
July 2009
Agnar Aamodt, IDI
Pål Skalle, Verdande Technology As (previously Volve
As)

Master in Information Systems
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Integrated Case Based and Rule Based
Reasoning for Decision Support

Azeb Bekele Eshete

Problem Description
Knowledge based decision support systems can benefit from combining generalized experiences,
e.g. in the form of rules, with situation-specific experiences, in the form of past cases. In this
thesis architecture for an integrated system, combining CBR and RBR methods, shall be
developed, a demo system that instantiates essential parts of the architecture shall be designed,
implemented, and tested. The rule based tool Jess shall be used for the rule based part, and a
freely available tool shall be chosen for the case based part.

The application domain in this study will be oil well drilling. The KBS group at IDI cooperates with
the company Verdande Technology As, which builds software for the oil and gas industry in which
case-based reasoning methods are used. For this thesis a sub-problem of oil drilling has to be
selected. Cases should be constructed and represented within the chosen CBR tool, partly based
on existing cases in Verdande Technology’s case base. Rules should be acquired from documents
that contain generalized experience in the form of best practice and lessons learned.

Assignment given: 21. January 2009
Supervisor: Agnar Aamodt, IDI

Abstract

This project is a continuation of my specialization project which was focused
on studying theoretical concepts related to case based reasoning method,
rule based reasoning method and integration of them. The integration of
rule-based and case-based reasoning methods has shown a substantial im-
provement with regards to performance over the individual methods. Ver-
dande Technology As wants to try integrating the rule based reasoning
method with an existing case based system.

This project focuses on designing, implementing and testing of a demo sys-
tem that demonstrates the development of a rule based reasoning component
and integrating it with the existing case based system of Verdande Technol-
ogy As.

Preface

This thesis is done for the course TDT4900- Computer and Information
Science, Master Thesis as part of a Master degree in Information Systems
at the Department of Computer and Information Science at NTNU. Its main
goal is to design, implement, and test a demo system that illustrates a rule
based reasoning component and integration of it with an existing case based
system. The demo system belongs to Verdande Technology As.

In the first place, I would like to forward my gratitude to my supervisor,
Professor Agnar Aamodt, for his advice, supervision, and guidance from the
very early stage of this thesis until its successful accomplishment. Many
thanks go in particular to Pål Skalle who worked a lot on making the rules
for my demo system and who provided me valuable information about oil
drilling operation. I would also like to thank Frode Sørmo, Tore Brede
and all software developers at Verdande Technology AS who helped me by
providing important information and resources. At last but not least I would
like to thank my husband Abera Hailu who was encouraging and helping me
by being beside me throughout my M.Sc. study.

Trondheim, July 8, 2009

Azeb Bekele

Contents

1 Introduction 1

1.1 The Project . 1

1.2 Project Plan . 4

1.3 Documentation Resource Requirements 8

1.4 Report Outline . 8

2 State of the Art 10

2.1 Knowledge Based Systems . 10

2.2 Case Based Systems . 11

2.3 Rule Based Systems . 15

2.4 Integration of Case Based Reasoning and Rule Based Reasoning 18

2.5 Knowledge-Intensive Case Based Systems 19

2.6 System Development Methodology 20

3 Problem Definition and Proposed Solution 27

3.1 Problem Definition . 27

3.2 Proposed Solution . 36

3.3 Technological Requirements 37

4 Requirement Specification 39

4.1 Business Requirements . 39

4.2 Functional Requirements . 40

4.3 Non-functional Requirements 42

4.4 Use Case Models . 43

5 Design Phase 54

5.1 Knowledge Editor Package . 54

5.2 Rule Based Component . 55

5.3 Case Based Component . 66

5.4 User Interface Component . 66

5.5 Integration of the Rule Based Component with the Knowl-
edge Editor Package . 67

5.6 Integration of the Rule Based Component with the Case Based
Component . 69

6 Implementation Phase 73

6.1 Implementation of the Rule Based Reasoning Component . . 73

6.2 Implementation of User Interface Component 82

6.3 Implementation of Integration of the Rule Based Component
with the Knowledge Editor Package 83

6.4 Implementation of Integration of the Rule Based Component
with the Case Based Component 84

7 Testing Phase 86

7.1 Test Plan . 86

7.2 Test case specification . 93

7.3 Test Summary . 100

8 Discussion, Recommendation and Conclusion 101

8.1 Discussion . 101

8.2 Recommendation . 101

8.3 Conclusion . 1

A XML Format of a Case A2

B Rules for the Demo System B2

B.1 IF . . . THEN . . . Format of the Rules B2

B.2 Jess Format of the Rules . B4

C Template Definition C2

D Jess Representation of a Case and Adding to Working Mem-
ory D2

E Source Code E1

F Glossary F2

List of Figures

1.1 Modified Waterfall . 5

1.2 Project Schedule . 7

2.1 Case-Based Reasoning Cycle [1] 13

2.2 Rule Based Reasoning . 16

2.3 Water Fall or Linear Sequential Model 23

2.4 Prototyping Model . 24

2.5 Spiral Model . 25

3.1 Semaration of real-time data and experiences, and their link-
age by DrillEdge . 29

3.2 Structure of a Semantic Network 30

3.3 Reasoning process of DrillEdge 31

3.4 The process of case elaboration 33

3.5 Screen shot of Knowledge Editor 34

3.6 Case View of the Knowledge Editor 35

3.7 Structure of the Proposed Solution 37

4.1 Use Case Diagram of the Demo System 44

5.1 Overall Structure of the Demo System 55

5.2 Hierarchical Structure of Features and Events in an XML
Representation of a Case . 61

5.3 Class Diagram for Integration of the Rule Based Component
with the Knowledge Editor Package 68

5.4 An architecture for integrating the rule based reasoning method
with the existing case based system 69

5.5 A sequence diagram that shows the sequence of actions that
the integrated system performs to achieve case matching by
using rule based reasoning method in the case elaboration.
The message in box at the top is not part of the sequence
diagram. It is displayed since I have used freely available tool
to draw the diagram. 71

6.1 Concepts and Properties Representation in the Knowledge
Model . 75

6.2 Added and Renamed Tabs in the Case View of the Demo
System . 83

6.3 Tranformed Case by using Rule Based Reasoning Method in
the Case Veiw . 84

List of Tables

1.1 High-Level phases of the project 6

4.1 Importance of and dependence among the functional require-
ments, where H = High, M = Medium and L = Low 42

4.2 Use Case Description of UC-01. 45

4.3 Use Case Description of UC-02. 46

4.4 Use Case Description of UC-03. 47

4.5 Use Case Description of UC-04. 48

4.6 Use Case Description of UC-05. 49

4.7 Use Case Description of UC-06. 50

4.8 Use Case Description of UC-07. 51

4.9 Use Case Description of UC-08. 52

7.1 Test Feature of Jess Representation of a Case 87

7.2 Test Feature of Identifying Hidden Features of a Case 88

7.3 Test Feature of Presenting the Elaborated Case 88

7.4 Test Feature of Case Matching: Rule Based Method 88

7.5 Test Feature of Preserving Functionalities of the Existing Sys-
tem . 89

7.6 Test Feature of User Interfaces 89

7.7 Testing Tasks and Schedule 92

7.8 Test Case for Jess Representation of a Case 94

7.9 Test Case for Identifying Hidden Features of a Case 95

7.10 Test Case for Presenting the Elaborated Case 96

7.11 Test Case for Case Matching: Rule Based Method 97

7.12 Test Case for Preserving Functionalities of the Existing System 98

7.13 Test Case for User Interfaces 99

7.14 Test Summary . 100

Listings

5.1 Jess Syntax to Define a Template 56

5.2 An Example for XML Representation of a Case 56

5.3 An Example for a Template Definition of Listing 5.2 57

5.4 An Algorithm that Parses XML Format of a Case to define
Templates . 58

5.5 Jess Syntax to Define a Rule 59

5.6 An Example of a Rule in IF . . . THEN . . . Format 59

5.7 An example of a Rule in Jess Format 60

5.8 An Algorithm for Weighting Occurrences of Events like Tight
Spot Increased Drag Pack Off Increased Torque and Took
Weight with regard to the Case Capturing Depth 62

5.9 An Algorithm for Generating the Jess format of the Captured
Case from the XML File . 63

5.10 Jess Syntax to Define Facts 64

5.11 Jess Representation of the XML Case Representation Exam-
ple in Listing 5.2 . 64

5.12 An Example Using of Assert to Add a Fact into Working
Memory . 65

5.13 An Example for an Inferred Feature in Jess Format 66

5.14 XML Representation of the Inferred Feature shown in Listing
5.13 . 66

6.1 An Example of a Rule . 75

6.2 An Example of a Rule in Jess Format 76

6.3 An Example of a Rule that uses an Inferred Feature in its If
part . 77

6.4 A Jess Function named as InferredParam that calls a Java
Method named as InferredParams 77

6.5 Parsing an XML File to Generate a DOM Document. 78

6.6 Some Lines from an XML File 78

6.7 Accessing Elements from a DOM Document 79

6.8 Identifying Properties Immediate Parent Categories and As-
sociated Values for each property from a DOM Document . . 80

6.9 Jess Representation of the XML Statements in 6.6 that will
be written on Jess File . 81

6.10 A Java Function that Initiates Rule Based Reasoning by Em-
bedding Jess Code . 81

A.1 A sample for XML Representaiton of a Case A2

B.1 Jess Representation of some of the Rules B4

C.1 Sample Templates for the Demo System C2

D.1 Jess Representation of the XML Example in Appendix A. It
is written on Jess File . D2

E.1 Source Code for CaseParsing Class E1

E.2 Source Code for Entry Class E8

Chapter 1

Introduction

1.1 The Project

This section introduces about what the project is dealing with and the col-
laborating company. It provides the background and motivation why the
collaborating company is interested on this project. It also includes the
objective of the project and its scope to identify what will be covered to
achieve the project’s objective. The result and effect of the project is also
mentioned in this section.

1.1.1 Project Title

This project is entitled Integrated Case Based and Rule Based Reasoning
for Decision Support. It is about integrating the two knowledge based tech-
niques, rule based reasoning and case based reasoning, in order to support
a computer system that facilitates decision making activities.

1.1.2 Collaborating Company

This project is done in collaboration with Verdande Technology AS. The
company was founded in 2004 by a group of students and professors from
Norwegian University of Science and Technology. Though it was established
with few people, it shows fast development; currently it has about 21 em-
ployees.

Verdande’s ultimate goal is to be favored provider of knowledge based de-
cision support systems all over the world. The company has developed a

2 1. Introduction

software platform called Edge that is designed to reduce risk and cost of
complex and critical operations across industries by enabling better and
faster decision making. Edge is built on the principle of case based reason-
ing technique; a process of solving new problems based on the solutions of
similar past problems. It guides producing of products and services for par-
ticular application domain in order to support users to make better decisions
more easily. Currently, the company is serving the oil and gas industry with
their case based software system which is known as DrillEdge.

1.1.3 Background and Motivation

Decision making is a mental process that identifies possible alternative ac-
tions and chooses one from the alternatives for the given situation. It re-
quires ability of analyzing available data and information about the situation
in order to compare and contrast the alternatives so that the best and right
option can be selected. The quality of a decision depends on its rightness
and being made in time. Capability of making the right decision is the
result of the decision maker’s knowledge about the domain, availability of
necessary data, and experience & ability of applying the knowledge on the
given data. Sometimes lacking of necessary data and the time it takes to
analyze huge amount of data prevents from making the right decision.

Computer programs are being developed to analyze business data to provide
correct set of relevant information at reasonable time to support decision
making activities. Such computer programs are known as decision support
systems. Their main goal is to provide the right information at the right time
in a format that can help decision makers to make a quality decision easily.
Making the right decision depends on the data and the ability to interpret
and use the data; consequently decision support systems require data and
knowledge that determines how the data can be processed to provide the
right information. [44], [51]

Knowledge based techniques are playing great role for decision support sys-
tems to process raw data and to present the information in a way that can
facilitate decision making process. The knowledge based technique provides
knowledge about the domain and reasoning skill to produce the right in-
formation from the data. The information that is provided by a decision
support system to a user may be an information that provides hint or evi-

1.1. The Project 3

dence on making a particular decision or an action that a user can follow to
handle the problem. [45]

Integration of two or more knowledge based techniques is a very active re-
search area in Artificial Intelligence. Case based reasoning and rule based
reasoning are two examples of knowledge based techniques. Their integra-
tion has shown significant improvement on a system than it would have been
achieved from a system with a single reasoning technique. Examples of in-
tegrated systems in [6], [7], [8], [12], [20], [18], [17], [15], [9], [13], [10], testify
that the two methods are complement of each other. Each method serves
to handle limitations of the other. Their integration increases the compe-
tence of the application in handling very complex and various problems and
providing accurate solution.

Verdande’s products and services are based on the principle of case based
reasoning technique on the platform of Edge to facilitate decision making
activities. The benefits that are gained from integrated reasoning tech-
niques calls Verdande’s attention and motivates to think about improving
their product by integrating rule based reasoning technique with the existing
systems.

1.1.4 Project Objective

The objective of this project is to research how a rule based reasoning
method can be integrated with the existing case based system called DrillEdge
in order to improve the system’s performance in handling complex situations
in simpler and accurate ways.

The research includes studying how they can be integrated, and designing,
implementing and testing of a demo system that demonstrate the integra-
tion. Since rule based reasoning is new for the company studying and de-
veloping a rule based component is part of the project work.

1.1.5 Project Scope

The scope of this project includes designing architecture for the integration
of rule based reasoning technique with the existing case based system and
developing a demo system based on the architecture. Development of the

4 1. Introduction

demo system should follow a selected software development methodology.
The demo system should be tested and evaluated to reflect the role of the
rule based reasoning on problem solving process of the existing system.

Researching about required methodologies, technologies and important con-
cepts regarding to the achievement of the project objective is part of the
scope. A report needs to be written so that what is required for the inte-
gration process, how the demo system is developed, and the result of the
integration process will be documented.

1.1.6 Expected Project Result and Effect

The expected result from this project work is:

• A demo system that demonstrates how a rule based reasoning com-
ponent can can be integrated with the existing case based reasoning
system and how it plays the desired role in the integrated system.

• A report that documents the study, design , implementation and test-
ing of the demo system and evaluation of their integration on the
achievement of the desired goal.

The effect of this project will be on Verdande Technology As. The company
will get tested and evaluated demo system and accompanying report that
suggests and demonstrates one way of integrating approach and its result,
which can be possibly implemented and expanded on their real product.

1.2 Project Plan

Planning is one of the ways to visualize the tasks that are required to achieve
a desired goal. In a software development process, selecting the development
methodology that will be followed throughout the software development
process is the first step for planning. This project work has development of
a demo system hence early selection of a software development methodology
helps to plan the overall work of the project. Detailed discussion about
software development methodologies are presented in Chapter 1.4: Section
2.6.

1.2. Project Plan 5

1.2.1 Selection of Software Development Methodology

There is no particular model that is best for every project. The complexity,
how large the project is, the given time, desired output from the project
work and other features of a project matters to select the model that fits
best.

Figure 1.1: Modified Waterfall

From the candidate models discussed in section Chapter 1.4: 2.6.2, I choose
waterfall model with some modification. The reason that I don’t want to
use prototyping or spiral is, the main goal of this project is to integrate a
rule based reasoning technique with the existing case based system. Hence,
documentation of the development process and a demo system that demon-
strate the integration are enough. Producing perfect product is not expected
from this project due to time limitation and its complexity to be handled
by one person. In addition, it is a school project that focuses on studying
their integration not mainly focused on producing the real product.

Some limitations of waterfall are, it’s not being flexible in handling changes
once the phase is completed. It is tested when the product is finished. To

6 1. Introduction

solve these problems, waterfall model is modified by adding validation and
verification in each phase and by letting overlapping of phases. This model
is known as Modified Waterfall Model. It is depicted in Figure 1.1. Each
phase is validated and verified; if there is need of some change, it is possible
to make the change on previous phases as well.

Modified waterfall model provides flexibility while it preserves logical order
of the phases and good documentation features of waterfall model.

1.2.2 Project Phases

Once the software development methodology is chosen, it is possible to break
down the project work into smaller phases. Identifying the phases serve as
a base for detailed planning and scheduling. The phases include not only
activities that involve in the software development process but also other
activities that are required for the accomplishment of the work. It also
represents the structure of the report. They are shown in Table 1.1.

Project Phases
Project planning
Pre-study
Requirement Specification
Design
Implementation
Testing
Discussion and Recommendation
Conclusion

Table 1.1: High-Level phases of the project

1.2.3 Project Schedule

The Gantt Chart shown in Figure 1.2 shows the overall project schedule.1

1The last date of the project was June 17, 2009; however due to pregnancy sickness,
i was not able to finish on the time and I postponed it by three weeks. The schedule is
modified based on the new deadline.

1.2. Project Plan 7

ID
T
a
s
k
 N
a
m
e

D
u
ra
ti
o
n

S
ta
rt

F
in
is
h

1
T
o
ta
l
P
ro
je
c
t
L
e
n
g
th

1
2
7
 d
a
y
s
?

T
h
u
 2
2
.0
1
.0
9

W
e
d
 0
8
.0
7
.0
9

2
In
tr
o
d
u
c
ti
o
n
 a
n
d
 T
h
e
s
is
 P
la
n

1
2
 d
a
y
s
?

T
h
u
 2
2
.0
1
.0
9

W
e
d
 0
4
.0
2
.0
9

3
In
tr
o
d
u
c
ti
o
n

4
 d
a
y
s
?

T
h
u
 2
2
.0
1
.0
9

M
o
n
 2
6
.0
1
.0
9

4
T
h
e
s
is
 P
la
n

4
 d
a
y
s
?

S
u
n
 0
1
.0
2
.0
9

W
e
d
 0
4
.0
2
.0
9

5
S
ta
te
 o
f
th
e
 A
rt

9
 d
a
y
s
?

T
u
e
 0
3
.0
2
.0
9

S
u
n
 1
5
.0
2
.0
9

6
P
ro
b
le
m
 D
e
fi
n
it
io
n
 a
n
d
 P
ro
p
o
s
e
d
 S
o
lu
ti
o
n

1
5
 d
a
y
s
?

T
h
u
 1
2
.0
2
.0
9

T
u
e
 0
3
.0
3
.0
9

7
P
ro
b
le
m
 D
e
fi
n
it
io
n

1
2
 d
a
y
s
?

T
h
u
 1
2
.0
2
.0
9

T
h
u
 2
6
.0
2
.0
9

8
P
ro
p
o
s
e
d
 S
o
lu
ti
o
n

8
 d
a
y
s
?

S
a
t
2
1
.0
2
.0
9

T
u
e
 0
3
.0
3
.0
9

9
R
e
q
u
ir
e
m
e
n
t
S
p
e
c
if
ic
a
ti
o
n

2
5
 d
a
y
s
?

T
u
e
 2
4
.0
2
.0
9

F
ri
 2
7
.0
3
.0
9

1
1

F
u
n
c
ti
o
n
a
l
R
e
q
u
ir
e
m
e
n
ts

1
6
 d
a
y
s
?

T
u
e
 2
4
.0
2
.0
9

M
o
n
 1
6
.0
3
.0
9

1
2

N
o
n
-f
u
n
c
ti
o
n
a
l
R
e
q
u
ir
e
m
e
n
ts

1
6
 d
a
y
s
?

T
u
e
 2
4
.0
2
.0
9

M
o
n
 1
6
.0
3
.0
9

1
0

B
u
s
in
e
s
s
 R
e
q
u
ir
e
m
e
n
ts

9
 d
a
y
s
?

W
e
d
 2
5
.0
2
.0
9

S
a
t
0
7
.0
3
.0
9

1
3

U
s
e
 C
a
s
e
 M
o
d
e
ls

1
2
 d
a
y
s
?

T
h
u
 1
2
.0
3
.0
9

F
ri
 2
7
.0
3
.0
9

1
4

D
e
s
ig
n
 P
h
a
s
e

2
8
 d
a
y
s
?

T
u
e
 2
4
.0
3
.0
9

T
h
u
 3
0
.0
4
.0
9

1
5

R
u
le
 B
a
s
e
d
 C
o
m
p
o
n
e
n
t

1
8
 d
a
y
s
?

T
u
e
 2
4
.0
3
.0
9

T
h
u
 1
6
.0
4
.0
9

1
6

C
a
s
e
 B
a
s
e
d
 C
o
m
p
o
n
e
n
t

7
 d
a
y
s
?

M
o
n
 1
3
.0
4
.0
9

T
u
e
 2
1
.0
4
.0
9

1
7

In
te
g
ra
ti
o
n
 o
f
R
u
le
 B
a
s
e
d
 a
n
d
 C
a
s
e
 B
a
s
e
d
 C
o
m
p
o
n
e
n
ts

8
 d
a
y
s
?

T
u
e
 2
1
.0
4
.0
9

T
h
u
 3
0
.0
4
.0
9

1
8

Im
p
le
m
e
n
ta
ti
o
n

4
3
 d
a
y
s
?

T
h
u
 2
3
.0
4
.0
9

F
ri
 1
9
.0
6
.0
9

1
9

R
u
le
 B
a
s
e
d
 C
o
m
p
o
n
e
n
t

2
6
 d
a
y
s
?

T
h
u
 2
3
.0
4
.0
9

W
e
d
 2
7
.0
5
.0
9

2
0

C
a
s
e
 B
a
s
e
d
 C
o
m
p
o
n
e
n
t

4
 d
a
y
s
?

W
e
d
 2
7
.0
5
.0
9

M
o
n
 0
1
.0
6
.0
9

2
1

In
te
g
ra
ti
o
n
 o
f
R
u
le
 B
a
s
e
d
 a
n
d
 C
a
s
e
 B
a
s
e
d
 C
o
m
p
o
n
e
n
ts

1
4
 d
a
y
s
?

T
u
e
 0
2
.0
6
.0
9

F
ri
 1
9
.0
6
.0
9

2
2

T
e
s
ti
n
g

1
3
 d
a
y
s
?

T
u
e
 1
6
.0
6
.0
9

T
u
e
 3
0
.0
6
.0
9

2
3

T
e
s
t
P
la
n

5
 d
a
y
s
?

T
u
e
 1
6
.0
6
.0
9

S
u
n
 2
1
.0
6
.0
9

2
4

T
e
s
t
C
a
s
e
 S
p
e
c
if
ic
a
ti
o
n

3
 d
a
y
s
?

S
u
n
 2
1
.0
6
.0
9

T
u
e
 2
3
.0
6
.0
9

2
5

P
e
rf
o
rm

in
g
 T
e
s
in
g
 A
c
ti
v
it
ie
s

3
 d
a
y
s
?

W
e
d
 2
4
.0
6
.0
9

F
ri
 2
6
.0
6
.0
9

2
6

R
e
p
a
ir
 E
rr
o
rs
 a
n
d
 D
e
fe
c
ts

4
 d
a
y
s
?

W
e
d
 2
4
.0
6
.0
9

S
u
n
 2
8
.0
6
.0
9

2
7

T
e
s
t
S
u
m
m
a
ry

2
 d
a
y
s
?

M
o
n
 2
9
.0
6
.0
9

T
u
e
 3
0
.0
6
.0
9

2
8

D
is
c
u
s
s
io
n
,
R
e
c
o
m
m
e
n
d
a
ti
o
n
 a
n
d
 C
o
n
c
lu
s
io
n

2
 d
a
y
s
?

W
e
d
 0
1
.0
7
.0
9

T
h
u
 0
2
.0
7
.0
9

2
9

D
o
c
u
m
e
n
t
R
e
v
is
io
n

5
 d
a
y
s
?

T
h
u
 0
2
.0
7
.0
9

W
e
d
 0
8
.0
7
.0
9

0
3
.1
1

0
1
.1
2

2
9
.1
2

2
6
.0
1

2
3
.0
2

2
3
.0
3

2
0
.0
4

1
8
.0
5

1
5
.0
6

1
3
.0
7

N
o
v
e
m
b
e
r
D
e
c
e
m
b
e
r
J
a
n
u
a
ry

F
e
b
ru
a
ry

M
a
rc
h

A
p
ri
l

M
a
y

J
u
n
e

J
u
ly

A
u

T
a
s
k

S
p
li
t

P
ro
g
re
s
s

M
il
e
s
to
n
e

S
u
m
m
a
ry

P
ro
je
c
t
S
u
m
m
a
ry

E
x
te
rn
a
l
T
a
s
k
s

E
x
te
rn
a
l
M
il
e
s
to
n
e

D
e
a
d
li
n
e

P
a
g
e
 1

P
ro
je
c
t:
 s
c
h
e
d
u
le

D
a
te
:
W
e
d
 0
8
.0
7
.0
9

F
ig
ur
e
1.
2:

P
ro
je
ct

Sc
he
du

le

8 1. Introduction

1.3 Documentation Resource Requirements

I use the report format recommended for the customer- driven project course
to structure and organize my report. I found the format is a good template
to organize a report in a well ordered and logical format.

I am using Latex to write the report. Latex is capable of managing and
keeping format consistency, especially for large documents like this report.
All pictures except project schedule and those that are screen shots are
drawn by using Microsoft Office Visio 2007. Microsoft Office Project 2007
is used to draw the project schedule. Pictures that are taken from screen
shots are edited on Paint program.

1.4 Report Outline

This section provides an overview of how the report is organized.

Chapter 1 - Introduction
This chapter provides general information about the project. in terms
of its background and motivation, objective and scope. It also provides
the project plan.

Chapter 2 - Pre-study
This chapter explores theoretical concepts of knowledge based systems,
case based systems, rule based systems, and integration of rule based
and case based systems. It also presents about software development
methodologies.

Chapter 3 - Problem Definition and Proposed Solution
This chapter presents the existing case based system and identifies the
problem that is aimed to be solved in this project. It also proposes a
solution for the problem.

Chapter 4 - Requirement Specification
This chapter identifies and presents what functionalities the demo sys-
tem should have to demonstrate the proposed solution. The functional

1.4. Report Outline 9

and non-functional requirements are identified and presented by using
use case models.

Chapter 5 - Design Phase
This chapter presents how the demo system will be developed to
achieve the requirements that will be discussed on chapter 4.

Chapter 6 - Implementation Phase
This chapter deals about how the demo system is developed and illus-
trates the implementation with some examples.

Chapter 7 - Testing Phase
Testing phase presents a test plan to guide how the demo system will
be tested and the testing results after it is tested based on the plan.

Chapter 8 - Discussion, Recommendation and Conclusion
This chapter discusses some important points and provides some high-
lights for further work. Finally, it provides conclusion of the project

Chapter 2

State of the Art

This chapter provides an explanation about the basic concepts that are
touched for this project work.

2.1 Knowledge Based Systems

The concept of knowledge based systems is derived from the field of artifi-
cial intelligence (AI). AI intends understanding of human intelligence and
building of computer programs that are capable of simulating or acting one
or more of intelligent behaviors. Intelligent behaviors include cognitive skills
like thinking, problem solving, learning, understanding, emotions, conscious-
ness, intuition and creativity, language capacity, etc. These days some of the
behaviors such as problem solving, learning and understanding are handled
by computer programs.[41], [42], [14]

Computer programs that try to solve problems in a human expert-like fash-
ion by using knowledge about the application domain and problem solving
techniques are known as Knowledge based system. Human experts use the
knowledge they have about the domain and techniques that lead how to use
the knowledge to solve problems. Knowledge based systems handle prob-
lems in the same way. They represent the knowledge about the application
domain and they use one or more techniques that guides on how to use the
knowledge to solve problems. Every knowledge based system has two build-
ing blocks which are known as knowledge base and inference engine.[42],
[50]

Knowledge base contains all necessary knowledge about the domain that is
required to handle problems. The knowledge can be acquired from experts,

2.2. Case Based Systems 11

documents, books and/or other sources. It is formalized and organized with
a technique called knowledge representation. There are several ways to rep-
resent knowledge in the knowledge base. Two examples of such techniques
are cases and rules that will be introduced and discussed later.

The second component of a knowledge base system is inference engine. After
the system gets the required knowledge, it needs to be instructed how to use
the knowledge in solving problems. Inference engine represents the reasoning
technique that manipulates, uses and controls the knowledge to solve the
problems. Case based reasoning and rule based reasoning are two examples
of reasoning techniques. They will be discussed later.

Case based systems and rule based systems are two examples of knowledge
based systems that uses cases and rules for knowledge representation and
case based reasoning and rule based reasoning for reasoning techniques re-
spectively. They will be discussed briefly in the following sections.

2.2 Case Based Systems

Human beings handle situations by being reminded of the experiences we
have on similar situations. If the situation is novel, we try to handle it
by relating it with other experienced situations. We normally learn from
our successful and wrong activities to handle future similar situations in
the right way and not to repeat our mistakes. Remembering and reusing
previously solved problems, and learning from experiences for future use, is
natural and useful. [1], [24], [25] Case based systems are designed to work in
the same way with the basic idea of similar problems have similar solutions.

Case based systems are knowledge based systems that solve problems by re-
membering similar past situation and reusing its solution and lesson learned
from it. Case based systems combine problem solving and learning from
new experiences for future use. [1], [24] The knowledge base of a case based
system represents situations or domain knowledge in the form of cases and
the inference engine uses case based reasoning method to solve new problems
or to handle new situations.

12 2. State of the Art

2.2.1 Cases

Cases are used to represent domain knowledge of a case based system. A
case refers to specific experience or knowledge tied to specific situation that
is worth remembering for future use. So that cases in the knowledge base
represent collection of specific experienced, captured and learned situations
of the application domain.[1], [24] Each case is constituted with three main
parts: [25]

• Situation/Problem description: describes specific circumstances,
states of a situation, and state of the environment when this particular
case is recorded.

• Solution: provides how the problem described in the problem de-
scription was solved or treated in a particular instance.

• Outcome: describes the final result or consequence and feedback
gained from following the proposed solution.

2.2.2 Case Based Reasoning Technique

Case based reasoning, as its name indicates, uses cases to reason about a
given problem. In its problem solving process, it reuses old similar cases to
understand the problem, suggest a solution, and/or to keep it from failure. A
case based reasoning technique follows four processes; retrieve, reuse, revise
and retain, to accomplish its reasoning task. Figure 2.1 shows sequence of
the processes and each process is described below. [1], [5], [24], [25]

2.2.2.1 Retrieve

when a new problem occurs, this process tries to identify the descriptive fea-
tures of the new problem and searches previous cases that match with the
new situation based on the identified features. Indentifying descriptive fea-
tures involves tasks of identifying properties that describe the new problem,
leave out those that don’t describe it strongly and represent the descriptive
features in a case format. There are algorithms that are capable of doing
this task. Searching similar previous cases is performed by matching the new

2.2. Case Based Systems 13

Figure 2.1: Case-Based Reasoning Cycle [1]

case with saved old cases from the knowledge base. It results in a collection
of similar cases.

The final step of retrieval process is to select the best matched case or a
set of cases from the collection of similar cases. The degree of similarity is
measured by using similarity assessment methods.

Quality of the retrieval process depends on its descriptive feature identifying
algorithm, searching algorithm and similarity assessment method.

14 2. State of the Art

2.2.2.2 Reuse

the selected case in the retrieval process can be used to understand the new
situation when it is not clear by itself, to propose a solution based on the
solution taken on the selected case, or to prevent from following a wrong way
of solving the problem based on the outcome of the selected case. Proposing
a solution can be performed into two ways: reusing the solution as it is or by
adapting it. When the selected case and the new case do not have significant
difference, the solution in the selected case will be proposed as it is for the
new problem. Whereas, if there is a significant difference between them, the
solution in the selected case is adapted based on the unique feature of the
new case, this process is known as adaptation.

2.2.2.3 Revise

in case based systems proposing a solution is not the only goal, it also
aims to learn from the consequence of applying the proposed solution. This
process evaluates how good the proposed solution is for the given problem.
The evaluation is performed by using simulator, by getting feedback from
a human expert of the application domain or by applying it in the real
world and see the result. This process may take hours, days or months until
the result is being realized. The system learns from the result whatever
it is: success or failure. If it is failure, the fault needs to be repaired and
explanation of why the failure occurs should be given to prevent future
similar problems from such kind of failures.

2.2.2.4 Retain

case based systems upgrade their domain knowledge by learning from new
experiences obtained while problems are solving. After the proposed so-
lution for the given problem is evaluated in the revise process, the retain
process identifies useful and worth remembering new experiences and de-
cides how to merge with existing knowledge. This type of learning is known
as incremental learning because it always adds knowledge that is new and
useful in addition to the existing knowledge.

The new experience may be success or failure. If it is success, the retain

2.3. Rule Based Systems 15

process keeps how the problem is solved by modifying existing cases or by
creating a new case if it has significant difference with the existing ones. The
advantage of keeping failure processes is to prevent future similar problems
from similar failure. The failure can be task failure where the solution is
unsuccessful or expectation failure where the observed solution is different
from the expected solution.

The bigger inner rounded rectangle in Figure 2.1 represents the knowledge
base which is made up of cases and general knowledge. General knowledge
of a case based system is domain-dependent knowledge that represents gen-
eralizations of cases, adaptation strategies and case matching procedures in
order to support case based reasoning process. [1], [25]

2.3 Rule Based Systems

Rule based systems are knowledge based systems that represent the domain
knowledge with set of rules and suggest a solution or conclusion of a problem
by using rule based reasoning method. A rule based system has one more
component, which is known as working memory, in addition to knowledge
base and inference engine. As Figure 2.2 shows, the inference engine receives
a problem from the working memory and provides the reasoning result to
the working memory. The working memory contains the description of the
problem and updates its content based on the reasoning results received from
the inference engine. The rules in the knowledge base and the reasoning
method used by the inference engine are discussed below.

2.3.1 Rules

Normally rules represent what to do or not to do while certain situations
are met. Similarly, the application domain knowledge is represented with
set of rules that represent the facts that would be true when some condi-
tions are given true. A typical rule has a format of If <conditions> then
<conclusion>; where conditions represent premises or facts, and conclusion
represents associated actions for the premises. The condition might be a
premise or set of premises that are connected with logical operators: AND
& OR. The conclusion can be an action to be taken or facts that are inferred

16 2. State of the Art

Figure 2.2: Rule Based Reasoning

from the given premises. [19], [23]

Frequently used means of acquiring rules is, interviewing of the domain ex-
perts. Rules represent general knowledge of the application domain. They
preserve the naturalness, modularity and ease of explanation because they
are used in a direct fashion as acquired from experts. Its shortcoming is
its difficulty in acquiring complete and perfect knowledge in a complex do-
main due to the experts may be incapable of expressing their knowledge
or unavailability of some experts. In addition, sometimes representing the
domain with only general knowledge may not be enough. [19], [22], [23], [25]

2.3. Rule Based Systems 17

2.3.2 Rule Based Reasoning Technique:

rule based reasoning technique represents how a system solves a problem
by using knowledge of the application domain that is represented in form of
rules. There are two ways of rule based reasoning methods: forward chaining
and backward chaining. [19]

Forward Chaining: in this process, it receives a problem description from
the working memory as a set of conditions and tries to derive con-
clusions as a solution. Once it receives the conditions, it searches all
rules whose condition matches with part or all of the conditions in
the working memory. The searching result provides a set of rules that
are applicable to provide a conclusion about the problem, the set is
known as a conflict set. Rule based reasoning technique uses conflict
resolution strategy to select one rule at a time from the set. The
selected rule is then applied to derive a conclusion about the prob-
lem. Content of the working memory is updated based on the derived
conclusion. Searching applicable rules continue based on the updated
working memory content and the reasoning process continues based
on the new matched rules. This process continues until the desired
solution is obtained or there is no rule whose condition matches with
current description of the problem in the working memory.

Backward Chaining: it is similar with forward chaining in most process,
the big difference is it receives the problem description as set of conclu-
sions, instead of conditions, and tries to find the premises or causes of
the conclusions. It searches the rules whose conclusion matches with
part or all conclusions in the working memory. Like forward chaining,
conflict resolution strategy is used to select one rule from the set of
applicable rules. The selected rule is used to derive the premises that
led to the given conclusion. The working memory is updated each
time a premise(s) is derived and the reasoning process continues on
the updated content of working memory until the desired solution is
obtained or there is no a rule whose conclusion matches with the give
conclusions in the working memory.

Rule based systems are more applicable for complete, narrow, limited and
well understood application domain due to its difficulty of acquiring knowl-

18 2. State of the Art

edge. A problem is solved from the scratch in rule based systems; the
reasoning process for a problem is performed again though the problem had
been solved before by following the same reasoning process.

2.4 Integration of Case Based Reasoning and Rule
Based Reasoning

The ultimate goal of artificial intelligence discipline is to develop systems
that exhibit human-like, even better intelligence.[14] Most of current knowl-
edge based systems represent some aspects of human beings intelligence.
Integrating of two or more knowledge based techniques begets a better sim-
ulation of intelligence than it would have been gained from one technique.
[16], [21], [22]

On the other hand, the reasoning power of a knowledge based system de-
pends on the explicit representation and use of different kinds of knowledge
about the domain. There is no one way of knowledge representation that
can represent the domain knowledge as it is in the reality. The more knowl-
edge based techniques are integrated, the more the domain knowledge is
represented, which begets the more efficient system.[4]

Case based reasoning and rule based reasoning techniques are two alternative
ways of problem solving in intelligent systems. Their knowledge represen-
tation and reasoning methods are naturally alternatives. [22] The follow-
ing paragraphs compare them based on their knowledge representation and
problem solving capability.

Cases represent knowledge that is accumulated from specific situations whereas
rules represent general knowledge about the domain. Acquiring rules when
it is compared to that of cases is really hard. Because of that maintaining
or updating rules is harder than updating and maintaining cases. [19], [21],
[22], [23]

In the problem solving process, case based reasoning uses solutions that was
solved in similar past problems whereas rule based reasoning solves problems
from scratch though similar problems had been solved previously. Case
based reasoning method plays greater role in handling missing or unexpected
features in the problem description and selected cases than that of rule

2.5. Knowledge-Intensive Case Based Systems 19

based reasoning in problem description and rules. The case base system
tries to find the similarity between the problem and the cases though there
are features that do not match between them. However, the rule based
system tries to find rules that perfectly match with part or all of the problem
description. Rule based reasoning method is better in providing explanation
for the given solution than case based reasoning. [19], [22], [23], [25]

Due to their interchangeable nature, integrating them provides effective
knowledge representation, effective problem solving power, and exceeding
one’s weakness with the other. [16], [22], [21]

2.5 Knowledge-Intensive Case Based Systems

In a case based system, cases represent experiences that bound to specific
situations regarding to the application domain. New situations are handled
based on similar past situations. The similarity is performed by checking
the existence of similar situation descriptive features between the new case
and past cases, and one factor to calculate similarity is the number of similar
features. It is more of syntactical similarity; it doesn’t consider the contex-
tual meaning of the features that describe the problem. This limitation can
be solved by integrating the specific cases with model of the general domain
knowledge. The general domain knowledge enriches the cases by making it
possible to interpret the features based on the context or the given situation.
[2], [3], [4]

The general domain knowledge represents model of the application domain
in the real world by providing the concepts and the different relationships
among them. The model is network of inter-related concepts which is known
as semantic network. The relations between concepts represent the meaning
of the concepts at different situations. Hence each concept has many rela-
tions to other concepts. The reasoning method that is applied on semantic
network is known as model based reasoning. [2]

Knowledge-intensive case based systems are systems that integrate case
based technique with model based technique. In this case the domain knowl-
edge is represented as specific cases and general domain knowledge, which
increases the knowledge intensiveness of the system. The more the do-
main knowledge is represented, the more the system’s capability in reasoning

20 2. State of the Art

about the problems. [2], [3], [4]

2.6 System Development Methodology

Software development methodology is a framework that structure, plan and
control the activities involved in the development process. It divides the
complex and big project into smaller and more easily manageable phases,
which in turn makes resources allocation and project scheduling simpler.[46],
[47], [34]

There are various Software development models that propose a specific ap-
proach to handle involved activities throughout the development process.
The following section discusses common software development activities and
the section followed presents candidate methodologies. Then based on the
situation at hand the most appropriate methodology will be selected.

2.6.1 Software Development Activities

A software development is a sequence of activities that are aimed to perform
specific tasks that need to be handled in the development process. Since the
activities are taken into action in sequence, they are synonymously known as
phases, steps and processes. I will use phases and activities interchangeably.
Common software development activities are described in the sections below
[32], [33], [38], [36].

2.6.1.1 Requirement Gathering phase

This activity is about defining what the customer wants from the software
product. Understanding of the system is the first step to identify the re-
quirements, so that close communication with the customer and end users
is important. It should answer general questions like what the intended sys-
tem should perform (functional requirements), what data the system does
require (data requirements) and under what conditions the system should
work (business requirements). In general, it is understanding and deter-
mining of what the system should perform without considering how. The
requirements can be gathered by interviewing end users, observing existing
system, and/or from documents & forms used in current system.

2.6. System Development Methodology 21

The requirements can be categorized into two general aspects:

• Business Requirements: it is about the business goals the customer
wants to achieve from the new software product and the business logics
that should be taken into consideration to determine how the software
product should work or look like.

• Functional Requirements: it is about defining what capabilities
the software product will have and what it will not have. It is also
known as functional requirement specification.

2.6.1.2 System Analysis Phase

In this phase the gathered requirements are represented in well structured
formats by using various tools, like use cases. The representation is in-
dependent of any implementation and technological issues. The output of
this activity is documentation of the requirements that serves as a bridge
to confirm that the people in the development group understands what the
customer is really demanding. It is also the input of the design phase.

In some places requirement gathering and system analysis are considered
as one activity with a name like requirement specification, system analysis
and others. In my thesis I will use requirement specification to refer the
combination of the two activities.

2.6.1.3 Design Phase

This phase includes the tasks of determining different components or ele-
ments of the intended system, communication among the components, hard-
ware and software requirements for implementation and all the questions
regarding to how the system will be implemented.

Output of design phase includes architecture, software and hardware re-
quirements, and design of the intended system. It has to provide intuitive
information about how the system should be implemented so that a person
who had not been in the analysis and design phase can understand and use
it for implementation phase.

22 2. State of the Art

2.6.1.4 Implementation Phase

This phase is where programming or writing code is performed based on
the output of the design phase. While the programmers are writing the
code, they make sure that each the smallest testable unit of the program is
working right.

2.6.1.5 Testing phase

After implementation is completed, the system has to be evaluated against
the requirements to make sure that it satisfies what was expected from it.
In addition, acceptance testing is performed to make sure that the customer
is satisfied and willing to accept the system.

2.6.1.6 Deployment phase

Deployment phase is installation of the system on the right machines and
make it ready for use. It also includes providing training accompanied with
manuals and training materials for end users.

2.6.1.7 Maintenance phase

The real testing of the software product is performed while it is being used
by real end users. The end users may identify things that the system should
do but doesn’t, some faults or may suggest things that would improve the
system. This activity fixes all the comments coming from the end user
regarding the system while it is in use.

2.6.2 Candidate Software Development Methodologies for
this Project

A software development methodology defines how the different activities of a
software development are arranged and involved in the development process.
This section presents alternative approaches that can be used in this project
work.

2.6. System Development Methodology 23

2.6.2.1 Waterfall Model

Waterfall model is a software development method that starts from the re-
quirement specification activity and continues with design, implementation,
testing, deployment, and maintenance in sequence. One activity is taken
into action when the preceding activity is completed satisfactorily. It is
more suited for projects that have stable or unchanging requirements. Mov-
ing backward and forward to make some changes is expensive. Hence, it is
important to make sure that the phase is as complete as possible before pro-
ceeding to the next activity. It provides structured and logical approach for
documentation. Waterfall model is also known as Classic Life Cycle Model
or Linear Sequential Model.[48], [36] The model is depicted in Figure 2.3.

Figure 2.3: Water Fall or Linear Sequential Model

Though waterfall is simple and easily understandable to be used, it is criti-

24 2. State of the Art

cized for its being inflexible for accepting changes. Clients may change their
requirements after they see a prototype. The designed solution may be really
tough to be implemented; the developers should stick on trying it instead of
going back and change the design. To overcome these limitations, various
methodologies are proposed. Prototyping model and Spiral model are two
examples that tried to solve waterfall’s criticism.

2.6.2.2 Prototyping Model

Figure 2.4: Prototyping Model

This model bases on creating prototypes. As Figure 2.4 shows, once the
requirement specification is done, a design is proposed for a prototype of
the specified requirements. After it is implemented, the prototype is given
to the customers for feedback. Based on the feedback new requirements

2.6. System Development Methodology 25

are defined to refine the prototype and a new prototype design is proposed.
The cyclic movement of the activities continues until the customers suggest
that all the requirements are satisfied with the current prototype. Then the
system as a whole is tested and deployed for final use.

The software is developed with continues users’ feedback so that it reduces
the risk of failure. Though, it provides more effort on developing the actual
software which secures producing of the right product, documentation is
difficult due to the prototype requirements and design are changing from
time to time. In addition, the development process may take longer time
or several iterations until the customer is satisfied with the prototype. [37],
[38]

2.6.2.3 Spiral Model

Figure 2.5: Spiral Model

It combines positive features of prototyping model and waterfall model; and
it adds a new activity called risk assessment. Like prototyping model, it
develops the first prototype and modifies it based on users’ feedback or
other additional requirements by iterating through the cyclic activities until
the required requirements are satisfied or it is known that continuing on the

26 2. State of the Art

current prototype has high risk in terms of budget, time or other factors.
However, unlike prototyping it carefully designs and documents each cycle
by following the activities involved in waterfall model.

The risk assessment activity decides whether the iteration should continue
or not. First it identifies possible risks and then it proposes alternative
solutions to minimize or resolve the risks. If one or more risks are high and
costly to be solved, the project may be halted at all or may take the current
prototype as a final solution.

When the final prototype is taken as a solution, testing is performed to make
sure that the software product achieves the required goals and the customer
is satisfied. Then it will be installed on the machines where the customer
wants to use it.

Spiral model is more applicable for large, expensive and complicated projects.
It simplifies large project by breaking down into smaller requirement cat-
egories which can be handled in the different iterations. The weakness of
spiral model is, it is complicated and requires a person with strong knowl-
edge of risk assessment. [35], [36], [49]

The two chapters so far have provided the basic background of the project.
The next chapters focus on identifying the specific problem that needs to be
solved in this project and solving the problem by developing a demo system.

Chapter 3

Problem Definition and Proposed
Solution

This chapter presents the problem that Verdande wants to be solved in this
project and the proposed solution to solve the problem.

3.1 Problem Definition

The problem to be solved in this project is defined based on Verdande’s
desire to integrate rule based reasoning method with the existing case based
system. Before going to the problem directly, understanding how the current
system works is important. Hence the following section describes the current
case based system called DrillEdge. [27], [28]

3.1.1 Current System

The existing case based system, DrillEdge, is developed based on the Edge
platform in order to help decision making activities in oil drilling operations
to avoid unwanted events. The main reasons that raise the desire of a com-
puter tool to support decision making in oil drilling operation are mentioned
in the following paragraph.

Drilling operation is data-intensive that is represented with vast amount of
data. Processing this large amount of data to control the progress of the
operation at real time is hard for human beings. On the other hand, many
drilling engineers’ experiences or knowledge may be well documented and
kept in a database as a form of daily drilling reports, best practices, lessons

28 3. Problem Definition and Proposed Solution

learned and other forms. However, it is unpractical for drilling operators
to use these experiences from the database to process the real-time data to
make sure that the operation is going on well and to handle problems before
they occur or before they are going to the worst situation. Hence, difficulty
of handling real-time data and separation of this data from the experiences
in the database are the two reasons that make controlling and managing of
the drilling operation at real time difficult. This difficulty begets the desire
of supportive computer tools.

DrillEdge is developed to bridge the real-time data and experiences in the
database in order to process the data and to make the experiences read-
ily available so that interpreting progress of the drilling operation is simple
and possible. It evaluates the state of the operation continuously to control
and manage unwanted events. Evaluation of the state of the operation is
performed by processing the real-time data and interpreting it by actively
recalling relevant past experiences from the database. It identifies unwanted
events that slower or prevents the expected drilling progress. When it faces
unwanted events, it informs drilling engineers about the situation and sug-
gests solution to avoid the unwanted events based on similar experiences
from the database.

DrillEdge is designed to assist drilling engineers to re-use knowledge in order
to diagnose and avoid costly problems before they escalate. It helps oper-
ators to easily recall experiences and use them to make the right decision
about the situation in order to lower risks, increase well drilling operation,
and to minimize non-productive time while drilling. The recalled experiences
may be other operators’ experiences, in which DrillEdge serves as experience
sharing tool among experts that may not even known each other. Figure
3.1 shows the separation of drilling real-time data and experiences, and then
their linkage by using DrillEdge software.

3.1.1.1 Knowledge Base of DrillEdge

DrillEdge system is a knowledge-intensive case based system. It combines
case-specific and general knowledge of the application domain. The knowl-
edge is represented as semantic network, which is a network of concepts and
the multiple relations among the concepts. The concepts are represented as
node, while the relations are represented as links. Each concept is defined

3.1. Problem Definition 29

Figure 3.1: Semaration of real-time data and experiences, and their linkage
by DrillEdge

by its relations with other concepts. The cases and the general knowledge
are strongly coupled; the cases are submerged within the general domain
model. Figure 3.2 shows the structure of the semantic network. It illus-
trates three main types of knowledge in DrillEdge. The generic concepts
represent concepts that are general and domain independent but that are
important to define other concepts in the application domain. For example,
every object in this world is a thing. Hence, thing is the root node for all
other concepts. The general domain concepts represent all concepts and
relations that are specific and related to oil drilling operation, which is the
application domain. Cases represent specific drilling experiences that are
defined based on the concepts defined in the two higher concept groups. [2]

3.1.1.2 Case Based Reasoning of DrillEdge

Case based reasoning of DrillEdge is performed by following the four basic
processes of the case based reasoning technique: retrieve, reuse, revise and
retain. Figure 3.3 depicts the functionality of DrillEdge software in general.
It receives the real-time data from the ongoing operation and interprets it to
identify the important events and to describe the situation in the format that
can be used by the case based reasoning process. Retrieval process of the
case based reasoning method takes the description of the current situation

30 3. Problem Definition and Proposed Solution

Figure 3.2: Structure of a Semantic Network

to find the most similar case from the case base. The selected most similar
case is used to identify the state of the operation. This process is repeated
for each new real-time data taken from the ongoing operation. The real-time
data is taken in a given time interval.

If the current situation is found to be a problem based on its similar selected
case, the reuse process is initiated to decide what solution should be taken
to solve it. A solution is proposed based on a solution used in the selected
case; the solution may be taken as-is in the selected case or with some modi-
fication, which depends on the situational description difference between the
new situation and the selected case. After the solution is proposed, the next
step is to revise the suggested solution. At this stage, drilling engineers are
informed about the situation with the suggested solutions so that they can
evaluate the solution and repair any faults that may have been uncovered.
Revise process of DrillEdge is performed by the engineers.

If the problem is a bit different from the existing cases and/or is solved in a

3.1. Problem Definition 31

Figure 3.3: Reasoning process of DrillEdge

32 3. Problem Definition and Proposed Solution

new way, the engineers create new case to represent its description with the
way it is solved, or modify an existing case to add the lesson learned from
the new experience. This process represents the retain phase of case based
reasoning method. This phase also performs the integration of the new case
in the case base and making it ready for subsequent extraction as needed
for similar future problems. DrillEdge system learns/updates its knowledge
base based on new experiences or lessons learned that are provided by the
engineers.

3.1.1.3 General Domain Knowledge’s Role

The general domain knowledge supports all phases of the case based reason-
ing process by providing contextual meaning and explanation of situation
descriptive features. For example, features may represent the same concept
while they are described with different terms. The semantic network helps
to identify that they are representing the same concept by using the relation
between the two semantically similar terms.

This project’s interest is the role that the general domain knowledge plays
in elaborating cases. Features of a case that are identified from the real-time
data are known as observed features. They represent observable features of
that particular drilling operation. However, there are several features that
are not observable but can be inferred from the observable features. These
type of features are known as inferred features. With more features the case
is described, more likely for correct representation of the situation and more
likely to get the right solution.

The relations between concepts in the general domain knowledge represen-
tation plays great role in elaborating cases by identifying hidden facts from
the observed features. For example, if concepts A and B are related as A
causes B and if we observe A in the current situation, we can conclude that
B is also a feature of the current situation, where A is the observed feature
and B is the inferred feature. Identifying hidden features of a case is known
as case transformation. And the case that is described with both observed
and inferred features is known as transformed case.

All cases in the case base are represented only with observed features. Every
time each is used in case matching, the inferred features are derived by

3.1. Problem Definition 33

Figure 3.4: The process of case elaboration

using current version of the general domain knowledge. The reason that
the inferred features are not saved in the knowledge base is to accommodate
changes of the general domain knowledge on the cases while inferring hidden
features of the case. As Figure 3.4 shows, the retrieval process of DrillEdge-
case matching- uses transformed cases, where both the new and old cases
are described with both observed and inferred features.

System developers at Verdande use a package called knowledge Editor to
edit the knowledge base, and to visualize & test the performance of the
case-based reasoning process. It is described in the following section.

3.1.1.4 Knowledge Editor

The knowledge editor simulates DrillEdge’s case based reasoning process
until case matching step. Instead of accepting real-time data it uses saved
data that represents drilling operation. Figure 3.5 is a screen shot of the
knowledge editor.

The knowledge editor provides facilities to deal with the knowledge model-
semantic network, which comprises case-specific and general knowledge of
the domain. The semantic network is one big hierarchically structured tree
of concepts and relations with a root node of the concept thing. However,
it is possible to view part of the network to increase its readability. The
right middle box- views, contains some list of views that show the semantic
network from different point of views. For example, the selected view- Top
Level 061207 that is displayed at the left side- shows the concepts and re-
lations at highest level in the semantic network. The right top box- Frame
View, shows the description and definition of the selected node in the dia-

34 3. Problem Definition and Proposed Solution

gram. It is possible to edit the definition of the selected node here. It is also
possible to add and delete concepts and relations in the diagram.

Figure 3.5: Screen shot of Knowledge Editor

The cases in the knowledge base are listed at the right bottom box- Case
List, of the knowledge editor. The knowledge editor provides a case view in
which the cases can be viewed from different point of view. The surrounded
part of Figure 3.6 with bold rectangle, represents the case view window that
is opened for the selected case from the case list.

When a case is double clicked at the case list, it is opened by using the case
view and displays all observed features of the case under View tab. When
the user clicks on the other tabs, the associated information regarding to
this particular case is displayed. Each tab is introduced as follows.

Event tab presents each event that occurs in this particular case with respect
to at what time and in which depth each event occurs. The case’s features
are categorized into groups based on the type of feature they represent. The
Tree Editor tab helps to edit these features based on their group. Text Editor
tab helps to view the case in XML format. It is possible to edit its content
here. It also supports importing a new case from other place to add it into

3.1. Problem Definition 35

Figure 3.6: Case View of the Knowledge Editor

the case base. When Case Match tab is clicked the similarity between this
particular case and each case in the list is performed and displayed as shown
in Figure 3.6. The left side of the window shows its similarity in percentage
with each case. As mentioned earlier, before case matching is done the new
and all other cases are elaborated to infer the hidden facts. The elaborated or
transformed case for this particular situation is displayed under Transformed
View tab. It contains both observed and inferred features of this case.

Simulation of the case based reasoning process of DrillEdge includes steps
until case matching. It doesn’t involve suggesting solutions for the given
situation.

3.1.2 Problem Description

The term problem normally connote negative sides however in this case
it doesn’t mean that the current system has a problem instead it refers the
reasons that initiate this project idea. There are two main reasons that raise
the need of integrating rule based reasoning with the case based system.

36 3. Problem Definition and Proposed Solution

The first reason is the availability of best common drilling practices that
can be formulated in form of rules better than other knowledge represen-
tations. The common practices represent general common facts about oil
drilling operations. Though the case based system is performing well with
current knowledge, integrating the best common drilling practices is thought
to increase the accuracy of handling drilling operations.

The other reason is in the semantic network each relationship between con-
cepts is weak, because it relates one concept with another. It is binary
relation that relates only two features. Representing multi relation makes
the semantic network complex. For example, representing a relation like
[(A and B and C) or D and (not E)] on the semantic network is not sim-
ple. On the other hand, there are some drilling operations that need to be
represented with more than two features for better presentation.

The availability of best drilling operations and situations that are repre-
sentable with complex relation of features motivates the integration of rule
based reasoning with the current system.

3.2 Proposed Solution

Integrating the rule based reasoning method with the case based system
is the proposed solution for the aforementioned problems. The rule based
reasoning component can be integrated in different ways to support the dif-
ferent activities of the case based reasoning process. In my specialization
project, alternative ways of integrating case based and rule based reason-
ing methods are researched and exemplified with real world systems that
integrate them.

In the proposed solution, the rule based reasoning method is suggested to
replace the semantic network in the case elaboration process. It is assumed
that the best common drilling operations and situations with complex rela-
tion can play a better role in identifying the hidden features than the weak
relations in the semantic network. The overall structure of the suggested
solution is depicted in Figure 3.7.

To demonstrate the suggested solution, a demo system will be developed.
Development of the demo system involves two main activities; development

3.3. Technological Requirements 37

of a rule based component and integrating it with the existing case based
system. The rule based component needs to represent the best common
drilling operations and situations with multi-relation in form of rules. It
uses rule based reasoning method to use the rules for the required purpose.

Figure 3.7: Structure of the Proposed Solution

As mentioned earlier, basic operations of DrillEdge are performed and tested
on the knowledge editor package. It performs the case based reasoning
process until case matching step. It doesn’t include suggesting the best
solution for the current situation. The demo system will be implemented on
top of the existing knowledge editor package.

3.3 Technological Requirements

The demo system will use the existing case based system which is developed
by using Java programming language. Hence, Java will be one of the pro-
gramming languages that will be used on the implementation of the demo
system.

The proposed rule based reasoning tool is Java Expert System Shell (Jess).
Jess is a rule engine that is written in Java language and freely available for
academic use. It provides the facility to develop a system that reasons by
using knowledge represented in form of rules.

The reason that I choose Jess is embedding it in Java application and/or
accessing all Java API’s in Jess is possible, which simplifies integrating the
rule based component with the existing case based system, which is devel-
oped by Java. It has licensed version for commercial use in case Verdande
wants to use it in the future

38 3. Problem Definition and Proposed Solution

Eclipse is an integrated development environment that provides full-fledged
feature for writing java applications. It has Jess plug-in that provides Jess
application development environment. Hence, all code on this project will
be written on Eclipse.

Chapter 4

Requirement Specification

Development of the demo system starts by identifying what is required in the
intended system from the project work. The requirements are defined based
on the general discussions I had with developers at Verdande. Presentation
of the requirements is categorized into business requirements, functional
requirements and non- functional requirements. Use case models are also
used to view the intended system from the user point of view in simple and
intuitive way.

4.1 Business Requirements

Business requirements represent high level requirements that the customer
wants to see or gain from the project. They are defined in broad terms and
they serve as a base for identifying the specific functionalities of a system
to be developed in the project.

• BR-01: The project shall propose, analyze, design and demonstrate a
way that a rule based reasoning method can be integrated with the
current case based system.

• BR-02: The change on the current system due to integrating the rule
based reasoning method must be discussed and demonstrated.

• BR-03: The rule based reasoning method should replace role of the
semantic network in the case elaboration process.

• BR-04: The tool that will be used to develop the rule based component
must be able to integrate with java programs.

40 4. Requirement Specification

• BR-05: The demo system that will demonstrate the integration must
be understandable and simple to use.

• BR-06: The project shall compare and contrast the use of rule based
method and semantic network in the case elaboration.

• BR-07: The demo system that will be developed to demonstrate the
integration should run on Windows operating system.

4.2 Functional Requirements

Functional requirements of the demo system represent the specific activities
that the system is supposed to do to achieve the business requirements.
They represent the intended behavior of the demo system. Importance of
each requirement and interaction with the other requirements are presented
in Table 4.1. The importance level is identified with terms high (H), medium
(M) and low (L). Requirements with high importance level are essential and
the most important functionalities that the customer wants to see on the
demo system. Those with low importance level are requirements that are
good to have in the demo system but they are not essential like those with
high level. Requirements with medium level are preferred functionalities of
the demo system.

• FR-01: The demo system shall have a rule based reasoning component.

• FR-02: The rule based component shall represent each case in a format
that can be used by the rule based reasoning component.

• FR-03: The rule based component shall identify the inferred features
of each case by using the rule based reasoning method.

• FR-04: Elaboration result of a case by using the rule based reasoning
method shall be presented to users.

• FR-05: The rule based component shall be integrated with the case
based reasoning component of the existing system.

• FR-06: The demo system shall perform the similarity of the new case
with the other cases in the case base after each case is elaborated by
using the rule based reasoning method.

4.2. Functional Requirements 41

• FR-07: The demo system shall present the similarity comparison result
of the new case with the others where rule based reasoning method is
used in the case elaboration process.

• FR-08: The demo system shall preserve identification of inferred fea-
tures of a case by using the semantic network independent of the rule
based component.

• FR-09: Presentation of transformed view of a case where the semantic
network is used in the elaboration process must be kept.

• FR-10: The demo system shall maintain performing of similarity be-
tween a new case with the other cases in the case base where semantic
network is used to elaborate the cases.

• FR-11: The demo system shall maintain presentation of the case
matching result where semantic network is used in the case elaboration
process.

• FR-12: The demo system shall provide intuitive and simple to use user
interface.

• FR-13: The user shall be able to compare the use of rule based method
and semantic network in the case elaboration process.

The functional requirements regarding with the rule based reasoning method
and integration of this method with the existing case based system are given
high importance. Because one of the goals of this project is to develop a
rule based reasoning component that demonstrates the designed role and
to integrate it with the case based system. Requirements that regard to
user interfaces are given medium importance. It is advisable to have them
to illustrate the functionalities of the system. Requirements that deal with
semantic network are given low importance because the existing system has
all these functionalities. They are included in the demo system simply to
compare and contrast the role of semantic network and rule based reasoning.

42 4. Requirement Specification

Functional Requirements Dependence Importance
FR-01 - H
FR-02 FR-01
FR-03 FR-01, FR-02 H
FR-04 FR-01, FR-02, FR-03 M
FR-05 FR-01, FR-02, FR-03 H
FR-06 FR-05 H
FR-07 FR-06 M
FR-08 - L
FR-09 FR-08 L
FR-10 FR-08 L
FR-11 FR-10 L
FR-12 FR-04, FR-07, FR-09, FR-11 M
FR-13 FR-04, FR-07, FR-09, FR-11 L

Table 4.1: Importance of and dependence among the functional require-
ments, where H = High, M = Medium and L = Low

4.3 Non-functional Requirements

Non-functional requirements are constraints or quality requirements that
need to be considered during implementation of the system. They deter-
mine how the system to be rather than what the system to perform. They
are intended to support the functional requirements concerning to user in-
terface, modifiability, availability, performance and security. Security and
availability issues of the demo system are out of the scope.

• NFR-01: The demo system shall be developed in modular bases.

• NFR-02: The inferred features in the elaborated case must be easily
identifiable.

• NFR-03: The user shall be able to identify his request to the demo
system with a single click.

• NFR-04: The user interfaces must use intuitive names.

• NFR-05: The demo system shall respond in less than 2 seconds for a
user request.

4.4. Use Case Models 43

• NFR-06: The demo system shall run on Windows operating system.

4.4 Use Case Models

Basic functions of a system that are identified in the functional requirements
are described from the user point of view by using use case models. The
model presents potential usage of the system by using use case diagrams
with their descriptions. A use case diagram consists of use cases, actors and
interaction among them. While a use case represents sequence of actions
that give measurable value to an actor; an actor represents users or external
systems that interact with the system to perform an action. [29]

The demo system has only one actor which is the developers. Only de-
velopers interact with it to test and evaluate its functionalities. The use
cases are defined based on the requests the developers raise to the system.
The developers may request the demo system to see transformed view of a
new case by using semantic network or the rule based component, the case
matching results, and to compare & contrast use of the two methods in the
case transformation process. Name and identifiers of the use cases for the
demo system are listed below:

• UC-01: Open a case

• UC-02: Transform a Case: Semantic Network

• UC-03: View Transformed Case: Semantic Network

• UC-04: View Case Matching result: Semantic Network

• UC-05: Transform a Case: Rule Based Reasoning Method

• UC-06: View Transformed Case: Rule Based Reasoning Method

• UC-07: View Case Matching result: Rule Based Reasoning Method

• UC-08: Compare Semantic Network and Rule Based Reasoning Method

The interfaces that will be used by developers to request the system or to
view information from the system are known as user interfaces. The user
interfaces that will be used in the demo system are identified and named
below:

44 4. Requirement Specification

• UI-01: Case List

• UI-02: Case View

• UI-03: Transformed View: Semantic Network

• UI-04: Case Matching: Semantic Network

• UI-05: Transformed View: Rule Based Reasoning Method

• UI-06: Case Matching: Rule Based Reasoning Method

Figure 4.1: Use Case Diagram of the Demo System

4.4.1 Use Case Diagrams

A use case diagram in Figure 4.1 shows the interaction between the use
cases and the actor of the system. The actor developer refers any person

4.4. Use Case Models 45

who wants to see the demo system functions identified in the use cases. The
use cases represent all the functions of the demo system that are concerns of
this project. Some of the use cases are already developed and functional on
the existing knowledge editor package. But they are included to show they
are still part of the demo system.

4.4.2 Use Case Description

This section describes the use cases in the diagram.

Use-Case ID UC-01
Use-Case Name Open a Case
Description A case shall be opened in the case view to perform the other

actions.
Precondition The knowledge editor is opened and it has list of cases in

the case base (case list).
Post Condition A case is opened in the case view from the case base.
Extends
Includes
Inherited From
Actor Developer
Basic Course of
Action

1. The developer wants to open a case.
2. The demo system provides list of cases in the case base
of the knowledge editor via UI-01: Case List.
3. The developer double clicks on the case that s/he wants
to be opened.
4. The demo system opens the case via UI-02: Case View
of the knowledge editor.
5. The use case ends.

Table 4.2: Use Case Description of UC-01.

46 4. Requirement Specification

Use-Case ID UC-02
Use-Case Name Transform a Case: Semantic Network
Description It is to transform or elaborate a case by using semantic net-

work.
Precondition A case is opened in the case view through UC-01.
Post Condition The case will be transformed.
Extends
Includes
Inherited From
Actor Developer
Basic Course of
Action

1. The demo system wants to transform a case by using
semantic network.
2. The demo system takes the case and identifies its hidden
features by using the semantic network.
3. The demo system represents the case including the iden-
tified hidden features.
4. The demo system returns the transformed case.
5. The use case ends.

Table 4.3: Use Case Description of UC-02.

4.4. Use Case Models 47

Use-Case ID UC-03
Use-Case Name View Transformed Case: Semantic Network
Description It is to view transformed or elaborated form of the opened

case while semantic network is used to identify the hidden
features.

Precondition A case is opened in the case view through UC-01.
Post Condition The transformed case will be displayed.
Extends
Includes Transform a Case: Semantic Network
Inherited From
Actor Developer
Basic Course of
Action

1. The developer wants to view the opened case after it is
elaborated by using the semantic network.
2. The developer clicks on UI-03 Transformed View: Se-
mantic Network which is tab of the case view.
3. The demo system transforms the case by using UC-02
Transform a Case: Semantic Network.
4. The demo system presents the transformed case via UI-
03 Transformed View: Semantic Network.
5. The use case ends.

Table 4.4: Use Case Description of UC-03.

48 4. Requirement Specification

Use-Case ID UC-04
Use-Case Name View Case Matching result: semantic Network
Description It is to view the similarity between the opened case with the

other cases in the case base while semantic network is used
in the case elaboration process.

Precondition A case is opened in the case view through UC-01.
Post Condition Similarity between the opened case and the other cases in

the case base will be displayed.
Extends
Includes Transform a Case: Semantic Network
Inherited From
Actor Developer
Basic Course of
Action

1. The developer wants to see similarity between the opened
case with the other cases in the case base.
2. The developer clicks on UI-04 Case Matching: Semantic
Network which is tab of the case view.
3. The demo system transforms the opened case by using
UC-02 Transform a Case: Semantic Network.
4. The demo system takes one case at a time from the case
base and transforms it by usingUC-02 Transform a Case:
Semantic Network.
5. The demo system compares and calculates the similarity
between the two transformed cases.
6. The demo system repeats steps 4 and 5 for each case in
the case base.
7. The demo system displays the similarity of the opened
case with each case in the case base in percentage via UI-04
Case Matching: Semantic Network.
8. The use case ends.

Table 4.5: Use Case Description of UC-04.

4.4. Use Case Models 49

Use-Case ID UC-05
Use-Case Name Transform a Case: Rule Based Reasoning Method
Description It is to transform or elaborate a case by using rule based

reasoning method.
Precondition A case is opened in the case view through UC-01.
Post Condition The case will be transformed by using the rule based rea-

soning method.
Extends
Includes
Inherited From
Actor Developer
Basic Course of
Action

1. The demo system wants to transform a case by using rule
based reasoning method.
2. The demo system takes the case and identifies its hidden
features by using the rule based reasoning method.
3. The demo system represents the case including the hidden
features.
4. The demo system returns the transformed case.
5. The use case ends.

Table 4.6: Use Case Description of UC-05.

50 4. Requirement Specification

Use-Case ID UC-06
Use-Case Name View Transformed Case: Rule Based Reasoning Method
Description It is to view transformed or elaborated form of the opened

case while rule based reasoning method is used to identify
the hidden features.

Precondition A case is opened in the case view through UC-01.
Post Condition The transformed case will be displayed.
Extends
Includes Transform a Case: Rule Based Reasoning Method
Inherited From
Actor Developer
Basic Course of
Action

1. The developer wants to view the opened case after it is
elaborated by using the rule based reasoning method.
2. The developer clicks on Transformed View: Rule Based
Reasoning tab of the case view.
3. The demo system transforms the case by using UC-05
Transform a Case: Rule Based Reasoning Method.
4. The demo system presents the transformed case via UI-
05 Transformed View: Rule Based Reasoning Method.
5. The use case ends.

Table 4.7: Use Case Description of UC-06.

4.4. Use Case Models 51

Use-Case ID UC-07
Use-Case Name View Case Matching result: Rule Based Reasoning Method
Description It is to view the similarity between the opened case with

the other cases in the case base while rule based reasoning
method is used in the case elaboration process.

Precondition A case is opened in the case view through UC-01.
Post Condition Similarity between the opened case and the other cases in

the case base will be displayed.
Extends
Includes Transform a Case: Rule Based Reasoning Method
Inherited From
Actor Developer
Basic Course of
Action

1. The developer wants to see similarity between the opened
case with the other cases in the case base.
2. The developer clicks on UI-06 Case Matching: Rule Based
Reasoning Method which is tab of the case view.
3. The demo system transforms the opened case by using
UC-05 Transform a Case: Rule Based Reasoning.
4. The demo system takes one case at a time from the case
base and transforms it by usingUC-05 Transform a Case:
Rule Based Reasoning.
5. The demo system compares and calculates the similarity
between the two transformed cases.
6. The demo system repeats steps 4 and 5 for each case in
the case base.
7. The demo system displays the similarity of the opened
case with each case in the case base in percentage via UI-06
Case Matching: Rule Based Reasoning Method.
8. The use case ends.

Table 4.8: Use Case Description of UC-07.

52 4. Requirement Specification

Use-Case ID UC-08
Use-Case Name Compare Semantic Network and Rule Based Reasoning

Method
Description It is to compare the two methods that can be used in the

case elaboration.
Precondition A case is opened in the case view through UC-01.
Post Condition A developer will able to compare the role of semantic net-

work and rule based reasoning method in the case elabora-
tion process

Extends
Includes UC-04: View Case Matching result: Semantic Network,

UC-07: View Case Matching result: Rule Based Reasoning
Method

Inherited From
Actor Developer
Basic Course of
Action

1. The developer wants to compare the role of semantic
network and rule based reasoning method in the case elab-
oration process.
2. The developer wants to view the case matching result
of the opened case with all other cases in the case base by
using semantic network in case transformation process.
3. The demo system displays the case matching result by
using UC-04 View Case Matching result: Semantic
Network.
4. The developer records the name of three top similar cases
with their similarity percentage from the case matching re-
sult.
5. The developer wants to view the case matching result
of the opened case with all other cases in the case base by
using rule based reasoning method in case transformation
process.
6. The demo system displays the case matching result by us-
ing UC-07 View Case Matching result: Rule Based
Reasoning Method .
7. The developer compares the top three similar cases from
the case matching result with the record s/he has from the
case matching result of the semantic network.
8. The use case ends.

Table 4.9: Use Case Description of UC-08.

4.4. Use Case Models 53

This chapter has described what the demo system is intended to perform in
general. Some of the use cases such as UC-01, UC-02, UC-03 and UC-04 are
implemented and already functional in the existing case based system. The
demo system will be developed on top of these functionalities. The reason
they are included in this chapter is to show that they are still functionalities
of the demo system. Hence the design and implementation phases of this
project work will focus on the functionalities or use cases that need to be
implemented.

Chapter 5

Design Phase

This chapter discusses how the demo system should be constructed to sat-
isfy the requirements identified in Chapter 3. The overall system design is
shown in Figure 5.1. As the figure shows the demo system has four basic
components: knowledge editor package, rule based component, case based
component and user interfaces.

The knowledge editor package provides the opened case in its case view
component and the list of cases in the case base for the intended operation
of the demo system.

The rule based component takes its input from the knowledge editor package
which is the opened case or a case from the case base in XML format. The
rule based component has sub components that process the case to identify
the hidden features. Its output is transformed case that will be used by the
case based component.

The case based component represents how similar the opened case is with
the other cases in the case base after each case is transformed by using rule
based reasoning method. Integration of the rule based reasoning method and
the case based reasoning method is done here, in case similarity operation.

The user interface component represents the interfaces that will be used by
users to interact with the demo system.

5.1 Knowledge Editor Package

The knowledge editor package is the base line of the demo system. Most
of the functionalities in the existing package are taken as they are for the

5.2. Rule Based Component 55

Figure 5.1: Overall Structure of the Demo System

demo system. Supplying cases for the demo system from the case base is
part of these functionalities. The demo system provides list of cases so that
the user can open a case to compare its similarity with the others.

5.2 Rule Based Component

The rule based component is designed and will be implemented based on
Jess framework. The component involves sub tasks like defining rules, repre-
senting the case in jess format, applying the rules to identify hidden features
and representing the transformed case in XML format so that it can be used
by the case based component.

56 5. Design Phase

Rule based reasoning in Jess rule engine requires three main parts: tem-
plates, rules and facts. Templates define concepts or objects in the given
domain by using set of properties. Facts are instantiation of objects or con-
cepts defined in the templates. They represent the objects that are known.
The rule engine returns an error if the rules or facts deals about an ob-
ject which is not defined in the templates. Templates in Jess resemble with
classes in Java programs. Each template has a name, which is like a class
name, and set of slots, which are like properties of a class. Rules represent
the domain knowledge in form of if . . . then . . . statements by using objects
defined in the templates. [30]

Listing 5.1: Jess Syntax to Define a Template
(deftemplate template_Name

[Optional Comment about the template]
(slot slot_name_1)
(slot slot_name_2)
(slot slot_name_3)
(slot slot_name_n)

)

To define templates, Jess uses the syntax shown in Listing 5.1. The terms
deftemplate and slot are Jess keywords that define the template and the
slots, which describe the template, respectively.

The rule based component of the demo system is supposed to accept a case
in XML format. A sample case is depicted in Appendix A.1. As shown in
the sample case, cases are represented with concepts that are categorized
into sections, sub-sections, and sequences. The concepts are described with
set of properties which are tagged as entry. The associated value for each
property is identified under them with symbolvalue or datavalue tag.

Listing 5.2: An Example for XML Representation of a Case
<section name="Administrative Data">

<entry parameter="Operator Company" source="Human">
<symbolValue>Statoil</symbolValue>

</entry>
<entry parameter="Well Identification" source="Human">

<symbolValue>Well 34/10-48A</symbolValue>
</entry>

<\section>

The example in Listing 5.2 shows some lines from XML representation of
a case. It has one concept named as Administrative Data and the concept

5.2. Rule Based Component 57

is described with two properties named as Operator Company and Well
Identification. The concept Administrative Data is instantiated with values
of Statoil for its Operator Company property and Well 34/10-48A for its
Well Identification property. This is a fact for the particular case from
which this XML statements are taken.

In order Jess to understand about the concept Administrative Data and its
two properties, they have to be defined as template and slots of the template
respectively. Listing 5.3 shows the definition of template Administrative
Data for Administrative Data concept.

Listing 5.3: An Example for a Template Definition of Listing 5.2
(deftemplate Administrative_Data

Administrative data about a case
(slot Operator_Company)
(slot Well_Identification)

)

Name of a template or a slot can not have a space in between words. If it
consists more than a word, they have to be concatenated in some way.

For the demo system a script shall be written that will parse all cases to
identify potential concepts and the associated properties. Categorization
of the concepts in the case representation into sections, sub-sections and
sequences helps to identify the concepts and properties easily. While the
categories help to identify the concepts, the parameters for each entry are
considered as properties of the associated concept.

It is also possible to parse the knowledge model to identify the concepts and
properties instead of parsing every case in the case base. But, for this demo
system parsing the knowledge model results in large number of templates
which won’t be used. In addition, the number of cases for the demo system
is few and parsing them provides the important and precise templates. For
the final system parsing the knowledge model is advisable. The algorithm
in Listing 5.4 shows design of the script that will be used to parse the cases
and to define the templates.

58 5. Design Phase

Listing 5.4: An Algorithm that Parses XML Format of a Case to define
Templates

For each case
{

Find the next entry and take its name from its parameter attribute
Use the entry name to define a slot

Find immediate parent category of the entry
If the immediate parent category is sequence-section
{

Find name of the sequence which is parent of the sequence-section
(Sequence-section doesn’t have a name so that we have to use
the sequence name under which the sequence-section is)

Use the sequence name to define a template
}

If the immediate parent category is not sequence-section
{ Use the parent category to define a template }

Check whether there is a defined template with the name of this parent
category
If there is a defined template with this parent category
{

Check whether there is a slot under this template with the name of
this entry
If there is no slot with this entry name under this template

{ Define the slot under this template with the name of this entry }
If there is a slot with this entry name under this template

{ Go to the next entry and start from finding its name }
}
If there is no a defined template with this parent category
{

Define a template with the name of this parent category and define a
slot under it with the name of the entry

}
Go to the next entry and start again from finding its name

}

A property can be under a sequence, where the sequence is under a section,
and where the section may be under another section. The property describes
only the immediate parent category. The hierarchical structure of the cate-
gories can be shown by using template inheritance like class inheritance in
Java. However, the lower categories can’t be described with properties of
the super categories and there is no way of setting access control of proper-
ties in Jess unlike Java class inheritances. The templates need to be defined
with properties which are immediate to them. Hence, templates inheritance
is not applicable for this application domain.

5.2. Rule Based Component 59

5.2.1 Define Rules

Rules represent the domain knowledge in form of rules. The rules I have
got from Verdande are written with if . . . then . . . format. They state that
whenever the features in if part are known and they are true, then the
features in then part are concluded to be true. All the rules are listed in
Appendix B.1.

Jess has its own way of representing rules as shown in Listing 5.5. All rules
in if . . . then . . . format has to be represented in Jess format in order to be
used by the rule engine. The list of patterns in the syntax indicates the
features that are in if part of a rule, the symbol => represents the term
then, and the list of conclusions represents the features in then part of a
rule.

Listing 5.5: Jess Syntax to Define a Rule
(defrule rule-name

[Optional Comment about the rule]
(pattern 1)
(pattern 2)

(pattern n)
=>
(conclusion 1)
(conclusion 2)

(Conclusion n)
)

Listing 5.7 shows a simple example for defining a rule in Jess format for
the rule that was represented in If . . . then . . . format as shown in Listing
5.6. The rule defines to print a message The Company is Statoil when there
is a fact that instantiate the concept Administrative Data has its property
Operator Company with a value of Statoil.

Listing 5.6: An Example of a Rule in IF . . . THEN . . . Format
IF Operator Company is Statoil

THEN print the message "The Company is Statoil".

60 5. Design Phase

Listing 5.7: An example of a Rule in Jess Format
(defrule simple_rule_example

(Administrative Data (Operator Company "Statoil")
=>
(System.out.println("The Company is Statoil")

)

If part of a rule may have more than one features that are connected with
simple/complex relations. Some features may need some kind of calcula-
tions. All should be considered and represented in the way that the Jess
rule engine can understand them. The Jess manual in [31] provides strong
background on defining rules in Jess.

5.2.2 Represent a Case in Jess Format

A situation to reason about is known as a fact. In the demo system the rule
engine is supposed to reason about a case to identify its hidden features.
Currently, the cases are represented in XML formats. They need to be
represented in Jess format to be used by the jess engine. It can be done by
writing a script that parses the XML file and generates a jess file.

The XML representation includes features and events that occur during
the drilling operation at different depth and time. Normally, a case is a
situation that occurs at specific time or situation. Though the XML file
records drilling information at different depth and time, a case is captured
at specific depth and time from the record. The drilling information for the
case depends on the capturing depth and time. The case capturing depth
and time are also recorded in the XML file. Though both capturing time
and depth are important for the case, we agreed to use capturing depth for
this demo system. Hence, to represent a case in Jess format from the XML
file, the capturing depth will be the main factor to identify which drilling
information is applicable and more relevant for the case.

The occurrence of some features and events is independent of the depth
and time of the drilling operation. They have only one value. However,
some features and events occur more than one time and/or vary their value
depending on the depth and time of occurrence. For such kind of features
and events, the captured case shall consider depth of occurrence.

Figure 5.2 depicts hierarchical structure of features and events for a sample

5.2. Rule Based Component 61

Figure 5.2: Hierarchical Structure of Features and Events in an XML Rep-
resentation of a Case

62 5. Design Phase

case. Occurrence of all except interpreted event section is independent of
the depth and time of drilling operation. The features and events under in-
terpreted event section occurred more than one time and they have different
values that are associated with different depth and/or time of the drilling
operation. These different values shall be considered based on the depth
where the case is captured. Two different techniques are proposed to handle
the sections and sequences that are under the interpreted event section.

The sections Tight Spot, Increased Drag, Pack Off, Increased Torque and
Took Weight have occurred at different depth and time of drilling opera-
tion. The important fact or information that is needed about these events
is their occurrence and at what depth they occurred. If occurrence depth
for an event is closer to the case capturing depth, it is more relevant for the
captured case than the events that occur in far distance. Different weight is
used to count the occurrence of such events based on their distance from the
depth where the case is captured. The algorithm for weighting each event
is shown in Listing 5.8.

Listing 5.8: An Algorithm for Weighting Occurrences of Events like Tight
Spot Increased Drag Pack Off Increased Torque and Took Weight with re-
gard to the Case Capturing Depth
If positive value of event_depth minus case_depth is less than or equal to

100, the event occurrence will be counted as 1.
If positive value of event_depth minus case_depth is less than or equal to

200 and greater than 100, the event occurrence will be counted as 0.5.
If positive value of event_depth minus case_depth is less than or equal to

300 and greater than 200, the event occurrence will be counted as 0.33.
.
.
If positive value of event_depth minus case_depth is less than or equal to n

and greater than n-100, the event occurrence will be counted as 1/n.

Time Scale Events and Depth Scale Events sequences repeat the same infor-
mation that was recorded in the above sections by categorizing the events
based on time of occurrence and depth of occurrence respectively. Hence
considering these sequences for the captured case is not necessary if the
sections are considered once.

In Measured Depth Scale Events, depth of the drilling operation is grouped
in range of values with 10 meters difference. The events that occur in the
range that includes the case capturing depth will be considered as events

5.2. Rule Based Component 63

of the captured case. For example, while the drilling depth is grouped into
two like 5743.16 - 5753.16 and 5753.61 - 5763.61; if the case is captured at
depth of 5751.87, all events that occur in the range of 5743.16 - 5753.16 will
be evens of the captured case, since case capturing depth, 5751.87, is in this
range.

Now the script that can parse the XML file to represent the captured case in
Jess format can be designed. As discussed above, events and features with
one value will be taken without considering depth or time of case capturing.
Whereas, features and events that varies when the depth of drilling operation
changes needs to be considered based on the case capturing depth. Parsing
the XML file is similar with the one designed to parse cases and define
the templates. The script for parsing the XML file and generating jess
representation of the captured case is shown in Listing 5.9.

Listing 5.9: An Algorithm for Generating the Jess format of the Captured
Case from the XML File

For each entry of a case
{
Find its immediate parent

If parent is description type [if it is simply to give description of
a thing]

Go to next entry
If parent is not description type
{
If entry is independent of drilling depth

Record it with the associated value and the immediate parent
category.

If entry is dependent with the drilling depth such as entries
under interpreted events

{
If the entry parent is one of the events such as pack off events,
tight spot events, increased torque events, increased drag

events or took weight events
{
Record the entry with the associated value and the immediate

parent in a Jess file only one time though it occurs many times.
Calculate the weight of the event occurrence and keep the sum of

weights for each similar event occurrences.
When similar events are finished, record the sum for the

associated entry.
}

If the entry parent is measured depth scale events
{
Check if entry depth range includes the case capturing depth.

64 5. Design Phase

If it is in the range
Record the entry with the associated value and the parent

If it is not in the range
Ignore the entry and check the next entry depth range
}

}
}

}

The script will be used to identify the template name , slot name and the
associated values. When they are written in a jess file, they have to follow
the syntax for defining facts. The syntax for defining facts in Jess is shown
in Listing 5.10.

Listing 5.10: Jess Syntax to Define Facts

(template-name
(slot-name slot-value)

)

The example in Listing 5.11 shows Jess representation for the XML case
representation example shown in Listing 5.2.

Listing 5.11: Jess Representation of the XML Case Representation Example
in Listing 5.2
(Administrative_Data

(Operator_Company "Statoil")
(Well_Identification "Well 34/10-48A")

)

5.2.3 Applying the Rules to Identify Hidden Features

Once the knowledge is represented in form of rules, the inference engine
decides which rule should be executed for a given fact. The inference engine
uses an algorithm called Rete 1 to match the rules with the given facts in
order to identify which rules are applicable for the facts. The reasoning
process is taking place in the working memory. The rules react for the
addition, deletion, and modification of facts in the working memory. [30]

1The Rete algorithm is an efficient pattern matching algorithm for implementing pro-
duction rule systems.[52]

5.2. Rule Based Component 65

In the above sections we have seen how facts can be defined but not yet
added into the working memory. To be used by the rule engine, they have
to be added by using the Jess key word assert or add. Listing 5.12 shows the
addition of a fact into the working memory. Now, the fact will be readily
available in the working memory for the reasoning process.

Listing 5.12: An Example Using of Assert to Add a Fact into Working
Memory
(assert (Administrative Data

(Operator Company "Statoil")
(Well Identification "Well 34/10-48A")

)
)

We have seen a definition of a template in Listing 5.3, definition of a rule
in Listing 5.7 and definition of fact in Listing 5.12. Though all definitions
are done, the reasoning process is not started yet. Because the inference
engine needs an explicit request to start reasoning about facts in the working
memory. The Jess key word run, is used to do so.

If we launch the reasoning process by using the key word run, the inference
engine takes the fact from the working memory, which is the Operator Com-
pany of Administrative Data object has a value of Statoil. It then searches
rules of which the if statements have matched with the fact at hand. Then
the conclusion of the matched rules will be applied. In the example the
conclusion of the matched rule is to print a message, hence the message The
Company is Statoil will be printed on the console. The conclusion of a rule
can be to print a message, to add another fact into the working memory, to
modify some values of existing facts, etc

5.2.4 Representing the Transformed Case into XML Format

Output of the rule based component is an XML format of the case that in-
cludes the hidden or inferred features. After the reasoning process is finished,
the inferred features should be added into the existing XML representation
of the case which was the input of the rule based component.

Template name of an inferred feature will be the parent category as section
in the XML representation, name of the slot will be the name of the entry
and the value will be the associated value for the entry.

66 5. Design Phase

For example, if we assume the feature in Listing 5.13 is inferred from given
facts, it can be added at the end of the XML representation of the input
case as shown in Listing 5.14

Listing 5.13: An Example for an Inferred Feature in Jess Format
(Administrative_Data

(Company_Owners Private)
)

Listing 5.14: XML Representation of the Inferred Feature shown in Listing
5.13

<section name="Administrative Data">
<entry parameter=" Company Owners" source="System">
<symbolValue>private</symbolValue>
</entry>

<\section>

5.3 Case Based Component

The main function of the case based component is to perform case matching.
There is no big change on this funcitonality for the demo system from the
existing case based system. The only difference is in its input. The demo
system is supposed to receive a transformed case by semantic network or by
rule based reasoning depending on the user request. However the existing
system receives a transformed case by semantic network only. Though it
uses different types of input types, the case matching process is independent
of the method used to transform the case, hence the demo system uses the
same case matching process.

5.4 User Interface Component

As shown in the use case model at Chapter 3, the users interact with the
demo system by using user interfaces. Figure 5.1 shows the user interface
component has four main user interfaces that are required for the demo
system. UI-03 and UI-04 are to accept requests from a user to display a
transformed case and case matching result by using the semantic network
in the case transformation process. These case transformation and case

5.5. Integration of the Rule Based Component with the Knowledge Editor
Package 67

matching processes exist in the current system. The only task they require
for the demo system is to change the name of the user interfaces. In the
current system, the interfaces are named with Transformed View and Case
Match, they don’t intuitively indicate what method is used to transform
the cases. Hence changing the names with Transformed Case: Semantic
Network and Case Matching: Semantic Network will enable to identify what
method has been used to transform the cases.

User interfaces UI-05 and UI-06 are totally new for the demo system. They
need to be added as additional tabs into the case view component of the
knowledge editor package. When a user clicks on either of these tabs, the
clicked tab has to display the requested information. The user interfaces
initiate transformation of a case by using rule based reasoning method and
case matching processes of the demo system based on the user request.

5.5 Integration of the Rule Based Component with
the Knowledge Editor Package

As mentioned before, the rule based component receives its input from the
knowledge editor package when a user requests to view transformed view of
a case or when the case matching process is to be performed. The package
understands and uses the case throughout the system performance with
its representation as semantic network in the knowledge model. The editor
package has methods to convert a case representation from knowledge model
to XML format and from XML format to representation in the knowledge
model. These methods can be used to let interaction between the rule based
component and the knowledge editor package.

The reason that XML format is chosen for the rule based component instead
of using the case representation in the knowledge model, is the desire to make
the rule based component independent of the semantic network.

The class diagram in Figure 5.3 shows how the rule based component can
be integrated with the knowledge editor package. The two Java packages
volve.creek.gui.representation and volve.creek.gui.representation.casexml are
taken from the existing system while the package volve.rules is the rule based
package that is added to the existing system. The SeparatedCasePane class

68 5. Design Phase

Figure 5.3: Class Diagram for Integration of the Rule Based Component
with the Knowledge Editor Package

5.6. Integration of the Rule Based Component with the Case Based
Component 69

responds for requests that come from users via the knowledge editor pack-
age. CaseParsing class of the rule based component interacts with Separat-
edCasePane class to access user request and the opened case. As mentioned
earlier, since the case is represented as semantic network, the CaseParsing
class interacts with CaseWriter class to convert it into XML format. Af-
ter the rule based component has transformed the case, the CaseParsing
class interacts with CaseParser class to convert the XML format into case
representation on the knowledge model. Then the rule based component
provides the converted case to the SeparatedCasePane class to display the
transformed case to the user.

5.6 Integration of the Rule Based Component with
the Case Based Component

The main goal to integrate the rule based reasoning method with the case
based reasoning method in this project is, to support the case matching
process of the case based reasoning method by using the rule based reasoning
method to elaborate the cases.

Figure 5.4: An architecture for integrating the rule based reasoning method
with the existing case based system

As Figure 5.4 shows the case based reasoning method receives the input case
and provides it to the rule based reasoning method for further elaboration.
It does the same after it retrieves a case from the case base. The rule based
reasoning method interferes between retrieving a case and case matching

70 5. Design Phase

processes of the case based reasoning method. The rule based component is
designed independent of the case based component. The interaction between
the two reasoning methods can be done by sending messages. The case based
component can call the rule based reasoning method with a message of the
case to be elaborated. When the rule based reasoning method has finished its
transformation, it can call the case based reasoning method with a message
of the transformed case.

The flow of logic in the integrated system to describe the behavior of the
demo system is illustrated in Figure 5.5.

5.6. Integration of the Rule Based Component with the Case Based
Component 71

C
re
a
te
d
 w
it
h
 u
n
re
g
is
te
re
d
 S
e
q
u
e
n
c
e
 D
ia
g
ra
m
 E
d
it
o
r
e
v
a
lu
a
ti
o
n
 v
e
rs
io
n
.

R
e
g
is
te
r
a
t
w
w
w
.S
e
q
u
e
n
c
e
D
ia
g
ra
m
E
d
it
o
r.
c
o
m
 t
o
 r
e
m
o
v
e
 t
h
is
 m

e
s
s
a
g
e

C
re
a
te
d
 w
it
h
 u
n
re
g
is
te
re
d
 S
e
q
u
e
n
c
e
 D
ia
g
ra
m
 E
d
it
o
r
e
v
a
lu
a
ti
o
n
 v
e
rs
io
n
.

R
e
g
is
te
r
a
t
w
w
w
.S
e
q
u
e
n
c
e
D
ia
g
ra
m
E
d
it
o
r.
c
o
m
 t
o
 r
e
m
o
v
e
 t
h
is
 m

e
s
s
a
g
e

C
re
a
te
d
 w
it
h
 u
n
re
g
is
te
re
d
 S
e
q
u
e
n
c
e
 D
ia
g
ra
m
 E
d
it
o
r
e
v
a
lu
a
ti
o
n
 v
e
rs
io
n
.

R
e
g
is
te
r
a
t
w
w
w
.S
e
q
u
e
n
c
e
D
ia
g
ra
m
E
d
it
o
r.
c
o
m
 t
o
 r
e
m
o
v
e
 t
h
is
 m

e
s
s
a
g
e

C
re
a
te
d
 w
it
h
 u
n
re
g
is
te
re
d
 S
e
q
u
e
n
c
e
 D
ia
g
ra
m
 E
d
it
o
r
e
v
a
lu
a
ti
o
n
 v
e
rs
io
n
.

R
e
g
is
te
r
a
t
w
w
w
.S
e
q
u
e
n
c
e
D
ia
g
ra
m
E
d
it
o
r.
c
o
m
 t
o
 r
e
m
o
v
e
 t
h
is
 m

e
s
s
a
g
e

C
re
a
te
d
 w
it
h
 u
n
re
g
is
te
re
d
 S
e
q
u
e
n
c
e
 D
ia
g
ra
m
 E
d
it
o
r
e
v
a
lu
a
ti
o
n
 v
e
rs
io
n
.

R
e
g
is
te
r
a
t
w
w
w
.S
e
q
u
e
n
c
e
D
ia
g
ra
m
E
d
it
o
r.
c
o
m
 t
o
 r
e
m
o
v
e
 t
h
is
 m

e
s
s
a
g
e

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

C
re
a
te
d
 w
it
h
 u
n
re
g
is
te
re
d
 S
e
q
u
e
n
c
e
 D
ia
g
ra
m
 E
d
it
o
r
e
v
a
lu
a
ti
o
n
 v
e
rs
io
n
.

R
e
g
is
te
r
a
t
w
w
w
.S
e
q
u
e
n
c
e
D
ia
g
ra
m
E
d
it
o
r.
c
o
m
 t
o
 r
e
m
o
v
e
 t
h
is
 m

e
s
s
a
g
e

D
e
v
e
lo
p
e
r

<
<
U
I>
>

C
a
s
e

M
a
tc
h
in
g
:

R
u
le
 B
a
s
e
d

R
e
a
s
o
n
in
g

M
e
th
o
d

K
n
o
w
le
d
g
e

E
d
it
o
r

R
e
c
ie
v
e

a
 C
a
s
e

S
e
le
c
t

a
 C
a
s
e

C
a
s
e

M
a
tc
h
in
g

C
a
s
e
 B
a
s
e
d
 R
e
a
s
o
n
in
g

C
a
s
e

B
a
s
e

R
e
c
ie
v
e

C
a
s
e
 i
n

X
M
L

C
a
s
e

in
 J
e
s
s

F
o
rm

a
t

Id
e
n
ti
fy

H
id
d
e
n

F
e
a
tu
re
s

T
ra
n
s
fo
rm

e
d

C
a
s
e

R
u
le
 B
a
s
e
d
 R
e
a
s
o
n
in
g

R
u
le

B
a
s
e

C
re
a
te
d
 w
it
h
 u
n
re
g
is
te
re
d
 S
e
q
u
e
n
c
e
 D
ia
g
ra
m
 E
d
it
o
r
e
v
a
lu
a
ti
o
n
 v
e
rs
io
n
.

R
e
g
is
te
r
a
t
w
w
w
.S
e
q
u
e
n
c
e
D
ia
g
ra
m
E
d
it
o
r.
c
o
m
 t
o
 r
e
m
o
v
e
 t
h
is
 m

e
s
s
a
g
e

C
re
a
te
d
 w
it
h
 u
n
re
g
is
te
re
d
 S
e
q
u
e
n
c
e
 D
ia
g
ra
m
 E
d
it
o
r
e
v
a
lu
a
ti
o
n
 v
e
rs
io
n
.

R
e
g
is
te
r
a
t
w
w
w
.S
e
q
u
e
n
c
e
D
ia
g
ra
m
E
d
it
o
r.
c
o
m
 t
o
 r
e
m
o
v
e
 t
h
is
 m

e
s
s
a
g
e

P
a
g
e
 1
 o
f
1

C
re
a
te
d
 w
it
h
 u
n
re
g
is
te
re
d
 S
e
q
u
e
n
c
e
 D
ia
g
ra
m
 E
d
it
o
r
e
v
a
lu
a
ti
o
n
 v
e
rs
io
n
.

R
e
g
is
te
r
a
t
w
w
w
.S
e
q
u
e
n
c
e
D
ia
g
ra
m
E
d
it
o
r.
c
o
m
 t
o
 r
e
m
o
v
e
 t
h
is
 m

e
s
s
a
g
e

C
re
a
te
d
 w
it
h
 u
n
re
g
is
te
re
d
 S
e
q
u
e
n
c
e
 D
ia
g
ra
m
 E
d
it
o
r
e
v
a
lu
a
ti
o
n
 v
e
rs
io
n
.

R
e
g
is
te
r
a
t
w
w
w
.S
e
q
u
e
n
c
e
D
ia
g
ra
m
E
d
it
o
r.
c
o
m
 t
o
 r
e
m
o
v
e
 t
h
is
 m

e
s
s
a
g
e

C
re
a
te
d
 w
it
h
 u
n
re
g
is
te
re
d
 S
e
q
u
e
n
c
e
 D
ia
g
ra
m
 E
d
it
o
r
e
v
a
lu
a
ti
o
n
 v
e
rs
io
n
.

R
e
g
is
te
r
a
t
w
w
w
.S
e
q
u
e
n
c
e
D
ia
g
ra
m
E
d
it
o
r.
c
o
m
 t
o
 r
e
m
o
v
e
 t
h
is
 m

e
s
s
a
g
e

R
e
q
u
e
s
ts
 t
o
 v
ie
w
 s
im
il
a
ri
ty
 o
f
a
 c
a
s
e
 w
it
h
 t
h
e
 o
th
e
rs

In
it
ia
te
 c
a
s
e
 m

a
tc
h
in
g
 p
ro
c
e
s
s

P
ro
v
id
e
s
 t
h
e
 o
p
e
n
e
d
 c
a
s
e
 i
n
 X
M
L
 f
o
rm

a
t

P
ro
v
id
e
s
 t
h
e
 c
a
s
e
 t
o
 t
h
e
 r
u
le
 b
a
s
e
d
 r
e
a
s
o
n
in
g
 t
o
 b
e
 t
ra
n
s
fo
rm

e
d

R
e
q
u
e
s
t
to
 r
e
p
re
s
e
n
t
th
e
 c
a
s
e
 i
n
 J
e
s
s
 f
o
rm

a
t

P
ro
v
id
e
s
 t
h
e
 c
a
s
e
 i
n
 J
e
s
s
 f
o
rm

a
t

S
e
a
rc
h
e
s
 a
p
p
li
c
a
b
le
 r
u
le
s

P
ro
v
id
e
s
 a
p
p
li
c
a
b
le
 r
u
le
s

A
p
p
ly
 t
h
e
 r
u
le
s
 t
o
 i
d
e
n
ti
fy
 t
h
e
 h
id
d
e
n
 f
e
a
tu
re
s

R
e
tu
rn
s
 t
h
e
 t
ra
n
s
fo
rm

e
d
 c
a
s
e

w
h
il
e
 (
it
 i
s
 n
o
t
e
n
d
 o
f
th
e
 c
a
s
e
 i
n
 t
h
e
 c
a
s
e
 b
a
s
e
)

S
e
le
c
t
a
 c
a
s
e
 f
ro
m
 t
h
e
 c
a
s
e
 b
a
s
e

P
ro
v
id
e
s
 t
h
e
 c
a
s
e
 t
o
 t
h
e
 r
u
le
 b
a
s
e
d
 r
e
a
s
o
n
in
g
 t
o
 b
e
 t
ra
n
s
fo
rm

e
d

R
e
q
u
e
s
t
to
 r
e
p
re
s
e
n
t
th
e
 c
a
s
e
 i
n
 J
e
s
s
 f
o
rm

a
t

P
ro
v
id
e
s
 t
h
e
 c
a
s
e
 i
n
 J
e
s
s
 f
o
rm

a
t

S
e
a
rc
h
e
s
 a
p
p
li
c
a
b
le
 r
u
le
s

P
ro
v
id
e
s
 a
p
p
li
c
a
b
le
 r
u
le
s

A
p
p
ly
 t
h
e
 r
u
le
s
 t
o
 i
d
e
n
ti
fy
 t
h
e
 h
id
d
e
n
 f
e
a
tu
re
s

R
e
tu
rn
s
 t
h
e
 t
ra
n
s
fo
rm

e
d
 c
a
s
e

C
a
lc
u
la
te
 t
h
e
 s
im
il
a
ri
ty
 b
e
tw
e
e
n
 t
h
is
 t
ra
n
s
fo
rm

e
d
 c
a
s
e
 a
n
d
 t
h
e
 t
ra
n
s
fo
rm

e
d
 f
o
rm

 o
f
th
e
 o
p
e
n
e
d
 c
a
s
e

R
e
tu
rn
s
 t
h
e
 s
im
il
a
ri
ty
 b
e
tw
e
e
n
 t
h
e
 c
a
s
e
 a
n
d
 a
ll
 c
a
s
e
s
 i
n
 t
h
e
 c
a
s
e
 b
a
s
e

C
re
a
te
d
 w
it
h
 u
n
re
g
is
te
re
d
 S
e
q
u
e
n
c
e
 D
ia
g
ra
m
 E
d
it
o
r
e
v
a
lu
a
ti
o
n
 v
e
rs
io
n
.

R
e
g
is
te
r
a
t
w
w
w
.S
e
q
u
e
n
c
e
D
ia
g
ra
m
E
d
it
o
r.
c
o
m
 t
o
 r
e
m
o
v
e
 t
h
is
 m

e
s
s
a
g
e

C
re
a
te
d
 w
it
h
 u
n
re
g
is
te
re
d
 S
e
q
u
e
n
c
e
 D
ia
g
ra
m
 E
d
it
o
r
e
v
a
lu
a
ti
o
n
 v
e
rs
io
n
.

R
e
g
is
te
r
a
t
w
w
w
.S
e
q
u
e
n
c
e
D
ia
g
ra
m
E
d
it
o
r.
c
o
m
 t
o
 r
e
m
o
v
e
 t
h
is
 m

e
s
s
a
g
e

C
re
a
te
d
 w
it
h
 u
n
re
g
is
te
re
d
 S
e
q
u
e
n
c
e
 D
ia
g
ra
m
 E
d
it
o
r
e
v
a
lu
a
ti
o
n
 v
e
rs
io
n
.

R
e
g
is
te
r
a
t
w
w
w
.S
e
q
u
e
n
c
e
D
ia
g
ra
m
E
d
it
o
r.
c
o
m
 t
o
 r
e
m
o
v
e
 t
h
is
 m

e
s
s
a
g
e

F
ig
ur
e
5.
5:

A
se
qu

en
ce

di
ag
ra
m

th
at

sh
ow

s
th
e
se
qu

en
ce

of
ac
ti
on

s
th
at

th
e
in
te
gr
at
ed

sy
st
em

pe
rf
or
m
s
to

ac
hi
ev
e
ca
se

m
at
ch
in
g
by

us
in
g
ru
le

ba
se
d
re
as
on

in
g
m
et
ho

d
in

th
e
ca
se

el
ab

or
at
io
n.

T
he

m
es
sa
ge

in
bo

x
at

th
e
to
p
is

no
t
pa

rt
of

th
e

se
qu

en
ce

di
ag
ra
m
.
It

is
di
sp
la
ye
d
si
nc
e
I
ha

ve
us
ed

fr
ee
ly

av
ai
la
bl
e
to
ol

to
dr
aw

th
e
di
ag
ra
m
.

72 5. Design Phase

The following chapter will discuss the implementation of the demo system
based on the designed scripts and algorithms proposed in this chapter.

Chapter 6

Implementation Phase

This chapter is concerned about documentation of how the demo system is
implemented. As discussed in Chapter 3 and shown in Figure 5.1, the demo
system has different components. Implementation of the demo system is
divided based on the components.

6.1 Implementation of the Rule Based Reasoning
Component

The rule based reasoning component is developed independent of the case
based component. Making it independent is chosen because modifiability of
the rule based component or the case based component can be done without
affecting the other. In addition the source code for the case based compo-
nent was not allowed to take and use it out of Verdande computers, which
required going there to perform the implementation. Because of these rea-
sons, making the rule based component independent is advantageous to keep
quality of component modifiability and implementing the rule component in
flexible times.

The two components interact by sending and receiving an XML representa-
tion of a case. The case based component sends the case that needs to be
elaborated and the rule based reasoning component sends the transformed
form of the case for which it has received.

Before the rule based reasoning component has started accepting and trans-
forming cases, it needs to have the templates and the rules on which the
transformation process is performed. The component uses Jess files to con-

74 6. Implementation Phase

tain the templates, the rules and the fact. The reasoning process will use
the files to get the necessary data. The following sections discuss about
implementation of defining templates, defining rules, defining facts and the
transformation process.

6.1.1 Implementation of Defining Templates

Based on the proposed algorithm, the script is written in Java to parse the
sample cases given for this demo system. The script accepts one case at a
time and writes potential templates on a Jess file. When it parses another
case, it checks availability of the concepts as templates and/or properties as
slots of the associated template in the file, if the slot or combination of the
template and the slot is new, it will be added to the file. The templates are
written on the Jess file by following Jess syntax to define templates; however
the code that defines the templates is written in Java.

Some of the rules have new concepts and properties which have not been
used in any of the sample cases. I have added these concepts and proper-
ties into the template file by checking their parent object on the knowledge
model. Some of the rules have also included concepts and properties which
are new and have not been added in the knowledge model. Since the rule
based component is supposed to be integrated with the case based compo-
nent, all the concepts and properties that have to be used in the templates,
rules, or facts, must exist in the knowledge model. This required updating
the knowledge model by adding the new concepts and properties. Adding
the new concepts and properties in the knowledge model is discussed in
the following section. Figure 6.1 shows part of the knowledge model that
includes most of newly added concepts and properties with some existing
concepts.

The defined templates are shown in Appendix C, they are saved with a jess
file called template.clp for the demo system.

6.1.2 Implementation of Defining Rules

The rules I received from Verdande are statements with if . . . then . . . format,
as shown in Appendix B.1 , where the if part indicates features that are ob-
served or known about the situation and the then part indicates features

6.1. Implementation of the Rule Based Reasoning Component 75

Figure 6.1: Concepts and Properties Representation in the Knowledge
Model

that can be inferred from the known features. Based on the rule in Listing
6.1, for example, when a situation has greater than 2000 L/min of Instanta-
neous Pump Flow Rate, it means, the situation has High Pump Flow Rate.
The feature High Pump Flow Rate is inferred from the feature Instantaneous
Pump Flow Rate.

Listing 6.1: An Example of a Rule

IF Instantaneous Pump Flow Rate > 2000
THEN High Pump Flow Rate

When I received the rules, the features used in the rules haven’t been checked
for their existence in the knowledge model. When the templates are defined
all properties used in the features are checked for their existence on the
knowledge model and those that are new are added to the knowledge model.
Adding a property to the knowledge model required identifying its parent
category or under which concept it belongs to. It is done by discussing it
with people at Verdande.

76 6. Implementation Phase

The knowledge model uses different relations to relate concepts and proper-
ties with concepts. The relation that is main focus of the rule based compo-
nent is the one that relates a property and its immediate parent category.
This is indicated with a relation called has case entry parameter or case
entry parameter of based on the direction from which the relation is. The
new properties and concepts are added and related with this relation. The
existing knowledge model didn’t explicitly relate most of the properties with
their immediate parent categories. Hence, updating the knowledge model
to indicate the relation between them was part of the implementation task.
This knowledge model updating will help to parse the knowledge model in
order to define all templates for the big system by identifying this relation
between the concepts and their properties.

For the rule example in Listing 6.1, the immediate parent category of Instan-
taneous Pump Flow Rate and High Pump Flow Rate is Pump Flow Rate. In
the knowledge model, the relation is indicated as Pump Flow Rate has case
entries of instantaneous pump flow rate and high pump flow rate; inverse of
the relation is, instantaneous pump flow rate and high pump flow rate are
case entry parameters of pump flow rate.

Once it is confirmed that all the parameters used in the rules exist in the
knowledge model, defining the rules in Jess format to be used by the rule
engine is possible. Jess representation of the rule example in Listing 6.1 is
shown in Listing 6.2.

Listing 6.2: An Example of a Rule in Jess Format
(defrule rule_defination_example

(_Pump_Flow_Rate {_Instantaneous_Pump_Flow_Rate > 2000})
=>
(assert (_Pump_Flow_Rate (_High_Pump_Flow_Rate true)))
(InferredParam "_Pump_Flow_Rate" "_High_Pump_Flow_Rate" true)

)

The rule performs two tasks when instantaneous pump flow rate of pump
flow rate object is greater than 2000. The first task is to add the inferred
feature high pump flow rate into the working memory by using assert key
word of Jess. Adding inferred features into the working memory helps to
find other rules that are applicable for the situation by having the inferred
features in their if statement.1 For example, in Listing 6.3 the rule has the

1The rules react for the facts that are in the working memory.

6.1. Implementation of the Rule Based Reasoning Component 77

inferred feature high pump flow rate in its if part. The rule will be active
whenever high pump flow rate, soft fm and narrow annulus are known to
be true and are available in the working memory. If they are not added
explicitly into the working memory, any of them won’t be there. Assert
statement in Listing 6.2 adds the feature High Pump Flow Rate is true for
the given situation in the working memory.

Listing 6.3: An Example of a Rule that uses an Inferred Feature in its If
part

If High Pump Flow Rate
AND Soft FM
AND Narrow Annulus

THEN Hydraulic Erosion

The second task is to add the inferred feature into the case representation.
The second statement after => calls a Jess function called InferredParam
which accepts three parameters - the immediate parent category of the in-
ferred feature, the name of the inferred feature and the associated value for
the inferred feature. The Jess function InferredParam calls a java method
that accepts the same parameters and writes the inferred feature into the
XML representation of the case. The jess code in Listing 6.4 is the inferred-
Param function. It accesses a java class named caseParsing to instantiate
an object named as ?pars. The function uses the object to call the java
method inferredParams which is member of class caseParsing.

Listing 6.4: A Jess Function named as InferredParam that calls a Java
Method named as InferredParams

(deffunction InferredParam (?parent ?inferredFeature ?value)
(bind ?pars (new caseParsing))

(call ?pars inferredParams ?parent ?inferredFeature ?value)
)

All other rules are defined in the same way; each rule performs the two
aforementioned tasks for the associated inferred feature. Appendix B.2shows
Jess representation of the rules that was accepted in IF . . . THEN . . . format
from Verdande.

78 6. Implementation Phase

6.1.3 Implementation of Representing a Case in Jess Format

Every case that needs to be transformed requires to be represented in Jess
format and to be added into the working memory of Jess. The algorithm
proposed in Chapter 5 is used and written in Java to parse the XML rep-
resentation of the case. The Java class DocumentbuilderFactory is used to
obtain a parser that produces a DOM document of the case from the XML
file.

Listing 6.5: Parsing an XML File to Generate a DOM Document.
DocumentBuilderFactory caseDocFac = DocumentBuilderFactory.newInstance();
DocumentBuilder newCase = caseDocFac.newDocumentBuilder();
caseDoc = newCase.parse(fileName);

The code snippet in Listing 6.5 shows instantiation of the Documentbuilder-
Factory class with a name of caseDocFac, which is used to define an instance
of DocumentBuilder class, named as newCase, to obtain the DOM document
from the XML file. The newCase instance parses the XML file given with
a name of fileName and generates the DOM document named as caseDoc
by using parse method. The DOM document structures the content of the
XML file in hierarchical, a tree like format.

Java provides application programming interfaces (API) to access different
kinds of data from a DOM document. Such kinds of interfaces are used
to identify properties, their immediate parent category, and the associated
value for the parameters from the DOM document of the XML file. The
following example illustrates how the different data are accessed and used
from the DOM document.

Let’s say the XML lines in Listing 6.6 are taken from an XML file that is
parsed and represented in a DOM document named caseDoc.

Listing 6.6: Some Lines from an XML File
<case name="Case-V12-PackOff-Gullfaks-48A-8.5in-02" status="solved">

<section name="Administrative Data">
<entry parameter="Operator Company" source="Human">

<symbolValue>Statoil</symbolValue>
</entry>
<entry parameter="Well Identification" source="Human">

<symbolValue>Well 34/10-48A</symbolValue>
</entry>
<entry parameter="Oil Field Identifier" source="Human">

6.1. Implementation of the Rule Based Reasoning Component 79

<symbolValue>Gullfaks</symbolValue>
</entry>

</section>
.
.
.

</case>

As discussed earlier, our interest in Jess representation of the case is to
identify the properties or features about the case, the immediate parent cat-
egory of the properties and their associated value in that particular case.
The parameters are represented inside <entry> tag of the XML representa-
tion. The tags in the XML are represented as elements with the tag name
in the DOM document. The code snippet in Listing 6.7 illustrates how the
parameters can be accessed from the DOM document.

Listing 6.7: Accessing Elements from a DOM Document
Element rootnode = caseDoc.getDocumentElement();
NodeList sections = rootnode.getElementsByTagName("entry");

The method getDocumentElement() retrieves the document element, which
is the root element of the DOM document. All XML statements in the file
are enclosed with <case> and </case> tags. While the first represents the
beginning of the case representation and the latter represents end of the case
representation. All other tags are enclosed with these tags. Hence <case>
is the root tag which is also the root element of the DOM document; when
the DOM document is generated from the XML file, it keeps logical order of
the file. Once the root element is obtained, it is possible to access all other
elements which are under it. The first statement in the above code snippet
returns the root element of the DOM document caseDoc.

Part of the code rootnode.getElementsByTagName("entry") indicates to
find all elements whose tag name is entry from the rootnode. It returns
array of elements named with entry which are under the rootnode. In this
example, as shown in the XML representation in Listing 6.6, there are three
elements whose tag name is entry; hence the NodeList sections will have
three elements.

As shown in the XML representation the name of each entry is given for the
attribute called parameter. To access attributes of elements in a DOM docu-

80 6. Implementation Phase

ment, NamedNodeMap Java interface can be used as shown in the following
code snippet.

Listing 6.8: Identifying Properties Immediate Parent Categories and Asso-
ciated Values for each property from a DOM Document
NamedNodeMap attributes;
for(int i=0; i<sections.getLength();i++)
{

attributes = sections.item(i).getAttributes();

// to find the attributes of elements which is the properties
String param =attributes.getNamedItem("parameter").getNodeValue();

//to find the immediate parent category of the parameter
parentNode = sections.item(i).getParentNode().getAttributes().

getNamedItem("name").getNodeValue());

//to find value of the parameter
NodeList children = sections.item(i).getChildNodes();
Element value = (Element)children.item(1);

if(children.item(1).getNodeName().equals("dataValue"))
{

paramvalue = value.getFirstChild().getNodeValue() ;
}
else if (children.item(1).getNodeName().equals("symbolValue"))
{

paramvalue = "\"" + value.getFirstChild().getNodeValue() + "\"";
}

}

For the example, the for loop is executed 3 times since the NodeList sections
has 3 elements. Each element is accessed with sections.item(i) .The string
variable param will have name of the property for the given element. The
method getParentNode() returns an element which is the immediate parent
category of the element that calls it. If the parent element is sequence-
section, it needs other way of handling since it doesn’t have any attribute
called name. The associated value of the parameter is also obtained by
accessing the child nodes.

Once the three values are identified, they are written on a jess file by fol-
lowing the Jess format to write a fact. The following code shows Jess repre-
sentation of the XML example which is written by the program on Jess file.
The key word asserts lets the data to be added on the working memory of
Jess rule engine.

6.1. Implementation of the Rule Based Reasoning Component 81

Listing 6.9: Jess Representation of the XML Statements in 6.6 that will be
written on Jess File
(assert (_Administrative_Data

(_Operator_Company "Statoil")
(_Well_Identification "Well 34/10-48A")
(_Oil_Field_Identifier "Gullfaks")

))

The whole code that parses the XML file to generate and write its Jess
representation on Jess file is attached in Appendix E.

Jess representation of the case in Appendix A is shown in Appendix D; after
the case is parsed by the program discussed above.

6.1.4 Implementation of Applying the Rules to Identify Hid-
den Features

In order the rule engine to reason about the cases, it needs to have the
templates, the rules which are knowledge of the domain, and the facts which
are the engine to reason about. So far, we have seen how the templates are
defined, the rules are represented and how a case can be represented in Jess
and added in the working memory. All are saved in Jess files they are not
given to the engine yet.

The templates and the rules are the same for all cases, hence they are saved
in a file called Template.clp and every time when a cases is parsed its Jess
representation is saved in a file called newCase.clp. The rule engine needs
to access content of both files to reason about the case. The function in
Listing 6.10 shows how the two files are given to the engine in order to start
reasoning about the case.

Listing 6.10: A Java Function that Initiates Rule Based Reasoning by Em-
bedding Jess Code

@SuppressWarnings("deprecation")
private void reasonUsingRBR()
{

Rete engine = new Rete();
try {
engine.executeCommand("(batch \"Template.clp\")");
engine.executeCommand("(batch \"newCase.clp\")");
}

82 6. Implementation Phase

catch(Exception e){
e.printStackTrace();
}

}

The function embeds Jess codes inside the Java function. The class Rete
declares an object called engine that uses Rete algorithm to reason about
the cases based on the files that are added into the rule engine by using Jess
command of batch.

Since Jess representation of the case in newCase.clp have included the key-
word assert, when the file is added, the facts goes to the working memory
directly. The rule engine takes the facts from the working memory and
searches applicable rules from Template.clp. When it gets the rules, it per-
forms what is ordered on the conclusion of the applicable rules. In this
demo system every rule performs two things: to add the inferred features
into working memory for further reasoning process and to register the in-
ferred features on the XML representation of the case.

6.1.5 Implementation of Representing the Transformed Case
into XML Format

As discussed in Section 6.1.2, every rule has a statement in its conclusion to
write the inferred features into the XML file when the rule is applicable for
the given situation. Hence, the inferred features are added into the original
XML representation of the case, when the applicable rule is executed.

6.2 Implementation of User Interface Component

As Figure 6.2 shows two new tabs are added and named as Transfomed
View: Rule Based Reasoning Method and Case Matching: Rule Based Rea-
soning Method in the case view. The two existing tabs that were named as
Transformed View and Case Match are renamed with Transformed View:
Semantic Network and Case Matching: Semantic Network respectively. Im-
plementation of the user interface is based on the discussion in user interface
design section 5.4 in Chapter 5.

6.3. Implementation of Integration of the Rule Based Component with the
Knowledge Editor Package 83

Figure 6.2: Added and Renamed Tabs in the Case View of the Demo System

6.3 Implementation of Integration of the Rule Based
Component with the Knowledge Editor Pack-
age

The rule based component and the knowledge editor package are integrated
to transform a case and to display the transformed case. Their interaction
is by sending messages. A case is send to the rule based component from
the knowledge editor package when a case is opened by a user. And a
transformed case is send by the rule based component to the knowledge
editor package to display it on the case view.

The integration of the two components is implemented based on the design
discussed and proposed in 5.5. Figure 6.3 shows the transformed form of a
case in the case view. As shown in the figure the feature Low WOB2 was
inferred for the given case.

2Only 3 rules were defined in Jess at this time; had it been using all the rules, more
features would have been inferred.

84 6. Implementation Phase

Figure 6.3: Tranformed Case by using Rule Based Reasoning Method in the
Case Veiw

6.4 Implementation of Integration of the Rule Based
Component with the Case Based Component

This section deals about case matching functionality of the demo system
by using the rule based reasoning method in the case elaboration process.
Functionality of elaborating a case by using rule based reasoning method
is working as shown in Figure 6.3. However, implementation of using it in
the case matching process is not finished. The main reason for not it to
be completed was shortage of time, because implementation of the existing
case based system used large number of packages and classes which are
really challenging to understand them. It took longer time to identify which
Java packages are relevant and which are not for the demo system. Even
after that, while some of the classes were commented, some were not at all;
which created difficulty on understanding of what class performs what. In
addition, the source code was accessible only at Verdande which prevented
me to work in flexible times.

6.4. Implementation of Integration of the Rule Based Component with the
Case Based Component 85

Though I am not successful, I tried to integrate them with the time I had.
The difficulty that I faced on my trial was accessing each case from the case
base to compare them with the opened case.

In the next chapter the demo system will be tested if it achieves the desired
objectives mentioned in previous chapters.

Chapter 7

Testing Phase

This chapter focuses on making sure that the objective of the project work is
achieved. It prepares a test plan to facilitate testing activities to be carried
out on the demo system and to document its results. Documentation of
this testing phase is in accordance with the standard IEEE Standard for
Software Test Documentation [IEEE Std 829-1998] [11]. The IEEE 829 is
very detailed to this demo system; hence some sections of the standard are
left out.

7.1 Test Plan

The purpose of the plan is to provide and record important information
about the testing activities to be carried on the demo system. It identifies
what to be and not to be tested based on the functionalities identified in
Chapter 4. It also includes the approaches that will be followed to perform
the testing activities.

7.1.1 Test Plan Identifier

The unique identifier for this test plan is RBRCBRI-TP, which stands
for Rule Based Reasoning and Case Based Reasoning Integration Test Plan.
This identifier will be used to refer anything from the test plan.

7.1. Test Plan 87

7.1.2 Reference

The test plan is also based on the IEEE 829 standard. Chapter 4 , Chapter
5 and Chapter 6 are the main sources to identify items and feature that will
and will not be tested.

7.1.3 Test Items

The testing process focuses on testing of the rule based component of the
demo system and any process that relies on this component. The reason for
the focus on the rule based component is, the other components are available
and functional on the existing system while the rule based component is new
for the demo system. Hence, the items that will be tested are the rule based
component and its integration with the knowledge editor package and with
the case based component of the demo system

7.1.4 Features to be Tested

Features of the rule based reasoning component that will be included in the
testing are the functional requirements with high and medium priorities.
They are listed in tables from 7.1 to 7.6.

Test Feature Identi-
fier

RBRCBRI-TP-01

Test Feature Name Jess Representation of a Case
Test Feature De-
scription

The rule based component should repre-
sent the XML case in Jess format.

Functional Require-
ment Reference

FR-01, FR-02

Table 7.1: Test Feature of Jess Representation of a Case

7.1.5 Features not to be Tested

Functionalities of the demo system that are regarding with the semantic
network will not be tested in detail. They are already tested and functional
in the existing case based system. Nothing is changed on their functionality

88 7. Testing Phase

Test Feature Identi-
fier

RBRCBRI-TP-02

Test Feature Name Identifying Hidden Features of a Case
Test Feature De-
scription

The rule based component should identify
hidden features of a given case based on
available rules.

Functional Require-
ment Reference

FR-01, FR-02, FR-03

Table 7.2: Test Feature of Identifying Hidden Features of a Case

Test Feature Identi-
fier

RBRCBRI-TP-03

Test Feature Name Presenting the Elaborated Case
Test Feature De-
scription

The demo system should integrate the rule
based component with the knowledge ed-
itor package and should present the case
on the case View after it is elaborated by
using rule based reasoning method.

Functional Require-
ment Reference

FR-01, FR-02, FR-03, FR-04, FR-05

Table 7.3: Test Feature of Presenting the Elaborated Case

Test Feature Identi-
fier

RBRCBRI-TP-04

Test Feature Name Case Matching: Rule Based Method
Test Feature De-
scription

The demo system should integrate the
rule based component with the case based
component and should perform case sim-
ilarity while the rule based reasoning
method is used in case elaboration pro-
cess.

Functional Require-
ment Reference

FR-01, FR-02, FR-03, FR-04, FR-05, FR-
06, FR-07

Table 7.4: Test Feature of Case Matching: Rule Based Method

7.1. Test Plan 89

Test Feature Identi-
fier

RBRCBRI-TP-05

Test Feature Name Preserving Functionalities of the Existing
System

Test Feature De-
scription

The demo system should keep all function-
alities of the existing case based system on
the demo system while semantic network
is used in the case elaboration process.

Functional Require-
ment Reference

FR-08, FR-09, FR-10, FR-11

Table 7.5: Test Feature of Preserving Functionalities of the Existing System

Test Feature Identi-
fier

RBRCBRI-TP-06

Test Feature Name User Interfaces
Test Feature De-
scription

The demo system should use intuitive and
simple to use user interfaces.

Functional Require-
ment Reference

FR-12, FR-13

Table 7.6: Test Feature of User Interfaces

90 7. Testing Phase

for the purpose of the demo system. Testing their availability on the demo
system is enough.

Non-functional requirements of the demo system are requirements that need
to be considered when the system is developed to achieve the functional
requirements. They are not necessary or directly related with the func-
tionalities of the system. Hence, they will not be included on the testing
activities.

7.1.6 Testing Approaches

Software testing methods are divided into two major types: white-box test-
ing and black-box testing. In white-box testing, the tester has access to the
source code and concerns about how the program is performing its tasks in
detail. Alternatively, black-box testing concerns only the functionality of
the system as seen from the outside. It provides an input and waits to see
the output without dealing about how the program produces the output.

Testing of the demo system follows both white box and black box ap-
proaches. The white box method is chosen to test the individual components
and integration of components before they make up the final system. The
black box method is chosen to test the final system after all integrations
are done. Testing activities of the demo system are categorized into module
testing, integration testing, system testing and usability testing. Module and
integration testing are performed while the demo system is implemented.

Module Testing: it is a white box testing that tests how the rule based
component performs its task before it is integrated with the knowledge
editor package and with the case based component. Test features
RBRCBRI-TP-01 and RBRCBRI-TP-02 are module testing.

Integration Testing: it is also a white box testing that tests the integration
of the rule based component with the knowledge editor package. The
test feature RBRCBRI-TP-03 is an integration testing.

System Testing: this is a black box testing that tests the final product
after the rule based reasoning process is integrated with the case based
reasoning process to make the case matching process of the case based

7.1. Test Plan 91

component. Test features RBRCBRI-TP-04 and RBRCBRI-TP-05 are
system testing that should be done on the completed demo system.

Usability Testing: It is testing of interfaces to be sure that the inter-
faces are user-friendly, understandable, and easy to use. Test feature
RBRCBRI-TP-06 is usability testing.

Test cases are prepared and the testing activities will be performed based
on the information given in the test cases to make sure that the output
produced is the same as the output given in the test case.

7.1.7 Feature Pass/Fail Criteria

The pass and fail criterion of each test feature is presented in Section 7.2.2.

7.1.8 Suspension Criteria and Resumption Requirements

One of the main goals of testing is to identify errors and to correct them.
When the testing is conducted, some errors might be noticed. If the error
is minor and do not affect the process, testing activity will proceed and the
error will be corrected after testing has been finished. But if the error halts
the testing process, it has to be corrected and should be tested again to
make sure the problem is corrected.

7.1.9 Test Deliverables

The deliverables after testing phase are the test plan, the test case specifi-
cation and test summary. The test summary will provide testing results of
each test feature.

7.1.10 Environmental Needs or Requirements

Environmental requirements to perform the testing activities are categorized
into software requirements and document requirements.

92 7. Testing Phase

Software Requirements: to perform the module testing a computer installed
with Java Virtual Machine and an eclipse platform where jess rule en-
gine is configured is required, whereas, to perform the other testing,
the knowledge editor package is needed in addition to the above re-
quirements.

Document Requirements: the primary documents that are required during
testing are the test plan and test case specifications which will be used
as guideline to conduct testing activities. Requirement specifications,
design phase and implementation phase act as supportive documents,
because they are base for preparation of the test plan and test case
specifications.

7.1.11 Testing Tasks and Schedule

The activities that will be conducted during testing phase are summarized
and scheduled as shown in Table 7.7.

Testing Task Predecessor Tasks Deadline
(t1) Prepare test plan Requirement specification, design

phase, and Implementation Phase
21.06.2009

(t2) Prepare test case
specification

(t1), Implementation Phase 23.06.2009

(t3) Execute module
testing

(t1), (t2) 24.06.2009

(t4) Execute integration
testing

(t1), (t2), (t3) 25.06.2009

(t5) Execute system
testing

(t1), (t2), (t3), (t4) 26.06.2009

(t6) Execute usability
testing

(t1), (t2), (t3), (t4), (t5) 26.06.2009

(t7) Resolve errors (t1), (t2), (t3), (t4), (t5), (t6) 28.06.2009
(t8) Write test sum-
mary

(t1), (t2), (t3), (t4), (t5), (t6), (t7) 30.06.2009

Table 7.7: Testing Tasks and Schedule

7.2. Test case specification 93

7.2 Test case specification

Preparing test cases for the features to be tested helps to make sure that
the features are tested in the right way by providing the necessary inputs
and the expected output.

7.2.1 Test case identifier

The unique identifier for this test case specification document isRBRCBRI-
TC, which stands for Rule Based Reasoning and Case Based Reasoning
Integration Test Case.

7.2.2 Test cases

This section will present test cases for each feature to be tested. Each test
case has the necessary input and the expected output.

To perform the module test, RBRCBRI-TP-01 and RBRCBRI-TP-02, it
is not necessary to have the knowledge editor package. They are tested
by accessing the source code during implementation phase. It is to make
sure that the smallest units are working well before they are integrated to
make the bigger unit. They use a sample input case named as Case-V12-
PackOff-Gullfaks-48A-8.5in-02. Some lines from the sample case is attached
in Appendix A.

The other tests need the rule based component to be integrated with the
knowledge editor package and with the case based component. In this case,
the test requires the knowledge editor package and the input case will be
from the case base.

94 7. Testing Phase

Test Description
Test Case Identifier RBRCBRI-TC-01
Test Feature Identifier RBRCBRI-TP-01
Test Feature Name Jess Representation of a Case
Input Specification Provide path of the XML file to the con-

structor caseParsing(filePath) in the main
method of caseParsing class or casePars-
ing.java.

Output Specification A Jess file with name of the case, Case-
V12-PackOff-Gullfaks-48A-8.5in-02.clp,
will be generated and it will represent the
case in Jess format.

Environmental Specifi-
cation

A computer installed with Java Virtual
Machine and an eclipse platform where
jess rule engine is configured.

Special procedural re-
quirement

The tester opens caseParsing.java file and
edit the parameter of caseParsing con-
structor with the path of the file that con-
tains the XML representation of the case.
And then run the program.

Inter-Test Case depen-
dencies

None

Pass Criteria The Jess file named with Case-V12-
PackOff-Gullfaks-48A-8.5in-02.clp should
be generated and it contains the case in
Jess format like in Appendix D.

Fail Criteria A file with the name of the case is not gen-
erated or/and the case is not represented
in Jess format.

Table 7.8: Test Case for Jess Representation of a Case

7.2. Test case specification 95

Test Description
Test Case Identifier RBRCBRI-TC-02
Test Feature Identifier RBRCBRI-TP-02
Test Feature Name Identifying Hidden Features of a Case
Input Specification Representing of a case in Jess format is

tested and working. The templates and
the rules are defined and available for the
program.

Output Specification Hidden features of the case will be gener-
ated and added in the original XML rep-
resentation of the case.

Environmental Specifi-
cation

A computer installed with Java Virtual
Machine and an eclipse platform where
jess rule engine is configured is required.

Special procedural re-
quirement

There is no special procedural require-
ment; when the program runs to test
RBRCBRI-TC-01, this also runs by de-
fault. They are inter related.

Inter-Test Case depen-
dencies

RBRCBRI-TC-01

Pass Criteria Hidden features of the case are identified
and added in the original XML file, Case-
V12-PackOff-Gullfaks-48A-8.5in-02.xml

Fail Criteria The hidden features are not identified
while the case has some hidden features
based on the given rules. Or the hidden
features are not added in the original XML
file.

Table 7.9: Test Case for Identifying Hidden Features of a Case

96 7. Testing Phase

Test Description
Test Case Identifier RBRCBRI-TC-03
Test Feature Identifier RBRCBRI-TP-03
Test Feature Name Presenting the Elaborated Case
Input Specification The rule based component is integrated

with the knowledge editor package and the
package is running.

Output Specification The case that contains the hidden features
(the transformed case) will be presented
in user friendly format on the case view
of the package under View Transformed
Case: Rule Based reasoning Method.

Environmental Specifi-
cation

A computer installed with Java Virtual
Machine and an eclipse platform where
jess rule engine is configured is required.
In addition, the knowledge editor package
is required.

Special procedural re-
quirement

The tester opens a case from the case
list and clicks on View Transformed Case:
Rule Based reasoning Method tab of the
case view.

Inter-Test Case depen-
dencies

RBRCBRI-TC-01, RBRCBRI-TC-02

Pass Criteria The transformed case should be dis-
played in user friendly manner under View
Transformed Case: Rule Based reasoning
Method tab of the case view.

Fail Criteria The transformed case is not displayed un-
der the given tab.

Table 7.10: Test Case for Presenting the Elaborated Case

7.2. Test case specification 97

Test Description
Test Case Identifier RBRCBRI-TC-04
Test Feature Identifier RBRCBRI-TP-04
Test Feature Name Case Matching: Rule Based Method
Input Specification The rule based component is integrated

with the knowledge editor package and the
case based component.

Output Specification Similarity of the opened case will be com-
pared with all other cases and the result
will be displayed on the case view.

Environmental Specifi-
cation

A computer installed with Java Virtual
Machine and an eclipse platform where
jess rule engine is configured is required.
In addition, the knowledge editor package
is required.

Special procedural re-
quirement

The tester opens a case from the case list
and clicks on Case Matching: Rule Based
Reasoning Method tab of the case view.

Inter-Test Case depen-
dencies

RBRCBRI-TC-01, RBRCBRI-TC-02,
RBRCBRI-TC-03

Pass Criteria Similarity result in percentage should be
displayed under Case Matching: Rule
Based Reasoning Method tab of the case
view.

Fail Criteria Nothing or something else is displayed un-
der Case Matching: Rule Based Reason-
ing Method tab of the case view.

Table 7.11: Test Case for Case Matching: Rule Based Method

98 7. Testing Phase

Test Description
Test Case Identifier RBRCBRI-TC-05
Test Feature Identifier RBRCBRI-TP-05
Test Feature Name Preserving Functionalities of the Existing

System
Input Specification The rule based component is integrated

with the knowledge editor package and the
case based component.

Output Specification Both Transformed View: Semantic Net-
work and Case Matching: Semantic Net-
work are available and working.

Environmental Specifi-
cation

A computer installed with Java Virtual
Machine and an eclipse platform where
jess rule engine is configured is required.
In addition, the knowledge editor package
is required.

Special procedural re-
quirement

The tester opens a case from the case view
and clicks in both tabs turn by turn to
see they are working to display the trans-
formed case and the case matching respec-
tively while semantic network is used in
the case transformation process.

Inter-Test Case depen-
dencies

RBRCBRI-TC-03

Pass Criteria Both Transformed View: Semantic Net-
work and Case Matching: Semantic Net-
work are working and displaying the re-
quired information.

Fail Criteria Any of the two functionalities is not work-
ing.

Table 7.12: Test Case for Preserving Functionalities of the Existing System

7.2. Test case specification 99

Test Description
Test Case Identifier RBRCBRI-TC-06
Test Feature Identifier RBRCBRI-TP-06
Test Feature Name User Interfaces
Input Specification The knowledge editor package is running
Output Specification The name of the tabs in the case view is

descriptive and they are responsive for a
single click.

Environmental Specifi-
cation

A computer installed with Java Virtual
Machine and an eclipse platform where
jess rule engine is configured is required.
In addition, the knowledge editor package
is required.

Special procedural re-
quirement

The tester opens a case on the case view
from the case list.

Inter-Test Case depen-
dencies

None

Pass Criteria The names of the tabs are simple and un-
derstandable

Fail Criteria Names of the tabs are not simply under-
standable.

Table 7.13: Test Case for User Interfaces

100 7. Testing Phase

7.3 Test Summary

The testes are performed based on the test cases. The result for each test
feature is shown in Table 7.14. The result of the test will be marked as
PASSED if the test result shows the expected result; or will be marked as
FAILED if the test result shows unexpected and unacceptable result. If
there is a failed test, the summary will provide a description why it fails.

Test Fea-
ture

Achieved Func-
tional Require-
ment

Test Re-
sult

Description

RBRCBRI-
TP-01

FR-01, FR-02 PASSED -

RBRCBRI-
TP-02

FR-01, FR-02,
FR-03

PASSED -

RBRCBRI-
TP-03

FR-01, FR-02,
FR-03, FR-04,
FR-05

PASSED -

RBRCBRI-
TP-04

FR-01, FR-02,
FR-03, FR-04,
FR-05, FR-06,
FR-07

FAILED Implementation of case
matching while rule based
reasoning is used on case
transformation is not com-
pleted. But most of the
components that are required
for this functionality are
implemented and tested on
the other features.

RBRCBRI-
TP-05

FR-08, FR-09,
FR-10, FR-11

PASSED -

RBRCBRI-
TP-06

FR-12, FR-13 PASSED -

Table 7.14: Test Summary

Chapter 8

Discussion, Recommendation and
Conclusion

8.1 Discussion

This project work studied and designed how a rule based reasoning compo-
nent can be developed and integrated with the existing case based system.
A demo system is developed to demonstrate the role of the rule based rea-
soning method on case transformation to support the existing case based
decision support system on oil drilling operation domain.

On the demo system, the rule based component is implemented and tested
to make sure that it has achieved the designed goal. The component per-
forms its task successfully. Integration of the rule based component with
the case based component is completed with 75%. It successfully works for
transforming the opened case which is the one to be compared with all other
cases in the case base. However, transforming cases from the case base for
case matching process is not implemented because of time.

8.2 Recommendation

The demo system was supposed to help comparing and contrasting the result
of using rule based reasoning method or semantic network on cases trans-
formation. It would have been possible if the case matching process was
working while the rule based reasoning method is used on the case trans-
formation. The problem I faced on implementing this functionality is on
accessing the cases from the case base since all cases are represented on the

8.3. Conclusion 1

knowledge model as semantic network. A person who is familiar with the
source code of the existing case based system can fix the problem based on
the design proposed to integrate the two components.

The relation between properties and immediate parent categories are up-
dated on the knowledge model with a relation has case entry parameter or
case entry parameter of which may help if parsing the knowledge model to
identify all properties with their immediate parent category is needed.

The selected rule engine is Java Expert System Shell (Jess) which can be
integrated with a java program as shown in the demo system. I used its
freely available version. But, it has licensed version for commercial use if
Verdande wants to use it for the big system.

8.3 Conclusion

The demo system illustrates how the rule based component transforms a
case based on the available rules. Hidden features which were not able to
be identified by the semantic network are now identifiable because of the
rule based reasoning method. The rule based reasoning method uses com-
plex relations among the features which were not possible by the semantic
network. With more and unique features a situation is described, the more
likely to get the right and most similar past case from the case base.

Appendix A

Sample for XML Format of a Case

Listing A.1: A sample for XML Representaiton of a Case
<? xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE case PUBLIC "Volve_caseSpec9" "VolveCase.dtd">
<case name="Case-V12-PackOff-Gullfaks-48A-8.5in-02" status="solved">
<section name="Administrative Data">

<entry parameter="Operator Company" source="Human">
<symbolValue>Statoil</symbolValue>

</entry>
<entry parameter="Well Identification" source="Human">

<symbolValue>Well 34/10-48A</symbolValue>
</entry>

</section>
<section name="Wellbore Formation Characteristic">

<entry expertRelevance="0.2" parameter="Geological Period" source="DBR">
<symbolValue>Upper Jurassic</symbolValue>

</entry>
<section name="Lithology">

<entry expertRelevance="0.5" parameter="Sandstone" source="Human">
<symbolValue>True</symbolValue>

</entry>
</section>

</section>
<section name="Planned Drilling Fluid Parameter">

<entry dataConfidence="0.9" expertRelevance="0.2" parameter="Planned Mud Weight"
source="DBR" statisticalWeight="0.0">
<dataValue unit="kg/l" valueType="Double">null</dataValue>

</entry>
</section>
<section name="Drilling Operational Data">

<section name="Well Geometry Parameter">
<entry parameter="Section Depth" source="DBR">

<dataValue unit="m" valueType="Double">6621.0</dataValue>
</entry>

</section>
<section name="Fluid Operational Parameter">

<entry dataConfidence="0.9" expertRelevance="0.2" parameter="Mud Weight"
source="DBR" statisticalWeight="0.0">

A1

<dataValue unit="kg/l" valueType="Double">1.57</dataValue>
</entry>

</section>
</section>
<sequence name="Depth Scale Events">
<scale datatype="Double" name="Depth"/>

<sequence-section>
<position end="5000.97" scale="Depth" start="5000.91"/>

<entry parameter="Took Weight" source="System" statisticalWeight="0.3">
<dataValue valueType="String">True</dataValue>

</entry>
</sequence-section>
<sequence-section>
<position end="5108.25" scale="Depth" start="5108.17"/>

<entry parameter="Increased Torque" source="System" statisticalWeight="0.5">
<dataValue valueType="String">True</dataValue>

</entry>
</sequence-section>

</sequence>
<sequence name="Measured Depth Scale Events">
<scale datatype="Double" name="Depth"/>

<sequence-section>
<position end="5721.16" scale="Depth" start="5711.16"/>

<entry parameter="Stabilizer friction" source="system">
<dataValue valueType="Double">181429.86324324342</dataValue>

</entry>
<entry parameter="PackOff" source="system">

<dataValue valueType="Double">0.0</dataValue>
</entry>
<entry parameter="MFI Erosion" source="system">

<dataValue valueType="Double">1640232.713233295</dataValue>
</entry>

</sequence-section>
</sequence>
</section>
.
.
.
</section>
</case>

Appendix B

List of Rules for the Demo System

B.1 IF . . . THEN . . . Format of the Rules

B.1.1 Deriveded parameters

The parameters in the if part are observable parameters, which can be read
from the case representations.

• IF Bit Size - Stabilizer #1 Outer Diameter < 2 in THEN Narrow
Annulus

• IF ROP < 5 m/h THEN Low ROP

• IF Instantaneous Pump Flow Rate > 2000 l/min THEN High Pump
Flow Rate

• IF WOB/ Bit Size > 2 ton THEN High WOB

• IF WOB/ Bit Size =1-2 ton THEN Normal WOB

• IF WOB/ Bit Size <1 ton THEN Low WOB

• IF PV > 25 cP THEN High Mud Viscosity

• IF Exposure Time > 2 days THEN Long Open Hole Exposure Time

• IF Well Inclination > 60 THEN High Inclination Change

B.1. IF . . . THEN . . . Format of the Rules B3

B.1.2 Parameters Derived from Rules

Some of the parameters in the if parts are the hidden parameters that are
derived from observable parameters in B.1.1.

• IF High Pump Flow Rate AND Soft Fm AND Narrow Annulus THEN
Hydraulic Erosion

• IF Soft Fm AND High Side Stress AND Low ROP THEN Mechanical
Erosion

• IF ROP > 10 m/h AND Normal WOB THEN Soft Fm

• IF High WOB AND Narrow Annulus THEN High Side Stress

• IF > 2 Increased Torque in one Case OR > 2 Pack Off in one Case
OR > 2 Tight Spot in one Case OR > 2 Increased Torque in one Case
THEN Many Events

B.1.3 Root cause of Poor Hole Cleaning

• IF Soft Fm AND Many Events THEN Time Dependent Wellbore In-
stability

• IF Soft Fm AND Long Exposure Time THEN Time Dependent Well-
bore Instability

• IF High Hydraulical Erosion OR High Mechanical Erosion OR Me-
chanical Erosion OR Hydraulic Erosion THEN Hole Enlargement

• IF High ROP AND High RPM AND Long Event Time AND Shoulder
OR Ledges AND Pack Off THEN Cuttings Accumulation

• IF Tripping AND Pack Off AND Shoulder OR Ledges THEN Cuttings
Accumulation

• IF Pack Off AND Ledges OR Shoulders OR Hole enlargement THEN
Cuttings Accumulation

B4 B. Rules for the Demo System

B.2 Jess Format of the Rules

Listing B.1: Jess Representation of some of the Rules

(defrule rule1
"this is to test it"
(_Measured_Depth_Scale_Events {_ROP > 5})
=>
(assert (_ROP (_Low_ROP True)))
(InferredParam "ROP" "Low ROP" True)

)

(defrule rule2
"rule about PV"
(_Fluid_Operational_Parameter {_PV > 25})
=>
(assert (_Mud_Viscosity (_High_Mud_Viscosity true)))
(InferredParam "Mud Viscosity" "High Mud Viscosity" True)

)

(defrule rule3
"rule about PV"
(_Pump_Flow_Rate {_Instantaneous_Pump_Flow_Rate > 2000})
=>
(assert (_Pump_Flow_Rate (_High_Pump_Flow_Rate true)))
(InferredParam "Pump Flow Rate" "High Pump Flow Rate" True)

)

(defrule rule4
"Rule for narrow annulus"
(_Drill_String_Parameter

(_Bit_Size ?X)
(_Stabilizer_#1_Outer_Diameter ?Y))
(test (< (- ?X ?Y) 2))
=>

;(printout t "Narrow Annulus is true" crlf)
(assert (_Annular_Flow_Parameter (_Narrow_Annulus true)))
(InferredParam "Annular Flow Parameter" "Narrow Annulus" True)

)

(defrule rule5
(_Drill_String_Parameter

;(test (> (- _Bit_Size _Stabilizer_#1_Outer_Diameter) 2))
(_Bit_Size ?X))

(_Measured_Depth_Scale_Events
(_WOB ?Y))

(test (> (/ ?Y ?X) 2))
=>

(assert (_WOB (_High_WOB true)))

B.2. Jess Format of the Rules B1

(InferredParam "WOB" "High WOB" True)
)

(defrule rule6
(_Drill_String_Parameter

(_Bit_Size ?X))
(_Measured_Depth_Scale_Events

(_WOB ?Y))
(test ((< (/ ?X ?Y) 2) && (> (/ ?X ?Y) 1)))

=>
(assert (_WOB (_Normal_WOB true)))
(InferredParam "WOB" "Normal WOB" True)

)

(defrule rule7
(_Drill_String_Parameter

(_Bit_Size ?X))
(_Measured_Depth_Scale_Events

(_WOB ?Y))
(test (< (/ ?Y ?X) 2))

=>
(assert (_WOB (_Low_WOB true)))
(InferredParam "WOB" "Low WOB" True)

)

Appendix C

Sample Templates Definitions for
the Demo System

Listing C.1: Sample Templates for the Demo System

(deftemplate _Administrative_Data
(slot _Operator_Company)
(slot _Well_Identification)
(slot _Oil_Field_Identifier)
(slot _Drilling_Contractor)
(slot _Well_Type)
(slot _Well_Section)

)
(deftemplate _Wellbore_Formation_Characteristic

(slot _Geological_Period)
(slot _Geological_Zonation)

)
(deftemplate _Lithology

(slot _Sandstone)
(slot _Siltstone)
(slot _Claystone)
(slot _Limestone)
(slot _Marl)

)
(deftemplate _Planned_Well_Geometry_Parameter

(slot _Planned_Section_Depth)
(slot _Planned_Section_TVD)
(slot _Planned_Previous_Casing_Depth)

)
(deftemplate _Planned_Drilling_Fluid_Parameter

(slot _Planned_Mud_Weight)
(slot _Planned_Drilling_Fluid)

)
(deftemplate _Planned_Drill_String_Parameter

(slot _BHA_Length)
(slot _Number_Of_Stabilizers)

)

C3

(deftemplate _Well_Geometry_Parameter
(slot _Section_Depth)
(slot _Section_TVD)
(slot _Previous_Casing_Depth)
(slot _Water_Depth)
(slot _Target_Depth)
(slot _TVD)

)
(deftemplate _Fluid_Operational_Parameter

(slot _Mud_Weight)
(slot _PV)
(slot _Water_Activity_Of_Mud)
(slot _YP)
(slot _Drilling_Fluid)
(slot _FIT_Equivalent_Density)
(slot _LOT_Equivalent_Density)
(slot _Mud_Solids_Content)
(slot _Average_Mud_Weight)
(slot _Average_PV)
(slot _Average_YP)
(slot _Number_Of_String_Wipers)

)
(deftemplate _Drill_String_Parameter

(slot _Bit_Run_Number)
(slot _Bit_Size)
(slot _Bit_Type)
(slot _Drill_Pipe_Outer_Diameter)
(slot _BHA_Length)
(slot _Number_Of_Stabilizers)
(slot _Stabilizer_#1_Outer_Diameter)
(slot _Stabilizer_#2_Outer_Diameter)
(slot _Stabilizer_#3_Outer_Diameter)
(slot _Stabilizer_#1_Position)
(slot _Stabilizer_#2_Position)
(slot _Stabilizer_#3_Position)
(slot _Reamer_#1_Outer_Diameter)
(slot _Reamer_#1_Position)
(slot _Reamer_Outer_Diameter)
(slot _Reamer_Length)
(slot _Reamer_Position)
(slot _Steering_Device)

)
(deftemplate _Visual_Observation

(slot _ROP_Was_Limited_To_Clean_Well)
)
(deftemplate _Torque

(slot _Instantaneous_Torque)
(slot _Torque_Trend)

)
(deftemplate _ECD

(slot _Instantaneous_ECD)
(slot _ECD_Trend)

C4 C. Template Definition

)
(deftemplate _Tight_Spot_Events

(slot _Tight_Spot)
(slot count)

)
(deftemplate _Pump_Pressure

(slot _Instantaneous_Pump_Pressure)
(slot _Pump_Pressure_Trend)

)
(deftemplate _Pump_Flow_Rate

(slot _Instantaneous_Pump_Flow_Rate)
(slot _Pump_Flow_Rate_Trend)
(slot _Normal_Pump_Flow_Rate)
(slot _High_Pump_Flow_Rate)
(slot _Recent_Pump_Flow_Rate)
(slot _Low_Pump_Flow_Rate)
(slot _Decreased_Pump_Flow_Rate)
(slot _Very_High_Pump_Flow_Rate)
(slot _Very_Low_Pump_Flow_Rate)

)
(deftemplate _Took_Weight_Events

(slot _Took_Weight)
(slot count)

)
(deftemplate _Increased_Torque_Events

(slot _Increased_Torque)
(slot count)

)
(deftemplate _Increased_Drag_Events

(slot _Increased_Drag)
(slot count)

)
(deftemplate _Pack_Off_Events

(slot _Pack_Off)
(slot count)

)
(deftemplate _Time_Scale_Events

(slot _Took_Weight)
(slot _Tight_Spot)
(slot _Increased_Torque)
(slot _Increased_Drag)
(slot _Pack_Off)

)
(deftemplate _Depth_Scale_Events

(slot _Took_Weight)
(slot _Tight_Spot)
(slot _Increased_Torque)
(slot _Pack_Off)
(slot _Increased_Drag)

)
(deftemplate _WOB

C5

(slot _Very_High_WOB)
(slot _High_WOB)
(slot _Normal_WOB)
(slot _Low_WOB)
(slot _Very_Low_WOB)
(slot _Expected_WOB)

)
(deftemplate _Instantaneous_ROP

(slot _Low_ROP)
(slot _High_ROP)
(slot _Very_High_ROP)
(slot _Very_Low_ROP)
(slot _Normal_ROP)

)
(deftemplate _Mud_Viscosity

(slot _High_Mud_Viscosity)
(slot _Normal_Mud_Viscosity)
(slot _Increased_Mud_Viscosity)
(slot _Very_High_Mud_Viscosity)
(slot _Low_Mud_Viscosity)

)
(deftemplate _Changing_Inclination

(slot _High_Inclination_Change)
)
(deftemplate _Directional_Parameter

(slot _Well_Inclination)
)
(deftemplate _Measured_Depth_Scale_Events

(slot _Stabilizer_friction)
(slot _PackOff)
(slot _MFI_Erosion)
(slot _Friction)
(slot _WOB)
(slot _Well_Inclination)
(slot _Exposure_Time)
(slot _rpm)
(slot _RotationalFriction)
(slot _Drag)
(slot _ROP)

)
(deftemplate _Formation1_Sequence

(slot _Formation_name)
)
(deftemplate _Formation3_Sequence

(slot _Formation_name)
)
(deftemplate _Activity_Before_Case_Occurrence

(slot _Case_Series_Start_Time)
(slot _Possible_Case_Start_Time)
(slot _Drag_Recording_Quality)
(slot _HKL-Down_Recording_Quality)
(slot _Well_Cleaning_Performance)

C1

)
(deftemplate _Activity_Manual_Int

(slot _Tripping_In)
(slot _RIH)
(slot _Reaming_Up)
(slot _Backreaming)
(slot _POOH)
(slot _Tripping_Out)
(slot _Drilling)
(slot _Reaming_Down)
(slot _Reaming)
(slot _Well_Cleaning_Performance)
(slot _Worked_String)

)
(deftemplate _Activity

(slot _Tripping_In)
(slot _Mud_Circulating)
(slot _Reaming)
(slot _Drilling)
(slot _Connection)
(slot _Tripping_Out)
(slot _Undefined_Status)

)
(deftemplate _Predicted_Failure

(slot _Poor_Well_Cleaning)
)
(deftemplate _Well_Characteristic

(slot _Geological_Period)
)
(deftemplate _Wellbore_Fm_Characteristic

(slot _Sandstone)
(slot _Siltstone)
(slot _Claystone)
(slot _Coal_Bed)
(slot _Limestone)
(slot _Textual_Description)
(slot _Unknown_Value)

)
(deftemplate _Annular_Flow_Parameter

(slot _Narrow_Annulus)
)

Appendix D

Jess Representation of a Case and
Adding to Working Memory

Listing D.1: Jess Representation of the XML Example in Appendix A. It is
written on Jess File

(assert (_Administrative_Data
(_Operator_Company "Statoil")
(_Well_Identification "Well 34/10-48A")
(_Oil_Field_Identifier "Gullfaks")
(_Drilling_Contractor "Smedvig Drilling Company")
(_Well_Type "Exploration Well")
(_Well_Section "8.5 Inch Section")

))

(assert (_Wellbore_Formation_Characteristic
(_Geological_Period "Upper Jurassic")
(_Geological_Zonation "Ness Fm")

))

(assert (_Lithology
(_Sandstone "True")
(_Siltstone "True")
(_Claystone "True")
(_Limestone "True")

))

(assert (_Planned_Well_Geometry_Parameter
(_Planned_Section_Depth null)
(_Planned_Section_TVD null)
(_Planned_Previous_Casing_Depth null)

))

(assert (_Planned_Drilling_Fluid_Parameter
(_Planned_Mud_Weight null)
(_Planned_Drilling_Fluid "Unknown Value")

))

D3

(assert (_Planned_Drill_String_Parameter
(_BHA_Length null)
(_Number_Of_Stabilizers null)

))

(assert (_Well_Geometry_Parameter
(_Section_Depth 6621.0)
(_Section_TVD 2869.0)
(_Previous_Casing_Depth 5120)
(_Water_Depth 134.0)
(_Target_Depth 6621.0)
(_TVD 2869.0)

))

(assert (_Fluid_Operational_Parameter
(_Mud_Weight 1.57)
(_PV 35.0)
(_Water_Activity_Of_Mud 0.91)
(_YP 12.0)
(_Drilling_Fluid "VersaVert OBM")
(_FIT_Equivalent_Density 1.77)
(_LOT_Equivalent_Density 1.85)
(_Mud_Solids_Content 23.0)
(_Average_Mud_Weight 1.57)
(_Average_PV 35.0)
(_Average_YP 12.0)
(_Number_Of_String_Wipers 0.0)

))

(assert (_Drill_String_Parameter
(_Bit_Run_Number 1.0)
(_Bit_Size 8.5)
(_Bit_Type "PDC Bit")
(_Drill_Pipe_Outer_Diameter 5.0)
(_BHA_Length 39.9)
(_Number_Of_Stabilizers 2.0)
(_Stabilizer_#1_Outer_Diameter 8.25)
(_Stabilizer_#2_Outer_Diameter 8.25)
(_Stabilizer_#1_Position 0.26)
(_Steering_Device "Xceed")
(_Stabilizer_#2_Position 5.0)

))

(assert (_Torque
(_Instantaneous_Torque 0.0)
(_Torque_Trend -0.03322222222222222)

))

(assert (_ECD
(_Instantaneous_ECD 1.57)
(_ECD_Trend -0.02531111111109796)

D4 D. Jess Representation of a Case and Adding to Working Memory

))

(assert (_Pump_Pressure
(_Instantaneous_Pump_Pressure 6.99)
(_Pump_Pressure_Trend -1.1255555555555823)

))

(assert (_Pump_Flow_Rate
(_Instantaneous_Pump_Flow_Rate 0.0)
(_Pump_Flow_Rate_Trend -153.73468888888897)

))

(assert (_Took_Weight_Events
(_Took_Weight True)
(count 1.4583333333333333)

))

(assert (_Increased_Torque_Events
(_Increased_Torque True)
(count 2.7857142857142856)

))

(assert (_Increased_Drag_Events
(_Increased_Drag True)
(count 2.0)

))

(assert (_Pack_Off_Events
(_Pack_Off True)
(count 1.0)

))

(assert (_Time_Scale_Events
(_Took_Weight True)
(_Increased_Torque True)
(_Took_Weight True)
(_Increased_Torque True)
(_Increased_Drag True)
(_Pack_Off True)
(_Increased_Torque True)
(_Took_Weight True)

))

(assert (_Depth_Scale_Events
(_Took_Weight True)
(_Increased_Torque True)
(_Took_Weight True)
(_Increased_Torque True)
(_Took_Weight True)
(_Pack_Off True)
(_Increased_Drag True)

))

D0 D. Jess Representation of a Case and Adding to Working Memory

(assert (_Measured_Depth_Scale_Events
(_Stabilizer_friction 25509.02717999972)
(_PackOff 0.06203840535373137)
(_MFI_Erosion 402434.87006651505)
(_Friction 0.5751181618701464)
(_WOB 2.5098999999998606)
(_Well_Inclination 92.09080801853182)
(_Exposure_Time 3.3648462499999803)
(_rpm 179.92845000000005)
(_RotationalFriction 0.04073513468678385)
(_Drag 0.04249177654036431)

))

(assert (_Formation1_Sequence
(_Formation_name "Tarbert Fm")
(_Formation_name "Ness Fm")

))

(assert (_Formation3_Sequence
(_Formation_name "Upper Jurassic")

))

(assert (_Activity_Manual_Int
(_Tripping_In "True")
(_RIH "True")

))

(assert (_Activity
(_Tripping_In 75.0)
(_Mud_Circulating 7.0)
(_Connection 10.0)
(_Undefined_Status 8.0)

))

(assert (_Predicted_Failure
(_Poor_Well_Cleaning "True")

))

(assert (_Well_Characteristic
(_Geological_Period "Tarbert Fm")

))

(assert (_Wellbore_Fm_Characteristic
(_Sandstone "True")
(_Siltstone "True")
(_Claystone "True")
(_Coal_Bed "True")
(_Limestone "True")

))(run)

Appendix E

Source Code for the Demo System

Listing E.1: Source Code for CaseParsing Class
import java.io.*;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.StringTokenizer;
import java.util.NoSuchElementException;

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.ParserConfigurationException;

import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom.NamedNodeMap;
import org.w3c.dom.NodeList;
import org.w3c.dom.Node;
import org.xml.sax.SAXException;

import jess.Rete;

public class caseParsing {

private ArrayList entryArrayList;
private Document caseDoc;

private FileOutputStream out;
private PrintStream print;
private FileOutputStream out3;
private PrintStream print3;

private static double depth_occurrence;
private static String caseName ="";

E2 E. Source Code

private String fileName;

public caseParsing()
{}

public caseParsing(String fName) throws FileNotFoundException
{

entryArrayList = new ArrayList();
fileName = fName;

}

public static void main(String[] args) throws FileNotFoundException
{

caseParsing caseparsing = new caseParsing("src/case.xml");

caseparsing.getParser();

caseparsing.parseCase();

// caseParsing.getTemplate();

caseparsing.writeDataOnFile();

caseparsing.reasonUsingRBR();

}
public void getParser()
{

DocumentBuilderFactory caseDocFac = DocumentBuilderFactory.newInstance();
try {

DocumentBuilder newCase = caseDocFac.newDocumentBuilder();

caseDoc = newCase.parse("src/case.xml");

}catch(ParserConfigurationException pce) {
pce.printStackTrace();

}catch(SAXException se) {
se.printStackTrace();

}catch(IOException ioe) {
ioe.printStackTrace();

}
}

public void parseCase()
{

/* Now the file is parsed, the next code should read the elements

* and put them in the appropriate format for the needed purpose.

*

E3

* The following line reads the root node of the document: Case*/
NamedNodeMap attributes;
Element rootnode = caseDoc.getDocumentElement();
try{

attributes = rootnode.getAttributes();
caseName = attributes.getNamedItem("name").getNodeValue();
}
catch(Exception e)
{

System.err.println (e + "Error writing to file caseName");
}

try{
NodeList sections = rootnode.getElementsByTagName("entry");

// System.out.println(sections.getLength());

if(sections.getLength()> 0 && sections != null)
{

for(int i=0; i<sections.getLength();i++)
{

attributes = sections.item(i).getAttributes();
String param = attributes.getNamedItem("parameter").getNodeValue();
if(param.equals("Depth Of Occurrence"))
{

NodeList children = sections.item(i).getChildNodes();
Element value = (Element)children.item(1);
depth_occurrence = Double.parseDouble(value.getFirstChild().getNodeValue());
break;

}
}
fact ee = new fact();
ee.getdepth(depth_occurrence);
//System.out.println(depth_occurrence);

for(int i=0; i<sections.getLength();i++)
{

fact e = getEntry(sections.item(i));
entryArrayList.add(e);

}
}
}
catch(Exception e)
{

System.err.println (e + "Error writing to file ****");
}

}

private void writeDataOnFile()
{

E4 E. Source Code

try
{

out = new FileOutputStream("src/newCase.clp");
print = new PrintStream(out);

// print.append("(assert ");

Iterator it = entryArrayList.iterator();
while(it.hasNext()) {

print.append(it.next().toString());
}

print.append("))");
print.append("(run)");
//**************defineTemplate(")");
print.close();

}
catch(Exception e)
{

System.err.println (" Error writing to file case");
}

}

private fact getEntry(Node elmt)
{

NamedNodeMap attributes;

attributes = elmt.getAttributes();
String param = parameterConvert(attributes.getNamedItem("parameter").

getNodeValue());
String paramvalue = " ";
Double start=0.0;
Double end=0.0;
//System.out.println(param);
NodeList children = elmt.getChildNodes();

String parentNode;
if(elmt.getParentNode().getNodeName().equals("sequence-section"))
{

Node sequenceParent = elmt.getParentNode();
parentNode = parameterConvert(sequenceParent.getParentNode().

getAttributes().getNamedItem("name").getNodeValue());

NodeList seqChildren = sequenceParent.getChildNodes();
NamedNodeMap attrs;

for(int i=0; i < seqChildren.getLength(); i++)

E5

{
attrs = seqChildren.item(i).getAttributes();
if(seqChildren.item(i).getNodeName().equals("position") && attrs.

getNamedItem("scale").getNodeValue().equals("Depth"))
{

start= Double.parseDouble(attrs.getNamedItem("start").getNodeValue());
end= Double.parseDouble(attrs.getNamedItem("end").getNodeValue());

break;
}

}

}
else

parentNode = parameterConvert(elmt.getParentNode().getAttributes().
getNamedItem("name").getNodeValue());

Element value = (Element)children.item(1);

if(children.item(1).getNodeName().equals("dataValue"))
{

//Element value = (Element)children.item(1);
paramvalue = value.getFirstChild().getNodeValue() ;

}
else if (children.item(1).getNodeName().equals("symbolValue"))
{

//Element value = (Element)children.item(1);
paramvalue = "\"" + value.getFirstChild().getNodeValue() + "\"";

}

fact newEntry =new fact(param, paramvalue, parentNode, start, end);

return newEntry;

}

private String parameterConvert(String name)
{

String name2 = "";
StringTokenizer st = new StringTokenizer(name, " ");
String name3 = "";
while (st.hasMoreTokens()) {

name3 = st.nextToken();
if(name3.equalsIgnoreCase("(Manual"))

name3 = "Manual";

if(name3.equalsIgnoreCase("Int)"))
name3 = "Int";

//if(st.nextToken().contentEquals("(Manual"))

E6 E. Source Code

//name2= name2.concat("_Manual");
//else if(st.nextToken().contentEquals("Int)"))

//name2= name2.concat("_Int");
//else

name2= name2.concat("_" + name3);

};

return name2;

}
/**
*
* public static void defineTemplate(String value)
{

try
{

print2.append(value);
//print2.close();

}
catch(Exception e)
{

System.err.println ("Error writing to file Template");
}

}

*/
public void inferredParams(String a, String b, String c)
{

try
{

removeLineFromFile("src/case.xml", "</case>");

out3 = new FileOutputStream("src/case.xml", true);
print3 = new PrintStream(out3);

print3.append("<section name=\"" + a + "\"> \n <entry parameter=\"" +
b + "\" source=\"System\">\n <dataValue>" + c + "</dataValue> \n
</entry>\n </section> \n </case> \n");

}
catch(Exception e)
{

System.err.println (" Error writing to file case");
}

}
@SuppressWarnings("deprecation")
private void reasonUsingRBR()
{

Rete engine = new Rete();
try {

E7

engine.executeCommand("(batch \"src/Template.clp\")");
engine.executeCommand("(batch \"src/newCase.clp\")");
}
catch(Exception e){
e.printStackTrace();
}

}

private void removeLineFromFile(String file, String lineToRemove) {

try {

File inFile = new File(file);

if (!inFile.isFile()) {
System.out.println("File Name is not an existing file");
return;

}

//Construct the new file that will later be renamed to the original filename.
File tempFile = new File(inFile.getAbsolutePath() + ".tmp");

BufferedReader br = new BufferedReader(new FileReader(file));
PrintWriter pw = new PrintWriter(new FileWriter(tempFile));

String line = null;

//Read from the original file and write to the new
//unless content matches data to be removed.
while ((line = br.readLine()) != null) {

if (!line.trim().equals(lineToRemove)) {

pw.println(line);
pw.flush();

}
}
pw.close();
br.close();

//Delete the original file
if (!inFile.delete()) {
System.out.println("Could not delete file");
return;

}

//Rename the new file to the filename the original file had.
if (!tempFile.renameTo(inFile))
System.out.println("Could not rename file");

}

E8 E. Source Code

catch (FileNotFoundException ex) {
ex.printStackTrace();

}
catch (IOException ex) {
ex.printStackTrace();

}
}

}

Listing E.2: Source Code for Entry Class
package volve.rules;

public class Entry {

private String parameter;
private static String previousParam;
private String value;
private static String previousValue;
private String parentName;
private static String parent;
private Double start;
private Double end;

private static Double depth;
private static Double count = 0.0;

Entry()
{}
Entry(String par, String parvalue, String parent, Double startt, Double endd)
{

this.parameter = par;
this.value = parvalue;
this.parentName = parent;
this.start = startt;
this.end = endd;

}

void getdepth(Double depthOccurrence)
{

depth = depthOccurrence;
parent = "";

}

public String toString()
{
StringBuffer sb = new StringBuffer();
//***********************StringBuffer sb2 = new StringBuffer();

E9

/*sb.append("Entry Details - \n");
sb.append("Parameter Name:" + parameter);
sb.append("\n ");
sb.append("Parameter Value:" + value);
sb.append("\n \n");*/
if(parent.equals(parentName))
{

if(!parent.equals("_Case_Occurrence_Description") && !parent.equals
("_Response_Activity_Description") && !parent.equals("_Poor_Well_

Cleaning_Case_Class") && !parent.equals("_Risk_Assessment") &&
!parent.equals("_Risk_Calculation") && !parent.equals("_Final_

Section_Consequence") && !parent.equals("_Lesson_Learned") &&
!parent.equals("_Activity_Before_Case_Occurrence"))

{
if(previousParam.equals(parameter) && previousValue.equals(value))
{

if(parent.equals("_Pack_Off_Events") || parent.equals("_

Increased_Drag_Events") || parent.equals("_Increased_Torque
_Events") || parent.equals("_Took_Weight_Events") ||
parent.equals("_Tight_Spot_Events"))
{

int x = (int)((Math.abs(depth - end)) + 100)/ 100;
count = count + ((100.0 / (x * 100.0)));

}
return "";

}
else
{

if(parent.equals("_Measured_Depth_Scale_Events"))
{

if(start <= depth && depth <= end)
{

previousParam = parameter;
previousValue = value;
sb.append("\t(" + parameter + " " + value + ")\n");
//System.out.println(start + "to " + end);

}
else

return "";
}
/*if(parent.equals("_Measured_Depth_Scale_Events") &&

previousParam.equals("_Drag") && parameter.equals("
_Stabilizer_friction"))

{
sb.append(")) \n");
sb.append("\n(assert \t(" + parentName + "\n \t("

+ parameter + " " + value + ")\n");
}*/
else
{

previousParam = parameter;
previousValue = value;

E10 E. Source Code

sb.append("\t(" + parameter + " " + value + ")\n");
}

}
}
else

return "";
}
else
{

if(!parent.equals(""))
{

if(parent.equals("_Pack_Off_Events") || parent.equals("_

Increased_Drag_Events") || parent.equals("_

Increased_Torque_Events") || parent.equals("_Took_

Weight_Events") || parent.equals("_Tight_Spot_Events"))
{

sb.append("\t(count " + count + ")\n");
count = 0.0;

}
sb.append(")) \n");
//******sb2.append(") \n");

}
parent = parentName;
previousParam = parameter;
previousValue = value;

if(!parent.equals("_Case_Occurrence_Description") && !parent.equals("_

Response_Activity_Description") && !parent.equals("_Poor_Well_

Cleaning_Case_Class") && !parent.equals("_Risk_Assessment") &&
!parent.equals("_Risk_Calculation") && !parent.equals("_Final_Section
_Consequence") && !parent.equals("_Lesson_Learned") && !parent.equals("_Activity_Before_Case_Occurrence"))

{
if(parent.equals("_Pack_Off_Events") || parent.equals("_Increased_

Drag_Events") || parent.equals("_Increased_Torque_Events")
|| parent.equals("_Took_Weight_Events") || parent.equals("_

Tight_Spot_Events"))
{

int x = (int)((Math.abs(depth - end)) + 100)/ 100;
count = count + (100.0 / (x * 100.0));
sb.append("\n(assert \t(" + parentName + "\n \t(" +

parameter + " " + value + ")\n");
}
else if(parent.equals("_Measured_Depth_Scale_Events"))
{

sb.append("\n(assert \t(" + parentName + "\n ");
if(start <= depth && depth <= end)

sb.append("\t(" + parameter + " " + value + ")\n");
else

return sb.toString();
}

E1

else
sb.append("\n(assert \t(" + parentName + "\n \t(" +

parameter + " " + value + ")\n");

}
else

return "";
}

return sb.toString();
}

}

Appendix F

Glossary

AI
Artificial Intelligence

API
Application Programming Interface

BR
Business Requirement

CBR
Case Based Reasoning

CBS
Case Based System

DOM
Document Object Model

FR
Functional Requirement

IEEE
Institute of Electrical and Electronics Engineers

JESS
Java Expert System Shell

KBS
Knowledge-Based System

NFR
Non-functional Requirement

NTNU
Norwegian University of science and technology

RBRCBRI-TC
Rule Based Reasoning and Case Based Reasoning Integration Test
Case

RBRCBRI-TP
Rule Based Reasoning and Case Based Reasoning Integration Test
Plan

RBR
Rule Based Reasoning

RBS
Rule Based System

UC
Use Case

UI
User Interface

WOB
Weight On Bit

XML
EXtensible Markup Language

References

[1] A.Aamodt and E. Plaza, “Foundational Issues, Methodological Vari-
ations and System Approaches," Artificial Intelligence Communica-
tions,7(1), pp. 39-59, March 1994.

[2] Agnar Aamodt,”Knowledge-Intensive Case-Based Reasoning in
CREEK", Norwegian niversity of Science and Technology.

[3] Agnar Aamodt,”Explanation-Driven Case-Based Reasoning", Norwe-
gian niversity of Science and Technology.

[4] Belen Diaz-Agudo and Pedro A. Gonzalez-Calero,”An Architecture
for Knowledge Intensive CBR Systems", Universidad Computense de
Madrid, Spain.

[5] R. Lopez,D. Mcsherry, D. Bridge, D. Leake, B. Smyth, S. Craw, B.
Faltings, M. Maher, M. Cox, K. Forbus, M. Keane, A. Aamodt, and I.
Watson, ”Retrieval , reuse, revision, and retention in case-based reason-
ing", The Knowledge Engineering Review,Vol 20:3, 215-240, Cambridge
University Press 2006.

[6] Mal Rey Lee, ”An exeption Handling of Rule-Based Reasoning Using
Case-Based Reasoning", Journal of Intelligent and Robotic Systems 35:
327-338, Kluwer Academic Publishers 2002.

[7] R. Bellazzi, S. Montani, L. Portinale, and A. Riva, ”Integrating Rule-
Based and Case-based Decision Making in Diabetic Patient Manage-
ment", ICCBR-99, LNAI 1650, pp 386-400,SpringerVerlag Berlin Hei-
delberg 1999.

[8] R. Golding and S. Rosenbloom ”Improving Accuracy by combining
Rule-based and Case-based Reasoning", Artificial Intelligence 87, 215-
254,Mitsubishi Electric Research Laboratories 1995.

REFERENCES

[9] Kamalendu Pal and John A Campbell,”An Application of Rule-Based
and Case-Based Reasoning within a Single Legal Knowledge-Based Sys-
tem",The DATA BASE for Advances in Information Systems Vol 28,
No. 4,1997.

[10] M.Fathi -Torbaghan and D. Meyer ”ICARUS: Integrating rule-based
and case-based reasoning on the base of unsharp symptoms",IEEE 1995

[11] Software Engineering Technical Committee of the IEEE Computer So-
ciety ”IEEE Standard for Software Test Documentation",IEEE Std 829-
1998 (Revision of IEEE Std 829-1983) The Institute of Electrical and
Electronics Engineers, Inc. 1998.

[12] N. Phuong, N.Prasad, D. Hung, and J. Drake ”Approach to Combining
Case Based Reasoning with Rule Based Reasoning for Lung Disease
Diagnosis", IEEE 2001.

[13] D. Shimin, S. Huizhang, L. Hong ”Research on Case-Based Reasoning
Combined with Rule-Based Reasoning for Emergency", IEEE 2007.

[14] Alex J. Champandard , AI depot , Artificial Intelligence , October 23,
2008, http://ai-depot.com/Intro.html.

[15] Branting, K., and Porter, B. , “Rules and precedents as complementary
warrants", in Proc. 1991 The Ninth National Conference on Artificial
Intelligence, pp. 3-9.

[16] Cindy Marling , Edwina Rissland , Agnar Aamodt, “Integrations with
case-based reasoning", in The Knowledge Engineering Review, v.20
n.3,p.241-245, September 2005.

[17] C.R. Marling, G.J. Petot, and L.S. Sterling “Integrating Case-Based
and Rule-Based Reasoning to Meet Multiple Design Constraints", in
Computational Intelligence, vol. 15, pp. 308-332, 1999.

[18] E.L. Rissland and D.B. Skalak, ”Combining Case-Based and Rule-Based
Reasoning: A Heuristic Approach", in Proc. 1989 International Joint
Conference on Artificial Intelligence,pp. 524 -530.

[19] George F. Luger, Artificial Intelligence: Structures and Strategies for
Complex Problem Solving,Addison-Wesley, Pearson Education Limited
2002.

REFERENCES

[20] I. Bichindaritz, E. Kansu, and K.M. Sullivan, ”Case-Based Reasoning
in Care-partner: Gathering Evidence for Evidence-Based Medical Prac-
tice", in Proc. 1998 European Conference on Case-Based Reasoning, pp.
334-345.

[21] J. Prentzas and I. Hatzilygeroudis, ”Integrating Hybrid Rule-Based with
Case-Based Reasoning", in S. Craw and A. Preece (Eds), Advances
in Case-Based Reasoning, Procs 2002 European Conference on Case-
Based Reasoning, LNAI 2416, Springer-Verlag, pp. 336-349.

[22] J. Prentzas and I. Hatzilygeroudis,”Integrations of Rule-Based and
Case-Based Reasoning",in Proc. International Conference on Com-
puter, 2003.

[23] J. Prentzas and I. Hatzilygeroudis,Categorizing Approaches Combining
Rule-Based and Case-Based Reasoning, Expert Systems 24(2) 2007, 97-
122.

[24] J. Kolodner, Case-Based Reasoning,San Mateo, CA: Morgan Kaufmann
Publishers, 1993.

[25] David B. Leake, Case-Based Reasoning Experiences, Lessons, and Fu-
ture Directions,Menlo Park, CA: American Association for Artificial
Intelligence, 1996.

[26] Home page of Verdande Technology As, February 12, 2009,
http://www.verdandetechnology.com/.

[27] Lars Olrik, Harvesting Knowledge to improve drilling performance in
real time, Verdande Technolgoy As.

[28] DrillEdge brochure, Verdande Technol-
ogy As,DrillEdge February 12, 2009,
http://www.verdandetechnology.com/images/verdande/drilledge_brochure_web.pdf.

[29] UML Training Courses from CRaG Systems, Specifying
Functional Requirements With Use Cases May 12, 2009,
http://www.cragsystems.co.uk/SFRWUC/index.htm.

[30] Jess, Jess, The Rule Engine for the Java Platform May 21, 2009,
http://www.jessrules.com/jess/docs/70/.

REFERENCES

[31] Making Your Own Rules, Jess, The Rule Engine for the Java Platform
May 27, 2009, http://www.jessrules.com/jess/docs/70/rules.html.

[32] Robert V. Stumpf and Lavette C. Teague, Object-oriented systems anal-
ysis and design with UML, Upper Saddle River, NJ : Pearson Prentice
Hall, 2005, pp 1-38.

[33] Code Better, Software Development
Life Cycle Models, February 24, 2009,
http://codebetter.com/blogs/raymond.lewallen/archive/2005/07/13/129114.aspx.

[34] FFIEC IT Handbook InfoBase, Systems De-
velopment Life Cycle, February 21, 2009,
http://www.ffiec.gov/ffiecinfobase/booklets/d_a/08.html.

[35] IT Knowledge Exchange, Spiral Model, March 07, 2009,
http://searchsoftwarequality.techtarget.com/sDefinition/0„sid92_gci755347,00.html.

[36] Human Base India Inc., An Information Technology Com-
pany, Software Development Life Cycle Models, March 10, 2009,
http://www.humanbaseindia.com/training/SDLC.htm.

[37] GeekInterview, SDLC - Prototype Model, March 03, 2009,
http://www.learn.geekinterview.com/it/sdlc/prototype-model.html.

[38] Stylusinc Increasing your NET value, Software De-
velopment Life Cycle (SDLC), March 07, 2009,
http://www.stylusinc.com/Common/Concerns/SoftwareDevtPhilosophy.php.

[39] Business eSolutions, Project Lifecycle Models: How They Differ
and When to Use Them, March 16, 2009, http://www.business-
esolutions.com/islm.htm.

[40] Ann Gordon, Bright Hub, What is a Work Breakdown Struc-
ture?, March 16, 2009, http://www.brighthub.com/office/project-
management/articles/2645.aspx.

[41] Virgil Andronache, University of Notre Dame: Computer Sci-
ence and Engineering, Behavior-Based Robotics, March 21, 2009,
http://www.cse.nd.edu/courses/cse498f/www/ln1.html.

REFERENCES

[42] Robert S. Engelmore and Edward Feigenbaum, Japanese Technology
Evaluation Center, Knowledge-Based Systems in Japan, March 21,
2009, http://www.wtec.org/loyola/kb/toc.htm.

[43] NetMBA Business Knowledge Center, Work Breakdown Structure,
March 16, 2009, http://www.netmba.com/operations/project/wbs/.

[44] CIO defination, Decision support system, March 27, 2009,
http://searchcio.techtarget.com/sDefinition/0„sid182_gci213888,00.html.

[45] CIO defination, What is a Decision Support System?, March 27, 2009,
http://www.tech-faq.com/decision-support-system.shtml.

[46] Wikipedia The Free Encyclopedia, Software de-
velopment methodology, February 21, 2009,
http://en.wikipedia.org/wiki/Software_development_methodology.

[47] Wikipedia The Free Encyclopedia, Software
development process , February 21, 2009,
http://en.wikipedia.org/wiki/Software_development_process.

[48] Wikipedia The Free Encyclopedia, Waterfall model , March 03, 2009,
http://en.wikipedia.org/wiki/Waterfall_model.

[49] Wikipedia The Free Encyclopedia, Spiral model , March 05, 2009,
http://en.wikipedia.org/wiki/Spiral_model.

[50] Wikipedia The Free Encyclopedia, Knowledge-based systems , March
22, 2009, http://en.wikipedia.org/wiki/Knowledge-based_systems.

[51] Wikipedia The Free Encyclopedia, Decision support system , March 27,
2009, http://en.wikipedia.org/wiki/Decision_support_systems.

[52] Wikipedia The Free Encyclopedia, Rete Algorithm , April 8, 2009,
http://en.wikipedia.org/wiki/Production_rule_system.

	Title Page
	Problem Description
	Introduction
	The Project
	Project Plan
	Documentation Resource Requirements
	Report Outline

	State of the Art
	Knowledge Based Systems
	Case Based Systems
	Rule Based Systems
	Integration of Case Based Reasoning and Rule Based Reasoning
	Knowledge-Intensive Case Based Systems
	System Development Methodology

	Problem Definition and Proposed Solution
	Problem Definition
	Proposed Solution
	Technological Requirements

	Requirement Specification
	Business Requirements
	Functional Requirements
	Non-functional Requirements
	Use Case Models

	Design Phase
	Knowledge Editor Package
	Rule Based Component
	Case Based Component
	User Interface Component
	Integration of the Rule Based Component with the Knowledge Editor Package
	Integration of the Rule Based Component with the Case Based Component

	Implementation Phase
	Implementation of the Rule Based Reasoning Component
	Implementation of User Interface Component
	Implementation of Integration of the Rule Based Component with the Knowledge Editor Package
	Implementation of Integration of the Rule Based Component with the Case Based Component

	Testing Phase
	Test Plan
	Test case specification
	Test Summary

	Discussion, Recommendation and Conclusion
	Discussion
	Recommendation
	Conclusion

	XML Format of a Case
	Rules for the Demo System
	IF …THEN …Format of the Rules
	Jess Format of the Rules

	Template Definition
	Jess Representation of a Case and Adding to Working Memory
	Source Code
	Glossary

