
June 2009
Anne Cathrine Elster, IDI
Magnus Lie Hetland, IDI

Master of Science in Computer Science
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Throughput Computing on Future GPUs

Rune Johan Hovland

Problem Description
The HPC community has devoted a great deal of attention to the general-purpose capabilities of
the Graphics Processing Unit (GPU). More recently, the potential of the GPU as a computational
device has also received attention in the Information Retrieval community. Large data volumes
and a focus on throughput are characteristic for applications within this area. A search engine
must handle large amounts of data, and most of this is fetched from disk, making data access a
substantial cost for these applications. The lack of streaming capabilities between host and GPUs
may limit the potential benefits of using GPUs in such applications.

This thesis should analyze GPU systems with respect to applications with large data volumes, and
suggest any improvements which can benefit these types of applications. Developing a theoretical
model for the improvements and if possible show gains for real-world applications, would be an
essential part of this work.

Assignment given: 15. January 2009
Supervisor: Anne Cathrine Elster, IDI

Abstract

The general-purpose computing capabilities of the Graphics Processing Unit
(GPU) have recently been given a great deal of attention by the High-
Performance Computing (HPC) community. By allowing massively paral-
lel applications to run efficiently on commodity graphics cards, ”personal
supercomputers” are now available in desktop versions at a low price. For
some applications, speedups of 70 times that of a single CPU implementa-
tion have been achieved. Among the most popular GPUs are those based on
the NVIDIA Tesla Architecture which allows relatively easy development of
GPU applications using the NVIDIA CUDA programming environment.

While the GPU is gaining interest in the HPC community, others are
more reluctant to embrace the GPU as a computational device. The focus on
throughput and large data volumes separates Information Retrieval (IR) from
HPC, since for IR it is critical to process large amounts of data efficiently, a
task which the GPU currently does not excel at. Only recently has the IR
community begun to explore the possibilities, and an implementation of a
search engine for the GPU was published recently in April 2009.

This thesis analyzes how GPUs can be improved to better suit large data
volume applications. Current graphics cards have a bottleneck regarding the
transfer of data between the host and the GPU. One approach to resolve
this bottleneck is to include the host memory as part of the GPUs’ memory
hierarchy. We develop a theoretical model, and based on this model, the
expected performance improvement for high data volume applications are
shown for both computationally-bound and data transfer-bound applications.
The performance improvement for an existing search engine is also given
based on the theoretical model. For this case, the improvements would result
in a speedup between 1.389 and 1.874 for the various query-types supported
by the search engine.

i

ii

Preface

This master thesis was written at the HPC-group at Department of Com-
puter and Information Science at the Norwegian University of Science and
Technology (NTNU). During the process of both the master-project, and
during this thesis, I have experienced the benefits and limitations with pro-
gramming on the GPU. Initially, I wanted to create a full-scale search engine
on the GPU, and to some extent this has been done, but the pitfalls and
difficulties with GPU programming made me focus more on what could be
done to improve this process. This thesis is an attempt to give recommen-
dations for improvements which would benefit those developing applications
with large data volumes.

To be able to complete this thesis, there are many people who deserve
my acknowledgement. First and foremost I would like to thank Associate
Professor Anne C. Elster, who through her guidance and supervision made
this thesis possible. Had it not been for her dedication towards building the
HPC-lab at NTNU, this report would not have been realized. In that regard,
I must also extend my gratitude to NVIDIA Corporation for donating most
of the graphics cards used throughout this report, through Elster’s member-
ship in their Professor Affiliates Program. Associate Professor Magnus Lie
Hetland and Øystein Torbjørnsen with Fast Search and Transfer have also
been of valuable assistance in pointing out focus areas. Jan Christian Meyer
has been a great assistance in the writing process of this thesis. I would also
like to thank Rune Erlend Jensen for beating even Google in quickly answer-
ing my many small questions. He and the rest of the HPC-group at NTNU
has been a valuable source of information and support during this period.
Finally, I would like to thank Eirik Ola Aksnes for enduring my many hours
of procrastination in his office.

iii

iv

Contents

Abstract i

Preface iii

1 Introduction 1

1.1 Outline . 2

2 The Graphics Processing Unit 3

2.1 The Graphics Processing Unit 3

2.2 General-Purpose Computing on GPUs 9

2.3 NVIDIA Tesla Architecture Performance Characteristics . . . 15

3 Modelling Next Generation GPUs 29

3.1 Expanding the Memory Hierarchy 29

3.2 Theoretical Model . 31

3.3 Performance Improvement . 36

3.4 Additional Improvements . 38

4 Case Studies of Information Retrieval 41

4.1 Search Engines . 41

4.2 Compression . 49

4.3 Case Study: Decompression of Inverted Index 55

4.4 Case Study: Query Evaluation 56

5 Conclusion and Future Work 61

5.1 Realizing the Improvements 61

5.2 Benefits of the Improvements 62

5.3 Future Work . 63

5.4 Final Thoughts . 64

Bibliography 68

v

A Annotated Reference 69
A.1 GPUs and CUDA . 69
A.2 Search Engines and Compression 70

B Articles and Posters 71
B.1 Branch Performance on the Tesla Architecture 71
B.2 NOTUR 2009 Poster . 78

C Test Systems 81

vi

List of Figures

2.1 The Tesla Architecture . 6
2.2 Historical CPU and memory performance. 10
2.3 Host- to Device-memory bandwidth 17
2.4 Computer system bandwidths 18
2.5 Data Copy hiding . 21
2.6 Host to device data transfer performance 22
2.7 Device-memory access performance 25
2.8 Registers and Shared memory access performance 26
2.9 CUDA-kernel instantiation cost 27
2.10 Branching performance in CUDA 28

4.1 Search Engine Architecture 42
4.2 Google Web Search frontend 45
4.3 Insertion in Document-Level inverted index 46
4.4 Insertion in Word-Level inverted index 47
4.5 Insertion in Block-level inverted index 48
4.6 Variable-Byte encoding example 50
4.7 Variable-Byte encoding size 52
4.8 PForDelta coding example . 54
4.9 Search engine speedups with caching 59
4.10 Search engine time usage . 59

vii

viii

List of Tables

3.1 Data-transfer latency variables 32
3.2 Data-transfer bandwidth variables 33

4.1 Golomb coding examples . 53
4.2 Compression performance . 56
4.3 Compression speedups . 57
4.4 Search engine benchmarks . 58
4.5 Search engine speedups without caching 58

C.1 GeForce GTX 280 machine specifications 81
C.2 GeForce 9300m machine specifications 82
C.3 ION machine specifications . 82

ix

x

Chapter 1

Introduction

Over the last years, the High Performance Computation (HPC) commu-
nity has devoted a great deal of attention to the Graphical Processing Unit
(GPU). Its general-purpose capabilities has given developers access to cheap
supercomputers in their own desktop computers. The GPU is capable of solv-
ing many computational challenges faster than modern CPUs due to its large
number of processors. Most HPC applications are computationally intensive,
which are tasks perfect for the GPU. This aspect has also been emphasized
by NVIDIA with their release of their personal supercomputer1 which consists
of four NVIDIA Tesla c1060 GPUs. This supercomputer is able to deliver a
performance close to 4 Teraflops. For comparison it can be mentioned that as
of November 2008 the 500th fastest supercomputer delivers 12.59 Teraflops2.
To exploit the GPUs fully requires problems with high computational density
allowing the cores to be fully occupied. For problems less computationally
intensive or bound by data bandwidths these supercomputers may not be the
best fit.

The field of Information Retrieval is a field with large data volumes and
computationally lighter applications than traditional HPC. For this reason
the GPU has not yet gained the status as a suited computational platform.
However, the WestLab3 research group at the New York University has cre-
ated a fully functional search engine [10] on the GPU with improved perfor-
mance. While a search engine often contains complex ranking schemes and
other calculations, it is still a application bound by the large data volumes
stored in a search index.

Handling large data volumes on the GPU is not trivial on current GPUs,
as there are certain limitations when developing such applications. All data

1http://www.nvidia.com/object/io 1227008280995.html
2http://www.top500.org
3Web Exploration and Search Technology Lab (http://cis.poly.edu/westlab/)

1

used on the GPU must be physically present on the GPU. This requires a
data copy and must be performed before the application can start. Results
from the GPU needed on the host must be copied back to the host after
the completed calculation. When handling large data volumes this can cause
critical delays which seriously impair the GPUs ability to compete with the
CPU.By introducing full streaming capabilities the GPU might be able to
remove most of these delays and efficiently handle large data volumes.

This thesis will suggest improvements that can be made to enable fu-
ture GPUs to efficiently support large data volumes, and ease the develop-
ment process of such applications. The NVIDIA Tesla Architecture and the
NVIDIA CUDA programming extension will be used as the representative of
current GPUs. The search engine created by WestLab is used as an example
of a large data volume application.

1.1 Outline

Chapter 2 gives the necessary background to understand the GPU and
its usage in general-purpose programming. This chapter also focuses on the
performance characteristics of the NVIDIA Tesla Architecture which is the
architecture that GPUs from NVIDIA are based on.

Chapter 3 starts with a suggestion to enlarge the memory hierarchy to
also include host-memory to allow the GPU to access this while execut-
ing the GPU-program and thereby enables interleaving of data transfer and
computations. This is then analyzed through a theoretical model and the im-
provement expected by this alteration is given. Finally, several other small
changes are suggested to improve the usability of NVIDIA CUDA in large
data volume applications.

Chapter 4 uses an existing CPU-GPU search engine [10] as a case study
for the improvements suggested in this thesis. By extracting benchmarks
given in WestLab’s article [10], the expected performance improvement is
calculated using the theoretical model.

Chapter 5 gives the concluding remarks of this thesis and summarizes the
suggested improvements and their benefits for large data volume applications
on GPUs.

2

Chapter 2

The Graphics Processing Unit

The Graphics Processing Unit (GPU) has over the last decade been used
to show computer graphics and other graphical related tasks. In the last
couple of years, the GPU has proven its capabilities of performing general-
purpose calculations as well. This chapter will give a brief introduction to
the GPU and its architecture, before the need for GPUs for general-purpose
calculations is discussed. Finally, this chapter will give an overview of the
performance characteristics of the NVIDIA Tesla Architecture for GPUs.

2.1 The Graphics Processing Unit

The GPU has recently been devoted interest in the HPC community due
to its possibility to perform general-purpose calculations using the graphics
pipeline. It is only recently that this has been possible to do efficiently.
This achievement is primarily due to the introduction of the Unified Shader
Model [6] which made the way for NVIDIAs Tesla Architecture [24, 23] and
ATIs Close To Metal [1].

2.1.1 Historic Retrospect

The GPU started out in the 1960s as a processing unit dedicated to ren-
dering graphics [7]. Graphically demanding applications such as Computer-
Aided Design (CAD) and computer games required more computing power
to draw their graphics than the computer could provide, and thus, dedicated
graphics systems were introduced. These systems also included specialized
hardware for converting 3-dimensional geometry into 2-dimensional images.
When the raster displays later replaced the previously used vector-displays,
the GPU had to include functionality to convert vector based graphics into

3

pixels. By the beginning of the 1980s, add-in graphics cards began to tar-
get personal computers and the video card was created. A decade later, the
graphics cards had become more common in personal computers, making the
need for standardization of the cards a necessity. The OpenGL1 and Direct
3D2 APIs came as a response to this need, allowing the developers to only
design for a given API instead of a wide range of graphic devices. Also in-
troduced in the 1990s was the specialized hardware to accelerate common
multimedia applications such as video playback. This constant demand for
new capabilities increased the graphics pipeline, making it a large and inef-
fective computational platform [7]. Even though the GPU at that time had
a large throughput, the specialized pipeline made the programs suffer from
bottlenecks as the pipeline could not efficiently adjust to the various needs
of graphical applications.

The fixed pipeline in the GPU should soon prove to be a bottleneck
for the graphics developers. Each application would have different need for
the various shaders provided in the pipeline, leaving computing resources
unused. As especially games requiring an ever increasing performance, this
is not ideal.

2.1.2 Unified Shader Model

Microsoft introduced Direct3D 10 [6] in 2006, which attempted to free the
GPU of its fixed-pipeline challenges. A key part of this specification was
Shader Model 4.0, which defined how each type of shader in the graphics
pipeline should be implemented. Instead of continuing the trend from ear-
lier years with different hardware for each shader, it was decided to use a
common core for all shaders. This was called the Unified Shader Model. Mi-
crosoft allowed the GPU-vendors to create a pipeline which used the same
components for all the shader-stages by basing each shader on the same core.
A GPU-architecture structured this way is called an Unifided Shader Archi-
tecture. By doing so, the computational power given to each stage in the
pipeline could be balanced based on the computational requirements of the
program, instead of being fixed by the GPU vendor.

2.1.3 GPU vendors

During the history of GPUs there has been many vendors providing GPUs.
However in today’s market, there are only two main competitors left; AMDs

1http://www.opengl.org/
2Part of DirectX (http://www.microsoft.com/directx)

4

subdivision ATI3 and the NVIDIA Corporation4. In addition to these two,
the Intel Corporation, Matrox, ARM and more are also manufacturing GPUs
but within other marked segments than the one required for the tasks cov-
ered in this thesis. While using different architectures for their GPUs both
ATI and NVIDIA mainly support the same features and both have general
computation capabilities through proprietary languages. Performance wise
comparison between the two GPU architectures is an impossible task, as the
two architectures excel in different areas, and constantly outperform each
other as newer models based on the architecture is launched. The fact that
proprietary languages have to be used to perform general purpose calculation
also complicates the comparison, leaving this a matter of personal preferences
and outside the scope of this thesis.

2.1.4 NVIDIA Tesla Architecture

The NVIDIA Tesla Architecture [23] is the approach NVIDIA chose in order
to implement the Unified Shader Architecture. It is an architecture which
consists of a varying number of Streaming Multiprocessors (SM) which is
a computational unit capable of performing all shader operations, as well
as general-purpose calculations. When designing a new GPU, NVIDIA can
duplicate the SMs in parallel to accommodate the computational needs of
the specific GPU-model as shown in Figure 2.1. As of January 2009, the
largest number of such SMs on a single GPU is 30, and can be found on the
high-end cards on the new 200-series5.

To differentiate more, the memory sizes on the card, clock frequencies, bus
width and other features can also be adjusted, but common for all NVIDIA
graphics cards as of the 80-series is the presence of one or more SMs. As
will be explained in the later section, there are some minor additions which
has been made to the SM in the 200-series, but the main architecture is the
same.

Streaming Multiprocessors

The Streaming Multiprocessor (SM) is the computational unit in the Tesla
Architecture [23], and is shown in Figure 2.1. It is designed in such a manner
that it can be duplicated to support the desired degree of parallelism. It
consists of:

3http://ati.amd.com/products/
4http://www.nvidia.com
5http://www.nvidia.com/object/geforce family.html

5

Figure 2.1: The Tesla Architecture (courtesy of NVIDIA).

Streaming Processors (SP) The eight Streaming Processors are the
units executing most of the instructions. They all execute the same in-

6

struction synchronously in parallel, and can execute both integer and single-
precision floating point operations.

Special-Function Units (SFU) The two Special-Function Units are de-
signed to perform the more specialized functions which are often used and
too demanding to perform using the simple instruction set available in the
SPs.

Shared memory The shared memory is used by the SM to locally store
the data required for the calculations. The Tesla Architecture does not imple-
ment a data-cache hierarchy, leaving the developer with the task of handling
locality of data.

Multithreaded Instruction Fetch and Issue Unit (MT Issue) The
instruction handling unit is responsible for fetching, decoding and issuing
the instructions to be run on the group of SPs. Each SM runs 32 threads
in parallel in what is called a warp. These 32 threads are run in groups of
eight, and all perform the same instruction synchronously in parallel.

Double-Precision Floating Point Unit In the newest series of GPUs
from NVIDIA, a single double-precision floating point unit to support higher
precision for scientific applications has also been included.

Memory Hierachy

The memory hierarchy on the GPUs consists of two levels [24], which allows
the developer to utilize data-locality to increase performance. Within each
Streaming Multiprocessor, there is a shared memory area, which is shared
between all the Streaming Processors. This memory offers a low latency data
access, well suited for frequently accessed data. To accommodate parallel
access by the SPs the shared memory is divided into memory banks [9, 15, 24]
which can be accessed in parallel, but access to the same bank is sequential.
Thus, if all threads executing in the SM access different banks, it will run
optimally, but once two or more threads try to access the same bank, there
will be a performance penalty.

The second memory level is the global, local and texture memory provided
by external memory [23, 24]. Even though it may seem as three memory
locales, it is the same physical memory, but when allocating it, one can
choose which type to use it as. This choice determines the behavior of the
allocated memory. For instance, the local memory is only accessible from the
allocating thread, while the global memory is globally accessible.

7

Dedicated and Shared Global Memory

The Tesla Architecture defines the layout of the processing elements and how
they interact. It also defines the size of shared memory and registers. The
global memory, however, is not defined in the architecture [24]. The only
thing specified is that the GPU can access the global memory through a set
of memory controllers. This allows the global memory to be a dedicated
memory on the graphics card, or a part of the local memory on the host-
machine. The difference is the price and performance, as dedicated graphics
memory is more expensive but also faster. On current graphics cards from
NVIDIA, the shared memory approach is only used on low-end graphics cards
typically found in media centers and laptops.

Program Execution

When executing a program on the GPU, the different threads the program
is composed of are grouped together in thread blocks of up to 512 threads
[24]. These thread blocks are distributed across the available streaming mul-
tiprocessors for execution. The SM then splits the thread block into warps
of 32 threads, which are executed in four groups. The reason for this exe-
cution mode is to allow the instruction unit to fetch, decode and issue its
instruction, a task which takes the equivalent of four instruction executions.
All the 32 threads still have to perform the same instruction, making the SM
a Single-Instruction-Multiple-Data processor (SIMD) [15, 24]. An effect of
this requirement is that if two threads within one warp have divergent paths,
the two paths must be executed sequential, giving a performance reduction
[17]. The threads not following the executing path are disabled during the
execution, leaving the integrity of the thread intact.

If a thread within a warp performs an IO-operation or for some other
reason is suspended, the SM can change to another warp, choosing among
all ready warps assigned to the SM.

2.1.5 AMD Stream Architecture

The AMD Stream Architecture is in many ways very similar to the Tesla
Architecture, but with some small differences [1]. The main component is
the SIMD Engine which can be compared to the NVIDIA Streaming Multi-
processor. The SIMD Engine contains a number of Thread Processors which
all execute separate threads, and like the Tesla equivalent, all execute the
same instruction. The number of Thread Processors in the SIMD Engine
varies among the different ATI GPU models. Each Thread Processor has a

8

separate local set of registers, in addition to the global memory shared among
the SIMD Engines. One key difference compared to the Tesla architecture is
that all the Thread processors have double-precision support and a unit for
handling special functions.

2.2 General-Purpose Computing on GPUs

Using the GPU for general-purpose computations can give the developers
access to great computational power. Since the CPU currently struggles to
improve the performance of sequential programs, parallelism is utilized to
speed up programs. The GPU with its 300 parallel processors is among the
largest parallel commodity processors. Utilizing this parallelism can give
great speedups and help overcome the brick wall.

2.2.1 The Brick Wall

As pointed out by Patterson et. al. in The Landscape of Parallel Computing
Research: A view From Berkeley [3], the sequential processor has reached a
brick wall. Today’s production techniques are incapable of maintaining the
prediction of Moore’s law and because of that CPU vendors have shifted their
focus away from increasing the clock frequencies. To overcome the challenges,
there are three problems which must be addressed, and together these form
the Brick Wall.

Power Wall As the processors computational power increases, so does its
power consumption. The CPU operates by switching electronic signals on
and off over a set of transistors. To increase its computational power one can
increase the number of transistors or increase the frequency of switching the
signal6.

Powerdynamic =
1

2
×Capacitive load×V oltage2×Frequency switched (2.1)

Powerstatic = Currentstatic × V oltage (2.2)

As can be seen in Equation 2.1 and 2.2 [15], both increase in the number
of transistors and clock frequency affects the power consumption of the CPU.
This increased power consumption also increases the heat emission, thereby

6More commonly called the clock frequency

9

Figure 2.2: The development in CPU and Memory performance. [15].

increasing the need for cooling, which also is a power demanding operation.
Today’s processors have reached the point where the cost of increasing the
power consumption outweighs the gains.

Memory Wall While the CPU until now have complied to Moore’s Law
and doubled its computational power every other year, the increase in mem-
ory access time has not kept up the pace, as can be seen in Figure 2.2.

To overcome this performance gap, memory hierarchies have been devel-
oped, utilizing several levels of cache to hide the high access times to larger
storages. However, these memory hierarchies add more complexity to the
CPU, and bring forth several new challenges, such as memory integrity.

ILP Wall Another approach heavily used to increase computational power
of a CPU is Instruction Level Parallelism (ILP) [15]. By analyzing the in-
structions, the CPU can find and execute instructions which can be per-
formed in parallel. The CPU can also speculatively execute branches and
loops. All these techniques require that the instructions to be performed in
parallel do not have data dependencies between them. Studies show that
the number of instructions which can be parallelized is limited [15, 3], thus
making ILP only a short-time solution to the need for more computational
power.

10

2.2.2 Parallelism

To overcome the brick wall, CPU manufacturers have chosen to utilize paral-
lelism, thereby increasing the number of processor cores instead of increasing
the clock frequency. To double the theoretical computational power of a
CPU, one only needs to double the number of cores. Managing multiple
cores in parallel in reality requires additional hardware management which
reduces the performance [15]. It also requires most programs to be rewritten
to support the use of parallelism [35], or else they will continue to utilize one
core and thus experience no increase in performance.

The use of parallelism is not a new concept within HPC, as most su-
percomputers use a large amount of CPUs spread across multiple nodes.
While this can be compared to running several cores within the same pro-
cessor, there are key differences. The overhead of communication between
the internal cores is much lower than between nodes, and allows for more
synchronization between the different threads and processes.

Still with lower communication cost between the different cores, the need
for specially designed parallel algorithms is present. Due to the communica-
tion patterns, the best serial algorithms may not be suited for parallelization.
Within most problems there is also a sequential section which is hard or im-
possible to parallelize [2, 35].

Amdahl’s law [2] gives the correlation between the speedup of a parallel
algorithm over the serial version, based on how large a portion of the algo-
rithm which can be parallelized. In Equation 2.3 the speedup is given by the
ratio of sequential code rs in the algorithm, and the number of processors n.
Also given is that rs + rp = 1 where rp is the ratio of parallelizable code.

Speedup =
1

rs + rp

n

(2.3)

Amdahl’s law states that the performance gain from adding more proces-
sors in parallel will eventually reach zero as more and more processors divide
the work among themselves. Thus, at some point the workload will be so
little for each processor that the serial part of the execution dominates the
running time. While this has been used by some as an argument against par-
allel computing, there are many problems which benefit greatly from parallel
processing even though they do not scale to several thousand processors.

2.2.3 Using GPUs for General-Purpose Computation

The idea to use the GPU for general purpose computations is not new. Since
the first programmable shaders were made available, the GPU has in some

11

sense been able to perform such computations [7]. However, utilizing the
computational power has not been easy since the GPU was not designed
with such use in mind. A computation which was to be run on the GPU
had to be transformed into a computation that would fit the fixed pipeline
of the GPU [28]. For example, this could be done by storing all the data
as textures which were applied to a single polygon covering the screen. The
pixel-shader could then be programmed to alter the values of the pixels based
on the neighboring pixels and by this for instance simulate the Game Of Life
[12, 13]. Another problem with this approach was that these calculations
had to be expressed using either OpenGL or Direct X and their respective
shader languages. This mixture of two different fields of expertise would also
prove to be a challenge, since the common HPC-programmer did not have
the skills required to develop such a program, and the graphics developers
may not have the understanding of HPC-problems and algorithms.

One approach was to remove the graphics aspect from the development
process by developing languages which hides the graphical aspect of the com-
putation [28]. By this, the language allows the developer to create normal
programs which are then compiled into a graphical program. BrookGPU7

and Sh8 are examples of such languages.
The main problem with the approach of hiding the graphical computation

was the fact that the computations were still converted to graphical compu-
tations, and thus required a well written compiler to successfully convert all
programs while maintaining correctness and performance.

Another approach, which has become more popular, is to give direct ac-
cess to the hardware through vendor specific languages [7, 28]. AMD Stream
SDK9 (successor of ATI Close To Metal) and NVIDIA CUDA10 both com-
pile directly to instructions which is run on the shader units. This approach
eliminates the conversion between general program and graphical program,
and thus removes some of the complexity and pitfalls. Another advantage is
that the language can be simpler and it avoids some of the language artifacts
which the convertion to graphics code may impose on the language.

2.2.4 NVIDIA CUDA

NVIDIA has launched CUDA [24], a programming language extension for C11

alongside with its Tesla Architecture. This extension enables the developer to

7http://graphics.stanford.edu/projects/brookgpu/
8http://libsh.org/
9http://developer.amd.com/gpu/ATIStreamSDK/

10http://www.nvidia.com/cuda
11A general-purpose programming language.

12

access and use the shaders for general-purpose computation. The distinction
between the architecture and CUDA is not clear, as NVIDIA often refers to
possibilities and limitations as if they were properties of CUDA rather than
the Tesla Architecture.

Kernel

The CUDA programming model builds around what NVIDIA calls kernels
[24], which are methods executed on the GPU. These kernels are written
under the Single-Instruction-Multiple-Threads paradigm, which allows the
programmer to develop code which closer resembles sequential code which
CUDA then runs in parallel. The level of parallelism is given as parameters
to the kernel using a special syntax.

To declare a kernel one indicates this by using a new function type qual-
ifier provided by CUDA. There are three such qualifiers.

global indicates that a method is to be compiled into a kernel and
executed on the GPU. It also states that the kernel is callable from the host.

device also gives that the method is to be executed as a kernel on the
GPU. The main difference from the global qualifier is that this kernel
should only be callable from within other kernels.

host is a qualifier stating that the method should be executed on the
host, and has thus no effect when used alone. However, if the host

qualifier is combined with the device qualifier, the method is compiled
into both a method on the host and a kernel on the GPU which in many
situations may be beneficial.

A kernel may be called in the same manner as a method, except that
there are some additional parameters that must be given. These parameters
specify the level of parallelism and are supplied through a special syntax
added to the method-call. As can be seen in Listing 2.1, the syntax uses
<<< Dg, Db, Ns, S >>> to specify the parameters. The Dg and Db pa-
rameters respectively specify the number of blocks and number of the num-
ber of threads within each block. Both these are x,y,z-vectors allowing a
3-dimensional grid to be constructed for over the threads in the block, while
the blocks may be laid out in a 2-dimensional grid. Ns and S are optional
parameters, giving the size of the dynamically allocated shared memory for
each block, and the stream which the execution should be assigned to.

13

// Kernel
g l o b a l void vecAdd (f loat ∗ A, f loat ∗ B, f loat ∗ C)

{
int i = threadIdx . x ;
C[i] = A[i] + B[i] ;

}

int main ()
{

// Kernel invoca t i on
vecAdd<<<1,N,0,0>>>(A,B,C) ;

}
Listing 2.1: CUDA kernel example. [24]

Memory

The memory on the Tesla Architecture [24] is, as explained in Section 2.1.4, a
two layered hierarchy with a large global memory and a smaller shared mem-
ory on each Streaming Multiprocessor. Any data which is to be processed
on the GPU must first be copied from host-memory onto the GPUs global
memory before it can be further distributed to where it may be needed. The
results must also reside in global memory to be accessible for retrieval from
the host.

To allocate memory on the GPU, special functions provided by CUDA
must be used. One of these is cudaMalloc which allocates a continuous
part of memory for the application. There are other methods as well which
allocate memory optimized for various access patterns such as 2-dimensional
grid. Once the memory is allocated, data can be copied to and from the
GPU using cudaMemcpy.

On the GPU the global memory can be accessed using normal C-syntax,
but due to the high access cost for global memory, one wishes to use the
shared memory as a sort of cache. To allocate shared memory one can
initialize a variable with the shared qualifier. By doing so the variable is
stored in the shared memory and is only accessible from within the thread-
block.

Execution

The CUDA kernel [24] is executed in parallel on one or more Streaming Mul-
tiprocessors depending on the launch configuration. Once a kernel is started,

14

there may be need to synchronize the execution, and this can be done using
syncthreads() within a thread-block. It is not possible to synchronize var-

ious blocks, but this effect can be achieved by splitting the kernel in two and
waiting for all blocks to finish the first kernel before initializing the second.

During execution there are also a number of variables accessible to the
program which contain information about the execution. The variables
gridDim and blockDim contain the size of the grid of blocks and threads
within each block. To identify a thread, blockIdx and threadIdx contain
the id of the block and the thread with respect to the block. By using these
variables one is encouraged to create code which scales well over a various
number of blocks and threads.

2.3 NVIDIA Tesla Architecture

Performance Characteristics

While the GPU allows general-purpose calculations to be performed, it is
not a fully general-purpose processor [7, 28], and thus has a bias towards
graphics processing. This bias has made the architectural designers make
certain tradeoffs with regard to performance to create the optimal GPU for
what NVIDIA considers to be its main markets. This section will shed light
on some of these performance characteristics.

2.3.1 Host to Device Transfers

When using a GPU for computations it usually requires data as input and
in most cases produce output data. These data must be copied to and from
the GPUs memory, since the GPU is unable to access the host memory while
performing the calculations. This copy operation can be costly in many
applications, especially for data intensive calculations.

Direct Memory Access

In modern operating systems there are great memory requirements, but the
physical memory may not be sufficient. To allow programs to use more
memory than physically available, paging has been introduced as a feature
[15]. Paging allows memory to be swapped out to a hard-drive when it is
not needed, and thereby freeing physical memory for other uses while still
maintaining the integrity of the virtual memory. There is a major drawback
with this technique, and that is that only the operating system knows the
exact location of a memory segment since it may be moved around due to

15

memory swapping. In situations where an exact memory location is needed,
page-locking can be used. This is mostly used when using Direct Memory
Access (DMA) [33], since DMA allows memory copies to be handled by a
DMA handler instead of the CPU.

Transfer to GPU

All copy operations between host memory and device memory requires the
use of DMA [27]. Since most memory locations are not DMA accessible,
there are two techniques which can be used. The first solution is to store all
data which will be used on the GPU in page-locked memory locations. This is
not always feasible since page-locked memory locations are a scarce resource.
The other option is to copy the data to a page-locked memory location before
copying it to the GPU. This approach requires an extra memory copy which
can be costly. When to use the which of the two techniques depends on the
usage of the data. For data which will be copied often to the GPU it may
be best to use dedicated page-locked memory, while for a one-time copy one
may just as well use the second technique [16].

In CUDA both techniques is supported automatically based on which
type of memory location that is given to the copy-instruction [24]. By de-
fault, a pageable memory location is given when using the standard C/C++
command malloc, and if such a memory location is given to the copy in-
struction in CUDA, it will copy the data to a page-locked memory location
before copying it to the GPU [27]. To allocate a page-locked memory location
CUDA provides a method cudaMallocHost.

Which situations to use the two techniques may wary from application
to application, but the measured bandwith when using the techniques in a
simple test-case can be seen in Figure 2.3

Architectural Differences

The Tesla Architecture [24] allows the GPU to have its own dedicated mem-
ory or using a section of the host-memory as device memory. While these two
approaches yield no difference for the developer, it may have an impact on
performance, as the dedicated memory usually has higher performance. This
can be seen in Figure 2.3 where there is a clear advantage to the NVIDIA
GTX 280 card with dedicated memory over the NVIDIA 9300m and ION
which uses local memory.

16

Figure 2.3: Bandwidth for transfers from host to device memory.

2.3.2 Data Access

In large data volume applications, the data may be to large to fit in memory
and hard-drives must be used. This means that any data which should be
used must be read into main memory before it can be used. If this should
be done on the GPU, it is even more cumbersome, since it must first be read
into memory, before being copied onto the memory of the GPU [33, 24]. The
results calculated at the GPU must also be copied back to the host-memory
if it is to be used further by the CPU.

Modern hard-drives are considered to be the bottleneck of any application
operating over large datasets. The highest transfer rate12 found for sustained-
read for a hard-drive was 171MB/s13 which is fairly low considering the
memory bandwidth of the new Intel Core i7 processor14 which is 25.6GB/s.
To give a illustration of the speed difference, the transfer speeds between
the various components in the computer is shown in Figure 2.4 where the
bandwidth is given as the width of the connector. Also displayed in the figure
is the bandwidth of data transfers to and from the GPU which was found to
be close to 6GB/s [16].

12Solid-State Drives may achieve higher rates
13http://www.seagate.com/docs/pdf/datasheet/disc/dsi cheetah 15k 6.pdf
14http://ark.intel.com/cpu.aspx?groupId=37147

17

Figure 2.4: Bandwidth between computer components given by the size of
the connection.

Determining the Transfer Time

This thesis focuses on possible approaches which can improve the perfor-
mance of high data volume applications through accelerating the data access
made to the data structures. We introduce T which is the time required to
retrieve an entry in the data structure.

T = LHD +
S

BHD

(2.4)

The time required can be expressed as a function of the hard-drive latency
LHD, size S, and hard-drive bandwidth BHD of the data transfer as given
in Equation 2.4. This equation describes the simplest form of data access
where the data is stored uncompressed on a single disk. Once read, it is
stored directly in the location where it will be used.

Introducing Compression

To reduce the impact of the hard-drive transfer rate, one can use compression
thereby reducing the size of transferred data. Compression will be discussed
in detail in Section 4.2. This compression reduces the time required to trans-
fer the data, but introduces a computational step which decodes the data
and copies it over to the final memory location. The new equation for the
time required to access the entry which takes into account the time Ccomp

required by the added computational step and the compression ratio Rcomp

is given in Equation 2.5.

T = LHD + S · (Rcomp

BHD

+ Ccomp) (2.5)

The second case can be used to describe the first case by setting Rcomp = 1
and Ccomp = 0 which gives Equation 2.4. Because of allocation of an extra

18

memory location and initialization of the computation, there is an added
component to the latency but this can be neglected.

Offloading to the GPU

The third step is to offload the decompression of the data to the GPU. By
doing so, the CPU will be free to do other computations, and the GPU can
utilize its many processors to decode the data. By introducing the GPU as
an accelerator, there are a number of added complexities. First of all, the
data has to be copied from memory and over to the GPUs memory. Second is
the decompression stage in the same manner as with the compression on the
CPU. After the decompression is completed, the uncompressed data must be
copied back to the host-memory. The initialization of the GPU-kernel and
allocation of memory on the GPU can be summarized into an GPU latency
LGPU , and the bandwidth to and from the GPU is given as BGPU . The
total amount of data copied to and from the GPU is S ∗ (1 + Rcomp). The
equation for the time required to access the data when using the GPU for
decompression is given in Equation 2.6.

T = LHD + LGPU + S · (Rcomp

BHD

+
1 + Rcomp

BGPU

+ Ccomp) (2.6)

Focusing on Throughput

A search engine [5] can be considered to focus on High-Throughput Compu-
tation (HTC) rather than a High-Performance Computation, as long as the
latency of a single query is below a certain threshold. This query-latency is
the time from the query is given until it is answered. There are many com-
ponents of this latency, and the retrieval of the index-entry is one of them.
By offloading the decompression to the GPU, the CPU is free to perform
other tasks, and the overall throughput of the system may increase even if
the time required to fetch an index-entry may increase.

Optimizations

When using the GPU to accelerate the decompression of the data, the data-
copy between memory-locations is a bottleneck which may be a problem when
trying to achieve good performance. The first and most obvious approach
to alter the process is to remove the need for a temporary place to store the
data between the hard-drive access and the copying to the GPU. This is not
possible yet, as the GPU is incapable of reading directly from the hard-drive,
and the hard-drive is unable to write to the GPUs memory.

19

When memory is copied to the memory of modern GPUs, the CPU in-
forms the GPU of where to find the data in the host-memory, and the GPU
then uses DMA to access the memory location [27]. This is the same ap-
proach as the hard-drive uses when a file on the drive is accessed. In this
case the hard-drive is informed that the CPU wants a certain file, and the
location in which the content of that file is to be placed. The hard-drive
reads the file and stores it to the given memory location using DMA. If the
GPU were able to read directly from the disk, or the disk was able to write
to the GPUs memory, then the time required to fetch the data would be as
given in Equation 2.7. Due to the much higher bandwidth to the GPU than
the bandwidth to the hard-drive, it can be reduced to Equation 2.8.

T = LHD + LGPU + S · (Rcomp

min(BHD, BGPU)
+

1

BGPU

+ Ccomp) (2.7)

T = LHD + LGPU + S · (Rcomp

BHD

+
1

BGPU

+ Ccomp) (2.8)

To mimic this effect, it is possible to perform most of the transfer to
the GPU parallel with the transfer from the hard-drive. This is done by
dividing the transfer into n parts, and start to copy a part to the GPU
asynchronously as soon as it is read from the hard-drive. By choosing the
right size to partition the transfer into, the extra time needed to copy data
to the GPU would only be equal to the time needed to copy the final part,
giving Equation 2.9. This approach would give the effect seen in Figure 2.5.

T = LHD + LGPU + S · (Rcomp

BHD

+
1 + Rcomp

n

BGPU

+ Ccomp) (2.9)

The operation of copying of the result to the host-memory is more cum-
bersome to remove, since it will be used by other parts of the system, and
its lifespan may not be known. It is therefore beneficial to free its memory
location on the GPU and instead maintain it in host-memory which is more
cost-efficient.

Memory Mapped Files

The last approach which can be considered is to use Memory Mapped Files
which is specified in POSIX [20] through mmap(). This is a technique which
creates a memory pointer to a Virtual Memory location in which the file is
mapped. In this way, the file can be accessed as if it were residing in the
memory, and the task of actually supplying the data is left to the operat-
ing system. By choosing this approach, the programmer can utilize efficient

20

Figure 2.5: Mimicking GPU read from hard-drive by hiding data copy be-
tween host- and GPU-memory.

prefetching and caching on an operating system kernel level rather than man-
aging the task itself.

Preliminary Performance Analysis

To determine if either of the two proposed improvements (data copy hiding
and memory mapped files) would give improved performance over the basic
approach, a test case was developed. By measuring the time each of the three
approaches use to read data of various sizes from file and make it accessible on
the GPU, an indication on the performance gain by the improved approaches
could then be found. In Figure 2.6, the speedup of the two improvements with
regard to the simple approach is given. As one can see, the memory mapped
files obtains much better performance than the other two approaches. The
hiding of data copy approach does not achieve noticeable speedups. This
might be due to an added cost of initializing multiple file reads and data
copies.

2.3.3 GPU Memory Access

Data stored on the GPU is kept in memory which must be accessed by the
processors when the data is needed. The Tesla architecture [24] provides sev-
eral alternative approaches to both storing and accessing the data in memory.
These different approaches are tightly bound to the memory structure on the
GPU, and also customized to benefit certain access patterns and uses. Some
of these access patterns may be intended for graphical purposes only, but can

21

Figure 2.6: Speedup of data transfers to the GPU using Memory Mapped
Files and parallelizing transfers to mimick GPU read from hard-drive.

be utilized to speed up memory access in general-purpose applications [24].

Memory Hierarchy

The memory on the GPU is, in the same manner as on the host [33, 24, 15],
divided into a hierarchy of memory locations with different properties. This
division is to better balance price versus performance of the GPU, since
high speed memory is expensive and large quantities of such memory would
make the GPUs too expensive for common use. To accommodate both high
bandwidth and large memory storage capacity, several levels of memory are
used. The lower levels provide the large storage space, while the higher levels
provide high bandwidth. By carefully choosing which data is stored in the
higher levels, most data access only needs to access the higher levels and
thus achieves high performance. This technique is called caching. If data is
not found in the higher levels, the lower levels must be accessed and what is
called a cache miss occurs [15]. A high number of cache misses reduces the
overall performance due to the longer access time.

Global Memory

On the GPU there are two levels in the memory hierarchy [24]. The large
storage capacity is provided by the global memory which on the high-end
GPUs reaches four gigabytes in size. When data is copied from the host

22

memory onto the GPU, it is copied into this memory. An access to this
memory is slowed down by a latency between 400 and 600 clock cycles [24],
and is thus not able to fulfill the role as high bandwidth memory. To improve
performance, global memory allows memory access to adjacent addresses to
be grouped together into one read or write operation. This approach is called
coalesced read and write operations.

Coalescing A coalesced memory access [23, 24] is multiple memory ac-
cesses grouped into one access. This can be performed by the 16 threads
in a half-warp if they at the same time wishes to access 16 32-bit memory
locations residing adjacent in the global memory. In the first version the
requirement was that thread n accessed the n’th memory address within in
the segment. This initial requirement has been loosened and now the re-
quirement is that all accesses are within the memory segment. It can also be
coalesced access to 16 64-bit memory locations, but this is then divided into
two coalesced memory accesses.

One of the first things to optimize in a CUDA program is the access to the
global memory, since its large latency can drastically reduce the performance
of an application [24, 23].

Texture Memory

When using the GPU for graphical applications it is common to do many
computations on textures, and the GPU therefore has special functionality
[24, 7] to improve the performance of such calculations. The textures are, as
other data, stored in the global memory, and no distinction between the two
types is made. However, defining data has one major benefit, and that is the
added functionality the GPU provided for access to texture data.

Caching On a Streaming Multiprocessor there is also a memory location
named Texture Cache [24]. This is used by the GPU to automatically cache
texture data. One can leave the job of caching to the GPU by by defining the
data as texture. The texture cache is eight kilobytes large, and by utilizing
this cache as well as the shared memory and registers, there is more data
which can be stored higher in the memory hierarchy. One major disadvantage
with the texture memory is that it has no support for write-back [24, 15].
If a texture it altered during run-time, it is undefined if that change would
be visible to all blocks. Data is already cached it must be thrown out and
fetched again for the change to appear, which is not possible to force. The
only way to be certain that a write to the texture memory is propagated
through the system is by restarting the kernel.

23

Constant Memory

The constant memory [24] is cached in the same manner as the texture
memory, and thus it is able to supply data fast to the kernels. The constant
memory is, as the name implies, meant for constants needed during execution.
It is therefore read only, and often too small for other uses with its total size
of 64 kilobytes.

Registers and Shared Memory

To accommodate the need for high performance memory, the registers and
shared memory are included on the GPU [24]. These located on the Stream-
ing Multiprocessor, and are only accessible from within the thread-block.
The registers are intended for storing currently used variables, and there are
either 8192 or 16384 32-bit registers available depending on the GPU model.
The shared memory is, as the name implies, shared between all the threads
in a block, making it ideal for storing data needed by multiple threads, or
data exchange. The size of the shared memory is only 16 kilobytes in current
versions of the Tesla architecture.

Banks Both the shared memory and the registers are divided into 16 seg-
ments called banks [24, 15]. This division allows parallel access to the in-
dividual banks. The number of banks matches the number of threads in a
half-warp, allowing concurrent access by these threads if the access maps one-
to-one between the threads and the banks. If two or more threads access the
same bank, each access will be processed in sequence, causing a performance
hit [9].

Correct use of shared memory and registers are essential for obtaining
good performance, as these memory locations are intended for high speed
access, and can be used by the developer to manually implement caching.

Sequential Read Performance

To show the most beneficial location to store data used by GPU application,
a simple test has been created. It reads a data set sequentially and measures
the average time needed to access each memory location. The test has some
overhead due to instructions using the data and looping, but this overhead
is equal to all tests, and does not affect the ranking of the different memory
locations. Four different approaches are tested. The first is reading directly
from global memory with coalesced reads into a register. The second and
third use shared memory to read the data into before using it. The difference

24

(a) Various datasizes

(b) Average

Figure 2.7: Cycles needed for data access using different access approaches.

is that the third prefetches multiple data before using these data. The fourth
approach is to use texture memory.

As can be seen in Figure 2.7, the use of texture memory is most suited for
sequential reads. This is most likely due to the fact that the GPU handles
the caching which reduces the number of explicit instructions. The reason
why the prefetching into shared memory is slower is the large overhead of
control instructions to handle situations when the buffer does not divide the
data size.

Repeated Read Write Performance

While there is a large penalty for accessing memory in a lower level of the
hierarchy [24], these accesses are more rare than accesses to the higher levels
[15]. The GPU provides two high-level memory alternatives which can be
read and written, the shared memory and the registers. These memory loca-
tions will be used for temporary variables and other often used data, and may
be read and written often. Therefore, a test to determine the average cycles

25

Figure 2.8: Average cycles needed for read and write data access to registers
and shared memory.

needed to read and write to these areas is created. It performs some read
and write instructions multiple times against the same location and measures
the average cycle count. There is an overhead from looping included in this
measurement, but it stills clearly shows which memory location give the best
performance.

In Figure 2.8 one can see that the registers have lower access time than
the shared memory. Since the shared memory is accessible by all the threads
in the thread-block, the GPU must handle the cases when multiple threads
access the same address, while the registers are private for each thread. This
added complexity may be the reason for the higher access time.

2.3.4 Kernel Initialization

All computation on the GPU is performed using kernels. These are essen-
tially methods which is compiled to device specific instructions [24]. Many
problems can be solved using a single kernel which is initialized a single time,
but some problems may require more complex calculations which do not fit
in a single kernel or requires multiple kernels to complete [9].

Kernel Size Limitations

The GPU performs a number of instructions in the same manner as the
CPU. The main difference is that the GPU does not have access to the file
in which the program is stored. Therefore any program which runs a kernel
on the GPU must first upload the instructions in the kernel to the GPU,
then instruct the GPU to execute the kernel. This kernel must be stored
on the GPU for the duration of the execution, and this storage space is of a
finite size. Due to this limitation, each kernel may only be up to a certain
number of instructions and large calculations may therefore need to be split
into multiple kernels. When switching between two kernels too large to fit in
instruction memory simultaneously, the old kernel must be removed before
uploading the new kernel. If each kernel is run for a long time, this kernel

26

Figure 2.9: Cost of dividing a calculation into multiple kernels.

switching may not have a noticeable impact on the performance, but the case
where each instruction in the kernel is executed only a few times, this may
prove to be a noticeable factor in the performance.

Kernels and Streaming

For applications operating on large data volumes, it may not be possible to
fit all the data on the GPU at one time. In this case, the data must be
processed in batches by a kernel running once for each batch. This approach
requires multiple initializations of the kernel which may contribute to a lower
performance. The much impact this has on the performance can be seen in
Figure 2.9, where a simple problem has been divided into different number
of kernel calls.

Applications which handle streaming data such as audio stream filters
may receive data on a regular basis and call the same kernel repeatedly with
different data. For such applications, kernel initialization cost can influence
performance.

2.3.5 Computational Characteristics

The streaming multiprocessor is capable of performing a lot of different in-
structions, but there are pitfalls which can reduce the performance [24, 9].
Most of these are related to the need for precision, as CUDA provides faster
instruction with lower precision. Also, costly operations as modulo and divi-
sion should be avoided, and replaced with cheaper instructions when possible
[24].

Another important consideration to make is that the Tesla Architecture is
a hybrid of Multiple-Instruction-Multiple-Data and Single-Instruction-Multiple-
Data architecture. This affects the performance of the application when

27

Figure 2.10: Average cycles needed for running a single instruction branching
10.000 times.

branching occurs within a warp. Since the Streaming Processors within a
Streaming Multiprocessor must execute the same instruction, any branching
must be handled by serializing the branches [17]. The effect of branches can
be seen in Figure 2.10, and this effect is discussed thoroughly in the article
included in Appendix B.

28

Chapter 3

Modelling Next Generation
GPUs

When suggesting an improvement to an existing architecture, it is vital to
point out the benefits of making the improvements. The approach chosen
in this thesis is to create a theoretical model for both architectures and
show mathematically how the performance would change with the suggested
improvements

While it is easy to measure the performance on an existing architecture,
measuring the performance on the suggested architecture would require creat-
ing a simulator for the architecture or actually manufacture the architecture.

In the first section, the main improvement suggested in this thesis is
presented. It describes how the memory hierarchy of the Tesla architecture
should be expanded. A theoretical model for the current and improved Tesla
architecture is presented in the following sections, before the performance
gain for the improvement is found in Section 3.3. Finally, a number of minor
changes to the Tesla Architecture and CUDA which will improve the usability
for developers of large data volume applications are given.

3.1 Expanding the Memory Hierarchy

The current Tesla Architecture allows the GPU to have its own dedicated
memory or using a part of the host memory as device memory. Any data
which is to be used by the GPU must be copied into device memory before a
kernel is initialized. Any results from the kernel must be copied back to host
memory after execution. These requirements forces any CUDA application
to contain three steps; data-copy to device, execution and data-copy from
device. While this approach may not seem like a problem in most cases, there

29

are cases in which this may create extra complexity for the developers. When
transferring large amounts of data between the host and device memory, it
may be beneficial to start computations before all the data is located on
the GPU. The current Tesla Architecture allows this to be done by using
streams, where both the data transfers and computations are divided into
batches which are performed in an overlapping manner, thus hiding some of
the data transfer cost. However, as seen in Section 2.3.4, initializing multiple
kernels is a costly operation.

3.1.1 Accessing Host-memory

Allowing the kernel to directly access the host-memory removes the need for
host to device transfers in most cases. Syntactically this would be similar to
accessing any other memory location on the GPU, but it would have a higher
cost in terms of lower bandwidth and higher latencies. It would therefore be
up to the developer to reduce the number of accesses to host-memory to a
minimum by pre-fetching data into device memory such as global or shared
memory.

By allowing direct access to host-memory, the global memory would still
maintain its role as a level in the memory hierarchy of the GPU, but it would
be simpler to use it efficiently in a wide range of applications.

For an application with large volumes of data, this possibility to access the
host-memory directly would remove the need to divide the calculation into
several kernel executions when the data exceeds the size of device memory.
With the direct-access approach, the kernel can simply fetch more data into
the device memory, while discarding used data without the need to return
control to the CPU.

3.1.2 Customizing Memory Hierarchy

When allowing direct access to the host-memory from the kernel, it practi-
cally adds another level to the GPUs memory hierarchy. This added layer
will change the usage of the device-memory since it would allow for more
data access patterns. Through the added layer of GPU memory, the need
for large device memory locations will be more individual. One can thus
envision a more customizable device memory on the GPU to tune the size
to the individual needs. Since the GDDR memory used in GPUs is more
expensive than DDR memory used for local memory, this customization of
memory hierarchy would allow for more cost-efficient installations. It will
also allow for the GPU to utilize larger memory when computing

30

3.1.3 Combining Dedicated and Shared Memory

If enabling customizations of the memory hierarchy is not feasible, there is
another approach which seems easier to implement since most aspects needed
exists in current GPUs. By allowing the GPU to use both dedicated and local
memory as device memory, but dividing them into two distinct levels in the
memory hierarchy, the same effect can almost be achieved. It would, however,
require that the CPU also has write permissions to the host-memory used as
device-memory, and that all data which the GPU will use is stored in this
memory location.

3.1.4 Caching Problems

When using either of the two approaches for kernel access to host-memory,
there will be issues with CPU caching that must be resolved, since the data
stored in the host-memory may not be the valid version due to cache and
delayed write-back. These problems are assumed solvable in this thesis.

3.1.5 Zero-Copy in CUDA 2.2

Zero-Copy is a feature which will be introduced in CUDA version 2.2 [25, 26].
Its main purpose is to allow the user to do, to some extent, what is suggested
in this chapter. By allowing the user to access page-locked memory from the
GPU, the need for copy prior to and after kernel execution can be eliminated.
It is a major drawback that only page-locked memory can be used for the
purpose, as page-locked memory is a scarce resource, and the developer may
still be required to do extra copy operations if there is extensive memory
usage on the host.

3.2 Theoretical Model

This section gives a theoretical model for the capabilities possible with the
extended memory hierarchy suggested in the previous section. We will first
present the model for the current architecture, and then introduce the ex-
tended memory hierarchy.

3.2.1 Variables and Assumptions

To be able to create a theoretical model describing the Tesla Architec-
ture, there are several variables describing different bandwidths and latencies
which must be defined. Some assumptions and simplifications must also be

31

made to make the task feasible, as it would be practically impossible to ex-
actly describe the architecture mathematically, due to the large number of
variables and characteristics involved in a actual architecture.

Latency

Every data transfer operation and computational task has a startup cost
called latency, which is the time from the instruction to start the operation is
given until it actually commences. When performing calculations on the GPU
there are several such latencies which occur as data transfer is conducted,
and these are given in Table 3.1. In addition there is also a latency lgpu when
starting a computation on the GPU.

Table 3.1: Latencies of data transfers to, from and on the GPU

Latency From To
lm→gm Local memory Global memory
lgm→m Global memory Local memory
lgm→r Global memory Register
lr→gm Register Global memory
lr→gpu Register GPU Streaming Processor
lgpu→r GPU Streaming Processor Register
lm→r Local memory Register
lr→m Register Local memory

To simplify the model slightly an assumption is made that the latencies of
a data transfer are symmetric, which means that the same latency is assumed
for data transfers in both directions. This is given in Equation 3.1.

lA↔B = lA→B = lB→A (3.1)

Bandwidth

There are several data transfers between host memory and device memory
and also within the GPU. All these data transfers occur over various con-
nections with different bandwidth. Since all of these can affect performance,
each is taken into the theoretical model. These variables can be seen in
Table 3.2.

In addition to the bandwidths between memory locations, there is also
a speed with which the GPU can process the data it is provided. This will

32

Table 3.2: Bandwidths of data transfers to, from and on the GPU

Bandwidth From To
bm→gm Local memory Global memory
bgm→m Global memory Local memory
bgm→r Global memory Register
br→gm Register Global memory
br→gpu Register GPU Streaming Processor
bgpu→r GPU Streaming Processor Register
bm→r Local memory Register
br→m Register Local memory

be considered as a bandwidth denoted bgpu. It is not a direct property of
the architecture, but rather a mixture of the architectural properties and the
application executing on the GPU.

To simplify the model slightly, certain assumptions regarding the band-
widths are made. The main assumption seen in Equation 3.2 is that the
bandwidth between two memory locations is the same in both directions.

bA↔B = bA→B = bB→A (3.2)

The other assumption is that the bandwidth decreases for each level in
the memory hierarchy, as can be seen in Equation 3.3.

bm→gm < bgm→r < br→gpu (3.3)

The final assumption made to give an expected bandwidth of transfer
between local memory on the host and the registers on the GPU. Since this
can not be measured, it is assumed to be equal to the lowest bandwidth
occurring on the normal path from local memory through global memory
and over to the registers, as given in Equation 3.4

bm→r = min(bm→gm, bgm→r) = bm→gm (3.4)

3.2.2 Current Tesla Architecture

The current approach to performing a computation on the GPU is to first
copy the data to the global memory on the GPU, compute the result based
on these data, and finally copy the results back to the local memory. These
three steps must be performed sequentially, thus giving the sum of all the

33

operations as the total time needed for the operation. This is given in Equa-
tion 3.5.

tcurrent = tcopy to device + tcomputation + tcopy from device (3.5)

Copy to the Global Memory

The first step in the current procedure is to copy data to global memory.
This requires the data to be fetched from local memory and transported over
the interconnection between the local memory and GPU, which normally is
a PCI Express 2.0 connection. Once it arrives on the GPU, it is stored in
global memory. The time this operation would take is given by the size of the
data transferred, the bandwidth achievable, and the latency of the transfer
operation, as given in Equation 3.6.

tcopy to device =
sd

bm→gm

+ lm→gm (3.6)

Using the assumptions stated in Section 3.2.1, Equation 3.6 is simplified
to Equation 3.7.

tcopy to device =
sd

bm↔gm

+ lm↔gm (3.7)

Performing Calculations

The second step is to perform the actual calculations. This is a complex
operation requiring several data transfers. The first step is to bring the
data from the global memory into the Streaming Multiprocessors registers.
Second, the data must be copied from these registers over to the Streaming
Processors registers to perform the actual calculations. The entire process is
performed in reverse to return the result to the global memory. In addition
the calculations are performed with a given bandwidth bgpu.

The process of bringing data into the GPU and processing it is given in
Equation 3.8 and the process of bringing the results back to global memory
is given in Equation 3.9.

tdata computation =
sd

min(bgm→r, br→gpu, bgpu)

+ lgm→r + lr→gpu + lgpu (3.8)

34

tresult computation =
sr

min(bgpu, bgpu→r, br→gm)

+ lgpu + lgpu→r + lr→gm (3.9)

By simplifying these formulas in accordance with Section 3.2.1 and adding
them together, the total time required to perform the calculation is given in
Equation 3.10

tcomputation =
sd + sr

min(bgm↔r, br↔gpu, bgpu)

+ 2(lgm↔r + lr↔gpu + lgpu) (3.10)

Copying Results back to Local Memory

The final step of the procedure is to copy the results of the data back to Local
Memory. This process is the inverse of the first step given in Section 3.2.2,
but with the size of the results sr instead of sd. The total cost is given in
Equation 3.11 with the simplifications given in Equation 3.12.

tcopy from device =
sr

bgm→m

+ lgm→m (3.11)

tcopy from device =
sr

bgm↔m

+ lgm↔m (3.12)

Total Cost

The total cost of a computation on the GPU is the sum of the individual
costs of the three steps given previously in Equation 3.5. By inserting the
individual cost-formulas, the total cost can be seen in Formula 3.13, and
simplified in Formula 3.14.

tcurrent =
sd

bm↔gm

+
sd + sr

min(bgm↔r, br↔gpu, bgpu)
+

sr

bm↔gm

+ 2(lm↔gm + lgm↔r + lr↔gpu + lgpu) (3.13)

tcurrent =
sd + sr

bm↔gm

+
sd + sr

min(bgm↔r, bgpu)
+ lcurrent (3.14)

35

3.2.3 Improved Tesla Architecture

The improved Tesla Architecture given in Section 3.1 opens for the possibility
to copy data directly from the local memory to the registers on the GPU while
the kernel is running. By doing, so the three steps used in the current Tesla
Architecture can be interleaved. Thus, the bandwidth of the data through
the entire process is determined by its weakest link. This is expressed in
Equation 3.15.

tnew =
sd + sr

min(bm↔r, br↔gpu, bgpu)

+ 2(lm↔r + lr↔gpu + lgpu) (3.15)

By using the assumptions and simplifications given in Section 3.2.1, Equa-
tion 3.15 is reduced to Equation 3.16.

tnew =
sd + sr

min(bm↔r, bgpu)
+ lnew (3.16)

3.3 Performance Improvement

An architectural change can only be justified if it provides some sort of ben-
efit. In this case, it will be shown that the change will improve performance
by hiding execution costs due to interleaving. To show this we start with
defining a measure of saved time tbenefit, which is defined by Equation 3.17
and the more elaborate Equation 3.18.

tbenefit = tcurrent − tnew (3.17)

tbenefit =
sd + sr

bm↔gm

+
sd + sr

min(bgm↔r, bgpu)
− sd + sr

min(bm↔r, bgpu)
+lcurrent−lnew (3.18)

By looking at the formula it is clear that there are two distinct cases
which must be handled: when the bottleneck is either the memory bandwidth
between local memory and the GPU, or that the GPU is unable to process
the data fast enough.

3.3.1 Memory Bandwidth Bound

When the memory bandwidth is the limiting factor of the computing sys-
tem, the problem becomes that the GPU would not receive data fast enough

36

to fully occupy the processing elements. This is typically the case in high
data volume problems where each data element requires little processing.
Examples of such problems include data decompression and list filtering.

In Equation 3.19, one can see the relation between GPU bandwidth and
memory bandwidth when the application is bound by the memory band-
width.

bm↔gm < bgpu (3.19)

By using Equation 3.4 and 3.19 one can make the reduction given in
Formula 3.20.

min(bm↔r, bgpu) = min(bm↔gm, bgpu) = bm↔gm (3.20)

By reducing Equation 3.18 with the reduction in Equation 3.20, one can
get a formula for the reduction in computation time when the memory band-
width is the bottleneck. This is given in Equation 3.21.

tbenefit =
sd + sr

bm↔gm

+
sd + sr

min(bgm↔r, bgpu)
− sd + sr

bm↔gm

+ lcurrent − lnew

=
sd + sr

min(bgm↔r, bgpu)
+ lcurrent − lnew (3.21)

By examining the resulting Equation 3.21, one can see that the time saved
is equal to the time needed to perform the computations. This is because the
computations can be performed while the data is copied as a stream to the
GPU. Since the GPU processes the data at a faster rate than it is provided,
the computation would be performed as a pipeline where the data copy of
each element is the most time-consuming step, and thus hides the other costs.

3.3.2 Computational Bandwidth Bound

An application will be bound by computational bandwidth when the problem
requires a large amount of computation compared to the data it is provided.
An example would be to check if a number is a prime, or running Game
of Life [12] for a large number of iterations. In these cases the, processing
elements should be working at full load, and the memory bandwidth would
not be fully occupied.

In Equation 3.22 one can see the relation between GPU bandwidth and
memory bandwidth when the application is bound by the computational
bandwidth.

bgpu < bm↔gm (3.22)

37

By using Equation 3.4 and 3.22 one can make the reduction given in
Equation 3.23 and 3.24.

min(bm↔r, bgpu) = min(bm↔gm, bgpu) = bgpu (3.23)

min(bgm↔r, bgpu) = bgpu (3.24)

By reducing Equation 3.18 using Equation 3.23 and 3.24 one gets Equa-
tion 3.25 which is the equation for reduction in execution time for a problem
which is bound by the computational bandwidth.

tbenefit =
sd + sr

bm↔gm

+
sd + sr

bgpu

− sd + sr

bgpu

+ lcurrent − lnew

=
sd + sr

bm↔gm

+ lcurrent − lnew (3.25)

If we examine the formula, it is clear that the reduction in execution time
is equal to the time required to transfer all the data to the GPU. As in the
memory bound case, this is due to the pipelining of the task. In this case
the computational task is the most time-consuming and thus hides the cost
of data transfer.

3.4 Additional Improvements

Using CUDA to develop large data volume applications can be a cumbersome
process. To increase the usability of CUDA for such applications, we present
a number of improvements aimed at simplifying the development process and
enable more compact and understandable code.

3.4.1 Automated Caching

When using data on the GPU there are two main levels in the memory
hierarchy, global memory and registers1 which must be used correctly to
obtain best performance. Moving data between them can reduce the overall
time spent on data access. However, this approach has its drawbacks, as
the developer must explicitly handle this form of caching. This can in many
ways be cumbersome when one has to strive to achieve coalesced reads and
writes, and can be a a difficult task for the novice CUDA developer. While a
hand-optimized pre-fetching can be more optimal than automated caching,

1The shared memory can be considered a level parallel to the registers.

38

it will in most cases be beneficial to have automated caching to ease the
development process. By allowing both techniques to be used there is room
for both the novice and the expert to utilize the GPU to the best of their
knowledge.

While caching is not supported for normal data on current Tesla Architec-
ture, there is still a way to have the GPU handle caching. By claiming that
the data is a texture, the GPU seizes control of the data access and caches
the data using the Texture-memory. One thing that must be noted is that
by marking the data as a texture, it is read-only since there is no write-back
on the caching. If cached data are altered the result when accessing the data
is undefined. While this limitation is unacceptable in many situations, there
are applications which this does not impose a problem.

To use data as a texture, it is only necessary to instruct the GPU to treat
the data as a texture. Any data may be handled in this manner. However,
the syntax for doing so does not resemble the normal way to handle data
access, and it may be confusing to use. Therefore CUDA should include
functionality to enable caching for data without referencing textures since
this may easily be implemented as a syntactic sugar without any alterations
to hardware.

3.4.2 Extended Host-Device Synchronization

The CPU and GPU have different objectives and will therefore continue to
have different characteristics. To utilize the computational system optimally,
calculations should be performed on the processor that gives the best overall
performance of the system. This would in many cases require rapid changes
between CPU and GPU calculations and data exchange between them. With
CUDA as it is now, this can only be done by stopping the kernel each time the
CPU should perform a calculation that the GPU depends on. While this is a
solution that enables interaction between CPU and GPU, it is a cumbersome
process which complicates the development process. A better solution would
be to allow halting the CUDA kernels by synchronizing with the CPU. In this
way, there would be a more intuitive interaction between host and device.
This can be solved by either actually implementing synchronization in the
architecture, or by adding the functionality as syntactic sugar which hides the
process of dividing execution into multiple kernels. To efficiently implement
the second approach, the cost of initializing a kernel must be reduced so that
rapid control changes between GPU and CPU do not affect performance in to
large extent. An possibility here is to implement it as syntactical sugar first
to see if the developers will use it, and if so implement it in hardware. An
approach like this will be less costly as hardware changes are more expensive.

39

3.4.3 Allow File Access

Both search engines and many other applications require large data volumes
which are stored on disk. In the current CUDA environment, the GPU is
incapable of accessing files. This means that the CPU must regain control
and access the file, and copy the data to the GPU before restarting the
kernel. This approach is cumbersome, and will complicate code as described
in Section 3.4.2. Enabling file access from the GPU directly can be difficult,
as it would require handling IO between the GPU and the disk. There is an
easier approach which can be implemented if local memory access is enabled
as described in Section 3.1. This approach is to use memory-mapped files,
which enables file access from the GPU by masking the file as a memory
location, and giving this memory location to the GPU. By doing so, the
operating system ensures that the data in the file is accessible to the GPU
trough the virtual memory address that the file is mapped to.

40

Chapter 4

Case Studies of Information
Retrieval

The suggested Tesla Architecture improvements given in this thesis try to
address performance problems for applications with high data volumes. A
search engine is an application with high data volumes and not widely imple-
mented on GPU. However, the research group WestLab at the Polytechnic
Institute of the New York University has created a search engine on the GPU
[10]. In their article they describe a search engine utilizing both the CPU
and GPU to process and sustaining a high arrival rate of queries. In their de-
scription of the search engine, they give performance measurements for CPU
and GPU versions of both decompressions of the search index, and the actual
query evaluation. These two measurements will provide the necessary data
to show the improvements made possible by the architectural improvements
suggested in this thesis.

In the article by WestLab, they run the benchmarks on a NVIDIA GeForce
8800GTS, which is part of the G80 series from NVIDIA. Even though a
GeForce 8800GTS was not tested in [16], it can based on the benchmarks of
similar cards and from the information given on NVIDIAs product pages be
estimated that the average bandwidth bm↔gm is 2.5 gigabytes per second.

First this chapter gives a general introduction to the search engine and
decompression of search indexes, before the implementation of the search
engine in [10] is used for two case studies.

4.1 Search Engines

Search engines have over the last decades evolved from simple applications
which enabled the user to locate documents in a localized document collec-

41

Figure 4.1: The abstract architecture of a search engine.

tions, into today’s massive installations with document collections including
the dynamic internet. Not only has the size of the document collection in-
creased, but so has the user’s expectations to the searching capabilities. To-
day a search engine is expected to understand what a user is searching for in
order to only give results which are semantically relevant to the search. More
advanced search engines may also try to interpret the context in which users
make the search and then expand the query so that it includes more relevant
documents, but with the context of the query and thus also are relevant to
the user.

4.1.1 Architecture

The architecture of a search engine can be abstracted into five major com-
ponents, each with its own role in the system [8]. These five components
as shown in Figure 4.1 can be designed independently as long as they share
common interfaces among them.

Crawler

The crawler [22] is the component responsible for retrieving indexed the
documents. Based on the type of documents and the locality, the crawler
may vary a great deal in implementation.

42

A search engine allowing the users to search the internet such as Google1

or Yahoo2, has a complex crawler which traverses the internet and downloads
pages which are then provided to the indexer. This crawler also has to make
sure it does not index then same page several times, and should discover
any updates of the pages. Another important aspect with this crawler is
load balancing among the web servers it access. If all the pages the crawler
tries to download are from the same server, it can flood the server with
request, reducing the total bandwidth with which the crawler can download
pages. The crawler must therefore try to balance downloads among servers,
to maximize the bandwidth.

A search engine for use on local files such as a library or enterprise may
not need such a complex crawler. For them, it may suffice with a crawler
which traverses a file structure, or is provided a list of documents to crawl.

Indexer

The indexer is responsible for managing all access to the index. It must both
provide access for the query engine so it can retrieve the term-indexes needed
to answer the query, and access to the crawler, so it can insert its documents.
If the index is distributed across several disks or nodes, it is also the indexer’s
job to distribute the index correctly.

Document Processor

The job of the document processors is to take a document or a query as
a string, and process it to extract the terms, supplying these to either the
indexer or the query engine [37]. The reason the document processor is
used both by the query engine and the indexer is to ensure that the terms
extracted are equal. The document processor is usually a series of sequential
steps which manipulates the document.

Tokenizing is usually the first step in the document processor. It reads the
entire string and splits it into terms. It may also remove unwanted sections
such as HTML-tags and special characters.

Stop-word Removal is the process of removing terms from the list of
terms which are too common to be needed in the index. These terms are
removed since it would dramatically increase the size of the index if they were
included, and a query with these words in it would not notice any contribution

1www.google.com
2www.yahoo.com

43

from the terms to the results due to the vast number of occurrences of the
term in the document collection. Examples of stop-words are: we, you, it, is,
was and over. There is a debate if stop-word removal is useful, as it makes
the process of evaluating phrase queries more difficult.

Stemming is the process of trying to reduce similar words to their base or
stem, so they would be indexed as the same term. This is done to reduce the
number of terms in the collection, and to improve the quality of the search.
For instance the three words consort, consortedi and consorting may all be
reduced to the stem consort. The Porter stemmer [36] is an example of such
a stemmer.

Lemmatization is the same process as stemming, except that the stemmer
only operates on single terms, and thus has no knowledge of its context, while
Lemmatization takes into account the context of the term, to avoid using the
same term for different context.

Query engine

The query engine is the component which performs the actual search [5]. It
accesses the index, retrieves the term-indexes needed to complete the query,
and calculates a score for all the documents in the document collection. It
then sorts the documents based on the score, and returns the desired number
of documents to the frontend.

Frontend

The frontend is responsible for providing the user with an interface to the
search engine. In the simplest form it must provide a textual input where the
user can type in the query, and then present the result as a list of documents
or links to the documents.

4.1.2 Inverted Index

The inverted index is a data structure which optimizes for lookup of docu-
ments in which a term occurs. This is done through the inverted approach
where each occurrence of a term in the documents are listed grouped for each
term [38].

The simplest form of inverted index stores the frequency f of each term
in each document, while more advanced indexes stores the location of the
terms in the documents as well as other relevant information.

44

(a) Query Input (b) Query Result

Figure 4.2: Google Web Search frontend

Document-level Inverted Index is the simplest form of inverted index.
It only stores the number of occurrences of each term in the documents, and
thus does not support proximity and phrase search.

Word-level Inverted Index stores the position of the terms in the doc-
ument, and is thus able to support proximity and phrase search as well.

Block-level Inverted Index can be compared to a word-level index where
the positions are not exact but instead point to the block of the document
where the term occurs. This reduces the size of the index, but also removes
information needed by proximity and phrase search. To still be able to sup-
port these two searches, the occurrences of terms within blocks can be used
to identify blocks where phrases can occur, and analyze these parts of the
documents online. To be able to do this efficiently, the blocks must be small
enough, which increases the size of the index.

Creation

To create an inverted index, each document is processed independently. This
processing passes over the document once, to find its terms and insert the
relevant information into the index.

45

Figure 4.3: Insertion in Document-Level inverted index

Document-level Inverted Index stores the frequency of each term in
each document. To add such a document to the index is a trivial task. The
document is read and the number of occurrences of each term is found. Then
for each term, a pair (document-ID, frequency) is added to the index under
its respective term. Such a process can be seen in Figure 4.3.

Word-level Inverted Index stores the position of the terms in the in-
verted index. This allows for proximity and phrase search. To add a doc-
ument to this type of index, the document is read, and for each term, the
position of the first character in the term is added to a list of position for
each term. Then for each occurrence of each term, a pair (document-ID,
position) is added to the index under its respective term. This process can
be seen in Figure 4.4.

Block-level Inverted Index is created in the same way that the word-
level index, except that instead of storing the exact position, the block num-
ber is used. Insertion of a document into this index can be seen in Figure 4.5.

Storing

The indexes may grow to such large sizes that it is not possible to store the
entire index in memory. Thus, a file structure must be used to allow the
index to be stored on disk while caching the required parts in memory. Due
to the low performance of disks, file access must be kept to a minimum. One

46

Figure 4.4: Insertion in Word-Level inverted index

way of doing this is through efficient use of caching. The other way is to
have an efficient storage of the index on disk. Due to the size of the index,
it is preferable to be able to directly find the place in the file where the
required parts are stored. This can be achieved through a term-position list,
where the position of each term’s index in the file is stored. The size of the
term-index is also stored to know how large the term-index is. To retrieve
the index for a single term, one looks up the term in the term-position list
to get the position in the file, and then directly find the correct position.

When updating the index, its size may change, and new terms or occur-
rences may be added or removed. This would require that the changes are
updated in the file. Since the file is stored sequentially on the disk, this would
require a complete rewrite since the updates may occur anywhere in the file.
As the size of the file grows, this may be an expensive operation. A feature
which may be added to reduce this cost, is to store the index in multiple
files. By doing so, only the files which are altered must be rewritten. The
index is usually spilt in such a way that each file only contains some of the
term-indexes.

Another approach to increase disk access performance is to distribute the
index across several disks. By distributing the index, parallel access to the
disks is enabled, and thus an increase in bandwidth. One such distribution

47

Figure 4.5: Insertion in Block-level inverted index

scheme is discussed in [21]

Distribution

As the size of the index grows, there is need for more computational power
than can fit in one computer to process the query efficiently. To do so,
the index can be distributed among several nodes. The inverted index is
especially well suited for distribution, and there are two possible distribution
schemes; term distribution and document distribution [38, 4].

Document Distributed Index is the simplest and most used scheme.
This scheme assigns the documents in the collection to the various nodes
so each node has a subset of the documents. When querying against this
distributed index, all nodes must perform the query on their local index, and
return the highest document scores back to the master node.

Term Distributed Index distributes its terms across the nodes. This
means that a query may not need to access all nodes to be answered. Since
one wants to group terms correctly on the nodes so the most frequent queries
are answered using few nodes. The reason that this is important is that a
single node can not answer a query and must transfer partial scores for all

48

documents to the master node for accumulation there, and this can be an
expensive operation.

Term and Document Distributed Index is a mixture of the two schemes.
These two schemes can be used together to tune the performance of the
system. One can, for instance, create several clusters which distribute the
document collection among themselves using document distribution, but in-
ternally using term distribution.

Compression

Another way to increase the performance of the search engine is to use com-
pression on the inverted index [34, 30]. Since the search engine in most
cases is limited by the poorly performing hard-disks, the use of compression
can reduce the size of each individual transfer, and therefore the speed of
the transfer. If this approach is to yield overall improvement for the search
engine, it requires that the decompression consumes less time than the re-
duction of transfer time.

The use of compression in inverted indexes utilizes some properties in
the index which enables the use of a certain group of compression schemes.
The inverted index most often contains numbers which probability to occur
matches well with a Bernoulli trial. Therefore algorithms such as Variable-
Byte encoding and Golomb coding can be used with good compression rates.
These algorithms will be discussed further in Section 4.2.

4.2 Compression

The use of compression varies from application to application, and so does
the compression scheme used. While most think of compression as a method
of saving space, compression is widely used to increase the speed of transfers
by reducing the size of what is transferred.

The choice of which compression scheme to use must take into account
the types of data that are to be compressed and the encoding and decoding
performance requirements. The difference between a well suited and ill-suited
scheme can have huge impact on application performance.

This section will discuss some compression schemes which are used to
compress a series of integers where the probability of a number conforms to
a Bernoulli trial.

49

Figure 4.6: Encoding of the number 29 and 1565 in Variable-Byte encoding.

4.2.1 Variable-Byte Coding

Variable-Byte coding [30] is a byte-level encoding which is simple to use,
and yields good compression results. By encoding numbers with a varying
number of bytes, the encoding scheme allows certain numbers to be stored
with a lower number of bytes than it would using no compression, but still
maintaining an easy access to the numbers through a simple encoding and
decoding process.

The variable-byte scheme uses seven out of the eight bits in a byte to store
the number, while the remaining bit is used to indicate if another byte is
needed to represent the number. By using this encoding scheme any number
[0, 128) can be represented using one byte, while 232 must be represented
using five bytes. This encoding scheme can be seen in Figure 4.6.

As one can see in Figure 4.7, Variable-Byte encoding favors small num-
bers. In fact, if there is equal probability for any number in the range [0, 232),
it would use 4.93 bytes per number, which is more than the uncompressed
number. If one however assumes that a number n+1 is half as likely to occur
as n, then this encoding scheme would use 1.008 bytes on average.

The encoding and decoding using this scheme is a simple task. As one
can see in Figure 4.6, there is a simple mapping between the decoded and
coded byte sequence. To encode and decode a number, Algorithm 1 and
Algorithm 2 are used, respectively.

Figure 4.6 shows how the encoding scheme is byte aligned, which is a
great benefit for several reasons. It is for instance possible to start reading
anywhere in the encoded sequence and easily identify a number to start
decoding. When doing this, one does not know which number one is decoding.
If decoding an encoded sequence in parallel, one can divide the sequenced into

50

Algorithm 1 Encode number using Variable-Byte encoding.

voriginal ← getNumber()
vpart ← voriginal & 127
vremaining ← voriginal � 7
b ← 0
i ← 0
repeat

if vremaining = 0 then
m ← 0

else
m ← 1

end if
b ← b + (m � i + 7) + (vpart � i)
i ← i + 8

until vremaining = 0
return v

Algorithm 2 Decode Variable-Byte encoded number.
v ← 0
b ← getByte()
i ← 0
repeat

v ← v + (b & 127) � i
i ← i + 7

until b & 128 = 0
return v

51

Figure 4.7: Average size for Variable-Byte encoded number for given
Bernoulli trial probability.

several parts, and let each processor decode its segment. After the decoding
process is completed, the processors must then align the decoded numbers
correctly in a resulting table. This would of course require an additional
overhead compared to a sequential decoding of the sequence, but may still
give a good speedup.

4.2.2 Golomb Coding

Golomb coding is a bit-wise compression scheme which was first described by
Solomon Golomb in 1966 [14]. By using a encoding similar to Huffman Cod-
ing, Golomb Coding manages to encode an infinite set of outcomes, breaking
a limitation of Huffman Coding [19].

The Golomb code is built using two parts which can be combined to
reconstruct the encoded number. The first part is a number q + 1 where
q = �x−1

b
�. The second part is the remainder r = x − qb − 1. The first

part is encoded using unary code, which is a simple encoding scheme where
a number n is encoded using n consecutive 1-bits, followed by a single 0-
bit. The second part is encoded using standard binary encoding. It is here
possible to some bits if the set of integers needed to be represented is less than
the amount possible by the given number of bits. The parameter b is used to
adjust the number of bits used in the second part, where the required number
of bits in the second part is either �log b� or �log b	. How the parameter b
affects the encoding can be seen in Table 4.1.

In 1975, Gallager and Van Voorhis [11] showed that Golomb Coding pro-
duces optimal compression for geometric distributions when b is chosen in
accordance with Equation 4.1 where p is the probability of success for the

52

Table 4.1: Numbers encoded using Golomb encoding with various values for
b [14]

n b = 1 b = 2 b = 3 b = 4
0 0 00 00 000
1 10 01 010 001
2 110 100 011 010
3 1110 101 100 011
4 11110 1100 1010 1000
5 111110 1101 1011 1001
6 1111110 11100 1100 1010
7 11111110 11101 11010 1011
8 111111110 111100 11011 11000
9 1111111110 111101 11100 11001
10 11111111110 1111100 111010 11010

Bernoulli trial corresponding with the geometric series.

(1 − p)b + (1 − p)b+1 ≤ 1 ≤ (1 − p)b−1 + (1 − p)b (4.1)

A special case of the Golomb Coding occurs when b = 2k for some integer
k. In this special case, the coding scheme becomes much simpler, which was
showed by Robert F. Rice in 1979 [31, 18]. In this case, the k least significant
bits are used as the second part of the Golomb code, while the remaining
bits are encoded using unary code and used as the first part of the Golomb
code. The Rice coding is more widely used then the general Golomb Code
due to the especially simple characteristics of the Rice code. As an example,
is the Rice coding used in the Fast Enterprise Search Platform3 [29], which
is based on the FMS Search Engine Kernel [32].

4.2.3 PForDelta

Modern CPUs have a long pipeline, which can speed up the execution of
a program if used properly. To achieve these speedups, the program strive
to organize code in a manner thar efficiently can be executed in a pipeline.
Branching is among the instructions which is difficult to pipeline, and this
is often used in decompression. PForDelta [39] is a compression scheme

3http://fastsearch.com/l3a.aspx?m=1031

53

which can be implemented without branching in its inner loops allowing the
compiler and CPU to optimize for the pipeline.

To remove the branching from the inner loops, PForDelta processes num-
bers in groups of 128. By doing so, all 128 numbers can be decoded without
branching, making the inner loop faster. To allow this no-branching decoding
to occur, PForDelta compresses all 128 numbers with the same number of
bits, gaining the benefits of a fixed width compression within the 128 num-
bers. While compressing all numbers with a fixed width would in many cases
lead to large bit widths, PForDelta avoids this by using exceptions. The bit
width is chosen so that 90 percent of the numbers fit, and the rest are stored
as full integers using exceptions at the end of the list. To identify which
numbers are handled by an exception, a number which gives the offset to the
first exception is stored first in the compressed segment. In that position, the
offset to the next exception is stored. In this way, the exceptions are stored
as a linked list within the list itself.

To decode this scheme without branching, two loops are used. The first
loop decodes all the numbers as if there were no exceptions. This leads to
errors for the numbers handled by exception. The second loop loops over the
linked list giving the exceptions, and inserts the correct numbers from the
exception list into the resulting uncompressed list of numbers.

Figure 4.8: Exception handling in PForDelta compression scheme.

Figure 4.8 gives an example of the PForDelta compression scheme. In
this example the bit width is set to 5 bits, and the numbers 37 and 63 are
encoded using exceptions. The first number in the list gives the location of
these two exceptions in the list. The actual exceptions are stored at the end
of the compressed data.

54

4.3 Case Study: Decompression of Inverted

Index

One of the tasks often performed in a search engine is to decode the inverted
index. The index is compressed to reduce the bandwidth requirement for the
hard-disks. By offloading this task to the GPU, the CPU would be free to
perform other tasks, thus increasing the throughput of the search engine.

In the article [10], both Rice coding and PForDelta have been used for
compression in the search engine, and the article provides enough data to give
an estimated performance gain using the architecture suggested in this thesis.
It is, however, worth noticing that the GPU versions perform more work than
the CPU version, since the CPU version finds the gaps between docIDs while
the GPU version finds the actual docIDs. Therefore, any comparison between
them will be slightly biased towards the CPU.

In WestLabs article [10], they perform the decompression either on the
GPU or the CPU based on which processor is used for the intersection of
the search indexes. The GPU and CPU benchmarks assume that the data is
present in global memory and local memory respectively. The decompression
case tested here assumes that the data resides in local memory and thus
has to be copied to the GPU before any decompression can be performed.
Therefore, the cost of the data transfer must be added to the total cost for
the GPU version.

By using the compression ratio cRice and cPForDelta the total data transfer
can be found based on the chosen number of integers n in the search index.
This is given in Equation 4.2 and 4.3.

sd = 4nc (4.2)

sr = 4n (4.3)

The measured compression values as given in the article are 0.61 bytes
per integer for Rice coding and 0.64 bytes per integer for PForDelta coding.

The measured performance the actual decompression is given in Table 4.2
as millions of integers per second. For the GPU, this result bgpucard is the
measured throughput on the GPU including data transfers and computation
and is equal to min(bgm↔r, bgpu).

For the CPU version the total time needed to perform a decompression
is given in Equation 4.4.

tcpu =
n

bcpu

+ lcpu (4.4)

55

Table 4.2: Millions of integers per second decompressed by the GPU and
CPU.

Algorithm bcpu bgpucard

Rice 310.63 305.27
PForDelta 1165.13 1237.57

By exchanging values in Equation 3.14 and 3.16 formulas for expected
time to perform decompression on the GPU using the current and suggested
Tesla Architecture can be obtained.

tcurrent =
sd + sr

bm↔gm

+
sd + sr

min(bgm↔r, bgpu)
+ lcurrent

=
4nc + 4n

bm↔gm

+
4nc + 4n

bgpucard

+ lcurrent (4.5)

tnew =
sd + sr

min(bm↔r, bgpu)
+ lnew

=
4nc + 4n

bgpucard

+ lnew (4.6)

By evaluating Equation 4.5 and 4.6 for both Rice and PForDelta, and
assuming no latency a comparison of the different approaches can be made.
The assumption of no latency can be made due to large data volumes hidign
the latency.

In Table 4.3 the speedups of the GPU versions on both architectures is
given against the CPU versions and the speedup of the suggested architecture
against the current architecture is also given.

As one can see from Table 4.3, the suggested architecture gives a increased
performance. On the original GPU architecture, offloading the decompres-
sion to the GPU would not be beneficial, as performance would decrease.
However on the suggested architecture, the performance of decompression
on the GPU would be as fast as on the CPU, thus allowing offloading with-
out performance reduction.

4.4 Case Study: Query Evaluation

Evaluating a query is a process with several steps. Firstly, the search index
must be decompressed, allowing the data to be read. Thereafter, the search

56

Table 4.3: Speedups of the suggested architecture for Rice and PForDelta
decoding

Rice coding PForDelta coding
Current GPU vs CPU 0.639 0.333
Sugested GPU vs CPU 0.983 1.062
Suggested GPU vs current GPU 1.537 3.191

indices for each term must be combined to find the relevant documents.
Finally the top k documents are returned. In the search engine [10] WestLab
chose to return the top 10 documents. These steps can be done sequentially,
it is beneficial to interleave the steps by handling one document at the time.
See the article [10] for details on how this is done.

In the search engine a search index which contains a docIDs and a fre-
quency for each posting is used. The index is built over the TREC GOV2
dataset which contains 25.2 million web pages. A random set of queries as-
sociated with the dataset, and on average the search indexes associated with
the query contains 3.74 million postings denoted n.

In Equation 4.7 and 4.8, the sizes of data needed by each query evaluation
is given.

sd = 8nc (4.7)

sr = 4k (4.8)

The timings of the query evaluation on both GPU (tgpu) and CPU (tcpu)
are given in Table 4.4, along with the bandwidth bcpu and bgpucard of the
operation based on the datasize sd and sr. Three different scoring schemes
AND, OR and AND+OR are used, which are explained in the article. In
the benchmarks it is assumed that the data is present on the local memory
for the CPU version and in global memory for the GPU version. The cost
of data transfers must therefore be added in the calculated timings for the
current and suggested Tesla Architecture. Timings for the CPU version can
be used directly.

By exchanging values in Equation 3.14 and 3.16, formulas for expected
time to perform the query evaluation on the GPU using the current and
suggested Tesla Architecture can be obtained.

57

Table 4.4: Timings and bandwidth for scoring schemes on CPU and GPU.

AND OR AND+OR
CPU timings (ms) 8.71 212.72 23.85
GPU timings (ms) 7.66 29.31 9.98
CPU bandwidth (B/s) 3435136.62 140654.57 1254509.01
GPU bandwidth (B/s) 3906010.44 1020813.37 2998000.00

tcurrent =
sd + sr

bm↔gm

+
sd + sr

min(bgm↔r, bgpu)
+ lcurrent

=
8nc + 4k

bm↔gm

+
8nc + 4k

bgpucard

+ lcurrent (4.9)

tnew =
sd + sr

min(bm↔r, bgpu)
+ lnew

=
8nc + 4k

bgpucard

+ lnew (4.10)

By inserting the values for the respective scoring schemes, the speedups
of the query evaluation on the suggested architecture compared to the CPU
and current architecture versions can be determined. These are presented in
Table 4.5.

Table 4.5: Speedups of the suggested architecture for AND, OR and
AND+OR scoring schemes

AND OR AND+OR
Current GPU vs CPU 1.055 5.504 1.648
Sugested GPU vs CPU 1.763 7.647 3.090
Suggested GPU vs current GPU 1.671 1.389 1.874

As in the previous case, the performance gain by using the improved Tesla
Architecture is clearly visible.

The query evaluations performed on the GPU so far assume that the data
is not available on the GPU, and that they are transferred to the GPU for

58

Figure 4.9: Speedup of the scoring schemes on the suggested architecture
compared to the current architecture for different levels of cache hits.

Figure 4.10: Time required by the different scoring schemes and the data
transfer for different levels of cache hits.

each query evaluation. In practice, the memory on the GPU is used as a cache
drastically reducing the amount of data needed to be copied. How often the
cache will contain the data needed depends on both the cache replacement
scheme and the queries made to the search engine. In Figure 4.9, the speedup
of the suggested architecture versus the current architecture is given when
the cache hit ratio varies between 0% and 100%.

In Figure 4.9 one can see a reduction in speedup after a certain point.
These points are shown in Figure 4.10 to be when the problem changes from
bandwidth bound to computational bound.

As one can see from this case, the suggested architecture gives an im-
provement here as well, but it is also shown that the benefits of the sug-
gested architecture lies in data transfers. The less data transfer needed, the

59

less beneficial are the improvements. The case also shows that the improve-
ments would allways provide at least the same performance as the current
architecture, but in most cases will yield an increase in performance.

60

Chapter 5

Conclusion and Future Work

This thesis has pointed out the need for certain features on the GPU, which
would improve performance for large data volume applications, through anal-
ysis and a theoretical model. By including the host-memory in the memory
hierarchy of the GPU, new ways to access data during calculations can be de-
veloped. Other benefits which reduce the complex code of large data volume
applications have also been suggested. This chapter concludes on how likely
these features are to be realized, and what work lies ahead in the process of
providing these features.

5.1 Realizing the Improvements

Adding support for the GPU to access host-memory may seem to be a difficult
task, but NVIDIA supports a variant of this in hardware on its newest GPU
series. The concept is called Zero-Copy, and it allows the user to access
pinned host-memory. CUDA does not yet support this, but it is included
in the beta version of CUDA 2.2 [25]. While this method to implement
host-memory access partially, there is a limitation since it only allows access
to pinned memory. The amount of pinned memory is usually restricted,
and would thus not allow full use of host-memory efficiently in a combined
CPU and GPU application. It will, however, provide the same benefits as
described in this thesis in terms of streaming capabilities which will improve
performance. If the developers see the potential of Zero-Copy and start to
utilize it in their applications, it may be the first step towards allowing more
and more interaction and resource sharing between CPU and GPU. While
Zero-Copy will resolve many of the issues addressed in this thesis, there is
still a limitation since only pinned memory can be used. By allowing the
GPU access to the entire host-memory, GPU developers will have greater

61

freedom to utilize the large amount of available memory on modern systems.

Among the other improvements suggested in this thesis, many should
be possible to implement. Synchronization can be solved using syntactic
sugar. Even though using syntactic sugar would enable the improvement, it
would not be the ideal approach to solve it. If synchronization is handled
through syntactic sugar, the developer loses the ability to hand-optimize
the code. This would be done by the compiler, which in some cases may
do the program less efficient. If the syntactic sugar approach is chosen,
it should therefore not exclude the manual approach. The most desirable
solution would be to support it efficiently through hardware flags or some
other mechanism, but this can be cumbersome and require redesign of the
architecture. We therefore suggest that the changes which could be provided
through syntactic sugar are first added in this manner. In this way there is
a low-cost opportunity to see the potential in the improvement, and if it is a
success it can be fully supported in hardware.

Caching on the GPU is enabled in current versions to some extent, as
textures and constant memory is cached. This memory is read-only and
will therefore never be a fully acceptable replacement for global memory
and manual caching. While some applications can benefit greatly from the
cached textures, many applications requires the ability to alter the data dur-
ing execution. Implementing cache with write-back or write-through can be
a difficult task but would be a great benefit to the developers. As was shown
in Figure 2.7, allowing the GPU to handle data access through hardware
caching outperforms the explicit approach.

Theis thesis points out that if the GPU gains access to the entire host-
memory, it would also gain access to files on hard-disks through the use of
memory mapped files. While Zero-Copy grants access to pinned memory
on the host, it would not enable file access, since memory mapped files are
paged. To allow file access by the GPU, it must either be developed new
access methods specific for the GPU or allowing the GPU to access the
entire host-memory. As stated previously in this thesis, large data volume
applications use files frequently, and enabling file access for the GPU would
be a great benefit.

5.2 Benefits of the Improvements

While the benefits of the improvements suggested in Section 3.4 are hard to
quantify, they would provide the developer with a larger set of options when
developing applications on the GPU. These improvements were suggested
with large data volume applications in mind, but would be beneficial to

62

many other types of applications as well. It is easier to discuss the benefits
from expanding the memory hierarchy to include the host-memory as an
improvement. Through a mathematical model, it has been shown that by
allowing the GPU to access the host-memory, data transfer and calculations
can be interleaved much tighter than what is possible in current versions of
CUDA. This would allow the developer to hide the cost of certain operations
since these can be done in parallel in the created pipeline. Through the
mathematical model described in Section 3.2 it is shown that there are two
major costs in a GPU program: data transfer and calculations. By allowing
these operations to be interleaved on a fine grained scale, the cost of the
cheapest one can be hidden by the other operation.

To show how beneficial this ability could be, a search engine [10] by West-
Lab, NYU, has been studied. Based on the benchmarks made by WestLab
it was possible to calculate the performance gain by extending the memory
hierarchy. For the search engine with the improved GPU it was shown a
speedup between 1.389 and 1.874 by the various query types over the cur-
rent GPU. When comparing the improved GPU versus the CPU this gives
a speedup between between 1.763 and 7.647. In the case with using the
GPU as an accelerator for search index decompression, the increased mem-
ory hierarchy would make the GPU handle decompression at the same rate as
the CPU. With the current GPU this was not possible, as the data transfer
would be too expensive. This result shows that with the increased memory
hierarchy, the GPU would be able to function as an accelerator card for large
data volume applications since it would offload the CPU without reducing
performance.

5.3 Future Work

This thesis focused on suggesting improvements to the Tesla architecture and
CUDA programming environment which would benefit large data volume
applications, and the improvements and approaches chosen to implement
them is biased by this viewpoint. The GPU is used in a wide range of general
purpose applications and improvements must be analyzed with respect to a
these applications to see if there are modifications to the approaches which
will be more beneficial on a global scale. A poorly designed feature may not
be used correctly, or not used at all. It is therefore vital to make sure the
features are easy to use and suited for most areas which the GPU may be
used within.

When version 2.2 of CUDA is released, the theoretical model should be
validated for CUDA with Zero-Copy, and possible adjustments should be

63

made to the model.

5.4 Final Thoughts

This thesis has suggested several features that could be added to CUDA
and the Tesla Architecture to increase performance of large data volume
applications. The suggested improvement will ease the development process
of such applications. As general-purpose calculations on GPUs enters new
areas of computer science, these benefits would prove to be valuable. If
one or more of these features are implemented in actual GPUs it would be
a step towards tighter integration and cooperation between the CPU and
GPU, a step we consider to be in the right direction. This will allow both
processors to be used for their intended tasks, and together form an efficient
computational system.

64

Bibliography

[1] Advanced Micro Devices, Inc., “Technical Overview, Stream Comput-
ing,” [Cited: January 17, 2009]. [Online]. Available: http://ati.amd.
com/technology/streamcomputing/Stream Computing Overview.pdf

[2] G. M. Amdahl, “Validity of the Single Processor Apporach to Achieving
Large Scale Computing Capabilities,” in Proceedings of the 30th AFIPS
Spring Joint Computer Conference, Atlantic City, N.J., April 1967, pp.
483–485.

[3] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams,
and K. A. Yellick., “The Landscape of Parallel Computing Research:
A view from Berkeley,” Electrical Engineering and Computer Sciences,
University of California at Berkeley, Tech. Rep., 2006.

[4] C. Badue, R. Baeza-Yates, B. Ribeiro-Neto, and N. Ziviani, “Distributed
Query Processing Using Partitioned Inverted Files,” in Symposium on
String Processing and Information Retrieval, Laguna De San Rafael,
Chile, November 2001, pp. 10–20.

[5] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval,
1st ed. Addison Wesley Longman Limited, 1999.

[6] D. Blythe, “The Direct3D 10 System,” Proceedings of the ACM SIG-
GRAPH 2006, vol. 25, no. 3, pp. 724–734, July 2006.

[7] ——, “Rise of the Graphics Processor,” Proceedings of the IEEE, vol. 96,
no. 5, pp. 761–777, May 2008.

[8] S. Brin and L. Page, “The Anatomy of a Large-Scale Hypertextual Web
Search Engine,” Computer Networks and ISDN Systems, vol. 30, pp.
107–117, April 1998.

65

[9] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, and K. Skadron,
“A performance study of general-purpose applications on graphics pro-
cessors using CUDA,” Journal of Parallel and Distributed Computing,
vol. 68, no. 10, pp. 1370–1380, October 2008.

[10] S. Ding, J. He, H. Yan, and T. Suel, “Using Graphics Processors for
High Performance IR Query Processing,” in Proceedings of the World
Wide Web Conference 2009, Madrid, Spain, April 2009, pp. 421–430.

[11] R. G. Gallager and D. C. V. Voorhis, “Optimal Source Code for Geo-
metrically Distributed Integer Apphabets,” IEEE Transactions on In-
formation Theory, vol. 21, no. 2, pp. 228–230, March 1975.

[12] M. Gardner, “The Fantastic Combinations of John Conways’s New
Solitare Game ”Life”,” Scientific American, no. 223, pp. 120–123, Oc-
tober 1970.

[13] S. Gobron, H. Bonafos, and D. Mestre, “GPU Accelerated Computation
and Visualization of Hexagonal Cellular Automata,” in Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, 2008, vol. 5191, pp.
512–521.

[14] S. W. Golomb, “Run-Length Encodings,” IEEE Transactions on Infor-
mation Theory, vol. 12, no. 3, pp. 399–401, July 1966.

[15] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quan-
titative Approach, 4th ed. Morgan Kaufmann Publishers, 2007.

[16] R. J. Hovland, “Latency and Bandwidth Impact on GPU-systems,”
December 2008, report in course ”TDT4590 Complex Computer
Systems, Specialization Project”, Department of Computer and
Information Science, Norwegian University of Science and Technology.
[Online]. Available: http://wo.uio.no/as/WebObjects/frida.woa/wo/
26.Profil.29.25.2.3.15.1.2.3

[17] ——, “Branch Performance on the Tesla Architecture,” April 2009,
report in course ”TDT4260 Computer Architecture”, Department of
Computer and Information Science, Norwegian University of Science
and Technology. [Online]. Available: http://wo.uio.no/as/WebObjects/
frida.woa/wo/3.Profil.29.25.2.3.15.1.0.3

[18] P. G. Howard and J. S. Vitter, “Fast and Efficient Lossless Image
Compression,” in Data Compression Conference, Snowbird, U.T., USA,
March/April 1993, pp. 351–360.

66

[19] D. A. Huffman, “A Method for the Construction of Minimum-
Redundancy Codes,” Proceedings of the Institute of Radio Engineers,
vol. 40, no. 9, pp. 1098–1101, September 1952.

[20] IEEE Computer Society, “IEEE Std 1003.1-2008, Standard for Informa-
tion Technology. Portable Operating System Interface (POSIX). Base
Specifications, Issue 7,” 2008.

[21] B.-S. Jeong and E. Omiecinski, “Inverted File Partitioning Schemes in
Multiple Disk Systems,” IEEE Transactions on Parallel and Distributed
Systems, vol. 6, no. 2, pp. 142–153, February 1995.

[22] M. Kobayashi and K. Takeda, “Information Retrieval on the Web,”
ACM Computing Surveys, vol. 32, no. 2, pp. 144–173, 2000.

[23] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “NVIDIA Tesla:
A Unified Graphics and Computing Architecture,” IEEE Micro, vol. 28,
no. 2, pp. 39–55, March-April 2008.

[24] NVIDIA Corporation, “NVIDIA CUDA Compute Unified Device
Architecture, Programming Guide, Version 2.0,” [Cited: January
17, 2009]. [Online]. Available: http://developer.download.nvidia.com/
compute/cuda/2 0/docs/NVIDIA CUDA Programming Guide 2.0.pdf

[25] ——, “NVIDIA CUDA Compute Unified Device Architecture,
Programming Guide, Version 2.2,” [Cited: May 25, 2009]. [Online].
Available: http://developer.download.nvidia.com/compute/cuda/2 2/
toolkit/docs/NVIDIA CUDA Programming Guide 2.2.pdf

[26] NVIDIA Forums Register Users, “Cuda 2.2 / Zero-copy access,” 2009,
[Cited: May 5, 2009.]. [Online]. Available: http://forums.nvidia.com/
index.php?showtopic=92290

[27] nwilt, “Page-locked memory,” February 1, 2008, [Cited: November
26, 2008.]. [Online]. Available: http://forums.nvidia.com/index.php?
showtopic=58505\&st=0\&p=318592\&#entry318592

[28] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C.
Phillips, “GPU Computing,” Proceedings of the IEEE, vol. 96, no. 5,
pp. 879–899, May 2008.

[29] Øystein Torbjørnsen, “Personal Communication,” FAST, a Microsoft
Subsidiary, February 2009.

67

[30] M. Porter, “An Algorithm for Suffix Stripping,” Program, vol. 14, no. 3,
pp. 130–137, July 1980.

[31] R. F. Rice, “Some Practical Universal Noiseless Coding Techniques,” Jet
Propulsion Laboratory, California Institute of Technology, Tech. Rep.,
1979.

[32] K. M. Risvik and T. Egge, “The FMS Search Engine Kernel and its Per-
formance Characteristics,” Norwegian University of Science and Tech-
nology, Department of Computer and Information Science, Tech. Rep.,
2002.

[33] A. S. Tanenbaum, Structured Computer Organization, 5th ed. Prentice
Hall, 2005.

[34] A. Trotman, “Compressing Inverted Files,” Information Retrieval,
vol. 6, no. 1, pp. 5–19, January 2003.

[35] B. Wilkinson and M. Allen, Parallel Programming - Techniques and
Applications Using Networked Workstations and Parallel Computers,
2nd ed. Pearson Education, Inc., 2005.

[36] H. E. Williams and J. Zobel, “Compressing Integers for Fast File Ac-
cess,” The Computer Journal, vol. 32, no. 3, pp. 193–201, 1999.

[37] I. H. Witten, A. Moffat, and T. C. Bell, Managing Gigabytes - Compress-
ing and Indexing Documents and Images, 2nd ed. Morgan Kaufmann
Publishers, 1999.

[38] J. Zobel and A. Moffat, “Inverted Files for Text Search Engines,” ACM
Computing Surveys, vol. 38, no. 2, July 2006.

[39] M. Zukowski, S. Héman, N. Nes, and P. Boncz, “Super-Scalar RAM-
CPU Cache Compression,” in Proceedings of the 22nd International
Conference on Data Engineering (ICDE’06), Atlanta, GA, USA, April
2006.

68

Appendix A

Annotated Reference

A.1 GPUs and CUDA

[24, 25] The CUDA Programming Guide released by NVIDIA with the
CUDA programming language extension is a valuable source of information
on how to create CUDA programs which can run on the GPU. It contains
short descriptions of the features of CUDA and a large example in the form of
matrix multiplication. The most important contribution by the manual is the
performance chapter which outlines strategies to improve the performance of
a CUDA program.

[7, 28] The two articles Rise of the Graphics Processor and GPU Comput-
ing gives a soft introduction to the Tesla Architecture and the history of the
GPU. They also give a valuable insight in how the Tesla Architecture both
allows for graphical rendering and general-purpose computations.

[23] The article NVIDIA Tesla: A Unified Graphics and Computing Archi-
tecture gives a detailed view on the Tesla Architecture.

[9] The article A performance study of general-purpose applications on graph-
ics processors using CUDA contains an evaluation of CUDA for several dif-
ferent problem types and gives a clear image of many of the challenges faced
by CUDA developers when trying to map a problem so that is efficiently
solved on the Tesla Architecture.

69

A.2 Search Engines and Compression

[38] The tutorial article Inverted Files for Text Search Engines gives a good
introduction to the various aspects of a inverted index in a search engine.
It lists many alternative ways to create, store and maintain the index, and
gives a discussion of the possibilities and limitations with each approach. In
the way the material is presented, the article gives the reader a clear and
concise introduction to the field of inverted indexes and leaves the reader
with a good basis for understanding more detailed and specific literature.

[5] For an overall view of the field of Information Retrieval, the book Mod-
ern Information Retrieval is recommended. It contains information on all
aspects concerning a search engine, and provides the reader with a good
foundation to clearly understand the inner workings such an application.

[30] The article Compressing Integers for Fast File Access looks into several
compression schemes which can be used to compress inverted indexes.

[37] For an in depth coverage of indexing in search engines, the book Man-
aging Gigabytes is a great source of information. It contains in detail descrip-
tion of various compression schemes used in compressing inverted indexes,
and thus gives a good foundation of assess such schemes in terms of usage
on a GPU.

70

Appendix B

Articles and Posters

B.1 Branch Performance on the Tesla Archi-

tecture

The article Branch Performance on the Tesla Architecture1 was written as
an assignment in the cource TDT4260 Computer Architecture given each
spring-semester at the Norwegian University of Science and Technology. As
one of the graded evaluation during this course, a report must be delivered
which focuses on an aspect of one or more computer architectures. Given
the interest and focus on GPU in the HPC community, an article about
the Tesla Architecture was a natural choice. The Tesla Architecture has
a lot of performance characteristics which are different from CPUs due to
the special massively parallel architecture. One of this is a penalty when
performing branches within a thread-warp, and the article investigates this.
Branching was chosen as it is one of the less discussed penalties as it may
not have an equally large impact on performance as other characteristics of
the architecture.

1Available: http://wo.uio.no/as/WebObjects/frida.woa/wo/29.Profil.29.25.2.3.15.1.0.3

71

1

Branch Performance on the Tesla Architecture
Rune Johan Hovland

Abstract—The use of CUDA for GPGPU applications has been a tremendous success. Many applications and algorithms have been

reimplemented to run on the Tesla Architecture. However this architecture has other performance characteristics than regular CPUs

and CPU clusters. The use of a Singe-Instruction-Multiple-Thread (SIMT) architecture forces the developers to consider new pitfalls

such as wrong use of branching. This paper will show how the Tesla Architecture handles branching trough defining a theoretical model,

and discussing the validity of this. The performance characteristics which can be expected from a program using branches will also be

showed as part of validating the model.

Index Terms—Tesla Architecture, CUDA, branching, performance.

�

1 INTRODUCTION

WITH the introduction of the Tesla Architecture
and CUDA, the High Performance Computing

(HPC) community has been given the tools neces-
sary to easily do General-Purpose Computing on GPUs
(GPGPU). The use of NIVIDAs GPUs has thus been
given much attention, and many papers has been re-
leased outlining how to perform various algorithms
and applications using CUDA. What is also pointed
out by the same articles is the difference in paradigm
under which one develops. As normal supercomput-
ers are either Single-Instruction-Multiple-Data (SIMD) or
Multiple-Instruction-Multiple-Data (MIMD), the change
to the Single-Instruction-Multiple-Thread (SIMT) encour-
aged through CUDA proves to be difficult. One of many
pitfalls is wrong use of branching which may lead to
reduction in performance. This paper seeks to clarify
the behavior of branching on the Tesla architecture, and
which performance characteristics can be expected when
using branching.

The paper will start with a outline of the GPU and
the Tesla Architecture in Section 2, and then later in
the section focus more on threading in the Tesla Ar-
chitecture, and how this correlates to branching. The
section then finishes with a small part about GPGPU and
CUDA. In Section 3 a theoretical model for instruction
execution on the Tesla Architecture is given, along with
a discussion on how this affects branching. Section 4
gives an overview of the test environment used in the
verification of the model. Here both the hardware and
software used is described. The tests used to verify the
model are given in Section 5 along with the results of the
tests. The paper concludes on the validity of the model
in Section 6.

• R. J. Hovland is a graduate student with the Department of Computer
and Information Science at the Norwegian University of Science and
Technology, Trondheim, Norway.
E-mail: runejoho@stud.ntnu.no

2 BACKGROUND

From the first simple dedicated graphics systems in
1960 to the massively parallel computational platforms
today.s graphics cards are, there has been a tremendous
evolution [1]. The first systems merely acted as special-
ized hardware for drawing graphics on vector displays
and later raster displays. As 3-dimentional drawing be-
came more sought after, the graphics systems included
hardware for transforming 3-dimentional objects into 2-
dimentional drawings. By the 1980’s personal computers
started including specialized extension cards for display-
ing graphics and gave birth to the graphics card. As more
and more features were added to the graphics pipeline,
the cost of supporting the various graphics cards in-
creased unacceptably, and the need for standardization
emerged, and in the 1990’s both OpenGL1 and Direct 3D2

application programming interface (API) were released.
Still with the standards in place, the pipeline increased
due to new requirements such as multimedia accelera-
tion and specialized shaders. To overcome this increase
in complexity, Direct 3D introduced its Unified Shader
Model in 2006.

The Unified Shader Model introduced as a part of
Shader Model 4.0 in the Direct 3D 10 specification [2]
marked a turning point in the development of graphics
processing units (GPU). By expressing all its shaders on a
single shader core, it allowed for reuse of shader units for
different types of shaders. The intention with this choice
was to overcome the problems with the earlier pipelines
where specialized shaders were not fully utilized due
to mismatch between the pipelines ratio between shader
types and the applications needs. By basing the shaders
on the same shader core, a shader could be used in
all shader steps of the pipeline and thereby allowing
the GPU to adjust the pipeline to applications needs.
Another effect caused by the Unified Shader Model was
that the use of a single shader core throughout the
pipeline made the GPU more suited for general-purpose

1. www.opengl.org
2. www.microsoft.com/windows/directx/

72

2

computation.

2.1 Tesla Architecture
The Tesla architecture [3] is NVIDIA’s Unified Shader
Architecture, and first appeared in the G80 series of its
GPUs. The architecture is designed in such a way that it
is highly scalable, allowing it to be used in a wide range
for GPUs. This scalability is achieved through the use of
Streaming Multiprocessors (SM). These processors can
be duplicated any number of times to give the GPU its
desired performance. Since each SM is an independent
unit without possibility to communicate directly with
other SMs, this scalability is easily achieved.

These processors form the backbone of the architec-
ture, and give the Tesla architecture its ability to scale.
To give the GPU its desired performance and parallelism,
the SM can be duplicated any number of times. As an
example, GeForce GTX 2853 which is the new high-end
GPU has a total of 30 SMs, while the low-end GeForce
9400GT4 9400GT5 only has two SMs. An example layout
of the Tesla Architecture can be viewed in Figure 1.

The Streaming Multiprocessor is a Single-Instruction-
Multiple-Thread (SIMT) processor, and this is empha-
sized by NVIDIA [4]. While not part of Flynn’s tax-
onomy [5], there is a key difference between SIMT
and Single-Instruction-Mulitple-Data (SIMD). Both types
allow the same instruction to be executed on multiple
data in parallel. The key difference as pointed out by
NVIDIA is that while SIMD processors exposes the data
parallelism, the Tesla Architecture hides this by allowing
the developers to program multiple threads and running
them in parallel when their instructions are equal. This
thread parallelism is achieved by the eight Streaming
Processors (SP) inside the SM. These SPs all perform the
same instruction which is given by the SMs Instruction
Fetch and Issue Unit (MT Issue). If one or more of the
threads does not contain the instruction, the correspond-
ing SP is deactivated during the instruction execution
and thus maintaining the correct program execution
for all threads. This effect will be discussed further
in Section 2.2. In addition to the SPs and MT Issue,
the SM contains two Special Function Units (SFU) and
a shared memory. The SFUs are specialized hardware
capable of performing more complex calculations such as
square root. Also include as of the NVIDIA G200 series,
is a double-precision floating-point unit which can do
double-precision calculation. This is required as the SPs
are only capable of performing calculations using single-
precision floating-point and integers.

The shared memory located on the SM is part of a two
level memory hierarchy in the Tesla Architecture. Since
the Tesla Architecture does not implement cache for data
memory, a good utilization of the shared memory by
the developers is crucial to achieve high performance.

3. http://www.nvidia.com/object/product geforce gtx 285 us.html
4. http://www.nvidia.com/object/product geforce 9400gt us.html
5. http://www.nvidia.com/object/product geforce 9400gt us.html

Since a memory access instruction takes four cycles,
and the latency to the global memory is 4-600 cycles,
there is great performance gain by prefetching data to
the shared memory. Another vital thing to consider is
the access pattern to the shared memory, as the shared
memory is divided into 16 memory banks which can
be accessed in parallel. If two or more threads try to
access the same memory bank, the access is serialized.
The NVIDIA CUDA Programming Guide [4] is a good
source of information on this effect, and some more
optimization techniques.

2.2 Thread Branching on Tesla Architecture
As pointed out earlier the Streaming Multiprocessor is a
SIMT processor. This enables the developers to write a
massively multithreaded program, and the Tesla Archi-
tecture manages and parallelizes the threads. To organize
the large number of threads, the threads are grouped
together in thread blocks of up to 512 threads. On or
more thread blocks are executed on a SM interleaved. To
mask IO operations, a stalled block may be replaced by
another block to allow high utilization of the SM. Each
thread block operates as a independent unit without
other possibilities to communicated with other blocks
than through the global memory. Within a thread block
the threads are grouped together in Warps of 32 threads.
These threads are run in parallel on the SM, and all
execute the same instruction. To allow for instruction
decoding, the SM runs the 32 threads in four iterations
on the eight SPs. In the documentation the Warp is
divided into half-warps of 16 threads, but as far as it
can be found this grouping refers more to memory access
than execution patterns.

When a warp is executed, it must all perform the
same instruction. If branching occurs among the threads,
and one or more threads follows another branch, the
SM executes the different branches in serial and disables
the SPs handling the threads not following the current
branch. An effect of this is that any branching within a
warp will lower the utilization of the SPs and thus also
reduce the performance.

In the code given in Figure 2.2 the if-statement will
create a divergent path for the threads in the warp. The
first 11 threads will execute line 5, while the remaining
threads will execute line 9. To handle this situation, the
SM will then execute line 1-3 as normal, and then execute
line 5 with the SPs handling thread 11 to 31 disabled.
Further it will then execute line 9 with SPs assigned to
thread 0 to 10 disabled, and then finally execute line
11 for all SPs. Even though each thread only executes
5 instructions, the SM have to use 6 steps to complete,
since the threads takes divergent paths, and this reduces
the performance.

2.3 General-Purpose Computing on GPUs
The ability to perform general-purpose computing on
GPUs (GPGPU) have been possible since the appearance

73

3

Fig. 1. The Tesla Architecture [3].

1 i n t threadID = threadIdx . x ;
2 i n t k = 8 ;
3 i f (threadID < 11)
4 {
5 k = k + 5 ;
6 }
7 else
8 {
9 k = k − 2 ;

10 }
11 k = k + 3 ;

Fig. 2. Branching code. The first 11 threads execute the
if-section while the remaining 21 threads executes the
else-section.

of programmable shaders. However, the task has not
always been as easy as today. The pioneers of GPGPU
had to camouflage their computations as graphical ren-
dering, a necessity to adapt the computation to the
graphics pipeline [6]. This transformation between a
given problem and a graphical rendering was not a
trivial task and set the bar to high for common usage.
Many attempts have been made to hide this transform
from the user through languages such as Brook and Sh.

Parallel to the introduction of the Tesla Architecture,

NVIDIA released CUDA which is an extension to the
C programming language. It allows the developer to
program directly towards the GPU without having to
consider the graphics pipeline. The extension includes
the method modifier __global__ which makes the
method execute on the GPU. These kind of methods are
called kernels. When calling the kernel, the program
specifies how many thread blocks and threads to spawn
like this; foobar<<<number of blocks, number
of threads per block >>>(arguments). Any
data required for the calculations must explicitly be
copied to the GPU, and the result copied back. The
graphics card and surrounding system may both
affect the performance of this operation [7], and thus
affect the performance of several bandwidth-bound
GPGPU-applications.

For more information regarding CUDA, see [4]

3 METHODOLOGY AND MODELS

Based on the description of how the Tesla Architecture
operates in [3][4], there has be created a simple model
describing the expected behavior of the system. The
model describes the two steps needed by the Tesla
Architecture to execute a single instruction. The MT

74

4

Issue unit fetches and decodes the instruction which
is to be executed in the first step. It also determines
which SPs are going to be active during the execution.
The deactivation of SPs will ensure that threads do
not execute unwanted instructions. After this step is
completed, the second step commences. Here the MT
Issue unit oversees the execution of the instruction. This
step is divided into four sub-steps where eight threads at
the time are executing the instruction. At the beginning
of each step, the MT Issue unit activates the SPs which is
assigned threads who are to execute the instruction. The
remaining SPs are deactivated. Both steps take the same
amount of time, allowing them to be pipelined, giving a
higher throughput. The outline of the model can be seen
below.

1) Instruction decoding stage
2) Exectuion stage

a Execute thread 0-7
b Execute thread 8-15
c Execute thread 16-23
d Execute thread 24-31

When executing a branch under these conditions, the
SM would see to instructions needed to be executed, and
would then serialize it since the SPs are only capable
of performing the same instruction. A branch with two
paths would therefore take the total execution time as if
the two paths were executed after one another, which is
exactly what is done.

4 TEST ENVIRONMENT

The hardware used for these tests are a common per-
sonal computer with high-end components. The hard-
ware can be seen in Table 4. It has been configured with
the 64 bit version of Ubuntu ’Hardy Heron’ 8.04, and the
NVIDIA driver is of version 180.22.

TABLE 1
Test hardware

Processor
Intel Core 2 Quad Q9550, 64 bit
Clock frequency 2.83 GHz
L2 Cache 12 MB
Bus speed 1333 MHz

Motherboard
EVGA nForce 790i Ultra SLI
Chipset nForce 790i Ultra SLI

Memory
OCZ DDR3 4 GB Platinum EB XTC Dual Channel
Frequency 1600 MHz
Size 2x 2048 MB

GPU
NVIDIA GeForce GTX 280
Processor Cores 240
Graphics Clock 602 MHz
Processor Clock 1296 MHz
Memory Clock 1107 MHz
Memory Size 1 GB
Memory Bandwidth 141.7 GB/sec

The software is a simple test program which enables
the user to run different types of branches multiple times

and count the number of cycles. The program consists of
two parts; a CUDA kernel which runs a for loop 10 000
times, and within that loop does the wanted branching.
Before and after the loop, there is functionality to start
and stop the cycle counter. The other part of the program
is the CPU application, which starts the CUDA kernel,
and supplies it with dummy data used in the kernel.

5 RESULTS

To exactly determine the behavior of the Tesla Archi-
tecture and its conformance with the model given in
Section 3 would detailed descriptions of the architecture
and all its optimizations. This is however not accessible,
so another approach has to be taken. By devising small
tests to expose performance details about the Tesla Ar-
chitecture, it can be showed beyond reasonable doubt
the correctness of the model. The four tests performed
are given in the following subsections.

5.1 Number of Branches
It is pointed out by NVIDIA in their CUDA Program-
ming Guide [4] that using branches within a warp can
seriously affect the performance. This is due to the SIMT
architecture, which only allows one instruction at the
time to be performed by the warp. Any divergent paths
must be handled in serial. The more divergent branches,
the longer it would require to complete all branches.
Based on this description, one would expect a linear
increase in cycles needed to complete an increasing
number of branches. This effect can be seen in Figure 3
where the test program create a number of divergent
branches. This is done using a switch with thread id
as argument. Threads who do not diverge are handled
by the default-clause, ensuring equal computational load
on all threads. What is worth noticing is the abnormality
with one divergent thread, where the additional thread
does not cause the expected increase in cycles. This
may be an optimization made by NVIDIA to allow one
branch to act as a control branch without the full branch
penalty.

5.2 Location of Branches
Since the test in Section 5.1 uses thread zero to branch
out one thread, an extra test is required to test if the
reduced cost of branching for a single branch is thread
location dependent. To test this, a divergent branch will
be created which only one thread will follow. Then this
branching scheme is tested for all 32 threads. As can
be seen in Figure 4, there is no difference in the cost of
branching out a single thread regardless of which thread
follows the branch.

5.3 Grouping of Branches
The SMs are composed of eight SPs, while the warp is
divided into half-warps of 16 threads. To determine if

75

5

Fig. 3. Total cycles needed by testprogram for increasing number of divergent branches.

Fig. 4. Total cycles neaded by testprogram with a single divergent thread.

these groupings may have an effect on the performance
of branching, two simple tests have been devised. The
first test determines if threads can diverge as long as
all threads executed simultaneously on the SPs does
not diverge. This is done by creating four branches,
and running groups of eight threads through the four
branches. The second test is created in the same manner
but with two branches and threads grouped 16 together.
The result of these runs can be seen compared with the
runs of the threads scrambled across the branches in
Figure 5. As can be seen there is no difference in the
required number of cycles.

5.4 Size of Branch

It has been showed that the location of a branch does not
have an impact on the performance, but what remains
to be showed is the impact of the number of threads
following a branch. To show this a branch is created
and a increasing number of threads are instructed to
follow this branch. As can be seen in Figure 6, there

is no difference in the required number of cycles for the
different number of threads following the branch.

6 CONCLUSION

Through this paper, there has been showed a theoret-
ical model which describes the execution of instruc-
tions on the Tesla Architecture. This model has then
been examined and attempted verified by four tests
designed to expose the performance characteristics of
the architecture. During these tests the model was for
most parts verified, with one exception. The test which
should show how the required number of cycles needed
to perform an increasing number of branches did not
appear to comply completely with the model. When
there is only one diverging branch, the performance does
not decrease to the expected level. This may indicate
that the Tesla architecture has some built-in optimization
to handle one diverging branch. A reason for this may
be to increase the performance for applications where
warps have master-threads which execute different code

76

6

Fig. 5. Total cycles neaded by testprogram with a divergent paths grouped or scrabled across threads.

Fig. 6. Total cycles neaded by testprogram with an increasing number of threads on divergent path.

to control the other threads. Besides this one case, the
model describes the instruction execution on the Tesla
Architecture well. Although not the main reason for
low performance on CUDA applications, this paper has
shown which impact poor use of branching could cause
on the performance, and that it is a aspect developers
must pay attention to.

ACKNOWLEDGMENTS

The author would like to thank the HPC-group at the
Department of Computer and Information Science at the
Norwegian University of Science and Technology for use
of the HPC-lab. He would also like to thank the NVIDIA
Corporation for donating the graphics cards used in this
paper.

REFERENCES

[1] D. Blythe, “Rise of the Graphics Processor,” Proceedings of the IEEE,
vol. 96, no. 5, pp. 761–777, May 2008.

[2] ——, “The Direct3D 10 System,” Proceedings of the ACM SIGGRAPH
2006, vol. 25, no. 3, pp. 724–734, July 2006.

[3] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “NVIDIA
Tesla: A Unified Graphics and Computing Architecture,” IEEE
Micro, vol. 28, no. 2, pp. 39–55, March-April 2008.

[4] NVIDIA Corporation, “NVIDIA CUDA Compute
Unified Device Architecture, Programming Guide,”
[Cited: January 17, 2009]. [Online]. Avail-
able: http://developer.download.nvidia.com/compute/cuda/2
0/docs/NVIDIA CUDA Programming Guide 2.0.pdf

[5] M. J. Flynn, “Very High-Speed Computing Systems,” Proceedings
of the IEEE, vol. 52, no. 12, pp. 1901–1909, December 1966.

[6] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and
J. C. Phillips, “GPU Computing,” Proceedings of the IEEE, vol. 96,
no. 5, pp. 879–899, May 2008.

[7] R. J. Hovland, “Latency and Bandwidth Impact on GPU-systems,”
December 2008, report in course ”TDT4590 Complex Computer
Systems, Specialization Project”, Department of Computer and
Information Science, Norwegian University of Science and
Technology. [Cited: February 2, 2009]. [Online]. Available: http:
//publications.runejoho.net/gpgpu latency bandwidth.pdf

Rune Johan Hovland pursuits his Master of
Technology at the Norwegian University of Sci-
ence and Technology. The focus of the master is
High Performance Computing, and the master-
thesis focuses on using GPUs to accelerate
search methods.

77

B.2 NOTUR 2009 Poster

NOTUR2 is an organization responsible for the national infrastructure for
computational science in Norway. Each year they host the conference High
Performance Computing and Infrastructure in Norway on different univer-
sities in Norway. In May 2009, this conference was hosted in Trondheim
at the Norwegian University of Science and Technology, and this thesis was
presented as a poster3. While not all aspects covered in this thesis could be
included, the poster focused on the expansion of the memory hierarchy, and
presented the theoretical model with the calculated performance improve-
ments. Also included was a short summary of the case study and the other
suggested improvements.

2http://www.notur.no/
3Available: http://wo.uio.no/as/WebObjects/frida.woa/wo/32.Profil.29.25.2.3.15.1.1.3

78

C
on

cl
us

io
n

Th
e

ca
se

s
ar

e
ba

se
d

on
 th

e
ar

tic
le

 “
U

si
ng

 G
ra

ph
ic

s
Pr

oc
es

so
rs

 fo
r

H
ig

h
Pe

rf
or

m
an

ce
 IR

 Q
ue

ry
 P

ro
ce

ss
in

g”
 b

y
D

in
g,

H

e,
 T

an
 a

nd
 S

ue
l a

t N
YU

 w
hi

ch
 w

as
 p

ub
lis

he
d

at
 th

e
18

th
 In

t.
 W

or
ld

 W
id

e
W

eb
 C

on
fe

re
nc

e.
 B

en
ch

m
ar

ks
 a

re
 ta

ke
n

fr
om

 th
e

ar
tic

le
 a

nd
 u

se
d

to
 s

ho
w

 p
er

fo
rm

an
ce

 im
pr

ov
em

en
t f

or
 th

e
su

gg
es

te
d

ar
ch

ite
ct

ur
al

 c
ha

ng
es

.

Co
m

p
re

ss
io

n

Th
is

 c
as

e
us

es
 th

e
G

PU
 to

 d
ec

om
pr

es
s

th
e

se
ar

ch
 in

de
x.

 T
he

 c
om

pr
es

se
d

da
ta

 is
 a

ss
um

ed
 to

 b
e

in
 h

os
t-

m
em

or
y,

an

d
th

e
un

co
m

pr
es

se
d

da
ta

 is
 c

op
ie

d
ba

ck
 to

 h
os

t-
m

em
or

y.

Ri

ce
 c

od
in

g
PF

or
D

el
ta

 c
od

in
g

Cu
rr

en
t

G
PU

 v
s

CP
U

0.

63
9

0.
33

3
Su

ge
st

ed
 G

PU
 v

s
CP

U

0.
98

3
1.

06
2

Su
gg

es
te

d
G

PU
 v

s
cu

rr
en

t
G

PU

1.
53

7
3.

19
1

Se
ar

ch
 E

n
gi

n
e

Th
is

 c
as

e
us

es
 th

e
G

PU
 to

 r
un

 a
 c

om
pl

et
e

qu
er

y
en

gi
ne

. T
he

re
 is

 n
o

ca
ch

in
g

of
 d

at
a

on
 th

e
G

PU
. D

at
a

is
 a

ss
um

ed

to
 b

e
av

ai
la

bl
e

in
 h

os
t-

m
em

or
y

A

N
D

O

R
A

N
D

+O
R

Cu

rr
en

t
G

PU
 v

s
CP

U

1.
05

5
5.

50
4

1.
64

8
Su

ge
st

ed
 G

PU
 v

s
CP

U

1.
76

3
7.

64
7

3.
09

0
Su

gg
es

te
d

G
PU

 v
s

cu
rr

en
t

G
PU

1.

67
1

1.
38

9
1.

87
4

Ca
ch

ed
 S

ea
rc

h
 E

n
gi

n
e

If
ca

ch
in

g
is

 u
se

d
on

 th
e

G
PU

, t
he

 s
pe

ed
up

s
w

ou
ld

 b
e

af
fe

ct
ed

 a
s

th
e

am
ou

nt
 o

f d
at

a
ne

ed
ed

 to
 b

e
tr

an
sf

er
re

d
fo

r
ea

ch
 q

ue
ry

 is
 r

ed
uc

ed
. T

hi
s

is
 s

ho
w

n
in

 F
ig

ur
e

1

Fi

gu
re

 1
: S

pe
ed

up
 fo

r
Su

gg
es

te
d

G
PU

 A
rc

hi
te

ct
ur

e

Fi
gu

re
 2

: C
om

pu
ta

ti
on

al
 a

nd
 d

at
a

tr
an

sf
er

 ti
m

e
 In

 F
ig

ur
e

2,
 th

e
tim

e
ea

ch
 q

ue
ry

 o
pe

ra
tio

n
re

qu
ir

es
 is

 s
ho

w
n

to
ge

th
er

 w
ith

 th
e

tim
e

us
ed

 fo
r

da
ta

 tr
an

sf
er

s.

O
bs

er
ve

 h
ow

 th
e

in
te

rs
ec

tio
n

be
tw

ee
n

da
ta

 tr
an

sf
er

 ti
m

e
an

d
co

m
pu

ta
tio

na
l t

im
e

re
la

te
s

to
 th

e
sp

ee
du

p.

0

0.
51

1.
52

2.
5

0
15

30
45

60
75

90

Speedup

Ca
ch

e
hi

t (
pe

rc
en

t)

05101520253035

0
15

30
45

60
75

90

Time (ms)

Ca
ch

e
hi

t (
pe

rc
en

t)

Th
eo

re
tic

al
 M

od
el

In
tr

od
uc

tio
n

Fo
r

va
ri

ab
le

s,

 d
en

ot
es

 b
an

dw
id

th
,

 is
 d

at
as

iz
e

an
d

 is
 la

te
nc

y.
 T

he
 b

an
dw

id
th

 b
et

w
ee

n
ho

st
 a

nd
 d

ev
ic

e
 is

 a
ss

um
ed

 to
 b

e
th

e
lo

w
es

t,
 a

nd
 th

e
ba

nd
w

id
th

 in
cr

ea
se

s
fo

r t
ra

ns
fe

rs
 c

lo
se

r t
o

th
e

G
PU

 p
ro

ce
ss

or
s.

Ba
nd

w
id

th
s

an
d

la
te

nc
ie

s
ar

e
as

su
m

ed
 to

 b
e

sy
m

m
et

ri
c.

Cu
rr

en
t

Th
e

cu
rr

en
t N

VI
D

IA
 C

U
D

A
ve

rs
io

n
re

qu
ir

es
 th

at
 d

at
a

is
 c

op
ie

d
to

 th
e

G
PU

 b
ef

or
e

it
ca

n
be

 u
se

d
by

 th
e

ke
rn

el
 a

nd

th
e

re
su

lts
 m

us
t b

e
co

pi
ed

 b
ac

k
to

 th
e

ho
st

 a
ft

er
 th

e
co

m
pu

ta
tio

n
is

 c
om

pl
et

e.

Im
p

ro
ve

d

By
 a

dd
in

g
st

re
am

in
g

ca
pa

bi
lit

ie
s

be
tw

ee
n

ho
st

 a
nd

 d
ev

ic
e,

 th
e

tim
e

is
 d

ep
en

de
nt

 o
n

th
e

da
ta

 s
iz

e
an

d
th

e
lo

w
es

t
ba

nd
w

id
th

 in
 th

e
st

re
am

.

P
er

fo
rm

an
ce

 Im
p

ro
ve

m
en

ts

Th
er

e
is

 tw
o

ou
tc

om
es

 o
n

pe
rf

or
m

an
ce

 im
pr

ov
em

en
ts

 b
as

ed
 o

n
w

hi
ch

 b
an

dw
id

th
 th

at
 li

m
its

 th
e

ap
pl

ic
at

io
n.

D
at

a
B

ou
n

d

Th
e

co
st

 o
f c

om
pu

ta
tio

ns
 is

 h
id

de
n

in
 th

is
 c

as
e.

Co
m

p
u

ta
ti

on
al

 B
ou

n
d

Th
e

co
st

 o
f d

at
a

tr
an

sf
er

s
is

 h
id

de
n

in
 th

is
 c

as
e.

A
N

D
O

R
A

N
D

+O
R

D
at

a
Tr

an
sf

er

Th
e

H
PC

 c
om

m
un

ity
 h

as
 d

ev
ot

ed
 a

 g
re

at
 d

ea
l o

f a
tt

en
tio

n
to

 th
e

ge
ne

ra
l p

ur
po

se
 c

ap
ab

ili
tie

s
of

 th
e

G
ra

ph
ic

s
Pr

oc
es

si
ng

 U
ni

t.
 M

or
e

re
ce

nt
ly

, t
he

 p
ot

en
tia

l o
f t

he
 G

PU
 a

s
a

co
m

pu
ta

tio
na

l d
ev

ic
e

ha
s

al
so

 r
ec

ei
ve

d
at

te
nt

io
n

in

th
e

In
fo

rm
at

io
n

Re
tr

ie
va

l c
om

m
un

ity
. L

ar
ge

 d
at

a
vo

lu
m

es
 a

nd
 a

 fo
cu

s
on

 th
ro

ug
hp

ut
 a

re
 c

ha
ra

ct
er

is
tic

 fo
r

ap
pl

ic
at

io
ns

 w
ith

in
 th

is
 a

re
a.

 A
 s

ea
rc

h
en

gi
ne

 m
us

t h
an

dl
e

la
rg

e
am

ou
nt

s
of

 d
at

a,
 a

nd
 m

os
t o

f t
hi

s
is

 fe
tc

he
d

fr
om

di

sk
, m

ak
in

g
da

ta
 a

cc
es

s
a

su
bs

ta
nt

ia
l c

os
t f

or
 th

es
e

ap
pl

ic
at

io
ns

. T
he

 la
ck

 o
f s

tr
ea

m
in

g
ca

pa
bi

lit
ie

s
be

tw
ee

n
ho

st

an
d

de
vi

ce
 fo

r
th

e
G

PU
s

m
ay

 li
m

it
 th

e
po

te
nt

ia
l b

en
ef

its
 o

f u
si

ng
 G

PU
s

in
 s

uc
h

ap
pl

ic
at

io
ns

.

To
 a

llo
w

 s
tr

ea
m

in
g

ca
pa

bi
lit

ie
s

to
 th

e
G

PU
, t

hi
s

po
st

er
 p

ro
po

se
s

to
 a

llo
w

 th
e

G
PU

 to
 a

cc
es

s
ho

st
-m

em
or

y
du

ri
ng

ex

ec
ut

io
n.

 T
hi

s
w

ill
 a

llo
w

 d
at

a
tr

an
sf

er
s

an
d

co
m

pu
ta

tio
ns

 to
 b

e
in

te
rle

av
ed

 b
y

pi
pe

lin
in

g.
 It

 h
as

 b
ee

n
de

ve
lo

pe
d

a
th

eo
re

tic
al

 m
od

el
 fo

r
th

e
ex

is
tin

g
Te

sl
a

A
rc

hi
te

ct
ur

e,
 a

nd
 a

 m
od

el
 fo

r
th

e
su

gg
es

te
d

im
pr

ov
em

en
ts

.

C
as

e
St

ud
ie

s

H
ig

h
D

at
a

Vo
lu

m
es

 a
nd

 S
tre

am
in

g
on

 F
ut

ur
e

G
P

U
 S

ys
te

m
s

Im
pr

ov
em

en
ts

Th
e

su
gg

es
te

d
ar

ch
it

ec
tu

ra
l i

m
pr

ov
em

en
ts

 w
ill

 re
du

ce
 th

e
ov

er
al

l c
os

t o
f p

er
fo

rm
in

g
ca

lc
ul

at
io

ns
 o

n
th

e
G

PU
 b

y
pi

pe
lin

in
g

op
er

at
io

ns
. T

hi
s

w
ill

 c
au

se
 th

e
co

st
 o

f e
ith

er
 t

he
 d

at
a

tr
an

sf
er

 o
r

co
m

pu
ta

tio
ns

 to
 b

e
hi

dd
en

, g
iv

in
g

a
in

cr
ea

se
d

pe
rf

or
m

an
ce

. C
ur

re
nt

ly
 N

VI
D

IA
 is

 d
ev

el
op

in
g

so
m

e
of

 th
is

 fu
nc

tio
na

lit
y

in
 C

U
D

A
2.

2,
 w

hi
ch

 is
 s

til
l i

n
th

e
Be

ta
 s

ta
ge

.

R
u

n
e

Jo
h

a
n

 H
ov

la
n

d

M
a

st
er

 S
tu

d
en

t,
 I

D
I,

 N
T

N
U

A

n
n

e
C

. E
ls

te
r

A
d

vi
so

r,
 I

D
I,

 N
T

N
U

M

a
gn

u
s

Li
e

H
et

la
n

d

C
o

-a
d

vi
so

r,
 I

D
I,

 N
T

N
U

M
em

or
y

H
ie

ra
rc

h
y

A
 li

m
ita

tio
n

w
ith

 c
ur

re
nt

 G
PU

s
is

 th
e

la
ck

 o
f p

os
si

bi
lit

y
to

ac

ce
ss

 h
os

t-
m

em
or

y
w

hi
le

 th
e

ke
rn

el
 is

 r
un

ni
ng

. A
ny

 d
at

a
th

at
 is

 n
ee

de
d

fo
r

th
e

co
m

pu
ta

tio
n

m
us

t b
e

pr
es

en
t o

n
th

e
G

PU
 b

ef
or

e
th

e
co

m
pu

ta
tio

n
ca

n
co

m
m

en
ce

. B
y

al
lo

w
in

g
th

e
ke

rn
el

 to
 a

cc
es

s
ho

st
-m

em
or

y,
 it

 c
an

pe

rf
or

m
 c

al
cu

la
tio

ns
 w

hi
le

 p
re

fe
tc

hi
ng

 d
at

a
ne

ed
ed

 la
te

r
in

 th
e

co
m

pu
ta

tio
n.

 T
hi

s
w

ill
 r

ed
uc

e
th

e
to

ta
l t

im
e

ne
ed

ed
 fo

r
th

e
co

m
pu

ta
tio

n
du

e
to

 e
ff

ic
ie

nt
 p

ip
el

in
in

g
of

da

ta
 c

op
y

an
d

co
m

pu
ta

tio
n.

A
u

to
m

at
ed

 C
ac

h
in

g
Cu

rr
en

tly
 th

e
G

PU
s

m
em

or
y

hi
er

ar
ch

y
is

 n
ot

 c
ac

he
d

fo
r

no
rm

al
 d

at
a.

 D
at

a
lo

ca
lit

y
is

 a
 k

ey
 fa

ct
or

 in
 p

er
fo

rm
an

ce
,

an
d

ha
nd

lin
g

th
is

 th
en

 b
ec

om
es

 a
n

im
po

rt
an

t t
as

k.

M
an

ua
l h

an
dl

in
g

of
 lo

ca
lit

y
ca

n
le

ad
 to

 im
pr

ov
ed

pe

rf
or

m
an

ce
, b

ut
 a

ls
o

co
m

pl
ic

at
es

 d
ev

el
op

m
en

t.

A
ut

om
at

ed
 c

ac
hi

ng
 s

ho
ul

d
th

er
ef

or
e

be
 in

tr
od

uc
ed

 a
s

an

op
tio

na
l f

ea
tu

re
 w

he
n

al
lo

ca
tin

g
m

em
or

y
to

 r
ed

uc
e

th
e

co
m

pl
ex

ity
 fo

r
no

vi
ce

 d
ev

el
op

er
s.

 C
ac

hi
ng

 is
 a

lr
ea

dy

im
pl

em
en

te
d

fo
r

te
xt

ur
e

da
ta

, a
nd

 n
or

m
al

 d
at

a
ca

n
be

m

as
ke

d
as

 te
xt

ur
es

, s
o

th
is

 c
an

 e
as

ily
 b

e
so

lv
ed

 u
si

ng

sy
nt

ac
tic

 s
ug

ar
.

Ex
te

n
d

ed
 H

os
t-

D
ev

ic
e

Sy
n

ch
ro

n
iz

at
io

n

A
llo

w
in

g
sy

nc
hr

on
iz

at
io

n
be

tw
ee

n
ho

st
 a

nd
 G

PU
 w

ou
ld

al

lo
w

 c
om

pl
ex

 p
ro

gr
am

 to
 b

e
le

ss
 c

om
pl

ex
. C

ur
re

nt
ly

sy

nc
hr

on
iz

at
io

n
is

 s
ol

ve
d

by
 e

nd
in

g
th

e
ke

rn
el

, t
hu

s
re

tu
rn

in
g

co
nt

ro
l t

o
th

e
CP

U
.

A
ll

ow
 F

il
e

A
cc

es
s

M
an

y
hi

gh
 d

at
a

vo
lu

m
e

ap
pl

ic
at

io
ns

 h
as

 e
xt

en
si

ve
 u

se
 o

f
fil

es
. P

or
tin

g
th

es
e

ap
pl

ic
at

io
ns

 c
an

 b
e

cu
m

be
rs

om
e

w
he

n
CU

D
A

do
es

 n
ot

 s
up

po
rt

 fi
le

 a
cc

es
s.

 A
llo

w
in

g
fil

e
ac

ce
ss

 fr
om

 th
e

G
PU

 c
an

 b
e

di
ff

ic
ul

t,
 b

ut
 b

y
al

lo
w

in
g

th
e

G
PU

 a
cc

es
s

to
 h

os
t-

m
em

or
y,

 M
em

or
y-

M
ap

pe
d-

Fi
le

s
ca

n
be

 u
se

d
to

 g
ra

nt
 th

e
G

PU
 fi

le
 a

cc
es

s
w

ith
ou

t p
hy

si
ca

l
ac

ce
ss

.

A
ck

no
w

le
dg

em
en

ts

W
e

w
ou

ld
 li

ke
 to

 th
an

k
N

VI
D

IA
 fo

r
pr

ov
id

in
g

se
ve

ra
l o

f
th

e
gr

ap
hi

cs
 c

ar
ds

 u
se

d
in

 th
is

 p
ro

je
ct

 th
ro

ug
h

D
r.

 E
ls

te
rs

m

em
be

rs
hi

p
in

 th
ei

r
Pr

of
es

so
r

A
ff

ili
at

es
 P

ro
gr

am
.

79

80

Appendix C

Test Systems

The systems used in this thesis are referred to by their graphics card. In this
appendix, the rest of the specifications for the three systems are given.

Table C.1: GeForce GTX 280 machine specifications

Processor
Intel Core 2 Quad Q9550, 64 bit
Clock frequency 2.83 GHz
L2 Cache 12 MB
Bus speed 1333 MHz

Motherboard
EVGA nForce 790i Ultra SLI
Chipset NVIDIA nForce 790i Ultra SLI

Memory
OCZ DDR3 4 GB Platinum EB XTC Dual Channel
Frequency 1600 MHz
Size 2x 2048 MB

Hard-disk
Samsung Spinpoint S166
Rotational Speed 7200 RPM
Size 160 GB

81

Table C.2: GeForce 9300m machine specifications

Processor
Intel Pentium Dual Core E5200, 64 bit
Clock frequency 2.50 GHz
L2 Cache 2 MB
Bus speed 800 MHz

Motherboard
Asus S-775 Gf7300
Chipset NVIDIA GeForce 9300/nForce 730i

Memory
CORSAIR TWIN2X 6400 DDR2
Frequency 800 MHz
Size 2x 2048 MB

Hard-disk
Western Digital Caviar GP
Rotational Speed 7200 RPM
Size 1 TB

Table C.3: ION machine specifications

Processor
Intel Atom 330, 64 bit
Clock frequency 1.60 GHz
L2 Cache 1 MB
Bus speed 533 MHz

Motherboard
Zotac ION
Chipset NVIDIA ION

Memory
OCZ DDR3 4 GB Platinum EB XTC Dual Channel
Frequency 1600 MHz
Size 2x 2048 MB

Hard-disk
Western Digital Caviar GP
Rotational Speed 7200 RPM
Size 1 TB

82

	Title Page
	Problem Description
	master.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

