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Abstract

It is important for the petroleum industry to investigate how fluids flow inside
the complicated geometries of porous rocks, in order to improve oil produc-
tion. The lattice Boltzmann method can be used to calculate the porous
rock’s ability to transport fluids (permeability). However, this method is
computationally intensive and hence begging for High Performance Comput-
ing (HPC). Modern GPUs are becoming interesting and important platforms
for HPC. In this thesis, we show how to implement the lattice Boltzmann
method on modern GPUs using the NVIDIA CUDA programming environ-
ment. Our work is done in collaborations with Numerical Rocks AS and the
Department of Petroleum Engineering at the Norwegian University of Sci-
ence and Technology.

To better evaluate our GPU implementation, a sequential CPU imple-
mentation is first prepared. We then develop our GPU implementation and
test both implementation using three porous data sets with known perme-
abilities provided by Numerical Rocks AS. Our simulations of fluid flow get
high performance on modern GPUs showing that it is possible to calculate
the permeability of porous rocks of simulations sizes up to 3683, which fit into
the 4 GB memory of the NVIDIA Quadro FX 5800 card. The performances
of the CPU and GPU implementations are measured in MLUPS (million lat-
tice node updates per second). Both implementations achieve their highest
performances using single floating-point precision, resulting in the maximum
performance equal to 1.59 MLUPS and 184.30 MLUPS. Techniques for re-
ducing round-off errors are also discussed and implemented.
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Chapter 1

Introduction

A great many problems in science and engineering are too difficult to solve
analytically in practice, but with today’s powerful computers it is possible
to analyze and solve those problems numerically. Computer simulations are
important to the field of fluid dynamics, as their equations are often com-
plicated referred to as Computational Fluid Dynamics (CFD). To solve the
most complex problems in fluid dynamics, computer simulations performed
by systems with huge performance capability are necessary. In the field
of High Performance Computing (HPC), researchers are interested in max-
imizing the computing power available in systems with huge performance
capability. Systems are typically made from clusters of workstations, large
expensive supercomputers, or Graphics Processing Units (GPUs), to be able
to solve complex problems in science and engineering.

With the recent introduction of NVIDIA’s Compute Unified Device Archi-
tecture (CUDA) programming environment for the NVIDIA Tesla architec-
ture, as well as heterogeneous programming standards such as Open Comput-
ing Language (OpenCL), GPUs are becoming interesting and important plat-
forms for HPC. Modern GPUs have typically their own dedicated memory 1,
and are optimized for performing floating-point operations in parallel, which
are much used in games, multimedia, and scientific applications. Today, even
commercial GPUs can have very high floating-point compute capacity at very
low cost, available as off-the-shelf products. The state-of-the-art in GPUs can
provide computing power equal to small supercomputers 2. Compared with

1NVIDIA Quadro FX 5800 have total memory size of whole 4 GB.
2NVIDIA has recently released the NVIDIA Tesla s1070 Computing System, that’s
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an up-to-date Central Processing Unit (CPU), modern GPUs utilize a larger
portion of their transistors for floating-point arithmetic, and has higher mem-
ory bandwidth. With the recent developments and improvements in GPU
hardware and software, many difficulties are eliminated, allowing GPUs to
be used as accelerators for a wide range of scientific applications. Today,
much attention is focused on how to utilize the GPUs huge performance ca-
pability for more than just graphics rendering, to accelerate computationally
intensive problems, referred to as General-Purpose computation on Graphics
Processing Units (GPGPU).

1.1 Project Goals

For the petroleum industry it is important to quantify the petrophysical
properties of porous rocks, such as the rock illustrated in Figure 1.1, to gain
better understanding of conditions that affect oil production [5]. It would
be of great value for the petroleum industry if the petrophysical properties
of porous rocks, such as the porosity and permeability, could be obtained
directly through computer simulations, capable of fast and accurate analysis.

The main objective in this thesis is to investigate the use of the graphics
processing unit for simulations of fluid flows through the internal pore geom-
etry of natural and computer generated rocks, in order to compute the rock’s
ability to transport fluids (permeability).

In this thesis, we have chosen to look at the lattice Boltzmann method for
the simulation of fluid flow through porous rocks, offloaded to the GPU. The
permeability of porous rocks is obtained directly from the generated velocity
fields of the lattice Boltzmann method, together with using Darcy’s law for
the flow of fluids through porous media [24].

provide parallelism of total 960 streaming processor cores across 4 GPUs, with total of 4
teraflops compute capability [13].
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Figure 1.1: Porous rock.

1.2 Outline

This thesis is structured in the following manner:

In Chapter 2, Parallel Computing and The Graphics Processing
Unit, we will highlight several advantages with parallel computing, and de-
scribe various forms of parallelism. We will describe modern GPUs, what
tasks that suit GPUs, and explain some differences between GPUs and CPUs.
We will also give a brief introduction to the NVIDIA CUDA programming
model and the NVIDIA Tesla architecture.

In Chapter 3, Computational Fluid Dynamics and Porous Rocks,
we will present and explain the necessary background theory for fluid flow
through porous rocks using the lattice Boltzmann method. We will also give
a brief description of porous rocks, and how to calculate their permeability.

In Chapter 4, Implementations, we will describe how the lattice Boltz-
mann method has been implemented. We will also give a brief description of

3



the Marching Cubes algorithm, used for visual analysis of how the fluid will
flow through the internal pore geometry of porous rocks.

In Chapter 5, Benchmarks, we will present performance benchmarks
of our implementation of the lattice Boltzmann method, and estimations of
porous rock’s ability to transmit fluids. We will compare differences between
both performance and permeability estimations using NVIDIA GPUs and
CPUs, with both single and double floating-point precision.

In Chapter 6, Conclusions and Future Work, we will summarize the
results we achieved, and discuss future work to improve our implementations
of the lattice Boltzmann method.
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Chapter 2

Parallel Computing and The
Graphics Processing Unit

The topics covered in this chapter were also covered by the author and Henrik
Hesland in [3], the joint fall upon which this project was built. It describes
some of the basic concept of parallel computing as well as the Graphics Pro-
cessing Unit (GPU).

In particular, Section 2.1 gives a brief introduction to parallel comput-
ing, and explains different forms of parallelism. Section 2.2 explains modern
GPUs and what tasks they are suited for, and motivates for why one should
use GPUs instead of the CPUs for some compute intensive tasks. At the end
of this chapter, the NVIDIA CUDA programming model and the NVIDIA
Tesla architecture are presented.

2.1 Parallel Computing
Moore’s law predicts that integration of transistors doubles in 18 months.
Today, to double the number of transistors placed on integrated circuits in
18 months has become difficult. We have already hit the Power and Fre-
quency Walls. Whatever the peak performance of today’s processors, there
will always be some problems that require or benefit from better processor
speed. As explained in [6], there is a recent renaissance in parallel computing
development. Due to the Power Wall, increasing clock frequency is no longer
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the primary method of improving processor performance. Today, parallelism
has become the standard way to increase overall performance for both the
CPU and GPU. Both modern GPUs and CPUs are concerned with increasing
power dissipation, and want to increase absolute performance, but also im-
prove efficiency through architectural improvements by means of parallelism.

Parallel computing often permits a larger problem or a more precise solu-
tion of a problem to be found within a practical time. Parallel computing is
the concept of breaking up a larger problem into smaller units of tasks that
can be solved. However, problems often cannot be broken up perfectly into
independent parts, so interactions are needed among the parts, both for data
transfer and synchronization. The problem characteristicts affects how easy
it is to parallelize. If possible, there would be no interaction between the
separate processes, each process requiring different data and produce results
from its input data without need for results from the other processes. How-
ever many problems are to be found in the middle, neither fully independent
nor synchronized [54].

There are two basic types of parallel computers, when categorized by
their memory architecture [54]:

• Shared memory systems that have a single address space, which means
that all processing elements can access the same global memory. It can
be very hard to implement the hardware to achieve Uniform Memory
Access (UMA) by all the processors with a larger number of proces-
sors, and therefore many systems have Non Uniform Memory Access
(NUMA).

• Distributed memory systems that are created by connecting computers
together through an interconnection network, where each computer has
its own local memory that cannot be accessed by the other processors.
The access time to the local memory is faster than the access time to
the non-local memory.

Distributed memory will physically scale more easily than shared mem-
ory, as its memory is scalable with the increased number of processors.

6



2.1.1 Forms of parallelism

Most of the information found in this section is based on ref by Mccool [37].

There are several ways to do parallel computing. Two frequently used
methods are task parallelism and data parallelism. Task parallelisms, also
called Multiple-Instruction Multiple-Data (MIMD), focus on distributing sep-
arate tasks across different parallel computing nodes that operate on separate
data in parallel. It can typically be difficult to find independently tasks in
a program and therefore task parallelism can have limited scalability abil-
ity. The interaction between different tasks occurs through either message
passing or shared memory regions. Communication through shared memory
regions poses the problem of maintaining memory cache coherency with in-
creased number of cores, as most modern multi core CPUs use caches for
memory latency hiding. Ordinary sequential execution of a single thread is
deterministic, making it understandable. Task parallelism on the other hand
is not even if the program is correct. Task parallelism is subject to errors
such as race conditions and deadlocks, as correct synchronization is diffi-
cult. Such faults are difficult to identify, which can make development time
overwhelming. Multicore CPUs are capable of running entirely independent
threads of control, and are therefore great for task parallelism [37].

Data parallelism is a form of computation that implicitly has synchro-
nization requirements. In a data parallel computation, the same operation is
performed on different data elements concurrently. Data parallel program-
ming is very convenient for two reasons. It can be easy to program and
it can scale easily to large problems. The Single-Instruction Multiple-Data
(SIMD) is the simplest type of data parallelism. It operates by having the
same instruction execute in parallel on different data elements concurrently.
It is convenient from a hardware standpoint. It gives an efficient hardware
implementation, because it only needs to replicate the data path. However, it
has difficulty of balance variable work load, since it does not support efficient
control flow. The SIMD models have been generalized to the Single-Program
Multiple-Data (SPMD), which include some control flow. With the SPMD it
is possible to avoid and adjust the work load if there are variable amounts of
computation in the different parts of a program [37], as illustrated in Figure
2.1. Data parallelism is essential for the modern GPU as a parallel processor,
as it is optimized to carry out the same operations on a lot of data in parallel.
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SIMD SPMD

Figure 2.1: SPMD support control flow, and SIMD does not. Based on [37].

2.2 The Graphics Processing Unit
The Graphics Processing Unit (GPU) is a special-purpose processor dedi-
cated to rendering computer graphics. With their potential for computing
several hundred instructions simultaneously, these accelerators are becoming
very interesting architectures also for High Performance Computing (HPC).
As special-purpose accelerators, the GPUs are primarily designed to accel-
erate graphics rendering, and most development has been targeted towards
improved graphics for game consoles, personal computers, and workstations.
Over the last 40 years, the GPU has undergone significant changes in its
functionality and capability, driven primarily by an ever increasing demand
for more realistic graphics in computer games. The GPU has evolved from a
fixed processor only capable of doing restricted graphics rendering, into a ded-
icated programmable processor with huge performance capability. Modern
GPU’s theoretical floating-point processing power and memory bandwidth,
has exceeded the Central Processing Units (CPUs) [12].
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Figure 2.2: Transistors dedicated for data processing: CPU vs. GPU. Figure
is taken with permission from [12].

The CPU is designed to maximize the performance of a single thread of
sequential instructions. It operates on different data types, performs random
memory accesses, and branching. Instruction Level Parallelism (ILP) allows
the CPU to execute several instructions at the same time or even alter the
order in which the instructions are executed. To increase performance, the
CPU uses many of its transistors to avoid memory latency with data caching,
sophisticated flow control, and to extract as much ILP as possible. There is
a limited amount of ILP that is possible to identify and take advantage of in
a sequential stream of instructions, to keep the execution units active. This
is also known as the ILP Wall, and ILP causes tremendous increase in hard-
ware complexity and related power consumption, without linear speedup in
application performance [36].

The GPU is dedicated to rendering computer graphics, and the primi-
tives, pixel fragments and pixels can largely be processed independently in
parallel (the fragment stage is typically the most computationally demanding
stage [39]). The GPU differs from the CPU in the memory access pattern, as
memory access in the GPU is very coherent. When a pixel is read or written,
the neighboring pixel will be read or write a few cycles later. By organiz-
ing memory correctly and hide memory access latency by doing calculations
instead, there is no need for big data caches. GPUs are designed such that
the same instruction operates on collections of data, and therefore only need
simple flow control. GPUs may therefore dedicate more of its transistors to
data processing than the CPU, as illustrated in Figure 2.2.
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The modern GPU is a mixture of programmable and fixed function units,
allowing programmers to write vertex, fragment and geometry programs for
sophisticated surface shading, and lighting effects. The instruction sets of the
vertex and fragment programs have converged, now all programmable units
in the graphics pipeline share a single programmable hardware unit. Into the
unified shader architecture, where the programmable units share their time
among vertex work, fragment work, and geometry work [39]. GPUs differenti-
ate themselves from traditional CPU designs by prioritizing high-throughput
processing of many parallel operations over the low-latency execution of a sin-
gle thread. Quite often in scientific and multimedia applications there is a
need to do the same operation on a lot of different data elements. GPUs
support a massive number of threads, typically 61440 on a NVIDIA GeForce
GTX 295, running concurrently and support the SPMD model to be able to
suspend and use threads to hide the latency with uneven workloads in the
programs. The combination of high performance, low-cost, and programma-
bility has made the modern GPU attractive for applications traditionally ex-
ecuted by the CPU, for General-Purpose Computation On GPUs (GPGPU).
With the unified shader architecture, the GPGPU programmers can target
the programmable units directly, rather than split up task to different hard-
ware units.

Since GPUs are first and foremost made for graphics rendering, it is nat-
ural that the first attempts of programming GPUs for non-graphics where
through graphics APIs. This makes it tougher to use as a HPC platform
since programmers have to master the graphics APIs and languages. To sim-
plify this programming task and to hide the graphics APIs overhead, several
programming models have recently been created. The latest release from the
GPU supplier NVIDIA is NVIDIA’s Compute Unified Device Architecture
(CUDA), initially released in November 2006 [12].

2.2.1 NVIDIA CUDA Programming Model
Most of the information found in this section is based on NVIDIA’s program-
ming guide for NVIDIA CUDA [12].

There are a few difficulties with the traditional way of doing GPGPU,
with the graphics API overhead that are making unnecessary high learning
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curve and the difficult to debugging. In NVIDIA CUDA, programmers do
not need to think in terms of the graphics APIs for developing applications to
run on the GPU. It also reveals the hardware functions of the GPUs directly,
giving the programmer better control. NVIDIA CUDA is a programming
model that focuses on low learning curve for developing applications that are
scalable with the increase number of processor cores. It is based on a small
extension to the C programming language, making it easier to get started
with for developers familiar with the C language. Since there are currently
millions of PCs and workstations with NVIDIA CUDA enabled GPUs, de-
veloping techniques to harvest the GPUs power make it feasible to accelerate
applications for a broad range of users. Parts of programs that have lit-
tle parallelism execute on the CPU, while parts that have rich parallelism
execute on the GPU. To a programmer, a system in the NVIDIA CUDA
programming model consists of a host that is a traditional CPU, and one or
more compute devices that are massively data-parallel coprocessors. Each
device is equipped with a large number of arithmetic execution units, has its
own DRAM, and runs many threads in parallel.

Kernels And Execution

In NVIDIA CUDA, programmers are allowed to define data-parallel func-
tions, called kernels, that run in parallel on many threads [43]. These kernels
are invoked from the host, and are defined using a special syntax, which
indicates how they are executed on the GPU. To invoke a kernel, program-
mers need to specify the number of thread blocks, and threads within these
thread blocks, between triple angle brackets, and to define the kernels using
the global declaration sign. This is illustrated in Algorithm 1. In NVIDIA
CUDA, there exist several qualifiers for functions:

• global defines functions that can only be called from the host, and
that execute on the device.

• device defines functions that can only be called from the device, and
that execute on the device.

• host defines functions that can only be called from the host, and
that execute on the host.
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Figure 2.3: NVIDIA CUDA thread hierarchy. Figure is taken with permission
from [12].
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Algorithm 1 Definition and execution of NVIDIA CUDA kernels.

// Kernel definition
__global__ void kernelName()
{

...
}

void main()
{

// Defines how the GPU kernel is executed
kernelName<<<gridDim,blockDim>>>();

}

Threads are grouped into a three level hierarchy during execution, as il-
lustrated in Figure 2.3. Every kernel executes as a grid of thread blocks in
one or two dimensions, where each thread block has a unique identification
index in the grid. Each thread block is an array of threads, in one, two or
three dimensions, where each individual thread has a unique identification
index in the thread block. Threads within the same thread block can syn-
chronize, by calling syncthreads(). To help programmers, several built-in
variables are available:

• gridDim, which holds the dimension of the grid.

• blockDim, which holds the dimension of the thread block.

• threadIdx, which contains the index to the current thread within the
current thread block.

• blockIdx, which contains the index to the current thread block within
the grid.

How to use the build-in variables to calculate the index of a thread in a
two-dimensional block is illustrated in Algorithm 2.
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Algorithm 2 Build-in variables in NVIDIA CUDA kernels.

// Kernel definition
__global__ void kernelName()
{

int x = blockIdx.x * blockDim.x + threadIdx.x;
int y = blockIdx.y * blockDim.y + threadIdx.y;

int i = x + y * blockDim.x;

...
}

Memory

All threads in a GPU kernel can access data from diverse places during exe-
cution. Each thread has its private local memory, and the architecture allows
effective sharing of data between threads within a thread block by using the
low latency shared memory. There are also two additional read-only memo-
ries accessible by all threads, the texture memory and constant memory. The
texture memory is optimized for various memory accesses patterns. Finally,
all threads have access to the same large, high latency global memory, and
it is possible to transfer data to and from the GPUs global memory and the
hosts memory using different API calls.

Variables may also have different qualifiers, used to differentiate where in
the memory the variables should be stored:

• device defines a variable to be stored in the global memory, available
from all threads, and available to the host through API calls.

• constant defines a variable to be stored in the constant memory,
available from all threads, and available to the host through API calls.

• shared defines a variables to be stored in the shared memory for
a current thread block, available only to the threads within the same
thread block.

In addition, with the device and constant declarations the variable has
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the life time of the application, and with the shared declaration the vari-
able has the life time of the current block.

2.2.2 NVIDIA Tesla Architecture
Most of the information found in this section is based on NVIDIA’s program-
ming guide for NVIDIA CUDA [12].

For high performance, knowledge of NVIDIA’s GPUs hardware archi-
tecture is important. The latest generations of NVIDIA’s GPUs are based
on the NVIDIA Tesla architecture that supports the NVIDIA CUDA pro-
gramming model. The NVIDIA Tesla architecture is built around a scalable
array of Streaming Multiprocessors (SMs), and each SM consists of several
Stream Processors (SPs), two Special Function Units (SFU) for complex cal-
culations (sine, cosine and square root), a multithreaded instruction unit,
on-chip shared memory, texture cache, some registers, and a constant cache
[12], as illustrated in the Figure 2.4. GPUs from NVIDIA based on the
NVIDIA Tesla architecture have the same architectural foundation, but sup-
port different degree of parallelism equal to the number of SM. Some of the
latest generations of desktop GPUs from NVIDIA, based on the NVIDIA
Tesla architecture are listed in Table 2.1.

Table 2.1: NVIDIA GPUs based on the NVIDIA Tesla architecture. Taken
from [13] and [12].

GPU Model 8800 GT 9800 GX2 GTX 295
Number of GPUs 1 2 2

Streaming Multiprocessors 14 32 60
Stream Processors 112 256 480

Graphics Clock 600 MHz 600 MHz 576 MHz
Processor Clock 1500 MHz 1500 MHz 1242 MHz

Memory 512 MB 1 GB 1792 MB
Memory Bandwidth 57.6 GB/s 128 GB/s 223.8 GB/s
Compute Capability 1.1 1.1 1.3
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Figure 2.4: NVIDIA Tesla architecture. Figure is taken with permission from
[12].

Compute Capability

The GPUs from NVIDIA based on the NVIDIA Tesla architecture have dif-
ferent compute capability. As of April 2009, indicated by a version number
from 1.0 to 1.4, which describes the NVIDIA’s GPUs technical specifications
and features supported, for among other things it can indicate support for
double precision floating-point numbers. Today, GPUs from NVIDIA have
a number of general features and technical specifications listed in Table 2.2,
but also some differences listed in Table 2.3.
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Table 2.2: NVIDIA’s GPUs general compute capability. Taken from [12].

Compute capability 1.1-1.4.
Maximum size of the x dimension of a thread block 512
Maximum size of the y dimension of a thread block 512
Maximum size of the z dimension of a thread block 64
Maximum number of threads per thread block 512
Maximum number of active thread blocks per SM 8
Amount of shared memory available per SM 16 KB
Total amount of constant memory 64 KB
Maximum number of thread blocks per grid 65535

Table 2.3: NVIDIA’s GPUs points of distinction in compute capability.
Taken from [12].

Compute capability 1.1 1.4
Double-precision float-point support no yes
Maximum number of active threads per SM 768 1024
Maximum number of active warps per SM 24 32
Maximum number of threads per thread block 512 1024
Number of registers per SM 8192 16384
Support for atomic functions no yes

Execution

For high performance, NVIDIA’s GPUs exploit massive multithreading, a
hardware technique which executes thousands of threads simultaneously, to
utilize the large number of computational cores and overlap memory trans-
actions with computation. This is possible because NVIDIA’s GPUs threads
have very little creation overhead, and it is possible to switch between threads
that execute with near zero cost [48]. When a GPU kernel is invoked, thread
blocks from the kernel grid are distributed to SMs with available execution
capacity. As one thread block terminates, new thread blocks are lunched
on the SM [12]. Therefore to keep the SM busy, one needs to have enough
thread blocks in the grid, and threads in thread blocks. There is, however, a
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limit on how many thread blocks a SM can process at once, one need to find
the right balance between how many registers per thread, how much shared
memory per thread block and what number of simultaneously active threads
are required for a given kernel [48]. The programming guide for NVIDIA
CUDA states that the minimum number of blocks should be at least twice
the number of SMs in the device, preferably larger than 100, and that 64 is
the minimum of threads within a block. During execution, threads within
a thread block are grouped into warps, which are 32 threads from continu-
ous sections of a thread block. Even though warps are not explicit declared,
knowledge of them may improve performance. NVIDIA’s GPUs support the
SPMD model where all threads execute the same program although they
don’t need to follow the same path of execution. The SM executes the same
instruction for every thread in a warp, so only threads that follow the same
execution path can be executed in parallel. If none of the threads in a warp
have the same execution path, all of them must be executed sequentially [48].
There are several memory types with different latency available through the
NVIDIA Tesla architecture, such as the global memory and the shared mem-
ory. For high performance, it is essential to know some details of the different
memory types.

Global Memory

For maximum global memory bandwidth, which can be very high, it is im-
portant to to access the global memory with the right access pattern. This
is achieved through coalescing, and result in a single memory transaction for
simultaneous accesses against the global memory by threads in a half-warp.
To achieve coalescing, the programming guide for NVIDIA CUDA state some
conditions that must be met. For NVIDIA GPUs with compute capability
1.0 and 1.1, there are four conditions that global memory access must meet
to achieve coalescing, which are illustrated in Figure 2.5:

• Threads must access:
4-byte words, resulting in one 64-byte memory transaction.
8-byte words, resulting in one 128-byte memory transaction.
16-byte words, resulting in two 128-byte memory transactions.

• Every 16 words stand in the same segment in global memory.
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Figure 2.5: Examples of coalesced and non-coalesced global memory access
patterns. Reproduced from [12].

• Threads must access the words in sequence, the kth thread must access
the kth word.

With compute capability 1.2 and higher, threads do not need to access global
memory in sequence to achieve coalescing, and access to the global memory
over one segment will not directly result in 16 separate accesses. To achieve
coalescing:

• Thread access the global memory with words stand in the same aligned
segment of required size:

32-bytes for threads access 2-byte words
64-bytes for threads access 4-byte words
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128-bytes for threads access 8-byte or 16-bytes words

Shared Memory

The 16 KB of on-chip shared memory is divided into 16 banks, where access
to the same bank only can be done sequentially, but access to different banks
can be done in parallel. To get the maximum performance, the addresses
of memory requests must fall into separate banks, or bank conflicts will
arise. The shared memory is organized so that a sequence of four bytes
words is assigned to different banks, as illustrated in Figure 2.6. A common
access pattern organized to avoid memory bank conflicts, are illustrated in
Algorithm 3, where tid is the thread index and s some stride. To ensure that
there will be no bank conflicts, the programming guide for NVIDIA CUDA
state that s must be odd [12], or bank conflicts will aris as illustrated in
Figure 2.7.

Algorithm 3 Memory access pattern without bank conflicts. Taken from
[12].

__shared__ float shared[32];
float data = shared[BaseIndex + s * tid];
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Figure 2.6: Examples of shared memory access patterns without bank con-
flicts. Reproduced from [12].
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Chapter 3

Computational Fluid Dynamics
and Porous Rocks

This chapter highlights the background theory we used for simulating fluid
flow through porous rocks, including the lattice Boltzmann method.

In particular, Section 3.1 gives a brief introduction to computational fluid
dynamics. Section 3.2 presents the theory of the lattice Boltzmann method
and explains the meaning of the most important equations of the method.
Section 3.3 gives a brief description of porous rocks, and how to calculate the
porosity and permeability in these.

3.1 Computational Fluid Dynamics
In the field of fluid dynamics, researchers study fluid flows. Similar to a lot of
physical phenomena in classical mechanics, fluid flows must satisfy the prin-
ciples of conservation of mass and momentum, together with energy, which
are expressed in terms of mathematical equations in form of differential equa-
tions. These equations are known as the conservation equations. Analytical
solutions to these equations are of interest, but given that these equations can
be very complex to describe mathematically, and therefore can be difficult to
solve analytically, it is useful to use computers to solve these equations nu-
merically. Computational Fluid Dynamics (CFD) is the process of analyzing
and solving different equations describing fluid flow, and other related phe-
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nomena numerically on a computer [17]. Fluid flows through porous rocks
are of importance to the petroleum industry, and with CFD analysis it is
possible to investigate how the fluids behave inside the complicated geome-
tries of porous rocks. This gives a better understanding of how to harvest
the oil.

The fundamental equations for CFD are the Navier-Stokes equations.
The Navier-Stokes equations are nonlinear partial differential equations that
are too difficult to solve analytically in practice, but with today’s power-
ful computers it is possible to analyze and solve approximations to these
equations. In order to solve the Navier-Stokes equations numerically, the
equations needs to be discretized using finite differences, finite elements, fi-
nite volumes or spectral methods [55].

In this thesis, the lattice Boltzmann method is used for simulating fluid
flow through porous rocks, which is an alternative CFD approach to the
Navier-Stokes equations, based on microscopic models and the Boltzmann
equation [27]. The lattice Boltzmann method might be considered meso-
scopic CFD approach, and has several desired properties for performing CFD
simulations of fluid flows through porous media, particularly the ability to
deal with complex geometries without significant penalty in speed and effi-
ciency [45].

3.2 The Lattice Boltzmann Method
The intention of this section is to give a brief introduction to the theory of
the lattice Boltzmann method applied in this thesis. For a more comprehen-
sive overview of the method we refer to [47] and [55].

The Boltzmann equation, formulated by Ludwig Boltzmann, uses classi-
cal mechanics and statistical physics, to describe the evolution of a particle
distribution function. The lattice Boltzmann method is a solver of the Boltz-
mann equation in a fixed lattice. The particle distribution function gives the
probability of finding a fluid particle located at the location x, with velocity
e, at time t [4]. The complex interactions of all these particles manifest as
a fluid on a macroscopic scale. The Boltzmann equation without external
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forces, can be written as Equation 3.1 [27].
∂f

∂t
+ e∇f = Ω (3.1)

where f is the particle distribution function, e is the particle velocity, and Ω
is the collision operator that describes the interaction of collided particles.

The basic idea in the lattice Boltzmann method is that fluid flows can
be simulated by interacting particles within a lattice in one, two or three
dimensions. These particles perform successive streaming and collision over
the lattice in discrete time steps. Instead of taking into consideration ev-
ery individual particle’s position and velocity as in microscopic models, fluid
flows are described by tracking the evolution of the particle distribution func-
tions [44, 41]. The statistical treatment in the lattice Boltzmann method is
necessary because of the large number of particles interacting in a fluid [47].
It leads to substantial gain in computational efficiency compared to the mi-
croscopic models (molecular dynamics). The macroscopic density, pressure
and velocity can be obtained from these particle distribution functions [18],
and it has been shown [42], [55] that the macroscopic properties of the fluid
obtained through the lattice Boltzmann method is equivalent to solving the
Navier-Stokes equations [4].

Collision

Streaming
Next

time step

Boundary conditions

Figure 3.1: The three phases of the lattice Boltzmann method.

In the lattice Boltzmann method, fluids flows are simulated by the stream-
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ing and collision of particles within the lattices, often together with some
boundary conditions that must be fulfilled. As illustrated in Figure 3.1 these
operations must be carried out for each discrete time step. The particles
within the lattices can move within certain discrete velocities from one dis-
crete lattice location to another. The discrete lattice locations correspond to
volume elements that contain a collection of particles [18], and represents a
position in space that holds either fluid or solid [35]. In the streaming phase,
particles move to the nearest neighbor along their path of motion, as can
be seen in Figure 3.2, where they collide with other arrived particles, as can
be seen in Figure 3.3. The outcome of the collision is designed so that it is
consistent with the conservation of mass, energy and momentum [45]. They
are collision invariant. After each iteration, only the particle distribution
changes, while the particle distribution function in the center of each lattice
locations remains unchanged.

Figure 3.2: The streaming step:
Particles spread out to their nearest
nodes in the lattice [19].

Figure 3.3: The collision step: Exist-
ing and entry particles are weighted
[19].

3.2.1 Previous And Related Work
Historically, the lattice Boltzmann method is an outcome from the attempts
to improve the Lattice Gas Cellular Automata (LGCA), even though the lat-
tice Boltzmann method can be derived directly from the Boltzmann equation
[27].
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The first LGCA model named HPP was introduced in 1973 by Hardy,
Pomeau and de Pazzis. In this model the lattice applied was square, and
particles could not move diagonally. Because of this the model suffered from
lack of rotational invariance [26]. In 1986, over 10 years later, the LGCA
model named FHP was introduced by Frisch, Hasslacher, and Pomeua [23],
who discovered the lattice symmetry. In this model the lattice applied was
triangular and therefore did not suffer from lack of rotational invariance
[55]. The main motivation for further development was to remove the static
noise in the LGCA models, which makes computational precision difficult to
achieve [8]. In 1988, two year later, McNamara and Zanetti introduced the
lattice Boltzmann method [38], which completely removed the static noise
found in the LGCA models, by replacing the Boolean representation of a
particle by the particle distribution function. Further development and im-
provements where proposed by Chen[10] and Qian[42], with the use of the
Bhatnagar-Gross-Krook (BGK) simplified collision operator.

Today, the lattice Boltzmann method has been applied on CPUs for fluid
flows through porous media to determine the permeability of porous media
[2, 24]. For a comprehensive overview of efficient implementations of the lat-
tice Boltzmann method for CPUs we refer to [53], in view of the fact that the
architecture of the GPU is quite different. The lattice Boltzmann method
has been applied on GPUs using NVIDIA CUDA [25, 40, 50, 51]. Perfor-
mance of lattice Boltzmann implementations is often measured in MLUPS
(million lattice nodes updates per second). Tolke and Krafczyk [51], imple-
mented the lattice Boltzmann method using the D3Q13 model on a NVIDIA
GeForce 8800 Ultra card, which achieved the total of 592 MLUPS. Habich
[25], implemented the lattice Boltzmann method using the D3Q19 model on
a NVIDIA GeForce 8800 GTX card, which achieved the total of 250 MLUPS.
Bailey, Myre, Walsh, Lilja, and Saar [40] implemented the lattice Boltzmann
method using the D3Q19 model on a NVIDIA GeForce 8800 GTX card,
which achieved the total of 300 MLUPS. The higher performance of Tolke
and Krafczyk can to some extent be explained because the D3Q13 is a sim-
pler lattice, compared to the D3Q19.
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3.2.2 Fundamentals
In what follows, the starting point is the lattice Boltzmann equation with
the Bhatnagar-Gross-Krook (BGK) simplified collision operator, that can be
written as Equation 3.2.

∂f

∂t
+ e∇f = −1

τ
(f − f eq) (3.2)

where τ is the single relaxation time, and f eq is the equilibrium distribu-
tion function, that can be written as Equation 3.3.

f eq = ρ

(2πRT )D/2 exp
[
−(e− u)2

2RT

]
(3.3)

where R is the universal gas constant, D is the dimension of the space, ρ
is the macroscopic density, u is the macroscopic velocity, and T is the macro-
scopic temperature [27].

In order to solve the Boltzmann equation numerically, the physical space
is limited to a discrete lattice, only a discrete set of velocities are allowed,
and the time is limited to discrete time steps. A widespread classification
system used for the different lattices that exist is DaQb, where Da is the
number of dimensions and Qb is the number of distinct discrete lattice ve-
locities ~ei. In the lattice Boltzmann method, the underlying lattice must
have enough symmetry to ensure isotropy, and typically lattices are D2Q9,
D3Q13, D3Q15, and D3Q19.

In the lattice Boltzmann method, the time evolution of the particle dis-
tribution function is obtained, by solving the discrete Boltzmann equation,
that can be written as Equation 3.4 [4].

fi(~x+ ~ei, t+ 1)− fi(~x, t) = Ω (3.4)

where ~ei are discrete lattice velocities, Ω is the collision operator, and
fi(~x, t) is the discrete particle distribution function in the i direction. The
simplified BGK collision operator is often used, that can be written as Equa-
tion 3.5 [42].

ΩBGK = −1
τ

(fi(~x, t)− f eqi (ρ(~x, t), ~u)) (3.5)
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where τ is the single relaxation parameter, and f eqi (ρ(~x, t), ~u) is the equi-
librium distribution functions in the i direction (also often called for the
Maxwell-Boltzmann distribution function). The equilibrium distribution func-
tion can be written as Equation 3.6 [42].

f eqi (ρ(~x, t), ~u) = wiρ
(

1 + 3
c2 (~ei · ~u) + 9

2c4 (~ei · ~u)2 − 3
2c2~u

2
)

(3.6)

where c is equal to ∆x/∆t, which are often normalized to 1, and wi is
weight factors that depends on the lattice model. The macroscopic kinematic
viscosity ν of the fluids, can be found with Equation 3.7 [31].

ν = 2τ − 1
6 (3.7)

The macroscopic properties of the fluids can be computed from the par-
ticle distribution functions, such as the mass density ρ(~x, t), momentum
ρ(~x, t)u(~x, t) and velocity ~u(~x, t) of a fluid particle as Equations 3.8, 3.9,
and 3.10 [18].

ρ(~x, t) =
q∑
i=0

fi(~x, t) (3.8)

ρ(~x, t)u(~x, t) =
q∑
i=0

~eifi(~x, t) (3.9)

~u(~x, t) = 1
ρ(~x, t)

q∑
i=0

~eifi(~x, t) (3.10)

where q is the number of distinct lattice velocities ~ei.

3.2.3 Boundary Conditions
The standard boundary condition applied at solid-fluid interfaces is the no-
slip boundary condition (also called bounce back boundary condition), that
can be written as Equation 3.11 [31].

f ini (~x+ ~ei, t+ 1) = f outi (~x, t) = f ini (~x, t) (3.11)
With this boundary condition applied, the particles close to solid bound-

aries do not move at all, resulting in zero velocity. The particles at the
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solid-fluid interfaces are reflected [49], as illustrated in Figures 3.4 and 3.5.
Periodic boundary condition is also common, and allows particles to be cir-
culated within the fluid domain. With the periodic boundary conditions,
outgoing particles at the exit boundaries will come back again into the fluid
domain through the entry boundaries on the opposed side.

Figure 3.4: Bounce back boundary:
Lattice node before streamin [49].

Figure 3.5: Bounce back boundary:
Lattice node after streaming [49].

3.2.4 Basic Algorithm
Equations 3.4 and 3.5 can be split up into the two following Equations 3.12
and 3.13 [31].

f outi (~x, t) = f ini (~x, t)− 1
τ

(
f ini (~x, t)− f eqi (ρ(~x, t), ~u)

)
(3.12)

f ini (~x+ ~ei, t+ 1) = f outi (~x, t) (3.13)

where f outi represents the particle distribution value after collision, and
f ini is the value after both the streaming and collision operations are finished.
Equations 3.12 and 3.13 implement the collide-stream system, also known as
the push method, described by [31]. The basic algorithm using the collide-
stream system is illustrated in Figure 3.6.
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Figure 3.6: Basic algorithm of the lattice Boltzmann method. Based on [31].
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3.3 Porous Rocks

This section about porous rocks is taken from earlier work made by Eirik
Ola Aksnes and Henrik Hesland [3], and used with some changes.

The word petroleum, meaning rock oil, is important to humankind as
it is the primary source of energy. Petroleum does not typically lie in huge
pools or are found in underground rivers, but refers to the naturally occurring
hydrocarbons that are found in porous rock formations beneath the surface of
the earth. A petroleum reservoir or an oil and gas reservoir is an underground
accumulation of oil and gas that is located within pore spaces of porous rocks.
Not all rocks are capable of holding oil and gas. Reservoir rocks, which are
capable of holding oil and gas, are characterized by having sufficient porosity
and permeability, meaning that is has sufficient storage capacity for oil and
gas, and has the ability to transmit fluids. The challenge is how to extract
the oil and gas out from the porous rocks, and it is vital for the oil industry
to analyze the petrophysical properties of reservoir rocks to gain improved
understanding of oil production. Figure 3.7 illustrates the influence the pore
geometry of porous rocks has on how the fluid will flow inside the porous
rocks. In Figure 3.7 fluid will flow more slowly through the left rock, because
of the lack of interconnected pore spaces within the rock, as the pore spaces
are isolated from each other, and that the existing pore spaces are narrow
[22].

High permeabilityLow permeability

Figure 3.7: The left rock has low permeability, in contrast to the right rock,
which allows fluid to flow easily.
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3.3.1 Porosity

The porosity is defined as Equation 3.14 [8].

φ = Vp
Vt

(3.14)

where Vp is the volume of pore space and Vt is total volume of the porous
medium. Some actual material porosities are listed in Table 3.1.

Table 3.1: Typical porosity of some representative real materials. Taken from
[8].

Material Porosity
Sandstone 10-20 %
Clay 45-55 %
Gravel 30-40 %
Soils 50-60 %
Sand 30-40 %

3.3.2 Permeability

Darcy’s law for the flow of fluids through porous media can be written as
Equation 3.15 [24].

q = − k

ρν

∆P
L

(3.15)

where q is the volumetric fluid flux through the porous media, k is the
permeability of the porous medium, ∆P

L
is the total pressure drop along the

sample length L, ρ is the fluid density, and ν is the fluid kinematic viscosity.
In porous media, fluid will flow only through pores capable of transporting
fluid, therefore the volumetric flux q is considered as Equation 3.16 [24].

q = ūφ (3.16)
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where ū is the average velocity of the fluid and φ is the porosity of the
porous medium. The permeability can be found with Equation 3.17.

k = ūφρν
∆P
L

(3.17)
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Chapter 4

Implementations

This chapter describes how we implemented the lattice Boltzmann method
presented in the previous chapter on modern GPU hardware. Our simula-
tion model is baded on [31]. On order to better analyze our results, both
parallel CPU and GPU implementations of the lattice Boltzmann method
were developed.

In particular, Section 4.1, describes the target platforms, libraries, and
languages used for both our implementations. Section 4.2 describes support
for porous rocks visualization, and of the Marching Cubes algorithm used to
generate three dimensional models of porous rocks. Section 4.3 describes the
simulation model used in both our implementations. Section 4.4 describes
an approach used to reduce the rounding error in the simulation model used.
Section 4.5 describes the data structure used to store the particle distribu-
tion functions for both our implementations. Sections 4.6 and 4.7 describe
the CPU and GPU implementations of the lattice Boltzmann method, with
optimization guidelines for high performance.

4.1 Platforms, Libraries, and Languages
Both the CPU and GPU implementation are programmed in C++. For
the GPU implementation, NVIDIA GPUs are used to accelerate the lattice
Boltzmann method, due to the well developed hardware and software sup-
port from NVIDIA GPUs for general purpose computation. With the latest
generations of NVIDIA GPUs that supports the NVIDIA CUDA program-
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ming model, several unnecessary difficulties with the traditional way of doing
GPGPU are eliminated. The NVIDIA CUDA1 are a natural choice, since it
exposes the hardware functions of the NVIDIA GPUs, making it possible to
target the programmable units directly for improved control. The OpenCL
framework are also considered due to it’s heterogeneous platform support,
but NVIDIA CUDA are used, because OpenCL is still new. For graphics ren-
dering, NVIDIA CUDA supports both the Direct3D and OpenGL graphics
library. Since the Direct3D graphics library is only supported on the Mi-
crosoft Windows operating systems, the OpenGL2 graphics library are used
for platform independence. To access the expansions to the OpenGL graph-
ics library for efficient graphics rendering, the OpenGL Extension Wrangler
Library3 (GLEW) are used. The OpenGL Utility Toolkit (GLUT) are used
to handle mouse, keyboard, and window management. The OpenGL Shad-
ing Language (GLSL) are used to be able to use the programmable pipeline
with vertex and fragment shaders. The CPU implementation also uses the
OpenGL, GLEW, GLUT and GLSL library.

4.2 Visualization
Visualization of the pore geometry and how fluids flow inside the pore geom-
etry of rocks are implemented for both our implementations, as illustrated in
Figure 4.1. The yellow color indicates high velocity and the black color indi-
cates low velocity. Visualization are implemented to ease debugging during
development, and for visual analysis of the pore geometry of rocks. Since the
pore geometry of rocks, how the pore spaces within the rocks are intercon-
nected, and the size of the pore spaces have major influence on permeability
[22].

4.2.1 Graphics Rendering
Vertex Buffer Object (VBO), which is an OpenGL extension provided through
GLEW are used for graphics rendering. The traditional way of rendering ge-
ometric data is to transfer single data elements to the memory of the GPU.
With VBO, it is possible to upload multiple data elements to the memory

1www.nvidia.com/cuda
2http://www.opengl.org/
3http://glew.sourceforge.net/
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Figure 4.1: Visualization of porous rock left) the pore geometry right) how
the fluids flow inside the pore geometry.

of the GPU simultaneously. It is also possible to render geometric data di-
rectly from the memory of the GPU, without transferring the data from the
system memory to the memory of the GPU [15]. This can offer significant
performance increase, particularly if the geometric data is static and does
not need to be updated for every frame. The models of porous rocks used
in this thesis only require to be created once at startup, and are therefore
reused and directly rendered from the memory of the GPU. This increases
the graphics rendering performance significantly.

4.2.2 Porous Rock Visualization
The Marching Cubes algorithm are used to generate the three dimensional
models of the internal pore geometry of porous rocks, such as the rock il-
lustrated in Figure 4.1, taken from earlier work made by Eirik Ola Aksnes
and Henrik Hesland [3]. The Marching Cubes algorithm takes eight points
at a time from a density field, forming cubes. Within these cubes, triangles
are created. The density values of the eight points decide how the triangles
will be generated. The points are one by one compared to a threshold value
(also often called isovalue), where each points makes a bit value representing
if it is inside or outside the volume. This creates an 8 bit lookup index.
The Marching Cubes algorithm uses two lookup tables. The first is the edge
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table that holds an overview (256 different combinations) over which of the
12 edges we have to interpolate. The second is the triangle table that deter-
mines the quantity (maximum five) and how the triangles inside each cube
should be drawn for correct representation of the isosurface. The March-
ing Cubes algorithm repeats the treatment of cubes until the entire density
field is treated. Figure 4.2 shows the main phases of the Marching Cubes
algorithm used, with the value of the corner 3 above the selected isovalue.

4.2.3 Fluid Flow Visualization

In fluid simulations, velocity fields are represented as vector fields. Visu-
alization of vector fields is used to describe the motion of fluids inside the
pore geometry of porous rocks. To visualize vector fields, shader code and
an NVIDIA CUDA kernel provided by Robin Eidissen were used, with some
modifications [20]. For each lattice node, a single line segment is created,
by representing the position and direction using two four-component vec-
tors. The length of line segments represents flow velocity. The first three
components of vectors are x, y, and z coordinates. The last component of
vectors holds the flow velocity, which is used to determine the color of the
line segment. A GLSL shader colors the line segments based on the flow
velocity, with yellow color indicating high velocity and black color indicating
low velocity.

4.3 Simulation Model

The lattice Boltzmann method with the simplified Bhatnagar-Gross-Krook
collision operator is used as simulation model for the CPU and GPU im-
plementations [42]. In this thesis, large portions of the simulations will be
between solid-fluid interfaces, inside the complex geometries of porous rocks.
One of the most cited benefits of the lattice Boltzmann method is that it can
handle complex flow geometries without significant drop in computational
speed and efficiency [46] and [45]. The method is therefore suitable for the
simulations of fluid flows through the complex geometries of porous rocks
(although simulating fluid flow through porous rocks is still very complex,
including the flow of single-phase fluid).
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Create 8 bit index

Use index to lookup into the 

edge table to find edges 

crossed by the isosurface
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Calculate normals

Store the triangle 

vertices and vertex 

normals

 User specify isovalue 

Next cube

| V7 | V6 | V5 | V4 | V3 | V2 | V1 | V0 | =

| 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |

edgetable[00001000] = edgetable[8] = 1000 0000 1100 = 

edge 11, 2 and 3 are crossed by the isosurface

use edge 11, 2, and 3 to find the intersections points by 

linear interpolation, P=P1+(Isovalue-V1)(P2-P1)/(V2-V1), 

where p1 and p2 are vertices of a cut edge 

and V1 and V2 are the density values

triangletable[8] = 

{3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1} =  

draw the triangle between the intersection points 

along the edge 3,11 and 2, in that sequence.

Figure 4.2: The Marching Cubes algorithm used. Based on [7] and [34].

4.3.1 Memory Usage

The simulation model makes use of the D3Q19 lattice, which is a three di-
mensional lattice with 19 discrete lattice velocities. Appendix A shows the
configuration of the D3Q19 lattice used. Relatively large models of the inter-
nal pore geometry of porous rocks are often required to get accurate estimates
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of their permeability. For every node in the lattice, implementations using
the D3Q19 model often stores and uses 19 values for the particle distribu-
tion functions and 19 temporary values for the streaming phase, so that the
particle distribution functions are not overwritten during the exchange phase
between neighbor lattice nodes. Table 4.1 lists the memory consumption of
the lattice Boltzmann method using temporary storage with varying lattice
sizes, and with single and double floating-point precision. One can see how
the memory consumption becomes gigabytes of memory with large lattice
sizes, making the growth in memory requirements with lattice size visible.

Table 4.1: Memory usage D3Q19 model with temporary storage.

Lattice Single Double
size precision precision
323 4 MB 10 MB
643 38 MB 76 MB
1283 304 MB 608 MB
2563 2.4 GB 4.8 GB
5123 19.4 GB 38.8 GB

Since the lattice Boltzmann method uses a lot of memory resources, it
is important to allocate and use the minimal amount of memory possible.
This is particularly important for the GPU implementation, since memory
capacity is limited and memory cannot simply be added. Therefore instead
of duplicating the particle distribution functions to temporary storage in the
streaming phase, another approach described by Latt [32] is used in both
the implementations, where the source and destination particle distribution
functions are instead swapped between neighbor lattice nodes. This approach
reduces the memory requirements by 50 %, compared to using temporary
storage.

4.3.2 Simulation Model Details
The details of how the lattice Boltzmann method is realized in our CPU and
GPU implementation are discussed here. Figure 4.4 shows the main phases
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Figure 4.3: The main phases of the simulation model used. Based on [31].
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of the simulation model. In the simulation model, the collisions of particles
are evaluated first, and then particles streams to the lattice neighbors along
the discrete lattice velocities.

Two types of boundary conditions are implemented: the standard bounce
back boundary condition to handle solid-fluid interfaces, and periodic bound-
ary condition to allow fluids to be circulated within the fluid domain. The
periodic boundary condition is built into the streaming phase, and the bounce
back boundary condition is built into the streaming and collision phase. The
bounce back boundary condition emerges from swapping particle distribution
functions between neighbors, because neighbors in the lattices only exchange
particle distribution functions with other neighbors that are fluid elements.
The different phases of the simulation model will now be discussed further,
accompany by pseudo-code.

Initialization Phase

A common practice in the initialization phase is to initialize the lattice nodes
using the equilibrium distribution function with the wanted initial macro-
scopic density ρ and macroscopic velocity ~u. In this thesis, when estimating
the permeability of porous rocks, the steady state of the velocity fields is
important. Therefore is the lattice initialized with the density ρ equal to
1.0 and the velocity ~u equal to 0.0 for each node in the lattice that is fluid
element (Algorithm 4: Line 7). The velocity ~u becomes 0.0 with each node
in the lattice initialized with the density ρ equal to 1.0.

Collision Phase

The collision phase is, in contrast to the streaming phase, completely local,
but it is also the most computational demanding phase. In the collision
phase, the macroscopic density ρ (Algorithm 5: Line 7) and the macroscopic
velocity ~u (Algorithm 5: Line 8-10) need to be computed, together with
the equilibrium distribution functions that need to be solved (Algorithm 5:
Line 13), and the relaxation of the particles distributions against equilibrium
condition (Algorithm 5: Line14). In the collision phase, the fluids are set
in motion, with some constant external force that is added to every fluid
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Algorithm 4 Pseudo code of the initialization phase.
1: for z = 0 to dz do
2: for y = 0 to dy do
3: for x = 0 to dx do
4: current← x+ y × dx + z × dx × dy
5: if fi[current] is fluid then
6: for i = 0 to 18 do
7: fi[current]← 1.0
8: end for
9: end if

10: end for
11: end for
12: end for

element in the lattice (Algorithm 5: Line 15), using equation 4.1.

fi(~x, t) = fi(~x, t) + (~ei − ~u)× f eqi × ~F

ρ(~x, t)c2
s

(4.1)

~F is the external force, and c2
s is the speed of sound, given the value of√

(1/3) [28]. The external force will add some constant value to the particle
distribution functions moving along the fluid flow direction, and subtracting
a corresponding value from the particle distribution functions moving exactly
the opposite direction [24]. At the end in the collision phase, the particle dis-
tribution functions are swapped locally (Algorithm 5: Line 17).

The collision phase is responsible for approximating the particle collisions
that happen in real fluids. The rate of change toward equilibrium is controlled
by the relaxation time τ , and determines the viscosity 4 of the fluids [45].
In the lattice Boltzmann method, the relaxation time τ is normally chosen
between 0.51 ≤ τ ≤ 2.5 [49], due to the requirements of numerical stability
for the simulations [24].

4Viscosity is the measure of a fluid’s resistance to flow.
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Algorithm 5 Pseudo code of the collision phase.
1: for z = 0 to dz do
2: for y = 0 to dy do
3: for x = 0 to dx do
4: current← x+ y × dx + z × dx × dy
5: if fi[current] is fluid then
6: for i = 0 to 18 do
7: ρ← ρ+ fi[current]
8: ux ← ux + fi[current]× eix
9: uy ← uy + fi[current]× eiy

10: uz ← uz + fi[current]× eiz
11: end for
12: for i = 0 to 18 do
13: f eqi ← wi× ρ× (1.0 + 3.0× (eix × ux + eiy × uy + eiz × uz)

+ 4.5× (eix × ux + eiy × uy + eiz × uz)2

− 1.5× (ux × ux + uy × uy + uz × uz))
14: fi[current]← fi[current]− 1

τ
× (fi[current]− f eqi )

15: fi[current]← fi[current] + (eix − ux)× f eqi
ρ× c2

s

× Fx

+ (eiy − uy)× f eqi
ρ× c2

s

× Fy

+ (eiz − ux)× f eqi
ρ× c2

s

× Fz
16: for i = 1 to 9 do
17: swap(fi[current], fi+9[current])
18: end for
19: end for
20: end if
21: end for
22: end for
23: end for

Streaming Phase

The streaming phase is responsible for the movements of particle distribu-
tion functions within the lattice. In the streaming phase, lattice nodes need
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to interact with neighbors in the lattice to exchange particle distribution
functions. In the simulation model, this is mostly swapping of particle dis-
tribution functions between memory locations (Algorithm 6: Line 9). Before
the exchange of particle distribution functions, the lattice nodes need to find
the neighbors in the lattice (Algorithm 6: Line 7).

Algorithm 6 Pseudo code of the streaming phase.
1: for z = 0 to dz do
2: for y = 0 to dy do
3: for x = 0 to dx do
4: current← x+ y × dx + z × dx × dy
5: if fi[current] is fluid then
6: for i = 1 to 9 do
7: neighbor ← getNeighbor(x, y, z, i, px, py, pz)
8: if fi[neighbor] is fluid then
9: swap(fi+9[current], fi[neighbor])

10: end if
11: end for
12: end if
13: end for
14: end for
15: end for

To find the coordinates to neigbors in the lattice, the coordinates of the
current lattice nodes are used (Algorithm 7: Line 1-3).

neighborx = currentx + eix

neighbory = currenty + eiy

neighborz = currentz + eiz

(4.2)

In our two implementations, the periodic boundary condition is built into
the finding of neighbors, by allowing or denying the lattice nodes to interact
with the opposite side of the lattice when they come close to the borders
(Algorithm 7: Line 5-27).
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Algorithm 7 Pseudo code for the find neigbhbor algorithm.
getNeighbor(x,y,z,i,px,py,pz)

1: neighborx ← x+ eix
2: neighbory ← y + eiy
3: neighborz ← z + eiz
4: if px then
5: if neighborx is −1 then
6: neighborx ← dx − 1
7: if neighborx is dx then
8: neighborx ← 0
9: end if

10: end if
11: end if
12: if py then
13: if neighbory is −1 then
14: neighbory ← dy − 1
15: if neighbory is dy then
16: neighbory ← 0
17: end if
18: end if
19: end if
20: if pz then
21: if neighborz is −1 then
22: neighborz ← dz − 1
23: if neighborz is dz then
24: neighborz ← 0
25: end if
26: end if
27: end if
28: return neighborx + neighbory × dx + neighborz × dx × dy

4.3.3 Calculate Permeability

The approach used to calculate the permeability of porous rocks and most
of the information found in this section is taken from [24].

The details of how the calculation of the permeability of porous rocks is
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realized in our CPU and GPU implementation is discussed in this section.
Figure 4.4 shows the expansion of the simulation model for the calculation
of permeability of porous rocks.
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Figure 4.4: Expansion of the simulation model for permeability calculations.

The permeability of the porous rocks is obtained directly from the gen-
erated velocity fields of the lattice Boltzmann method, together with using
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Darcy’s law for the flow of fluids through porous media [24]. The fluid flow
is driven by some external force in the simulation model, but it could also be
driven by pressure on the boundaries. The external force is expected to give
the same change in momentum as the true ∆P

L
, which is the total pressure

drop along the sample length L. By adapting Equation 3.17 the permeability
of porous rocks are directly obtained from the lattice Boltzmann simulations,
using Equation 4.3 [24].

k = −a2 ūρφν

F
(4.3)

where a is the node resolution equivalent to the lattice spacing. Driven by
some external force, the permeability is always obtained when the velocity
field is at steady state. The simulations is considered to have converged if
the change of the average velocity meets the condition described in Equation
4.4.

|ū(x, t+ 1)− ū(x, t)| < ε (4.4)
where the convergence threshold ε is chosen to be 10−9. The average

velocity is computed using Equation 4.5.

ū =
N∑
j=0

~u(~x, t)
N

=
N∑
j=0

∑q
i=0 ~eifi(~x, t)/ρ(~x, t)

N
(4.5)

where N is the number of fluid elements within the lattice.

Figure 4.5 illustrates the two types of boundary conditions that are used
in the calculation of the permeability of porous rocks. In the calculations of
the permeability, the boundaries parallel to the flow direction are made solid,
and with bounce back boundary conditions. The entry and exit boundaries
are applied with periodic boundary conditions. In order for the periodic
boundary condition to be correct in the simulations, it is common practice
to add some extra empty layers at both the entry and exit boundaries [24].

Only the interconnected (percolated) pore spaces within porous rocks
transport fluid. In the expansion of the simulation model for porosity calcu-
lations, both the disconnected and interconnected pore spaces are considered.
There is possible to identify the percolating pore spaces within porous rocks
with the Hoshen-Kopelman algorithm [24].
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Figure 4.5: Configurations of the boundaries in permeability calculations.

4.4 Floating-point Precision
The Institute of Electrical and Electronics Engineers (IEEE) standard 754,
defines a standard for floating-point arithmetic. The standard specifies the
format of the numbers, the results of the basic floating-point operations and
comparisons, and the rounding to nearest rule among many other things [29].
Since computers represent real numbers with a limited number of bits, ap-
proximations and rounding errors occur [52]. Large rounding errors occur
between two very different numbers that are added or subtracted [29]. In the
collision phase of the simulation model, the equilibrium distribution func-
tion needs to be computed with a mixture of large and small numbers that
often leads to large amount of rounding error. It was necessary to reduce
the rounding error in the simulation model when using single floating-point
precision, to get precise permeability of porous rocks. The approach used
to reduce the rounding errors used in the simulation model is taken from
[11] 5. It was left out from the previous descriptions and pseudo codes of
the simulation model, due to readability. In this approach the simplified
Bhatnagar-Gross-Krook collision operator becomes as Equation 4.6.

houti = hi + ω(heqi − hi) (4.6)
where houti = f outi −wip0, hi = fi−wip0, and heqi −wip0. The equilibrium

5www.lbmethod.org
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distribution function becomes as Equation 4.7.

heqi = wi∆p+ wi(po + ∆p)
( 3
c2 (~ei · ~u) + 9

2c4 (~ei · ~u)2 − 3
2c2~u

2
)

(4.7)

The macroscopic density ρ and the macroscopic velocity ~u becomes as
Equations 4.8 and 4.10.

ρ = p0 + ∆p (4.8)

∆p =
q∑
i=0

hi (4.9)

~u =
∑q
i=0 hi~ei

p0 + ∆p (4.10)

4.5 Data Structure
A structure-of-arrays are used to store the particle distribution functions for
both our implementations. There are 19 arrays in the structure, since there
are 19 discrete directions in the D3Q19 lattice, as illustrated in Figure 4.6.
Each array stores one discrete direction of the particle distributions functions.

Array 0

Array 1

Array 17

Array 18

Figure 4.6: Structure-of-arrays.
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4.6 CPU Implementation
Before describing the CPU implementation, we will present some optimiza-
tion guidelines for high performance.

4.6.1 Optimizations Guidelines
This section is taken from earlier work made by Eirik Ola Aksnes and Henrik
Hesland [3], and used with only some minor changes.

There are some general optimization techniques which programmers should
be acquainted with for obtaning the highest possible performance. A very
important technique for high performance is to avoid cache misses, since
most modern CPUs uses fast cache memory to reduce average time to access
main memory. The CPU will first check for the data needed in the cache
memory, and if the data is not there, it must wait for the data to be fetched
from the much slower main memory. Many programs are waiting for data to
be fetched from main memory, and therefore waste much of their execution
time. Caches rely on both spatial and temporal locality, items near a used
item might be used soon, and recently used items will likely be used again in
the near feature [30]. Data structures must therefore be set up so that the
main memory is accessed in contiguous memory segments, and data elements
need to be reused in a loop as frequently as possible [33]. Loop optimization
techniques can have huge effect on cache performance, since most of the exe-
cution time in scientific applications is used on loops. Matrix multiplication
is one example that can gain performance if the sequence of for loops is cor-
rectly arranged, by allowing an optimal data array access pattern. If the data
needed is in continuous memory, the next elements needed are more likely
to be in the cache. Cache locality can be improved by dividing the matrix
into smaller sub matrixes, and chosing the optimal block size that will fit
into cache. The size of the sub matrix will be system dependent, since the
different systems have different cache size.

Another feature of today’s processor architectures is the long execution
pipeline, which offers significant execution speedups when kept full. By
pipelining, several instructions can be overlapped in parallel. Branch predi-
cation is used to ensure that the pipeline is kept full, by guessing which way
the branch is most likely to go. It has significant impact on performance, by
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letting processors fetch and start instructions without waiting for the branch
to be determined. A conditional branch is a branch instruction that can be
either taken or not taken. If the processor makes the wrong guess in a con-
ditional branch, the pipeline needs to be flushed, and all computation before
the branch point becomes unnecessary. It can therefore be advantageous to
eliminate such conditional branches in performance critical code. One tech-
nique that can be used to eliminate branches and data dependencies is to
unroll loops [1]. One should also try to reduce the use of if-statements as
much as possible inside the inner loops.

4.6.2 Details

The CPU implementation is similar to the pseudo code described in Section
4.7.3. It uses only one processor core, and are made to evaluate the computa-
tional exactness and performance of the GPU implementation. Algorithm 8
shows pseudo code of the CPU implementation. In the CPU implementation
the lattice nodes are accessed sequential.

Algorithm 8 CPU implementation pseudo code.
1: Initialize lattice
2: Load porous dataset
3: Set boundaries on porous dataset
4: while new time step is needed do
5: for all n nodes in lattice do
6: n.collide()
7: n.stream()
8: end for
9: Compute the average velocity

10: Check for convergence
11: end while
12: Compute the kinematic viscosity
13: Compute the porosity
14: Compute the permeability
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4.7 GPU Implementation
Before we describing the GPU implementation, we present some optimization
guidelines for high performance.

4.7.1 Optimizations Guidelines
This section is taken from earlier work made by Eirik Ola Aksnes and Henrik
Hesland [3], and used with only some minor changes.

For high performance of applications on NVIDIA GPUs using NVIDIA
CUDA, the knowledge of the hardware architecture is important. The pri-
mary performance element of the GPU is the large number of computation
cores. To exploit this, a massive multithreaded program should be imple-
mented. The number of thread blocks used simultaneously on a Streaming
Multiprocessor (SM) is restricted by the number of registers, shared memory,
maximum number of active threads per SM, and number of thread blocks pr
SM at a time should therefore be configured carefully in proportion to these.
One of the problems with a GPU implementation is the communication la-
tency. For computations, there should be as little communication as possible
between the CPU and GPU, and often some time can be saved by doing
the same computation several times, before loading the answers between the
CPU and GPU. The massive parallelization of threads is also important for
hiding latency. A modern GPU contains several types of memory, with dif-
fernt latiencies. To reduce bandwidth usage, it is recommended to use shared
memory where it is possible. Shared memory is divided into banks, where
access to the same bank only can be done sequentially, but access to different
banks can be done in parallel. The threads should therefore be grouped to
avoid this memory conflict. Another function that should be used as little
as possible is synchronization. This can cause many threads to wait a long
time for another thread to finish up, and can slow down the computation
significantly.

4.7.2 Profiling
Most of the information found in this section is based on NVIDIA’s program-
ming guide for NVIDIA CUDA [12].
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code {
name =
__globfunc__Z23streamAndSwapGPU_kernel14cudaPitchedPtr3PDFjiii
lmem = 0
smem = 124
reg = 9

}

Figure 4.7: Section from Cubin file.

Several helpful profiling tools are available to gather information about
the performance critical parts of the GPU kernels to achieve high perfor-
mance.

NVIDIA CUDA Visual Profiler

With the NVIDIA CUDA Visual Profiler, it is possible to generate visual
profiles of the kernel’s resource usage during execution. The NVIDIA CUDA
Visual Profiler is capable of giving precise statistics of several performance
critical aspects. Some of the most useful statistics for high performance are
[14]:

• Number of coalesced global memory loads and stores
• Number of non-coalesced global memory loads and stores
• Number of local memory loads and stores
• Kernel occupancy
• Number of divergent branches
• Number of warps serialized

Cubin Files

By adding the extra parameter -cubin to the compiler, there is possible to
generate so-called Cubin files from the NVIDIA CUDA source files. The
generated files can be opened in regular text editors, and provide helpful
information about kernel resource usage of particularly interest are the num-
ber of registers, shared memory and local memory used per thread [16, 12].
Figure 4.7 shows an example of section found in generated Cubin file.
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In the Cubin file the lmen is the amount of local memory, smen is the
amount of shared memory, and reg is the number of registers used per thread
in the kernel streamAndSwapGPU kernel.

NVIDIA CUDA Occupancy Calculator

The NVIDIA CUDA occupancy calculator is a spreadsheet provided by
NVIDIA, which can be used to calculate the multiprocessor occupancy. The
multiprocessor occupancy is the ratio of active warps per multiprocessor to
the maximum number of active warps. The NVIDIA Quadro FX 5800 used
in this thesis contains 16384 registers per streaming multiprocessor, and 16
KB of shared memory shared among all threads during execution. With the
NVIDIA CUDA occupancy calculator, is possible to determine the maximum
number of active threads given the limited number of registers and shared
memory available. Higher multiprocessor occupancy results in more warps
active, which can be used to hide the global memory latency [16, 12]. The
NVIDIA CUDA occupancy calculator takes the number of registers, amount
of shared memory and local memory used per thread in your kernel as input,
which can be seen in the orange field of Figure 4.8. This information can be
found within generated Cubin files. To achieve the highest possible multipro-
cessor occupancy, one must use the minimal amount of shared memory and
registers. The NVIDIA CUDA occupancy calculator provides three graphs
showing the changes in occupancy of kernels, due to changes in block size,
register count, and shared memory usage, as illustrated in Figure 4.9.
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1.) Select Compute Capability (click): 1,0

2.) Enter your resource usage:

Threads Per Block 256

Registers Per Thread 8

Shared Memory Per Block (bytes) 2048

(Don't edit anything below this line)

3.) GPU Occupancy Data is displayed here and in the graphs:

Active Threads per Multiprocessor 768

Active Warps per Multiprocessor 24

Active Thread Blocks per Multiprocessor 3

Occupancy of each Multiprocessor 100 %

Physical Limits for GPU: 1

Threads / Warp 32

Warps / Multiprocessor 24

Threads / Multiprocessor 768

Thread Blocks / Multiprocessor 8

Total # of 32-bit registers / Multiprocessor 8192

Register allocation unit size 256

Shared Memory / Multiprocessor (bytes) 16384

Warp allocation granularity (for register allocation) 2

Allocation Per Thread Block 

Warps 8

Registers 2048

Shared Memory 2048

These data are used in computing the occupancy data in blue

Maximum Thread Blocks Per Multiprocessor Blocks

Limited by Max Warps / Multiprocessor 3

Limited by Registers / Multiprocessor 4

Limited by Shared Memory / Multiprocessor 8

Thread Block Limit Per Multiprocessor highlighted RED

CUDA Occupancy Calculator

Version: 1,5

Copyright and License

Just follow steps 1, 2, and 3 below! (or click here for help)

Figure 4.8: NVIDIA CUDA occupancy calculator.
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Figure 4.9: NVIDIA CUDA occupancy calculator.

4.7.3 Details

In the GPU implementation, every thread created during execution is re-
sponsible for performing the collision and streaming for a single lattice node.
Figure 4.10 illustrates this one-to-one mapping between threads and lattice
nodes.

To get high utilization of global memory bandwidth, the access pattern
to the global memory must be correctly aligned to achieve coalescing. A
structure-of-arrays has been proven by Habich [25] to be useful to achieve co-
alescing. Threads access the arrays in contiguous memory segments to obtain
coalescing. This enables efficient reading and writing of particle distribution
functions. Each array contains one discrete direction of the particle distribu-
tions functions. Arrays in the structure are three-dimensional, allocated as
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GPU Thread 1

GPU Thread 2

Lattice node 1

Lattice node 2

GPU Thread n-1

GPU Thread n

Lattice node n-1

Lattice node n

Figure 4.10: One-to-one mapping between threads and lattice nodes.

contiguous memory on the device using cudaMalloc3D. This function takes
the width, height, and depth of simulations as input, and pads the allocation
to meet the alignment requirements to achieve coalescing. The function re-
turns a pitch (or stride), which is the width in bytes of the allocation. This
pitch is used in the access of array elements [12].

The configuration of grids and thread blocks used to get coalesced global
memory access, and to have simulations with large lattices are shown in the
Algorithm 9 and Figure 4.12. Kernels execute as two dimensional grids of
thread blocks, with the width and height of the grids equal to the simulation
size in the y- and z- direction. Two-dimensional grids were necessary in or-
der to simulate large lattices, due to NVIDIA’s restriction of the maximum
number of threads blocks to be 65535 in one direction of the grid. Figure
4.11 shows the number of thread blocks with varying cubic lattice sizes, and
the largest lattice possible with one dimensional grid.

Thread blocks are one dimensional, with the number of threads equal to
the simulation size in the x-direction. This configuration of thread blocks re-
sults in a maximum simulation size of 512 in the x-direction, due to NVIDIA’s
restriction of the maximum number of threads within thread blocks to be 512
in the x-direction. However, the memory usage of simulations will dominate
the limitation of the number of threads per threads blocks in the x-direction.
Simulation sizes of 5123 without using temporary storage and with single
floating-point precision, result in a memory consumption of 9.5 Gigabyte.
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Figure 4.11: Number of thread blocks with varying cubic lattice size.

An additional GPU implementation using shared memory was made,
where entire thread blocks load data into shared memory for re-use. The
current maximum size of the shared memory available per multiprocessor is
16 KB, as explained in 2.2.2. This relation between the shared memory and
the number of threads within thread blocks results in the maximum simula-
tion size in the x-direction being no more than 210 lattice nodes for single
floating-point precision and 105 lattice nodes for double floating-point preci-
sion. Because of this restriction, we decided not to continue the development
and testing using shared memory.
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Algorithm 9 The configurations of grids and thread blocks in kernels.

// Kernel definition
__global__ void kernelName()
{

// Increase in the order x, y, and z to the global memory.
int x = threadIdx.x;
int grid_y = __mul24(blockIdx.y, gridDim.x);
int z = (blockIdx.x + grid_y) / height;
int y = (blockIdx.x + grid_y) - z * height;

...
}

void main()
{

dim3 blockSize(dimX);
dim3 nBlocks(dimY,dimZ);

// Defines how the GPU kernel is executed
kernelName<<<nBlocks,blockSize>>>();

}

60



C code

sequential

execution

GPU kernel

Grid 0Grid 0

Thread block 

0,0

Thread block

1,0

Thread block

dimY, dimZ

Device

Thread block 0Thread block 0ck 0

Thread

0

Thread

1

Thread

2

Thread

dimX-1

Thread

dimX

XZ

Y

Thread

0

Thread

dimX

Next thread block

Thread block

dimY-1, dimZ-1

Figure 4.12: The configurations of grids and thread blocks in kernels.
Adapted from [12].
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Chapter 5

Benchmarks

This chapter presents and discusses several measurements of our implemen-
tations of the lattice Boltzmann method, described in the previous chapter.

In particular, Section 5.1 describes the software and hardware config-
uration of the machine that was used to obtain the measurements of our
implementations, and the testing methodology. Section 5.2 validates the nu-
merical exactness and correctness of our implementations, by comparing the
numerical results of fluid flow between two parallel plates to known analytical
solutions. Section 5.3 presents and discusses profiling results of the collision
phase and streaming phase. Section 5.4 discusses several restrictions to the
simulations sizes. Section 5.5 presents and discusses performance results of
running our implementations with different cubic lattice sizes ranging from
83 up to 3683. Section 5.6 discusses our implementations ability to calculate
the permeability of porous rocks. Section 5.7 present visual results from our
implementations of the lattice Boltzmann method.

5.1 Test Environment and Methodology
The machine that was used to obtain the measurements of our implemen-
tations is shown in Table 5.1. The NVIDIA Quadro FX 5800 GPU used is
targeted towards professional graphics solutions, and provides high memory
bandwidth, and large memory size. The NVIDIA Quadro FX 5800 is de-
signed to handle the most demanding challenges for geophysicists, scientists,
designers, engineers, and others that need ultra-high-end graphics solutions
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[13].

Table 5.1: The test machine that was used to obtain the measurements.

CPU Intel Core 2 Quad Processor Q9550
Processor Clock 2.83 GHz
Bus Speed 1333 MHz
L2 Cache Size 12 MB
L2 Cache Speed 2.83 GHz
GPU NVIDIA Quadro FX 5800
Streaming Multiprocessors 30
Stream Processors 240
Processor Clock 1.3 GHz
Memory Size 4 GB
Memory Bandwidth 102 GB/s
Compute Capability 1.3
Memory Corsair XMS3 DHX
Quantity 8 GB
Memory Type DDR3 SDRAM
Memory Speed 1333 MHz
Memory Latency 9-9-9-24
Motherboard ASUS P5E3 Premium

Measurements of our implementations were obtained using the Microsoft
Windows XP 64-bit operating system. We had exclusive access to the system
while collecting the measurements. Since graphics rendering is not vital to
either performance measurements or the calculation of the permeability of
porous rocks, it was disabled during the measurements. This avoided graph-
ics rendering interference with the measurements results.

The performance of our implementations is measured in MLUPS (million
lattice nodes updates per second), to an average of two decimal of precision.
This metric indicates the number of lattice nodes that is updated in one
second [40]:

MLUPS = n

tstreaming + tcollision
(5.1)
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where n is the number of million lattice nodes, tstreaming is the time used
for the streaming phase and tcollision is the time used for the collision phase
of the lattice Boltzmann method. The QueryPerformanceCounter is used
to measure in high-resolution the time used for the collision phase and the
streaming phase of the lattice Boltzmann method. Presented performance
measurements are based on the arithmetic average over 25 iterations.

To distinguish between the different implementations and the floating-
point precision used in the measurements, abbreviations will be used hence-
forth, which are listed in Table 5.2.

Table 5.2: Measurements abbreviations.

Abbreviation Description
CPU Measurement of the the CPU implementation
GPU Measurement of the the GPU implementation
32 32-bit floating-point precision used.
64 64-bit floating-point precision used.

5.2 Poiseuille Flow

Figure 5.1: Fluid flow between two parallel plates.

In Poiseuille Flow the analytical solutions of the velocity profile are known.
To validate the numerical correctness and exactness of our two implementa-
tions, the numerical velocity profile of fluid flow between two parallel plates
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was compared to known analytical solutions. The fluid flow between two
parallel plates that are shown in Figure 5.10, has the lattice dimension of
323. The analytical velocity profile of the fluid flow between two parallel
plates, which is parabolic and with the flow highest in the middle, can be
found with Equation 5.2 [55, 21].

ux(y) = G

2µ(L2 − y2) (5.2)

where G is some constant external force that accelerate the fluid, µ is the
dynamic viscosity of the fluid, and L is half the size of the lattice dimension
in the y direction. In the Poiseuille Flow simulation, two types of boundary
conditions were used: bounce back boundaries along the two parallel plates
and periodic boundaries in the x, y, and z direction for conservation of fluid
particles. The values of the parameters that were used in the Poiseuille Flow,
for the single relaxation parameter and the external force are listed in Table
5.3.

Table 5.3: Parameter values used in the Poiseuille Flow.

Parameter Value
τ 0.65
Fx 0.00001
Fy 0.0
Fz 0.0

The Poiseuille Flow simulations were performed with single and double
precision. Figure 5.2 compares the velocity profile of the correct analytical
solutions to the numerical solutions, showing that the fluid flows are recov-
ered with great accuracy. The solid lines show the analytical solution, and
the circles are the numerical results obtained from the Poiseuille Flow simu-
lations. Table 5.4 shows the measured deviations between the numerical and
analytical solutions.
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Figure 5.2: Comparison of numerical and analytical velocity profiles.

Table 5.4: Measured deviation in the Poiseuille Flow.

Implementation Deviation
CPU 32 1.680030e-006
CPU 64 1.622238e-006
GPU 32 1.680030e-006
GPU 64 1.622254e-006
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5.3 Kernel Profiling
The GPU implementation was profiled to find the processing time of the
collision phase and streaming phase with single floating-point precision. We
used a cubic lattice of size 803, filled only with fluids elements. Only the
initial phase, collision phase, and the streaming phase were enabled during
profiling. Figure 5.3 shows the results of the relative distribution of the
processing time between the collision phase and the streaming phase. The
streaming phase used almost 36% of the processing time, which is because
the lattice nodes interact with neighbors in the lattice to exchange particle
distribution functions. The collision phase used almost 63% of the process-
ing time, due to the calculations that takes places with the relaxation of the
particles distributions against equilibrium condition. The memory copying
used almost 1% of the processing time, which is because of the transfer of the
initial lattice configuration to GPU memory once at startup. This memory
copying is unnecessary, and the lattice could have been initialized directly on
the GPU.

Streaming Phase 36%

Collision Phase 63%

Memory Copying 1%

Figure 5.3: GPU implementation processing time of the collision phase and
streaming phase.
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5.4 Simulation Size Restrictions
The NVIDIA Quadro FX 5800 card used has 16384 registers and 16 KB
shared memory available per multiprocessor. Threads of all thread blocks
running on a multiprocessor must share these registers and shared memory
during execution [25]. Kernels will fail to lunch if threads uses more registers
or shared memory than available per multiprocessor [12]. Table 5.5 shows
the number of available registers per thread with varying block size.

Table 5.5: Registers available with varying block size.

Block size 256 320 384 448 512 576 640 704 768
Registers available 64 51 42 36 32 28 25 23 21

In the stream and collide kernels, thread blocks are one dimensional with
the number of threads equal to simulation size in the x-direction. To find
the amount of local memory, shared memory and number of registers used
per thread in the stream and collide kernels, we generated Cubin files from
the NVIDIA CUDA source files. The registers count and shared memory
usage of the stream and collide kernels have been minimized to support large
simulations sizes in the x-direction. Table 5.6 shows the resulting maximum
simulations sizes in the x-direction, due to the stream and collide kernels
amount of local memory, shared memory and number of registers used per
thread.

The most memory demanding parts of the implementations is the structure-
of-arrays used to store the particle distribution functions, together with the
array used to store the porous rocks models. Table 5.4 shows the growth in
memory requirements with varying cubic lattice sizes, and the largest cubic
lattice sizes that can be run with single and double precision without running
out of global memory.
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Table 5.6: Maximum simulation sizes in the x-direction due to register and
shared memory usage per thread.

Local Shared Registers Maximum
Implementation Memory Memory Count Size
GPU 32 stream 0 byte 128 bytes 13 Above 768
GPU 64 stream 0 byte 128 bytes 16 Above 768
GPU 32 collide 0 byte 144 bytes 20 Above 768
GPU 64 collide 56 bytes 144 bytes 30 Up to 576
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Figure 5.4: Memory requirements with varying cubic lattice sizes.

5.5 Performance Measurements

In order to measure the performance of our CPU and GPU implementation,
cubic lattice sizes ranging from 83 up to 3683 were used. The cubic lattices
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were filed only with fluid elements, so that no extra work was required for
solid-fluid interfaces. Table 5.7 and Figure 5.5 show the results of the per-
formance measurements of our CPU and GPU implementations, which are
based on the arithmetic mean over 25 iterations. Figure 5.6 shows the total
time used to complete the 25 iterations.

Table 5.7: Performance results in MLUPS.

Lattice CPU CPU GPU GPU
Size 32 64 32 64

8 1.59 1.37 2.38 2.06
16 1.58 1.40 15.90 12.19
32 1.42 1.22 74.40 38.92
48 1.54 1.34 125.64 53.08
64 1.27 1.15 91.99 55.67
80 0.95 1.15 83.97 60.17
96 1.27 1.15 171.40 61.25
112 1.16 1.09 171.61 61.47
128 1.24 1.14 112.32 60.41
144 1.26 1.15 178.81 62.10
160 1.25 1.13 180.34 62.54
176 1.25 1.11 178.04 63.00
192 1.34 1.13 121.86 61.97
208 1.31 1.12 178.23 62.60
224 1.36 1.13 183.08 63.35
240 1.28 1.09 149.06 60.67
256 1.31 1.14 112.05 61.27
272 1.31 1.13 181.28 61.53
288 1.35 1.14 182.79 61.87
304 1.34 - 180.35 -
320 1.34 - 115.41 -
336 1.31 - 155.83 -
352 1.33 - 184.30 -
368 1.30 - 180.19 -
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Figure 5.5: Performance results in MLUPS.
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Figure 5.6: Overall execution time of performance measurements.

As we can see from Table 5.7 and Figure 5.5, the GPU implementation
clearly outperforms the CPU implementation in performance. Both CPU
and GPU implementations achieved their highest performance using single
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Figure 5.7: GPU 32 occupancy with varying registers count, generated with
the NVIDIA CUDA occupancy calculator.
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Figure 5.8: GPU 64 occupancy with varying registers count, generated with
the NVIDIA CUDA occupancy calculator.

floating-point precision. CPU 32 and GPU 32 achieved the maximum per-
formance equal to 1.59 MLUPS and 184.30 MLUPS. CPU 64 and GPU 64
achieved maximum performance equal to 1.40 MLUPS and 63.35 MLUPS.
Highest performance of the CPU 32 and CPU 64 was with lattice sizes smaller
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than 643 and 483, since the lattices fits into cache memory. GPU 32 and GPU
64 performance increased quickly with lattice sizes up to 963 and 483, since
there was available computing capacity.

The performance difference between the GPU 32 and GPU 64 is because
NVIDIA GPUs have more capacity for computing with single precision than
with double precision, and because the GPU 32 and GPU 64 have some dif-
ferences in occupancy. We used the NVIDIA CUDA occupancy calculator to
calculate the maximum multiprocessor occupancy of the collide and stream
kernels, using the number of registers, amount of shared memory and local
memory used per thread as input. The GPU 32 stream kernel has maximum
occupancy of 100%. The GPU 64 stream kernel has maximum occupancy
of 100%. The GPU 32 collide kernel has maximum occupancy of 75%. The
GPU 64 collide kernel has maximum occupancy of 50%.

Occupancy is important, because there is not enough computational work
in the collision phase and the streaming phase to keep the multiprocessors
busy without sufficient occupancy. With 100 % occupancy more warps are
processed, which can be used to hide global memory latency. To get the
highest possible occupancy, the number of registers must be restricted and
shared memory usage per thread must be minimized to be able to run more
thread blocks in parallel. Figure 5.9 shows the current amount of registers
used by the CPU 32 and GPU 64 collide kernel, and the amount needed to
get better occupancy. A better occupancy would be possible for the CPU 32
and GPU 64 collide kernel if the number of registers were reduced to 16 and
20. This would give the CPU 32 and GPU 64 collide kernel with the right
block size 100% and 75% occupancy. The local memory usage of the GPU 64
should also be removed to increase performance. The turbulent performance
of the GPU 32 is caused of the changes in occupancy of the collide kernel,
due to changes in thread block sizes, as illustrated in Figure 5.9.

5.6 Porous Rock Measurements
In order to evaluate our implementations ability to calculate the permeability
of porous rocks, three porous datasets with the known permeability provided
by Numerical Rocks AS were used. Porosity that reflects only the intercon-
nected pore spaces within the three porous datasets calculated by Numerical
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Figure 5.9: GPU 32 occupancy with varying block size, generated with the
NVIDIA CUDA occupancy calculator.

Rocks AS was also used. The values of the single relaxation parameter and
the external force used in the calculations of the permeability of the three
porous datasets, are listed in Table 5.8.

Table 5.8: Parameter values used in the porous rocks measurements.

Parameter Value
τ 0.65
Fx 0.00001
Fy 0.0
Fz 0.0

In the simulations, the configurations of the boundaries parallel to the flow
direction were made solid, and with bounce back boundary conditions. The
entry and exit boundaries were given periodic boundary conditions. There
were also 3 empty layers of void space added at both the entry and exit
boundaries. Simulations were run until velocity fields reached a steady state,
before calculating the permeability of the three porous datasets.
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5.6.1 Symmetrical Cube

Figure 5.10: Fluid flow through the symmetrical cube.

The symmetrical cube dataset shown in Figure 5.10 has the lattice size
of 803, with known permeability equal to 22 mD. The symmetrical cube
dataset porosity is 16 %. Table 5.9 shows the results of our performance
measurements and calculated permeability. Figure 5.11 compare our results
in bar graphs.

Table 5.9: Symmetrical Cube performance and computed permeability re-
sults.

Implementation Average Maximum Total Number Of Permeability
MLUPS MLUPS Time Iterations Obtained

CPU 32 0.97 0.98 16.2 s 131 22.37 mD
GPU 32 28.90 30.53 0.5 s 131 22.37 mD
CPU 64 0.96 0.98 16.3 s 131 22.37 mD
GPU 64 14.55 14.98 1.0 s 131 22.37 mD

GPU 32 was the fastest of the implementations with the total simulation
time equal to 0.5 seconds. All of the implementations calculated the per-
meability within reasonable deviation, with the relative error equal to 1.6%
and the absolute error equal to 0.37. GPU 32 obtained the highest average
performance at 28.90 MLUPS.
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Figure 5.11: Symmetrical Cube performance and computed permeability re-
sults.

5.6.2 Square Tube

Figure 5.12: Fluid flow through the Square Tube.

The square tube dataset demonstrated handling of free fluid flow. The
square tube dataset shown in Figure 5.12 has the lattice size of 200×100×100,
with the known permeability equal to 216 D. The square tube dataset poros-
ity is 81 %. Table 5.10 shows the results of our performance measurements
and computed permeability’s. Figure 5.13 compare our results in bar graphs.
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Table 5.10: Square Tube performance and computed permeability results.

Implementation Average Maximum Total Number Of Permeability
MLUPS MLUPS Time Iterations Obtained

CPU 32 1.35 1.36 1284.3 min 62221 233.52 D
GPU 32 166.14 167.58 10.4 min 61893 233.39 D
CPU 64 1.08 1.09 1597.1 min 61957 233.44 D
GPU 64 58.40 59.33 29.7 min 61957 233.44 D

GPU 32 was the fastest of the implementations, with the total simulation
time equal to 10.4 minutes. All of the implementations calculated the per-
meability within deviation, with the maximum relative error equal to 7.1%
and the absolute error equal to 15.52. GPU 32 obtained the highest average
performance equal to 166.14 MLUPS. CPU 32 used 62221 iterations before
it converged, which was the highest number of iterations.
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Figure 5.13: Square Tube performance and computed permeability results.
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5.6.3 Fontainebleau

Figure 5.14: Fluid flow through the Fontainebleau.

The Fontainebleau dataset shown in Figure 5.14 has the lattice dimension
of 3003, with the known permeability equal to 1300 mD. The Fontainebleau
dataset porosity is 16 %. Note that the Fontainebleau data set was too large
to allocate with double precision on the GPU. Table 5.11 shows the results
of our performance measurements and computed permeability. Figure 5.15
compare our results in bar graphs.

Table 5.11: Fontainebleau performance and computed permeability results.

Implementation Average Maximum Total Number Of Permeability
MLUPS MLUPS Time Iterations Obtained

CPU 32 1.03 1.04 2152 s 445 1247.80 mD
GPU 32 58.81 59.15 38.0 s 445 1247.81 mD
CPU 64 0.94 0.94 2375.4 s 445 1247.80 mD

GPU 32 was the fastest of the implementations with the total simula-
tion time equal to 38.0 seconds. All of the implementations calculated the
permeability within deviation, with the relative error equal to 4.0% and the
absolute error equal to 53. GPU 32 obtained the highest average performance
equal to 58.81 MLUPS.
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Figure 5.15: Fontainebleau performance and computed permeability results.

5.6.4 Discussion
To obtain matching calculations of porous rock permeability from the CPU
and GPU implementations with single and double floating-point precision it
was necessary to reduce the rounding errors that occurred in the simulation
model. Figure 5.16 shows permeability progression with and without reduced
rounding error for the Symmetrical Cube dataset. Figure 5.17 shows in detail
the last 20 iterations of the permeability progression, to see that the CPU
and GPU implementations with reduced rounding error and single precision
are matching.

80



0 200 400 600 800 1000 1200 1400 1600
20

20.5

21

21.5

22

22.5

23

23.5

24

Iteration

k
 [

m
D

]

 

 

GPU 32

CPU 64

CPU 32

GPU 32 Reduced Rounding Error

CPU 32 Reduced Rounding Error 

Figure 5.16: Symmetrical Cube: with and without reduced rounding error.
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Figure 5.17: Symmetrical Cube: with and without reduced rounding error,
last 20 iterations.
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5.7 Visual Results
In this section, we present visual results from our implementations of the lat-
tice Boltzmann method. The Fontainebleau is used to show the implemented
visual support, with 3 extra empty layers of void space at both the entry and
exit boundaries. The configurations of the boundaries parallel to the flow
direction were made solid, and with bounce back boundary conditions. The
entry and exit boundaries were given periodic boundary conditions. Open
pores parallel to the flow direction was made visible in the visualization of
the Fontainebleau. Figure 5.18 shows the fluid flow direction. Figures 5.19
and 5.20 show the first 8 iterations of fluid flows through the pore geometry
of the Fontainebleau. Figures 5.19 and 5.20 show the first 8 iterations of how
fluids flow inside the pore geometry.

Flow direction

(x-direction)

Figure 5.18: Fluid flow direction in visual results.
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Figure 5.19: The first 4 iterations of fluid flow through Fontainebleau.
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Figure 5.20: The 5th to 8th iterations of fluid flow through Fontainebleau.
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Figure 5.21: The first 4 iterations of fluid flow inside Fontainebleau.
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Figure 5.22: The 5th to 8th iterations of fluid flow inside Fontainebleau.
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Chapter 6

Conclusions and Future Work

State-of-the-art Graphics Processing Units (GPUs) offer applications the po-
tential to harvest amazing amounts of compute power, by computing several
hundred instructions simultaneously. Because of this highly parallel archi-
tecture, modern GPUs are used to accelerate a wide range of scientific ap-
plications which earlier required clusters of workstations or large expensive
supercomputers. Since it would be very valuable for the petroleum industry
to analyze petrophysical properties of porous rocks, such as the porosity and
permeability, through computer simulations, the goal of this thesis was to
see if such simulations could benefit from GPU acceleration.

In this thesis, we accelerated the previously paralellized lattice Boltzmann
method for the GPU, using the NVIDIA CUDA programming environment.
The method is used to estimate porous rock’s ability to transmit fluids. In
order to better analyze our results, both parallel CPU and GPU implemen-
tations of the lattice Boltzmann method were developed and benchmarked
using three porous datasets provided by Numerical Rocks AS 1 where the
permeability of each dataset was known. This also allowed us to evaluate
the accuracy of our results.

To be able to support as large lattice sizes, the register count and shared
memory usage of the kernels were minimized. The configuration of grids
and thread blocks of the kernels were properly configured. The sizes of the
lattices in our simulations were limited by the memory size of the current

1http://www.numericalrocks.com/
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GPUs. Our GPU implementation supported lattice sizes up to 3683 (with sin-
gle floating-point precision), which fit into the 4 GB memory of the NVIDIA
Quadro FX 5800 card. Current GPUs have 32-bit addressing, indicating that
addressing much more memory than we did for this thesis would require a
major architectural change, but will inevitably happen. Future GPUs with
more memory should then be able to alleviate our memory size problem. See
our next section for suggestion to obtain more memory with clusters of GPUs.

Using single floating-point precision helped the memory situation some,
but was also particularly advantageous for our GPU implementation, since
the NVIDIA GPUs provided about 4 times more cores with single floating-
point precision than with double floating-point precision. However, with
single floating-point precision, our implementations were prone to round-off
errors. This influenced the accuracy and stability of our simulations, and
hence the quality of the permeability estimates of porous rocks. However,
for the petroleum industry it is important to get permeability estimates of
porous rocks as close to the real-world conditions as possible.

We reduced these round-off errors by looking at the calculations. In the
collision phase of the lattice Boltzmann method, the equilibrium distribu-
tion function needed to be evaluated with typically a mixture of large and
small numbers that are added and subtracted. Large round-off errors occur
between two very different numbers that are added or subtracted. To reduce
the round-off errors in our implementation, we hence used an approach that
evaluates an equilibrium distribution function without the mixture of large
and small numbers [11] 2. This allowed us to obtain the matching estimates
of porous rock’s permeability with both single and double floating-point pre-
cision.

Our development efforts showed that it is possible to simulate fluid flow
through the complicated geometries of porous rocks with high performance
on modern GPUs. Our GPU implementations clearly outperformed our
CPU implementation, in both single and double floating-point precision.
Both implementations achieved their highest performances when using sin-
gle floating-point precision, resulting in their maximum performance equal to
1.59 MLUPS and 184.30 MLUPS, respectively for datsets of size 83 by 3523,

2www.lbmethod.org
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where MLUPS is the measurement of million lattice nodes updates per sec-
ond (indicating the number of lattice nodes that is updated in one second).
Suggestions for improving these results are include in the next section.

6.1 Future Work
There are several extensions that can be made to this thesis:

• Maximum simulation lattice size in the simulations is limited by the
memory capacity of the system. The 32-bit architecture of current
GPUs limit the maximum size of the memory that can be referenced
to 4 GB. One way to compensate for this is to use multiple GPUs.
One such system is the rackmounted NVIDIA s1070 which has 4 GPUs
similar to the FX8800 we tested with 16GB of mememory on each
GPU.
• Use of grid refinement for the improved analysis of the fluid flow inside

the narrow pore geometry of the porous rocks.
• Storing only fluid elements, this will reduce memory usage, since the

porous rocks of interest often have small pore geometries.
• Extenting the lattice Boltzmann simulation model to perform multi-

phase fluid dynamics.

Given the importance for the petroleum industry of getting good fluid
simulations of porous rocks, we expect that this will continue to be a great
area of research. Flows through porous materials are also be of interest to
other fields, including medicine.
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Boltzmann Method on Optimal Sampling Lattices. IEEE Transactions
on Visualization and Computer Graphics, 15(4):630–641, 2009.

[5] Mark Knackstedt Andreas Kayser and Murtaza Ziauddin. A Closer Look
at Pore Geometry. Schlumberger Oilfield Review, 2006.

[6] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro,
Joseph James Gebis, Parry Husbands, Kurt Keutzer, David A.
Patterson, William Lester Plishker, John Shalf, Samuel Webb Williams,
and Katherine A. Yelick. The Landscape of Parallel Computing
Research: A View from Berkeley. Technical Report UCB/EECS-
2006-183, EECS Department, University of California, Berkeley,
Dec 2006. http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/
EECS-2006-183.html Last retrived 15.06.2009.

91

http://www.parallel.ru/ftp/computers/intel/optimization/ia32_optimization_ref_manual.pdf
http://www.parallel.ru/ftp/computers/intel/optimization/ia32_optimization_ref_manual.pdf
http://www.parallel.ru/ftp/computers/intel/optimization/ia32_optimization_ref_manual.pdf
http://www.jyu.fi/static/fysiikka/vaitoskirjat/2005/urpo_aaltosalmi.pdf
http://www.jyu.fi/static/fysiikka/vaitoskirjat/2005/urpo_aaltosalmi.pdf
http://www.idi.ntnu.no/~elster/master-studs/aksnes-hesland-MSproj.pdf
http://www.idi.ntnu.no/~elster/master-studs/aksnes-hesland-MSproj.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html


[7] P. Bourke. Polygonising a scalar field. http://local.wasp.uwa.edu.
au/˜pbourke/geometry/polygonise/ Last retrived 30.12.2008, May
1994.

[8] D. A. Caughey and M. M. Hafez, editors. Frontiers of Computational
Fluid Dynamics 2002. World Scientific Publishing Co. Pte. Ltd., 2002.

[9] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W.
Sheaffer, and Kevin Skadron. A performance study of general-purpose
applications on graphics processors using cuda. J. Parallel Distrib. Com-
put., 68(10):1370–1380, 2008.

[10] Hudong Chen, Shiyi Chen, and William H. Matthaeus. Recovery of the
Navier-Stokes equations using a lattice-gas Boltzmann method. Phys.
Rev. A, 45(8):R5339–R5342, Apr 1992.

[11] Bastien Chopard. How to improve the accuracy of Lattice Boltzmann
calculations. http://www.lbmethod.org/ Last retrived 23.05.2009,
May 2008. www.lbmethod.org.

[12] NVIDIA Corporation. NVIDIA CUDA Compute Unified De-
vice Architecture. Programming Guide Version 2.0. http:
//developer.download.nvidia.com/compute/cuda/2_0/docs/
NVIDIA_CUDA_Programming_Guide_2.0.pdf Last retrived 15.06.2009.

[13] NVIDIA Corporation. Product Overview. http://www.nvidia.com/
page/products.html Last retrived 01.04.2009.

[14] NVIDIA Corporation. Readme for NVIDIA CUDA Visual Pro-
filer Version 2.2. http://developer.download.nvidia.com/compute/
cuda/2_2/toolkit/docs/cudaprof_1.2_readme.html Last retrived
01.04.2009.

[15] NVIDIA Corporation. Using Vertex Buffer Objects. http://
developer.nvidia.com/attach/6427 Last retrived 01.04.2009, Octo-
ber 2003. White Paper.

[16] NVIDIA Corporation. The CUDA Compiler Driver NVCC. http://
moss.csc.ncsu.edu/˜mueller/cluster/nvidia/2.0/nvcc_2.0.pdf
Last retrived 01.04.2009, April 2008.

92

http://local.wasp.uwa.edu.au/~pbourke/geometry/polygonise/
http://local.wasp.uwa.edu.au/~pbourke/geometry/polygonise/
http://www.lbmethod.org/
www.lbmethod.org
http://developer.download.nvidia.com/compute/cuda/2_0/docs/NVIDIA_CUDA_Programming_Guide_2.0.pdf
http://developer.download.nvidia.com/compute/cuda/2_0/docs/NVIDIA_CUDA_Programming_Guide_2.0.pdf
http://developer.download.nvidia.com/compute/cuda/2_0/docs/NVIDIA_CUDA_Programming_Guide_2.0.pdf
http://www.nvidia.com/page/products.html
http://www.nvidia.com/page/products.html
http://developer.download.nvidia.com/compute/cuda/2_2/toolkit/docs/cudaprof_1.2_readme.html
http://developer.download.nvidia.com/compute/cuda/2_2/toolkit/docs/cudaprof_1.2_readme.html
http://developer.nvidia.com/attach/6427
http://developer.nvidia.com/attach/6427
http://moss.csc.ncsu.edu/~mueller/cluster/nvidia/2.0/nvcc_2.0.pdf
http://moss.csc.ncsu.edu/~mueller/cluster/nvidia/2.0/nvcc_2.0.pdf


[17] David Lee Davidson. The Role of Computational Fluid Dynamics in
Process Industries. The Bridge, 32(4), 2002.

[18] Stefan Donath. On Optimized Implementations of the Lattice Boltz-
mann Method on Contemporary High Performance Architectures.
http://www.rrze.uni-erlangen.de/dienste/arbeiten-rechnen/
hpc/Projekte/Donath.pdf Last retrived 15.06.2009, 2004. University
of Erlangen-Nuremberg.

[19] Alexander Dreweke. Implementation and Optimization of
the Lattice Boltzmann Method for the Jackal DSM System.
http://www10.informatik.uni-erlangen.de/Publications/
Theses/2005/Dreweke_BA_05.pdf Last retrived 15.06.2009, 2005.
Friedrich-Alexander-Universität.

[20] Robin Eidissen. Utilizing GPUs for Real-Time Visualization of Snow.
http://daim.idi.ntnu.no/masteroppgave?id=4327, 2009. Norwe-
gian University of Science and Technology.

[21] Simon T. Engler. Benchmarking the 2D Lattice Boltzmann BGK Model.

[22] Alphonsus Fagan. An introduction to the petroleum industry. http:
//www.nr.gov.nl.ca/mines&en/education/intro.pdf Last retrived
04.02.2009, November 1991. Goverment of newfoundland and labrador
Department of Mines and Energy.

[23] U. Frisch, B. Hasslacher, and Y. Pomeau. Lattice-Gas Automata for the
Navier-Stokes Equation. Phys. Rev. Lett., 56(14):1505–1508, Apr 1986.

[24] Dmitry B. Silin Guodong Jin, Tad W. Patzek. Direct Prediction Of The
Absolute Permeability of Unconsolidated and Consolidated Reservoir
Rock. SPE 90084, September 2004.

[25] J Habich. Performance Evaluation of Numeric Compute Kernels
on nVIDIA GPUs. http://www10.informatik.uni-erlangen.de/
Publications/Theses/2008/Habich_MA08.pdf, June 2008. Friedrich-
Alexander-Universität.

[26] J. Hardy, Y. Pomeau, and O. de Pazzis. Time evolution of a two-
dimensional model system. I. Invariant states and time correlation func-
tions. Journal of Mathematical Physics, 14(12):1746–1759, 1973.

93

http://www.rrze.uni-erlangen.de/dienste/arbeiten-rechnen/hpc/Projekte/Donath.pdf
http://www.rrze.uni-erlangen.de/dienste/arbeiten-rechnen/hpc/Projekte/Donath.pdf
http://www10.informatik.uni-erlangen.de/Publications/Theses/2005/Dreweke_BA_05.pdf
http://www10.informatik.uni-erlangen.de/Publications/Theses/2005/Dreweke_BA_05.pdf
http://daim.idi.ntnu.no/masteroppgave?id=4327
http://www.nr.gov.nl.ca/mines&en/education/intro.pdf
http://www.nr.gov.nl.ca/mines&en/education/intro.pdf
http://www10.informatik.uni-erlangen.de/Publications/Theses/2008/Habich_MA08.pdf
http://www10.informatik.uni-erlangen.de/Publications/Theses/2008/Habich_MA08.pdf


[27] Xiaoyi He and Li-Shi Luo. Theory of the lattice Boltzmann method:
From the Boltzmann equation to the lattice Boltzmann equation. Phys.
Rev. E, 56(6):6811–6817, Dec 1997.

[28] Xiaoyi He, Xiaowen Shan, and Gary D. Doolen. Discrete boltzmann
equation model for nonideal gases. Phys. Rev. E, 57(1):R13–R16, Jan
1998.

[29] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms.
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA,
second edition, 2002.

[30] Bruce Jacob. Cache Design for Embedded Real-Time Systems. Electrical
And Computer Engineering Department, 1999.

[31] C. Korner, T. Pohl, U. Rude, N. Thurey, and T. Zeiser. Parallel Lat-
tice Boltzmann Methods for CFD Applications. Numerical Solution of
Partial Differential Equations on Parallel Computers, 51:439–465, 2006.

[32] Jonas Latt. Technical report: How to implement your DdQq dynamics
with only q variables per node (instead of 2q). http://www.lbmethod.
org/openlb/downloads/olb-tr1.pdf Last retrived 15.03.2009, 2007.
Tufts University.

[33] Börje Lindh. Application Performance Optimization. http://www.sun.
com/blueprints/0302/optimize.pdf Last retrived 01.06.2009, March
2002. Sun Microsystems AB. Sun Blueprints Online.

[34] Mats Lindh. Marching cubes. http://www.ia.hiof.no/˜borres/
cgraph/explain/marching/p-march.html Last retrived 30.12.2008,
March 2003. Computer Graphics Østfold University College.

[35] E. W. Llewellin. LBflow: an extensible lattice Boltzmann framework for
the simulation of geophysical flows. Part I: theory and implementation.
2006.

[36] J.L. Manferdelli, N.K. Govindaraju, and C. Crall. Challenges and
Opportunities in Many-Core Computing. Proceedings of the IEEE,
96(5):808–815, May 2008.

94

http://www.lbmethod.org/openlb/downloads/olb-tr1.pdf
http://www.lbmethod.org/openlb/downloads/olb-tr1.pdf
http://www.sun.com/blueprints/0302/optimize.pdf
http://www.sun.com/blueprints/0302/optimize.pdf
http://www.ia.hiof.no/~borres/cgraph/explain/marching/p-march.html
http://www.ia.hiof.no/~borres/cgraph/explain/marching/p-march.html


[37] M. D. Mccool. Scalable Programming Models for Massively Multicore
Processors. Proceedings of the IEEE, 96(5):816–831, 2008.

[38] Guy R. McNamara and Gianluigi Zanetti. Use of the Boltzmann Equa-
tion to Simulate Lattice-Gas Automata. Phys. Rev. Lett., 61(20):2332–
2335, Nov 1988.

[39] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C.
Phillips. GPU Computing. Proceedings of the IEEE, 96(5):879–899,
2008.

[40] Stuart D. C. Walsh David J. Lilja Peter Bailey, Joe Myre and Martin O.
Saar. Accelerating Lattice Boltzmann Fluid Flow Simulations Using
Graphics Processors. 2008.

[41] G Pontrelli, S Ubertini, and S Succi. The unstructured lattice boltzmann
method for non-newtonian flows. Journal of Statistical Mechanics: The-
ory and Experiment, 2009(06):P06005 (13pp), 2009.

[42] Y. H. Qian, D. D’Humieres, and P. Lallemand. Lattice BGK Models
for Navier-Stokes Equation. EPL (Europhysics Letters), 17(6):479–484,
1992.

[43] Shane Ryoo, Christopher Rodrigues, Sara Baghsorkhi, Sam Stone,
David Kirk, and Wen mei Hwu. Optimization Principles and Appli-
cation Performance Evaluation of a Multithreaded GPU Using CUDA.
In Proceedings of the 13th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pages 73–82, February 2008.

[44] E. Shirani and S. Jafari. Application of LBM in Simulation of Flow
in Simple Micro-Geometries and Micro Porous Media. African Physical
Review, 1(1), 2007.

[45] Gary D. Doolen Shiyi Chen and Kenneth G. Eggert. Lattice-Boltzmann
Fluid Dynamics: A Versatile Tool for Multiphase and Other Compli-
cated Flows. Los Alamos Science, 22, 1994.

[46] S. Succi, E. Foti, and F. Higuera. Three-Dimensional Flows in Complex
Geometries with the Lattice Boltzmann Method. EPL (Europhysics
Letters), 10(5):433–438, 1989.

95



[47] Michael C. Sukop and Daniel T. Thorne Jr. Lattice Boltzmann Model-
ing, An Introduction for Geoscientists and Engineers. Springer, Berlin,
Heidelberg, 2007.

[48] David Tarjan and Kevin Skadron. Multithreading vs. Streaming.
MSPC’08, 2, March 2008.

[49] Nils Thurey. A single-phase free-surface Lattice Boltzmann
Method. http://www10.informatik.uni-erlangen.de/˜sinithue/
public/nthuerey_030602_da.pdf Last retrived 15.06.2009, 2002.
Friedrich-Alexander-Universität.

[50] J Tolke. Implementation of a Lattice Boltzmann kernel using the Com-
pute Unified Device Architecture developed by nVIDIA. Computing and
Visualization in Science, July 2008.

[51] J. Tolke and M. Krafczyk. TeraFLOP computing on a desktop PC with
GPUs for 3D CFD. Int. J. Comput. Fluid Dyn., 22(7):443–456, 2008.

[52] Charles F. Van Loan. Introduction to scientific computing: a matrix-
vector approach using MATLAB. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 2000.

[53] G. Wellein, T. Zeiser, G. Hager, and S. Donath. On the single proces-
sor performance of simple lattice Boltzmann kernels. Computers and
Fluids, 35(8-9):910 – 919, 2006. Proceedings of the First International
Conference for Mesoscopic Methods in Engineering and Science.

[54] Barry Wilkinson and Michael Allen. Parallel Programming: Techniques
and Applications Using Networked Workstations and Parallel Computers
(2nd Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2004.

[55] Dieter A. Wolf-Gladrow. Lattice-Gas, Cellular Automata and Lattice
Boltzmann Models, An Introduction. Lecture Notes in Mathematics.
Springer, Heidelberg, Berlin, 2000.

96

http://www10.informatik.uni-erlangen.de/~sinithue/public/nthuerey_030602_da.pdf
http://www10.informatik.uni-erlangen.de/~sinithue/public/nthuerey_030602_da.pdf


Appendix A

D3Q19 Lattice

A D3Q19 lattice was used for both the implementations, with the configura-
tion of the weight factors wi and the discrete velocities ei shown in Equation
A.1 and Table A.1, taken from [32].

wi =


1/3 i = 0,
1/18 i = 1− 3, 10− 12,
1/36 i = 4− 9, 13− 18.

(A.1)

Table A.1: The discrete velocities ei for the D3Q19 lattice that was used

e0=(0,0,0)
e1=(-1,0,0) e2=(0,-1,0) e3=(0,0,-1)
e4=(-1,-1,0) e5=(-1,1,0) e6=(-1,0,-1)
e7=(-1,0,1) e8=(0,-1,-1) e9=(0,-1,1)
e10=(1,0,0) e11=(0,1,0) e12=(0,0,1)
e13=(1,1,0) e14=(1,-1,0) e15=(1,0,1)
e16=(1,0,-1) e17=(0,1,1) e18=(0,1,-1)
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Appendix B

Annotated Citations

B.1 GPU and GPGPU
[12] describes how to implement NVIDIA CUDA applications, which can be
executed on NVIDIA GPUs. It contains several fundamental optimization
guidelines for high performance using NVIDIA CUDA.

[9] describes several important implementations considerations that must be
met for high performance using NVIDIA CUDA.

[39] gives an introduction to both the history and the current of GPGPU, by
describing the background, hardware, and programming models.

B.2 Lattice Boltzmann Method
[45] gives a very accurate and brief introduction to the lattice Boltzmann
method. It presents a lot of valuable insight into some of the benefits with
the method, also concerning fluid flow through complicated geometries.

[40] and [25] describes D3Q19 model of the Lattice Boltzmann method of-
floaded to NVIDIA GPUs using NVIDIA CUDA, with several important
optimizing considerations for high performance.

[32] describes how to reduce the memory requirements by 50 %, by swapping
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instead of duplicating the particle distribution functions to temporary stor-
age in the streaming phase.

[11] describes an approach that can be used to reduce the rounding errors of
the lattice Boltzmann calculations to improve the accuracy.

[50] describes D2Q9 model of the lattice Boltzmann method offloaded to
NVIDIA GPUs using NVIDIA CUDA, with several important optimizing
considerations for high performance.

[51] describes D3Q13 model of the lattice Boltzmann method offloaded to
NVIDIA GPUs using NVIDIA CUDA, with several important optimizing
considerations for high performance.

B.3 Porous Rocks
[2] presents valuable insights into simulations of fluid flow through porous
rocks using the lattice Boltzmann method, and how to obtain the permeabil-
ity of porous materials, and its dependence on other macroscopic material
parameters.

[24] presents a method for the direct estimation of the absolute permeability
of porous rocks using the lattice Boltzmann method.
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Notur 09 Poster
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Test Case - Square Tube

Dimension of lattice: 200x100x100

Analytical permeability: 216 D Numerical permeability: 233 D 

Processing of Porous Rocks on Modern GPUs
Eirik Ola Aksens, Master Student Advisor: Anne C. Elster

Norwegian University of Science and Technology, Department of Computer and Information Science

It is important for the petroleum industry to be able to quantify 
petro-physical properties of porous rocks to gain improved
understanding of conditions that affect oil production.

Modern GPUs (Graphical Processing Units) offer with their
several hundred cores, applications the potential to
harvest amazing amounts of compute power.

In our work, we implement the Lattice Boltzmann Method (LBM)
on the GPU. This method is used to estimate the porous rocks’
ability to transmit fluid (permeability). 

Simulation Setup

The fluids are set in motion with some constant body force. Bound-
aries parallel to the flow direction are set to solids and with bounce 
back boundary condition applied, and with the entry and exit bound-
aries applied with periodic boundary condition. 

Permeability Calculation

The permeability of the porous rocks can be obtained directly from 
the generated velocity fields of the LBM, together with using the 
Darcy’s law for the flow of fluids through porous media.

Simulation Model

Fluid flows are simulated by two main operations, the streaming 
and collision of fluids particles within the lattices, together with 
some boundary conditions that must be satisfied.
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