
June 2009
Pinar Öztürk, IDI

Master of Science in Computer Science
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Structured data extraction: separating
content from noise on news websites

Mikel Arizaleta

Problem Description
Web search results are generally polluted by noisy data. Suppose you are interested in media
coverage of fast food culture. You search for "news fast food", expecting to find news stories on
fast food. However, among your top results is an advertisement site with a "news" section listing
the latest offers from fast food chains. In general, a search result contains many irrelevant pages,
where the search term is used in a different sense or does not occur in the core content of the
page, but instead in a navigation link, an advertisement, an out-of-context user comment, etc.

One possible solution is to have specialized search engines for certain topics such as news,
products, source code and so on. For this we need to be able to filter the noise from webpages and
to extract the real content we are interested in. In this project we will work on news as a concrete
example of this task. Our goal is to filter out the navigation links, advertisements, legal
disclaimers and everything else except the title and text of the news item.

It is of course relatively easy to manually write code for extracting content from a particular
webpage, or even from a whole domain like CNN News. However, this clearly does not scale and
will quickly become infeasible when dealing with hundreds or thousands of news sites, all using
their own format. Moreover, the code will break once a site decides to change its lay-out.

What we therefore want to do is automatically learn information extraction rules/patterns from a
set of examples. This is called "automatic wrapper induction" when it uses supervised learning
methods, that is, with examples correctly labeled by humans. When it is unsupervised (learns
without human help) it is generally called "automatic data extraction". Structured data extraction
is an active field of research and has many more applications besides facilitating web search. It
combines methods from text processing, pattern matching and machine learning.

In this project we will first spent some time on the relevant literature to become familiar with the
state-of-the-art. We will also have a look at some of the extraction software currently available,
which we may want to reuse. Both, however, only as far as they are relevant for the purpose of
mining news articles. We will start early with implementing a simple baseline system and creating
a set of annotated examples for testing. Skills in scripting will definitely be an advantage here. We
will then continue from this basis by analyzing errors and implanting new solutions, hopefully
improving on the state-of-the-art results in the end. In terms of results, we are aiming for a
functional and reusable implementation, and if possible a scientific publication.

Assignment given: 16. January 2009
Supervisor: Pinar Öztürk, IDI

Structured data extraction: separating

content from noise on news websites

Mikel Arizaleta Delshorts

2

Contents

1 Abstract 5

2 Introduction 7

3 Background 11

3.1 Automatic wrapper induction 11
3.2 Machine learning . 13

3.2.1 Classi�cation . 13
3.2.2 Memory-based learning 14
3.2.3 Evaluation measures 18

4 Data collection 21

4.1 Data source . 21
4.1.1 Annotation scheme . 23
4.1.2 Character-based annotation 26
4.1.3 Element-based annotation 27

4.2 Data properties . 29

5 Feature construction 31

6 Experiments 35

6.1 Evaluation measures . 35
6.2 Extraction within a single news domain 36
6.3 Extraction merging domains 39
6.4 Extraction across news domains 42
6.5 Feature weights using Information Gain 44
6.6 Optimization of classi�er settings 45

6.6.1 Number of nearest neighbours (k-parameter) 47

3

4 CONTENTS

6.6.2 Feature weighting (w-parameter) 49
6.6.3 Optimal settings . 50
6.6.4 Algorithm . 51

6.7 E�ect of data size . 52
6.7.1 Learning curves from single news domain 53
6.7.2 Learning curves merging domain 55
6.7.3 Learning curves across news domain 56

6.8 Post-processing . 57

7 Discussion and conclusion 61

7.1 Future work . 62

8 Refences 65

Chapter 1

Abstract

In this thesis, we have treated the problem of separating content from noise
on news websites. We have approached this problem by using TiMBL, a
memory-based learning software. We have studied the relevance of the sim-
ilarity in the training data and the e�ect of data size in the performance of
the extractions.

5

6 CHAPTER 1. ABSTRACT

Chapter 2

Introduction

Web search results are generally polluted by noisy data. Suppose you are
interested in media coverage of fast food culture. You search for "news fast
food", expecting to �nd news stories on fast food. However, among your
top results there is an advertisement site with a "news" section listing the
latest o�ers from fast food chains. In general, a search result contains many
irrelevant pages, where the search term is used in a di�erent sense or does
not occur in the core content of the page, but instead in a navigation link,
an advertisement, an out-of-context user comment, etc.

One possible solution is to have specialized search engines for certain
topics such as news, products, source code and so on. For this we need to be
able to �lter the noise from web pages and to extract the real content we are
interested in. In this thesis we will work on news as a concrete example of
this task. Our goal is to �lter out the navigation links, advertisements, legal
disclaimers and everything else except the title, the headings and text of the
news item.

It is of course relatively easy to manually write code for extracting content
from a particular web page, or even from a whole domain like CNN News.
However, this clearly does not scale and will quickly become infeasible when
dealing with hundreds or thousands of news sites, all using their own format.
Moreover, the code will break once a site decides to change its lay-out.

What we therefore want to do is automatically learn information extrac-
tion rules/patterns from a set of examples. This is called automatic wrapper

induction when it uses supervised learning methods, that is, with training
examples correctly labeled by humans. When it is unsupervised (learning
without human help) it is generally called "automatic data extraction". In

7

8 CHAPTER 2. INTRODUCTION

this thesis we will explore the automatic wrapper induction approach. Struc-
tured data extraction in both approaches is an active �eld of research and has
many more applications besides facilitating web search. It combines methods
from text processing, pattern matching and machine learning.

The tool chosen to study from a practical point of view this problem is
TiMBL, a software package for memory-based learning, and an associated
suite of software tools for memory-based language processing.

In the development of this thesis, we divided the work in four parts:

i. Collect the raw data that will be used as training data for the learning
system.

ii. Decide which is the best way to tag the data.

iii. Construct the training data in the format needed by TiMBL consisting
of the selected features.

iv. Run the experiments and optimize the system.

In chapter 3 we will give some basic de�nitions in the data mining world,
we will talk about automatic wrapper induction and machine learning and
about some examples of it. Finally we will give some theoretical background
on things (e.g., evaluation measures) we are using in the experimental chap-
ter.

We will show how we collected the data and how we annotated them
in chapter 4. In this chapter we will discuss two di�erent types of annota-
tion and why one is better than the other: Character-based annotation and
Element-based annotation.

In chapter 5 we will explain what features we took and how we constructed
the �nal training data merging the annotation schemes and the raw data.

Chapter 6 is the experiments chapter. We will divide the experiments in
3 types:

i. Extraction within single news domain: just training from the same
source as the test �le is used.

ii. Extraction merging domains: all training data are used in the predic-
tions.

9

iii. Extraction across new domains: all training data except those from the
same source as the test �le is used.

We will study the TiMBL's performance with the default settings and we
will look for the optimal ones. Finally we will study the e�ect of data size in
the performance of the predictions.

To conclude this introductory chapter, I would like to thank some people
who contributed directly or indirectly to this thesis. Erwin Marsi, my super-
visor, for all his advices and guidance. He always was there when I needed
anything. Pinar Öztürk, for all her administrative help. All my friends I
met in Norway in this 6 incredible months. My family, for make possible this
experience abroad and for their support during all my studies. Finally to my
girlfriend, for putting up with me and for support me always.

10 CHAPTER 2. INTRODUCTION

Chapter 3

Background

3.1 Automatic wrapper induction

The Web is the single largest data repository ever available, providing access
to numerous sources of useful information in textual form such as telephone
directories, catalogs, news articles, etc. The text data in the Internet has
increased massively and has become a chaos of millions of web pages. In
spite of this chaos, it is possible to �nd some light at the end of the tunnel.
Recently, there has been much interest in building systems that gather spe-
ci�c information on a user's behalf.

The set of processes needed to put some order into the data available
nowadays and extract the high-quality information from it, is called text
mining. In this thesis, we will focus on one type of text mining: automatic
wrapper induction. Wrapper induction uses machine learning methods to
generate extraction rules following the next three steps:

i. Given a set of texts (news articles web pages in this case), they are
labeled by humans marking the target items. This labeled examples
will be the training data for the learning system.

ii. The system learns extraction rules from this training data.

iii. The extraction rules are used by the system to automatically label
unseen news articles.

Wrapper induction is used nowadays as a solution for many kind of prob-
lems. For examples in the news aggregator sites, where you can read a brief

11

12 CHAPTER 3. BACKGROUND

summary of the article together with the link to the full news. Due to the size
of data they are using, it is impossible to do all the text labeling manually
by humans. This aggregator sites use wrapper induction to collect every day
all the articles published in the newspaper web sites and extract the most
relevant information of them.

Another example is the price watching sites, like Kelkoo. This kind of
sites collect data of thousands of products from the web sites that really sell
the products and sort them by price, stock etc. Again, a wrapper induction
system is behind this huge task of data collection.

Focusing on our problem, separating content from noise on news websites,
the biggest advantage of using a learning system, is that it is possible to avoid
the problem that represents the di�erent formats and html structures of dif-
ferent web domain when it comes to create the extraction rules. Moreover,
the structure and format of the web news domains is not stable over time, so
it is not possible to write �xed extraction rules. The extraction rules learned
by the system are not speci�c rules for a certain domain or for a certain html
structure, but rules based on common features that belong to all the news
articles. For example if we have a system based on �xed rules we are not
able to extract the content of a page from a new domain. However, the news
articles from this new domain will share lots of features with the already
known articles, even if they are from di�erent sources, so the learning system
will be able to extract the content, of course, the accuracy of this extractions
will depend on lots of factors, to study this dependence and the accuracy is
one of the goals of this thesis.

Nowadays, there are already many approaches to wrapper induction, some
of them are in the list below:

- WIEN (Kushmerick et al, 1997)

- Softmealy (Hsu and Dung, 1998)

- Stalker (Muslea et al. 1999)

- BWI (Freitag and McCallum, 2000)

- WL2 (Cohen et al. 2002)

3.2. MACHINE LEARNING 13

- Thresher (Hogue and Karger, 2005)

We will explain brie�y just the WIEN and Stalker.

WIEN was the �rst wrapper induction system (1997), it was implemented
by The University of Washington. It works for both Web page and free text.
The system de�nes 6 wrapper classes (templates) to express the structures of
web sites, from all of them, the simplest and powerful one is LR (left-right)
wrapper class. It uses left- and right- hand delimiter to extract the relevant
information. Combining these 6 classes we can handle 70 % web sites.

The Stalker wrapper induction project (1999) was designed by The Uni-
versity of Southern California, this wrapper only works for Web pages. If we
compare Stalker with WIEN, we can say that the �rst one is more expressive
and e�cient than WIEN. The system treats a web page as a tree-like struc-
ture and handles information extraction hierarchically. It uses disjunctions
to deal with the variations, disjunctive rules are ordered list of individual
disjuncts. The wrapper will successively apply each disjunct in the list until
it �nds one that matches.

3.2 Machine learning

Machine learning is a branch of the Arti�cial Intelligence whose objective is
to develop techniques that enable machines to learn. The main goal of the
machine learning is to create programs that are able to generalise behaviours
using some structured information supplied as examples. It is thus a knowl-
edge induction process.

The �eld where machine learning is applied is enormous, from new gener-
ation games with advanced AI integrated to weather forecast or tra�c jams
predictions.

3.2.1 Classi�cation

The machine learning algorithms can be classi�ed in two families, unsuper-
vised and supervised learning.

14 CHAPTER 3. BACKGROUND

The unsupervised algorithms try to determine how the data are organized,
but to reach this goal it just use unlabeled examples. On the other hand,
the supervised algorithms used training data (labeled) to create a learning
function. The output of the function can be a continuous value (called regres-
sion), or can predict a class label of the input object (called classi�cation).
In the classi�cation problems this function predicts the labels of an unseen
object after having seen a number of examples.

We are going to study one family of the the supervised classi�cation al-
gorithm, the Memory-based learning (MBL).

3.2.2 Memory-based learning

Memory-based learning (MBL) is a machine learning method based on one
of the most important learning strategies used by humans. In this way of
learning, humans use experience to try to guess which one is the best choice
confronted with a decision or problem. But humans do not extract rules from
the experience and then apply these rules to solve the new problems, people
use the experience directly, we look for the most similar experiences and we
take the decision based on comparing the actual situation directly with the
past ones. This is the approach of the MBL algorithms. Applying this ideas
to a learning machine, MBL uses a simple storage system to keep the experi-
ence in memory and when a new decision has to be taken, the algorithm looks
for the most common experiences and reuses the solution taken in these ones.

The other kind of learning system that extracts patterns or rules called
e.g. Rule Induction, �lters the exceptional, uncommon or low-frequency
cases in the process to create general rules. This kind of learning methods
are called eager learning. In many problems, eager approach is very useful,
but in the problem of this thesis, the data extraction of news articles, we
think that the atypical cases from the examples are very important for the
decisions. For example, since we are interested in seeing what happens if
we try to extract the content from a news article without having any article
from the same source in the training data, we think that the more varied
is the training data, the more accuracy we can get. This di�erent point of
view from the eager learning methods is called lazy learning. MBL is a lazy
learning system which keeps all the data available for processing, even the

3.2. MACHINE LEARNING 15

exceptions.

Due to the laziness of MBL, if the data available are very big, the al-
gorithm can be very slow, but MBL is acceptably fast for relatively small
data-sets. Since for the experiments we are going to run, we do no expect
to use more than 300 human-tagged news articles as training data, the time
processing is not a problem.

An MBL system has two components, a learning component which is
memory based and a performance component which is similarity based.

The learning component stores all the examples in memory, and as we
said previously, MBL is a lazy learner, so it keeps all the examples in mem-
ory without abstraction or restructuring. The examples are stored in memory
as a set of vectors containing all the features that describe the example and
a label that classi�es it.

In the performance component of an MBL system, the product of the
learning component is used as a basis for mapping input to output. This
usually takes the form of performing classi�cation. During classi�cation, a
previously unseen test example is presented to the system. The similarity
between the new instance X and all examples Y in memory is computed us-
ing some distance metric. The extrapolation is done by assigning the most
frequent category within the found set of most similar example(s) (the k-
nearest neighbors) as the category of the new test example.

To develop the goals of this thesis, we used a software package that im-
plements a set of memory-based learning algorithms, the Tilburg Memory
Based Learner (TiMBL from this point onwards).

TiMBL implements di�erent metrics and algorithms. The most basic
metric is Overlap Metric given on equations 3.1 and 3.1. The distance be-
tween two instances is simply the sum of the di�erences between the features.

∆(X, Y) =
n∑

i=1

δ(xi, yi) (3.1)

16 CHAPTER 3. BACKGROUND

where

δ(xi, yi) =

abs(xi−yi

maxi−mini
) if numeric, else

0 if xi = yi

1 if xi 6= yi

(3.2)

The Overlap metric counts the matching of the features vectors X and
Y in the equations. If we don't know about the features relevance, this is a
reasonable choice. Otherwise, we can use this knowledge changing the weight
of the features, or looking at the behaviour of the features in the training
data. We can compute statistics about the relevance of features by looking
at which features are good predictors of the class labels.

Information Gain (IG) weighting looks at each feature in isolation, and
measures how much information contributes to our knowledge of the correct
class label. The Information Gain of feature i is measured by computing the
di�erence in uncertainty between the situations without and with knowledge
of the value of that feature 3.3.

wi = H(C)−
∑
v∈Vi

P (v)×H(C|v) (3.3)

Where C is the set of class labels, Vi is the set of values for feature i ,
and H(C) = −

∑
c∈C P (c)log2P (c) is the entropy of the class labels. The

probabilities are estimated from relative frequencies in the training set.
You can also use the normalized version of Information Gain, called Gain

Ratio, which is Information Gain divided by si(i) (split info), the entropy of
the feature-values, (Equation 3.5). This features weighting try to solve the
main problem of Information Gain: the overestimation of the relevance of
features with large numbers of values.

wi =
H(C)−

∑
v∈Vi

P (v)×H(C|v)

si(i)
(3.4)

si(i) = −
∑
v∈Vi

P (v)log2P (v) (3.5)

3.2. MACHINE LEARNING 17

The resulting Gain Ratio values can then be used as weights wi in the
weighted distance metric (Equation 3.6).

∆(X, Y) =
n∑

i=1

wiδ(xi, yi) (3.6)

TiMBL has two other ways to calculate the feature weighting: Chi-square
and shared variance. The Chi-square is based on the χ2 statistic. We can
then either use the χ2 values as feature weights in Equation 3.6, or we can
explicitly correct for the degrees of freedom by using the Shared Variance
measure (Equation 3.7).

SVi =
χ2

i

N × (min(|C|, |Vi|)− 1)
(3.7)

Where |C| and |V i| are the number of classes and the number of values
of feature i, respectively, and N is the number of instances.

TiMBL implements a set of di�erent algorithms. During the experiments
we will explore the performance of two of them, IB1 and IGTREE. IB1 is the
k-Nearest Neighbor (k-NN) algorithm with one of the di�erent metric that
we have explained before. The value of k-parameter represents the maximum
distance that an example �le can be from the test �le to be used in the pre-
dictions. So of k-parameter is 1 (default) only the most common examples
will be used. During chapter 6 we will study how k-parameter a�ects the
performance of the predictions using the IB1 algorithm.

The other algorithm that we will study experimentally is IGTREE. This
is a decision tree induction algorithm where the instance memory is restruc-
tured in such a way that it contains the same information as with the IB1,
but in a compressed decision tree structure. The advantages of IGTREE over
IB1 is that it uses less memory and it is faster, while IB1 usually gets better
performance. In the experiment chapter (6) we will study the performance
of both algorithms in this particular problem.

18 CHAPTER 3. BACKGROUND

3.2.3 Evaluation measures

TiMBL provides a lot of output information about the problem, one could
think that the most relevant one for the goals of this thesis is the accuracy,
the overall percentage of correctly classi�ed test instances, but as we will
explain, in some problems accuracy is not a meaningful evaluation measure.

Accuracy per class label can be described as the number of times TiMBL
has predicted the same class label as the one present in the test set. However,
this measure presents a problem that we will explain by example: Imagine
a problem with 2 classes to be predicted, A and B, and imagine that in the
training data the distribution of both classes is 98 % A and 2 % B. This
means that the distribution of class is very skewed. Always predicting class
A you would get an accuracy rate of 98 % while you can not say that this
is a good prediction system. As we will show in section 4.2, the problem we
are studying presents this skeweed class distribution.

To guide us during the experiments and to know the real performance
of the experiments we used other evaluation measures instead of accuracy:
precision, recall and F-score. To describe this measures we need �rst to
introduce some basic counts used in the advanced performance metrics.

- True positive (TP): count of examples that have a class C and are
correctly predicted to have this class.

- False positive (FP): count of examples of a di�erent class that the
classi�er incorrectly classi�ed as C.

- False negative (FN): count of examples of class C for which the classi�er
predicted a di�erent class.

- True negative (TN): count of examples with di�erent classes that the
classi�er assigned a di�erent class label than C.

With this previous basic metrics we can describe the following evaluations
measures.

- precision = TP
TP+FP

, or the proportional number of times the classi�er
has predicted correctly that some instance has class C.

3.2. MACHINE LEARNING 19

- recall = TP
TP+FN

, or the proportional number of times an example with
class C in the test data has been classi�ed as class C by the classi�er.

- F − score = 2×precision×recall
precision+recall

, or the harmonic mean of precision and
recall.

The main evaluation measure we used to know if the predictions were
being correct was the F-score, and during the experiment chapter we will
focus on trying to optimize it.

TiMBL has another very useful functionality for our experiments. You
can run a prediction test with the option cross-validation enable. This option
lets you enter a list with a set of instance �les, and TiMBL runs a test for
each �le using as training data all the others from the list. The output results
�le contain all the data from each test, so then you can calculate bias script
global measures. We will talk about how we calculated this global measures
in section 6.1.

20 CHAPTER 3. BACKGROUND

Chapter 4

Data collection

4.1 Data source

The �rst problem we faced was to decide what type of data we wanted and
how to get them. We needed some way to get lots of news text form news
websites. In the Internet, there are thousands of news web pages, we decided
to select the news from 16 representative news providers, all of them in En-
glish.

Since we need lots of news articles for the training data, we can not get
them one by one from their own web page. To make our task easier, we
decided to use a news agregator, where we could �nd the links for tons of
news articles. The chosen one was Google News. The articles in Google News
are sorted �rstly by section: international, sports, business etc, and inside
each section by cluster, there are 16 clusters with hundreds or thousands of
articles each one. Inside each cluster the articles are shown as shown in �gure
4.1 Each title is a link to the web page where the news article is, so a script
was written to follow the "all 8,822 related articles" 1 link and get all the
links of the cluster and select those from the 16 sources we work with.

1Just as a matter of interest, since we were automatically downloading hundreds of
pages from Google domain in a very fast way, we were banned for 3 hours as a prevention
of hacker attack. The problem was that the whole the lab where we were working was
banned and some colleagues had to take a forced break.

21

22 CHAPTER 4. DATA COLLECTION

Figure 4.1: Google News agregator

4.1. DATA SOURCE 23

4.1.1 Annotation scheme

We can divide a news article in several parts, but of course, the more we
divide it, the harder the classi�cation will be. So we looked for a balance
between good performance and usefulness. We decided to classify every sin-
gle part of the web page into four classes: title, heading, body text and
garbage. Distinguishing garbage from content is good for applications like
search, where you do not want to index the noise. And distinguishing titles
and heading is good for applications like multi-document summarization,
where you do not want titles and headings to end up in the summary (Hahn,
U. and Mani, I.[2000] The challenges of automatic summarization, 29�36)

This basic classi�cation let us realize these two important goals of the
project.

To exemplify the annotation process we will use an example, in picture
4.2 (next page) you can see a typical article from a news web page, it comes
from BBC.

Everybody should agree that the title of the news article is Iraq suicide

bomb kill pilgrims , all the pictures, frames, advertisement, videos, ban-
ners, menus etc are garbage.

This could be easy to predict by a normal software based just on the tags
of the html elements, provided that the structure is consistent, but as is well
known, and as we have experienced during our own work, the structure and
format of the articles from every source change quite often. The di�cult part
(and interesting) is the automatic classi�cation of the remaining elements of
the web. In this case, it is obvious that the comment of the video is not
part of the news article, nor of the "KEY STORIES", "FEATURES AND
ANALYSIS" and "TOP MIDDLE EAST STORIES" boxes.

Also, we should agree that Religious targets is a heading. However,
even humans could disagree about the paragraph in bolt At least 32 pil-

grims have been killed ... police say. It could be a heading or part
of the body. we have regarded these kind of paragraphs as body. In the
experiments chapter, we will see that the most di�cult part of an article to
be classi�ed is the heading, and this web page is a good example of why.
Finally, the remaining text is the body of the news article.

24 CHAPTER 4. DATA COLLECTION

Figure 4.2: News article from BBC

4.1. DATA SOURCE 25

Distinguishing these text elements is a very easy task for humans, but
quite hard for computers, who have no idea about the meaning or the visual
layout. Computers can only read the html source of the news, so a way to
classify the html soup is needed. Here you can see a piece of the html source
of the same page:

<p>This year has been no except ion : p i l g r ims have been attacked in Karbala i t s e l f
and in Baghdad , but t h i s l a t e s t exp lo s i on has been the d e ad l i e s t so f a r .

<p>Female mi l i t an t s
<p>I t was a grim reminder that de sp i t e the con s i d e r ab l e gene ra l improvement in

s e c u r i t y in I raq there are s t i l l people out there bent on i g n i t i n g s e c t a r i a n
pas s i on s − something many I r a q i s had hoped was becoming a th ing o f the past ,
says the BBC' s Jim Muir in Baghdad .

<p>I r a q i m i l i t a n t s have i n c r e a s i n g l y used women to carry out s u i c i d e at tacks as
they are l e s s l i k e l y to be searched than men .

<p>In 2007 , there were e i gh t s u i c i d e at tacks by women ; in 2008 there were 32 , the
US mi l i t a r y says . In ea r l y January , a female bomber k i l l e d at l e a s t 35
Shia p i l g r ims in a b l a s t near a Baghdad sh r in e .

<p>I r a q i o f f i c i a l s a r r e s t ed an a l l e g ed m i l i t an t r e c r u i t e r l a s t month .
<p>Samira Jassim a l l e g e d l y r e c r u i t e d more than 28 women to blow themse lves up in

var ious part s o f I raq .
<p>
<!−− E BO −−>

<br c l e a r=" a l l " />

<div id="socialBookMarks " c l a s s="sharesb">
<h3>Bookmark with :</h3>

< l i c l a s s="d e l i c i o u s ">
<a id="d e l i c i o u s " t i t l e ="Post t h i s s to ry to De l i c i ou s " h r e f="http :// de l . i c i o . us/ post ?

u r l=http :// news . bbc . co . uk/2/ hi /middle_east /7887881. stm& ; t i t l e=Iraq s u i c i d e
bomb k i l l s p i l g r ims">De l i c i ous

</ l i >
< l i c l a s s="digg">
<a id="digg " t i t l e ="Post t h i s s to ry to Digg" h r e f="http :// digg . com/submit ? u r l=http :

//news . bbc . co . uk/2/ hi /middle_east /7887881. stm& ; t i t l e=Iraq s u i c i d e bomb
k i l l s p i l g r ims">Digg

</ l i >
< l i c l a s s="r edd i t">
<a id="r edd i t " t i t l e ="Post t h i s s to ry to r edd i t " h r e f="http :// r edd i t . com/submit ? u r l=

http :// news . bbc . co . uk/2/ hi /middle_east /7887881. stm& ; t i t l e=Iraq s u i c i d e bomb
k i l l s p i l g r ims">reddi t

</ l i >

Now, the task of classifying the content of the web page into title, head-
ing, body and garbage becomes harder. You have to �nd into the html soup
the components that were easy to �nd in the visual layout and tag them in
a machine readable way.

The annotation has to ful�ll these three requirements:

i. Given the annotation of a web page, it should be possible to extract
the text from the web page in a fully automatic fashion, without only
human intervention.

ii. The annotation should allow us to regard the problem of text extraction
as a classi�cation problem, which can be learned using general machine
learning techniques.

26 CHAPTER 4. DATA COLLECTION

iii. Since machine learning requires quite a lot of annotated data, the an-
notation must be convenient to humans.
If it's true that is not a big problem from the results point of view, is
very important from the time consuming point of view.

4.1.2 Character-based annotation

The �rst idea to annotate the data was to interpret the html document as
a one long string, and create another �le with annotations about where the
title, body and headings are. In this �le you had the exact position of each
part of the news, i.e. the position of the �rst and last character inside the
string. Following the same example of the BBC web page, the annotation
would be like scheme 4.1 shows.

Table 4.1: Character-based annotation

title: 2151 2183
body1: 2512 2782
body2: 2986 3154
heading1: 3307 3323
body3: 3400 3587
...

Some macros in Lisp were written (the e-macs macro's language), with
them you just had to highlight in the html source the di�erent parts of the
news and they created the annotation �le.

The advantage of this character-based annotation is that since you are
selecting character by character, you can distinguish perfectly the part of the
news from the garbage while with the element-base annotation sometimes it
is impossible such as we will explain later.

This kind of annotation had two problems, the �rst one was that inter-
preting the whole document as a string, the structure of the html �le was
being skipped, and it seemed that this was going to be one of the strongest

4.1. DATA SOURCE 27

features. The second problem was that �nding all the parts of the news in
a html source was more di�cult than expected, and with this method you
should have to highlight all the sentences of the news one by one, i.e. a
time-consuming problem.

4.1.3 Element-based annotation

This way of tagging is based in the html structure of the web page. The
Python type elementtree is a container object designed to store hierarchical
data structures in memory. You can parse an html document and create a
tree where each node is an element of the html source.

Every element in html language has two parts where text can be written,
they are called text and tail, so, all the letters we can see in a web page are
written in one text or tail of one element. Since we are classifying the news
in 4 pats, title(t), heading(h), body(b) and garbage(g), each element can be
tagged with one of the possible combinations of them (one for the text and
one for the tail), t+t, t+h, t+b, t+g, h+t, h+h, h+b, h+g, etc... 16 possible
tags in total.

It could seem a very hard task tag one by one all the nodes of the html
tree but since the majority of them were in the type of g+g (see section
4.2 for more details) and you can know that some kind of nodes will never
contain a part of the news, it was not so hard.

Following this idea an script was written to take the html �le and break
it into nodes by text/tail. This �le is the human annotation �le (.hra) that
contains all the text and tails of all the nodes (skipping that ones that can
not contain the news such as script, style ...) and tagged as g+g, so you just
have to change manually the nodes that contain part of the news, it means
changing some dozens of tags per �le.

The scheme 4.3 is a piece of an .hra �le from the same news shown before.

The only problem this way has is that you have to tag the whole text or
tail, but part of it can be body and another part can be garbage. However,
during the experiments we saw that this case is very rare: it is very uncom-

28 CHAPTER 4. DATA COLLECTION

This year has been no exception: pilgrims have been attacked in Karbala itself and in

Baghdad, but this latest explosion has been the deadliest so far.

#285 <p> text b

--

Female militants

#287 text h

--

It was a grim reminder that despite the considerable general improvement in security in

Iraq there are still people out there bent on igniting sectarian passions - something many

Iraqis had hoped was becoming a thing of the past, says the BBC's Jim Muir in Baghdad.

#288 <p> text b

--

Iraqi militants have increasingly used women to carry out suicide attacks as they are less

likely to be searched than men.

#289 <p> text b

--

In 2007, there were eight suicide attacks by women; in 2008 there were 32, the US military

says. In early January, a female bomber killed at least 35 Shia pilgrims in a blast near a

Baghdad shrine.

#290 <p> text b

--

Iraqi officials arrested an alleged militant recruiter last month.

#291 <p> text b

--

Samira Jassim allegedly recruited more than 28 women to blow themselves up in various parts

of Iraq.

#292 <p> text b

--

Bookmark with:

#298 <h3> text g

--

Delicious

#301 <a> text g

--

Digg

#303 <a> text g

--

reddit

#305 <a> text g

--

Facebook

#307 <a> text g

--

StumbleUpon

#309 <a> text g

Figure 4.3: Human annotation �le (hra)

4.2. DATA PROPERTIES 29

mon to �nd a text or a tail with some garbage and some part of the news.
We fount just a few cases where the last paragraph of the article contains
the name of the author and both, the body and the name, are in the same
text/tail.

As you can see the element-based annotation one was much better than
the character-based one. Now, with the hra �le and the html �le we had all
the information of the news, all the format, the structure and the manual
tagging, so we needed to decided which features were going to be used and
create the instance �les (.inst) in the format that TiMBL needs, this will be
explained in chapter 5.

4.2 Data properties

Finally, 375 pages were collected, 222 of them were annotated following the
procedure explained before. In all this annotation �les, the distribution of
the tags in the text/tail of the elements was as follows in table 4.2:

Table 4.2: Tag distribution

tag number %
g 40472 91,04 %
t 221 0,49 %
h 126 0,28 %
b 3632 8,17 %

It means that almost all the content of the html source from a news web
page is not part of the news. The previous table is interesting, but for us, it
is more important the distribution of the "double" tags, because as we said,
we are going to work with them. In table 4.3 you can see this distribution.
The �rst thing we notice is that there are 9 tags never used, g+t, t+t, t+h,
t+b, h+t, h+h, h+b, b+t and b+h. So since now, they are not going to be
shown in the results.

30 CHAPTER 4. DATA COLLECTION

Table 4.3: Double tag distribution (class)

tag number %
g+g 134782 97.318
g+t 0 0.000
g+h 2 0.001
g+b 624 0.451
t+g 221 0.160
t+t 0 0.000
t+h 0 0.000
t+b 0 0.000
h+g 114 0.082
h+t 0 0.000
h+h 0 0.000
h+b 0 0.000
b+g 2535 1.830
b+t 0 0.000
b+h 0 0.000
b+b 218 0.157

The important conclusion of double tag distribution is that the high rate
of garbage tag among the data makes the TiMBL accuracy results not mean-
ingful, because just tagging all the elements with g+g you could get a 97.318
% of accuracy, while any part of the news would be tagged correctly. In order
to �x this problem a script that processes the results correctly was written,
to read more about the TiMBL output and the results process see section
6.1.

Chapter 5

Feature construction

Using TiMBL, the choice of the features is highly relevant, because it tells
TiMBL what it should "learn" and use to make the predictions, the perfor-
mance of this predictions depends very much on this choice.

The �rst feature thought was the html structure, this is not a human-
sensitive feature, i.e., reading real news in an online newspaper, you can not
know what kind of html tags are behind each part of the news. Actually, it
doesn't seem to be a strong feature to distinguish between the text part of
the web page, because all of them can have the same tag structure. However,
this is a very strong feature to avoid the advertising, pictures, and all non
text elements of the web page since the tags are totally di�erent.

Of course, it's impossible to get all the html tag structure, but we can add
the tags of the neighbourhood elements of the current element. We decided
to take an initial window of 5 tags before and 5 tags after, plus the current
tag, i.e. 11 features. For each element of the html �le, these 11 features
represent the neighbours structure.

After the structure features were selected, we started to think of how
humans recognize the body, title and headings of an online news. For us it
is quite easy to separate the garbage from the real news just having a look.
So the question is, which are these features we noticed so easily?

The most important ones seem to be the lay out in the web page, the
length of the text and the format of the text. So we wondered which one of

31

32 CHAPTER 5. FEATURE CONSTRUCTION

them we can add as a feature to TiMBL. The position is quite complicated,
because it's di�cult to know from the html source where an element is going
to be placed. Furthermore, humans use this feature to avoid all the images,
advertising etc.. and these things are correctly tagged by TiMBL using the
html structure features.

The length one is very easy to get and it seems to be really strong, even
more if we think that most of the text and tail parts of the garbage elements
have a very short text or no text. This time, a window of 3 tails before and
3 tails after were added as a feature as well as 3 texts before and after, i.e.
14 length features.

The format of the text should be very important to separate the headings
and the title from the body. The question was which features of the format
should we take into account. When you take a look on a news, you identify
the headings because they are in capital letters, the text is usually shorter
than a normal paragraph and the sentence �nishes, usually again, without a
dot, a question mark, exclamation mark, quotation mark etc ...

So, this two new features were added, we considered that a text/tail is in
upper letters if more than 70 % of the letters are, this time we decided not
to add a window with the upper letter features because it is quite often to
�nd some garbage text in upper letters.

The dot feature seems to be very strong, �rst of all to separate the head-
ings from the body as we explained before, but it is also important to identify
the body and separate it from the garbage, if you notice all the paragraph
ends with one of the marks we commented before. Again a window of 14 dot
features were added following the same idea of the length ones.

Once all the features where chosen, we began to create the instance �les.
In table 5.1 an example of one initial instance �le with the �rst 11 features
is shown.

Every element from the ElementTree is one instance, actually, the in-
stance is the set of features that represents this element. Everyone of this
set of features must be tagged as t+t,t+h,t+b,h+g... A script was written
to extract the features from the .html �le and tag every instance with the

33

Table 5.1: Piece of instance �le with the �rst 11 features

current element class
p b p p p # p p b+g
p b p p p # p p b b+g
p b p p p # p p b p b+g
p b p p p # p p b p # g+g
b p p p # p p b p # dif b+g
p p p # p p b p # dif tr g+g
p p # p p b p # dif tr td h+g
p # p p b p # dif tr td div b+g
p p b p # dif tr td div img g+g
p p b p # dif tr td div img # g+g
p b p # dif tr td div img # p g+g

human annotation from the .hra �le. This �le was named .inst and contains
all the data that TiMBL needs to do the predictions.

We decided to use the column format, i.e. every line is one instance and
every column of the line is one feature. We had 41 features, so 41 columns,
the last column is the tag of the instance. You can see this construction
clearly in table 5.1.

34 CHAPTER 5. FEATURE CONSTRUCTION

Chapter 6

Experiments

6.1 Evaluation measures

Before starting with the experiments, a previous step was necessary, a pro-
cessor for the result of TiMBL.

All experiments were carried out using cross validation and precision,
recall and F-score. When using Timbl for testing, it can calculate a number of
performance measures (using the +vas command line switch). These include
the raw number of true positives (TP), true negatives (TN), false positives
(FP) and false negatives (FN), as well as per class and overall precision, recall
and F-score. However, when using TiMBL for cross validation, it can only
produce these statistics per fold, not over all folds. Therefore, we had to write
a script which reads the statistics per fold and calculates the corresponding
overall statistics. We explain the details below.

- The precision, recall and F-score per news article element, i.e. per title,
heading and body. This metric was necessary due to the tag distribu-
tion. As it was explained in section 4.2, 97.318 % of the instances are
tagged with g+g by humans, so if we calculate a global measure of
performance taking in consideration the g+g classes, the results would
be much better than they really are, since just tagging all the instances
with g+g we could have a global F-score of 97,318 %. However, with
this new measure we realize that the real F-score would be 0 % in title,
heading and body. So we calculate the TP, FP, TN and FN adding
from all the classes related to a particular element of the article. For
example, to calculate the performance of the title in the predictions

35

36 CHAPTER 6. EXPERIMENTS

of BBC, we added the counts of the t+g, t+t, t+h and t+b classes
from all the BBC news articles tested, and with them, we calculated
the precision, recall and F-score for the title.
Another important reason to calculate this measures per title, head-
ing and body insted of class, is that it better re�ects the task of text
extraction from webpages. That is, a class like b+g tags is just an
intermediary representation that we need to turn the problem of text
extraction into a classi�cation problem, but predicting it is not a goal
itself.

- The macro-mean precision, recall and F-score. This is a global metric,
that tell us what performance is expected if we add a new domain.
Each macro-mean is calculated by taking the average of the precision,
recall and F-score respectively, over all the data tested.

- The micro-mean precision, recall and F-score. This is a global metric
that shows the expected performance for a random instance. To calcu-
late each micro-mean, you have to use the formulas shown in section
3.2.3 for precision, recall and F-score using global TP, FP, TN and FN
calculated by adding all the particular ones.

- Another kind of result analysis was the error per �le, a new �le was
created for each html �le, this �le (.error) contains all the errors in
the predictions of TiMBL, i.e. when the tag predicted by TiMBL is
di�erent from the tag written by humans. These �les were very useful
when it comes to �x some human tag errors and to guide us during the
feature construction

6.2 Extraction within a single news domain

As it is explained in section 3.2.2, the similarity between the training data
that TiMBL is using and the test data is very important. The most similar
is the data, the best performance you should get.

Following this idea, the �rst experiments were run using a number of
pages from a certain news source as training data and predict the structure
of unseen pages from the same news source. The experiments were run with

6.2. EXTRACTION WITHIN A SINGLE NEWS DOMAIN 37

the default con�guration of TiMBL, i.e. with IB1 algorithm, feature weight-
ing with Gain Ratio, weighted overlap and number of nearest neighbours
(k-parameter) equal 1.

In the tables 6.1, 6.2 and 6.3 you can see all the results obtained in this
�rst experiment.

Table 6.1: Results on title extraction within a single news domain
SOURCE # FILES TP FP TN FN prec recall fscore

aljazeera 18 18 0 8952 0 1.000 1.000 1.000
guardian 17 15 16 14360 2 0.484 0.882 0.625
BBC 23 22 1 14618 0 0.957 1.000 0.978
CNN 10 7 2 8403 2 0.778 0.778 0.778
xinhuanet 20 19 0 3723 1 1.000 0.950 0.974
latimes 10 10 2 5703 0 0.833 1.000 0.909
nytimes 15 15 1 9217 0 0.938 1.000 0.968
reuters 17 17 0 11640 0 1.000 1.000 1.000
theautralian 26 26 0 21721 0 1.000 1.000 1.000
timesonline 16 16 0 8302 0 1.000 1.000 1.000
dw-world 10 9 4 4390 1 0.692 0.900 0.783
fox 4 4 0 1992 0 1.000 1.000 1.000
hindu 5 5 0 1604 0 1.000 1.000 1.000
upi 11 11 0 7471 0 1.000 1.000 1.000
voamerica 12 12 0 7195 0 1.000 1.000 1.000
washintonpost 8 8 0 8589 0 1.000 1.000 1.000
total 222 214 26 137880 6
macro-mean 0.918 0.969 0.938
micro-mean 0.892 0.973 0.930

The overall results were quite good, at least, better than we had expected.
The results of Aljazeera were almost perfect, while in The Guardian, which
was the worst one, title and heading predictions had plenty of errors.

These di�erences in the performance on the di�erent sources are mainly
due to the presence or lack of consistency in the formatting of the article. For
instance, in Aljazeera, all the news have a similar layout and format, while
there are other sources with di�erent kind of articles. The di�erences in the
performance don't seem to be related to the amount of training material,
since some sources as Upi, Voice of America or The Washintong post have
better performance than The Guardian or BBC. In this kind of experiments,
the similarity between the training data is more relevant than the amount of
it.

38 CHAPTER 6. EXPERIMENTS

Table 6.2: Results on heading extraction within a single news domain
SOURCE # FILES TP FP TN FN prec recall fscore

aljazeera 18 27 0 8943 0 1.000 1.000 1.000
guardian 17 2 4 14384 3 0.333 0.400 0.364
BBC 23 42 9 14589 1 0.824 0.977 0.894
CNN 10 0 0 0 0 (nan) (nan) (nan)
xinhuanet 20 0 0 0 0 (nan) (nan) (nan)
latimes 10 0 0 0 0 (nan) (nan) (nan)
nytimes 15 0 0 0 0 (nan) (nan) (nan)
reuters 17 5 0 23307 2 1.000 0.714 0.833
theautralian 26 17 2 21727 1 0.895 0.944 0.919
timesonline 16 7 0 8311 0 1.000 1.000 1.000
dw-world 10 0 0 3735 0 (nan) (nan) (nan)
fox 4 0 0 0 0 (nan) (nan) (nan)
hindu 5 0 0 0 0 (nan) (nan) (nan)
upi 11 0 0 0 0 (nan) (nan) (nan)
voamerica 12 0 0 0 0 (nan) (nan) (nan)
washintonpost 8 5 0 8592 0 1.000 1.000 1.000
total 222 105 15 99853 7
macro-mean 0.865 0.862 0.859
micro-mean 0.875 0.938 0.905

Table 6.3: Results on body extraction within a single news domain
SOURCE # FILES TP FP TN FN prec recall fscore

aljazeera 18 326 2 17608 4 0.994 0.988 0.991
guardian 17 252 10 28518 6 0.962 0.977 0.969
BBC 23 445 3 28813 21 0.993 0.955 0.974
CNN 10 191 9 24181 7 0.955 0.965 0.960
xinhuanet 20 148 5 7332 1 0.967 0.993 0.980
latimes 10 148 9 16983 5 0.943 0.967 0.955
nytimes 15 266 5 18193 2 0.982 0.993 0.987
reuters 17 168 3 23143 0 0.982 1.000 0.991
theautralian 26 645 7 64573 16 0.989 0.976 0.982
timesonline 16 238 4 24700 12 0.983 0.952 0.967
dw-world 10 16 0 4372 16 1.000 0.500 0.667
fox 4 31 1 1964 0 0.969 1.000 0.984
hindu 5 46 1 3166 5 0.979 0.902 0.939
upi 11 111 2 14848 3 0.982 0.974 0.978
voamerica 12 122 2 14286 4 0.984 0.968 0.976
washintonpost 8 108 2 17082 2 0.982 0.982 0.982
total 222 3261 65 309762 104
macro-mean 0.978 0.943 0.955
micro-mean 0.980 0.969 0.975

6.3. EXTRACTION MERGING DOMAINS 39

Anyway, the body F-score was very good in all the sources. Actually, we
had already thought that the body results should be better than title and
heading. The main reason was the length feature, this should be a strong
feature since it is the biggest di�erence between the text/tail from the body
and the rest of text/tail. In section 6.5 you can see exactly the weights of all
features and how much important the length one is.

6.3 Extraction merging domains

Once we had done the experiments using the training data from the same
source as the test �le, the next step in the experimentation was merge all the
training data and run a cross-validation. It means, predict each �le using all
the rest from all the sources as training data (included the own source of the
test �le).

It could seem that the results of this experiments will be worst because
inside the training data there is not just the "good" data, i.e. the data from
the same source, but since they are run with k-parameter equal 1, it means
that just the most similar training data are used to make the predictions, so
at least, the results should be as good as the previous one.

In tables 6.4, 6.5 and 6.6 you can see the results for this experiment.
In these tables we have omitted the TP, FP, TN, FN values but we have
introduced the values of the di�erent in the prediction, recall and F-score
between the results of the extraction within single news domains and merg-
ing domains.

As we expected, the overall performance is better, even if in some tags of
some sources there is a small decrease. For instance, the F-score of the title
on BBC, heading in Aljazeera and body in CNN and reuters is a bit better
extracting data within a single domain than merging domains, but a great
majority of particular F-scores and macro-mean and micro-mean are better
with merging domains.

If we look at the last rows of the tables 6.4, 6.5 and 6.6 we can see the
global performance expressed by the F-score of the macro-mean and micro-

40 CHAPTER 6. EXPERIMENTS

Table 6.4: Results on title extraction merging domains
SOURCE # FILES prec(∆) recall(∆) fscore(∆)

aljazeera 18 1.000(+0.000) 1.000(+0.000) 1.000(+0.000)
guardian 17 1.000(+0.516) 0.882(+0.000) 0.938(+0.313)
BBC 23 0.955(-0.002) 0.955(-0.045) 0.9(-0.078)
CNN 10 0.875(+0.097) 0.778(+0.000) 0.824(+0.046)
xinhuanet 20 1.000(+0.000) 1.000(+0.050) 1.000(+0.026)
latimes 10 1.000(+0.167) 0.900(-0.100) 0.947(+0.038)
nytimes 15 1.000(+0.062) 1.000(+0.000) 1.000(+0.032)
reuters 17 1.000(+0.000) 1.000(+0.000) 1.000(+0.000)
theautralian 26 1.000(+0.000) 1.000(+0.000) 1.000(+0.000)
timesonline 16 1.000(+0.000) 1.000(+0.000) 1.000(+0.000)
dw-world 10 1.000(+0.308) 0.900(+0.000) 0.947(+0.164)
fox 4 1.000(+0.000) 1.000(+0.000) 1.000(+0.000)
hindu 5 1.000(+0.000) 1.000(+0.000) 1.000(+0.000)
upi 11 1.000(+0.000) 1.000(+0.000) 1.000(+0.000)
voamerica 12 1.000(+0.000) 0.917(-0.083) 0.957(-0.043)
washintonpost 8 1.000(+0.000) 1.000(+0.000) 1.000(+0.000)
macro-mean 0.989(+0.071) 0.958(-0.011) 0.970(+0.032)
micro-mean 0.991(+0.099) 0.964(-0.009) 0.977(+0.047)

Table 6.5: Results on heading extraction merging domains
SOURCE # FILES prec(∆) recall(∆) fscore(∆)

aljazeera 18 1.000(+0.000) 0.963(-0.037) 0.981(-0.019)
guardian 17 0.400(+0.067) 0.400(+0.000) 0.400(+0.036)
BBC 23 0.929(+0.105) 0.907(-0.070) 0.918(+0.024)
CNN 10 0.000 (nan) (nan)
xinhuanet 20 (nan) (nan) (nan)
latimes 10 (nan) (nan) (nan)
nytimes 15 (nan) (nan) (nan)
reuters 17 1.000(+0.000) 1.000(+0.286) 1.000(+0.167)
theautralian 26 0.900(+0.005) 1.000(+0.056) 0.947(+0.028)
timesonline 16 1.000(+0.000) 1.000(+0.000) 1.000(+0.000)
dw-world 10 1.000 0.750 0.857
fox 4 (nan) (nan) (nan)
hindu 5 (nan) (nan) (nan)
upi 11 0.000 (nan) (nan)
voamerica 12 0.000 (nan) (nan)
washintonpost 8 1.000(+0.000) 1.000(+0.000) 1.000(+0.000)
macro-mean 0.904(+0.039) 0.877(+0.015) 0.888(+0.029)
micro-mean 0.907(+0.032) 0.922(-0.016) 0.915(+0.01)

6.3. EXTRACTION MERGING DOMAINS 41

Table 6.6: Results on body extraction merging domains
SOURCE # FILES prec(∆) recall(∆) fscore(∆)

aljazeera 18 0.994(+0.000) 0.985(-0.003) 0.989(-0.002)
guardian 17 0.973(+0.011) 0.981(+0.004) 0.977(+0.008)
BBC 23 0.993(+0.000) 0.983(+0.028) 0.988(+0.014)
CNN 10 0.950(-0.005) 0.955(-0.010) 0.952(-0.008)
xinhuanet 20 0.955(-0.012) 1.000(+0.007) 0.977(-0.003)
latimes 10 0.974(+0.031) 0.967(+0.000) 0.970(+0.015)
nytimes 15 0.996(+0.014) 0.985(-0.008) 0.991(+0.004)
reuters 17 0.988(+0.006) 1.000(+0.000) 0.994(+0.003)
theautralian 26 0.994(+0.005) 0.965(-0.011) 0.979(-0.003)
timesonline 16 0.980(-0.003) 0.972(+0.020) 0.976(+0.009)
dw-world 10 1.000(+0.000) 0.969(+0.469) 0.984(+0.317)
fox 4 0.969(+0.000) 1.000(+0.000) 0.984(+0.000)
hindu 5 1.000(+0.021) 0.980(+0.078) 0.990(+0.051)
upi 11 0.982(+0.000) 0.974(+0.000) 0.978(+0.000)
voamerica 12 0.992(+0.008) 0.976(+0.008) 0.984(+0.008)
washintonpost 8 0.982(+0.000) 1.000(+0.018) 0.991(+0.009)
macro-mean 0.983(+0.005) 0.981(+0.038) 0.981(+0.026)
micro-mean 0.985(+0.005) 0.978(+0.009) 0.981(+0.006)

mean, these are the most interesting results. Firstly because you can get a
better picture of the real performance and secondly because these results are
much more meaningful from a practical point of view than the ones from the
section 6.2 since we are using all the training data we have in our hands.

Without optimizing the TiMBL settings, using the default ones we are in
97,7 % of F-score in the title, 91,5 % in the heading and 98,1 % in the body,
these are quite promising results. Of the 3 parts of a news (title, heading and
body), the most problematic one was being the heading, this is just what we
expected because the variability in the format of the headings in the di�erent
sources, even in a same source, di�erent news usually have a di�erent format
from the heading.

The most important conclusion of these results is that using training data
from other sources di�erent from the test �le one is quite useful, we will study
this more deeply in section 6.4.

42 CHAPTER 6. EXPERIMENTS

6.4 Extraction across news domains

Until now, all the predictions have been done using training data from the
same source, totally or partially. Now, we want to see what happens with the
predictions of pages from an unseen source. From a practical point of view,
this is the most useful type of experiment. If you want to build a news search
engine or a multi-document summarization system which covers most/all of
the news sources on the web. It is virtually impossible to annotate training
data from all of them. Not only would it involve a lot of manual work and
money, new ones are also appearing all the time, and formats are changing
slightly all the time. It is therefore highly desirable to have an extraction
system that can be trained on data from a limited number of news sources,
but still performs reasonably well on unseen data.

First because it is very interesting to know how the system works in this
mode, how TiMBL can predicts the tags of news using training data rather
di�erent from the news. And second because if in the future we want to tag
a page out of the 16 original sources, it is very interesting to know if it is
possible without adding any training data from that source.

In the tables 6.7, 6.8 and 6.9 you can see the results for this experiment,
since the training data used are from di�erent sources, we didn't expected a
good performance.

The �rst impression is that the results are not good, 39,0 % in the F-score
of the title and 44,4 % in the heading. The only quite good results are the
body ones, 86,3 % is a promising start, specially if we think that in some
problems the title and heading are not important, for instance, in searching
problems, where you are only interested in the content of the news.

It is important to notice that in this experiment, the k-parameter is very
relevant, we used the default settings, i.e. k-parameter equal 1, so just the
most similar �les are being used to make the predictions. However, since
there are not �les from the same source of the test �le, TiMBL bases its
predictions on the direct neighbours only, which may be quite di�erent. This
would explain why the title and heading predictions are so bad. On the other
hand, the results in the body predictions are explained because as we said,
the most important features to predict the body are the length one and the
dot one, and they don't depend on the source, these are common features.

6.4. EXTRACTION ACROSS NEWS DOMAINS 43

Table 6.7: Results on title extraction across news domains
SOURCE # FILES prec(∆) recall(∆) fscore(∆)

aljazeera 18 0.207(-0.793) 1.000(+0.000) 0.343(-0.657)
guardian 17 0.667(+0.183) 0.588(-0.294) 0.625(+0.000)
BBC 23 0.840(-0.117) 0.955(-0.045) 0.894(-0.084)
CNN 10 (nan) 0.000(-0.778) (nan)
xinhuanet 20 0.409(-0.591) 0.900(-0.050) 0.563(-0.411)
latimes 10 1.000(+0.167) 0.100(-0.900) 0.182(-0.727)
nytimes 15 (nan) 0.000(-1.000) (nan)
reuters 17 0.000(-1.000) 0.000(-1.000) (nan)
theautralian 26 0.000(-1.000) 0.000(-1.000) (nan)
timesonline 16 0.269(-0.731) 0.875(-0.125) 0.412(-0.588)
dw-world 10 (nan) 0.000(-0.900) (nan)
fox 4 0.231(-0.769) 0.750(-0.250) 0.353(-0.647)
hindu 5 (nan) 0.000(-1.000) (nan)
upi 11 0.500(-0.500) 1.000(+0.000) 0.667(-0.333)
voamerica 12 0.000(-1.000) 0.000(-1.000) (nan)
washintonpost 8 1.000(+0.000) 0.875(-0.125) 0.933(-0.067)
macro-mean 0.320(-0.598) 0.440(-0.529) 0.311(-0.627)
micro-mean 0.334(-0.558) 0.468(-0.505) 0.390(-0.540)

Table 6.8: Results on heading extraction across news domains
SOURCE # FILES prec(∆) recall(∆) fscore(∆)

aljazeera 18 0.958(-0.042) 0.852(-0.148) 0.902(-0.098)
guardian 17 0.000(-0.333) 0.000(-0.400) (nan)
BBC 23 0.903(+0.079) 0.651(-0.326) 0.757(-0.137)
CNN 10 0.000 (nan) (nan)
xinhuanet 20 0.000 (nan) (nan)
latimes 10 0.000 (nan) (nan)
nytimes 15 (nan) (nan) (nan)
reuters 17 (nan) 0.000(-0.714) (nan)
theautralian 26 0.167(-0.728) 0.056(-0.888) 0.083(-0.836)
timesonline 16 0.062(-0.938) 0.429(-0.571) 0.109(-0.891)
dw-world 10 1.000 0.750 0.857
fox 4 0.000 (nan) (nan)
hindu 5 (nan) (nan) (nan)
upi 11 0.000 (nan) (nan)
voamerica 12 0.000 (nan) (nan)
washintonpost 8 (nan) 0.000(-1.000) (nan)
macro-mean 0.193(-0.672) 0.171(-0.691) 0.169(-0.690)
micro-mean 0.400(-0.475) 0.500(-0.438) 0.444(-0.461)

44 CHAPTER 6. EXPERIMENTS

Table 6.9: Results on body extraction across news domains
SOURCE # FILES prec(∆) recall(∆) fscore(∆)

aljazeera 18 0.964(-0.030) 0.970(-0.018) 0.967(-0.024)
guardian 17 0.447(-0.515) 0.969(-0.008) 0.612(-0.357)
BBC 23 0.983(-0.010) 0.981(+0.026) 0.982(+0.008)
CNN 10 0.989(+0.034) 0.915(-0.050) 0.950(-0.010)
xinhuanet 20 0.896(-0.071) 0.987(-0.006) 0.939(-0.041)
latimes 10 0.975(+0.032) 0.752(-0.215) 0.849(-0.106)
nytimes 15 0.952(-0.030) 0.896(-0.097) 0.923(-0.064)
reuters 17 0.682(-0.300) 0.524(-0.476) 0.593(-0.398)
theautralian 26 0.859(-0.130) 0.927(-0.049) 0.892(-0.090)
timesonline 16 0.761(-0.222) 0.880(-0.072) 0.816(-0.151)
dw-world 10 0.452(-0.548) 0.875(+0.375) 0.596(-0.071)
fox 4 0.816(-0.153) 1.000(+0.000) 0.899(-0.085)
hindu 5 1.000(+0.021) 0.980(+0.078) 0.990(+0.051)
upi 11 0.797(-0.185) 0.965(-0.009) 0.873(-0.105)
voamerica 12 1.000(+0.016) 0.786(-0.182) 0.880(-0.096)
washintonpost 8 0.897(-0.085) 0.955(-0.027) 0.925(-0.057)
macro-mean 0.842(-0.136) 0.898(-0.045) 0.855(-0.100)
micro-mean 0.823(-0.157) 0.908(-0.061) 0.863(-0.112)

Another reason that explains the good results in the body prediction is that
there are many more examples of body than of title or heading to learn from
in every article used in the training data. So the amount of training data for
this particular text element is bigger.

In the next section we will study the in�uence of the k-parameter and we
will see if our suppositions are in the right track.

6.5 Feature weights using Information Gain

As we explained in chapter 3, Information Gain (IG) measures how much a
feature contributes to our knowledge. In table 6.10 you can see the feature
weights calculated by TiMBL using IG in the three kind of experiments we
are running. To calculate these values, TiMBL runs a pre-process analyzing
the training data, since the training data for the 3 kind of experiment come
from the same pool (in each experiment we use di�erent parts of the pool),
we expected that average weights were almost the same in the 3 experiments.

6.6. OPTIMIZATION OF CLASSIFIER SETTINGS 45

This is exactly what we can see in table 6.10.

As we expected the length features are the most important, the current
ones (number 15 and 22) have the higher weight among all of them. The
current feature is the one with high weight in each group (Html structure,
length ...),the values decrease when it moves away from the current. Is is
interesting to see the weights for the tail length features. Features 21 and
23 have less weight than 20 and 24 even if they are closer to the current.
Studying the html structure of the news articles we realized that the sources
that use the tail of the html elements as main part to introduce the body
never use the previous element and the next one, this could explain this
e�ect.

6.6 Optimization of classi�er settings

The performance of TiMBL depends on 4 aspects:

i. Which features are you adding.

ii. How much training data are you using.

iii. Which parameters and con�guration is TiMBL running with.

iv. The nature of the problem.

To improve the results of the predictions we had to look into the three
�rst aspects. The feature system is explained in chapter 5, while the amount
of training data will be investigated in section 6.7. In this section we will
study the con�guration of TiMBL, until now, all the experiments were run
with the default settings of TiMBL, i.e. IB1 algorithm, feature weighting
with Gain Ratio, weighted overlap and number of nearest neighbours (k-
parameter) equal 1.

It is important to notice that these default settings were chosen by TiMBL
designers because they are good in most of the problems, so we are not too
much optimist about improving the results a lot.

To �nd the best con�guration of k-parameter and feature weighting (w-
parameter), and to know which was the best algorithm to this problem,
we did an exhaustive search of the parameter space (within certain limits).

46 CHAPTER 6. EXPERIMENTS

Table 6.10: feature's weight average from extraction in the three kind of experiments
Html structure features single merging new

1 element -5: 0.012 0.012 0.012
2 element -4: 0.014 0.014 0.014
3 element -3: 0.016 0.017 0.016
4 element -2: 0.019 0.019 0.019
5 element -1: 0.022 0.021 0.022
6 current element: 0.030 0.030 0.030
7 element +1: 0.023 0.023 0.023
8 element +2: 0.021 0.021 0.021
9 element +3: 0.017 0.017 0.017
10 element +4: 0.016 0.016 0.016
11 element +5: 0.013 0.013 0.013

Text length features
12 element -3: 0.083 0.082 0.082
13 element -2: 0.105 0.105 0.105
14 element -1: 0.119 0.118 0.118
15 current element: 0.206 0.205 0.205
16 element +1: 0.119 0.118 0.118
17 element +2: 0.098 0.098 0.098
18 element +3: 0.078 0.077 0.077

Tail length features
19 element -3: 0.013 0.014 0.014
20 element -2: 0.122 0.121 0.121
21 element -1: 0.010 0.011 0.011
22 current element: 0.223 0.221 0.222
23 element +1: 0.010 0.011 0.010
24 element +2: 0.137 0.136 0.136
25 element +3: 0.011 0.011 0.011

Letter features ratios

26 text letter: 0.051 0.052 0.052
27 tail letter: 0.101 0.101 0.101

Text dots features
28 element -3: 0.035 0.035 0.035
29 element -2: 0.045 0.045 0.046
30 element -1: 0.056 0.056 0.056
31 current element: 0.100 0.100 0.100
32 element +1: 0.056 0.056 0.056
33 element +2: 0.048 0.048 0.048
34 element +3: 0.036 0.036 0.036

Tail dots features
35 element -3: 0.008 0.012 0.008
36 element -2: 0.065 0.005 0.065
37 element -1: 0.008 0.014 0.008
38 current element: 0.135 0.040 0.135
39 element +1: 0.008 0.008 0.008
40 element +2: 0.078 0.077 0.077
41 element +3: 0.008 0.008 0.008

6.6. OPTIMIZATION OF CLASSIFIER SETTINGS 47

We run three experiments as before (extracting within single news domains,
merging domains and across news domains) for each combinations of algo-
rithm, k-parameter and w-parameter.

In our search we test the following values for the parameters:

- We tested 2 algorithm from very di�erent families, IB1 and IGTREE.

- the k-parameter from 1 to 10.

- w-parameter with all its values, i.e. No Weighting, Weight using Gain-
Ratio (default), Weight using InfoGain, Weight using Chi-square and
Weight using Shared Variance.

We decided to stop in 10 for the k-parameter because we observed that
the performance was decreasing after k-parameter equal 7 in all the cases as
you can see in the section 6.6.1, so it was not worthwile trying with higher
values.

6.6.1 Number of nearest neighbours (k-parameter)

The relevance of k-parameter depends on which kind of training data are be-
ing used, if all the data comes from the same domain, such as the experiments
of section 5.2, the similarity of the data makes bigger values of k-parameter
useless, at least, this was our prediction. In section 6.4 we talked about the
e�ect of the k-parameter could have on the performance of the predictions
when there is no training data from the same source as the test �le. We
think that it is more interesting to see what happened with k-parameter in
this situation than in the previous one.

It is di�cult to study the e�ect of a single parameter when the results
depend on others. To understand how the performance is modi�ed by k-
parameter we calculated the average of the F-score of all those experiments
grouped by k-parameter. For instance, if we name the results �les as res-A-
K-W where A is the algorithm used, K the k-parameter and W the weighting
features (from 0 to 4), to know the performance of the predictions with k-
parameter equal 3, we made the average of the F-score from all the �les with
K equal 3. We were also interested on know if the behaviour of the F-score
while k-parameter changes is the same for the three parts of the news (title,
heading and body) or not, so in the next graphics we will show the evolution

48 CHAPTER 6. EXPERIMENTS

of F-score independently of the title, heading and body.

The graphic 6.1 shows how the F-score descends with higher values of k-
parameter in the title, heading and body. This is exactly what we expected.
This time the default value was the best one.

Figure 6.1: F-score in title, heading and body as a function of parameter k, with merged
domains

In graphic 6.2 you can see that the evolution of the F-score when we make
the extraction across new domains is totally di�erent from the previous one,
k equal 1 is not the best one anymore. Although there are some variations,
we can see that around k equal 7 the F-score get a global optimal value.

6.6. OPTIMIZATION OF CLASSIFIER SETTINGS 49

Figure 6.2: Evolution of F-score in title, heading and body as function of parameter k,
across new domains

6.6.2 Feature weighting (w-parameter)

To understand the relevance of feature weighting we did the same as with
k-parameter, we calculated the average of the F-scores grouped, this time,
by w-parameter. This time, we did not have any prediction of which weight
would be better or how the kind of experiment (merging domains or across
new domains) could be a�ected by w-parameter. In table 6.11 you can see
the global F-score in the title, heading and body by w-parameter in the
extraction merging domains.

Table 6.11: global F-score in the title, heading and body with all values of feature
weighting, using merging domains

Feature weighting F-score
title heading body average

No-Weighting 0.958 0.917 0.972 0.949
GainRatio 0.961 0.902 0.976 0.946
InfoGain 0.968 0.923 0.972 0.954
Chi-square 0.964 0.917 0.975 0.952

Shared Variance 0.973 0.917 0.979 0.956

Even if the InfoGain is better to predict the heading, the best feature
weighting in overall is the Shared Variance.

50 CHAPTER 6. EXPERIMENTS

Table 6.12: global F-score in the title, heading and body with all values of feature
weighting using across new domains

Feature weighting F-score
title heading body avegare

No-Weighting 0.308 0.543 0.898 0.583
GainRatio 0.316 0.539 0.874 0.576
InfoGain 0.306 0.594 0.901 0.600
Chi-square 0.577 0.523 0.893 0.664

Shared Variance 0.443 0.414 0.744 0.533

Using all the training data, i.e. with the experiment across new domains,
there is a lot of variability as you can see in the table 6.12 but we can say
that Chi-square is on average the best one.

6.6.3 Optimal settings

In this section, we apply the optimal combination of k-parameter and w-
parameter with the algorithm that better results has obtained, IB1 (to see
the results with the IGTREE see section 6.6.4). So these are the best results
we could have obtain running all the experiments. It is important to notice,
that these results are the best ones predicting the 3 parts of the news. It
is possible to �nd a better setting for a speci�c part as we showed in the
previous sections.

We made the optimization for two kind of experiments, using all the
training data that we have (extraction merging domains) and using as train-
ing data just the articles from di�erent sources than the test �le (extraction
across new domains). With the �rst kind of experiments, the optimal results
were obtained using as algorithm IB1, k-parameter 1 and feature weighting
Shared Variance, while with the second kind the optimal parameters were
algorithm IB1, k-parameter 7 and feature weighting Chi-Square.

In table 6.13 you can see these optimal results compared with the results
obtained with the default settings of TiMBL.

In the case of merging domains, since the k-parameter and the algorithm
are the same in the default settings than in the optimal one, there is not a big
di�erence between them. We just can noticed an interesting improvement
predicting the heading. If we calculated the error reduction, going from 0.085

6.6. OPTIMIZATION OF CLASSIFIER SETTINGS 51

Table 6.13: Results with optimal and default parameters
SOURCE TP FP TN FN prec recall fscore

TITLE
optimal (merging domains) 214 4 138271 7 0.982 0.968 0.975
default (merging domains) 212 2 138273 9 0.991 0.959 0.975
optimal (across new domains) 153 128 138147 68 0.544 0.692 0.610
default (across new domains) 103 206 138070 118 0.334 0.466 0.369

heading
optimal (merging domains) 110 7 276869 6 0.940 0.948 0.944
default (merging domains) 107 11 276865 9 0.907 0.922 0.915
optimal (across new domains) 64 69 276807 52 0.481 0.552 0.514
default (across new domains) 58 87 276789 58 0.400 0.500 0.444

BODY
optimal (merging domains) 3312 62 412049 65 0.982 0.981 0.981
default (merging domains) 3303 52 412059 74 0-985 0.978 0.981
optimal (across new domains) 3049 408 411703 328 0.882 0.903 0.892
default (across new domains) 3066 656 411455 311 0.824 0.908 0.864

(1-0.915) to 0.056 (1-0.944) represents a 51.78 % of improvement. However,
the optimal settings for the experiment across new domains make the results
much better, the main reason is the use of k-parameter 7, that as we saw in
graphic 6.2 has a big relevance. If we calculate again the error reduction, we
can see a relative improvement of 61.8% in the title, 14.4% in the heading
and 25,9% in the body.

6.6.4 Algorithm

As we explained in chapter 3, the IGTREE algorithm is usually faster than
IB1 but the performance is usually worse. In this speci�c problem, where the
amount of data is not too big and the processing time is not the problem,
using IGTREE is not worth because the results are quite worse.

We did the same parameter optimization that we explained for the IB1
algorithm in section 6.6 but now, using IGTREE (without k-parameter since
IGTREE is not a�ected by the number of nearest neighbours) and we found
that the optimal w-parameter was 0 (without feature weighting) to both,
merging domains and across new domains. In table 6.14 you can see the
best results (optimal) obtained with both algorithms in the two kinds of
experiments. As you can see the best results using IGTREE are far from the

52 CHAPTER 6. EXPERIMENTS

best results using IB1.

Table 6.14: Results with optimal and default parameters
SOURCE TP FP TN FN prec recall fscore

TITLE
IB1 (merging domains) 214 4 138271 7 0.982 0.968 0.975
IGTREE (merging domains) 209 3 138272 12 0.986 0.946 0.965
IB1 (across new domains) 153 128 138147 68 0.544 0.692 0.610
IGTREE (across new domains) 124 135 138156 81 0.479 0.605 0.534

heading
IB1 (merging domains) 110 7 276869 6 0.940 0.948 0.944
IGTREE (merging domains) 80 6 276870 36 0.930 0.690 0.792
IB1 (across new domains) 64 69 276807 52 0.481 0.552 0.514
IGTREE (across new domains) 51 84 276804 53 0.378 0.490 0.427

BODY
IB1 (merging domains) 3300 87 412024 77 0.974 0.977 0.976
IGTREE (merging domains) 2902 500 411611 475 0.853 0.859 0.856
IB1 (across new domains) 3049 408 411703 328 0.882 0.903 0.892
IGTREE (across new domains) 2798 687 411426 577 0.803 0.829 0.816

6.7 E�ect of data size

We have studied the e�ect of di�erent parameters and di�erent kind of train-
ing data on the accuracy of the predictions done by TiMBL, but in all these
experiments we were using the same pool of training data, in this section how-
ever, we are going to study the e�ect of data size on the TiMBL performance.

We wanted to measure how much sensitive is TiMBL to the data size.
So we designed the following experiment: We started with a pool of training
data of 2 articles, we ran a cross-validation and we calculated the global F-
score as an average of the F-score obtained in the title, heading and body.
Then, we added a third article and we did the same, calculating the new
F-score. We repeated this until we �nished all the training data we had. The
graphic that shows the relation between the number of �les used to run the
cross-validation and the global F-score obtained is called learning curve.

Since we have 3 kind of extractions (from a single domain, merging do-
mains and across new domains), we designed 3 sets of experiments. All these

6.7. EFFECT OF DATA SIZE 53

experiments were done using the optimal settings (calculated in the previous
section). In the next sections, 6.7.1, 6.7.2 and 6.7.3, the learning curves are
shown and analyzed.

6.7.1 Learning curves from single news domain

This section is less interesting than the next ones since we are running a set
of cross-validations for each source, the amount of training data used in one
is not very big (around 20 �les), so you can not see the learning curve very
well. Anyway, we can take some interesting conclusions.

Figure 6.3: BBC learning curve

In the �rst learning curves of the graphics 6.3, 6.4 and 6.5 we can see an
overall improvement in the F-score when we increase the number of training
�les. However, at the beginning in some of them , there is a worsening before
the improvement. When there is a small training data, the performance de-
pends highly on the similarity of the �les we are using, so the results, when
small sets of training data are used, change a lot from one source to other,
all deppending on the similarity.

54 CHAPTER 6. EXPERIMENTS

Figure 6.4: Reuters learning curve

Figure 6.5: Aljazeera learning curve

6.7. EFFECT OF DATA SIZE 55

Another interesting example is graphic 6.6. Here we can see a "black
sheep", the last �les of The Australian were in a di�erent format than the
others, so, when we add the �rst these "weirds", there is not any similar �le
that TiMBL can use to predict it, so the F-score descends. When we add
more training data in a similar format than the "black sheep" the F-score
improves again.

Figure 6.6: The Australian learning curve

6.7.2 Learning curves merging domain

For this experiment all the training data we had were used, from 2 �les until
222 �les, we run a set of cross-validations adding randomly the new �les.

This is the most meaningful learning curve, in graphic 6.7 you can notice
perfectly the improvement in the F-score while increasing the number of �les.

Since we are adding one by one �les from di�erent sources, at the begin-
ning TiMBL is trying to predict each �les using as training data a small pool
of articles from di�erent sources. This makes the graphic oscillate quite a lot
when there are not many �les

56 CHAPTER 6. EXPERIMENTS

Figure 6.7: Learning curve from extraction merging domains

From 25 to 150 �les, the graphic rises almost constantly, this is the most
important conclusion and it proves the sensitivity of TiMBL to the data
size. However, there is one point (around 150 �les) where the F-score stops
to increase or increase very slowly and the curve becomes asymptotic. The
meaning of this is that all the �les we are adding since this point have an
already known structure/format, so no new knowledge is being adding and
the F-score doesn't change.

The point where the F-score stops to increase is very important from a
practical point of view. It means that from this point we are not adding
new information to the learning system, so all the training data in the same
format as before is useless. We will talk more about this and how to avoid
this e�ect in section 6.8

6.7.3 Learning curves across news domain

The learning curve this time, graphic 6.8 is quite similar to the previous ones,
you can see an improvement on the performance with the increase of data
size.It is important to notice that due to the kind of experiment (without

6.8. POST-PROCESSING 57

using training data from the same source) we are representing the prediction
by source, not by article, i.e., each new training �le added is all the articles
from a news source, so we can not see what happened one by one.

Figure 6.8: Learning curve from extraction across news domain

6.8 Post-processing

In this section we will talk about the post processing systems that we made,
ie, treatment of the data after the TiMBL execution.

The advantage of this kind of treatment is that we can use a global knowl-
edge, all the class predictions done by TiMBL are independent of each other.
For example, when predicting the class of a certain instance, TiMBL does
not know the prediction for the preceding or following instances. But now,
since these processes are run after TiMBL execution, we know all the class
predictions of the news article, so we can use new global features to write
new scripts that let us evaluate the quality of these predictions.

The global feature we are going to use is the global structure of the article,
i.e. the sequence of title, heading and body. It is important to notice that

58 CHAPTER 6. EXPERIMENTS

we could not use this before, since we could not know the global structure
until TiMBL has predicted it. The idea is to identify those articles tagged
by TiMBL that have ill-formed structures, speci�cally we want to identify
these three errors:

i. News article with no title (E1).

ii. News article with more than 1 title (E2).

iii. News article with 2 or more headings together (E3).

We made a state machine, as you can see in picture 6.9. This machine
has the original state, 3 states for title, heading and body and 3 �nal states,
one for each kind of error.

We wrote this state machine into a script and we found the errors shown
in table 6.15, over 222 news articles we found 10 global structure errors, as
you can see 9 of the 10 errors are due to the absence of title and the other
one because TiMBL predicted 2 headings together.

Table 6.15: Errors found using post-processing

NEWS ARTICLE ERROR
www.dw-world.de-1-1303703710 no title

www.guardian.co.uk-6-1304190973 no title
edition.cnn.com-1-1304190973 no title

www.abs-cbnnews.com-1-1303999305 no title
news.bbc.co.uk-3-1303503657 2 headings together
edition.cnn.com-2-1304190973 no title
www.latimes.com-4-1304190973 no title
www.voanews.com-1-1303703710 no title
news.bbc.co.uk-1-1303703710 no title

www.guardian.co.uk-3-1303843291 no title

Thanks to this post-processing treatments, like the previous one, we can
have a kind of metric of the predictions, at least we can know which pre-
dictions are wrong in determined sense, for instance, we can know which

6.8. POST-PROCESSING 59

Figure 6.9: State machine that detect ill-formed structures

articles are badly predicted from the structure point of view. In section 6.7.2
we analyzed the e�ect of data size and we talked about the uselessness of
adding, as new training data, news articles that TiMBL predicts quite well.
The idea is that if TiMBL can predict these articles with high accuracy is
because there are already another ones in the training data with a similar
structure and format, so, the knowledge of the training system is not going
to improve. If we want to extend the knowledge we need to add articles in a
di�erent format or structure, and it means, articles that TiMBL can not pre-
dict correctly. But to know when the predictions of TiMBL are good or not,
without asking humans to check it, we need some metrics of the predictions,
and this is exactly what we have with this post processing treatment.

60 CHAPTER 6. EXPERIMENTS

Chapter 7

Discussion and conclusion

As presented in chapter 3 there are several approaches for automatic wrap-
per induction. In this thesis we have studied the performance of a speci�c
supervised classi�er, namely a memory-based learner.

We have used the same pool of training data in three di�erent ways:
within single news domain, merging domains and across new domains. The
di�erences in the global performance obtained with these three kind of ex-
periments reveal that the similarity between the training data and the test
data is very important, as is to be expected. If we could have a system up
to date with training data from all the sources we are interested in extract-
ing information from, the predictions could be almost perfect. However, we
know that this situation is unrealistic because it not only would involve a lot
of manual work and money, new sources are also appearing all the time, and
formats are changing slightly all the time.

We also have shown that the data size is an important factor in the per-
formance. Even adding data from di�erent sources, helps in the prediction
as we saw in section 6.3. It is important to notice that as we saw in �gure
6.7, increasing the training data is useful as long as we are adding examples
which have not been seen so far. The MBL approach implies that it is useless
to add training data with similar structure/format once we have reached the
asymptotic point shown in graphic 6.7. If the majority of the examples in
our training set match with the test �le, adding a new example that match
also, does not produce a signi�cant improvement on the performance.

61

62 CHAPTER 7. DISCUSSION AND CONCLUSION

We took all the training data from English sources, but after the features
construction we realized that we did not use any feature related speci�cally
to the English language, so this system can be extended to any other lan-
guage.

Another point of discussion is the consistency of the annotation, as we
said in section 4.1.1. There could be disagreements labeling the news arti-
cles, for instance, what is a heading and what is not. This could change the
results shown in the same way. So, the way to make the annotation could
be a discussion point if, some day, we wanted to extend this thesis and use
more than one person to annotate the data.

We think that the same approach can work for similar extraction from
web pages problems. The features we used to classify the elements of the news
article can be divided into html structure features and format features. This
kind of features could also identify the signi�cant data for many mining-web
problems like prices-mining, mining emailaddresses or telephone numbers etc.
This kind of problems could be studied following the same procedure used in
this thesis.

7.1 Future work

Although the experimental results are very encouraging, there are still some
issues that deserve further research.

One behaviour we have noticed during the optimization of the settings
(section 6.6) is that di�erent text elements have di�erent optimal feature
weighting schemes. This suggests that we can obtain further improvement
by building separate classi�ers for each prediction of the three text elements,
and combining them using a meta-classi�er.

The performance results and the learning curves obtained in the exper-
iment across new domains (sections 6.4 and 6.7.3) suggest that the perfor-
mance on the heading and title could be improved by adding more training
data. As we said, one of the reasons that makes the body performance higher
is that in each news article there are more examples of body than title or
heading, so we could say that there is more body training data than heading

7.1. FUTURE WORK 63

or body. Adding more examples is a very interesting future work.

During the construction of the learning curves shown in section 6.7 we
detected an inherent problem: the order we use to add the training �les.
Imagine that you have 3 �les, A, B and C. Using as training data the �le C
you can predict with 100 % of accuracy �les A and B, but A and B are quite
bad �les used as training data. If we run our experiment adding them in the
order A -> B -> C we will have worse results than if we add them in the order
C -> A -> B. With this little example we want to show that the learning
curves are conditioned by this e�ect. Anyway, this e�ect is quite important
with a small set of �les, the most �les we use, the less this e�ect is relevant.
One way to �x it could be to run several times the same experiment we did
to make the learning curves, but adding extra annotated �les in a random
order (rather than in a �xed order, as was done here). The average of this
executions would show us a more realistic learning curve.

We are also interested in continue work on post processes, as we said in
section 6.8. With this kind of treatment we can obtain a measure of the
quality of the predictions. In our problem, the unlabeled data are abundant,
but labeling them is time consuming. So it could be useful to label the raw
data with our learning system and use this quality metric to detect the ex-
amples badly labeled by the system. We can focus our human resources on
labeling these examples that really add knowledge to the system. This type
of iterative supervised learning is called active learning.

Even though there are many issues that require further research, we con-
sider our attempt to rephrase automatic wrapper induction as a general
memory-based classi�cation problem to be succesfull.

64 CHAPTER 7. DISCUSSION AND CONCLUSION

Chapter 8

Refences

- Walter Daelemans and Antal van den Bosch [2005]. Memory-based
language processing.

- Bing Liu [2007]. Web Data Mining: Exploring Hyperlinks, Contents,
and Usage Data.

- Davi Castro, Reis Paulo, B. Golgher and Altigran S. Silva. Automatic
Web news extraction using tree edit distance. Proceedings of World
Wide Web Conference (WWW04).

- Pierre Senellart, Avin Mittal, Daniel Muschick, Remi Gilleron and Marc
Tommasi, Automatic Wrapper Induction from Hidden-Web Sources
with Domain Knowledge.

- Ian H. Witten and Eibe Frank [2000]. Data Mining: Practical machine
learning tools and techniques with java implementations.

- Hahn, U. and Mani, I. [2000]. The challenges of automatic summariza-
tion

65

	Title Page
	Problem Description
	masteroppgave.pdf

