
August 2009
Torgeir Dingsøyr, IDI
Kyo C. Kang, POSTECH

Master of Science in Computer Science
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Practices of Agile Software Product-
Line Engineering
A qualitative assessment of empirical studies

Snorre Gylterud

Problem Description
Software engineering is evolving as we speak. The need to develop software efficiently with high
quality is becoming more important for companies and their core competencies in various
domains. Software Product-Line Engineering is a software engineering approach where
commonalities in the product portfolio are exploited through reuse. Usually, this has a large initial
investment. Agile Software Development is a collection of methods and practices that tries to
implement products through team-orientation, embracing change and reduced design effort.
Lately researchers have studied the theoretical combination between these two approaches to
Software Engineering. This assignment is to get an understanding of how companies combine the
best of these two approaches to control and streamline the process of making software.

Assignment given: 16. February 2009
Supervisor: Torgeir Dingsøyr, IDI

- i -

Abstract

This thesis elaborated on the how Software Product-Line Engineering is
combined with Agile Software Development to improve Software Engineering,
through investigating published case studies and performing interviews in
several companies. This combination are often described as Agile Software
Product-Line Engineering and our study aimed to describe what agility is for

software product lines and find out more on how this approach could be

realized. Agile Software Product-Line Engineering could reap benefits from the
best of the two software engineering approaches combining long term strategic

efforts with short term agility.

By following a specified research method that combines qualitative research
methods we were able to ensure validity in our analyses and generalize the
findings of this study. We used both semi-structured interviews and textual
analysis techniques.

The companies under study seem to combine Software Product-Line
Engineering and Agile Software Development with success, reducing initial
investment and exploiting reuse, and we found several practices that are
interesting for further study. Based on these practices we present our view of a
top-down approach to Agile Software Product-Line Engineering starting with
several characteristics and a proposal for a definition of the field. Further, a
framework for implementing the approach based on our research is presented,
before we describe our thoughts on how the practice areas of Software Product-

Line Engineering can be combined with Agile Software Development practices.

We think that this thesis could be used as a guideline for further study and
implementation of Agile Software Product-Lines. We believe that the data we
cover is comprehensive based on the small existing research field and covers the

general ideas of both the fields included in the combination.

The Master Thesis you are now holding is the final work of my
Science in Computer Science

Information Science (IDI) at the
Technology (NTNU). The thesis was
Science and Technology

exchange year. For me it was important to create a win
that by having a problem that span
An obstacle for this study was my location and being in a environment where
Agile Software Development was not commonly used. This made it hard to do
the empirical data collec

I would like to take the opportunity to thank my supervisor at NTNU
Adj. Ass. Prof. Torgeir Dingsøyr.
Thesis work giving helpful hints and directions for this s

positive about me working from a distant country and I am very grateful for that.

Prof. Kang at POSTECH and his lab members have also helped me with the
progress of my thesis. They provided me with a good infrastructure for research
and helped me within the field of

2009.08.24 Trondheim

- iii -

Preface

The Master Thesis you are now holding is the final work of my Master of

in Computer Science degree at the Department of Computer and

(IDI) at the Norwegian University of Science and

The thesis was mostly written at Pohang University of

Science and Technology (POSTECH) in South Korea in combination with an
exchange year. For me it was important to create a win-win situation, and did
that by having a problem that spanned over both my supervisors’ research fields.
An obstacle for this study was my location and being in a environment where
Agile Software Development was not commonly used. This made it hard to do
the empirical data collection, but I managed to perform a couple of interviews.

I would like to take the opportunity to thank my supervisor at NTNU
Adj. Ass. Prof. Torgeir Dingsøyr. He has supervised me through this Master
Thesis work giving helpful hints and directions for this study. He was also

positive about me working from a distant country and I am very grateful for that.

Prof. Kang at POSTECH and his lab members have also helped me with the
. They provided me with a good infrastructure for research
the field of Software Product-Line Engineering.

Trondheim, Norway Snorre Gylterud

Master of

Department of Computer and

rwegian University of Science and

Pohang University of

(POSTECH) in South Korea in combination with an
win situation, and did

over both my supervisors’ research fields.
An obstacle for this study was my location and being in a environment where
Agile Software Development was not commonly used. This made it hard to do

tion, but I managed to perform a couple of interviews.

I would like to take the opportunity to thank my supervisor at NTNU
He has supervised me through this Master

tudy. He was also

positive about me working from a distant country and I am very grateful for that.

Prof. Kang at POSTECH and his lab members have also helped me with the
. They provided me with a good infrastructure for research

- v -

Contents

1. Introduction .. 1

1.1 Problem Areas.. 2

1.2 Research Questions .. 3

1.3 Objectives .. 4

1.4 Target Readers ... 5

1.5 Clarifications .. 5

1.6 Organization of Thesis ... 5

2. State of the Art: Product Line and Agile Software Engineering 7

2.1 Software Product-Line Engineering .. 8

2.2 Agile Software Development ... 20

2.3 Agile Software Product-Line Engineering .. 27

3. Research Method .. 29

3.1 Data Gathering ... 30

3.2 Data Analysis ... 38

4. Practices in Industry: Product Line and Agile Software Engineering 41

4.1 Presentation of Case Studies ... 44

4.2 Practices Found in Software Product-Line Engineering 57

4.3 Practices Found in Agile Software Development 64

5. Discussion .. 69

5.1 Characteristics of Agility in Software Product-Line Engineering 72

5.2 Framework for Agile Software Product-Line Engineering 75

5.3 Combining Software Product-Line Engineering Practice Areas and
Agile Software Development Practices ... 83

5.4 Threats to Validity ... 94

6. Conclusion ... 99

Bibliography .. 103

- vii -

Figures:

Figure 1: Practice areas involved in the Each Asset pattern of
Software Product-Line Engineering. (Clements & Northrop 2002a) 17

Figure 2: The In Motion pattern of Software Product-Line Engineering.
(Clements & Northrop 2002a) .. 19

Figure 3: The Process pattern of Software Product-Line Engineering.
(Clements & Northrop 2002a) .. 19

Figure 4: The Factory pattern of Software Product-Line Engineering.
(Clements & Northrop 2002a) .. 20

Figure 5: The Adoption Factory pattern for scenario 1 modified to fit an
Agile Software Product Line. (modified from Clements et al. 2006) 77

Figure 6: The Adoption Factory pattern for scenario 2 modified to fit an
Agile Software Product Line. (modified from Clements et al. 2006) 82

- ix -

Tables

Table 1: Practice areas of Software Product-Line Engineering
presented in topics divided on categories. ... 10

Table 2: Patterns for Software Product-Line Engineering adoption.
(Clements & Northrop 2002a) .. 16

Table 3: Practices of Agile Software Development presented in
topics divided on categories. ... 23

Table 4: Search strategy and results for different sources of information 31

Table 5: Criteria with weight for choosing articles in the
Software Product-Line Engineering field. ... 33

Table 6: Criteria with weight for choosing articles in
Agile Software Development field. ... 34

Table 7: Chosen case studies with the matching criteria they hold. 36

Table 8: Communities where request was sent and their size. 36

Table 9: Mapping of the analysis themes and the criteria for choosing articles.40

Table 10: Outline of the various cases we investigated. 43

Table 11: Summarized findings of the analysis of the case studies. 71

Table 12: Product Line practice areas with the Agile practices
that could be used in combination. .. 84

Appendices

Appendix I: Table of the Cases We Investigated for This Thesis

Appendix II: Requests for Interviews

Appendix III: Interview Guides

Appendix IV: Case Description Template

Appendix V: Photo from Analysis Process

- 1 -

1. Introduction

Software systems and applications influence most people’s everyday work and
tasks. People of developed countries usually use e-mail, computers with specific
software, and machines controlled by software to help them in their day to day
life. In the high technology market the time it takes from a product is produced
and sold until the product is replaced by a newer or better product ,is getting
shorter and shorter while the demand for making new innovative products is
constantly present (Schilling 2004). Software can be included in the high
technology market which changes constantly. Software can be categorized
within the complex high-tech market and one of the definitions of software
engineering is “systematic, disciplined, quantifiable approach to the

development, operation, and maintenance of software” (IEEE 1990). Software
engineering strives to fulfill customer demands by delivering software to both
organizations and individuals. Challenges with software engineering have been
discussed for a long time with Brooks’ No Silver Bullet (1987) as one of the
most influential works which still characterizes many of these challenges
(Fraser & Mancl 2008). Quality, complexity, and changeability are some of the
challenges mentioned. To handle these challenges, several approaches or

methods for software engineering have emerged.

1. Introduction

- 2 -

These methods are often referred to as development paradigms such as
Waterfall Development, Spiral Development, Software Product-Line
Engineering, and Agile Software Development. Today we experience recession
times in the global market, and customers become more conscious of the value
of money which creates opportunities for cost innovation by: 1) offering
breeding edge technology for mass-market price; 2) offering variations and
customizations as a value; and 3) evolving niche markets to mass markets
(Williamson & Zeng 2009). Software Product-Line Engineering could be one
solution to exploit these cost innovations in the field of software engineering.
On the other hand Boehm (2008) describes the future of software engineering
mentioning agility, adaptability and learning as some of the principles that
could be valuable in the future. Agile Software Development could be the
solution to dealing with these principles. An even more interesting thought is to
combine the benefits of these two approaches to software engineering. This
could lead to increased quality, reduced time to market, and more exploitation
of reuse. This master thesis will elaborate on the hybrid paradigm, Agile
Software Product-Line Engineering, consisting of the combination of Software

Product-Line Engineering and Agile Software Development.

1.1 Problem Areas

Software Product-Line Engineering create software with a long-term strategic
effort, building a platform for reuse and standardization in order to fulfill needs
in domains that are relatively stable producing products from the platform
(Clements & Northrop 2002a). The approach tries to exploit commonalities,
best practices, and known working solutions in the domains in order to reduce
time to market and increase quality. The scope of Software Product-Line
Engineering can be described as the development of several products for
various customers with different needs through a product platform or core asset
base. Software Product-Line Engineering has its roots from Feature-Oriented
Domain Analysis and several research projects both in the US and Europe
(Gylterud 2008). A couple of the significant problems with this approach are the

time and money necessary to establish a Software Product Line.

Agile Software Development values iterative methods, close cooperation and
communication, team-based flat organizational structure, embracing change,
and maximizing value to develop software in a changing market. These methods
can be described as a short-term value-based effort that is highly dynamic.
Agile Software Development also tries to reduce time to market and increase
quality. However, the scope of single-system development is often in unstable
domains. Agile Software Development emerged from early iterative methods

1. Introduction

- 3 -

(Gylterud 2008). Project management and control are mentioned as problem
areas when applying Agile Software Development.

We could try to handle the problems in the two fields by combining the best
practices of these two approaches. This could reduce initial investment and
efforts mentioned in Software Product-Line Engineering, and introduce more
controlled agile methods that can benefit from reuse. The introduction of Agile
Software Development in Software Product-Line Engineering called Agile
Software Product-Line Engineering introduces new challenges and
contradictions that need to be addressed. We looked at these in a literature
review last year (Gylterud 2008) and several conferences and articles have
discussed this emerging field. In this thesis we wanted to further investigate if
the theories and suggestions concurred with the current practices in the software
industry. In addition to that, a definition or uniform description of “what agility

is in Software Product-Line Engineering” was not found in the research.
Software Product-Line Engineering is also associated with an up-front
investment both in cost and time consumption (Frakes & Kang 2005;
Sugumaran et al. 2006), which might be one of the reasons it is not so wide

spread among software engineering practitioners.

1.2 Research Questions

To cover these problem areas we established two main research questions.
These are named Research Question 1 and 2 (RQ-1 & RQ-2). We also
established some sub-questions to state the questions needed to be answered

before we could discuss the main RQs.

RQ-1: “How is Agile Software Development combined with

Software Product-Line Engineering in software companies today?”

RQ-1.1 Which studies handle both agility and software product line
engineering?

RQ-1.2 Which criteria have to be obtained to determine the level of
agility and Software Product-Line Engineering?

RQ-1.3 How should the criteria be weighted to choose the best suited
data material in the community?

RQ-1.4 How is agility introduced in Software Product-Line Engineering
and how does it work in the industry?

RQ-1.5 Which practices are used in industry to obtain agility in software

product lines?

1. Introduction

- 4 -

RQ-2: “What could characterize a method or a framework to

describe agility in software product line engineering?”

RQ-1.1 What does agility mean for software product line engineering?
RQ-1.2 What characterizes agility in software product line engineering?
RQ-1.3 How can software product line engineering companies

incorporate agility into their practices?

RQ-1 handles the multi-case study part of this thesis. It asked us how we
investigate Software Product-Line Engineering and Agile Software
Development and describes which answers we are looking for. RQ-2 aims to
explain the main findings of our study and will be answered in our discussion
and our conclusion. Until now, no clear answers to RQ-2’s sub questions have

been found in research and we are hoping to fill this gap with the thesis at hand.

1.3 Objectives

To support the research questions and have some pinpoints for where to go, we
established three goals for this Master Thesis. The goals were:

1. Establish concrete indications from cases on how agility and software

product lines work together.

2. Provide characteristics and guidelines for agility and software product
lines combined.

3. A valuable contribution to the field and thesis that documents the

research done.

1.3.1 Scope

In order to achieve these goals we looked at Software Product-Line Engineering
and Agile Software Development, two large research fields. We made our scope
the introduction of agility in Software Product-Line Engineering and started
working from that viewpoint. This means that we try to introduce Agile
Software Development into Software Product-Line Engineering and not vice
versa. We did this to limit our problem and to reduce the span of the thesis to a
feasible problem domain. This was also done to provide a significant

contribution to the field.

1.3.2 Contribution

This study mainly aims to provide a contribution for the Software Product-Line
Engineering field. Currently there are no clear characteristics or perceptions of
what agility means for Software Product-Line Engineering. Through this study

1. Introduction

- 5 -

we wanted to investigate this combination by looking at companies that
combine Software Product-Line Engineering with Agile Software Development.
Concretely we try to establish a set of characteristics and a framework for

agility in Software Product-Line Engineering.

1.4 Target Readers

Since the Software Product-Line Engineering field is strongly influenced by
practitioners we wanted to create a thesis that could fit research topics in the
area and still address the practical introduction of agility in Software Product-
Line Engineering. Readers that are not familiar with either Software Product-
Line Engineering or Agile Software Development are advised to read other
sources like (Gylterud 2008) to get an overall view of the software engineering
approaches, before reading this thesis. Practitioners can skip chapter 3, as they

might not be interested in the research method.

1.5 Clarifications

In this thesis we will try to use Software Product-Line Engineering for our
software development related topics, while Software Product Lines will be used
about the result of a Software Product-Line Engineering effort. In other
literature, this notation may not be the case, and the notations can be used with
the same meaning.

Agile Software Development is used as a terminology for all the agile methods’
principles and practices. Agility is used to express the agility of a certain

method or approach.

1.6 Organization of Thesis

We start with a brief introduction to the State of the Art when it comes to
Software Product-Line Engineering, Agile Software Development, and Agile
Software Product-Line Engineering (Chapter 2). Secondly, we describe the
research method used in this study (Chapter 3). Then we document our results
on Software Product-Line Engineering practice areas and Agile Software
Development practices from the analysis (Chapter 4), before a discussion on
these results and an Agile Software Product-Line Engineering framework is

presented (Chapter 5). Our conclusion ends this thesis (Chapter 6).

- 7 -

2. State of the Art:

Product Line and Agile Software

Engineering

This chapter will briefly describe the state of the art practices of Software
Product-Line Engineering, Agile Software Development and Agile Software
Product-Line Engineering. We focus on explaining the practices which are used
in the different approaches to software engineering. The first section will
concisely, describe Software Product-Line Engineering and cover its 29 practice
areas, first presented by Clements and Northorp (2002a). In the second section
we briefly present Agile Software Development and introduce the most
important practices used in this approach. Thirdly, we cover the emerging field
of Agile Software Product-Line Engineering, and some of the key
characteristics we found present to this master thesis. Readers with little or no
knowledge about the software development approaches handled in this study
may find this information deficient and are advised to read our former literature
review (Gylterud 2008) and investigate its sources. All three sections will have
a short introduction, overview of the definition, and an assessment of the
research and industry of the field, before we explain the practices associated

with the respective field.

2. State of the Art: Product Line and Agile Software Engineering

- 8 -

2.1 Software Product-Line Engineering

The Software Product-Line Engineering field incorporates many of the
manufacturing and product development thoughts mainly using a product line
which produces products for a variety of customers with different needs. A
product line is created by combining various products into an assembly line,
which exploits commonalities to efficiently produce the products in a similar
manner. In software development it means that we produce our final products
through a platform or a core asset base where we “assemble components” to
fulfill a customers’ need (Clements & Northrop 2002a; Pohl et al. 2005). The
core asset base is described as the reuse center where all the parts and
production plans for our products are located. The parts and plans are used as
artifacts when a customer engages in a software development effort and need to
create a product. An example frequently used in the field is an Electronic Home
System for controlling setting in a digital home. In this example, homes can use

the same base system, but have variations based on requirements and needs.

2.1.1 Definition

Two definitions are present in the field, separating two concepts (a) Software

Product Lines and (b) Software Product-Line Engineering:

a. “a set of software-intensive systems sharing a common, managed set

of features that satisfy the specific needs of a particular market

segment or mission and that are developed from a common set of

core assets in a prescribed way” (Clements & Northrop 2002a)

b. “a paradigm to develop software applications (software-intensive

systems and software products) using platforms and mass

customisation" (Pohl et al. 2005)

Software Product Lines are the description of the product line in place at a
company, whereas Software Product-Line Engineering describes the paradigm
or software development approach by using platforms and mass customization.
Exploiting commonalities through respective domain and platforms is common
between these definitions. The Software Product Lines definition also includes
market efforts and strategy. The Software Product-Line Engineering definition
uses the word ‘mass customization’ coming from manufacturing industry
meaning production of products in a large scale fitted to individual customers
(Pohl et al. 2005).

We see the Software Product-Line Engineering definition as slightly more
technical than the Software Product Lines definition, and that reflects the
content of the books referenced. Establishing an understanding of the main

2. State of the Art: Product Line and Agile Software Engineering

- 9 -

theory available is necessary before we look further into the practices for
Software Product-Line Engineering.

2.1.2 Status

In Software Product-Line Engineering, a set of practice areas are suggested to
explain the approach and how it can be realized in practice. The practice areas
explain how to create and maintain a Software Product Line through
software engineering theory and are categorized as follows
(Clements & Northrop 2002a):

1. Software Engineering;
2. Technical Management;

3. Organizational Management

Further practice areas inside each category need to consider the platform which
contains reusable assets, and the applications or products that are developed to
the customers. These can be called a) domain engineering and b) application
engineering. We also use the research behind the three approaches to Software
Product-Line Engineering namely Proactive, Reactive (incremental) and
Extractive (Clements 2002; Krueger 2002) in our thesis. Pros and cons with
these methods can be found in the articles mentioned, while Frakes & Kang
(2005) describe the more overall case for software reuse. The proactive
approach establishes the domain model and the reusable assets before products
are built from the platform. The reactive approach is the other extreme and
products are developed before the platform elements are created based on a
need or opportunity with the product. The extractive approach is somewhat in
between, meaning we often use an existing platform or set of products and base
a new platform on those efforts meaning we are incrementally building our core
asset base.

The research of this field is highly influenced by practitioners as described by
an early assessment of the practices in the field (Birk et al. 2003). A special
edition (Sugumaran et al. 2006) in Communications of the ACM presented
research papers situated around three aspects: Process; Organizational; and
Technical. This thesis works on a higher level of Software Product-Line
Engineering and looks at the overall approach instead of going into detail on
one of these aspects. Therefore, we will not include in-depth descriptions.
Software Product-Line Engineering is also classified as an approach to software
reuse and some of its technologies are summarized in

(Frakes & Kang 2005).

2. State of the Art: Product Line and Agile Software Engineering

- 10 -

In software industry, the practitioners have tried to learn from each other, and
the annual Software Product Lines Conference (SPLC)1 draws a crowd of many
practitioners and researchers from all over the world who share experiences.
The Software Product Line Hall of Fame is usually presented at every
conference and several case studies2 describing successful Software Product-
Line Engineering adoptions to serve as proof for the approach.

2.1.3 Practice Areas

There are 29 practice areas in Software Product-Line Engineering which can be
found in (Clements & Northrop 2002a). We introduce the reader to the various
practice areas within each category and introduce three topics for each category
to present the practice areas in a simple way (Table 1). We have chosen to use
the framework (Northrop et al. 2007) as our reference on the practice areas

since it is more up to date.

Table 1: Practice areas of Software Product-Line Engineering presented in
topics divided on categories.

1 More information at: http://splc.net/
2 More information at: http://www.sei.cmu.edu/productlines/spl_case_studies.html

Software Engineering Technical

Management

 Organizational

Management

Domain and Requirements:
Understanding Relevant

Domains
Requirements Engineering

 Scope and
Technology:
Tool Support

Make/Buy/Mine/

Commission

Scoping

 Environment:
Building a Business Case
Customer Interface

Management

Developing an Acquisition

Strategy

Market Analysis
Technology Forecasting

Architecture:
Architecture Definition

Architecture Evaluation

 Process:
Measurement

and Tracking

Process

Discipline

 Indoctrination:
Launching and

Institutionalizing
Training
Funding

Development:

Component Development

Mining Existing Assets

Software System Integration

Testing

Using Externally Available

Software

 Management:

Configuration

Management

Technical

Planning

Technical Risk

Management

 Organization:

Organizational Planning
Organizational Risk

Management
Structuring the Organization
Operations

2. State of the Art: Product Line and Agile Software Engineering

- 11 -

Software Engineering

Software engineering in a Software Product-Line Engineering approach
involves both specific and traditional practices, to produce the software product
line or the products we want to create. The fact that they handle both product
line creation and products development make the practices two-dimensional, but
we focus mostly on what is specific to Software Product Lines here and advise
getting further information by reading the source. Design, development and
testing are keywords for the practice areas highlighted in italic within the
Software Engineering category which we have divided into three main topics,

namely ‘Domain and Requirements’, ‘Architecture’, and ‘Development’.

Domain and Requirements

Understanding Relevant Domains is needed for understanding the commonality
and variability in a Software Product Line. “What are the problems and

solutions within a domain?” is an important question to be answered (Northrop
et al. 2007). Information about what is a good product in the domain should be
assessed continually in a Software Product Line.

Requirements Engineering is well-known in software engineering and describes
what to produce and build. Software Product Lines require a set of products
based on reuse of commonalities, and should be specified in that way.
Requirements are also used for producing tests and leading implementations of

the product line

Architecture

Architecture Definition involves creating the architecture of a software product
line. Variations and efficient integration are both important for Software
Product Lines. Core assets use architecture with variants, and applications
employ this architecture with variant mechanisms triggered
(Northrop et al. 2007). This practice area focuses on modeling variations and

planning how the architecture can withstand the variations.

Architecture Evaluation’s goal is to ensure that the architecture definition is
correct, based on the quality goals and requirements of the system
(Northrop et al. 2007). Software Product Lines have variations to consider when
evaluating the architecture. In single system development the Architecture
Tradeoff Analysis Method (ATAM) (Bass et al. 2003) is a common method to
evaluate software architecture.

2. State of the Art: Product Line and Agile Software Engineering

- 12 -

Development

Component Development describes how the parts that constitute the architecture
are developed. Software Product Lines need variation support in every
component, and the components should be as loosely coupled as possible. When
developing products these components should be the building blocks for the
product at hand.

Mining Existing Assets involves using legacy code, existing artifacts or
documentation as a guide for new development. Software Product Lines need
support for reuse in these mined components, meaning that we have to use

refactoring for reuse and add variation support.

Software System Integration means combining components as a whole.
Continuous integration is recommended as the practice to use in this practice
area (Northrop et al. 2007). Integration is described to get better with the
increasing amount of products produced. In Software Product Lines, interfaces
have a lot of influence on integration and product development is mostly
integration work.

Testing the software could mean both validating and finding errors in the code,
or performance testing. Software Product Lines need to think about testing for
variations, and should try to reuse tests if possible. This means that tests have to
be written for reuse.

Using Externally Available Software presents the use of COTS, open source,
and freeware software for the core asset base or a component in a product
(Northrop et al. 2007). Software Product Lines need support for the variability,
and should analyze the fit, advantages, and costs for using these kind of

products or code.

Technical Management

In a software development organization there are always technical risks, and the
complexity of software makes it hard to manage. The technical management
category includes practice areas highlighted in italic which try to cope with
these challenges. We have divided the category into three main topics, namely
‘Scope and Technology’, ‘Process’, and ‘Management’.

Scope and Technology

Tool Support describes how development can use CASE 3 tools to support
development and manage progress. A variety of tools are usually used, but
Software Product Lines have to have the ability to use multiple versions of the

3 Computer-Aided Software Engineering

2. State of the Art: Product Line and Agile Software Engineering

- 13 -

same artifacts making non-specific software hard to use. Automation support is
also considered here.

Make/Buy/Mine/Commission describes the choices for how to obtain a
component for the Software Product Line (Northrop et al. 2007).
Software Product Lines have different constraints and strategies connected to
this decision as to single-system development.

Scoping is a practice that should describe the characteristics and what is

supposed to be ‘in’ and ‘out’ in respect to functionality in a set of systems.

Process

Measurement and Tracking efforts are done in order to see if they meet
organizational goals. Informal qualitative and objective quantitative measures
are important. Tracking core asset development, product development and
management is necessary. Software Product Lines use somewhat different
measures because of its multiple customized system nature, compared to single-

system development (Northrop et al. 2007).

Process Discipline explains how an organization should define, follow, and
improve processes. Software Product Lines need to consider consistency in their

core asset base and high interaction between separate organizational entities.

Management

Configuration Management involves identification, maintaining, controlling,
and measuring artifacts that can change during the development lifecycle
(Northrop et al. 2007). Software Product Lines have a multi-dimensional
challenge with configuration management since the core asset base is within all
products and all products must be controlled and updated according to changes
in this base. However, nowadays this is often done automatically concurrent

with the system integration mentioned above.

Technical Planning is the project based planning of certain core assets or
developing a product for a customer (Northrop et al. 2007). Using the software
development method’s planning for core asset development and following the
production plan from the core asset base makes an organization able to produce
software products.

Technical Risk Management means identifying risks, what to do with them, and
how to deal with them. Software Product Lines involve more products, so a
greater effort towards risk assessment is advised (Northrop et al. 2007).

2. State of the Art: Product Line and Agile Software Engineering

- 14 -

Organizational Management

The last category, Organizational Management, covers the business and
organization related topics around Software Product-Line Engineering.
Developing a long-term strategy for the organization and being able to direct
efforts where it is needed are covered by these practice areas highlighted in
italic. We present these divided into three main topics, namely ‘Environment’,

‘Indoctrination’, and ‘Organization’.

Environment

Building a Business Case verifies the business needs and opportunities in a

Software Product Line.

Customer Interface Management is about handling the customer, regarding both
expectations and requirements (Northrop et al. 2007). Future directions of the
products could be created through listening to key customers.

Developing an Acquisition Strategy can be interesting if the organization plan to

involve third parties in delivery of parts or components to the product line.

Market Analysis is supposed to handle factors that determine the success of a
product line or a product in the marketplace. It serves input to the scoping and
the business case practice as well. In addition it could find commonalities in the

core asset base.

Technology Forecasting identifies trends and predicts future markets. This
could be triggered by own tools, customer needs, requests or emerging

technology.

Indoctrination

Launching and Institutionalizing handle the adoption of the Software Product-
Line Engineering approach. Being able to exploit the benefits of the Software
Product-Line Engineering approach throughout the organization is essential, but
poses as an organizational change.

Training provides the skills and knowledge needed to perform software
management and technical roles. It is important that developers and business
people learn Software Product Line techniques and obtain a multi-view
perspective of the organizations development process (Northrop et al. 2007) in

order to achieve the advantages the approach capacitates.

Funding is described as a practice since initial development in Software
Product-Line Engineering is usually described as a Big Design Up Front
(BDUF) effort following the proactive approach (Northrop et al. 2007).
Maintenance and product development are secondary costs, where eventually

2. State of the Art: Product Line and Agile Software Engineering

- 15 -

product development enable you to earn money in the long run (with a proactive
approach).

Organization

Organizational Planning is planning at the organizational level. The goal of
planning is more abstract, involving all projects, compared to technical planning.

Organizational Risk Management provides mechanisms for surfacing and
managing risks that transcend, or are shared, across projects (Northrop et al.
2007). Seven principles are mentioned by SEI. In Software Product Lines there
are many stakeholders which could result in a broad specter of views.

Structuring the Organization describes how the organization is divided into
roles, responsibilities, and authority. Software Product Lines are not product-
centric, and need different roles and responsibilities to end up with products and
have a functional product line.

Operations involves how the business gets done. Policies and practices for the
organization are described here. In Software Product Lines operations is often
how a product line is functioning and a concept of operations document.

2.1.4 Patterns

The field of Software Product Lines and Software Product-Line Engineering
describe a set of patterns to follow when adopting the Software Product-Line
Engineering approach. While the practice areas cover concrete problems and
solutions to these, the patterns handle the interactions between several practice
areas to solve larger problems with Software Product Lines adoption (Clements
& Northrop 2002a). The authors further describe that each pattern has three

elements:

1. a context which is the organizational situation;
2. a problem that describes what kind of product line effort required; and
3. a solution which is the grouping and relations of practice areas who

solves the problem for that context.

These patterns can be seen as the way to attack a Software Product Line
problem or opportunity by combining practice areas, but a pattern does not
cover the whole life cycle of the approach and sometimes several patterns
should be used together. We have listed the patterns with variations (Table 2),
and will briefly describe the patterns we are to use later. Interested readers are
advised to read more in (Clements & Northrop 2002a).

2. State of the Art: Product Line and Agile Software Engineering

- 16 -

Table 2: Patterns for Software Product-Line Engineering adoption.
(Clements & Northrop 2002a)

Pattern Variants

Assembly Line

Cold Start Warn Start
Curriculum
Each Asset Each Asset Apprentice

Evolve Each Asset
Essential Coverage
Factory
In Motion
Monitor
Process Process Improvement
Product Builder Product Gen

Product Parts Green Field
Barren Field
Plowed Field

What To Build Analysis
Forced March

Each Asset describes the situation when a skillful employee(s) in an area is to
develop an asset that is planned through using the practices to increase the
quality of the asset (Clements & Northrop 2002a). We mention every practice
area involved in this pattern (Figure 1) without explaining the dynamics in
detail. The practice areas all work iteratively around the production of a new
asset for the platform. Two variations of this pattern are also identified in the
source: a) Each Asset Apprentice, where the person in charge of developing the
asset lacks experience in the area and ‘Training’ has to be included as a practice
area; and b) Evolve Each Asset, means enhancing or changing an asset instead
of developing.

What to Build is a pattern where the products that should be included in the
product line are decided based on the domain(s) belonging to the product line
(Clements & Northrop 2002a). ‘Market Analysis’ and ‘Technology Forecasting’
gives input to ‘Scoping’ and ‘Building a Business Case’ which again works

iteratively over the results.

‘Understanding Relevant Domains’ also interacts with scoping. All together this
results in a product line scope and a business case for this scope. Here there are
also two variants: a) Analysis, which is a broader pattern where implementation
specific details like requirements and architecture are involved; and b) Forced

March, which uses legacy systems as a type of market analysis in order to
elaborate the scope.

2. State of th

Figure 1: Practice areas involved in the
Line Engineering.

Product Parts combines both practice areas and
that are joined to be used in the products of the product line
(Clements & Northrop 2002a)
the combination starting with r
evaluation. After architecture is established, the components have to be realized
through several practice areas
also provide feedback back to the originato
pattern are described (Clements & Northrop 2002a)
context changes to no experience and has to develop
both ‘Mining Existing Assets’ and ‘Acquisition Strategy’ are removed;
b) Barren Field, no scope established and ‘What to Build Pattern’ is combined
with ‘Green Field’; and c)
meaning we try to use existing software as much as possible, resulting in a

mining based effort to build parts.

Assembly Line describe
production based on an adoption of
(Clements & Northrop 2002a)
Management’ and ‘Process Definition’ with ‘Tool Support’ to establish a tool,
and then let ‘Organizational
final input to technical planning who realizes the

Data

Collection,

Metrics and

Tracking

Technical

Planning

he Art: Product Line and Agile Software Engineering

- 17 -

: Practice areas involved in the Each Asset pattern of Software Product
Line Engineering. (Clements & Northrop 2002a)

combines both practice areas and a pattern to develop core assets
at are joined to be used in the products of the product line

(Clements & Northrop 2002a). The ‘Each Asset’ pattern forms an outline for
starting with requirements, then looking at architecture and

evaluation. After architecture is established, the components have to be realized
several practice areas, before it is tested and integrated. These steps will

also provide feedback back to the originator of the data. Three variants for this
(Clements & Northrop 2002a): a) Green Field, where the

context changes to no experience and has to develop or buy all assets where
both ‘Mining Existing Assets’ and ‘Acquisition Strategy’ are removed;

no scope established and ‘What to Build Pattern’ is combined
and c) Plowed Field, the opposite of the two other variants

ning we try to use existing software as much as possible, resulting in a

to build parts.

describes the practice areas needed to build a capability of
based on an adoption of Software Product-Line Engineering

(Clements & Northrop 2002a). The pattern combines ‘Configuration
Management’ and ‘Process Definition’ with ‘Tool Support’ to establish a tool,
and then let ‘Organizational Planning’ with input from ‘Operations’ give the
final input to technical planning who realizes the final products.

Current

Development

Tool

Support

Process

Definition

Testing

Configuration

Management

Each Asset pattern of Software Product-

pattern to develop core assets
at are joined to be used in the products of the product line

. The ‘Each Asset’ pattern forms an outline for
then looking at architecture and

evaluation. After architecture is established, the components have to be realized
These steps will

Three variants for this
where the

or buy all assets where
both ‘Mining Existing Assets’ and ‘Acquisition Strategy’ are removed;

no scope established and ‘What to Build Pattern’ is combined
the opposite of the two other variants,

ning we try to use existing software as much as possible, resulting in a

practice areas needed to build a capability of
Line Engineering

‘Configuration
Management’ and ‘Process Definition’ with ‘Tool Support’ to establish a tool,

Planning’ with input from ‘Operations’ give the

2. State of the Art: Product Line and Agile Software Engineering

- 18 -

Monitor has the responsibility of measuring and maintaining the course and
operation of an established, running product line. Clements and Northrop
(2002a) divides the practice areas for this pattern in two groups with the

following practice areas:

• Listen: ‘Data Collection, Metrics, and Tracking’; ‘Technical Risk
Management’; ‘Organizational Risk Management’; and ‘Customer
Interface Management’.

• Response: ‘Technical Planning’; ‘Organizational Planning’; and

‘Process Definition’.

In this pattern the ‘Listen’ group provides feedback to the ‘Response’ group

who enhance the plans and processes in the product line.

Product Builder is the pattern where products are realized through the
established product line and the practice areas required
(Clements & Northrop 2002a). ‘Requirements Engineering’ lead to
‘Architecture Definition and Evaluation’ in addition to giving input to ‘Testing’.
‘Component Development’ is done to implement the product, while ‘Software
System Integration’ assembles components for the end product. A variant of
this pattern is Product Gen where configurations are used instead of variations
in code, and products are built through parameters based on requirements and
an automated production process (integration) before it is tested.

Cold Start is the set practice areas that should be used the first time an
organization launches a Software Product-Line Engineering effort to
communicate the changes in culture and establish the new work practices (ref
figure). A variant of this pattern is the Warm Start which describes an
organization already established one or more product lines and the practice
areas ‘Funding’, ‘Organizational Planning’, and ‘Operations’ are menttioned for

this variant (Clements & Northrop 2002a).

In Motion is a pattern for a launched product line where the practice areas
ensure the progress of Software Product-Line Engineering (Figure 2). ‘Funding’
and ‘Operations’ provide directions to ‘Training’, ‘Customer Interface
Management’, and ‘Developing an Acquisition Strategy’. In addition,
‘Structuring the Organization’ interacts with ‘Operations’ to provide feedback

on the directed efforts described above.

2. State of th

Figure 2: The In Motion patter

Process describes the practice areas that could be used for building and
maintaining processes in the

3).

Process Improvement is a variant of this pattern where the product line is
running and the ‘Monitor’ pattern and ‘Launching and Institutionalizing’ are

included in the effort of the pattern.

Figure 3: The Process pattern of

Configuration

Management

Organizational

he Art: Product Line and Agile Software Engineering

- 19 -

: The In Motion pattern of Software Product-Line Engineering.
(Clements & Northrop 2002a)

describes the practice areas that could be used for building and
maintaining processes in the Software Product-Line Engineering effort (

is a variant of this pattern where the product line is
ning and the ‘Monitor’ pattern and ‘Launching and Institutionalizing’ are

included in the effort of the pattern.

: The Process pattern of Software Product-Line Engineering.
(Clements & Northrop 2002a)

Process

Discipline

Technical
Planning

Organizational

Risk
Management

Technical Risk

Management

Data Collections,
Metrics, and

Tracking
Operations

Configuration

Management

Organizational

Planning

Line Engineering.

describes the practice areas that could be used for building and
effort (Figure

is a variant of this pattern where the product line is
ning and the ‘Monitor’ pattern and ‘Launching and Institutionalizing’ are

Line Engineering.

2. State of the Art:

Figure 4: The Factory pattern of
(Clements & Northrop 2002a)

Factory is the last pattern established and handles the overview of the product
line effort for organizations evaluating a software product line and need to
assess the complete effort of a product line
2002a). Clements et. al. (2006)
and connects it to the practice areas involved

2.2 Agile Software Development

Agile software development is an approach to software development that has
evolved from rapid application development and early spiral models
(Larman & Basili 2003). Today the popular methods
indicated to be Scrum and eXtreme Programming (XP)

these two as well, and we also

2.2.1 Definition

Since this field is still young, no uniform definition of agile software
development exists. Our research found that Conboy’s definition of agility is
the most complete since this definition is a result of a broad literature review on
the meaning of agile, lean, and flexibili
also in manufacturing and business.

4 Based on results from VersionOne’s 3

Development” (found here: http://pm.versionone.com/whitepaper_AgileSurvey2008.html

: Product Line and Agile Software Engineering

- 20 -

: The Factory pattern of Software Product-Line Engineering.
lements & Northrop 2002a)

is the last pattern established and handles the overview of the product
line effort for organizations evaluating a software product line and need to
assess the complete effort of a product line (Figure 4) (Clements & Northrop

(2006) describes this pattern very well in their article
it to the practice areas involved.

Agile Software Development

Agile software development is an approach to software development that has
from rapid application development and early spiral models

. Today the popular methods4 of this approach
eXtreme Programming (XP) including the hybrid of

, and we also choose to include Lean software development.

still young, no uniform definition of agile software
development exists. Our research found that Conboy’s definition of agility is

most complete since this definition is a result of a broad literature review on
and flexibility not only in software engineering, but

also in manufacturing and business.

Based on results from VersionOne’s 3rd Annual Survey: 2008 “The State of Agile

http://pm.versionone.com/whitepaper_AgileSurvey2008.html)

is the last pattern established and handles the overview of the product
line effort for organizations evaluating a software product line and need to

(Clements & Northrop
describes this pattern very well in their article

Agile software development is an approach to software development that has
from rapid application development and early spiral models

of this approach are
including the hybrid of

Lean software development.

still young, no uniform definition of agile software
development exists. Our research found that Conboy’s definition of agility is

most complete since this definition is a result of a broad literature review on
ty not only in software engineering, but

Annual Survey: 2008 “The State of Agile

2. State of the Art: Product Line and Agile Software Engineering

- 21 -

The definition states agility as:

“the continual readiness of an entity to rapidly or inherently create

change, proactively or reactively embrace change, and learn from

change while maximising value, through its collective components and

its relationships with its environment”. (Conboy 2008)

The early practitioners of Agile Software Development have made their
definition based on thoughts and experiences in software engineering, and
created the “Manifesto for Agile Software Development” 5 (Manifesto)
consisting of four main ideas:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

The main difference between these two definitions is the environment they are
handling. Conboy’s definition could be identified as a definition to evaluate
agile methods and describe agility, whereas the agile manifesto was created as a
guideline for followers of this software engineering approach. Still we find
similarities in the way both definitions handle change, and handling the
environment or customers. The Manifesto can be seen as a more practical

approach, whereas Conboy’s definition is a more abstract description.

2.2.2 Status

Agile Software Development as a research field still has many questions to be
answered, according to the shift from waterfall development to iterative
development as discussed in (Rajlich 2006). A couple of studies summarize
what we know about the principles and practices that have emerged from the
methods used in the industry that apply various views of the comparison
(Abrahamsson et al. 2002; Cohen et al. 2004; Erickson et al. 2005). Another
study tries to use empirical data to summarize the field’s empirical data and
generalize a status (Dybå & Dingsøyr 2008). Few generalized conclusions have
been reached by the research field, but the industry seems to embrace this new
paradigm and is adopting it more and more frequently in their software
development projects. Dingsøyr et al. (2008) indicates that the industry is in
front of research when it comes to Agile Software Development and therefore
empirical studies involving industry could be the right way to learn more about
the field. Agile Software Development has been adopted by industry, especially
in dynamic environments where the demand constantly changes. The need for

5 Can be found at http://agilemanifesto.org/

2. State of the Art: Product Line and Agile Software Engineering

- 22 -

empirical studies of the industry is increasingly important since practitioners are
leading the evolution of Agile Software Development (Dingsøyr et al. 2008).

The methods mostly incorporated in the industry, based on a recent survey6, are
Scrum and XP. The research up to 2005 was mostly handling XP
(Dybå & Dingsøyr 2008), but Scrum is gaining popularity and a quick search on
‘Scrum’ in ACM7 gives us 344 publications. A current trend, looking at the
latest Agile Software Development conferences 8 , is Lean Software
Development which can be described as a step further towards organizational
agility adjusting the Toyota Manufacturing System to software development

(Poppendieck & Poppendieck 2006).

2.2.3 Practices

The various practices in Agile Software Development are not presented in a
uniform way in the existing research and we found them hard to present in a
good way. We try to categorize the practices we found common in the field into
the same three categories we used for Software Product-Line Engineering:
Software Engineering; Technical Management; and Organizational
Management. This will make it easier for the reader to follow our line through
this thesis and make it easier for us to reason about our findings in a textual
framework. The negative point about this is that some of the practices might be
understood to span over two or all three of our categories. We handle this by
presenting the practice in the category we find most suitable, sorted
in topics (Table 3). We based the collection of practices on especially
(Abrahamsson et al. 2002), (Leffingwell 2007) and (Poppendieck &
Poppendieck 2006). We also try to present which agile methods they are found

in..

Software Engineering

Software engineering in Agile Software Development involves practices to
produce the software or the product we want to create, usually a single software
development effort. “Just enough” design, development techniques and
continuous testing are keywords for the practices within the Software

Engineering category.

6 “The State of Agile Development”
 (found here: http://pm.versionone.com/whitepaper_AgileSurvey2008.html)
7 Search in “The Guide” at http://portal.acm.org
8 As an example XP2009 (http://www2.xp2009.org/xp2009/)

2. State of the Art: Product Line and Agile Software Engineering

- 23 -

Table 3: Practices of Agile Software Development presented in topics divided
on categories.

Domain and Requirements

Vision involves creating a statement or guideline for the products that are
supposed to be developed, including specific needs and requirements. The
vision should be clear, broad, simple, and communicated throughout the

organization (Leffingwell 2007).

Roadmap describes an approximation of dates within a reasonable timeframe

where important information about releases is gathered (Leffingwell 2007).

Elaboration presents a description of the important requirements for the due
iteration. It could be use cases, epics and user stories, scenarios, or acceptance
test cases to help the creation of valuable software. Usually a product backlog or
something similar is used as an artifact to hold these requirements

(Leffingwell 2007).

Software Engineering Technical

Management

 Organizational

Management

Domain and Requirements:
Vision

Roadmap
Elaboration

Planning and prioritization

 Scope and
Technology:

Automation

 Environment:
On-site customer

Architecture:
Domain-Driven design
and initial architecture with

architectural runway

 Process:
Iterative

development
Small, frequent

releases
Iteration backlog,

task board or

Kanban

 Indoctrination:
Continuous

improvement

Development:

Test-Driven Development

Refactoring

Code ownership

Component development teams

CRC cards and design by contract

System metaphor and coding

standard

Pair-programming

 Management:

Visible charts and

information

radiators
Configuration

control

 Organization:

Cross-functional

and self-

organizing teams
Stand-Up meeting
Metrics

2. State of the Art: Product Line and Agile Software Engineering

- 24 -

Planning and prioritization can be planning poker or the planning game which
plan and prioritize the requirements from a backlog (Abrahamsson et al. 2002).
A backlog is commonly a list of requirements a product should obtain. The
practice serves as a guideline for developers and as a requirements document for
the customer. This can be done on the iteration level to plan and weigh efforts.
This practice originates from Scrum.

Architecture

Domain-Driven design (Abrahamsson et al. 2002) and initial architecture with

architectural runway (Leffingwell 2007) are practices that make the
organization speak the same language between business and developers. There
is also a need for a small model or plan for architecture of scale, preferable
working examples of code on how the architecture is used. The practice is also
mentioned as design spikes or evolutionary design in other sources. This
practice originates from Feature-Driven Development and Lean uses it as well

(Mehta et al. 2008).

Development

Test-Driven Development presents a practice where you write unit tests before
you code, and then run the code until you pass the test. The unit tests also create
a test suite which could be run as a whole to ensure component or system
quality. This describes the extreme form which is hard to obtain, many
companies do a more parallel version meaning that they start coding a little then
write a test when it is clear what they need to test (Abrahamsson et al. 2002).
This practice is found in XP, Scrum and Lean.

Refactoring is a practice which is usually a part of Test-Driven Development,
but could also be used alone. Improving the code for flexibility and
sustainability or reducing the complexity can be obtained through this practice
(Abrahamsson et al. 2002). This practice originates from XP.

Code ownership involves the team and describes sharing responsibility for
source code. In short, everyone can change everything. The team is also

accountable for their code. This practice originates from XP and Scrum.

Component development teams practice means that one team defines, builds and
tests each story (Leffingwell 2007). By that we mean that teams should have
responsibility for the task at hand until it is completely finished. We also
discuss teams more under the ‘Organizational Management’ category.

CRC cards and design by contract are practices to discover dependencies
between classes and a way of risk reduction and handling risks (Leffingwell

2007). This practice originates from XP.

2. State of the Art: Product Line and Agile Software Engineering

- 25 -

System metaphor and coding standard (Abrahamsson et al. 2002) is important
since code is supposed to work as documentation. Therefore, clear guidelines

and rules need to be established for coding. This practice originates from XP.

Pair-programming means programming in pairs to increase quality and
creativity (Abrahamsson et al. 2002). Pair programming is also used for code
review in Agile Software Development. This practice originates from XP.

Technical Management

In the Technical Management category the practices that try to cope with
technical risks and challenges are explained. Agile Software Development
handles this through risk reduction practices. These practices are sorted into
three topics underneath, namely ‘Scope and Technology’, ‘Process’, and

‘Management’.

Scope and Technology

Automation as a practice means daily builds, continuous integration, and
automatic test procedures. In more detail, to have an automated build and test
process that runs as often as possible and does continuous integration can be
beneficial to help keep focus on quality at all (Poppendieck & Poppendieck
2006). Integration test and automated system testing keeps the quality focus.

Automation is advised especially in Lean.

Process

Iterative development with lightweight up-front planning, focused development,
and iteration demo are commonly used in Agile Software Development
(Abrahamsson et al. 2002). Teams plan in iterations, further tasks are created
and estimations done before an iteration start. Then development is done with
time boxing which results in showing the result of the iteration typically to a

customer or a stakeholder.

Small, frequent releases are used to see progress with the product and build
value to the customer incremental instead of a big bang release (Leffingwell
2007). The practice is also described to reduce risk, and makes the teams more

able to change direction according to the customers need at the moment.

Iteration backlog, task board or Kanban serve as an activity schedule for the
component teams in an agile project. This practice originates from Scrum and
Lean. Time boxing is done to be able to facilitate estimation and metrics. The
meaning is to work effectively and directed without having to use overtime

work because it slows people down (Leffingwell 2007).

2. State of the Art: Product Line and Agile Software Engineering

- 26 -

Management

Visible charts and information radiators are used to describe the teams’ effort
and what they do. People that pass by can see this information and obtain the
status of the teams without interfering with their work (Poppendieck &
Poppendieck 2006). Product backlog and Kanban can be used as artifacts for
this and good practices should also be visible. A Kanban is a task control board
originating from Toyota Lean Manufacturing. This practice originates from

Lean and Scrum.

Configuration control as a practice is somewhat contradictive to code
ownership, but could be seen as important when you have several teams and
they need to be coordinated. According to Leffingwell (2007) this can be
handled by assigning component teams, meaning that each team has their own
component to develop trying to separate the development effort to reduce

simultaneous code changes.

Organizational Management

The last category, organizational management, covers the organizational topics
around Agile Software Development. To create an organization that supports
Agile Software Development means changing work processes and shifting
focus to short-term planning and controlling. The practices we found viable are
sorted into three topics, namely ‘Environment’, ‘Indoctrination’, and

‘Organization’.

Environment

On-site customer is used to answer questions regarding the product which the
team is to deliver, and to solve impediments for the team

(Abrahamsson et al. 2002). This practice originates from XP.

Indoctrination

Continuous improvement can be reflections, root cause analysis, and
retrospectives to evaluate and redirect the process after each iteration. This

practice is found in Scrum and in Lean as Kaizen.

Organization

Cross-functional and self-organizing teams are encouraged in Agile Software
Development. The teams should cover the whole component as described above,
and be self-organizing to support creativity and effectiveness. The teams can
use task switching and should be collocated. This means that the development
organization should be split into smaller multifunctional, self-organizing teams
that develop on one component at a time (Leffingwell 2007). Team

2. State of the Art: Product Line and Agile Software Engineering

- 27 -

empowerment is also mentioned in some literature and means that the team is
trusted and that creativity is supported.

Stand-Up meeting can be preformed every day, and can be scaled up to other
meetings for broader control (Leffingwell 2007). This gives the developers an
overview of what the team did, will do, and if there are any problems slowing
down the work. Stand-up meeting is an easy approach to share information and
cooperate in an effective team, tasks can also be assigned and problems shortly

discussed or decided what to do with.

Metrics are kept for team velocity, code measurements, test coverage, product
progress, and quality (Poppendieck & Poppendieck 2006). Measures could
follow code, requirements, and create artifacts such as charts and plans to
control and report about progress in an agile project (Abrahamsson et al. 2002).
This practice is found in XP, Scrum, and Lean.

2.3 Agile Software Product-Line Engineering

Normally Software Product-Line Engineering is seen as an approach where an
organization can use existing market knowledge to grasp a larger share of the
market through exploiting commonalities, best practices, and domain
knowledge in this market. This assumes that the domain is relatively stable and
have developed a share of best practices and a common “know how“-standard
among the customers. Agile Software Development on the other hand can be
described to cover the opposite of this, being able to respond in changing
markets and do development in markets that are not well understood.

2.3.1 Definition

Few definitions of Agile Software Product-Line Engineering exist. During our
research I have encountered only one partial definition on the combination:

“making product lines more responsive to ever changing customer

needs or market developments” (Noor et al. 2008)

Regarding the definition of agility by Conboy, we clearly see that the definition
above has some shortcomings regarding the environments surrounding them
and learning from change, which is not clearly stated in the definition. In
addition to this we can identify shortcomings when comparing the definition to
the agile manifesto as well, because this definition only mentions customer
collaboration and response to change. The definition lacks connection to

individuals, interactions and working software as stated by the Agile Manifesto.

2. State of the Art: Product Line and Agile Software Engineering

- 28 -

2.3.2 Status

In our previous study (Gylterud 2008) we investigated the motivation, goal,
similarities, and benefits. The motivation and goal could be the ability to
respond to changing domains with the benefits of reuse and shorter time to
market. Market potential in dynamic domains is often bigger than in completely
stable domains (Schilling 2004). Aligning Agile Software Development for
large scale production with strategy and business needs covered remains an
important challenge for the future as described in the FLEXI Newsletter9 .
Kettunen (2008) looked at agile manufacturing and agility for new software
development, and found that Agile Software Development could cope with a
project’s immediate needs and aspects without considering long-term planning
and large-scale organizational challenges.

2.3.3 Practices

The main difference between these two approaches to software engineering is
the situation it is meant for:

• Software Product-Line Engineering tries to mass produce software to
many customer through a platform where variants open for
customization;

• Agile Software Development tries to maximize the value for a single
system through focusing on people, code, changes, and customer

interaction.

The practical differences are found to concern documentation, requirements,
architectural focus, up-front investment, customer interaction, and quality
assurance (Gylterud 2008; Tian & Cooper 2006). Ghanam (2008) also indicates
challenges with combining agility and Software Product-Line Engineering, but
in the view of Test-Driven Development on amore technical level. Further
analysis shows that Software Product-Line Engineering can work on team and
creativity challenges, in addition to adopting agile practices to become more

agile.

9 Fourth Issue (No 1, 2009), downloadable here:

http://www.flexi-itea2.org/download/FLEXINewsletter_09a.pdf

- 29 -

3. Research Method

In this thesis we chose to apply a hybrid research method consisting of both a
case study analysis and a set of semi-structured interviews. Since our research
field has little empirical research we chose to perform the study like this, trying
to cover some of the existing research from the industry and combine it with
new discoveries from interviews. This chapter will describe the study and its
different parts. First, we used a search strategy and summarized the case studies
we found. Then we established criteria for which case studies to choose based
on our perceptions of what is important in the fields. We also performed
interviews with some practitioners in the industry to support and discover new
practices. Based on the criteria we chose six case studies and included the three
interviews and performed coding. This resulted in sorted data based on themes
that made us able to document our results and discuss our problem further. The
chapter is divided into two main sections, 3.1 Data Gathering and 3.2 Data

Analysis, which will elaborate on the method we just explained.

3. Research Method

- 30 -

3.1 Data Gathering

In order to answer RQ-1.1 about which studies handle both agility and software

product line engineering, we gathered data from studies that were combining
Software Product-Line Engineering and Agile Software Development in the
existing literature, and decided to perform interviews with companies to further
state our answer to the research question. This was a difficult task because no
uniform description or definition of Agile Software Product-Line Engineering

exists.

3.1.1 Existing Articles

We did a comprehensive search in our literature review autumn 2008 and we
already had found three of the articles used in this thesis. We also went through
various sources with different strategies (Table 4) to investigate whether we
could find Agile Software Product-Line Engineering case studies or experience
reports. The results were small and the same studies were identified in several

sources.

With the result from the search we identified 14 different case studies chosen to
be closer investigated, by reading titles and abstract for further investigation. A
table describing the different articles was established, and formed a basis for our

preliminary choices of which case studies to analyze (Appendix I).

Table 4: Search strategy and results for different sources of information

Where What How Results

SEI DoD Workshop
(http://www.sei.cmu.edu/productli
nes/pub_by_topic.html#dod_work

shops)

 Summaries from workshops on
Software Product Lines in defense
systems

 Search by browsing and reading abstracts 2

http://softwareproductlines.com/s

uccesses/successes.html
 Short stories about Software

Product Line Engineering
implementations

 Search by browsing and reading abstracts 2

SEI Hall of Fame
(http://www.sei.cmu.edu/productli
nes/plp_hof.html)

 Various company stories from
implementing Software Product
Line Engineering

 Investigated the references listed on the interesting
companies.

 3

ISI web of knowledge Published articles Search terms: software product line and case; software
product family and case

 107

ACM portal Published articles Search term: (software product lines OR software product
families) AND case study refined by case studies

 468

IEEE Published articles Search terms: software product line and case; software
product family and case

 106

- 31 -

… Continued Table 4

Where What How Results

ESAPS

(http://www.esi.es/Projects/Esa

ps/)

 Engineering Software
Architectures, Processes and
Platforms for System-Families
Project

 Search by browsing in the ‘Public Results’ section. 0

CAFÉ

(http://www.esi.es/Cafe/)

 From Concepts to Application
in System-Family Engineering
Project

 Search by browsing in the ‘Public Results’ and

‘Dissemination’ sections.
 1

FAMILIES

(http://www.esi.es/Projects/Fa
milies/)

 FAct-based Maturity through
Institutionalisation Lessons-
learned and
Involved Exploration of
System-family engineering

Project

 Search by browsing in the ‘Public Results’ and

‘Dissemination’ sections.
 2

Agile Conference Proceedings (IEEE) Search by browsing for case studies that could fit our

criteria.
 3

- 32 - - 32 -

3. Research Method

- 33 -

RQ-1.2 and RQ-1.3, respectively which criteria are needed to determine

Software Product-Line Engineering and agility and how should the weight of

each criteria be to choose the best cases, were answered by establishing a
criteria for the case studies, before our analysis started. For the case analysis we
decided to create a set of criteria for both the Software Product-Line
Engineering aspects (Table 5) and the Agile Software Development aspects

(Table 6) we found important.

Table 5: Criteria with weight for choosing articles in the Software Product-Line
Engineering field.

Software Product-Line Engineering
Element of the approach Weight Explanation

Set of software systems

Many software products or embedded
systems that are delivered to many
customer with different specifications

Critical Economics of scale is the base
idea. A line of products with
ability to cover the needs of many
customers.

Common set of features

The features of the software are similar

and share commonalities, but have
variations and diversity which make
components reusable throughout many
products.

Important The feature thinking is not as
important as many products and

customers, but serves as an
enabler to obtain economic
benefits so it cannot be neglected
in a Software Product Line
approach. One has to think in
advance on what features to cover
and support.

Handling needs in a domain

Serves as a solution to many challenges

and follow best practices in defined
domains to ensure quality to and interest
for the products.

Nice Domain knowledge is the least
important criterion, but domain

thinking needs to be established to
succeed.

Use a core asset base

A core asset base or base of components
are used as a basis to develop or
configuration specific software products
to customers

Critical Important because of the nature of

software product lines relies on
the core asset base. This is the
reuse "center", but does not need
to function perfectly. The core
asset base is a prerequisite for
SPLE.

Systematic, planned reuse

Strategic thinking in long scale in
addition to product line thinking
throughout the organization.

Important The strategic nature of PLs makes
this an important measure, but not
as much as core asset base and set
of products because the maturity

of this effort might not be present
yet. Therefore we chose to weigh
this criteria lighter.

3. Research Method

- 34 -

Table 6: Criteria with weight for choosing articles in Agile Software
Development field.

Agile Software Development

Element of the approach Weight Explanation

Listen to change from environment

Internal (team), immediate (organization)
and general sources of change (competitor,
customer or supplier). How do the
companies handle this kind of change and
what kind of system is practiced to listen?

Critical Especially customer change is
important, but also other
environmental changes affect the
agility of a development process.

Allow change in components

(refactoring?)

Creativity, experimenting, autonomy,
refactoring, diversity, observation, and
challenging work. How are these ideas

handled in the company?

Nice Not the most important aspect of
agile, but could improve to get
better after a while. We chose
not to put too much weight on
this criteria because of its

relations to management and the
future prospective to
improvement.

Proactively work towards change

Risk identification and estimation. How are
risks assessed by the company?

Nice Most companies does handle
risk some way. For agility it is
not the most important aspect,

and could also be future
improvements. We chose to not
weigh it that hard since it is
something that could evolve
during reaction to and learning
from change.

Reactively allow change

Identify, resolve, and react to change

Critical The ability to handle changes is
one of the more important
aspects of agility and we chose
to weigh it accordingly. The

thinking and support for the
ability to change is critical to
agility.

Learning from change

Handle information between teams, learning
within teams both planned and unplanned,
and communication information

Nice Learning is less prioritized by
us. This is also one of the
aspects that could improve after
a while. It does not need to be
fully established in our case
studies

Maximize value

Deliver the right software to the right time
without overhead. Just enough emphasis.
Time to market and speed handling.

Important Maximizing value is also

important. We wanted to
emphasize this point since it
involves some agility principles
that companies needs to think
about and that we think are
important.

3. Research Method

- 35 -

Discussions lead to this weighed set of criteria based on our knowledge in the
respective fields. This was done to be able to choose between the case studies

identified. The criteria are weighted base on what we found to be:

• Critical, the things that have to be in the approach;

• Important, the things that should be in the approach;

• Nice, the things that are nice or could be in the approach.

The criteria helped us evaluate each of the cases in respect of both Software
Product-Line Engineering and Agile Software Development. We went through
each of the cases from the literature search and validated them against these

criteria. That is how we were able to choose which cases to include in our study.

Six case studies in literature were chosen and two case studies based on
interviews were used for this thesis (Table 7). Since the research and experience
from this field is limited we chose to include two case studies that do not cover
the whole Software Product-Line Engineering field, but investigate individual
practices for improvement and enhancement as well. We included them to
describe some of the emerging practices in the field and to describe the
possibility to combine Software Product-Line Engineering and Agile Software

Development.

3.1.2 Interviews

We also wanted to perform a set of interviews with the case study companies
and other interested parties to support our findings, discover other practices and
validate our study. The interviews bring an extra dimension to RQ-1.1, and
could further increase validity in our qualitative study. The natural contact point
was the authors of the case studies and influential researchers in the area. We
also decided to actively request for participation on several communities on the
Internet (Table 8) (Appendix II). Of the authors we contacted, only one
responded and in the communities the response was not as we hoped for, in fact
no response was triggered. We might have used the wrong communities or
wrong instances, but we felt we did a qualified try. Further, two industry

contacts were established through our network:

• Industrial Financial Systems (IFS);

• and Det Norske Veritas (DNV).

These companies were able to give us some introductory information, before
they decided to join our interviews to give us new data on their organizational

efforts towards software product development.

Table 7: Chosen case studies with the matching criteria they hold.

Case Criteria

Software Product Lines

Agile Software Development

Set of
software
systems

Common set
of features

Systematic,
planned reuse

Use a

core
asset
base

Handle
needs in a
domain

Listen to
change

Allow
change

Maximize
value

Learn
from
change

Allow
change

Work
towards
change

CompNN

X

X X

X X X

X X

Salion X X X X

X

X

HomeAway

X X X X X

X X X

X

IFS X X

X X

X X X

X

DNV Software

X X X X

X X

X

Engenio X

X X X

X

Testo AG X

X X

X

PROSOL X

X

X

X

X

Table 8: Communities where request was sent and their size.
Name Where Members

agilemodeling Yahoo groups 1690
leanagile Yahoo groups 1380
SW-improve Yahoo groups 252
Agile Alliance LinkedIn 6896

agile-research Google groups 62
Agile Product Line
Engineering

 Google groups 9

all about agile Google groups 511
Forum smidig.no Smidig.no N / A

- 36 -

3. Research Method

- 37 -

All together this gave us the opportunity to perform three interviews with
various people in the industry. We mean they cover a representative part to be
able to support our analysis findings and discover more practices, and help us
reason about combining Software Product-Line Engineering and Agile Software

Development.

Our interviews were performed as semi-structured interviews, following the
guidelines in (Seaman 1999), with a length of around 20 to 30 minutes. Further,
we established a situational interview guide (Appendix III), one for each
interview, for leading the interviews to collect as much useful information as
possible. The essence of the guide was pretty much the same, but we tried to
exploit the material we already investigated to avoid overlap and find as much

new information as possible.

The interviews were performed using Skype10, a Peer-2-Peer Voice over IP
program that allows people to talk with each other for free. To capture the
interviews as audio we used an add-in called Skype Call Recorder11, which
made a good quality mp3-file of the interviews. In order to transcribe these
audio files to documents for use in our analysis we used Express Scribe12 who
were able to slow the audio down a little making it easier to write down exactly
what was said. As soon as transcription of the interviews was done we assessed
the results of the interview quickly and found follow-up questions that could
further strengthen our evidence. These were sent to the respective interview
candidate and we received answers to those questions as well. These answers

were included in the transcription of the respective interview.

3.1.3 Data Quality

We also assessed the validity of each case regarding research methods, threats,
and measures obtained in the articles to be able to reason about the studies in
general. We chose not to take this into account while deciding on the case
studies to include in this thesis since the available data in this field is so small.
We tried to limit the studies to peer reviewed articles like journals and
conferences, but where the material was limited we added non-reviewed articles
to make the data more complete. The fields we investigated in this study are by

no means highly mature and our options regarding data were very limited.

10 For more information: http://www.skype.com
11 For more information: http://www.voipcallrecording.com/Skype_Call_Recorder
12 For more information: http://www.nch.com.au/scribe/

3. Research Method

- 38 -

3.2 Data Analysis

To be able to answer both RQ-1.4 and RQ-1.5, respectively how agility is

introduced and works in the industry and which practices are used in industry,

through analysis we had to choose between the identified case studies and
assess the level of Software Product-Line Engineering and agility. The analysis
was performed with marking themes and comparing the cases, which are further
elaborated below.

3.2.1 Analysis Technique

After choosing the appropriate cases we started coding our data following the
guidelines of (Seaman 1999). We did this in an iterative fashion meaning that
our first iterations went through the text roughly and marked the larger topics.
Then we divided the larger topics into themes for which we marked in the
following iterations. These themes had to concur with the criteria we made for
choosing as well, since these were our most important points for Software
Product-Line Engineering and Agile Software Development, and we made a
mapping table to ensure this (Table 9). After marking the text through several
iterations we used Weft QDA 13, a qualitative text analysis software, to code the
text into these themes and make a print sorted on themes. That left us with 50
pages with an average of about seven quotes per page, about 350 quotes. These

quotes were cut separate and used in two different ways to document the results.

3.2.2 Analysis Result

First, we sorted by case company and evaluated each case separately based on
the criteria (3.3.1) and a template for the case descriptions (Appendix IV).
Secondly, we sorted on the themes and crossed the different quotes to find
similarities and differences in each theme. We documented what we found in
the different practice areas of Software Product-Line Engineering and the
practices of Agile Software Development. Using the analysis technique to sort
and combine the cases made us able to more clearly see the themes and combine
results from several cases, instead of using regular textual combination without
coding and grouping (Appendix V). Documenting results were also easier since
sorting and grouping quotes from the cases made a draft of result
documentation by putting them together in the order we were going to

document them.

Further we choose to collect feedback on the case descriptions from the
interview candidates’ respective cases, to ensure that our interpretation where
aligned with their perceptions. In addition we sent the result chapter to the

13 Can be downloaded from here: http://www.pressure.to/qda/

3. Research Method

- 39 -

companies to ensure that the practice areas and practices were correctly
documented and for additional ideas that they forgot to mention.

Table 9: Mapping of the analysis themes and the criteria for choosing articles.

Themes Subtopics Criteria

Software Product Lines

Agile Software Development

Set of
software
systems

Common
set of
features

System-

atic,
planned
reuse

Use a

core
asset
base

Handle

needs
in a
domain

Listen to
change

Allow
change

Maximiz
e value

Learn
from
change

Allow
change

Work
towards
change

Context
Quantitative
Information

Business aspects

X

X

X

X

Software Product
Line

Software
Product Line
Practices

X

X

Approach to
Software
Product Line

X X

Agile

Agile practices

X X X

X

Action towards
change

X X

X

X X X

Software Life
Cycle

Project
Management
Process

X

X

X

X

Pre-Development
Process

X

X

X

Development
Process

X X X X

X X

X X X

Post-Development
Process

X

X

X X

Integral Process

X

X

X X

Validity of study

- 40 -

- 41 -

4. Practices in Industry:

Product Line and Agile Software

Engineering

RQ-1 asked how agile software development principles and practices are used

in combination with software product-line engineering in industry today. To
answer the question we chose to analyze several organizations through
published articles and personal collected data from interviews. This chapter will
present the results of this analysis in four sections. We start by outlining the
case studies followed by a description of each case study we investigated
(Section 4.1), using a uniform template. The goal of these descriptions is to
explain enough details about the cases so that the reader can understand our
findings without having to read the data supporting the case descriptions. The
second section (Section 4.2) describes our results regarding Software Product-
Line Engineering practice areas used in each of the cases which follow the same
structure as we explained in (Section 2.1.3). The last section (Section 4.3)
presents the practices of Agile Software Development used in the Software
Product-Line Engineering approaches in the same structure as described in
(Section 2.2.3). This structure allows us to get a good view on the cases and get
into detail about the practices used in the software industry. Further, it supports
our discussion when we combine the results into Agile Software Product-Line
Engineering.

4. Practices in Industry: Product Line and Agile Software Engineering

- 42 -

The case studies describe several companies whose domain varied, although
they all share an opportunity to reap benefits from a Software Product-Line
Engineering approach by individually delivering customized products to several
customers (Table 10). The companies’ business situations are all described as
dynamic, with high demand customers and unstable requirements in their
respective domains, and the need for processes that handle change is present.
The size of the various companies can be described as small and medium
enterprises (SME), with IFS being the biggest company. Five of the six full-
scale companies (Salion excluded) mention distributed development efforts.
The Software Product-Line Engineering backgrounds of the companies were

different:

• four of the studies, CompNN, Testo, DNV Software, and IFS describe
an existing approach and introduction of agility;

• the four other studies describe a concurrent effort towards Software
Product-Line Engineering and Agile Software Development because of
the high cost and large time consumption of a proactive approach to
Software Product-Line Engineering.

Five of the eight studies described an intentional Software Product-Line
Engineering approach while the CompNN, DNV Software, and IFS studies
have clear similarities to Software Product-Line Engineering theory. The case
study companies use either the reactive or the extractive approach in Software
Product-Line Engineering. An existing platform or assets are used to develop
the product line or create assets when a need or opportunity arises in several
case studies. A tendency towards an incremental approach when transitioning to
Software Product-Line Engineering was found in Engenio, PROSOL, Salion
and HomeAway. Further Engenio, Salion and HomeAway used BigLever’s
Gears (Krueger 2001) and consultant services in order to establish their product
line.

Table 10: Outline of the various cases we investigated.

Case
Size
(employees) Products Reuse platform

Distributed
environment

Approac
h to
product
line

Level
of
product
line Level of agile References

CompNN 90
Market and Customer Survey Modular Yes Reactive

Mediu

m
High (Hanssen & Fægri 2008)

Salion 21
Proposal and Bid Process

Components
based

No Reactive High Medium
(Buhrdorf et al. 2004;

Clements & Northrop 2002b)

HomeAway N / A
Web-based system for

vacation homes
Variation based No Reactive

Mediu
m

High
(Krueger et al. 2008; Rally

Software 2008)

IFS 2600
Enterprise Resource Planning

Component
based

Yes Reactive
Mediu

m
High

DNV
Software 160

Service applications Modular Yes
Extractiv

e
Mediu

m
Medium (Linden et al. 2007)

Engenio 180
Storage Core assets Yes Reactive

Mediu

m
Low (Hetrick et al. 2006)

Testo AG N / A Measurement Devices N / A N / A Reactive N / A N / A (Carbon et al. 2008)

PROSOL N / A Supply Chain Management N / A N / A N / A N / A N / A (Noor et al. 2008)

- 43 -

4. Practices in Industry: Product Line and Agile Software Engineering

- 44 -

4.1 Presentation of Case Studies

Each case study was described based on a template which can be found in
(Appendix IV). The template we followed made a framework for every case
description starting with brief description the context of the company. We did
this to create a similar structure for every described case to make the thesis
become readable and uniform. Later, we researched on how Software Product-
Line Engineering was instantiated and in more detail about the Software
Product Line development. Next, we describe the agile practices found in the
cases and finally we wrap up with the benefits versus disadvantages of the total

approach, and assess the level of Software Product-Line Engineering and agility.

4.1.1 CompNN

CompNN, from the case study, delivers market and customer survey products in
the high-end market with one major variation: standalone server solution, or
hosted solution. The market for surveys is described as competitive and the
need for changes is present at all times (Hanssen & Fægri 2008). About 90
employees spread over four countries are developing and selling the products of
CompNN at the time the case study was written in 2007. The research and
development departments of the company are situated in Norway and Vietnam,
while the US and UK handles marketing, sales, and support which are in the
biggest markets that provides customer feedback to development (Hanssen &
Fægri 2008). CompNN is said to have two releases per year and works in small

development teams.

The products CompNN deliver are customized surveys or survey tools for their
customers which is based on a product platform, or core asset base, which is
modular. Reuse is handled through license files that trigger each module and the
respective configuration (Hanssen & Fægri 2008). The most common
configurations are predefined, whereas variations for customers can be custom
developed by CompNN. Custom development efforts should fit and be allowed
for inclusion in the core asset base to be realized according to the company’s
scope. They also do system integration with their customers. As the request for
CompNN’s products has increased, they have moved more towards Software
Product-Line Engineering, even though they have not followed known
guidelines like (Northrop et al. 2007) or (Pohl et al. 2005). The case states the
similarities with the principles known in this field, and our assessment
according to our criteria coincides. An example can be the two different
delivery strategies, and the module based platform in which modules are
activated by the registration code of the customer. Their approach to Software
Product-Line Engineering has evolved based on experience and needs over the

4. Practices in Industry: Product Line and Agile Software Engineering

- 45 -

last ten years, with weight on the strategic part of the approach (Hanssen &
Fægri 2008). The strategic part includes: a Product Management team; a
roadmap; a market process; product goals with metrics and business cases
(works as requirements); and a Product Advisory Board with key stakeholders.

These practices guide the development efforts on the core asset base.

Their software development process was long a waterfall process but the
adoption of the EVO method (Gilb 2005), an iterative method with agile
principles, was done to become more flexible and respond faster to changes
(Hanssen & Fægri 2008). The freedom in this method is described to encourage
creative problem solving, and involves short iterations and customer interaction.
Impact Estimation Tables (IET) leads development of each project and provides
both stakeholders and developers with the necessary overview to control the
efforts of the team (Hanssen & Fægri 2008). In addition, stakeholders give
feedback to developers after each iteration and product goals are used both as
requirements and metrics for the development teams. Test-Driven Development
is being adopted in the case, and another factor that increases the agility of the
approach is encouragement of continuous learning provided by both EVO and
Software Product Line Engineering (Hanssen & Fægri 2008). Continuous
integration is another agile practice that is followed by CompNN and their
architecture is described as simple, flexible, and open to change with the

modular platform.

In addition to these practices, the operational handling is based on customer
feedback with support and market analysis as the main practices. For quality
assurance, a green week is described for improving sustainability and error
correction in the core asset base. Benefits of combining Software Product-Line
Engineering and Agile Software Development found in this study are: fast
response to changing needs; precise delivery; and a rigid but agile framework
for requirement specification. Challenges with the combined approach are
mentioned in the case to involve high cost with the strategic, long-term process
(Hanssen & Fægri 2008), getting the right customer interaction, and abstracting
enough on the higher levels so that lower levels can creatively solve problems.

The ability to combine Software Product Line Engineering with agile methods
like EVO is exemplified in this study. A disadvantage for us is that this
approach to Software Product-Line Engineering did not directly follow the
practices and guidelines in the field. The agility level of this approach can be
stated as high based on the EVO approach and agile practices used, while the
Software Product-Line Engineering level can be described as medium based on
the core asset base and strategic planning efforts of the company.

4. Practices in Industry: Product Line and Agile Software Engineering

- 46 -

4.1.2 Salion

Our second case study describes a startup company, Salion, focusing on the
proposal and bid domain which targeted the automotive, custom manufacturing
companies. The goal of Salion is described as being able to provide software to
maximize the customers’ business value. There were 21 people in the startup,
with about 10 people working with product development when these articles
were written (2002 and 2004). Salion was not experienced in this domain, but
had some former knowledge about similar domains and research material from
their owners (Clements & Northrop 2002b). The articles describe this as a new
market with no former applications developed. The Software Product Line
approach background were established based on the need to quickly deliver
customized software, and agility elements was combined in Salion’s described
effort towards Software Product Line Engineering (Clements & Northrop

2002b).

Salion chose to use a reactive approach towards Software Product Line
Engineering. The articles explained benefits like lower initial cost and design
up-front with this approach. Salion combined a lightweight Rational Unified
Process (RUP), VRAPS 14 , and eXtreme Programming (XP) with SEI’s
Software Product Lines to get an agile Software Product Line Engineering
approach. They also chose to use Gears (Krueger 2001) and CloneDR15 as tool
support, respectively for delivering products and refactoring commonalities. As
for Software Product-Line Engineering practice areas, they started with what
can be called lightweight scoping, described as an informal scope definition that
evolved during product initiation for customers (Clements & Northrop 2002b).
Salion uses COTS whenever possible, but customization and refactoring are
also possibilities described if the need for components arises or enhancement is
possible (Clements & Northrop 2002b). Documenting is also done based on
components in the core asset base. The products (3 applications) obtained
through the core assets is called the RAM platform, but each customers have
their own needs which a team in Salion has the responsibility to implement
(Buhrdorf et al. 2004). Salion was described to delivered solutions either hosted
or installed in two phases with the standard system first and then customized

based on individual needs.

In Salion’s management effort, a series of meetings is described to support the
process. The “Joyous vision” meeting is a high-level stakeholder meeting to
choose a strategic direction, the “Joyous chunk” meeting ensures that customer
needs are handled according to contract, and last the “Joyous love” meeting

14 Vision, Rhythm, Anticipation, Partnering, and Simplification (VRAPS) is a model of the
organizational aspects of creating and maintaining a software architecture.
15 more on http://www.semdesigns.com/Products/Clone/

4. Practices in Industry: Product Line and Agile Software Engineering

- 47 -

held two times a week discusses impediments for the production cycle
(Clements & Northrop 2002b) much like the agile daily stand-ups. These
meetings set the direction and handle risks in the company. Metrics are also
involved in the management approach, in addition to projecting and planning
the company’s effort. The management involvement, architectural inspections,
and ownership of the chief architect and product line champions are described
to ensure that the product line approach evolve in a sustainable way. Continuous
focus on quality is also a practice described in the articles. Further, the
marketers of the solution provided are in charge of dealing with the customers’
needs according to the scope, variability provided, and confirmed

customizations.

Regarding change and agility of Salion’s approach to Software Product Line
Engineering a couple of practices are mentioned in the articles: frequent and
automatic builds; test-driven development; contracts among units; and
refactoring (Clements & Northrop 2002b). The architecture is also described as
agile, because it is not limiting the company in their choices of variants.
Customer involvement, a culture for change, and self-awareness are also
mentioned in the articles and fit well in the Agile Software Development
principles. Component ownership and the unified direction of the employees are
also actions towards change and continuous improvement. Release is often
obtained through a 30-day release plan to maximize the value. Lastly, a “stop
the line” focus on conflicts described in the articles is also an indicator for the
agility based on the theory in Lean.

A successful implementation and a running product line is described in this case
study. Short introduction time and less up-front investment in both time and
cost, are envisioned through metrics in both the articles (Buhrdorf et al. 2004;
Clements & Northrop 2002b). Several incremental improvements and efficiency
challenges solved underway is also described through metrics in the case.
Overall challenges are not mentioned, but might be: overhead from frequent
meetings; adjusting the RUP method lightweight enough; and refactoring for
reuse.

We believe that the level of agility in this approach is medium, because
elements of agile software development and agility are described. The Software
Product-Line Engineering level is high because many practice areas are used,
the core asset base is clearly defined, and the articles are presented in the

research field.

4.1.3 HomeAway

Another company that combines Agile Software Development and Software
Product Line Engineering, HomeAway, consists of several national vacation

4. Practices in Industry: Product Line and Agile Software Engineering

- 48 -

home rental companies which has web-based systems for both renting out and
obtaining a vacation home. HomeAway’s goal is described as supporting “easy

to use” web-based service to travelers and expanding the market with their

products (Krueger et al. 2008). The case studies describe multiple development

teams, with distributed locations in the US and the UK.

HomeAway’s ‘Public Sites’ product line (later referred to as ‘Public Sites’) is
described in the interview to deliver basically the same product in every country,
with certain language and special feature variations. First they tried to fit their
product in a one-size fits all solution (Krueger et al. 2008). As the first solution
grew bigger the amount of code and the complexity became uncontrollable, and
the company, with support throughout the organization, decided to adopt
Software Product-Line Engineering. A successful approach to
Software Product-Line Engineering for the company could reap commonality
benefits, increase quality and reduce time to market for enhancements

(Krueger et al. 2008).

The company chose to use Krueger’s 3-Tiered Software Product Line
Methodology and the Gears tool (Krueger 2001) to establish their product line.
The methodology presents three tiers of Software Product-Line Engineering,
focusing in sequence on variations and automation, then core assets and
finishing with portfolio evolution. These tiers have dependencies, but were done
partly in parallel by the company. In general we could describe their effort with
the reactive approach towards Software Product-Line Engineering. HomeAway
used their old platform as input to their new core assets in the Gears solution,
creating a feature model and setting variation points in the code. Efforts were
put in continuous integration and introduction of new practices like Test-Driven
Development to the software development (Krueger et al. 2008). Today, ‘Public
Sites’ is the main product line of HomeAway with 20 products, 4 subsystems
and a team of 8 developers add new products every second week according to

the interview.

Agile Software Development was adopted in HomeAway’s development from
the start of the product line adoption, and a tool from Rally is used to track
features in the core asset base and improve visibility of development efforts.
HomeAway uses Scrum with agile practices and release software every other
week, with various lengths of the sprints 16 among the teams
(Rally Software 2008). Communication is described as good between
developers and the rest of the organization, which could mean that they are
communicating well with each other, something that is important to both
Software Product-Line Engineering and Agile Software Development. Training

16 A sprint is a period of time within an iteration used in the Scrum method.

4. Practices in Industry: Product Line and Agile Software Engineering

- 49 -

in Agile Software Development, certifications, and motivated individuals have
also helped the company combine agility with
Software Product-Line Engineering. A thoughtful balance of “thinking ahead,

but not too far” (Krueger et al. 2008) can also describe the “just enough” focus
and maximizing value, often associated with the Agile Software Development
theory.

Benefits of this combined approach are described as: reduced time to market;
better team productivity; and higher quality. Tracking, metrics and portfolio
management are some of the management benefits mentioned in the articles.
Challenges mentioned in articles are initial difficulties in adoption of agile
software development (Rally Software 2008) which was supported by the
interview were it was said that developers had to “learn a new set of skills and

a new way of attacking the problem”. The business perspective of Agile
Software Development in Software Product-Line Engineering is also a
challenge mentioned in the interview, since business alignment needs to become
more agile which means that it can change faster than in normal release
development. Testability was the last challenge addressed in the interview and
quality assurance had a hard time keeping up with the frequent releases of

software development.

We assess the agility level of the articles as high since it is mentioned that the
company uses agile principles and practices and the fact that the adoption of
Software Product Lines was done in an agile fashion. The level of Software
Product Line Engineering effort could be described as medium since there are
several indications, but not the full effort towards all the practice areas.

4.1.4 IFS

IFS is described as a Swedish multinational company with about 2600
employees and a Research and Development department (R&D) of about 550
people with about 180 people in Sweden and 370 in Sri Lanka. They develop
products for the ERP domain, selling and delivering software to a vast amount
of customers worldwide. IFS strive to make other companies more agile and
effective through their software and services in many industries, according to
their homepage17. The need for a Software Product-Line Engineering approach
can be described from the variations in the product and support for flexibility,
both when delivering standard products and implementing customized solutions

to the customers.

IFS were an early adopter of the component-based and modularized software
structure. They have not approached software development through the

17 See http://www.ifsworld.com/

4. Practices in Industry: Product Line and Agile Software Engineering

- 50 -

Software Product-Line Engineering theory, but there are many similarities to
the incremental approach. One of them is that they use a component-based
platform to deliver customized ERP solutions to their customers, much similar
to Software Product-Line Engineering’s core asset base. Variations in the
solution are among others language and location support, process modeling, and
custom automation according to the interview. They also implement specialized
functionality based on the best practices in the domains and use this
functionality in custom integration to the customers. Recently, they changed
approach to the evolution of the platform from planned releases to project-based
work, with customer interaction and maximized business value as focus points.
These projects are triggered based on feedback from both internal and external
environment such as customers and maintenance needs. The feedback process is
also described as filtered in the way that customers’ customized solution
problems are not sent directly to R&D. Further, when a project is assessed by
management, a business case is made and a decision, whether to implement or
not is decided before R&D takes over the project.

The application engineering in IFS is done distributed in the respective regions
with their own methods. This facilitates a close cooperation with the customer
in an implementation project. Sales are also done in the regions and initiate an
implementation project through selling standard products and/or customized
solutions. The high-level documentation describing functionality of the standard
solution is done through view, activity, and process descriptions supported by
process models, similar to the common feature model in
Software Product-Line Engineering. This documentation is also described to be

reused and built upon, when customer-specific needs are handled.

The interesting practices in this case are how R&D works with the incremental
adjustment to the core asset base. They use a Scrum inspired, iterative model to
implement the requested business cases through distributed development. A
project is managed by a project leader, commercial manager and a steering
committee, which uses a tollgate decision system to decide whether the project
should continue or stop at certain critical moments of the project. A functional
designer is in charge of the fit towards customer requirements among main
stakeholders. Automatic testing, build and configuration management is
supporting this process. The project starts with an inception phase, where some
formal challenges are solved and the project is planned “just enough”, meaning
that it describes enough details to start implementing as described in the
interview. Then, iterations follow where the team design, code, test and
document, before the test department take over the project and runs the
acceptance test suite to ensure high quality. Last, the release management

department took over the finished project and shipped it to customers.

4. Practices in Industry: Product Line and Agile Software Engineering

- 51 -

The agility of the approach is based on the described similarities and adoption
of Scrum’s iterative process and stakeholder interaction. Smaller and shorter
iterations and frequent deliveries are used actively. Agile planning and
estimation are used to measure progress, and daily stand-up meeting improves
communication in the project. User stories are used as the requirement artifacts
and are placed in a prioritized backlog. Customers prioritize user stories and
evaluate iteration demos in the software development process. Team
empowerment, continuous testing and retrospectives are also mentioned as
practices in IFS R&D.

The project-based evolution of the platform is described to enable a shorter
time-to-market for IFS. Benefits regarding higher customer interaction in the
agile product line approach are explained with being able to deliver what the
customer want and need, ergo increasing the business value of the products. The
challenges of this approach can be described as creating the process. As IFS
said: “a big, distributed organization does not fit to agile out-of-the box

methods”. Other challenges were described in obtaining team empowerment in
a distributed environment and exploiting domain knowledge in a

project-oriented way of working.

The Software Product-Line Engineering level of IFS’ development can be
described as medium, provided that they have a core asset platform, they deliver
a set of software systems with a common set of features, and they try to reuse
software throughout their approach. The agility level is high, since they have

adopted many agile practices to their software development approach.

4.1.5 DNV Software

DNV Software, a self-governing business unit of DNV18, is described as a
company delivering software products and customized solutions to the shipping,
oil and gas, process, rail, automotive, and food industries. The company is
divided into four departments namely ‘Sales and Marketing’, ‘Products’,
‘Solutions’, and ‘Software Factory’. As of 2004 they had about 160 employees
where about 100 of them were developers (Linden et al. 2007. Chapter 10).
DNV Software are described to operate in the service domain, providing
services and support with regards to classification, certification, and risk, safety,

quality consulting in the presented industries.

The history behind DNV Software’s Software Product-Line Engineering is
based on Nauticus, a product they started developing in the early 1990s.
Nauticus’ vision was described to handle changing customer environment,
variations in domain, and ability to deliver high quality services while

18 Det Norske Veritas (DNV) is a Norwegian company.

4. Practices in Industry: Product Line and Agile Software Engineering

- 52 -

continuously improving them. In order to realize this vision they developed the
BRIX.COM software platform incrementally, in parallel with establishing a
domain information model and implementing end-user tools. Today, the
Software Factory Department is in charge of the BRIX.NET platform and its
evolution, attaining feedback from both ‘Products’ and ‘Solutions’. The
BRIX.NET platform was established when DNV Software emerged in DNV.
The book chapter (Linden et al. 2007. Chapter 10) describes partial reuse of the
existing BRIX.COM platform with new variations, a non-enforced architecture,
modularized features, and an open, transparent system. Because of that DNV
Software used an extractive approach when adopting the Software Product Line.
They also did product development in parallel with the platform development
and new functionality to the platform had to be associated with a product
development project in order to be developed. This is still applicable for DNV
Software as described in the interview and indicates a reactive approach to

Software Product-Line Engineering.

The BRIX.NET platform called BRIX Foundation includes among others
‘Model’, ‘Workflow’, and ‘Security’ which are three important parts of the
platform. The parts are described to ensure reuse and exploitation of
commonalities among the applications (Linden et al. 2007. Chapter 10) while
working as “industry independent modules”. This platform is mainly changed
based on feedback from the two departments using them, and happens based on

requirements from these departments.

Since both ‘Products’ and ‘Solutions’ use the product platform this case is
somewhat different from regular Software Product-Line Engineering where
there is usually one application engineering entity. ‘Products’ develop
Commercial Off-The-Shelf (COTS) software to be sold to many customers,
whereas Solutions do custom development for one-and-one customer. ‘Software
Factory’ which is in charge of the platform described two kinds of reuse from

the platform:

1) Release based Integration, which means that the entity does not need to
change or influence the platform and can use or not use the existing
functionality; or

2) Continuous Integration with BRIX, meaning that the entity work with
their project in parallel and cooperation with the BRIX development
usually changing, improving or customizing a component of the

platform.

Our interviewee was an employee in the ‘Products’ department and their
software product development are therefore best explained here. ‘Products’
utilize a waterfall approach to software product development, but are piloting a

4. Practices in Industry: Product Line and Agile Software Engineering

- 53 -

more agile approach to their development. DNV Software explained that some
teams have implemented more than other, but also that the adoption of Agile
Software Development takes time because of the cultural change involved. In
addition, ‘Products’ is described to develop new products based on observed
customer need or from internal ideas in DNV. The ‘Sales and Marketing’
department is described to handle sales and listen to customer needs.

We found little information about the management of the software engineering
process in this case, except the waterfall approach explained above. Regarding
marketing and sales, the department with the same name is responsible for this.
We were told that ‘Solutions’ were often more involved with the customer since
they do customized solutions, while ‘Products’ most often listen to ‘Sales and

Marketing’ but in some cases obtain direct feedback from the customers.

Agile Software Development at DNV Software is still in the adoption phase and
was started about a year ago according to our interviewee. Therefore it is hard
to explain the overall efforts regarding agile principles and practices used at the
company. They described that they want to use XP practices in the teams with
the Scrum framework for project management in the follow up-questions. Our
interviewee mentioned among others sprints and stand-up meetings from Scrum
which they were to use. It was also stated that ‘Solutions’ also had some
projects using Agile Software Development, but detailed information could not
be obtained for this study. In addition, we found that DNV Software use own

employees as their ‘Product Owners’19, not customer representatives.

The benefits discussed in the book chapter mention quicker return on
investment (ROI), additional inclusiveness and flexibility
(Linden et al. 2007. Chapter 10). Challenges mentioned in the interview were
maintaining models, overhead on both waterfall approach and design up-front,
and release planning. The Software Product-Line Engineering level of this case
can be characterized as medium since the company did not explicitly use
Software Product-Line Engineering theory, but attacked the challenges in a
similar way. The agility of this approach is also assessed as medium, since it is
still early in the adoption of Agile Software Development. We chose to include
this case study since they are early in the adoption of agile and we could find
challenges related to the adoption of Agile Software Development in Software
Product-Line Engineering.

19 A product owner is the person responsible for representing the needs of the customer in the

product backlog.

4. Practices in Industry: Product Line and Agile Software Engineering

- 54 -

4.1.6 Engenio

Engenio, a company situated in the storage technology domain where original
equipment manufacturers (OEMs) want to use Engenio’s competence in their
own special solutions. They wanted to introduce Software Product-Line
Engineering to cope with the increasing demand for their products, and to be
able to secure sustainable growth. The case describe 180 developers distributed
in four sites, 82 products and about one million lines of code (LOC) with 80 %
similar code among all products (Hetrick et al. 2006). After an initial
assessment the choice of Software Product-Line Engineering seemed most
feasible, but the adoption barrier was too high and they chose to use the

incremental or reactive approach to Software Product-Line Engineering.

Their approach was to incrementally address challenges and bottlenecks in the
software product line introducing Software Product Line practice areas to solve
them. The case claims that the incremental investments are smaller and will
earn itself back within the transition time. A pilot project was successfully
conducted, and the real transition could start with four incremental steps
towards establishing the software product line (Hetrick et al. 2006). The first
step was establishing the core asset base, set up a production environment, and
training in Software Product-Line Engineering and Gears. The second step
involved adjusting the development organization to the new approach working
on core assets, while the third step changed their development process towards
feature orientation instead of product orientation. The last step described was
quality assurance. For a more thorough description see the case study
(Hetrick et al. 2006). During these steps various Software Product-Line
Engineering practices are probably used, but the article does not elaborate on
this issue. We found tendencies towards component development, mining
existing assets, process discipline, tool support and organizational planning

practice areas described in (Clements & Northrop 2002a).

Customer involvement and core asset ownership in the teams are mentioned,
increasing the agility of the approach. Few other direct agile practices were
found in this approach, but iterative development and the incremental approach
justify a somewhat agile approach. We also wanted to prove the ability to
choose from the practice areas in Software Product-Line Engineering
(Northrop et al. 2007) and use them in an untraditional way.

The benefits discussed in the article mention: a sustainable core asset base;
return on investment (ROI) early in the transition; reduced time to market; small
big design up front (BDUF) (Hetrick et al. 2006). Challenges are not mentioned,
but specialization on core assets for developers could be one of them. The
agility of this approach is rather low, but we are fascinated by the ability to
change in an efficient matter, and see the overall approach to fit well with the

4. Practices in Industry: Product Line and Agile Software Engineering

- 55 -

business related values to agility. Regarding the Software Product-Line
Engineering level we characterize this case study as medium since little is

known about concrete practices used in the company.

4.1.7 Testo AG

Testo AG is a German company who delivers portable measurement devices for
industry and emission business. They have a successful Software Product Line,
which was started in 2001, that has delivered 15 products so far according to
(Carbon et al. 2008). They followed an incremental approach by following
Fraunhofer’s PuLSE™20, which is described as “architecture-centric” meaning
that the architecture leads development. Testo’s development cycle time for
new products are described to vary from half a year to one and a half year, and
employed 35 developers which could be characterized as a small development

organization.

Testo AG had no established feedback practice between their application and
domain engineers and they needed a lightweight and informal practice to assess
the growing problem of architectural mismatch (Carbon et al. 2008). The article
only covers enhancements of some practices in
Software Product-Line Engineering, assumedly Architecture Evaluation,
Component Development, and Testing, to obtain more agility and maximizing
the value of their approach. The researchers’ idea was to use the agile practice
Planning Game to assess the feedback need identified, switching the roles of
customer and developers with application and feedback engineers (Carbon et al.
2008). This was believed to enhance the planning of evolution and optimization
of artifacts within the Software Product Line and introduce a new Software

Product Line Engineering practice area, the product line planning game.

In short this practice introduces reuse stories (instead of user stories) that the
application developers formulate based on their feedback on reuse challenges of
artifacts in the core asset base in (Carbon et al. 2008). Then, the stories are
estimated by domain developers and refined through the process described. The
result is a set of estimated reuse stories that could be input to the scoping
process and future requirements. These could further be developed through
iterations of core asset base development. The main difference though is that the
application developers (same as customers in the agile practice) do not choose
which reuse stories to implement; rather the product line manager and architects

are in charge of directing the path for the product line (Carbon et al. 2008).

Benefits mentioned in the article are: varied viewpoints on different components;
knowledge transfer between members of application and domain engineering;

20 Fraunhofer PuLSE is a registered trademark.

4. Practices in Industry: Product Line and Agile Software Engineering

- 56 -

and high efficiency in feedback process. The reuse stories are also subject to
implementation monitoring and traceability through inspection in reusability
(Carbon et al. 2008). The goal for this approach could be improving the
reusability of the core asset base, but the article does not clearly state this. The
article further state that the practice could fit well for small development
organizations or departments who need a lightweight feedback practice.

After experimenting with the practice in three workshop handling two aspects
of the product line feedback, the authors found that the product line planning
game provides feedback and supports scoping in a Software Product Line. The
workshops was introduced, moderated and facilitated by the researchers.
Participants’ creativity and knowledge are described to have strong influence
for the outcome of this practice, and was one of the two limitations found. The
second limitation was the fit to distributed environments because of the strong
emphasis on discussion. We chose to not assess the agility and Software
Product-Line Engineering level of the practice studies, since it is hard to reason
about the overall level when one only know the details of one practice.

4.1.8 PROSOL

The last company described is PROSOL, a small Austrian firm, which deliver
software in the supply chain management domain with customers in European
countries. The company aims for expansion and their goal is to make an
incremental approach to learn, build and maintain a Software Product Line
(Noor et al. 2008). One of the first steps to obtain this is a product roadmap, and
the researchers have looked into the practices for creation of this artifact.

The practice is built up by adding agile principles and collaborative engineering
facilitated by thinkLets 21 , to existing Software Product-Line Engineering
practice areas. A set of tasks is defined based on needs from the practice in
Software Product Line Engineering, then thinkLets and input is associated with
each of the tasks to be able to create the output of each task. In the end, a
product map and a development plan are outputs from the new practice. The
tasks handle understanding domains, features exploration in domains, product
scoping, product features and prioritizing a product map (Noor et al. 2008)
which are all practices in the Software Product Lines field
(Northrop et al. 2007). The thinkLets vary from task to task, but the main idea is
to be able to be creative first, and then analyze the creative results to be able to
evaluate them in the end. A discussion about stakeholders that could participate
in the practice, describe potential participants in this practice as: customers,
management, marketing and sales, architects, developers and maintenance staff

(Noor et al. 2008).

21 thinkLets is described as patterns of group collaboration (Noor et al. 2008)

4. Practices in Industry: Product Line and Agile Software Engineering

- 57 -

The agility of the practice concerns flexibility and change. The stakeholders
involved are allowed to change the process according to results during the
execution of the practice (Noor et al. 2008). The practice was also described as
easy to learn and reduced the waste by ruling out less promising ideas. In a
Software Product Line setting the approach presents an agile practice that could
be used instead of established practices. The benefits of this approach are
described to be efficiency and value creation (Noor et al. 2008). Challenges
with the practice are not mentioned, but knowledge in product line planning,
preparations and cooperation is mentioned as success factors. Again this case
study shows that creative, lightweight approaches can be used instead of

somewhat comprehensive established practices.

4.2 Practices Found in Software Product-Line Engineering

The second section of this chapter describes the practices used in the industry
sorted into the theoretical practices described in (Section 2.2). We elaborated on
each case and tried to combine the results in themes based on the practice areas
and our initial presentation of them. Our sources was not complete in the sense
that they covered all practices, so we choose to combine practices into bigger
themes were it seemed reasonable. This section will state our results with

regards to Software Product-Line Engineering practice areas used in industry.

4.2.1 Software Engineering

The results when it comes to software engineering follow the structure we
recognize from Chapter 2. We report our findings in three main topics namely

‘Domain and Requirements’, ‘Architecture’ and ‘Development’.

Domain and Requirements

For the domain topic we found that Salion obtained research in the manual
processes in the domain and could be seen as both market analysis and domain
knowledge. This knowledge was further developed into business cases used as a
domain model. Further, Salion also employed use cases to their business actions
as well as the development effort. Engenio were somewhat a leader in their
domain based on the high demand for their product. Engenio also staffed their
component teams based on their knowledge in the sub domains. HomeAway
used localized knowledge together with experienced management for their
domain perceptions. CompNN were described to have a proficient product
management team with broad domain knowledge leading the development.

4. Practices in Industry: Product Line and Agile Software Engineering

- 58 -

DNV Software is described to obtain important information about their domains
through DNV22 and ‘Marketing and Sales’.

As for requirements engineering, it is usually divided into domain requirements
and application requirements. Domain requirements usually emerge from
domain knowledge and scoping, but also variation handling could be included.
Salion, Engenio and HomeAway all used a feature model (in Gears) to control
and introduce variations in the core asset platform. CompNN used a set of
predefined configuration for the most common uses of their platform, while
other variants are subject to customization. Custom development efforts in
CompNN are usually also included in the platform. Salion had requirements
from their early efforts and used this to guide the development of their core
asset platform. IFS described a process where domain requirements are
developed by management and passed on to development teams through
business cases while application requirements are gathered distributed in the
regions at IFS. Requirements for domain development are handled by their
inception phase were a high-level design is created, and detailed design emerges
in the iteration. Further they described the abilities of their standard product
through view descriptions, activity descriptions and process descriptions. DNV
Software used their application engineering departments to gather requirements
to the platform development.

When delivering products CompNN used product goals as high-order
requirements while the detailed requirement are made just in time when they are
needed. The product goals are influenced by stakeholders’ feedback from the
last iteration and decided before the next iteration. This way they reduce the up-
front design effort and direct the development as they proceed. HomeAway are
described to use Scrum and should therefore use some kind of planning and
prioritization through user stories. Further, HomeAway were described to not
do any other models, because the cost is high and value low, “no one reads

them”. Salion is described to use the Rational Unified Process (RUP), and

includes models in their requirements engineering effort.

Architecture

Salion and CompNN both described flexible architectures that could withstand
change and evolution. The case studies emphasize this to be able to both serve
customers needs and own component addition. More specific, Salion are
described to use a three-leveled architecture with variations through the Façade
design pattern. CompNN uses a modular platform. HomeAway’s transition
describes a modularization and component-based architecture, but sees it more
as a necessity with Software Product-Line Engineering and it is not elaborated.

22 Det Norske Veritas (DNV) is the mother company of DNV Software.

4. Practices in Industry: Product Line and Agile Software Engineering

- 59 -

Engenio also describe a core-asset based separation of the architecture of the
two programs the product line was built from. IFS also had a component-based
architecture of their solution and DNV used a module-based platform called

BRIX Foundation.

Development

The development effort is described by CompNN’s platform is defined by the
regular use cases, but supports variations through license files. HomeAway,
Salion and Engenio used Gears to handle variations at implementation level.
CompNN also provides customer with the opportunity to have custom needs
implemented if the need could be included in the core asset base and fits the
strategic direction of CompNN. DNV are described to deliver both customized
solutions to single customers and package software to multiple customers,
choosing if they use the BRIX platform or not. The BRIX platform is further
explained to be enhanced based on feedback from ‘Products’ and ‘Solutions’ in
DNV Software. IFS had a component-based product where the components are
loosely coupled and can also be used in customized solutions for customers:
“Components are big, and can be used either horizontal for standard

implementation or modules can be taken out for vertical integration”. IFS
described that they have a devoted department for maintaining and enhancing
this platform, while the installation and application engineering is done

distributed.

Salion used OTS23 components for unimportant and standard aspects of the
system; the rest is subject to in-house developed. CompNN used latest
technology for their component-base, but it is not described closer. IFS are also
described to use OTS components and the latest technology in their technical

framework.

Engenio, HomeAway and Salion used existing software to establish their core
assets. Engenio used two programs as a basis, but did not alter much of the code
base. The case describes only introduction of variations in the new core assets
and incremental improvement of these assets. The incremental improvement
involved refactoring, abstracting and balancing tradeoffs in the component base.
HomeAway produced a “one size fits all” platform from one of their sites
before using this platform in their product line approach. Salion had planned
and started a platform solution before they decided to try a product line
approach. DNV were described to use an existing platform to build their
BRIX.NET platform (Linden et al. 2007. Chapter 10), here called BRIX

Foundation.

23 Off the shelf (OTS) is associated with “ready- made” components that could be used as parts

of a development effort. A framework or library is an example of this.

4. Practices in Industry: Product Line and Agile Software Engineering

- 60 -

All the full-case studies are described to use continuous integration in their
development. Engenio, Salion and HomeAway used the Gears software
combined with continuous integration. Engenio described their “configurator”
which built and run tests on deployed code automatically. Salion had similar
automation with build and testing running together and frequent. HomeAway
describe that their testing got improved through their new software development
approach (Krueger et al. 2008), and they have own quality assurance people
taking over the code after an iteration for ensuring high quality as described in
the interview. IFS described going from a regime where testing was done in the
end of a development effort, towards automation of tests and testing up-front

instead of waiting to the end.

4.2.2 Technical Management

The results when it comes to software engineering follow the structure we
recognize from Chapter 2. We report our findings in three main topics namely

‘Scope and Technology, ‘Process’ and ‘Management’.

Scope and Technology

To scope the Software Product-Line Engineering effort Salion mentioned that
they started with an informal scope and let it evolve as customer products were
delivered. After a temporary standard emerged they could further use this scope
for not only development efforts but also in marketing and sales. CompNN and
HomeAway were found to use a roadmap with opportunities for new products
and enhancements. CompNN also had a close cooperation between operations
and developers with a feedback system to determine the scope and
technological future of the products they deliver. IFS also had a similar solution

based on business cases which are evaluated according to business value.

Feedback planning game also realized an agile approach to this practice. The
Testo case stated a practice improving the feedback between application and
domain engineers in an established product line. It also means that this approach

is efficient and easy to learn.

Gears are used by Salion, HomeAway and Engenio. As HomeAway puts it:

“Gears is used to: model features across the sites; manage variations in

terms of language and ‘look and feel’; and also to decide where to

generate configuration files”

Salion also uses an analytical code cloning detection tool called CloneDR.
HomeAway described the use of Rally, an agile management and tracking tool.
IFS described a technical framework responsible for efficiency and productivity
in the development mentioning Oracle, PLSQL, and Visual Studio among

4. Practices in Industry: Product Line and Agile Software Engineering

- 61 -

others as supporting tools. They also focus on keeping this technical framework
up to date.

Process

With regards to the process CompNN and Salion both described a strategic
focus and an operational focus. CompNN realized this through scoping and
creating a roadmap on higher level every year, Salion on the other hand used
VRAPS and vision meetings for strategic focus. On the operational level they
are respectively guided by the use of EVO and a lightweight RUP. Salion also
used a set of meetings to guide their product line effort with regards to: business
opportunities; customization and configuration; and implementation challenges.
HomeAway used the Scrum method “out of the box”

24, with a various degree of
adoption among teams in the organization. In the ‘Products’ department of
DNV Software it was described that they use a waterfall approach with two
paths. However they are introducing more agile practices and trying to adopt
new techniques as described in the interview. IFS had their own process to fit
their distributed work situation and formal requirements, built from Scrum.

CompNN, Salion, and HomeAway all described different approaches to
measurement and tracking. CompNN uses their product goals, weigh and
estimate them according to both complexity and value then tracks the
development effort. The Salion case mentioned many measures to assist in both
capacity predictions and risk management on the organizational level, while
they are also used in production to track and self-diagnose. HomeAway
mentions the tracking more implicit through its rally software tool, and also
relies on statistics from their market analysis efforts. None of the cases mention
tracking of reuse, even though Engenio and Salion states the improvement and

reuse rate at that moment.

Management

In the management topic we found that in addition to the continuous integration
and automatic builds described, we found some configuration management
practices. CompNN separated the components to the teams and restricts teams
to work on their component. HomeAway protects their live-systems and has a
notification solution when a variation point is changed. Engenio relied on
change request from component team to component team. Salion used contracts
between components, especially front-en to back-end to reduce

misunderstandings.

CompNN and Salion applied some kind of a maintenance or enhancement week.
CompNN had a “green week” where they correct errors and enhance the quality

24 “Out of the box” means that they are following the original theory or description to adopt the

method.

4. Practices in Industry: Product Line and Agile Software Engineering

- 62 -

of their core assets, and a chief technical officer (CTO) who is in charge of the
platform with its business alignment and the products. Salion has the same kind
of “chief architect” and also a “quiet week”. HomeAway followed agile and
relied on the individual and teams creating sustainable software. A technical
lead meeting every week is also mentioned in the interview. DNV Software
described to use a strict update routine where the installation of an updated

version has to go through the “main branch”.

4.2.3 Organizational Management

The results when it comes to software engineering follow the structure we
recognize from Chapter 2. We report our findings in three main topics namely

‘Environment, ‘Indoctrination’ and ‘Organization’.

Environment

The business case of the companies was briefly described in each case’s
description and reflects the environment of the studied companies. CompNN
and Salion described their market analysis efforts and were not found to be
uniform. CompNN did this through a roadmap, while Salion had a set of
business use cases where their potential markets are included. Further, Salion
obtained analysis results from its former company and related domains.
HomeAway was described to have a feature-based evolution on their product
line (Krueger et al. 2008), in addition they have business functions performing
metrics, statistics, and usability tests in order to direct the product lines which
they described in the interview. DNV and IFS also had departments or entities
handling market and sales. IFS also described driving implementation of new
functionality to the platform through business cases evolved from market
analysis: “We try to have one business case for one platform development

project”. The cases also mentioned the restrictive scoping of CompNN only
allowing custom development for customers if the efforts are included in the

platform, and Salion’s efforts in reducing customizations.

When it comes to customer interface management CompNN used an Advisory
Board to collect feedback, ideas and future requirements from important
customers. Salion used a two-phased delivery strategy which includes a
standard delivery within 60 days and then the customer can add specific needs.
In this way Salion and the customer could speak at the same level and use the
existing installation as a guide for customization. HomeAway had internal
product owners serving as customers for their development, much of the same
that were found in DNV Software. DNV Software described that they do this
because they are producing for many customers and mean that they know their
market best, but see the need for directed knowledge to the developers. In IFS
the customers were distributed in the various countries they deliver software,
and have regional user groups evaluating the software. They explained that the

4. Practices in Industry: Product Line and Agile Software Engineering

- 63 -

big regional markets have more influence on the direction of the software
because they have a representative in high-level management meetings where
scoping is done. IFS relied on a support process for feedback, including
feedback from the distributed implementation departments and customer
feedback through a support system. Customer specific problems stay in the
region, while overall problems are sent back to R&D.

Indoctrination

Salion, HomeAway and Engenio used a step wise approach to indoctrinate their
Software Product-Line Engineering effort. Salion emphasize support and
communication through their company to be able to succeed. HomeAway had
experts supporting the transition, and innovators that lead the adoption of
software product-Line engineering in the right direction. Engenio identified
bottlenecks and implemented the engineering approach as a phased transition.
For CompNN the big transition was to EVO and handling more loose plans in
the strategic level (Hanssen & Fægri 2008). DNV Software has an open
approach to reuse of the core asset base, projects can choose more freely to use
platform components or not. IFS are also reliant on their component–based

structure and use that as a competitive advantage.

HomeAway described to train and teach employees about Software Product-
Line Engineering and Agile Software Development. It was also mentioned that
they used a wiki for development related information. We also found weak
indications that Salion used knowledge management and captured experiences
in the core asset base. Another commonality is that four of the full scale cases
were introducing Agile Software Development in parallel with their software
product-line engineering and had to learn the principles of their combined
approach individually and through consulting. DNV Software tries to attract
individuals who have high knowledge in Agile Software Development and

could work as champions to adoption of the new practices from this field.

Organization

The process disciplines mentioned (Section 4.2) should lead the planning efforts
of the cases, but little concrete information about this is found. Risk
management is to some extent corporate in the process as well and not explicitly
described. The only similarity we found is that is seems like the companies use
iterative development and frequent builds to reduce risk. User stories were used

in various degrees at HomeAway, IFS, and DNV Software.

CompNN, Engenio, and HomeAway structured their teams and organization
according to modules or components and want to make experts in the various
components. We found indicators that most of the organizations used small
teams for developing easing communication and frequent delivery. IFS were

4. Practices in Industry: Product Line and Agile Software Engineering

- 64 -

more project-oriented with their resources, but tried to take advantage of
employees’ skills and knowledge.

In the day to day operations Salion was described to use three different product
cycles at one time with 30 day release cycles. Model-driven development was
also present in Salion through the Rational Unified Process (RUP). HomeAway
uses their Scrum method for operations. CompNN had Impact Estimation
Tables as their day-to-day operating tool. DNV Software has product owners on

each product in ‘Products’ department and uses a waterfall approach.

4.3 Practices Found in Agile Software Development

The third section of this chapter describes the practices of Agile Software
Development used in the industry sorted by the categorization of practices
described earlier (Section 2.3) describing each practice separate. The sources
did not cover all practices, so we choose to combine some practices into bigger
themes were it seemed reasonable. Since some the studies were directed for the
Software Product-Line Engineering field the results here might not have been as

complete as we wanted.

4.3.1 Software Engineering

The results when it comes to software engineering follow the structure we
recognize from Chapter 2. We report our findings in three main topics namely

‘Domain and Requirements’, ‘Architecture’ and ‘Development’.

Domain and Requirements

The Domain-Driven design practice and Software Product-Line Engineering
work well together since it is one of the ideas behind the approach and are
explained earlier (Sec 4.2.1). HomeAway described to use vision, roadmap,
elaboration planning. The vision is driven by market and business efforts, while
the roadmap is done to assign features or functionality to a time frame, while
elaboration is done through a backlog. IFS had a similar adoption of this
practice were management work with a roadmap consisting of business cases,
while development elaborates on business cases of this roadmap when a project
is initiated. The PROSOL case described an agile way of doing planning and
prioritization for software product line engineering. Further HomeAway’s
Scrum and CompNN’s EVO methods also did planning and prioritization.
Scrum are described to have a iteration planning meeting before an iteration
starts where user stories are planned in tasks and prioritized often with the
customer (Abrahamsson et al. 2002). EVO uses the Impact Estimation Table to
do the same thing and prioritize in regards to risk and business value
(Hanssen & Fægri 2008). IFS did planning and prioritization in their project

4. Practices in Industry: Product Line and Agile Software Engineering

- 65 -

inception phase, and user stories were estimated and prioritized for use in the
iterations.

Architecture

With regards to the initial architecture no information was found since the cases
built upon existing platforms, but this could be a kind of initial architecture
even though the agile community might see this practice as a more lightweight

approach (Leffingwell 2007).

Development

In the development topic HomeAway were the only company who described to
use coding standards as a tool in their quality control, but we would think it is
normal to implement in software development organizations. CompNN,
HomeAway, IFS and Salion were described to use Test-Driven Development,
but the actual effort is not elaborated. Other test efforts are described in Testing
(Section 4.2.1). Salion used a tool and refactoring to extract commonality in
their software product-line. They found similar code blocks and refactored it to
introduce more commonality in the core asset platform. HomeAway described
efforts towards software evolution with “discipline and good people maintain

the integrity of the software system and design” ref which are hard to do

without refactoring.

The Salion case also described code ownership or component ownership of
developers as a helpful way to ensure reusable core asset base. The Engenio
case mentioned ownership implicit through their confidence in the product line
and belief in own abilities to respond to opportunities. HomeAway was
described to rely on their developers to cope with software evolution as

mentioned above.

4.3.2 Technical management

The results when it comes to software engineering follow the structure we
recognize from Chapter 2. We report our findings in three main topics namely

‘Scope and Technology, ‘Process’ and ‘Management’.

Scope and Technology

We found little information about scoping in the agile practices. When it comes
to technology Salion, HomeAway, IFS, CompNN and Engenio mentioned
frequent builds, automation, and continuous integration as ways to obtain better
quality. The Salion case described a comprehensive test suite that run
automatically after coding on a release is done. HomeAway presented an
automated configuration management, build and deployment infrastructure
(Krueger et al. 2008):

4. Practices in Industry: Product Line and Agile Software Engineering

- 66 -

“when a piece of code is checked in after code review, it is run on the build

server with all product and unit tests before a successful build is automatically

deployed to a cluster of servers”

IFS were found to use automatic build and configuration management.
CompNN was described to have projects and sprints within each project.
Engenio used their ‘configurator’ and Gears for this automation.

Process

As for the process topic HomeAway was described to use Scrum, while IFS had
their own iterative process and they both use a backlog to guide their
development. CompNN used their IET table to guide development. CompNN’s
EVO method emphasized this practice. HomeAway describe varying sprint
lengths, but always a day for planning the next sprint. HomeAway was
described to use the Scrum method which involves these qualities. Salion used
the RUP method which is also an incremental, iterative approach to software
development, but it is model-driven and are usually not characterized as an agile
method because of that. DNV Software described to use sprints as well, without
elaborating how they do it. IFS used iterations as one practice to produce results
in a process where brief planning are done before and quality assurance with

deployment are done after.

Management

To manage the effort Salion, HomeAway, CompNN and Engenio all mentioned
small, frequent releases. IFS described that they use shorter iterations, while
DNV Software described to use Scrum which implicit means using sprints for
frequent releases. We also found that HomeAway used a Wiki25 for information
about the technological environment and development with “how to create a
branch” and “how to do a code review” as examples. IFS did this implicit by
sending material from their Wiki.

4.3.3 Organizational management

The results when it comes to software engineering follow the structure we
recognize from Chapter 2. We report our findings in three main topics namely

‘Environment, ‘Indoctrination’ and ‘Organization’.

Environment

To handle the environment two of the cases described customer interaction in a
more comprehensive way than the Software Product-Line Engineering practices
intends it to be. CompNN used both an Advisory Board to reveal and discuss
future needs, and a stakeholder representative that could be a customer for their

25 A wiki is a website for easy creation of multiple web pages often used for documentation in

software companies.

4. Practices in Industry: Product Line and Agile Software Engineering

- 67 -

projects. This stakeholder representative is responsible for feedback on the
iterations and guides the coming iterations (Hanssen & Fægri 2008). Engenio
mentioned changing customer requirements as one of the drivers for changing
their process, but does not describe closer how they improve their predictions of
customer needs. Salion used customers’ needs to drive their own scope and
create core assets from. DNV Software and IFS were described to use internal
resources as customers to platform development, while both try to use

customers in application development As IFS described in the interview:

“Every project has a commercial manager who is in charge of directing

development according to the business case and customer interaction.

This ensures high value and quality since development fits the customer

need”

Besides this we can also call feedback from application engineering to domain
engineering a kind of on-site customer. The planning game approach in
application to domain engineering feedback from the Testo case is an example
of a working agile way of obtaining important feedback throughout the
organization in dynamic work environments. Salion also had their meetings to
ensure that communication was frequent in every project and the HomeAway
case indicated a healthy communication between developers and the
organization. IFS get feedback from customers and distributed departments. The
support process was filtered, meaning that the R&D department only got the
feedback that is applicable to the platform. The customers were usually
organized in communities and try to speak everyone’s case towards
enhancements to the platform.

Indoctrination

To indoctrinate Agile Software Development HomeAway learned more about
agile practices through coaching from experts (Krueger et al. 2008), and they
used retrospectives after each iteration to improve according to the interviewee.
IFS also did retrospectives to assess the iteration and propose changes to the
iterations. The Salion cases indicated that the organization reflected and tried to
improve through trying out new things. The planning approach in PROSOL was

also able to change according to how the process evolved.

Organization

As for the organization HomeAway, CompNN, Salion describes the use of
metrics to track and evaluate development. HomeAway experienced better
visibility and expense control through certain measures, while CompNN and
Salion used it as a planning tool and measures team velocity through estimates
on the work packages. IFS estimated user stories and used that as a metric.

4. Practices in Industry: Product Line and Agile Software Engineering

- 68 -

Salion has such a small group that everyone is doing everything, except from
that no indications of this were found. HomeAway was described to have only
one team on the ‘public sites’ product line and they do all functions. IFS also
had self-organizing teams, but experienced some challenges regarding team

empowerment and domain competencies.

Salion has a different approach called “joyous love” meeting twice a week to
solve challenges and track projects, we also heard about daily stand-up meetings
in the interview. HomeAway use stand-ups in their Scrum approach. DNV
Software is also described to use stand-ups in some projects.

- 69 -

5. Discussion

The overall combination between Software Product-Line Engineering and Agile
Software Development are discussed in this chapter. This introduction answers
RQ-1.4, where we asked about introducing agility to Software Product-Line
Engineering and how it works in the industry. The following discussion
illustrates the main findings and are also summarized (Table 11). Our case study
companies introduced agility in Software Product-Line Engineering in different
ways. Six of the eight companies did a full scale combination between Agile
Software Development and Software Product-Line Engineering, while the two
last ones changed a practice area within Software Product-Line Engineering to
become more agile. HomeAway, Salion, and Engenio were described to
combine Agile Software Development and Software Product-Line Engineering
concurrently from the start of their Software Product-Line Engineering efforts.
The second variant of combining the two approaches were employed by
CompNN, IFS, and DNV Software who had the
Software Product-Line Engineering effort running, but wanted to become more
agile to serve a dynamic market. DNV Software is still in the phase of
establishing their combination, while IFS have done pilot testing and are ready

to adopt the resulting method they have tested.

5. Discussion

- 70 -

Further, we found that the case studies adopt Agile Software Development in
various levels in their Software Product-Line Engineering approach to software
product development. The domains of the companies varied, but can be
described as customer-driven and fairly stable. The size of the companies can be
described as small and medium, with team-based efforts in software engineering.
The problems the companies have, like most other companies in the industry,
are delivering high quality software to a set of customer that has different needs.
Overall we can say that they try to combine long-term strategic winnings with
short-term flexibility. We can also say that the companies feared the big design
up-front effort which are associated with Software Product-Line Engineering,
and wanted to reap the benefits from the approach without spending lots of

money and a big amount of time in advance.

The context of the companies we investigated was somewhat similar. They
deliver a set of products that shares commonality to a set of customers. They
were all using small teams and many companies did distributed development.
The domains varied, but all supported the product line capability. The
complexity could be considered high and the products can be described as

unmanageable through regular single system maintaining.

After analyzing and investigating the companies’ approach to Agile Software
Product-Line Engineering we believe that Agile Software Development can be
both a mindset and concrete practices that could further enhance Software
Product-Line Engineering. We see that the companies often reduce time-to-
market and are able to exploit reuse in a much higher grade than possible with
other reuse approaches using a hybrid approach between
Software Product-Line Engineering and Agile Software Development. Agile
Software Development practices introduce both principles and practices that fit
well towards the product lines in the companies we studied. The methods in
Agile Software Development fit well on the technical level and separate
practices could increase efficiency, but on an organizational level agile lacks the
comprehensiveness of Software Product-Line Engineering. The ability to
change while not being directed by models and “signed”26 requirements as agile
proclaims could be a benefit for the Software Product-Line Engineering effort.
Another benefit of combining the two approaches could be that the agile
methods are lightweight and easy to learn which again could foster incremental
learning of Software Product-Line Engineering. The findings also showed us
that the combination could reduce the big design up front. These are some of the
genral benefits Agile Software Development provides to Software Product-Line
Engineeering.

26 By signed requirements we mean contracted requirements that are not able to change after

they have been agreed on.

- 71 -

Table 11: Summarized findings of the analysis of the case studies.

What Similarity Varied results
Customized products to several customers X
Reduce BDUF X
Small or medium sized company X
Distributed environment X
Combining Product Line and Agile Software Engineering X
Using special tools X
Domain stable X
Introduction of agile in a product-line X
Using practices and principles from Software Product Line Engineering X
Using practices and principles from Agile Software Development X
Knowledge about Software Product-Line Engineering X
Knowledge about Agile Software Development X
Approach and introduction to product line X

- 71 -

5. Discussion

- 72 -

More specific, the similar benefits between Salion, Engenio, and HomeAway
were that they all reduced the big design up-front, and incrementally adopted a
Software Product-Line Engineering approach in an agile fashion. They were
also able to reduce their code base because they could ‘refactor’ branched code
into commonalities and exploit reuse benefits. Further indications about reduced
time to market were also presented, and higher quality through maintainable
source code was mentioned in these cases. In CompNN’s case the combination
of agile software development and software product-line engineering fulfilled
long-term strategic needs with short-term instability and changing customer
needs (Hanssen & Fægri 2008). IFS can be described to obtain the similar

benefits as CompNN.

Regarding the two approaches of Agile Software Product-Line practices, we
have illustrated that it is possible to obtain agility in the practice areas of
software product-line engineering through combining the practice area with
thoughts from the Agile Software Development field. In addition, we showed
that practices in both fields can be combined to make processes more agile. We
elaborate on this based on our results in the next sections of this chapter.

In the following sections we present our discussion in a top down fashion
starting with a discussion of the characteristics of agility in Software Product-
Line Engineering. Then, a framework for Agile Software Product-Line
Engineering is presented following the patterns of Software Product Lines
described in (Section 2.1.4), before we elaborate on the practice areas and
practices we gathered results about. In the discussion we try to combine our
results to describe where the Agile Software Development practices could fit in
the Software Product-Line Engineering practice areas following the same

structure as earlier in the thesis. Last, we discuss the validity of our approach.

5.1 Characteristics of Agility in

Software Product-Line Engineering

After discussing the overall results, we believe that it is possible to combine
Software Product-Line Engineering and Agile Software Development, similar
to what Ghanam (2008) and Tian & Cooper (2006) have reasoned before. To
add another dimension to our thesis we try to establish a meaning (RQ-2.1) and
some characteristics (RQ-2.2) for agility in Software Product-Line Engineering.
First, we try to combine the definitions of Software Product Lines and Software
Product-Line Engineering with the definition of agility. If we follow Conboy’s
definition as a basis we could easily rename the entity making a proposed
definition of agility in Software Product-Line:

5. Discussion

- 73 -

“the continual readiness of software product line engineering to rapidly

or inherently create change, proactively or reactively embrace change,

and learn from change while maximizing value, through its collective

components and its relationships with its environment”

 (modified from Conboy 2008)

Or we could combine the definition of Software product line and create this

proposal:

“the continual readiness of a set of software-intensive systems sharing a

common, managed set of features to rapidly or inherently create change,

proactively or reactively embrace change, and learn from change while

maximizing value, through satisfying the specific needs of a particular

market segment or mission with a common set of core assets reused in a

prescribed way and its relationships with its environment”

 (modified from Conboy 2008; Northrop et al. 2007)

A third option would be to combine Software Product-Line Engineering and the
agility definition:

“the continual readiness of software product line engineering to rapidly

or inherently create change, proactively or reactively embrace change,

and learn from change while maximizing value, through its collective

components, platforms, mass customization and its relationships with its

environment”

 (modified from Conboy 2008; Pohl et al. 2005)

The first proposal inherits the agility definition to Software Product-Line
Engineering. The influence it would have on Software Product-Line
Engineering is that the approached has to be more able to change than it might
be today. We think that the maximizing value statement could support new
lightweight practices in Software Product-Line Engineering while the change
directions would modify common practice areas. This also supports the results
and discussions performed in this thesis earlier. Putting both definitions together
resulted in a long definition of Agile Software Product Lines. This definition
describes how Software Product Lines are supposed to be open to change and
maximize value in a certain market segment with reuse. We think it covers the
meaning of agility in Software Product Lines well, but it might sound easier in
words than it is in practice. Our third proposed definition is similar to the first,
but adds platform and mass customization as a tool for change and maximizing

value.

In our opinion the agile manifesto tries to encourage people, code, customer,
and changes whereas Software Product-Line Engineering clearly use processes,

5. Discussion

- 74 -

tools, documentation and plans. Contract negotiation in Software Product-Line
Engineering is not a big challenge because the choices or variations usually
constrain what is possible or not and are decided by the producer, except for
custom development which is usually avoided. Software Product-Line
Engineering has to embrace the values of the manifesto to obtain more agility.
Especially reduce the big design up-front efforts in the proactive approach, find
a good way to embrace the customer, and have the ability to change according

to the need.

Elaborating on RQ-2.2 we divide the problem in the three different approaches
to Software Product-Line Engineering namely proactive, reactive and extractive.
In proactive Software Product-Line Engineering agility could be earlier
development of code, test-driven development, emphasis on code not
documents, customer interaction through business people, self-organizing
autonomous teams, component-based development with automatic integration,
allow agility from the start of the effort. Problems that could evolve are control,
decision structure, creating “just enough” plans and documentation, and
variations. An agile approach to the proactive approach could import many
practices from the agile methods. The long-term strategic objective still needs to
be in tact to be able to exploit the product line in a beneficial way. Further
Software Product Line practice areas supports many of the agile elements, but
documentation and design are probably the worst bottlenecks. A way of
concurrent development and cooperation between business and development
could be beneficial.

For the reactive approach, agility could fit even better since we build parts as
they are needed or an opportunity arise, and could make projects from this to
develop on the platform. Agile Software Product-Line Engineering could
experiment with practices and find out which could work and not. Customer is a
little more present since we deliver products in parallel with developing on the
platform. Automation, component self-organizing teams, and test-driven
development in addition to reduction of documentation and design up-front are
things to emphasis when trying to make this approach more agile. This
approach does not need that much control since we are adding pieces bit by bit
to the core asset. Refactoring could evolve to be a big challenge with an
approach like this because of the variations. Iterative development fits well with

this kind of approach.

Last, the extractive approach fits the refactoring nature of agile. Building a core
asset base from products could implement agile teams as well. Here the teams
could think about change when building and use agile methods and practices for
the building. The need for documentation and design up-front is not as
important here as in the proactive approach. However, we still need the strategic

5. Discussion

- 75 -

focus and direction by the business part of Software Product-Line Engineering.
Architecture is also a question, since we need variation.

Based on the results in this thesis and the above discussion some characteristics

for agility in Software Product-Line Engineering could be:

• reduced documentation and models;

• lightweight requirements and architecture;

• test-driven development;

• iterative processes;

• automation; and

• component teams.

We think the reactive, incremental approach to Software Product-Line
Engineering could be the best match for Agile Software Product-Line

Engineering.

5.2 Framework for

Agile Software Product-Line Engineering

In order to answer RQ-2.3 about incorporating agility to Software Product-Line
Engineering companies, we try to use the results found in this study, combine
them with the patterns of Software Product-Line Engineering to establish a
framework for Agile Software Product-Line Engineering. We saw that
companies were able to both include agile practices in their Software Product-
Line Engineering effort and change Software Product-Line Engineering practice
areas to become more agile, but also that some practice areas in Software
Product-Line Engineering are not covered by Agile Software Development and
remains similar to what they were. This section will try to look at the patterns
suggested for Software Product-Line Engineering, discuss how they could be
made more agile. We start with the ‘Factory’ pattern which describes
introduction of a Software Product Line. From that we work ourselves down in
the patterns that make up this composite pattern. Bear in mind that we look at
the introduction of agility to Software Product-Line Engineering not covering

introducing product lines to Agile Software Development organizations.

5.2.1 The Agile Software Product Line

In (Gylterud 2008), we stated that we think Software Product-Line Engineering
and Agile Software Development could be combined to further increase
efficiency and quality while reducing time to market using Agile Software
Development in a Software Product-Line Engineering organization. This thesis
have showed how companies tend to approach such a combination with success

5. Discussion

- 76 -

being able to reduce big design up front, increase quality and exploit reuse. To
add a contribution to the field we combined our findings with the patterns of
Software Product-Line Engineering, and look at Agile Software Product-Line
Engineering in a top-down fashion starting with a variant of the ‘Factory’

pattern namely the ‘Adoption Factory’ pattern.

The ‘Adoption Factory’ pattern describes the whole product line effort with
putting together several patterns. We think that Software Product-Line
Engineering can become more agile when the sub-patterns included in this
pattern have achieved agility. We imagine two scenarios when constructing the
Factory pattern for an Agile Software Product Line. The first scenario (S-1) is
an organization that is looking into adoption of Software Product-Line
Engineering and creating one or more product lines based on domain
knowledge and a product base. The second scenario (S-2) is an organization
where Software Product-Line Engineering is established and one or more
product lines already exist. Here the need to cope with new market demands and
evolution of the core asset base is present. To document the effort in these two
scenarios we used the ‘Adoption Factory’ pattern briefly described in (Clements
et al. 2006). This pattern originates from (Northrop 2004), where the author
describes Software Product-Line Engineering adoption needs, and abstracts it
with a similar figure as we have modified. In S-1 we have made changes in the
different sub patterns and introduce a new pattern ‘Parts Factory’ to reflect
Agile Software Product-Line Engineering based on the discussion on practice
areas (Section 5.3) and the contradictions of the ‘Each Asset’ pattern towards
agility since it separates work. S-2 handles Software Product-Line Engineering
organizations who introduce agility and we changed the original pattern with
the ‘Warm Start’ pattern since the organization has already implemented
product line(s) before and we also adopted the ‘Parts Factory’ discussed in S-1.

5.2.2 Scenario 1 (S-1)

In this sub section we describe how an organization could adopt Agile Software
Product-Line Engineering without having implemented product lines before.
We start by discussing the establishment of the context, then explaining how the
production capability could be built before we handle the operating of the

software product-line (Figure 5).

Context

On the organizational level we use the ‘Cold Start' pattern. This pattern
introduces additional challenges when trying to combine Software Product-Line
Engineering and Agile Software Development because the organization
probably has to introduce both Software Product-Line Engineering and Agile

Software Development concurrently.

Figure 5: The Adoption Factory pattern for scenario 1 modified to fit an Agile
Software Product Line.

The pattern communicates the new product line effort and sets up the ne
environment handling the launch, f
Software Development
‘Operations’ practice areas
‘Organizational Risk Management’
in the method. ‘Customer Interface Management’
according to what method we adopt.
launch, changing the organizational planning and operation
small releases to reduce risk, and incorporating the agile way of thinking. The
launch is critical since we need to introduce two new ways of working, with
minimizing reduced productivity and communication the change to the whole
organization.

The ‘Process’ pattern would
which we have discussed (
area as described in (Section
describe a process as: iterative
listening to the environment
these process and we found that they are individual based on the need for the
companies, but they are iterativ
the process are: to come up with good processes that fit the organization

5. Discussion

- 77 -

: The Adoption Factory pattern for scenario 1 modified to fit an Agile
Software Product Line. (modified from Clements et al. 2006)

pattern communicates the new product line effort and sets up the ne
the launch, funding, structure and operations. From

Software Development we make changes to ‘Organizational Planning’ and
practice areas as described in (Section 5.3.3), making the

‘Organizational Risk Management’ and ‘Training’ practice areas incorporated
in the method. ‘Customer Interface Management’ practice area will also change

method we adopt. Challenges with this pattern could be the
changing the organizational planning and operation effort, introducing

small releases to reduce risk, and incorporating the agile way of thinking. The
launch is critical since we need to introduce two new ways of working, with
minimizing reduced productivity and communication the change to the whole

would mainly do the ‘Process Discipline’ pract
discussed (Section 5.3.2), with input from the involved practice

Section 2.1.3). The main points from these discussions
iterative; lightweight; easy to learn; open to change

listening to the environment. The cases described in this study elaborate on
these process and we found that they are individual based on the need for the
companies, but they are iterative and handles change as it arise. Challenges with

to come up with good processes that fit the organization

: The Adoption Factory pattern for scenario 1 modified to fit an Agile

pattern communicates the new product line effort and sets up the new
From Agile

‘Organizational Planning’ and
making the
incorporated

will also change
with this pattern could be the

effort, introducing
small releases to reduce risk, and incorporating the agile way of thinking. The
launch is critical since we need to introduce two new ways of working, with
minimizing reduced productivity and communication the change to the whole

mainly do the ‘Process Discipline’ practice area
.2), with input from the involved practice

these discussions
open to change; and

The cases described in this study elaborate on
these process and we found that they are individual based on the need for the

e and handles change as it arise. Challenges with
to come up with good processes that fit the organization; handle

5. Discussion

- 78 -

the practice areas in lightweight processes; and being able to combine long-term
strategic planning with short-term agility. A compromise with regards to Agile
Software Development and its principles would be to involve the higher levels
of product development like market analysis and domain knowledge because
Software Product-Line Engineering is too complex to handle everything on
code level. This concurs with the main challenge of ‘Process Discipline’ as well,
namely maintaining the long term strategic focus of the Software Product-Line
Engineering while benefiting from short term flexibility. We have seen from the
results of this study that the companies were able to combine long term focus

with short term agility.

The ‘What to Build’ pattern would have influence from Agile Software
Development in what it is supposed to have as output. Depending on the Agile
Software Development method and practices this pattern would have to run
iterative in longer time boxes meaning that the output from this pattern should
not be static, but change according to the environment and results obtained.
Challenges here would be to abstract enough so that entities taking over the
output are not limited because of high details in their input. The ‘Analysis’
variant is a heavier version of the original pattern, and to make that more agile
we have to try to include the agile requirements through epics, features or user
stories and architectural efforts with architectural runway to reduce the design
up-front ergo making the pattern more agile. Also this would be going on in
longer time-boxes. ‘Forced March’ is the more lightweight variant of the pattern
which takes advantage of legacy systems to find the scope and is not influenced
much by Agile Software Development. In this pattern we think that the pattern
could combine the pattern and its variants in a lightweight way to establish the

scope like we saw in the PROSOL case described in this study.

On the product level of the context it is hard to choose whether to use the ‘What
to Build’ pattern, one of its variants, or the planning technique used in the
PROSOL case. If there are legacy systems to support creation of the product
plan of the software product line this could be a natural choice. If not the
‘Analysis’ variant of the pattern or the PROSOL technique could be the best
choices. We base that on the need to start developing early and deliver value. In
the original pattern the effort is towards marketing challenges more than
development and we think that contradicts “working software over

comprehensive documents” from the Agile Manifesto. Instead, starting early
with requirements and architecture could fit Agile Software Product-Line
Engineering well and could prove as a beneficial compromise between Software
Product-Line Engineering and Agile Software Development. Other challenges
here are to balance the detail level of early requirements and architecture so that
the developers can use their creativity later and have enough business value to
move forward with the Agile Software Product-Line Engineering adoption.

5. Discussion

- 79 -

In the figure we chose to put the ‘Analysis’ variant as a guideline to contextual
product efforts.

Production Capability

The ‘In Motion’ pattern is a managerial pattern on the organizational level to
ensure that the progress of a product line is satisfactory (Section 2.1.4) and we
found little evidence on how to do this more agile except that the manager has
to manage the agile method instead of a more regular approach to product lines.
Challenges in this pattern are related to the separate practice areas (Section 5.3):
‘Operations’; ‘Training’; ‘Customer Interface Management’; ‘Acquisition
Strategy’; and ‘Organizational Structure’. An Agile Software Product-Line
Engineering approach should also be able to see results earlier and continuous
in addition to getting feedback from iteration retrospectives like HomeAway
does in their Scrum method. In addition we would introduce Agile Software
Development measurements on development efforts to assess team and

organizational velocity.

On the process level the ‘Assembly Line’ pattern could become more agile by
setting up for continuous build, test, and integration described in many of the
cases in this study. HomeAway described that they used some time to establish
their assembly line. IFS used a different approach in addition to the practices
mentioned above, where they developed product parts then had quality
assurance in a separate team, before distribution was done by another separate
team. Another approach is to let tools automate the assembly line, which was
described in our cases through the Gears software. This meant that the
developers only did domain engineering on the core asset base, with
establishing variation points and a feature model. These could be to suggestions
to handle this pattern and its agility. A compromise between Software Product-
Line Engineering and Agile Software Development here is that we have to
minimize work towards the core assets that does not make any value, meaning
that we have to do “just enough” so that the application engineers are able to put
together products from the platform. Challenges here might be choosing the
tools to use and reducing the details so that we increase creativity while being

open to change.

On the product level of establishing production capability we need to do two
patterns where the ‘Each Asset’ pattern gives the ‘Product Parts’ pattern its
components. For the agility of these patterns we introduce a new hybrid pattern
‘Parts Factory’. This will be explained after we look at the two included
patterns. Looking at the ‘Each Asset’ pattern Agile Software Development will
introduce a new ‘Technical Planning’ practice area through the method the
organization chooses to use. The ‘Testing’ practice area will be done concurrent
or before actual development on the asset, while the ‘Process Discipline’

5. Discussion

- 80 -

practice area could take a lighter role, maybe some short documentation in a
wiki or similar. The ‘Configuration Management’ practice area would be
automatically handled, while ‘Data Collection, Metrics, and Tracking’ and
‘Tool Support’ practice areas would inherit agile practices in addition to
Software Product-Line Engineering practices as described in their respective
practice areas above. The challenge for agility here is to perform Test-Driven
Development in all asset-related realizations and have a “just enough” emphasis
on the process discipline. The agile ‘Technical Planning’ practice area would
introduce new ways of doing requirements, architecture and components, but
we think it is feasible and we saw that the companies used user stories and
features or epics as requirements. The variations would have the same
comments and change according to Software Product-Line Engineering and the
main pattern. We saw that asset development was done differently in our case
companies, but both IFS and HomeAway had an iterative way of developing an
asset with agile focus and fits well into this pattern. A compromise between our
two approaches for this pattern would be that we need to handle to variations in
some way like we described many times earlier. Challenges here would be to
follow an agile method, “just enough” emphasis on non value creating tasks and

handling variations.

The composite pattern ‘Product Parts’ handle putting together separate assets so
that they can become parts within the platform to form a product. To make this
more agile we introduced the hybrid approach since Agile Software
Development is about delivering working software and avoiding silo work on a
product. We have discussed using multifunctional teams for building complete
assets for the platform instead of having silo-based development of
requirements, architecture, components and test artifacts. Taking input from the
‘Organizational Structure’ practice area and adjusting this new hybrid pattern to
the team-based structure could be beneficial for the agility and cooperation in
the creation of core assets or product parts. A compromise between Software
Product-Line Engineering and Agile Software Development with the hybrid
approach is the decision between making in-house, buying or use existing
software or legacy systems. This should be done in order to maximize the value
of the core assets. Challenges with the new hybrid pattern could be validation
towards analysis, variation handling and leading the teams to efficient work.

Operate the Product Line

The ‘Monitor’ pattern fits well with Agile Software Development, but has a
broader scope since we deliver to several customers in a larger environment
than in single-system development. Further, we see that the output of this
pattern is plans and processes which contradicts with the Agile Manifesto. Here
we could imagine a more direct feedback process directly to the concerned
stakeholders instead of going into planning and process building again. We saw

5. Discussion

- 81 -

a variant of this pattern in the Testo AG case described in this study which was
more agile than the regular approach. To make this pattern more agile we would
introduce the agile metrics, assign product owners to each component to
enhance them according to need, have some feedback from the products
developed and do iterative work on evolving the product lines platform. The
pattern would change to do more direct feedback instead of going through
organizational hierarchies. The compromise here could be to document enough
so that we have control over changes with regards to the product line and its
variations. In our results we saw that DNV Software collected feedback from its
product development departments to trigger changes in the platform. IFS used
feedback from the distributed development departments who were close to the
customer in addition to user groups who provided feedback on the products they
used. These could be good examples for monitoring. A challenge here is to filter
feedback so that we follow the scope of the product line, we could probably not

allow every change request.

When delivering product the ‘Product Builder’ pattern can be made more agile
with automation like the use of Gears by HomeAway, Salion and Engenio. A
fully automated production process or tool which builds and test the software
can be the mantra for an agile approach here. Basing that on a feature model
was shown to be very powerful for the case companies already mentioned. IFS
built their products distributed, closer to their customer, which is also positive
because of the customer interaction and delivering value. We think it can
depend on the situation and type of software products you are building. IFS
follow the pattern but with more agility and are close to their customers. The
first case companies mentioned, had predefined variations and used a variant of
this pattern ‘Product Gen’ which can more easily be automated. Challenges here
are being able to deliver value to the customer through the core asset base and

adopt automation or an agile method to make the pattern more agile.

5.2.3 Scenario 2 (S-2)

In this sub section we describe how an organization could adopt Agile Software
Product-Line Engineering with existing experience from building product lines.
We start with the establishment of the context, and then explaining how the
production capability could be built before we handle the operating of the
software product-line. In the patterns where this scenario handling is similar to

S-1 we refer the reader to the already explained pattern above.

Figure 6: The Adoption Factory pattern for scenario 2 m
Software Product Line.

Context

The ‘Warm Start’ variant pattern
to redefine ‘Organizational Planning’ and ‘Operations’
going from a regular approach to an agile approach.
does not include the ‘Training’ practice area it would be beneficial to introduce
and train on Agile Software Development
the organization. The challenges in this scenario would be to communicate and
learn the organization about change in

The ‘Process’ pattern would have a different perspective since we need to
change from the Software Product
to more agile processes. In this change we could use points discus
‘Cold Start’ pattern and the ‘Process Discipline’ practice area. Challenges are
the same as in these entities, but t
organization because people could be reluctant to change something that is
already working.

To find out ‘What to Build’
lightweight version described in PROSOL could be enough since there is
already experience and artifacts from product line(s) existing that could be used
to set the product visions.

5. Discussion

- 82 -

: The Adoption Factory pattern for scenario 2 modified to fit an Agile
Software Product Line. (modified from Clements et al. 2006)

pattern for experienced companies which would need
to redefine ‘Organizational Planning’ and ‘Operations’ practice areas if they are
going from a regular approach to an agile approach. Even though the variant

the ‘Training’ practice area it would be beneficial to introduce
Agile Software Development since it would be a new concept to

the organization. The challenges in this scenario would be to communicate and
learn the organization about change in addition to plan the new product line.

would have a different perspective since we need to
Software Product-Line Engineering processes already defined

to more agile processes. In this change we could use points discussed in the
‘Cold Start’ pattern and the ‘Process Discipline’ practice area. Challenges are

entities, but this could meet stronger resistance within the
because people could be reluctant to change something that is

‘What to Build’ for the new product line we think that the
lightweight version described in PROSOL could be enough since there is
already experience and artifacts from product line(s) existing that could be used

odified to fit an Agile

for experienced companies which would need
if they are

Even though the variant
the ‘Training’ practice area it would be beneficial to introduce

since it would be a new concept to
the organization. The challenges in this scenario would be to communicate and

addition to plan the new product line.

would have a different perspective since we need to
processes already defined

sed in the
‘Cold Start’ pattern and the ‘Process Discipline’ practice area. Challenges are

resistance within the
because people could be reluctant to change something that is

for the new product line we think that the
lightweight version described in PROSOL could be enough since there is
already experience and artifacts from product line(s) existing that could be used

5. Discussion

- 83 -

Production Capability

The ‘In Motion’ pattern for S-2 is different because we need to adjust to the
agile method introduced. Extra effort should be put in training and ensuring that
people develop using Agile Software Product-Line Engineering instead of
holding on to the old style of development. The points discussed for S-1 on this
pattern is also viable here. To establish the ‘Assembly Line’ pattern for the new
product line we could build on what already exists, built we need to consider the
test and build focus of Agile Software Development as described for S-1. ‘Parts
Factory’ would evolve on existing assets in the core asset base and add or adjust
these to reflect the new scope or needs of the new software product line. In
addition points from S-1 should be taken into account when adopting Agile

Software Product-Line Engineering.

Operate Product Line

In the ‘Monitor’ pattern we need to introduce agile metrics and feedback like
described in S-1. There are no specific needs for S-2 in this pattern, but as with
other patterns there might be something to build upon or change in order to
establish the pattern faster. ‘Product Builder’ would also stay similar to S-1. We
should probably discard the existing practice here and introduce new practices

that are more agile to reflect to the changes in other parts of the organization.

5.3 Combining Software Product-Line Engineering Practice

Areas and Agile Software Development Practices

To describe practices that were used to obtain agility in Software Product-Line
Engineering (RQ-1.5), we investigated our results and crossed the practice areas
with the agile practices in a one-to-many relation (Table 12). Further we
elaborate on the results in each practice area, and describe how the practice area
can become more agile according to the results of this study. We cover the
general thoughts for the practice area, but also mention special applicability

towards the Software Product-Line Engineering adoption approaches.

5. Discussion

- 84 -

Table 12: Product Line practice areas with the Agile practices that could be
used in combination.

Software Product-Line Engineering

practice areas

 Agile Software Development practice

Software Engineering

Architecture Definition and Evaluation Domain-Driven design and Initial Architecture

 Refactoring

Component Development Vision, Roadmap, Elaboration

 CRC cards and design by contract

 System metaphor and coding standard

 Refactoring

 Automation; daily builds; continuous integration

 Code ownership

Requirements Engineering Domain-Driven design and Initial Architecture

 Vision, Roadmap, Elaboration

Testing and Software System Integration Test-Driven development

 Pair programming

Understanding Relevant Domains Vision, Roadmap, Elaboration

 Planning and prioritization

Technical Management

Configuration Management Automation; daily builds; continuous integration

Measurement and Tracking Visible charts and information radiators

 Metrics

Process Discipline Iterative development

Scoping and technological forecasting On-site customer

Technical Planning and Risk Management Small, frequent releases

 Code ownership

Tool Support

Organizational management

Building a Business Case and Market Analysis Vision, Roadmap, Elaboration

Customer Interface Management On-site customer

Launching and Institutionalizing

Operations Iteration backlog or Kanban

 Continuous improvement, reflection and

retrospective, root cause, and learning

 Stand-Up meeting

Organizational Planning, Risk Management and

Structure

 Small, frequent releases

 Iterative development

 Cross-functional teams and self-organizing
teams

Training Continuous improvement, reflection and
retrospective, root cause, and learning

5. Discussion

- 85 -

5.3.1 Software Engineering

This section goes through the practice areas of Software Product Lines
described in (Section 2.1.3) and discusses the agile practices and how to use
Agile Software Development in combination with the respective practice area
based on our research results. The structure follows the same pattern as we
presented both the theory (Section 2.1.3 & 2.2.3) and the results

(Section 4.2.1 & 4.3.1).

Domain and Requirements

Domain knowledge supports the main idea behind Software Product Lines. The
companies are described to have an overall knowledge in the field they are
delivering products. No agile practices is similar to this practice area, but the
Planning and Prioritization practice could support this practice in the way that
customer feedback and domain experts play as a customer to an agile method
and helps plan and prioritize the efforts put in development. This could make
the product line more responding to the current needs in the domain, and
making the product line more able to change. It also concurs proactively work
towards change. Further, Agile Software Development handles domain related
challenges stating that the team has to handle them, which we saw could be a
problem as in IFS. The challenges we can see here is balancing the practice area
with agility meaning to spend “just enough” effort on this issue and incorporate
it into specific specialized teams for the domains. Benefits from domain
knowledge could be better software and less rework because of wrong domain
knowledge.

With regards to requirements Agile Software Development often does
requirements concurrent with implementation, while Software Product-Line
Engineering put great effort in modeling and ensuring that the requirements are
correct and valid. Our results show that most of the companies have a way of
handling a high-level model of the system. We believe that it is important to be
able to see the direction and future of the products produced in the product line.
We also see that business cases seem popular to support the business side of
Software Product-Line Engineering, and requirements through user stories and
further elaborating to task are possible here and were used in the companies of
this study. Further an agile method would support more lightweight requirement
engineering based on the customer need, which could be beneficial in dynamic
markets where needs change fast. We think a choice of process would define the
agility of an approach here. This challenge is currently being researched by
Cooper27. We could also adopt techniques such as combining user stories into
features or minimal marketable features, and further features into epics or vice

27 http://www.utdallas.edu/~kcooper/research/research.html#Agile

5. Discussion

- 86 -

versa with epics first. This could be controlled in different levels of the
organization which will be more closely described later (Section 5.3.3).

Challenges in combining the two SE approaches can be control over variations
and dependencies among products, getting feedback from application
engineering to domain engineering and customer interaction. There is a need for
variation control to be able to describe which product the product line is able to
produce. Collecting feedback from application engineering is important for the
evolution of the platform and customer interaction has to be redefined because
we are trying to produce for many customers. Benefits could be reduced design
up-front, less documentation to maintain and better communication between
business and development. Generally, we saw less design up-front from the
companies in our case study and focus on just needed documentation were
indicated.

Architecture

When it comes to the architecture in a Software Product Line the need for a
sustainable, flexible architecture is high. This could be hard to obtain following
true agile lightweight architectural efforts where design is done more ad hoc in
extreme cases. From our multi-case study we can say that the companies put
extra effort in getting the architecture ready before producing products, but in a
lightweight manner. As an example, IFS do some changes in higher-level
development because it is more beneficial to do it before actual coding starts.
Leffingwell (2007) mentions the architectural runaway as an important practice
towards a scaled approach to Agile Software Development, and we mean that
these thoughts fit the combination between Agile Software Development and
Software Product-Line Engineering. We mean this because the extreme agile
approach would be hard to do in practice for Software Product-Line
Engineering, who again might be too detailed on architectural design. We say
this based on the generalized results from our analysis and this concurs
somewhat with (McGregor 2008) who state that we could replace the existing

practice with a new one.

To support the architectural runway domain knowledge usually existing in
Software Product-Line Engineering, and could further support the creation or
evolution of the runway. We also found that the companies we studied mostly
used existing products or platform to establish new functionality or versions.
This could be further combined with the refactoring and team empowerment
from Agile Software Development. The component-based architecture used by
the companies fit well to both Software Product-Line Engineering and Agile
Software Development. In Software Product-Line Engineering it means we can
use different components in different products, while in Agile Software
Development we can separate the development effort to component teams

5. Discussion

- 87 -

which are also advised in (Leffingwell 2007). This is also supported by Lean
theory were it is stated that design decides about 70 % of the cost in
manufacturing, therefore appropriate architectural effort is needed for software

engineering as well (Mehta et al. 2008).

Challenges with the combination in this practice area could be the amount of
architectural effort spent before the teams can develop. In addition, we cannot
make generalizations about a new product line’s architectural definition since
all of our case studies handled an existing architecture. Benefits that could be
obtained by combining agile architectural thoughts are less design up-front

because the implementation can start earlier.

Development

In development we need to handle variations to cope with Software Product-
Line Engineering. We found that the way a company does component
development vary according to size and domain. It is hard to uniformly
generalize any of our results in this area, but we try to imply some ideas in this
practice area. We saw that Gears helped three of the companies by easing the
production of components and putting them together. The overall theme is that
components need to be developed separate with as little cohesion as possible.
When it comes to agility we mean that coding practices from Agile Software
Development such as coding standards, refactoring, code ownership and
continuous integration can make component development more agile. The
process discipline and test-driven development also act towards the agility of
this practice area. There are also two levels of development, domain and
application. In our study, three companies used Gears and mostly avoided the
application engineering with automatic production of products from the core
asset base and Agile Software Development in development of this base. IFS
and DNV Software used separate domain and application teams, where IFS
tried to do domain engineering in an agile manner. DNV Software on the other

hand was currently experimenting with agility in their application departments.

Challenges with the combination in the component development practice area
would be changing the culture to agility, getting feedback communicated across
the agile teams and new type of management (encouraging instead of directive).
Benefits of combining Agile Software Development and Software Product-Line
Engineering in component development could be more efficient development
and higher quality based on the agile benefits. Test-Driven development is also
keyword in for this topic. It seems like our companies is up to date with Test-
Driven development and Agile Software Development relies a lot on testing
early instead of testing after coding is complete. Variations in Software
Product-Line Engineering do introduce some challenges in test coverage and
traceability, but seems to be solved in the companies’ approaches and research

5. Discussion

- 88 -

on that topic also exists (Ghanam et al. 2008). One of the latest contributions
(Ghanam & Maurer 2009) to the field is an idea and case study explaining how
to combine feature models and acceptance testing. Automatic build with
continuous integration running test suites are a natural companion to Test-
Driven Development. Pair programming and code review are also practices that
could be emphasized here to improve quality. Benefits with Lean related to
automatic and small builds like reduction of complexity, reduced bugs and
increased efficiency is also argued for (Mehta et al. 2008) and support our
findings.

Challenges that arise with introducing test-driven development is a change of
focus towards testing, handling variations of products and automation of core
asset testing. The cultural change can often be an issue when adopting agile
practices. Variations make trouble both with reusing test assets for products and
automation of tests in core asset base. Component-based development should
make this easier. Benefits with the test and continuous integration could be
higher quality, fewer defects, and reduced problems with integration.

5.3.2 Technical Management

This section goes through the practice areas of Software Product Lines
described in (Section 2.1.3) and discusses the agile practices and how to use
Agile Software Development in combination with the respective practice area
based on our research results. The structure follows the same pattern as we
presented both the theory (Section 2.1.3 & 2.2.3) and the results
(Section 4.2.2 & 4.3.2).

Scope and Technology

Scoping and technology forecasting are practice areas that decide which
products we should include in our software product line, and forecasting the
technology changes in front of us. In Agile Software Development this is done
at a high-level through user stories or other planning efforts, and is done
repetitively in a project. We found that the companies use roadmaps of future
implementations to project the scope of the product line, and their technological
platforms were module-based and they could switch parts of technology to cope
with new technology. Some of the companies had own sales and marketing
departments that were responsible for creation and maintenance of the roadmap.
Feedback from customer can also be important here, and a more agile approach
could combine the On-site customer practice with scoping. We saw that user
groups, stakeholder groups, and similar practices were used to get this feedback
in the case study companies. We think that a practice involving this feedback

and technical investigation has to be merged from the two approaches.

5. Discussion

- 89 -

The challenges in our combination for scoping and technology forecasting
could be assigning the right ‘customer’ for feedback towards scoping. In
addition the companies have to be updated on the latest technology. In Agile
Software Development scoping is done by the customer and organizations
should trust its people on technological challenges. In a product line effort we
probably have to use a higher level scoping based on business needs and
technological challenges combined. The benefits of combining Agile Software
Development and Software Product-Line Engineering for scoping and
technology forecasting could be that the customer focus could enhance the
correctness of scoping, while motivated, learning developers could deal easier

with technological advances in the industry.

In our analysis results we saw that the Gears tool supplied many of the
companies with an efficient way of handling variations. From this we can say
that it could be wise to have a tool to handle variations, in order to reduce work
and raise quality. HomeAway also used an agile management tool with success.
Besides that best of breed software for the respective domains were shown to
support the companies and increase effectiveness of development.

Challenges for this practice area would be to combine the tools of Software
Product-Line Engineering and Agile Software Development. Using lightweight
tools as Agile Software Development suggests could also pose as a challenge
since Software Product-Line Engineering is a comprehensive approach and
tools could be heavyweight. Benefits using tools for both approaches could be

more efficiency and automatic creation of information about the progress.

Process

The choice of process has dependencies throughout the software development
effort. The practice area in Software Product-Line Engineering does not
prescribe a default process to use, but describe that it needs to handle how the
core assets should be reused in addition to the regular responsibilities of a
process. In Agile Software Development the process is lightweight, and should
be easy to learn. We think that iterative development is the way to go, and we
found that in most of our case studies. An agile process should be able to
change and improve based on the environment it is situated in. This is possible
in Software Product Lines, but might need a little more structural explanation.
We found that some companies have developed their own process to cope with
this like IFS and CompNN. They are both able to combine a long-term strategy
with a short-term agility the way we see it. HomeAway also has their process
with parts of the process as a Scrum method done out-of-the-box. A hurdle for
the adoption of Software Product-Line Engineering is the big design up-front
cost and effort. This hurdle can be jumped by employing an iterative process
which builds core assets and products more incremental and use knowledge in

5. Discussion

- 90 -

parallel. It could also lead to less cost, since working software should be
developed and can create money back from early products before the whole
product line is up and running. Challenges with the process could be to
incorporate Software Product-Line Engineering and long-term strategic goal
with the short term development efficiency of Agile Software Development,
including marketing and business efforts in the process, and cope with the
multi-dimensional nature of Software Product-Line Engineering. We base these
challenges on what we found in our multi-case study. Benefits of combining the
two approaches for the process could be reduce design and cost up-front, more

flexibility, and shorter time to market.

Measuring and ensuring progress are important in both Software Product-Line
Engineering and Agile Software Development. In product lines we want to
measure how much we reuse, efficiency of the core assets and time spent on
product application, while Agile Software Development focus more on team
speed, productivity and estimation of effort to measure and track a project. As
an example of how this is often done in Agile Software Development we could
mention estimating user stories, calculating team velocity, and creating burn-
down charts based on the team or several teams. Here a natural practice would
be to combine both fields. Challenges here are to evaluate which measurements
we use and how we can get the most out of what the process we are using gives
us from before. Benefits could be easier management and statistical

improvement opportunities.

Management

It is common sense, in both Software Product-Line Engineering and Agile
Software Development, to try to separate development projects so that they
interfere as little as possible. This could the initial thought within configuration
management. Software Product-Line Engineering has some additional concerns
regarding variations and might need more strict rules than single-system
development including Agile Software Development. A true component-based
development might solve this without too much intervention, but also some sort
of cooperative solutions among the teams have to exist and changes to
important points in the software might interfere with other teams or individual
works. We saw that some of the companies had efforts towards this, but no
generalizations could be found. We also think that introducing agile practices
like automation and daily builds with test suites and integrations could cope
with the configuration management. These practices were implemented at most
of the companies we investigated. Challenges we can think of here is
maintaining a uniform code base without people stepping on each other’s toes
and having rules that apply, but not reduce the freedom of the teams. Benefits
with combining Software Product-Line Engineering and Agile Software
Development could be more automation and less manual work.

5. Discussion

- 91 -

The technical planning involves how we plan a project and risk management is
how to deal with risk in the technical parts of the Software Product Line. In
Agile Software Development the technical planning is done before an iteration,
where the user stories are elaborated into tasks and estimated to measure and
track a project. Risk management in Agile Software Development is usually
reduced by small, frequent releases with customer interaction so that we know
we build the right thing with few errors in a timely manner. Code ownership
could also be described here and cross functional team reduces overhead in
planning. Stand-up meetings could also be introduced in this practice area, and
the companies used this agile practice in their approaches with success.
Challenges regarding technical planning will be following the process discipline
and its planning effort, while risk management is incorporated in the iterative
approach to some extent. Benefits of the combination would be less up –front
planning and reduced risk management based on the Agile Software

Development practices that could be combined with the practice areas.

5.3.3 Organizational Management

This section goes through the practice areas of Software Product Lines
described in (Section 2.1.3) and discusses the agile practices and how to use
Agile Software Development in combination with the respective practice area
based on our research results. The structure follows the same pattern as we
presented both the theory (Section 2.1.3 & 2.2.3) and the results

(Section 4.2.3 & 4.3.3).

Environment

Market analysis and building a business case is important for both Software
Product-Line Engineering and Agile Software Development, but in product
lines the effort might be more planned and larger since we are supposed to
handle a set of products not only a single-system. We found that the companies
can have their own departments for marketing efforts, and the importance of
connecting business cases to software development is present. Connecting
development to business cases is vital, and Agile Software Development can be
described to handle this by user stories applied in both business and
development. In Software Product-Line Engineering user stories might not be
enough because it might be hard to present variations in user stories and a need
for more high-level business cases or feature models are present. The vision,
roadmap and elaboration practice described could be included here. The vision
could be producing business cases and the roadmap includes the business cases
as a plan for what functionality we get when. Last, the elaboration breaks the
business cases down into development projects. CompNN, HomeAway and IFS
had similar practices in place for this. Challenges here are to cover all the
necessity tasks of Software Product-Line Engineering in an agile way and

5. Discussion

- 92 -

connecting agile software development to the business part of the development
effort. Benefits of this combination could be easier communication across

functions, more flexibility and embracing change.

When it comes to customer involvement and interface the fields of Software
Product-Line Engineering and Agile Software Development are different.
Software Product-Line Engineering needs to listen to their specter of customers
and adjust their core assets and finished products with regards to their need.
Agile Software Development usually handles one customer and does single
system development. Here a need to adjust the agile practices to Software
Product-Line Engineering is needed. We found that two companies use internal
resources as customers in projects, and management decided high-level choices.
Efforts were also done to listen to the main customers and adjust the product
line based on their need and future predications. We think this is important in a
combination between the two software engineering fields. The “On-site
customer” practice of agile could be modified to fit Software Product-Line
Engineering here. We also found that application engineers in some companies
provided feedback to domain engineers and could be seen as a customer to
domain engineering efforts because they are reusing the core assets. Challenges
combining Software Product-Line Engineering and Agile Software
Development in this practice area could be using a representative selection for
the customer interaction and introducing the customer role inside the company.
Benefits of this combination might be more accurate aligning with regards to
the customer base and more direct communication inside the company.

Indoctrination

Both Software Product-Line Engineering and Agile Software Development
usually involve big organizational changes. Software Product-Line Engineering
need to be established throughout the organization and a culture for planned
reuse and development based on a set of products are different from single-
system thinking. In Agile Software Development we experienced from the case
studies that HomeAway had difficulties in establishing the Scrum method since
people were used to working differently. We believe that an incremental
approach to Software Product-Line Engineering could be beneficial in order to
prepare, communicate, and be supported in the new approach. This type of
approach also fit better with many of today’s domains who are dynamic and
constantly changing. Agile Software Development have been indicated to be
popular amongst software developers, but still challenges regarding
management and the business side of software development is present.
HomeAway and DNV Software both experience these kinds of challenges. We
also think that a combination between Software Product-Line Engineering and
Agile Software Development could be more beneficial for organizational
support and motivation since it could earlier show the results of the product line

5. Discussion

- 93 -

effort with using agile methods. Challenges in this practice area are connected
to organizational change. One would have to change people’s practices and way
of doing things, into the new process and thoughts. Another challenge would be
incorporating the reuse thoughts to Agile Software Development and its
creativity. We have to put some kind of boundaries on creativity in order to be
able to produce many products of high quality. Benefits in this practice area
could be ability to change and respond to a changing market, and exploiting

reuse efficiently.

When it comes to training both the fields would need to be thought and adopted
by the employees in the organization. Introducing Software Product-Line
Engineering means building a core asset base with support for variations and
delivering a set of software products from one platform. Agile Software
Development should also be incorporated in the whole organization and
management will have new challenges in measuring and controlling progress,
business have to make looser plans that supports change, while developers
should master Agile Software Development and its practices. We saw from our
case studies that the companies use time to adopt to new ways of doing work
and both Software Product-Line Engineering and Agile Software Development
need to train employees to make them master the new work practices.
Challenges when it comes to training could be training the right people for the
right jobs, training experts in Agile Software Development and Software
Product-Line Engineering, and continuous learning in the new process. Benefits
of combining Software Product-Line Engineering with Agile Software
Development in this practice area could be positive effects from the continuous
learning in agile, more focus on learning organization, and more knowledgeable

employees.

Organization

The practice area involves how we plan organizational efforts, manage risk and
structure the organization. The organizational structure of a combined approach
would have to change according to the multifunctional, self organizing,
component teams we want to have in Agile Software Development. The
planning would also change to coordination instead of directing since we need
to manage several teams. A traditional Software Product-Line Engineering
approach separates works in silos having specialized teams doing the traditional
elements of software engineering. Agile Software Development tries to create
teams who cooperate and deliver working software in the end of each iteration.
Risk management is again handled by small, frequent releases and iterative
development. The team practice of Agile Software Development is also
participating in reducing risk and should be self organized meaning that the
team decides how they want to develop when they have the prioritized plans.
Scrum would be a natural starting point in this practice area and we saw that

5. Discussion

- 94 -

HomeAway, IFS, and DNV Software did a variant of this method to control
projects. Challenges at this level are situated around scaling agility and risk
handling. Agile Software Development are mostly proven beneficial for small
teams and projects, while Software Product-Line Engineering usually involve a
bigger effort and more employees. Risk handling challenges could also evolve
since agile is proposed for single-system development. Benefits of combining
Software Product-Line Engineering and Agile Software Development in these
practice areas could be reducing risks and supporting component-based
architectures with small teams.

Regarding day-to-day operations the process and its methods decide much of
this. There are some tools from Agile Software Development that could be tried
out here. An iteration backlog or Kanban is a nice way to structure the work that
should be done and the agile methods include this. Our case study also showed
that companies used kind of a backlog. Stand-up meetings are also a practice
which are used every day and improves communication and task handling from
day to day. Last from Agile Software Development we can introduce
continuous improvement, retrospectives, and learning as practices for day to day
operation. Feedback cycles and cooperation between business and development
should also be considered here. How software is reused or produced should also
be described as part of operations and wiki could serve as a mediator here, and
were used by industry as well. Challenges in operations could evolve around
changing from a documented and stable process to a dynamic, changing process.
Instead of following a plan we would respond to changes. Benefits of this
combination could be motivated people, continuous improvement and efficient

communication.

5.4 Threats to Validity

In this section we try to address the threats to validity of our research.
Seaman (1999) introduces several strategies to reduce the threats to validity. In
this section we explain how we have utilized these strategies to address the
validity of our thesis. We have divided the reasoning in two parts, namely ‘Data
Gathering’ and ‘Data Analysis’, reflecting how the research method was
explained.

5.4.1 Data Gathering

In order to collect data material for our study we used a search strategy to find
articles and performed interviews with people from the industry. The interview
setup worked well for our work, but we had some minor problems with the
quality of the audio in shorter periods during the interviews. Unfortunately,

5. Discussion

- 95 -

minor parts of the statements were lost, but asking again and ensuring we got
everything prevented us from making assumptions that might not have been true.
Further we tried to have an objective role as listener in the interviews, and not
being religious towards one or the other approach while coding the cases. This
threat is characterized as coming to close to the setting, and called objectivity
(Seaman 1999), but we think we managed to avoid this threat by having an open
mind towards both approaches to software engineering. We also included data
from different sources including the interviews much like triangulation,

described in (Seaman 1999), to confirm the validity.

In addition to this we also described our perceptions about the quality of each
the published articles used for the case studies, and found it natural to mention it
here since it is a threat to our overall validity. We based our rating of quality on
the data material used in the articles and how the study of each article was
performed. CompNN was a single-case study based on semi-structured
interviews of the main roles in the company (Hanssen & Fægri 2008), we see
the quality of this study as high since the research method is clearly stated and
agility is discussed. Salion’s case studies analyzed are performed by researchers
and practitioners. The most scientific case study (of the two),
(Clements & Northrop 2002b), base their description on two sets of interviews
performed with nine months separation to be able to reason about the success of
the approach. The second case study (Buhrdorf et al. 2004) is more towards an
experience report from the company and the researcher helping the company
out. Nothing is mentioned about how the study was performed and little
discussion about weaknesses is mentioned. Based on the explanation above the

two case studies provide satisfactory quality for us.

In the HomeAway case we used two articles and interview. The articles
analyzed also promote a tool, and could not be classified as objective. We tried
to broaden the scope by looking at two articles instead of one, and the
description above provides the combined description of them. We also
conducted an interview with the company to further increase the quality and the
combination provided support towards the findings from the articles. All
together we mean the quality is high. The Engenio article does not discuss the
validity of the study and we only used one case study. It is subjective because of
its practitioner nature, but again as our scientific, empirical research on this field
is spare we choose to use the case study (Hetrick et al. 2006) and it provides
satisfactory quality for us. The quality of the IFS case can be described as
satisfactory. We did an interview and got several documents from the company
that made it easier for us to obtain an overall view of the combination of Agile
Software Development and Software Product-Line Engineering in this case. The
threats are interviewing only one person and the interviewers little experience
with scientific interviews. Still we believe that we came in contact with the right

5. Discussion

- 96 -

person for our research and he was able to fluently explain their software
engineering efforts. The quality of the DNV Software case study can be
described as high. The book chapter was written with a defined method and the
data collection followed a certain pattern. In addition, we strengthen our case
with an interview and follow-up questions to renew the knowledge and include
agile thoughts that are starting to emerge in the company. Overall, we could
classify the Testo AG case as a design science study according to (Hevner et al.
2004). The researchers want to establish and test a new practice in the Software
Product Line field. The practice builds upon an agile practice, but little
discussion around the actual agility of the approach is discussed. The efficiency
and ease of use is mentioned, but not compared to agile theory to a significant
extent. This reduces the quality, but we use it because of the lack of data in the
field. The PROSOL study was conducted as a kind of action research approach
with the researchers participating and observing the workshop, trying to answer
two research questions. All the stakeholders’ roles were covered, but it is a
single-case study that does not compared its results to the regular practice.
Actually the research is similar to the Testo AG case study described, in the
sense that it could be characterized as design science study with a case study to
back up the need. Based on the discussion above the quality of this study is
satisfactory.

5.4.2 Data Analysis

After collecting the data material, we performed a thorough analysis using
several techniques to reduce the threats to the validity of our research. Our
research design was a combination of research methods, and we combined
established articles in form of case studies with interviews. The
representativeness of the data material and interview candidates can be
discussed. Choosing cases as the study evolves and picking knowledgeable
interview candidates are mentioned as strategies to support representativeness
(Seaman 1999). We believe that our approach is valid based on the lack of
material in the field and by following guidelines for empirical studies. We
established a framework for our study including criteria and templates before
we started our work. The process of choosing cases was probably not unbiased,
but we did not have many options. Based on earlier research we knew about
several of the articles used for the case studies. The industry contacts were
obtained through our network and the described efforts towards relevant
communities. An alternative to our research would have been to do a more
comprehensive study about interesting cases from the industry and develop an
even more generalized framework, but because of limitations in time and

geographical distances we were unable to pursue this idea.

5. Discussion

- 97 -

The textual coding and analysis of written articles was performed subjectively
by one person following a research method making our research qualitative.
Threats towards documenting what is right and perception of the interviews are
biased in the way that other people might understand the articles in a different
way if they try to replicate our study. We are aware about this threat to the
validity. Member checking (Seaman 1999) is another strategy to validate the
data and we used it in this study to support and validate our findings and
reduces the subjectivity threat. Our discussion qualitatively elaborates what we
found in the study and documented these findings. According to Seaman (1999)
our study can be described in the blocked subject-project study category
because we analyzed several projects in several companies. We tried to compare
the efforts of the companies and find similarities to establish a framework for
introducing Agile Software Product-Line Engineering. To improve our research
we could have used quantitative methods as well as the qualitative method we
have described (Seaman 1999), but unfortunately we did not have the
opportunity or time to do this.

- 99 -

6. Conclusion

This thesis has elaborated on Agile Software Product-Line Engineering, the
combination of Software Product-Line Engineering and Agile Software
Development. We started with a brief introduction to the two fields and the
hybrid approach. Then our analysis results were presented before we discussed
possible solutions to our problem areas. This discussion presented some
characteristics and a framework for Agile Software Product-Line Engineering,
in addition to illustrating how the practices of both fields could be combined.
This chapter holds a precise conclusion of this master thesis summarizing the

important points and findings of our work.

Recalling our two main research questions RQ-1: “How is Agile Software

Development combined with Software Product-Line Engineering in industry

today?” and RQ-2: “What could characterize a method or a framework to

describe agility in software product line engineering?” we had several sub-
questions to be able to answer the main questions. In this thesis we have
answered all sub questions in chapter 4 and 5, and are able to give an overall

answer to our main questions in this conclusion.

6. Conclusion

- 100 -

We analyzed eight studies were six were based on published work while two
were own empirical work. Based on the results of this analysis we presented
how agility was introduced in the industry and discussed how each practice area
of Software Product-Line Engineering could become more agile. Our answer to
RQ-1 is therefore documented in chapter 5, section 5.1 and 5.4. The main
findings here were that companies reduce time to market, improve quality and
exploit reuse through combining Software Product-Line Engineering and Agile

Software Development.

RQ-2 was answered through some characteristics of agility in Software
Product-Line Engineering and a top-down description on how we could use the
patterns of Software Product-Line Engineering to establish Agile Software
Product-Line Engineering from no experience in Software Product-Line
Engineering or an existing Software Product-Line Engineering effort.

The main points from our discussion indicate that:

• We can reduce unnecessary documentation and up-front design.

• Multifunctional, self organizing, component teams could be adopted.

• An iterative method for elaborating design, code, test and review can be
established.

• Manage, coordinate and feed the teams with new abstract requirements
to increase changeability and creativity.

Our main contributions to the research field are the characteristics and the
proposed framework which also uses discussion in each practice area since the
patterns consist of various practice areas. We think our research indicates that
the practices of both software engineering approaches could be combined and
described a possible combination. However, other people might have other

opinions and perceptions of this combination.

The framework is not supposed to be a method or standard, but work as a
guideline and points to consider when combining Software Product-Line
Engineering and Agile Software Development into Agile Software Product-
Line Engineering. We hope this contribution can be further discussed and built
upon by both researchers and industry since it is in no way finished and we only
touched upon some important points. Research on specific methods or practices
of Agile Software Product-Line Engineering could be included in the

framework when they are established.

We think our results in this thesis could help further discussion about Agile
Software Product-Line Engineering and display some of the ways the
companies do the combination as of today. In research, no evaluations of agility
among companies using Software Product-Line Engineering have been done

6. Conclusion

- 101 -

before and this thesis could help us to better understand what problems and
solutions we are facing. In practice this study can help companies evaluate their
own approaches and combine elements from parts they like in this study and
make their own hybrid method between the two software engineering fields. We
should note that the results of this study are by no means complete since we
study only a limited set of articles and companies. We tried to get the most out
of the studies investigated. Separate companies will have separate solutions
which make it hard for researchers to generalize and combine findings when it
comes to the way software is developed.

We hope this thesis could support further research into the following areas:

• economic study of Agile Software Product-Line Engineering;

• additional research on requirements and architectural challenges;

• find the context where Agile Software Product-Line Engineering is
beneficial towards a regular Software Product-Line Engineering
approach; and

• combine thoughts from Lean Software Development to Agile Software
Product-Line Engineering.

- 103 -

Bibliography

Abrahamsson, P., Salo, O., Ronkainen, J. & Warsta, J. (2002). Agile software

development methods. Review and analysis. Espoo: VTT Publications
478. p. 107.

Bass, L., Clements, P. & Kazman, R. (2003). Software Architecture in Practice,

Second Edition: Addison-Wesley Professional.

Birk, A., Heller, G., John, I., Schmid, K., von der Massen, T. & Muller, K.

(2003). Product line engineering, the state of the practice. Software,

IEEE, 20 (6): 52-60.

Boehm, B. (2008). Making a Difference in the Software Century. Computer, 41

(3): 32-38.

Brooks, F. P. (1987). No Silver Bullet: Essence and Accidents of Software

Engineering. Computer, 20 (4): 10-19.

Buhrdorf, R., Churchett, D. & Krueger, C. W. (2004). Salion's Experience with

a Reactive Software Product Line Approach. In Linden, F. v. d. (ed.)
Lecture Notes in Computer Science, vol. 30014 Software Product-

Family Engineering: 5th InternationalWorkshop, PFE 2003 Siena, Italy,

November 4-6, 2003

Revised Papers, pp. 317-322: Springer Berlin / Heidelberg.

Carbon, R., Knodel, J., Muthig, D. & Meier, G. (2008). Providing Feedback

from Application to Family Engineering - The Product Line Planning

Game at the Testo AG. Proceedings of the 2008 12th International
Software Product Line Conference: IEEE Computer Society.

Clements, P. (2002). Being proactive pays off. Software, IEEE, 19 (4): 28, 30.

Clements, P. & Northrop, L. (2002a). Software Product Lines: Practices and

Patterns: Addison-Wesley. 608 p.

Bibliography

- 104 -

Clements, P. C. & Northrop, L. M. (2002b). Salion, Inc.: A Software Product
Line Case Study. Pittsburg: Software Engineering Institute, Carnegie
Mellon University. 50 p.

Clements, P. C., Jones, L. G., McGregor, J. D. & Northrop, L. M. (2006).

Getting there from here: a roadmap for software product line adoption.
Commun. ACM, 49 (12): 33-36.

Cohen, D., Lindvall, M. & Costa, P. (2004). An introduction to agile methods.

In Advances in Computers, vol. 62 Advances in Computers, pp. 1-66.
San Diego: Elsevier Academic Press Inc.

Conboy, K. (2008). A Framework of Method Agility in Information Systems

Development. Ph.D. Galway, Ireland: University of Limerick,
Department of Computer Science and Information Systems. 306 p.

Dingsøyr, T., Dybå, T. & Abrahamsson, P. (2008). A Preliminary Roadmap for

Empirical Research on Agile Software Development. Agile, 2008.
AGILE '08. Conference, Toronto, ON. 83-94 p.

Dybå, T. & Dingsøyr, T. (2008). Empirical studies of agile software

development: A systematic review. Information and Software

Technology, 50 (9-10): 833-859.

Erickson, J., Lyytinen, K. & Siau, K. (2005). Agile modeling, agile software

development, and extreme programming: The state of research. Journal

of Database Management, 16 (4): 88-100.

Frakes, W. B. & Kang, K. C. (2005). Software reuse research: status and future.

Software Engineering, IEEE Transactions on, 31 (7): 529-536.

Fraser, S. & Mancl, D. (2008). No Silver Bullet: Software Engineering

Reloaded. Software, IEEE, 25 (1): 91-94.

Ghanam, Y. (2008). An Iterative Model for Agile Product Line Engineering.

The SPLC Doctoral Symposium, 2008 - in conjunction with the 12th

International Software Product Line Conference (SPLC 2008).
Available at: http://ase.cpsc.ucalgary.ca/uploads/APLE/splc2008.pdf
(accessed: November 16th, 2008).

Bibliography

- 105 -

Ghanam, Y., Park, S. & Maurer, F. (2008). A Test-Driven Approach to
Establishing & Managing Agile Product Lines. The 5th Software

Product Lines Testing Workshop (SPLiT 2008) - in conjunction with the

12th International Software Product Line Conference (SPLC 2008).
Available at:
http://ase.cpsc.ucalgary.ca/uploads/APLE/split_workshop.pdf (accessed:
November 16th, 2008).

Ghanam, Y. & Maurer, F. (2009). Extreme Product Line Engineering:

Managing Variability & Traceability via Executable Specifications.
Agile 2009. Available at:
http://ase.cpsc.ucalgary.ca/uploads/APLE/agile09.pdf (accessed: 3rd of
June, 2009).

Gilb, T. (2005). Competitive Engineering: A Handbook For Systems

Engineering, Requirements Engineering, and Software Engineering

Using Planguage: Elseiver Butterworth-Heinemann.

Gylterud, S. (2008). Constructing a Silver Bullet? Combining Software Product

Line Engineering and Agile Software Development. A thematic

literature review. Available at: http://tinyurl.com/dhr6ly.

Hanssen, G. K. & Fægri, T. E. (2008). Process fusion: An industrial case study

on agile software product line engineering. Journal of Systems and

Software, 81 (6): 843-854.

Hetrick, W. A., Krueger, C. W. & Moore, J. G. (2006). Incremental return on

incremental investment: Engenio's transition to software product line

practice. Companion to the 21st ACM SIGPLAN symposium on Object-
oriented programming systems, languages, and applications, Portland,
Oregon, USA: ACM.

Hevner, A., March, S., Park, J. & Ram, S. (2004). Design Science in

Information Systems Research. MIS Quarterly, 28 (1): 75-105.

HomeAway. (2009). Interview with HomeAway employee on 21st of May 2009.

[Transcription from the interview].

IEEE. (1990). IEEE standard glossary of software engineering terminology.

IEEE Std 610.12-1990.

Bibliography

- 106 -

Kettunen, P. (2008). Adopting key lessons from agile manufacturing to agile
software product development--A comparative study. Technovation, In
Press, Corrected Proof.

Krueger, C. (2002). Eliminating the adoption barrier. Software, IEEE, 19 (4):

29-31.

Krueger, C. W. (2001). Easing the Transition to Software Mass Customization.

In Linden, F. v. d. (ed.) Lecture Notes in Computer Science, vol. 2290
Software Product-Family Engineering: Revised Papers from the 4th

International Workshop on Software Product-Family Engineering, pp.
282-293. Bilbao, Spain: Springer Berlin / Heidelberg.

Krueger, C. W., Churchett, D. & Buhrdorf, R. (2008). HomeAway's Transition

to Software Product Line Practice: Engineering and Business Results in

60 Days. Software Product Line Conference, 2008. SPLC '08. 12th
International. 297-306 p.

Larman, C. & Basili, V. R. (2003). Iterative and incremental developments. a

brief history. Computer, 36 (6): 47-56.

Leffingwell, D. (2007). Scaling Software Agility: Best Practices for Large

Enterprises (The Agile Software Development Series): Addison-Wesley
Professional.

Linden, F. J. v. d., Schmid, K. & Rommes, E. (2007). Software Product Lines in

Action: The Best Industrial Practice in Product Line Engineering:
Springer-Verlag New York, Inc.

McGregor, J. (2008). Mix and Match. Journal of Object Technology, vol. 7 no.

4 (July-August): pp 7-16. Available at:
http://www.jot.fm/issues/issue_2008_07/column1/.

Mehta, M., Anderson, D. & Raffo, D. (2008). Providing value to customers in

software development through lean principles. Software Process:

Improvement and Practice, 13 (1): 101-109.

Noor, M. A., Rabiser, R. & Grünbacher, P. (2008). Agile product line planning:

A collaborative approach and a case study. Journal of Systems and

Software, 81 (6): 868-882.

Bibliography

- 107 -

Northrop, L. (2004). Software Product Line Adoption Roadmap, Technical
Report CMU/SEI-2004-TR-22. Pittsburgh, PA, : Software Engineering
Institute, Carnegie Mellon University

Northrop, L. M., Clements, P. C., Bachmann, F., Bergey, J., Chastek, G., Cohen,

S., Donohoe, P., Jones, L., Krut, R., Little, R., McGregor, J. & O'Brien,
L. (2007). A Framework for Software Product Line Practice, Version

5.0. Available at: http://www.sei.cmu.edu/productlines/framework.html
(accessed: December 15, 2008).

Pohl, K., Böckle, G. & Linden, F. J. v. d. (2005). Software Product Line

Engineering: Foundations, Principles and Techniques. New York:
Springer-Verlag.

Poppendieck, M. & Poppendieck, T. (2006). Implementing Lean Software

Development: From Concept to Cash (The Addison-Wesley Signature

Series): Addison-Wesley Professional.

Rajlich, V. (2006). Changing the paradigm of software engineering.

Communications of the ACM, 49 (8): 67-70.

Rally Software. (2008). HomeAway Creates Success at Home and Abroad with

Agile and Rally. Available at:
http://www.rallydev.com/downloads/download/84.html (accessed:
20090428).

Schilling, M. (2004). Strategic Management of Technological Innovation:

McGraw-Hill/Irwin.

Seaman, C. B. (1999). Qualitative methods in empirical studies of software

engineering. Software Engineering, IEEE Transactions on, 25 (4): 557-
572.

Sugumaran, V., Park, S. & Kang, K. C. (2006). Introduction. Communications

of the ACM, 49 (12): 28-32.

Tian, K. & Cooper, K. (2006). Agile and software product line methods: are

they so different? 1st International Workshop on Agile Product Line

Engineering (APLE), collocated with the 10th International Software

Product Line Conference (SPLC). Available at:
www.lsi.upc.edu/events/aple/TianCooper.pdf (accessed: December 15,
2008).

Bibliography

- 108 -

Williamson, P. J. & Zeng, M. (2009). Value-For-Money Strategies For

Recessionary Times. Harvard Business Review, 87 (3): 66-74.

I1

Appendix I: Table of the Cases We Investigated for This Thesis

Name Description AM SPLE Approach Advantages Disadvantages Extra data

possibilities

Confirmit. The

case from

Hanssen &

Fægri, Process

Fusion.

A company that combines

strategic planning with the

EVO (agile) method. Involves a

three-part plan for developing

software

EVO,

company has

an agile focus

with product

line thoughts

Strategic

planning of

products and

variations.

Extractive,

had

products

and then

started

reusing

Data material

access; Handles

the transition to

agile and

Software

Product Lines;

Contact with

company and

researcher

responsible for

data collection.

Already

published

material on

data. SPLE effort

still a little

unclear. Not

much research

on EVO.

Yes, in

progress.

Clearance

got, but

waiting for

a NDA. NDA

not

obtained.

No data

available,

except case.

HomeAway’s

Transition to

Software

Product Line

Practice.

Krueger,

Churchett,

Buhrdorf

Homeaway's transition to a

Software Product Line in 60

days. Merging several existing

product variations into a

Software Product Line that

uses Krueger's Gears and mass

customization

Scrum is

mentioned

3-Tiered

Software Product

Line (Software

Product Line)

Methodology

and Gears

Unified Software

Product Line

Framework.

Extractive

approach.

Using Scrum for

core asset

development

Not mentioned

in detail how

Scrum is used

and how it

affect their

product line

In progress

IFS - Industrial

Financial

Systems

Has a component based

product base and configure

product based on customers'

requirements. Claims to be

agile

Claim to be

agile

Reuse base,

configuration to

each customer

Proactive ? Vast amount of

data. No

published

research on

material

Quality of data,

strategic

advantage

misrepresentati

on (might not

get "all" data)

Yes, in

progress

I2

Name Description AM SPLE Approach Advantages Disadvantages Extra data

possibilities

Salion Built a Software Product Line

on the reactive approach with

help of COTS software. Easier

to change the product line

according to needs of

customers. Refactoring parts

of software to reduce entropy.

Quicker and less expensive

approach to SPLE.

Refactoring,

customer

interaction

Core assets and

configuring

products to

customer.

Reactive

with COTS

software

used

Many different

case studies.

Follows practice

areas in SEI

literature.

Focused on the

Software

Product Line

approach and

not the agile

practices

Maybe.

Existing

cases

detailed. In

progress

Providing

Feedback

Product Line

Planning

Game at the

Testo AG.

Carbon,

Knodel,

Muthig.

After establishing the product

line agile practices are

introduced to improve the

agility in the product line.

Planning

game

practice

PuLSE.

Established and

working. Small

development

organization

incremental

and

architecture

-centric

strategy

Product line

organization

introducing

agile practices.

The

modification of

the agile

practice

explained.

Valuable

feedback. Other

Testo cases also

available.

Too specific.

Little about

process change

and

organizational

effects of that.

Also business

need not

handled

?

Agile prodcut

line planning:

Muhammad

Noor, Rabiser,

Grunbacher

Combination of agile and

collaboration theory to plan a

product line

To some

extend

?? ?? ? ? ?

I3

Name Description AM SPLE Approach Advantages Disadvantages Extra data

possibilities

Software

Product Lines

in Action.

Book by

Linden,

Rommes and

Scmid.

Going through 10 cases of

software product line

organizations in a BAPO

(Business, Architecture,

Process and Organization).

model with emphasis on

transition.

Mentioned in

some cases.

Cases investigate

difficulties and

measures taken

to reduce them

in a transition to

Software Product

Lines.

Varies All cases follow

same structure.

Full scale case

studies.

Little about

agility in the

cases. Not very

detailed about

each company.

A lot of

emphasis in

architecture.

DNV Software One of the cases from

Software Product Lines in

Action. Have some employees

that are in the agile

community in Norway and are

in the process of introducing

agile.

Not

mentioned,

will ask and

find out

Case describe the

change from a

platform to a

new one and the

challenges with

that.

Organization is

also described

Reactive

seems like

Norwegian

company, have

some contacts

we can use

Little about

agility

Yes

Siemens.–

Challenges

and Best

Practices.

Kircher,

Schwanninger,

Groher

Challenges when introducing a

Software Product Line.

Request a cookbook,

evaluates challenges and best

practices.

Mention

agility as a

challenge

regarding the

ability to

change in a

Software

Product Line

Not any detailed

information

about their

process, only

experiences,

guesses and

research

? Thinking about

agility.

Process not

mentioned in

detail. Not how,

missing the

approach

I4

Name Description AM SPLE Approach Advantages Disadvantages Extra data

possibilities

Engenio’s

Transition to

Software

Product Line

Practice.

Hetrick

Krueger

Moore

Software Product Line

transistion through gears

using existing artifacts to build

base

 Gears software Incremental Little BDUF No agile

indications

Software

Product Lines

and

Configurable

Product Bases

Paul D.

Witman

Building and structure of ERP

systems in order-system and

supermarkets

Changing

environment,

responding

to change

Reuse with focus

on both

functional and

non-functional

requirements

Proactive Detailed Too technical.

Not much

process

information.

A Case Study

in Software

Product Lines

Nascimento,

Santana de

Almeida,

Romero de

Lemos Meira

Mobile devices domain.

Experiences establishing and

evolution of a Software

Product Line

Training in

the start

included

The process

partly outlined

and

measurements

explained

Extractive,

incremental

approach

 Little

information

about process

and which

practices are

used in the

development

Establishing

Product Lines

in the

Automotive

Domain.Tische

r, Müller,

Ketterer,

Case study describing the

transition and maintenance of

a Software Product Line for

Overwatch. A lot of emphasis

on technology platform and

architecture.

No Domain and

product

application split.

Difficulties with

variation and

support for

variations in the

start

Proactive SOA used Not much

details

I5

Name Description AM SPLE Approach Advantages Disadvantages Extra data

possibilities

Software

Product Lines

Approach in

Enterprise

System

Development.

Yuzo Ishida

Describing a product lines

with questions like: how

Software Product Line

methods are applied, how

does the org. manage domain

and application engineering.

No Using variations

in both

components and

configurations in

run-time

Extractive

and

proactive

 No information

about how the

process is done

and what kind

of practices they

use and not use

Introducing

Software

Product Line

Engineering in

SME. Sellier,

Benguria

Urchegui

Software Product Line within

mobile games domain.

No Waterfall phases

in a proactive

approach

proactive Detailed with

measures

No agile

thoughts at all

Experiences

with Product

Line

Development

Software at

Overwatch

Textron

Systems. l

Jensen

6 years of experience in the

domain. Establishing a

working Software Product Line

takes time

No Developing

several product

lines to satisfy

different

markets.

 Long time span No details about

process.

II1

Appendix II: Requests for Interviews

Community Short version

Dear all,

I'm looking into agility and software product lines in industry, and would like to perform a
short (duration about 20 min), semi-structural interview through Skype or even e-mail about
software industry experiences with agility (agile software development) and software product
lines. If you are interested please read further.

My name is Snorre Gylterud, master student in computer science at Norwegian University of
Science and Technology, currently on exchange at Pohang University of Science and
Technology (South Korea), writing my master thesis. I'm contacting you because my thesis is
about agile software product lines.

After a literature review on the topic last semester, I've started to investigate industry
practices in this research area. I'm now analyzing (using constant comparison method) the
articles that could be characterized as an agile software product lines approach.

Therefore I want to perform a set of semi-structural interviews to be able to support my
existing assumption and to discover more industry practices which the cases do not cover. I'm
looking for companies that have experience in combining agility with software product lines.
It would be extremely valuable for me to have the chance to perform a short Skype interview
with you, or even just send you my questions on an e-mail for you to reply? The duration of
an interview like this would be about 20-30 minutes. The interviews can be anonymized. If
you are interested please let me know.

Hope to hear from you!

Community long version

Dear all,

I'm looking into agility and software product lines in industry, and would like to perform a
short (duration about 20 min), semi-structural interview through Skype or even e-mail about
software industry experiences with agility and software product lines. If you are interested

please read further:

My name is Snorre Gylterud, master student in computer science at Norwegian University of
Science and Technology, currently on exchange at Pohang University of Science and

II2

Technology (South Korea), writing my master thesis. I'm contacting you because my thesis is

about agile software product lines.

After a literature review on the topic last semester, I've started to investigate industry practice
on this research area. I'm now analyzing (using constant comparison method) the articles that
could be characterized as an agile software product lines approach. Further I will try to find
similarities between several cases, but some challenges in the combination would probably be

open even after the analysis.

Therefore I wanted to perform a set of semi-structural interviews to be able to support my
existing assumption and to discover more industry practices which the cases do not cover. It
would be extremely valuable for me to have the chance to perform a short Skype interview
with you, or even just send you my questions on an e-mail for you to reply? The duration of
an interview like this would be about 20-30 minutes. The interviews can be anonymized. If

you are interested please let me know.

The goal of this study is to characterize and discover practitioner practices to be able to
generalize a method or a framework for agile software product lines. If I'm able to fulfill this
goal it would motivate further research on the topic and create a common communication

platform for agile software product lines.

My research questions are:

 1. How are agile development principles and practices used in combination with

software product line engineering in industry today?

 2. In what way could we generalize a method or a framework to describe agility in
software product line engineering?

The first will be answered through analysis of case studies and interviews. The second

through findings from the first.

Best Regards,

Snorre Gylterud

II3

Community Norwegian version

Hei

I forbindelse med min masteroppgave (NTNU) jobber jeg med industri praksiser innen
smidige programvare-produktlinjer. Jeg ønsker å gjennomføre et sett av korte intervjuer (ca
20-30 min) med bedrifter som har eksperimentert eller gjennomfører smidig systemutvikling
på større produktlinjer eller sett av produkter innenfor samme domene. Hvis du er interessert

les videre.

Jeg er sisteårs masterstudent på NTNU, men er på utveksling i Sør-Korea. Lab-en her er
spesialister på programvare-produktlinjer, mens veileder på NTNU forsker på smidig. Etter å
ha skrevet et litteratur studie på temaet forrige semester sitter jeg nå og analyserer case studier
på temaet. Jeg ønsker å finne ut hva industrien gjør i forhold til dette temaet, da man kan anta
at de er foran forskningen på dette området. Derfor ønsker jeg og utføre et sett med korte
semi-strukturerte intervjuer for å støtte funnene i analysen og avdekke flere praksiser i
industrien.

Jeg ser etter bedrifter som har erfaringer med både smidig utvikling og produktlinjer. Det ville
vært utrolig hjelpsomt for meg helst å kunne utføre et kort intervju, men også eventuelt sende
en mail med spørsmålene mine til besvarelse. Tidsaspektet på et slikt intervju vil være ca 20-

30 min og gjøres anonymt i forhold til ønske. Ta kontakt om dette kan være noe for deg.

Med vennlig hilsen,

Contact Case Companies short

Dear XXX,

I read your XXX case study and would like to perform a short (duration 20 min), semi-
structural interview through Skype or even e-mail about agility and software product lines. If

you are interested please read further.

My name is Snorre Gylterud, master student in computer science at Norwegian University of
Science and Technology, currently on exchange at Pohang University of Science and
Technology (South Korea), writing my master thesis. I'm contacting you because my thesis is
about agile software product lines.

After a literature review on the topic last semester, I've started to investigate industry
practices in this research area. I'm now analyzing (using constant comparison method) the
articles that could be characterized as an agile software product lines approach, and your
XXX is one of them.

II4

When finishing that I want to perform a set of semi-structural interviews to be able to support
my existing assumptions and to discover more industry practices which the cases do not cover.
It would be extremely valuable for me to have the chance to perform a short Skype interview
with you, or even just send you my questions on an e-mail for you to reply? The timescale of
an interview like this would be about 20-30 minutes. The interviews can be anonymized. If

you are interested please let me know

Hope to hear from you! Feel free to ask any questions as well.

Contact Case Companies Long

Dear XXX,

I read your XXX case study and would like to perform a short (duration 20 min), semi-
structural interview through Skype or even e-mail about agility and software product lines. If

you are interested please read further:

My name is Snorre Gylterud, master student in computer science at Norwegian University of
Science and Technology, currently on exchange at Pohang University of Science and
Technology (South Korea), writing my master thesis. I'm contacting you because my thesis is
about agile software product lines.

After a literature review on the topic last semester, I've started to investigate industry practice
on this research area. I'm now analyzing (using constant comparison method) the articles that
could be characterized as an agile software product lines approach, and your XXX is one of
them. Further I will try to find similarities between several cases, but some challenges in the

combination would probably be open even after the analysis.

Therefore I wanted to perform a set of semi-structural interviews to be able to support my
existing assumption and to discover more industry practices which the cases do not cover. It
would be extremely valuable for me to have the chance to perform a short Skype interview
with you, or even just send you my questions on an e-mail for you to reply? The timescale of
an interview like this would be about 20-30 minutes. The interviews can be anonymized. If
you are interested please let me know.

The goal of this study is to characterize and discover practitioner practices to be able to
generalize a method or a framework for agile software product lines. If I'm able to fulfill this
goal it would motivate further research on the topic and create a common communication
platform for agile software product lines.

My research questions are:

 1. How are agile development principles and practices used in combination with
software product line engineering in industry today?

II5

 2. In what way could we generalize a method or a framework to describe agility in

software product line engineering?

The first will be answered through analysis of case studies and interviews. The second
through findings from the first.

Hope to hear from you!

Best Regards

III1

Appendix III: Interview Guides

Organization and personal experience: Size, Domain, Customers; Roles obtained, # of Years

HomeAway / Salion

DNV Software

IFS

Present yourself, software

engineering background and current

role?

 Present yourself, software engineering

background and current role?
 Present yourself, software engineering background and

current role?

Number of years in the industry? Number of years in the industry? Number of years in the industry?

Working with SPLE? Working with SPLE? Working with SPLE?

When started looking at agile? When started looking at agile? When started looking at agile?

Read the case study from SPLC 2008,

regarding the organizational

information such as size, domain etc

what have changed?

 I read Software Product Lines in Action

by Linden, Schmid and Rommes (2007),

is this information still correct?

Regarding size, domain and customers?

 Obtained information from you and wrote a short

summary, did it reflect your software development

efforts? Or differences?

Software Product Development: Commonalities and Variabilities; Business and Marketing

HomeAway / Salion DNV Software IFS

How is your company exploiting

commonalities and variability in the

products delivered? And for how long

has the company done it?

 How is your company exploiting

commonalities and variability in the

products delivered? And for how long

has the company done it?

 How is your company exploiting commonalities and

variability in the products delivered? And for how long

has the company done it?

What are the reasons for developing

software products in this way?
 What are the reasons for developing

software products in this way?
 What are the reasons for developing software products

in this way?

What are the benefits and challenges

of a software development approach

like this?

 What are the benefits and challenges of

a software development approach like

this?

 What are the benefits and challenges of a software

development approach like this?

What efforts are made to define the

scope and market for your products?

Does it belong to a certain domain?

 What efforts are made to define the

scope and market for your products?

Does it belong to a certain domain?

 What efforts are made to define the scope and market

for your products? Does it belong to a certain domain?

III2

How is the product delivered to the

customers? Own department for

that? How is customers included in

the development process?

 How is the product delivered to the

customers? Own department for that?

How is customers included in the

development process?

 How is the product delivered to the customers? Own

department for that? How is customers included in the

development process?

How is support and feedback

gathered from customers?
 How is support and feedback gathered

from customers?
 How is support and feedback gathered from customers?

Software Development Process: Requirements, Architecture, Testing, Documenting, Management

HomeAway / Salion DNV Software IFS

How is the variabilities documented

and handled throughout

development?

How is the variabilities documented and

handled throughout development?

How is the variabilities documented and handled

throughout development?

How do the business people and

technological people cooperate?

How do the business people and

technological people cooperate?

How do the business people and technological people

cooperate?

How is the teams organized and

managed? Which grade of autonomy

do the teams have?

How is the teams organized and

managed? Which grade of autonomy do

the teams have?

How is the teams organized and managed? Which grade

of autonomy do the teams have?

How does your process differ from

other software development methods

like waterfall, iterative processes, etc?

How does your process differ from other

software development methods like

waterfall, iterative processes, etc?

How does your process differ from other software

development methods like waterfall, iterative processes,

etc?

How is the product tested and quality

assured during your development

process?

How is the product tested and quality

assured during your development

process?

How is the product tested and quality assured during

your development process?

Which practices and principles do you

follow during a product development

process?

Which practices and principles do you

follow during a product development

process?

Which practices and principles do you follow during a

product development process?

Which measures do you use for your

process? And how is that tracked

throughout the stakeholders?

Which measures do you use for your

process? And how is that tracked

throughout the stakeholders?

Which measures do you use for your process? And how is

that tracked throughout the stakeholders?

In your view - what makes your

approach agile?

In your view - what makes your

approach agile?
In your view - what makes your approach agile?

Which challenges have you

experienced with agility?

Which challenges have you experienced

with agility?

Which challenges have you experienced with agility?

III3

Continued Software Development Process

HomeAway / Salion DNV Software IFS

In your view - how is the fit on

combining strategic product

development and agile practices?

In your view - how is the fit on

combining strategic product

development and agile practices?

In your view - how is the fit on combining strategic

product development and agile practices?

How would you describe your

documentation throughout the

development?

How would you describe your

documentation throughout the

development?

How would you describe your documentation throughout

the development?

How was the adoption of agility into

your product development handled?

Which obstacles and quick-wins did

you experience?

How was the adoption of agility into

your product development handled?

Which obstacles and quick-wins did you

experience?

How was the adoption of agility into your product

development handled? Which obstacles and quick-wins

did you experience?

In what extend to you change your

processes to improve? And what

actions are usually done within both

teams and management?

In what extend to you change your

processes to improve? And what actions

are usually done within both teams and

management?

In what extend to you change your processes to

improve? And what actions are usually done within both

teams and management?

IV1

Appendix IV: Case Description Template

Context:

- what kind of studies used?
- what kind of company?
- size of development team/org?
- domain and why software product lines and agility

Software Product Line Engineering:

- Approach towards Software Product Lines; Type? Effort?

- SPLE practices; Which practices are used? What changes are made to those?

Software Product Line Development:

- Core Asset Development; How is the reuse platform used, changes made to this one agile?
Requirement engineering on this?

- Product Development; How are products realized? What makes this agile?
- Management; What kind of principles and methods are used? Metrics for agility?

- Marketing and Sales; How is customer involved? How do they sell the product and configure it?

Agile:

- Action towards change; In what way is changes handled? Proactively or reactively? Learning?
- Maximize value; What characterizes the efficiency of the approach or method?

- Agile practices; Which agile practices are used? Adoptions or changes made to them?

Benefits/ Disadvantages

SPLE level / Agility level

V1

Appendix V: Photo from Analysis Process

V2

