

35

However, we still do not understand how the brain works and how it is able
to learn, so we are forced to use the current known training algorithms, such
as backpropagation. Although it is clearly not biologically plausible (although
some evidence has been found to indicate that the known training algorithms
are indeed “implemented” in some way in the brain [18]), it is an algorithm
that works rather well, with the problem of sometimes getting trapped in local
minima.

The goal of the multiple paired models architecture is to exploit the advan-
tages of both a localist and distributed representation, in addition to overcoming
the problem of catastrophic forgetting: the localist representation makes it easy
to tell where a certain concept is stored, whereas a distributed representation
is noise-tolerant and can still function even if some of the nodes of the net-
work become destroyed. By having a multiple paired models architecture with
competing neural networks with a softmax gating mechanism this is hopefully
achieved. Once the architecture possesses several neural networks, each can
be trained on a smaller task, making the correspond to a localist representa-
tion. Since each network focuses on a smaller subtask (one could say a network
learned a motor primitive, such as raising the arm), the output of these networks
can be combined to form more complex movements. Each neural network has a
distributed representation in itself, making it robust to noise. With the softmax
gating mechanism (i.e. allowing more than one module control the robot at a
given timestep), the neural networks themselves become part of a distributed
representation, since they are not mutually exclusive.

Wolpert argues well for the existence of inverse/forward models in the cere-
bellum [64], see also section 2.3. Especially the idea of having forward models
to compensate for delay in the central nervous system is an appealing idea,
since the interaction between the multiple paired models architecture and the
simulator will have delays (see section 6.5). The forward models also allows
to implement the predictive aspect of imitation, i.e. that the imitator predicts
what the next move of the demonstrator will be. The predictive capabilities of
the brain is without doubt very sophisticated3.

In addition, the feedback error motor learning scheme developed by Kawato
[38] (see section 5.2.6) makes the training of the inverse model feasible in a very
simple yet effective manner. The combination of these two factors make the
inverse/forward coupling an attractive choice for implementing an architecture
for imitation.

4.2 Flow of data in the system

On the highest level of granularity, the flow of data is depicted in figure 4.2. The
multiple paired models architecture is implemented in MatLab. breve provides
the physical simulator controlled by the multiple paired models architecture
(discussed in more detail in section 5.8). MatLab sends motor commands that
are to be executed in the simulator. breve then executes the motor commands,

order matrix that would allow for networks to develop within the network. It all depends on
the level of granularity. From a bird’s eye view, the brain is a huge neural network (although
extremely complex), but looking more closely, it consists of many connected neural networks.

3In fact, the renowned neuroscientists Llinàs thinks prediction is the most important func-
tion of the brain [40].

36

and after execution (i.e. after 13 discrete steps, see section 6.5 page 67 for
more information regarding the discrete time steps) returns the current state of
the environment to the multiple paired models architecture residing in MatLab.
The multiple paired models then computes the next motor commands (see figure
4.2), based on the state information it retrieves from breve.

Multiple model
architecture

[MatLab]

Physical simulator
of humanoid robot

[breve]

motor commands

current state

Figure 4.2: The overall architecture of the system. Motor commands are sent
from MatLab to breve via sockets, and breve returns the current state of the
environment. The gray box corresponds to the plant in figure 4.1.

The training phase of the system is shown in figure 4.3. Each experiment has
its own MatLab script file containing the parameters for each experiment. By
executing one of the files (for instance breve breve matlab Ks.m), a multiple
paired models structure will be created and then trained on. The experiment
file also contains the target data and the contextual information that is used
to train the multiple paired models architecture. The target states and context
information is provided by another function, named after the experiment (i.e.
Ks).

A more detailed view of the training of the multiple paired models structure
is shown in figure 4.4. Input to the training function is the target state, context
and the multiple paired models that is to be trained, in addition to the state of
the environment. These are all sequences of vectors, and the order of the vectors
is of course crucial. Since the vectors represent a motion in time, the vectors
can not be shuffled, they must be presented in the same order every time.

In figure 4.4, the state of the environment is the state returned from the
simulator. When t = 0, this is the initial state of the simulator. The state,
desired (i.e. target) state and context sensor input are fed to the activation
function of the multiple paired models. This is in correspondence with figure
4.1, where the desired state, current state and context information is fed into the
different models. Based on the actual state of the environment, the accuracy of
the prediction of the previous state can be determined, and the error signal for
the forward model can be calculated. This is the prediction error of the module,
and it plays an important part in deciding how suitable it is for controlling the
motor output.

Similarly, the feedback error is calculated based on the difference between
the desired state at the previous timestep and the current state (see section 5.2.6
for a more detailed description). Based on how well the multiple paired models
architecture performed at the last timestep, the error signals are computed along
with the responsibility signals. Recall that the responsibility signals λ are used
to gate the learning of the different neural networks. This is done by adding the
λ value to the training equation for updating the weights of the neural network,
as seen in equation (5.6), page 48. Notice how the λ value function as the
temperature in simulated annealing - it will effectively determine how much the

37

MatLab experiment file [e.g.
breve_breve_matlab_Ks.m]

Creation of the multiple
model structure

[multiple_models.m]

parameters

the multiple model structure (mm)

Training of the multiple
model structure

[hybrid_mosaic_train.m]

mm with target and context data

trained mm

iterate for #epochs

Save the multiple model and
error log to file

mm and error log

Figure 4.3: The training of the system. By executing the MatLab experiment
file, the multiple paired models are created based on the parameters (see chapter
7 for specification of the different parameters) and subsequently trained. After
training, the multiple paired models structure and error log is saved to a file.

38

network learns.
In addition, predictions are made for the state of the next timestep, and

motor commands are generated from the inverse models. The motor commands
are fed to the simulator, which returns the state of the environment after exe-
cution. This will be fed as the current state to the activation function at the
next timestep.

hybrid_mosaic_train.m

target state

context
Activating the multiple model structure,

calculating motor commands and errors for
the forward/inverse model and the

responsibility predictor
[hybrid_mosaic_activate.m]

mm

Train the neural networks of the multiple
model based on the error signals for each

of the models
[rnn_train.m]

mm error
signals

motor commands

Execute the motor
commands on the

simulator, return the
state after execution

(i.e. next state)
[breve_execute.m]

state of the environment

trained
mm

λ

Figure 4.4: The contents of the training box in figure 4.3. Input to the training
function is the target state, context info and multiple paired models. mm is the
multiple paired models structure, λ are the responsibility signals. In addition,
the current state is obtained from the simulator after execution of the motor
commands. (When t = 0 the current state is the initial state of the simulator.)
This is input to the activation function of the multiple paired models. The flow
of activation can be seen in figure 4.1 (the dashed arrows indicating training of
the models in figure 4.1 is what happens in the box directly below the activation
box). After training, the trained multiple paired models is either returned if
there are no more target states to train after, or it is fed again into the activation
function if there are more target states to train on.

4.3 Pseudocode

This section describes in more detail how the architecture will be implemented.
The pseudocode is still quite high-level, but should provide a good enough un-

39

derstanding of how it will be implemented. For further details, see chapter
5 and the attached source code. References to sections where more detailed
descriptions can be found are given in parenthesis.

4.3.1 Activation of the architecture

This is how the architecture is activated, i.e. how data flows through the system
and produces a motor command. For more detail on the inputs and outputs of
each model, see section 5.2.

Algorithm 1 Activate the multiple paired models architecture. Inputs: current
state, desired state and context information
1: for all modules do
2: activate inverse model with current state, desired state (5.2.1)
3: activate forward model with current state, inverse model output (5.2.2)
4: activate responsibility predictor with context information (5.2.3)
5: compute prediction error (5.2.4)
6: compute λ (5.2.5)
7: end for
8: normalize λ values
9: compute the feedback error motor signal ufb (5.2.6)

10: compute total motor command (5.2.7)
11: return motor command, ufb, prediction errors, λ

4.3.2 Training of the architecture

This describes how the multiple paired models architecture is trained.

Algorithm 2 Training the multiple paired models architecture.
1: gather training data, i.e. desired states and context information
2: for the number of training epochs do
3: clear memory from the modules
4: current state = initial state of the simulator
5: for all desired states do
6: motor commands, ufb, prediction errors, λ = activate the multiple

paired models architecture with current state, desired state, context
information (algorithm 1)

7: current state = send the motor commands to the simulator
8: train the neural networks with the error signals (5.3)
9: end for

10: end for

40

Chapter 5

Implementation

This chapter describes the implementation of the multiple paired models archi-
tecture. The system is implemented using a functional programming paradigm,
i.e. the system does not change states but instead does operations on data
structures and returns new copies of the data structures, without changing the
data structure that was passed to the function. This should be kept in mind if
reading the source code which accompanies the thesis.

5.1 At the core of the architecture: the neural
networks

The brain of the system consists of artificial neural networks that control the
simulated robot. Neural networks can be seen as distributed processing units,
modeled after how the brain works. The human brain is made up of simple units,
called neurons. The neurons are connected via synapses. The synaptic strength
determines how much a certain neuron will affect the neuron it is connected
to. The connection between two neurons can be either inhibitory or excitatory.
The neurons are quite simple processing units, but when many neurons are
connected they make up a powerful processing unit. Each neuron would not be
much use on its own. Information stored in the network is thus distributed, as
opposed to localized. The distributed storage of information makes the network
very robust to noise and to loss of neurons. In an artificial neural network, the
neurons are often referred to as nodes, and the synaptic strengths are normally
called weights.

The forward and inverse model and the responsibility predictor of each mod-
ule is implemented using simple recurrent networks (also known as Elman net-
works [19]). A recurrent network has connections between all the hidden nodes,
see figure 5.1. This enables the network to have memory, since it remembers the
hidden layer activation at the previous timestep. The recurrent neural network
was chosen since all the experiments deal with sequences of movements, where
the previous state will influence where we will go at the next timestep. Figure
5.1 shows a recurrent neural network with 3 nodes in the input layer, 3 nodes
in the hidden layer and 3 nodes in the output layer. The size of the network
will later be abbreviated to input-hidden-output, e.g. 3-3-3.

The recurrent neural network is instantiated by calling the method rnn with

41

Figure 5.1: The recurrent neural network. The arrows indicate all-to-all con-
nections between the nodes. The grey nodes are the context nodes, i.e. the
output of the hidden nodes are transferred to the context nodes (shown by the
arrow pointing in the opposite direction) and given as input to the hidden layer
at the next timestep. Note that each node has also a bias input, not shown on
the figure.

the desired size and learning rate, like this: rnn([input hidden output],
learning rate)1. The function returns a network structure holding the weights
and activation of the network.

Activation flows in the network from left to right. The activation level at
the input nodes is multiplied with the corresponding weight for each node in
the hidden layer (along with the context nodes), and is summed up at each
hidden node, along with the bias2. The sum of the incoming values at every
node is squashed through the sigmoid transfer function, see equation (5.1). The
sigmoid function bounds the range of the output values of the nodes to [0, 1].
A plot of the sigmoid function can be seen in figure 5.2.

sigmoid(x) =
1

1− e−x
(5.1)

To activate the recurrent neural network, the method rnn activate must be
called, along with the network structure and input vector: rnn activate(rnn network,
input vector). The method returns the network structure, holding the activa-
tion levels for the network. The method cannot return just the output values, as
the hidden node values are needed for both backpropagation and as the context
input for the next timestep.

1Note that for all the functions I have written, it is possible to type help function-name,
to get a description of the function, as well as the inputs and outputs of the function.

2The bias node is an additional input which is always 1. The weight of the bias is also
trained by backpropagation.

42

−5 0 5

0

1

Figure 5.2: The sigmoid function, plotted on inputs in the range [-5, 5].

5.2 Specification of inputs and outputs

The inputs to the multiple paired models structure are the current state, the
desired state and the context signal. The output is the motor commands that
are to be applied to the simulator. The input/output data flow are shown in
figure 4.1. The inputs and outputs of each model will now be specified.

The size of the input/output vectors differs from experiment to experiment,
since the degrees of freedom in the simulator differs. The size of the neural
networks is listed for each experiment, see for instance section 7.2. The size
of the input and output layer of the neural networks equals the size of the
input/output vectors for that model.

5.2.1 The inverse model

The inverse model takes as input the current state and desired state and outputs
the motor command that needs to be applied to achieve the desired state. The
inverse model is often called the controller or the behaviour, since it is the model
responsible for generating motor commands. It is implemented using a recurrent
neural network, as described in section 5.1.

Inputs

xt The current state. It is represented as a vector with values in the range
of [0, 1]. Each value represents the state of one of the joint angles of the
humanoid robot, e.g. right elbow joint angle, left elbow joint angle and
so on. The joint angles are originally in the range of [−π/2, π/2], but
are scaled to the range [0, 1]. This is normal procedure when formatting
input to a neural network.

x
′

t The desired (or target) state. It is represented the same way as the current
state xt. The vector shows where the state of the simulator should be at
the next timestep.

Outputs

ui
t The motor commands that need to be applied to achieve the desired state.

The output is a vector, where each element is in the range of [0, 1]. The
outputs consist of joint angle velocities, with a direct mapping between

43

the current state xt and motor commands ui
t, i.e. if element x[j]t was the

right elbow joint angle, u[j]it would be the right elbow joint angle velocity.
The output values are scaled to the range [-1, 1], since the joint angle
must be able to move forward and backward. In addition, the output is
multiplied with an output gain M (not to be confused with the feedback
error gain K), which effectively makes the output range [−M , M]. The
joint angle velocities are specified as radians per seconds in breve, and
they can be more than [-1, 1], thus the need to multiply with the gain.

5.2.2 The forward model

The forward model takes as input the current state of the environment and the
motor commands being applied to the environment, and outputs a prediction
of what the next state will be after the application of the motor commands. It
is implemented using a recurrent neural network, as described in section 5.1.

Inputs

xt The current state of the environment. It is exactly the same as described
in 5.2.1.

ui
t The motor commands outputted from its paired inverse model, as de-

scribed in 5.2.1.

Outputs

x̂i
t+1 The predicted next state, if the paired inverse model will govern the mo-

tor output. For each call to the breve simulator (i.e. when the motor
commands are sent to the plant), the engine iterates 13 times (see section
6.5). The forward model must therefore predict what will happen 13 dis-
crete steps in the future, given the current state and the motor commands
that will act on the environment for the next 13 timesteps. The output
vector is of the same format as the current state xt i.e. joint angles of the
simulated robot.

5.2.3 The responsibility predictor

The responsibility predictor receives the context signal as its sole input. The
output is an a priori estimation of how well the module is suited to control
the robot. It is implemented using a recurrent neural network, as described in
section 5.1.

Inputs

yt The context signal. It is represented as a vector where the values are either
0 or 1. Only one element of the vector is high at the time. The number
of elements in the vector corresponds to the number of modules. Each
imitative action consists of sequences of movements. The context signals
are always discrete values corresponding to discrete movements, set by me
manually for each experiment. Haruno regards “all sensory information
that is not an element of dynamical differential equations as contextual

44

signal” [27] - the discrete context signals I have manually set are certainly
not elements of dynamical differential equations, and should therefore be
valid as context signals.

Say an experiment consists of two movements. The multiple paired models
architecture will then have two modules. If the first movement is to raise
the left arm, and the second to raise the right arm, the context signal
would be [0 1] during all the target states that correspond to the left
arm movement, and [1 0] during all the target states of the right arm
movement. It can be thought of as someone shouting “Do movement A!”,
“Do movement B!”, or in the case of the YMCA movement (described in
section 6.3), a pitch-detector that sends a signal for each of the letters in
the dance.

Outputs

pi
t The a priori estimation of the suitability of the module to control the

robot. This is a scalar in the range of [0, 1], where a higher value means
more suitable. The suitability is based solely on the context signal given
to the module.

The following computations are not done by neural networks, but their in-
puts and outputs are still listed, to facilitate the understanding of the architec-
ture.

5.2.4 The likelihood estimator

The likelihood estimator outputs a value describing how well the module actually
predicts the next state. This is calculated by taking the difference between the
predicted state and the actual next state, assuming it is influenced by gaussian
noise, with a standard deviation of σ.

Inputs

- The difference between the predicted next state and the actual state, i.e.
x̂i

t+1 − xt+1.

Outputs

lit The likelihood that this inverse/forward coupling is actually modeling
what happens in the environment, considering gaussian noise influences
the models. The output is calculated the following way:

lt =
1√

2πσ2
e−|xt−x̂i

t|
2/2σ2

(5.2)

If the difference between the predicted state and the actual state is close to
zero, the output of the likelihood estimator will be high. As the difference
between the predicted state and actual next state increases, the likelihood
will be smaller.

45

5.2.5 Calculation of λ

This is shown as the box labeled “Normalization” in figure 4.1. The prior
responsibility is multiplied with the likelihood estimation, and the results are
normalized over all the modules.

Inputs

ptlt The product of the responsibility predictor and the likelihood estimation
of each module. The multiplication is indicated by the large “X” circle
leading into the “Normalization” box.

Outputs

λt The normalized responsibility signals. The output is a vector, holding the
responsibility signal for each of the modules. The ith element of the vector
is calculated as follows.

λi
t =

pi
tl

i
t∑

j pj
t l

j
t

(5.3)

This allows for soft-max competition between the modules.

5.2.6 The feedback controller

The feedback controller [38] computes the difference between the target state at
time t with the actual state at time t + 1. It then outputs the motor command
needed to move the system towards the desired state. This is the feedback error
or the feedback error motor signal. The difference between the desired state at
the previous timestep and the actual state at the current timestep is used as
joint angle velocities, since the state of the environment corresponds directly
to the joint angles of the simulator. The resulting joint angle velocities are
multiplied with a constant K. In the beginning of the training, the modules
will make bad predictions and generate bad motor commands. The feedback
controller will correct the bad movements by coarsely pulling the system in the
correct direction. As the training progresses, the modules will become better at
controlling the system, and ideally the difference between the desired state and
actual next state will become zero, yielding ufeedback zero as well.

The feedback error motor signal is also used as the training signal of the
inverse model3

Inputs

- The difference between the target state at the previous timestep and the
actual state at the current timestep, i.e. x

′

t − xt+1. The difference is
computed by the large - circle leading into the feedback controller.

3Why is this used to train the inverse model? Training an inverse model is a hard problem,
since there are many ways to achieve a certain desired state[36]. Imagine if you want to move
your left arm from the top of your head to your thigh. There are many ways that you could
move your arm and wind up with the arm on your thigh. The feedback error motor signal
represents a simple way to find such a trajectory, since it will simply pull the arm in towards
the desired state.

46

Outputs

ufb The feedback error that will move the environment towards the desired
state. I implemented a slightly simplified version of the feedback error
learning algorithm. In [38] the feedback error was calculated in the fol-
lowing manner:

δτ = KP (θd − θ) + KD(θ̇d − θ̇) + KA(θ̈d − θ̈) (5.4)

Where KP was the proportional gain, KD was the differential gain and
KA was the acceleration gain. θ̇ and θ̈ signified the first and second
derivative, respectively, and the d subscript indicated the desired state.
In [48] KP = 60, KD = 1.2 and KA is not even mentioned. Seeing how
much bigger KP was regarding to KD, I decided to make KD = KA = 0,
hence sparing me for the calculation of the first and second derivative of
the current state and desired state.

5.2.7 The plant

The plant represents the simulator; the actual world where the motor commands
will be applied. It receives motor commands that are to be applied and returns
the state of the environment after applying the motor commands.

Inputs

ut The total motor command. The motor command is computed as the sum
of each module’s motor command output, multiplied with the correspond-
ing λ value. After normalization, the modules which are good at predicting
will have high λ values and will influence the final motor command to a
greater extent. In addition, the feedback error motor command ufeedback

is added to the final motor command. The total motor command ut is
calculated as follows:

ut = ufb +
∑

i

ui
tλ

i
t (5.5)

The multiplication can be seen as the large “X” circle leading into the
large “+” circle. The “+” circle represents the adding of the feedback
error motor command.

Outputs

xt+1 The state of the environment is returned after applying the motor com-
mands. As discussed elsewhere (section 6.5), this corresponds to 13 dis-
crete timesteps in the breve engine.

5.3 What is learned where

As shown in figure 4.1, there are three neural networks that are to be trained
in the architecture. None of the networks are trained beforehand or hard-coded
in any way, they all start out with random weights and are trained based on
their error signal. All the error signals are multiplied with the λ value of the

47

module, and the training happens in all the neural networks at each timestep
when training. All the models use the training rule discussed in section 5.4.

5.3.1 The inverse model

The inverse model learns how to produce the motor commands to achieve the
target state, given the current state and a target state. The error signal of the
inverse model is the feedback motor error command, ufeedback, see section 5.2.6.

5.3.2 The forward model

The forward model learns to predict the consequences of a motor command
applied in the environment. It takes as input the current state and the motor
commands that are to be applied. It outputs a prediction of the next state.
The error signal is therefore the difference between its own prediction and the
actual next state, i.e. x̂t+1 − xt+1.

5.3.3 The responsibility predictor

The responsibility predictor learns to predict the suitability of the module given
the context information. In order to compare how well the forward model pre-
dicted the next state, a comparison must be made of the prediction at the
previous timestep with the actual state at the current timestep. However, at
t = 0, there is no previous comparison of the forward model to be compared
with. This is where the responsibility predictor comes in: it predicts the suit-
ability of the module prior to movement. The error signal is the λ value of the
module4.

5.4 The learning algorithm

The neural network must be trained to achieve the desired computational func-
tion. Deciding which learning algorithm to use is an important decision when
using neural networks. The learning algorithm used in the multiple paired mod-
els architecture is the back-propagation through time (BPTT) algorithm [61].
BPTT is a supervised learning algorithm, i.e. there is a teacher that guides the
neural network towards better performance. For each set of inputs, the teacher
know the outputs, and can tell the network how well it performed. The perfor-
mance error is then back-propagated to the different nodes in the network to
adjust the weights. This process is repeated several times, until the performance
of the network reaches some criterion, i.e. a low error term. The weights of the
neural networks are updated according to the following equation:

∆w = δ
dx

dw
λ(x− x̂) (5.6)

δ is the learning rate, dx
dw is the derivative of the activation function (the

sigmoid function, as shown in equation (5.1)), and x−x̂ is the difference between
the desired output and the actual output (not to be confused with the state

4Since the error signal actually is the λ value, it is not multiplied with itself to form the
total training signal, as happens with the inverse and forward models.

48

variables x mentioned earlier, here x means any vector). When λ is high, ∆w
will be higher, and the network will learn more. When λ is close to zero, ∆w
will be very small, and the network will not learn as much. All the neural
networks start out with random weights. The weights are drawn from a normal
distribution with mean 0 and standard deviation 0.2. The weights are trained
after each step through the vectors of desired states. If an epoch consists of 100
desired states, the networks are given 100 training passes5.

Although artificial neural networks are modeled after the brain, the same
can not be said for the back-propagation algorithm. Few people believe that
there is an error signal traveling backwards through the brain in order to adjust
the synaptic strengths. Hence, it is not seen as a very biologically plausible
way of training a neural network. However, from an engineering point of view
it is a useful method to train a neural network capable of handling noise and
being able to generalize. Other training methods exist, such as the Hebbian
learning principle6 or genetic algorithms7, however back-propagation is quicker
and more efficient. A huge effort is being made by leading researchers over
the world to discover how the brain is able to self-organize, but until a better
training algorithm is discovered the ones already known in the literature will
be used. The focus of this master’s thesis is not on developing new learning
algorithms, but on using already known techniques to solve a problem.

5.5 The difference between learning and action
generation

The architecture is used the same way for both learning a behaviour and for
generating a behaviour, as described in section 4.1. In both cases, the archi-
tecture must receive the desired states and context signals as input, and the
multiple paired models structure outputs a motor command to be applied to
the environment. The difference is that when learning, the weights of the neu-
ral networks are updated after each step through the desired states. When in
action generation mode (typically after training to see how well the imitative
behaviour was learned), the weights are not updated.

In chapter 7, the plots of the performance of the multiple paired models
architecture is shown. Notice that all the plots (except for the attractor plots)
show the performance during training. The logging of the performance is done

5Another method often used in neural networks is batch learning, where the error of the
neural networks is accumulated over an epoch, and the weights adjusted after the epoch. The
argument for batch learning is that it represents a more fair way to update the weights. When
updating the weights “on-line”, the network might be pulled in a certain direction at after
training at timestep t, which might actually worsen the performance at timestep t + 1, i.e.
it should not have been changed at timestep t. This method has not been tried out in this
Master’s thesis, but it is something that could be examined in the future to see if it leads to
increased performance

6A training algorithm where a weight between two nodes is increased if they are high at
the same time, see for instance [43].

7An evolutionary approach to finding the weights of a network. The algorithm starts by
generating a population of random networks, and subsequently tests each of the network at a
given task. The best ones are passed on to the next generation. The best networks constitute
the parents of the next generation; the new networks are mixed from that of the parents
(crossover) and mutated. This procedure continues until a network with good performance is
evolved [30].

49

during the training of the architecture. To be strict, the performance plots
should be logged without training, but that would have required to train for
one epoch, and run the multiple paired models architecture again to log the
performance. This would have required to double the amount of runs, since the
logging is done at every epoch, which is not very desirable, since the training
of one experiment (the YMCA, see section 6.3) took 11 hours to complete.
However, if the networks were trained using batch learning the logging of the
performance would be correct, since the multiple paired models architecture
would then run through the desired states and adjust the weights after one
epoch. However, the difference between logging the performance during training
and without training should be minimal, since the weights of the neural networks
change only by a little for each timestep through an epoch. It is left as future
work to try out batch learning.

5.6 Simplifications

The imitator watches the teacher as shown in figure 5.3. However, the simulated
robot does not “see” the movement it is to imitate. In fact, it does not have a
vision system at all. Instead, it is fed the joint angles it is supposed to imitate.
The arrow signifies a transformation of the input data, namely the mapping
of visually perceived coordinates to intrinsically meaningful coordinates. The
arrow hides the complexity of transforming visual input to motor-coordinates
of one’s own body. A substantial simplification is made: instead of inputting
raw video to the system, the system is fed the joint angles of the limbs of the
dancer. This is to avoid the correspondence problem, see section 2.3.1.

Figure 5.3: The imitator on the right watches the teacher on the left. The arrow
hides the correspondence problem, i.e. the mapping from visually perceived
coordinates to the imitator’s own motor coordinates.

In a crude manner, this corresponds to our ability to perceive movements of
other creatures and map the visually perceived information to our own motor
capabilities. Experiments done by Desmurget and Prablanc [17] show that hu-
mans in fact use estimation of joint angles when imitating. The same approach
is taken by Demiris [14] and Cangelosi [8]. The simplification is made because
the focus of this master’s thesis is on switching between multiple controllers
(i.e. inverse models) by using a multiple paired models architecture, not on

50

transforming visual data to joint velocities, which is a huge task in itself. Can-
gelosi and Demiris use the same argument. In addition, this corresponds to the
“simulation theory of mind”, i.e. where one is putting oneself in the shoes of
another [21].

The degrees of freedom is limited in each experiment. The humanoid robot
implemented in breve has a total of 20 degrees of freedom (see section 5.8.1),
but to simplify the learning process fewer degrees of freedom were used than
were available. For many of the movements, certain degrees of freedom were
not used at all. By limiting the degrees of freedom in each experiment, the
training of the robot proceeded faster since the total output space was smaller
than when having the full 20 degrees of freedom.

In addition, the humanoid robot is not balancing or supporting its own
weight. The humanoid is actually hanging in mid-air, see section 5.8.1. To
simply make the humanoid stand up is a very hard task that I did not want to
deal with in this thesis.

5.7 Running the system

In order to run each of the experiments a specific file must be loaded, both
for breve and MatLab. In chapter 7 the files required to run an experiment is
listed along with each experiment. First of all, the paths of the system must be
set. There is a convenient script file written to do this, called add paths. Just
navigate to the root directory of the source code, and run the script by typing

> add_paths

at the MatLab prompt. A message is printed, informing that the current
path must also be added to the MatLab class path. This is because MatLab
uses a Java class file to communicate with breve. In order for the class file to
load faster, it should be put on the classpath. Type

> edit classpath.txt

to make sure that the absolute path to the class file is present. Then MatLab
should be quit and restarted. If the path was not saved before quitting MatLab,
add paths must be run again.

Before starting the simulation, the proper experiment file must be loaded
in breve. In order to synchronize breve and MatLab, a small change has
been made to one of the breve class files (see section 5.8). Either use the
attached breve application (note: it will only run on Mac OS X) or perform
the following task: navigate to the classes folder of your breve copy (it is
preferable to use breve 2.3 IDE). Under Mac OS X it is the following path:
path/to/breve/breve.app/Contents/Resources/classes. Open the file Control.tz,
and change the method + to iterate to + to manual-iterate, and save the
changes. This makes MatLab able to have full control over breve (again, see
section 5.8 for more details) and it is very important that this change to the
source code is made, without it the attached .tz files will not run.

After having completed the initial preparations for the system, load the breve
source file listed in the experiment list (for instance Tiny Dancer - K4DOF.tz),
and start the simulator. The breve simulator will then start, and will be waiting

51

for network connections from MatLab. Note that the breve source file does not
do anything by itself, it merely builds the robot and provides an interface to it.
The multiple paired models architecture is implemented in MatLab. In order to
run the same experiment, simply start the MatLab script file that is specified
along with the breve source file. This is done by typing

> breve_breve_matlab_Ks

at the MatLab command prompt. The experiment will now begin running, and
you can watch the robot as it learns how to behave. In order to speed up the
simulator, press the pause button (more on this below). After having made it
through the entire run (this may take several hours, depending on the number
of training epochs) a file is saved holding the multiple paired models structure
and an error log of the experiment. The filename is the same for every run, i.e.
Ks.mat, so if you run the same experiment several times, be sure to rename the
file so it will not be overwritten the next time you run an experiment.

It is very important that the breve simulator is run before MatLab, since
MatLab tries to connect to the breve simulator to execute motor commands via
sockets, and if breve is not running at this time, an error will be produced in
MatLab.

If you want to see the result of the training, type

> hybrid_mosaic_run(hybrid_mosaic, ...
hybrid_mosaic(1).desired_state, hybrid_mosaic(1).context)

at the MatLab command prompt. hybrid mosaic run8 will iterate through an
entire epoch with the given multiple paired models structure. The desired state
and context constitute the input to the system.

To see some statistics of the results, type:

> analyze_this(hybrid_mosaic, hybrid_mosaic_error_log, [])

The function analyze this will plot the performance of the entire run, the
performance of the last epoch, a plot of the desired state versus the actual state
at the last epoch and a plot of the desired state versus the actual state along
with λ values (see section 7.1 for more descriptions of the different plots). If
you want to analyze a certain epoch, type:

> analyze_this_epoch(hybrid_mosaic, hybrid_mosaic_error_log, epoch, [])

Where epoch is the epoch you want to examine.
In order to see attractor plots, call the following function:

> plot_attractors(hybrid_mosaic, hybrid_mosaic_error_log, ...
@hybrid_mosaic_run, [])

Notice that if you replace the empty matrix [] with a filename prefix, both
analyze this, analyze this epoch and plot attractors will save PDF files
of the figures produced. For more information on what the different plots actu-
ally show, see section 7.1.

8The name hybrid mosaic is a left-over from the early days of the implementation, when I
did not know what to call my implementation. It is left as it is, due to lack of time to change
all the names of the source code files.

52

5.8 The breve simulator

The simulator used in the experiments is the breve simulator9. The simulator
uses the ODE (Open Dynamics Engine)10, an open-source physics simulator.
breve can visualize simulations using OpenGL. The building blocks of a simula-
tion is written in a language called steve, which is an object-oriented language.
breve serves as a front-end to ODE. Programming-wise it is a lot easier to create
an object in breve than using ODE directly, since ODE is a C++-library and
steve is a high-level object-oriented language.

Writing the mathematical code required for the simulation to run is more
easily done in MatLab11, a programming environment with a huge library of
mathematical functions (MatLab is an abbreviation for Matrix Laboratory). It
was therefore desirable to use breve in conjunction with MatLab. Our group
had not worked with the breve-MatLab combination before, not even the breve
simulator was familiar to the group other than by name. The first stage of
implementation for this thesis was to try and make MatLab and breve work
together.

It is possible to link the breve source code to MatLab by defining an interface
written in C, but this turned out to be quite hard to do. Instead, a solution
where MatLab communicates with breve via sockets was chosen. In breve it is
possible to call functions via web requests to the breve network server. MatLab
can then make a request to the breve network server12 and the reply from breve
is read as a string of text. MatLab already had a function urlread capable of
passing web requests, but this function turned out to have quite an overhead
with parsing HTTP headers, and would sometimes fail if the headers were badly
formed. Instead, a simple Java class was written that performed the connection
to breve via sockets. The Java class had a much lower overhead, and performed
a lot better than urlread. By doing 100 000 very simple calls to the breve
simulator, an average call took 0.0081 seconds. Using the newly implemented
Java class, an average call was 0.0024 seconds, more than three times faster13.

Synchronization was an important issue; since the communication between
MatLab and breve was going to be via sockets, some variable delay would be
introduced to the communication. Moving joints in breve works by setting joint
velocities. For the next iterations of the breve simulator, these joint velocities
are applied and the new positions of the joints are calculated. If the motor
commands arrive at different times due to network latency, the state of the
simulator might be different than what it was in the last epoch of training.
This can be seen as a kind of noise due to the neural system, however I wanted
to keep it as clean and noise-free as possible in the beginning, and rather add
noise at the end. Therefore, the source code of the breve simulator was altered
slightly. Firas Risnes Barakat, a student in our group who also was working on
the breve simulator, discovered that the main iterate method in the Control
class was the one calling the iterate method in the subclasses. But if the

9http://www.spiderland.org/breve/
10http://ode.org
11http://www.mathworks.com
12More specifically, a HTTP GET request where the file name points to the function being

called in breve. Arguments to the function can also be passed via the request.
13Note: the time spent in socket communication depends on the complexity of the func-

tion being called in breve. The results mentioned here only show how much faster the Java
implementation is compared to MatLab’s urlread.

53

name of the method was changed, it would not be called. I therefore thought
out that by calling iterate from the class containing the simulator code, it was
possible to have total control over the number of iterations of the breve engine
between each call from MatLab. This way, MatLab would call breve with the
joint velocities and number of iterations, and upon completion of the iterations
the state of the simulator was returned to MatLab. In the time between the
next motor commands were computed, there was no movement in breve, thus
making the breve/MatLab relationship synchronous.

This allowed for a clear separation of the code; the code pertaining to the
construction of the simulated object was written in steve whereas the code for
the actual simulation (the neural network, the training algorithm, starting and
stopping breve, etc.) was written in MatLab. Firas played an important role
in working out how to configure breve correctly, and his intimate knowledge of
the simulator was of great help to me in the beginning.

5.8.1 Tiny Dancer

The humanoid robot that served as actuator of the motor commands can be
seen in figure 5.4. The humanoid robot is called Elton14. Elton has a torso,
with a head attached on top. The head is actually what makes Elton stand
up straight. It might not be easy to see, but he is actually hanging in mid-air.
This is because it would be much harder to control Elton if the multiple paired
models architecture had to deal with making him stand as well. The head is
connected to an invisible point, giving the robot the appearance of standing
upright. Elton has 20 degrees of freedom, which will now be elaborated upon.

Attached to the torso are the arms and legs. Both the shoulder joints and
hip joints are ball joints, see figure 5.5. The joint has three degrees of freedom,
it can tilt up and down, go side-to-side and twist, also defined X,Y and Z in
terms of joint angles in breve. The X-axis is specified along the norm15 of
the attachment point of the joint. The Z-axis is defined as a twist from the
attachment point. The Y-axis is derived from the other two axes.

The elbow and knee joints are made up of revolute joints, see figure 5.6. The
revolute joint can move back and forth (defined as the X joint angle in breve),
but it cannot go from side to side or twist. It has one degree of freedom.

The ankle joints of Elton are made from universal joints, see figure 5.7. A
universal joint can move up and down, and from side to side (defined as X and
Y joint angle, respectively), but it cannot twist. It has two degrees of freedom.

The wrists and head are fixed to the lower arms and torso, respectively. If
they were to be implemented as moving joints, the head would be attached with
a ball joint, and the wrists universal joints. The wrist and head joints were not
implemented because I did not plan to use them for any imitative movements,
however it would require only a few lines of code to implement joints for the
wrists and head.

14The name “Elton” was given early in the implementation, because I suddenly thought
of the song “Tiny Dancer” written by Elton John, a song that was released on the album
“Madman Across the Water” in 1971. However, I have refrained from calling the humanoid
robot Elton in other parts of the thesis, to avoid confusion for the readers who might not
read the specific background for the name, or this implementation subsection. (The album is
brilliant, by the way.)

15The norm must be specified for each joint when it is attached to another object.

54

Figure 5.4: The Tiny Dancer, aka Elton. It resides in the breve simulator. The
breve simulator communicates with MatLab via sockets, as shown in figure 4.2.

Figure 5.5: The ball joint used to connect the arms and
legs to the main body of Elton. The arrow shows the axes
of rotation. Picture taken from the breve documentation,
http://www.spiderland.org/breve/breve docs/classes/BallJoint.html

Figure 5.6: The elbow and knee joints are revolute joints. The arrow
shows the axis of rotation. Picture taken from the breve documentation,
http://www.spiderland.org/breve/breve docs/classes/RevoluteJoint.html

55

Figure 5.7: The ankle joints of Elton, called universal joints. The arrows
show the axes of rotation. Picture taken from the breve documentation,
http://www.spiderland.org/breve/breve docs/classes/UniversalJoint.html

5.9 Gathering movement data with the Pro Re-
flex system

Data is collected by using the Pro Reflex tracking system at the NevroUtvikling
(NU)-lab at the institute of psychology. The system is able to track the position
of fluorescent balls within a certain area by using five infrared cameras. The
setup of the cameras can be seen in figure 5.8. When the balls are attached to a
person, the movement of the balls of the person can be tracked over a period of
time, yielding Cartesian coordinates. From these coordinates, the joint angles
can be calculated.

The robot is thought to have the same physical properties as that of the
dancer, i.e. the joint angles of the dancer correspond directly to the joint angles
of the robot. The joint angles of the dancer will therefore correspond to the
target state of the robot. The inverse model will then have to produce the
motor commands that will lead to the desired state.

14 balls were used to track the movements of my body. A picture of me with
the tracking balls can be seen in figure 5.9. The balls were attached using velcro
and tape. Quite often a tracking would be ruined due to one of the balls falling
off. In addition, some trial and error was required in order to stay within the
range of the cameras all the time.

The raw data acquired after the tracking had to be processed manually in
order to be useful for the simulator. The tracking of the balls is quite noisy.
Sometimes Pro Reflex would miss a ball entirely, creating a gap between the
tracked ball (which had been given a specific name) and the “new” ball that
would appear afterwards. Since Pro Reflex lost track of the original ball, it
thinks the re-emergence of the same ball is a new ball, since it has not tracked
it before. These gaps needed to be filled manually, in addition to defining the
“new” ball as being the same ball that was momentarily lost. In order to produce
a trajectory for the entire movement, any discrepancies like the ones mentioned
above must be corrected. If for instance the tracking of the shoulder ball would
be lost for a second half-way through the movement, the gap between what Pro
Reflex knows as the “shoulder ball” and the new unidentified ball (even though
they are the same ball) must be corrected, or else the trajectory of the shoulder
ball will only show the first half of the movement. This takes quite some time,
and requires manual examination of all the data recorded.

After filling the gaps and redefining the balls, the joint angles of the dancing

56

Figure 5.8: The setup of the Pro Reflex system. The five cameras are shown;
four in the front of me and one hanging from the roof, along with the stick figure
representation of me. To better understand how the stick figure was generated,
see figure 5.9 which shows a picture of me with the fluorescent balls used for
tracking. The grid defines the area where I can move and still be tracked by the
cameras (or more correctly, the volume where I can move, since there is a limit
on how high the balls can go without losing track of them). The axes show the
origo of the system.

57

Figure 5.9: The fluorescent balls attached to my body can be seen on the left.
The balls are in red circles, since they are a bit tricky to see. On the right is
the stick figure representation that results from the tracking of the balls. The
balls used for tracking are fairly small and light-weight, and attaches to the
body with either velcro or tape. However, the balls attached to my clothes had
a tendency of falling off during a movement, which meant that the tracking of
the motion needed to be redone.

58

movements were calculated using an Excel software plug-in called PCReflex,
which was developed by Innovision Systems16. The plug-in was about 10 years
old; this was noticeable during use. It was not very user-friendly and consisted
of some malicious code that rendered my installation of Excel useless, requiring
a re-install of Microsoft Office. I actually spent three days struggling with the
software before I understood what I could do with it and what I could not do
with it (actually, the process included discovering what I must avoid doing in
order to not harm the PC I was working on). In spite of the problems, I managed
to make good use of PCReflex after a while, and exported the joint angles of
the tracking data. PCReflex had a very useful function that allowed the angle
between two balls to be plotted against a given plane. The angle between the
shoulder and elbow projected in the XZ-plane could then be used as the target
for the X joint angle of the shoulder of the humanoid robot. This was repeated
for all the angles required for the movement. The data was imported as a text
file and loaded into MatLab. Although the data was quite noisy (as can be seen
in figure 7.31), no filtering or averaging was done on the data. It was up to
the neural networks to do the filtering of the noise. This was a choice made
deliberately on my part, to show how well neural networks deal with noise. The
sampling frequency of the Pro Reflex system was 200Hz, so the dataset was
reduced by taking every 10th sample to match the 20Hz frequency of the breve
simulator17 (see section 6.5 for information on the iteration step size in breve).

16http://www.innovision-systems.com
17To see exactly how this was done, see the function YMCA4DOF desired state.m in the

source code.

59

Chapter 6

Experiments

After testing the neural networks to verify that the learning algorithm was
correctly implemented, testing with multiple paired models ensued. The exper-
iments are described below, and the results are described in the next chapter.
The first two experiments used data collected from breve itself, whereas the
last experiment used data gathered from the Pro Reflex system. Each exper-
iment is described, and a goal for each experiment is presented. The pictures
shown of each experiment are the target states of the experiments, i.e. what
the multiple paired models architecture will learn to imitate. The videos found
in the attachments to this thesis will give a better understanding of what the
different movements look like. Note that for all the experiments, the order of
movements is fixed. I have not tried reshuffling the movements during training
or during recognition, to see whether the multiple paired models would be able
to recognize the movements when presented in an unexpected manner. This is
something left for future work.

The goal presented for each experiment is the link to the working hypotheses,
i.e. what it sets out to confirm. The working hypotheses are listed in section
1.3.

For the first two experiments, training data was gathered from the breve
simulator itself. For the third experiment, human recorded data was used for
training (see section 5.9 for more details on how the data was recorded). These
training data sets are different from what constitutes more “normal” training
sets for neural networks. Normally, a predefined input → output relation is
learned. In my case, the input data will vary over time. Recall that the input
to the inverse and forward model consist of the current state of the environ-
ment (see figure 4.1). The current state of the environment changes as motor
commands are applied to it, so therefore the inputs to the neural networks
in the inverse and forward model changes as well as the training progresses,
since the training will ensure better motor commands. Thus, there is no static
input/output relationship to be learned, the input data is more dynamic de-
pending on how the multiple paired models architecture performs.

It should be noted that all experiments start out from the same position, see
figure 5.4, except for the YMCA experiment, where the arms are a bit closer
to the body in the initial position. Attached to the thesis are videos that show
both the teacher and the imitator. They have been given names that correspond
to the names of the experiments (i.e. Ks.mov).

60

6.1 Experiment 1 - The two Ks

6.1.1 Description

The experiment is called “The two Ks” since the target state was to move the
left leg and arm upwards, to form the letter “K”. The data needed for training
(i.e. desired states) was collected by controlling breve from MatLab; the joint
velocities of breve was set from MatLab and the resulting joint angles were
collected from breve. The joint angles constitute the motion that make up the
“two Ks”. The inverse model could easily be trained using the target velocities
(since I knew them), i.e. by direct learning1. Instead, the corresponding joint
velocities were discovered using the feedback error learning approach (see section
5.2.6). The inverse model thus had to discover the joint angles I had already
set.

The “K” on the left side and on the right side was regarded as one movement,
and therefore two paired inverse/forward models were used in this experiment.
The context information was according to the left and right “K”. This can be
viewed as someone shouting “Left K!”, “Right K!”. The experiment has four
degrees of freedom, see section 7.2 for more details.

Figure 6.1: The two Ks, one to the right side and one to the left. Imagine that
the letter “K” is formed with the left arm/leg and the right arm/leg.

6.1.2 Goal of the experiment

This is the first experiment done with the multiple paired models architecture,
and it is therefore quite simple to allow debugging, but still complex enough
(i.e. it has two movements) to show that it works.

Hypothesis 1: The experiment has two discrete movements and therefore
two modules. The experiment was designed to show that the multiple paired
models will self-organize and assign one movement to each module, on a small
and not too complex motion (see the Glossary to clarify the meaning of motion
and movement).

Hypothesis 2: The experiment was designed to show that the context
information will aid the simple separation of the two movements.

1Direct learning of an inverse model is done by applying motor commands to the environ-
ment and recording the resulting state, and then reversing the input/output order for training
of the inverse model. It is a simple and effective method, but it is not goal-oriented and does
not tackle the obvious problem that there may be many motor commands that can lead to
the same situation - the inverse model will learn only one such mapping by direct learning
[36], and it may not be the best one.

61

Hypothesis 3: The experiment was designed to show that the responsibility
predictors of each module will follow the context information.

6.2 Experiment 2 - The cheerleader

6.2.1 Description

The name of the experiment comes from a crude approximation to the move-
ments of a cheerleader. The legs and arms are moved about, to simulate jump-
ing and waving behaviour. There are three different movements, and therefore
three different paired inverse/forward models. The joint velocities were again
controlled from MatLab, and the target states were collected from breve. The
context information was set to match the movements, and can be thought of as
someone telling the imitator to do movement 1,2 and 3. The experiment has
seven degrees of freedom, see section 7.3 for more details.

Figure 6.2: The cheerleader, each of the three movements. The name was chosen
because the movements look a bit like what cheerleaders do during American
football matches. However, the movements are not modeled after any specific
movement. It is best to see the video (called cheerleader.mov) to get a better
grip of what the motion looks like.

6.2.2 Goal of the experiment

The experiment is designed to show that the multiple paired models architecture
will self-organize in a more complex situation than the first experiment. This
experiment has three modules, one for each movement, and more degrees of
freedom.

Hypothesis 1: The experiment was designed to show that the architecture
will self-organize with more modules and more movements, and will handle the
more complex situation.

Hypothesis 2: The experiment was designed to show that the context infor-
mation will be crucial to separate the movements, as the number of movements
was increased from the previous experiment.

Hypothesis 3: This experiment tests to a greater extent whether the mul-
tiple paired models architecture will understand the relationship between the
context information and discrete movements.

62

6.3 Experiment 3 - YMCA

6.3.1 Description

This movement corresponds to forming the letters “YMCA” with the arms. The
motion is from the dance to a song with the same name by a band called the
Village People from New York, released in 19782. The data for the movement
was collected using the Pro Reflex system at the NU-lab at Dragvoll, see section
5.9. The context signal was divided to match the drawing of the letters with the
arms, as can be seen in figure 6.3. The context information can be thought of
as the output from a pitch-detector that would correspond to a specific letter.
The experiment has four degrees of freedom, see section 7.4 for more details.

Figure 6.3: The YMCA motion, spelled out from left to right. Notice how the
M does not look quite like it should; the upper arms should be aligned with the
lower arms, i.e. my hands should be touching my shoulders. This was not done
because the Pro Reflex tracking system would often confuse the fluorescent balls
it they came too close. There is one ball on my wrist as well as my shoulder,
and these two must be kept apart for Pro Reflex’ sake.

6.3.2 Goal of the experiment

The experiment tests whether the multiple paired models architecture is suitable
for imitating a human being. The previous two experiments were designed to
show that the architecture works, this experiment seeks to demonstrate that
the architecture is capable of dealing with real-world imitation.

Hypothesis 1: The experiment was designed to show that the multiple
paired models architecture is capable of self-organizing with more movements,
more modules and noisy data recorded from the real world.

Hypothesis 2: This experiment will test whether the context information
helps the architecture to self-organize. In the previous experiments, the bound-
aries between the movements have been more easy to detect (i.e. they could
more easily be detected just by looking at the desired states), since the move-
ments were hand-coded by me. Now the different movements will be more prone
to noise, and therefore the context information should play an important role
in separating the control of movements into separate modules.

2For more information about the Village People, see for instance Wikipedias article at
http://en.wikipedia.org/wiki/Village People

63

Hypothesis 3: This experiment was designed to show that the multiple
paired models architecture will realize the link between context information and
the different movements under noisy circumstances, and that the responsibility
predictor will reflect that the architecture has realized this relationship.

6.4 The different parameters of the architecture

The articles describing the architecture are sparse on details concerning the
actual values on some of the parameters. The parameters were just educated
guesses in the beginning, but after trial and error some values were settled
upon. Notice however, that some of these variables differ from experiment to
experiment. In chapter 7, these variables are specified for each experiment.

6.4.1 The learning rate δ

The learning rate was set to δ = 0.01 early on in the experimentation, and
remained at that value. Having some previous experience with backpropagation
in neural networks, I knew that 0.01 was a good starting point. Also, 0.01 was
used in [27]. Some variations were examined by varying δ from 0.01 to 0.1, but
it was normally left at 0.01.

6.4.2 The gain K for the feedback-error

Initially K = 60, since that was the value used in [48]. It was quickly discovered
that this value was way too high; the outputs of the inverse models are scaled
to the range [−1, 1], with K = 60 the joint angles were too high, leading to
very abrupt and jerky movements. K = 30 was also tried out, with the same
result. Then it was lowered drastically to K = 0.5, which yielded behaviours
that were more smooth in their appearance, since the feedback error would not
pull so strongly in certain directions. After more trial and error, it was raised
to K = 2, which quickly helps the network find the correct joint angles. During
the initial testing of the framework, the target states was gathered from breve
itself, so I knew the correct joint velocities, which were never more than 1 in
any direction, so these values seemed quite reasonable for the architecture to
function well.

Later on, when the sampled data became available, it was not certain what
the exact speed of the joint angles had been during movement, and therefore
the output scaling and K needed to be adjusted again. This was done using
trial and error.

6.4.3 σ in the likelihood function

σ = 1 for the initial testing, making the likelihood function the standard normal
distribution. However, after several experiments it became clear that the like-
lihood function did not discern between different predictors, yielding the same
value for all the forward modules. I tried setting σ = 0.1, which would give an
increased likelihood for the predictor that was close to the actual state.

This made the models separate the a lot more easier. The normal distribu-
tion has 68% of the data within one standard deviation from the mean. The

64

range of the predictions are [0, 1] for each of the output nodes, which makes
σ = 1 a fairly large set, covering a lot of the variations (remember though that
the likelihood is based on the summed differences between actual and predicted
state). When σ = 0.1, only small variations from the zero mean would give a
high probability of being accurate, dividing the input space more clearly be-
tween the paired models. The σ value was varied from 0.1 to 0.15 to 0.2, but
either 0.1 and 0.2 was used for the most part.

6.4.4 Calculation of λ, re-visited

As can be seen in the architecture of the system (figure 4.1), the λ parameter
determines the learning of each of the neural networks (i.e. the forward and
inverse models, and the responsibility predictor). During the initial testing, it
became obvious that λ was close to the same value for all models (i.e. 0.5 when
there were two models and 0.33 when there were three models. Indeed, in [27]
Haruno indicates that the learning could proceed competitively, where modules
with large λ values would get proportionally more error signal than those with
smaller λ values. Exactly how this is done is not mentioned, so I devised the
following biasing scheme: a constant (called the proportionate error constant
P) was used to multiply the winning lambda value after the normalization. The
lambda values were then normalized again. The winning lambda value would
now be proportionally bigger than the other lambda values, allowing for more
of the error signal to be sent to the winning lambda value.

An example is due: in the extreme case, the lambda values will be exactly
the same, i.e. for three paired modules they will be [0.33 0.33 0.33]. The
winning lambda value is multiplied with P = 5, yielding [1.65 0.33 0.33].
When normalized again, the lambda vector will be [0.7143 0.1429 0.1429
], more than doubling the winning lambda value, and increasing the distance
to the other modules.

Note that the computation was done after the calculation of the final motor
output, i.e. it did only affect how much error signal was sent back to the neural
networks, not the motor output commands (recall that the motor output from
each paired inverse/forward model is multiplied with λ before summation).

6.4.5 A note on run time for evaluating parameters

In order to determine what effect changing one parameter has on the model, a
certain amount of epochs must be run. For most of the experiments I ran several
thousand epochs, however the minimum was a 1000 epochs. Depending on how
many steps was in the simulation, a 1000 epochs would take at least one or two
hours. Needless to say, this led to a high cost of each of the experiments. This
was before any attempts to optimize the breve/MatLab system. In addition, the
breve simulator was not always as stable as one could have hoped for. Several
times I left the system to run overnight, only to come in the next morning to find
that the breve simulator had crashed. However, since communication between
breve and MatLab was done via sockets, MatLab would just halt its execution
of the simulation when breve crashed, so the training performed up to the point
where breve crashed was not lost. I ran the simulation itself as a script instead
of a function, which meant that all the variables in the script became available

65

to the general workspace if there was an unfortunate event that stopped the
experiment.

Since the feedback error motor learning approach is used, the neural networks
are trained on-line, i.e. by constantly interacting with the environment. This
makes the system depend on the speed of the simulator, and is what makes the
experiments so costly.

6.4.6 Stopping criterion

Closely related to run time of the system is knowing when to stop. In the initial
experiments visual verification could be made of the progress of the experiment.
However, another approach could be to look at how much the feedback controller
influenced the system. When the feedback motor commands are close to zero,
the models are good at predicting the next state and performing the correct
motor movement.

For the experiments done in this thesis, there has been no specific stopping
criterion. The experiments have run for the given number of epochs. This
was mainly done because I simply did not know what kind of feedback error I
should be considering good enough to be able to stop the simulation. Since each
experiment was quite costly, it became more important to know how much time
an experiment would take than to experiment with dynamic stopping methods.

6.4.7 Speed of the different breve versions

As previously mentioned, the run time of an experiment is typically several
hours. In order to reduce run time, I first tried running breve without graph-
ics, by using the breve cli (breve command-line-interface) program. However,
breve was very unstable when running without graphics. I tried out both 2.3 and
2.4beta, and both would crash soon after the program had started. After trying
several times, none of the programs would run for the more than a couple of
minutes, crashing with an uninformative “Bus error” or “Segmentation fault”.
The command-line-interface version of breve without graphics was clearly not
suitable for doing experiments.

However, the command-line-interface version of breve with graphics was ac-
tually a bit faster. The graphics window did not update when motor commands
were issued, which is why I suspect it was a bit faster. Some tests were done re-
garding simulation speed with both 2.3 and 2.4beta, with average and max/min
times for 100 epochs, where each epoch consisted of 160 discrete timesteps
(which in breve would be 2080 timesteps, since the data each iteration of the
breve engine yields thirteen steps in the breve world). Each of these test runs
ran for 100 epochs to even out any delays in network traffic. The results can be
seen in table 6.1.

However, the fastest way to run breve was actually discovered by accident.
By pressing “pause” on the breve simulator it runs a lot faster. According to the
personal email communication with the author of breve, Jon Klein, this is due
to the following: when in pause mode, the simulator will not need to lock breve
when a web request is being made. Since I call the manual-iterate method
for each web request, this will make the breve engine stop completely between
the times I actually call it.

66

Version Mean Max Min
2.3 cli 2.0061 2.1188 1.8868
2.3 cli (without graphics) N/A N/A N/A
2.3 IDE 1.7914 1.8641 1.7200
2.3 IDE (pause mode) 1.3056 1.3882 1.2604
2.4b cli 1.9291 2.0180 1.8323
2.4b cli (without graphics) 2.5142 2.8606 2.2179
2.4b IDE 2.2106 3.2831 2.0467
2.4b IDE (pause mode) 1.3531 1.3990 1.3026

Table 6.1: Run times for 100 epochs, with each epoch consisting of 160 discrete
steps, i.e. 2080 timesteps in the breve simulator.

breve 2.4b (both the IDE and cli versions) were initially not stable enough
to allow for enough data to be collected (probably due to the beta status).
However, after contacting Jon Klein about this issue, I was given a new version
of 2.4b which did not crash.

breve 2.3 IDE in pause mode is slightly faster than breve 2.4 IDE in pause
mode, and in addition the graphics rendering seemed a bit smoother in breve
2.3, making breve 2.3 IDE in pause mode the chosen breve version for the
experiments.

6.5 A note on the iteration and integration step-
sizes in breve

There are two different variables determining how far the simulation runs be-
tween each call to the iterate method, these are iteration-step and integration-step,
where the former is bigger than the latter. iteration-step determines how
many seconds are run for each call to iterate3. integration-step on the
other hand, determines the length of each discrete step in the world within the
iteration-step window. So if iteration-step = 0.05 and integration-step
= 0.004 (the default values), the breve simulator will be iterated 12.5≈ 13 times
for each call to iterate. This is important since my forward models shall pre-
dict sensory states in the future, and by knowing the relationship of these values,
I know that for one external iteration of the breve engine, 13 small steps are
taken, i.e. a length of time that is suitable for the forward models to predict4.

3Actually, how often iterate is called, but since I have overridden that method it does
not determine how often iterate is called, however it still determines the amount of seconds
that is run for call to manual-iterate.

4This can be seen in the breve source code. By opening Control.tz it is possible to see
that iterate calls worldStep in kernel/internalFunctions/breveFunctionsWorld, which in
turn calls slRunWorld in simulation/world.cc. slRunWorld calls slWorldStep while the accu-
mulated integration-step size is less than the total (i.e. iteration-step size). slWorldStep
takes a single step in the breve environment.

67

Chapter 7

Results

After conducting the experiments, the multiple paired models architecture was
saved along with the error log for the training period (as shown in figure 4.3).
This chapter presents the analysis of the results. For each of the experiments,
the parameters used to instantiate the multiple paired models architecture is
listed, as seen in figure 4.3.

7.1 Description of the plots

There are five different types of figures for each of the experiments presented
in this chapter. I will begin with describing the different figures, so they can
easily be interpreted when discussing them. Each of the following subsections
(i.e. sections numbered 7.1.x) will describe one figure each.

7.1.1 Performance during the training period

The first figure (7.1) shows the performance of the multiple paired models ar-
chitecture for the entire training run. It has five components:

Performance of the forward models

See figure 7.1. The first two plots show the performance of the forward model
for each module. The dashed line shows the summation of the prediction errors
at each epoch1, the solid line shows the prediction error multiplied with λ. The
solid line thus shows the prediction error when it was in charge, i.e. had a high
responsibility signal. When a forward module is not in charge, its responsibility
signal is low and it will not receive a lot of its error signal to correct its bad
output, and the error will remain high. Therefore, the error multiplied with λ
is a better way of showing the performance of the forward model. In figure 7.1
they make up the two first plots, but the number is dependent on the number
of modules in the multiple paired models architecture.

1Recall that one epoch is one pass through the entire desired state and context values, i.e.
all the timesteps of an epoch. One experiment is typically run with several thousand epochs.

68

The total feedback error motor command

In figure 7.1 this is the third plot. It shows the summation2 of the feedback
error motor command for each epoch. This plot will show how the feedback
error motor command decreases as the training passes. Ideally, it should go to
zero, since ufeedback = 0 means that there was no need to correct the multiple
paired models architecture, it has become a perfect controller.

The ratio of the feedback error motor command to the actual motor
command

The feedback error motor command plot will show how it decreases with train-
ing, but it is also interesting to see how much of the actual motor command
consist of the feedback error motor command. The third component is therefore
the mean of the ratio of the feedback error motor command to the actual motor
command for each epoch. For each timestep in an epoch, there is a ratio of
the feedback error motor command to the actual motor command. The plot
shows the mean ratio for an entire epoch, along with the standard deviation for
each epoch. This plot is more illustrative than the previous plot, since it shows
how the inverse models increasingly produce good motor commands, lessening
the need for the feedback error motor command to correct the motor output.
Ideally, this ratio should decline to zero. In figure 7.1 it is the fourth plot.

The number of transitions between the winning modules for each
epoch

The fifth plot shows how many transitions there were between different modules
during an entire epoch. There will always be at least one. When the winning
module changes (i.e. the module with the highest responsibility signal λ), an-
other transition is counted. If a multiple paired models architecture had two
modules labeled A and B, and the order of the winning modules were A - B - A,
that would count as three transitions (imagine the first transition happening at
t = 0). This is perhaps the plot that shows best that the multiple paired models
architecture self-organize over time. (Note, it does not show how the multiple
paired models architecture self-organize over time, only that they do so.) It was
intended for the number of transitions to equal the number of modules, i.e. if
there were three modules A, B and C the order of the winning modules would
be A - C - B (or another combination of non-recurring winning modules). This
is the fifth plot in figure 7.1.

Summation of the absolute error for each epoch

The last plot in figure 7.1 shows the summation of the absolute error for each
epoch. The absolute error is the absolute value of the difference between the
desired state and actual state throughout an epoch. This plot shows how the
performance of the multiple paired models architecture increases over time, as
the absolute error decreases.

2Again, the summation is done over the entire epoch. The sum is then plotted at the
corresponding epoch in the figure.

69

7.1.2 Performance of one epoch

The second type of figure (7.2) shows the performance of the multiple paired
models architecture for an epoch. This is the performance achieved during
training. It is possible to see the performance of the multiple paired models
architecture at different plots because the actual state was logged during the
training phase. That does not imply that for each epoch the multiple paired
models was trained, and subsequently run without training to see how well it
performed, that would have been too time-consuming (see section 5.5). The
performance at epoch k shows the performance of the multiple paired models
architecture as it was trained at epoch k. It has three components:

Performance of the forward models with λ and responsibility predic-
tor

The first component consists of two plots; it shows the performance of each of
the forward models in the multiple paired models architecture during an epoch.
The correctness of the predictions of the forward model (first plot) and the re-
sponsibility predictor determine the responsibility signal (i.e. λ value), which is
shown in the second plot. The plots show how well the forward model predicted,
and when it was rewarded with a high responsibility signal. Normally, when the
prediction error is low, it will have correspondingly high responsibility signal,
and vice versa. In figure 7.2 the first four plots show the performance of the two
forward models with their corresponding λ and responsibility predictor values.
The responsibility predictor should ideally follow the λ signal. However, note
that the responsibility predictor is always high for all the plots. This indicates
that it does not work as intended. The multiple paired models architecture does
not get the information provided by the context signals. Since this is common
for all the plots, it has not been discussed for each experiment, instead it is
discussed in chapter 8.

Ratio of the feedback error motor command to the total motor com-
mand

The second component shows the ratio of the feedback error motor command
to the total motor command for each timestep in an epoch. After training, the
ratio should be close to zero through the entire epoch. This plot shows when the
inverse models produced bad motor commands, requiring the feedback motor
to help correct the situation. It is the fifth plot in figure 7.2.

Superposition of all the λ values, along with context information

The last plot (the sixth plot in figure 7.2) shows the responsibility signals of
the different modules in the same plot, making it easy to see when the winning
module changes from one to another. The context information is shown in the
same plot, as different shades of gray. The context information was thought to
help the multiple paired models architecture self-organize in a way that would
correspond to the context signals, see section 5.2.3. Ideally, the multiple paired
models architecture would discover this relationship, and use the context signals
to segment the responsibility of certain movements to particular modules (as was
the intention from the design of the system). The λ plots would ideally follow

70

the context information plots (recall that the context information plots directly
correspond to the movements in the motion).

7.1.3 The performance of the system compared to the de-
sired state

The third type of figure (7.3) plots the performance of the system along with
the desired state of the system for an epoch. The plot makes it easy to see the
performance error of the system. There are different degrees of freedom for each
experiment, and the figure has one plot for each. Each plot has a legend showing
which colour is the desired state and which is the actual state of the system.
The figure makes it easy to see how well the resulting behaviour matches that
of the desired behaviour, irrespective of which module was in charge at what
time. In addition, a video is produced for each of the experiments, showing the
performance of the system compared to the desired trajectory. The video is
among the attachments to the thesis. The plots can be seen in figure 7.3, which
has 4 degrees of freedom, with one plot for each of them.

7.1.4 The performance of the system with λ values super-
posed

This figure (7.10) is a mixture of two previous plots; in this figure the perfor-
mance of the system is plotted along with λ values, making it easy to see which
module controlled which part of the total movement. The background colour is
a paler version of the module’s original colour used in previous plots (i.e. the
first module is plotted in blue, and in this diagram the first module is plotted
using a light blue colour).

7.1.5 Attractor plots

The fifth type of figure (7.11, 7.12) shows the attractor plots of the hidden
layer of the forward and inverse models for an epoch. There are plots for each
module, so the number of figures will depend on the number of modules in
the multiple paired models architecture. The plots are done according to the
procedure described in [32]; during an epoch the neural activity of the hidden
layer is recorded. After the epoch, the activity of two adjacent nodes are plotted
against each other. If there were four nodes at the hidden layer, the plots would
be of nodes 1-2, 2-3 and 3-4, i.e. if there are n nodes there will be n − 1
attractor plots. At the beginning of each epoch the memory of the network is
blank, therefore the initial transient trajectory is not included in the plot.

There is one subtle difference: Ito and Tani plotted the activity of the con-
text nodes, not the hidden nodes (see figure 2.3). However, the context nodes
represent the recurrent feedback loop, which is basically the same as the hid-
den layer nodes in my networks. The difference is that Ito and Tani had fewer
context nodes than hidden nodes, but in my networks all the nodes at the hid-
den layer have recurrent connections, alleviating the need for context nodes. So
my plots read “Hidden node 2” vs “Hidden node 1” instead of “Context node
2” vs “Context node 1”, as it is written in [32]. Also, the trajectories in [32]
were computed for each of the PB values determined for each pattern, this is
obviously not done in my case, since I do not use the RNNPB.

71

For both the forward and inverse model two plots are shown: one for the
entire epoch and one filtered plot. The filtered plot is made by only plotting
neural activation where the λ value of the corresponding module was above 0.1.
I.e. the neural activity would only be plotted when the module was actually
contributing to the motor output. This was done to make it possible to see the
difference of the attractors when the module was doing something useful (i.e.
having a high λ value) compared to the attractors recorded during the entire
epoch. Note that the attractors are only plotted for the last epoch. This is
because I did not want to log the neural activity during the training run - the
log files were already in the 10s of MBs (the results gathered from the YMCA
was 271MB, for instance).

Why plot the attractors? I expected the attractors of the hidden nodes to
show nice shapes, indicating a stable memory, as in [32]. However, Ito and
Tani state that they selected randomly two context nodes, and plotted their
attractors. I therefore wanted to plot all the attractors, to see if all the plots
would display nice shapes. As the figures will show, there were many plots
that did not show nice attractors at all, instead they were erratic and hard
to interpret. I suspect that Ito and Tani also plotted all the context node
attractors, and picked the ones with nice attractors.

This concludes the description of the various plots. Notice that at every
plot, there will be a reference to the section describing the plot, in case that the
reader wants to refresh the memory of what the plot showed. The results of the
experiments presented in chapter 6 will be presented.

7.2 The two Ks

Name of MatLab file breve breve matlab Ks.m
Name of breve file Tiny Dancer - K4DOF.tz
Degrees of freedom in breve 4
Length of desired state 120
Number of paired inverse/forward models 2
Number of epochs trained 4000
Feedback error gain K 2
Output gain M 2
σ in the likelihood function 0.20
Error proportion P 5
Size of forward/inverse neural network 8-4-4
Size of responsibility predictor network 2-2-1
Learning rate δ 0.01
Active joints Right shoulder X joint angle,

Left shoulder X joint angle,
Right hip Y joint angle, Left hip
Y joint angle

7.2.1 The learning of each of the modules

Figure 7.1 shows a clear separation in the degree of learning of the two modules.
The second module actually has an increasing total error, while the error * λ is
low for most of the time. This indicates that the module has found its niche early

72

on, and specializes on that movement. The first module has a decreasing total
error and error * λ curve, indicating it is responsible for most of the movement.
A look at the performance plot of the last epoch (figure 7.2) shows that the
second module is responsible for the movement of the simulator for about 25
timesteps, the rest is controlled by the first module.

Figure 7.1 also shows that around epoch 1000, the system only had two
controlling modules. Indeed, figure 7.4 shows that at the 1000th epoch the
switch between the modules was almost as intended by design. However, it is
also clear that the feedback error motor command was quite large during this
period, indicating that the second module did not produce very good motor
commands. By looking at the figure of the performance of the system at the
same epoch (figure 7.5) it is clear that the left shoulder joint and left hip joint
are badly controlled. The second module was the winning module during this
period of time, and received more of its error signal for training. This should
have made the second module more competent in controlling the latter part,
but it fails to make use of its proportionally bigger error signal to correct the
performance of its inverse model.

7.2.2 Switching between controlling modules

It is at epoch 1058 that the first module gets control of the last timesteps for
the first time. At epoch 1057 (figure 7.6) the first module is gaining importance
towards the end of the run, and in epoch 1058 (figure 7.7) it has become the
winning module for the last timesteps - it is at the very last timestep that the
first module has gained more control than the second. This is more evident in
epoch 1100 (figure 7.8). From this point on, the first module takes more charge
towards the end of the movement, effectively reducing the period that the second
module is in control. By epoch 1500 (figure 7.9), the controlling period of the
first module is even further increased. Compared to the last epoch, the entire
controlling period of the second module has been shifted to the left, i.e. earlier
on in the sequence. At epoch 1500 it controls the robot from timestep 85 - 110,
whereas in the last epoch (figure 7.2) it is in charge from timestep 80 - 105 (the
timesteps are approximate values, read from looking at the plot themselves).
The plots for epoch 1500 and the last epoch also show that it is during the
switching period that the feedback error motor signal is stronger.

What does this mean? It seems like the two different modules specialize in
some part of the movement early on, especially the second module. The modules
start out with random weights, so initially they could be equally suited for any
movement. Since this is a self-organizing system, it goes to show that intentions
put there by design might not be the way the system will find, as is the case of
the context values and the winning modules.

Figure 7.10 shows which module controlled which part of the movement, as
was the state at the last epoch. The first module controls most of the movement,
but it seems as the second module is crucial for making the left shoulder and
hip change directions. Up until timestep 85 the second module is in control and
outputs a near constant velocity to move the left shoulder and hip. But it is the
second module that changes the direction of the movement. In this respect, the
modules have separate areas of responsibility according to intention. Moving
a joint in a straight line requires the multiple paired models architecture to
output a constant velocity. The first module controls all the movement of the

73

right shoulder and hip, but it is the second module that does the crucial part
of the second movement. In this respect, the modules have separated nicely,
as was intended. However, figure 7.2 also shows that the ratio of the feedback
error motor command to the motor output from the multiple paired models
architecture is bigger during the entire second period of the movement (i.e. as
defined by the context info), indicating that the modules are not completely
confident of the movement.

7.2.3 Attractor plots

Figure 7.11 shows that the forward model of the first module seems to follow a
pattern in its attractor. The inverse model attractors are more chaotic, and do
not display a certain pattern. The filtered plots are almost entirely equal, which
is not surprising since the first module is in control of the movement most of
the time.

The attractor plots of the second module (figure 7.12) are more interesting,
they clearly show a distinct pattern of neural activity. The filtered plots are
almost identical to the total plots here as well, indicating that the module is
somehow constantly in the same attractor, but it is only at a certain time that
this attractor is a good predictor and controller of the robot. This could explain
why the second module fails to become the controlling module for the last period
of the movement (as was discussed in section 7.2.1); it is specialized for that
particular movement and even though it was trained for the entire latter part
of the movement, the first module did more easily adapt even when receiving a
lower ratio of the error signal.

7.2.4 Was the goal met?

The goal (see section 7.2.4) was to show that the multiple paired models archi-
tecture works, and that it would self-organize into having one module controlling
for one behaviour. Although the separation of the modules did not happen ex-
actly as intended, the separation was quite close to intention. The multiple
paired models architecture as a whole works as intended, i.e. it is a good con-
troller for the simulated robot. In terms of hypotheses the results show:

Hypothesis 1: The different movements did self-organize to different mod-
ules, although there was some overlap between the movements.

Hypothesis 2: The switching of the controlling module was almost as
intended, but this was not due to the context information. Instead, the multiple
paired models architecture managed to understand these changes without the
context information.

Hypothesis 3: The context information was not used at all, as can be seen
on the plots. No relation between context information and movements were
discovered, due to the responsibility predictor output being high constantly.

74

0 500 1000 1500 2000 2500 3000 3500 4000
0

20

40

60

Summation of the absolute forward error, module 1

Error
Error * λ

0 500 1000 1500 2000 2500 3000 3500 4000
0

20

40

60

80

Summation of the absolute forward error, module 2

Error
Error * λ

0 500 1000 1500 2000 2500 3000 3500 4000
0

50

100

Summation of the absolute feedback error motor command

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.2

0.4

0.6

mean(ufb/motor command) and standard deviation for each epoch

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

The number of transitions between winning modules for each epoch

0 500 1000 1500 2000 2500 3000 3500 4000
0

20

40

60

Summation of the absolute error for each epoch, i.e. sum(abs(desired state − actual state))

Figure 7.1: (7.1.1) The training period of the two Ks. The x-axis shows the
number of epochs. The prediction errors of the first (blue) and second (red)
module can be seen in the two upmost plots. Plot number three shows how the
feedback error motor command decreases over time, as the predictions of the
forward models get better. The ratio of the feedback error motor command to
the total motor command is shown in the fourth plot. It is the mean ratio of
each epoch. Notice how it moves towards zero as the training progresses. The
fifth plot shows how many transitions there are between winning module at each
epoch. The last plot shows the error of the multiple paired models architecture
as a whole.

75

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

Summation of the absolute values of the forward errors, module 1

0 20 40 60 80 100 120
0

0.5

1

Lambda values and responsibility predictor output, module 1

λ
rp

0 20 40 60 80 100 120
0

0.5

1

1.5

2

Summation of the absolute values of the forward errors, module 2

0 20 40 60 80 100 120
0

0.5

1

Lambda values and responsibility predictor output, module 2

λ
rp

0 20 40 60 80 100 120
0

0.5

1

Ratio of feedback error motor command (ufb)/actual motor command

10 20 30 40 50 60 70 80 90 100 110 120
0

0.5

1

All lambda values superposed. Shades of gray indicate context values.

Figure 7.2: (7.1.2) The last epoch of the two Ks. The x-axis shows the timesteps
of the epoch. The two plots in blue show the performance of the forward model
and the responsibility predictor and the resulting λ values for the first module.
The plots in red show the same for the second module. The ratio of the feedback
error motor command to the total motor command is shown in the fifth plot.
The ratio remains close to zero, with the highest point during the control period
of the second module. The λ values of both modules are superposed, along with
the context information in the sixth plot. The λ values should ideally follow the
context values, however they are not very far from doing so.

76

0 20 40 60 80 100 120
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Right shoulder X joint angle

Target state
Actual state

0 20 40 60 80 100 120
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Left shoulder X joint angle

0 20 40 60 80 100 120
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Right hip Y joint angle

0 20 40 60 80 100 120

0.4

0.5

0.6

0.7

0.8

0.9

1

Left hip Y joint angle

Figure 7.3: (7.1.3) Performance of the multiple paired models architecture com-
pared to the desired trajectory, the last epoch, the two Ks. Each plot shows the
desired and actual state for one of the degrees of freedom (which can be read on
the label at the x-axis). The x-axis shows the timesteps. The plots show that
the multiple paired models architecture performs well.

77

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

Summation of the absolute values of the forward errors, module 1

0 20 40 60 80 100 120
0

0.5

1

Lambda values and responsibility predictor output, module 1

λ
rp

0 20 40 60 80 100 120
0

0.5

1

1.5

Summation of the absolute values of the forward errors, module 2

0 20 40 60 80 100 120
0

0.5

1

Lambda values and responsibility predictor output, module 2

λ
rp

0 20 40 60 80 100 120
0

0.5

1

Ratio of feedback error motor command (ufb)/actual motor command

10 20 30 40 50 60 70 80 90 100 110 120
0

0.5

1

All lambda values superposed. Shades of gray indicate context values.

Figure 7.4: (7.1.2) The performance at epoch 1000, the two Ks. There is a
clearer separation of the λ values, however notice the higher ratio of feedback
error command to total motor command, indicating that the second module
does not produce good motor commands.

78

0 20 40 60 80 100 120
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Right shoulder X joint angle

Target state
Actual state

0 20 40 60 80 100 120
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Left shoulder X joint angle

0 20 40 60 80 100 120
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Right hip Y joint angle

0 20 40 60 80 100 120

0.4

0.5

0.6

0.7

0.8

0.9

1

Left hip Y joint angle

Figure 7.5: (7.1.3) Desired and actual trajectory, epoch 1000, the two Ks. The
right shoulder X joint angle and the right hip Y joint angle are controlled nicely
throughout the epoch, the control of the left shoulder and hip is more erroneous.

79

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

Summation of the absolute values of the forward errors, module 1

0 20 40 60 80 100 120
0

0.5

1

Lambda values and responsibility predictor output, module 1

λ
rp

0 20 40 60 80 100 120
0

0.5

1

1.5

Summation of the absolute values of the forward errors, module 2

0 20 40 60 80 100 120
0

0.5

1

Lambda values and responsibility predictor output, module 2

λ
rp

0 20 40 60 80 100 120
0

0.5

1

Ratio of feedback error motor command (ufb)/actual motor command

10 20 30 40 50 60 70 80 90 100 110 120
0

0.5

1

All lambda values superposed. Shades of gray indicate context values.

Figure 7.6: (7.1.2) Performance at epoch 1057, the two Ks. This figure, along
with figure 7.7, shows when the first module starts to gain more control over
the last part of the motion.

80

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

Summation of the absolute values of the forward errors, module 1

0 20 40 60 80 100 120
0

0.5

1

Lambda values and responsibility predictor output, module 1

λ
rp

0 20 40 60 80 100 120
0

0.5

1

1.5

Summation of the absolute values of the forward errors, module 2

0 20 40 60 80 100 120
0

0.5

1

Lambda values and responsibility predictor output, module 2

λ
rp

0 20 40 60 80 100 120
0

0.5

1

Ratio of feedback error motor command (ufb)/actual motor command

10 20 30 40 50 60 70 80 90 100 110 120
0

0.5

1

All lambda values superposed. Shades of gray indicate context values.

Figure 7.7: (7.1.2) Performance at epoch 1058, the two Ks. The first module is
now the winning module at the last timestep. After this epoch, the first module
will continue gaining control, as can be seen in figure 7.8.

81

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

Summation of the absolute values of the forward errors, module 1

0 20 40 60 80 100 120
0

0.5

1

Lambda values and responsibility predictor output, module 1

λ
rp

0 20 40 60 80 100 120
0

0.5

1

1.5

Summation of the absolute values of the forward errors, module 2

0 20 40 60 80 100 120
0

0.5

1

Lambda values and responsibility predictor output, module 2

λ
rp

0 20 40 60 80 100 120
0

0.5

1

Ratio of feedback error motor command (ufb)/actual motor command

10 20 30 40 50 60 70 80 90 100 110 120
0

0.5

1

All lambda values superposed. Shades of gray indicate context values.

Figure 7.8: (7.1.2) Performance at epoch 1100, the two Ks. The first module is
now gaining control towards the end of the motion.

82

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

Summation of the absolute values of the forward errors, module 1

0 20 40 60 80 100 120
0

0.5

1

Lambda values and responsibility predictor output, module 1

λ
rp

0 20 40 60 80 100 120
0

0.5

1

1.5

2

Summation of the absolute values of the forward errors, module 2

0 20 40 60 80 100 120
0

0.5

1

Lambda values and responsibility predictor output, module 2

λ
rp

0 20 40 60 80 100 120
0

0.5

1

Ratio of feedback error motor command (ufb)/actual motor command

10 20 30 40 50 60 70 80 90 100 110 120
0

0.5

1

All lambda values superposed. Shades of gray indicate context values.

Figure 7.9: (7.1.2) Performance at epoch 1500, the two Ks. The first module
has now gained even more control towards the end of the motion.

83

Figure 7.10: (7.1.4) The state trajectories along with controlling modules, the
last epoch, the two Ks. The second module is crucial for shifting the direction
of the arm.

84

0 0.5 1
0

0.5

1
Forward model attractors

Hidden node 1

H
id

de
n

no
de

 2

0 0.5 1
0

0.5

1
Filtered forward model attractors

Hidden node 1

H
id

de
n

no
de

 2

0 0.5 1
0

0.5

1
Inverse model attractors

Hidden node 1

H
id

de
n

no
de

 2

0 0.5 1
0

0.5

1
Filtered inverse model attractors

Hidden node 1

H
id

de
n

no
de

 2

0 0.5 1
0

0.5

1

Hidden node 2

H
id

de
n

no
de

 3

0 0.5 1
0

0.5

1

Hidden node 2

H
id

de
n

no
de

 3

0 0.5 1
0

0.5

1

Hidden node 2

H
id

de
n

no
de

 3

0 0.5 1
0

0.5

1

Hidden node 2

H
id

de
n

no
de

 3

0 0.5 1
0

0.5

1

Hidden node 3

H
id

de
n

no
de

 4

0 0.5 1
0

0.5

1

Hidden node 3

H
id

de
n

no
de

 4

0 0.5 1
0

0.5

1

Hidden node 3

H
id

de
n

no
de

 4

0 0.5 1
0

0.5

1

Hidden node 3

H
id

de
n

no
de

 4

Figure 7.11: (7.1.5) Attractor plots, module 1, the two Ks. The filtered and un-
filtered plots are more or less the same, which is not surprising, considering that
the first module is in control most of the time. The forward model attractors
seem to follow a pattern, but the inverse model attractors are more chaotic.

85

0 0.5 1
0

0.5

1
Forward model attractors

Hidden node 1

H
id

de
n

no
de

 2

0 0.5 1
0

0.5

1
Filtered forward model attractors

Hidden node 1

H
id

de
n

no
de

 2

0 0.5 1
0

0.5

1
Inverse model attractors

Hidden node 1

H
id

de
n

no
de

 2

0 0.5 1
0

0.5

1
Filtered inverse model attractors

Hidden node 1

H
id

de
n

no
de

 2

0 0.5 1
0

0.5

1

Hidden node 2

H
id

de
n

no
de

 3

0 0.5 1
0

0.5

1

Hidden node 2

H
id

de
n

no
de

 3

0 0.5 1
0

0.5

1

Hidden node 2

H
id

de
n

no
de

 3

0 0.5 1
0

0.5

1

Hidden node 2

H
id

de
n

no
de

 3

0 0.5 1
0

0.5

1

Hidden node 3

H
id

de
n

no
de

 4

0 0.5 1
0

0.5

1

Hidden node 3

H
id

de
n

no
de

 4

0 0.5 1
0

0.5

1

Hidden node 3

H
id

de
n

no
de

 4

0 0.5 1
0

0.5

1

Hidden node 3

H
id

de
n

no
de

 4

Figure 7.12: (7.1.5) Attractor plots, module 2, the two Ks. All the plots show
more stable patterns, indicating that the module is very specialized for the part
it controls the robot.

86

7.3 The cheerleader

Name of MatLab file breve breve matlab cheerleader.m
Name of breve file Tiny Dancer -

cheerleader7DOF.tz
Degrees of freedom in breve 7
Length of desired state 160
Number of paired inverse/forward models 3
Number of epochs trained 8000
Feedback error gain K 2
Output gain M 2
σ in the likelihood function 0.20
Error proportion P 5
Size of forward/inverse neural network 14-7-7
Size of responsibility predictor network 3-3-1
Learning rate δ 0.01
Active joints Right shoulder X joint angle,

Right shoulder Y joint angle,
Left shoulder X joint angle, Left
shoulder Y joint angle, Right hip
X joint angle, Right hip Y joint
angle, Left hip X joint angle

7.3.1 The learning of each of the modules

Figure 7.13 shows how two of the modules specialize early on in the training
period; the same thing that was observed in the previous experiment. The first
module starts out with a very low prediction error * λ, and it remains low. The
module is trained specifically for its small portion of the total movement, and
becomes even worse at controlling anything else. The second module is subject
to the same issue, but it learns to a greater extent than the first module. As
with the first module, the error curve is increasing, but it starts decreasing after
epoch 2000. The error * λ remains more or less the same after epoch 2000.

It is the third module that learns most during the training run. The total
error and the error * λ both decrease as training proceeds. Figure 7.14 shows
that it is indeed the third module that has most of the control in the last epoch.
The second module has some short spikes of about equal length in both the first
and third movement, whereas the first module controls only one specific area of
the third movement.

7.3.2 Switching between controlling modules

In figure 7.16 it can be observed how the third module controls most of the
movement of the robot at the last epoch. The second module controls the robot
in a short period of time in the first movement, and upon closer examination
it is when the joint angle velocity changes sign for the right shoulder X joint
angle, the left shoulder X joint angle, right hip X joint angle and to some extent
also the left hip X joint angle (recall that the red line is the actual state, i.e.
the performance of the robot. The peak of the desired target (the blue line)

87

is slightly before the actual state, however the peak of the actual state occurs
when the second module has control over the robot, at about timesteps 35-40).
Similarly, the first module controls the robot when the joint angle velocity of
the right shoulder X and Y joint angle, left shoulder X and Y joint angle and
right and left hip X joint angle change sign. Interestingly, the second module
“pads” the first module in almost identically long periods of time. Even though
the third module is in control most of the time, one could say that the first and
second module plays important parts when changes occur in the first and third
movement, as was observed for the two Ks experiment as well.

Epoch 2000 is where the learning curve of the second module starts decreas-
ing, after having increased for the last epochs. Figure 7.17 reveals that module 3
has more control over the first movement, but that the second module is almost
equally in control of the first movement. Figure 7.18 shows the control related
to the joints. During the second movement, the actual state differs substantially
from the target state. It can be seen as the third module learns to control the
robot correctly for the second movement, but gradually surrenders control to
the second module for the important changes in the first movement.

The multiple paired models architecture has a lot of oscillations in the num-
ber of transitions between winning modules, which can be seen in figure 7.13 in
the sixth plot. Although it seems to stabilize after about 5000 epochs, there is
still some changes towards the end of the training run.

After the 7000th epoch there are some oscillation in the number of tran-
sitions. The first spike in changes after epoch 7000 is at epoch 7140, which
lasts until epoch 7282. Figure shows epoch 7200 and figure epoch 7400 (which
is in between the transitions occuring at epoch 7379 and epoch 7445), and it
is evident that these changes are very small and not substantial to the total
performance of the system, showing that the system remains rather stable after
epoch 5000. Figure 7.13 also shows that the summation of the absolute error is
rather stable after epoch 5000.

7.3.3 Attractor plots

Figure 7.21 shows the attractor plots for the first module. The activity of the
forward model (both for the entire epoch and the filtered plot) shows little
variation, indicating that the module is very specialized in the output space.
The inverse model attractors show patterns with more variation. The filtered
patterns are close to the patterns for the whole epoch, indicating that the inverse
model produces quite similar motor outputs the entire time, but the outputs
are correct only for a small period of time, as can from the short period of time
it is in control (figure 7.2).

The attractor plots of the second module is shown in figure 7.22. The pat-
terns of the forward model are quite consistent, whereas the patterns of the
inverse model are more erratic. The filtered plots of the inverse model are a bit
more stable, but still not too coherent. This can explain why the feedback error
motor command is bigger during the periods when the second module influences
the total motor output (see figure 7.14).

Figure 7.23 shows the attractor plots of the dominating module, namely the
third module. The forward model plots display some interesting patterns, all
of them seem to travel back and forth in a boomerang-shaped pattern, with
context node 2-1 and 7-6 having an extra branch, making the pattern look like

88

a propeller. These attractors represent the memory of the states of the total
movement, since this is the module controlling the robot for most of the time.
The attractors of the inverse model are more chaotic, and do not display any
symmetry. Perhaps this is the reason why the other modules must “aid” the
third module into getting the correct movement at certain important turning
points of the movement, it is simply too complex for the third module to control
the robot all the time. The filtered and unfiltered plots are almost exactly the
same, but that is not so surprising, considering it is control most of the time.

7.3.4 Was the goal met?

The goal was to show that the architecture would self-organize in a more com-
plex situation (see section 6.2.2). The network did self-organize, however the
separation of the modules did not happen as intended. However, the different
modules played important parts in determining the behaviour of the system.
In addition, the system as a whole functioned well. Results of the experiments
related to the working hypotheses:

Hypothesis 1: As in the previous experiment, the self-organization did not
happen exactly as intended, although the different modules all play important
parts in making the architecture function well.

Hypothesis 2: The λ values did not self-organize as intended, and in a
lesser degree than the previous experiment. Again, this was not due to the
context information, as the responsibility predictor had a high output during
the entire epoch.

Hypothesis 3: There was no correlation between the context information
and the movements, as in the previous experiment, since the responsibility pre-
dictor output was constantly high.

89

0 1000 2000 3000 4000 5000 6000 7000 8000
0

100

200

Summation of the absolute forward error, module 1

Error
Error * λ

0 1000 2000 3000 4000 5000 6000 7000 8000
0

50

100

Summation of the absolute forward error, module 2

Error

Error * λ

0 1000 2000 3000 4000 5000 6000 7000 8000
0

50

100

150

Summation of the absolute forward error, module 3

Error
Error * λ

0 1000 2000 3000 4000 5000 6000 7000 8000
0

100

200

Summation of the absolute feedback error motor command

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.2

0.4

0.6

mean(ufb/motor command) and standard deviation for each epoch

0 1000 2000 3000 4000 5000 6000 7000 8000
0

5

10

The number of transitions between winning modules for each epoch

0 1000 2000 3000 4000 5000 6000 7000 8000
0

50

100

150

Summation of the absolute error for each epoch, i.e. sum(abs(desired state − actual state))

Figure 7.13: (7.1.1) The training run of the cheerleader. The x-axis shows the
number of epochs. The prediction errors of the first (blue), second (red) and
third (magenta) module can be seen in the three upper plots. Plots 4-7 are
the same as plots 3-6 in figure 7.1. Notice how there are some oscillations in
the number of transitions between the winning modules, indicating that sev-
eral modules are competing for control, and that they are fairly equally well
controlling the robot.

90

0 20 40 60 80 100 120 140 160
0

2

4

Summation of the absolute values of the forward errors, module 1

0 20 40 60 80 100 120 140 160
0

0.5

1

Lambda values and responsibility predictor output, module 1

λ
rp

0 20 40 60 80 100 120 140 160
0

1

2

Summation of the absolute values of the forward errors, module 2

0 20 40 60 80 100 120 140 160
0

0.5

1

Lambda values and responsibility predictor output, module 2

λ
rp

0 20 40 60 80 100 120 140 160
0

0.5

1

Summation of the absolute values of the forward errors, module 3

0 20 40 60 80 100 120 140 160
0

0.5

1

Lambda values and responsibility predictor output, module 3

λ
rp

0 20 40 60 80 100 120 140 160
0

0.5

1

Ratio of feedback error motor command (ufb)/actual motor command

20 40 60 80 100 120 140 160
0

0.5

1

All lambda values superposed. Shades of gray indicate context values.

Figure 7.14: (7.1.2) The last epoch of the cheerleader. The x-axis shows the
timesteps of the epoch. The plots show the same as in figure 7.2, with the
addition of the performance of the third module, shown in magenta. The ratio
of the feedback error motor command is low during the entire epoch, with a
peak when the first module is in control.

91

0 20 40 60 80 100 120 140 160
0

0.5

1

Right shoulder X joint angle

Target state

Actual state

0 20 40 60 80 100 120 140 160
0.4

0.6

0.8

1

Right shoulder Y joint angle

0 20 40 60 80 100 120 140 160
0

0.5

1

Left shoulder X joint angle

0 20 40 60 80 100 120 140 160
0.4

0.6

0.8

1

Left shoulder Y joint angle

0 20 40 60 80 100 120 140 160
0.4

0.6

0.8

1

Right hip X joint angle

0 20 40 60 80 100 120 140 160
0.4

0.5

0.6

0.7

Right hip Y joint angle

0 20 40 60 80 100 120 140 160
0

0.5

1

Left hip X joint angle

Figure 7.15: (7.1.3) The target state and the actual state of the cheerleader,
at the last epoch. Each plot shows the desired and actual state for one of the
degrees of freedom (see the label close to the x-axis). The x-axis shows the
timesteps. The performance is very good, with little deviation from the desired
trajectory.

92

Figure 7.16: (7.1.4) The λ and target/actual trajectory of the cheerleader at
the last epoch. The first and second module are important for changing the
direction of the different joints during the first and last movement.

93

0 20 40 60 80 100 120 140 160
0

2

4

Summation of the absolute values of the forward errors, module 1

0 20 40 60 80 100 120 140 160
0

0.5

1

Lambda values and responsibility predictor output, module 1

λ
rp

0 20 40 60 80 100 120 140 160
0

1

2

Summation of the absolute values of the forward errors, module 2

0 20 40 60 80 100 120 140 160
0

0.5

1

Lambda values and responsibility predictor output, module 2

λ
rp

0 20 40 60 80 100 120 140 160
0

1

2

Summation of the absolute values of the forward errors, module 3

0 20 40 60 80 100 120 140 160
0

0.5

1

Lambda values and responsibility predictor output, module 3

λ
rp

0 20 40 60 80 100 120 140 160
0

0.5

1

Ratio of feedback error motor command (ufb)/actual motor command

20 40 60 80 100 120 140 160
0

0.5

1

All lambda values superposed. Shades of gray indicate context values.

Figure 7.17: (7.1.2) The performance plot at epoch 2000, the cheerleader. This
is the epoch where the second module starts decreasing its error predictions.
Notice how much the error of the second module has decreased compared to the
plot of the last epoch (figure 7.14). The fact that the decrease in error happens
rather late in the training period, is a sign that the architecture is capable of
readjusting even though the training has gone on for some time. Normally when
training neural networks, the error curve decreases rapidly in the beginning and
then remains low - here it the error curve is high, but the self-organizing process
manages to push the module in the right direction.

94

Figure 7.18: (7.1.4) Desired and actual trajectory, along with λ values, epoch
2000, the cheerleader. The third module is more in control during the first
movement, than it is at the last epoch (figure 7.15).

95

Figure 7.19: (7.1.4) Target and actual state with λ values, epoch 7200, the
cheerleader. This figure (along with figure 7.20) shows that even though there
are some changes in the number of transitions between the winning modules,
these changes are very small and does not influence the total performance of
the multiple paired models architecture to a great extent.

96

Figure 7.20: (7.1.4) Target and actual state with λ values, epoch 7400, the
cheerleader. This figure and figure 7.19 show that even though the number
of transitions are changing, the change is very small and not very significant,
making the changes not very noticeable in the total performance of the multiple
paired models architecture.

97

0 0.5 1
0

0.5

1
Forward model attractors

Hidden node 1

H
id

de
n

no
de

 2

0 0.5 1
0

0.5

1
Filtered forward model attractors

Hidden node 1

H
id

de
n

no
de

 2

0 0.5 1
0

0.5

1
Inverse model attractors

Hidden node 1

H
id

de
n

no
de

 2

0 0.5 1
0

0.5

1
Filtered inverse model attractors

Hidden node 1

H
id

de
n

no
de

 2

0 0.5 1
0

0.5

1

Hidden node 2

H
id

de
n

no
de

 3

0 0.5 1
0

0.5

1

Hidden node 2

H
id

de
n

no
de

 3

0 0.5 1
0

0.5

1

Hidden node 2

H
id

de
n

no
de

 3

0 0.5 1
0

0.5

1

Hidden node 2

H
id

de
n

no
de

 3

0 0.5 1
0

0.5

1

Hidden node 3

H
id

de
n

no
de

 4

0 0.5 1
0

0.5

1

Hidden node 3

H
id

de
n

no
de

 4

0 0.5 1
0

0.5

1

Hidden node 3

H
id

de
n

no
de

 4

0 0.5 1
0

0.5

1

Hidden node 3

H
id

de
n

no
de

 4

0 0.5 1
0

0.5

1

Hidden node 4

H
id

de
n

no
de

 5

0 0.5 1
0

0.5

1

Hidden node 4

H
id

de
n

no
de

 5

0 0.5 1
0

0.5

1

Hidden node 4

H
id

de
n

no
de

 5

0 0.5 1
0

0.5

1

Hidden node 4

H
id

de
n

no
de

 5

0 0.5 1
0

0.5

1

Hidden node 5

H
id

de
n

no
de

 6

0 0.5 1
0

0.5

1

Hidden node 5

H
id

de
n

no
de

 6

0 0.5 1
0

0.5

1

Hidden node 5

H
id

de
n

no
de

 6

0 0.5 1
0

0.5

1

Hidden node 5

H
id

de
n

no
de

 6

0 0.5 1
0

0.5

1

Hidden node 6

H
id

de
n

no
de

 7

0 0.5 1
0

0.5

1

Hidden node 6

H
id

de
n

no
de

 7

0 0.5 1
0

0.5

1

Hidden node 6

H
id

de
n

no
de

 7

0 0.5 1
0

0.5

1

Hidden node 6

H
id

de
n

no
de

 7

Figure 7.21: (7.1.5) Attractor plots, module 1, the cheerleader. There is little
variation in the plots, indicating that the module is very specialized.

98

0 0.5 1
0

0.5

1
Forward model attractors

Hidden node 1

H
id

de
n

no
de

 2

0 0.5 1
0

0.5

1
Filtered forward model attractors

Hidden node 1

H
id

de
n

no
de

 2

0 0.5 1
0

0.5

1
Inverse model attractors

Hidden node 1

H
id

de
n

no
de

 2

0 0.5 1
0

0.5

1
Filtered inverse model attractors

Hidden node 1

H
id

de
n

no
de

 2

0 0.5 1
0

0.5

1

Hidden node 2

H
id

de
n

no
de

 3

0 0.5 1
0

0.5

1

Hidden node 2

H
id

de
n

no
de

 3

0 0.5 1
0

0.5

1

Hidden node 2

H
id

de
n

no
de

 3

0 0.5 1
0

0.5

1

Hidden node 2

H
id

de
n

no
de

 3

0 0.5 1
0

0.5

1

Hidden node 3

H
id

de
n

no
de

 4

0 0.5 1
0

0.5

1

Hidden node 3

H
id

de
n

no
de

 4

0 0.5 1
0

0.5

1

Hidden node 3

H
id

de
n

no
de

 4

0 0.5 1
0

0.5

1

Hidden node 3

H
id

de
n

no
de

 4

0 0.5 1
0

0.5

1

Hidden node 4

H
id

de
n

no
de

 5

0 0.5 1
0

0.5

1

Hidden node 4

H
id

de
n

no
de

 5

0 0.5 1
0

0.5

1

Hidden node 4

H
id

de
n

no
de

 5

0 0.5 1
0

0.5

1

Hidden node 4

H
id

de
n

no
de

 5

0 0.5 1
0

0.5

1

Hidden node 5

H
id

de
n

no
de

 6

0 0.5 1
0

0.5

1

Hidden node 5

H
id

de
n

no
de

 6

0 0.5 1
0

0.5

1

Hidden node 5

H
id

de
n

no
de

 6

0 0.5 1
0

0.5

1

Hidden node 5

H
id

de
n

no
de

 6

0 0.5 1
0

0.5

1

Hidden node 6

H
id

de
n

no
de

 7

0 0.5 1
0

0.5

1

Hidden node 6

H
id

de
n

no
de

 7

0 0.5 1
0

0.5

1

Hidden node 6

H
id

de
n

no
de

 7

0 0.5 1
0

0.5

1

Hidden node 6

H
id

de
n

no
de

 7

Figure 7.22: (7.1.5) Attractor plots, module 2, the cheerleader. The forward
model plots are more consistent than the inverse model plots, which are a bit
more fluctuating. This could explain why the feedback error motor command
is bigger when this module is having control over the output.

99

0 0.5 1
0

0.5

1
Forward model attractors

Hidden node 1

H
id

de
n

no
de

 2

0 0.5 1
0

0.5

1
Filtered forward model attractors

Hidden node 1

H
id

de
n

no
de

 2

0 0.5 1
0

0.5

1
Inverse model attractors

Hidden node 1

H
id

de
n

no
de

 2

0 0.5 1
0

0.5

1
Filtered inverse model attractors

Hidden node 1

H
id

de
n

no
de

 2

0 0.5 1
0

0.5

1

Hidden node 2

H
id

de
n

no
de

 3

0 0.5 1
0

0.5

1

Hidden node 2

H
id

de
n

no
de

 3

0 0.5 1
0

0.5

1

Hidden node 2

H
id

de
n

no
de

 3

0 0.5 1
0

0.5

1

Hidden node 2

H
id

de
n

no
de

 3

0 0.5 1
0

0.5

1

Hidden node 3

H
id

de
n

no
de

 4

0 0.5 1
0

0.5

1

Hidden node 3

H
id

de
n

no
de

 4

0 0.5 1
0

0.5

1

Hidden node 3

H
id

de
n

no
de

 4

0 0.5 1
0

0.5

1

Hidden node 3

H
id

de
n

no
de

 4

0 0.5 1
0

0.5

1

Hidden node 4

H
id

de
n

no
de

 5

0 0.5 1
0

0.5

1

Hidden node 4

H
id

de
n

no
de

 5

0 0.5 1
0

0.5

1

Hidden node 4

H
id

de
n

no
de

 5

0 0.5 1
0

0.5

1

Hidden node 4

H
id

de
n

no
de

 5

0 0.5 1
0

0.5

1

Hidden node 5

H
id

de
n

no
de

 6

0 0.5 1
0

0.5

1

Hidden node 5

H
id

de
n

no
de

 6

0 0.5 1
0

0.5

1

Hidden node 5

H
id

de
n

no
de

 6

0 0.5 1
0

0.5

1

Hidden node 5

H
id

de
n

no
de

 6

0 0.5 1
0

0.5

1

Hidden node 6

H
id

de
n

no
de

 7

0 0.5 1
0

0.5

1

Hidden node 6

H
id

de
n

no
de

 7

0 0.5 1
0

0.5

1

Hidden node 6

H
id

de
n

no
de

 7

0 0.5 1
0

0.5

1

Hidden node 6

H
id

de
n

no
de

 7

Figure 7.23: (7.1.5) Attractor plots, module 3, the cheerleader. The forward
models display interesting patterns, reminiscent of a boomerang, showing a
memory that seems to be quite stable.

100

7.4 YMCA

Name of MatLab file human breve matlab YMCA4DOF.m
Name of breve file Tiny Dancer - YMCA4DOF.tz
Degrees of freedom in breve 4
Length of desired state 144
Number of paired inverse/forward models 4
Number of epochs trained 12000
Feedback error gain K 3
Output gain M 3
σ in the likelihood function 0.10
Error proportion P 8
Size of forward/inverse neural network 8-4-4
Size of responsibility predictor network 4-4-1
Learning rate δ 0.01
Active joints Right shoulder X joint angle,

Right elbow X joint angle, Left
shoulder X joint angle, Left el-
bow X joint angle

7.4.1 The learning of each of the modules

Figure 7.24 shows that every module has a decreasing error curve, not just a
low error * λ curve. Especially interesting is the curve of the third module,
where the error curve starts to decrease after epoch 5000. This indicates that
the system is capable of retuning itself even after it has been trained for a long
time. The performance of the system as a whole does not improve or worsen
remarkably during this period, so clearly the first module manages to learn more
without affecting the total performance.

The experiment has four modules, making the competition harder between
each of them. In addition, the target state is gathered from tracking data of
me dancing. The movement has more noise and is more complex than the
movements in the previous experiments, which were hard-coded by me. Figure
7.25 shows how the different modules are more equal in terms of time controlling
the behaviour of the robot. The second module is the one dominating, but the
first and fourth are not far behind, and they are active for almost the same
amount of time as each other. The third module is also active in the first part
of the movement. For the YMCA movement, all modules play an important
part in controlling the robot.

7.4.2 Switching between controlling modules

After some initial changing between which module is the winning module, the
number of transitions is fairly stable after epoch 1000, with some minor fluc-
tuations around epoch 5500 and 9500 (figure 7.24). At epoch 2000 and 9000
there is the same amount of transitions, but figure 7.27 shows that the separa-
tion of control between the winning modules is quite different from epoch 9000
(figure 7.28). Although they share some similarities (such as a very dominant
second module and a control period of the fourth module that is almost the

101

same), there are some noteable differences. Epoch 9000 has more clearly de-
fined winning modules than at epoch 2000, i.e. one module is close to having
the entire control during a movement. In epoch 2000, control is more shared
between modules, such as the period at timesteps 25 - 35, where the second and
first module share responsibility of controlling the robot. Another similarity is
that towards the end of the movement, there is no clear winning module, but
responsibility is shared between the winning modules.

It is also often the case that there are only two modules that share the control
at a certain timestep. If we again look to epoch 2000 and epoch 9000, this can
be seen in figures 7.29 and 7.30. The ideal would be that one module was in
control during a certain period of time, but the figures show how the modules
participate in controlling the robot, and that the responsibility is rather often
shared between two modules.

In terms of performance, epoch 2000 is not that bad compared to epoch 9000
(which as a sudden increase in error, as can be seen in figure 7.24). The total
performance plot of epoch 2000 is shown in figure 7.31, epoch 9000 in figure 7.32.
The latter figure (epoch 9000) shows a bad error in the movement of both the
left and right elbow at about the 70th timestep, not present at epoch 2000. This
demonstrates how the multiple paired models structure tries out new solutions,
but occasionally there is a mismatch between the actual state and the desired
state, and worse performance is the result.

7.4.3 Attractor plots

The attractor plots of the first module can be seen in figure 7.33. The first
and third plots of the forward model are somewhat regular, indicating a stable
memory. The second plot is more irregular. The attractor plots of the inverse
models are also quite irregular. This probably explains why the first module
only controls the robot for some short spikes of time (although it does have a
rather high responsibility signal towards the end of the movement).

Figure 7.34 shows the attractor plots of the second module. These attractor
plots are the most chaotic of all the modules, which is intriguing, given that the
second module dominates the robot’s motion for long periods of time. The same
was observed in the cheerleader experiment; the module that was in control most
of the time had the most chaotic attractors. Perhaps this is an indication of
the complexity of storing big chunks of the movement to be imitated, whereas
storing simple changes requires less memory and therefore yields more simple
attractors. The second module is in control for two periods of time, where the
latter is very long as well. By looking at figure 7.25, it can be seen how the
second module controls the robot during the entire third movement (the “C”)
and half of the fourth movement (the “A”). It could be the attractors are com-
plex since they represent these two different movements, who are by themselves
fairly complex. There is a substantial difference between the filtered and un-
filtered attractors, indicating that the second module is not very specialized,
but actually wants to try to control other parts of the movement as well. If
the multiple paired models structure was trained for more epochs, perhaps the
second module would have managed to increase its period of control.

The third module has the most stable attractors of all the modules (figure
7.35). Both the filtered and unfiltered plots are almost identical, suggesting that
the module is specialized for a certain part of movement. Indeed, figure 7.14

102

shows that the third module is most active during the beginning and end of the
total movement. The beginning of the “Y” and the ending of the “A” are very
similar, where the robot is basically lowering or raising the arms in unison.

Figure 7.36 depicts the attractor plots of the fourth module. The inverse
model attractors are very different from that of the other movements, indicating
that the module knows a specific type of movement. Figures 7.25 and 7.26 show
that the fourth module is most active during the end of the first movement
(the “Y”) and during the entire second movement (the “M”). The “M” is very
different from the other letters, since the elbow joint angles vary a lot. In the
other movements, it is the shoulder joints that are responsible for creating the
corresponding letter. That could be the reason why the inverse model attractors
are so peculiar for the fourth module.

7.4.4 Was the goal met?

The goal of the experiment was to demonstrate the architecture’s capability
of dealing with imitation of a human being, see section 6.3.2. The system per-
formed well at the imitative act as a whole, but the separation of responsibilities
between the modules did not happen as intended (as has been demonstrated in
the previous experiments as well). Nevertheless, it is clear that each module does
play an important part of the total control (as was displayed in the previous
experiments as well). The results related to the hypotheses:

Hypothesis 1: In this experiment, the self-organization was the most com-
plex compared to the previous experiments. The analysis shows that all the
modules play important parts in controlling the robot, but the self-organization
did not happen as intended (i.e. according to the context information).

Hypothesis 2: As in the previous two experiments, the context information
did not help the self-organization. Any detection of movement boundaries was
done without the use of the context information. This could be why there are
more small periods of control between the modules; the complex movements can
be separated in more ways due to their complexity.

Hypothesis 3: As in the previous experiments, the relationship between
the context information and the movements were not discovered, due to the
responsibility predictor only outputting high values during an epoch.

103

0 2000 4000 6000 8000 10000 12000
0

50

100

150

Summation of the absolute forward error, module 1

Error
Error * λ

0 2000 4000 6000 8000 10000 12000
0

50

100

150

Summation of the absolute forward error, module 2

Error
Error * λ

0 2000 4000 6000 8000 10000 12000
0

50

100

150

Summation of the absolute forward error, module 3

 Error

Error * λ

0 2000 4000 6000 8000 10000 12000
0

50

100

150

Summation of the absolute forward error, module 4

Error
Error * λ

0 2000 4000 6000 8000 10000 12000
0

100

200

Summation of the absolute feedback error motor command

0 2000 4000 6000 8000 10000 12000
0

0.2

0.4

0.6

mean(ufb/motor command) and standard deviation for each epoch

0 2000 4000 6000 8000 10000 12000
0

5

10

15

The number of transitions between winning modules for each epoch

0 2000 4000 6000 8000 10000 12000
0

50

100

Summation of the absolute error for each epoch, i.e. sum(abs(desired state − actual state))

Figure 7.24: (7.1.1) The entire training run, the YMCA. The x-axis shows the
number of epochs. The prediction errors of the first (blue), second (red), third
(magenta) and fourth (green) module can be seen in the four upper plots. Plots
5-8 are the same as plots 3-6 in figure 7.1. All the error plots are steadily
decreasing throughout the training period.

104

0 50 100 150
0

0.5

1

Summation of the absolute values of the forward errors, module 1

0 50 100 150
0

0.5

1

Lambda values and responsibility predictor output, module 1

 λ
rp

0 50 100 150
0

0.5

1

Summation of the absolute values of the forward errors, module 2

0 50 100 150
0

0.5

1

Lambda values and responsibility predictor output, module 2

 λ
rp

0 50 100 150
0

1

2

Summation of the absolute values of the forward errors, module 3

0 50 100 150
0

0.5

1

Lambda values and responsibility predictor output, module 3

 λ
rp

0 50 100 150
0

0.5

1

Summation of the absolute values of the forward errors, module 4

0 50 100 150
0

0.5

1

Lambda values and responsibility predictor output, module 4

λ
rp

0 50 100 150
0

0.5

1

Ratio of feedback error motor command (ufb)/actual motor command

20 40 60 80 100 120 140
0

0.5

1

All lambda values superposed. Shades of gray indicate context values.

Figure 7.25: (7.1.2) Performance of the last epoch, the YMCA. The x-axis shows
the timesteps. The plots show the same as in figure 7.14, with the addition of the
third (magenta) and fourth (green) module. Notice how the λ plots superposed
are a lot more complex than for the other experiments, i.e. there are a lot more
transitions between the winning modules.

105

Figure 7.26: (7.1.4) The λ and target/actual trajectory of the YMCA motion
at the last epoch. The performance is quite good, even though there are a lot
of changes regarding which module is in control.

106

0 50 100 150
0

1

2

Summation of the absolute values of the forward errors, module 1

0 50 100 150
0

0.5

1

Lambda values and responsibility predictor output, module 1

 λ
rp

0 50 100 150
0

1

2

Summation of the absolute values of the forward errors, module 2

0 50 100 150
0

0.5

1

Lambda values and responsibility predictor output, module 2

 λ
rp

0 50 100 150
0

2

4

Summation of the absolute values of the forward errors, module 3

0 50 100 150
0

0.5

1

Lambda values and responsibility predictor output, module 3

λ
rp

0 50 100 150
0

0.5

1

Summation of the absolute values of the forward errors, module 4

0 50 100 150
0

0.5

1

Lambda values and responsibility predictor output, module 4

λ
rp

0 50 100 150
0

0.5

1

Ratio of feedback error motor command (ufb)/actual motor command

20 40 60 80 100 120 140
0

0.5

1

All lambda values superposed. Shades of gray indicate context values.

Figure 7.27: (7.1.2) Performance of epoch 2000, the YMCA. The performance
is quite good, even at such an early stage of the training period. However, the
ratio feedback motor error commands to the total motor command is quite high,
indicating that the multiple paired models architecture did indeed need some
help to meet the target states.

107

0 50 100 150
0

0.5

1

Summation of the absolute values of the forward errors, module 1

0 50 100 150
0

0.5

1

Lambda values and responsibility predictor output, module 1

 λ
rp

0 50 100 150
0

1

2

Summation of the absolute values of the forward errors, module 2

0 50 100 150
0

0.5

1

Lambda values and responsibility predictor output, module 2

 λ
rp

0 50 100 150
0

1

2

Summation of the absolute values of the forward errors, module 3

0 50 100 150
0

0.5

1

Lambda values and responsibility predictor output, module 3

λ
rp

0 50 100 150
0

1

2

Summation of the absolute values of the forward errors, module 4

0 50 100 150
0

0.5

1

Lambda values and responsibility predictor output, module 4

λ
rp

0 50 100 150
0

0.5

1

Ratio of feedback error motor command (ufb)/actual motor command

20 40 60 80 100 120 140
0

0.5

1

All lambda values superposed. Shades of gray indicate context values.

Figure 7.28: (7.1.2) Performance of epoch 9000, the YMCA. The separation of
control is quite different from that in epoch 2000 (figure 7.27), which shows the
dynamic nature of the multiple paired models architecture.

108

Figure 7.29: (7.1.4) Desired and actual state with λ plots, epoch 2000, the
YMCA. The plots show that the modules participate in controlling the robot, i.e.
there are timesteps where two modules play an almost equal part in controlling
the robot.

109

Figure 7.30: (7.1.4) Desired and actual state with λ plots, epoch 9000, the
YMCA. The plots show that the modules participate in controlling the robot
(as was also shown for epoch 2000, see figure 7.29), i.e. there are timesteps
where two modules play an almost equal part in controlling the robot. Notice
the difference between this plot and the plot for epoch 2000. This shows that
the multiple paired models architecture is dynamic and changes over time.

110

0 50 100 150
0

0.2

0.4

0.6

0.8

1

Right shoulder angle (Projected XZ) (Plane Angle vs. X) vs. Time

Target state
Actual state

0 50 100 150

0.4

0.5

0.6

0.7

0.8

0.9

1

Right elbow angle vs. Time

0 50 100 150
0

0.2

0.4

0.6

0.8

1

Left shoulder angle (Projected XZ) (Plane Angle vs. X) vs. Time

0 50 100 150
0.4

0.5

0.6

0.7

0.8

0.9

1

Left elbow angle vs. Time

Figure 7.31: (7.1.3) Desired and actual trajectory, epoch 2000, the YMCA. The
performance is quite good, even this early on in the training period. Compare
it to epoch 9000 (figure 7.32), which suddenly has a huge error around timestep
65, but the rest of the motion is quite close to the desired state. This shows
that the multiple paired models architecture adapts quickly, but still tries out
different solutions as the training progresses.

111

0 50 100 150
0

0.2

0.4

0.6

0.8

1

Right shoulder angle (Projected XZ) (Plane Angle vs. X) vs. Time

Target state
Actual state

0 50 100 150

0.4

0.5

0.6

0.7

0.8

0.9

1

Right elbow angle vs. Time

0 50 100 150
0

0.2

0.4

0.6

0.8

1

Left shoulder angle (Projected XZ) (Plane Angle vs. X) vs. Time

0 50 100 150
0.4

0.5

0.6

0.7

0.8

0.9

1

Left elbow angle vs. Time

Figure 7.32: (7.1.3) Desired and actual trajectory, epoch 9000, the YMCA. At
epoch 2000 (figure 7.31) the performance was already quite good. Here, a huge
error has occured around timestep 65. However, since the rest of the motion
is quite close to the desired trajectory, this shows that the architecture tries to
find different solutions, but sometimes misses.

112

0 0.5 1
0

0.5

1
Forward model attractors

Hidden node 1

H
id

de
n

no
de

 2

0 0.5 1
0

0.5

1
Filtered forward model attractors

Hidden node 1

H
id

de
n

no
de

 2

0 0.5 1
0

0.5

1
Inverse model attractors

Hidden node 1

H
id

de
n

no
de

 2

0 0.5 1
0

0.5

1
Filtered inverse model attractors

Hidden node 1

H
id

de
n

no
de

 2

0 0.5 1
0

0.5

1

Hidden node 2

H
id

de
n

no
de

 3

0 0.5 1
0

0.5

1

Hidden node 2

H
id

de
n

no
de

 3

0 0.5 1
0

0.5

1

Hidden node 2

H
id

de
n

no
de

 3

0 0.5 1
0

0.5

1

Hidden node 2

H
id

de
n

no
de

 3

0 0.5 1
0

0.5

1

Hidden node 3

H
id

de
n

no
de

 4

0 0.5 1
0

0.5

1

Hidden node 3

H
id

de
n

no
de

 4

0 0.5 1
0

0.5

1

Hidden node 3

H
id

de
n

no
de

 4

0 0.5 1
0

0.5

1

Hidden node 3

H
id

de
n

no
de

 4

Figure 7.33: (7.1.5) Attractor plots, module 1, the YMCA. There are more
stable patterns for the forward model than the inverse, which might explain
whey the module controls the robot only for a short period of time.

113

0 0.5 1
0

0.5

1
Forward model attractors

Hidden node 1

H
id

de
n

no
de

 2

0 0.5 1
0

0.5

1
Filtered forward model attractors

Hidden node 1

H
id

de
n

no
de

 2

0 0.5 1
0

0.5

1
Inverse model attractors

Hidden node 1

H
id

de
n

no
de

 2

0 0.5 1
0

0.5

1
Filtered inverse model attractors

Hidden node 1

H
id

de
n

no
de

 2

0 0.5 1
0

0.5

1

Hidden node 2

H
id

de
n

no
de

 3

0 0.5 1
0

0.5

1

Hidden node 2

H
id

de
n

no
de

 3

0 0.5 1
0

0.5

1

Hidden node 2

H
id

de
n

no
de

 3

0 0.5 1
0

0.5

1

Hidden node 2

H
id

de
n

no
de

 3

0 0.5 1
0

0.5

1

Hidden node 3

H
id

de
n

no
de

 4

0 0.5 1
0

0.5

1

Hidden node 3

H
id

de
n

no
de

 4

0 0.5 1
0

0.5

1

Hidden node 3

H
id

de
n

no
de

 4

0 0.5 1
0

0.5

1

Hidden node 3

H
id

de
n

no
de

 4

Figure 7.34: (7.1.5) Attractor plots, module 2, the YMCA. The second module
has the most chaotic attractor plots. It dominates the motion of the robot for
long periods of time; the complexity of the attractor plots might represent the
complexity of the motion it controls.

114

0 0.5 1
0

0.5

1
Forward model attractors

Hidden node 1

H
id

de
n

no
de

 2

0 0.5 1
0

0.5

1
Filtered forward model attractors

Hidden node 1

H
id

de
n

no
de

 2

0 0.5 1
0

0.5

1
Inverse model attractors

Hidden node 1

H
id

de
n

no
de

 2

0 0.5 1
0

0.5

1
Filtered inverse model attractors

Hidden node 1

H
id

de
n

no
de

 2

0 0.5 1
0

0.5

1

Hidden node 2

H
id

de
n

no
de

 3

0 0.5 1
0

0.5

1

Hidden node 2

H
id

de
n

no
de

 3

0 0.5 1
0

0.5

1

Hidden node 2

H
id

de
n

no
de

 3

0 0.5 1
0

0.5

1

Hidden node 2

H
id

de
n

no
de

 3

0 0.5 1
0

0.5

1

Hidden node 3

H
id

de
n

no
de

 4

0 0.5 1
0

0.5

1

Hidden node 3

H
id

de
n

no
de

 4

0 0.5 1
0

0.5

1

Hidden node 3

H
id

de
n

no
de

 4

0 0.5 1
0

0.5

1

Hidden node 3

H
id

de
n

no
de

 4

Figure 7.35: (7.1.5) Attractor plots, module 3, the YMCA. The third module
has the most stable attractors compared to the other modules. This might
explain why it is in control in both the beginning of the “Y” and the ending of
the “A”; these movements are very similar (although in the opposite direction).

115

0 0.5 1
0

0.5

1
Forward model attractors

Hidden node 1

H
id

de
n

no
de

 2

0 0.5 1
0

0.5

1
Filtered forward model attractors

Hidden node 1

H
id

de
n

no
de

 2

0 0.5 1
0

0.5

1
Inverse model attractors

Hidden node 1

H
id

de
n

no
de

 2

0 0.5 1
0

0.5

1
Filtered inverse model attractors

Hidden node 1

H
id

de
n

no
de

 2

0 0.5 1
0

0.5

1

Hidden node 2

H
id

de
n

no
de

 3

0 0.5 1
0

0.5

1

Hidden node 2

H
id

de
n

no
de

 3

0 0.5 1
0

0.5

1

Hidden node 2

H
id

de
n

no
de

 3

0 0.5 1
0

0.5

1

Hidden node 2

H
id

de
n

no
de

 3

0 0.5 1
0

0.5

1

Hidden node 3

H
id

de
n

no
de

 4

0 0.5 1
0

0.5

1

Hidden node 3

H
id

de
n

no
de

 4

0 0.5 1
0

0.5

1

Hidden node 3

H
id

de
n

no
de

 4

0 0.5 1
0

0.5

1

Hidden node 3

H
id

de
n

no
de

 4

Figure 7.36: (7.1.5) Attractor plots, module 4, the YMCA. The inverse model at-
tractors are particular for this module, indicating that the inverse model knows
a specific type of movement. Indeed, it is in control during the “M” movement,
which is different from all the other movements, since it requires moving the
elbow joints.

116

Chapter 8

Conclusion

The most important lesson I have learned when designing a self-organizing sys-
tem is that it will most likely not self-organize the way I intended it to self-
organize. In fact, it might seem a bit contradictory to design a self-organizing
system and imposing certain intentions and restrictions to it. After all, it is sup-
posed to self-organize, and the designer should make as few choices as possible,
since the choices made will most likely inhibit the emerging solution. However,
when doing an experiment it is required that some limitations and choices are
made, given the limited resources available. Ideally, I would like the number
of modules to evolve, i.e. not having to define beforehand the number of mod-
ules in the architecture. A genetic algorithm would be very well suited for this,
where each individual would hold parameters such as number of modules, learn-
ing rate, size of the networks and so on. Each individual would then be trained
on the imitation task at hand, and the results compared, offspring created and
another generation could be run. However, given that the training period of the
YMCA experiment took 11 hours to complete on my iMac G5, it is clear that a
genetic algorithm solution is not feasible with the current computing resources
available, since a genetic algorithm is typically run for thousands of generations.

Instead, I have to make choices at the design stage of an experiment. I
have made the motions that are to be imitated, and I have explicitly thought
of a way to separate the movements into discrete modules. The idea of the
context information was that a certain movement would be made discrete, and
that a module would understand that when one of the input values of the con-
text information was high, there is something unique with the corresponding
movement. A module would then learn this specific movement. The number of
modules therefore always corresponded to the number of discrete movements.
The results have shown that it is never the case that a module has learned a
specific movement as intended. Instead, the λ values show that the modules are
in control during periods of time where they overlap between two movements
(i.e. the first module is in control during both the first and second movement,
as was shown for the two Ks), or that they are in control for very short periods
of time.

However, even though the responsibility signals of each of the modules do
not correspond directly to the context information I provided (in fact, the con-
text information does not contribute to determining the responsibility signal at
all, which will be discussed shortly), the self-organization was not completely

117

without correlation to the different movements. The plots show that the differ-
ent modules are often responsible for making a switch in the behaviour, such
as changing the direction of the movement of an arm. For the first two ex-
periments, the results showed that there was one major dominating controlling
module, whereas the other modules take control from time to time to change
the behaviour, such as changing the direction of the arm. The results showed
that the different modules would not exactly self-organize as intended, but they
would share responsibility when it came to controlling the robot. As discussed
earlier, most of the changes of the module in charge happened at periods of time
where crucial changes needed to be made, such as changing the direction of the
arm. This shows that the multiple paired models architecture is indeed capable
of detecting when important changes in the desired state occur. The multiple
paired models architecture self-organizes so that it will find these changes itself,
even without the context information.

The context values were used because the were part of the original design
by Wolpert. However, when looking at the plots of the λ values and the output
of the responsibility predictor, it is clear that the context information actually
does not help the multiple paired models architecture at all. All the plots
show that the output of the responsibility predictor (that was thought of as
the prior probability that a given module was suitable to control the robot)
remained high for the entire epoch. In other words, it might just as well not
have been there. Although the proper training was performed as written in
[62], the responsibility predictor did not perform as intended at all. This is
without doubt also one of the reasons why the responsibility signals of the
modules do not match the context information provided by me. Recall from the
system architecture in figure 4.1 that the context information is only given to
the responsibility predictor; it is the responsibility predictor that must convey
the information received from the context signals.

An easy solution would be to train the responsibility before training the rest
of the multiple paired models architecture, but that lessens the degree of self-
organization of the multiple paired models architecture. Another solution must
be found for making the responsibility predictor work as intended1. Currently, it
does not play a part in determining the responsibility signal of a given module.
But even though the context information is not used within the system, it
manages to self-organize and also discover changes in the desired trajectory
which it uses to allocate modules to specific movements, based on the predictive
capabilities of the forward model.

The overall performance of the system as a whole is very good for each
experiment. The plots of desired trajectory versus actual trajectory show that
the multiple paired models structure has found a good solution to the behaviour
it was supposed to imitate. The use of the context information did not work as
intended, but still the multiple paired models structure managed to coordinate

1An evident question is why I have not tried to implement a solution in this Master’s thesis.
This was discovered during the stage of analyzing the data gathered from breve, after all the
simulations had been run. When I did the experiments, I did of course plot the performance
of the network in order to tune the parameters. However, it did not occur to me to plot the
output of the responsibility predictor, which I was certain would be equal to the λ signal.
When I discovered the malfunctioning of the responsibility predictor, I realized I could not
spend more time trying to find a solution; I simply had to stop programming in order to finish
the Master’s thesis. Since I will be continuing at the Forskerskole, I will have the opportunity
to work more on this problem.

118

several modules so that they work seamlessly.
So how do the results compare to the working hypotheses (see section 1.3)?
Hypothesis 1: The multiple paired models architecture did self-organize

the control of different movements to different modules, but the modules did
not control one movement exclusively in any of the experiments, which was the
intention.

Hypothesis 2: As the results have shown, the context information did not
help the multiple paired models architecture to self-organize. The detection of
movement boundaries had to be done by the architecture without the context
information. Nevertheless, the architecture seems to have detected important
changes in the movements, such as changing the direction of an arm. The
inverse/forward coupling seem to have overcome, to some extent, the problem
of the malfunctioning responsibility predictor.

Hypothesis 3: The responsibility predictor did not function as intended
(as has been mentioned several times), so the multiple paired models architec-
ture did not discover any relationship between the context information and the
movements.

The response to the research question posed in section 1.2 will be a posi-
tive answer, however there is still work to do to make architecture behave as
intended. The hypotheses stated in section 1.3 were not confirmed, since the
architecture did not function exactly as intended. However, it is far from being
a failure. The overall results were quite good, and the process has been very
educational. However, a solution to make the responsibility predictor behave
as intended would make better grounds to examine how well the architecture
works. Why this desire to make the responsibility predictor work as intended,
when the overall system performance itself was quite satisfactory? Besides the
obvious (i.e. it was supposed to work like that) there is a link to the mirror neu-
rons discussed in section 2.2. The responsibility predictor activity can be seen
as the mirror neuron activity that have been found in monkeys and humans.
The mirror neurons coded for a specific action to be done, but on a higher level,
i.e. mirror neuron activity did not directly produce motor commands, instead
they might code for the abstraction of a motor program. Now look at how the
responsibility predictor is intended to function. Based on some context informa-
tion, it is supposed to output the suitability of the module to control the robot.
Since each module represents a certain movement (at least ideally, although it
did not work like that in my implementation), the responsibility predictor can be
viewed as coding for this movement at a higher level, like the mirror neurons do.
The mirror neurons do not code the motor command directly, neither does the
responsibility predictor. If we see the mirror neuron activity as a gating mech-
anism for a certain behaviour (which is a natural consequence if we think that
it codes for a motor command, only at a higher level), the link between mirror
neuron activity and responsibility predictor activity becomes even stronger.

Having both the benefits of having a multiple paired models architecture
(see section 4.1.1) and the mirror neuron activity seem like a good starting
point for building an architecture that could be used for imitation learning. I
am currently in the first part of the Forskerskole at IDI, and will continue with
my PhD after the completion of the Master’s thesis. The work I have done so
far will make a good starting point for future work.

119

Chapter 9

Future work

As work with the system has progressed, ideas for future work have appeared.
At some point I had to stop implementing and running simulations in order to
finish and write my Master’s thesis. Since I am part of the Forskerskole at IDI
and will continue doing my PhD after completion of my Master’s thesis, I will
have the opportunity to pursue these ideas.

• Learning a complete forward model of the breve simulator, and use the
forward model instead of the actual simulator when training the inverse
and forward models. This would mean that the imitator would know how
its own body behaves given a specific motor command, but still it would
not know how to imitate certain movements. This would allow for a
significant speed in training, since the multiple paired models architecture
would not need to communicate with the breve simulator during training.

• Training different modules at specific motor primitives, and then putting
them into the architecture. By training each of the modules on one move-
ment sequence would enable me to look at how the architecture will work
when trying to organize the different movement primitives. This is es-
sentially the same as in Demiris’ work, where the movement primitives
are already specified, it is the coordination that is investigated. The two
approaches can then be compared to see which is a) more computationally
effective and b) which works best.

• Making the responsibility signals more detailed, i.e. they could be govern-
ing one specific output motor neuron. The forward model could predict
the next state, and the evaluation of the prediction could be based on the
accuracy of each output neuron of the forward model. If some neurons
were very correct in predicting the next state, the corresponding motor
neurons (i.e. based on indices only) could be given a bigger portion of
the responsibility signal. Without having implemented such a scheme, it
seems to me like this approach would allow superposition of specific motor
skills from different modules. At the current implementation, the module
knows a specific movement (not entirely equal to the boundaries I have
set, but still a movement that will generate motor commands that will
lead put the robot closer to the desired state). If the multiple paired mod-
els architecture was to imitate an action that was a composite of different

120

movements (i.e. moving your right arm and your left foot, with one mod-
ule for each) this approach might work to split the responsibility between
the two modules.

A variation on this could be assign special motor capabilities to specific
modules. Say one module controls only the left arm, and another module
controls the right leg. The responsibility signals could then gate based on
the different motor capabilities, allowing for superposition of movements.
The different output regions of each module could be seen as a mask
covering some part of the motor output space. I.e. if there are 16 output
neurons, the module controlling the left arm will control the first four
neurons, the right arm will be neurons 5-8 and so on.

• The different parameters of the system could be determined using a genetic
algorithm instead of trying to fine-tune them by hand. It is a classical op-
timization problem, with an easy fitness function (e.g. low ratio between
the feedback motor command to the actual motor command ratio and tar-
get state and current state being the same), however the simulator used for
the current experiments are not very suited for using genetic algorithms.
Since one run will take typically several hours, running a population of
one hundred individuals for thousands of generations is clearly not feasi-
ble. However, if it was possible to use another simulator that was faster
this might be a good approach.

• As discussed in section 8, the current implementation of training the re-
sponsibility predictor does not work. Haruno hints that they are trained
beforehand in [27], where he says that “A responsibility predictor esti-
mates the responsibility before movement onset using sensory contextual
cues yt and is trained to approximate the final responsibility estimate.”
This hints at the possibility that the responsibility predictor is trained
beforehand, but as I mentioned earlier, this would reduce the degree of
self-organization of the system. Another solution could be to train the
responsibility predictor more intensively (i.e. five times when the other
networks are trained once). Perhaps the context sensor input could be
coded differently, to make it easier for the responsibility predictor to real-
ize the relationship it should learn. Nevertheless, finding a way to make
the multiple paired models architecture realize the relationship between
the context information and the discrete movements will be what I first
focus on after the completion of this thesis.

• Learning several motions, and investigate whether the multiple paired
models architecture will overcome problems related to catastrophic for-
getting [1, 2, 3]. In addition, investigate how reshuffling the movements
would affect the multiple paired models, both during training and during
recognition of a motion.

• Investigating the performance of the network when the number of modules
is increased and decreased. See if the added modules will lead to totally
redundant modules, or if they will all contribute in some manner. Investi-
gate to see what will happen if there are fewer modules than intended; will
they be able to self-organize and perform as good as the multiple paired
models architecture with the intended number of modules?

121

• Using the Pro Reflex system to do imitation experiments with human
test subjects in real-time. It is possible to write plug-ins to the Pro Reflex
software. The plug-in could then communicate with MatLab, which would
hold the multiple paired models architecture. MatLab would communicate
with breve, as done in the current implementation. The humanoid robot
in the breve simulator could then be displayed via a video projector to the
test subject. The test subject (equipped with fluorescent balls for easy
tracking by the Pro Reflex system) could then dance, and subsequently
feed the desired state to the multiple paired models architecture, which
would control the breve simulator.

A lot of different interesting scenarios could be investigated. One could
be to teach the multiple paired models architecture a repertoire of dance
movements, and then make the test subjects dance without knowing the
repertoire (as Ito and Tani did with arm movements in [32]). The situation
also allows studying the joint attention in the human-robot interaction,
as studied in [31, 59].

Another interesting scenario would be to use the interaction to teach the
robot new movements. If a faster on-line learning scheme was devised, this
could be a fun demonstration of the capabilities of the multiple paired
models architecture. If the learning would separate itself into different
modules, a vast array of movements could (in theory) be learned.

• Experimenting with different neural network architectures and also the
dimension of the neural networks. For this thesis, the same neural network
architecture (the recurrent neural network) was used. The dimensions of
the networks were different according to the degrees of freedom, but they
still followed the same formula; i.e. that the number of nodes in the
hidden layer equaled the number of nodes in the output layer. It would
be interesting to try out different number of nodes in the hidden layer,
as well as trying out feedforward networks and perhaps even the counter-
propagation network1. In addition, different training regimes could be
used, i.e. batch learning where the updating of the weights is done after
one pass through the epoch.

1The counter-propagation network [28, 29] is a simple winner-take-all network that works
as a look-up table. It is trained very fast compared to feedforward networks, but lack some
of the generalization capabilities of feedforward networks.

122

Bibliography

[1] Bernard Ans and Stéphane Rousset. Neural networks with a self-refreshing
memory: knowledge transfer in sequential learning tasks without catas-
trophic forgetting. Connection Science, 12(1):1–19, 2000.

[2] Bernard Ans, Stéphane Rousset, Robert M. French, and Serban Musca.
Preventing catastrophic interference in multiple-sequence learning using
coupled reverberating networks. In Proceedings of the 24th Annual Meeting
of the Cognitive Science Society, pages 71–76, 2002.

[3] Bernard Ans, Stéphane Rousset, Robert M. French, and Serban Musca.
Self-refreshing memory in artificial neural networks: learning temporal
structures without catastrophic forgetting. Connection Science, 16(2):71–
99, June 2004.

[4] Michael Arbib. Imitation in animals and artifacts, chapter The Mirror
System, Imitation, and the Evolution of Language, pages 229–280. MIT
Press, Cambridge, 2002.

[5] Aude Billard and Maja J. Matarić. Learning human arm movements by
imitation: evaluation of a biologically inspired connectionist architecture.
Robotics and Autonomous Systems, 941:1–16, 2001.

[6] Cynthia Breazeal and Brian Scassellati. Robots that imitate humans.
Trends in Cogntive Sciences, 6(11):481–487, 2002.

[7] Rodney Brooks. A robust layered control system for a mobile robot. IEEE
journal of Robotics and Automation, 2(1):14–23, 1986.

[8] Angelo Cangelosi and Thomas Riga. An embodied model for sensorimotor
grounding and grounding transfer: Experiments with epigenetic robots.
Cognitive Science, (in press).

[9] Angelo Cangelosi, Thomas Riga, Barbara Giolito, and Davide Marocco.
Language emergence and grounding in sensorimotor agents and robots. In
First International Workshop on Emergence and Evolution of Linguistic
Communication, pages 3–8, Kanazawa, Japan, 2004.

[10] Thierry Chaminade, Andrew N. Meltzoff, and Jean Decety. Does the end
justify the means? A PET exploration of the mechanisms involved in hu-
man imitation. NeuroImage, 15:318–328, 2002.

123

[11] Mirella Dapretto, Mari S. Davies, Jennifer H. Pfeifer, Ashley A. Scott,
Marian Sigman, Susan Y. Bookheimer, and Marco Iacoboni. Understanding
emotions in others: mirror neuron dysfunction in children with autism
spectrum disorders. Nature Neuroscience, 9:28–30, 2005.

[12] Anthony Dearden and Yiannis Demiris. Learning forward models for
robots. In Proceedings of IJCAI, pages 1440–1445, 2005.

[13] Yiannis Demiris and Anthony Dearden. From motor babbling to hierar-
chical learning by imitation: a robot developmental pathway. In EPIROB,
pages 31–37, 2005.

[14] Yiannis Demiris and Gillian Hayes. Imitation in animals and artifacts,
chapter Imitation as a dual-route process featuring predictive and learning
components: a biologically-plausible computational model, pages 327–361.
MIT Press, Cambridge, 2002.

[15] Yiannis Demiris and Bassam Khadhouri. Hierarchical attentive multiple
models for execution and recognition of actions. Robotics and Autonomous
Systems, (to appear).

[16] Yiannis Demiris and Gavin Simmons. Perceiving the unusual: tempo-
ral properties of hierarchical motor representations for action perception.
Neural Networks, 2006.

[17] Michel Desmurget and Claude Prablanc. Postural Control of Three-
Dimensional Prehension Movements. J Neurophysiol, 77(1):452–464, 1997.

[18] K. Doya. What are the computations of the cerebellum, the basal ganglia
and the cerebral cortex? Neural Networks, 12:961–974, 1999.

[19] Jeffrey L. Elman. Finding structure in time. Cognitive Science, 14(2):179–
211, 1990.

[20] Andrew H. Fagg and Michael A. Arbib. Modeling parietal-premotor in-
teractions in primate control of grasping. Neural Networks, 11:1277–1303,
1998.

[21] Vittorio Gallese and Alvin Goldman. Mirror neurons and the simulation
theory of mind-reading. Trends in Cognitive Sciences, 2(12), 1998.

[22] P. Gaussier, S. Moga, J. P. Banquet, and M. Quoy. From perception-
action loops to imitation processes: A bottom-up approach of learning by
imitation. Applied Artificial Intelligence, 1(7):701–727, 1998.

[23] Michael S. Gazzaniga, Richard B. Ivry, and George R. Mangun. Cognitive
neuroscience: the biology of the mind. Norton, New York, c2002.

[24] S.T. Grafton, M. A. Arbib, L. Fadiga, and G. Rizzolatti. Localization
of grasp representations in humans by positron emission tomography. 2.
observation compared with imagination. Experimental Brain Research,
112(1):103–111, November 1996.

[25] Stevan Harnad. The symbol grounding problem. Physica D: Nonlinear
Phenomena, 42:335–346, 1990.

124

[26] Christopher M. Harris and Daniel M. Wolpert. Signal-dependent noise
determines motor planning. Nature, 394:780–784, 1998.

[27] Masahiko Haruno, Daniel M. Wolpert, and Mitsuo Kawato. MOSAIC
model for sensorimotor learning and control. Neural Comp., 13(10):2201–
2220, 2001.

[28] R. Hecht-Nielsen. Counterpropagation networks. Applied Optics, 26:4979–
4984, 1987.

[29] Robert Hecht-Nielsen. Applications of counterpropagation networks. Neu-
ral Networks, 1:131–139, 1988.

[30] John H. Holland. Adaptation in Neural and Artificial Systems. University
of Michigan Press, Ann Arbor, 1975.

[31] Masatio Ito and Jun Tani. Joint attention between a humanoid robot and
users in imitation game. In Proc. 3rd. Int. Conf. on Development and
Learning (ICDL ’04), 2004.

[32] Masato Ito and Jun Tani. On-line imitative interaction with a humanoid
robot using a dynamic recurrent neural network model of a mirror system.
Adaptive Behavior, 12(2):93–115, 2004.

[33] Robert A. Jacobs, Micheal I. Jordan, Steven J. Nowlan, and Geoffrey E.
Hinton. Adaptive mixtures of local experts. Neural Computation, 3:79–87,
1991.

[34] Dan-Anders Jihrenhed, Germund Hesslow, and Tom Ziemke. Exploring
internal simulation of perception in mobile robots. In Arras, Baerveldt,
Balkenius, Burgard, and Siegwart, editors, 2001 Fourth European Work-
shop on Advanced Mobile Robotics, volume 86, pages 107–113, Lund, Swe-
den, 2001. Lund University Cognitive Studies.

[35] Michael I. Jordan and Robert A. Jacobs. Hierarchical mixtures of experts
and the EM algorithm. Neural Computation, 6:181–214, 1994.

[36] Michael I. Jordan and David E. Rumelhart. Forward models: Supervised
learning with a distal teacher. Cognitive Science, 16:307–354, 1992.

[37] Eric R. Kandel, James H. Schwartz, and Thomas M. Jessell. Principles of
neural science. McGraw-Hill, New York, 2000.

[38] Mitsuo Kawato. Feedback-error-learning neural network for supervised mo-
tor learning. In R. Eckmiller, editor, Advanced neural computers, pages
365–372, 1990.

[39] Mitsuo Kawato. Internal models for motor control and trajectory planning.
Current Opinion in Neurobiology, 9:718–727, 1999.

[40] Rodolfo R. Llinás. I of the vortex: from neurons to self. MIT Press,
Cambridge, Mass., 2001.

[41] Maja J. Matarić. Getting humanoids to move and imitate. IEEE Intelligent
Systems, pages 18–24, July 2000.

125

[42] Maja J. Matarić. Imitation in animals and artifacts, chapter Sensory-
Motor Primitives as a Basis for Learning by Imitation: Linking Perception
to Action and Biology to Robotics, pages 392–422. MIT Press, Cambridge,
2002.

[43] Kishan Mehrotra, Chilukuri K. Mohan, and Sanjay Ranka. Elements of
artificial neural networks. MIT Press, Cambridge, Mass., 1997.

[44] Andrew N. Meltzoff and M. Keith Moore. Imitation of facial and manual
gestures by human neonates. Science, 198:75–78, October 1977.

[45] Andrew N. Meltzoff and M. Keith Moore. Imitation in newborn infants:
Exploring the range of gestures and the underlying mechanisms. Develop-
mental Psychology, 25:954–962, 1989.

[46] Andrew N. Meltzoff and M. Keith Moore. Explaining facial imitation: A
theoretical model. Early Development and Parenting, 6:179–192, 1997.

[47] Tom M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

[48] H. Miyamoto, M. Kawato, T. Setoyama, and R. Suzuki. Feedback-error-
learning neural network for trajectory control of a robotic manipulator.
Neural Networks, 1:251–265, 1988.

[49] Chrystopher L. Nehaniv and Kerstin Dautenhahn. Imitation in Animals
and Artifacts, chapter The Correspondence Problem, pages 41–63. MIT
Press, Cambridge, 2002.

[50] Aidan O’Dwyer. Handbook of PI and PID controller tuning rules. Imperial
College Press, London, c2006.

[51] Jean Piaget. Play, dreams and imitation in childhood. W. W. Norton, New
York, 1962.

[52] V. S. Ramachandran. Mirror neurons and imitation learning as the driving
force behind “the great leap forward” in human evolution. Online essay,
http://www.edge.org/documents/archive/edge69.html, June 1 2000.

[53] G. Rizzolatti, L. Fadiga, M. Matelli, V. Bettinardi, E. Paulesu, D. Perani,
and F. Fazio. Localization of grasp representations in humans by PET:
1. observation versus execution. Experimental Brain Research, 111(2):246–
252, September 1996.

[54] Giacomo Rizzolatti, Luciano Fadiga, Vittorio Gallese, and Leonardo Fo-
gassi. Premotor cortex and the recognition of motor actions. Cognitive
Brain Research, 3:131–141, 1996.

[55] Stefan Schaal. Is imitation learning the route to humanoid robots? Trends
in Cognitive Sciences, 3(6):233–242, 1999.

[56] Stefan Schaal, Auke Ijspeert, and Aude Billard. Computational approaches
to motor learning by imitation. Philosophical Transactions of the Royal
Society of London: Series B, Biological Sciences, 358(1431):537–547, 2003.

126

[57] John Searle. Minds, brains, and programs. Behavioral and Brain Sciences,
3(3):417–457, 1980.

[58] Gavin Simmons and Yiannis Demiris. Optimal robot arm control using
the minimum variance model. Journal of Robotic Systems, 22(11):677–690,
November 2005.

[59] Jun Tani and Masato Ito. Interacting with NeuroCognitive robots: A
dynamical systems view. In Proc. 2nd Int. Workshop on Man-Machine
Symbiotic Systems, pages 123–134, 2004.

[60] Jun Tani, Masato Ito, and Yuuya Sugita. Self-organization of distributedly
represented multiple behavior schemata in a mirror system: Reviews of
robot experiments using RNNPB. Neural Networks, 17:1273–1289, 2004.

[61] Paul J. Werbos. Backpropagation through time: what it does and how to
do it. In Proceedings of the IEEE, volume 78, pages 1550–1560, 1990.

[62] Daniel M. Wolpert, Kenji Doya, and Mitsuo Kawato. A unifying compu-
tational framework for motor control and social interaction. Philosophical
Transactions: Biological Sciences, 358(1431):593–602, 2003.

[63] Daniel M. Wolpert and Mitsuo Kawato. Multiple paired forward and inverse
models for motor control. Neural Networks, 11:1317–1329, 1998.

[64] Daniel M. Wolpert, R. Chris Miall, and Mitsuo Kawato. Internal models
in the cerebellum. Trends in Cognitive Sciences, 2(9), 1998.

[65] Tom Ziemke, Dan-Anders Jihrenhed, and Germund Hesslow. Internal sim-
ulation of perception: a minimal neuro-robotic model. (in press).

127

Glossary

Behaviour

See inverse model.

Controller

See inverse model.

Correspondence problem

The problem of mapping visually perceived coordinates onto one’s own
motor capabilities.

Desired state

The state that the multiple paired models architecture should be in, in
the next timestep. Also called target state.

Elton

The name of the humanoid robot.

Feedback error

The difference between the desired state at time t and the actual state at
time t+1 constitutes a signal that is used to pull the system as a whole in
the correct direction. The state of the environment corresponds directly to
the joint angles of the simulator. The difference between the target joint
angles and the actual joint angles becomes the joint angle velocity applied
to the same joint angle, multiplied with a constant K that is fine-tuned
for each experiment.

Forward model

It is easier to say what a forward model does than what it is. The forward
model predicts the next state of the environment (i.e. it is a predictor),
given the current state of the environment and the forces (i.e. motor
commands) acting on the environment. It can be implemented in various
ways, in this thesis it is implemented using neural networks.

Inverse model

As with the forward model, it is easier to say what an inverse model
does than what it is. The inverse model produces the motor commands

128

needed to achieve a goal, when given the current state of the environment
and the target state. Often called a behaviour or controller. It can be
implemented in many ways, in this thesis it is implemented using recurrent
neural networks.

Mirror neurons

An area of the brain where there is similar activity both when observing
and executing the same action.

Module

An abstract entity holding the forward/inverse models. In figure 4.1, it can
be seen as the box holding the inverse/forward models, the responsibility
predictor and the likelihood function.

Motion

The total trajectory that constitutes one epoch. The motion is made up of
several movements, i.e. the entire imitative act. It is I who have defined
the boundaries between the movements.

Movement

A segment of the total motion that is to be imitated. For instance, the
“Y” of the “YMCA” motion is a movement, “YMCA” is a motion. The
movements correspond directly to the context values, i.e. they are sepa-
rated at the same timesteps. The boundaries of the movements are defined
by me.

Multiple paired models

An architecture consisting of several modules. Each module consist of a
forward and inverse model. Strictly speaking, it should be called multiple
modules, but I do not want to add further confusion by deviating from the
name used in the literature.

Pattern

An input/output pair of a neural network. Normally, a pattern refers to
one input/output pair, but in the work of Ito and Tani [32] a pattern is a
sequence of patterns.

Performance error

The error of the system as a whole compared to the desired state, i.e. the
difference between the desired state and actual state.

Prediction error

The error of the forward model. The error is x̂t+1−xt+1, i.e. the difference
between what the forward model predicted at timestep t compared to the
actual state at timestep t + 1.

Sequence

A collection of patterns where the order of the patterns is crucial; the
order of the patterns cannot be altered.

129

State

A set of variables that defines the environment. In my implementation
this implies the following: at timestep t, the variables describe all the
joint angles of the environment.

Target state

See desired state.

Trajectory

A sequence of coordinates or joint angles that constitutes a motion.

130

Appendix A

Attachments

A.1 Source code

The source code for MatLab and the breve simulator is attached to the the-
sis. All the source files (both the *.m and *.tz) have been well documented,
although no specific commenting or coding standard has been followed. No-
tably, for all the MatLab functions written, the inputs and outputs along with
a description have been specified in the beginning of the file, so by typing

> help function_name

this description will be written to the MatLab prompt.

A.2 Videos

Videos are attached that show the motions that are trained upon by the mul-
tiple paired models architecture. All the videos show the demonstrator side-
to-side with the imitator, allowing for easy comparison of the performance
of the imitator. There are videos for each of the experiments, i.e. Ks.mov,
cheerleader.mov and YMCA.mov. In addition, the YMCA motion can be
seen along with the Pro Reflex tracking, this can be seen in the video YMCA
with Pro Reflex tracking.mov. If you cannot see the videos by simply clicking
on the .mov -files, download the QuickTime Player from the following URL:
http://www.apple.com/quicktime/download/

131

