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Abstract

Today’s petroleum industry demand an ever increasing amount of compu-
tational resources. Seismic processing applications in use by these types of
companies have generally been using large clusters of compute nodes, whose
only computing resource has been the CPU. However, using Graphics Pro-
cessing Units (GPU) for general purpose programming is these days becoming
increasingly more popular in the high performance computing area. In 2007,
NVIDIA corporation launched their framework for developing GPU utilizing
computational algorithms, known as the Compute Unied Device Architec-
ture (CUDA), a wide variety of research areas have adopted this framework
for their algorithms. This thesis looks at the applicability of GPU techniques
and CUDA for off-loading some of the computational workload in a seismic
shot modeling application provided by StatoilHydro to modern GPUs.

This work builds on our recent project that looked at providing check-
point restart for this MPI enabled shot modeling application. In this thesis,
we demonstrate that the inherent data parallelism in the core finite-difference
computations also makes our application well suited for GPU acceleration.
By using CUDA, we show that we could do an efficient port our application,
and through further refinements achieve significant performance increases.

Benchmarks done on two different systems in the NTNU IDI (Depart-
ment of Computer and Information Science) HPC-lab, are included. One
system is a Intel Core2 Quad Q9550 @2.83GHz with 4GB of RAM and
an NVIDIA GeForce GTX280 and NVIDIA Tesla C1060 GPU. Our sec-
ond testbed was an Intel Core I7 Extreme (965 @3.20GHz) with 12GB of
RAM hosting an NVIDIA Tesla S1070 (4X NVIDIA Tesla C1060). On this
hardware, speedups up to a factor of 8-14.79 compared to the original se-
quential code are achieved, confirming the potential of GPU computing in
applications similar to the one used in this thesis.
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Chapter 1

Introduction

Using Graphics Processing Units (GPU) for general purpose programming
is becoming increasingly popular in high performance computing (HPC).
Since NVIDIA corporation in 2007 launched a framework for developing
GPU utilizing computational algorithms, known as the Compute Unified
Device Architecture (CUDA), a wide variety of research areas have adopted
this framework for their algorithms. Examples of research disciplines using
CUDA include computational biophysics, image and signal processing, geo-
physical imaging, game physics, molecular dynamics and computational fluid
dynamics (see e.g. [1], [2], [3] and [4]).

The massively parallel architecture of CUDA enabled GPU devices makes
them a perfect fit for algorithms which behave in a highly data parallel man-
ner. Reported algorithm speedups in excess of 100x compared to conventional
CPU implementations, and relatively low cost, further motivates the use of
such hardware for computationally intensive algorithms.

1.1 Our Targeted Seismic Application

The work presented in this thesis continues the work we previously did in
[5], where StatoilHydro provided us with a seismic shot modeling applica-
tion and sample synthetic data. The application is MPI based for parallel
execution on the large production compute clusters at StatoilHydro. In [5],
we implemented checkpoint/restart functionality, which guaranteed that all
the work assigned to the application would complete regardless of potential
situations in which nodes of the compute cluster failed.

1
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The main focus of the work presented in this thesis will be different com-
pared to the previous work in that we here will attempt to improve the
efficiency of the application by off-loading some of the numerical calculations
to the GPU, where as we previously focused on improving application con-
sistency and fault tolerance. The application we worked on back then was
an earlier revision of the one used in this thesis.

1.2 Project Goals

In this project, we will in collaborations with StatoilHydro explore the po-
tential of using CUDA based GPU offloading for improving the performance
of the provided seismic shot modeling application. The provided application
is currently being used on a production compute cluster at StatoilHydro.

We will attempt to include a review of existing GPU enabled HPC li-
braries and compilers, as well as consider porting library components of parts
of the StatoilHydro application environment to GPU.

We will conduct performance comparisons of the developed GPU enabled
application and the original, and finally evaluate the development effort re-
quired for implementing the CUDA enabled GPU utilizing components.

1.3 Outline

The contents of this thesis is structered as follows:

• Chapter 2 introduces our application targeted for GPU computational
offloading. It starts off by describing the fundamentals of marine seis-
mic acquisition, and proceeds by describing the workings of our appli-
cation, as well as how it relates to this principle.

• Chapter 3 will explore the details of GPU programming, in particular
with respect to NVIDIA’s CUDA framework. It will also review the
basics of the Finite Difference Method, as well as mention some of
the works done in the field of GPU programming on applications with
various algorithmic commonalities to our target application.

• Chapter 4 starts off with profiling a run of the original application,
which is subsequently used to indicate which areas to target for GPU
offloading. Following the profiling results, the Chapter describes the
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functionality of the selected target areas, and proceeds by detailing
the process of modifying them so that they take advantage of GPU
driven computational offloading. 3 GPU utilizing implementations will
be developed, with the last being the most optimal. The Chapter
concludes by describing the implementation of multiple GPU support
in the application.

• Chapter 5 contains performance measurements of the developed GPU
implementations. The Chapter starts off describing test methodology
and the test environment, followed by benchmarking results for all de-
veloped GPU implementations, as well as the original. In the end, the
results obtained from the benchmarking are discussed.

• Chapter 6 concludes the work done in this thesis, and suggests some
possible alternatives for future work.



Chapter 2

Seismic Shot Processing

In this Chapter we will introduce the application in which we intend to
implement GPU computational offloading techniques. We will start off by
introducing the basics of seismic acquisition, and proceed by describing the
workings of our application and how it relates to this principle.

2.1 Marine Seismic Acquisition

Marine seismic acquisition (see Chapter 7 of [6]), is the process where a vessel
(boat) releases pressure waves (shots) from an air gun (source) underneath
the sea surface. The vessel tows a cable (streamer) with listening devices
(hydrophones). When the pressure wave from a shot reaches an interface
in the sub surface, some of its energy is reflected towards the surface. The
hydrophones of the streamer collects these reflections, or signals, which con-
tain information about pressure changes in the water. Data collection from
the streamers is commonly performed for several shots taken with increasing
or decreasing distance between source and receiver (hydrophone), producing
what is known as a seismic shot gather. An illustration of marine seismic
acquisition is shown in Figure 2.1

4
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Figure 2.1: Seismic acquisition. The vessel in the Figure tows a streamer
and air guns. The reflections of the pressure wave off interfaces in the sub
surface are illustrated

2.2 Application Details

Our application, SplFd2dmod, which is a part of StatoilHydro’s Seismic
Processing Library (SPL), simulates seismic shot data by means of finite dif-
ference modeling. The data on which the application bases its modeling, are
synthetic velocity and density models of the sub surface which describe the
acoustic impedance (interfaces/contrast) in the different areas of the model.
SplFd2dmod computes a sub surface pressure field by propagating a pressure
wave (shot) through the modeled area characterized by the aforementioned
velocity and density models. Figure 2.2 is an example output of modeling a
single shot gather, and Figure 2.3 is an example of several shot gathers. Con-
trast in both of these Figures has been enhanced by discarding amplitudes
outside the range [−0.0001, 0.0001].



CHAPTER 2. SEISMIC SHOT PROCESSING 6

Figure 2.2: Application output after
modeling a shot

Figure 2.3: Shot gathers containing 12
modeled shots

The application has a single- and a multiprocessor (MPI) mode of exe-
cution. The multi processor mode is built in an SPMD fashion, meaning it
is written as a single program working on multiple data elements. The data
elements of the application are the seismic shot records. The application is
parallelized by shot record, meaning each slave process on nodes of the com-
putational cluster running it will process a single shot. The master process
(rank 0) of the application works as an I/O server, with the intent of assur-
ing atomic read/write access to files requested by the slave processes. This
enforces consistency and minimizes file system pressure. FIO is the library
component of SPL containing the I/O server.

The slave processes pick a seismic shot from a file containing all the
available shots. The selection of shots is governed by a key-map file, keeping
track of which shots are available and which are being/have been modeled.
The key-map file is, as with the other input files, shared among all the
processes.
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Figure 2.4: Flowchart for the application taken from [5]. The flow of the
slave processes is shown in the green rectangle. The red rectangle shows the
flow of the I/O server

Each slave process does a 2D acoustic finite difference modeling of a
given shot, and outputs its result in a single shared file, which in the end will
contain all of the modeled shots. When a slave process has finished modeling
a shot, it will try to get a new one by reading the key-map file, looking for
remaining shots still in need of modeling. If there are no more shots available,
the process will exit.

A flowchart of the application can be seen in Figure 2.4. One of the new
features of this revision of SplFd2dmod compared to the one in [5], is that
finished shots are sorted according to their shot record numbers in the output
file. The application in [5] did no such ordering, resulting in potentially
different ordering of the final shot gathers depending on the order in which
the slave processes finished their computations.

The component of the SPL library which is most important for our ap-
plication is called Fd2d (see [7]). This is a high level library component for
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doing the 2D acoustic finite difference modeling central to SplFd2dmod.



Chapter 3

GPU Programming & FDM

In this Chapter, we will review various aspects of GPU programming, as well
as introduce the Finite Difference Method (FDM), which is a key numeri-
cal method used in our application We will end this Chapter by looking at
previous work done in the field of CUDA GPU computing related to FDM
computations

3.1 GPU Programming

In this section we will examine what GPU programming, also referred to
as General Purpose GPU (GPGPU) programming, is. In addition, we will
explore some of the available programming languages related to this topic.

Before shading languages and GPU programming APIs, general purpose
computations on the GPU required either low level assembly programming
of the GPU or use of the programmable stages in the processing pipelines
of graphics APIs such as OpenGL and Direct3D (DirectX). Using assembly
level programming is a very time consuming process, and requires a great
deal of expertise, making it unsuitable for most developers. Using the pro-
grammable stages of graphics pipelines is achieved by using shader languages.
Although significantly more convenient than the low level approach, shading
languages forces the developer to reformulate his/her problem to account for
the inherent graphics processing intentions of the pipeline.

9
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Graphics Pipeline

Shading languages such as NVIDIA’s Cg, The OpenGL Shading Language(GLSL)
and The High Level Shading Language(HLSL), are targeted at the programmable
stages of graphics pipelines used in the Direct3D (DirectX) and OpenGL
graphics APIs.

In graphics programming, the developer specifies geometry in a scene
using vertices, lines and triangles. These definitions are in turn submitted to
the graphics pipeline, which essentially translates the geometry to the screen
with the intended lighting and coloring specified.

Graphics pipelines used in Direct3D and OpenGL contains several fixed
function and programmable stages. Each stage in such a pipeline processes
entities provided in a stream by the previous stage. The order in which these
particular entities appear in the pipeline is as follows:

1. Vertices

• Vertices are what the programmer uses to specify geometry. Each
vertex can contain a position, color value, normal vector and tex-
ture coordinate.

2. Primitives

• Primitives are e.g. points, lines and triangles. Primitives are
formed from connected groups of vertices.

3. Fragments

• Fragments are generated by rasterization, which is the process of
breaking up primitives into a discrete grid. Fragments consists of
a color value, position and a distance value from the scene camera.

4. Pixels

• Pixels, or picture elements, are the final entities sent to screen.
Color contributions from fragments are processed for each position
in the framebuffer and combined into the final pixel value stored
in that particular location.

A simplified overview of a graphics pipeline is given in [8], and can be
seen in Figure 3.1.
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Figure 3.1: Simplified view of a graphics pipeline with indication of streams
between the different stages as well as their memory accesses

The first stage, denoted vertex generation, collects the vertices in the
geometry specified by the programmer and sends them in a stream to the
next stage in the pipeline, denoted as vertex processing. The most significant
operation performed in this stage is doing a transformation on the vertex
position in order to project it from the world/scene space into screen space.
The vertex processing stage is the first programmable stage in the pipeline,
and thus allows the programmer to alter projection, color values, normals
and texture coordinates for each incoming vertex.

After the vertex processing stage, vertices, along with information given
by the programmer on their relationship, are being assembled into primitives,
namely points, lines and triangles. Once primitives have been assembled,
they are sent in a stream to the next stage for additional processing. This
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stage is referred to as the primitive processing stage.
Primitive assembly is then followed by the rasterization stage, where each

primitive is broken down into fragments, which are discrete points in a grid
corresponding to one pixel location in the final framebuffer. This stage,
referred to in [8] as fragment generation, arranges the fragments from each
primitive into a stream sent to the following fragment processing stage. This
stage is programmable, and is in graphics intended for lighting the fragments,
as well as applying textures.

The final stage in the pipeline, referred to as pixel operations, decides
which fragments will be displayed in the final picture. Each fragment contains
a depth value (Z value), which indicates how far the fragment is from the
camera in the scene. When fragments overlap one pixel position, the closest
of them is the one being stored in the framebuffer for final display. Blending,
or combining the colors of several overlapping fragments, will occur if some
visible fragments have some degree of transparency.

The programmable stages mentioned above, vertex processing, primitive
processing and fragment processing, will be the basis for the shading lan-
guages we will review next.

Shading Languages

There are three major shading languages intended primarily for programming
graphics shaders; NVIDIA’s C for Graphics(Cg), The OpenGL Shading Lan-
guage(GLSL) and The High Level Shading Language(HLSL).

HLSL, developed by Microsoft, is targeted at their Direct3D graphics
API. The language was first deployed when DirectX 8 was launched. The
capabilities of the language varies depending on what shader model specifi-
cation is supported by the target GPU.

With the latest shader model 4, HLSL can be used to develop vertex-,
geometry- and fragment-shaders at their respective stages in the pipeline.
The first DirectX distribution supporting shader model 4 was DirectX 10.

GLSL is the OpenGL shading language. According to [9], the GLSL
API was originally a set of extensions to OpenGL, but as of OpenGL 2.0, it
became a built-in feature.
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Programming model for GPGPU shader programming

When programming shaders for use with non-graphical computations, the
usual steps are as follows:

• Draw geometry using the graphics API

• Make texture of input data grid

• Fetch previously submitted textures with input data and do computa-
tions

• Write results for each fragment in the solution grid

• Copy final results to a texture

• Retrieve results of computation by fetching texture

A 2D data grid can be represented by drawing a simple, appropriately sized
square in OpenGL/Direct3D. After the square has been submitted to the
graphics pipeline, first stage of interaction is in the vertex processor. At this
stage, initial values for the corners of the solution grid can be set. At the
rasterization stage when the area of the square is being broken into fragments,
the color values of each fragments is set based on the previously specified
color of the corner vertices. If specified, different values at the corners can
be interpolated over the area of the square.

After the rasterization is completed, the fragment shader kernel is in-
voked. In this kernel, a previously stored texture can be read as input data
for the computations. Kernels are invoked in parallel, and work on a sin-
gle fragment, or point, in the solution grid. The complete result after the
fragment shader stage is written to a texture.

If the programmer requires to do more computations on the results from
a single pass through the pipeline, he simply replaces the previous input
texture with the result texture from the fragment shader, and calls another
draw operation to make another pass through the pipeline.

Once all computations have been completed, the resulting texture is
fetched from GPU memory.
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High-Level GPU programming languages

In addition to the shading languages mentioned above, there exists higher
level languages which compile their source with shading languages as compile
targets. These languages use more general structured programming syntax,
minimizing the requirement of formulating the problems in graphics pro-
gramming terms.

Some of the most established high level GPGPU languages are Brook,
Sh, Microsoft’s Accelerator, Peakstream and RapidMind. A quick review of
these languages can be seen in [1].

3.2 CUDA

In this section, we will explore the recent advances in programming APIs for
numerical computation on the GPU. Since 2006, APIs for such programming
have evolved by eliminating the need for an underlying graphics API such
as Direct3D and OpenGL. These APIs are now interfacing directly with the
GPUs, allowing APIs expressed in more familiar terms to the general purpose
developer.

The Compute Unified Device Architecture (CUDA) is a parallel process-
ing framework developed by NVIDIA for their GPUs. CUDA has an as-
sociated programming environment which enables application programmers
to utilize the power in these GPUs in order to offload compute intensive,
data-parallel computations.

For the purposes of this thesis, CUDA will be the only high level GPU
programming API reviewed here. There are other alternatives such as the
OpenCL heterogeneous many-core API, and the AMD Stream SDK. The
reasons for using CUDA in this thesis, are:

1. During this project, most of the hardware available has NVIDIA CUDA
enabled GPUs. Using the AMD Stream SDK will not be an alternative
given this fact.

2. The CUDA architecture is quite mature compared to OpenCL. First
editions of CUDA were ready in 2006 (see [10]), and its most recently
released version is 2.1 (04.08.09). OpenCL was first conceived during
the first half of 2008, and the first release came in December 2008 (see
[11]).
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Figure 3.2 shows part of the internals of the NVIDIA GTX200 architec-
ture. This architecture is used in e.g. the NVIDIA GeForce 280GTX and
260GTX. What the Figure more specifically shows, is what is known as a
Thread Processing Cluster (TPC). There are a total of 10 such clusters on
the GTX200 chip. The architecture depicted is similar to the one of the
NVIDIA Tesla T10 series, which is the architecture of the Tesla C1060 card.
The C1060 is a pure GPU card with no video output, and is available as a
single stand alone card, or as part of the Tesla S1070 rack unit, which holds
4 of them. Additional information on the GTX200 architecture can be found
in [12] and [13]

Figure 3.2: TPC of the GTX200 architecture. A GeForce GTX280 GPU
card contains a total of 10 TPCs. (With permission from NVIDIA)

The TPC in Figure 3.2 contains an L1 texture cache available to all 3
Streaming Multiprocessors (SM). The TF units are units which perform tex-
ture filtering and addressing operations concerning texture memory. Each of
the 3 SMs in the TPC consist of the following components. The Streaming
processors (SP) perform single precision floating point calculations in com-
pliance with the IEEE 754 standard. New to this architecture is the addition
of the DP stream processing unit. This processing unit performs double pre-
cision floating point calculations, and as the Figure shows, there are only 1 of
these per SM. There are in addition 2 Special Function Units (SFU ) per SM,
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used for operations such as sin and cosin. The Shared Memory (SMEM ) re-
gion of the SM is a fast, on-chip low latency memory which can be compared
to an L1 cache of a traditional CPU. The I-Cache is the instruction cache,
while the C-cache is a read only data cache for constant memory (see 3.4).
IU is a unit which distributes instructions to the DP, SP, and SFUs of the
SM.

The Compute Capability of a CUDA enabled GPU describes capacities
and capabilities of classes of devices. Devices such as the GeForce GTX280
and the Tesla C1060 have compute capability 1.3, whose features can be seen
in Appendix A.1.1 of [10]

The CUDA Programming Model

C for CUDA is the programming language used to program CUDA enabled
devices. The language is based on the ANSI C programming language, with
some CUDA specific extensions. When developing a CUDA program, the
source code separates code segments which will be run on the host (CPU)
and the device (GPU). Device code is written as kernels, which is functions
that correspond to a single thread run on a streaming multiprocessor(SM)
(depicted in Figure 3.2). When such a kernel function is invoked, the pro-
grammer specifies how many instances/threads of the kernel will be executed
on the GPU in terms of number of blocks of threads. The blocks in this execu-
tion configuration are arranged in a two-dimensional grid, where each block is
a three-dimensional array of threads. The relationship between grids, blocks
and threads is explained in [10] and [14]. Figure 3.3 shows an arrangement of
a grid with dimensionality 3x3, containing blocks of 3x3x1 threads, totaling
81 threads.
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Figure 3.3: Thread organization on GPU in terms of grids and blocks

As Chapter 3 of [14] explains, the SMs on the GPU are the execution
units which are assigned the blocks of threads specified upon kernel invo-
cation. [14] explains the capacities of the SMs in the GeForce 8800 GTX
card. Each SM in those cards hold a maximum capacity of 8 active thread
blocks each, with a maximum total of 768 concurrent threads. Once the
blocks are assigned to the SMs, they are further divided into warps, which
are groups of 32 threads each. warps are executed in what’s known as a
Single Instruction Multiple Thread(SIMT) manner. SIMT can be thought of
as a similar concept as Single Instruction Multiple Data(SIMD) on CPUs,
where a single instruction is executed on several data elements at the same
time. With SIMT, this means instructions of each of the threads in a warp
are executed concurrently. The SMs schedule warps from different blocks so
that whenever a warp requires a long latency read operation from memory,
the SM puts that warp on hold and selects another for execution, providing
maximum efficiency in the execution and hiding long latency operations such
as global memory reads.

The CUDA Memory Model

A CUDA enabled device has a total of six different memory types, distributed
as on-chip and off-chip memories. Figure 3.4 shows these types as based on
the indications in [15] and [10]. The Figure shows a device containing an
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off-chip DRAM region of global memory and an SM containing a block of
threads and the associated on-chip memory types. The characteristics of the
memory types depicted can be seen in Table 3.1. The columns of the Table
indicates the following:

• Location
Indicates where on the device the memory resides, i.e. on-chip or off-
chip (DRAM)

• Cached
Indicates whether the memory is accessible through an on-chip data
cache.

• Scope
Indicates who can access the memory type in terms of per-grid, per-
block and per-thread.

• Access
Indicates whether memory type has read, write or read/write access.

Memory Type Location Cached Scope Access

Global Memory off-chip No Grid Read/Write
Constant Memory off-chip Yes Grid Read
Local Memory off-chip No Thread Read/Write
Registers on-chip N/A Thread Read/Write
Shared Memory on-chip N/A Block Read/Write
Texture Memory off-chip Yes Grid Read

Table 3.1: Memory type characteristics of a CUDA enabled device

The non-array variables declared within a kernel function are allocated
by the run-time environment of CUDA in the per-thread registers. The off-
chip local memory holds according to [10] the arrays declared within kernel
functions, as well as other structures too big to be stored in the register of
the current thread.

The shared memory type is a read/write on-chip cache, and allows low-
latency sharing of data among threads within the same block. Shared mem-
ory can be used as a buffer for communication messages between threads
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within the same block. The way this works, is that threads write their mes-
sages to the shared memory, then synchronizes through a barrier, and finally
reads back the messages from the shared memory.

Figure 3.4: CUDA Memory Layout, Showing the different memory types

Texture memory is a read only portion of the global DRAM, and has an
associated on-chip cache as depicted in Figure 3.4. [10] indicates that this
type of memory is optimized for 2D spatial locality, meaning it is efficient for
reading 2D structures. Constant memory is similarly to texture memory, a
read-only memory type which has an on-chip cache. Memory access patterns
has a great impact on performance. The high degree of control given by the
CUDA memory hierarchy makes it easier to optimize this aspect of a GPU
application.

3.3 The Finite Difference Method (FDM)

Solving Partial Differential Equations (PDEs) requires that we discretize the
problem before implementing a solver. The terms in these equations involve
partial differentials, which we can approximate with numerical differentiation
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by means of the Finite Difference Method (FDM) (see e.g. Chapter 8.6 of
[16]).

If we want to approximate a first derivative of a function f(x) with respect
to x, e.g.

f
′
(x) =

df(x)

dx
(3.1)

we can for use the following approximations

f
′
(x) ≈ f(x+ ∆x)− f(x)

∆x
(3.2)

f
′
(x) ≈ f(x)− f(x−∆x)

∆x
(3.3)

f
′
(x) ≈ f(x+ ∆x)− f(x−∆x)

2∆x
(3.4)

where ∆x is the distance between successive discrete points in the func-
tion, 3.2 is the forward difference approximation, 3.3 is the backward dif-
ference approximation and 3.4 is the most accurate of the 3; the centered
difference approximation. For the second derivative of a function f(x) with
respect to x, e.g.

f
′′
(x) =

d2f(x)

dx2
(3.5)

we get a centered difference approximation like this (equation 3.6):

f
′′
(x) ≈ f(x+ ∆x)− 2f(x) + f(x−∆x)

(∆x)2
(3.6)

The accuracy of the previously mentioned approximations can be further
improved by considering additional off center points, e.g. by adding x ±
2∆x, x±3∆x... to the equations and appropriately adjusting the denominator
to account for the new expanded range of the approximation. An example
of adding an additional point to either side of the first derivative centered
approximation looks like this:

f
′
(x) ≈ (f(x+ 2∆x) + f(x+ ∆x))− (f(x− 2∆x) + f(x−∆x))

4∆x
(3.7)
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For a two dimensional function f(x, z), we can approximate its first order

partial derivative with respect to x, ∂f(x,z)
∂x

with e.g. a centered difference
approximation like the one in Equation 3.7 like this:

∂xf(x, z) ≈ (f(x+ 2∆x, z) + f(x+ ∆x, z))− (f(x− 2∆x, z) + f(x−∆x, z))

4∆x
(3.8)

Equation 3.8 can be visualized as a 1 dimensional stencil over the 2 di-
mensional solution area, depicted in Figure 3.5

Figure 3.5: Visualization of the centered difference approximation in Equa-
tion 3.8. Point computed is in green, while evaluated points are in red

3.4 Related Work on CUDA GPU Offloading

Chapter 38 of [3] presents work done by CGGVeritas on implementing CUDA
based GPU computational offloading for a seismic imaging application. The
algorithm of the application, referred to as SRMIP, performs seismic mi-
gration. Central to this algorithm is acoustic wave propagation, which is
performed by a finite-differencing algorithm in the frequency domain. Per-
formance comparisons of the developed GPU offloading implementation in
this work show results of 8-15X speedup with a NVIDIA G80 based GPU
(Quadro FX 5600) over an optimized single threaded version of the original
CPU based implementation.

[17] is an article covering a 3D finite differencing computation done with
CUDA enabled hardware. The article covers two implementations, one for
just doing computations with a 3D finite differencing stencil, and the other
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for computing a finite difference approximated wave equation. The wave
equation discretization is also implemented with support for multiple GPUs,
where the domain of the computation is partitioned among the different
GPUs, allowing for larger problem sizes. In the multi-GPU version, the
decomposition of the domain distributes e.g. for the 2 GPU case, each of the
GPUs gets half the domain + a layer of points overlapping the other half.
The multi-GPU implementation of the article shows a throughput for e.g. a
4 GPU (Tesla S1070) computing a volume of dimensions 480× 480× 800, of
11845.9 million points per second.

[4] is an article which describes the implementation of the Navier-Stokes
equations for incompressible fluids. The discretization made of the equations
involves centered second order finite difference approximations. The imple-
mentation in this article uses double precision calculations on a NVIDIA
Quadro FX5800 4GB card, and shows a speedup of 8X compared to a multi-
threaded Fortran code running on an 8 core dual socket Intel Xeon E5420
CPU. This kind of speedup is especially impressive considering the fact that
there are only 1 double precision stream processor on each of the 30 streaming
multiprocessors of the GPU.



Chapter 4

Application Analysis and
Optimization

In this Chapter, we will begin by profiling our application, identifying the
areas in need of GPU computational offloading. Once these areas have been
identified, we will describe their workings before proceeding with implement-
ing GPU replacements for them.

We will go through the different GPU implementations step by step,
continually adding new optimizations, explaining motivations for them, as
well as implementation details. We end this Chapter by describing the details
of adding multiple GPU support to our application.

4.1 Profiling and Analysis

While the core computational areas of this application is known to us be-
forehand, profiling the application will allow us to easily identify the source
code areas in need of GPU offloading. We will use the Valgrind[18] based
tool CallGrind, which profiles the call paths for an application, as well as the
duration for each of the called functions.

The results obtained by running the single processor version of our ap-
plication through the CallGrind tool can be seen in Figure 4.1. Here it is
seen that the subroutine Fd2dModfd is the main contributor of the com-
putational overhead of the application. Looking further down, we see that
the Fd2dTimestep subroutine is being called 13334 times. For each call to
this subroutine, four different subroutines (DerDifxfw, DerDifyfw, DerDifxba,

23
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Figure 4.1: Function call path of our application obtained from the CallGrind
tool

DerDifyba) are called.
The Fd2dTimestep routine performs a single time step of the finite dif-

ference method applied to the 2D acoustic equations of motion,

ρ ∗ ∂tvx = ∂xσ (4.1)

ρ ∗ ∂tvz = ∂zσ (4.2)

and the constitutive relation,

∂tσ = K ∗ ∂ivi + ∂tI (4.3)

Einstein’s summation convention i is used, where i = (x, z), the ∗ operator
denotes time convolution, and I = I(t, x, z) is the source of injection type.
The equations above are performed on a regular 2D grid, and solves for the
stress σ components. The equations are relating the particle velocities vx

and vz, the density ρ and the bulk modulus K. x and z in the equations
denote the horizontal and vertical axis respectively, and t denotes the time.
The first order time derivatives in the previous equations (4.1, 4.2, 4.3) are
approximated with backward and forward finite differences,

∂tfn− 1
2

=
fn − fn−1

∆t
(4.4)
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, and

∂tfn+ 1
2

=
fn+1 − fn

∆t
(4.5)

As we can see in the two previous equations, the ∂tf are evaluated half a
grid point behind and in front of the current grid point respectively. In the
same 3 PDE equations, the spatial derivatives are approximated using an 8th
order centered difference approximation (see [19]), e.g. in the x direction as,

d−x σ(n, k − 1

2
, l) =

1

∆x

8∑
m=1

αm[σ(n, k + (m− 1), l)− σ(n, k −m, l)] (4.6)

and

d+
x σ(n, k +

1

2
, l) =

1

∆x

8∑
m=1

αm[σ(n, k +m, l)− σ(n, k − (m− 1), l)] (4.7)

As with the temporal approximations seen in Equations 4.4 and 4.5, we
see that the resulting stress is evaluated half a grid point behind or in front
of the current grid point respectively (seen as k − 1

2
and k + 1

2
respectively).

This half point spacing shows that our application uses a staggered grid both
in time and in space (see Appendix C in [6]). The difference approximations
in Equations 4.6 and 4.7 are defined with differentiator coefficients αm, which
are pre-computed values. The values of these coefficients are computed by
matching the Fourier spectrum of the approximated differentiators with the
Fourier spectrum of a perfect differentiator (see [19]).

Equations 4.6 and 4.7 for the x-direction, and similar equations for the
z-direction, are located in the DerDixxxx routines we observed in the call
graph of Figure 4.1. In the original application, the order of these differen-
tiators is determined by how many points before and after the point being
computed are considered, and can be selected in the range [1− 8], where the
8th order gives the most accurate result. In our implementations, as shown
in Equations 4.6 and 4.7, we will only consider the 8th order differentiators.

Reflections of wave energy from the edges of the modeling domain is
absorbed using the PML absorbing layer detailed in [20], [21] and [22].
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Figure 4.2: Problem domain with added PML layers

As there are 4 differentiations being performed for each time step, the
PML absorption is done on the borders in the direction of the differentiation
for each of these. The problem domain with the added PML boundary regions
can be seen in Figure 4.2.

Figure 4.3 shows the central work flow of the modeling routine Fd2dModfd.
All steps contained within the enclosing blue rectangle in the center of the
Figure are part of the Fd2dTimestep routine.

Figure 4.3: Modeling loop of the Fd2dModfd routine

The dimensions of the modeled area are Nx in the horizontal direction
and Nz in the vertical direction. The width of the PML layers seen in Figure
4.2 is denoted Npml, making the dimensions of the 2 layers in the horizontal
dimension [Npml]x[Nz], and the 2 layer in the vertical direction [Nx]x[Npml].
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Finally, the order of the finite difference stencil is denoted Nhl. The four
differentiator functions in Fd2dTimestep do finite differencing within the
total modeled domain, including the PML layers (i.e. the total area shown in
Figure 4.2). This makes the differentiators span an area of [Nx +Npml]x[Nz +
Npml]. The PML layer absorption steps of Fd2dTimestep only computes
values that span the dimensions of the respective layers.

4.2 Implementing GPU Offloading

The source code of SplFd2dmod is mostly written in the Fortran 90 standard,
with some older components written in Fortran 77. Since CUDA is a language
extending ANSI C, as mentioned in Chapter 2, our implementation uses
mixed programming, in which we use a Fortran 2003 feature which enables
writing modules with interface declarations pointing to the CUDA source
functions.

Our first approach is moving the computations performed for each time
step to the GPU, i.e. porting the functionality of the Fd2dTimestep routine
depicted in 4.3. The first step in order to achieve this is moving the rele-
vant data values for the computations to the GPU. We have made Fortran
interface declarations for CUDAs memory management functions, namely
cudaMalloc, cudaMemcpy and cudaFree, which do allocation, copying and
de-allocation, respectively. These interfaces are called within the Fd2dModfd
routine, allocating and copying all the relevant values to the GPU device,
and once modeling completes, de-allocates the associated memory. Once the
necessary data values are moved to the GPU device, we proceed by imple-
menting CUDA kernel functions for each of the Fd2dTimestep steps in Figure
4.3.

Common to all of the following implementations, the modeling routine,
Fd2dModfd, downloads the relevant stress (σ) values from the device after
each GPU invocation of the steps in the Fd2dTimestep. The dimension of the
downloaded stress values is equivalent to a single line of the modeled area,
i.e. Nx. Another common point is that all kernels have the same execution
configuration, that is, they are all executed in a grid accommodating the total
size of the model area ([Nx+Npml]x[Nz +Npml]), with thread blocks of dimen-
sions 16x16. Figure 4.4 shows this configuration superimposed on the Figure
of the total area (4.2). Finally, the ”Add sources as stress” part of Figure 4.3,
is implemented with the same kernel across the different implementations.
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The kernel is very small, and only performs a simple vector-matrix addition.

Figure 4.4: Execution configuration superimposed on the total working area
of the model (compare with Figure 4.2)

4.2.1 First Implementation

In this implementation, we partition the steps in Figure 4.3 into 7 separate
kernels as shown in Figure 4.5. The order in which these kernels are invoked
is the same as in 4.3, i.e. ”Kernel 1 → Kernel 6 → Kernel 2 → Kernel 7
→ Kernel 5 → Kernel 3 → Kernel 6 → Kernel 4 → Kernel 7 ”. The kernel
invocation count for one time step of the Fd2dTimestep routine becomes 9
for this first implementation.

Figure 4.5: Logical kernel assignment for the first implementation of the
Fd2dTimestep routine. See Figure 4.3 for reference

The tasks performed by the different kernels in Figure 4.5 can be sum-
marized as follows:

• Differentiator Kernels
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1. Kernels 1 and 2 are solving for the velocity (v) components in the
horizontal and vertical directions respectively. The equation form
of these operations is equivalent to that of Equation 4.7 expanded
in both spatial directions, with σ substituted with v.

2. Kernels 3 and 4 are solving for the stress (σ) components in the
horizontal and vertical directions respectively. The equation form
of these operations is equivalent to that of Equation 4.6 expanded
in both spatial directions.

• PML Kernels

1. Kernel 6 absorbs wave energy reflected off the horizontal borders
resulting from the computations in kernels 1 and 3

2. Kernel 7 absorbs wave energy reflected off the vertical borders
resulting from the computations in kernels 2 and 4

Looking back at the stencil shown in Figure 3.5, the 8th order centered
differentiators of Kernels 1-4 have a similar shape, with the exception that
there are a total of 16 contiguous values in either direction being evaluated
for a point located half a grid point in front or behind the center of the
stencil. Keeping in mind that the domain is a staggered grid, this means
that the computed output point is located in a different, overlapping grid
shifted half a grid point off the grid with the evaluated (old) values.

Figure 4.6 shows the 3 different paths threads within the horizontally
differentiating kernels take. The Figure shows the complete domain of the
model, including PML layers. Considering the stencil of the horizontally
differentiating kernels (1,3), if a kernel thread is within region 2 of the Figure,
all points in the stencil are used in computing the new point. If the thread is
located within regions 1 or 3, some of the evaluated points of the stencil will
be outside the domain. These points are treated as 0 in the computations,
effectively shrinking the half of the stencil facing the border of the domain.
The vertically differentiating kernels work in the exact same way, only in the
z direction.
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Figure 4.6: Horizontal differentiator regions of computation

All kernels of this implementation use only the non-cached global memory
of the GPU device see Figure 3.4).

4.2.2 Second Implementation

Now that a working implementation has been achieved, its time to do op-
timizations. The related finite differencing done in [17] uses primarily the
on-chip per-SM shared memory of the GPU. According to Chapter 5 of [10],
reads from shared memory is a lot faster than global memory reads. Ac-
cording to [15] and [10], reading memory from the global memory space has
in addition to the 4 clock cycles required to issue the read instruction for a
warp, an added latency of about 400-600 clock cycles. Once shared memory
is loaded into its memory space on the SM, [10] states that given no bank
conflicts among threads of the same warp, accessing shared memory can be
as fast as accessing registers, which generally cost no more than the 4 clock
cycles to issue the read instruction.

Using shared memory in this implementation should prove beneficial due
to the fact that several of the memory locations read by threads spaced within
the half-length of the differentiator stencils read several common values.

We denote the differentiator stencil half length (order), Nhl, and the width
and height of a thread block Nb. We prepare a 2D shared memory area of
size [2Nhl +Nb]×[Nb] for the horizontal, and [Nb]×[2Nhl +Nb] for the vertical
differentiator kernels. The threads of a thread block is logically placed at the
center region of the shared memory area. Each thread reads a single value
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from its calculated location in the problem domain into its relative location in
the shared memory region. For the horizontal differentiator kernels, threads
which are at a distance d <= Nhl from the left border, reads values located
Nhl points to the left, and Nhl + Nb points to the right into correspond-
ing locations in shared memory. The same is done in the vertical direction
with threads located Nhl points below the upper border. The loaded shared
memory regions for blocks of both the horizontal and vertical differentiator
kernels is depicted in Figures 4.7 and 4.8, respectively. Finally, the differen-
tiator coefficient values (α) are loaded into a 1D shared memory area by the
first Nhl threads of the thread block. At the end of all the preceding shared
memory load operations, all kernels within the same block are synchronized,
ensuring that all values are loaded beyond that point.

Figure 4.7: Shared memory region for
thread blocks in the horizontal differ-
entiators

Figure 4.8: Shared memory region for
thread blocks in the vertical differen-
tiators

In the first implementation, the number of kernel invocations is 9. Since
all threads of each of the kernels in that implementation is mapped to the
same problem domain, more of the kernels could be combined, minimizing
the number of invocations per time step. Looking back at the computational
steps of each time step in Figure 4.3, we note that the PML operations af-
ter each differentiation can be combined with the preceding differentiator.
The only requirement for doing this is adding conditionals to the differen-
tiator kernels. For the horizontal differentiators, these conditionals would
check whether the current thread of the kernel resides within the boundaries
of either the left or the right PML layer, and perform the PML operations
accordingly. An equivalent approach can be made for the vertical differen-
tiators. By doing this, we reduce the kernel invocation count by 4, which
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makes the new total 5. The five kernels and their scope compared to Figure
4.3, can be seen in Figure 4.9.

Figure 4.9: Logical kernel assignment for the second implementation of the
Fd2dTimestep routine. See Figure 4.3 for reference

The whole modeling routine depicted in 4.3 performs memory transfers
from the GPU to the host for every time step. We can optimize these transfers
by using page locked host memory. What this means is that the page in
host RAM containing the memory target of the transfer, is pinned to a fixed
position, ensuring that the host operating system is unable to move it around.
Doing this speeds up memory transfers from the GPU as the transfers are
performed using Direct Memory Access (DMA), circumventing the CPU and
thus lowering the transfer latency (see [23])

Summarizing the optimizations made in this second implementation, we
have a total of 5 kernels, 4 of which perform combined differentiation and
PML absorption. The differentiators uses shared memory for the stencil
values, as well as the differentiator coefficients (σ). The PML calculations still
only perform global memory read/writes. Finally, page allocated memory for
the per time step GPU → host transfers has been employed.

4.2.3 Third Implementation

In this implementation, we further reduce the kernel invocation count by
combining more of the steps in 4.3. All of the operations to the left of add
sources are combined, and similarly, all operations at the right are combined.
The total number of kernels now becomes 3, which can be seen in Figure 4.10.
Both of these differentiator/PML kernels are now performing operations in
both directions of the domain, doing the equivalent of Equation 4.7 for the
kernel on the left (Kernel 1), and 4.6 for the kernel on the right (Kernel 3).
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Figure 4.10: Logical kernel assignment for the third implementation of the
Fd2dTimestep routine. See Figure 4.3 for reference

While the previous implementation used shared memory regions of Nb ×
(Nb + 2Nhl) elements each. For the combined kernels of this implementation,
the shared memory regions would have to be further expanded to dimension
(Nb+2Nhl)×(Nb+2Nhl) in order to accommodate all necessary values of both
directions. Another problem here is that the left kernel solves for the velocity
(vx) components in horizontal direction, followed by the separate velocity (vz)
components in the vertical direction. This would complicate shared memory
usage by either needing to prepare two separate shared memory regions for
each of the velocity fields, or by re-loading new values into shared memory
between differentiations. Both cases would also further complicate thread
indexing, and also requiring added registers and control flow.

Reverting back to global memory is not really an option in this implemen-
tation, since we know that reads from the global memory space is expensive,
and that threads within a block tends to read several common values, some-
thing that would benefit from some kind of data caching. Looking at the
architectural layout in 3.2, we see that the L1 texture cache looks promising
for use with the differentiators. The texture memory, according to Chapter
5 of [10], is considerably faster than global memory reads, since it only needs
to access the global memory on cache misses, i.e. when a thread tries to get
a value not currently in the cache. It is also indicated that texture memory
reads have less constraints on the memory access pattern compared to global
and constant memory.

We implement texture memory with the two differentiator/PML kernels
of this implementation. The way we do this, is to create 3 1D texture (for
σ, vx and vz ) with dimensions equal to the total area of the problem domain,
i.e. (2Npml + Nx) × (2Npml + Nz). 1D textures is a natural choice for this
implementation due to the fact that the memory areas of e.g. σ and vx, vz is
located in linear memory where logical 2D addressing in the problem domain
is stated as e.g. σ[x][z] = σ[z × (2Npml +Nz) + x]. Reads from the textures
are performed through the CUDA API function, which for e.g. fetches in σ
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looks like: ”σ[index] = tex1Dfetch( texture σ, index )”.
Summarizing the changes made in this implementation, we have joined

Kernels 1-2 and Kernels 4-5 of the previous implementation (see Figure 4.9,
and used texture memory for the evaluated values of the differentiator sten-
cils. The differentiator coefficients remain, as in the previous implementation,
in shared memory, since there are only 2 1D arrays of coefficients for each of
the two kernels, each with dimension Nhl (i.e. 8).

4.3 Multi GPU

SplFd2dmod is, as mentioned in Chapter 2, MPI enabled. Since the frame-
work for parallelism is already implemented in this manner, we have added a
feature which enables the slave processes spawned in MPI mode to use GPU
computational offloading if there is an available GPU for this process. The
way this works is by passing an argument to the application, gpn, indicating
how many GPU devices are available per node/workstation. The first gpn
processes of each node runs the GPU version, while the remaining processes
for that node runs regular CPU computations. By allowing a hybrid solution
like this, resource utilization is effectively maximized. The updated flow di-
agram for the application can be seen in Figure 4.11. A requirement for this
feature is that each node the application uses have the same fixed number
of GPU compute devices. We have implemented this feature for all the 3
different GPU enabled implementations.
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Figure 4.11: Updated work flow for hybrid CPU/GPU implementation



Chapter 5

Results & Discussion

In this Chapter we will compare the performance of our original application
and the various optimized GPU versions discussed in the previous Chapter.
The comparisons will be run on two different workstations, and we will end
this Chapter with a discussion of the results obtained.

5.1 Methodology

For our benchmarking, time will be the metric used. Also, relative speedup
with respect to the original application will be measured for each of the GPU
versions mentioned in the previous Chapter. The speedup is calculated as
follows:

S =
torig

tgpu

(5.1)

Where S is the speedup factor, torig is the run time of the original appli-
cation, and tgpu is the run time of the application with GPU offloading.

For each benchmark, we present a performance graph based on the aver-
age run time for a specific configuration over the course of 4 samples/runs.
This average is calculated with the following equation:

taverage =
1

n

n∑
i=1

ti (5.2)

The timings done in the tests are performed for the core computational
kernel of the the Fd2dModfd routine, so data preparations are not included

36
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in the measurements despite the fact that they only incur an additional run
time of a few seconds.

5.2 Test Systems

Our benchmarks will be obtained from two of the workstations available
at the High Performance Computing Lab (HPC-Lab) run by Dr. Elster at
the Department of Computer and Information Science (IDI). The hardware
characteristics of these workstations are listed in Table 5.1.

System CPU RAM Storage GPU
HPC lab 1 Intel Core2 Quad

Q9550 @2.83GHz
4GB 41GB NVIDIA GeForce GTX280

NVIDIA Tesla C1060
HPC lab 2 Intel Core I7 965

@3.20GHz
12GB 1.4TB NVIDIA Tesla S1070

(4X NVIDIA Tesla C1060)

Table 5.1: Hardware Characteristics

The operating system used for the two workstations in Table 5.1, is a
64 bit (x86 64) Ubuntu 9.04 distribution running a v2.6.28-11 Linux kernel.
HPC lab 1 uses a v2.1 release of the CUDA software development toolkit,
while HPC lab 2 uses a v2.2 release. The original version of SplFd2dmod has
been compiled on both workstations using the Intel Fortran Compiler v10.1.
For the GPU utilizing implementations, the NVCC compiler of the CUDA
software development toolkit has been used. CUDA host code is compiled by
NVCC using the systems’ GCC compiler. For HPC lab 1, the GCC version
is 4.2.4, while HPC lab 2 uses version 4.3.3.

Common to all GPUs listed in Table above, is that they are connected
with the PCI Express 2.0 interface. The S1070 in HPC lab 2 is connected
with 2 such interfaces.

5.3 Benchmark Results

5.3.1 Results from the HPC workstations

These results are obtained from the HPC lab workstations mentioned in Ta-
ble 5.1. Each of these tests show results from modeling a single shot with
the original, unmodified CPU based version in single processor mode, and



CHAPTER 5. RESULTS & DISCUSSION 38

the 3 GPU enabled versions. The total dimensions, including 20 points wide
PML layers on all sides, is 1481x1101, requiring a total of 6072 thread blocks
of dimension 16× 16 for each kernel invocation of the different GPU imple-
mentations. The total thread count for each of these invocations becomes
6072×16×16 = 1554432. The following 3 tests benchmark the performance
of modeling a shot with these dimensions, doing a total of 13334 invocations
of the Fd2dTimestep computations depicted in Figure 4.3.

The results shown in Figures 5.1 and 5.2 show the performance of the
modeling on the HPC lab 1 workstation mentioned in Table 5.1 for the single
processor mode of the original application, as well as single processor mode
versions of the 3 different GPU implementations detailed in the previous
Chapter. These two Figures show the performance of using the NVIDIA
GeForce GTX280 and NVIDIA Tesla C1060 GPU, respectively. Figure 5.3,
shows the same tests for the HPC lab 2 workstation, using one of the 4
NVIDIA Tesla C1060 GPUs of the NVIDIA Tesla S1070 rack unit. All 3
of the following test results show average timings in seconds for 4 runs (see
equation 5.2). The Figures also show speedup (see equation 5.1) relative to
the original CPU version.

Figure 5.1: HPC lab 1 running NVIDIA GeForce GTX280
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Figure 5.2: HPC lab 1 running NVIDIA Tesla C1060

Figure 5.3: HPC lab 2 running single NVIDIA Tesla C1060
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5.3.2 Scaling Characteristics

Here we show how well the CPU and GPU versions scale when adding more
CPUs/GPUs to the computation on the workstations. Results are collected
from the HPC lab 2 workstation listed in Table 5.1. While tests could have
been run on HPC lab 1 as well, its GPU configuration is heterogeneous,
which will make the results less predictable.

Both tests will run 4 times, adding 1 processing unit to the computa-
tion each time. The application will run with the I/O server as a separate
process, distributing 12 shots for every run among the participating slave
processing units. Running the application in this way will make the total
range of processes running for each configuration [2 − 5]. The main reason
for modeling 12 shots, is that this amount of work increases the chances of an
even workload distribution among the participating slave processing units.

Figure 5.4: CPU Scaling results with {1,2,3,4} processes
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Figure 5.5: GPU Scaling results with {1,2,3,4} processes

5.4 Discussion

The results from the HPC lab 1 workstation shown in Figures 5.1 and 5.2,
show a fairly significant performance decrease for the first GPU implemen-
tation (GPUv1 ) running on the Tesla C1060. The reason for this can be
attributed to the memory bandwidth difference between the GTX280 and
the C1060. For the C1060, memory bandwidth is 102GB/s (see [24]), while
the GTX280 has a bandwidth of 141.7GB/s (see [25]) which amounts to a
difference of approximately 28%. This performance difference can also be
seen for the other 2 GPU implementations, but with less impact. The rea-
son for this is that GPUv2, which uses shared memory, does far less reads
from global memory compared to GPUv1. The relatively large performance
differences between the three implementations are mainly attributed to the
fact that the algorithms perform very few operations for each element read
from memory; i.e. they are what is known as memory bound.

The performance jump between GPUv2 and GPUv3 is largely due to
the use of texture memory, and implies that even fewer memory reads are
performed due to the higher cache utilization of this final implementation.
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The merging of Kernels performed for this implementation also means that
some of the kernel invocation overhead from GPUv2 is removed. GPUv2
requires additional address computations for the shared memory reads, as
well as some extra conditional branches. Both of these requirements have
been removed in GPUv3, which has also had an impact on performance.

The performance results shown in Figure 5.3 are as expected, the same
for the GPU versions as the results of Figure 5.2, this due to the fact
that the C1060 is the GPU device running the tests for both workstations
(S1070=4×C1060).

For the scaling tests, we observe that near linear scaling is achieved with
the S1070, but not with the CPUs. This is not surprising, since the appli-
cation parallelizes the work by assigning different shots to the different slave
processes. Since the processes running on the CPU share the same cache and
system memory, per-process performance will decrease as more processes are
added. As an added note, we confirmed that our strategy for ensuring even
workload distribution worked by looking at the application output for the
participating processes. All slave processes modeled the same number of
shots for each of the tests in both the CPU and GPU case.

The linear scaling of the GPUs can be attributed to the fact that none
of them have to share any of the memory or computing resources with other
processes. The tiny portion of interaction with the CPU and the host memory
is too small to make an impact from the 1 GPU to the 4 GPU case.

Finally, as we have looked at the compiler output of all of the implemen-
tations, we see that the memory requirements (registers and shared memory)
per kernel are sufficiently low to allow full SM occupancy. What this means is
that each SM of the GPU is able to run 4 blocks, or 1024 threads (maximum
of capacity for Compute Capability 1.3, see Appendix A of [10]), simultane-
ously. The effect of being able to accommodate this amount of threads, is
that when a warp executed by the SM issues a long latency read operation,
the thread scheduler switches to another warp while the memory operation
is performed, effectively hiding memory latency.
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Conclusions & Future Work

In this thesis we analyzed a seismic application for shot processing and suc-
cessfully developed and implemented a GPU-accelerated version. Our results
achieved considerable speedups compared to the original implementation.
Implementing the GPU off-loading was done with only minimal modifications
to the original source code, primarily in the core modeling function. Since
Fortran continues to often be the programming language of choice in the
geophysical applications at StatoilHydro, this ability to keep the large por-
tions of source code unchanged when implementing GPU off-loading, greatly
reduced the programming efforts required.

An understanding of parallel programming and the C/C++ programming
language are the most fundamental requirements for developing CUDA appli-
cations. From our experiences developing the GPU implementations of this
thesis, the biggest challenge, not being familiar with CUDA programming
beforehand, was getting a clear understanding of the targeted application.
Learning to use the CUDA programming API was not that time consuming,
since it is generally well structured and documented. The efforts put into
learning CUDA programming was hence for us certainly a lot smaller than
those required for understanding the geophysical aspects of the application.
Based on these experiences, we gather that the development efforts required
for the developers at StatoilHydro should also be reasonably small.

As was mentioned in the previous paragraph, understanding the targeted
application was quite the challenge for this Computer Science student. Be-
cause of this, the first working GPU off-loading implementation was ready
only 6 weeks prior of submitting this thesis. This fact should be a clear indi-
cation of the potential for positive results in the course of a relatively small

43
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developing period.
Applications with computational kernels performing data parallel compu-

tations are a good match for the data parallel nature of GPU devices. The
computational kernel of our application proved to be fairly data parallel in
nature, with few serial dependencies. This fact made it a good match for
GPU off-loading.

Our benchmarks were done on two different systems in the NTNU IDI
(Department of Computer and Information Science) HPC-lab. One system
was a Intel Core2 Quad Q9550 @2.83GHz with 4GB of RAM and an NVIDIA
GeForce GTX280 and NVIDIA Tesla C1060 GPU. Our second testbed was
an Intel Core I7 Extreme (965 @3.20GHz) with 12GB of RAM hosting an
NVIDIA Tesla S1070 (4X NVIDIA Tesla C1060). On this hardware, speedups
up to a factor of 8-14.79 compared to the original sequential code were
achieved, confirming the potential of GPU computing in applications sim-
ilar to the one used in this thesis. The work done in e.g. [17], [4] and [3],
also further supports our conclusion.

6.1 Future Work

Since a lot of the time spent completing this work went into understanding
the workings of the targeted application, quite a lot remains to be explored.
Following are some of the main issues to be explored further.

6.1.1 GPU Utilizing Mathematical Libraries

We would like to see the potential payoffs associated with using libraries
such as the CUDA based CUFFT for computing Fast Fourier Transform of
1, 2 and 3 dimensional data, and the CUBLAS library (an adaptation of the
Basic Linear Algebra Subprograms (BLAS)) for linear algebra operations in
seismic processing related applications.

6.1.2 Further Improvements to SplFd2dmod

As we discussed in the previous Chapter, the computational kernel does few
arithmetic operations per memory read, i.e. is considered memory bound. In
order to achieve optimal speedups in such applications, additional attention
to the memory access patterns of the GPU threads is required. We believe
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that there’s still potential for higher performance if the memory access pat-
terns of our kernels is further analyzed.

Another potential performance optimization could be to eliminate the
memory transfers between time steps by keeping these values in GPU mem-
ory, only doing transfers to/from the GPU at the beginning and end of the
modeling loop. We suspect that the performance benefits from this might be
relatively small compared to better memory bandwidth utilization as men-
tioned earlier, but it is still a point of interest. Doing this would also require
additional storage in GPU memory, which depending on problem size, may
or may not prove to be an issue.

Also, the algorithm for the differentiation depicted in Figure 4.6 could
potentially be improved by treating the entire problem domain as a single
region. The texture fetch operations of our last implementation (GPUv3 ),
has the property of returning a 0 value for fetches made on memory areas
not covered by the texture. This could potentially make it possible for us to
use the full width of the differentiator stencil in all regions of the problem
domain, eliminating the need for adjusting the stencil length in the bordering
regions, i.e. regions 1 and 3 in Figure 4.6. Treating the entire problem domain
as a whole for the differentiators like this, would eliminate the conditional
branches for selecting regions, making all threads of a block perform the
same operations regardless of relative location in the problem domain, which
should result in increased performance.

6.1.3 Further Testing

The tests performed in this thesis all model shots based on values of the same
dimensions, requiring approximately 116 MB. By increasing the resolution
of the input velocity and density models of the application, we could get a
better view of the applications scaling characteristics with respect to problem
size. The procedure to perform such a re-grid operation was presented to us
too late to be included in this thesis. It would be of great interest to see the
applications performance characteristics given larger problem sizes.

The multi-GPU functionality of the application has in this thesis only
been tested on a single workstation. The reason for this is that we haven’t
had access to a compute cluster containing nodes with a distributed file
system and CUDA enabled GPUs. Performance comparisons of the multi-
GPU enabled implementation on such a cluster with the original running
on e.g. one of StatoilHydro’s production clusters would be interesting, and a
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likely added incentive for doing further research on GPU based computational
offloading.
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